Working with Java Controls

Working with Beehive Controls

BEA Workshop for WebLogic Platform incorporates Beehive controls that make it easy for you to
encapsulate business logic and to access enterprise resources such as databases, web services,
EJBs, JMS message queues, and legacy applications.

Topics Included in This
Current Release Information:

Section
5 W@'s New
Getting Started with Beehive
Ungf;adinq to 10.0 Controls
Provides an overview of Beehive controls.
Useful Links:
. Tugonials Tutorial: Creating a Web Service

with Timer Control

Ti Trick : :
ignd Tricks Walks you through creating a web service

that uses the timer control.
Other Resources:

. Onfifie Docs Tutorial: Testing Controls with JUnit

Shows you how to create a control and

D ev test it using JUnit.

Diﬁgssion Forums
Using Controls

Describes how to use existing controls.

DeW&opment Blogs
L

Using System Controls

Describes the system controls that
Workshop for WebLogic provides for you
to connect to databases, set timers, send
messages, and perform other common
tasks.

Developing Custom Controls

Explains how to develop your own custom
controls and share them with others.

Control Dialogs

These topics explain the control related Ul
dialogs and wizards.

Related Topics

Workshop for WebLogic Platform
Documentation

Timer Control

Custom Controls

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea.workshop.product.wl.doc/html/control s/navBeehiveControl s.html (1 of 2)1/26/2007 2:28:52 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conWhatsNew.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/upgrading/navUpgrading.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conWorkshopTutorials.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conTipsAndTricks.html
http://edocs.bea.com/more_wlworkshop.html
http://dev2dev.bea.com/workshop/
http://forums.bea.com/bea/index.jspa
http://dev2dev.bea.com/community/blogs/product.html

Working with Java Controls

Apache Beehive Documentation
EJB Control Developer's Guide

Jdbc Control Developer's Guide

The JMS Control Developer's Guide

Controls: Getting Started

2002-2007 BEA Systemns, Inc. All Rights Reserved

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea.workshop.product.wl.doc/html/control s/navBeehiveControl s.html (2 of 2)1/26/2007 2:28:52 PM

http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html
http://beehive.apache.org/docs/1.0.1/controls/index.html

Getting Started with Controls

Getting Started with Beehive Controls

Controls provide a convenient way for your applications to access resources and encapsulate
application logic.

This topic provides an overview of controls in enterprise applications. It includes the following
sections:

What Are Controls?

Control Types: System and Custom Controls

Control Authoring Models

What Are Controls?

Controls are reusable components you can use (almost) anywhere within a enterprise application.
You can use the system controls provided with Workshop for WebLogic Platform, or you can
create your own.

Uses for Controls. The framework that supports controls is flexible, supporting a wide variety of
uses for controls. Controls can:

Provide access to resources such as databases or other resources.
. Encapsulate logic for reuse in other applications.

. Modularize logic you want to keep separate from other application code.

Setting Control Properties with Annotations. Controls take advantage of Java 5 annotations
for setting control properties. The system controls have a rich set of properties that are
parameterized through annotation settings. As for custom controls, the control author can define
annotation parameterization for any set of control properties.

Apache Beehive Control Framework. Controls are built on the Apache Beehive Control
framework. For more information, see Controls: Getting Started in the Apache Beehive

documentation.

Note: Controls that require assembly are not currently supported within an EJB.

Control Types: System and Custom Controls

Controls are divided into two main types: system controls and custom controls.

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.w...uct.wl.doc/html/control s/conGettingStartedWithControl s.html (1 of 3)1/26/2007 2:28:52 PM

http://beehive.apache.org/docs/1.0.1/controls/index.html

Getting Started with Controls

System controls provide you a way to connect to common application resources, such as
databases, EJBs, JMS queues, web services, and so on. These controls require little or no
modification to use in your application.

Workshop for WebLogic Platform provides several system controls, mainly designed to provide
access to enterprise resources. For example, you can use the EJB control for access to Enterprise
JavaBeans, the JMS control for access to the Java Message Service, and so on. For more
information about the system controls, see Using System Controls.

Note that the System controls fall into two groups.

One group represents unmodified Beehive controls. These controls are:

JDBC

JMS

EJB

The other group represents controls that are provided by BEA or some other vendor, based on the
Beehive control framework. These controls are:

Timer

Service Control

Custom controls provide a way to fully customize access to a resource or encapsulate some
application functionality. You can design a custom control to do any task in an application.

You can build your own custom controls that are based on the same framework on which system
controls are based. You design a custom control from the ground up, designing its interface and
implementation, adding other controls as needed. You can design a custom control for use in one
project, or you can design a custom control for easy reuse in multiple projects. For more
information about the custom controls, see Building Custom Controls.

Control Authoring Models
There are three kinds of authoring and usage models for Beehive controls.

1. Ground-up authoring. On this model you author the control interface and implementation
from scratch. The author also defines what control properties are accessible through
annotations. This authoring model applies only to custom controls.

2. Extension authoring. On this model, the core control classes already exists. You add to the

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.w...uct.wl.doc/html/control s/conGettingStartedWithControl s.html (2 of 3)1/26/2007 2:28:52 PM

Getting Started with Controls

base functionality of the control by extending the base control interface class. On this model,
the control user may also set control properties through annotation property setters defined
by the control author. Applies to all system controls except the timer control.

3. No authoring/unmodified usage. On this model, you simply import the control and call its
methods directly, without authoring a new extension class. Applies to the timer control.

Related Topics

Tutorial: Accessing a Database from a Web Application

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.w...uct.wl.doc/html/control s/conGettingStartedWithControl s.html (3 of 3)1/26/2007 2:28:52 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webapplications/tutorial/tutWebAppIntro.html

Tutorial: Creating a Web Service with Timer Control

Tutorial: Creating a Web Service with Timer Control

In this mini-tutorial, you will create and test a web service with a timer control. This is an advanced tutorial and we assume that you know the basics of Workshop
for WebLogic, including how to create workspaces, projects and packages and how to run a web service and test operations with the Test Client. If you are new to
Workshop for WebLogic, we recommend that you complete Tutorial: Getting Started and Tutorial: Web Service before beginning this tutorial.

Note: This tutorial requests that you create a new workspace; if you already have a workspace open, this will restart the IDE. Before beginning, you
might want to launch help in standalone mode to avoid an interruption the restart could cause, then locate this topic in the new browser. See Using Help

in a Standalone Mode for more information.

The tasks in this step are:

. Create the Web Service

. Set up Web Service and Timer Control Annotations

. Test the Web Service / Timer Control

In this tutorial, we will create a web service that declares/instantiates a timer control (an instance of the com bea. control . Ti mer Contr ol base class) that calls
back the client web service every two seconds. For this example, we will have two web service operations (web methods):

. start will start the timer control; once started the timer control will call back the web service every two seconds

stop will stop the timer control

When the callback is received, the sample program will simply display text in the console window. Normally some programming logic would be inserted in the
callback routine to perform some appropriate action.

To Create the Web Service
A timer control can only be created within a conversational (not stateless) web service. To create the web service for this tutorial:

1. Launch Workshop for WebLogic and create a new, empty workspace.
2. Create an EAR project with File > New > Project > J2EE > Enterprise Application Project.

3. Define a new domain and server.

4. Click File > New > Project. Expand Web Services and double click on Web Service Project. Specify the project name. Click Add project to an
EAR and choose your EAR project from the pulldown. Click Finish.

5. Create a package for your web service by right clicking on the Java Resources/src folder of your web service project in the Project Explorer view at
the left and clicking New > Package. Specify the package name and click Finish.

6. Create a web service within the package by right clicking on the package in the Project Explorer view and clicking New > WebLogic Web Service.
Specify the web service name as TimerService and click Finish. The web service designer displays the new, empty web service with a single default
method.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/control /sy stem/timer/tutCreateSimpleTimer.html (1 of 15)1/26/2007 2:28:53 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/TutorialGettingStarted/tutGS_Intro.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/WSTutorial/tutWebSvcIntro.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conDocRoadmap.html#standalone_help
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conDocRoadmap.html#standalone_help
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html

Tutorial: Creating a Web Service with Timer Control

B3 Timers

[[;.Esigner] x

|@ TimerSeryice YWeb Service

hello

Design View Source View

To Set up Web Service and Timer Control Annotations
At this point, you have a project containing a package with a web service with the Web Service Design View (Designer pane) displayed in the editor pane.

Conversational web services must implement the java.io.Serializable interface. To set this in your web service:

1. Edit the source file for your web service by right clicking on the designer and choosing Edit Source. On the class definition line for your web service,
insert i npl ements Seri al i zabl e so that the class definition looks something like this:

public class TinmerService inplenents Serializable {

Note that an error marker has appeared in the marker bar on the class declaration line. Right click on the error marker and choose Quick Fix.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/control /sy stem/timer/tutCreateSimpleTimer.html (2 of 15)1/26/2007 2:28:53 PM

Tutoria: Creating a Web Service with Timer Control

(TimerService. java [Designer] M TimerService.java X

package timer:
import Jjavax.jwva. ¥;

[TebZervice
implements Seriali zal:ulel{

Toggle Breakpoint
Disable Breakpoink

uick Fix ki:trlﬂ
Rewvert Line

add Bookmark. ..
add Task...

v Showe Quick Diff Ckrl+3hift+0)
Showe Line Mumbers
Folding k

Preferences. ..

Breakpoink Properties. .

Design Yiew Source Yiew

2. The Quick Fix pull-down will appear:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control s/system/timer/tutCreateSimpleTimer.html (3 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

% TimerControl.java [Cesigner] @ £ =
package timer: u
import Jjavax.jwva. ¥;

[Meh3ervice
i public class TimercControl implements
Fializ -
BWebMethod 4 Import ‘Serializable’ {sunw.io
public void hello(] { € Create interface 'Serializable’
' @ Change ko 'Serializer’ (com.sun.org.apache.xml.internal s
I @ Change bo 'Serializer' {com.sun.org. apache. xml. inkternal. s
& Change to 'Serializer' (javax, xml.rpc.encoding)
@ Change to 'Serializer' (weblogic. apache.xalan. serialize)
& Change bo 'Serializer' (weblogic. apache.xml, serialize) o

4 ¥

Design Yiew Source Wiew

Click Import Serializable and press Enter and a new import line will be generated to resolve the error. Save the file with File > Save.

By default, a hello() method was inserted when you created the web service. This method is not needed.

1. Click on the Designer tab of your web service. Right click on the standard hel | o() method and choose Delete.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/control /sy stem/timer/tutCreateSimpleTimer.html (4 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

ﬁ TimerControl.java [Designer] m TimerConkrol, java =0

|@ TimerControl ‘Web Service

|
| <:———:>| @_ Edit Source

Edit Signature

Conversation Skark
Conversation Conkinue
Corversation Finish

Message Euffer and Cneway
Oneway

T a—

un As
Debug As k
Profile As k
YWalidate
Upagrade Source File(s), .,
Tearn
Compate With
Feplace YWwith
wieh Services

v vy v v

Inserk k

Design Yiew Source Yiew

Confirm the deletion by clicking Yes.

To create the timer control:

1. Right click on the Designer pane and click New Control Reference . Under New System Control, click on Timer Control and click OK. The control
declaration is inserted into the body of the class, with the name (timerControl) highlighted. If you click on the TimerControl.java tab, you can verify
that the following code was inserted:

@ont r ol
private TimerControl tinerControl;

The properties of the Ti ner Cont r ol annotation are displayed in the Annotations view to the right. Click on the Annotations tab if it is not already
open and visible.

2. Click in the cell under the Value column beside the repeatsEverySeconds property.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/control /sy stem/timer/tutCreateSimpleTimer.html (5 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

3 IS~
kimerConkraol - Wariable
Property Walue
- Control
interfaceHint java.lang.Object.cl...

- TimerControl. TimerSettin
coalesceEvents
jndiContextFactory
jndiProwviderURL
repeatsEvery
repeatsEverySeconds
timeout
timeoutSeconds
transactional

- lersfonfequired
rajor
rminor

Type 2 and push the Enter key. In the source code editor window, the control annotation is updated to:

@cont r ol
@i mer Control . Ti ner Setti ngs(repeat sEver ySeconds=2)

private TimerControl tinmerControl;
and the new property value is also displayed in the Annotations view.
We now have a timer control called timerControl which will call back the web service every two seconds. Next we will define two web methods, one to start the
timer control and one to stop it.
To define the web method to start the timer:

1. From the Designer pane, right click and choose New Web Method. A new operation (web method) is created in the editor, with the default name of
the method highlighted and the properties of the web method in the Annotations view at the right. Enter the new method name: start and press the

Enter key.

2. Right click on the start method name and choose Conversation Start from the pulldown.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/control /sy stem/timer/tutCreateSimpleTimer.html (6 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

Design View Source View

=8
| S
| NAZ |g Edit Source L;JJ timerControl #
Edit Signature getZoalesceEvents
getPayload
Zonversation Finish el sl EE A
et Tirneouk
Message Buffer and Oneway c
Dneway getTimeaukAk
Deleke isR.UnRing
Run As b reskark
Debug As ¥ setCoalesceEvents
Profile As k
Validate setPayload
Uparade Source File(s).., sekRepeatsEvery
Uty ' setRepeatsEvery
ompare With » i
Replace With » setTimeouk
Web Services L satTimeaut
Insert L4 setTimeoukak
s

timerControl.start();

System out. print| p("**x**xxxxkkkxxn) .
System out. println("Tinmer started");
System out. print| p("**x**xxxxkkkrxn).

The web method now looks like this:

@onver sat i on(Conver sat i on. Phase. START)
@\ebMet hod
public void start()

{
timerControl.start();
System out. print| n("****xx*xxsxxsxn)
Systemout. println("Tinmer started");
Syst em out . prl nt | n("**************");
}

3. Now edit the source code and replace the return; statement of the method body to call the timer start method with

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/control /sy stem/timer/tutCreateSimpleTimer.html (7 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

To define the web method that ends the timer:

1. Insert a web method named stop as above.
2. Right click on the method name and choose Conversation Finish .
3. From the source code editor, change the method declaration to return a String value.

4. Replace the return; statement of the method body to call the timer stop method with

timerControl.stop();

&,Stem OUt.print|n("**************");
System out. println("Ti mer stopped");
System out . print| n("****x*xxkkxkkxn) .
return "ok";

The web method now looks like this:

@Conver sat i on(Conver sati on. Phase. FI NI SH)

@\ebMet hod
public String stop()
{

timerControl.stop();

Systemout. print| p("**x**xxxxkkrxxn) .
System out . println("Timer stopped");
System out. print| n("*****xxxxxxxkskn .
return "ok";

To define the event handler for when the timer control signals that the timer has elapsed:

1. Right click on the Designer pane or the source code pane and choose Insert > Control Event Handler.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/control /sy stem/timer/tutCreateSimpleTimer.html (8 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

% Insert Event Handler |Z|@@

Select events to handle:

w Select Al

Deselect All

I

| QK | Cancel

From the Insert Event Handler dialog, click on timerControl and click OK.

2. Insert the following lines into the event handler body in the source code pane:

&,St em OUt) prl ntl n("***********************************");

System out. println("Call back received fromtinmer firing");

Wst em out) prl ntl n("***********************************") .

The event handler should look like this:

@tvent Handl er (fi el d="ti merControl", event Set=Ti merControl . Call back.cl ass, event Nane="onTi meout")
protected void tinerControl _Cal | back_onTi neout (1 ong p0, Serializable pl) {

{
System Out.pl‘int|n("***********************************")'
System out. println("Call back received fromtimer firing");
System Out.println("***********************************")-
}

3. Save all of your changes with the File > Save command.

We now have a web service that contains:

. a timer control
. an operation (web method) to start the timer
an operation (web method) to stop the timer

. an event handler to invoke whenever the timer elapses (every two seconds in our case)
file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/control /sy stem/timer/tutCreateSimpleTimer.html (9 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

The source for your web service should now look like this:

package tiner;

i mport

i mport
i mport
i mport
i mport
i mport

java.io. Serializable;

javax.jws. *;

or g. apache. beehi ve. control s. api . bean. Control ;

com bea. control . Ti mer Control ;

webl ogi c. j ws. Conversati on;

or g. apache. beehi ve. control s. api . event s. Event Handl er;

@\ébServi ce
public class TinerService inplenments Serializabl e

@cont r ol

@i mer Control . Ti merSettings(repeatsEverySeconds=2)
private TimerControl timerControl;

private static final |long serial VersionUD = 1L;

@\ebMet hod
@onver sati on(Conver sati on. Phase. START)
public void start() {

}

timerControl.start();

Syst em out . pri ntl n("**************");
Systemout. println("Tiner started");
SySt em out i prl ntl n("**************");

@\bMet hod
@Conver sati on(Conver sati on. Phase. FI NI SH)
public String stop() {

timerControl.stop();
System out . printl n("*x*xxkkxkkxkrxin).

System out. println("Ti mer stopped");

}

@ventHandl er(field = "timerControl", eventSet = TinmerControl.Callback.cl ass,

Systemout. print| n("*xx*xxxxkkkrxkin) .
return "ok";

protected void timerControl _Call back_onTi meout (1 ong pO, Serializable pl) {

SySt em out i prl ntl n("'k*********'k************************") .

Systemout. println("Callback received fromtiner firing");
Syst em out . prl nt| n("***********************************n).

Test the Web Service / Timer Control

To test the web service and the timer control:

event Name = "onTi meout ")

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/control /sy stem/timer/tutCreateSimpl €Timer.html (10 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control
1. Right click on the editor pane and choose Run As > Run on Server. The WebLogic Test Client will run in a tab in the editor window.

M webl ogic Test Client X

Timerservice . java [Designer] EI TirnerService, java
.ﬁ" |http:,l',l'lu:u:alhn:lst:?EIIZI1,l'wls_utn:,l'?wsdILIrI=http°fo3.ﬁ.°fo2F°fo2Fln:n:alhDst"foS.ﬁ.?DD1%ZFTimerTutarial'*foEFTimerSew v| =3

—
& "\\ J W WebLogic Test Client

7. hea
http:/localhost: 7001 TimerTutarial TimerService?WSDL

Start New Conversation Operations
start
start |

Message Log

Clear Log
@l Mzjor Version: 10.0
Build ID: 867733
Copyright 2008 & BES Systerms, Inc. Ml rights resersed.

