

BEA WebLogic Server R
Performance Enhancements

Version: 10.3 Tech Preview

Document Date: October 2007

Table of Contents

Clustering.. 3

Asynchronous HTTP Session replication - Description ... 3

Definition of New Terms, Acronyms and Abbreviations... 3

Asynchronous HTTP Session replication - Usage.. 3

Asynchronous HTTP Session replication - Asynchronous Persistence to a database 4

Deployment... 5

Generic Overrides ... 5

Overview... 5

Directory structure .. 6

Application Usage... 6

On-Demand Deployment .. 7

Overview... 7

Configuration .. 7

Support for JDK1.6... 7

JSP Compiler .. 8

Compress Html Template ... 8

Overview... 8

Configuration .. 9

Using a Static String as a Template .. 9

Overview... 9

Configuration .. 10

Entity Bean Load with Relationship Caching... 10

Overview of Performance Enhancements
The following sections provide information on performance improvements for this
release:
• Clustering

• Deployment

• Support for JDK1.6

• JSP Compiler

• Entity Bean Load with Relationship Caching

Clustering
The following sections provide detailed information on cluster performance
improvements for this release:

Asynchronous HTTP Session replication - Description
This section describes the asynchronous HTTP Session replication (“AsyncRep”).

AsyncRep provides the option of choosing asynchronous session replication to the
secondary server. It also provides the capability of throttling the maximum size of the
queue that batches up session objects before the batched replication takes place.

Definition of New Terms, Acronyms and Abbreviations

Term Definition

 AsyncRep The asynchronous replication of http sessions in general

 WLS WebLogic Server

 MAN Cluster topology in a metropolitan area network

 WAN Cluster topology in a wide area network

 AsyncJDBC The asynchronous persistence of session objects to a database

 LAN Cluster topology in a local area network (default topology).

AsyncRep. is used to specify asynchronous replication of data between a primary server
and a secondary server. In addition, this option enables asynchronous replication of data
between a primary server and a remote secondary server located in a different cluster
according to a cluster topology of MAN.

Asynchronous HTTP Session replication - Usage
When you specify “async-replicated” or “async-replicated-if-clustered” as the
PersistentStoreType for your application, session replication occurs asynchronously.

 Performance Enhancements 3

You can configure this parameter in WeblogicApplicationBean and the
WeblogicWebAppBean or application.xml and weblogic.xml respectively. The
application level value takes precedence over all webapp values. This joins other
allowable values of replicated, jdbc, file, memory, replicated-if-clustered, and cookie.

You can also fine tune the batched replication by adjusting the SessionFlushThreshold on
the ClusterMBean. This parameter exists on the ClusterMBean and is used for the WAN
persistence in the same manner.

When a developer specifies a cluster type of either MAN, WAN, or LAN, session
replication behavior can change slightly. The table below describes where the
asynchronous replication occurs in each instance. Again, use the ClusterMBean
parameters mentioned above for tuning this functionality.

Topology Replication occurring

 LAN Replication to a secondary server within the same cluster occurs
asynchronously with the “async-replication” setting in the webapp.

 MAN Replication to a secondary server in a remote cluster. This happens
asynchronously with the “async-replication” setting in the webapp.

 WAN Replication to a secondary server within the cluster happens
asynchronously with the “async-replication” setting in the webapp.
Persistence to a database through a remote cluster happens
asynchronously regardless of whether “async-replication” or
“replication” is chosen.

When an administrator chooses to undeploy or redeploy the application, the sessions are
as they are in the current replication system. The session is unregistered and removed
from the queue of updates in the AsyncRep case. The session is also unregistered on the
secondary server.

In the case where the administrator has performed a graceful operation to move the
application to admin mode, the sessions are flushed causing replication to the secondary
server. This flush causes the sessions to be flushed even if the secondary server is down,
picking a new secondary if necessary.

Server shutdown or state change indicating failure triggers any batched up sessions to be
replicated in order to prevent as much session loss as possible.

Asynchronous HTTP Session replication - Asynchronous Persistence
to a database
When you specify “async-jdbc” as the PersistentStoreType for your application, session
persistence occurs asynchronously. This can be configured using the
WeblogicApplicationBean and the WeblogicWebAppBean or application.xml and
weblogic.xml respectively.

 Performance Enhancements 4

You can also fine tune the batched replication by adjusting the SessionFlushThreshold
and/or SessionFlushInterval on the ClusterMBean. These values already exist on the
ClusterMBean and are currently used for the WAN persistence in the same manner. The
SessionFlushThreshold determines how many session objects are put into the queue
before the entire queue is batched up and replicated to the secondary server. By default
this value is 100. The SessionFlushInterval is the defined time interval (in seconds)
between batched replications of the session queue. The default value is 180 seconds.

