
BEAWebLogic
Server®

Configuring and Using
the WebLogic
Diagnostics Framework

Version 9.2
Revised: June 5, 2008

Configuring and Using the WebLogic Diagnostics Framework v

Contents

1. Introduction and Roadmap
What Is the WebLogic Diagnostic Framework? . 1-1

Document Scope and Audience . 1-2

Guide to This Document . 1-2

Related Documentation . 1-4

Samples and Tutorials . 1-4

Avitek Medical Records Application (MedRec) and Tutorials 1-4

New and Changed Features in this Release . 1-5

2. Overview of the WLDF Architecture
Overview of the WebLogic Diagnostic Framework . 2-2

Data Creation, Collection, and Instrumentation. 2-3

Archive. 2-4

Watch and Notification . 2-4

Data Accessor . 2-5

Diagnostic Image Capture . 2-6

How It All Fits Together . 2-6

3. Understanding WLDF Configuration
Configuration MBeans and XML . 3-2

Tools for Configuring WLDF . 3-2

How WLDF Configuration Is Partitioned . 3-3

Server-Level Configuration . 3-3

vi Configuring and Using the WebLogic Diagnostics Framework

Application-Level Configuration . 3-3

Configuring Diagnostic Image Capture and Diagnostic Archives 3-4

Configuring Diagnostic System Modules . 3-5

The Diagnostic System Module and Its Resource Descriptor 3-5

Referencing the Diagnostics System Module from Config.xml 3-5

The DIAG_MODULE.xml Resource Descriptor Configuration 3-7

Managing Diagnostic System Modules . 3-8

More Information About Configuring Diagnostic System Resources. 3-8

Configuring Diagnostic Modules for Applications. 3-8

WLDF Configuration MBeans and Their Mappings to XML Elements 3-9

4. Configuring and Capturing Diagnostic Images
How to Initiate Image Captures . 4-1

Configuring Diagnostic Image Captures. 4-2

How Diagnostic Image Capture Is Persisted in the Server’s Configuration 4-3

Contents of the Captured Image File. 4-3

5. Configuring Diagnostic Archives
Configuring the Archive . 5-1

Configuring a File-Based Store. 5-2

Configuring a JDBC-Based Store . 5-2

Creating WLDF Tables in the Database. 5-3

Configuring JDBC Resources for WLDF . 5-4

6. Configuring the Harvester for Metric Collection
Harvesting, Harvestable Data, and Harvested Data . 6-1

Harvesting Data from the Different Harvestable Entities . 6-2

Configuring the Harvester . 6-3

Configuring the Harvester Sampling Period . 6-4

Configuring and Using the WebLogic Diagnostics Framework vii

Configuring the Types of Data to Harvest . 6-4

Specifying Type Names for WebLogic Server MBeans and Custom MBeans 6-5

When Configuration Settings Are Validated . 6-5

Sample Configurations for Different Harvestable Types . 6-6

7. Configuring Watches and Notifications
Watches and Notifications. 7-1

Overview of Watch and Notification Configuration . 7-2

Sample Watch and Notification Configuration . 7-4

8. Configuring Watches
Types of Watches . 8-1

Configuration Options Shared by All Types of Watches . 8-2

Configuring Harvester Watches . 8-3

Configuring Log Watches . 8-6

Configuring Instrumentation Watches. 8-7

Defining Watch Rule Expressions. 8-7

9. Configuring Notifications
Types of Notifications . 9-1

Configuring JMX Notifications. 9-2

Configuring JMS Notifications . 9-3

Configuring SNMP Notifications . 9-4

Configuring SMTP Notifications . 9-6

Configuring Image Notifications. 9-7

10.Configuring Instrumentation
Concepts and Terminology . 10-2

Instrumentation Scope . 10-2

viii Configuring and Using the WebLogic Diagnostics Framework

Configuration and Deployment . 10-2

Joinpoints, Pointcuts, and Diagnostic Locations . 10-3

Diagnostic Monitor Types . 10-3

Diagnostic Actions . 10-5

Instrumentation Configuration Files . 10-5

XML Elements Used for Instrumentation. 10-7

<Instrumentation> XML Elements . 10-7

<wldf-instrumentation-monitor> XML Elements . 10-9

Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types . . . 10-14

Configuring Server-Scoped Instrumentation . 10-15

Configuring Application-Scoped Instrumentation . 10-17

Comparing System-Scoped to Application-Scoped Instrumentation 10-17

Overview of the Steps Required to Instrument an Application 10-18

Creating a Descriptor File for a Delegating Monitor . 10-19

Creating a Descriptor File for a Custom Monitor . 10-20

Defining Pointcuts for Custom Monitors. 10-21

11.Configuring the DyeInjection Monitor to Manage Diagnostic
Contexts

Contents, Life Cycle, and Configuration of a Diagnostic Context 11-2

Context Life Cycle and the Context ID . 11-2

Dyes, Dye Flags, and Dye Vectors. 11-2

Where Diagnostic Context Is Configured . 11-3

Overview of the Process . 11-3

Configuring the Dye Vector via the DyeInjection Monitor . 11-4

Dyes Supported by the DyeInjection Monitor . 11-6

PROTOCOL Dye Flags . 11-7

THROTTLE Dye Flag . 11-8

Configuring and Using the WebLogic Diagnostics Framework ix

When Contexts Are Created. 11-8

Configuring Delegating Monitors to Use Dye Filtering . 11-8

How Dye Masks Filter Requests to Pass to Monitors . 11-10

Dye Filtering Example . 11-10

Using Throttling to Control the Volume of Instrumentation Events. 11-12

Configuring the THROTTLE Dye . 11-12

How Throttling is Handled by Delegating and Custom Monitors 11-14

Using weblogic.diagnostics.context . 11-15

12.Accessing Diagnostic Data With the Data Accessor
Data Stores Accessed by the Data Accessor . 12-1

Accessing Diagnostic Data Online . 12-2

Accessing Data Using the Administration Console . 12-3

Accessing Data Programmatically Using Runtime MBeans 12-3

Using WLST to Access Diagnostic Data Online . 12-4

Using the WLDF Query Language with the Data Accessor 12-4

Accessing Diagnostic Data Offline . 12-4

Accessing Diagnostic Data Programmatically . 12-4

Resetting the System Clock Can Affect How Data Is Archived and Retrieved 12-12

13.Deploying WLDF Application Modules
Deploying a Diagnostic Module as an Application-Scoped Resource 13-2

Using Deployment Plans for Dynamically Controlling Instrumentation Configuration. 13-3

Using a Deployment Plan: Overview . 13-4

Creating a Deployment Plan Using weblogic.PlanGenerator . 13-5

Sample Deployment Plan for Diagnostics. 13-6

Enabling Hot-Swap Capabilities . 13-7

Deploying an Application with a Deployment Plan . 13-7

x Configuring and Using the WebLogic Diagnostics Framework

Updating an Application with a Modified Plan . 13-8

14.Configuring and Using WLDF Programmatically
How WLDF Generates and Retrieves Data . 14-2

Mapping WLDF Components to Beans and Packages . 14-2

Programming Tools. 14-5

Configuration and Runtime APIs. 14-6

WLDF Packages . 14-8

Programming WLDF: Examples. 14-9

Example: DiagnosticContextExample.java . 14-9

Example: HarvesterMonitor.java . 14-10

Example: JMXAccessorExample.java. 14-18

A. WLDF Query Language
Components of a Query Expression . A-1

Supported Operators . A-2

Operator Precedence . A-3

Supported Numeric Constants and String Literals . A-3

About Variables in Expressions . A-4

Creating Watch Rule Expressions. A-4

Creating Log Event Watch Rule Expressions . A-5

Creating Instrumentation Event Watch Rule Expressions . A-6

Creating Harvester Watch Rule Expressions . A-7

Creating Data Accessor Queries . A-8

Data Store Logical Names . A-8

Data Store Column Names. A-9

Creating Log Filter Expressions . A-10

Building Complex Expressions. A-11

Configuring and Using the WebLogic Diagnostics Framework xi

B. WLDF Instrumentation Library
Diagnostic Monitor Library. B-1

Diagnostic Action Library . B-13

C. WebLogic Scripting Tool Examples
Example: Dynamically Creating DyeInjection Monitors . C-1

Example: Configuring a Watch and a JMX Notification . C-5

Example: Writing a JMXWatchNotificationListener Class . C-8

Example: Registering MBeans and Attributes For Harvesting . C-12

D. Terminology

xii Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the contents and audience for this guide—Configuring and
Using the WebLogic Diagnostic Framework:

“What Is the WebLogic Diagnostic Framework?” on page 1-1

“Document Scope and Audience” on page 1-2

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-4

“Samples and Tutorials” on page 1-4

“New and Changed Features in this Release” on page 1-5

What Is the WebLogic Diagnostic Framework?
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic framework that
defines and implements a set of services that run within BEA WebLogic Server® processes and
participate in the standard server life cycle. Using WLDF, you can create, collect, analyze,
archive, and access diagnostic data generated by a running server and the applications deployed
within its containers. This data provides insight into the run-time performance of servers and a

WLDF includes several components for collecting and analyzing data:

Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can be used
for post-failure analysis.

I n t roduct i on and Roadmap

1-2 Configuring and Using the WebLogic Diagnostics Framework

Archive—Captures and persists data events, log records, and metrics from server instances
and applications.

Instrumentation—Adds diagnostic code to WebLogic Server instances and the applications
running on them to execute diagnostic actions at specified locations in the code. The
Instrumentation component provides the means for associating a diagnostic context with
requests so they can be tracked as they flow through the system.

Harvester—Captures metrics from run-time MBeans, including WebLogic Server MBeans
and custom MBeans, which can be archived and later accessed for viewing historical data.

Watches and Notifications—Provides the means for monitoring server and application
states and sending notifications based on criteria set in the watches.

Logging services—Manages logs for monitoring server, subsystem, and application events.
The WebLogic Server logging services are documented separately from the rest of the
WebLogic Diagnostic Framework. See Configuring Log Files and Filtering Log Messages.

WLDF provides a set of standardized application programming interfaces (APIs) that enable
dynamic access and control of diagnostic data, as well as improved monitoring that provides
visibility into the server. Independent Software Vendors (ISVs) can use these APIs to develop
custom monitoring and diagnostic tools for integration with WLDF.

WLDF was a new feature in WebLogic Server 9.0. WLDF enables dynamic access to server data
through standard interfaces, and the volume of data accessed at any given time can be modified
without shutting down and restarting the server.

Document Scope and Audience
This document describes and tells how to configure and use the monitoring and diagnostic
services provided by WLDF.

WLDF provides features for monitoring and diagnosing problems in running WebLogic Server
instances and clusters and in applications deployed to them. Therefore, the information in this
document is directed both to system administrators and to application developers. It also contains
information for third-party tool developers who want to build tools to support and extend WLDF.

It is assumed that readers are familiar with Web technologies and the operating system and
platform where WebLogic Server is installed.

Guide to This Document
This document is organized as follows:

Guide to Th is Document

Configuring and Using the WebLogic Diagnostics Framework 1-3

This chapter, “Introduction and Roadmap,” provides an overview of WLDF components
and describes the audience for this guide.

Chapter 2, “Overview of the WLDF Architecture,” provides a high-level view of the
WLDF architecture.

Chapter 3, “Understanding WLDF Configuration,” provides an overview of how WLDF
features are configured for servers and applications.

Chapter 4, “Configuring and Capturing Diagnostic Images,” describes how to configure
and use the WLDF Diagnostic Image Capture component to capture a snapshot of
significant server configuration settings and state.

Chapter 5, “Configuring Diagnostic Archives,” describes how to configure and use the
WLDF Diagnostic Archive component to persist diagnostic data to a file store or database.

Chapter 6, “Configuring the Harvester for Metric Collection,” describes how to configure
and use the WLDF Harvester component to harvest metrics from runtime MBeans,
including WebLogic Server MBeans and custom MBeans.

Chapter 7, “Configuring Watches and Notifications,” provides an overview of WLDF
watches and notifications.

Chapter 8, “Configuring Watches,” describes how to configure watches to monitor server
instances and applications for specified conditions and then send notifications when those
conditions are met.

Chapter 9, “Configuring Notifications,” describes how to configure notifications that can
be triggered by watches.

Chapter 10, “Configuring Instrumentation,” describes how to add diagnostic
instrumentation code to WebLogic Server classes and to the classes of applications running
on the server.

Chapter 11, “Configuring the DyeInjection Monitor to Manage Diagnostic Contexts,”
describes how to use the DyeInjection monitor and how to use dye filtering with
diagnostic monitors.

Chapter 12, “Accessing Diagnostic Data With the Data Accessor,” tells how to use the
WLDF Data Accessor component to retrieve diagnostic data.

Chapter 14, “Configuring and Using WLDF Programmatically,” provides an overview of
how you can use the JMX API and the WebLogic Scripting Tool (weblogic.WLST) to
configure and use WLDF components.

I n t roduct i on and Roadmap

1-4 Configuring and Using the WebLogic Diagnostics Framework

Appendix A, “WLDF Query Language,” describes the WLDF query language that is used
for constructing expressions to query diagnostic data using the Data Accessor, construct
watch rules, and construct rules for filtering logs.

Appendix B, “WLDF Instrumentation Library,” describes the predefined diagnostic
monitors and diagnostic actions that are included in the WLDF Instrumentation Library.

Appendix C, “WebLogic Scripting Tool Examples,” provides examples of how to perform
WLDF monitoring and diagnostic activities using the WebLogic Scripting Tool.

Appendix D, “Terminology,” is a glossary of terms used in WLDF.

Related Documentation
Configuring Log Files and Filtering Log Messages describes how to use WLDF logging
services to monitor server, subsystem, and application events.

“Configure the WebLogic Diagnostic Framework” in the Administration Console Online
Help describes how to use the visual tools in the WebLogic Administration Console to
configure WLDF.

The WLDF system resource descriptor conforms to the diagnostics.xsd schema,
available at http://www.bea.com/ns/weblogic/90/diagnostics.xsd. See WebLogic Server
Diagnostics Configuration Schema Reference for documentation.

Samples and Tutorials
In addition to this document, BEA Systems provides a variety of samples and tutorials that show
WLDF configuration and use.

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates
an independent, centralized medical record management system. The MedRec application
provides a framework for patients, doctors, and administrators to manage patient data using a
variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights BEA-recommended
best practices. MedRec is included in the WebLogic Server distribution, and can be accessed
from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec
from the WL_HOME\samples\domains\medrec directory, where WL_HOME is the top-level
installation directory for WebLogic Platform.

New and Changed Featu res in th is Re lease

Configuring and Using the WebLogic Diagnostics Framework 1-5

New and Changed Features in this Release
The following features are new to the WebLogic Diagnostic Framework in this release.

There is a new standard application-scoped monitor, HttpSessionDebug, which you can use to
inspect an HTTP Session object. For more information, see the entry for HttpSessionDebug in
“Diagnostic Monitor Library” on page B-1.

The WebLogic Diagnostic Framework Console Extension also has new features. See
Introduction and Roadmap in Using the WebLogic Diagnostic Framework Console Extension.

I n t roduct i on and Roadmap

1-6 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 2-1

C H A P T E R 2

Overview of the WLDF Architecture

The WebLogic Diagnostic Framework (WLDF) consists of a number of components that work
together to collect, archive, and access diagnostic information about a WebLogic Server instance
and the applications it hosts. This section provides an architectural overview of those
components.

Note: Concepts are presented in this section in a way to help you understand how WLDF
works. Some of this differs from the way WLDF is surfaced in its configuration and
runtime APIs and in the WebLogic Server Console. If you want to start configuring and
using WLDF right away, you can safely skip this discussion and start with Chapter 3,
“Understanding WLDF Configuration.”

The WLDF architecture is described in the following sections:

“Overview of the WebLogic Diagnostic Framework” on page 2-2

“Data Creation, Collection, and Instrumentation” on page 2-3

“Archive” on page 2-4

“Watch and Notification” on page 2-4

“Data Accessor” on page 2-5

“Diagnostic Image Capture” on page 2-6

“How It All Fits Together” on page 2-6

Overv iew o f the WLDF Arch i tec ture

2-2 Configuring and Using the WebLogic Diagnostics Framework

Overview of the WebLogic Diagnostic Framework
WLDF consists of the following:

Data creators (data publishers and data providers that are distributed across the WLDF
components)

Data collectors (the Logger and the Harvester component)

Archive component

Accessor component

Instrumentation component

Watch and Notification component

Image Capture component

Data creators generate diagnostic data that is consumed by the Logger and the Harvester. Those
components coordinate with the Archive to persist the data, and they coordinate with the Watch
and Notification subsystem to provide automated monitoring. The Accessor interacts with the
Logger and the Harvester to expose current diagnostic data and with the Archive to present
historical data. The Image Capture facility provides the means for capturing a diagnostic snapshot
of key server state. The relationship among these components is shown in Figure 2-1.

Figure 2-1 Major WLDF Components

Data Creat ion , Co l l ec t i on , and Ins t rumentat ion

Configuring and Using the WebLogic Diagnostics Framework 2-3

All of the framework components operate at the server level and are only aware of server scope.
All the components exist entirely within the server process and participate in the standard server
lifecycle. All artifacts of the framework are configured and stored on a per server basis.

Data Creation, Collection, and Instrumentation
Diagnostic data is collected from a number of sources. These sources can be logically classified
as either data providers, data creators that are sampled at regular intervals to harvest current
values, or data publishers, data creators that synchronously generate events. Data providers and
data publishers are distributed across components, and the generated data can be collected by the
Logger and/or by the Harvester, as shown in Figure 2-2, and explained below.

Figure 2-2 Relationship of Data Creation Components to Data Collection Components

Invocations of the server logging infrastructure serve as inline data publishers, and the generated
data is collected as events. (The logging infrastructure can be invoked through the catalog
infrastructure, the debugging model, or directly through the Logger.)

The Instrumentation system creates monitors and inserts them at well-defined points in the flow
of execution. These monitors publish data directly to the Archive.

Overv iew o f the WLDF Arch i tec ture

2-4 Configuring and Using the WebLogic Diagnostics Framework

Components registered with the MBean Server may also make themselves known as data
providers by registering with the Harvester. Collected data is then exposed to both the Watch and
Notification system for automated monitoring and to the Archive for persistence.

Archive
Past state is often critical in diagnosing faults in a system. This requires that state be captured and
archived for future access, creating a historical archive. In WLDF, the Archive meets this need
with several persistence components. Both events and harvested metrics can be persisted and
made available for historical review.

Traditional logging information, which is human readable and intended for inclusion in the server
log, is persisted through the standard logging appenders. New event data that is intended for
system consumption is persisted into an event store using an event archiver. Metric data is
persisted into a data store using a data archiver. The relationship of the Archive to the Logger and
the Harvester is shown in Figure 2-3.

The Archive provides access interfaces so that the Accessor may expose any of the persisted
historical data.

Figure 2-3 Relationship of the Archive to the Logger and the Harvester

Watch and Notification
The Watch and Notification system can be used to create automated monitors that observe
specific diagnostic state and send notifications based on configured rules.

Data Accessor

Configuring and Using the WebLogic Diagnostics Framework 2-5

A watch rule can monitor log data, event data from the Instrumentation component, or metric data
from a data provider that is harvested by the Harvester. The Watch Manager is capable of
managing watches that are composed of a number of watch rules. These relationships are shown
in Figure 2-4.

Figure 2-4 Relationship of the Logger and the Harvester to the Watch and Notification System

One or more notifications can be configured for use by a watch. By default, every watch logs an
event in the server log. In addition SMTP, SNMP, JMX, and JMS notifications are supported.

Data Accessor
The Accessor provides access to all the data collected by WLDF, including log, event, and metric
data. The Accessor interacts with the Archive to get historical data including logged event data
and persisted metrics.

When accessing data in a running server, a JMX-based access service is used. The Accessor
provides for data lookup by type, by component, and by attribute. It permits time-based filtering
and in the case of events filtering by severity, source and content.

Tools may wish to access data that was persisted by a server which is not currently active. In these
cases an offline Accessor is also provided. You can use it to export archived data to an XML file
for later access. To use the Accessor in this way, you must use WebLogic Scripting Tool (WLST)
and must have physical access to the machine.

Overv iew o f the WLDF Arch i tec ture

2-6 Configuring and Using the WebLogic Diagnostics Framework

The relationship of the Accessor to the Harvester and the Archive is shown in Figure 2-5.

Figure 2-5 Relationship of the Online and Offline Accessors to the Harvester and the Archive

Diagnostic Image Capture
The Diagnostic Image support gathers the most common sources of key server state used in
diagnosing problems and packages that state into a single artifact that can be made available to
support, as shown in Figure 2-6. The diagnostic image is, in essence a diagnostic snapshot or
dump from the server, analogous to a UNIX “core” dump.

The image capture support includes both an on-demand capture process and an automated capture
based on some basic failure detection.

Figure 2-6 Diagnostic Image Capture

How It All Fits Together
Figure 2-7 shows how all the parts of WLDF fit together.

How I t A l l F i ts Together

Configuring and Using the WebLogic Diagnostics Framework 2-7

Figure 2-7 Overall View of the WebLogic Diagnostic Framework

Overv iew o f the WLDF Arch i tec ture

2-8 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 3-1

C H A P T E R 3

Understanding WLDF Configuration

The WebLogic Diagnostic Framework (WLDF) provides features for generating, gathering,
analyzing, and persisting diagnostic data from BEA WebLogic Server® instances and from
applications deployed to them. For server-scoped diagnostics, some WLDF features are
configured as part of the configuration for a server in a domain. Other features are configured as
system resource descriptors that can be targeted to servers (or clusters). For application-scoped
diagnostics, diagnostic features are configured as resource descriptors for the application.

The following sections provide an overview of WLDF configuration:

“Configuration MBeans and XML” on page 3-2

“Tools for Configuring WLDF” on page 3-2

“How WLDF Configuration Is Partitioned” on page 3-3

“Configuring Diagnostic Image Capture and Diagnostic Archives” on page 3-4

“Configuring Diagnostic System Modules” on page 3-5

“Configuring Diagnostic Modules for Applications” on page 3-8

“WLDF Configuration MBeans and Their Mappings to XML Elements” on page 3-9

For general information about WebLogic Server domain configuration, see Understanding
Domain Configuration.

Unders tand ing WLDF Conf igurat ion

3-2 Configuring and Using the WebLogic Diagnostics Framework

Configuration MBeans and XML
As in other WebLogic Server subsystems, WLDF is configured using configuration MBeans
(Managed Beans), and the configuration is persisted in XML configuration files. The
configuration MBeans are instantiated at startup, based on the configuration settings in the XML
file. When you modify a configuration by changing the values of MBean attributes, those changes
are saved (persisted) in the XML files.

Configuration MBean attributes map directly to configuration XML elements. For example, the
Enable attribute of the WLDFInstrumentationBean maps directly to the <enabled>
sub-element of the <instrumentation> element in the resource descriptor file (configuration
file) for a diagnostic module. If you change the value of the MBean attribute, the content of the
XML element is changed when the configuration is saved. Conversely, if you were to edit an
XML element in the configuration file directly (which is not recommended), the change to an
MBean value would take effect after the next session is started.

For more information about WLDF Configuration MBeans, see “WLDF Configuration MBeans
and Their Mappings to XML Elements” on page 3-9. For general information about how MBeans
are implemented and used in WebLogic Server, see “Understanding WebLogic Server MBeans”
in Developing Custom Management Utilities with JMX.

Tools for Configuring WLDF
As with other WebLogic Server subsystems, there are several ways to configure WLDF:

Use the Administration Console to configure WLDF for server instances and clusters. See
“Configure the WebLogic Diagnostic Framework” in the Administration Console Online
Help.

Write scripts to be run in the WebLogic Scripting Tool (WLST). For specific information
about using WLST with WLDF, see Appendix C, “WebLogic Scripting Tool Examples.”
Also see WebLogic Scripting Tool for general information about using WLST.

Configure WLDF programmatically using JMX and the WLDF configuration MBeans. See
“Configuring and Using WLDF Programmatically” for specific information about
programming WLDF. See WebLogic Server MBean Reference and browse or search for
specific MBeans for programming reference.

Edit the XML configuration files directly. This documentation explains many configuration
tasks by showing and explaining the XML elements in the configuration files. The XML is
easy to understand, and you can edit the configuration files directly, although it is
recommended that you do not. (If you have a good reason to edit the files directly, you

How WLDF Conf igurat ion I s Par t i t i oned

Configuring and Using the WebLogic Diagnostics Framework 3-3

should first generate the XML files by configuring WLDF in the Administration Console.
Doing so provides a blueprint for valid XML.)

Note: If you make changes to a configuration by editing configuration files, you must restart
the server for the changes to take effect.

How WLDF Configuration Is Partitioned
You can use WLDF to perform diagnostics tasks for server instances (and clusters) and for
applications.

Server-Level Configuration
You configure the following WLDF components as part of a server instance in a domain. The
configuration settings are controlled using MBeans and are persisted in the domain’s
config.xml file.

Diagnostic Image Capture

Diagnostic Archives

See “Configuring Diagnostic Image Capture and Diagnostic Archives” on page 3-4.

You configure the following WLDF components as the parts of one or more diagnostic system
modules, or resources, that can be deployed to one or more server instances (or clusters). These
configuration settings are controlled using Beans and are persisted in one or more diagnostic
resource descriptor files (configuration files) that can be targeted to one or more server instances
or clusters.

Harvester (for collecting metrics)

Watch and Notification

Instrumentation

See “Configuring Diagnostic System Modules” on page 3-5.

Application-Level Configuration
You can use the WLDF Instrumentation component with applications, as well as at the server
level. The Instrumentation component is configured in a resource descriptor file deployed with
the application in the applications archive file. See “Configuring Diagnostic Modules for
Applications” on page 3-8.

Unders tand ing WLDF Conf igurat ion

3-4 Configuring and Using the WebLogic Diagnostics Framework

Configuring Diagnostic Image Capture and Diagnostic
Archives

In the config.xml file for a domain, you configure the Diagnostic Image Capture component
and the Diagnostic Archive component in the <server-diagnostic-config> element, which
is a child of the <server> element in a domain, as shown in Listing 3-1.

Listing 3-1 Sample WLDF Configuration Information in the config.xml File for a Domain

<domain>

<server>

<name>myserver</name>

<server-diagnostic-config>

<image-dir>logs\diagnostic_images</image-dir>

<image-timeout>3</image-timeout>

<diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>

<diagnostic-data-archive-type>FileStoreArchive

</diagnostic-data-archive-type>

</server-diagnostic-config>

</server>

<!-- Other server elements to configure other servers in this domain -->

<!-- Other domain-based configuration elements, including references to

WLDF system resources, or diagnostic system modules.

See Listing 3-2. -->

</domain>

For more information, see the following:

Chapter 4, “Configuring and Capturing Diagnostic Images”

Chapter 5, “Configuring Diagnostic Archives”

Conf igur ing D iagnost ic Sys tem Modules

Configuring and Using the WebLogic Diagnostics Framework 3-5

Configuring Diagnostic System Modules
To configure and use the Instrumentation, Harvester, and Watch and Notification components at
the server level, you must first create a system resource called a diagnostic system module, which
will contain the configurations for all those components. System modules are globally available
for targeting to servers and clusters configured in a domain.You may create multiple diagnostic
system modules with distinct configurations. However, at most one diagnostic system module
can be targeted to any given server or cluster.

The Diagnostic System Module and Its Resource Descriptor
You create a diagnostic system module through the Administration Console or the WebLogic
Scripting Tool (WLST). It is created as a WLDFResourceBean, and the configuration is persisted
in a resource descriptor file (configuration file), called DIAG_MODULE.xml, where DIAG_MODULE
is the name of the diagnostic module. You can specify a name for the descriptor file, but it is not
required. If you do not provide a file name, a file name is generated based on the value in the
descriptor file’s <name> element. The file is created by default in the
DOMAIN_NAME\config\diagnostics directory, where DOMAIN_NAME is the name of the
domain’s home directory. The file has the extension .xml.

Note: The diagnostic module conforms to the diagnostics.xsd schema, available at
http://www.bea.com/ns/weblogic/90/diagnostics.xsd. See WebLogic Server Diagnostics
Configuration Schema Reference for documentation.

For instructions on creating a diagnostic system module, see “Create diagnostic system modules”
in the Administration Console online help.

Referencing the Diagnostics System Module from
Config.xml
When you create a diagnostic system module using the Administration Console or the WebLogic
Scripting Tool (WLST), WebLogic Server creates it in the
DOMAIN_NAME/config/diagnostics directory, and a reference to the module is added to the
domain's config.xml file.

Note: It is recommended that you do not write XML configuration files directly. But if you
have a valid reason to do so, you should first create a diagnostic module from the
Console. That way, you can start with the valid XML that the Console creates. For
information see “Create diagnostic system modules” in the Administration Console
Online Help.

Unders tand ing WLDF Conf igurat ion

3-6 Configuring and Using the WebLogic Diagnostics Framework

The config.xml file can contain multiple references to diagnostic modules, in one or more
<wldf-system-resource> elements. The <wldf-system-resource> element includes the
name of the diagnostic module file and the list of servers and clusters to which the module is
targeted.

For example, Listing 3-2 shows a module named myDiagnosticModule targeted to the server
myserver and another module named newDiagnosticMod targeted to servers ManagedServer1
and ManagedServer2.

Listing 3-2 Sample WLDF Configuration Information in the Config.xml File for a Domain

<domain>

<!-- Other domain-level configuration elements -->

<wldf-system-resource

xmlns="http://www.bea.com/ns/weblogic/90/diagnostics">

<name>myDiagnosticModule</name>

<target>myserver</target>

<descriptor-file-name>diagnostics/MyDiagnosticModule.xml

</descriptor-file-name>

<description>My diagnostic module</description>

</wldf-system-resource>

<wldf-system-resource>

<name>newDiagnosticMod</name>

<target>ManagedServer1,ManagedServer2</target>

<descriptor-file-name>diagnostics/newDiagnosticMod.xml

</descriptor-file-name>

<description>A diagnostic module for my managed servers</description>

</wldf-system-resource>

<!-- Other WLDF system resource configurations -->

</domain>

The relationship of the config.xml file and the MyDiagnosticModule.xml file is shown in
Figure 3-1.

Conf igur ing D iagnost ic Sys tem Modules

Configuring and Using the WebLogic Diagnostics Framework 3-7

Figure 3-1 Relationship of config.xml to System Descriptor File

The DIAG_MODULE.xml Resource Descriptor Configuration
Except for the name and list of targets, which are listed in the config.xml file, as described
above, all configuration for a diagnostic system module is saved in its resource descriptor file.
Listing 3-3 shows portions of the descriptor file for a diagnostic system module named
myDiagnosticModule.

Listing 3-3 Sample Structure of a Diagnostic System Module Descriptor File, MyDiagnosticModule.xml

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

 <name>MyDiagnosticModule</name>

 <instrumentation>

 <!-- Configuration elements for zero or more diagnostic monitors -->

 </instrumentation>

 <harvester>

 <!-- Configuration elements for harvesting metrics from zero or more

MBean types, instances, and attributes -->

</harvester>

Unders tand ing WLDF Conf igurat ion

3-8 Configuring and Using the WebLogic Diagnostics Framework

<watch-notification>

 <!-- Configuration elements for one or more watches and one or more

notifications-->

</watch-notification>

</wldf-resource>

Managing Diagnostic System Modules
A diagnostic system module can be targeted to zero, one, or more servers, although a server can
have only one module targeted to it at a time. You can create multiple modules that monitor
different aspects of your system. Then, you can choose which module to target to a server or
cluster, based on what you want to monitor at that time.

Because you can target the same module to multiple servers or clusters, you can write general
purpose modules that you want to use across a domain.

You can change the target of a diagnostic module without restarting the server instance(s) to
which it is targeted or untargeted. That capability provides considerable flexibility in writing and
using diagnostic monitors that address a specific diagnostic goal, without interfering with the
operation of the server instances themselves.

More Information About Configuring Diagnostic System
Resources
See the following sections for detailed instructions for configuring WLDF system resources:

Chapter 6, “Configuring the Harvester for Metric Collection”

Chapter 7, “Configuring Watches and Notifications”

Chapter 10, “Configuring Instrumentation”

Chapter 11, “Configuring the DyeInjection Monitor to Manage Diagnostic Contexts”

Configuring Diagnostic Modules for Applications
You can configure only the Instrumentation component in a diagnostic descriptor for an
application.

WLDF Conf igu ra t i on MBeans and The i r Mapp ings to XML E lements

Configuring and Using the WebLogic Diagnostics Framework 3-9

You configure and deploy application-scoped instrumentation as a diagnostic module, which is
similar to a diagnostic system module. However, an application module is configured in an XML
descriptor (configuration) file named weblogic-diagnostics.xml, which is packaged with the
application archive in the ARCHIVE_PATH/META-INF directory for the deployed application (for
example,
D:\bea\weblogic90\samples\server\medrec\dist\medrecEar\META-INF\weblogic-d
iagnostics.xml).

Note: The DyeInjection monitor, which is used to configure diagnostic context (a way of
tracking requests as they flow through the system), can be configured only at the server
level. But once a diagnostic context is created, the context attached to incoming requests
remains with the requests as they flow through the application. For information about the
diagnostic context, see Chapter 11, “Configuring the DyeInjection Monitor to Manage
Diagnostic Contexts.”

For more information about configuring and deploying diagnostic modules for applications, see
the following:

“Configuring Application-Scoped Instrumentation,” in Chapter 10, “Configuring
Instrumentation.”

Chapter 13, “Deploying WLDF Application Modules.”

WLDF Configuration MBeans and Their Mappings to XML
Elements

Figure 3-2 shows the hierarchy of the WLDF configuration MBeans and the diagnostic system
module beans for WLDF objects in a WebLogic Server domain.

