
WebLogic Server
WebLogic Tuxedo Connector

B E A W e b L o g i c T u x e d o C o n n e c t o r R e l e a s e 1 . 0
D o c u m e n t D a t e : J u n e 2 9 , 2 0 0 1

BEA

ATMI Programmer’s Guide

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

WebLogic Tuxedo Connector ATMI Programmer’s Guide

Part Number Document Date Software Version

N/A June 29, 2001 BEA WebLogic Tuxedo Connector 1.0

Contents

About This Document
Audience..v

e-docs Web Site ... vi

How to Print the Document... vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions .. vii

1. Introduction to JATMI Programming
Developing WebLogic Tuxedo Connector Applications1–1

Developing WebLogic Tuxedo Connector Clients1–2

Developing WebLogic Tuxedo Connector Servers1–2

WebLogic Tuxedo Connector JATMI Primitives ...1–2

WebLogic Tuxedo Connector Typed Buffers ...1–3

2. Developing WebLogic Tuxedo Connector Client Applications
Joining and Leaving Applications ...2–1

Joining an Application ...2–2

Leaving an Application ..2–2

Basic Client Operation ..2–2

Get a Tuxedo Object ..2–3

Perform Message Buffering ...2–3

Send and Receive Messages...2–4

Closing a Connection ...2–4

Example Client Application ..2–5
WebLogic Tuxedo Connector ATMI Programmer’s Guide iii

3. Developing WebLogic Tuxedo Connector Service Applications
Basic Service Application Operation ... 3–1

Receive Client Messages... 3–2

Buffer Messages .. 3–2

Perform the Requested Service ... 3–3

Return Client Messages... 3–3

Example Service Application ... 3–3

4. WebLogic Tuxedo Connector Transactions
Global Transactions .. 4–1

JTA Transaction API .. 4–2

Types of JTA Interfaces .. 4–2

Transaction ... 4–2

TransactionManager... 4–2

UserTransaction ... 4–3

JTA Transaction Primitives ... 4–3

Defining A Transaction .. 4–3

Starting a Transaction.. 4–4

Using TPNOTRAN .. 4–4

Terminating a Transaction... 4–4

WebLogic Tuxedo Connector Transaction Rules... 4–5

Example Transaction Code... 4–6

5. Application Error Management
Testing for Application Errors.. 5–1

Exception Classes .. 5–1

Fatal Transaction Errors .. 5–2

WebLogic Tuxedo Connector Time-Out Conditions 5–2

Blocking vs. Transaction Time-out ... 5–3

Effect on commit() .. 5–3

Effect of TPNOTRAN... 5–4

Application Event Log.. 5–4

How to Create an Event log... 5–4
iv WebLogic Tuxedo Connector ATMI Programmer’s Guide

About This Document

This document introduces the BEA WebLogic Tuxedo Connector application
development environment. It describes how to establish a development environment
and how to package applications for deployment.

The document is organized as follows:

� Chapter 1, “Introduction to JATMI Programming,” provides information about
the development environment you will be using to write code for applications
that interoperate between WebLogic Server and Tuxedo.

� Chapter 2, “Developing WebLogic Tuxedo Connector Client Applications,”
provides information on how to create client applications.

� Chapter 3, “Developing WebLogic Tuxedo Connector Service Applications,”
provides information on how to create service applications.

� Chapter 4, “WebLogic Tuxedo Connector Transactions,” provides information
on global transactions and how to define and manage them in your applications.

� Chapter 5, “Application Error Management,” provide mechanisms to manage
and interpret error conditions.

Audience

This document is written for system administrators and application developers who are
interested in building distributed Java applications that interoperate between
WebLogic Server and Tuxedo environments. It is assumed that readers are familiar
with the WebLogic Server, Tuxedo, XML and Java programming.
WebLogic Tuxedo Connector ATMI Programmer’s Guide v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server and
Tuxedo.

