2?7,

» F
; &
'y e a

BEA
WebLogic Server

WebLogic Tuxedo Connector
ATMI Programmer’s Guide

BEA WeblLogic Tuxedo Connector Release 1.0
Document Date: June 29, 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commerciad Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document i s subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebLogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process I ntegrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
WebL ogic Tuxedo Connector ATMI Programmer’s Guide

Part Number Document Date Software Version

N/A June 29, 2001 BEA WebL ogic Tuxedo Connector 1.0

Contents

About This Document

AUGIENCE.....o ettt e sttt st ettt e s e se e s e sresbaesbestaesre e v
E-00CSWED SOttt st st st er et ea e s e e Vi
HOW to Print the DOCUMENT.........ccoiiiieecie ettt e e Vi
Related INfOrmMation..........cci ittt e Vi
(O] g1 "o B U LS Vii
Documentation CONVENLIONSccceiuieieirietie et et sre e bbb eree e Vii

1. Introduction to JATMI Programming

Developing WebL ogic Tuxedo Connector Applications.........cccccovveeeercrennnne 11
Developing WebL ogic Tuxedo Connector ClientS........cccoveevieniecesereennnne 1-2
Developing WebL ogic Tuxedo CoNNECtOr SEIVEScooveverreeesecreennns 1-2

WebL ogic Tuxedo Connector JATMI Primitives.........cccoeereine v s 1-2

WebL ogic Tuxedo Connector Typed BUFfers........ccccve v 1-3

2. Developing WebLogic Tuxedo Connector Client Applications

Joining and Leaving APPIICAIONS.covereeeriee ettt 2-1
Joining @an APPIICELIONcccceriiiieeie ettt e e e 2-2
Leaving an APPIICELIONceiiiriire et 2-2

BasiC Client OPEraionccoveieeieieeie ettt e s e 2-2
Get aTUXEAO ODJECL ... e 2-3
Perform Message BUFfEriNGcoveirerne e 2-3
Send and RECEIVE MESSAES.c..eviierieiere ettt ettt s 2-4
CloSING 8 CONNECLIONveuveiie ittt ettt bbb 2-4

Example Client APPlICALIONccoiiieieereeireeee et e s 2-5

WebL ogic Tuxedo Connector ATMI Programmer’s Guide iii

3. Developing WebLogic Tuxedo Connector Service Applications

Basic Service Application OPErationcceveereereenesere e 3-1
ReCEIVE ClIENt MESSAGES.c.vruiririiririe ettt b e 32
BUFfEr MESSAES ... et e e e 32
Perform the Requested SErVICE ... e 3-3
RetUrn Client MESSAgES.curuirririre st 3-3

Example Service APPliCaLIONc.ccevevireerireeririet ettt e e 3-3

4. WebLogic Tuxedo Connector Transactions

Global TranSaCtiONS......c..eiiie ettt 4-1
JTA TranSaCtioN APlc.oiieiere et 4-2
Types of JTA INEFACEScoiiiiieirece e e 4-2
TFANSBCION ...ttt e e e 4-2
TranSaCtioNMaANAGESccerueeirieririeeerie e e 4-2
USEITIANSACHION ...ttt 4-3

JTA Transaction PrimitiVES.cociveireireineenees e s s 4-3
DefinNiNg A TranSaCtiONccooiveueiietireetire ettt e e e e e 4-3
Starting @ TraNSACHIONc.veviiie ettt 44
USING TPNOTRAN ..ottt ettt et et st e ne e ene e 44
Terminating @ TranSACtiON........coeerieeiriee e e 44
WebL ogic Tuxedo Connector Transaction RUIES...........ccoccvve i e necenecieneas 4-5
Example Transaction COOE..........cooeireineiircirieiesier et e e e e e 4-6

5. Application Error Management

Testing for AppliCation ErTOrsS........c.cooveenieenecin et 5-1
EXCEPLION ClASSES......ecviieeiieiiie sttt e e e 5-1
Fatal TranSaction EITOrS.......cccooieieine e e e 52

WebL ogic Tuxedo Connector Time-Out Conditions............ccceeevrneeinieriennns 5-2
Blocking vs. Transaction TIME-OULccvrereereeiereeineeeee e 5-3
Effect 0n COMMIL() ..ooveeereeeiriire e e 5-3
Effect of TPNOTRAN ..o e 54

APPLICELION EVENE LOG.ccve ettt ittt ettt st e e e e 54
How to Create an EVENt 100.........coov e 54

WebL ogic Tuxedo Connector ATMI Programmer’s Guide

About This Document

This document introduces the BEA WebL ogic Tuxedo Connector application
development environment. It describes how to establish a development environment
and how to package applications for deployment.