Unders tand ing WLDF Conf igurat ion

3-10 Configuring and Using the WebLogic Diagnostics Framework

Figure 3-2 WLDF Configuration Bean Tree

The following WLDF MBeans configure WLDF at the server level. They map to XML elements
in the config.xml configuration file for a domain:

WLDFServerDiagnosticMBean controls configuration settings for the Data Archive and
Diagnostic Images components for a server. It also controls whether diagnostic context for
a diagnostic module is globally enabled or disabled. (Diagnostic context is a means for
uniquely identifying requests and tracking them as they flow through the system. See
Chapter 11, “Configuring the DyeInjection Monitor to Manage Diagnostic Contexts.”)

This MBean is represented by a <server-diagnostic-config> child element of the
<server> element in the config.xml file for the server’s domain.

WLDFSystemResourceMBean contains the name of a descriptor file for a diagnostic
module in the DOMAIN_NAME/config/diagnostics directory and the name(s) of the
target server(s) to which that module is deployed.

This MBean is represented by a <wldf-system-resource> element in the config.xml
file for the domain.

WLDF Conf igu ra t i on MBeans and The i r Mapp ings to XML E lements

Configuring and Using the WebLogic Diagnostics Framework 3-11

Note: You can create multiple diagnostic system modules in a domain. The configurations
for the modules are saved in multiple descriptor files in the config/diagnostics
directory for the domain. The domain’s config.xml file, therefore, can contain the
multiple <wldf-system-resource> elements that represent those modules.
However, you can target only one diagnostic system module to a server at a time. You
cannot have two files in the config/diagnostics directory whose active target is
the same server.

WLDFResourceBean contains the configuration settings for a diagnostic system module.
This bean is represented by a <wldf-resource> element in a DIAG_MODULE.xml
diagnostics descriptor file in the domain’s config/diagnostics directory. (See
Figure 3-1 and Listing 3-3.) The WLDFResourceBean contains configuration settings for
the following components:

– Harvester: The WLDFHarvesterBean is represented by the <harvester> element in a
DIAG_MODULE.xml file.

– Instrumentation: The WLDFInstrumentationBean is represented by the
<instrumentation> element in a DIAG_MODULE.xml file.

– Watch and Notification: The WLDFWatchNotificationBean is represented by the
<watch-notification> element in a DIAG_MODULE.xml file.

If a WLDFResourceBean is linked from a WLDFSystemResourceMBean, the settings for
WLDF components apply to the targeted server. If a WLDFResourceBean is contained
within a weblogic-diagnostics.xml descriptor file which is deployed as part of an
application archive, you can configure only the Instrumentation component, and the
settings apply only to that application. In the latter case, the WLDFResourceMBean is not a
child of a WLDFSystemResourceMBean.

Unders tand ing WLDF Conf igurat ion

3-12 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 4-1

C H A P T E R 4

Configuring and Capturing Diagnostic
Images

You use the Diagnostic Image Capture component of the WebLogic Diagnostic Framework
(WLDF) to create a diagnostic snapshot, or dump, of a server’s internal runtime state at the time
of the capture. This information help support personnel analyze what might have contributed to
a server failure.

The following topics describe the Diagnostic Image Capture component:

“How to Initiate Image Captures” on page 4-1

“Configuring Diagnostic Image Captures” on page 4-2

“How Diagnostic Image Capture Is Persisted in the Server’s Configuration” on page 4-3

“Contents of the Captured Image File” on page 4-3

How to Initiate Image Captures
A diagnostic image capture can be initiated by:

A configured watch notification. See Chapter 9, “Configuring Notifications.”

A request initiated by a user in the Administration Console (and requests initiated from
third-party diagnostic tools). See “Configure and capture diagnostic images” in the
Administration Console Online Help.

A direct API call, using JMX. See Listing 4-1, “Sample WLST Commands for Generating
a Diagnostic Image,” on page 4-2

Conf igur ing and Captur ing D iagnost i c Images

4-2 Configuring and Using the WebLogic Diagnostics Framework

WLST command

Configuring Diagnostic Image Captures
Because the diagnostic image capture is meant primarily as a post-failure analysis tool, there is
little control over what information is captured. Available configuration options are:

The destination for the image

For a specific capture, a destination that is different from the default destination

A lockout, or timeout, period, to control how often an image is taken during a sequence of
server failures and recoveries

As with other WLDF components, you can configure Diagnostic Image Capture using the
Administration Console (see “Configure and capture diagnostic images” in the Administration
Console Online Help), the WebLogic Scripting Tool (WLST), or programmatically.

Listing 4-1 shows an example of WLST commands for generating an image capture.

Listing 4-1 Sample WLST Commands for Generating a Diagnostic Image

url='t3://localhost:7001'

username='system'

password='gumby1234'

server='myserver'

timeout=120

connect(username, password, url)

serverRuntime()

cd('WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image')

argTypes = jarray.array(['java.lang.Integer'],java.lang.String)

argValues = jarray.array([timeout],java.lang.Object)

invoke('captureImage', argValues, argTypes)

Note: It is often useful to generate a diagnostic image capture when a server fails. To do so, set
a watch rule to evaluate to true when the server’s state changes to FAILED; then associate
an image notification with the watch.

The watch rule is as follows:

How D iagnost i c Image Capture I s Pers i s ted in the Server ’s Conf igurat ion

Configuring and Using the WebLogic Diagnostics Framework 4-3

(${[weblogic.management.runtime.ServerRuntimeMBean]//State} =
'FAILED')

For more information, see “Configuring Harvester Watches” on page 8-3 and
“Configuring Image Notifications” on page 9-7. Also see Configure Watches and
Notifications in the Administration Console Online Help..

How Diagnostic Image Capture Is Persisted in the
Server’s Configuration

The configuration for Diagnostic Image Capture is persisted in the config.xml file for a domain,
under the <server-diagnostic-config> subelement of the <server> element for the server,
as shown in Listing 4-2:

Listing 4-2 Sample Diagnostic Image Capture Configuration

<domain>

<!-- Other domain configuration elements -->

<server>

<name>myserver</name>

<server-diagnostic-config>

<image-dir>logs\diagnostic_images</image-dir>

<image-timeout>2</image-timeout>

</server-diagnostic-config>

<!-- Other configuration details for this server -->

</server>

<!-- Other server configurations in this domain-->

</domain>

Note: It is recommended that you do not edit the config.xml file directly.

Contents of the Captured Image File
The most common sources of a server state are captured in a diagnostic image capture, including:

Configuration

Conf igur ing and Captur ing D iagnost i c Images

4-4 Configuring and Using the WebLogic Diagnostics Framework

Log cache state

Java Virtual Machine (JVM)

Work Manager state

JNDI state

Most recent harvested data

The Diagnostic Image Capture component captures and combines the images produced by the
different server subsystems into a single ZIP file. In addition to capturing the most common
sources of server state, this component captures images from all the server subsystems including,
for example, images produced by the JMS, JDBC, EJB, and JNDI subsystems.

Note: A diagnostic image is a heavyweight artifact meant to serve as a server-level state dump
for the purpose of diagnosing significant failures. It enables you to capture a significant
amount of important data in a structured format and then to provide that data to support
personnel for analysis.

Each image is captured as a single file for the entire server. The default location is
SERVER\logs\diagnostic_images. Each image instance has a unique name, as follows:

diagnostic_image_DOMAIN_SERVER_YYYY_MM_DD_HH_MM_SS.zip

The contents of the file include at least the following information:

Creation date and time of the image

Source of the capture request

Name of each image source included in the image and the time spent processing each of
those image sources

JVM and OS information, if available

Command line arguments, if available

WLS version including patch and build number information

Figure 4-1 shows the contents of an image file. You can open most of the files in this ZIP file with
a text editor to examine the contents.

Contents o f the Captured Image F i l e

Configuring and Using the WebLogic Diagnostics Framework 4-5

Figure 4-1 An Image File

Conf igur ing and Captur ing D iagnost i c Images

4-6 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 5-1

C H A P T E R 5

Configuring Diagnostic Archives

The Archive component of the WebLogic Diagnostic Framework (WLDF) captures and persists
all data events, log records, and metrics collected by WLDF from a server instances and
applications running on them. You can access archived diagnostic data in online mode (that is,
on a running server). You can also access archived data in off-line mode using the WebLogic
Scripting Tool (WLST).

You can configure WLDF to archive diagnostic data to a file store or a Java Database
Connectivity (JDBC) data source, as described in the following sections:

“Configuring the Archive” on page 5-1

“Configuring a File-Based Store” on page 5-2

“Configuring a JDBC-Based Store” on page 5-2

Note: Resetting the system clock while diagnostic data is being written to the archive can
produce unexpected results. See “Resetting the System Clock Can Affect How Data Is
Archived and Retrieved” on page 12-12.

Configuring the Archive
You configure the diagnostic archive on a per-server basis.The configuration is persisted in the
config.xml file for a domain, under the <server-diagnostic-config> element for the
server. Example configurations for file-based stores and JDBC-based stores are shown in
Listing 5-1 and Listing 5-3.

Conf igur ing D iagnos t i c A rch ives

5-2 Configuring and Using the WebLogic Diagnostics Framework

Configuring a File-Based Store
WLDF creates files containing the archived information. The only configuration option for a
WLDF file-based archive is the directory where the file will be created and maintained. The
default directory is the DOMAIN_NAME/servers/SERVER_NAME/data/store/diagnostics,
where DOMAIN_NAME is the home directory for the domain, and SERVER_NAME is the home
directory for the server instance.

When you save to a file-based store, WLDF uses the WebLogic Server persistent store. For more
information, see “Using the WebLogic Persistent Store” in Configuring WebLogic Server
Environments.

An example configuration for a file-based store is shown in Listing 5-1.

Listing 5-1 Sample Configuration for File-based Diagnostic Archive (in config.xml)

<domain>

<!-- Other domain configuration elements -->

<server>

<name>myserver</name>

<server-diagnostic-config>

<diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>

<diagnostic-data-archive-type>FileStoreArchive

</diagnostic-data-archive-type>

</server-diagnostic-config>

</server>

<!-- Other server configurations in this domain -->

</domain>

Configuring a JDBC-Based Store
To use a JDBC store, the appropriate tables must exist in a database, and JDBC must be
configured to connect to that database.

Conf igur ing a JDBC-Based S to re

Configuring and Using the WebLogic Diagnostics Framework 5-3

Creating WLDF Tables in the Database
If they do not already exist, you must create the database tables used by WLDF to store data in a
JDBC-based store. Two tables are required:

The wls_events table stores data generated from WLDF Instrumentation events.

The wls_hvst table stores data generated from the WLDF Harvester component.

The SQL Data Definition Language (DDL) used to create tables may differ for different
databases, depending on the SQL variation supported by the database. The following code listing
shows the DDL that you can use to create WLDF tables in the PointBase database.

Listing 5-2 DDL Definition of the WLDF Tables for PointBase Database

-- DDL for creating wls_events table for instrumentation events

DROP TABLE wls_events;

CREATE TABLE wls_events (

RECORDID INTEGER IDENTITY,

TIMESTAMP NUMERIC default NULL,

CONTEXTID varchar(128) default NULL,

TXID varchar(32) default NULL,

USERID varchar(32) default NULL,

TYPE varchar(64) default NULL,

DOMAIN varchar(64) default NULL,

SERVER varchar(64) default NULL,

SCOPE varchar(64) default NULL,

MODULE varchar(64) default NULL,

MONITOR varchar(64) default NULL,

FILENAME varchar(64) default NULL,

LINENUM INTEGER default NULL,

CLASSNAME varchar(250) default NULL,

METHODNAME varchar(64) default NULL,

METHODDSC varchar(4000) default NULL,

ARGUMENTS clob(100000) default NULL,

RETVAL varchar(4000) default NULL,

PAYLOAD blob(100000),

CTXPAYLOAD VARCHAR(4000),

Conf igur ing D iagnos t i c A rch ives

5-4 Configuring and Using the WebLogic Diagnostics Framework

DYES NUMERIC default NULL

);

-- DDL for creating wls_events table for instrumentation events

DROP TABLE wls_hvst;

CREATE TABLE wls_hvst (

RECORDID INTEGER IDENTITY,

TIMESTAMP NUMERIC default NULL,

DOMAIN varchar(64) default NULL,

SERVER varchar(64) default NULL,

TYPE varchar(64) default NULL,

NAME varchar(250) default NULL,

ATTRNAME varchar(64) default NULL,

ATTRTYPE INTEGER default NULL,

ATTRVALUE VARCHAR(4000)

);

COMMIT;

Consult the documentation for your database or your database administrator for specific
instructions for creating these tables for your database.

Configuring JDBC Resources for WLDF
After you create the tables in your database, you must configure JDBC to access the tables. (See
Configuring and Managing WebLogic JDBC.) Then, as part of your server configuration, you
specify that JDBC resource as the data store to be used for a server’s archive.

An example configuration for a JDBC-based store is shown in Listing 5-3.

Listing 5-3 Sample configuration for JDBC-based Diagnostic Archive (in config.xml)

<domain>

<!-- Other domain configuration elements -->

<server>

<name>myserver</name>

Conf igur ing a JDBC-Based S to re

Configuring and Using the WebLogic Diagnostics Framework 5-5

<server-diagnostic-config>

<diagnostic-data-archive-type>JDBCArchive

</diagnostic-data-archive-type>

<diagnostic-jdbc-resource>JDBCResource</diagnostic-jdbc-resource>

<server-diagnostic-config>

</server>

<!-- Other server configurations in this domain -->

</domain>

If you specify a JDBC resource but it is configured incorrectly, or if the required tables do not
exist in the database, WLDF uses the default file-based persistent store.

Conf igur ing D iagnos t i c A rch ives

5-6 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 6-1

C H A P T E R 6

Configuring the Harvester for Metric
Collection

The Harvester component of the WebLogic Diagnostic Framework (WLDF) gathers metrics
from attributes on qualified MBeans that are instantiated in a running server. The Harvester can
collect metrics from BEA WebLogic Server® MBeans and from custom MBeans.

The following sections describe harvesting and the Harvester configuration process:

“Harvesting, Harvestable Data, and Harvested Data” on page 6-1

“Harvesting Data from the Different Harvestable Entities” on page 6-2

“Configuring the Harvester” on page 6-3

Harvesting, Harvestable Data, and Harvested Data
Harvesting metrics is the process of gathering data that is useful for monitoring system state and
performance. Metrics are exposed to WLDF as attributes on qualified MBeans. The Harvester
gathers values from selected MBean attributes at a specified sampling rate. Therefore, you can
track potentially fluctuating values over time.

Data must meet certain requirements in order to be harvestable, and it must meet further
requirements in order to be harvested:

Harvestable data is data that can potentially be harvested from harvestable entities,
including MBean types, instances, and attributes. To be harvestable, an MBean must be
registered in the local WebLogic Server runtime MBean server. Only simple type attributes
of an MBean can be harvestable.

Conf igur ing the Harveste r fo r Met r ic Co l l ec t i on

6-2 Configuring and Using the WebLogic Diagnostics Framework

Harvested data is data that is currently being harvested. To be harvested, the data must
meet all the following criteria:

– The data must be harvestable.

– The data must be configured to be harvested.

– For custom MBeans, the MBean must be currently registered with the JMX server.

– The data must not throw exceptions while being harvested.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data and harvested data. The
information returned by this MBean is a snapshot of a potentially changing state. For a
description of the information about the data provided by the this MBean, see the description of
the weblogic.management.runtime.WLDFHarvesterRuntimeMBean in the WebLogic
Server MBean Reference.

You can use the Administration Console, the WebLogic Scripting Tool (weblogic.WLST), or
JMX to configure the harvester to collect and archive the metrics that the server MBeans and the
custom MBeans contain.

Harvesting Data from the Different Harvestable Entities
You can configure the Harvester to harvest data from named MBean types, instances, and
attributes. In all cases, the Harvester collects the values of attributes of MBean instances, as
explained in Table 6-1.

Table 6-1 Sources of Harvested Data from Different Configurations

When this entity is configured to be
harvested as...

Data is collected from...

A type (only) All harvestable attributes in all instances of the specified type

An attribute of a type

(type + attribute(s))

The specified attribute in all instances of the specified type

An instance of a type

(type + instance(s))

All harvestable attributes in the specified instance of the
specified type

An attribute of an instance of a type
(type + instance(s) + attribute(s))

The specified attribute in the specified instance of the
specified type

Conf igur ing the Harves te r

Configuring and Using the WebLogic Diagnostics Framework 6-3

All WebLogic Server runtime MBean types and attributes are known at startup. Therefore, when
the Harvester configuration is loaded, the set of harvestable WebLogic Server entities is the same
as the set of WebLogic Server runtime MBean types and attributes. As types are instantiated,
those instances also become known and thus harvestable.

The set of harvestable custom MBean types is dynamic. A custom MBean must be instantiated
before its type can be known. (The type does not exist until at least one instance is created.)
Therefore, as custom MBeans are registered with and removed from the MBean server, the set of
custom harvestable types grows and shrinks. This process of detecting a new type based on the
registration of a new MBean is called type discovery.

When you configure the Harvester through the Administration Console, the Console provides a
list of harvestable entities that can be configured. The list is always complete for WebLogic
Server MBeans, but for custom MBeans, the list contains only the currently discovered types. See
“Configure metrics to collect in a diagnostic system module” in the Administration Console
Online Help.

Configuring the Harvester
The Harvester is configured and metrics are collected in the scope of a diagnostic module targeted
to one or more server instances.

Listing 6-1 shows Harvester configuration elements in a WLDF system resource descriptor file,
myWLDF.xml. This sample configuration harvests from the ServerRuntimeMBean, the
WLDFHarvesterRuntimeMBean, and from a custom (non-WLS) MBean. The text following the
listing explains each element in the listing.

Listing 6-1 Sample Harvester Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<name>myWLDF</name>

<harvester>

<enabled>true</enabled>

<sample-period>5000</sample-period>

Conf igur ing the Harveste r fo r Met r ic Co l l ec t i on

6-4 Configuring and Using the WebLogic Diagnostics Framework

<harvested-type>

<name>weblogic.management.runtime.ServerRuntimeMBean</name>

</harvested-type>

<harvested-type>

<name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>

<harvested-attribute>TotalSamplingTime</harvested-attribute>

<harvested-attribute>CurrentSnapshotElapsedTime

</harvested-attribute>

</harvested-type>

<harvested-type>

<name>myMBeans.MySimpleStandard</name>

<harvested-instance>myCustomDomain:Name=myCustomMBean1

</harvested-instance>

<harvested-instance>myCustomDomain:Name=myCustomMBean2

</harvested-instance>

</harvested-type>

</harvester>

<!-- ----- Other elements ----- -->

</wldf-resource>

Configuring the Harvester Sampling Period
The <sample-period> element sets the sample period for the Harvester, in milliseconds. For
example:

<sample-period>5000</sample-period>

The sample period specifies the time between each cycle. For example, if the Harvester begins
execution at time T, and the sample period is I, then the next harvest cycle begins at T+I. If a
cycle takes A seconds to complete and if A exceeds I, then the next cycle begins at T+A. If this
occurs, the Harvester tries to start the next cycle sooner, to ensure that the average interval is I.

Configuring the Types of Data to Harvest
One or more <harvested-type> elements determine the types of data to harvest. Each
<harvested-type> element specifies an MBean type from which metrics are to be collected.

Conf igur ing the Harves te r

Configuring and Using the WebLogic Diagnostics Framework 6-5

Optional sub-elements specify the instances and/or attributes to be collected for that type. Set
these options as follows:

The optional <harvested-instance> element specifies that metrics are to be collected
only from the listed instances of the specified type. In general, an instance is specified by
providing its JMX ObjectName in JMX canonical form.

If no <harvested-instance> is present, all instances that are present at the time of each
harvest cycle are collected.

The optional <harvested-attribute> element specifies that metrics are to be collected
only for the listed attributes of the specified type. An attribute is specified by providing its
name. The first character should be capitalized. For example, an attribute defined with
getter method getFoo() is named Foo.

If no <harvested-attribute> is present, all attributes defined for the type are collected.

Attribute and instance lists can be combined in a type

Specifying Type Names for WebLogic Server MBeans and
Custom MBeans
The Harvester supports WebLogic Server MBeans and custom MBeans. WebLogic Server
MBeans are those which come packaged as part of the WebLogic Server. Custom MBeans can
be harvested as long as they are registered in the local runtime MBean server.

There is a small difference in how WebLogic Server and customer types are specified. For
WebLogic Server types, the type name is the name of the Java interface which defines that
MBean. For example, the server runtime MBean's type name is
weblogic.management.runtime.ServerRuntimeMBean. For custom MBeans, the type name
is the name of the implementing class (for example, see Listing 6-1, “Sample Harvester
Configuration (in DIAG_MODULE.xml),” on page 6-3).

When Configuration Settings Are Validated
WLDF attempts to validate configuration as soon as possible. Most configuration is validated at
system startup and whenever a dynamic change is committed. However, due to limitations in
JMX, custom MBeans cannot be validated until instances of those MBeans have been registered
in the MBean server.

Conf igur ing the Harveste r fo r Met r ic Co l l ec t i on

6-6 Configuring and Using the WebLogic Diagnostics Framework

Sample Configurations for Different Harvestable Types
In Listing 6-2, the <harvested-type> element in the DIAG_MODULE.xml configuration file
specifies that the ServerRuntimeMBean is to be harvested. Because no
<harvested-instance> sub-element is present, all instances of the type will be collected.
However, because there is always only one instance of the server runtime MBean, there is no need
to provide a specific list of instances. And because there are no <harvested-attribute>
sub-elements present, all available attributes of the MBean are harvested.

Listing 6-2 Sample Configuration for Collecting All Instances and All Attributes of a Type (in
DIAG_MODULE.xml)

<harvested-type>

<name>weblogic.management.runtime.ServerRuntimeMBean</name>

</harvested-type>

In Listing 6-3, the <harvested-type> element in the DIAG_MODULE.xml configuration file
specifies that the WLDFHarvesterRuntimeMBean is to be harvested. As above, because there is
only one WLDFHarvesterRuntimeMBean, there is no need to provide a specific list of instances.
The sub-element <harvested-attribute> specifies that only two of the available attributes of
the WLDFHarvesterRuntimeMBean will be harvested: TotalSamplingTime and
CurrentSnapshotElapsedTime.

Listing 6-3 Sample Configuration for Collecting Specified Attributes of All Instances of a Type (in
DIAG_MODULE.xml)

<harvested-type>

<name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>

<harvested-attribute>TotalSamplingTime</harvested-attribute>

<harvested-attribute>CurrentSnapshotElapsedTime

</harvested-attribute>

</harvested-type>

Conf igur ing the Harves te r

Configuring and Using the WebLogic Diagnostics Framework 6-7

In Listing 6-4, the <harvested-type> element in the DIAG_MODULE.xml configuration file
specifies that a single instance of a custom MBean type is to be harvested. Because this is a
custom MBean, the type name is the implementation class. In this example, the two
<harvested-instance> elements specify that only two instances of this type will be harvested.
Each instance is specified using the canonical representation of its JMX ObjectName. Because
no instances of <harvested-attribute> are specified, all attributes will be harvested.

Listing 6-4 Sample Configuration for Collecting Specified Attributes of a Specified Instance of a Type (in
DIAG_MODULE.xml)

<harvested-type>

<name>myMBeans.MySimpleStandard</name>

<harvested-instance>myCustomDomain:Name=myCustomMBean1

</harvested-instance>

<harvested-instance>myCustomDomain:Name=myCustomMBean2

</harvested-instance>

</harvested-type>

Conf igur ing the Harveste r fo r Met r ic Co l l ec t i on

6-8 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 7-1

C H A P T E R 7

Configuring Watches and Notifications

The Watch and Notification component of the WebLogic Diagnostic Framework (WLDF)
provides the means for monitoring server and application states and then sending notifications
based on criteria set in the watches.Watches and notifications are configured as part of a
diagnostic module targeted to one or more server instances in a domain.

Watches and notifications are described in the following sections:

“Watches and Notifications” on page 7-1

“Overview of Watch and Notification Configuration” on page 7-2

“Sample Watch and Notification Configuration” on page 7-4

Watches and Notifications
A watch identifies a situation that you want to trap for monitoring or diagnostic purposes. You
can configure watches to analyze log records, data events, and harvested metrics. A watch is
specified as a watch rule, which includes:

A watch rule expression

An alarm setting

One or more notification handlers

A notification is an action that is taken when a watch rule expression evaluates to true. WLDF
supports the following types of notifications:

Conf igur ing Watches and No t i f i cat ions

7-2 Configuring and Using the WebLogic Diagnostics Framework

Java Management Extensions (JMX)

Java Message Service (JMS)

Simple Mail Transfer Protocol (SMTP), for example, e-mail

Simple Network Management Protocol (SNMP)

Diagnostic Images

You must associate a watch with a notification for a useful diagnostic activity to occur, for
example, to notify an administrator about specified states or activities in a running server.

Watches and notifications are configured separately from each other. A notification can be
associated with multiple watches, and a watch can be associated with multiple notifications. This
provides the flexibility to recombine and re-use watches and notifications, according to current
needs.

Overview of Watch and Notification Configuration
A complete watch and notification configuration includes settings for one or more watches, one
or more notifications, and any underlying configurations required for the notification media, for
example, the SNMP configuration required for an SNMP-based notification.

The main elements required for configuring watches and notifications in a WLDF system
resource descriptor file, DIAG_MODULE.xml, are shown in Listing 7-1. As the listing shows, the
base element for defining watches and notifications is <watch-notification>. Watches are
defined in <watch> elements, and notifications are defined in elements named for each of the
types of notification, for example <jms-notification>, <jmx-notification>,
<smtp-notification>, and <image-notification>.

Listing 7-1 A Skeleton Watch and Notification Configuration (in DIAG_MODULE.xml)

<wldf-resource>

<!-- ----- Other system resource configuration elements ----- -->

<watch-notification>

<log-watch-severity>

<!-- Threshhold severity for a log watch to be evaluated further

(This can be narrowed further at the watch level.) -->

Overv i ew o f Watch and Not i f i ca t i on Conf igurat ion

Configuring and Using the WebLogic Diagnostics Framework 7-3

</log-watch-severity>

<!-- ----- Watch configuration elements: ----- -->

<watch>

<!-- A watch rule -->

</watch>

<watch>

<!-- A watch rule -->

</watch>

<!-- Any other watch configurations -->

<!-- ----- Notification configuration elements: ----- -->

<!-- The following notification configuration elements show one of each

type of supported notifications. However, not all types are

required in any one system resource configuration, and multiples

of any type are permitted. -->

<jms-notification>

<!-- Configuration for a JMS-based notification; requires a

corresponding JMS configuration via a jms-server element and a

jms-system-resource element -->

</jms-notification>

<jmx-notification>

<!-- Configuration for a JMX-based notification -->

</jmx-notification>

<smtp-notification>

<!-- Configuration for an SMTP-based notification; requires a

corresponding SMTP configuration via a mail-session element -->

</smtp-notification>

<snmp-notification>

<!-- Configuration for an SNMP-based notification; requires a

corresponding SNMP agent configuration via an snmp-agent

element -->

</snmp-notification>

Conf igur ing Watches and No t i f i cat ions

7-4 Configuring and Using the WebLogic Diagnostics Framework

<image-notification>

<!-- Configuration for an image-based notification -->

</image-notification>

<watch-notification>

<!-- ----- Other configuration elements ----- -->

</wldf-resource>

Note: While the notification media must be configured so they can be used by the notifications
that depend on them, those configurations are not part of the configuration of the
diagnostic module itself. That is, they are not configured in the <wldf-resource>
element in the diagnostic module’s configuration file.

Each watch and notification can be individually enabled and disabled by setting
<enabled>true</enabled> or <enabled>false</enabled> for the individual watch and/or
notification. In addition, the entire watch and notification facility can be enabled and disabled by
setting <enabled>true</enabled> or <enabled>false</enabled> for all watches and
notifications. The default value is <enabled>true</enabled>.

The <watch-notification> element contains a <log-watch-severity> sub-element, which
affects how notifications are triggered by log-rule watches.

If the maximum severity level of the log messages that triggered the watch do not at least equal
the provided severity level, then the resulting notifications are not fired. Note that this only
applies to notifications fired by watches which have log rule types. Do not confuse this element
with the <severity> element defined on watches. The <severity> element assigns a severity
to the watch itself, whereas the <log-watch-severity> element controls which notifications
are triggered by log-rule watches.

Sample Watch and Notification Configuration
A complete configuration for a set of watches and notifications in a diagnostic module is shown
in Listing 7-2. The details of this example are explained in the following two sections:

Chapter 8, “Configuring Watches”

Chapter 9, “Configuring Notifications”

Sample Watch and Not i f i ca t i on Conf igurat i on

Configuring and Using the WebLogic Diagnostics Framework 7-5

Listing 7-2 Sample Watch and Notification Configuration (in DIAG_MODULE.xml)

<?xml version='1.0' encoding='UTF-8'?>

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

<name>mywldf1</name>

<!-- Instrumentation must be configured and enabled for instrumentation

watches -->

<instrumentation>

<enabled>true</enabled>

<wldf-instrumentation-monitor>

<name>DyeInjection</name>

<description>Dye Injection monitor</description>

<dye-mask xsi:nil="true"></dye-mask>

<properties>ADDR1=127.0.0.1</properties>

</wldf-instrumentation-monitor>

</instrumentation>

<!-- Harvesting does not have to be configured and enabled for harvester

watches. However, configuring the Harvester can provide advantages;

for example the data will be archived. -->

<harvester>

<name>mywldf1</name>

<sample-period>20000</sample-period>

<harvested-type>

<name>weblogic.management.runtime.ServerRuntimeMBean</name>

</harvested-type>

<harvested-type>

<name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>

</harvested-type>

</harvester>

<!-- All watches and notifications are defined under the

watch-notification element -->

Conf igur ing Watches and No t i f i cat ions

7-6 Configuring and Using the WebLogic Diagnostics Framework

<watch-notification>

<enabled>true</enabled>

<log-watch-severity>Info</log-watch-severity>

<!-- A harvester watch configuration -->

<watch>

<name>myWatch</name>

<enabled>true</enabled>

<rule-type>Harvester</rule-type>

<rule-expression>${com.bea:Name=myserver,Type=ServerRuntime//Sockets

OpenedTotalCount} >= 1</rule-expression>

<alarm-type>AutomaticReset</alarm-type>

<alarm-reset-period>60000</alarm-reset-period>

<notification>myMailNotif,myJMXNotif,mySNMPNotif</notification>

</watch>

<!-- An instrumentation watch configuration -->

<watch>

<name>myWatch2</name>

<enabled>true</enabled>

<rule-type>EventData</rule-type>

<rule-expression>

(MONITOR LIKE ‘JDBC_After_Execute’) AND

(DOMAIN = ‘MedRecDomain’) AND

(SERVER = ‘medrec-adminServer’) AND

((TYPE = ‘ThreadDumpAction’) OR (TYPE = TraceElapsedTimeAction’)) AND

(SCOPE = ‘MedRecEAR’)

</rule-expression>

<notification>JMXNotifInstr</notification>

</watch>

<!-- A log watch configuration -->

<watch>

<name>myLogWatch</name>

<rule-type>Log</rule-type>

<rule-expression>MSGID='BEA-000360'</rule-expression>

<severity>Info</severity>

Sample Watch and Not i f i ca t i on Conf igurat i on

Configuring and Using the WebLogic Diagnostics Framework 7-7

<notification>myMailNotif2</notification>

</watch>

<!-- A JMX notification -->

<jmx-notification>

<name>myJMXNotif</name>

</jmx-notification>

<!-- Two SMTP notifications -->

<smtp-notification>

<name>myMailNotif</name>

<enabled>true</enabled>

<mail-session-jndi-name>myMailSession</mail-session-jndi-name>

<subject>This is a harvester alert</subject>

<recipient>username@emailservice.com</recipient>

</smtp-notification>

<smtp-notification>

<name>myMailNotif2</name>

<enabled>true</enabled>

<mail-session-jndi-name>myMailSession</mail-session-jndi-name>

<subject>This is a log alert</subject>

<recipient>username@emailservice.com</recipient>

</smtp-notification>

<!-- An SNMP notification -->

<snmp-notification>

<name>mySNMPNotif</name>

<enabled>true</enabled>

</snmp-notification>

</watch-notification>

</wldf-resource>

Conf igur ing Watches and No t i f i cat ions

7-8 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 8-1

C H A P T E R 8

Configuring Watches

The following sections describe the types of watches and their configuration options:

“Types of Watches” on page 8-1

“Configuration Options Shared by All Types of Watches” on page 8-2

“Configuring Harvester Watches” on page 8-3

“Configuring Log Watches” on page 8-6

“Configuring Instrumentation Watches” on page 8-7

“Defining Watch Rule Expressions” on page 8-7

Types of Watches
WLDF provides three main types of watches, based on what the watch can monitor:

Harvester watches monitor the set of harvestable MBeans in the local runtime MBean
server.

Log watches monitor the set of messages generated into the server log.

Instrumentation (or Event Data) watches monitor the set of events generated by the
WLDF Instrumentation component.

In the WLDF system resource configuration file for a diagnostic module, each type of watch is
defined in a <rule-type> element, which is a child of <watch>. For example:

Conf igur ing Watches

8-2 Configuring and Using the WebLogic Diagnostics Framework

<watch>

<rule-type>Harvester</rule-type>

<!-- Other configuration elements -->

</watch>

Watches with different rule types differ in two ways:

The rule syntax for specifying the conditions being monitored are unique to the type.

Log and Instrumentation watches are triggered in real time, whereas Harvester watches are
triggered only after the current harvest cycle completes.

Configuration Options Shared by All Types of Watches
All watches share certain configuration options:

Watch rule expression

In the diagnostic module configuration file, watch rule expressions are defined in
<rule-expression> elements.

A watch rule expression is a logical expression that specifies what significant events the
watch is to trap. For information about the query language you use to define watch rules,
including the syntax available for each type of watch rule, see Appendix A, “WLDF Query
Language.”

Notifications associated with the watch

In the diagnostic module configuration file, notifications are defined in <notification>
elements.

Each watch can be associated with one or more notifications that are triggered whenever
the watch evaluates to true. The content of this element is a comma-separated list of
notifications. For information about configuring notifications, see Chapter 9, “Configuring
Notifications.”