2. Click the start button to invoke the start operation. The Test Client will display the results returned from the start operation

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control s/system/timer/tutCreateSimpleTimer.html (11 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

Timerservice. java [Designer) m TimerService. java #: weblogic Test Client X =0
! q}‘h |http:,l',l'I-:u:thu:ust:?IIIIII1,|'w|5_utu:,|'ca||0peratiu:un.dD;jsessiDnid=tpCBFv6M>€1IJLJNyS|:|:|FKHZDI?QCWSdCJVnmpF‘WZJgEqLCxGKDME!-153889!5 vl [
o Qe :
P = H B
“hea WebLogic Test Client
-, 11Ed

Choose Another WSDL hitp://localhost: 7001 TimerTutorial TimerService ?WSDL

R

Arguments: [woid] 3
Ret d: id
Continue this Conversation e [void]
Submitted: Thu Now 30 16:47:18 PST 2006
[rur ation: 2284 ms

Message Log

= start

Clear Log
start Request Detail
=7 Service Request
=gy Envelope xminsem="httpiischemas xmlsoap.orafsoap/envelopea =
=Header xmins="hitp:Mschemas xmlsoap. orgisoapienvelope=

=wiaMessagelD xminstwsa="hitp fschemas xmisoap.orghws 200408 addressing"=clientMessagelis
£ I >

3. Switch to the WebLogic Server console window (command prompt window with the header bar WebLogic Server - 10.0) to see the startup and
callback results. The console window is iconized on the status bar by default. When you open the console window, you can see the timer starting and
the message lines:
kkkkkhkkhkkhkkkkk k%

Timer started

kkkkhkhkhkkkkkkhkkkk

generated by the start operation. This message will quickly scroll away, since the timer will immediately begin firing every two seconds.

The console window will then show the timer firing. Each time the timer fires, a block of status information will be displayed, including the lines:

LR R Sk Sk o kS R R R R R R R R R R

Cal | back received fromtimer firing

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control s/system/timer/tutCreateSimpleTimer.html (12 of 15)1/26/2007 2:28:53 PM

Tutoria: Creating a Web Service with Timer Control
khkkhkkhkkhkhkhkhkkhhkhkhkhkhhxdhkhhhkdxdrkhrrhkdkxdkxk%x
that are generated by the event handler that receives callbacks when the timer fires every two seconds.

4. To stop the timer firing, click on the Continue this conversation link just above the start Request Summary in the body of the test client window.
The test client will then display the operation(s) for the next phase of the conversation, in this case, the stop operation.

= g
Timerservice . java [Designer] EI TirnerService, java =0
= q}ﬁh |http:,l',l'I-:u:thu:usI::?IZIIII1,l'wls_utu:,l'l:uegin.u:I-:u?cunversatinnld=4038649 vl B n

“bea WebLogic Test Client

1- T
u"-‘h
hitp:/localhost: 7001 TimerTutorial TimerService ?WSDL

Start New Conversation Operations

stop

Continue this Conversation ml

Message Log

= ctart
Clear Log

@l Major Wersion: 10.0
Euild 1D: 267752
Copyright 2006 & BEA Systerns, Inc. 8 rights reserved.

5. Click stop. The result of the stop operation will be displayed in the test client window:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control s/system/timer/tutCreateSimpleTimer.html (13 of 15)1/26/2007 2:28:53 PM

Tutoria: Creating a Web Service with Timer Control

f T
Timerservice. java [Designer) m TimerService. java & wieblogic Test Client X =0

| q}‘h |http:,l',l'I-:u:thu:ust:?IZIIII1,|'w|5_utc,n'ca||0peratiu:un.-:Iu:u Vl = -
—_— e L
X /] i Test Ci
g % WebLogic Test Client

I 4 j—
-
~.hea 2

hitp:/localhost: 7001 TimerTutorial TimerService?WSDL

TR

Arguments: [waid] |
Ret d: k
Continue this Conversation trne o
Submitted: Thu Now 30 16:49:29 PST 2006
[rur ation: 120 ms

Message Log

= start
= stop
Clear Log
stop Request Detail
=7 Service Request
=gy Envelope xminsem="httpiischemas xmlsoap.orafsoap/envelope =
=Header xmins="hitp:Mschemas xmlsoap. orgisoapienvelope=
=wiaMessagelD xminsmwsa="hitp fschemas xmisoap.orghws 200408 addressing"=clientMessagelis
£ I >

The console window will no longer show the timer firing every two seconds, and will display the lines:

khkkkhkkkhkkkkkkk

Ti mer st opped

khkkhkkhkkhkkhkkhkkkkkkkkx

to indicate that the stop operation was successful.

Related Topics

Tutorial: Getting Started with BEA Workshop for WeblLogic Platform

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control s/system/timer/tutCreateSimpleTimer.html (14 of 15)1/26/2007 2:28:53 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/TutorialGettingStarted/tutGS_Intro.html

Tutorial: Creating a Web Service with Timer Control

Using WebLogic System Controls

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/htmi/control /sy stem/timer/tutCreateSimpl €Timer.html (15 of 15)1/26/2007 2:28:53 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Control Tutorial: Testing Controls with JUnit

Tutorial: Testing Controls with JUnit

This tutorial shows you how to build a simple custom control and test it using JUnit with Workshop
for WebLogic.

Focus of this Tutorial
As you work through this tutorial, you will:

. Learn about Workshop for WebLogic utility projects.

. Create a simple custom control.
. Test your control using JUnit.

. Learn Workshop for WebLogic shortcuts for developing JUnit tests.

Steps in this Tutorial

Create a Custom Control
Use Workshop for WebLogic to create a workspace, utility project and a custom control.

Create the Test Class
Use Workshop for WebLogic to create a JUnit test class.

Run the Test Case
Use Workshop for WebLogic to run the test case.

Related Topics

Testing Controls

Utility Projects

Click the following arrow to navigate through the tutorial:

=

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/control s'tutorial /tut TestControl Intro.html 1/26/2007 2:28:54 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#UtilityProject
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#UtilityProject

Control Tutorial: Step 1: Create a Custom Control

Step 1: Create a Custom Control

In this step you will create a Utility project to house your control so they can be used by multiple
modules in an application.

In this step, you will:

Start Workshop for WebLogic

. Create a workspace

. Create an Utility project

. Create an Custom Control

To Start Workshop for WebLogic

If you haven't started Workshop for WebLogic yet, use these steps to do so.

... on Microsoft Windows
If you are using a Windows operating system, follow these instructions.

. From the Start menu, click All Programs > BEA Products > Workshop for WebLogic
Platform 10.0

...on Linux
If you are using a Linux operating system, follow these instructions.

Run BEA HOME/workshop100/workshop4WP/workshop4WP.sh

To Create a Workspace

You use a workspace to contain related source code. This one will end up containing both your control
source and the source you'll test the control with.

1. If the Workshop Launcher dialog is not displayed, select File > Switch Workspace.
Otherwise, skip to the next step.

2. In the Workspace Launcher dialog, click Browse, then browse to the directory that you
want to contain your new workspace directory.

This can be any directory. You'll be creating a new directory inside this one for your
workspace.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/control s/tutorial /tut TestControl Stepl.html (1 of 3)1/26/2007 2:28:54 PM

Control Tutorial: Step 1: Create a Custom Control

3. When you have a directory selected, click Make New Folder. Name the new folder
JUni t Tut ori al press Enter to create the folder, then click OK.

4. In the Workspace Launcher, click OK.

5. Close the Welcome view.

e

| kM)

Workshop for WebLogic will create a new empty workspace in the folder you created, then refresh to
display the workspace. Note that the Navigator view is empty.

To Create an Utility Project
An utility project contains shared code that can be used across multiple different projects.

1. Click File = New > Project.
2. In the New Project dialog, expand J2EE, select Utility Project, then click Next.

3. In the New Java Utility Module dialog, in the Project name field, enter
MyShar edCont r ol s, then click Next.

4. Under Select Project Facets, confirm that the "Beehive Contols" facet is selected. (This
facet must be selected because it contains ControlTestCase, an extension of junit.
framework.TestCase, as well as the control validation and build libraries.)

Click Finish.

To Create a Custom Control
In this step you will create the control to be tested.
1. On the Project Explorer view, expand the node MySharedControls, right-click the src

folder and select New > Package.

2. In the New Java Package dialog, in the Name field, enter shar edcontrol s, and click
Finish.

3. On the Project Explorer view, right-click the sharedcontrols package and select New >
Custom Control.

4. In the New Control dialog, in the Control name field, enter Enpl oyeeCont rol and click
Finish.

5. On the Project Explorer view, open the package sharedcontrols and double-click
EmployeeControllmpl.java to open the file's source code. Edit the source code so it
appears as follows. Code to add appears in red.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/control s/tutorial /tut TestControl Stepl.html (2 of 3)1/26/2007 2:28:54 PM

Control Tutorial: Step 1: Create a Custom Control

package sharedcontrol s;

i nport org. apache. beehi ve. control s. api . bean. Control | npl ement ati on;
i mport java.io.Serializable;

@control | mpl enent ati on
public class Enpl oyeeControl | npl inplenents Enpl oyeeControl, Serializable {
private static final |ong serial VersionU D = 1L;

public String[] getManager Names() {
return new String[]{"Jane", "Bob", "Amy"};

}

6. Place the cursor inside the method name getManagerNames and press Ctrl+1.
This will bring up an options menu.
Double-click the option Create in super type ‘EmployeeControl".
This will add the method signature to the control interface file EmployeeControl.java.

public String[] getManagerMNames () |

return new Stringl]{"Jane", & penameinfile (Ckrl4+2, R direct access)

} @ Createin superﬁpe ‘EmployesContral

7. Press Ctrl+Shift+S to save your work.

Related Topics

Testing Controls

Click one of the following arrows to navigate through the tutorial:

A —p

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/control s/tutorial /tut TestControl Stepl.html (3 of 3)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

Step 2: Create a Test Class

In this step you will create a test class that will run tests on the control you just created. You can put tests in a
separate source folder for better organization and so it's easier to exclude them later during packaging for production.
Better yet, you can put the tests in a completely separate project, provided that the project dependencies are
correctly configured. But, in this simple case, we will leave the control and test class in the same project.

In this section, you will:

. Create a new Source Folder and Package

. Create the Test Class

To Create a New Source Folder and Package
Here, you'll create a new source folder to hold the test class.

1. On the Project Explorer view, right-click MySharedControls and select New=>= Other.
2. In the New dialog, open the Java node, select Source Folder, and click Next.

3. In the Folder name field, enter src-t est and click Finish.

4. On the Project Explorer view, right-click the src-test folder and select New > Package.

5. In the New Java Package dialog, in the Name field, enter shar edcontrol s. t est and click Finish.

To Create the Test Class
In this step you will create the class that tests your control.

1. On the Project Explorer view, right-click the sharedcontrol.test package and select New > Other.
2. In the New dialog open nodes Java = JUnit, select JUnit Test Case, and click Next.

3. In the New JUnit Test Case dialog, click the link Click here.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/control S'tutorial/tut TestControl Step2.html (1 of 6)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

W New JUnit Test Case @

Junit Test Case

Select the name of the new JUnit kest case, You have the options to specify
the class under test and on the next page, ko select methods to be tested,

(%) Mew JUnit 3.8.1 test () Mew JUnit 4 test

Source Folder: MySharedControls)src-test Browse. ..

Package: sharedcontrols, best Browse. ..

Marne:

-

Superclass: junit. Framewark, TestCase Browse, , .

which method stubs would you like ko creater

[setupty [JtearDowni
|:| construckor
Do wiou weank to add comments as configured in the properties of the current project?

|:| zenerake comments

Zlass under kest: Browse. ..

1% JUnit 3,8.1 is not on the build path of project 'MySharedControls’, Click here to add Jnik
3.8.1 to the build path and open the build path dialog.

4. In the Properties for MySharedControls dialog, click OK.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/control S'tutorial/tut TestControl Step2.html (2 of 6)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

W Properties for MySharedControls (Filtered)

u Java Build Path

Jawa Build Path —_—
[Source | =% Projects | B Libraries 4}4} COrder and Expart

JAR= and class folders on the build path:

B Apache ¥MLEsans ’ Add JARs. ..
B, BEA Weblogic +10.0 [BEA WeblLogic +10.0]
=\ JRE System Library [BEA WebLogic v10.0 JRE] | Add External J4Rs. .
=i JUnit 3.8.1 ’
B, Weblogic JZEE Library [beehive-controls-1,0.1
B, Weblogic JZEE Library [weblogic-contrals-10.0 ’ add Library. .,
=, weblogic J2EE Library [wls-commonslogging-br

&dd Yariable, .

B--E--E--E--E-E-E

e e _J _J L_J

[&dd Class Falder...

[Edit. . |

’ Rermoyve l

@ | ok Q\J[Cancel

5. In the New JUnit Test Case dialog, in the Name field, enter Enpl oyeeCont r ol Test Case.
In the Superclass field, enter or g. apache. beehi ve. control s. test.junit. Control Test Case.
(Hint: in the Superclass field enter Cont r ol Test Case and press Ctrl+Space Bar to fill in the remaining

package names.)
In the Class under test field, enter shar edcont r ol s. Enpl oyeeControl .

Click Next.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/control S'tutorial/tut TestControl Step2.html (3 of 6)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

W New JUnit Test Case El

Junit Test Case

‘ I;, Warning: Class under kest 'sharedcontrols. EmployeeContral' is an interface, ‘ | .

(%) Mew JUnit 3.8.1 test () Mew JUnit 4 test

Source Folder: MySharedControls)src-test Browse. ..

Package: sharedcontrols, best Browse. ..

Marne: EmploveeControlTestCase

Superclass: arg. apache, beehive, controls, kest, junit, ControlTestCase Browse, , .

which method stubs would you like ko creater

[setupty [JtearDowni
|:| construckor
Do wiou weank to add comments as configured in the properties of the current project?

|:| zenerake comments

Class under kest: | sharedcontrals, EmployvesContol Browse, , .

(7 < Back ” hext }%J [Finish] [Cancel

6. Click Select All and then Finish.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/control S'tutorial/tut TestControl Step2.html (4 of 6)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

W New JUnit Test Case

Test Methods

Select methods for which test method stubs should be created.,

&yvailable methods:

= G EmployeeControl Select Al

@ getManagerMarnes))
Deselect Al

o

1 methad selected,

[] create final method stubs
[] Create tasks for generated test methods

@ l Finish %J [Cancel

7. Edit the source code for EmployeeTestCase.java so it appears as follows. Code to add appears in red.
Make sure to delete the line of code fail ("Not yet inplenented");.

package sharedcontrol s.test;

i nport org. apache. beehi ve. control s. api . bean. Control ;
i mport org. apache. beehi ve.control s.test.junit.Control Test Case;

public class Enpl oyeeControl Test Case extends Control Test Case {

@cont r ol

shar edcontrol s. Enpl oyeeControl enpl oyeeControl ;

/*
* Test method for 'sharedcontrol s. Enpl oyeeContr ol . get Manager Nanes() '
*/

public void testGet Manager Nanes() {
String[] ngrs = enpl oyeeControl . get Manager Nanmes() ;
assertNotNull ("Didn't find managers!", ngrs);
assert True(" Found wrong nunber of managers!",
ngrs.length == 3);

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/control S'tutorial/tut TestControl Step2.html (5 of 6)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

}

(Notice that you were able to use the control simply by using the @Control field notation and didn't have to
programmatically instantiate it yourself. That's the magic of ControlTestCase. By extending that class you
inherit its setUp() and tearDown() methods that do the declarative wire-up for you.)

8. Select Ctrl+Shift+S to save your work.

Related Topics

Testing Controls

Click one of the following arrows to navigate through the tutorial:

~ =)

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/control S'tutorial /tut TestControl Step2.html (6 of 6)1/26/2007 2:28:55 PM

Control Tutorial: Step 3: Run the Test Case

Step 3: Run the Test Case

In this step you'll run the test against the control class.

In this step, you will:

. Run a Successful Test

. Run a Failed Test

Run a Successful Test

1. In the Project Explorer, right-click EmployeeControlTestCase and select Run As > JUnit Test.

The JUnit view will appear with the green progress bar, meaning that all tests have passed.

s i He)
Problems | Tasks | Properties | Servers | Database Explarer Snippetsm v BB Eﬁ % Fis [z -~ = B

Finished after 0,516 seconds

Runs: 1/1 B Errors: 0 Failres: 0 |

9@ sharedoontrols.best, EmployesControlTestCase [Runner: JUnit 3] IESRGEL TR = "'—| =

Run a Failed Test

1. Edit the testGetManagerNames method so that the expected array length is 2 instead of 3 and run the test again.

The JUnit view will look like the following. The red bar indicates that the test has failed and an error message is shown.

file:///IF)/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/control /tutorial /tut TestControl Step3.html (1 of 2)1/26/2007 2:28:55 PM

Control Tutorial: Step 3: Run the Test Case

A Employes: a3 = B EE Outline &3 &nnotations = O

package sharedcontrols.test: i | R

sharedcontrols, best

i ER

“import org.apache.bheshive.controls.api.bean.Control; . .
i N e . beshi 1 mir . c 11 = import declarations
import org.apache.beshive.controls.test.junit.Contro " org.apache.beshive.controls,
ubli 1 Erim 1 - T c tends C T 4— grg.apache.beehive.contrals,
B ic class EmployeeControlTestCase extends ControlTe =-® EmplavesControlTestCase
& emploveeControl @ EmploveesC
= AControl

@ kestEetManagerMames()
sharedcontrols.EmployeeControl enployeseControl;

= public void testGetManagerNames () |
String[] mwgrs = employeeControl.getManagerlame
gesertNotNull ("Didn't find managers!™, mgrs):
ggsertTrue("Found wrong nuwber of managers!™,
mgrs. length ==

£ > < >

-7 =8

—

Problems | Tasks | Properties | Servers | Database Explorer | Snippets | gu\Unit &3 L4 g8 @h % Eﬂ;
Fimished after 0.641 seconds

Funs: 1f1 B Errors: 0 B Failures: 1

= E?_I sharedcontrols. test . EmploveeControlTestCase [Runner: JUnit 3] Failure Trace :::E|

#’j testGetManagetMames

R
|

junit. Frarmeswark, AssertionFailedError: Found wrong number of manage
at sharedcontrols,. test, EmploveeControlTestCase . testzetManagerial
at jrockit. reflect, WirtualMativeMethodInvoker invoke(Liava. lang. Obje

1.

e
W
Y
W

Notice that at no time during this test was a server started, the test was running in a pure JUnit environment. The only special class used was
a standard sub-class of TestCase. (This is not universally true for all controls. In cases where the control takes a dependency on a server-
bound resource, the control cannot be thoroughly tested in a pure JUnit environment.)