The document is organized as follows:

Chapter 1, “Introduction to JATMI Programming,” provides information about
the development environment you will be using to write code for applications
that interoperate between WebL ogic Server and Tuxedo.

Chapter 2, “Developing WebL ogic Tuxedo Connector Client Applications,”
provides information on how to create client applications.

Chapter 3, “Developing WebL ogic Tuxedo Connector Service Applications,”
provides information on how to create service applications.

Chapter 4, “WebL ogic Tuxedo Connector Transactions,” provides information
on global transactions and how to define and manage them in your applications.

Chapter 5, “Application Error Management,” provide mechanisms to manage
and interpret error conditions.

Audience

Thisdocument iswritten for system administrators and application developerswho are
interested in building distributed Java applications that interoperate between

WebL ogic Server and Tuxedo environments. It is assumed that readers are familiar
with the WebL ogic Server, Tuxedo, XML and Java programming.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide

Vv

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File- Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related | nformation

Vi

The BEA corporate Web site provides all documentation for WebL ogic Server and
Tuxedo.

For moreinformation about Javaapplications, refer to the Sun Microsystems, Inc. Java
site at http://java.sun.com/.

WebLogic Tuxedo Connector ATMI Programmer’s Guide

http://www.adobe.com

Contact Udl

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitleand document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can al so contact Customer Support by using
the contact information provided on the Customer Support Card, whichisincluded in
the product package.

When contacting Customer Support, be prepared to providethefollowing information:
B Your name, e-mail address, phone number, and fax number

B Your company name and company address

B Your machine type and authorization codes

® The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide Vil

mailto:docsupport@bea.com
http://www.bea.com

Convention Usage

nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text a'so
indicates text that you enter from the keyboard.

Examples:

i mport java.util.Enumeration;
chrmod u+w *

confi g/ exanpl es/ appli cati ons
.java

config.xm

fl oat

nonospace Variablesin code.
italic

Example:
t ext

String Custoner Nane;

UPPERCASE Device names, environment variables, and logical operators.
TEXT Examples:
LPT1
BEA_HOME

OR

{1} A set of choicesin asyntax line.

[] Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tinmeout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

j ava webl ogi c. depl oy [I|ist| depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

®m You can enter additional parameters, values, or other information

viii WebL ogic Tuxedo Connector ATMI Programmer’s Guide

Convention Usage

Indicates the omission of items from a code example or from a syntax line.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide iX

X

WebL ogic Tuxedo Connector ATMI Programmer’s Guide

CHAPTER

1 Introduction to JATMI
Programming

The following sections provide information about the development environment you
will beusing towrite codefor applicationsthat interoperate between WebL ogic Server
and Tuxedo:

m Developing WebL ogic Tuxedo Connector Applications
m WebL ogic Tuxedo Connector JATMI Primitives

m WebL ogic Tuxedo Connector Typed Buffers

Developing WebLogic Tuxedo Connector
Applications

In addition to the Java code that expresses the logic of your application, you will be
using the Java Application -to-Transaction Monitor Interface (JATMI) to provide the
interface between WebL ogic Server and Tuxedo. This allows you to develop clients
and servers without modifying existing Tuxedo services.

Note: For more information on the WebL ogic Tuxedo Connector JATMI, view the
WebL ogic Tuxedo Connector Javadoc by opening thei ndex. ht m fileinthe
doc directory of your WebL ogic Tuxedo Connector installation.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 1-1

1 introduction to JATMI Programming

Developing WebLogic Tuxedo Connector Clients

A client process takes user input and sends a service request to a server process that
offers the requested service. WebL ogic Tuxedo Connector JATMI client classes are
used to create clients that access services found in Tuxedo. These client classes are
available to any service that is made available through the WebL ogic Tuxedo
Connector XML configuration file in the StartUpClass of your WebL ogic Server.