When an administrator chooses to undeploy or redeploy the application, the sessions are
handled as they are in the current replication system. The session is unregistered and
removed from the queue of updates in the AsyncJDBC case. The session is also removed
from the database. In the case where the administrator has performed a graceful
operation to move the application to admin mode, the sessions are flushed to the
database.

Deployment
The following sections contain the descriptions of the enhancements for deployment sub-
system:

• Generic Overrides

• On-Demand Deployment

Generic Overrides
The following sections provide information on how to override application specific
property files without having to crack the jar.

Overview
This feature allows you to place application specific files to be overridden into a new
optional subdirectory in the existing plan directory structure (named
“AppFileOverrides”). The presence or absence of this new optional subdirectory controls
whether file overrides are enabled for the deployment. If the new subdirectory is present,
an internal ClassFinder is added to the front of the application and module ClassLoaders
for the deployment. As a result, the file override hierarchy rules follow the existing
ClassLoader and resource loading rules/behaviours for applications.

Note: This mechanism is for overriding resources only and does not override classes.

These are application specific files and the contents are opaque to WLS, so the entire file
contents are overridden when an override file is supplied.

The files placed in the AppFileOverrides subdirectory are staged and distributed along
with the rest of the plan directory contents and are available on all of the targets.

Applications are then be able to load these files as resources using the current
ClassLoader (for example, using ClassLoader.getResourceAsStream). This either finds
the overridden files or the files packaged in the application depending on the
configuration and whether overridden files are supplied.

 Performance Enhancements 5

For web applications, application file overrides only apply to the classpath related
resources (which are in WEB-INF/classes and WEB-INF/lib) and do not apply to the
resource path for the webapp. So overrides are seen by web applications using
classloader.getResourceAsStream() to lookup resources, but overrides do not affect web
application calls to ServletContext.getResourceAsStream().

Directory structure
The contents of the AppFileOverrides subdirectory use the existing plan directory
structure and directory naming conventions that already exist for descriptor overrides. For
more info on the directory naming conventions, refer to the documentation at:
http://e-docs.bea.com/wls/docs100/deployment/deployunits.html#wp1045820

Enabling file overrides causes a directory ClassFinder to be added to the application and
module level ClassLoaders which point to the appropriate root directories within the
AppFileOverrides subdirectory (which is in the plan directory). The ClassFinder inserted
into the front of the application’s ClassLoader is given
AppDeploymentMBean.getLocalPlanDir + separator + ”AppFileOverrides”. The
ClassFinder inserted into the front of the module’s ClassLoaders is given the
AppDeploymentMBean.getLocalPlanDir + separator + “AppFileOverrides” + separator +
moduleURI.

For Example:
install-root/plan/AppFileOverrides/... (Directory put in front of main apps

classloader's classpath)

install-root/plan/AppFileOverrides/WebApp1.war/... (Directory put in front of WebApp1.war
classloader's classpath)

install-root/plan/AppFileOverrides/WebApp2.war/... (Directory put in front of WebApp2.war
classloader's classpath)

In order for this feature to be used, you must:
• Specify a plan for the deployment

• Specify a config-root within in the plan

• Provide a config-root/AppFileOverrides subdirectory.

Application Usage
It is important to note that the application controls the file contents and format and
controls if/when the contents of the files are accessed by the application code.

The expectation is that this feature is primarily used by application code which has
environment specific properties files, and that is loading those properties files as
resources using the application’s classloader.

For example, the application code may do the following:
Properties myAppProps = new Properties();

InputStream iostream =

Thread.currentThread().getContextClassLoader().getResourceAsStream("myCfg/myApp.propert
ies");

myAppProps.load(iostream);

 Performance Enhancements 6

http://e-docs.bea.com/wls/docs100/deployment/deployunits.html#wp1045820
http://e-docs.bea.com/wls/docs100/deployment/deployunits.html#wp1045820

On-Demand Deployment
The following sections provide information on how to reduce startup time and memory
usage by deploying internal apps on demand (first use).

Overview
There are many internal applications that are deployed during startup. These internal
applications consume memory and require CPU time during deployment. This
contributes to the WLS startup time and base memory footprint. Since not all of these
internal applications are needed by every customer, WLS can be configured to wait and
deploy these applications on the first access (on-demand) instead of always deploying
them during server startup. This reduces startup time and memory footprint.

