

BEA WebLogic Server R
HTTP Publish-Subscribe Server

Version: 10.3 Tech Preview

Document Date: October 2007

Table of Contents
Overview... 3

What is a HTTP Publish-Subscribe Server... 3

Understanding HTTP Publish-Subscribe Servers... 4

Implementation ... 4

Controller Servlet.. 4

Channels.. 4

Hierarchical namespaces and channel globbing ... 5

Publish-Subscribe Server .. 5

Publish-Subscribe Server handler ... 5

Authenticating and authorizing clients ... 5

JavaScript library for the client... 6

No order of delivery or message delivery guarantee .. 6

Runtime MBean support ... 6

Logging and debugging .. 6

Bundling.. 7

Understanding clustering and persisting events support of HTTP Publish-Subscribe
Server .. 7

Overview... 7

JMS Publish-Subscribe handler .. 8

JMS location transparency.. 8

Scalability ... 8

Failover ... 8

Publishing messages directly to JMS.. 8

Examples... 8

Developing a basic push-based Web2.0 application... 8

Developing event based application with Server side APIs ... 11

Sample application of HTTP Publish-Subscribe server.. 11

Overview
This document contains the functional description of the Bayeux based HTTP Publish-
Subscribe Server and the usage of JMS destinations for Bayeux channels for handling
subscription and publishing of messages.

What is a HTTP Publish-Subscribe Server
A HTTP Publish-Subscribe server is a channels based publish/subscribe mechanism for
web based clients to send and receive asynchronous messages over HTTP. The HTTP
Publish-Subscribe Server is based on the Bayeux protocol proposed by the cometd
project.

The Bayeux protocol defines a contract between the client and the server for
communicating with asynchronous messages over HTTP. It allows clients to register,
subscribe to channels and publish messages to channel. A Bayeux channel is a named
destination and/or source of events. Events are published to channels and subscribers to
channels receive the published events.

The HTTP Publish-Subscribe Server can communicate with any clients which can
understand Bayeux protocol. It can be used by clients to subscribe to channels (a
representation in Bayeux for destinations) and publish messages to the channels. The
HTTP Publish-Subscribe Server is responsible for identifying clients, negotiating trust
and exchanging Bayeux messages, especially responsible for pushing event messages to
subscribed clients.

 Fig.1 HTTP Publish-Subscribe Server of WebLogic Server

 HTTP Publish-Subscribe Server 3

The HTTP Publish-Subscribe Server is used for building event driven or push-based
web2.0 rich internet applications that are collaborative and capable of supporting multiple
listening and publishing channels with thousands of users.

Understanding HTTP Publish-Subscribe Servers
The following sections briefly reviews the main concepts and features of a HTTP
Publish-Subscribe Server.

Implementation
The HTTP Publish-Subscribe Server is implemented atop WebLogic Server Future
Response API. The classical HTTP server model is a synchronous request/response
model. This model is not suitable for event based scenarios because of scalability issue.
With Future Response Servlet feature, servlet responses can be handled with a different
thread than the one that handles the incoming request. It allows HTTP Publish-Subscribe
Server can push event messages to subscribed clients asynchronously.

Controller Servlet
The Controller Servlet is the entry point for all messages from Bayuex clients and is
responsible for routing HTTP requests to HTTP Publish-Subscribe Server. It needs to be
configured in the web.xml descriptor with a url-pattern.

The Controller Servlet can be registered in web.xml as follows:

<servlet>

<servlet-name> PubSubServlet </servlet-name>

<servlet-class>

com.bea.httppubsub.servlet.ControllerServlet

</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name> PubSubServlet </servlet-name>

 <url-pattern> /cometd/* </url-pattern>

</servlet-mapping>

The Controller Servlet initialization code is responsible for initializing the HTTP Publish-
Subscribe Server. And once the servlet is destroyed, the HTTP Publish-Subscribe Server
is shutdown as well.