Alarm options

In the diagnostic module configuration file, alarm options are set using <alarm-type> and
<alarm-reset-period> elements.

Watches can be specified to trigger repeatedly, or to trigger once, when a condition is met.
For watches that trigger repeatedly, you can optionally define a minimum time between
occurrences. The <alarm-type> element defines whether a watch automatically repeats,

Conf igur ing Harveste r Watches

Configuring and Using the WebLogic Diagnostics Framework 8-3

and, if so, how often. A value of none causes the watch to trigger whenever possible. A
value of AutomaticReset also causes the watch to trigger whenever possible, except that
subsequent occurrences cannot occur any sooner than the millisecond interval specified in
the <alarm-reset-period>. A value of ManualReset causes the watch to fire a single
time. After it fires, you must manually reset it to fire again. For example, you can use the
WatchNotificationRuntimeMBean to reset a manual watch. The default for
<alarm-type> is None.

Severity options

Watches contain a severity value which is passed through to the recipients of notifications.
The permissible severity values are as defined in the logging subsystem. The severity value
is specified using sub-element <severity>. The default is Notice.

Enabled options

Each watch can be individually enabled and disabled, using the sub-element <enabled>.
When disabled, the watch does not trigger and corresponding notifications do not fire. If
the more generic watch/notification flag is disabled, it causes all individual watches to be
effectively disabled (that is, the value of this flag on a specific watch is ignored).

Configuring Harvester Watches
A Harvester watch can monitor any runtime MBean in the local runtime MBean server.

Note: If you define a watch rule to monitor an MBean (or MBean attributes) that the Harvester
is not configured to harvest, the watch will work. The Harvester will “implicitly” harvest
values to satisfy the requirements set in the defined watch rules. However, data harvested
in this way (that is, implicitly for a watch) will not be archived. See Chapter 6,
“Configuring the Harvester for Metric Collection,” for more information about the
Harvester.

Harvester watches are triggered in response to a harvest cycle. So, for Harvester watches, the
Harvester sample period defines a time interval between when a situation is identified and when
it can be reported though a notification. On average, the delay is SamplePeriod/2.

Listing 8-1, shows a configuration example of a Harvester watch that monitors several runtime
MBeans.When the watch rule (defined in the <rule-expression> element) evaluates to true,
six different notifications are sent: a JMX notification, an SMTP notification, an SNMP
notification, an image notification, and JMS notifications for both a topic and a queue.

The watch rule is a logical expression composed of four Harvester variables. The rule has the
form:

Conf igur ing Watches

8-4 Configuring and Using the WebLogic Diagnostics Framework

((A >= 100) && (B > 0)) || C || D.equals("active")

Each variable is of the form:

{entityName}//{attributeName}

where {entityName} is the JMX ObjectName as registered in the runtime MBean server or the
type name as defined by the Harvester, and where {attributeName} is the name of an attribute
defined on that MBean type.

Note: The comparison operators are qualified in order to be valid in XML.

Listing 8-1 Sample Harvester Watch Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

<name>mywldf1</name>

<harvester>

<!-- Harvesting does not have to be configured and enabled for harvester

watches. However, configuring the Harvester can provide advantages;

for example the data will be archived. -->

<harvested-type>

<name>myMBeans.MySimpleStandard</name>

<harvested-instance>myCustomDomain:Name=myCustomMBean1

</harvested-instance>

<harvested-instance>myCustomDomain:Name=myCustomMBean2

</harvested-instance>

</harvested-type>

<!-- Other Harvester configuration elements -->

<harvester>

<watch-notification>

<watch>

<name>simpleWebLogicMBeanWatchRepeatingAfterWait</name>

<enabled>true</enabled>

<rule-type>Harvester</rule-type>

<rule-expression>

Conf igur ing Harveste r Watches

Configuring and Using the WebLogic Diagnostics Framework 8-5

(${mydomain:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=

WLDFHarvesterRuntime,WLDFRuntime=WLDFRuntime//TotalSamplingTime}

>= 100

AND

${mydomain:Name=myserver,Type=

ServerRuntime//OpenSocketsCurrentCount} > 0)

OR

${mydomain:Name=WLDFWatchNotificationRuntime,ServerRuntime=

myserver,Type=WLDFWatchNotificationRuntime,

WLDFRuntime=WLDFRuntime//Enabled} = true

OR

${myCustomDomain:Name=myCustomMBean3//State} =

'active')

</rule-expression>

<severity>Warning</severity>

<alarm-type>AutomaticReset</alarm-type>

<alarm-reset-period>10000</alarm-reset-period>

<notification>myJMXNotif,myImageNotif,

myJMSTopicNotif,myJMSQueueNotif,mySNMPNotif,

mySMTPNotif</notification>

</watch>

<!-- Other watch-notification configuration elements -->

</watch-notification>

</wldf-resource>

This watch uses an alarm type of AutomaticReset, which means that it may be triggered
repeatedly, provided that the last time it was triggered was longer than the interval set as the alarm
reset period (in this case 10000 milliseconds).

The severity level provided, Warning, has no effect on the triggering of the watch, but will be
passed on through the notifications.

Conf igur ing Watches

8-6 Configuring and Using the WebLogic Diagnostics Framework

Configuring Log Watches
Use Log watches to monitor the occurrence of specific messages and/or strings in the server log.
Watches of this type are triggered as a result of a log message containing the specified data being
issued.

An example configuration for a log watch is shown in Listing 8-2.

Listing 8-2 Sample Configuration for a Log Watch (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

<name>mywldf1</name>

<watch-notification>

<enabled>true</enabled>

<log-watch-severity>Info</log-watch-severity>

<watch>

<name>myLogWatch</name>

<rule-type>Log</rule-type>

<rule-expression>MSGID='BEA-000360'</rule-expression>

<severity>Info</severity>

<notification>myMailNotif2</notification>

</watch>

<smtp-notification>

<name>myMailNotif2</name>

<enabled>true</enabled>

<mail-session-jndi-name>myMailSession</mail-session-jndi-name>

<subject>This is a log alert</subject>

<recipient>username@emailservice.com</recipient>

</smtp-notification>

</watch-notification>

</wldf-resource>

Conf igur ing Inst rumentat ion Watches

Configuring and Using the WebLogic Diagnostics Framework 8-7

Configuring Instrumentation Watches
You use Instrumentation watches to monitor the events from the WLDF Instrumentation
component. Watches of this type are triggered as a result of the event being posted.

Listing 8-3 shows an example configuration for an Instrumentation watch.

Listing 8-3 Sample Configuration for an Instrumentation Watch (in DIAG_MODULE.xml)

<watch-notification>

<watch>

<name>myInstWatch</name>

<enabled>true</enabled>

<rule-type>EventData</rule-type>

<rule-expression>

(PAYLOAD > 100000000) AND (MONITOR = 'Servlet_Around_Service')

</rule-expression>

<alarm-type xsi:nil="true"></alarm-type>

<notification>mySMTPNotification</notification>

</watch>

<smtp-notification>

<name>mySMTPNotification</name>

<enabled>true</enabled>

<mail-session-jndi-name>myMailSession</mail-session-jndi-name>

<subject xsi:nil="true"></subject>

<body xsi:nil="true"></body>

<recipient>username@emailservice.com</recipient>

</smtp-notification>

</watch-notification>

Defining Watch Rule Expressions
A watch rule expression encapsulates all information necessary for specifying a rule. For
documentation on the query language you use to define watch rules, see Appendix A, “WLDF
Query Language.”

Conf igur ing Watches

8-8 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 9-1

C H A P T E R 9

Configuring Notifications

The following sections describe the types of notifications and their configuration options:

“Types of Notifications” on page 9-1

“Configuring JMX Notifications” on page 9-2

“Configuring JMS Notifications” on page 9-3

“Configuring SNMP Notifications” on page 9-4

“Configuring SMTP Notifications” on page 9-6

“Configuring Image Notifications” on page 9-7

Types of Notifications
A notification is an action that is triggered when a watch rule evaluates to true. WLDF supports
four types of diagnostic notifications, based on the delivery mechanism: Java Management
Extensions (JMX), Java Message Service (JMS), Simple Mail Transfer Protocol (SMTP), and
Simple Network Management Protocol (SNMP). You can also create a notification that generates
a diagnostic image.

In the configuration file for a diagnostic module, the different types of notifications are identified
by these elements:

<jmx-notification>

<jms-notification>

Conf igur ing No t i f i cat ions

9-2 Configuring and Using the WebLogic Diagnostics Framework

<snmp-notification>

<smtp-notification>

<image-notification>

These notification types all have <name> and <enabled> configuration options. The value of
<name> is used as the value in a <notification> element for a watch, to map the watch to its
corresponding notification(s). The <enabled> element, when set to true, enables that
notification. In other words, the notification is fired when an associated watch evaluates to true.
Other than <name> and <enabled>, each notification type is unique.

Note: You define notifications programmatically using
weblogic.diagnostics.watch.WatchNotification.

Configuring JMX Notifications
For each defined JMX notification, WLDF issues JMX events (notifications) whenever an
associated watch is triggered. Applications can register a notification listener with the server’s
WLDFWatchJMXNotificationRuntimeMBeans to receive all notifications and filter the provided
output. You can also specify a JMX “notification type” string that a JMX client can use as a filter.

Listing 9-1 shows an example of a JMX notification configuration.

Listing 9-1 Example Configuration for a JMX Notification

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

<name>mywldf1</name>

<watch-notification>

<!-- One or more watch configurations -->

<jmx-notification>

<name>myJMXNotif</name>

<enabled>true</enabled>

</jmx-notification>

<!-- Other notification configurations -->

</watch-notification>

Conf igur ing JMS No t i f i cat ions

Configuring and Using the WebLogic Diagnostics Framework 9-3

</wldf-resource>

An example of a JMX notification is as follows:

Notification name: myjmx called. Count= 42.

Watch severity: Notice

Watch time: Jul 19, 2005 3:40:38 PM EDT

Watch ServerName: myserver

Watch RuleType: Harvester

Watch Rule:

${com.bea:Name=myserver,Type=ServerRuntime//OpenSocketsCurrentCount} > 1

Watch Name: mywatch

Watch DomainName: mydomain

Watch AlarmType: None

Watch AlarmResetPeriod: 10000

Configuring JMS Notifications
JMS notifications are used to post messages to JMS topics and/or queues in response to the
triggering of an associated watch. In the system resource configuration file, the elements
<destination-jndi-name> and <connection-factory-jndi-name> define how the
message is to be delivered.

Listing 9-2 shows two JMS notifications that cause JMS messages to be sent through the
provided topics and queues using the specified connection factory. For this to work properly, JMS
must be properly configured in the config.xml configuration file for the domain, and the JMS
resource must be targeted to this server.

Listing 9-2 Example JMS Notifications

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

Conf igur ing No t i f i cat ions

9-4 Configuring and Using the WebLogic Diagnostics Framework

<name>mywldf1</name>

<watch-notification>

<!-- One or more watch configurations -->

<jms-notification>

<name>myJMSTopicNotif</name>

<destination-jndi-name>MyJMSTopic</destination-jndi-name>

<connection-factory-jndi-name>weblogic.jms.ConnectionFactory

</connection-factory-jndi-name>

</jms-notification>

<jms-notification>

<name>myJMSQueueNotif</name>

<destination-jndi-name>MyJMSQueue</destination-jndi-name>

<connection-factory-jndi-name>weblogic.jms.ConnectionFactory

</connection-factory-jndi-name>

</jms-notification>

<!-- Other notification configurations -->

</watch-notification>

</wldf-resource>

The content of the notification message gives details of the watch and notification.

Configuring SNMP Notifications
Simple Network Management Protocol (SNMP) notifications are used to post SNMP traps in
response to the triggering of an associated watch. To define an SNMP notification you only have
to provide a notification name, as shown in Listing 9-3. Generated traps contain the names of
both the watch and notification that caused the trap to be generated. For an SNMP trap to work
properly, SNMP must be properly configured in the config.xml configuration file for the
domain.

Conf igur ing SNMP Not i f i cat i ons

Configuring and Using the WebLogic Diagnostics Framework 9-5

Listing 9-3 An Example Configuration for an SNMP Notification

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

<name>mywldf1</name>

<watch-notification>

<!-- One or more watch configurations -->

<snmp-notification>

<name>mySNMPNotif</name>

</snmp-notification>

<!-- Other notification configurations -->

</watch-notification>

</wldf-resource>

The trap resulting from the SNMP notification configuration shown in Listing 9-3 is of type 85.
It contains the following values (configured values are shown in angle brackets “<>”):

.1.3.6.1.4.1.140.625.100.5 timestamp (e.g. Dec 9, 2004 6:46:37 PM

EST)

.1.3.6.1.4.1.140.625.100.145 domainName (e.g. mydomain")

.1.3.6.1.4.1.140.625.100.10 serverName (e.g. myserver)

.1.3.6.1.4.1.140.625.100.120 <severity> (e.g. Notice)

.1.3.6.1.4.1.140.625.100.105 <name> [of watch] (e.g.

simpleWebLogicMBeanWatchRepeatingAfterWait)

.1.3.6.1.4.1.140.625.100.110 <rule-type> (e.g. HarvesterRule)

.1.3.6.1.4.1.140.625.100.115 <rule-expression>

.1.3.6.1.4.1.140.625.100.125 values which caused rule to

fire (e.g..State =

null,weblogic.management.runtime.WLDFHarvesterRuntimeMBean.

TotalSamplingTime = 886,.Enabled =

null,weblogic.management.runtime.ServerRuntimeMBean.

OpenSocketsCurrentCount = 1,)

.1.3.6.1.4.1.140.625.100.130 <alarm-type> (e.g. None)

Conf igur ing No t i f i cat ions

9-6 Configuring and Using the WebLogic Diagnostics Framework

.1.3.6.1.4.1.140.625.100.135 <alarm-reset-period> (e.g. 10000)

.1.3.6.1.4.1.140.625.100.140 <name> [of notification]

(e.g.mySNMPNotif)

Configuring SMTP Notifications
Simple Mail Transfer Protocol (SMTP) notifications are used to send messages (e-mail) over the
SMTP protocol in response to the triggering of an associated watch. To define an SMTP
notification, first configure the SMTP session. That configuration is persisted in the config.xml
configuration file for the domain. In DIAG_MODULE.xml, you provide the configured SMTP
session using sub-element <mail-session-jndi-name>, and provide a list of at least one
recipient using sub-element <recipients>. An optional subject and/or body can be provided
using sub-elements <subject> and <body> respectively. If these are not provided, they will be
defaulted.

Listing 9-4 shows an SMTP notification that causes an SMTP (e-mail) message to be distributed
through the configured SMTP session, to the configured recipients. In this notification
configuration, a custom subject and body are provided. If a subject and/or a body are not
specified, defaults are provided, showing details of the watch and notification.

Listing 9-4 Sample Configuration for SMTP Notification (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

<name>mywldf1</name>

<watch-notification>

<!-- One or more watch configurations -->

<smtp-notification>

<name>mySMTPNotif</name>

<mail-session-jndi-name>MyMailSession</mail-session-jndi-name>

<subject>Critical Problem!</subject>

<body>A system issue occurred. Call Winston ASAP.

Reference number 81767366662AG-USA23.</body>

<recipients>administrator@myCompany.com</recipients>

</smtp-notification>

Conf igur ing Image No t i f i cat ions

Configuring and Using the WebLogic Diagnostics Framework 9-7

<!-- Other notification configurations -->

</watch-notification>

</wldf-resource>

The content of the notification message gives details of the watch and notification.

Configuring Image Notifications
An image notification causes a diagnostic image to be generated in response to the triggering of
an associated watch. You can configure two options for image notifications: a directory and a
lockout period.

The directory name indicates where images will be generated. The lockout period determines the
the number of seconds that must elapse before a new image can be generated after the last one.
This is useful for limiting the number of images that will be generated when there is a sequence
of server failures and recoveries

You can specify the directory name relative to the DOMAIN_NAME\servers\SERVER_NAME,
directory where DOMAIN_NAME is the name of the domain’s home directory and SERVER_NAME is
the name of the server. The default directory is
DOMAIN_NAME\servers\SERVER_NAME\logs\diagnostic-images.

Image file names are generated using the current timestamp (for example,
diagnostic_image_myserver_2005_08_09_13_40_34.zip), so a notification can fire many
times, resulting in a separate image file each time.

The configuration is persisted in the DIAG_MODULE.xml configuration file. Listing 9-5 shows an
image notification configuration that specifies that the lockout time will be two minutes and that
the image will be generated to the DOMAIN_NAME\servers\SERVER_NAME\images directory.

Listing 9-5 Sample Configuration for Image Notification (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

<name>mywldf1</name>

Conf igur ing No t i f i cat ions

9-8 Configuring and Using the WebLogic Diagnostics Framework

<watch-notification>

<!-- One or more watch configurations -->

<image-notification>

<name>myImageNotif</name>

<enabled>true</enabled>

<image-lockout>2</image-lockout>

<image-directory>images</image-directory>

</image-notification>

<!-- Other notification configurations -->

</watch-notification>

</wldf-resource>

For more information about Diagnostic Images, see Chapter 4, “Configuring and Capturing
Diagnostic Images.”

Configuring and Using the WebLogic Diagnostics Framework 10-1

C H A P T E R 10

Configuring Instrumentation

The Instrumentation component of the WebLogic Diagnostic Framework (WLDF) provides a
mechanism for adding diagnostic code to BEA WebLogic Server® instances and the applications
running on them. The key features provided by WLDF Instrumentation are:

Diagnostic monitors. A diagnostic monitor is a dynamically manageable unit of
diagnostic code which is inserted into server or application code at specific locations. You
define monitors by scope (system or application) and type (standard, delegating, or
custom).

Diagnostic actions. A diagnostic action is the action a monitor takes when it is triggered
during program execution.

Diagnostic context. A diagnostic context is contextual information, such as the originating
IP address, that identifies characteristics of requests that enter and flow through the system.
The diagnostic context provides a means for tracking program execution and for
controlling when monitors trigger their diagnostic actions. See Chapter 11, “Configuring
the DyeInjection Monitor to Manage Diagnostic Contexts.”

WLDF provides a library of predefined diagnostic monitors and actions. You can also create
application-scoped custom monitors, where you control the locations where diagnostic code is
inserted in the application.

Instrumentation is described in the following sections:

“Concepts and Terminology” on page 10-2

“Instrumentation Configuration Files” on page 10-5

Conf igur ing Ins t rumentat ion

10-2 Configuring and Using the WebLogic Diagnostics Framework

“XML Elements Used for Instrumentation” on page 10-7

“Configuring Server-Scoped Instrumentation” on page 10-15

Concepts and Terminology
This section introduces instrumentation concepts and terminology.

“Instrumentation Scope” on page 10-2

“Configuration and Deployment” on page 10-2

“Joinpoints, Pointcuts, and Diagnostic Locations” on page 10-3

“Diagnostic Monitor Types” on page 10-3

“Diagnostic Actions” on page 10-5

Instrumentation Scope
You can provide instrumentation services at the system level (servers and clusters) and at the
application level. Many concepts, services, configuration options, and implementation features
are the same for both. However, there are differences, and they are discussed throughout this
documentation. The term “server-scoped instrumentation” refers to instrumentation
configuration and features specific to WebLogic Server instances and clusters.
“Application-scoped instrumentation” refers to configuration and features specific to
applications deployed on WebLogic servers. The scope is built in to each monitor; you cannot
modify a monitor’s scope.

Configuration and Deployment
Server-scoped instrumentation for a server or cluster is configured and deployed as part of a
diagnostic module, an XML configuration file located in the
DOMAIN_NAME/config/diagnostics directory, and linked from config.xml.

Application-scoped instrumentation is also configured and deployed as a diagnostics module, in
this case an XML configuration file named weblogic-diagnostics.xml which is packaged
with the application archive in the ARCHIVE_PATH/META-INF directory for the deployed
application.

Concepts and Te rmino logy

Configuring and Using the WebLogic Diagnostics Framework 10-3

Joinpoints, Pointcuts, and Diagnostic Locations
Instrumentation code is inserted into (or “woven” into) server and application code at precise
locations. The following terms are used to describe these locations:

A joinpoint is a specific location in a class, for example the entry and/or exit point of a
method or a call site within a method.

A pointcut is an expression that specifies a set of joinpoints, for example all methods
related to scheduling, starting, and executing work items. The XML element used to
describe a pointcut is <pointcut>. Pointcuts are described in “Defining Pointcuts for
Custom Monitors” on page 10-21.

A diagnostic location is a the position relative to a joinpoint where the diagnostic activity
will take place. Diagnostic locations are before, after, and around. The XML element used
to describe a diagnostic location is <location-type>.

Note: You cannot use WLDF diagnostic monitors with classes that have AspectJ aspects woven
into the code.

Diagnostic Monitor Types
A diagnostic monitor is categorized by its scope and its type. The scope is either server-scoped
or application-scoped. The type is determined by the monitor’s pointcut, diagnostic location, and
actions. For example, Servlet_Around_Service is an application-scoped delegating monitor,
which can be used to trigger diagnostic actions at the entry to and at the exit of certain servlet and JSP
methods.

There are three types of instrumentation diagnostic monitors:

A standard monitor performs specific, predefined diagnostic actions at specific, predefined
pointcuts and locations. These actions, pointcuts, and locations are hardcoded in the
monitor. You can enable or disable the monitor but you cannot modify its behavior.

The only standard server-scoped monitor is the DyeInjection monitor, which you can use
to create diagnostic context and to configure dye injection at the server level. For more
information, see Chapter 11, “Configuring the DyeInjection Monitor to Manage Diagnostic
Contexts.”

The only standard application-scoped monitor is HttpSessionDebug, which you can use
to inspect an HTTP Session object.

A delegating monitor has its scope, pointcuts, and locations hardcoded in the monitor, but
you select the actions the monitor will perform. In that sense, the monitor delegates its

Conf igur ing Ins t rumentat ion

10-4 Configuring and Using the WebLogic Diagnostics Framework

actions to the ones you select. Delegating monitors are either server-scoped or
application-scoped.

A delegating monitor by itself is incomplete. In order for a delegating monitor to perform
any useful work, you must assign at least one action to the monitor.

Not all actions are compatible with all monitors. When you configure a delegating monitor
from the Administration Console, you can choose only those actions that are appropriate
for the selected monitor. If you are using WLST or editing a descriptor file manually, you
must make sure that the actions are compatible with the monitors. Validation is performed
when the XML file is loaded at deployment time.

See Appendix B, “WLDF Instrumentation Library,” for a list of the delegating monitors
and actions provided by the WLDF Instrumentation Library.

A custom monitor is a special case of a delegating monitor, which is available only for
application-scoped instrumentation, and does not have a predefined pointcut or location.

You assign a name to a custom monitor, define the pointcut and the diagnostics location the
monitor will use, and then assign actions from the set of predefined diagnostic actions. The
<pointcut> and <location type> elements are mandatory for a custom monitor.

Table 10-1 summarizes the differences among the types of monitors.

You can restrict when a diagnostic action is triggered by setting a dye mask on a monitor. This
mask determines which dye flags in the diagnostic context trigger actions. See
“<wldf-instrumentation-monitor> XML Elements” on page 10-9 for information on setting a dye
mask for a monitor.

Note: Diagnostic context, dye injection, and dye filtering are described in Chapter 11,
“Configuring the DyeInjection Monitor to Manage Diagnostic Contexts.”

Table 10-1 Diagnostic Monitor Types

Monitor Type Scope Pointcut Location Action

Standard monitor Server Fixed Fixed Fixed

Delegating monitor Server or
Application

Fixed Fixed Configurable

Custom monitor Application Configurable Configurable Configurable

I ns t rumentat i on Conf igura t i on F i l es

Configuring and Using the WebLogic Diagnostics Framework 10-5

Diagnostic Actions
Diagnostic actions execute diagnostic code that is appropriate for the associated delegating or
custom monitor (standard monitors have predefined actions). In order for a delegating or custom
monitor to perform any useful work, you must configure at least one action for the monitor.

The WLDF diagnostics library provides the following actions, which you can attach to a monitor
by including the action’s name in an <action> element of the DIAG_MODULE.xml configuration
file:

DisplayArgumentsAction

StackDumpAction

ThreadDumpAction

TraceAction

TraceElapsedTimeAction

Actions must be correctly matched with monitors. For example, the TraceElapsedTime action
is compatible with a delegating or custom monitor whose diagnostic location type is around. See
Appendix B, “WLDF Instrumentation Library.” for more information.

Instrumentation Configuration Files
Instrumentation is configured as part of a diagnostics descriptor, an XML configuration file,
whose name and location depend on whether you are implementing system-level (server-scoped)
or application-level (application-scoped) instrumentation:

System-level instrumentation configuration is stored in diagnostics descriptor(s) in the
following directory:

DOMAIN_NAME/config/diagnostics

This directory can contain multiple system-level diagnostic descriptor files. Filenames are
arbitrary but must be terminated with.xml (myDiag.xml is a valid filename). Each file can
contain configuration information for one or more of the deployable diagnostic
components: Harvester, Instrumentation, or Watch and Notification. An
<instrumentation> section in a descriptor file can configure one or more diagnostic
monitors. Server-scoped instrumentation can be enabled, disabled, and reconfigured
without restarting the server.

Conf igur ing Ins t rumentat ion

10-6 Configuring and Using the WebLogic Diagnostics Framework

Only one WLDF system resource (and hence one system-level diagnostics descriptor file)
can be active at a time for a server (or cluster). The active descriptor is linked and targeted
from the following configuration file:

DOMAIN_NAME/config/config.xml

For more information about configuring diagnostic system modules, see “Configuring
Diagnostic System Modules” on page 3-5. For general information about the creation,
content, and parsing of configuration files in WebLogic Server, see Understanding Domain
Configuration.

Application-level instrumentation configuration is packaged within an application’s archive
in the following location:

META-INF/weblogic-diagnostics.xml

Because instrumentation is the only diagnostics component that is deployable to
applications, this descriptor can contain only instrumentation configuration information.

Note: For instrumentation to be available for an application, instrumentation must be
enabled on the server to which the application is deployed. (Server-scoped
instrumentation is enabled and disabled in the <instrumentation> element of the
diagnostics descriptor for the server.)

You can enable and disable diagnostic monitors without redeploying an application.
However, you may have to redeploy the application after modifying other instrumentation
features, for example defining pointcuts or adding or removing monitors. Whether you
have to redeploy depends on how you configure the instrumentation and how you deploy
the application. There are three options:

– Define and change the instrumentation configuration for the application directly,
without using a JSR-88 deployment plan

– Configure and deploy the application using a deployment plan that has placeholders for
instrumentation settings

– Enable the hot swap feature when starting the server, and deploy using a deployment
plan that has placeholders for instrumentation settings

For more information about these choices, see “Using Deployment Plans for Dynamically
Controlling Instrumentation Configuration” on page 13-3.

For more information about deploying and modifying diagnostic application modules, see
Chapter 13, “Deploying WLDF Application Modules.”

The diagnostics XML schema is located at:

http://www.bea.com/ns/weblogic/90/diagnostics.xsd

XML E l ements Used fo r Ins t rumentat i on

Configuring and Using the WebLogic Diagnostics Framework 10-7

See WebLogic Server Diagnostics Configuration Schema Reference for

documentation.

Each diagnostics descriptor file must begin with the following lines:

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

For an overview of WLDF resource configuration, see Chapter 3, “Understanding WLDF
Configuration.”

XML Elements Used for Instrumentation
This section provides descriptor fragments and tables that summarize information about the XML
elements used to configure instrumentation and the instrumentation diagnostic monitors.

“<Instrumentation> XML Elements” on page 10-7 describes the top-level elements used
within an <instrumentation> element.

“<wldf-instrumentation-monitor> XML Elements” on page 10-9 describes the elements
used within an <wldf-instrumentation-monitor> element.

“Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types” on
page 10-14 summarizes which instrumentation elements apply to which monitors.

<Instrumentation> XML Elements
Table 10-2 describes the <instrumentation> elements in the DIAG_MODULE.xml file. The
following configuration fragment illustrates the use of those elements:

<wldf-resource>

<name>MyDiagnosticModule</name>

<instrumentation>

 <enabled>true</enabled>

<!-- The following <include> element would apply only to an

application-scoped Instrumentation descriptor -->

<include>foo.bar.com.*</include>

<!-- <wldf-instrumentation-monitor> elements to define diagnostic

monitors for this diagnostic module -->

</instrumentation>

<!-- Other elements to configure this diagnostic module -->

</wldf-resource>

Conf igur ing Ins t rumentat ion

10-8 Configuring and Using the WebLogic Diagnostics Framework

Table 10-2 <instrumentation> XML Elements in the DIAG_MODULE.xml Configuration File

Element Description

<instrumentation> The element that begins an instrumentation configuration.

<enabled> If true, instrumentation is enabled. If false, no instrumented code will be
inserted in classes in this instrumentation scope, and all diagnostic monitors
within this scope are disabled. The default value is false.

You must enable instrumentation at the server level to enable instrumentation for
the server and for any applications deployed to it. You must further enable
instrumentation at the application level to enable instrumentation for the
application (that is, in addition to enabling the server-scoped instrumentation).

XML E l ements Used fo r Ins t rumentat i on

Configuring and Using the WebLogic Diagnostics Framework 10-9

<wldf-instrumentation-monitor> XML Elements
Diagnostic monitors are defined in <wldf-instrumentation-monitor> elements, which are
children of the <instrumentation> element in a DIAG_MODULE.xml descriptor for
server-scoped instrumentation or the META-INF/weblogic-diagnostics.xml descriptor for
application-scoped instrumentation.

The following fragment shows the configuration for a delegating monitor and a custom monitor
in an application. (You could modify this fragment for server-scoped instrumentation by
replacing the application-scoped monitors with server-scoped monitors.)

<include> An optional element specifying the list of classes where instrumented code can be
inserted. Wildcards (*) are supported. You can specify multiple <include>
elements. If specified, a class must satisfy an <include> pattern for it to be
instrumented.

Applies only to application-scoped instrumentation. Any specified <include>
or <exclude> patterns are applied to the application scope as a whole.

Note: You can also specify <include> and <exclude> patterns for specific
diagnostic monitors. See the entries for <include> and <exclude> in
Table 10-3

As classes are loaded, they must pass an include/exclude pattern check before any
instrumentation code is inserted. Even if a class passes the include/exclude pattern
checks, whether or not it is instrumented depends on the diagnostic monitors
included in the configuration descriptor. An application-scoped delegating
monitor from the library has its own predefined classes and pointcuts. A custom
monitor specifies its own pointcut expression. Therefore a class can pass the
include/exclude checks and still not be instrumented.

Note: Instrumentation is inserted in applications at class load time. A large
application that is loaded often may benefit from a judicious use of
<include> and/or <exclude> elements. You can probably ignore
these elements for small applications or for medium-to-large applications
that are loaded infrequently.

<exclude> An optional element specifying the list of classes where instrumented code cannot
be inserted. Wildcards (*) are supported. You can specify multiple <exclude>
elements. If specified, classes satisfying an <exclude> pattern are not
instrumented.

Applies only to application-scoped instrumentation. See the <include>
description, above.

Table 10-2 <instrumentation> XML Elements in the DIAG_MODULE.xml Configuration File

Conf igur ing Ins t rumentat ion

10-10 Configuring and Using the WebLogic Diagnostics Framework

<instrumentation>

 <enabled>true</enabled>

<wldf-instrumentation-monitor>

<name>Servlet_Before_Service</name>

<enabled>true</enabled>

<dye-mask>USER1</dye-mask>

<dye-filtering-enabled>true</dye-filtering-enabled>

<action>TraceAction</action>

 </wldf-instrumentation-monitor>

 <wldf-instrumentation-monitor>

<name>MyCustomMonitor</name>

<enabled>true</enabled>

<action>TraceAction</action>

<location-type>before</location-type>

<pointcut>call(* com.foo.bar.* get*(...));</pointcut>

</wldf-instrumentation-monitor>

</instrumentation>

Note that the Servlet_Before_Service monitor sets a dye mask and enables dye filtering. This
will be useful only if instrumentation is enabled at the server level and the DyeInjection
monitor is enabled and properly configured. See Chapter 11, “Configuring the DyeInjection
Monitor to Manage Diagnostic Contexts,” for information about configuring the DyeInjection
monitor.

Table 10-3 describes the <wldf-instrumentation-monitor> elements.

Table 10-3 <wldf-instrumentation-monitor> XML Elements in the DIAG_MODULE.xml or weblogic-diagnostics.xml
file

Element Description

<wldf-instrumentation-monitor> The element that begins a diagnostic monitor configuration.

<enabled> If true, the monitor is enabled. If false, the monitor is
disabled. You enable or disable each monitor separately. The
default value is true.

XML E l ements Used fo r Ins t rumentat i on

Configuring and Using the WebLogic Diagnostics Framework 10-11

<name> The name of the monitor. For standard and delegating monitors,
use the names of the predefined monitors in Appendix B,
“WLDF Instrumentation Library.” For custom monitors, an
arbitrary string that identifies the monitor. The name for a custom
monitor must be unique; that is, it cannot duplicate the name of
any monitor in the library.

<description> An optional element describing the monitor.

<action> An optional element, which applies to delegating and custom
monitors. If you do not specify at least one action, the monitor
will not generate any information. You can specify multiple
<action> elements. An action must be compatible with the
monitor type. For the list of predefined actions for use by
delegating and custom monitors, see Appendix B, “WLDF
Instrumentation Library.”

<dye-filtering-enabled> An optional element. If true, dye filtering is enabled for the
monitor. If false, dye-filtering is disabled. If dye filtering is not
enabled at the server level, enabling dye filtering for a monitor
for will have no effect. The default value is false.

<dye-mask> An optional element. If dye filtering is enabled, the dye mask,
when compared with the values in the diagnostic context,
determines whether actions are taken. See Chapter 11,
“Configuring the DyeInjection Monitor to Manage Diagnostic
Contexts,” for information about dyes and dye filtering.