Developing WebLogic Tuxedo Connector Servers

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate service
subroutines. WebL ogic Tuxedo Connector uses EJBs to implement services which
Tuxedo clientsinvoke.

WebLogic Tuxedo Connector JATMI
Primitives

The JATMI isaset of primitives used to begin and end transactions, alocate and free
buffers, and provide the communication between clients and servers.

Table1-1 JATMI Primitives

Name Operation

t pacal | Use for asynchronous invocations of a Tuxedo
service.

tpcal | Use for synchronous invocation of a Tuxedo
service.

t pdequeue Use for receiving messages from a Tuxedo /Q.

t penqueue Use for placing a message on a Tuxedo /Q.

1-2 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

WebL ogic Tuxedo Connector Typed Buffers

Table 1-1 JATMI Primitives

Name Operation
t pgetreply Use for retrieving replies from a Tuxedo service.
tpterm Use to close a connection to a Tuxedo object.

WebLogic Tuxedo Connector Typed Buffers

Note: UNICODE strings are not supported on the Tuxedo environment.

WebL ogic Tuxedo Connector provides an interface called TypedBuf f er s that
correspondsto Tuxedo typed buffers. Messages are passed to serversin typed buffers.
The WebL ogic Tuxedo Connector provides the following buffer types:.

Table 1-2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the datais an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray Buffer type used when the data is an undefined array of

characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML Buffer type used when the dataisself-defined. Each datafield
carriesitsown identifier, an occurrence number, and possibly
alength indicator. Tuxedo equivalent: FML.

TypedFML 32 Buffer type similar to TypeFML but allowsfor larger
character fields, more fields, and larger overall buffers.
Tuxedo equivalent: FML32.

TypedXML Buffer type used when datais an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 1-3

1 introduction to JATMI Programming

1-4 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

CHAPTER

2 Developing WebLogic
Tuxedo Connector
Client Applications

Thefollowing sections describe how to create client programsthat take user input and
send service requests to aserver process that offers a requested service.

m Joining and Leaving Applications
m Basic Client Operation
m Example Client Application

WebL ogic Tuxedo Connector JATMI client classes are used to create clients that
access services found in Tuxedo.

Note: For moreinformation on JATMI classes, view the WebL ogic Tuxedo
Connector Javadoc by opening thei ndex. ht m filein the doc directory of
your WebL ogic Tuxedo Connector installation.

Joining and Leaving Applications

Tuxedo and WebL ogic Tuxedo Connector have different approaches to connect to
services.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 21

2 Developing WebL ogic Tuxedo Connector Client Applications

Joining an Application

The following section compares how Tuxedo and WebL ogic Tuxedo Connector join
an application:

m Tuxedo usest pini t() tojoinan application.

m WebL ogic Tuxedo Connector uses the BDMCONFIG XML configuration file to
provide information required to create a path to the Tuxedo service. It provides
security and client authentication by configuring the
T_DM_REMOTE_TDOMAIN and T_DM_IMPORT sections of the
BDMCONFIG XML configuration file. This pathway is created when the
WebL ogic Server is started and the WebL ogic Tuxedo Connector XML
configuration file isloaded.

® WebL ogic Tuxedo Connector uses TuxedoConnect i on to get a Tuxedo object
and then uses get TuxedoConnect i on() to make a connection to the Tuxedo
object.

Leaving an Application

The following section compares how Tuxedo and WebL ogic Tuxedo Connector leave
an application:

m Tuxedo usest ptern() toleave an application.

m WebL ogic Tuxedo Connector usesthe JATMI primitivet pt er n() to close a
connection to a Tuxedo object.

m WebL ogic Tuxedo Connector closes the pathway to a Tuxedo service when the
WebL ogic Server is shutdown.

Basic Client Operation

A client process uses Java and JATMI primitives to provide the following basic
application tasks:

2-2 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

Basic Client Operation

Get a Tuxedo Object
Perform Message Buffering
Send and Recelve Messages

Closing a Connection

A client may send and receive any number of service requests before leaving the
application.

Get a Tuxedo Object

Establish aconnection to aremote domain by using the TuxedoConnect i onFact ory
to lookup “t uxedo. servi ces. TuxedoConnecti on” inthe JINDI tree and get a
TuxedoConnect i on object using get TuxedoConnect i on() .