For more information about Java applications, refer to the Sun Microsystems, Inc. Java
site at http://java.sun.com/.
vi WebLogic Tuxedo Connector ATMI Programmer’s Guide

http://www.adobe.com

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
WebLogic Tuxedo Connector ATMI Programmer’s Guide vii

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

Convention Usage
viii WebLogic Tuxedo Connector ATMI Programmer’s Guide

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
WebLogic Tuxedo Connector ATMI Programmer’s Guide ix

x WebLogic Tuxedo Connector ATMI Programmer’s Guide

CHAPTER
1 Introduction to JATMI
Programming

The following sections provide information about the development environment you
will be using to write code for applications that interoperate between WebLogic Server
and Tuxedo:

� Developing WebLogic Tuxedo Connector Applications

� WebLogic Tuxedo Connector JATMI Primitives

� WebLogic Tuxedo Connector Typed Buffers

Developing WebLogic Tuxedo Connector
Applications

In addition to the Java code that expresses the logic of your application, you will be
using the Java Application -to-Transaction Monitor Interface (JATMI) to provide the
interface between WebLogic Server and Tuxedo. This allows you to develop clients
and servers without modifying existing Tuxedo services.

Note: For more information on the WebLogic Tuxedo Connector JATMI, view the
WebLogic Tuxedo Connector Javadoc by opening the index.html file in the
doc directory of your WebLogic Tuxedo Connector installation.
WebLogic Tuxedo Connector ATMI Programmer’s Guide 1-1

1 Introduction to JATMI Programming
Developing WebLogic Tuxedo Connector Clients

A client process takes user input and sends a service request to a server process that
offers the requested service. WebLogic Tuxedo Connector JATMI client classes are
used to create clients that access services found in Tuxedo. These client classes are
available to any service that is made available through the WebLogic Tuxedo
Connector XML configuration file in the StartUpClass of your WebLogic Server.

Developing WebLogic Tuxedo Connector Servers

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate service
subroutines. WebLogic Tuxedo Connector uses EJBs to implement services which
Tuxedo clients invoke.

WebLogic Tuxedo Connector JATMI
Primitives

The JATMI is a set of primitives used to begin and end transactions, allocate and free
buffers, and provide the communication between clients and servers.

Table 1-1 JATMI Primitives

Name Operation

tpacall Use for asynchronous invocations of a Tuxedo
service.

tpcall Use for synchronous invocation of a Tuxedo
service.

tpdequeue Use for receiving messages from a Tuxedo /Q.

tpenqueue Use for placing a message on a Tuxedo /Q.
1-2 WebLogic Tuxedo Connector ATMI Programmer’s Guide

WebLogic Tuxedo Connector Typed Buffers
WebLogic Tuxedo Connector Typed Buffers

Note: UNICODE strings are not supported on the Tuxedo environment.

WebLogic Tuxedo Connector provides an interface called TypedBuffers that
corresponds to Tuxedo typed buffers. Messages are passed to servers in typed buffers.
The WebLogic Tuxedo Connector provides the following buffer types:.

tpgetreply Use for retrieving replies from a Tuxedo service.

tpterm Use to close a connection to a Tuxedo object.

Table 1-1 JATMI Primitives

Name Operation

Table 1-2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray Buffer type used when the data is an undefined array of
characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field
carries its own identifier, an occurrence number, and possibly
a length indicator. Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivalent: FML32.

TypedXML Buffer type used when data is an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.
WebLogic Tuxedo Connector ATMI Programmer’s Guide 1-3

1 Introduction to JATMI Programming
1-4 WebLogic Tuxedo Connector ATMI Programmer’s Guide

CHAPTER
2 Developing WebLogic
Tuxedo Connector
Client Applications

The following sections describe how to create client programs that take user input and
send service requests to a server process that offers a requested service.

� Joining and Leaving Applications

� Basic Client Operation

� Example Client Application

WebLogic Tuxedo Connector JATMI client classes are used to create clients that
access services found in Tuxedo.