<properties> An optional element. Sets name=value pairs for dye flags.

Currently applies only to the DyeInjection monitor.

<location-type> An optional element, whose value is one of before, after, or
around. The location type determines when an action is
triggered at a pointcut: before the pointcut, after the pointcut, or
both before and after the pointcut.

Applies only to custom monitors; standard and delegating
monitors have predefined location types. A custom monitor must
define a location type and a pointcut.

Table 10-3 <wldf-instrumentation-monitor> XML Elements in the DIAG_MODULE.xml or weblogic-diagnostics.xml
file

Conf igur ing Ins t rumentat ion

10-12 Configuring and Using the WebLogic Diagnostics Framework

<pointcut> An optional element. A pointcut element contains an expression
that defines joinpoints where diagnostic code will be inserted.

Applies only to custom monitors; standard and delegating
monitors have predefined pointcuts. A custom monitor must
define a location type and a pointcut.

Pointcut syntax is documented in “Defining Pointcuts for
Custom Monitors” on page 10-21

Table 10-3 <wldf-instrumentation-monitor> XML Elements in the DIAG_MODULE.xml or weblogic-diagnostics.xml
file

XML E l ements Used fo r Ins t rumentat i on

Configuring and Using the WebLogic Diagnostics Framework 10-13

Additional information on <dye-filtering-enabled> and <dye-mask> follows:

<include> An optional element specifying the list of classes where
instrumented code can be inserted. Wildcards (*) are supported.
You can specify multiple <include> elements. If specified, a
class must satisfy an <include> pattern for it to be
instrumented.

Applies only to application-scoped instrumentation. Any
specified <include> or <exclude> patterns are applied only
to the monitor defined in the parent
<wldf-instrumentation-monitor> element.

Note: You can also specify <include> and <exclude>
patterns for an entire instrumented application scope.
See the entries for <include> and <exclude> in
Table 10-2.

As classes are loaded, they must pass an include/exclude pattern
check before any instrumentation code is inserted. Even if a class
passes the include/exclude pattern checks, whether or not it is
instrumented depends on the diagnostic monitors included in the
configuration descriptor. An application-scoped delegating
monitor from the library has its own predefined classes and
pointcuts. A custom monitor specifies its own pointcut
expression. Therefore a class can pass the include/exclude
checks and still not be instrumented.

Note: Instrumentation is inserted in applications at class load
time. A large application that is loaded often may benefit
from a judicious use of <include> and/or
<exclude> elements. You can probably ignore these
elements for small applications or for medium-to-large
applications that are loaded infrequently.

<exclude> An optional element specifying the list of classes where
instrumented code cannot be inserted. Wildcards (*) are
supported. You can specify multiple <exclude> elements. If
specified, classes satisfying an <exclude> pattern are not
instrumented.

Applies only to diagnostic monitors in application-scoped
instrumentation. See the <include> description, above.

Table 10-3 <wldf-instrumentation-monitor> XML Elements in the DIAG_MODULE.xml or weblogic-diagnostics.xml
file

Conf igur ing Ins t rumentat ion

10-14 Configuring and Using the WebLogic Diagnostics Framework

When a DyeInjection monitor is enabled and configured for a server or a cluster, you
can use dye filtering in downstream delegating and custom monitors to inspect the dyes
injected into a request’s diagnostic context by that DyeInjection monitor.

The configuration of the DyeInjection monitor determines which bits are set in the 64-bit
dye vector associated with a diagnostic context. When the <dye-filtering-enabled>
attribute is enabled for a monitor, its diagnostic activity is suppressed if the dye vector in a
request’s diagnostic context does not match the monitor’s configured dye mask. If the dye
vector matches the dye mask (a bitwise AND), the application can execute its diagnostic
actions:

(dye_vector & dye_mask == dye_mask)

Thus, the dye filtering mechanism allows monitors to take diagnostic actions only for specific
requests, without slowing down other requests. See Chapter 11, “Configuring the DyeInjection
Monitor to Manage Diagnostic Contexts,” for detailed information on diagnostic contexts and
dye vectors.

Mapping <wldf-instrumentation-monitor> XML Elements to
Monitor Types
Table 10-4 summarizes which <wldf-instrumentation-monitor> elements apply to which
monitors.

Table 10-4 Mapping Instrumentation XML Elements to Monitor Types

Element Standard Delegating Custom

<wldf-instrumentation-monitor> X X X

<name> X X X

<description> X X X

<enabled> X X X

<action> X X

<dye-filtering-enabled> X X

<dye-mask> X X

<properties> X1

Conf igur ing Serve r-Scoped Ins t rumentat ion

Configuring and Using the WebLogic Diagnostics Framework 10-15

Configuring Server-Scoped Instrumentation
To enable instrumentation at the server level, and to configure server-scoped monitors, perform
the following steps:

1. Decide how many WLDF system resources you want to create.

You can have multiple DIAG_MODULE.xml diagnostic descriptor files in a domain, but for
each server (or cluster) you can deploy only one diagnostic descriptor file at a time. One
reason for creating more than one file is to give yourself flexibility. You could have, for
example, five diagnostic descriptor files in the DOMAIN_NAME/config/diagnostics
directory. Each file contains a different instrumentation (and perhaps Harvester and Watch
and Notification) configuration. You then deploy a file to a server based on which monitors
you want active for specific situations.

2. Decide which server-scoped monitors you want to include in a configuration:

– If you plan to use dye filtering on a server, or on any deployed on that server, configure
the DyeInjection monitor.

– If you plan to use one or more of the server-scoped delegating monitors, decide which
monitors to use and which actions to associate with each monitor.

3. Create and configure the configuration file(s).

– If you use the Administration Console to create the DIAG_MODULE.xml file
(recommended), for delegating monitors, the console displays only actions that are
compatible with the monitor. If you create a configuration file with an editor or with
the WebLogic Scripting Tool (WLST), you must correctly match actions to monitors.

– See the “Domain Configuration Files” in Understanding Domain Configuration for
information about configuring the config.xml file.

<location-type> X

<pointcut> X

1. Currently used only by the DyeInjection monitor to set name=value pairs for
dye flags.

Table 10-4 Mapping Instrumentation XML Elements to Monitor Types

Element Standard Delegating Custom

Conf igur ing Ins t rumentat ion

10-16 Configuring and Using the WebLogic Diagnostics Framework

4. Validate and deploy the descriptor file. For server-scoped instrumentation, you can add and
remove monitors and enable or disable monitors while the server is running.

Listing 10-1 contains a sample server-scoped instrumentation configuration file which enables
instrumentation, and configures the DyeInjection standard monitor and the
Connector_Before_Work delegating monitor. A single <instrumentation> element contains
all instrumentation configuration for the module. Each diagnostic monitor is defined in a separate
<wldf-instrumentation-monitor> element.

Listing 10-1 Sample Server-Scoped Instrumentation (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

<instrumentation>

<enabled>true</enabled>

<wldf-instrumentation-monitor>

<name>DyeInjection</name>

<description>Inject USER1 and ADDR1 dyes</description>

<enabled>true</enabled>

<properties>USER1=weblogic

ADDR1=127.0.0.1</properties>

</wldf-instrumentation-monitor>

<wldf-instrumentation-monitor>

<name>Connector_Before_Work</name>

<enabled>true</enabled>

<action>TraceAction</action>

<dye-filtering-enabled>true</dye-filtering-enabled>

<dye-mask>USER1</dye-mask>

</wldf-instrumentation-monitor>

</instrumentation>

</wldf-resource>

Conf igu r ing Appl ica t ion-Scoped Ins t rumentat ion

Configuring and Using the WebLogic Diagnostics Framework 10-17

Configuring Application-Scoped Instrumentation
At the application level, WLDF instrumentation is configured as a deployable module, which is
then deployed as part of the application.

The following sections provide information you need to configure application-scoped
instrumentation:

“Comparing System-Scoped to Application-Scoped Instrumentation” on page 10-17

“Overview of the Steps Required to Instrument an Application” on page 10-18

“Creating a Descriptor File for a Delegating Monitor” on page 10-19

“Creating a Descriptor File for a Custom Monitor” on page 10-20

“Defining Pointcuts for Custom Monitors” on page 10-21

Comparing System-Scoped to Application-Scoped
Instrumentation
Instrumenting an application is similar to instrumenting at the system level, but with the
following differences:

Applications can use standard, delegating, and custom monitors.

– The only server-scoped standard monitor is DyeInjection. The only
application-scoped standard monitor is HttpSessionDebug. For more information, see
the entry for HttpSessionDebug in “Diagnostic Monitor Library” on page B-1.

– Delegating monitors are either server-scoped or application-scoped. Applications must
use the application-scoped delegating monitors.

– All custom monitors are application-scoped.

The server’s instrumentation settings affect the application. In order to enable
instrumentation for an application, instrumentation must be enabled for the server on which
the application is deployed. Enablement of server instrumentation at the time of
deployment decides if instrumentation will be available for the application. If
instrumentation is not enabled on the server, enabling instrumentation in an application will
have no effect.

Application instrumentation is configured with a weblogic-diagnostics.xml descriptor
file. You create a META-INF/weblogic-diagnostics.xml file, configure the

Conf igur ing Ins t rumentat ion

10-18 Configuring and Using the WebLogic Diagnostics Framework

instrumentation, and put the file in the application’s archive. When the archive is deployed,
the instrumentation is automatically inserted when the application is loaded.

You can use a deployment plan to dynamically update configuration elements without
redeploying the application. See “Using Deployment Plans for Dynamically Controlling
Instrumentation Configuration.”

The XML descriptors for application-scoped instrumentation are defined in the same way as for
server-scoped instrumentation. You can configure instrumentation for an application solely by
using the delegating monitors and diagnostic actions available in the WLDF Instrumentation
Library. You can also create your own custom monitors; however, the diagnostic actions that you
attach to these monitors must be taken from the WLDF Instrumentation Library.

Table 10-5 compares the function and scope of system and application modules.

Overview of the Steps Required to Instrument an
Application
To implement a diagnostic monitor for an application, perform the following steps:

1. Make sure that instrumentation is enabled on the server. See “Configuring Server-Scoped
Instrumentation” on page 10-15.

Table 10-5 Comparing System and Application Modules

Module Type Add/Remove
Objects
Dynamically

Add/Remove
Objects with
Console

Modify with
JMX Remotely

Modify with
JSR-88
(non-remote)

Modify with
Console

System
Module

Yes Yes Yes No Yes - via JMX

Application
Module

Yes, when
hot-swap is
enabled

No, when
hot-swap is not
enabled:
module must
be redeployed

Yes No Yes Yes - via plan

Conf igu r ing Appl ica t ion-Scoped Ins t rumentat ion

Configuring and Using the WebLogic Diagnostics Framework 10-19

2. Create a well formed META-INF/weblogic-diagnostics.xml descriptor file for the
application:

– Enable the <instrumentation> element: <enabled>true</enabled>

– Add and enable at least one diagnostic monitor, with appropriate actions attached to it.
(A monitor will generate diagnostic events only if the monitor is enabled and actions
that generate events are attached to it.).

See “Creating a Descriptor File for a Delegating Monitor” on page 10-19 and “Creating a
Descriptor File for a Custom Monitor” on page 10-20 for samples of well-formed
descriptor files.

See “Defining Pointcuts for Custom Monitors” on page 10-21 for information on creating a
pointcut expression.

3. Put the descriptor file in the application archive.

4. Deploy the application. See Chapter 13, “Deploying WLDF Application Modules.”.

Creating a Descriptor File for a Delegating Monitor
The following is an example of a well-formed META-INF/weblogic-diagnostics.xml file for
an application-scoped delegating monitor:

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

<instrumentation>

<enabled>true</enabled>

<wldf-instrumentation-monitor>

<name>Servlet_Before_Service</name>

<enabled>true</enabled>

<dye-mask>USER1</dye-mask>

<dye-filtering-enabled>true</dye-filtering-enabled>

<action>TraceAction</action>

</wldf-instrumentation-monitor>

</instrumentation>

</wldf-resource>

The Servlet_Before_Service monitor is an application-scoped monitor selected from the
WLDF monitor library. It is hardcoded with a pointcut that sets joinpoints at method entry for
several servlet or JSP methods. Because the application enables dye filtering and sets the USER1

Conf igur ing Ins t rumentat ion

10-20 Configuring and Using the WebLogic Diagnostics Framework

flag in its dye mask, the TraceAction action will be invoked only when the dye vector in the
diagnostic context passed to the application also has its USER1 flag set. (The dye vector is set at
the system level via the DyeInjection monitor.) Therefore, the Servlet_Before_Service
monitor in this application is essentially quiescent until it inspects a dye vector and finds the
USER1 flag set. This filtering reduces the amount of diagnostic data generated, and ensures that
the generated data is of interest to the administrator.

Creating a Descriptor File for a Custom Monitor
The following is an example of a well-formed META-INF/weblogic-diagnostics.xml file for
a custom monitor.

Listing 10-2 Sample Custom Monitor Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics.xsd">

<instrumentation>

 <enabled>true</enabled>

<wldf-instrumentation-monitor>

<name>MyCustomMonitor</name>

<enabled>true</enabled>

<action>TraceAction</action>

<location-type>before</location-type>

<pointcut>call(* com.foo.bar.* get* (...));</pointcut>

</wldf-instrumentation-monitor>

</instrumentation>

</wldf-resource>

The <name> for a custom monitor is an arbitrary string chosen by the developer. Because this
monitor is custom, it has no predefined locations when actions should be invoked; the descriptor
file must define the location type and pointcut expression. In this example, the TraceAction
action will be invoked before (<location-type>before</location-type) any methods
defined by the pointcut expression is invoked. Table 10-6 shows how the pointcut expression
from Listing 10-2 is parsed. (Note the use of wildcards.)

Conf igu r ing Appl ica t ion-Scoped Ins t rumentat ion

Configuring and Using the WebLogic Diagnostics Framework 10-21

Table 10-6 Description of a Sample Pointcut Expression

This pointcut expression matches all get*() methods in all classes in package com.foo.bar and
its subpackages. The methods can return values of any type, including void, and can have any
number of arguments of any type. Instrumentation code will be inserted before these methods,
and, just before those methods are called, the TraceAction action will be invoked.

See “Defining Pointcuts for Custom Monitors” on page 10-21 for a description of the grammar
used to define pointcuts.

Defining Pointcuts for Custom Monitors
Custom monitors provide more flexibility than delegating monitors because you create pointcut
expressions to control where diagnostics actions are invoked. As with delegating monitors, you
must select actions from the action library.

A joinpoint is specific, well-defined location in a program. A pointcut is an expression that
specifies a set of joinpoints. This section describes how you define expressions for pointcuts
using the following pointcut syntax.

You can specify two types of pointcuts for custom monitors:

call: Take an action when a method is invoked.

Pointcut Expression Description

call(* com.foo.bar.* get* (...)) call(): Trigger any defined actions when the
methods whose jointpoints are defined by the
remainder of this pointcut expression are
invoked.

call(* com.foo.bar.* get* (...)) *: Return value. The wildcard indicates that the
methods can have any type of return value.

call(* com.foo.bar.* get* (...)) com.foo.bar.*: Methods from class
com.foo.bar and its subpackages are eligible.

call(* com.foo.bar.* get* (...)) get*: Any methods whose name starts with the string
get is eligible.

call(* com.foo.bar.* get* (...)) (...): The ellipsis indicates that the methods
can have any number of arguments.

Conf igur ing Ins t rumentat ion

10-22 Configuring and Using the WebLogic Diagnostics Framework

execution: Take an action when a method is executed.

The syntax for defining a pointcut expression is as follows:

<pointcut> ::= [(] <joinpoint> [<conditional> <joinpoint>] [)]

<joinpoint> ::= [(] <execution-joinpoint> | <call-joinpoint>

<execution-pointcut> ::= execution (<access-type> <joinpoint-signature>)

<callsite-pointcut> ::= call (<joinpoint-signature>)

<joinpoint-signature> ::= <method-signature>

<method-signature> ::= <return-type> <class-type>.<method-name>

(<parameter-list>)

<return-type> ::= <class-type> | <primitive-type>

<parameter-list> ::= <parameter-type> [, <parameter-type>] *

<parameter-type> ::= <class-type> | <primitive-type> | <elipsis>

<class-type> ::= [<use-class-hierarchy>] ?

<class-or-interface-name-pattern>

<conditional> ::= AND [NOT] | OR [NOT] | NOT

<use-class-hierarchy> ::= '+'

<elipsis> ::= '...'

The following rules apply:

Wildcards (*) can be used in class types and method names.

An ellipsis (...) in the argument list signifies a variable number of arguments of any types
beyond the argument.

A + (plus sign) prefix to a class type identifies all subclasses, subinterfaces or concrete
classes implementing the specified class/interface pattern.

A pointcut expression specifies a pattern to identify matching joinpoints. An attempt to
match a joinpoint against it will return a boolean, indicating a valid match (or not).

Pointcut expressions can be combined with AND, OR and NOT boolean operators to build
complex pointcut expression trees.

Conf igu r ing Appl ica t ion-Scoped Ins t rumentat ion

Configuring and Using the WebLogic Diagnostics Framework 10-23

For example, the following pointcut matches method executions of all public initialized methods
in all classes in package com.foo.bar and its subpackages. The initialized methods may return
values of any type, including void, and may have any number of arguments of any types.

execution(public * com.foo.bar.* initialize(...))

The following pointcut matches the method calls (callsites) on all classes that directly or
indirectly implement the com.foo.bar.MyInterface interface (or a subclass, if it happens to
be a class). The method names must start with get, be public, and return an int value. The
method must accept exactly one argument of type java.lang.String:

call(int +com.foo.bar.MyInterface get*(java.lang.String))

The following example shows how to use boolean operators to build a pointcut expression tree:

call(void com.foo.bar.* set*(java.lang.String)) OR

call(* com.foo.bar.* get*())

The following example illustrates how the previous expression tree would be rendered as a
<pointcut> element in a configuration file:

<pointcut>call(void com.foo.bar.* set*(java.lang.String)) OR

call(* com.foo.bar.* get*())</pointcut>

Conf igur ing Ins t rumentat ion

10-24 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 11-1

C H A P T E R 11

Configuring the DyeInjection Monitor to
Manage Diagnostic Contexts

The WLDF Instrumentation component provides the means for uniquely identifying requests and
tracking them as they flow through the system. You can configure WLDF to check for certain
characteristics of every request that enters the system (such as the originating user or client
address) and then attach a context to the request. The context is defined by a unique ID and by
flags that represent the characteristics of the request. Context IDs are recorded in the log and can
be used to:

Throttle instrumentation event generation, that is determine how often events are generated
when specified conditions are met

Associate log records with a request

Filter searches of log or event records use the WLDF Accessor component

Diagnostic context is available at both the system level and the application level, with some
differences in how it is configured and used.

The process of configuring and using diagnostic context is described in the following sections:

“Contents, Life Cycle, and Configuration of a Diagnostic Context” on page 11-2

“Overview of the Process” on page 11-3

“Configuring the Dye Vector via the DyeInjection Monitor” on page 11-4

“Configuring Delegating Monitors to Use Dye Filtering” on page 11-8

“How Dye Masks Filter Requests to Pass to Monitors” on page 11-10

Conf igur ing the Dye In jec t i on Moni to r t o Manage D iagnos t ic Contexts

11-2 Configuring and Using the WebLogic Diagnostics Framework

“Using Throttling to Control the Volume of Instrumentation Events” on page 11-12

Contents, Life Cycle, and Configuration of a Diagnostic
Context

A diagnostic context contains a unique context ID and a dye vector, which identifies
characteristics of the context.

Context Life Cycle and the Context ID
The diagnostic context for a request is created and initialized when the request enters the system;
for example, when a client makes an HTTP request. The context remains attached to the request,
even as the request crosses thread boundaries and Java Virtual Machine (JVM) boundaries. The
diagnostic context lives for the duration of the life cycle of the request.

Every diagnostic context is identified by an ID that is unique in the domain. Because the ID
travels with the request, it is possible to track given requests as they flow through the system.

Dyes, Dye Flags, and Dye Vectors
Contextual information travels with a request as a 64-bit dye vector, where each bit is a flag to
identify the presence of a dye. Each dye represents one attribute of a request; for example, an
originating user, an originating client IP address, access protocol, and so on.

When a dye flag for a given attribute is set, it indicates that the attribute is present. When the flag
is not set, it indicates the attribute is not present.

For example, consider a configuration where the dye ADDR1 is configured to indicate that a
request originated from IP address 127.0.0.1. The dye flag ADDR2 is configured to indicate that
a request originated from IP address 127.0.0.2. If a request from IP address 127.0.0.1 enters
the system, the ADDR1 dye flag in the dye vector for the request is set. The ADDR2 dye flag remains
unset.

Diagnostic and monitoring features that take advantage of the diagnostic context can examine the
dye vector to determine if an attribute is present. In the example above, the administrator could
configure a diagnostic monitor to trace every request that is dyed with ADDR1, that is, that
originated from IP address 127.0.0.1.

The dye vector also contains a THROTTLE dye, which is used to set how often incoming requests
are dyed. For more information about this special dye, see “THROTTLE Dye Flag” on page 11-8.

Ove rv iew o f the P rocess

Configuring and Using the WebLogic Diagnostics Framework 11-3

For a list of the available dyes and the attributes they represent, see “Dyes Supported by the
DyeInjection Monitor” on page 11-6. The process of configuring dye vectors and using them is
discussed throughout the rest of this chapter.

Where Diagnostic Context Is Configured
Diagnostic context is configured as part of a diagnostic module. The primary mechanism for
configuring the diagnostic context is the DyeInjection monitor, which is a standard diagnostic
monitor. The joinpoints where the DyeInjection monitor is woven into the code are those
locations where a request can enter the system. The diagnostic action is to check every request
against the DyeInjection monitor’s configuration, then create and attach a context to the
request, setting dye flags as appropriate. For information about diagnostic monitor types,
pointcuts (which define the joinpoints), and diagnostic actions, see Chapter 10, “Configuring
Instrumentation.”

Overview of the Process
This overview describes the configuration and use of context in a server-scoped diagnostic
module.

1. The administrator configures a diagnostic module to use the DyeInjection monitor.

2. The administrator enables instrumentation for the module.

3. The administrator configures the DyeInjection monitor by assigning values to dyes, for
example, USER1=username1, USER2=username2, ADDR1=ip_address1,
ADDR2=ip_address2, and so forth.

4. WLDF creates and instantiates a context for the request. The context includes a unique ID and
a dye vector, as described in the following step.

5. When a request enters the system, the DyeInjection monitor examines the request to see
which dye values in the dye vector match attributes of the request, if any. For example, it
checks to see if the request originated with username1 or username2, and it checks to see if
the request came from ip_address1 or ip_address2.

6. For each dye value that matches a request attribute, the DyeInjection monitor “injects” that
dye into the request. This is done by setting the dye flag for that dye in the dye vector attached
to the request. For example, if a request originates with username2 from ip_address1, the
DyeInjection monitor sets the dye flags USER2 and ADDR1. (USER1 and ADDR2, therefore,
remain unset.)

Conf igur ing the Dye In jec t i on Moni to r t o Manage D iagnos t ic Contexts

11-4 Configuring and Using the WebLogic Diagnostics Framework

7. The dye vector travels with the request (as part of the diagnostic context) as it flows through
the system. This 64-bit dye vector contains only flags, not values. So, in this example, the dye
vector contains only two flags that are explicitly set (USER2 and ADDR1).

Note: All dye vectors also contain one of the implicit PROTOCOL dyes, as explained in
“Configuring the Dye Vector via the DyeInjection Monitor.”

8. The administrator enables dye filtering in one or more delegating diagnostic monitors and
configures the dye mask for each monitor. If the dyes set in the dye mask exactly match the
dyes in the dye vector attached to a request--that is, if ((dye-mask & dye-vector) ==
dye-mask)--the diagnostic action for the monitor will be triggered when that request is
processed.

These steps are discussed in more detail in the following sections.

Configuring the Dye Vector via the DyeInjection Monitor
To create contexts for requests, you must:

1. Create and enable a diagnostic module for the server or servers you want to monitor.

2. Enable Instrumentation for the module.

3. Configure and enable the DyeInjection monitor for the module. (Only one DyeInjection
monitor can be used with a module at any one time.)

To configure the DyeInjection monitor, you assign values to the dyes in the dye vector. The
available dye flags are described in Table 11-1. When WLDF evaluates an incoming request to
create a context for it, it checks for the presence of the values specified in the dye vector. When
a value is present, WLDF sets that flag. This process is called dyeing the request or injecting a
dye into the request.

For example, to monitor all requests initiated by a user named admin@avitek from a client at IP
address 127.0.0.1, assign the value admin@avitek to USER1 and assign the value 127.0.0.1
to ADDR1. Then, when user admin@avitek initiates a request from a client with IP address
127.0.0.1, that request is dyed with USER1 and ADDR1; in other words the USER1 and ADDR1
flags in the dye vector (in the context for the request) are both set.

In the Administration Console, you assign values to dyes by typing them into the Properties field
of the Settings for DyeInjection page.

Conf igur ing the Dye Vec to r v ia the Dye In jec t ion Moni to r

Configuring and Using the WebLogic Diagnostics Framework 11-5

Figure 11-1 Setting Dye Values in the Administration Console

These settings appear in the descriptor file for the diagnostic module, as shown in the following
code listing.

Listing 11-1 Sample DyeInjection Monitor Configuration, in DIAG_MODULE.xml

<wldf-resource>

<name>MyDiagnosticModule</name>

<instrumentation>

<enabled>true</enabled>

<wldf-instrumentation-monitor>

<name>DyeInjection</name>

<enabled>true</enabled>

<dye-mask xsi:nil="true"></dye-mask>

<properties>ADDR1=127.0.0.1

USER1=admin@avitek</properties>

</wldf-instrumentation-monitor>

<!-- Other elements to configure instrumentation -->

<instrumentation>

Conf igur ing the Dye In jec t i on Moni to r t o Manage D iagnos t ic Contexts

11-6 Configuring and Using the WebLogic Diagnostics Framework

<!-- Other elements to configure this diagnostic monitor -->

<wldf-resource>

Dyes Supported by the DyeInjection Monitor
The dyes available in the dye vector are listed and explained in the following table.

Table 11-1 Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

ADDR1

ADDR2

ADDR3

ADDR4

Use the ADDR1, ADDR2, ADDR3 and ADDR4 dyes to specify the IP addresses of
clients that originate requests. These dye flags are set in the diagnostic context for
a request if the request originated from an IP address specified by the respective
property (ADDR1, ADDR2, ADDR3, ADDR4) of the DyeInjection monitor.

These dyes cannot be used to specify DNS names.

CONNECTOR1

CONNECTOR2

CONNECTOR3

CONNECTOR4

Use the CONNECTOR1, CONNECTOR2, CONNECTOR3 and CONNECTOR4 dyes to
identify characteristics of connector drivers.

These dye flags are set by the connector drivers to identify request properties
specific to their situations. You do not configure these directly in the
Administration Console or in the descriptor files. The connector drivers can
assign values to these dyes (using the Connector API), so information about the
connections can be carried in the diagnostic context.

COOKIE1

COOKIE2

COOKIE3

COOKIE4

COOKIE1, COOKIE2, COOKIE3 and COOKIE4 are set in the diagnostic context
for an HTTP/S request, if the request contains the cookie named
weblogic.diagnostics.dye and its value is equal to the value of the
respective property (COOKIE1, COOKIE2, COOKIE3, COOKIE4) of the
DyeInjection monitor.

DYE_0

DYE_1

DYE_2

DYE_3

DYE_4

DYE_5

DYE_6

DYE_7

DYE_0 to DYE_7 are available only for use by application developers. See
“Using weblogic.diagnostics.context” on page 11-15.

Conf igur ing the Dye Vec to r v ia the Dye In jec t ion Moni to r

Configuring and Using the WebLogic Diagnostics Framework 11-7

PROTOCOL Dye Flags
You must explicitly set the values for the dye flags USERn, ADDRn, COOKIEn, and CONNECTORn.
in the DyeInjection monitor. However, the flags PROTOCOL_HTTP, PROTOCOL_IIOP,
ROTOCOL_JRMP, PROTOCOL_RMI, PROTOCOL_SOAP, PROTOCOL_SSL, and PROTOCOL_T3 are set
implicitly by WLDF. When the DyeInjection monitor is enabled, every request is injected with
the appropriate protocol dye. For example, every request that arrives via HTTP is injected with
the PROTOCOL_HTTP dye.

PROTOCOL_HTTP

PROTOCOL_IIOP

PROTOCOL_JRMP

PROTOCOL_RMI

PROTOCOL_SOAP

PROTOCOL_SSL

PROTOCOL_T3

The DyeInjection monitor implicitly identifies the protocol used for a request
and sets the appropriate dye(s) in the dye vector, according to the protocol(s)
used.

PROTOCOL_HTTP is set in the diagnostic context of a request if the request uses
HTTP or HTTPS protocol.

PROTOCOL_IIOP is set in the diagnostic context of a request if it uses Internet
Inter-ORB Protocol (IIOP).

PROTOCOL_JRMP is set in the diagnostic context of a request if it uses the Java
Remote Method Protocol (JRMP).

PROTOCOL_RMI is set in the diagnostic context of a request if it uses the Java
Remote Method Invocation (RMI) protocol.

PROTOCOL_SSL is set in the diagnostic context of a request if it uses the Secure
Sockets Layer (SSL) protocol.

PROTOCOL_T3 is set in the diagnostic context of a request if the request uses T3
or T3s protocol

THROTTLE The THROTTLE dye is set in the diagnostic context of a request if it satisfies
requirements specified by THROTTLE_INTERVAL and/or THROTTLE_RATE
properties of the DyeInjection monitor.

USER1

USER2

USER3

USER4

Use the USER1, USER2, USER3 and USER4 dyes to specify the user names of
clients that originate requests. These dye flags are set in the diagnostic context for
a request if the request was originated by a user specified by the respective
property (USER1, USER2, USER3, USER4) of the DyeInjection monitor.

Table 11-1 Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

Conf igur ing the Dye In jec t i on Moni to r t o Manage D iagnos t ic Contexts

11-8 Configuring and Using the WebLogic Diagnostics Framework

THROTTLE Dye Flag
The THROTTLE dye flag can be used to control the volume of incoming requests that are dyed.
THROTTLE is configured differently from the other flags, and WLDF uses it differently. For more
information, see “Using Throttling to Control the Volume of Instrumentation Events.”

When Contexts Are Created
When the DyeInjection monitor is enabled in a diagnostic module, a diagnostic context is
created for every incoming request. Even if no properties are explicitly set in the DyeInjection
monitor, the context for every request will contain a unique context ID and a dye vector with one
of the implicit PROTOCOL dyes. If the DyeInjection monitor is not added to a diagnostic module
or if it is disabled, no diagnostic contexts will be created for any incoming requests.

Configuring Delegating Monitors to Use Dye Filtering
You can use the DyeInjection monitor as a mechanism to restrict when a delegating or custom
diagnostic monitor in the diagnostic module is triggered. This process is called dye filtering.

Each monitor can have a dye mask, which specifies a selection of the dyes from the
DyeInjection monitor. When dye filtering is enabled for a diagnostic monitor, the monitor’s
diagnostic action is triggered only for those requests that meet the criteria set by the mask.

For example, consider a JDBC_Before_Start_Internal diagnostic monitor that has a
TraceAction action attached to it. If dye filtering is not enabled, any request that is handled by
JDBC_Before_Start_Internal will trigger a TraceAction. However, you could use a dye
mask to trigger those TracActions only for requests that originated from a IP address
127.0.0.1, as explained below:

1. Configure the DyeInjection monitor so that ADDR1=127.0.0.1, and enable the
DyeInjection monitor. For instructions, see “Configuring the Dye Vector via the
DyeInjection Monitor” on page 11-4.

2. Configure a dye mask and enable dye filtering for the JDBC_Before_Start_Internal
diagnostic monitor. In the Administration Console, you do this in the Settings for
JDBC_Before_Start_Internal page, as described below and shown in Figure 11-2.

a. Navigate to the Settings for JDBC_Before_Start_Internal page. (See the
Administration Console online help for complete instructions for adding and configuring
the JDBC_Before_Start_Internal diagnostic monitor in a diagnostic module.)

Conf igur ing De legat ing Mon ito rs to Use Dye F i l t e r ing

Configuring and Using the WebLogic Diagnostics Framework 11-9

b. In the Dye Mask field of the Settings for JDBC_Before_Start_Internal page, move
ADDR1 from the Available list to the Chosen list.

c. Select the EnableDyeFiltering check box.

With this configuration, the TraceAction action will be triggered for the
JDBC_Before_Start_Internal diagnostic monitor only for those requests that originate from
IP address 127.0.0.1.

Figure 11-2 Setting Dye Filtering in the Administration Console

These settings are persisted to the descriptor file for the diagnostic module as shown in the
following code listing.

Listing 11-2 Sample Configuration for Using Dye Filtering in a Delegating Monitor, in DIAG_MODULE.xml

<wldf-resource>

<name>MyDiagnosticModule</name>

<instrumentation>

<enabled>true</enabled>

<wldf-instrumentation-monitor>

Conf igur ing the Dye In jec t i on Moni to r t o Manage D iagnos t ic Contexts

11-10 Configuring and Using the WebLogic Diagnostics Framework

<name>DyeInjection</name>

<enabled>true</enabled>

<properties>ADDR1=127.0.0.1</properties>

</wldf-instrumentation-monitor>

<wldf-instrumentation-monitor>

<name>JDBC_Before_Start_Internal</name>

<dye-mask>ADDR1</dye-mask>

<dye-filtering-enabled>true</dye-filtering-enabled>

<action>TraceAction</action>

</wldf-instrumentation-monitor>

<!-- Other elements to configure instrumentation -->

<instrumentation>

<!-- Other elements to configure this diagnostic monitor -->

<wldf-resource>

How Dye Masks Filter Requests to Pass to Monitors
A dye vector attached to a request can contain multiple dyes, and a dye mask attached to a
delegating monitor can contain multiple dyes. For a delegating monitor’s dye mask to allow a
monitor to take action on a request, all of the following must be true:

Instrumentation and the DyeInjection monitor are enabled for the diagnostic module
targeted to the server. (If the DyeInjection monitor is not added or is disabled, dye
filtering is disabled.)