Perform Message Buffering

Use the following buffer types when sending and receiving messages between your
application and Tuxedo:

Table 2-1 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the datais an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray Buffer type used when the data is an undefined array of

characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML Buffer type used when the dataisself-defined. Each datafield

carriesitsown identifier, an occurrence number, and possibly
alength indicator. Tuxedo equivalent: FML.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 2-3

2 Developing WebL ogic Tuxedo Connector Client Applications

Table 2-1 TypedBuffers

Buffer Type Description

TypedFML 32 Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivaent: FML32.

TypedXML Buffer type used when datais an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.

Send and Receive Messages

Usethe following JATMI primitives to send and receive messages between your
application and Tuxedo:

Table2-2 JATMI Primitives

Name Operation

t pacal | Use for asynchronous invocations of a Tuxedo
service.

tpcal | Use for synchronous invocation of a Tuxedo
service.

t pdequeue Use for receiving messages from a Tuxedo /Q.

t penqueue Use for placing a message on a Tuxedo /Q.

tpgetreply Use for retrieving replies from a Tuxedo service.

Closing a Connection

Uset pt er n() to close aconnection to an object and prevent future operations on this
object. Thisis the equivalent of the JCA cl ose() .

2-4 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

Example Client Application

Example Client Application

The following Java code provides an example of the ToupperBean client application
which sends a string argument to a server and receives areply string from the server.

Listing2-1 Example Client Application

public String Toupper(String toConvert)
throws TPException, TPRepl yException
{

Cont ext ctXx;

TuxedoConnecti onFactory tcf;
TuxedoConnecti on nyTux;
TypedStri ng nyDat a;

Reply nyRtn;

int status;

| og("toupper called, converting " + toConvert);

try {
ctx = new Initial Context();
tcf = (TuxedoConnectionFactory) ctx. | ookup(
"tuxedo. servi ces. TuxedoConnecti on");
}

catch (Nam ngException ne) {
// Could not get the tuxedo object, throw TPENOCENT
t hr ow new TPExcepti on(TPExcepti on. TPENCENT, "Could not get
TuxedoConnecti onFactory : " + ne);

}
nyTux = tcf.get TuxedoConnection();
nyData = new TypedString(toConvert);
| og(" About to call tpcall");
try {
nyRtn = nmyTux. tpcal | (" TOUPPER', nyData, O0);

catch (TPRepl yException tre) {
log("tpcall threw TPRepl yExcption " + tre);

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 2-5

2 Developing WebL ogic Tuxedo Connector Client Applications

throw tre;

}

catch (TPException te) {
l og("tpcall threw TPException " + te);
throw te;

catch (Exception ee) {
log("tpcall threw exception: " + ee);
t hrow new TPExcepti on(TPExcepti on. TPESYSTEM "Exception: " + ee);
}
| og("tpcall successfull!");
nyData = (TypedString) nyRtn.getRepl yBuffer();
nyTux.tptern();// dosing the association with Tuxedo

return (myData.toString());

2-6 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

CHAPTER

3 Developing WebLogic
Tuxedo Connector
Service Applications

The following sections provide information on how to create WebL ogic Tuxedo
Connector service applications:

B Basic Service Application Operation

m Example Service Application

Basic Service Application Operation

A service application uses Java and JATMI primitives to provide the following tasks:
B Receive Client Messages

m Buffer Messages

m Perform the Requested Service

m Return Client Messages

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 31

3 Developing WebL ogic Tuxedo Connector Service Applications

Receive Client Messages

Usethe TPSer vi cel nf or mat i on classget Servi ceDat a() method to receive client
messages.

Note: For moredetailed informationontheTPSer vi cel nf or mat i on class, view the
WebL ogic Tuxedo Connector Javadoc by opening thei ndex. ht m fileinthe
doc directory of your WebL ogic Tuxedo Connector installation.

Buffer Messages

Use the following buffer types when sending and receiving messages between your
application and Tuxedo:

Table 3-1 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the datais an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray Buffer type used when the datais an undefined array of

characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML Buffer type used whenthedatais self-defined. Each datafield
carriesitsown identifier, an occurrence number, and possibly
alength indicator. Tuxedo equivalent: FML.

TypedFML 32 Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivaent: FML32.

TypedXML Buffer type used when datais an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.