Note: For more information on JATMI classes, view the WebLogic Tuxedo
Connector Javadoc by opening the index.html file in the doc directory of
your WebLogic Tuxedo Connector installation.

Joining and Leaving Applications

Tuxedo and WebLogic Tuxedo Connector have different approaches to connect to
services.
WebLogic Tuxedo Connector ATMI Programmer’s Guide 2-1

2 Developing WebLogic Tuxedo Connector Client Applications
Joining an Application

The following section compares how Tuxedo and WebLogic Tuxedo Connector join
an application:

� Tuxedo uses tpinit() to join an application.

� WebLogic Tuxedo Connector uses the BDMCONFIG XML configuration file to
provide information required to create a path to the Tuxedo service. It provides
security and client authentication by configuring the
T_DM_REMOTE_TDOMAIN and T_DM_IMPORT sections of the
BDMCONFIG XML configuration file. This pathway is created when the
WebLogic Server is started and the WebLogic Tuxedo Connector XML
configuration file is loaded.

� WebLogic Tuxedo Connector uses TuxedoConnection to get a Tuxedo object
and then uses getTuxedoConnection() to make a connection to the Tuxedo
object.

Leaving an Application

The following section compares how Tuxedo and WebLogic Tuxedo Connector leave
an application:

� Tuxedo uses tpterm() to leave an application.

� WebLogic Tuxedo Connector uses the JATMI primitive tpterm() to close a
connection to a Tuxedo object.

� WebLogic Tuxedo Connector closes the pathway to a Tuxedo service when the
WebLogic Server is shutdown.

Basic Client Operation

A client process uses Java and JATMI primitives to provide the following basic
application tasks:
2-2 WebLogic Tuxedo Connector ATMI Programmer’s Guide

Basic Client Operation
� Get a Tuxedo Object

� Perform Message Buffering

� Send and Receive Messages

� Closing a Connection

A client may send and receive any number of service requests before leaving the
application.

Get a Tuxedo Object

Establish a connection to a remote domain by using the TuxedoConnectionFactory
to lookup “tuxedo.services.TuxedoConnection” in the JNDI tree and get a
TuxedoConnection object using getTuxedoConnection().

Perform Message Buffering

Use the following buffer types when sending and receiving messages between your
application and Tuxedo:

Table 2-1 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray Buffer type used when the data is an undefined array of
characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field
carries its own identifier, an occurrence number, and possibly
a length indicator. Tuxedo equivalent: FML.
WebLogic Tuxedo Connector ATMI Programmer’s Guide 2-3

2 Developing WebLogic Tuxedo Connector Client Applications
Send and Receive Messages

Use the following JATMI primitives to send and receive messages between your
application and Tuxedo:

Closing a Connection

Use tpterm() to close a connection to an object and prevent future operations on this
object. This is the equivalent of the JCA close().

TypedFML32 Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivalent: FML32.

TypedXML Buffer type used when data is an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.

Table 2-1 TypedBuffers

Buffer Type Description

Table 2-2 JATMI Primitives

Name Operation

tpacall Use for asynchronous invocations of a Tuxedo
service.

tpcall Use for synchronous invocation of a Tuxedo
service.

tpdequeue Use for receiving messages from a Tuxedo /Q.

tpenqueue Use for placing a message on a Tuxedo /Q.

tpgetreply Use for retrieving replies from a Tuxedo service.
2-4 WebLogic Tuxedo Connector ATMI Programmer’s Guide

Example Client Application
Example Client Application

The following Java code provides an example of the ToupperBean client application
which sends a string argument to a server and receives a reply string from the server.

Listing 2-1 Example Client Application

.

.