Dye filtering for the delegating or custom monitor is enabled in the application’s
weblogic-diagnostics.xml descriptor.

The request’s dye vector contains any of the dyes that are defined in the monitor’s dye
mask. (The dye vector can also contain dyes that are not in the dye mask.)

Dye Filtering Example
Figure 11-3 illustrates how dye filtering works, using a diagnostic module with three diagnostic
monitors:

The DyeInjection monitor is configured as follows:

IP=127.0.0.1

How Dye Masks F i l t e r Requests to Pass to Mon i to rs

Configuring and Using the WebLogic Diagnostics Framework 11-11

USER1=weblogic

The Servlet_Around_Service monitor is configured with a dye mask containing ADDR1
only.

The EJB_Around_SessionEjbBusinessMethods monitor is configured with a dye mask
containing USER1 only.

Figure 11-3 Dye Filtering Example

1. A request initiated by user guest from IP address 127.0.0.1 enters the system. The user
guest does not match the value for USER1 in the DyeInjection monitor, so the request is
not dyed with the dye vector USER1. The originating IP address (127.0.0.1) matches the
value for ADDR1 defined in the DyeInjection monitor, so the request is dyed with the dye
vector ADDR1.

2. The request (dyed with ADDR1) enters the Servlet component, where the diagnostic monitor
Servlet_Around_Service is woven into the code. (Servlet_Around_Service triggers
diagnostic actions at the entry of and exit of certain servlet and JSP methods.) Dye monitoring
is enabled for the monitor, and the dye mask is defined with the single value ADDR1.

Conf igur ing the Dye In jec t i on Moni to r t o Manage D iagnos t ic Contexts

11-12 Configuring and Using the WebLogic Diagnostics Framework

3. When the request enters or exits a method instrumented with Servlet_Around_Service,
the diagnostic monitor checks the request for dye vector ADDR1, which it finds. Therefore, the
monitor triggers a diagnostic action, which generates a diagnostic event, for example, writing
data to a log.

4. The request enters the SessionEJB component, where the diagnostic monitor
EJB_Around_SessionEjbBusinessMethods is woven into the code.
(EJB_Around_SessionEjbBusinessMethods triggers diagnostic actions at the entry and
exit of all SessionBean methods) Dye monitoring is enabled for the monitor, and the dye
mask is defined with the single value USER1.

5. When the request enters or exits a SessionBean method (instrumented with
EJB_Around_SessionEjbBusinessMethods), the diagnostic monitor checks the request
for dye vector USER1, which it does not find. Therefore, the monitor does not trigger a
diagnostic action, and therefore does not generate a diagnostic event.

Using Throttling to Control the Volume of
Instrumentation Events

Throttling is used to control the number of requests that are processed by the monitors in a
diagnostic module. Throttling is configured using the THROTTLE dye, which is defined in the
DyeInjection monitor.

Note: The USERn and ADDRn dyes allow inspection of requests from specific users or IP
addresses. However, they do not provide a means to look at arbitrary user transactions.
The THROTTLE dye provides that functionality by allowing sampling of requests.

Configuring the THROTTLE Dye
Unlike other dyes in the dye vector, the THROTTLE dye is configured through two properties.

THROTTLE_INTERVAL sets an interval (in milliseconds) after which a new incoming request
is dyed with the THROTTLE dye.

If the THROTTLE_INTERVAL is greater than 0, the DyeInjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request if the last request dyed with
THROTTLE arrived at least THROTTLE_INTERVAL before the new request. For example, if
THROTTLE_INTERVAL=3000, the DyeInjection monitor waits at least 3000 milliseconds
before it will dye an incoming request with THROTTLE.

THROTTLE_RATE sets the rate (in terms of the number of incoming requests) by which new
incoming requests are dyed with the THROTTLE dye.

Us ing Thro t t l ing to Cont ro l the Vo lume o f Ins t rumentat i on Events

Configuring and Using the WebLogic Diagnostics Framework 11-13

If THROTTLE_RATE is greater than 0, the DyeInjection monitor sets the THROTTLE dye
flag in the dye vector of an incoming request when the number of requests since the last
request dyed with THROTTLE equals THROTTLE_RATE. For example, if THROTTLE_RATE =
6, every sixth request is dyed with THROTTLE.

You can use THROTTLE_INTERVAL and THROTTLE_RATE together. If either condition is
satisfied, the request is dyed with the THROTTLE dye.

If you assign a value to either THROTTLE_INTERVAL or THROTTLE_RATE (or both, or neither), you
are configuring the THROTTLE dye. A THROTTLE configuration setting in the Administration
Console is shown in the following figure.

Figure 11-4 Configuring the THROTTLE Dye

Listing 11-3 shows the resulting configuration in the descriptor file for the diagnostics module.

Listing 11-3 Sample THROTTLE Configuration in the DyeInjection Monitor, in DIAG_MODULE.xml

<wldf-resource>

<name>MyDiagnosticModule</name>

<instrumentation>

<wldf-instrumentation-monitor>

Conf igur ing the Dye In jec t i on Moni to r t o Manage D iagnos t ic Contexts

11-14 Configuring and Using the WebLogic Diagnostics Framework

<name>DyeInjection</name>

<properties>

THROTTLE_INTERVAL=3000

THROTTLE_RATE=6

</properties>

</wldf-instrumentation-monitor>

</instrumentation>

<!-- Other elements to configure this diagnostic monitor -->

</wldf-resource>

Listing 11-4 shows the configuration for a JDBC_Before_Start_Internal delegating monitor
where the THROTTLE dye is set in the dye mask for the monitor.

Listing 11-4 Sample Configuration for Setting THROTTLE in a Dye Mask of a Delegating Monitor, in
DIAG_MODULE.xml

<wldf-resource>

<name>MyDiagnosticModule</name>

<instrumentation>

<wldf-instrumentation-monitor>

<name>JDBC_Before_Start_Internal</name>

<enabled>true</enabled>

<dye-mask>THROTTLE</dye-mask>

</wldf-instrumentation-monitor>

</instrumentation>

<!-- Other elements to configure this diagnostic monitor -->

</wldf-resource>

How Throttling is Handled by Delegating and Custom
Monitors
Dye masks and dye filtering provide a mechanism for restricting which requests are passed to
delegating and custom monitors for handling, based on properties of the requests. The presence
of a property in a request is indicated by the presence of a dye, as discussed in “Configuring the

Us ing web log ic .d iagnost ics . contex t

Configuring and Using the WebLogic Diagnostics Framework 11-15

Dye Vector via the DyeInjection Monitor” on page 11-4. One of those dyes can be the THROTTLE
dye, so that you can filter on THROTTLE, just like any other dye.

The items in the following list explain how throttling is handled:

If dye filtering for a delegating or custom monitor is enabled and that monitor has a dye
mask, filtering is performed based on the dye mask. That mask may include the THROTTLE
dye, but it does not have to. If THROTTLE is included in a dye mask, then THROTTLE must
also be included in the request’s dye vector for the request to be passed to the monitor.
However, if THROTTLE is not included in the dye mask, all qualifying requests are passed
to the monitor, whether their dye vectors include THROTTLE or not.

If dye filtering for a delegating or custom monitor is not enabled and neither THROTTLE
property is set in the DyeInjection monitor, dye filtering will not take place and
throttling will not take place.

If dye filtering for a delegating or custom monitor is not enabled and THROTTLE is
configured in the DyeInjection monitor, delegating monitors ignore dye masks but do
check for the presence of the THROTTLE dye in all requests. Only those requests dyed with
THROTTLE are passed to the delegating monitors for handling. Therefore, by setting a
THROTTLE_RATE and/or THROTTLE_INTERVAL in the DyeInjection monitor, you reduce
the number of requests handled by all delegating monitors. You do not have to configure
dye masks for all your delegating monitors to take advantage of throttling.

If dye filtering for a delegating or custom monitor is enabled and the only dye set in a dye
mask is THROTTLE, only those requests that are dyed with THROTTLE are passed to the
delegating monitor. This behavior is the same as when dye filtering is not enabled and
THROTTLE is configured in the DyeInjection monitor.

Using weblogic.diagnostics.context
The weblogic.diagnostics.context package provides applications limited access to a
diagnostic context.

An application can use the weblogic.diagnostics.context.DiagnosticContextHelper
APIs to perform the following functions:

Inspect a diagnostics context’s immutable context ID.

Inspect the settings of the dye flags in a context’s dye vector.

Retrieve an array of valid dye flag names.

Conf igur ing the Dye In jec t i on Moni to r t o Manage D iagnos t ic Contexts

11-16 Configuring and Using the WebLogic Diagnostics Framework

Set, or unset, the DYE_0 through DYE_7 flags in a context’s dye vector. (Note that there is
no way to set these flag bits via XML. You can configure DyeInjection monitor
<properties> to set the non-application-specific flag bits via XML, but setDye() is the
only method for setting DYE_0 through DYE_7 in a dye vector.)

Attach a payload (a String) to a diagnostic context, or read an existing payload.

An application cannot:

Set any flags in a dye vector other the eight flags reserved for applications.

Prevent another application from setting the same application flags in a dye vector. A
well-behaved application can test whether a dye flag is set before setting it.

Prevent another application from replacing a payload. A well-behaved application can test
for the presence of a payload before adding one.

A monitor, or another application, that is downstream from the point where an application has set
one or more of the DYE_0 through DYE_7 flags can set a dye mask to check for those flags, and
take an action when the flag(s) are present in a context’s dye vector. If a payload is attached to
the diagnostics context, any action taken by that monitor will result in the payload being archived,
and thus available through the accessor component.

Listing 11-5 is a short example which (implicitly) creates a diagnostic context, prints the context
ID, checks the value of the DYE_0 flag, and then sets the DYE_0 flag.

Listing 11-5 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;

import weblogic.diagnostics.context.DiagnosticContextHelper;

public class DiagnosticContextExample {

public static void main(String args[]) throws Exception {

System.out.println("\nContextId=" +

DiagnosticContextHelper.getContextId());

System.out.println("isDyedWith(DYE_0)=" +

DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));

DiagnosticContextHelper.setDye(DiagnosticContextHelper.DYE_0, true);

System.out.println("isDyedWith(DYE_0)=" +

DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));

Us ing web log ic .d iagnost ics . contex t

Configuring and Using the WebLogic Diagnostics Framework 11-17

}

}

Conf igur ing the Dye In jec t i on Moni to r t o Manage D iagnos t ic Contexts

11-18 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework 12-1

C H A P T E R 12

Accessing Diagnostic Data With the
Data Accessor

You use the Data Accessor component of the WebLogic Diagnostic Framework (WLDF) to
access diagnostic data from various sources, including log records, data events, and harvested
metrics.

Using the Data Accessor, you can perform data lookups by type, component, and attribute. You
can perform time-based filtering and, when accessing events, filtering by severity, source, and
content. You can also access diagnostic data in tabular form.

The following sections describe the Data Accessor and describes how to use it online (when a
server is running) and offline (when a server is not running):

“Data Stores Accessed by the Data Accessor” on page 12-1

“Accessing Diagnostic Data Online” on page 12-2

“Accessing Diagnostic Data Offline” on page 12-4

“Resetting the System Clock Can Affect How Data Is Archived and Retrieved” on
page 12-12

Data Stores Accessed by the Data Accessor
The Data Accessor retrieves diagnostic information from other WLDF components. Captured
information is segregated into logical data stores that are separated by the types of diagnostic
data. For example, server logs, HTTP logs, and harvested metrics are captured in separate data
stores.

Access ing D iagnost ic Data Wi th the Data Accessor

12-2 Configuring and Using the WebLogic Diagnostics Framework

WLDF maintains diagnostic data on a per-server basis. Therefore, the Data Accessor provides
access to data stores for individual servers.

Data stores can be modeled as tabular data. Each record in the table represents one item, and the
columns describe characteristics of the item. Different data stores may have different columns.
However, most data stores have some of the same columns, such as the time when the data was
collected.

The Data Accessor can retrieve the following information about data stores used by WLDF for a
server:

A list of supported data store types, including:

– HTTP_LOG

– HARVESTED_DATA_ARCHIVE

– EVENTS_DATA_ARCHIVE

– SERVER_LOG

– DOMAIN_LOG

– HTTP_ACCESS_LOG

– WEBAPP_LOG

– CONNECTOR_LOG

– JMS_MESSAGE_LOG

– CUSTOM_LOG

A list of available data store instances

The layout of each data store (information that describes the columns in the data store)

You can use the WLDFAccessRuntimeMBean to discover such data stores, determine the nature
of the data they contain, and access their data selectively using a query.

For complete documentation about WebLogic logs, see Configuring Log Files and Filtering Log
Messages.

Accessing Diagnostic Data Online
You access diagnostic data from a running server by using the Administration Console, JMX
APIs, or the WebLogic Scripting Tool (WLST).

Access ing D iagnost ic Data On l ine

Configuring and Using the WebLogic Diagnostics Framework 12-3

Accessing Data Using the Administration Console
You do not use the Data Accessor explicitly in the Administration Console, but information
collected by the Accessor is displayed, for example, in the Summary of Log Files page. See
“View and Configure Logs” in the Administration Console Online Help.

Accessing Data Programmatically Using Runtime MBeans
The Data Accessor provides the following runtime MBeans for discovering data stores and
retrieving data from them:

Use the WLDFAccessRuntimeMBean to do the following:

– Get the logical names of the available data stores on the server.

– Look up a WLDFDataAccessRuntimeMBean to access the data from a specific data
source, based on its logical name. The different data stores are uniquely identified by
their logical names.

See WLDFAccessRuntimeMBean in the WebLogic Server MBean Reference.

Use the WLDFDataAccessRuntimeMBean to retrieve data stores based on a search
condition, or query. You can optionally specify a time interval with the query, to retrieve
data records within a specified time duration. This MBean provides meta-data about the
columns of the data set and the earliest and latest timestamp of the records in the data
store.

Data Accessor runtime Mbeans are currently created and registered lazily. So, when a
remote client attempts to access them, they may not be present and an
InstanceNotFoundException may be thrown.

The client can retrieve the WLDFDataAccessRuntimes attribute of the
WLDFAccessRuntime to cause all known data access runtimes to be created, for example:

ObjectName objName =
new ObjectName("com.bea:ServerRuntime=" + serverName +

",Name=Accessor," +
"Type=WLDFAccessRuntime," +
"WLDFRuntime=WLDFRuntime");

rmbs.getAttribute(objName, "WLDFDataAccessRuntimes");

See WLDFDataAccessRuntimeMBean in the WebLogic Server MBean Reference.

Access ing D iagnost ic Data Wi th the Data Accessor

12-4 Configuring and Using the WebLogic Diagnostics Framework

Using WLST to Access Diagnostic Data Online
Use the WLST exportDiagnosticDataFromServer command to access diagnostic data from
a running server. For the syntax and examples of this command, see “Diagnostic Commands,” in
the WLST Command and Variable Reference.

Using the WLDF Query Language with the Data Accessor
To query data from data stores, use the WLDF query language. For Data Accessor query
language syntax, see Appendix A, “WLDF Query Language.”

Accessing Diagnostic Data Offline
Use the WLST exportDiagnosticData command to access historical diagnostic data from an
offline server. For the syntax and examples of this command, see “Diagnostics Commands” in
the WLST Command and Variable Reference.

Notes: You can use exportDiagnosticData to access archived data only from the machine on
which the data is persisted.

You cannot discover data store instances using the offline mode of the Data Accessor.
You must already know what they are.

Accessing Diagnostic Data Programmatically
Listing 12-1 shows the source Java code for a utility that uses the Accessor to query the different
archive data stores.

Listing 12-1 Sample Code to Use the WLDF Accessor

/*

* WLAccessor.java

*

* Demonstration utility that allows query of the different ARCV data stores

* via the WLDF Accessor.

*

*/

import javax.naming.Context;

Access ing D iagnost ic Data P rogrammat ica l l y

Configuring and Using the WebLogic Diagnostics Framework 12-5

import weblogic.jndi.Environment;

import java.util.Hashtable;

import java.util.Iterator;

import java.util.Properties;

import weblogic.management.ManagementException;

import weblogic.management.runtime.WLDFAccessRuntimeMBean;

import weblogic.management.runtime.WLDFDataAccessRuntimeMBean;

import weblogic.diagnostics.accessor.ColumnInfo;

import weblogic.diagnostics.accessor.DataRecord;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import javax.management.MBeanServerConnection;

import javax.management.remote.JMXConnector;

import javax.management.remote.JMXConnectorFactory;

import javax.management.remote.JMXServiceURL;

import javax.management.ObjectName;

import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;

import weblogic.management.runtime.ServerRuntimeMBean;

import weblogic.management.jmx.MBeanServerInvocationHandler;

import weblogic.management.configuration.ServerMBean;

/**

 * Demonstration utility that allows query of the different ARCV data stores

 * via the WLDF Accessor. The class looks up the appropriate accessor and

 * executes the query given the specified query parameters.

 *

 * To see information about it's usage, compile this file and run

 *

 * java WLAccessor usage

 */

public class WLAccessor {

 /** Creates a new instance of WLAccessor */

 public WLAccessor(Properties p) {

Access ing D iagnost ic Data Wi th the Data Accessor

12-6 Configuring and Using the WebLogic Diagnostics Framework

 initialize(p);

 }

 /**

 * Retrieve the specfied WLDFDataAccessRuntimeMBean instance for querying.

 */

 public WLDFDataAccessRuntimeMBean getAccessor(String accessorType)

 throws Throwable

 {

 // Get the runtime MBeanServerConnection

 MBeanServerConnection runtimeMBS =

this.getRuntimeMBeanServerConnection();

 // Lookup the runtime service for the connected server

 ObjectName rtSvcObjName = new

ObjectName(RuntimeServiceMBean.OBJECT_NAME);

 RuntimeServiceMBean rtService = null;

rtService = (RuntimeServiceMBean)

MBeanServerInvocationHandler.newProxyInstance(

runtimeMBS, rtSvcObjName

);

// Walk the Runtime tree to the desired accessor instance.

ServerRuntimeMBean srt = rtService.getServerRuntime();

WLDFDataAccessRuntimeMBean ddar =

srt.getWLDFRuntime().getWLDFAccessRuntime().

lookupWLDFDataAccessRuntime(accessorType);

return ddar;

}

/**

* Execute the query using the given parameters, and display the formatted

* records.

*/

public void queryEventData() throws Throwable

Access ing D iagnost ic Data P rogrammat ica l l y

Configuring and Using the WebLogic Diagnostics Framework 12-7

{

String logicalName = "EventsDataArchive";

WLDFDataAccessRuntimeMBean accessor = getAccessor(accessorType);

ColumnInfo[] colinfo = accessor.getColumns();

inform("Query string: " + queryString);

int recordsFound = 0;

Iterator actualIt =

accessor.retrieveDataRecords(beginTime, endTime, queryString);

while (actualIt.hasNext()) {

DataRecord rec = (DataRecord)actualIt.next();

inform("Record[" + recordsFound + "]: {");

Object[] values = rec.getValues();

for (int colno=0; colno < values.length; colno++) {

inform("[" + colno + "] "

+ colinfo[colno].getColumnName() +

" (" + colinfo[colno].getColumnTypeName() + "): " +

 values[colno]);

}

inform("}");

inform("");

recordsFound++;

}

inform("Found " + recordsFound + " results");

}

/**

* Main method that implements the tool.

* @param args the command line arguments

*/

public static void main(String[] args) {

try {

WLAccessor acsr = new WLAccessor(handleArgs(args));

acsr.queryEventData();

} catch (UsageException uex) {

usage();

} catch (Throwable t) {

Access ing D iagnost ic Data Wi th the Data Accessor

12-8 Configuring and Using the WebLogic Diagnostics Framework

inform("Caught exception, " + t.getMessage(), t);

inform("");

usage();

}

}

public static class UsageException extends Exception {}

/**

* Process the command line arguments, which are provided as name/value

pairs.

*/

public static Properties handleArgs(String[] args) throws Exception

{

Properties p = checkForDefaults();

for (int i = 0; i < args.length; i++) {

if (args[i].equalsIgnoreCase("usage"))

throw new UsageException();

String[] nvpair = new String[2];

int token = args[i].indexOf('=');

if (token < 0)

throw new Exception("Invalid argument, " + args[i]);

nvpair[0] = args[i].substring(0,token);

nvpair[1] = args[i].substring(token+1);

p.put(nvpair[0], nvpair[1]);

}

return p;

}

/**

* Look for a default properties file

*/

public static Properties checkForDefaults() throws IOException {

Properties defaults = new Properties();

try {

File defaultprops = new File("accessor-defaults.properties");

FileInputStream defaultsIS = new FileInputStream(defaultprops);

Access ing D iagnost ic Data P rogrammat ica l l y

Configuring and Using the WebLogic Diagnostics Framework 12-9

//inform("loading options from accessor-defaults.properties");

defaults.load(defaultsIS);

} catch (FileNotFoundException fnfex) {

//inform("No accessor-defaults.properties found");

}

return defaults;

}

public static void inform(String s) {

System.out.println(s);

}

public static void inform(String s, Throwable t) {

System.out.println(s);

t.printStackTrace();

}

private MBeanServerConnection getRuntimeMBeanServerConnection()

throws IOException

{

// construct jmx service url

// "service:jmx:[url]/jndi/[mbeanserver-jndi-name]"

JMXServiceURL serviceURL =

new JMXServiceURL(

"service:jmx:" + getServerUrl() +

"/jndi/" + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME

);

// specify the user and pwd. Also specify weblogic provide package

inform("user name [" + username + "]");

inform("password [" + password + "]");

Hashtable h = new Hashtable();

h.put(Context.SECURITY_PRINCIPAL, username);

h.put(Context.SECURITY_CREDENTIALS, password);

h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

"weblogic.management.remote");

// get jmx connector

JMXConnector connector = JMXConnectorFactory.connect(serviceURL, h);

Access ing D iagnost ic Data Wi th the Data Accessor

12-10 Configuring and Using the WebLogic Diagnostics Framework

inform("Using JMX Connector to connect to " + serviceURL);

return connector.getMBeanServerConnection();

}

private void initialize(Properties p) {

serverUrl = p.getProperty("url","t3://localhost:7001");

username = p.getProperty("user","weblogic");

password = p.getProperty("pass","weblogic");

queryString = p.getProperty("query","SEVERITY IN

('Error','Warning','Critical','Emergency')");

accessorType = p.getProperty("type","ServerLog");

try {

beginTime = Long.parseLong(p.getProperty("begin","0"));

String end = p.getProperty("end");

endTime = (end==null) ? Long.MAX_VALUE : Long.parseLong(end);

} catch (NumberFormatException nfex) {

throw new RuntimeException("Error formatting time bounds", nfex);

}

}

private static void usage() {

inform("");

inform("");

inform("Usage: ");

inform("");

inform(" java WLAccessor [options]");

inform("");

inform("where [options] can be any combination of the following: ");

inform("");

inform(" usage Prints this text and exits");

inform(" url=<url> default: 't3://localhost:7001'");

inform(" user=<username> default: 'weblogic'");

inform(" pass=<password> default: 'weblogic'");

inform(" begin=<begin-timestamp> default: 0");

inform(" end=<end-timestamp> default: Long.MAX_VALUE");

inform(" query=<query-string> default: \"SEVERITY IN

Access ing D iagnost ic Data P rogrammat ica l l y

Configuring and Using the WebLogic Diagnostics Framework 12-11

('Error','Warning','Critical','Emergency')\"");

inform(" type=<accessor-type> default: 'ServerLog'");

inform("");

inform("Example:");

inform("");

inform(" java WLAccessor user=system pass=gumby1234

url=http://myhost:8000 \\");

inform(" query=\"SEVERITY = 'Error'\" begin=1088011734496

type=ServerLog");

inform("");

inform("");

inform("");

inform("All properties (except \"usage\") can all be specified in a file

");

inform("in the current working directory. The file must be named: ");

inform("");

inform(" \"accessor-defaults.properties\"");

inform("");

inform("Each property specified in the defaults file can still be ");

inform("overridden on the command-line as shown above");

inform("");

}

/** Getter for property serverUrl.

* @return Value of property serverUrl.

*

*/

public java.lang.String getServerUrl() {

return serverUrl;

}

/** Setter for property serverUrl.

* @param serverUrl New value of property serverUrl.

*

*/

public void setServerUrl(java.lang.String serverUrl) {

this.serverUrl = serverUrl;

}

Access ing D iagnost ic Data Wi th the Data Accessor

12-12 Configuring and Using the WebLogic Diagnostics Framework

protected String serverName = null;

protected String username = null;

protected String password = null;

protected String queryString = "";

private String serverUrl = "t3://localhost:7001";

private String accessorType = null;

private long endTime = Long.MAX_VALUE;

private long beginTime = 0;

private WLDFAccessRuntimeMBean dar = null;

}

Resetting the System Clock Can Affect How Data Is
Archived and Retrieved

Resetting the system clock to an earlier time while diagnostic data is being written to the WLDF
Archive or logs can cause unexpected results when you query that data based on a timestamp. For
example, consider the following sequence of events:

1. At 2:00 p.m., a diagnostic event is archived as RECORD_200, with a timestamp of 2:00:00
PM.

2. At 2:30 p.m., a diagnostic event is archived as RECORD_230, with a timestamp of 2:30:00
PM.

3. At 3:00 p.m., the system clock is reset to 2:00 p.m.

4. At 2:15 p.m. (after the clock was reset), a diagnostic event is archived as RECORD_215, with
a timestamp of 2:15:00 PM.

5. You issue a query to retrieve records generated between 2:00 and 2:20 p.m.

The query will not retrieve RECORD_215, because the 2:30:00 PM timestamp of RECORD_230
ends the query.

Configuring and Using the WebLogic Diagnostics Framework 13-1

C H A P T E R 13

Deploying WLDF Application Modules

The only WebLogic Diagnostic Framework (WLDF) component you can use with applications
is Instrumentation. See “Configuring Application-Scoped Instrumentation” on page 10-17.

You configure and manage instrumentation for an application as a diagnostics application
module, which is an application-scoped resource. The configuration is persisted in a descriptor
file which you deploy with the application. A diagnostic module deployed in this way is available
only to the enclosing application. Using application-scoped resources ensures that an application
always has access to required resources and simplifies the process of deploying the application
to new environments.

You can deploy an application using a deployment plan, which permits dynamic configuration
updates.

Note: For instrumentation to be available for an application, instrumentation must be enabled
on the server to which the application is deployed. (Server-scoped instrumentation is
enabled and disabled in the <instrumentation> element of the diagnostics descriptor
for the server.)

The following sections describe how to deploy WLDF application modules:

“Deploying a Diagnostic Module as an Application-Scoped Resource” on page 13-2

“Using Deployment Plans for Dynamically Controlling Instrumentation Configuration” on
page 13-3

“Using a Deployment Plan: Overview” on page 13-4

“Creating a Deployment Plan Using weblogic.PlanGenerator” on page 13-5

Deploy ing WLDF Appl i cat ion Modules

13-2 Configuring and Using the WebLogic Diagnostics Framework

“Sample Deployment Plan for Diagnostics” on page 13-6

“Enabling Hot-Swap Capabilities” on page 13-7

“Deploying an Application with a Deployment Plan” on page 13-7

“Updating an Application with a Modified Plan” on page 13-8

Deploying a Diagnostic Module as an Application-Scoped
Resource

To deploy a diagnostic module as an application-scoped resource, you configure the module in a
descriptor file named weblogic-diagnostics.xml. Then you package the descriptor file with
the application archive in the ARCHIVE_PATH/META-INF directory for the deployed application
(for example, D:\bea\weblogic91\samples\server\medrec\medrecEar
\META-INF\weblogic-diagnostics.xml). You can deploy the diagnostic module in both
exploded and unexploded archives.

Note: If the EAR archive contains WAR, RAR or EJB modules that have the
weblogic-diagnostics.xml descriptors in their META-INF directory, those
descriptors are ignored.

You can use any of the standard WebLogic Server tools provided for controlling deployment,
including the WebLogic Administrative Console or the WebLogic Scripting Tool (WLST).

For information on creating modules and deploying applications, see Deploying Applications to
WebLogic Server.

Because of the different ways that diagnostic application modules and diagnostic system modules
are deployed, there are some differences in how you can reconfigure them and when those
changes take place, as shown in Table 13-1. The details of how to work with diagnostic
application modules is described throughout this section. See Chapter 10, “Configuring
Instrumentation,” for information about working with diagnostic system modules.

Using Dep loyment P lans fo r Dynamica l l y Cont ro l l ing Ins t rumenta t i on Conf igurat ion

Configuring and Using the WebLogic Diagnostics Framework 13-3

Using Deployment Plans for Dynamically Controlling
Instrumentation Configuration

WebLogic Server supports deployment plans, as specified in the J2EE Deployment Specification
API (JSR-88). With deployment plans, you can modify an application’s configuration after the
application is built, without having to modify the application archives. For complete
documentation on using deployment plans in WebLogic Server, see “Configuring Applications
for Production Deployment” in Deploying Applications to WebLogic Server.

If you want to reconfigure an application that was deployed without a deployment plan, you must
undeploy, unarchive, reconfigure, rearchive, and then redeploy the application. With a
configuration plan, you can dynamically change many configuration options simply by updating
the plan, without modifying the application archive.

If you enable a feature called “hot swap” (see “Enabling Hot-Swap Capabilities”) before
deploying your application with a deployment plan, you can dynamically update all
instrumentation settings, without redeploying the application. If you do not enable hot swap, or
if you do not use a deployment plan, changes to some instrumentation settings require
redeployment, as shown in Table 13-2.

Table 13-1 Comparing System and Application Modules

Module Type Add/Remove
Objects
Dynamically

Add/Remove
Objects with
Console

Modify with
JMX Remotely

Modify with
JSR-88
(non-remote)

Modify with
Console

System
Module

Yes Yes Yes No Yes - via JMX

Application
Module

Yes, when hot
swap1 is
enabled

No, when hot
swap is not
enabled:
module must
be redeployed

Yes No Yes Yes - via plan

1. See “Using Deployment Plans for Dynamically Controlling Instrumentation Configuration,”
for information about hot swap.

Deploy ing WLDF Appl i cat ion Modules

13-4 Configuring and Using the WebLogic Diagnostics Framework

You can use a deployment plan to dynamically update configuration elements without
redeploying the application.

<enabled>

<dye-filtering-enabled>

<dye-mask>

<action>

Using a Deployment Plan: Overview
The general process for creating and using a deployment plan is as follows:

1. Create a well-formed weblogic-diagnostics.xml descriptor file for the application.

It is recommended that you create an empty descriptor. That provides full flexibility for
dynamically modifying the configuration. It is possible to create monitors in the original
descriptor file and then use a deployment plan to override the settings. However, you will
not be able to completely remove monitors without redeploying. If you add monitors using
a deployment plan to an empty descriptor, all such monitors can be removed. For

Table 13-2 When Application Instrumentation Configuration Changes Take Effect

Add and remove
monitors

Attach and detach
actions

Enable and disable
monitors

Application deployed with a deployment
plan, hot swap enabled

Dynamic Dynamic Dynamic

Application deployed with a deployment
plan, hot swap not enabled

Must redeploy
application1

1. If hot-swap is not enabled, you can “remove” a monitor, but that just disables it. The
instrumentation code is still woven into the application code. You cannot re-enable it through a
modified plan.

Dynamic Dynamic

Application deployed without a
deployment plan

Must redeploy
application

Must redeploy
application

Must redeploy
application

Creat ing a Dep lo yment P lan Us ing web log ic .P lanGenera to r

Configuring and Using the WebLogic Diagnostics Framework 13-5

information about configuring diagnostic application modules, see “Configuring
Application-Scoped Instrumentation” on page 10-17.

The schema for weblogic-diagnostics.xml is available at
http://www.bea.com/ns/weblogic/90/diagnostics.xsd. See WebLogic Server
Diagnostics Configuration Schema Reference for documentation.

2. Place the descriptor file weblogic-diagnostics.xml, in the top-level META-INF directory
of the appropriate archive.

3. Create a deployment plan, for example by using weblogic.PlanGenerator. See “Creating a
Deployment Plan Using weblogic.PlanGenerator” on page 13-5.

4. Start the server, optionally enabling “hot-swap” capability. See “Enabling Hot-Swap
Capabilities” on page 13-7.

5. Deploy the application using the deployment plan. See “Deploying an Application with a
Deployment Plan” on page 13-7).

6. When needed, edit the plan and update the application with the plan. See “Updating an
Application with a Modified Plan” on page 13-8.

Creating a Deployment Plan Using
weblogic.PlanGenerator

You can use the weblogic.PlanGenerator tool to create an initial deployment plan, and
interactively override specific properties of the weblogic-diagnostics.xml descriptor.

The PlanGenerator tool inspects all J2EE deployment descriptors in the selected application,
and creates a deployment plan with null variables for all relevant WebLogic Server deployment
properties that configure external resources for the application.

To create the plan, use the following syntax:

java weblogic.PlanGenerator -plan output-plan.xml [options]

application-path

For example:

java weblogic.PlanGenerator -plan foo.plan -dynamics /test/apps/mywar

Note: The -dynamics options specifies that the plan should be generated to include only those
options that can be dynamically updated.

Deploy ing WLDF Appl i cat ion Modules

13-6 Configuring and Using the WebLogic Diagnostics Framework

For more information about creating and using deployment plans, see “Configuring Applications
for Production Deployment” in Deploying Applications to WebLogic Server.

For more information about using PlanGenerator, see “weblogic.PlanGenerator Command
Line Reference” and “Exporting an Application for Deployment to New Environments” in
Deploying Applications to WebLogic Server.

Sample Deployment Plan for Diagnostics
Listing 13-1 shows a simple deployment plan generated using weblogic.PlanGenerator. (For
readability, some information has been removed.) The plan enables the
Servlet_Before_Service monitor and attaches to it the actions DisplayArgumentsAction
and StackDumpAction.