Channels
Channels are named destinations to which clients subscribe to and publish messages to.
Developers can define channels, mapping and security in HTTP Publish-Subscribe Server
deployment descriptor file weblogic-pubsub.xml. All channel management is done at a

 HTTP Publish-Subscribe Server 4

per web application level from the HTTP Publish-Subscribe Server. Developers can
find/create/destroy Channels by invoking methods on HTTP Publish-Subscribe Server.
The application designer decides whether clients can create and destroy channels or not.
Channel creation or destroy operations will have to be constrained if required so that only
some users (or a group of users) can perform these operations. Any attempt to do these
operations by an unauthorized client must generate an error message.

When a channel is deleted, all the clients subscribed to that channel and sub-channels of
that channel will be automatically unsubscribed. Unsubscribed clients will receive a
disconnect response message from the server when this happens so that clients can try to
reconnect and resubscribe to the interested channels.

Hierarchical namespaces and channel globbing
The channel namespace is hierarchical. A set of channels can be specified for
subscriptions by a channel gobbling pattern with wildcards like ‘*’ and ‘**’. The client
is auto registered with any channels that are created after the client subscribed with a
wildcard pattern.

Publish-Subscribe Server
One Publish-Subscribe Server is available per web application. The channel namespace is
per web application. In other words, there can be channels with same names configured
in two different apps. There is a PubSubServer object which is available per web
application so that application code can get a handle to the Publish-Subscribe Server and
perform operations on it.

Publish-Subscribe Server handler
The HTTP Publish-Subscribe Server provides an API for handling messages so that users
can write their own message handlers. Developers can configure the message handlers in
the configuration file.

HTTP Publish-Subscribe server has two internal handlers:

� Default Publish-Subscribe handler
The HTTP Publish-Subscribe server provides a default in-memory Publish-
Subscribe handler (which is not durable, not transactional and not clustered). This
handler handles the incoming message and only notify subscribers of delivered
messages.

� JMS Publish-Subscribe handler
The HTTP Publish-Subscribe Server provides a JMS Publish-Subscribe handler
which talks to a JMS provider (either external or in process) and delegates
message handling to the JMS provider. The provider details should be
configurable in the Publish-Subscribe Server’s configuration file.

Authenticating and authorizing clients
The latest Bayeux protocol defines that clients can be authenticated with:

• No authentication

 HTTP Publish-Subscribe Server 5

http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html

• Servlet container supported authentication (BASIC, FORM, CLIENT-CERT)

• Auth-tokens and credentials can be piggybacked on Bayeux messages within the ext
fields.

HTTP Publish-Subscribe server supports the standard authentication schemes available in
the Servlet container like BASIC, FORM, and CLIENT-CERT.

If an unauthenticated client tries to perform operations on a channel, a Bayeux response
is sent back with ‘authSuccessful’ set to false. Authentication of clients can also happen
outside the scope of the Bayeux protocol. If the request is accompanied by a Session
cookie, and if the user is authenticated in the Session, then the same user is assumed to be
authenticated. Safeguards like auth-cookie are still relevant in the Publish-Subscribe
Server.

Developers can specify one role has CREATE/DELETE/PUBLISH/SUBSCRIBE
permissions on channels. HTTP Publish-Subscribe server is responsible for authorizing
clients. If an unauthorized client tries to perform
CREATE/DELETE/PUBLISH/SUBSCRIBE actions on a channel, a Bayeux response is
sent back with ‘successful’ set to false and the ‘error’ field will indicate that the client has
no such permission.

Note: Authorizing feature is not included in this tech-preview release. It will be included in
Weblogic Server 10.3 release.

JavaScript library for the client
For Web 2.0 Ajax clients to communicate with the event server, the clients needs a
JavaScript library which supports the Bayeux protocol in JavaScript. The client side
Bayeux JavaScript framework may be interchangeable, so that in the future when there
are alternate implementations, customers can choose the client side library of their
choice.

No order of delivery or message delivery guarantee
In the web world, the clients are loosely connected and it is possible that a subscriber is
inactive or not connected when a message is published. Any messages that were
published when the client is unreachable will not be delivered to the client. When the
clients reconnect back, they will continue to receive newly published messages. Order of
delivery for messages is not guaranteed between the client and the Publish-Subscribe
Server. When using the JMS Publish-Subscribe handler order of delivery, recovery of
messages may be possible if the JMS is configured for it.

Runtime MBean support
Runtime MBean support feature is not included in this tech-preview release. It will be
included in Weblogic Server 10.3 release.