There are two different types of internal applications:

• User interfaces: This group includes the console, UDDI explorer, and WLS test client.

• All others: This group includes UDDI, Web Service async response, deployment service
servlet, and management file distribution/Bootstrap servlet.

On-demand deployment works differently depending upon the type of internal
application. For applications with a user interface, WLS traps the first access to the
context path for the internal application (/console or /uddiexplorer), and displays a status
page indicating that on-demand deployment is in progress. This page refreshs every 2
seconds and when the application completes deployment, the user is redirected to the
internal application. This status page is displayed only on the first access of each
application. Subsequent invokes do not deploy the application and go directly to the user
interface for the internal application.

For applications without a user interface, WLS the first access to the context path for the
internal application and deploys the internal application. The caller (a server or
application) experiences a slight delay as the internal application is deployed. When the
application is completely deployed, the servlet request proceeds and is handled by the
internal application servlet.

Configuration
In a development domain, the default is set to use on-demand deployment for internal
applications. In a production-mode domain, the default is to deploy internal applications
as part of startup.

Use the InternalAppsDeployOnDemandEnabled attribute (added to the Domain MBean)
to set the behavior of your WLS instance. The default is true for development domains
and false in production-mode.

Support for JDK1.6
This release supports Sun JDK 1.6 which delivers superior performance compared to
previous versions and leverages JDK6 delivered features such as:

 Performance Enhancements 7

• Thread synchronization improvements thus delivering increased scaling in the
number of concurrent users supported and more reliable/stable code.

• Web container supports multiple scripting languages such as PHP, Groovy,
and Ruby: Refer to http://jcp.org/en/jsr/detail?id=223.

• Allows hotswap of classes (without bouncing the class loaders in development
mode) assuming that the class profile (new methods, method names) have not
changed (only code in the method changed). The benefit is that it reduces
redeployment effort (for iterative development, redeployment and restart).

• Clients for for this release require JDK5 or later for client JVMs and a server
JVM on JDK6. WLS apps built using the development tools (eclipse, intelliJ,
Workshop etc.) running in a separate JVM (such as JDK5) should work with
this release.

• Compiler support. In this release, the JSP compiler uses the Java Compiler
API instead of Javelin (the JSP compiler will no longer depend on Javelin
framework java class bytecode generation feature) to generate byte code. This
replacement does not expose any new public features and should not impact
JSP files in existing applications. The rationale was to deliver a highly
performing and reliable JSP compiler. See [JSP199], Java compiler API
http://jcp.org/en/jsr/detail?id=199.

JSP Compiler
This section contains the descriptions of the JSP performance enhancements for this
release:
• Compress Html Template

• Using a Static String as a Template

Compress Html Template
The following sections provide information on how the Html Template in JSP files can be
compressed to reduce the network traffic.

Overview
Whitespaces in template text of a JSP page are preserved by default. This preserves extraneous
whitespaces in the response output although they do not impact the presentation result in the
browser (except those in <pre> tag). In JSP 2.1 specification, a new JSP configuration element
trim-directive-whitespaces is introduced to remove template text which only contains
whitlespaces (see JSP.3.3.8 Removing whitespaces from template text). This feature is limited to
remove whitespaces that can only removed from template text which contains only whitespaces.
For the template text which is mixed, containing whitespaces and other characters, no
whitespaces are removed. In Weblogic Server 10.3, Weblogic JSP compiler introduces an useful
feature which can remove whitespaces in template text of a JSP page which does not impact the
presentation result. By removing these whitespaces, network traffic can be reduced and
performance inproved. For example:

<html>

 Performance Enhancements 8

http://jcp.org/en/jsr/detail?id=223
http://jcp.org/en/jsr/detail?id=199

 <body>

 <text>

 </text>

 </body>

</html>

Can be compressed as:
<html><body><text></text></body></html>

Configuration
The compress html template feature of JSP compiler can be turned on by deploy descriptor in the
weblogic.xml as shown below:

<weblogic-web-app>

 <jsp-descriptor>

 <compress-html-template>

true

</compress-html-template>

 </jsp-descriptor>

</weblogic-web-app>

Note:

1. Once the compress-html-template feature is turned on, the trim-directive-
whitespaces feature of JSP 2.1 is automatically turned on.

2. If there are any <pre> tags in the JSP page, do not use this feature. You may not get the
expected presentation result

Using a Static String as a Template
The following sections provide information on how to use a static string inside a JSP
expression as a template.