Listing 13-1 Sample Deployment Plan

<?xml version='1.0' encoding='UTF-8'?>

<deployment-plan xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
global-variables="false">

<application-name>jsp_expr_root</application-name>

<variable-definition>
<!-- Add two additional actions to Servlet_Before_Service monitor -->
<variable>

<name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_11305055
9713922</name>

<value>"DisplayArgumentsAction","StackDumpAction"</value>
</variable>
<-- Enable the Servlet_Before_Service monitor -->
<variable>

<name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_11305055
9713927</name>

<value>true</value>
</variable>

</variable-definition>

<module-override>
<module-name>jspExpressionWar</module-name>
<module-type>war</module-type>
<module-descriptor external="false">

<root-element>weblogic-web-app</root-element>
<uri>WEB-INF/weblogic.xml</uri>

Enabl ing Hot-Swap Capab i l i t i es

Configuring and Using the WebLogic Diagnostics Framework 13-7

</module-descriptor>
 <module-descriptor external="false">
<root-element>web-app</root-element>
<uri>WEB-INF/web.xml</uri>
</module-descriptor>
<module-descriptor external="false">

<root-element>wldf-resource</root-element>
<uri>META-INF/weblogic-diagnostics.xml</uri>
<variable-assignment>

<name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_113050
559713922</name>

<xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/[na
me="Servlet_Before_Service"]/action</xpath>

</variable-assignment>
<variable-assignment>

<name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_1130
50559713927</name>

<xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/[
name="Servlet_Before_Service"]/enabled</xpath>

</variable-assignment>
</module-descriptor>

 </module-override>
<config-root xsi:nil="true"></config-root>

</deployment-plan>

For a list and documentation of diagnostic monitors and actions that you can specify in the
deployment plan, see Appendix B, “WLDF Instrumentation Library.”

Enabling Hot-Swap Capabilities
To enable hot-swap capabilities, start the server with the following command line switch:

-javaagent:$WL_HOME/server/lib/diagnostics-agent.jar

Deploying an Application with a Deployment Plan
To take advantage of the dynamic control provided by a deployment plan, you must deploy the
application with the plan.

You can use any of the standard WebLogic Server tools for controlling deployment, including the
Administration Console or the WebLogic Scripting Tool (WLST). For example, the following
WLST command deploys an application with a corresponding deployment plan.

Deploy ing WLDF Appl i cat ion Modules

13-8 Configuring and Using the WebLogic Diagnostics Framework

 wls:/mydomain/serverConfig> deploy('myApp', './myApp.ear', 'myserver',

 'nostage', './plan.xml')

After deployment, the effective diagnostic monitor configuration is a combination of the original
descriptor, combined with the overridden attribute values from the plan. If the original descriptor
did not include a monitor with the given name and the plan overrides an attribute of such a
monitor, the monitor is added to the set of monitors to be used with the application. This way, if
your application is built with an empty weblogic-diagnostics.xml descriptor, you can add
diagnostic monitors to the application during or after the deployment process, without having to
modify the application archive.

Updating an Application with a Modified Plan
You change configuration settings by modifying the deployment plan and then updating or
redeploying the application, depending on whether or not hot swap is enabled. (See Table 13-2
to see when you can simply update the application and when you must redeploy it.) You can use
any of the standard WebLogic Server tools for updating or redeploying, including the
Administration Console or the WebLogic Scripting Tool (WLST).

If you enabled hot-swap, you can update the configuration for the application with the modified
plan values by updating the application with the plan. For example, the following WLST
command updates an application with a plan:

wls:/mydomain/serverConfig> updateApplication('BigApp',

'c:/myapps/BigApp/newPlan/plan.xml', stageMode='STAGE',

testMode='false')

If you did not enable hot-swap, you must redeploy the application for certain changes to take
effect. For example, the following WLST command redeploys an application using a plan:

wls:/mydomain/serverConfig> redeploy('myApp' 'c:/myapps/plan.xml')

Configuring and Using the WebLogic Diagnostics Framework 14-1

C H A P T E R 14

Configuring and Using WLDF
Programmatically

As discussed in previous chapters, you can use the WebLogic Server Administration Console to
enable, configure, and monitor features of WebLogic Server, including the WebLogic Diagnostic
Framework (WLDF). You can do the same tasks programmatically using the JMX API and the
WebLogic Scripting Tool (WLST).

The following sections provide information about configuring WLDF programatically:

“How WLDF Generates and Retrieves Data” on page 14-2

“Mapping WLDF Components to Beans and Packages” on page 14-2

“Programming Tools” on page 14-5

“WLDF Packages” on page 14-8

“Programming WLDF: Examples” on page 14-9

In addition to the information provided in those sections, use the information in the following
manuals to develop and deploy applications, and to use WLST:

Developing Applications with WebLogic Server

Developing Manageable Applications with JMX

Developing Custom Management Utilities with JMX

Deploying Applications to WebLogic Server

WebLogic Scripting Tool

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-2 Configuring and Using the WebLogic Diagnostics Framework

How WLDF Generates and Retrieves Data
In general, diagnostic data is generated and retrieved by WLDF components following this
process:

The WLDF XML descriptor file settings for the Harvester, Instrumentation, Image
Capture, and Watch and Notification components determine the type and amount of
diagnostic data generated while a server is running.

The diagnostic context and instrumentation settings filter and monitor this data as it flows
through the system. Data is harvested, actions are triggered, events are generated, and
configured notifications are sent.

The Archive component stores the data.

The Accessor component retrieves the data.

Configuration is primarily an administrative task, accomplished either through the
Administration Console or through WLST scripts. Deployable descriptor modules, XML
configuration files, are the primary method for configuring diagnostic resources at both the
system level (servers and clusters) and at the application level. (For information on configuring
WLDF resources, see Chapter 3, “Understanding WLDF Configuration.”)

Output retrieval via the Accessor component can be either an administrative or a programmatic
task.

Mapping WLDF Components to Beans and Packages
When you create WLDF resources using the Administration Console or WLST, WebLogic
Server creates MBeans, managed beans, for each resource. You can then access these MBeans
using JMX or WLST. Because weblogic.WLST is a JMX client; any task you can perform using
WLST you can also perform programmatically through JMX.

Table 14-1 lists the beans and packages associated with WLDF and its components. Figure 14-1
groups the beans by type.

Mapping WLDF Components to Beans and Packages

Configuring and Using the WebLogic Diagnostics Framework 14-3

Table 14-1 Mapping WLDF Components to Beans and Packages

Component Beans / Packages

WLDF WLDFServerDiagnosticMBean

WLDFSystemResourceMBean

WLDFBean (abstract)

WLDFResourceBean

WLDFRuntimeMBean

Diagnostic Image WLDFImageNotificationBean

WLDFImageCreationTaskRuntimeMBean

WLDFImageRuntimeMBean

Instrumentation WLDFInstrumentationBean

WLDFInstrumentationMonitorBean

WLDFInstrumentationRuntimeMBean

Diagnostic Context Package: weblogic.diagnostics.context
DiagnosticContextHelper

DiagnosticContextConstants

Harvester WLDFHarvesterBean

WLDFHarvestedTypeBean

WLDFHarvesterRuntimeMBean

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-4 Configuring and Using the WebLogic Diagnostics Framework

Watch & Notification WLDFNotificationBean

WLDFWatchNotificationBean

WLDFJMSNotificationBean

WLDFJMXNotificationBean

WLDFSMTPNotificationBean

WLDFSNMPNotificationBean

WLDFWatchJMXNotificationRuntimeMBean

WLDFWatchNotificationRuntimeMBean

Package: weblogic.diagnostics.watch
JMXWatchNotification

WatchNotification

Archive WLDFArchiveRuntimeMBean

WLDFDbstoreArchiveRuntimeMBean

WLDFFileArchiveRuntimeMBean

WLDFWlstoreArchiveRuntimeMBean

Accessor WLDFAccessRuntimeMBean

WLDFDataAccessRuntimeMBean

Table 14-1 Mapping WLDF Components to Beans and Packages

Component Beans / Packages

Programming Too ls

Configuring and Using the WebLogic Diagnostics Framework 14-5

Figure 14-1 WLDF Configuration MBeans, Runtime MBeans, and System Module Beans

Programming Tools
The WebLogic Diagnostic Framework enables you to perform the following tasks
programmatically:

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-6 Configuring and Using the WebLogic Diagnostics Framework

Create and modify diagnostic descriptor files to configure the WLDF Harvester,
Instrumentation, and Watch and Notification components at the server level.

Use JMX to access WLDF operations and attributes.

Use JMX to create custom MBeans that contain harvestable data. You can then configure
the Harvester to collect that data and configure a watches and notifications to monitor the
values.

Write Java programs that perform the following tasks:

– Capture notifications using JMX listeners

– Capture notifications using JMS

– Retrieve archived data through the Accessor. (The Accessor, as are the other
components, is surfaced as JMX; you can use WLST or straight JMX programming to
retrieve diagnostic data.)

Configuration and Runtime APIs
The configuration and runtime APIs configure and monitor WLDF. Both the configuration and
the runtime APIs are exposed as MBeans.

The configuration MBeans and system module Beans create and configure WLDF
resources, and determine their runtime behavior.

The runtime MBeans monitor the runtime state and the operations defined for the different
components.

You can use the APIs to configure, activate, and deactivate data collection; to configure watches,
notifications, alarms, and diagnostic image captures; and to access data.

Configuration APIs
The Configuration APIs define interfaces that are used to configure the following WLDF
components:

Data Collectors: You can use the configuration APIs to configure and control
Instrumentation, Harvesting, and Image Capture.

– For the Instrumentation component, you can enable, disable, create, and destroy
server-level instrumentation and instrumentation monitors.

Programming Too ls

Configuring and Using the WebLogic Diagnostics Framework 14-7

Note: The configuration APIs do not support configuration of application-level
instrumentation. However, configuration changes for application-level
instrumentation can be effected using Java Specification Request (JSR) 88 APIs.

– For the Harvester component, you can add and remove types to be harvested, specify
which attributes and instances of those types are to be harvested, and set the sample
period for the harvester.

– For the Diagnostic Image Capture component, you can set the name and path of the
directory in which the image capture is to be stored and the events image capture
interval, that is, the time interval during which recently archived events are captured in
the diagnostic image.

Watch and Notifications: You can use the configuration APIs to enable, disable, create, and
destroy watches and notifications. You can also use the configuration APIs to:

– Set the rule type, watch-rule expressions, and severity for watches

– Set alarm type and alarm reset period for notifications

– Configure a watch to trigger a diagnostic image capture

– Add and remove notifications from watches

 Archive: Set the archive type and the archive directory

Runtime APIs
The runtime APIs define interfaces that are used to monitor the runtime state of the WLDF
components. Instances of these APIs are instantiated on instances of individual managed servers.
These APIs are defined as runtime MBeans so JMX clients can easily access them.

The Runtime APIs encapsulate all other runtime interfaces for the individual WLDF components.
These APIs are included in the weblogic.management.runtime package.

You can use the runtime APIs to monitor the following WLDF components:

Data Collectors—You can use the runtime APIs to monitor the Instrumentation, Harvester,
and the Image Capture components.

– For the Instrumentation component, you can monitor joinpoint count statistics, the
number of classes inspected for instrumentation monitors, the number of classes
modified, and the time it takes to inspect a class for instrumentation monitors.

– For the Harvester component, you can query the set of harvestable types, harvestable
attributes, and harvestable instances (that is, the instances that are currently harvestable
for specific types). And, you can also query which types, attributes, and instances are

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-8 Configuring and Using the WebLogic Diagnostics Framework

currently configured for harvesting. The sampling interval and various runtime statistics
pertaining to the harvesting process are also available.

– For the Image Capture component, you can specify the destination and lockout period
for diagnostic images and initiate image captures.

Watches and Notifications: You can use the runtime APIs to monitor the Watches and
Notifications and Archive components.

– For the Watches and Notifications component, you can reset watch alarms and monitor
statistics about watch-rule evaluations and watches triggered, including information
about the analysis of alarms, events, log records, and harvested metrics.

Archive: You can monitor information about the archive, such as file name and archive
statistics.

Data Accessor—You can use the runtime APIs to retrieve the diagnostic data persisted in
the different archives. The runtime APIs also support data filtering by allowing you to
specify a query expression to search the data from the underlying archive. You can monitor
information about column type maps (a map relating column names to the corresponding
type names for the diagnostic data), statistics about data record counts and timestamps, and
cursors (cursors are used by clients to fetch data records).

WLDF Packages
The following two packages are provided:

weblogic.diagnostics.context contains:

– DiagnosticContextConstants, which defines the indices of dye flags supported by
the WebLogic diagnostics system.

– DiagnosticContextHelper, which provides applications limited access to the
diagnostic context.

weblogic.diagnostics.watch contains:

– JMXWatchNotification, an extended JMX notification object which includes
additional information about the notification. This information is contained in the
referenced WatchNotification object returned from method getExtendedInfo.

– WatchNotification, which defines a notification for a watch rule.

Programming WLDF : Examples

Configuring and Using the WebLogic Diagnostics Framework 14-9

Programming WLDF: Examples
The following examples use WLDF beans and packages to access and modify information on a
running server:

“Example: DiagnosticContextExample.java” on page 14-9

“Example: HarvesterMonitor.java” on page 14-10

“Example: JMXAccessorExample.java” on page 14-18

In addition, see the WLST and JMX examples in Appendix C, “WebLogic Scripting Tool
Examples.”

Example: DiagnosticContextExample.java
The following example uses the DiagnosticContextHelper class from the
weblogic.diagnostics.context package to get and set the value of the DYE_0 flag. (For
information on diagnostic contexts, see Chapter 11, “Configuring the DyeInjection Monitor to
Manage Diagnostic Contexts.”)

To compile and run the program:

1. Copy the DiagnosticContextExample.java example (Listing 14-2) to a directory and compile
it with:

javac -d . DiagnosticContextExample.java

This will create the ./weblogic/diagnostics/examples directory and populate it with
DiagnosticContextExample.class.

2. Run the program. The command syntax is:

java weblogic.diagnostics.examples.DiagnosticContextExample

Sample output is similar to:

java weblogic.diagnostics.examples.DiagnosticContextExample

ContextId=5b7898f93bf010ce:40305614:1048582efd4:-8000-0000000000000001
isDyedWith(DYE_0)=false
isDyedWith(DYE_0)=true

Listing 14-1 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-10 Configuring and Using the WebLogic Diagnostics Framework

import weblogic.diagnostics.context.DiagnosticContextHelper;

public class DiagnosticContextExample {

 public static void main(String args[]) throws Exception {

 System.out.println("ContextId=" +

 DiagnosticContextHelper.getContextId());

 System.out.println("isDyedWith(DYE_0)=" +

 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));

 DiagnosticContextHelper.setDye(DiagnosticContextHelper.DYE_0, true);

 System.out.println("isDyedWith(DYE_0)=" +

 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));

 }

}

Example: HarvesterMonitor.java
The HarvesterMonitor program uses the Harvester JMX notification to identify when a harvest
cycle has occurred. It then retrieves the new values using the Accessor. All access is performed
through JMX. This section includes a description of notification listeners followed by the
HarvesterMonitor.java code:

“Notification Listeners” on page 14-10

“HarvesterMonitor.java” on page 14-11

For information on the Harvester component, see Chapter 6, “Configuring the Harvester for
Metric Collection.”

Notification Listeners
Notification listeners provide an appropriate implementation for a particular transport medium.
For example, SMTP notification listeners provide the mechanism to establish an SMTP
connection with a mail server and trigger an e-mail with the notification instance that it receives.
JMX, SNMP, JMS and other types of listeners provide their respective implementations as well.

Note: You can develop plug-ins that propagate events generated by the WebLogic Diagnostic
Framework using transport mediums other than SMTP, JMX, SNMP, or JMS. One
approach is to use the JMX NotificationListener interface to implement an object,
and then propagate the notification according to the requirements of the selected
transport medium.

Programming WLDF : Examples

Configuring and Using the WebLogic Diagnostics Framework 14-11

Table 14-2 describes each notification listener type that is provided with WebLogic Server and
the relevant configuration settings for each type.

By default, all notifications fired from watch rules are stored in the server log file in addition to
being fired through the configured medium.

HarvesterMonitor.java
To compile and run the HarvesterMonitor program:

1. Copy the HarvesterMonitor.java example (Listing 14-2) to a directory and compile it with:

javac -d . HarvesterMonitor.java

This will create the ./weblogic/diagnostics/examples directory and populate it with
HarvesterMonitor.class and HarvesterMonitor$HarvestCycleHandler.class.

2. Start the monitor. The command syntax is:

java HarvesterMonitor <server> <port> <uname> <pw> [<types>]

You will need access to a WebLogic Server instance, and will need to know the server’s
name, port number, administrator’s login name, and the administrator’s password.

Table 14-2 Notification Listener Types

Notificatio
n Medium

Description Configuration Parameter Requirements

JMS Propagated via JMS Message
queues or topics.

Required: Destination JNDI name.

Optional: Connection factory JNDI name (use the default
JMS connection factory if not present).

JMX Propagated via standard JMX
notifications.

None required. Uses predefined singleton for posting the
event.

SMTP Propagated via regular e-mail. Required: MailSession JNDI name and
Destination e-mail.

Optional: Subject and body (if not specified, use default)

SNMP Propagated via SNMP traps
and the WebLogic Server
SNMP Agent.

None required, but the SNMPTrapDestination
MBean must be defined in the WebLogic SNMP agent.

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-12 Configuring and Using the WebLogic Diagnostics Framework

You can provide an optional list of harvested type names. If provided, the program will
display only the values for those types. However, for each selected type, the monitor
displays the complete set of collected values; there is no way to constrain the values
displayed for a selected type.

Only values that are explicitly configured for harvesting are displayed. Values collected
solely to support watch rules (implicit values) are not displayed.

The following command requires that ’.’ is in the CLASSPATH variable, and that you run
the command from the directory where you compiled the program. The command connects
to the myserver server, at port 7001, as user weblogic, with a password of weblogic:

java weblogic.diagnostics.examples.HarvesterMonitor myserver 7001
 weblogic weblogic

See Listing 14-3, “Sample Output from HarvesterMonitor,” on page 14-17 for an example
of output from the HarvesterMonitor.

Listing 14-2 Example: HarvesterMonitor.java

package weblogic.diagnostics.examples;

import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;

import javax.management.*;

import javax.management.remote.*;

import javax.naming.Context;

import java.util.*;

public class HarvesterMonitor {

 private static String accessorRuntimeMBeanName;

private static ObjectName accessorRuntimeMBeanObjectName;

 private static String harvRuntimeMBeanName;

private static ObjectName harvRuntimeMBeanObjectName;

 private static MBeanServerConnection rmbs;

 private static ObjectName getObjectName(String objectNameStr) {

try { return new ObjectName(getCanonicalName(objectNameStr)); }

catch (RuntimeException x) { throw x; }

catch (Exception x) { x.printStackTrace(); throw new

Programming WLDF : Examples

Configuring and Using the WebLogic Diagnostics Framework 14-13

RuntimeException(x); }

}

 private static String getCanonicalName(String objectNameStr) {

try { return new ObjectName(objectNameStr).getCanonicalName(); }

catch (RuntimeException x) { throw x; }

catch (Exception x) { x.printStackTrace(); throw new

RuntimeException(x); }

}

 private static String serverName;

private static int port;

private static String userName;

private static String password;

 private static ArrayList typesToMonitor = null;

 public static void main(String[] args) throws Exception {

 if (args.length < 4) {

System.out.println(

"Usage: java weblogic.diagnostics.harvester.HarvesterMonitor " +

"<serverName> <port> <userName> <password> [<types>]" +

weblogic.utils.PlatformConstants.EOL +

" where <types> (optional) is a comma-separated list " +

"of types to monitor.");

System.exit(1);

 }

 serverName = args[0];

port = Integer.parseInt(args[1]);

userName = args[2];

password = args[3];

 accessorRuntimeMBeanName = getCanonicalName(

"com.bea:ServerRuntime=" + serverName +

",Name=HarvestedDataArchive,Type=WLDFDataAccessRuntime" +

",WLDFAccessRuntime=Accessor,WLDFRuntime=WLDFRuntime");

accessorRuntimeMBeanObjectName =

getObjectName(accessorRuntimeMBeanName);

 harvRuntimeMBeanName = getCanonicalName(

 "com.bea:ServerRuntime=" + serverName +

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-14 Configuring and Using the WebLogic Diagnostics Framework

 ",Name=WLDFHarvesterRuntime,Type=WLDFHarvesterRuntime" +

 ",WLDFRuntime=WLDFRuntime");

 harvRuntimeMBeanObjectName = getObjectName(harvRuntimeMBeanName);

 if (args.length > 4) {

 String typesStr = args[4];

 typesToMonitor = new ArrayList();

 int index;

 while ((index = typesStr.indexOf(",")) > 0) {

 String typeName = typesStr.substring(0,index).trim();

 typesToMonitor.add(typeName);

 typesStr = typesStr.substring(index+1);

 }

 typesToMonitor.add(typesStr.trim());

 }

 rmbs = getRuntimeMBeanServerConnection();

 new HarvesterMonitor().new HarvestCycleHandler();

 while(true) {Thread.sleep(100000);}

 }

 static protected String JNDI = "/jndi/";

 static public MBeanServerConnection getRuntimeMBeanServerConnection()

 throws Exception {

 JMXServiceURL serviceURL;

 serviceURL =

 new JMXServiceURL("t3",

 "localhost",

 port,

 JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME);

 System.out.println("ServerName=" + serverName);

 System.out.println("URL=" + serviceURL);

 Hashtable h = new Hashtable();

 h.put(Context.SECURITY_PRINCIPAL, userName);

 h.put(Context.SECURITY_CREDENTIALS, password);

 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

 "weblogic.management.remote");

 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);

Programming WLDF : Examples

Configuring and Using the WebLogic Diagnostics Framework 14-15

 return connector.getMBeanServerConnection();

 }

 class HarvestCycleHandler implements NotificationListener {

 // used to track harvest cycles

 private int timestampIndex;

 private int domainIndex;

 private int serverIndex;

 private int typeIndex;

 private int instNameIndex;

 private int attrNameIndex;

 private int attrTypeIndex;

 private int attrValueIndex;

 long lastSampleTime = System.currentTimeMillis();

 HarvestCycleHandler() throws Exception{

 System.out.println("Harvester monitor started...");

 try {

 setUpRecordIndices();

 rmbs.addNotificationListener(harvRuntimeMBeanObjectName,

 this, null, null);

 }

 catch (javax.management.InstanceNotFoundException x) {

 System.out.println("Cannot find JMX data. " +

 "Is the server name correct?");

 System.exit(1);

 }

 }

 private void setUpRecordIndices() throws Exception {

 Map columnIndexMap = (Map)rmbs.getAttribute(

 accessorRuntimeMBeanObjectName, "ColumnIndexMap");

 timestampIndex =

((Integer)columnIndexMap.get("TIMESTAMP")).intValue();

 domainIndex =

((Integer)columnIndexMap.get("DOMAIN")).intValue();

 serverIndex =

((Integer)columnIndexMap.get("SERVER")).intValue();

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-16 Configuring and Using the WebLogic Diagnostics Framework

 typeIndex =

((Integer)columnIndexMap.get("TYPE")).intValue();

 instNameIndex =

((Integer)columnIndexMap.get("NAME")).intValue();

 attrNameIndex =

((Integer)columnIndexMap.get("ATTRNAME")).intValue();

 attrTypeIndex =

((Integer)columnIndexMap.get("ATTRTYPE")).intValue();

 attrValueIndex =

((Integer)columnIndexMap.get("ATTRVALUE")).intValue();

 }

 public synchronized void handleNotification(Notification notification,

 Object handback) {

System.out.println("\n--");

 long thisSampleTime = System.currentTimeMillis()+1;

 try {

 String lastTypeName = null;

 String lastInstName = null;

 String cursor = (String)rmbs.invoke(accessorRuntimeMBeanObjectName,

 "openCursor",

 new Object[]{new Long(lastSampleTime),

 new Long(thisSampleTime), null},

 new String[]{ "java.lang.Long",

 "java.lang.Long", "java.lang.String" });

 while (((Boolean)rmbs.invoke(accessorRuntimeMBeanObjectName,

 "hasMoreData",

 new Object[]{cursor},

 new String[]{"java.lang.String"})).booleanValue()) {

 Object[] os = (Object[])rmbs.invoke(accessorRuntimeMBeanObjectName,

 "fetch",

 new Object[]{cursor},

 new String[]{"java.lang.String"});

 for (int i = 0; i < os.length; i++) {

 Object[] values = (Object[])os[i];

 String typeName = (String)values[typeIndex];

 String instName = (String)values[instNameIndex];

 String attrName = (String)values[attrNameIndex];

Programming WLDF : Examples

Configuring and Using the WebLogic Diagnostics Framework 14-17

 if (!typeName.equals(lastTypeName)) {

 if (typesToMonitor != null &&

 !typesToMonitor.contains(typeName)) continue;

 System.out.println("\nType " + typeName);

 lastTypeName = typeName;

 }

 if (!instName.equals(lastInstName)) {

 System.out.println("\n Instance " + instName);

 lastInstName = instName;

 }

 Object attrValue = values[attrValueIndex];

 System.out.println(" - " + attrName + "=" + attrValue);

 }

 }

 lastSampleTime = thisSampleTime;

 }

 catch (Exception e) {e.printStackTrace();}

 }

 }

}

Listing 14-3 contains sample output from the HarvesterMonitor program:

Listing 14-3 Sample Output from HarvesterMonitor

ServerName=myserver

URL=service:jmx:t3://localhost:7001/jndi/weblogic.management.mbeanservers.

runtime

Harvester monitor started...

--

Type weblogic.management.runtime.WLDFHarvesterRuntimeMBean

Instance com.bea:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=WLD

FHarvesterRuntime,WLDFRuntime=WLDFRuntime

 - TotalSamplingTime=202048863

 - CurrentSnapshotElapsedTime=1839619

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-18 Configuring and Using the WebLogic Diagnostics Framework

Type weblogic.management.runtime.ServerRuntimeMBean

 Instance com.bea:Name=myserver,Type=ServerRuntime

 - RestartRequired=false

 - ListenPortEnabled=true

 - ActivationTime=1118319317071

 - ServerStartupTime=40671

 - ServerClasspath= [deleted long classpath listing]

 - CurrentMachine=

 - SocketsOpenedTotalCount=1

 - State=RUNNING

 - RestartsTotalCount=0

 - AdminServer=true

 - AdminServerListenPort=7001

 - ClusterMaster=false

 - StateVal=2

 - CurrentDirectory=C:\testdomain\.

 - AdminServerHost=10.40.8.123

 - OpenSocketsCurrentCount=1

 - ShuttingDown=false

 - SSLListenPortEnabled=false

 - AdministrationPortEnabled=false

 - AdminServerListenPortSecure=false

 - Registered=true

Example: JMXAccessorExample.java
The following example program uses JMX to print log entries to standard out. All access is
performed through JMX. (For information on the Accessor component, see Chapter 12,
“Accessing Diagnostic Data With the Data Accessor.”)

To compile and run the program:

1. Copy the JMXAccessorExample.java example (Listing 14-4) to a directory and compile it
with:

javac -d . JMXAccessorExample.java

This will create the ./weblogic/diagnostics/examples directory and populate it with
JMXAccessorExample.class.

Programming WLDF : Examples

Configuring and Using the WebLogic Diagnostics Framework 14-19

2. Start the program. The command syntax is:

java weblogic.diagnostics.example.JMXAccessor <logicalName> <query>

You will need access to a WebLogic Server instance, and will need to know the server’s
name, port number, administrator’s login name, and the administrator’s password.

The logicalName is the name of the log. Valid names are: HarvestedDataArchive,
EventsDataArchive, ServerLog, DomainLog, HTTPAccessLog,
ServletAccessorHelper.WEBAPP_LOG, RAUtil.CONNECTOR_LOG, JMSMessageLog,
and CUSTOM.

The query is constructed using the syntax described in Appendix A, “WLDF Query
Language.” For the JMXAccessorExample program, an empty query (an empty pair of
double quotation marks, "") returns all entries in the log.

The following command requires that ’.’ is in the CLASSPATH variable, and that you run
the command from the directory where you compiled the program. The program uses the
IIOP (Internet Inter-ORB Protocol) protocol to connect to port 7001, as user weblogic,
with a password of weblogic, and prints all entries in the ServerLog to standard out:

java weblogic.diagnostics.examples.JMXAccessorExample ServerLog ""

You can modify the example to use a username/password combination for your site.

Listing 14-4 JMXAccessorExample.java

package weblogic.diagnostics.examples;

import java.io.IOException;

import java.net.MalformedURLException;

import java.util.Hashtable;

import java.util.Iterator;

import javax.management.MBeanServerConnection;

import javax.management.MalformedObjectNameException;

import javax.management.ObjectName;

import javax.management.remote.JMXConnector;

import javax.management.remote.JMXConnectorFactory;

import javax.management.remote.JMXServiceURL;

import javax.naming.Context;

public class JMXAccessorExample {

 private static final String JNDI = "/jndi/";

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-20 Configuring and Using the WebLogic Diagnostics Framework

 public static void main(String[] args) {

 try {

 if (args.length != 2) {

 System.err.println("Incorrect invocation. Correct usage is:\n" +

 "java weblogic.diagnostics.examples.JMXAccessorExample " +

 "<logicalName> <query>");

 System.exit(1);

 }

 String logicalName = args[0];

 String query = args[1];

 MBeanServerConnection mbeanServerConnection =

 lookupMBeanServerConnection();

 ObjectName service = new

ObjectName(weblogic.management.mbeanservers.runtime.RuntimeServic

eMBean.OBJECT_NAME);

 ObjectName serverRuntime =

 (ObjectName) mbeanServerConnection.getAttribute(service,

 "ServerRuntime");

 ObjectName wldfRuntime =

 (ObjectName) mbeanServerConnection.getAttribute(serverRuntime,

 "WLDFRuntime");

 ObjectName wldfAccessRuntime =

 (ObjectName) mbeanServerConnection.getAttribute(wldfRuntime,

 "WLDFAccessRuntime");

 ObjectName wldfDataAccessRuntime =

 (ObjectName) mbeanServerConnection.invoke(wldfAccessRuntime,

 "lookupWLDFDataAccessRuntime", new Object[] {logicalName},

 new String[] {"java.lang.String"});

 String cursor =

 (String) mbeanServerConnection.invoke(wldfDataAccessRuntime,

 "openCursor", new Object[] {query},

 new String[] {"java.lang.String"});

 int fetchedCount = 0;

 do {

 Object[] rows =

 (Object[]) mbeanServerConnection.invoke(wldfDataAccessRuntime,

Programming WLDF : Examples

Configuring and Using the WebLogic Diagnostics Framework 14-21

 "fetch", new Object[] {cursor},

 new String[] {"java.lang.String"});

 fetchedCount = rows.length;

 for (int i=0; i<rows.length; i++) {

 StringBuffer sb = new StringBuffer();

 Object[] cols = (Object[]) rows[i];

 for (int j=0; j<cols.length; j++) {

 sb.append("Index " + j + "=" + cols[j].toString() + " ");

 }

 System.out.println("Found row = " + sb.toString());

 }

 } while (fetchedCount > 0);

 mbeanServerConnection.invoke(wldfDataAccessRuntime,

 "closeCursor", new Object[] {cursor},

 new String[] {"java.lang.String"});

 } catch(Throwable th) {

 th.printStackTrace();

 System.exit(1);

 }

 }

private static MBeanServerConnection lookupMBeanServerConnection ()

 throws Exception {

 // construct JMX service URL

 JMXServiceURL serviceURL;

 serviceURL = new JMXServiceURL("iiop", "localhost", 7001,

 JNDI + "weblogic.management.mbeanservers.runtime");

 // Specify the user, password, and WebLogic provider package

 Hashtable h = new Hashtable();

 h.put(Context.SECURITY_PRINCIPAL,"weblogic");

 h.put(Context.SECURITY_CREDENTIALS,"weblogic");

 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

 "weblogic.management.remote");

 // Get jmx connector

 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);

Conf igur ing and Us ing WLDF P rogrammat ica l l y

14-22 Configuring and Using the WebLogic Diagnostics Framework

 // return MBean server connection class

 return connector.getMBeanServerConnection();

 } // End - lookupMBeanServerConnection

}

Document Templates for FrameMaker 7, Version 3.0 A-1

A P P E N D I X A

WLDF Query Language

The WebLogic Diagnostic Framework (WLDF) includes a query language for constructing
watch rule expressions, Data Accessor query expressions, and log filter expressions. The syntax
is a small and simplified subset of SQL syntax.

The language is described in the following sections:

“Components of a Query Expression” on page A-1

“Supported Operators” on page A-2

“Operator Precedence” on page A-3

“Supported Numeric Constants and String Literals” on page A-3

“Creating Watch Rule Expressions” on page A-4

“Creating Data Accessor Queries” on page A-8

“Creating Log Filter Expressions” on page A-10

“Building Complex Expressions” on page A-11

Components of a Query Expression
A query expression may include any of the following:

Operators. (See “Supported Operators” on page A-2.)

Literals. (See “Supported Numeric Constants and String Literals” on page A-3.)

WLDF Query Language

A-2 Document Templates for FrameMaker 7, Version 3.0

Variables. The supported variables differ for each type of expression. (See “About
Variables in Expressions” on page A-4.)

The query language is case-sensitive.

Supported Operators
The query language supports the operators listed in Table A-1.

Table A-1 WLDF Query Language Operators

Operator Operator Type Supported Operand
Types

Definition

AND Logical binary Boolean Evaluates to true when both expressions are true.

OR Logical binary Boolean Evaluates to true when either expression is true.

NOT Logical unary Boolean Evaluates to true when the expression is not true.

& Bitwise binary Numeric,
Dye flag

Performs the bitwise AND function on each parallel
pair of bits in each operand. If both operand bits are
1, the & function sets the resulting bit to 1.
Otherwise, the resulting bit is set to 0.