3-2 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

Example Service Application

Perform the Requested Service

Use Java code to express the logic required to provide your service.

Return Client Messages

Usethe TuxedoRepl y classset Repl yBuf f er () method to respond to client requests.

Note: For moredetailed information on the TuxedoRepl y class, view the WebL ogic
Tuxedo Connector Javadoc by opening the i ndex. ht ni filein the doc
directory of your WebLogic Tuxedo Connector installation.

Example Service Application

The following provides an example of the TolowerBean service application which
receives a string argument, converts the string to al lower case, and returns the
converted string to the client.

Listing3-1 Example Service Application

public Reply service(TPServicelnformation nydata) throws TPException {
TypedString dat a;
String | owered;
TypedString return_dat a;

l og("service tolower called");

data = (TypedString) mnydata. get ServiceData();
| owered = data.toString().toLowerCase();

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 3-3

3 Developing WebL ogic Tuxedo Connector Service Applications

return_data = new TypedString(l owered);
nydat a. set Repl yBuf fer (return_data);

return (mydata);

3-4 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

CHAPTER

4 WebLogic Tuxedo
Connector Transactions

The following sections provide information on global transactions and how to define
and manage them in your applications:

Global Transactions

JTA Transaction API

Defining A Transaction

WebL ogic Tuxedo Connector Transaction Rules

Example Transaction Code

Global Transactions

A global transaction isatransaction that allowswork involving more than oneresource
manager and spanning more than one physical site to be treated as one logical unit. A
global transaction is dways treated as a specific sequence of operationsthat is
characterized by the following four properties:

e Atomicity: All portions either succeed or have no effect.

e Consistency: Operations are performed that correctly transform the resources
from one consistent state to another.

e |solation: Intermediate results are not accessible to other transactions,
although other processes in the same transaction may access the data.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 4-1

4 webLogic Tuxedo Connector Transactions

e Durability: All effects of a completed sequence cannot be altered by any kind
of failure.

JTA Transaction API

The WebL ogic Tuxedo Connector uses the Java Transaction API (JTA) to manage
transactions.

Note: For more detailed information on the JTA API, goto
http://java.sun.com/products/jta/index.html

Types of JTA Interfaces

JT A offersthree types of transaction interfaces:
e Transaction
e TransactionManager

e UserTransaction

Transaction

TheTransacti on interface allows operations to be performed against a transaction
in the target Transaction object. A Transaction object is created to correspond to each
global transaction created. Use the Tr ansact i on interface to enlist resources,
synchronize registration, and perform transaction completion and status query
operations.

TransactionManager

TheTransact i onManager interface allowsthe application server to communicate to
the Transaction Manager for transaction boundaries demarcation on behalf of the
application. Usethe Tr ansact i onManager interface to communicate to the
transaction manager on behalf of container-managed EJB components.

4-2 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

Defining A Transaction

UserTransaction

The User Transact i on interface is asubset of the Tr ansact i onManager interface.
Usethe User Tr ansact i on interface when it is necessary to restrict access to
Transaction object.

JTA Transaction Primitives

The following table maps the functionality of Tuxedo transaction primitives to
equivalent JTA transaction primitives.

Table 4-1 Mapping Tuxedo Transaction Primitivesto JTA Equivalents

Tuxedo Tuxedo Functionality JTA Equivalent

t pabort Useto end a transaction. set Rol | backOnl y
t pconmi t Use to complete a transaction. commi t

t pgetl ev Useto determineif aserviceroutineis get St at us

in transaction mode.

t pbegi n Use to begin atransaction. set Transact i onTi meout
begi n

Defining A Transaction

Transactions can be defined in either client or server processes. A transaction hasthree
parts: a starting point, the program statements that are in transaction mode, and a
termination point.

To explicitly define atransaction, call the begi n() method. The same process that
makes the call, the initiator, must also be the one that terminatesit by invoking a
conmmi t () oraset Rol | backOnl y() . Any servicesubroutinesthat are called between
the transaction delimiter become part of the current transaction.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 4-3

4 webLogic Tuxedo Connector Transactions

Starting a Transaction

A transaction is started by acall to begi n() . To specify atime-out value, precede the
begi n() statement with aset Transacti onTi neout (i nt seconds) Statement.