Also, notice that the setup of the test case was very straight forward. Most of the setup was in making sure the test class lived in its own
source folder. By extending ControlTestCase and letting the JUnit wizard generate the stub methods, all you had to do was write your test
code.

Related Topics

Testing Controls

Click one of the following arrows to navigate through the tutorial:

-

file:///F|/depot/dev/src/workshop/product/pluging/com.beawo...oduct.wl.doc/html/control s'tutorial /tut TestControl Step3.html (2 of 2)1/26/2007 2:28:55 PM

Using System Controls

Using Controls
BEA Workshop for WebLogic Platform's controls make it easy to access encapsulated logic.

You can also create your own custom controls to encapsulate business logic in a reusable
component. For information on creating custom controls, see Custom Controls.

Topics Included in This Section

Invoking a Control Method
Describes how to insert a control into your code and invoke control methods.

Overriding Control Properties
Discusses how to override the properties that are set in the control.

Handling Control Events
Describes how to work with events generated by the control.

Handling Control Method Exceptions
Describes how to handle exceptions thrown by a control.

Control Transactions
Describes how to do transactions with a control.

Related Topics

Working with Beehive Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/control /navUsingControl s.html 1/26/2007 2:28:55 PM

Invoking a Control Method

Invoking a Control Method

The following topic explains how to utilize a (system or custom) control resource in an application.
This topic is divided into the following sections:

Adding a Control Declaration

Invoking a Method

Adding a Control Declaration

To invoke a control method, first add a control declaration to the calling client and then invoke a
method on that control.

To add a control declaration, open the J2EE perspective (Window > Open Perspective >
J2EE), right-click anywhere with the Java source of the client class and select Insert > Control.
Select from the list of controls available to your client.

See the topic Select Control Dialog for a complete description of the dialog below.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....product.wl.doc/html/control s/conl nvokingControl M ethod.html (1 of 4)1/26/2007 2:28:55 PM

Invoking a Control Method

W Select Control

&vailable Cantrals:

R Pl E ciskinig Project Contkrols

\#| CustamerControl - contrals

‘¥ ExtensibleCtr] - contrals

i IMSCEr] - {default package)
== Existing &pplication Controls

<Mo Controls Available =

== Mew System Conkrol

\@| EJB Contral

\@] JDEC Control

i IM3S Control

-4 1 Timer Control

+- = BInkegration Contrals

Zancel

Selecting a control from the dialog will add two things to your client class: (1) a control class
import statement and (2) a control class declaration:

MyClient.java

i nport controls. Customer Control;

@contr ol
private CustonerControl customnerControl;

Once the control class declaration is in place, you can call the control's methods.

Invoking a Method

Once you've added a control class declaration to your client class, you can invoke its methods
using the standard Java dot notation. For example, assume that you have added a declaration for
the control class CustomerControl:

@ontr ol

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....product.wl.doc/html/control s/conl nvokingControl M ethod.html (2 of 4)1/26/2007 2:28:55 PM

Invoking a Control Method

private CustonerControl custonerControl;
Also assume that the control defines a method get Cust oner s() :
public Customer[] getCustomers();

You can invoke this method from your client code as follows:

Custoner[] custResult = custonerControl.getCustomers();

Overriding Default Control Properties

Sometimes it is desirable to override a control property from within client code without editing the
control code. For example, suppose you have a database control where the JNDI data source
name is set by an annotation.

@dbcCont rol . Connecti onDat aSour ce(j ndi Name = "nyDat aSour ce")
public interface CustonerDB extends JdbcContr ol

But also suppose the JNDI name has changed, or you want to reuse the database control in
another context where the JNDI name of the data source is different. It might be inconvenient (or
impossible) to manually change the annotation value and recompile the control. In this case it is
desirable to override the JNDI value directly from within client code. To override the annotation
value you call into another class: the control's associated ControlBean class. The ControlBean
class implements all of the control's methods but also gives you programmatic access to the
control's annotation-based properties. The ControlBean is a generated JavaBean class that is
created automatically by Beehive when a control is built.

The following sections explain what this generated ControlBean class is and how to use it to
override default control annotation values.

You can also override annotation values that are set in the client class. For details see Overriding
Control Annotation Values Through the ControlBean below.

The ControlBean Generated Class

Every control has an associated ControlBean class. The ControlBean is generated automatically
and provides a programmatic way to access settings that otherwise would only be available
through the controls annotations. The ControlBean class typically does not exist as a JAVA source
file; instead only the compiled CLASS file is present within the application.

The ControlBean generated class is derived from the members and methods in the control. The
ControlBean generated class is really a superset of the original control class that provides a
broader set of access points into the control. In the case of the Timer control, the shape of the
ControlBean generated class is fixed (because the members and methods of the Timer control are
fixed). But in the case of extensible system controls (EJB, JDBC, and JMS controls) and custom
controls the ControlBean generated class is variable (because the members and methods of the
source controls are variable).

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....product.wl.doc/html/control s/conl nvokingControl M ethod.html (3 of 4)1/26/2007 2:28:55 PM

Invoking a Control Method

The name of the generated ControlBean class is the control name appended with 'Bean’. If the

control name is Cust onrer DB. | ava, then the generated ControlBean class will be Cust orrer DBBean.
cl ass.

For more infomation about the ControlBean generated from control sources see the Apache
Beehive documentation: The Control Authoring Model.

Related Topics

The Control Authoring Model

Overriding Control Properties

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....product.wl.doc/html/control s/conl nvokingControl M ethod.html (4 of 4)1/26/2007 2:28:55 PM

http://beehive.apache.org/docs/1.0.1/controls/programming.html#control_auth
http://beehive.apache.org/docs/1.0.1/controls/programming.html#control_auth

Overriding Control Properties

Overriding Control Properties

Sometimes it is desirable to override a control definition property from within client code or from an external configuration file. Common examples
overriding the endpoint address on a service control or the data source on a database control. Suppose that you have a database control definition where
the data source is configured as follows.

DatabaseControl.java (Control Definition Code)

@dbcControl . Connecti onDat aSour ce(j ndi Name = "myDat aSour ce")
public interface CustonerDB extends JdbcContr ol

What if you want to reuse the database control in another context where the data source is different? It might be inconvenient (or impossible) to manually
change the annotation value and recompile the control definition. In this case it is desirable to override the data source value from another source.

To override the annotation value in the control definition, you can do one of the following:

configure the value in the client code's control declaration (for use by developers)

set the value programmatically using the ControlBean API (for use by developers)

3.
configure the value using a deployment plan (for use by administrators)

Developers use option (2) when the properties of the control instance are not known until runtime. In this case you will typically first determine the
appropriate control properties and then reset those properties programmatically using the ControlBean API.

Option (3) is for use by server administrators who are managing the deployment of an application into a different environment. For example, if an
application is being promoted from a testing environment into a real world production environment. A deployment plan can override annotation values on
any of the control contexts in the application, including either the control definition or the control declaration in client code. Note that deployment plans can
only override contexts already established by annotations, they cannot add new contexts or override any value set through the ControlBean.

The hierarchical rules of precedence for these override methods are described below in Order of Precedence.

The diagram below shows the different options available to developers and administrators.

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control 'conOverridingControl Properties.html (1 of 6)1/26/2007 2:28:56 PM

Overriding Control Properties

Deweloper

App [utiltiy project]

DatabzseControl_ 1. j=2wa

@ldbcControl.ConnectionataSource(jndiMame = "dataS ource ™)
public inteface DatabaseControl_1 extends JdbcControl

{
1

Ohrarride an

contral declaration
(hlethod 17
st

Cwarride using
ControlBean AFI

(Methad 2

N

Module

DatabaseControl_2 . j=wa

@ldbcContral.ConnectionlataSource(jndiName = "dataSourceB")
public inteface DatabaseControl_2 extends JdbcControl

{
!

"]

MyFPageFlowCortroller ja2wva

publiz class yP ageFlowController extends PageFlawController

{

[@Cantral
private DratabaseControl_1 dbContral_1 ;

@Coantral
private DatabaseControl_2Bean dbControl_Zbean ;

!

& @DatabazeControl.ConnectionDataSourceljndiName = "dataSourcaC™)

™ dhCantral_2Bean.setConnectionDataSourcedndiMamedataSourceD);

Weblogic Server Console

App

[LratabaseControl_1
"dataSources" w—__ |

N

Module1 !

CratabaseControl_2
"dataSourceB"

"dataSourceC"

MwFageF lowC ontrol e

External owerride
using deployment plan

(Methad 3

Requirements for Annotation Overrides

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control 'conOverridingControl Properties.html (2 of 6)1/26/2007 2:28:56 PM

Adrninistrator

Overriding Control Properties

Annotation overrides are supported only when the following requirements are met:

Overrides are supported only for applications, not stand-alone modules.
The application must reference the weblogic controls EAR library (weblogic-controls-1.0).

Application scoped controls must be packaged in the APP-INF/lib directory. Controls referenced through the manifest classpath are not supported.
Method 1: Overriding Control Annotation Values Through the Control Declaration Field
You can override a control's default properties on the control's declaration field in your client code.
The database control above is declared with its default properties in the following way.
MyWebsService.java (Client Code)

@ont r ol
private DatabaseControl dbControl;

To override the default j ndi Nane property, use the following declaration.

@ont r ol
@pat abaseCont r ol . Connect i onDat aSour ce(j ndi Namre = "myQ her Dat aSour ce")

private DatabaseControl dbControl;

In the above declaration, the database control will use nyQ her Dat aSour ce instead of the value used in the control definition. This override value will apply
to all method calls from within MyWebService.java.

Method 2: Overriding Control Annotation Values Through the ControlBean Class

The ControlBean class implements all of the control's methods but also gives you programmatic access to the control's annotation-based properties. The
ControlBean is a generated JavaBean class that is created automatically by Beehive when a control is built. (Note that the control author may disable
overrides of control properties. See the @PropertySet annotation for details.)

The name of the generated ControlBean class is the control name appended with '‘Bean’. If the control name is Cust oner DB. j ava, then the generated
ControlBean class will be Cust oner DBBean. cl ass.

Use caution when you use this approach because it cannot be overridden by a deployment plan (method 3 below).

For more infomation about the ControlBean generated from control sources see the Apache Beehive documentation: The Control Authoring Model.

Calling ControlBean Methods

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control 'conOverridingControl Properties.html (3 of 6)1/26/2007 2:28:56 PM

http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/properties/PropertySet.html
http://beehive.apache.org/docs/1.0.1/controls/programming.html#control_auth

Overriding Control Properties

Suppose you have a database control where j ndi Nane attribute points at the data source nmyDat aSour ce.

DatabaseControl.java

@dbcControl . Connecti onDat aSour ce(j ndi Name = "nyDat aSour ce")
public interface CustomerDB extends JdbcContr ol

To override all other competing values of the url s property, add the database control's generated ControlBean class to your client and reset the JNDI (by

calling the appropriate method). Note that using the ControlBean class will override all competing values, including the value in the control definition, any
value set on a control declaration field, and any external configuration through a deployment plan.

To reference the ControlBean class, use the following declaration.

@ont r ol
private control s. Cust omer DBBean cust oner DBBean;

To override the JNDI value, call the set Connect i onDat aSour ceJndi Name(Stri ng nane) method.
cust omer DBBean. set Connect i onDat aSour ceJndi Name(" nyQt her Dat aSour ce") ;

Calling Methods on the Control Definition Class

In some cases the appropriate setter method is not on the ControlBean class, but on the control definition class. For example, to override the target url of
a service control, you call a method on a service control definition. The following control definition property:

@servi ceControl . Location(urls = {"http://sonme. donai n. conft WebSer vi ces/ Hel | oWor | d"})

public interface Hell oWwrl dServi ceControl extends ServiceControl

is overridden by the setEndpointAddress(String url) method on the control definition class.

Method 3: External Configuration in a Deployment Plan

Some annotation values can be overridden through an external configuration file as part of a deployment plan. For details on deployment plans see
Configuring Applications for Production Deployment in the WebLogic Server documentation.

Deployment plan configuration files can override annotation values both in the control definition class and on the control declaration field (in client code).
Also deployment plans can only change the values for annotations that are already present in the code. You cannot create a new configuration context
through a deployment plan.

Control authors have control over which control properties can be overridden using external configuration in a deployment plan. For details see the

@PropertySet annotation.

To create a deployment plan for a control, follow these steps:
file:///F)/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control 'conOverridingControl Properties.html (4 of 6)1/26/2007 2:28:56 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/ServiceControl.html#setEndpointAddress(java.lang.String)
http://e-docs.bea.com/wls/docs100/deployment/config.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/properties/PropertySet.html

Overriding Control Properties

1. Ensure that the application is packaged and deployed as an EAR file. The WebLogic Server console does not support deployment plans for exploded
applications.

To package your application as an EAR, select File > Export > EAR file.

To use the WebLogic Server console to deploy the application EAR, see Install an Enterprise Application in the WebLogic Server documentation.

2.
Click the Lock & Edit button and click the Deployments link to go to the Summary of Deployments page and click the application name.
3.
Select the Deployment Plan tab and then the Resource Dependencies (sub-)tab.
4.
Within the Controls node, controls are located either under the module's name or Application (if the controls are part of a utility project). Controls
are organized by classname, then instances, then fields. Select the annotation to be overridden. This will display the Array Value Overrides table.
5.
Select a cell in the Override Value column, enter the override value, and press the Enter key.
6.
After entering the new value click Save button on the Array Value Overrides table.
7.

Select a location to store the deployment plan and click Finish.
8. Return to the Deployments page by clicking the Deployments link.
If the application is not started (its state is marked as "Prepared"), then select the checkbox next to the application, and click the Start button.

If the application is already running (its state is marked as "Active"), then select the checkbox next to the application and click the Update button.
Select the first choice: Update this application in place, then click the Finish button.

9. Click the Activate Changes button.

Order of Precedence

The ControlBean always takes the highest order of precedence when overriding annotations values. The following order of precedence is used:

First, the values programmatically set through the ControlBean are consulted (see Method 2 above).

Second, any deployment plan overrides of values configured on the control declaration field are consulted (see Method 3 above).

3.
Third, the values configured on the field declaration are consulted (Method 1 above).

4.
Fourth, any deployment plan overrides of values set in the control definition are consulted (see Method 3 above).

5.
file:///F)/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control 'conOverridingControl Properties.html (5 of 6)1/26/2007 2:28:56 PM

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/applications/DeployEnterpriseApplications.html

Overriding Control Properties

Finally, the values in the control definition class are consulted.
Note that programmatically calling ControlBean methods takes precedence over all other values.

For example, suppose you declare a timer control in your client code and set the ti meout Seconds value with an annotation:

@i mer Control . Ti mer Setti ngs(repeat sEverySeconds=2, tineoutSeconds = 100)

@cont r ol
private TinmerControl tinmerControl;

You can override this timeout value programmatically by calling into the TimerControlBean class.
First declare the TimerControlBean in your client.

@ont r ol

private com bea. control. Ti mer Control Bean ti mer Contr ol Bean;
Then call the appropriate method to reset the timeout value.

ti mer Cont r ol Bean. set Ti ner Set ti ngTi meout Seconds(200) ;
Related Topics

The Control Authoring Model

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/control 'conOverridingControl Properties.html (6 of 6)1/26/2007 2:28:56 PM

http://beehive.apache.org/docs/1.0.1/controls/programming.html#control_auth

Handling Control Events

Handling Control Events

Controls allow the specification of event methods. Event methods provide a way for a control to asynchronously notify
its client that something has occurred. Event methods are especially useful when you don't want client resources to be
bound up with a network request or a long running operation. Instead of forcing the client to waste resources waiting
for the control to return a value, the client can disengage from the control and engage in other processes while it listens
for an event from the control.

A control event causes something to happen in the client code. When an control event method is triggered it sends an
event to the client, causing an event handler (implemented in the client) to execute. The event handler is a method like
any other, except that the client code does not determine when it is called; instead the control event method
determines when the event handler is executed.

Events and Callbacks

Events and callbacks both have same underlying intent: to provide a way to asynchronously notify client code that
something has occurred. The difference between the two technologies is, for the most part, terminological and a
question of scope: web services send "callback” messages, controls send "event" messages.

A Control Event Scenario

The diagram below shows a simple control event scenario. The scenario contains two main components: a web service
(the client) and a control (used by the client web service). (Notice that only the control interface class is depicted
below; the implementation class is not depicted.)

Rightward pointing arrows depict ordinary method calls; leftward pointing arrows depict events and event handlers.

CliertVabService java My Cortrol j=wa
1 2
start requesthdeszage
myCantrol_MyEventSet onhlessage onhleszage
3
g

The following sequence explains how the client web service invokes the control and receives an event from the control.
1. The client web service method start is executed, which invokes the control method requestMessage.
ClientWebService.java

@cont r ol
private MyControl nyControl;

public void start() {
myCont r ol . request Message() ;
}

2. The control method requestMessage is executed

file:///F|/depot/dev/src/iworkshop/product/plugins/com.bea...duct.wl.doc/html/control s'conHandlingControl Cal Ibacks.html (1 of 6)1/26/2007 2:28:56 PM

Handling Control Events
Notice that the requestMessage method signature is defined in the control interface class while the method body is

defined in the control implementation class. The message body invokes the event method. (See stage 3 below for
details on event method syntax.)

MyControl.java (Control Interface)

public void request Message();

MyControllmpl.java (Control Implementation)

public void request Message() {

/'l Invoke the event nethod to send the event to the client.
event Set . onMessage("This is a message fromthe customcontrol.");

3. The the event method onMessage is invoked an sends an event to the client.

The control interface class exposes the event set interface. Notice that the event set interface must be decorated by the
@EventSet annotation. The @EventSet annotation exposes all methods in the interface as event methods: methods
capable of triggering the corresponding event handlers in the client.

MyControl.java (Control Interface)

@vent Set
public interface MyEvent Set {

voi d onMessage(String aMessage);
}

Notice that is there is no implementation of the onMessage event method in either the control interface or
implementation classes. Only the event method signature (voi d onMessage(Stri ng aMessage)) exists in the control

interface class. This is because the only purpose of an event method is to invoke the event handler in the client and
pass data to that handler.

In this scenario, the event method onMessage has one parameter String aMessage, which is transmitted to the client's
method handler.

The @Client annotation causes the ControlBean to initialize an implementation of the event interface. This
implementation is used to fire events back to the client.