Examples of both the & and the | operators are:
1010 & 0010 = 0010

1010 | 0001 = 1011

(1010 & (1100 | 1101)) = 1000

| Bitwise binary Numeric,
Dye flag

Performs the bitwise OR function on each parallel
pair of bits in each operand. If either operand bit is
1, the | function sets the resulting bit to 1.
Otherwise, the resulting bit is set to 0.

For examples, see the entry for the bitwise &
operator, above.

= Relational Numeric, String Equals

!= Relational Numeric Not equals

< Relational Numeric Less than

> Relational Numeric Greater than

<= Relational Numeric Less than or equals

Operato r P recedence

Document Templates for FrameMaker 7, Version 3.0 A-3

Operator Precedence
The following list shows the levels of precedence among operators, from the highest precedence
to the lowest. Operators listed on the same line have equivalent precedence:

1. ()

2. NOT

3. &, |

4. =, !=, <, >, <=, >=, LIKE, MATCHES,IN

5. AND

6. OR

Supported Numeric Constants and String Literals
Rules for numeric constants are as follows:

>= Relational Numeric Greater than or equals

LIKE Match String Evaluates to true when a character string matches a
specified pattern that can include wildcards.

LIKE supports two wildcard characters:

A percent sign (%) matches any string of zero or
more characters

A period (.) matches any single character

MATCHES Match String Evaluates to true when a target string matches
the regular expression patter in the operand
String.

IN Search String Evaluates to true when the value of a variable exists
in a predefined set, for example:
SUBSYSTEM IN ('A','B')

Table A-1 WLDF Query Language Operators

Operator Operator Type Supported Operand
Types

Definition

WLDF Query Language

A-4 Document Templates for FrameMaker 7, Version 3.0

Numeric literals can be integers or floating point numbers.

Numeric literals are specified the same as in Java. Some examples of numeric literals are 2,
2.0, 12.856f, 2.1934E-4, 123456L and 2.0D.

Rules for string literals are as follows:

String literals must be enclosed in single quotes.

A percent character (%) can be used as a wildcard inside string literals.

An underscore character (_) can be used as a wildcard to stand for any single character.

A backslash character (\) can be used to escape special characters, such as a quote (‘) or a
percent character (%).

For watch rule expressions, you can use comparison operators to specify threshold values
for String, Integer, Long, Double, Boolean literals.

The relational operators do a lexical comparison for Strings. For more information, see the
documentation for the java.lang.String.compareTo(String str) method.

About Variables in Expressions
Variables represent the dynamic portion of a query expression that is evaluated at runtime. You
must use variables that are appropriate for the type of expression you are constructing, as
documented in the following sections:

“Creating Watch Rule Expressions” on page A-4

“Creating Data Accessor Queries” on page A-8

“Creating Log Filter Expressions” on page A-10

Creating Watch Rule Expressions
You can create watches based on log events, instrumentation events, and harvested attributes. The
variables supported for creating the expressions are different for each type of watch, as described
in the following sections:

“Creating Log Event Watch Rule Expressions” on page A-5

“Creating Instrumentation Event Watch Rule Expressions” on page A-6

“Creating Harvester Watch Rule Expressions” on page A-7

Creat ing Watch Ru le Express ions

Document Templates for FrameMaker 7, Version 3.0 A-5

For complete documentation about configuring and using WLDF watches, see:

Chapter 7, “Configuring Watches and Notifications”

Chapter 8, “Configuring Watches”

Creating Log Event Watch Rule Expressions
A log event watch rule expression is based upon the attributes of a log message from the server
log.

Variable names for log message attributes are listed and explained in Table A-2:

An example log event watch rule expression is:

Table A-2 Variable Names for Log Event Watch Rule Expressions

Variable Description Data Type

CONTEXTID The request ID propagated with the request. String

DATE Date when the message was created. String

MACHINE Name of machine that generated the log message. String

MESSAGE Message content of the log message. String

MSGID ID of the log message (usually starts with "BEA="). String

RECORDID The number of the record in the log. Long

SERVER Name of server that generated the log message. String

SEVERITY Severity of log message. Values are ALERT, CRITICAL,
DEBUG, EMERGENCY, ERROR, INFO, NOTICE, OFF,
TRACE, and WARNING.

String

SUBSYTEM Name of subsystem emitting the log message. String

THREAD Name of thread that generated the log message. String

TIMESTAMP Timestamp when the log message was created. Long

TXID JTA transaction ID of thread that generated the log message. String

USERID ID of the user that generated the log message. String

WLDF Query Language

A-6 Document Templates for FrameMaker 7, Version 3.0

(SEVERITY = 'WARNING') AND (MSGID = 'BEA-320012')

Creating Instrumentation Event Watch Rule Expressions
An instrumentation event watch rule expression is based upon attributes of a data record created
by a diagnostic monitor action.

Variable names for instrumentation data record attributes are listed and explained in Table A-3:

Table A-3 Variable Names for Instrumentation Event Rule Expressions
Variable Description Data Type

ARGUMENTS Arguments passed to the method that was invoked. String

CLASSNAME Class name of joinpoint. String

CONTEXTID Diagnostic context ID of instrumentation event. String

CTXPAYLOAD The context payload associated with this request. String

DOMAIN Name of domain. String

DYES Dyes associated with this request. Long

FILENAME Source file name. String

LINENUM Line number in source file. Integer

METHODNAME Method name of joinpoint. String

METHODDSC Method arguments of joinpoint. String

MODULE Name of the diagnostic module. String

MONITOR Name of the monitor. String

PAYLOAD Payload of instrumentation event. String

RECORDID The number of the record in the log. Long

RETVAL Return value of joinpoint. String

SCOPE Name of instrumentation scope. String

SERVER Name of server that created the instrumentation event. String

Creat ing Watch Ru le Express ions

Document Templates for FrameMaker 7, Version 3.0 A-7

An example instrumentation event data rule expression is:

(USERID = 'weblogic')

Creating Harvester Watch Rule Expressions
A harvester watch rule expression is based upon one or more harvestable MBean attributes. The
expression can specify an MBean type, an instance, and/or an attribute.

The syntax for constructing a Harvester watch rule expression is as follows:

To specify an attribute of all instances of a type, use the following syntax:
${[type_name]//attribute_name}

To specify an attribute of an instance of a WebLogic type, use the following syntax:
${com.bea:instance_name//attribute_name}

To specify an attribute of an instance of a custom MBean type, use the following syntax:
${domain_name:instance_name//attribute_name}

Note: The domain_name is not required for a WebLogic Server domain name.

The expression must include the complete MBean object name, as shown in the following
example:

${com.bea:Name=HarvesterRuntime,Location=myserver,Type=HarvesterRuntime,

ServerRuntime=myserver//TotalSamplingCycles} > 10

TIMESTAMP Timestamp when the instrumentation event was
created.

Long

TXID JTA transaction ID of thread that created the
instrumentation event.

String

TYPE Type of monitor. String

USERID ID of the user that created the instrumentation event. String

Table A-3 Variable Names for Instrumentation Event Rule Expressions
Variable Description Data Type

WLDF Query Language

A-8 Document Templates for FrameMaker 7, Version 3.0

Creating Data Accessor Queries
Use the WLDF query language with the Data Accessor component to retrieve data from data
stores, including server logs, HTTP logs, and harvested metrics. The variables used to build a
Data Accessor query are based on the column names in the data store from which you want to
extract data.

A Data Accessor query contains the following:

The logical name of a data store, as described in “Data Store Logical Names” on page A-8.

Optionally, the name(s) of one or more columns from which to retrieve data, as described
in “Data Store Column Names” on page A-9.

When there is a match, all columns of matching rows are returned.

Data Store Logical Names
The logical name for a data store must be unique. It denotes a specific data store available on the
server. The logical name consists of a log type keyword followed by zero or more identifiers
separated by the forward-slash (/) delimiter. For example, the logical name of the server log data
store is simply ServerLog. However, other log types may require additional identifiers, as shown
in Table A-4.

Table A-4 Naming Conventions for Log Types

Log Type Optional
Identifiers

Example

ConnectorLog The JNDI name
of the
connection
factory.

ConnectorLog/eis/
900eisaBlackBoxXATxConnectorJNDINAME

where

eis/900eisaBlackBoxXATxConnectorJNDINAME

is the JNDI name of the connection factory specified in the
weblogic-ra.xml deployment descriptor.

DomainLog None DomainLog

EventsDataArchive None EventsDataArchive

HarvestedDataArchive None HarvestedDataArchive

Creat ing Data Accessor Que r i es

Document Templates for FrameMaker 7, Version 3.0 A-9

Data Store Column Names
The column names included in a query are resolved for each row of data. A row is added to the
result set only if it satisfies the query conditions for all specified columns. A query that omits
column names returns all the entries in the log.

All column names from all WebLogic Server log types are listed in Table A-5.

HTTPAccessLog Virtual host
name

HTTPAccessLog - For the default web server's access log.

HTTPAccessLog/MyVirtualHost - For the Virtual host
named MyVirtualHost deployed to the current server.

Note: In the case of HTTPAccessLogs with extended
format, the number of columns are user-defined.

JMSMessageLog The name of
the JMS
Server.

JMSMessageLog/MyJMSServer

ServerLog None ServerLog

WebAppLog Web server
name +
Root servlet
context name

WebAppLog/MyWebServer/MyRootServletContext

Table A-4 Naming Conventions for Log Types

Log Type Optional
Identifiers

Example

Table A-5 Column Names for Log Types

Log Type Column Names

ConnectorLog LINE, RECORDID

DomainLog CONTEXTID, DATE, MACHINE, MESSAGE, MSGID, RECORDID,
SERVER, SEVERITY, SUBSYSTEM, THREAD, TIMESTAMP,
TXID, USERID

EventsDataArchive ARGUMENTS, CLASSNAME, CONTEXTID, CTXPAYLOAD,
DOMAIN, DYES, FILENAME, LINENUM, METHODNAME,
METHODDSC, MODULE, MONITOR, PAYLOAD, RECORDID,
RETVAL, SCOPE, SERVER, TIMESTAMP, TXID, TYPE, USERID

WLDF Query Language

A-10 Document Templates for FrameMaker 7, Version 3.0

An example of a Data Accessor query is:

SUBSYSTEM = 'Deployer' AND MESSAGE LIKE '%Failed%'

In that example, the Accessor will retrieve all messages from the Deployer subsystem that include
the string “Failed.”

The following example shows an API method invocation. It includes a query for harvested
attributes of the JDBC connection pool named MyPool, within an interval between a
timeStampFrom (inclusive) and a timeStampTo (exclusive):

WLDFDataAccessRuntimeMBean.retrieveDataRecords(timeStampFrom,

timeStampTo, "TYPE='JDBCConnectionPoolRuntime' AND NAME='MyPool'")

For complete documentation about the WLDF Data Accessor, see Chapter 12, “Accessing
Diagnostic Data With the Data Accessor.”

Creating Log Filter Expressions
The query language can be used to filter what is written to the server log. The variables used to
construct a log filter expression represent the columns in the log:

CONTEXTID

HarvestedDataArchive ATTRNAME, ATTRTYPE, ATTRVALUE, DOMAIN, NAME,
RECORDID, SERVER, TIMESTAMP, TYPE

HTTPAccessLog AUTHUSER, BYTECOUNT, HOST, RECORDID, REMOTEUSER,
REQUEST, STATUS, TIMESTAMP

JDBCLog Same as DomainLog

JMSMessageLog CONTEXTID, DATE, DESTINATION, EVENT,
JMSCORRELATIONID, JMSMESSAGEID, MESSAGE,
MESSAGECONSUMER, NANOTIMESTAMP, RECORDID,
SELECTOR, TIMESTAMP, TXID, USERID

ServerLog Same as DomainLog

WebAppLog Same as DomainLog

Table A-5 Column Names for Log Types

Log Type Column Names

Bui ld ing Complex Express ions

Document Templates for FrameMaker 7, Version 3.0 A-11

DATE

MACHINE

MESSAGE

MSGID

RECORDID

SEVERITY

SUBSYSTEM

SERVER

THREAD

TIMESTAMP

TXID

USERID

Note: These are the same variables that you use to build a Data Accessor query for retrieving
historical diagnostic data from existing server logs.

For complete documentation about the WebLogic Server logging services, see “Filtering
WebLogic Server Log Messages” in Configuring Log Files and Filtering Log Messages.

Building Complex Expressions
You can build complex query expressions using sub-expressions containing variables, binary
comparisons, and other complex sub-expressions. There is no limit on levels of nesting. The
following rules apply:

Nest queries by surrounding sub-expressions within parentheses, for example:

(Severity = 'Warning') AND (Id = 'BEA-320012')

Enclose a variable name within ${} if it includes special characters, as in an MBean object
name. For example:

${mydomain:Name=myserver,
 Type=ServerRuntime//SocketsOpenedTotalCount} >= 1

Notice that the object name and the attribute name are separated by '//' in the watch
variable name.

WLDF Query Language

A-12 Document Templates for FrameMaker 7, Version 3.0

Configuring and Using the WebLogic Diagnostics Framework B-1

A P P E N D I X B

WLDF Instrumentation Library

The WebLogic Diagnostic Framework Instrumentation Library contains diagnostic monitors and
diagnostic actions, as discussed in the following sections:

“Diagnostic Monitor Library” on page B-1

“Diagnostic Action Library” on page B-13

For information about using items from the Instrumentation Library, see Chapter 10,
“Configuring Instrumentation.”

Diagnostic Monitor Library
Diagnostic monitors are broadly classified as server-scoped and application-scoped monitors.
The former can be used to instrument WebLogic Server classes. You use the latter to instrument
application classes. Except for the DyeInjection monitor, all monitors are delegating monitors,
that is, they do not have a built-in diagnostic action. Instead, they delegate to actions attached to
them to perform diagnostic activity.

All monitors are preconfigured with their respective pointcuts. However, the actual locations
affected by them may vary depending on the classes they instrument. For example, the
Servlet_Before_Service monitor adds diagnostic code at the entry of servlet or java server
page (JSP) service methods at different locations in different servlet implementations.

For any delegating monitor, only compatible actions may be attached. The compatibility is
determined by the nature of the monitor.

WLDF Ins t rumentat i on L ib ra ry

B-2 Configuring and Using the WebLogic Diagnostics Framework

The following table lists and describes the diagnostic monitors that can be used within server
scope, that is, in WebLogic Server classes. For the diagnostic actions that are compatible with
each monitor, see the Compatible Action Type column in the table.

Table B-1 Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

Connector_Before_Inbound Before Stateless At entry of methods handling inbound
connections.

Connector_After_Inbound Server Stateless At exit of methods handling inbound
connections.

Connector_Around_Inbound Around Around At entry and exit of methods handling
inbound connections.

Connector_Before_Outbound Before Stateless At entry of methods handling outbound
connections.

Connector_After_Outbound After Stateless At exit of methods handling outbound
connections.

Connector_Around_Outbound Around Around At entry and exit of methods handling
outbound connections.

Connector_Before_Tx Before Stateless Entry of transaction register, unregister,
start, rollback and commit methods.

Connector_After_Tx After Stateless At exit of transaction register, unregister,
start, rollback and commit methods.

Connector_Around_Tx Around Around At entry and exit of transaction register,
unregister, start, rollback and commit
methods.

Connector_Before_Work Before Stateless At entry of methods related to scheduling,
starting and executing connector work items.

Connector_After_Work After Stateless At exit of methods related to scheduling,
starting and executing connector work items.

Diagnost ic Moni to r L ib ra ry

Configuring and Using the WebLogic Diagnostics Framework B-3

Table B-2 lists the diagnostic monitors that can be used within application scopes, that is, in
deployed applications. For the diagnostic actions that are compatible with each monitor, see the
Compatible Action Type column in the table.

Connector_Around_Work Around Around At entry and exit of methods related to
scheduling, starting and executing connector
work items.

DyeInjection Before Built-in At points where requests enter the server.

JDBC_Before_Commit_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Commit_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Connection_Inter
nal

Before Stateless Before calls to methods:

Driver.connect
DataSource.getConnection

JDBC_After_Connection_Intern
al

Before Stateless JDBC subsystem internal code

JDBC_Before_Rollback_Interna
l

Before Stateless JDBC subsystem internal code

JDBC_After_Rollback_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Start_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Start_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Statement_Intern
al

Before Stateless JDBC subsystem internal code

JDBC_After_Statement_Interna
l

After Stateless JDBC subsystem internal code

Table B-1 Diagnostic Monitors for Use Within Server Scope (Continued)

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

WLDF Ins t rumentat i on L ib ra ry

B-4 Configuring and Using the WebLogic Diagnostics Framework

Table B-2 Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

EJB_After_EntityEjbBusinessM
ethods

After Stateless At exits of all EntityBean methods,
which are not standard ejb methods.

EJB_Around_EntityEjbBusiness
Methods

Around Around At entry and exits of all EntityBean
methods that are not standard ejb methods.

EJB_After_EntityEjbMethods After Stateless At exits of methods:

EnitityBean.setEntityContext
EnitityBean.unsetEntityContext
EnitityBean.ejbRemove
EnitityBean.ejbActivate
EnitityBean.ejbPassivate
EnitityBean.ejbLoad
EnitityBean.ejbStore

EJB_Around_EntityEjbMethods Around Around At exits of methods:

EnitityBean.setEntityContext
EnitityBean.unsetEntityContext
EnitityBean.ejbRemove
EnitityBean.ejbActivate
EnitityBean.ejbPassivate
EnitityBean.ejbLoad
EnitityBean.ejbStore

EJB_After_EntityEjbSemanticM
ethods

After Stateless At exits of methods:

EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejbHome*
EnitityBean.ejbSelect*
EnitityBean.ejbCreate*
EnitityBean.ejbPostCreate*

Diagnost ic Moni to r L ib ra ry

Configuring and Using the WebLogic Diagnostics Framework B-5

EJB_Around_EntityEjbSemantic
Methods

Around Around At entry and exits of methods:

EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejbHome*
EnitityBean.ejbSelect*
EnitityBean.ejbCreate*
EnitityBean.ejbPostCreate*

EJB_After_SessionEjbMethods After Stateless At exits of methods:

SessionBean.setSessionContext
SessionBean.ejbRemove
SessionBean.ejbActivate
SessionBean.ejbPassivate

EJB_Around_SessionEjbMethods Around Around At entry and exits of methods:

SessionBean.setSessionContext
SessionBean.ejbRemove
SessionBean.ejbActivate
SessionBean.ejbPassivate

EJB_After_SessionEjbBusiness
Methods

After Stateless At exits of all SessionBean methods,
which are not standard ejb methods.

EJB_Around_SessionEjbBusines
sMethods

Around Around At entry and exits of all SessionBean
methods, which are not standard ejb
methods.

EJB_After_SessionEjbSemantic
Methods

After Stateless At exits of methods:

SessionBean.ejbCreateSessionBe
an.ejbPostCreate

EJB_Around_SessionEjbSemanti
cMethods

Around Around At entry and exits of methods:
SessionBean.ejbCreate
SessionBean.ejbPostCreate

EJB_Before_EntityEjbBusiness
Methods

Before Stateless At entry of all EntityBean methods,
which are not standard ejb methods.

Table B-2 Diagnostic Monitors for Use Within Application Scopes (Continued)

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

WLDF Ins t rumentat i on L ib ra ry

B-6 Configuring and Using the WebLogic Diagnostics Framework

EJB_Before_EntityEjbMethods Before Stateless At entry of methods:

EnitityBean.setEntityContext
EnitityBean.unsetEntityContext
EnitityBean.ejbRemove
EnitityBean.ejbActivate
EnitityBean.ejbPassivate
EnitityBean.ejbLoad
EnitityBean.ejbStore

EJB_Before_EntityEjbSemantic
Methods

Before Stateless At entry of methods:

EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejbHome*
EnitityBean.ejbSelect*
EnitityBean.ejbCreate*
EnitityBean.ejbPostCreate*

EJB_Before_SessionEjbBusines
sMethods

Before Stateless At entry of all SessionBean methods,
which are not standard ejb methods.

EJB_Before_SessionEjbMethods Before Stateless At entry of methods:
SessionBean.setSessionContext
SessionBean.ejbRemove
SessionBean.ejbActivate
SessionBean.ejbPassivate

EJB_Before_SessionEjbSemanti
cMethods

Before Stateless At entry of methods:

SessionBean.ejbCreate
SessionBean.ejbPostCreate

Table B-2 Diagnostic Monitors for Use Within Application Scopes (Continued)

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

Diagnost ic Moni to r L ib ra ry

Configuring and Using the WebLogic Diagnostics Framework B-7

HttpSessionDebug Around Built-in getSession - Inspects returned HTTP
session

Before and after calls to methods:

getAttribute

setAttribute

removeAttribute

At inspection points, the (approximate)
session size is computed and stored as the
payload of generated event. The size is
computed by flattening the session to
byte-array. If an error is encountered while
flattening the session, a negative size is
reported.

JDBC_Before_CloseConnection Before Stateless Before calls to methods:

Connection.close

JDBC_After_CloseConnection After Stateless After calls to methods:

Connection.close

JDBC_Around_CloseConnection Around Around Before and after calls to methods:

Connection.close

JDBC_Before_CommitRollback Before Stateless Before calls to methods:
Connection.commit
Connection.rollback

JDBC_After_CommitRollback After Stateless After calls to methods:

Connection.commit
Connection.rollback

JDBC_Around_CommitRollback Around Around Before and after calls to methods:
Connection.commit
Connection.rollback

Table B-2 Diagnostic Monitors for Use Within Application Scopes (Continued)

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

WLDF Ins t rumentat i on L ib ra ry

B-8 Configuring and Using the WebLogic Diagnostics Framework

JDBC_Before_Execute Before Stateless Before calls to methods:

Statement.execute*
PreparedStatement.execute*

JDBC_After_Execute After Stateless After calls to methods:

Statement.execute*
PreparedStatement.execute*

JDBC_Around_Execute Around Around Before and after calls to methods:
Statement.execute*
PreparedStatement.execute*

JDBC_Before_GetConnection Before Stateless Before calls to methods:
Driver.connect
DataSource.getConnection

JDBC_After_GetConnection After Stateless After calls to methods:
Driver.connect
DataSource.getConnection

JDBC_Around_GetConnection Around Around Before and after calls to methods:

Driver.connect
DataSource.getConnection

JDBC_Before_Statement Before Stateless Before calls to methods:

Connection.prepareStatement
Connection.prepareCall
Statement.addBatch
RowSet.setCommand

JDBC_After_Statement After Stateless After calls to methods:
Connection.prepareStatement
Connection.prepareCall
Statement.addBatch
RowSet.setCommand

Table B-2 Diagnostic Monitors for Use Within Application Scopes (Continued)

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

Diagnost ic Moni to r L ib ra ry

Configuring and Using the WebLogic Diagnostics Framework B-9

JDBC_Around_Statement Around Around Before and after calls to methods:

Connection.prepareStatement
Connection.prepareCall
Statement.addBatch
RowSet.setCommand

JMS_Before_AsyncMessageRecei
ved

Before Stateless At entry of methods:
MessageListener.onMessage

JMS_After_AsyncMessageReceiv
ed

After Stateless At exits of methods:
MessageListener.onMessage

JMS_Around_AsyncMessageRecei
ved

Around Around At entry and exits of methods:
MessageListener.onMessage

JMS_Before_MessageSent Before Stateless Before call to methods:
QueSender send

JMS_After_MessageSent After Stateless After call to methods:
QueSender send

JMS_Around_MessageSent Around Around Before and after call to methods:
QueSender send

JMS_Before_SyncMessageReceiv
ed

Before Stateless Before calls to methods:

MessageConsumer.receive*

JMS_After_SyncMessageReceive
d

After Stateless After calls to methods:

MessageConsumer.receive*

JMS_Around_SyncMessageReceiv
ed

Around Around Before and after calls to methods:

MessageConsumer.receive*

JMS_Before_TopicPublished Before Stateless Before call to methods:

TopicPublisher.publish

Table B-2 Diagnostic Monitors for Use Within Application Scopes (Continued)

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

WLDF Ins t rumentat i on L ib ra ry

B-10 Configuring and Using the WebLogic Diagnostics Framework

JMS_After_TopicPublished After Stateless After call to methods:

TopicPublisher.publish

JMS_Around_TopicPublished Around Around Before and after call to methods:

TopicPublisher.publish

JNDI_Before_Lookup Before Stateless Before calls to javax.naming.Context
lookup methods
Context.lookup*

JNDI_After_Lookup After Stateless After calls to javax.naming.Context
lookup methods:

Context.lookup*

JNDI_Around_Lookup Around Around Before and after calls to
javax.naming.Context lookup
methods
Context.lookup*

JTA_Before_Commit Before Stateless At entry of methods:
UserTransaction.commit

JTA_After_Commit After Stateless
advice

At exits of methods:
UserTransaction.commit

JTA_Around_Commit Around Around At entry and exits of methods:

UserTransaction.commit

JTA_Before_Rollback Before Stateless At entry of methods:

UserTransaction.rollback

JTA_After_Rollback After Stateless
advice

At exits of methods:

UserTransaction.rollback

JTA_Around_Rollback Around Around At entry and exits of methods:

UserTransaction.rollback

Table B-2 Diagnostic Monitors for Use Within Application Scopes (Continued)

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

Diagnost ic Moni to r L ib ra ry

Configuring and Using the WebLogic Diagnostics Framework B-11

JTA_Before_Start Before Stateless At entry of methods:

UserTransaction.begin

JTA_After_Start After Stateless
advice

At exits of methods:

UserTransaction.begin

JTA_Around_Start Around Around At entry and exits of methods:

UserTransaction.begin

MDB_Before_MessageReceived Before Stateless At entry of methods:

MessageDrivenBean.onMessage

MDB_After_MessageReceived After Stateless At exits of methods:

MessageDrivenBean.onMessage

MDB_Around_MessageReceived Around Around At entry and exits of methods:

MessageDrivenBean.onMessage

MDB_Before_Remove Before Stateless At entry of methods:

MessageDrivenBean.ejbRemove

MDB_After_Remove After Stateless At exits of methods:

MessageDrivenBean.ejbRemove

MDB_Around_Remove Around Around At entry and exits of methods:

MessageDrivenBean.ejbRemove

MDB_Before_SetMessageDrivenC
ontext

Before Stateless At entry of methods:

MessageDrivenBean.setMessage
DrivenContext

MDB_After_SetMessageDrivenCo
ntext

After Stateless At exits of methods:

MessageDrivenBean.setMessageDr
ivenContext

Table B-2 Diagnostic Monitors for Use Within Application Scopes (Continued)

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

WLDF Ins t rumentat i on L ib ra ry

B-12 Configuring and Using the WebLogic Diagnostics Framework

MDB_Around_SetMessageDrivenC
ontext

Around Around At entry and exits of methods:

MessageDrivenBean.setMessageDr
ivenContext

Servlet_Before_Service Before Stateless At method entries of servlet/jsp methods:

HttpJspPage._jspService
Servlet.service
HttpServlet.doGet
HttpServlet.doPost
Filter.doFilter

Servlet_After_Service After Stateless At method exits of servlet/jsp methods:
HttpJspPage._jspService
Servlet.service
HttpServlet.doGet
HttpServlet.doPost
Filter.doFilter

Servlet_Around_Service Around Around At method entry and exits of servlet/jsp
methods:
HttpJspPage._jspService
Servlet.service
HttpServlet.doGet
HttpServlet.doPost
Filter.doFilter

Servlet_Before_Session Before Stateless Before calls to servlet methods:

HttpServletRequest.getSession
HttpSession.setAttribute/

putValue
HttpSession.getAttribute/

getValue
HttpSession.removeAttribute/

removeValue
HttpSession.invalidate

Table B-2 Diagnostic Monitors for Use Within Application Scopes (Continued)

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

Diagnost i c Act i on L ibra ry

Configuring and Using the WebLogic Diagnostics Framework B-13

Diagnostic Action Library
The Diagnostic Action Library includes the following actions:

TraceAction

Servlet_Around_Session Around Around Before and after calls to servlet methods:

HttpServletRequest.getSession
HttpSession.setAttribute/

putValue
HttpSession.getAttribute/

getValue
HttpSession.removeAttribute/

removeValue
HttpSession.invalidate

Servlet_After_Session After Stateless After calls to servlet methods:
HttpServletRequest.getSession
HttpSession.setAttribute/

putValue
HttpSession.getAttribute/

getValue
HttpSession.removeAttribute/

removeValue
HttpSession.invalidate

Servlet_Before_Tags Before Stateless Before calls to jsp methods:

Tag.doStartTag
Tag.doEndTag

Servlet_After_Tags After Stateless After calls to jsp methods:

Tag.doStartTag
Tag.doEndTag

Servlet_Around_Tags Around Around Before and after calls to jsp methods:

Tag.doStartTag
Tag.doEndTag

Table B-2 Diagnostic Monitors for Use Within Application Scopes (Continued)

Monitor Name Monitor
Type

Compatible
Action
Type

Pointcuts

WLDF Ins t rumentat i on L ib ra ry

B-14 Configuring and Using the WebLogic Diagnostics Framework

DisplayArgumentsAction

TraceElapsedTimeAction

StackDumpAction

ThreadDumpAction

These diagnostic actions can be used with the delegating monitors described in the previous
tables. They can also be used with custom monitors that you can define and use within
applications. Each diagnostic action can only be used with monitors with which they are
compatible, as indicated by the Compatible Monitor Type column. Some actions (for example,
TraceElapsedTimeAction) generate an event payload.

TraceAction
This action is a stateless action and is compatible with Before and After monitor types.

A TraceAction generates a trace event at the affected location in the program execution.The
following information is generated:

Timestamp

Context identifier from the diagnostic context which uniquely identifies the request

Transaction identifier, if available

User identity

Action type, that is, TraceAction

Domain

Server name

Instrumentation scope name (for example, application name)

Diagnostic monitor name

Location in code from where the action was called (class name, method name, etc.)

Payload carried by the diagnostic context, if any

DisplayArgumentsAction
This action is a stateless action and is compatible with Before and After monitor types.

Diagnost i c Act i on L ibra ry

Configuring and Using the WebLogic Diagnostics Framework B-15

A DisplayArgumentsAction generates an instrumentation event at the affected location in the
program execution to capture method arguments or return value.

When executed, this action causes an instrumentation event that is dispatched to the events
archive. When attached to before monitors, the instrumentation event captures input arguments
to the joinpoint (for example, method arguments). When attached to after monitors, the
instrumentation event captures the return value from the joinpoint. The event will carries the
following information:

Timestamp

Context identifier from the diagnostic context which uniquely identifies the request

Transaction identifier, if available

User identity

Action type, that is, DisplayArgumentsAction

Domain

Server name

Instrumentation scope name (for example, application name)

Diagnostic monitor name

Location in code from where the action was called (class name, method name, etc.)

Payload carried by the diagnostic context, if any

Input arguments, if any, when attached to before monitors

Return value, if any, when attached to after monitors

TraceElapsedTimeAction
This action is an Around action and is compatible with Around monitor types.

An TraceElapsedTimeAction generates two events: one before and one after the location in
the program execution.

When executed, this action captures the timestamps before and after the execution of an
associated joinpoint. It then computes the elapsed time by computing the difference. It generates
an instrumentation event which is dispatched to the events archive. The elapsed time is stored as
event payload. The event carries the following information:

WLDF Ins t rumentat i on L ib ra ry

B-16 Configuring and Using the WebLogic Diagnostics Framework

Timestamp

Context identifier from the diagnostic context which uniquely identifies the request

Transaction identifier, if available

User identity

Action type, that is, TraceElapsedTimeAction

Domain

Server name

Instrumentation scope name (for example, application name)

Diagnostic monitor name

Location in code from where the action was called (class name, method name, etc.)

Payload carried by the diagnostic context, if any

Elapsed time processing the joinpoint, as event payload, in nanoseconds

StackDumpAction
This action is a stateless action and is compatible with Before and After monitor types.

A StackDumpAction generates an instrumentation event at the affected location in the program
execution to capture stack dump.

When executed, this action generates an instrumentation event which is dispatched to the events
archive. It captures the stack trace as event payload. The event carries following information:

Timestamp

Context identifier from the diagnostic context which uniquely identifies the request

Transaction identifier, if available

User identity

Action type, that is, StackDumpAction

Domain

Server name

Diagnost i c Act i on L ibra ry

Configuring and Using the WebLogic Diagnostics Framework B-17

Instrumentation scope name (for example, application name)

Diagnostic monitor name

Location in code from where the action was called (class name, method name, etc.)

Payload carried by the diagnostic context, if any

Stack trace as event payload

ThreadDumpAction
This action is a stateless action and is compatible with Before and After monitor types.

A ThreadDumpAction generates an instrumentation event at the affected location in the program
execution to capture thread dump, if the underlying VM supports it. JDK 1.5 (BEA JRockit and
Sun) supports this action.

This action generates an instrumentation event which is dispatched to the events archive. This
action may be used only with the JRockit JVM. It is ignored when used with other JVMs. It
captures the thread dump as event payload. The event carries following information:

Timestamp

Context identifier from the diagnostic context which uniquely identifies the request

Transaction identifier, if available

User identity

Action type, that is, ThreadDumpAction

Domain

Server name

Instrumentation scope name (for example, application name)

Diagnostic monitor name

Location in code from where the action was called (class name, method name, etc.)

Payload carried by the diagnostic context, if any

Thread dump as event payload

WLDF Ins t rumentat i on L ib ra ry

B-18 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework C-1

A P P E N D I X C

WebLogic Scripting Tool Examples

The following examples use WLST and JMX to interact with WLDF components:

“Example: Dynamically Creating DyeInjection Monitors” on page C-1

“Example: Configuring a Watch and a JMX Notification” on page C-5

“Example: Writing a JMXWatchNotificationListener Class” on page C-8

“Example: Registering MBeans and Attributes For Harvesting” on page C-12

For information on running WebLogic Scripting Tool (weblogic.WLST) scripts, see "Running
Scripts" in Using the WebLogic Scripting Tool. For information on developing JMX applications,
see Developing Manageable Applications with JMX.