Note: Setting set Transacti onTi neout () to unredistically large values delays
system detection and reporting of errors. Use time-out values to ensure
response to service requests occur within a reasonabl e time and to terminate
transactions that have encountered problem, such as a network failure. For
productions environments, adj ust thetime-out value to accommodate expected
delays due to system load and database contention.

To propogate the transaction to Tuxedo, you must do the following:
® | ook up aTuxedoConnecti onFact ory object in the INDI.

B Get aTuxedoConnecti on object using get TuxedoConnecti on().

Using TPNOTRAN

Serviceroutines that are called within the transaction delimiter are part of the current
transaction. However, if t pcal | () or t pacal | () havetheflags parameter set to
TPNOTRAN, the operations performed by the called service do not become part of that
transaction. As aresult, services performed by the called process are not affected by
the outcome of the current transaction.

Terminating a Transaction

A transaction is terminated by acall to either commi t () or aset Rol | backOnl y().
When commi t () returns successfully, all changes to the resource as a result of the
current transaction become permanent. set Rol | backOnl y() isused to indicate an
abnormal condition and rolls back the any call descriptorsto their original state.

Inorder for acommi t () to succeed, the following two conditions must be met:

e Thecalling process must be the same one that initiated the transaction with a
begi n()

e Thecadling process must have no transaction replies outstanding

4-4 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

WebLogic Tuxedo Connector Transaction Rules

If either condition is not true, the call fails and an exception is thrown.

WebLogic Tuxedo Connector Transaction

Rules

Y ou must follow certain rules while in transaction mode to insure successful
completion of atransaction.The basic rules of etiquette that must be observed whilein
atransaction mode follow:

Processes that are participants in the same transaction must require replies for
their requests.

Requests requiring no reply can be made only if the flags parameter of
tpacal | () issetto TPNOREPLY.

A service must retrieve all asynchronous transaction replies before calling
commt().

The initiator must retrieve all asynchronous transaction replies before calling
begin().

The asynchronous replies that must be retrieved include those that are expected
from non-participants of the transaction, that is, replies expected for requests
made with at pacal | () suppressing the transaction but not the reply.

If atransaction has not timed out but is marked abort-only, further
communication should be performed with the TPNOTRAN flag set so that the work
done as aresult of the communication has lasting effect after the transaction is
rolled back.

If atransaction has timed out:

e the descriptor for the timed out call becomes stale and any further reference
to it will return TPEBADDESC.

e further callstot pgetrpl y() ortprecv() for any outstanding descriptors
will return the global state of transaction time-out by setting t per r ono to
TPETI ME.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 4-5

4 webLogic Tuxedo Connector Transactions

e asynchronous calls can be make with the flags parameter of t pacal | () set
to TPNOREPLY | TPNOBLOCK | TPNOTRAN.

m Once atransaction has been marked abort-only for reasons other than time-out, a
call tot pget rpl y() will return whatever represents the local state of the call,
that is, it can either return success or an error code that represents the local
condition.

m Once adescriptor isused witht pget rpl y() to retrieve areply or with
t psend() ortprecv() toreport an error condition, it becomesinvalid and any
further reference to it will return TPEBADDESC.

Once atransaction is aborted, all outstanding transaction call descriptions (made
without the TPNOTRAN flag) become stale, and any further reference to them will return
TPEBADDESC.

Example Transaction Code

The following provides a code example for a transaction:

Listing 4-1 Example Transaction Code

public class TransactionSanpl eBean inpl enents SessionBean {

public int transaction_sanmple () {

int ret = 0;

try {
j avax. nam ng. Cont ext nyContext = new Initial Context();
Transacti onManager tm = (javax.transacti on. Transacti onManager)
nmyCont ext . | ookup("javax.transaction. Transacti onManager");

/1 Begin Transaction
tmbegin ();

TuxedoConnect i onFact ory tuxConFactory = (TuxedoConnecti onFactory)
ct xt .| ookup("tuxedo. servi ces. TuxedoConnecti on");

4-6 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

Example Transaction Code

11

11

11

11

You could do a | ocal JDBC XA-database operation here
which will be part of this transaction.

NOTE 1: Get the Tuxedo Connection only after
you begin the transaction if you want the
Tuxedo call to be part of the transaction!