.
public String Toupper(String toConvert)

throws TPException, TPReplyException
{

Context ctx;
TuxedoConnectionFactory tcf;
TuxedoConnection myTux;
TypedString myData;
Reply myRtn;
int status;

log("toupper called, converting " + toConvert);

try {
ctx = new InitialContext();
tcf = (TuxedoConnectionFactory) ctx.lookup(

"tuxedo.services.TuxedoConnection");
}
catch (NamingException ne) {

// Could not get the tuxedo object, throw TPENOENT
throw new TPException(TPException.TPENOENT, "Could not get

TuxedoConnectionFactory : " + ne);
}

myTux = tcf.getTuxedoConnection();

myData = new TypedString(toConvert);

log("About to call tpcall");
try {

myRtn = myTux.tpcall("TOUPPER", myData, 0);
}

catch (TPReplyException tre) {
log("tpcall threw TPReplyExcption " + tre);
WebLogic Tuxedo Connector ATMI Programmer’s Guide 2-5

2 Developing WebLogic Tuxedo Connector Client Applications
throw tre;
}
catch (TPException te) {

log("tpcall threw TPException " + te);
throw te;

}
catch (Exception ee) {

log("tpcall threw exception: " + ee);
throw new TPException(TPException.TPESYSTEM, "Exception: " + ee);

}
log("tpcall successfull!");

myData = (TypedString) myRtn.getReplyBuffer();

myTux.tpterm();// Closing the association with Tuxedo

return (myData.toString());
}
.
.
.

2-6 WebLogic Tuxedo Connector ATMI Programmer’s Guide

CHAPTER
3 Developing WebLogic
Tuxedo Connector
Service Applications

The following sections provide information on how to create WebLogic Tuxedo
Connector service applications:

� Basic Service Application Operation

� Example Service Application

Basic Service Application Operation

A service application uses Java and JATMI primitives to provide the following tasks:

� Receive Client Messages

� Buffer Messages

� Perform the Requested Service

� Return Client Messages
WebLogic Tuxedo Connector ATMI Programmer’s Guide 3-1

3 Developing WebLogic Tuxedo Connector Service Applications
Receive Client Messages

Use the TPServiceInformation class getServiceData() method to receive client
messages.

Note: For more detailed information on the TPServiceInformation class, view the
WebLogic Tuxedo Connector Javadoc by opening the index.html file in the
doc directory of your WebLogic Tuxedo Connector installation.

Buffer Messages

Use the following buffer types when sending and receiving messages between your
application and Tuxedo:

Table 3-1 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray Buffer type used when the data is an undefined array of
characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field
carries its own identifier, an occurrence number, and possibly
a length indicator. Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivalent: FML32.

TypedXML Buffer type used when data is an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.
3-2 WebLogic Tuxedo Connector ATMI Programmer’s Guide

Example Service Application
Perform the Requested Service

Use Java code to express the logic required to provide your service.

Return Client Messages

Use the TuxedoReply class setReplyBuffer() method to respond to client requests.

Note: For more detailed information on the TuxedoReply class, view the WebLogic
Tuxedo Connector Javadoc by opening the index.html file in the doc
directory of your WebLogic Tuxedo Connector installation.

Example Service Application

The following provides an example of the TolowerBean service application which
receives a string argument, converts the string to all lower case, and returns the
converted string to the client.

Listing 3-1 Example Service Application

.

.

.

public Reply service(TPServiceInformation mydata) throws TPException {
TypedString data;
String lowered;
TypedString return_data;

log("service tolower called");

data = (TypedString) mydata.getServiceData();
lowered = data.toString().toLowerCase();
WebLogic Tuxedo Connector ATMI Programmer’s Guide 3-3

3 Developing WebLogic Tuxedo Connector Service Applications
return_data = new TypedString(lowered);

mydata.setReplyBuffer(return_data);

return (mydata);
}
.
..
.
.

3-4 WebLogic Tuxedo Connector ATMI Programmer’s Guide

CHAPTER
4 WebLogic Tuxedo
Connector Transactions

The following sections provide information on global transactions and how to define
and manage them in your applications:

� Global Transactions

� JTA Transaction API

� Defining A Transaction

� WebLogic Tuxedo Connector Transaction Rules

� Example Transaction Code

Global Transactions

A global transaction is a transaction that allows work involving more than one resource
manager and spanning more than one physical site to be treated as one logical unit. A
global transaction is always treated as a specific sequence of operations that is
characterized by the following four properties:

� Atomicity: All portions either succeed or have no effect.