MyControllmpl.java (Control Implementation)

@l ient
MyEvent Set event Set ;

public void request Message() {

event Set . onMessage("This is a nessage fromthe customcontrol.");

}
4. The event handler executes.
ClientWebService.java

@ventHandl er(field = "myControl", eventSet = MyControl.MWEvent Set. cl ass, eventNane = "onMessage")
protected void nmyControl _My/Event Set _onMessage(String aMessage) {
Systemout. println("CGot nmessage fromnmyControl: " + aMessage);

}

file:/l/F|/depot/dev/src/iworkshop/product/plugins/com.bea...duct.wl.doc/html/controls'conHandlingControl Cal Ibacks.html (2 of 6)1/26/2007 2:28:56 PM

Handling Control Events
The @EventHandler annotation provides the pathway that allows the control event method onMessage to invoke the
client's event handler method. Notice that the @EventHandler contains all of the information necessary to indicate

which event method the handler is sensitive to: the target control, the event set, and the particular event in that event
set.

The event handler name can be anything (because the @EventHandler annotation does all of the work of sensitizing the
handler to the appropriate event method). By convention we have named the event handler according to the following
rule:

<control-reference-field-name>_<event-set-name>_<event-name=>

Workshop for WebLogic uses this naming rule by default when a event handler is added to a client class using Right-
click = Insert > Control Event Handler.

Note that the parameter set of the event method must match the parameter set of the event handler for the event
handler to be successfully invoked. In the above example, both the event method and its handler have matching
parameter sets, namely, one String parameter:

@vent Set
public interface MyEvent Set {

voi d onMessage(String aMessage);
}

@ventHandl er(field = "nyControl", eventSet = MyControl.MWEvent Set. cl ass, eventNane = "onMessage")
protected void myControl _M/Event Set _onMessage(String aMessage) {

}
Control Event Set Definition
An event set definition in a control consists of two elements:
(1) An @EventSet declaration on the event set interface:
MyControl.java

@ontrol I nterface
public interface MyControl ({

public void request Message();
@vent Set

public interface MyEvent Set ({
voi d onMessage(String aMessage);

Multiple event methods may be defined in the @EventSet declaration:
MyControl.java

@ontrol I nterface
public interface MyControl ({

public void request Message();

@vent Set
public interface M/Event Set {

file:/l/F|/depot/dev/src/iworkshop/product/plugins/com.bea...duct.wl.doc/html/control s'conHandlingControl Cal Ibacks.html (3 of 6)1/26/2007 2:28:56 PM

Handling Control Events

voi d onMessage(String aMessage);
voi d onReady(bool ean bool Ready) ;

(2) A @Client declaration in the control implementation:
MyControllmpl.java
@l i ent MyEvent Set event Set;
For events to be sent, you must invoke the event method somewhere within the control implementation.

public void request Message() {
event Set . onMessage("This is a nessage fromthe customcontrol.");

}

Note that the event method definition has no body -- only the method signature, including the return type and any
parameters.

It is common for event methods to have names that begin with on because the event handler in the client will be called
on occurrence of the event.

Event Handler Definition
The client application is responsible for implementing the handler for a control’'s event method.
The following shows an example of a event handler as it might appear in a client application:

@ventHandl er(field = "nyControl", eventSet = MyControl.MWEvent Set. cl ass, eventNane = "onMessage")
protected void eventHandl er (String aMessage) {

/1 do sonmething with the nessage here ...

For the event handler to successfully listen for an associated event, the following two conditions must be fulfilled:
(1) The @EventHandler annotation must point at the appropriate control, event set, and event.

This means that the field attribute must refer to the control field as it is declared in the client. Suppose the control field
is declared as so:

@ont r ol
private MyControl mnyControl;

Then the @EventHandler must refer to this field:
@vent Handl er(field = "myControl ",

The @EventHandler must also refer to the EventSet and the particular event method as they are defined on the control.
Suppose the control defines the following EventSet and event method:

@:vent Set
public interface MyEvent Set {
voi d onMessage(String aMessage);

file:///F|/depot/dev/src/iworkshop/product/plugins/com.bea...duct.wl.doc/html/control s'conHandlingControl Cal Ibacks.html (4 of 6)1/26/2007 2:28:56 PM

Handling Control Events

}
Then the @EventHandler must refer to the EventSet and event method as so:

@ventHandl er(field = "myControl", eventSet = MyControl.MWEvent Set. cl ass, eventNane = "onMessage")

(2) The event method and its handler must have matching parameter sets. That is, the number of parameters, their
order, and their types must match. For example, the following event method and handler have matching parameter
sets.

@vent Set
public interface MyEvent Set {
voi d onMessage(String aMessage, bool ean status);

}

@vent Handl er (...)
protected void eventHandl er (String aMessage, bool ean status) {

Limitations for External Events

External events are supported only for web service clients. Other clients cannot cannot handle event notification over a
network protocol.

Adding Event Sets and Event Handlers with Workshop for WeblLogic

The following commands are available for adding event sets and event handlers.

To Add an Event Set

To add an event set to a control, right-click anywhere within the control interface source view and select Insert >
Event Set. By default an event set interface named NewEventSet with one event method, named onEventl1(), is added
to the control interface:

SomeControl.java

@vent Set
public interface NewEvent Set ({
voi d onEvent 1();

}

And the corresponding @Client declaration is added to the control implementation file:
SomeControllmpl.java

@l ient
NewEvent Set event Set Cl i ent;

You must manually rename default the event set and event method names. Add additional event methods as necessary.
To Add an Event Handler

To add an event handler to a control client, right-click anywhere in source view and select Insert > Control Event
Handler. A dialog will appear presenting you with the controls declared on the client and the events exposed by those
controls. Select the control, event set, and particular event method to construct an event handler for that event method.

file:/l/F|/depot/dev/src/iworkshop/product/plugins/com.bea...duct.wl.doc/html/control s'conHandlingControl Cal Ibacks.html (5 of 6)1/26/2007 2:28:56 PM

Handling Control Events

W Insert Event Handler

Select events ko handle:

R] Contral Select Al

- MyEventset
onMessage : woid Deselect Al
+-[] MewEwentSet

8] 4 [_: | Zancel

An event handler will be added to your client's source:

@ventHandl er(field = "nyControl", eventSet = MyControl.MWEvent Set. cl ass, eventNane = "onMessage")
protected void nmyControl _M/Event Set _onMessage(String aMessage) {

}
Related Topics

Designing Asynchronous Interfaces

Apache Beehive documentation: @EventSet

Apache Beehive documentation: @EventHandler

Apache Beehive documentation: @Client

file:/l/F|/depot/dev/src/iworkshop/product/plugins/com.bea...duct.wl.doc/html/control s'conHandlingControl Cal Ibacks.html (6 of 6)1/26/2007 2:28:56 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/navAsynchronousInterfaces.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/index.html?org/apache/beehive/controls/api/events/EventSet.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/index.html?org/apache/beehive/controls/api/events/EventHandler.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/index.html?org/apache/beehive/controls/api/events/Client.html

Handling Control Method Exceptions

Handling Control Method Exceptions

The designer of a custom control may choose whether or not to explicitly declare that exceptions
are thrown by the control's methods. If a control method is declared to throw exceptions, you
must enclose your invocations of that method in a try-catch block.

Even if the designer of the control chooses not to declare exceptions, the support code that
implements the control can still throw exceptions. The type of exception thrown is com bea.

control. Control Excepti on.

You should strongly consider handling all control exceptions that may be thrown by the controls
you use. If you do not handle the exception, the exception will be passed on to the client of your
control. In most cases, the exception is useless to the client and the client does not have the
necessary information to diagnose or remedy the problem.

Related Topics

None

file:///F|/depot/dev/srciworkshop/product/plugins/com.beawork...product.wl.doc/html/control s conHandlingControl Exceptions.html 1/26/2007 2:28:56 PM

Control Transactions

Control Transactions

Ordinary control methods, event set methods, and web service control callback methods are transaction-enabled.
This topic provides an overview of transaction support in controls.

Transaction Behavior

The transaction behavior of a method, event set method, or callback method is specified by the
@TransactionAttribute annotation. The following example shows a web service callback decorated with

@TransactionAttribute.

public interface MyServiceControl extends ServiceControl

{

@servi ceControl . H t pSoapPr ot ocol
@ser vi ceControl . SOAPBi ndi ng(styl e = Servi ceControl . SOAPBi ndi ng. Styl e. RPC, use = ServiceControl.
SOAPBI ndi ng. Use. ENCODED)
@vent Set (uni cast =f al se)
public interface Call back {
@ransactionAttribute(Transacti onAttributeType. REQUI RES)
public void onCall back(java.lang. String nessage);

}

public void requestCal |l back();

In the above example, TransactionAttributeType.REQUIRES means that if a transaction was already started in the
callback thread, that transaction will be used; otherwise a new transaction will be started just before the callback
method is called. Depending on the result of the operation, the transaction could either be committed, rolled-back,
or marked as rollback (if started elsewhere).

The @TransactionAttribute has 6 legal settings:

REQUI RED - If the client is running within a transaction, the method/callback executes within the client's

transaction. If the client is not associated with a transaction, the interceptor starts a new transaction before
running the method/callback. Most control runtime-managed transactions use REQUI RED. This is the default

setting.

REQUI RES_NEW- If the client is running within a transaction, the control runtime suspends the client's

transaction, starts a new transaction, delegates the call to the method/callback, and finally resumes the client's
transaction after the method/callback completes. If the client is not associated with a transaction, the control
runtime starts a new transaction before running the method/callback.

MANDATORY - If the client is running within a transaction, the method/callback executes within the client's

transaction. If the client is not associated with a transaction, the control runtime throws a ControlException. Use
the MANDATCRY attribute if the method/callback must use the transaction of the client.

NOT_SUPPORTED - If the client is running within a transaction and invokes the control bean's method/callback, the

control runtime suspends the client's transaction before invoking the method/callback. After the method/callback
has completed, the control runtime resumes the client's transaction. If the client is not associated with a
transaction, the control runtime does not start a new transaction before running the method/callback. Use the
NOT_SUPPORTED attribute for method/callbacks that don't need transactions. Because transactions involve

overhead, this attribute may improve performance.

file:/I/F)/depot/dev/src/workshop/product/pluging/com.bea.w...op.product.wl.doc/htmi/controls/conControl Transactions.html (1 of 2)1/26/2007 2:28:57 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/annotations/TransactionAttribute.html

Control Transactions

SUPPORTS - If the client is running within a transaction and invokes the control bean's method/callback, the

method/callback executes within the client's transaction. If the client is not associated with a transaction, the
control runtime does not start a new transaction before running the method/callback. Because the transactional
behavior of the method/callback may vary, you should use the SUPPORTS attribute with caution.

NEVER - If the client is running within a transaction and invokes the control bean's method/callback, the control

runtime throws a ControlException. If the client is not associated with a transaction, the control runtime does
not start a new transaction before running the method/callback.

Exception Handling

Checked exceptions (those exceptions that are a sub-class of Exception, not RuntimeException) are handled
differently from other exceptions.

You can control the response to checked exceptions with the annotation attribute r ol | backOnCheckedExcepti on:
@ransactionAttribute(roll backOnCheckedExcepti on=<bool ean>)
If rol | backOnCheckedExcepti on is true, then the transaction will be rolled back (or be marked for rollback) when a

control method or callback method results in a checked exception. By default, r ol | backOnCheckedExcepti on is set

to false. The default behavior is that a transaction will not be automatically rolled back, even if the method/callback
invocation results in a checked exception being thrown. If invoking a control method/callback results in a system
exception (exceptions that are a sub-class of java.lang.RuntimeException and java.lang.Error), the transaction will
be rolled back (or marked for rollback) automatically.

Related Topics

@TransactionAttribute

file:/I/F)/depot/dev/src/workshop/product/pluging/com.beaw...op.product.wl.doc/htmi/controls‘conControl Transactions.html (2 of 2)1/26/2007 2:28:57 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/annotations/TransactionAttribute.html

Using System Controls

Using System Controls

BEA Workshop for WebLogic Platform's system controls make it easy to access J2EE resources like
databases and Enterprise JavaBeans from within your application. The control handles the work of
connecting to the enterprise resource for you, so that you can focus on the business logic to make
your application work.

You can also create your own custom controls to encapsulate business logic in a reusable
component. For information on creating custom controls, see Custom Controls.

Topics Included in This Section

Timer Control
Describes how to use the timer control to run code at specific time intervals.

Service Control
Discusses how to use a web service control to access web service operations through method
calls.

EJB Control
Describes how to use the EJB control to access an Enterprise JavaBean.

JMS Control
Describes how to access a JMS message queue or topic with a JMS control.

JDBC Control
Describes how to access use a JDBC control to access a database.

Related Topics

Working with Beehive Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.work...uct.wl.doc/html/control §/system/nav Sy stemControl sOverview.html 1/26/2007 2:28:57 PM

Timer Control

Timer Control
A timer monitors elapsed time:

. When a specific relative amount of time has passed (e.g., an hour)
. When a specific absolute moment has passed (e.g., midnight of February 12, 2015)
. At recurring intervals (e.g., every ten seconds)

. After an absolute time or a relative amount of time has passed, in recurring intervals
thereafter (e.g., after an hour, then every five minutes thereafter OR after noon on Tuesday,
then every hour thereafter)

The BEA Workshop for WebLogic Platform (Workshop for WebLogic) timer control allows you to
easily incorporate timer functionality into a web service.

To learn about other Workshop for WebLogic controls, see Using WebLogic System Controls.

Topics Included in this Section

Tutorial: Creating a Web Service with Timer Control

Walks through a step-by-step description of how to implement a simple timer control that
calls back every two seconds.

Overview: Timer Control

Discusses how the timer works, how times are specified, general techniques for working with
a timer control.

Creating and Configuring a Basic Timer Control

Describes how to declare/instantiate a timer control, configure settings, how to set up single-
instance timers and recurring timers, timer control methods and properties.

Setting up Web Service Operations to Access a Timer Control

Explains how to create web methods to start/stop a timer control and an event handler to
process the callback(s) when the timer elapses.

Changing Timer Settings Dynamically
Explains how to use methods on Ti ner Cont r ol Bean as an alternative to using the
Ti mer Cont rol interface and the Annotations view to change settings dynamically.

Using a Timer Control
Provides a detailed feature summary.

Related Topics

TimerControl Interface

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...duct.wl.doc/html/control s/system/timer/navTimerControl .html (1 of 2)1/26/2007 2:28:57 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Timer Control

Using WebLogic System Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...duct.wl.doc/html/control s/system/timer/navTimerControl .html (2 of 2)1/26/2007 2:28:57 PM

Overview: Timer Control

Overview: Timer Control

The timer control can notify a web service in the following ways:

1. A specific (absolute) timeout has passed (e.g., January 23, 2012 midnight)
A relative timeout has passed (e.g., an hour and seventeen minutes)

A recurring time interval has elapsed (e.g., every 3 minutes)

P WD

Both an intial timeout and a recurring interval (e.g., after one hour, every 5 minutes OR after
January 1, 2010, every hour thereafter)

The timer control can perform only one of these tasks at a time. If you wish to do more than one
timer task, you may create additional timer controls. Alternately, you may run a timer and on
completion, change the timer settings and start the timer again.

If a timer is created with NO time specified, then it will perform the default timer--a relative
timeout of O seconds.

All timer controls are instances of the com bea. control . Ti ner Cont rol base class or the com bea.
control . Ti mer Contr ol Bean base class. A timer control is declared directly in a .java file. Timer

controls are based on the EJB 2.1 timer service. Timer controls make a best-effort to do a callback
to the client when a timer elapses, suitable for application timers. However timer controls are not
a true real-time time service. Timer controls are allowed only in conversational (stateful) web
services.

Creating and Configuring a Basic Timer Control

To create a basic timer control, the IDE provides commands that will insert the declaration/
annotation for a Ti ner Contr ol into the code for your web service and set attributes.

To specify a relative timeout and/or recurring time, set the timer property values in the
Annotations view.

To specify an absolute timeout, call the set Ti reout At method on the timer control instance

before starting the timer. You can also stop the timer, reset the absolute timeout value and start
the timer again. If a recurring time value has been specified previously from Annotations view,
the recurring timer begins after the initial absolute time has elapsed.

To define a payload to be returned on the callback, call the set Payl oad method in your web

service before starting the timer.

To set other configuration values, you can use the Annotations view to set properties that

optionally specify the type of timer intervals (coalesced vs. non-coalesced), whether the timer is
transactional, and the JNDI Provider URL and Context Factory.

file:///F|/depot/dev/src/workshop/product/pluging/com.bea....ct.wl.doc/html/control §/system/timer/ovwTimerControl s.html (1 of 2)1/26/2007 2:28:57 PM

Overview: Timer Control

Setting up Web Service Operations to Access a Timer Control

To run the timer, once the timer has been declared and configured, you must create a
conversational web service and then within your web service you create operations (web
methods) that start/stop/restart the timer, based on the annotation settings or based on method

calls. The timer control requires a stateful conversational web service, so the web methods must
be set up appropriately.

To specify what happens when the timer elapses, you must set up an event handler in the
web service to process callbacks.

Changing Timer Settings Dynamically

To change settings programatically, (other than the absolute timeout value), you must use
Ti mer Cont r ol Bean. The bean is generated by the Beehive control framework at build time and

implements the Ti ner Cont r ol interface, providing additional properties and methods that allow
you to control all of the properties in the Annotations view at run-time.

Related Topics

Using WebLogic System Controls

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/src/workshop/product/pluging/com.bea....ct.wl.doc/html/control §/system/timer/ovwTimerControl s.html (2 of 2)1/26/2007 2:28:57 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Creating and Configuring a Basic Timer Control

Creating and Configuring a Basic Timer Control

To set up a timer control, you must insert the initial timer control into the web service and then
configure the settings for the control.

Using IDE Commands to Insert a Timer Control

To declare a new timer control, follow these steps:

1. Be sure that you are in the J2EE perspective. The current perspective is displayed just below
the toolbar at the top of the workbench. If you are not in J2EE perspective, click Window >
Open Perspective > J2EE to switch perspectives.

2. Double click the .java file name in the Project Explorer view at the left to open the Java
source file in the editor.

3. Right click on the editor pane and choose Insert > Control. The Select Control dialog
opens.

4. Expand New System Control and choose Timer Control. Click OK.

W Select Control

Available Contraols:

=l [= Existing Project Contrals
<Mo Controls Available =
-2 Existing Application Conkraols
<Moo Controls Available =
== Mew Syskem Conkrol
@] EJB Control
\@] JDEC Control
Ml M3 Conkral
'\-LJ._EI Timer Conkral
[=- Portal Controls
= Partal Event Controls
[Partal GroupSpace Search Conkrals
[=- Portal Misitar Tools Contrals
= &lIntegration Controls
[Partal Tool Controls
= Partal Gronnsnare Cantenls

(0] 4 [: | Cancel

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea..../html/control s/system/timer/conSettingUpA TimerControl .html (1 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

5. The timer control annotation is inserted into the code:

@cont r ol

private TinerControl tinerControl1;
and the default name of the new control (timerControll) is highlighted.