Example: Dynamically Creating DyeInjection Monitors
This demonstration script (see Listing C-1) shows how to use the weblogic.WLST tool to create
a DyeInjection Monitor dynamically. This script does the following:

Connects to a server (boots the server first if necessary).

Looks up or creates a WLDF System Resource.

Creates the DyeInjection monitor.

Sets the dye criteria.

Enables the monitor.

WebLogic Sc r ip t ing Too l Examples

C-2 Configuring and Using the WebLogic Diagnostics Framework

Saves and activates the configuration.

Enables the Diagnostic Context feature via the ServerDiagnosticConfigMBean.

This demonstration script only configures the dye monitor, which injects dye values into the
diagnostic context. To trigger events, you must implement downstream diagnostic monitors that
use dye filtering to trigger on the specified dye criteria. An example downstream monitor artifact
is below. This must be placed in a file named weblogic-diagnostics.xml and placed into the
META-INF directory of a application archive. It is also possible to create a monitor using a JSR-88
deployment plan. For more information on deploying applications, see Deploying Applications
to WebLogic Server.

Listing C-1 Example: Using WLST to Dynamically Create DyeInjection Monitors (demoDyeMonitorCreate.py)

Script name: demoDyeMonitorCreate.py

###

Demo script showing how to create a DyeInjectionMonitor dynamically

via WLST. This script will:

- Connect to a server, booting it first if necessary

- Look up or create a WLDF System Resource

- Create the DyeInjection Monitor (DIM)

- Set the dye criteria

- Enable the monitor

- Save and activate

- Enable the Diagnostic Context functionality via the

ServerDiagnosticConfig MBean

Note: This will only configure the dye monitor, which will inject dye

values into the Diagnostic Context. To trigger events requires the

existence of "downstream" monitors set to trigger on the specified

dye criteria.

#

An example downstream monitor artifact is below. This must be

placed in a file named "weblogic-diagnostics.xml" and placed

into the "META-INF" directory of a application archive. It is

also possible to create a monitor using a JSR 88 deployment

plan, see the related documentation for details.

<?xml version="1.0" encoding="UTF-8"?>

Example : Dynamica l l y Creat ing Dye In jec t i on Mon i to rs

Configuring and Using the WebLogic Diagnostics Framework C-3

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<instrumentation>

<enabled>true</enabled>

<!-- Servlet Session Monitors -->

<wldf-instrumentation-monitor>

<name>Servlet_Before_Session</name>

<enabled>true</enabled>

<dye-mask>USER1</dye-mask>

<dye-filtering-enabled>true</dye-filtering-enabled>

<action>TraceAction</action>

<action>StackDumpAction</action>

<action>DisplayArgumentsAction</action>

<action>ThreadDumpAction</action>

</wldf-instrumentation-monitor>

<wldf-instrumentation-monitor>

<name>Servlet_After_Session</name>

<enabled>true</enabled>

<dye-mask>USER2</dye-mask>

<dye-filtering-enabled>true</dye-filtering-enabled>

<action>TraceAction</action>

<action>StackDumpAction</action>

<action>DisplayArgumentsAction</action>

<action>ThreadDumpAction</action>

</wldf-instrumentation-monitor>

</instrumentation>

</wldf-resource>

##

myDomainDirectory="domain"

url="t3://localhost:7001"

user="weblogic"

password="weblogic"

myServerName="myserver"

myDomain="mydomain"

props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\

+myDomainDirectory

WebLogic Sc r ip t ing Too l Examples

C-4 Configuring and Using the WebLogic Diagnostics Framework

try:

 connect(user,password,url)

except:

 startServer(adminServerName=myServerName,domainName=myDomain,

 username=user,password=password,systemProperties=props,

 domainDir=myDomainDirectory,block="true")

 connect(user,password,url)

Start an edit session

edit()

startEdit()

cd ("/")

Look up or create the WLDF System resource.

wldfResourceName = "mywldf"

myWldfVar = cmo.lookupSystemResource(wldfResourceName)

if myWldfVar==None:

 print "Unable to find named resource,\

creating WLDF System Resource: " + wldfResourceName

 myWldfVar=cmo.createWLDFSystemResource(wldfResourceName)

Target the System Resource to the demo server.

wldfServer=cmo.lookupServer(serverName)

myWldfVar.addTarget(wldfServer)

create and set properties of the DyeInjection Monitor (DIM).

mywldfResource=myWldfVar.getWLDFResource()

mywldfInst=mywldfResource.getInstrumentation()

mywldfInst.setEnabled(1)

monitor=mywldfInst.createWLDFInstrumentationMonitor("DyeInjection")

monitor.setEnabled(1)

Need to include newlines when setting properties

on the DyeInjection monitor.

monitor.setProperties("\nUSER1=larry@celtics.com\

\nUSER2=brady@patriots.com\n")

monitor.setDyeFilteringEnabled(1)

Enable the diagnostic context functionality via the

ServerDiagnosticConfig.

Example : Conf igur ing a Watch and a JMX Not i f i cat i on

Configuring and Using the WebLogic Diagnostics Framework C-5

cd("/Servers/"+serverName+"/ServerDiagnosticConfig/"+serverName)

cmo.setDiagnosticContextEnabled(1)

save and disconnect

save()

activate()

disconnect()

exit()

Example: Configuring a Watch and a JMX Notification
This demonstration script (see Listing C-2) shows how to use the weblogic.WLST tool to
configure a watch and a JMX notification using the WLDF Watch and Notification component.
This script does the following:

Connects to a server and boots the server first if necessary.

Looks up/creates a WLDF system resource.

Creates a watch and watch rule on the ServerRuntimeMBean for the
OpenSocketsCurrentCount attribute.

Configures the watch to use a JMXNotification medium.

This script can be used in conjunction with the following files and scripts:

The JMXWatchNotificationListener.java class (see “Example: Writing a
JMXWatchNotificationListener Class” on page C-8).

The demoHarvester.py script, which registers the OpenSocketsCurrentCount attribute
with the harvester for collection (see “Example: Registering MBeans and Attributes For
Harvesting” on page C-12).

To see these files work together, perform the following steps:

1. To run the watch configuration script (demoWatch.py), type:

 java weblogic.WLST demoWatch.py

2. To compile the JMXWatchNotificationListener.java source, type:

javac JMXWatchNotificationListener.java

3. To run the JMXWatchNotificationListener.class file, type:

WebLogic Sc r ip t ing Too l Examples

C-6 Configuring and Using the WebLogic Diagnostics Framework

java JMXWatchNotificationListener

Note: Be sure the current directory is in your class path, so it will find the class file you just
created.

4. To run the demoHarvester.py script, type:

 java weblogic.WLST demoHarvester.py

When the demoHarvester.py script runs, it triggers the JMXNotification for the watch
configured in step 1.

Listing C-2 Example: Watch and JMXNotification (demoWatch.py)

Script name: demoWatch.py

##

Demo script showing how to configure a Watch and a JMXNotification

using the WLDF Watches and Notification framework.

The script will:

- Connect to a server, booting it first if necessary

- Look up or create a WLDF System Resource

- Create a watch and watch rule on the ServerRuntimeMBean for the

"OpenSocketsCurrentCount" attribute

- Configure the watch to use a JMXNotification medium

#

This script can be used in conjunction with

- the JMXWatchNotificationListener.java class

- the demoHarvester.py script, which registers the

"OpenSocketsCurrentCount" attribute with the harvester for collection.

To see these work together:

1. Run the watch configuration script

java weblogic.WLST demoWatch.py

2. Compile and run the JMXWatchNotificationListener.java source code

javac JMXWatchNotificationListener.java

java JMXWatchNotificationListener

3. Run the demoHarvester.py script

java weblogic.WLST demoHarvester.py

When the demoHarvester.py script runs, it triggers the

JMXNotification for the watch configured in step 1.

Example : Conf igur ing a Watch and a JMX Not i f i cat i on

Configuring and Using the WebLogic Diagnostics Framework C-7

###

myDomainDirectory="domain"

url="t3://localhost:7001"

user="weblogic"

myServerName="myserver"

myDomain="mydomain"

props="weblogic.GenerateDefaultConfig=true\

 weblogic.RootDirectory="+myDomainDirectory

try:

 connect(user,user,url)

except:

 startServer(adminServerName=myServerName,domainName=myDomain,

 username=user,password=user,systemProperties=props,

 domainDir=myDomainDirectory,block="true")

 connect(user,user,url)

edit()

startEdit()

Look up or create the WLDF System resource

wldfResourceName = "mywldf"

myWldfVar = cmo.lookupSystemResource(wldfResourceName)

if myWldfVar==None:

 print "Unable to find named resource"

print "creating WLDF System Resource: " + wldfResourceName

 myWldfVar=cmo.createWLDFSystemResource(wldfResourceName)

Target the System Resource to the demo server

wldfServer=cmo.lookupServer(myServerName)

myWldfVar.addTarget(wldfServer)

cd("/WLDFSystemResources/mywldf/WLDFResource/mywldf/WatchNotification/mywl

df")

watch=cmo.createWatch("mywatch")

watch.setEnabled(1)

jmxnot=cmo.createJMXNotification("myjmx")

watch.addNotification(jmxnot)

serverRuntime()

cd("/")

WebLogic Sc r ip t ing Too l Examples

C-8 Configuring and Using the WebLogic Diagnostics Framework

on=cmo.getObjectName().getCanonicalName()

watch.setRuleExpression("${"+on+"} > 1")

watch.getRuleExpression()

watch.setRuleExpression("${"+on+"//OpenSocketsCurrentCount} > 1")

watch.setAlarmResetPeriod(10000)

edit()

save()

activate()

disconnect()

exit()

Example: Writing a JMXWatchNotificationListener Class
Listing C-3 shows how to write a JMXWatchNotificationListener.

Listing C-3 Example: JMXWatchNotificationListener Class (JMXWatchNotificationListener.java)

import javax.management.*;

import weblogic.diagnostics.watch.*;

import weblogic.diagnostics.watch.JMXWatchNotification;

import javax.management.Notification;

import javax.management.remote.JMXServiceURL;

import javax.management.remote.JMXConnectorFactory;

import javax.management.remote.JMXConnector;

import javax.naming.Context;

import java.util.Hashtable;

import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;

public class JMXWatchNotificationListener implements NotificationListener,

Runnable {

 private MBeanServerConnection rmbs = null;

 private String notifName = "myjmx";

 private int notifCount = 0;

 private String serverName = "myserver";

Example : Wr i t ing a JMXWatchNot i f i ca t i onL is tener C lass

Configuring and Using the WebLogic Diagnostics Framework C-9

 public JMXWatchNotificationListener(String serverName) {

}

 public void register() throws Exception {

 rmbs = getRuntimeMBeanServerConnection();

 addNotificationHandler();

 }

 public void handleNotification(Notification notif, Object handback) {

 synchronized (this) {

 try {

 if (notif instanceof JMXWatchNotification) {

 WatchNotification wNotif =

((JMXWatchNotification)notif).getExtendedInfo();

 notifCount++;

System.out.println("===");

 System.out.println("Notification name: " +

 notifName + " called. Count= " + notifCount + ".");

 System.out.println("Watch severity: " +

wNotif.getWatchSeverityLevel());

 System.out.println("Watch time: " +

wNotif.getWatchTime());

 System.out.println("Watch ServerName: " +

wNotif.getWatchServerName());

 System.out.println("Watch RuleType: " +

wNotif.getWatchRuleType());

 System.out.println("Watch Rule: " +

wNotif.getWatchRule());

 System.out.println("Watch Name: " +

wNotif.getWatchName());

 System.out.println("Watch DomainName: " +

wNotif.getWatchDomainName());

 System.out.println("Watch AlarmType: " +

wNotif.getWatchAlarmType());

 System.out.println("Watch AlarmResetPeriod: " +

wNotif.getWatchAlarmResetPeriod());

System.out.println("===");

 }

 } catch (Throwable x) {

WebLogic Sc r ip t ing Too l Examples

C-10 Configuring and Using the WebLogic Diagnostics Framework

 System.out.println("Exception occurred processing JMX watch

notification: " + notifName +"\n" + x);

 x.printStackTrace();

 }

 }

 }

 private void addNotificationHandler() throws Exception {

/*

* The JMX Watch notification listener registers with a Runtime MBean

* that matches the name of the corresponding watch bean.

* Each watch has its own Runtime MBean instance.

*/

 ObjectName oname =

 new ObjectName(

 "com.bea:ServerRuntime=" + serverName + ",Name=" +

 JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +

 ",Type=WLDFWatchJMXNotificationRuntime," +

 "WLDFWatchNotificationRuntime=WatchNotification," +

 "WLDFRuntime=WLDFRuntime"

);

System.out.println("Adding notification handler for: " +

oname.getCanonicalName());

 rmbs.addNotificationListener(oname, this, null, null);

 }

 private void removeNotificationHandler(String name,

 NotificationListener list) throws Exception {

 ObjectName oname =

 new ObjectName(

 "com.bea:ServerRuntime=" + serverName + ",Name=" +

 JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +

 ",Type=WLDFWatchJMXNotificationRuntime," +

 "WLDFWatchNotificationRuntime=WatchNotification," +

 "WLDFRuntime=WLDFRuntime"

);

 System.out.println("Removing notification handler for: " +

oname.getCanonicalName());

Example : Wr i t ing a JMXWatchNot i f i ca t i onL is tener C lass

Configuring and Using the WebLogic Diagnostics Framework C-11

 rmbs.removeNotificationListener(oname, list);

 }

 public void run() {

 try {

 System.out.println("VM shutdown, unregistering notification

listener");

 removeNotificationHandler(notifName, this);

 } catch (Throwable t) {

 System.out.println("Caught exception in shutdown hook");

 t.printStackTrace();

 }

 }

 private String user = "weblogic";

 private String password = "weblogic";

 public MBeanServerConnection getRuntimeMBeanServerConnection()

 throws Exception {

 String JNDI = "/jndi/";

 JMXServiceURL serviceURL;

 serviceURL =

 new JMXServiceURL("t3", "localhost", 7001,

 JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME);

 System.out.println("URL=" + serviceURL);

 Hashtable h = new Hashtable();

 h.put(Context.SECURITY_PRINCIPAL,user);

 h.put(Context.SECURITY_CREDENTIALS,password);

 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

 "weblogic.management.remote");

 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);

 return connector.getMBeanServerConnection();

 }

 public static void main(String[] args) {

 try {

 String serverName = "myserver";

 if (args.length > 0)

 serverName = args[0];

WebLogic Sc r ip t ing Too l Examples

C-12 Configuring and Using the WebLogic Diagnostics Framework

 JMXWatchNotificationListener listener =

 new JMXWatchNotificationListener(serverName);

 System.out.println("Adding shutdown hook");

 Runtime.getRuntime().addShutdownHook(new Thread(listener));

 listener.register();

 // Sleep waiting for notifications

 Thread.sleep(Long.MAX_VALUE);

 } catch (Throwable e) {

 e.printStackTrace();

 } // end of try-catch

 } // end of main()

}

Example: Registering MBeans and Attributes For
Harvesting

This demonstration script shows how to use the weblogic.WLST tool to register MBeans and
attributes for collection by the WLDF Harvester. This script does the following:

Connects to a server and boots the server first if necessary.

Looks up or creates a WLDF system resource.

Sets the sampling frequency.

Adds a type for collection.

Adds an attribute of a specific instance for collection.

Saves and activates the configuration.

Displays a few cycles of the harvested data.

Listing C-4 Example: MBean Registration and Data Collection (demoHarvester.py)

Script name: demoHarvester.py

##

Demo script showing how register MBeans and attributes for collection

Example : Reg is te r ing MBeans and At t r ibutes Fo r Harvest ing

Configuring and Using the WebLogic Diagnostics Framework C-13

by the WLDF Harvester Service. This script will:

- Connect to a server, booting it first if necessary

- Look up or create a WLDF System Resource

- Set the sampling frequency

- Add a type for collection

- Add an attribute of a specific instance for collection

- Save and activate

###

from java.util import Date

from java.text import SimpleDateFormat

from java.lang import Long

import jarray

###

Helper functions for adding types/attributes to the harvester

configuration

###

def findHarvestedType(harvester, typeName):

htypes=harvester.getHarvestedTypes()

for ht in (htypes):

if ht.getName() == typeName:

return ht

return None

def addType(harvester, mbeanInstance):

typeName = "weblogic.management.runtime."\

+ mbeanInstance.getType() + "MBean"

ht=findHarvestedType(harvester, typeName)

if ht == None:

print "Adding " + typeName + " to harvestables collection for "\

+ harvester.getName()

ht=harvester.createHarvestedType(typeName)

 return ht;

def addAttributeToHarvestedType(harvestedType, targetAttribute):

 currentAttributes = PyList()

 currentAttributes.extend(harvestedType.getHarvestedAttributes());

 print "Current attributes: " + str(currentAttributes)

 try:

 currentAttributes.index(targetAttribute)

WebLogic Sc r ip t ing Too l Examples

C-14 Configuring and Using the WebLogic Diagnostics Framework

 print "Attribute is already in set"

 return

 except ValueError:

 print targetAttribute + " not in list, adding"

 currentAttributes.append(targetAttribute)

 newSet = jarray.array(currentAttributes, java.lang.String)

 print "New attributes for type "\

 + harvestedType.getName() + ": " + str(newSet)

 harvestedType.setHarvestedAttributes(newSet)

 return

def addTypeForInstance(harvester, mbeanInstance):

 typeName = "weblogic.management.runtime."\

 + mbeanInstance.getType() + "MBean"

 return addTypeByName(harvester, typeName, 1)

def addInstanceToHarvestedType(harvester, mbeanInstance):

 harvestedType = addTypeForInstance(harvester, mbeanInstance)

 currentInstances = PyList()

 currentInstances.extend(harvestedType.getHarvestedAttributes());

 on = mbeanInstance.getObjectName().getCanonicalName()

 print "Adding " + str(on) + " to set of harvested instances for type "\

 + harvestedType.getName()

 print "Current instances : " + str(currentInstances)

 for inst in currentInstances:

 if inst == on:

 print "Found " + on + " in existing set"

 return harvestedType

 # only get here if the target attribute is not in the set

 currentInstances.append(on)

 # convert the new list back to a Java String array

 newSet = jarray.array(currentInstances, java.lang.String)

 print "New instance set for type " + harvestedType.getName()\

+ ": " + str(newSet)

 harvestedType.setHarvestedInstances(newSet)

 return harvestedType

def addTypeByName(harvester, _typeName, knownType=0):

 ht=findHarvestedType(harvester, _typeName)

 if ht == None:

Example : Reg is te r ing MBeans and At t r ibutes Fo r Harvest ing

Configuring and Using the WebLogic Diagnostics Framework C-15

 print "Adding " + _typeName + " to harvestables collection for "\

 + harvester.getName()

 ht=harvester.createHarvestedType(_typeName)

 if knownType == 1:

 print "Setting known type attribute to true for " + _typeName

 ht.setKnownType(knownType)

 return ht;

def addAttributeForInstance(harvester, mbeanInstance, attributeName):

 typeName = mbeanInstance.getType() + "MBean"

 ht = addInstanceToHarvestedType(harvester, mbeanInstance)

 return addAttributeToHarvestedType(ht,attributeName)

###

Display the currently registered types for the specified harvester

###

def displayHarvestedTypes(harvester):

 harvestedTypes = harvester.getHarvestedTypes()

 print ""

 print "Harvested types:"

 print ""

 for ht in (harvestedTypes):

 print "Type: " + ht.getName()

 attributes = ht.getHarvestedAttributes()

 if attributes != None:

 print " Attributes: " + str(attributes)

 instances = ht.getHarvestedInstances()

 print " Instances: " + str(instances)

 print ""

 return

##

Main script flow -- create a WLDF System resource and add harvestables

##

myDomainDirectory="domain"

url="t3://localhost:7001"

user="weblogic"

myServerName="myserver"

myDomain="mydomain"

props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\

WebLogic Sc r ip t ing Too l Examples

C-16 Configuring and Using the WebLogic Diagnostics Framework

 +myDomainDirectory

try:

 connect(user,user,url)

except:

 startServer(adminServerName=myServerName,domainName=myDomain,

 username=user,password=user,systemProperties=props,

 domainDir=myDomainDirectory,block="true")

 connect(user,user,url)

start an edit session

edit()

startEdit()

cd("/")

Look up or create the WLDF System resource

wldfResourceName = "mywldf"

systemResource = cmo.lookupSystemResource(wldfResourceName)

if systemResource==None:

 print "Unable to find named resource,\

 creating WLDF System Resource: " + wldfResourceName

 systemResource=cmo.createWLDFSystemResource(wldfResourceName

Obtain the harvester bean instance for configuration

print "Getting WLDF Resource Bean from " + str(wldfResourceName)

wldfResource = systemResource.getWLDFResource()

print "Getting Harvester Configuration Bean from " + wldfResourceName

harvester = wldfResource.getHarvester()

print "Harvester: " + harvester.getName()

Target the WLDF System Resource to the demo server

wldfServer=cmo.lookupServer(myServerName)

systemResource.addTarget(wldfServer)

The harvester Jython wrapper maintains refs to

the SystemResource objects

harvester.setSamplePeriod(5000)

harvester.setEnabled(1)

add an instance-based RT MBean attribute for collection

serverRuntime()

Example : Reg is te r ing MBeans and At t r ibutes Fo r Harvest ing

Configuring and Using the WebLogic Diagnostics Framework C-17

cd("/")

addAttributeForInstance(harvester, cmo, "OpenSocketsCurrentCount")

have to return to the edit tree to activate

edit()

add a RT MBean type, all instances and attributes,

with KnownType = "true"

addTypeByName(harvester,

 "weblogic.management.runtime.WLDFInstrumentationRuntimeMBean", 1)

addTypeByName(harvester,

 "weblogic.management.runtime.WLDFWatchNotificationRuntimeMBean", 1)

addTypeByName(harvester,

 "weblogic.management.runtime.WLDFHarvesterRuntimeMBean", 1)

try:

 save()

 activate(block="true")

except:

 print "Error while trying to save and/or activate."

 dumpStack()

display the data

displayHarvestedTypes(harvester)

disconnect()

exit()

WebLogic Sc r ip t ing Too l Examples

C-18 Configuring and Using the WebLogic Diagnostics Framework

Configuring and Using the WebLogic Diagnostics Framework D-1

A P P E N D I X D

Terminology

Key terms that you will encounter throughout the diagnostic and monitoring documentation
include the following:

artifact
Any resulting physical entity, or data, generated and persisted to disk by the WebLogic
Diagnostic Framework that can be used later for diagnostic analysis. For example, the
diagnostic image file that is created when the server fails is an artifact. The diagnostic
image artifact is provided to support personnel for analysis to determine why the server
failed. The WebLogic Diagnostic Framework produces a number of different artifacts.

context creation
If diagnostic monitoring is enabled, a diagnostic context is created, initialized, and
populated by WebLogic Server when a request enters the system. Upon request entry,
WebLogic Server determines whether a diagnostic context is included in the request. If
so, the request is propagated with the provided context. If not, WebLogic Server creates a
new context with a specific name (weblogic.management.DiagnosticContext). The
contextual data for the diagnostic context is stored in the diagnostic context payload.
Thus, within the scope of a request execution, existence of the diagnostic context is
guaranteed.

context payload
The actual contextual data for the diagnostic context is stored in the Context Payload. See
also context creation, diagnostic context, request dyeing.

data stores
Data stores are a collection of data, or records, represented in a tabular format. Each record
in the table represents a datum. Columns in the table describe various characteristics of

Termino logy

D-2 Configuring and Using the WebLogic Diagnostics Framework

the datum. Different data stores may have different columns; however, most data stores
have some shared columns, such as the time when the data item was collected.
In WebLogic Server, information captured by WebLogic Diagnostic Framework is
segregated into logical data stores, separated by the types of diagnostic data. For example,
Server logs, HTTP logs, and harvested metrics are captured in separate data stores.

diagnostic action
Business logic or diagnostic code that is executed when a joinpoint defined by a pointcut
is reached. Diagnostic actions, which are associated with specific pointcuts, specify the
code to execute at a joinpoint. Put another way, a pointcut declares the location and a
diagnostic action declares what is to be done at the locations identified by the pointcut.
Diagnostic actions provide visibility into a running server and applications. Diagnostic
actions specify the diagnostic activity that is to take place at locations, or pointcuts,
defined by the monitor in which it is implemented. Without a defined action, a diagnostic
monitor is useless.
Depending on the functionality of a diagnostic action, it may need a certain environment
to do its job. Such an environment must be provided by the monitor to which the
diagnostic action is attached; therefore, diagnostic actions can be used only with
compatible monitors. Hence, diagnostic actions are classified by type so that their
compatibility with monitors can be determined.
To facilitate the implementation of useful diagnostic monitors, a library of suitable
diagnostic actions is provided with the WebLogic Server product.

diagnostic context
The WebLogic Diagnostic Framework adds contextual information to all requests when
they enter the system. You can use this contextual information, referred to as the
diagnostic context, to reconstruct transactional events, as well correlate events based on
the timing of the occurrence or logical relationships. Using diagnostic context you can
reconstruct or piece together a thread of execution from request to response.
Various diagnostic components, for example, the logging services and diagnostic
monitors, use the diagnostic context to tag generated data events. Using the tags, the
diagnostic data can be collated, filtered and correlated by the WebLogic Diagnostic
Framework and third-party tools.
The diagnostic context also makes it possible to generate diagnostic information only
when contextual information in the diagnostic context satisfies certain criteria. This
capability enables you to keep the volume of generated information to manageable levels
and keep the overhead of generating such information relatively low. See also context
creation, context payload, request dyeing.

Configuring and Using the WebLogic Diagnostics Framework D-3

diagnostic image
An artifact containing key state from an instance of a server that is meant to serve as a
server-level state dump for the purposes of diagnosing significant failures. This artifact
can be used to diagnose and analyze problems even after the server has cycled.

diagnostic module
A diagnostic module is the definition the configuration settings that are to applied to the
WebLogic Diagnostic Framework. The configuration settings determine what data is to
be collected and processed, how the data is to be analyzed and archived, what notifications
and alarms are to be fired, and the operating parameters of the Diagnostic Image Capture
component. Once a diagnostic module has been defined, or configured, it can be
distributed to a running server where the data is collected.

diagnostic monitor
A diagnostic monitor is a unit of diagnostic code that defines 1) the locations in a program
where the diagnostic code will be added and 2) the diagnostic actions that will be executed
at those locations.
WebLogic Server provides a library of useful diagnostic monitors. Users can integrate
these monitors into server and application classes. Once integrated, the monitors take
effect at server startup for server classes and application deployment and redeployment
for application classes.

diagnostic notification
The action that occurs as a result of the successful evaluation of a watch rule. The
WebLogic Diagnostic Framework supports these types of diagnostic notifications: Java
Management Extensions (JMX), Java Message Service (JMS), Simple Mail Transfer
Protocol (SMTP), Simple Network Management Protocol (SNMP), and WLDF Image
Capture. See also diagnostic image.

dye filtering
The process of looking at the dye mask and making the decision as to whether or not a
diagnostic monitor should execute an action so as to generate a data event. Dye filtering
is dependent upon dye masks. You must define dye masks in order for dye filtering to take
place. See also dye mask, request dyeing.

dye mask
The entity that contains a predefined set of conditions that are used by dye filtering in
diagnostic monitors to determine whether or not a data event should be generated. See also
dye filtering, request dyeing.

Termino logy

D-4 Configuring and Using the WebLogic Diagnostics Framework

harvestable entities
A harvestable entity is any entity that is available for data consumption via the Harvester.
Once an entity is identified as a harvestable resource, the Harvester can engage the entity
in the data collection process.
Harvestable entities provide access to the following information: harvestable attributes,
values of harvestable attributes, meta-data for harvestable attributes, and the name of the
harvestable entity. See also harvestable data, harvested data, Harvester’s configuration
data set, MBean type discovery.

harvestable data
Harvestable data (types, instances, attributes) is the set of data that potentially could be
harvested when and if a harvestable entity is configured for harvesting. Therefore, the set
of harvestable data exists independent of what data is configured for harvesting and of
what data samples are taken.
The WLDFHarvesterRuntimeMBean provides the set of harvestable data for users. For a
description of the information about harvestable data provided by this MBean, see the
description of the weblogic.management.runtime.WLDFHarvesterRuntimeMBean in
the WebLogic Server MBean Reference.
The WebLogic Diagnostic Framework only makes Runtime MBeans available as
harvestable. In order for an MBean to be harvestable, it must be registered in the local
WebLogic Server runtime MBean server. See also harvestable entities, harvested data,
Harvester’s configuration data set, MBean type discovery.

harvested data
A type, instance, or attribute is called harvested data if that data is currently being
harvested. To meet these criteria the data must: 1) be configured to be harvested, 2) if
applicable, it must have been discovered, and 3) it must not throw exceptions while being
harvested.
See also harvestable entities, harvestable data, Harvester’s configuration data set, MBean
type discovery.

Harvester’s configuration data set
The set of data to be harvested as defined by the Harvester’s configuration. The
configured data set can contain items that are not harvestable and items that are not
currently being harvested.
See also harvestable entities, harvestable data, harvested data, Harvester’s configuration
data set.

joinpoint
A well defined point in the program flow where diagnostic code can be added. The
Instrumentation component allows identification of such diagnostic joinpoints with an
expression in a generic manner.

Configuring and Using the WebLogic Diagnostics Framework D-5

pointcut
A well defined set of joinpoints, typically identified by some generic expression. Pointcuts
identify joinpoints, which are well-defined points in the flow of execution, such as a
method call or method execution site. The Instrumentation component provides a
mechanism to allow execution of specific diagnostic code at such pointcuts. The
Instrumentation component adds such diagnostic code to the server and application code.

MBean (Managed Bean)
A Java object that provides a management interface for an underlying resource. An
MBean is part of Java Management Extensions (JMX).
In the WebLogic Diagnostic Framework, MBean classes are used to configure the service
and to monitor its runtime state. MBeans are registered with the MBean server that runs
inside WebLogic Server. MBeans are implemented as standard MBeans which means that
each class implements its own MBean interface.

MBean type discovery
For WebLogic Server entities, the set of harvestable types is known at system startup, but
not the complete set of harvestable instances. For customer defined MBeans, however, the
set of types can grow dynamically, as more MBeans appear at runtime. The process of
detecting a new type based on the registration of a new MBean is called type discovery.
MBean type discovery is only applicable to customer MBeans.

MBean type meta-data
The set of harvestable attributes for a type (and its instances) is defined by the meta-data
for the type. Since the WebLogic Server model is MBeans, the meta-data is provided
through MBeanInfos. Since WebLogic type information is always available, the set of
harvestable attributes for WebLogic Server types (and existing and potential instances) is
always available as well. However, for customer types, knowledge of the set of
harvestable attributes is dependent on the existence of the type. And, the type does not
exist until at least one instance is created. So the list of harvestable attributes on a user
defined type is not known until at least one instance of the type is registered.
It is important to be aware of latencies in the availability of information for custom
MBeans. Due to latencies, the Administration Console cannot provide complete lists of
all harvestable data in its user selection lists for configuring the harvester. The set of
harvestable data for WebLogic Server entities is always complete, but the set of
harvestable data for customer entities (and even the set of entities itself) may not be
complete.

meta-data
Meta-data is information that describes the information the WebLogic Diagnostic
Framework collects. Because the service collects diagnostic information from different
sources, the consumers of this information need to know what diagnostic information is

Termino logy

D-6 Configuring and Using the WebLogic Diagnostics Framework

collected and available. To satisfy this need, the Data Accessor provides functionality to
programmatically obtain this meta-data. The meta-data made available by means of the
Data Accessor includes: 1) a list of supported data store types, for example, SERVER_LOG,
HTTP_LOG, HARVESTED_DATA, 2) a list of available data stores, and 3) the layout of each
data store, that is, information about columns in the data store.

metrics
Monitoring system operation and diagnosing problems depends on having data from
running systems. Metrics are measurements of system performance. From these
measurements, support personnel can determine whether the system is in good working
order or a problem is developing.
In general, metrics are exposed to the WebLogic Diagnostic Framework as attributes on
qualified MBeans. In WebLogic Server, metrics include performance measurements for
the operating system, the virtual machine, the system runtime, and applications running
on the server.

request dyeing
Requests can be dyed, or specially marked, to indicate that they are of special interest. For
example, in a running system, it may be desirable to send a specially marked test request,
which can be conditionally traced by the tracing monitors. This allows creation of highly
focused diagnostic information without slowing down other requests.
Requests are typically marked when they enter the system by setting flags in the
diagnostic context. The diagnostic context provides a number of flags, 64 in all, that can
be independently set or reset.
See also context creation, context payload, diagnostic context.

system image capture
Whenever a system fails, there is need to know its state when it failed. Therefore, a means
of capturing system state upon failure is critical to failure diagnosis. A system image
capture does just that. It creates, in essence, a diagnostic snapshot, or dump, from the
system for the express purpose of diagnosing significant failures.
In WebLogic Server, you can configure the WebLogic Diagnostic Framework provides
the First-Failure Notification feature to trigger system image captures automatically when
the server experiences an abnormal shutdown. You can also implement watches to
automatically trigger diagnostic image captures when significant failures occur and you
can manually initiate diagnostic image captures on demand.

watch
A watch encapsulates all of the information for a watch rule. This includes the watch rule
expression, the alarm settings for the watch, and the various notification handlers that will
be fired once a watch rule expression evaluates to true.

Configuring and Using the WebLogic Diagnostics Framework D-7

weaving time
The time it takes to inspect server and application classes and insert the diagnostic byte
code at well-defined locations, if necessary at class load time. The diagnostic byte code
enables the WebLogic Diagnostic Framework to take diagnostic actions. Weaving time
affects both the load time for server-level instrumented classes and application
deployment time for application-level classes.

Termino logy

D-8 Configuring and Using the WebLogic Diagnostics Framework