� Consistency: Operations are performed that correctly transform the resources
from one consistent state to another.

� Isolation: Intermediate results are not accessible to other transactions,
although other processes in the same transaction may access the data.
WebLogic Tuxedo Connector ATMI Programmer’s Guide 4-1

4 WebLogic Tuxedo Connector Transactions
� Durability: All effects of a completed sequence cannot be altered by any kind
of failure.

JTA Transaction API

The WebLogic Tuxedo Connector uses the Java Transaction API (JTA) to manage
transactions.

Note: For more detailed information on the JTA API, go to
http://java.sun.com/products/jta/index.html

Types of JTA Interfaces

JTA offers three types of transaction interfaces:

� Transaction

� TransactionManager

� UserTransaction

Transaction

The Transaction interface allows operations to be performed against a transaction
in the target Transaction object. A Transaction object is created to correspond to each
global transaction created. Use the Transaction interface to enlist resources,
synchronize registration, and perform transaction completion and status query
operations.

TransactionManager

The TransactionManager interface allows the application server to communicate to
the Transaction Manager for transaction boundaries demarcation on behalf of the
application. Use the TransactionManager interface to communicate to the
transaction manager on behalf of container-managed EJB components.
4-2 WebLogic Tuxedo Connector ATMI Programmer’s Guide

Defining A Transaction
UserTransaction

The UserTransaction interface is a subset of the TransactionManager interface.
Use the UserTransaction interface when it is necessary to restrict access to
Transaction object.

JTA Transaction Primitives

The following table maps the functionality of Tuxedo transaction primitives to
equivalent JTA transaction primitives.

Defining A Transaction

Transactions can be defined in either client or server processes. A transaction has three
parts: a starting point, the program statements that are in transaction mode, and a
termination point.

To explicitly define a transaction, call the begin() method. The same process that
makes the call, the initiator, must also be the one that terminates it by invoking a
commit() or a setRollbackOnly(). Any service subroutines that are called between
the transaction delimiter become part of the current transaction.

Table 4-1 Mapping Tuxedo Transaction Primitives to JTA Equivalents

Tuxedo Tuxedo Functionality JTA Equivalent

tpabort Use to end a transaction. setRollbackOnly

tpcommit Use to complete a transaction. commit

tpgetlev Use to determine if a service routine is
in transaction mode.

getStatus

tpbegin Use to begin a transaction. setTransactionTimeout

begin
WebLogic Tuxedo Connector ATMI Programmer’s Guide 4-3

4 WebLogic Tuxedo Connector Transactions
Starting a Transaction

A transaction is started by a call to begin(). To specify a time-out value, precede the
begin() statement with a setTransactionTimeout(int seconds) statement.

Note: Setting setTransactionTimeout() to unrealistically large values delays
system detection and reporting of errors. Use time-out values to ensure
response to service requests occur within a reasonable time and to terminate
transactions that have encountered problem, such as a network failure. For
productions environments, adjust the time-out value to accommodate expected
delays due to system load and database contention.

To propogate the transaction to Tuxedo, you must do the following:

� Look up a TuxedoConnectionFactory object in the JNDI.

� Get a TuxedoConnection object using getTuxedoConnection().

Using TPNOTRAN

Service routines that are called within the transaction delimiter are part of the current
transaction. However, if tpcall() or tpacall() have the flags parameter set to
TPNOTRAN, the operations performed by the called service do not become part of that
transaction. As a result, services performed by the called process are not affected by
the outcome of the current transaction.

Terminating a Transaction

A transaction is terminated by a call to either commit() or a setRollbackOnly().
When commit() returns successfully, all changes to the resource as a result of the
current transaction become permanent. setRollbackOnly() is used to indicate an
abnormal condition and rolls back the any call descriptors to their original state.