Overview
In the JSP specifiaction, an expression element in a JSP page is a scripting language expression
that is evaluted and the result is coerced to a String. The result is subsequently emitted into the
current out JspWiter object (see JSP 1.12.3 Expressions). Unfortunately this means that the JSP
compiler will not parse/analyze the expression and just output them as the parameter of
JspWriter.print() method. This limitation prevents JSP compiler from optimizing the expression.
In Weblogic Server 10.3, Weblogic JSP compiler introduces a new feature which can optimize
the static string inside JSP expression. For example:

<%= "<INPUT type=\"hidden\" name=\"name\" value=\"" +
userBean.getName() + "\">" %>

The old generated source code is like this:

 Performance Enhancements 9

out.print((new StringBuilder()).append("<INPUT
type=\"hidden\" name=\"itemId\"
value=\"").append(userBean.getName()).append("\">").toStrin
g());

It’s not efficient to use a StringBuilder to concatenate static string especially for the JSP page
which is under heavy load requests.

With the new expression optimization feature, the generated source code is like this:
{_writeText(response, out, _wl_block9, _wl_block9Bytes);}

out.print(userBean.getName());

{_writeText(response, out, _wl_block10, _wl_block10Bytes);}

The static String is outputted directly instead of concatenating with userBean.getName().

Note: If the Java expression contains brackets other than the ones for methods, or contains
operator having lower priority than ‘+’, then optimization on Java expression does not happen.

Configuration
This feature is enabled by default. If you encounter issues with this configuration, set system
property ‘weblogic.jsp.expression.optimizeDisable’ to ‘true’.

Entity Bean Load with Relationship Caching
This feature allows customers to enable relationship-caching in ejbLoad. In the preceding
release, for container-managed entity beans, relationship-caching is only supported in
query. But for the ejbLoad, there is no way to support relationship-caching. It only loads
the bean itself when DB is queried. The feature provides a way to get the benefit of
relation-ship caching. If enabling this feature, the ejbLoad uses the relationship-caching
defined in the primary finder.

The feature is only for container-managed entity bean. For many cases, when the owner
bean reloads, the related beans are also required to load in the same transaction. This
leads to multiple database queries. For these cases, enabling this feature loads the owner
bean and related beans in one database query. Since the database query is always the
bottle-neck in entity application, most situations will experience a performance
improvement. In some situations, where the feature is used excessively, performance may
degrade.

To enable this feature:
1. Applies only to a container-managed entity bean

2. Set finder-load-bean to true

3. The relationship-caching to be supported in the ejbLoad must be specified in the primary
finder.

For this feature, add a new element load-by-finder in weblogic-cmp-jar.xml descriptor.
The element is described as the following table:

Load-by-finder

 Performance Enhancements 10

 Performance Enhancements 11

Range of values true | false

Default value false

Parent elements weblogic-rdbms-bean

For example: A student and course have one-many relationship. To enable the feature for
this case:

• Specify the relationship for these beans in the ejb-jar.xml

• Specify a relationship-caching in weblogic-cmp-jar.xml

• Specify the relationship-caching in the method “findByPrimaryKey” in weblogic-cmp-
jar.xml

• Setting the element “load-by-finder” to true in weblogic-cmp-jar.xml.

The following is an example weblogic-cmp-jar.xml file:

<weblogic-rdbms-bean>
…
<!— specifying relationship-caching name for cmr field: courses -->
<relationship-caching>
 <caching-name>courseCache</caching-name>
 <caching-element>
 <cmr-field>courses</cmr-field>
 </caching-element>
</relationship-caching>

<!—specifying relationship-caching for primary finder -->
<weblogic-query>
 <query-method>
 <method-name>findByPrimaryKey</method-name>
 <method-params>
 <method-param>
 java.lang.String
 </method-param>
 </method-params>
 </query-method>
 <ejb-ql-query>
 <caching-name>courseCache</caching-name>
 </ejb-ql-query>
</weblogic-query>

<!—enabling the relaship-caching defined in primary finder in ejbLoad -->
<load-by-finder>true</load-by-finder>
…

</weblogic-rdbms-bean>

	Clustering
	Asynchronous HTTP Session replication - Description
	Definition of New Terms, Acronyms and Abbreviations
	Asynchronous HTTP Session replication - Usage
	Asynchronous HTTP Session replication - Asynchronous Persistence to a database

	Deployment
	Generic Overrides
	Overview
	Directory structure
	Application Usage

	On-Demand Deployment
	Overview
	Configuration

	Support for JDK1.6
	JSP Compiler
	Compress Html Template
	Overview
	Configuration

	Using a Static String as a Template
	Overview
	Configuration

	Entity Bean Load with Relationship Caching