NOTE 2: If you get the Tuxedo Connection before
the transaction was started, all calls made from
that Tuxedo Connection are out of scope of the
transacti on.

TuxedoConnecti on nyTux = tuxConFactory. get TuxedoConnecti on();

Do a tpcall. This tpcall is part of the transaction.
TypedString depositData = new TypedString("sonecharacters, 5000. 00");

Reply depositReply = nyTux. tpcal | ("DEPCSI T*, depositData, 0);

You coul d al so do tpcalls which are not part of
transaction (For exanple, Logging all attenpted
operations etc.) by setting the TPNOTRAN Fl ag!
TypedString | ogbata =
new TypedString(" DEPCSI T: somechar act ers, 5000. 00") ;

Reply | ogReply = nyTux.tpcall ("LOGTRAN', | ogDat a,
Appl i cati onToMoni torlnterface. TPNOTRAN) ;

Done with the Tuxedo Connection. Do tpterm
nyTux.tpterm();

Conmit Transaction...
tmcommt ();

NOTE: The TuxedoConnecti on object which has been
used in this transaction, can be used after the
transaction only if TPNOTRAN flag is set.

catch (Nami ngException ne) {
Systemout.println ("ERROR Naming Exception |ooking up JNDI: " + ne);
ret = -1,

catch (Rol | backException re) {

System out. println("ERROR TRANSACTI ON ROLLED BACK: " + re);
ret = 0;

catch (TPException te) {

Systemout.println("ERROR tpcall failed: TpException: " + te);

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 4-7

4 webLogic Tuxedo Connector Transactions

ret = -1;
}
catch (Exception e) {
log ("ERROR Exception: " + e);
ret = -1;
}
return ret;
}

4-8 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

CHAPTER

5

Testing

Application Error
Management

The following sections provide mechanisms to manage and interpret error conditions
in your applications:

m Testing for Application Errors
® WebL ogic Tuxedo Connector Time-Out Conditions

m Application Event Log

for Application Errors

Note: Toview an example that demonstrates how to test for error conditions, see
“Example Transaction Code” on page 4-6

Y our application logic should test for error conditions after the calls that have return
values and take suitable steps based on those conditions. In the event that a function
returned avalue, you may invoke afunctionsthat testsfor specific values and performs
the appropriate application logic for each condition.

Exception Classes

The WebL ogic Tuxedo Connector throws the following exception classes:

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 5-1

5 Application Error Management

e Ferror: Thrown for errors occurring while manipulating FML.

e TPException: Thrown for errors occurring during at pcal | () or
tpacal | ().

e TPReplyException: Thrown for error occurring during at pget repl y() or
t pdequeue() .

Fatal Transaction Errors

In managing transactions, it is important to understand which errors prove fatal to
transactions. When these errors are encountered, transactions should be explicitly
aborted on the application level by having the initiator of the transaction call
conmmi t () . Transactions fail for the following reasons:

e Theinitiator or participant of the transaction caused it to be marked for
rollback.

e Thetransaction timed out.

e A comnit () wascaled by aparticipant rather than by the originator of a
transaction.

WebLogic Tuxedo Connector Time-Out
Conditions

There are two types of time-out which can occur when using the WebL ogic Tuxedo
Connector:

m Blocking time-out

B Transaction time-out.

5-2 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

WebLogic Tuxedo Connector Time-Out Conditions

Blocking vs. Transaction Time-out

Blocking time-out is exceeding the amount of time a call can wait for a blocking
condition to clear up. Transaction time-out occurs when atransaction takes|onger than
the amount of timed defined for it in set Transact i onTi neout () . By default, if a
process is not in transaction mode, blocking time-outs are performed. When the flags
parameter of aacommunication call is set to TPNOTI M, it applies to blocking
time-outs only. If aprocessisin transaction mode, blocking time-out and the

TPNOTI ME flag are not relevant. The processis sensitive to transaction time-out only
as it has been defined for it when the transaction was started. The implications of the
two different types of time-out follow:

m If aprocessisnot in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the call
descriptor is still valid and may be used on are-issue call. Further
communication in general is unaffected.

®m |nthe case of transaction time-out, the call descriptor to an asynchronous
transaction reply (done without the TPNOTRAN flag) becomes stale and may no
longer be referenced. The only further communication allowed isthe one case
described earlier of no reply, no blocking, and no transaction.