When you create a timer control, Workshop for WebLogic also inserts a line at the top of your .
java file to import the timer control class, com bea. control . Ti mer Control .

Note that you cannot create a new timer control in a Beehive page flow or a Java Server Page
(JSP file), because the timer control defines a callback, the onTi meout method, but page flow and

JSP pages cannot accept callbacks.

Before using a timer control, you must specify when the timer elapses. If you do not specify when
the timer elapses, the timer control will time out immediately (i.e., it will default to zero seconds).
Elapsed time is specified in an additional annotation @i ner Control . Ti ner Setti ngs() thatis

inserted into your code. Typically you will not edit the annotation manually but instead will use the
Annotations view to set property values.

Specifying Relative Timer Values through the Annotations View

For relative times, you can specify the timeout or the repeated time interval from the
Annotations view, which is available in J2EE perspective. Absolute times must be specified by
calling the control's method(s) as described in Setting an Absolute Timer with a Method Call.

To set a relative timeout or recurring time interval:

1. From the editor window, as long as the control name is highlighted, the Annotations view at
the right displays the properties of the new control. To set a relative timeout, click the
timeout or timeoutSeconds field and enter the amount of time you want to elapse before
the timer fires. This timer will elapse only once. The time value is a string, as described
below.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea..../html/control s/system/timer/conSettingUpA TimerControl .html (2 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

e G ¥
timerControl - Variable
Property Walue
= Control
interfaceHint java.ang.Object.cl...

= Timerlontrol, TimerSetiin
coalesceEvents
indiContextFactory
indiProviderURL
repeatsEvery
repeatsEverySeconds
timeout
tirmeout=econds
transactional

= lersionRequired
rnajor
minar

2. To set a recurring timer, in the repeatsEvery or repeatsEverySeconds field, specify the
interval between firings after the timer fires the first time. The time value is a string, as
described below.

Note that you should set ONLY ONE of timeout, timeoutSeconds and only ONE of
repeatskEvery, or repeatskEverySeconds. If you set both values, the xxxSeconds value
will be used.

Entering Relative Time Value Strings

When entering timeout or recurring time values, you must specify the relative time as a text
string--integers followed by case-insensitive time units. These time units can be separated by
spaces.

For example,
1 hour 30 mn

means one hour and 30 minutes and

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea..../html/control s/system/timer/conSettingUpA TimerControl .html (3 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

30 s
means 30 seconds.

The following time string is a valid duration specification that exercises all the time units, spelled
out fully:

99 years 11 nonths 13 days 23 hours 43 m nutes 51 seconds
This example creates a timer control which will elapse in almost 100 years.

Units may also be truncated. For example, valid truncations of "months" are "month”, "mont",
"mon", "mo", and "m". If both months and minutes are specified, use long enough abbreviations
to be unambiguous.

Text strings may also be in ISO 8601 extended format with the string "p" (case insensitive) at the
beginning of a text string. If it is present, then single-letter abbreviations and no spaces must be
used and parts must appear in the order y m d h m s. (http://www.w3.0org/TR/xmlschema-2/

#duration)

The following timer control declaration is equivalent to the previous example, but uses the fully
truncated form:

P99Y11Mb13D23HA3MG1S

Durations are computed according to Gregorian calendar rules, so if today is the 17th of the
month, 3 months from now is also the 17th of the month. If the target month is shorter and
doesn't have a corresponding day (for example, no February 31), then the closest day in the
same month is used (for example, February 28 in a normal year, February 29 in a leap year).

Using the Properties of the TimerControl Interface

The timer control interface has three properties:

. timeout At : initial timeout interval (date)
. i sRunni ng: tests if the timer control is currently running (boolean)

. payl oad: extra data that you can set before starting a timer; this data is passed back to the
event handler during each timeout event (serializable)

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea..../html/control s/system/timer/conSettingUpA TimerControl .html (4 of 9)1/26/2007 2:28:58 PM

http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#duration

Creating and Configuring a Basic Timer Control

Property Type Getter Setter Description
ti meout At Date Dat e voi d Initial timeout
get Ti neout At () set Ti meout At interval (relative
(Date arg0) time). Format is
java.util.Date.
i sRunni ng boolean bool ean Whether the timer
i sRunni ng() control is currently
running

(true=running,
false=stopped).

payl oad Serializable Serializable vol d set Payl oad [Extra data to be
get Payl oad() (Serializable passed back to the
ar go) event handler in
each timer
callback.

Setting a Timer Payload with a Method Call

To set a payload that will be supplied to the callback handler during a timeout event, call the

set Payl oad(Seri al i zabl e payl oad)

method before starting the timer. Calling this method after the timer is started will have no effect.
Since the payload is serializable, you must be careful that the class that the serializable
represents still exists, so that the object can be deserialized.

Setting an Absolute Timer with setTimeoutAt()

You can configure a timer control to fire at an absolute time by setting the Ti meout At property of
the Ti ner Cont r ol interface by calling set Ti neout At () .

The set Ti neout At method configures the timer to fire an event as soon as possible on or after

the supplied absolute time. If you supply an absolute time in the past, the timer will fire as soon
as possible.

If set Ti meout At is called while the timer is already running, it will have no effect until the timer is
stopped and restarted.

The set Ti meout At method takes as its argument a j ava. uti | . Dat e object. Please see the
documentation for the j ava. uti | . Dat e class to learn how to manipulate Dat e objects. Other Java
classes that are useful when dealing with Dat e are j ava. util . G egori anCal endar and j ava.

t ext . Si npl eDat eFor mat .

The get Ti meout At method returns the time at which the timer is next scheduled to fire, if the

repeats-every attribute is set to a value greater than zero. If the repeats-every attribute is set to
zero, then the get Ti meout At method returns the value set by the set Ti nreout At method or the

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.../html/control §/system/timer/conSettingUpA TimerControl .html (5 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

value set in the timeout attribute. If you call the get Ti nreout At method from within the
onTi meout callback handler, the first timeout has already fired, so get Ti neout At will return either
the time of the next timeout or the time of the first timeout if the timer is not set to repeat.

The following code snippet calls the set Ti neout At method to specify that the first timeout fires at
thirty seconds past the current minute, then calls the set Repeat sEvery method to specify that
the timer subsequently fires every sixty seconds.

@contr ol
private TinerControl tTinmer;

@\éebMet hod()
@onver sati on(val ue= Conversati on. Phase. START)
public void StartTimer()

{
Cal endar cd = new Gregori anCal endar () ;
cd. set (cd. SECOND, 30);
t Ti mer. set Ti neout At (cd. get Ti me());
t Ti mer. set Repeat sEvery(60);
tTimer.start();

}

Setting Other Timer Control Behavior

You can specify other settings of a timer control in J2EE perspective by setting the control's
properties in the Annotations view. For example, if you highlight the name of the timer control
instance named _ti ner in the code editor, the Annotations view displays the following

properties:

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea..../html/control s/system/timer/conSettingUpA TimerControl .html (6 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

B P A
_kimer - Yariable
Property YWalue
Context
Control
- TimerControl.TimerSetting:
coalesceEvents [true]
jndiContextFactory []
indiProviderURL []
repeatsEvery []
repeatsEverySeconds i
timeout
tirmeoutSeconds 5
transactional [true]
- ersionRequired
rmajor
rinor
< >

These properties correspond to attributes of the @i ner Control . Ti mer Setti ngs annotation,
which identifies the timer control in your code. The @i ner Contr ol . Ti mer Set ti ngs annotation
has the following properties:

Property Description/Values

ti meout Time until the timer control fires the first time, once
started (default: 0 seconds).

ti meout Seconds Time in seconds until the timer control fires the first time,
once started (default: 0).

repeat severy How often the timer control should fire after the first time
(default: O seconds i.e., non-recurring).

r epeat sever ySeconds How often the timer control should fire after the first time

(default: O i.e., non-recurring).

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea..../html/control s/system/timer/conSettingUpA TimerControl .html (7 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

coal esceEvent s Specifies whether multiple undelivered firing events of a
Timer control are delivered as a single onTimeout (true) or
as separate callbacks (false). Default: true.

At times, a Timer control may be unable to deliver one or
more callbacks to its referring service. This may occur
because the referring service is busy or because high
system load delays delivery. A set of undelivered callbacks
may accumulate. If the coalesceEvents attribute is true,
these accumulated callbacks are collapsed into a single
callback when the service becomes available. If
coalesceEvents is false, the accumulated callbacks are
delivered individually.

transacti onal True if timers participate in transactions and are durable
(default: true).

j ndi Cont ext Factory JNDI context factory class (default: none).

j ndi Provi der URL JNDI provider URL (default: none).

Understanding the Timer Control Declaration

When you create a new timer control, its declaration appears in the source file. The following code
snippet is an example of what a typical timer control declaration looks like:

i nport com bea. control . Ti mer Control;
@i mer Control . Ti merSettings(repeat sEverySeconds=5)

@contr ol
private TinerControl delayTimer;

The actual attributes that are present on the @i ner Control () annotation depend on the values
you specify for the properties in the Annotations view.

The @Cont r ol annotation informs Workshop for WebLogic that the associated declaration is a

control. Without this annotation, the control is not properly connected to supporting code and will
not function.

The @i mer Cont r ol () annotation controls the behavior of the timer control. All of the attributes of
the @i ner Contr ol () annotation are optional and have default values.

The timer control, named del ayTi nmer in the example above, is declared as an instance of
Ti mer Control .

Related Topics

Using WebLogic System Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.../html/control §/system/timer/conSettingUpA TimerControl .html (8 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea..../html/control s/system/timer/conSettingUpA TimerControl .html (9 of 9)1/26/2007 2:28:58 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Setting up a Web Service to Access a Timer Control

Setting up a Web Service to Access a Timer Control

Timer controls are used within conversational, stateful web services. Conversational web services have three
phases: start, continue, and finish.

To use a timer in a conversational web service, after declaring the timer control as described in Setting up a
Timer Control, you must implement a conversational web service to access the timer control. The minimum
requirements to access a timer control are:

1. Ensure that the web service implements the Serializable interface.
2. Define at least a start and finish operation.

3. Define an event handler to receive the callback(s) from the timer control when the timer elapses.

Setting the Web Service to Implement Serializable

Conversational web services must implement the java.io.Serializable interface. To set this in your web service,
on the class definition line for your web service, insert i npl enents Seri al i zabl e so that the class definition

looks something like this:
public class TinmerService inplements Serializable {

This will cause an error marker to appear in the marker bar on the class declaration line. Right click on the error
marker and choose Quick Fix.

file:/I/F)/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/control s/system/timer/conUsingA TimerControl .html (1 of 4)1/26/2007 2:28:58 PM

http://edocs.bea.com/wls/docs100/webserv/advanced.html#conversations

Setting up a Web Service to Access a Timer Control

—
TimerService, java [Designer] o TimerService.java X

package timer:;

import Jjavax.jwus.*:

ETebh3ervice
implements Serializab lej{

Toaggle Breakpaint
Dizable Breakpoink

Quick Fix

*:trlﬂ

Rewvert Line

#dd Bookmark, ..
add Task..,

v Show Quick, Diff Ckrl+3Shifk+0)
Shaw Line Numbers
Folding b

Preferences..,

Breakpoint Properties. .,

Design View Source Yiew

Right click on the error marker and choose Quick Fix. The Quick Fix pull-down will appear:

file:/I/F)/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/control s/system/timer/conUsingA TimerControl .html (2 of 4)1/26/2007 2:28:58 PM

Setting up a Web Service to Access a Timer Control

for] TimerCankrol. java [Designer] Elj X = 0

package timer:; |
import Jjavax.jwus.*:

ETebh3ervice
4 public class TiwerControl implements

Serializablef

'Setializable’ (java.io)
@ebMethod 4— Impaort ‘Serializable’ (sure,io
public wvoid hello(] | €9 Create interface 'Serializable!
¥ @ Change bo "3erializer’ (com.sun.org, apache.xml.internal s

' @ Change ta "serializer’ (com.sun.org, apache.xml.inkernal s

@ Change ta "serializer’ (javax, xml.rpc.encading)
Change bo "Serializer’ (weblogic, apache, xalan, serialize)
@ Change to "Serializer’ (weblogic. apache. xml. serialize) o

£ >

Design View Source Yiew

Click Import Serializable and press Enter and a new import line will be generated to resolve the error.

Defining Start/Stop Conversational Web Methods

A conversational web service differs from a regular web service in only one way: the Conversation property is
set to START, CONTINUE or FINISH. A web service typically has three operations:

1. An operation to start the timer which has Conversation set to START and contains a call to the timer
control's start() method.

2. An operation to stop the timer which has Conversation set to STOP and contains a call to the timer
control's stop() method.

3. An optional operation to restart the timer which has Conversation set to CONTINUE and contains a call to
the timer control's restart() method. This is primarily used for resetting a relative timeout or recurring time
intervals.

To define a conversational web method, right click on the code editor window and click Insert > Web Method.
With the name of the new web method highlighted, click on the Conversation setting in the Annotations view.
Use the pulldown to set the conversational state for the method.

- Caonversation
value {:l
- FrentHandier START
field COMTIMLUE
FIMISH
eventzet NOME
eventMarne

Calling the Methods of the TimerControl Interface

file:/I/F)/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/control s/system/timer/conUsingA TimerControl .html (3 of 4)1/26/2007 2:28:58 PM

Setting up a Web Service to Access a Timer Control

Once you have declared and configured a timer control, you can invoke its methods from within your application
to start and stop the timer and to change its configuration. For complete information on each method, see
TimerControl Interface.

The following list contains the methods of the Ti ner Cont r ol interface that you can use to start and stop the
timer:

. start (): starts timer operation. The timer control will fire after the period specified by the ti neout,
ti meout Seconds, repeatsEvery or repeat sEverySeconds attribute has passed. The start () method can
be called in either the START or CONTINUE phase of the conversation.

. restart(): stops the timer control and starts it again. This method is only useful when working with relative
timeout or recurring time intervals, since the timer is restarted with the same parameters.

. stop() : stops the timer control from firing again. Calling st art () will start the timer again. The st op()
method can be called in either the FINISH or CONTINUE phase of the conversation. Be sure to call the st op()
method when the conversation ends. Note that if you do not call the st op() method, the container will
automatically terminate the timer for you.

Setting up an Event Handler for Timer Callbacks

In addition to the web methods that start/stop the timer, the web service must provide for callbacks when the
timer elapses.

The timer control defines one callback: onTi neout . You can add code to the callback event handler to run when
the timer fires. The callback event handler for the onTi nbut event is named ti ner Nane_onTi neout , where
ti mer Nane is the name of the timer control instance.

The callback event handler takes two parameters: the time in seconds since the timer was started and the
payload. Note that this is not the same as the time at which the callback handler executes. A delay may occur
between timer control expiration and callback handler invocation, depending on the system load.

To create the callback event handler for a timer control's onTi neout callback, right click on the code window and

choose Insert > Control Event Handler. Workshop for WebLogic creates a callback event handler and places
the cursor in the callback event handler.

Related Topics

Using WebLogic System Controls

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:/I/F)/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/control s/system/timer/conUsingA TimerControl .html (4 of 4)1/26/2007 2:28:58 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Using a Timer Control

Changing Timer Settings Dynamically

If you want to reconfigure timer settings dynamically, you must use Ti ner Cont r ol Bean instead of
the basic Ti mer Cont r ol interface.

Ti mer Cont r ol Bean provides additional methods to programmatically get/set all of the parameter
values displayed on the Annotations view.

Using the TimerControlBean

When you use the Insert > Control command to create a timer control, the default annotation
that is inserted uses the TimerControl interface.

@ontr ol

private TinmerControl tinmerControl;

To use Ti mer Cont r ol Bean instead, simply change Ti nmer Cont rol to Ti mer Cont r ol Bean in the

timer control declaration line. This will cause an error marker to appear in the marker bar on the
class declaration line because Ti ner Cont r ol Bean requires an additional import. Right click on the

error marker and choose Quick Fix. The Quick Fix pull-down will appear:

B X

BControl
private jmbilaalifaBl=1=0

timerCcontroll;

= [mnport 'TimerConkrolBean' (com.bea. contral)
'3 Create class 'T
'E' Create interface 'TimerControlBean'

peti_ontrolBean’

i Change to 'TimerConkral' {com.bea, conkral)

#w Change to 'TimerControldssembler' {com,bea.control timer

#w Change to 'TimerZontrolBeanBeanInfo’ (com.bea,contraol)

Zhange to 'TimerZontrollmpl' {com.bea.contral timer)

i Change to 'TimerMBean' (javax.management.timet) v

4 b

click on Import 'TimerControlBean® and press Enter. A new import line
i nport com bea. control . Ti mer Contr ol Bean;
will be inserted at the top of your code and the problem marker will disappear.

Calling Methods on the TimerControlBean

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....oc/html/control §/system/timer/conAdvancedTimerControl .html (1 of 3)1/26/2007 2:28:59 PM

Using a Timer Control

Ti mer Cont r ol Bean implements the Ti mer Control interface and also defines the following
additional methods to get/set timer properties to get/set the property values:

Method Description

String getTimerSettingJNDl ContextFactory Returns the JNDI Context Factory.

()

Stri ng get Ti mer Set ti ngJ NDI Pr ovi der URL() Returns the JNDI Provider URL.

String getTimerSettingRepeatsEvery() Returns the relative time string for the
_ _ recurring timer setting.

Long get Ti mer Set ti ngRepeat sEverySeconds() Returns the number of seconds for the

recurring timer.

String getTimerSettingTi meout () Returns the relative time string for the
timeout.

Long get Ti mer Setti ngTi meout Seconds() Returns the number of seconds for the
timeout.

voi d set Ti mer Setti ngJNDI Cont ext Factory Sets the JNDI Context Factory.
(String arg0)

voi d set Ti mer Setti ngJNDI Provi der URL Sets the JNDI Provider URL.

(String argO)

voi d set Ti merSettingRepeat sEvery(String Sets the recurring timer by specifying a

ar go) relative time string.

voi d setTimerSettingRepeat sEverySeconds Sets the recurring timer to the specified

(Long arg0) number of seconds.

voi d set Ti mer SettingTi neout (String arg0) Sets the relative timeout to the relative
time string.

voi d set Ti merSettingTi neout Seconds(Long Sets the relative time to the specified

ar g0) number of seconds.