Logging and debugging
Logging and debugging features are not included in this Tech Preview release. It will be
included in Weblogic Server 10.3 release.

 HTTP Publish-Subscribe Server 6

Bundling
The Publish-Subscribe Server is available as a web app library. The webapp library has a
web.xml which specifies a default mapping so that referencing applications don’t need to
define the servlet mappings. However, applications can override the defaults provided in
the webapp library web.xml descriptor.

Note: For the Tech preview, the Publish-Subscribe server classes are made available in the
system classpath.

Understanding clustering and persisting events support
of HTTP Publish-Subscribe Server
This section briefly describes how HTTP Publish-Subscribe server supports clustering
and persisting events.

Overview
The HTTP Publish-Subscribe server leverages Java Message Service (JMS) to support
clustering and persisting event messages. In Weblogic Server cluster environment,
developers can define channel to JMS topic mappings in HTTP Publish-Subscribe server
deployment descriptor weblogic-pubsub.xml. All channel subscribed clients whichever
managed server they’re connected will receive events once event messages are published
to the channel. Developers can also decide whether to persist the event message or not
and specify the duration time of the persisted messages.

 Fig.2 HTTP Publish-Subscribe server interacting with JMS

 HTTP Publish-Subscribe Server 7

JMS Publish-Subscribe handler
The internal JMS Publish-Subscribe handler maintains a mapping from channels to JMS
topics. It’s responsible for dispatching event messages to correct JMS topics according to
the Channel to JMS topic mapping.

JMS location transparency
The HTTP Publish-Subscribe server is capable of connecting to a JMS Server
irrespective of its location. It takes advantage of performance features available when the
JMS Server is run in-process.

Scalability
There can be thousands of web clients and in an application like chat, it is possible to
have multiple channels and creating one topic per channel may not scale. The Publish-
Subscribe Server takes advantage of indexed subscribers available with WebLogic Server
JMS provider to reduce the number of topics which are created in JMS.

Failover
The HTTP Publish-Subscribe server leverages HTTP session state replication feature
available in WebLogic Server to support failover. The client state is stored in sessions
and is replicated in secondary server. If the primary server is unavailable, the requests
from the client are routed to the secondary server. The HTTP Publish-Subscribe server
can retrieve the client state from the replicated session and then reinstate the client on the
secondary HTTP Publish-Subscribe server. The client does not need to re-authenticate,
re-handshake, reconnect and re-subscribe.

Note: Failover guarantees are not provided in the tech preview.

Publishing messages directly to JMS
It is possible for the HTTP Publish-Subscribe Server to deliver messages to the
subscribed clients when event messages are published directly (not going through the
Publish-Subscribe Server) to JMS. Such ‘JMS Clients’ have complete access to the
topics.

Examples
The following sections provide examples of HTTP Publish-Subscribe application code:

Developing a basic push-based Web2.0 application
Users can develop a basic push-based Web2.0 application without any server side
programming. Developer can only focus on client side development. This document will
not demonstrate any client side programming since most of this part is tied to JavaScript
toolkits. A Bayeux protocol supported JavaScript toolkits must be have to develop the
application.

On server side, developers only need to define needed configuration such as channels,
securities, and transports in the deployment descriptor file weblogic-pubsub.xml.

 HTTP Publish-Subscribe Server 8

The following is a sample weblogic-pubsub.xml file:

