

BEA WebLogic Server R
Harvester and Watch Notification

Version: 10.3 Tech Preview

Document Date: October 2007

Table of Contents
Harvesting of nested complex attributes and collections.. 3

ObjectName Pattern Matching.. 4

Harvesting from the DomainRuntime MBeanServer ... 5

Complex Attribute Support... 6

Wildcard Support .. 6

Namespace Support .. 6

Harvester Enhancements
This section describes the enhancements made to the Harvester capabilities in WebLogic Server
10.3.

Harvesting of nested complex attributes and collections
Previous releases of WebLogic Server only allowed harvesting of attributes that are
simple data types. There was no mechanism to collect data from nested complex data
types or collections such as lists, arrays and maps. The WebLogic Diagnostics
Framework (WLDF) Harvester now supports collecting and archiving data from MBean
attributes that are nested bean structures or collections.

The drilldown syntax for nested attributes uses the dot notation to traverse complex
structures. For example, Foo.Bar.Yo would mean that we are interested in harvesting the
Yo attribute whose type is one of the simple types but is nested within the Bar bean which
in turn is a member of the Foo bean structure.

In WebLogic Server there are only few examples of Runtime MBeans having complex
attributes that are not MBeans but simple Java beans. If a user wanted to harvest the
nested State property of the HealthState attribute on the ServerRuntime MBean, the
diagnostics descriptor entry would be:
<harvester>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 <harvested-attribute>HealthState.State</harvested-attribute>
 </harvested-type>
</harvester>

To harvest the elements of an array or a list, the Haster supports a subscript notation
wherein a value is referred to by its index position in the aray or lst collection. For
example to refer to the first element in the array attribute URLPatterns in the
ServletRuntime MBean, refer to it as URLPatterns[0]. To refer to all the elements,
specify URLPatterns[*]. For example:
<harvester>
 <sample-period>10000</sample-period>\
 <harvested-type>
 <name>weblogic.management.runtime.ServletRuntimeMBean</name>
 <harvested-attribute>URLPatterns[0]</harvested-attribute>
 </harvested-type>
</harvester>

To harvest the elements of a map, each individual value is referred by the key enclosed in
parenthesis. Multiple keys can be specified as a comma delimited list, in which case
values corresponding to specified keys in the map will be harvested.

For example, the following code example harvests the value from the map with key Foo:
<harvested-attribute>MyMap(Foo)</harvested-attribute>

 Harvester and Watch Notification 3

For example, the following code example harvests the value from the map with keys Foo
and Bar:
<harvested-attribute>MyMap(Foo,Bar)</harvested-attribute>

The % character is used as a wild card within a key specification. For example, the
following code example harvests all values from the map if their keys start with Foo and
end with Bar:
<harvested-attribute>MyMap(Foo%Bar)</harvested-attribute>

To harvest all values from a map, use a * key. For example:
<harvested-attribute>MyMap(*)</harvested-attribute>

Array and map attributes can be nested within other attributes. For example, if the MBean
has a JavaBean attribute MyBean which has a nested attribute MyMap of type map, the
following code example harvests the value from the map whose key is Foo:
<harvested-attribute>MyBean.MyMap(Foo)</harvested-attribute>

ObjectName Pattern Matching
In prior releases of WebLogic Server, the Harvester instance specification had to be in
the form of an ObjectName. This requirement could be cumbersome and error prone
since the ObjectNames of WebLogic Server MBeans are quite verbose in nature.

To alleviate this user problem, the WLDF now allows:

• Specification of an instance as an ObjectName in a non-canonical form.

• Specification of an instance as an ObjectName query pattern.

• The use of zero or more wildcard (*) characters in any of the values in the
property list of an ObjectName, for example., Name=*.

• The use of zero or more wildcard (*) characters to replace any character sequence
in a canonical ObjectName string. In this case, the burden is on the user to
ensure that any properties of the ObjectName that are not wildcarded are in
canonical form.

This first code example indicates that all instances of the WorkManagerRuntime MBean
are to be harvested. Note that this is equivalent to not providing any instance-name
qualification at all to the <harvested-type> declaration.
<harvested-type>
 <name>weblogic.management.runtime.WorkManagerRuntimeMBean</name>
 <harvested-instance>*</harvested-instance>
 <known-type>true</known-type>
 <harvested-attribute>PendingRequests</harvested-attribute>

</harvested-type>

This second code example shows a JMX ObjectName pattern as the <harvested-
instance> value:
<harvested-type>
 <name>com.acme.WileECoyoteMBean</name>
 <harvested-instance>adomain:Type=MyType,*</harvested-instance>

 Harvester and Watch Notification 4

 <known-type>false</known-type>
 </harvested-type>

This third code example illustrates how some of the values in the ObjectName property
list are wildcarded:
<harvested-type>
 <name>com.acme.WileECoyoteMBean</name>
 <harvested-instance>adomain:Type=My*,Name=*,*</harvested-instance>
 <known-type>false</known-type>
 </harvested-type>