Note that the setTimerSettingxxx methods have no effect if the timer is already started. To set
values, you must stop the timer, call the method to set the value, and start the timer. This will
not create a new timer object, but will simply restart the existing control.

The getTimerSettingxxx methods work whether the timer is running or stopped.
Related Topics

Using WebLogic System Controls

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....oc/html/control §/system/timer/conAdvancedTimerControl .html (2 of 3)1/26/2007 2:28:59 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Using a Timer Control

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....oc/html/control §/system/timer/conAdvancedTimerControl .html (3 of 3)1/26/2007 2:28:59 PM

Using a Timer Control

Using a Timer Control

IDE Commands to Work with Timer Control

To insert a timer control, right click on the code editor and choose Insert > Control.
To insert a timer control using the TimerControlBean:

1. Right click on the code editor and choose Insert = Control.

2. Manually edit the annotation to change Ti ner Control to Ti ner Cont r ol Bean.

3. Do the required import for Ti mer Cont r ol Bean by right clicking on the problem marker in the marker bar beside the
annotation line and and choosing Quick Fix. Use the Quick Fix menu to do the necessary import for Ti ner Cont r ol Bean.

To display the properties of the timer control (or timer control bean) in Annotations view,

1. Be sure that J2EE perspective is open (as displayed just below the toolbar at the top of the workbench window); if it is not
open, click Window > Open Perspective to open J2EE perspective.

2. Double click on the timer control (or bean) name. The properties of the annotation will be displayed in the Annotations
view.

The IDE does not validate time strings that are entered in the Annotations view. Times are validated only at run-time.
Requirements for Web Services that use a Timer Control

Timer controls can only be used within a web service that is conversational and implements Serializable. See Designing
Conversational Web Services for more information.

TimerControl Annotation

See the TimerControl.TimerSettings annotation for a description of the annotations to set timer control parameters

The TimerControl Interface

The following properties and methods are provided on the Ti mer Cont r ol interface.

Properties

Property Type Getter Setter Description
runni ng boolean bool ean i sRunni ng() Tests if the timer is
currently running.
ti meout At Date Dat e get Ti neout At () voi d set Ti neout At (Dat e Initial timeout (absolute
ar g0) date);date is java.util.Date.
Calling set Ti neout At ()

replaces any existing
relative timer with the
specified absolute time.
Setting an absolute date in
the past causes an
immediate callback.

payl oad Serializable Serializabl e get Payl oad void set Payl oad Extra data that is passed

() (Serializable arg0) back to event handler on a

callback. If you specify a
payload, be sure that when
the timer callback occurs,
the object still exists, since
the payload is serializable.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea....c/html/control §/system/timer/conReferenceTimerControl .html (1 of 5)1/26/2007 2:28:59 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/converse/navMaintainingStatewithConversations.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/converse/navMaintainingStatewithConversations.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.TimerSettings.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Using a Timer Control

Methods

There are three methods for TimerControl.

Method Description

void start() Starts timer operation. The timer control will fire after the period specified by the ti meout ,
ti meout Seconds, repeatsEvery or repeat sEverySeconds attribute has passed. The start ()
method can be called in either the START or CONTINUE phase of the conversation.

Calling the start () method a second time on a timer has no effect. If a timer has been
stopped, calling start () starts the timer again.
voi d stop() Stops the timer control from firing again. Calling st art () will start the timer again. The st op()

method can be called in either the FINISH or CONTINUE phase of the conversation. Be sure to
call the st op() method when the conversation ends. Note that if you do not call the st op()

method, the container will automatically terminate the timer for you.

Calling the st op() method for a stopped event timer does not generate an exception. Calling
the st op() method more than once on a timer does not generate an exception.

void restart() Stops the timer control and starts it again. This method is only useful when working with
relative timeout or recurring time intervals, since the timer is restarted with the same
parameters.
Events

There is one event generated by the timer control

Event Description
onTi meout voi d cal I back(long tineout, Serializable payl oad) Occurs when the timer expires.

TimerControlBean

Ti mer Cont r ol Bean implements the Ti mer Cont r ol interface and provides the following additional methods and properties.

Properties
Property Type Getter Setter Description
coal esceEvent s boolean bool ean voi d Whether the
i sTi mer SettingCoal esceEvents() setTi merSettingCoal esceEvents timer control is
(bool ean ar go) set to use the_
coalesce
method for
recurring events.
transacti onal boolean bool ean voi d Whether the
i sTi mer SettingTransactional () set Ti mer Set ti ngTransacti onal timer control is
(bool ean ar go) currently
running in
transactional
mode.
Methods

The following additional methods are provided to get/set the property values displayed in the Annotations view:

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea....c/html/control §/system/timer/conReferenceTimerControl .html (2 of 5)1/26/2007 2:28:59 PM

Using a Timer Control

Method Description

String getTi mer SettingJNDI Cont ext Factory() Returns the JNDI Context Factory.

String getTi merSettingJNDI Provider URL() Returns the JNDI Provider URL.

String getTimer SettingRepeat sEvery() Returns the relative time string for the recurring timer
setting.

Long get Ti mer Set ti ngRepeat sEverySeconds() Returns the number of seconds for the recurring
timer.

String getTinerSettingTi neout () Returns the relative time string for the timeout.

Long get Ti mer Set ti ngTi meout Seconds() Returns the number of seconds for the timeout.

voi d set Ti mer Setti ngJNDI Cont ext Factory(String arg0) Sets the JNDI Context Factory.

voi d set TinerSettingJNDI Provider URL(String arg0) Sets the JNDI Provider URL.

voi d setTinerSettingRepeatsEvery(String arg0) Sets the recurring timer by specifying a relative time
string.

voi d set Ti mer Set ti ngRepeat sEver ySeconds(Long ar g0) Sets the recurring timer to the specified number of
seconds.

void setTimerSettingTi meout (String arg0) Sets the relative timeout to the relative time string.

voi d setTinerSettingTi meout Seconds(Long arg0) Sets the relative time to the specified number of
seconds.

Note that the setTimerSettingxxx methods have no effect if the timer is already started. To set time values, you must stop the
timer, call the method to set the value, and start the timer. This will not create a new timer object, but will simply restart the
existing control.

If both repeatEverySecond and repeatEvery are set, the timer does not generate an error, it uses the repeatEverySecond
value.

If both timeout and timeoutSeconds are set, the timer does not generate an error, it uses the timeoutSeconds value.

Setting an absolute date in the past or a negative time value in either the set Ti neout or set Ti meout Seconds methods causes an
immediate callback.

The getTimerSettingxxx methods work whether the timer is running or stopped.

The following methods are for internal use only and should NOT be used:

Methods for Internal Use Only
get Cal | backLi st ener

addCal | backLi st ener
renoveCal | back

renoveCal | backLi st ener
get Control I npl ement ati on
set Control | npl ement ati on

Events

There are no additional events generated by Ti ner Cont r ol Bean.

Relative and Absolute Time Strings
Relative Time Strings

Relative time values are used for relative timeouts and for recurring times. Relative time values are set either through the
Annotations view or by calling a method on Ti mer Cont r ol Bean.

Relative time is expressed as a text string, it is formatted as integers followed by case-insensitive time units. These time units
can be separated by spaces. For example, the following code sample is a valid duration specification that exercises all the time
units, spelled out fully:

@i merControl . TimerSettings(tineout="99 years 11 nonths 13 days 23 hours 43 minutes 51 seconds")
@ontrol ()

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea....c/html/control §/system/timer/conReferenceTimerControl .html (3 of 5)1/26/2007 2:28:59 PM

Using a Timer Control

Ti mer al nost Cent ury;

This example creates a timer control whose default initial firing will occur in almost 100 years.

Units may also be truncated. For example, valid truncations of "months" are "month", "mont”, "mon", "mo", and "m". If both
months and minutes are specified, use long enough abbreviations to be unambiguous.

Text strings may also be in 1SO 8601 extended format with the string "p" (case insensitive) at the beginning of a text string. If it
is present, then single-letter abbreviations and no spaces must be used and parts must appear in the ordery m d h m s. (http://

www.w3.0rg/TR/xmlschema-2/#duration)

The following timer control declaration is equivalent to the previous example, but uses the fully truncated form:

@i mer Control . Ti mer Settings(timeout="P99Y11M>13D23H43Mb1S")

@ontrol ()
Ti mer al nost Cent ury;

Durations are computed according to Gregorian calendar rules, so if today is the 17th of the month, 3 months from now is also
the 17th of the month. If the target month is shorter and doesn't have a corresponding day (for example, no February 31), then
the closest day in the same month is used (for example, February 29 on a leap year).

Absolute Time Strings

To specify that the timer fires at a specific (absolute time), you must use the set Ti mneout At method.

Absolute time is useful when you know the exact moment you want operations to begin and end. For example, your application
can have your web service send a reminder email to remind you that someone's birthday is coming up. Specific times are set as
for with a java.util.Date object (Java 1.5). Since the TimerSetting annotation does not allow you to specify a timeout in java.
util.Date format, you must use the set Ti neout At method. For more information, see Using Methods of the TimerControlBean

Interface to Set Parameters.

Methods on TimerControl for Backward Compatibility

An additional group of methods are provided on the TimerControl interface to provide backward compatibility with WebLogic
Workshop 8.1 applications. These methods are no longer recommended. The backward compatibility methods are:

Method Description

I 'ong get Ti meout () Get the current relative timeout value.

String get RepeatsEvery() Returns the recurring time interval in 1SO 8601 format (Pxxx).

bool ean get Coal esceEvent s() Returns whether the timer is running in coalesced or non-coalesced
mode. Deprecated.

voi d set Coal esceEvent s(bool ean coal esce) Turns on coalesced mode.

voi d setRepeat sEvery(long seconds) Sets the recurring timer by specifying a recurring time in seconds.

voi d setRepeatsEvery(String interval) Sets the recurring timer to the specified interval string.

voi d setTineout(String argo) Sets the relative timeout to the relative time string.

voi d setTi neout (| ong seconds) Sets the relative time to the specified number of seconds.

In WebLogic Workshop 8.1, a call to the start() method on a timer that was already started could potentially generate new timer
events. In Workshop for WebLogic 9.2 and 10.0, calling start() on a timer control that has already been started has no effect.

Caveats and Implementation Notes

The file weblogic_timer_control.jar contains the implementation of the timer control. This file defines the control interface and
implementation and a stateless session bean. This JAR is deployed automatically when a web services project is created.

The timer control implementation is provided by com.bea.wlw.control.timer.EjbTimerControllmpl which uses the EJB 2.1
Timer Service. A control bean delegates the creation and canceling of timers through the stateless session bean, using an EJB
Local interface. When a timer is expired, the ej bTi mreout method on the session bean will be invoked by the EJB container. The

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea....c/html/control §/system/timer/conReferenceTimerControl .html (4 of 5)1/26/2007 2:28:59 PM

http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#duration

Using a Timer Control
ej bTi meout method in turn retrieves the ControlHandle that was stored with the timer when the timer was created, and uses the
ControlHandle to dispatch the callback event to the target TimerControl. This implementation is agnostic of what container the

TimerControl is running in.

Since timer controls are based on the EJB 2.1 timer service, they are a best-effort to do a callback to the client as requested, not
a true real-time time service.

Related Topics

Using WebLogic System Controls

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea....c/html/control §/system/timer/conReferenceTimerControl .html (5 of 5)1/26/2007 2:28:59 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Service Control - Navigation

Service Control

A service control is a proxy for a web service. The web service client uses this proxy to access the
web service. Using a service control allows the web service client to access the operations of a
web service through simple method calls to the service control. A service control makes it easy to
access an external web service from a Workshop for WebLogic client application. You can create a
service control for any web service that publishes a WSDL file.

Note: You should not use a service control to invoke a web service that resides in the
same application. Invoking a web service via a service control means marshalling the
method parameters into a SOAP message on the calling end and unmarshalling the
SOAP message on the receiving end, then again for the method return value. This is
very inefficient when the invocation is local.

Topics Included in this Section

Overview: Service Controls and Web Service Clients
Introduces public contracts, service clients, and other aspects of service controls.

Creating and Using a Service Control
Explains how to create a new service control from a WSDL file, how to add an existing Web
Service control, and how to invoke the control from a web service client.

Handling Web Service Callback Messages
Describes how to handle callback messages sent from web services to a web service control.

Related Topics

Web Service Callbacks

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.works...duct.wl.doc/html/control §/system/service/nav ServiceControl .html 1/26/2007 2:29:00 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/conWsdlFiles.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/callback/ovwAsynchronousWebServices.html

Overview: Service Controls and Web Service Clients

Overview: Service Controls and Web Service Clients

A service control provides web service clients with easy access to a web service. The service
control is provided as one of the system controls. When using a service control, you can invoke a
web service operation by simply calling a method of the service control. The service control
manages the SOAP message exchange with the web service and returns the results of the web
service operation.

All service controls are interfaces that extend the com bea. control . Servi ceContr ol base class.

A service control provides an interface between your application and a web service, which allows
your application to invoke the methods and handle the callbacks of that web service. Using a
service control, you can connect to any web service for which a WSDL file is available, whether or

not it was built using Workshop for WebLogic.

In order to use web service controls, it may help you to understand several concepts. This topic
provides an overview of some of these concepts.

Understanding Public Contracts

Web services define and expose a public contract, which is typically expressed in a WSDL file. A

public contract describes two things: the operations that the web service can perform and the
format of the messages sent to the service to access its operations and receive operation results.
The contract is completely under the control of the author of the web service; it cannot be altered
by a client of the web service.

The public contract for a web service developed with Workshop for WebLogic is the collection of all
methods marked with the @¥bMet hod annotation plus all members of the Cal | back interface.

Each public contract is completely defined in the Java source file for the web service. When you
generate a WSDL file from a web service, the public contract is expressed according to the WSDL
standard.

The Web Service control cannot violate or modify the public contract of the web service it
represents. This restricts the type of changes you can make to a Web Service control. For
example, you can't modify the Service control to use a communication protocol that the target
web service doesn't understand.

Understanding Web Service Controls: Proxies for Web Services

In Workshop for WebLogic, a web service control serves as an intermediary, or proxy, for a web
service. When web service X wants to invoke an operation of web service Y, web service X calls a
Java method of the service control for Y. The service control converts the Java method invocation
into an appropriate message to send to the web service Y, and it communicates with web service
Y using a protocol that service Y can understand. The service control also converts returned
messages from web service Y back into Java method invocations on service X.

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw....wl.doc/html/control §/system/service/ovwServiceControl .html (1 of 2)1/26/2007 2:29:00 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/ServiceControl.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/conWsdlFiles.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/conWsdlFiles.html

Overview: Service Controls and Web Service Clients

In these ways, the service control allows web service X to use web service Y merely by
implementing application-level Java code. As the author of web service X, you do not need to
know the details of message formats or protocols.

Related Topics

Service Control

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw....wl.doc/html/control §/system/service/ovwServiceControl .html (2 of 2)1/26/2007 2:29:00 PM

Creating and Using a New Service Control

Creating and Using a Service Control

A service control makes it easy to access a web service from your application. You create a new
service control to access an existing web service (the target web service).

You can create a service control for a target web service if that web service publishes a WSDL file.

If the target web service was developed with Workshop for WebLogic, you can generate a WSDL
file by right clicking on the web service .java file and choosing Web Services > Generate
WSDL.

Creating a Web Service Control from a WSDL File

This procedure describes how to create a service control from the WSDL file for the target web
service.

1.
Import (or drag and drop) the WSDL file for the web service into a package under the
project's src folder. The project should be a web service project.

2.
Browse to the WSDL file in the Project Explorer view.

3.

Right-click on the WSDL file name and select Web Services > Generate Service Control.

Working with Complex Data Types

When you generate a service control, you will be prompted to create a JAR file that contains the
complex data types, if the web service returns data that is not standard Java data types (integer,
string, etc.).

If you want to work with the complex types without generating a service control, you can right
click on the WSDL and click Web Services = Generate Types JAR File to generate a JAR file
containing the classes needed to support the WSDL's complex types.

Using a Service Control

You use a service control in a client just as you would use any other control: first you declare the
control in the client and then you invoke methods on the control.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....control §/system/service/conCreatingANewServiceControl .html (1 of 2)1/26/2007 2:29:00 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#webservice

Creating and Using a New Service Control

You declare the control as follows:

@ont r ol
private Hel |l owrl dServi ceControl hellowWwrldCrl;

You invoke methods as follows:

hel | oWor1 dCtrl . hel | oWorl d();

For more information on invoking control methods in a client, see Invoking a Control Method and
Handling Control Events.

Related Topics

Overview: Web Service Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....control §/system/service/conCreatingANewServiceControl .html (2 of 2)1/26/2007 2:29:00 PM

Handling Web Service Callback Messages

Handling Web Service Callback Messages

This topic explains how a web service control handles callback messages sent from a web service
and passes them on to a control client.

A Web Service Callback Scenario

Suppose you have a web service that sends callback messages back to the client through a
service control.

The following diagram shows how the client, service control, and web service are related. The
client is a web service named HelloWorldClient.java, the service control is HelloWorldControl.java,
and the target web service is HelloWorldService.java.

Arrows pointing the right are ordinary methods. Arrows pointing to the left depict an event
handler method (onMessage_handler on the client), an event set method (onMessage on the
service control), and a callback method (onMessage on the target web service).

HelloWorldCliert . javwa HelloWorldCortrol jawa HelloWorl dweb Service jawva
requesthiezzage requesthieszage requesthieszage
onhleszage _handler onhleszage onhleszage
event zet handler method] [event set method] [zallback method]

Setting up a Callback Message Handler

Assume that the source code for the callback method onMessage on HelloworldWebService.java is
as follows:

HelloWorldWebService.java

@\bServi ce
public class Hell oWrl dWwebServi ce {

@al | backServi ce
public interface Call backSvc {

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....ontrol §/system/service/conHandlingWebServiceCal lbacks.html (1 of 2)1/26/2007 2:29:00 PM

Handling Web Service Callback Messages

@\ébMet hod
public void onMessage(String aMessage);

To handle this callback message in a service control, add an event set interface that includes a
method with the same name as the callback method, decorated with the annotation
@ServiceControl.ExternalCallbackEvent.

HelloWorldControl.java

@tvent Set (uni cast =t rue)
public interface Call back

{
@er vi ceCont rol . Ext er nal Cal | backEvent

public void onMessage(java.lang. String aMessage_arQ);

For information on using a service control in a client, see Creating and Using a Service Control.

For information on setting up a callback interface in a web service see Web Service Callbacks.

Automatically Generating a Service Control

You can automatically generate a service control with the appropriate event set methods by right-
clicking on the target web service's WSDL and selecting Web Service > Generate Service
Control. A service control will be generated with event set methods corresponding to all of the
callback methods in the target web service.