In order for a commit() to succeed, the following two conditions must be met:

� The calling process must be the same one that initiated the transaction with a
begin()

� The calling process must have no transaction replies outstanding
4-4 WebLogic Tuxedo Connector ATMI Programmer’s Guide

WebLogic Tuxedo Connector Transaction Rules
If either condition is not true, the call fails and an exception is thrown.

WebLogic Tuxedo Connector Transaction
Rules

You must follow certain rules while in transaction mode to insure successful
completion of a transaction.The basic rules of etiquette that must be observed while in
a transaction mode follow:

� Processes that are participants in the same transaction must require replies for
their requests.

� Requests requiring no reply can be made only if the flags parameter of
tpacall() is set to TPNOREPLY.

� A service must retrieve all asynchronous transaction replies before calling
commit().

� The initiator must retrieve all asynchronous transaction replies before calling
begin().

� The asynchronous replies that must be retrieved include those that are expected
from non-participants of the transaction, that is, replies expected for requests
made with a tpacall() suppressing the transaction but not the reply.

� If a transaction has not timed out but is marked abort-only, further
communication should be performed with the TPNOTRAN flag set so that the work
done as a result of the communication has lasting effect after the transaction is
rolled back.

� If a transaction has timed out:

� the descriptor for the timed out call becomes stale and any further reference
to it will return TPEBADDESC.

� further calls to tpgetrply() or tprecv() for any outstanding descriptors
will return the global state of transaction time-out by setting tperrono to
TPETIME.
WebLogic Tuxedo Connector ATMI Programmer’s Guide 4-5

4 WebLogic Tuxedo Connector Transactions
� asynchronous calls can be make with the flags parameter of tpacall() set
to TPNOREPLY | TPNOBLOCK | TPNOTRAN.

� Once a transaction has been marked abort-only for reasons other than time-out, a
call to tpgetrply() will return whatever represents the local state of the call,
that is, it can either return success or an error code that represents the local
condition.

� Once a descriptor is used with tpgetrply() to retrieve a reply or with
tpsend() or tprecv() to report an error condition, it becomes invalid and any
further reference to it will return TPEBADDESC.

Once a transaction is aborted, all outstanding transaction call descriptions (made
without the TPNOTRAN flag) become stale, and any further reference to them will return
TPEBADDESC.

Example Transaction Code

The following provides a code example for a transaction:

Listing 4-1 Example Transaction Code

public class TransactionSampleBean implements SessionBean {

.....

public int transaction_sample () {

int ret = 0;
try {

javax.naming.Context myContext = new InitialContext();
TransactionManager tm = (javax.transaction.TransactionManager)
myContext.lookup("javax.transaction.TransactionManager");

// Begin Transaction
tm.begin ();

TuxedoConnectionFactory tuxConFactory = (TuxedoConnectionFactory)
ctxt.lookup("tuxedo.services.TuxedoConnection");
4-6 WebLogic Tuxedo Connector ATMI Programmer’s Guide

Example Transaction Code
// You could do a local JDBC/XA-database operation here
// which will be part of this transaction.
.....

// NOTE 1: Get the Tuxedo Connection only after
// you begin the transaction if you want the
// Tuxedo call to be part of the transaction!

// NOTE 2: If you get the Tuxedo Connection before
// the transaction was started, all calls made from
// that Tuxedo Connection are out of scope of the
// transaction.

TuxedoConnection myTux = tuxConFactory.getTuxedoConnection();

// Do a tpcall. This tpcall is part of the transaction.
TypedString depositData = new TypedString("somecharacters,5000.00");

Reply depositReply = myTux.tpcall("DEPOSIT", depositData, 0);

// You could also do tpcalls which are not part of
// transaction (For example, Logging all attempted
// operations etc.) by setting the TPNOTRAN Flag!