The final code example illustrates harvesting all harvestable attributes on all instaces of
com..acme.WileECoyoteMBean where the instance name contains the stringName=mybean:
<harvested-type>
 <name>com.acme.WileECoyoteMBean</name>
 <harvested-instance>*Name=mybean*</harvested-instance>
 <known-type>true</known-type>
 </harvested-type>

Object names of several WebLogic Server MBeans embed the name of the WebLogic
server instance where the MBeans reside. In earlier releases of WebLogic Server, it was
not possible to specify instances without knowing the server where the MBeans would be
created. The pattern based instance specification allows instances to be specified in server
independent manner.

Harvesting from the DomainRuntime MBeanServer
By default, the Harvester gathers data from MBeans in the Runtime MBeanServer
running in a WebLogic Server instance only. It was not possible earlier to harvest
MBeans resident in the DomainRuntime MBeanServer that is running only on the Admin
Server in the domain which represents a federated view of the domain configuration and
runtime data via JMX. To support this use case, the harvester configuration now allows
specification of a namespace attribute.

The Namespace attribute can have one of the two values:

• serverRuntime which is the default

• domainRuntime which harvests data from the DomainRuntime MBeanServer
running on the Admin Server.

Note that it is efficient to harvest data from the local Runtime MBeanServer. For the most
part, it is preferable to harvest data locally. However, there are a few MBeans types that
only live on the DomainRuntime MBeanServer on the Admin Server (for example, the
ServerLifecycleRuntimeMBean). These MBeans can now be harvested.

The following code example illustrates the configuration of the
ServerLifecyeleRuntimeMBean from the DomainRuntime MBeanServer.
<harvested-type>
 <name>weblogic.management.runtime.ServerLifeCycleRuntimeMBean</name>
 < namespace>domainRuntime</ namespace >
 <known-type>true</known-type>
 <harvested-attribute>StateVal</harvested-attribute>
</harvested-type>

 Harvester and Watch Notification 5

Note that the Namespace attribute is only applicable when the WLDF module is targeted
to the Admin Server.

Watch Enhancements
This section describes the enhancements made to the Watch capabilities in WebLogic Server
10.3.

Complex Attribute Support
Similar to the support for nested complex and collections in the Harvester configuration,
the Harvester Watch rules also fully supports the complex drill down syntax of the
Harvester. While configuring instance based rules, object names for instances can be
specified as patterns as described previously.

For example:
${ //[weblogic.management.runtime.ServerRuntimeMBean]//HealthState.State} > 0

The following code example illustrates how to drill down into the nested map structure:
<watch>
 <name>w1</name>
 <rule-expression>
${com.bea:Name=hello,Type=WLDFInstrumentationRuntime,*//MethodInvocationStatist
ics(*)(*)(*)(count)}>=1
 </rule-expression>
 <alarm-type>AutomaticReset</alarm-type>
 <notification>smtp1</notification>
</watch>

Wildcard Support
In prior releases of WebLogic Server, instance based Harvester Watch rules required a
full ObjectName to be specified. The wildcard support that is available for Harvester
configuration is also being supported for the Watch rule specifications that have an
instance name.

The following code example specifies that the OpenSocketsCurrentCount attribute for
all instances of the ServerRuntime MBean that begin with the name managed should be
used:
${com.bea:*Name=managed*Type=ServerRuntime*//OpenSocketsCurrentCount}

Alternately, the JMX ObjectName query patterns can be used:
${mydomain:Key1=MyMBean,*//simpleAttribute}

Note that the code example uses the ObjectName pattern syntax supported by JDK 1.5.

Namespace Support
With the integration of the DomainRuntime MBeanServer with the Harvester, it is now
possible to reference such metrics from a Harvester WatchRule. In order to do so, the
variable syntax for a Harvester WatchRule now allows the namespace specification,
where the metric is registered.

 Harvester and Watch Notification 6

 Harvester and Watch Notification 7

The Harvester WatchRule variable syntax for both instance-based and type-based
variables is as follows:

• Instance-based variable syntax:
${<namespace>//<object-name>//<attribute-name>}

• Type-based variable syntax:
${<namespace>//[<type-name>]//<attribute-name>}

where <namespace> is one of the following values:
• serverRuntime

• domainRuntime
In each case, the <namespace> specification is optional. If no namespace is specified, the
default value will be serverRuntime for backward compatibility.

	Harvester Enhancements
	Harvesting of nested complex attributes and collections
	ObjectName Pattern Matching
	Harvesting from the DomainRuntime MBeanServer

	Watch Enhancements
	Complex Attribute Support
	Wildcard Support
	Namespace Support