Related Topics

Creating and Using a Service Control

Web Service Callbacks

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....ontrol s/system/service/conHandlingWebServiceCal lbacks.html (2 of 2)1/26/2007 2:29:00 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/callback/ovwAsynchronousWebServices.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/callback/ovwAsynchronousWebServices.html

EJB Control

EJB Control

The EJB control makes it easy to use an existing, deployed Enterprise JavaBean (EJB) from your
application.

Enterprise JavaBeans (EJBs) are Java software components of enterprise applications. The Java 2
Enterprise Edition (J2EE) specification defines the types and capabilities of EJBs as well as the
environment (or container) in which EJBs are deployed and executed. Workshop for WebLogic also
provides tools for developing and deploying EJBs.

The EJB control in Workshop for WebLogic is the standard Beehive EJB control.

Topics Included in this Section

Overview: Enterprise JavaBeans and EJB Controls
Describes Enterprise JavaBeans and their relationship to EJB controls.

Creating a New EJB Control
Describes how to create and configure an EJB control.

Using an EJB Control
Describes how to use an existing EJB control from within a web service.

Beehive Documentation for EJB Control

Describes how to work with session and entity beans and how to handle exceptions that
might be thrown by an EJB.

Related Topics

Using System Controls

Developing Enterprise JavaBeans

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/control §/system/ejb/navEJB Control .html 1/26/2007 2:29:00 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/navEJB.html
http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/navEJB.html

Overview: Enterprise JavaBeans and EJB Controls

Overview: Enterprise JavaBeans and EJB Controls

To access the capabilities of an Enterprise JavaBean (EJB) without an EJB control, you must
perform several preparatory operations. You must look up the EJB in the JNDI registry, obtain the
EJB's home interface, obtain an EJB instance, and then finally invoke methods on the EJB's
remote interface to perform tasks.

The EJB control relieves you of all of this preparatory work. Once you have created the EJB
control, a web service, custom control or page flow can use the control to access the EJB's
business methods directly. The EJB control manages communication with the EJB for you,
including all JNDI lookup, interface discovery and EJB instance creation and management.

In short, EJB controls provide an alternative approach that makes it easy for you to use an
existing, deployed EJB from within an application. EJB controls support interaction with two of the
three types of EJBs, that is, session beans and entity beans. The EJB control does not support
direct communication with message-driven EJBs.

Note. You can send requests for messages indirectly to message-driven EJBs using the
JMS control instead. However, unlike the EJB control, the JMS control is not used to
locate and reference an existing message-driven EJB. For more information, see JMS

Control.

A short description of session and entity beans is provided below. To learn more about message-
driven beans, J2EE, and EJBs, consult the J2EE programming book of your choice.

Session EJBs

A session EJB is used to execute business tasks for a client on the application server. Stateful
session beans maintain conversational state when engaged by a client. That is, conversational
state is used to keep track of data between method invocations and to ensure that the bean
responds to the correct client. Stateless session beans do not use conversational state and the
contract with a client only lasts for the duration of the method invocation. A stateless session EJB
is not persistent, so when the client terminates, its session EJB disconnects and is no longer
associated with the client.

Entity EJBs

An entity EJB represents a business object in a persistent storage mechanism. Some examples of
business objects are customers, orders, and products. The persistent storage mechanism is a
relational database. Typically, each entity bean has an underlying table in a relational database,
and each instance of the bean corresponds to a row in that table. Unlike session beans, entity
beans are persistent, allow shared access, have primary keys, and may participate in relationships
with other entity beans.

EJB Interfaces
EJB 2.0 exposes four types of interfaces, called the local home interface, the local business

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....ml/control s/system/ejb/ovwOverviewEnterpriseJavaBeans.html (1 of 2)1/26/2007 2:29:01 PM

Overview: Enterprise JavaBeans and EJB Controls

interface (or simply, the local interface), the remote home interface, and the remote business
interface (or simply, the remote interface). Client applications can obtain an instance of the EJB
with which to communicate by using the remote home interface. The methods in the remote home
interface are limited to those that create or find EJB instances. Once a client has an EJB instance,
it can invoke methods of the EJB's remote business interface to do real work. The business
interface directly accesses the business logic encapsulated in the EJB. Interactions between EJBs
defined in the same Workshop for WebLogic application, as well as interactions between EJBs and
web services, custom controls or page flows in the same Workshop for WebLogic application, can
use the local interfaces instead, which provides a performance advantage over remote interfaces.
In other words, the local home and business interfaces define the methods that can be accessed
by other beans, EJB controls, web services, and page flows in the same Workshop for WebLogic
application, while the remote home and business interfaces define the methods that can be
accessed by other applications.

To create an EJB control to represent an EJB, you must know the names of the home and
business interfaces. The name for the home interface is typically of the form com nyconpany.

MyBeanNanmeHone or com nyconpany. MyBeanNaneLocal Hone, and the business interface is typically
of the form com nyconpany. MyBeanNane or com nyconpany. MyBeanNaneLocal . The EJB control

uses either the EJB's local interfaces or the remote interfaces. For more information about making
an EJB control, see Creating a New EJB Control. To learn more about how EJB controls interact

with session and entity EJBs, see Using an EJB Control.

Related Topics

Getting Started with EJB Project

EJB Control

Using WebLogic System Controls

Designing Conversational Web Services

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....ml/control s/system/ejb/ovwOverviewEnterpriseJavaBeans.html (2 of 2)1/26/2007 2:29:01 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/converse/navMaintainingStatewithConversations.html

Creating a New EJB Control

Creating a New EJB Control

Enterprise JavaBean (EJB) controls make it easy for you to use an existing, deployed session or
entity EJB from within an application. To create an EJB control, you must first make sure that the
EJB's (local or remote) home and business interfaces are available to your application.

Making EJB Interfaces Available to Your Application

Before you can create an EJB Control, the EJB's local or remote interfaces must be known in your
application. If the EJB is not part of the application, you make it available by adding the EJB's JAR
file to your Workshop for WebLogic application. While the complete EJB JAR file allows Workshop
for WebLogic to access the EJB's interfaces, the only classes actually required are the EJB's home
and remote interface classes and any other classes used externally by the EJB (for example, as
method parameters or method return types). The EJB compiler ejbc is capable of producing a
client JAR that will serve this purpose.

Creating a New EJB Control
To create a new EJB control:

1. Locate or create the package (folder) where you want to create the EJB control. This can be a
package in a utility project, dynamic web project, or web service project.

2. Right-click the package and choose New > EJB Control. The New Control dialog opens.

3. In the Control name field, enter the name of the new EJB control. Click Next.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....oc/html/control §/system/ejb/conCreatingANewEJB Control .html (1 of 4)1/26/2007 2:29:01 PM

Creating a New EJB Control

W New Control

EJB Control

Create a new Beehive EJB Control For simplified EJB access,

Enter or select the parent folder:

| Myt'ebServiceProject/src/controls

=123 MyWehServiceProject

i 1
[conkrols
[services

Control name: ||

4. Click the Browse application EJBs or Browse server EJBs button. The Browse
Resources dialog appears and you can select the EJB for which this control is being created.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....oc/html/control §/system/ejb/conCreatingANewEJB Control .html (2 of 4)1/26/2007 2:29:01 PM

Creating a New EJB Control

W New Control

EJB Control

Create a new Beehive EJB Control For simplified EJB access,

This EJ& contral finds the EJE with this JMDI name or EJB link.
f+ INDI name: ||

" EXBlink: |

This EJB control uses these interfaces

Home interface: |

Business interface: |

This EJB contralis a © Session control * Entity conkral

Browse Application EJBs. .. Erowse Server EJBs...

The Browse application EJBs button will return a list of all the EJBs known within the
current application. These are EJBs developed in the application as well as EJBs defined in
EJB JARs added as modules to the application. If only the EJB's local interface is defined, the
EJB will appear in the list with a |l ocal ej b-1ink reference. If an EJB's local interface and
local INDI name are defined, the EJB will also appear with a |l ocal j ndi reference. The same
analogy applies to remote interfaces.

If the server is running, the Browse server EJBs button will return a list of all the EJBs
known on the server used by the current application. Only included in this list are EJBs whose
remote (home and business) interfaces are defined.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....oc/html/control §/system/ejb/conCreatingANewEJB Control .html (3 of 4)1/26/2007 2:29:01 PM

Creating a New EJB Control

5. Select the appropriate EJB from the list and click Finish. The name appears in the jndi-
name field, and the interfaces used by this EJB appear in the home interface and bean
interface fields.

6. Click Finish.

To insert the EJB control into a web service, web application or another control, see Using an EJB
Control.

Modifying EJB Controls

If you open an EJB control in the editor window, you will notice that the control simply extends
the EJB's interfaces. Unlike some other controls, the EJB control's class definition does not contain
method declarations that invoke the EJB's methods. In other words, the EJB control only serves to
reference the EJB and to expose its methods, and cannot be used to limit access to, or modify,
these methods.

To see the EJB methods exposed by the EJB control, insert an EJB control in a web service or
page flow.

When you modify the EJB's methods or add additional methods to the interfaces that the EJB
control references, you do not need to modify the EJB control (but you must rebuild the EJB).
When you modify the name of the used interfaces, the JNDI name (if the EJB control uses the jndi
name), or the bean name or EJB JAR name (if the EJB control uses a ej b-1i nk), you must modify

the EJB control to reflect these changes.

For more information, consult the Beehive documentation for EJB control.

Related Topics

Using System Controls

Using an EJB Control

Tutorial: Enterprise JavaBeans

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....oc/html/control §/system/ejb/conCreatingANewEJB Control .html (4 of 4)1/26/2007 2:29:01 PM

http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial/tutEJBIntro.html

Using an EJB Control

Using an EJB Control
You can add an EJB control to any of the following:

. another control
. a page flow

. aweb service
To Insert a New EJB Control
To create a new EJB control and insert it into your source code in a single step:

1. Make sure you have opened the target web service, page flow controller or control in the
editor window.

2. Right click on the editor window and choose Insert > Control.

W Select Control

&vailable Controls:

—|-[~= Existing Project Controls
<Moo Controls Available =
== Existing Application Conkraols
=Mo Contraols Available =
=l [= Mew Syskem Caontral
EJE Contral
\@] IDBC Control
“id JMS Contral
-4 1 Timer Control
[Parkal Contrals
[=~ Portal Event Contrals
= Partal GroupSpace Search Contrals
[Partal Misikor Tools Conkrols
[=- Portal Tool Contrals
[~ Partal GroupSpace Conkrols

Cancel

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....html/control s/system/ejb/conUsingAnExistingeJBControl .html (1 of 3)1/26/2007 2:29:01 PM

Using an EJB Control

Under New System Control, click on EJB Control and click OK.

3. Follow the instructions in Creating a New EJB Control.

To Insert an Existing EJB Control

1. Make sure you have opened the target web service, page flow controller, control or JSP in
the editor window.

2. Right click on the editor window and choose Insert = Control.

W Select Control

Available Controls:

== Existing Project Controls
E] MwEJE - contrals
-l [= Existing Application Conkrals
<Mo Controls Available =
=2 Mew Syskem Conkrol
\@| EJB Control
\@] JDBC Control
Ml M3 Conkral
£4] Timer Control
[~ Parkal Contrals
[Partal Event Controls
[=~ Portal GroupSpace Search Controls
= Partal Misitor Tools Conkrols
[Partal Tool Contraols
[=~ Portal GroupSpace Conkrols

(0] 4 QSJ Cancel

Click on the name of the control and click OK.

Accessing the Methods of an EJB

After you have created an EJB Control, you can invoke a target EJB method via the EJB control.
Specifically, the EJB control exposes all and only the EJB methods defined in the EJB interfaces
that the control extends. You can invoke these methods simply by invoking the method with the
same signature on your EJB control.

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....html/control s/system/ejb/conUsingA nExistingeJB Control .html (2 of 3)1/26/2007 2:29:01 PM

Using an EJB Control

The EJB control automatically manages locating and referencing the EJB instance, and directs
method invocations to the correct instance of the target EJB. Whether or not you must first create
an instance of the target EJB using the EJB's cr eat e method depends on whether the EJB control

references a session or an entity bean. Consult the Beehive documentation for EJB control for
more information.

Related Topics

Overview: Enterprise JavaBeans and EJB Controls

Creating a New EJB Control

Getting Started with Session Beans

Getting Started with Entity Beans

file:///F|/depot/dev/src/workshop/product/pluging/com.bea....html/control s/system/ejb/conUsi ngA nExistingeJB Control .html (3 of 3)1/26/2007 2:29:01 PM

http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/session/conGettingStartedWithSessionBeans.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/entity/conGettingStartedWithEntityBeans.html

JMS Control

JMS Control

The JMS control enables applications built in Workshop for WebLogic to easily interact with
messaging systems that provide a JMS implementation, such as WebLogic Server.

A specific JMS control is associated with particular facilities of the messaging system. Once a JMS
control is defined, clients may use it like any other Workshop for WebLogic control. To learn how
to create, configure and register JMS queues, topics and connection factories, consult the
WebLogic Server documentation on Programming WebLogic JMS.

The following changes have been made in the JMS control that was provided in WebLogic
Workshop 8.1:

. In WebLogic Workshop 8.1, there was {parm} support in method level annotations. This is no
longer supported. You have to annotate parms to specify header or property values.

. New transacted annotation needs to be false when used in a container-managed transaction.

The JMS control in Workshop for WebLogic is the standard Beehive JMS control.

Topics Included in This Section

Creating a New JMS Control
Describes how to create a JMS control.

Using a JMS Control
Describes how to use a JMS control in a client.

Beehive Documentation for JMS Control
Describes how to set message body, header and properties.

Related Topics

Using System Controls

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea.workshop.product.wl.doc/html/control s/system/jms/navIM SControl .html 1/26/2007 2:29:01 PM

http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html

Creating aNew JM S Control

Creating a New JMS Control

The JMS control enables applications built in Workshop for WebLogic to interact with messaging
systems that provide a JMS implementation. This topic describes how to create a new JMS control
and provides an example of a valid JMS control file.

To create a new JMS control:

1. Locate or create the package (folder) where you want to create the JMS control. This can be
a package in a utility project, dynamic web project, or web service project.

2. Right-click the package and choose New = JMS Control. The New Control dialog opens.

3. In the Control name field, enter the name of the new JMS control. Click Next.

W New Control

IS Control

Create a new Beehive IM3 Contral For simplified M3 access,

Enter or select the parent folder:

| Myt'ebServiceProject/srcfcontrols

== MywWebServiceProject

R 1
[conkraols

[services

Conkrol name: | |

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...c/html/control /sy stem/jms/conCreatingANewJM SControl .html (1 of 3)1/26/2007 2:29:01 PM

Creating aNew JM S Control

Cancel

4. From the next dialog, choose the JMS gueue settings:

W New Control

IS Control

Create a new Beehive IMS Contral For simplified JMS access.,

Message [vpe: Auko j

M3 send destination tvpe Auto - |

Mame of queue or topic on which ko send messages

JMCT narme of queus or bopic: | Browse, ..

Connection Factory ko create connections ko the gueue or topic

IMDI name of connection Fackory: | Browse. ..

Cancel

In the JNDI name of queue or topic field, type the name of the queue or topic that will
receive messages. If you do not know the name, click Browse, choose from the available list
and click Finish.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...c/html/control /sy stem/jms/conCreatingANewJM SControl .html (2 of 3)1/26/2007 2:29:01 PM

Creating aNew JM S Control

In the JNDI name of connection factory field, type the name of the connection factory to
create connections to the queue or topic. If you do not know the name, click Browse,
choose from the available list and click Finish.

5. Click Finish.

To insert the JMS control into a web service, web application or another control, see Using a JMS
Control.

Related Topics
JMS Control

Using System Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...c/html/control /sy stem/jms/conCreatingANewJM SControl .html (3 of 3)1/26/2007 2:29:01 PM

Using an EJB Control

Using a JMS Control

You can add a JMS control to any of the following:

. another control
. a page flow

. aweb service
To Insert a New JMS Control
To create a new JMS control and insert it into your source code in a single step:

1. Make sure you have opened the target web service, page flow controller or control in the
editor window.

2. Right click on the editor window and choose Insert > Control.

W Select Control

&vailable Controls:

—|-[~= Existing Project Controls
<Moo Controls Available =
== Existing Application Conkraols
=Mo Contraols Available =
=l [= Mew Syskem Caontral
@] EJB Control
\@] JDBC Control
2l M5 Conkrol
-4 1 Timer Control
[Parkal Contrals
[=~ Portal Event Contrals
= Partal GroupSpace Search Contrals
[Partal Misikor Tools Conkrols
[=- Portal Tool Contrals
[~ Partal GroupSpace Conkrols

2k %J Cancel

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....html/control /sy stem/jms/conUsingA nExi stingJM SControl .html (1 of 3)1/26/2007 2:29:02 PM

Using an EJB Control

Under New System Control, click on JMS Control and click OK.

3. Follow the instructions in Creating a New JMS Control.

To Insert an Existing JMS Control

1. Make sure you have opened the target web service, page flow controller or control in the
editor window.

2. Right click on the editor window and choose Insert = Control.

W Select Control

Available Controls:

== Existing Project Controls
:'3 My IMSControl - conkraols
-l [= Existing Application Conkrals
<Mo Controls Available =
=2 Mew Syskem Conkrol
\@| EJB Control
\@] JDBC Control
Ml M3 Conkral
£4] Timer Control
[~ Partal Contrals
[Partal Event Controls
[=~ Portal GroupSpace Search Controls
= Partal Misitor Tools Controls
[Partal Tool Contraols
[=- Portal GroupSpace Controls

(0] 4 %l Cancel

Click on the name of the control and click OK.

Once you've set up the JMS control, you can add code to send and receive messages via JMS.

JMS Control Properties

The properties of the JMS control can be set using Annotations view from J2EE perspective when
the client .java file is open in the editor and the cursor is located in the JMS control name. You
specify the messaging style (queue, topic or automatic) and provide the JNDI identification for the

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....html/control s/system/jms/conUsingA nExistingIM SControl .html (2 of 3)1/26/2007 2:29:02 PM

Using an EJB Control

gueue or topic. You also specify a connection factory for the control. For detailed information on
the @MSCont r ol annotation and its attributes, see the Beehive documentation for the JMS

control.