TypedString logData =
new TypedString("DEPOSIT:somecharacters,5000.00");

Reply logReply = myTux.tpcall("LOGTRAN", logData,
ApplicationToMonitorInterface.TPNOTRAN);

// Done with the Tuxedo Connection. Do tpterm.
myTux.tpterm ();

// Commit Transaction...
tm.commit ();

// NOTE: The TuxedoConnection object which has been
// used in this transaction, can be used after the
// transaction only if TPNOTRAN flag is set.
}

catch (NamingException ne) {
System.out.println ("ERROR: Naming Exception looking up JNDI: " + ne);
ret = -1;

}
catch (RollbackException re) {
System.out.println("ERROR: TRANSACTION ROLLED BACK: " + re);
ret = 0;

}
catch (TPException te) {
System.out.println("ERROR: tpcall failed: TpException: " + te);
WebLogic Tuxedo Connector ATMI Programmer’s Guide 4-7

4 WebLogic Tuxedo Connector Transactions
ret = -1;
}

catch (Exception e) {
log ("ERROR: Exception: " + e);
ret = -1;

}

return ret;
}

.....
4-8 WebLogic Tuxedo Connector ATMI Programmer’s Guide

CHAPTER
5 Application Error
Management

The following sections provide mechanisms to manage and interpret error conditions
in your applications:

� Testing for Application Errors

� WebLogic Tuxedo Connector Time-Out Conditions

� Application Event Log

Testing for Application Errors

Note: To view an example that demonstrates how to test for error conditions, see
“Example Transaction Code” on page 4-6

Your application logic should test for error conditions after the calls that have return
values and take suitable steps based on those conditions. In the event that a function
returned a value, you may invoke a functions that tests for specific values and performs
the appropriate application logic for each condition.

Exception Classes

The WebLogic Tuxedo Connector throws the following exception classes:
WebLogic Tuxedo Connector ATMI Programmer’s Guide 5-1

5 Application Error Management
� Ferror: Thrown for errors occurring while manipulating FML.

� TPException: Thrown for errors occurring during a tpcall() or
tpacall().

� TPReplyException: Thrown for error occurring during a tpgetreply() or
tpdequeue().

Fatal Transaction Errors

In managing transactions, it is important to understand which errors prove fatal to
transactions. When these errors are encountered, transactions should be explicitly
aborted on the application level by having the initiator of the transaction call
commit(). Transactions fail for the following reasons:

� The initiator or participant of the transaction caused it to be marked for
rollback.

� The transaction timed out.

� A commit() was called by a participant rather than by the originator of a
transaction.

WebLogic Tuxedo Connector Time-Out
Conditions

There are two types of time-out which can occur when using the WebLogic Tuxedo
Connector:

� Blocking time-out

� Transaction time-out.
5-2 WebLogic Tuxedo Connector ATMI Programmer’s Guide

WebLogic Tuxedo Connector Time-Out Conditions
Blocking vs. Transaction Time-out

Blocking time-out is exceeding the amount of time a call can wait for a blocking
condition to clear up. Transaction time-out occurs when a transaction takes longer than
the amount of timed defined for it in setTransactionTimeout(). By default, if a
process is not in transaction mode, blocking time-outs are performed. When the flags
parameter of a a communication call is set to TPNOTIME, it applies to blocking
time-outs only. If a process is in transaction mode, blocking time-out and the
TPNOTIME flag are not relevant. The process is sensitive to transaction time-out only
as it has been defined for it when the transaction was started. The implications of the
two different types of time-out follow:

� If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the call
descriptor is still valid and may be used on a re-issue call. Further
communication in general is unaffected.

� In the case of transaction time-out, the call descriptor to an asynchronous
transaction reply (done without the TPNOTRAN flag) becomes stale and may no
longer be referenced. The only further communication allowed is the one case
described earlier of no reply, no blocking, and no transaction.

Effect on commit()

The state of a transaction if time-out occurs after the call to commit() is undetermined.
If the transaction timed out and the system knows that it was aborted,
setRollbackOnly() returns with an error.