<weblogic-pubsub>

 <!—configuration parameters for the Publish-Subscribe Server -->

 <transport>

 <type>long-pooling</type>

 <timeout-secs>30</timeout-secs>

 </transport>

 <!-- Define custom message handlers -->

 <message-handler>

 <handler-name>MyMessageHandler</handler-name>

 <handler-class>com.foo.bar.MyMessageHandler</handler-class>

 </message-handler>

 <message-handler>

 <handler-name>AnotherMessageHandler</handler-name>

 <handler-class>com.foo.bar.AnotherMessageHandler</handler-class>

 </message-handler>

 <!-- Map a message handler to a channel pattern -->

 <channel-mapping>

 <channel-pattern>/foo/bar/**</channel-pattern>

 <handler-name>MyMessageHandler</handler-name>

 <channel-mapping>

 <channel-mapping>

 <channel-pattern>/bar/*</channel-pattern>

 <handler-name>AnotherMessageHandler</handler-name>

 <channel-mapping>

 <!-- Map the jms handler to a channel pattern -->

 <channel-mapping>

 <channel-pattern>/baz/*<channel-pattern>

 <jms-handler>

 <jms-provider-url>t3://jms-server-location:7001</jms-provider-
url>

 <jms-topic-name>baz-topic</jms-topic-name>

 HTTP Publish-Subscribe Server 9

 </jms-handler>

 </channel-mapping>

 <!-- This channel pattern be handled by default handler -->

 <channel>

 <channel-pattern>/boo/*<channel-pattern>

 </channel>

 <!-- A channel constraint can be used to constrain channel management
to a

 -- particular user/group. Constraints can also be applied based

 -- on operations

 -->

 <channel-constraint>

 <channel-pattern>/foo/*</channel-pattern>

 <channel-pattern>/bar/*</channel-pattern>

 <operation-constraint>

 <type>CREATE</type>

 <type>DELETE</type>

 <type>SUBSCRIBE</type>

 <type>DELETE</type>

 </operation-constraint>

 <auth-constraint>ADMIN</auth-constraint>

 </channel-constraint>

 <channel-constraint>

 <channel-pattern>/foo/*</channel-pattern>

 <channel-pattern>/bar/*</channel-pattern>

 <operation-constraint> SUBSCRIBE, PUBLISH </operation-constraint>

 <auth-constraint>USERS</auth-constraint>

 </channel-constraint>

</pubsub-Server>

 HTTP Publish-Subscribe Server 10

 HTTP Publish-Subscribe Server 11

Developing event based application with Server side APIs
Users can develop an event based application with server side APIs, which its business
logics involve subscribing and publishing messages to Channels. Users can also
implement PubSubHandler interface to handle business logic with the inbound payload of
event messages and put the outbound payload into the event messages. The HTTP
Publish-Subscribe server is responsible for delivering the outbound messages to
subscribed clients.

The following illustrates the steps required to develop with server side APIs:
1. Find PubSubServer

import com.bea.httppubsub.Channel;

import com.bea.httppubsub.PubSubServer;

import com.bea.httppubsub.PubSubServerFactory;

import com.bea.httppubsub.internal.PubSubServerFactoryImpl;

PubSubServerFactory factory =
PubSubServerFactoryImpl.getInstance();

PubSubServer pubsubServer =
factory.lookupPubSubServer(“demo”);

2. Lookup channels from PubSubServer
Channel channel = pubsubServer.findOrCreateChannel(“/foo”);

// Subscribe /foo/** channels for the client

channel.subscribe(client,
Channel.SubscriptionType.ALL_SUBCHANNELS);

3. Publish event message
// The publish method is asynchronous and returns immediately.

channel.publish(client, message);

Sample application of HTTP Publish-Subscribe server
Weblogic Server 10.3 bundled a push-based example application ‘stock quotes’, which is
developed on dojo toolkits communicating with HTTP Publish-Subscribe server in Bayeux
protocol. This ‘stock quotes’ example demostrates a real world case. User can monitor the real
time stocks price on a web page without continuesly refreshing the page.

You can get the example at the directory
${WL_HOME}\samples\server\examples\src\examples\webapp\pubsub\stock.

	Overview
	What is a HTTP Publish-Subscribe Server
	Understanding HTTP Publish-Subscribe Servers
	Implementation
	Controller Servlet
	Channels
	Hierarchical namespaces and channel globbing
	Publish-Subscribe Server
	Publish-Subscribe Server handler
	Authenticating and authorizing clients
	JavaScript library for the client
	No order of delivery or message delivery guarantee
	Runtime MBean support
	Logging and debugging
	Bundling

	Understanding clustering and persisting events support of HTTP Publish-Subscribe Server
	Overview
	JMS Publish-Subscribe handler
	JMS location transparency
	Scalability
	Failover
	Publishing messages directly to JMS

	Examples
	Developing a basic push-based Web2.0 application
	Developing event based application with Server side APIs
	Sample application of HTTP Publish-Subscribe server