Effect on commit()

The state of atransaction if time-out occursafter thecall toconmmi t () isundetermined.
If the transaction timed out and the system knows that it was aborted,
set Rol | backOnl y() returnswith an error.

If the state of the transaction isin doubt, you must query the resource to determine if
any of the changesthat were part of that transaction have been applied to it in order to
discover whether the transaction committed or aborted.

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 5-3

5 Application Error Management

Effect of TPNOTRAN

When a processis in transaction and makes a communications call with flags set to
TPNOTRAN, it prohibits the called service from becoming a participant of that

transaction. The success or failure of the service does not influence the outcome of that
transaction.

Note: A transaction can time-out whilewaiting for areply that isdue from a service
that is not part of that transaction.

Application Event Log

The event log isafiletowhich you can send messages from your clients and services
to provide arecord of eventsyou consider worth recording.

How to Create an Event log

You can create an event log using Syst em out . printl n() . Createal og() method
that takes avariable of type char and use the variable name as the argument to the call,

or include the message as a literal within quotation marks as the argument to the call
as shown in the example below.

Listing5-1 Example Event Logging

| og(“About to call tpcall”);
try {
nyRtn = nmyTux. tpcal | (" TOUPPER', nyData, 0);

}
catch (TPRepl yException tre) {

log("tpcall threw TPRepl yExcption " + tre);
throw tre;

catch (TPException te) {

log("tpcall threw TPException " + te);
throw te;

5-4 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

Application Event Log

catch (Exception ee) {
log("tpcall threw exception: " + ee);
t hrow new TPExcepti on(TPExcepti on. TPESYSTEM
"Exception: " + ee);

log("tpcall successfull!");

private static void
log(String s)

{ Systemout.println(s);}

In this example, a series of |og messages are used to track the progress of at pcal | () .

WebL ogic Tuxedo Connector ATMI Programmer’s Guide 5-5

5 Application Error Management

5-6 WebL ogic Tuxedo Connector ATMI Programmer’s Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to JATMI Programming
	Developing WebLogic Tuxedo Connector Applications
	Developing WebLogic Tuxedo Connector Clients
	Developing WebLogic Tuxedo Connector Servers

	WebLogic Tuxedo Connector JATMI Primitives
	Table 1�1 JATMI Primitives

	WebLogic Tuxedo Connector Typed Buffers
	Table 1�2 TypedBuffers

	2 Developing WebLogic Tuxedo Connector Client Applications
	Joining and Leaving Applications
	Joining an Application
	Leaving an Application

	Basic Client Operation
	Get a Tuxedo Object
	Perform Message Buffering
	Table 2�1 TypedBuffers

	Send and Receive Messages
	Table 2�2 JATMI Primitives

	Closing a Connection

	Example Client Application
	Listing 2-1 Example Client Application
	. . . public String Toupper(String toConvert) ���throws TPException, TPReplyException { �����Cont...

	3 Developing WebLogic Tuxedo Connector Service Applications
	Basic Service Application Operation
	Receive Client Messages
	Buffer Messages
	Table 3�1 TypedBuffers

	Perform the Requested Service
	Return Client Messages

	Example Service Application
	Listing 3-1 Example Service Application
	. . . public Reply service(TPServiceInformation mydata) throws TPException { �����TypedString dat...

	4 WebLogic Tuxedo Connector Transactions
	Global Transactions
	JTA Transaction API
	Types of JTA Interfaces
	Transaction
	TransactionManager
	UserTransaction

	JTA Transaction Primitives
	Table 4�1 Mapping Tuxedo Transaction Primitives to JTA Equivalents

	Defining A Transaction
	Starting a Transaction
	Using TPNOTRAN

	Terminating a Transaction

	WebLogic Tuxedo Connector Transaction Rules
	Example Transaction Code
	Listing 4-1 Example Transaction Code
	public class TransactionSampleBean implements SessionBean { public int transaction_sample (...

	5 Application Error Management
	Testing for Application Errors
	Exception Classes
	Fatal Transaction Errors

	WebLogic Tuxedo Connector Time-Out Conditions
	Blocking vs. Transaction Time-out
	Effect on commit()
	Effect of TPNOTRAN

	Application Event Log
	How to Create an Event log
	Listing 5-1 Example Event Logging