If the state of the transaction is in doubt, you must query the resource to determine if
any of the changes that were part of that transaction have been applied to it in order to
discover whether the transaction committed or aborted.
WebLogic Tuxedo Connector ATMI Programmer’s Guide 5-3

5 Application Error Management
Effect of TPNOTRAN

When a process is in transaction and makes a communications call with flags set to
TPNOTRAN, it prohibits the called service from becoming a participant of that
transaction. The success or failure of the service does not influence the outcome of that
transaction.

Note: A transaction can time-out while waiting for a reply that is due from a service
that is not part of that transaction.

Application Event Log

The event log is a file to which you can send messages from your clients and services
to provide a record of events you consider worth recording.

How to Create an Event log

You can create an event log using System.out.println(). Create a log() method
that takes a variable of type char and use the variable name as the argument to the call,
or include the message as a literal within quotation marks as the argument to the call
as shown in the example below.

Listing 5-1 Example Event Logging

log(“About to call tpcall”);
try {

myRtn = myTux.tpcall("TOUPPER", myData, 0);
}
catch (TPReplyException tre) {

log("tpcall threw TPReplyExcption " + tre);
throw tre;

}
catch (TPException te) {

log("tpcall threw TPException " + te);
throw te;
5-4 WebLogic Tuxedo Connector ATMI Programmer’s Guide

Application Event Log
}
catch (Exception ee) {

log("tpcall threw exception: " + ee);
throw new TPException(TPException.TPESYSTEM,

"Exception: " + ee);
}
log("tpcall successfull!");

.

.

.

private static void

log(String s)

{ System.out.println(s);}

.

.

.

In this example, a series of log messages are used to track the progress of a tpcall().
WebLogic Tuxedo Connector ATMI Programmer’s Guide 5-5

5 Application Error Management
5-6 WebLogic Tuxedo Connector ATMI Programmer’s Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to JATMI Programming
	Developing WebLogic Tuxedo Connector Applications
	Developing WebLogic Tuxedo Connector Clients
	Developing WebLogic Tuxedo Connector Servers

	WebLogic Tuxedo Connector JATMI Primitives
	Table 1�1 JATMI Primitives

	WebLogic Tuxedo Connector Typed Buffers
	Table 1�2 TypedBuffers

	2 Developing WebLogic Tuxedo Connector Client Applications
	Joining and Leaving Applications
	Joining an Application
	Leaving an Application

	Basic Client Operation
	Get a Tuxedo Object
	Perform Message Buffering
	Table 2�1 TypedBuffers

	Send and Receive Messages
	Table 2�2 JATMI Primitives

	Closing a Connection

	Example Client Application
	Listing 2-1 Example Client Application
	. . . public String Toupper(String toConvert) ���throws TPException, TPReplyException { �����Cont...

	3 Developing WebLogic Tuxedo Connector Service Applications
	Basic Service Application Operation
	Receive Client Messages
	Buffer Messages
	Table 3�1 TypedBuffers

	Perform the Requested Service
	Return Client Messages

	Example Service Application
	Listing 3-1 Example Service Application
	. . . public Reply service(TPServiceInformation mydata) throws TPException { �����TypedString dat...

	4 WebLogic Tuxedo Connector Transactions
	Global Transactions
	JTA Transaction API
	Types of JTA Interfaces
	Transaction
	TransactionManager
	UserTransaction

	JTA Transaction Primitives
	Table 4�1 Mapping Tuxedo Transaction Primitives to JTA Equivalents

	Defining A Transaction
	Starting a Transaction
	Using TPNOTRAN

	Terminating a Transaction

	WebLogic Tuxedo Connector Transaction Rules
	Example Transaction Code
	Listing 4-1 Example Transaction Code
	public class TransactionSampleBean implements SessionBean { public int transaction_sample (...

	5 Application Error Management
	Testing for Application Errors
	Exception Classes
	Fatal Transaction Errors

	WebLogic Tuxedo Connector Time-Out Conditions
	Blocking vs. Transaction Time-out
	Effect on commit()
	Effect of TPNOTRAN

	Application Event Log
	How to Create an Event log
	Listing 5-1 Example Event Logging