JMS Control Methods

The JMS control has the following default methods:

getConnection() - returns the javax.jms.Connection
getDestination() - returns the javax.jms.Destination

getSession() - gives you programmatic access to the JMS session.

setHeader(HeaderType, Object) - Sets a JMS header to be assigned to the next JMS message
sent.

setHeaders(Map) - Sets multiple JMS headers to be assigned to the next JMS message sent.

setProperties(Map) - Sets JMS properties to be assigned to the next JMS message sent.

setProperty(String, Object) - Sets a JMS property to be assigned to the next JMS message
sent.

One of the following methods for sending a message to the service, depending on what value
you selected for the Message Type when you created the control: sendText Message() ,

sendByt esMessage(), sendoj ect Message(), or sendJMSMessage() . You can use one or more
of these methods, or you can define your own methods for sending a message to the service.

All of the methods you define on the JMS control send or publish to the queue or topic named by
the sendJndi Nane attribute of the @MSCont r ol annotation.

Consult the Beehive documentation for JMS control for more information.

Related Topics

JMS Control

Using System Controls

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....html/control /sy stem/jms/conUsingA nExi stingJM SControl .html (3 of 3)1/26/2007 2:29:02 PM

http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html

JDBC Control

JDBC Control

A JDBC control makes it easy to access a relational database from your application. Using the
JDBC control, you can issue SQL commands to the database. The JDBC control automatically
performs the translation from database queries to Java objects, so that you can easily access
query results.

A JDBC control can operate on any database for which an appropriate Java Database Connectivity
(JDBC) driver is available or which has a data source configured in WebLogic Server. When you
add a new JDBC control to your application, you specify a data source for that control. The data
source indicates which database the control is bound to.

Topics Included in this Section

Tutorial: Accessing a Database from a Web Application
Provides step-by-step instructions for using a JDBC control in a web application (page flow).

Overview: JDBC Controls
Introduces the basic concepts behind database controls.

Creating a New JDBC Control
Explains how to create a new database control.

Using a JDBC Control
Explains how to use an existing database control.

Adding a Method to a Database Control
Describes how to write methods on a database control.

Using the Backward-Compatible RowSet feature (WebLogic Workshop 8.1)
Describes how to work with a RowSet (using an XSD to define metadata) from an application
upgraded from WebLogic Workshop 8.1. This feature is deprecated, and should not be used
for developing new applications.

Beehive documentation for JDBC control
Describes how to work with a JDBC control including controlling the data returned, handling
exceptions, parameter substitution, stored functions and procedures, and JDBC control return
types (including mapping ResultSets to RowSets).

Related Topics

Using System Controls

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.work...oduct.wl.doc/html/control §/system/jdbc/navDatabaseControl .html 1/26/2007 2:29:02 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webapplications/tutorial/tutWebAppIntro.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html

Overview: Database Controls

Overview: JDBC Controls

A JDBC control makes it easy to access a relational database from your Java code using SQL
commands.

The methods that you add to a JDBC control execute SQL commands against the database. You
can send any SQL command to the database via the JDBC control, so that you can retrieve data,
perform operations like inserts and updates, and even make structural changes to the database.

All JDBC controls are subclassed from the JdbcCont r ol interface. The interface defines methods
that JDBC control instances can call from an application.

Related Topics

None

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.work...duct.wl.doc/html/control §/system/jdbc/ovwDatabaseControl s.html 1/26/2007 2:29:02 PM

Creating a New Database Control

Creating a New JDBC control

A JDBC control makes it easy to access a relational database via SQL commands. When you
create a new JDBC control, you specify which database it connects to and write methods to access
data using SQL commands. This topic describes the mechanics of creating a JDBC control.

Choosing a Data Source

Before you can perform operations on a database, you must have a connection to the database.
The JDBC control handles all of the details of managing the database connection, but you must
supply the name of a data source that has been configured with the information necessary to
access a database.

To learn how to create, configure and register a data source, see the documentation provided for
WebLogic Server.

Adding a JDBC control

You can add a JDBC control in any of the following types of files:

. another control
. a page flow

. a web service
To create a new JDBC control:

1. Locate or create the package (folder) where you want to create the JDBC control. This can be
a package in a utility project, dynamic web project, or web service project.

2. Right-click the package and choose New = JDBC Control. The New Control dialog opens.

3. In the Control name field, enter the name of the new JDBC control. Click Next.

file:///F|/depot/dev/src/workshop/product/pluging/com.bea....I/control s/system/jdbc/conCreatingANewDatabaseControl .html (1 of 3)1/26/2007 2:29:02 PM

http://edocs.bea.com/

Creating a New Database Control

W New Control

JDBC Control

Create a new Beehive JDBC Control For simplified database access,

Enter or select the parent folder:

| Myt'ebServiceProject/src/controls

=123 MyWehServiceProject

=% src
[~ conkrols
[services

Control name: ||

4. Click the Browse button to select the data source.

The JNDI Entries dialog appears. Navigate to the data source you want to select and click
Select.

Click Finish.

To learn how to add a method to a JDBC control, see Adding a Method to a JDBC control.

file:///F|/depot/dev/src/workshop/product/pluging/com.bea....I/control s/system/jdbc/conCreatingANewDatabaseControl .html (2 of 3)1/26/2007 2:29:02 PM

Creating a New Database Control

Related Topics

System Controls Overview

JDBC control

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....I/control s/system/jdbc/conCreatingANewDatabaseControl .html (3 of 3)1/26/2007 2:29:02 PM

Using an EJB Control

Using a JDBC Control

You can add a JDBC control to any of the following:

. another control
. a page flow

. aweb service
To Insert a New JDBC Control
To create a new JDBC control and insert it into your source code in a single step:

1. Make sure you have opened the target web service, page flow controller or control in the
editor window.

2. Right click on the editor window and choose Insert > Control.

W Select Control |:”E| le

&vailable Controls:

—|-[-= Existing Project Controls
<Moo Controls Available =
=~ Existing Application Conkrols
=Mo Contraols Available =
=l [= Mew Syskem Caontral
@] EJB Control
Q] JDBC Conkral
“id JMS Contral
-4 1 Timer Control

[Parkal Contrals

[=~ Portal Event Contrals

= Partal GroupSpace Search Contrals
[Partal Misikor Tools Conkrols

[=~ Portal Tool Contrals

= Portal GroupSpace Conkrols

Cancel

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...l/control §/system/jdbc/conUsingAnExistingJDBCControl .html (1 of 3)1/26/2007 2:29:02 PM

Using an EJB Control

Under New System Control, click on JDBC Control and click OK.

3. Follow the instructions in Creating a New JDBC Control.

To Insert an Existing JDBC Control

1. Make sure you have opened the target web service, page flow controller or control in the
editor window.

2. Right click on the editor window and choose Insert = Control.

W Select Control

Available Controls:

== Existing Project Controls
Q] My IDBCContral - controls
-l [= Existing Application Conkrals
<Mo Controls Available =
=2 Mew Syskem Conkrol
\@| EJB Control
\@] JDBC Control
Ml M3 Conkral
£4] Timer Control
= Parkal Contrals
[Partal Event Controls
[=- Portal GroupSpace Search Controls
= Partal Misitor Tools Controls
[Partal Tool Contraols
[=- Portal GroupSpace Conkrols

(0] 4 L\{J Cancel

Click on the name of the control and click OK.

Accessing the Methods of a JDBC Control

After you have created a JDBC Control, you can invoke the methods of the control in the same
way as accessing the methods of a regular object. Consult the Beehive documentation for JDBC
control for more information.

Related Topics

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...l/control §/system/jdbc/conUsingA nExistingJDBCControl .html (2 of 3)1/26/2007 2:29:02 PM

http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html

Using an EJB Control

Using System Controls

Creating a JDBC Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...l/control §/system/jdbc/conUsingAnExistingJDBCControl .html (3 of 3)1/26/2007 2:29:02 PM

Adding a Method to a Database Control

Adding a Method to a JDBC control

The JDBC control provides access to a relational database. The methods that you add to the JDBC
control execute SQL commands against the database. This topic discusses the mechanics of
adding a method to a JDBC control.

Specifying the SQL Statement

A method on a JDBC control always has an associated SQL statement, which executes against the
database when the method is called. The method's @dbcCont r ol . SQL annotation describes the

method's SQL statement.
A sample method is provided in the comment header when you create a JDBC control:

@dbcControl . SQL(st at ement =" SELECT | D, NAME FROM CUSTOMERS WHERE ID = {id}")

Custonmer findCustoner(int id) throws SQLException;

The method's SQL statement may include substitution parameters. These parameters are replaced
at runtime with the values that were passed to the method. The names of the substitution
parameters in the SQL statement must match those in the method signature, so that Workshop
for WebLogic knows which parameter to replace with which value. Within the SQL statement,
substitution parameters are enclosed in curly braces.

In the example above, the SQL statement includes the substitution{i d} . This maps to the i d
parameter of the fi ndCust oner method. When the method is invoked, the values of any

referenced parameters are substituted in the SQL statement before it is executed. Note that
parameter substitution is case sensitive, so parameters mentioned in substitutions must exactly
match the spelling and case of the parameters to the method.

The method signature declares a method that a user of this control may invoke. You should
design this method so that its arguments and return value are convenient and useful to
developers of applications that will use this control.

The rules of parameter substitution in JDBC control method SQL statements are described in the
Beehive documentation for JDBC control.

The return type of the database operation is determined by the return type of the Java method.
Workshop for WebLogic attempts to format the results in whatever type you have specified for the
method to return.

A method of a JDBC control can return a single value, a single row, or multiple rows. To learn
more about the values returned by JDBC control methods, see the Beehive documentation for

JDBC control.

Related Topics

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...trol s/system/j dbc/conA ddingA M ethod ToA DatabaseControl .html (1 of 2)1/26/2007 2:29:02 PM

http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html

Adding a Method to a Database Control

Using System Controls

JDBC control

Creating a New JDBC control

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...trol s/system/j dbc/conA ddingA M ethod ToA DatabaseControl .html (2 of 2)1/26/2007 2:29:02 PM

Using the Backward-Compatible RowSet feature (WebL ogic Workshop 8.1)

Using the Backward-Compatible RowSet feature (WebLogic
Workshop 8.1)

This deprecated feature should not be used for new development.

When you upgrade a WebLogic Workshop 8.1 application, the upgrade wizard converts the
RowSet control to use a backward-compatible JDBC control that includes support for RowSets.
The RowSet control is documented in WebLogic Workshop 8.1 documentation at:

. RowSet Control

. RowSet Controls and SOL Join Queries

The backward-compatible JDBC control is documented at:

. Backward-Compatible JDBC control that supports RowSet feature

. RowSet Annotation

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.wor...uct.wl.doc/html/control /sy stem/jdbc/conBack CompatRow Set.html 1/26/2007 2:29:03 PM

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/conRowSetControl.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/conTableJoins.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/JdbcControl.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/JdbcControl.SQLRowSet.html

Building Custom Java Controls

Developing Custom Controls

BEA Workshop for WebLogic Platform allows you to create custom controls tailored to your project
or application. Custom controls can be used to create re-usable controls that might be found in a
company for sharing, or those provided by ISVs for their products. This section explains how to
create these controls and how to share them.

For a complete overview of controls in Workshop for WebLogic, including how to create them, see
Getting Started with Beehive Controls.

Topics Included in This Section

Creating Custom Controls
Describes the basics of creating and using custom controls.

Source Files for Custom Controls
Describes the files that are necessary in any custom control.

Testing Controls
Discusses how to test custom controls.

Exporting Controls into JARs
Describes how to export controls into a JAR file that can be shared.

Distributing Controls as Plug-Ins
Shows you how to customize controls more extensively and how to package/distribute
controls for a wider audience.

Related Topics

Using System Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/control §/custom/navCustomControl s.html 1/26/2007 2:29:03 PM

Working with Custom Controls

Creating Custom Controls
This topic describes how to use a custom custom control. It explains how to:

. Create a custom control

. Use a custom control in your application
Custom control files can be located:

. In your web project.

. In a utility project. To access such controls in a web application, both the web project and the
utility project must be linked to the same EAR project.

To Create a Custom Control

The following instruction assume you are in the J2EE perspective (Window = Open Perspective
> J2EE).

1.
You cannot create a control in the default package. So the first step is to create a package
for the control. For example:
<ProjectRoot>/src/controls/myControl/
2.
Right-click the package and select New > Custom Control.
3.
In the Control name field, enter the class name for the control.
The Java interface and implementation classes will be based on the name entered here. For
example, if you enter Hello, two classes will be created:
Hello.java (=the interface class)
and
Hellolmpl.java (=the implementation class)
4.

Click Finish.

Default control interface and implementation classes are produced. Assuming that your control is
named Hello, the following class files are produced:

Hello.java Interface Class File

package controls. nyControl;

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...oc/html/control s/custom/conWorkingWithCustomControl s.html (1 of 3)1/26/2007 2:29:03 PM

Working with Custom Controls

i nport org. apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface
public interface Hello {

}
Hellolmpl.java Implementation Class File

package controls. nyControl;

i mport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on;
i mport java.io.Serializable;

@ontrol | mpl enent ati on
public class Hellolnpl inplenents Hello, Serializable {
private static final long serial VersionUD = 1L;

Continue the composition of the custom control by adding methods to these class files.

To Use a Custom Control in an Application

If you have an existing custom control in your project or in a utility project in the current
workspace, you can add a reference to that control to a control client by right-clicking anywhere
within the client's Java source file and selecting Insert > Control.

A list of available controls appears. The heading Existing Project Controls lists the controls in
the same project as the client. The heading Existing Application Controls lists the controls in
the utility projects in the same workspace.

When you add a control reference to a client, Workshop for WebLogic Platform modifies your
client's source code to include an annotation and variable declaration for the control. The
annotation ensures that the control is recognized by Workshop for WebLogic Platform, and the
variable declaration gives you a way to work with the control from your client code. For example,
if you add a new custom control named Hel | o, the following code will be added to your client:

i mport org. apache. beehi ve. control s. api . bean. Control ;
i mport controls. myControl. Hell o;

@ont r ol

private Hello hello;

Once you have a reference to a control, your client can call methods on that control. For more
detail on calling a control method, see Invoking a Control Method.

Related Topics

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...oc/html/control s/custom/conWorkingWithCustomControl s.html (2 of 3)1/26/2007 2:29:03 PM

Working with Custom Controls

Invoking a Control Method

Source Files for Custom Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...oc/html/control s/custom/conWorkingWithCustomControl s.html (3 of 3)1/26/2007 2:29:03 PM

Source Files for custom controls

Source Files for Custom Controls

Custom controls consist of two Java source files: an interface class file and an implementation
class file.

The interface class contains the control's publicly accessible methods. Clients of the control call
the methods in the implementation class.

The implementation class contains the control’'s behind the scenes implementation code.

There is also a third class associated with each custom control: the generated JavaBean class.
This is a build artifact created from the interface and implementation source files. The generated
JavaBean class provides supplemental programmatic access to the control, especially the ability to
override default annotation values in the control. For more information about this class see
Overriding Control Annotation Values Through the Control JavaBean

Custom Control Interface Classes
A custom control interface class must be decorated with the @ontr ol | nt er f ace annotation.

package controls. hell o;
i mport org. apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface
public interface Hello {

The @ont rol | nt er f ace annotation informs the compiler to treat this class as a part of the
Beehive Control framework.

The interface class also lists the control's publicly available methods. The following example shows
a control with one publicly available method.

package controls. hell o;
i mport org.apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface
public interface Hello {

public String hello();

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.....doc/html/control s/custom/conCustomControl SourceFiles.html (1 of 2)1/26/2007 2:29:03 PM

http://beehive.apache.org/docs/1.0.1/controls/index.html

Source Files for custom controls

Custom Control Implementation Classes

A custom control implementation class contains the control's logic - the code that defines what
the control does. In this file you define what each of the control's methods do.

The minimum requirements for a custom control implementation class are listed below.

1.
The class must be decorated with the @Cont r ol | npl enent ati on annotation.
i mport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on;
@ontrol | npl enent ati on
public class Hell ol npl
2.
The class must implement the corresponding custom control interface file.
i nport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on;
@ontrol | mpl emrent ati on
public class Hellolnpl inplenents Hello
3.

The classes must either:
(a) implement java.io.Serializable

i mport java.io.Serializable;

@ontrol | npl enent ati on
public class Hellolnpl inplenents Hello, Serializable

(b) or set @Controllmplementation(isTransient=true)

@Cont rol | npl ement ati on(i sTransi ent =true)
public class Hellolnpl inplenments Hello {

}
Related Topics

Controls: Getting Started

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.....doc/html/control s/custom/conCustomControl SourceFiles.html (2 of 2)1/26/2007 2:29:03 PM

http://beehive.apache.org/docs/1.0.1/controls/index.html

Testing Controls

Testing Controls

Beehive controls can be tested either inside of an application container or outside in a standalone
Java environment. Testing in a standalone Java environment is especially useful when running
unit tests.

Beehive controls can be integrated into the JUnit test framework using the ControlTestCase base
class. This base class provides a control container and provides help in instantiating a control
declaratively via the

@Control annotation.

Note that not all controls can be tested within the test container because some controls have
requirements beyond what ControlTestCase provides. For example, a control that uses JNDI
lookups will not be testable with ControlTestCase. Likewise controls (such as the Service Control)

that take a dependency on a J2EE container (such as WebLogic Server) may not be testable out of
that J2EE container.

For details on testing controls with ControlTestCase see Control Tutorial: Testing Controls with
Junit.

Related Topics

Testing Controls with JUnit

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/control s/conTestingControl s.html 1/26/2007 2:29:03 PM

http://www.junit.org/index.htm
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/test/junit/ControlTestCase.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/bean/Control.html

Exporting Beehive Controls

Exporting Controls into JARS

Workshop for Weblogic Platform lets you package your control classes as JAR files that can be
reused in other Java projects. This is the simplest way to distribute controls.

This approach is somewhat limited, providing no custom labels, no custom icons, no insertion
wizards. If you are creating controls that will have very wide distribution (e.g., an ISV developing
controls for customers), you may want to package your custom control as a plug-in.

To package a Beehive control as a JAR file, select File > Export > Beehive Control JAR File.

Only control files in utility projects are available for JAR file packaging; controls in other project
types are not available for export.

All Java class files in the utility project are included in the JAR file, including control interface,
control implementation classes, and all other Java classes. Note that by default, only class files
are included in the JAR file. To include the Java source files, place a checkmark next to Include
Java source files.

To use a control in another web application:

1. Copy the JAR file to the WEB-INF/lib folder.

2. Add a reference to that control to a control client by right-clicking anywhere within the
client's Java source file and selecting Insert > Control.

3. A list of available controls appears. The heading Existing Project Controls lists the
available controls, including controls in JAR files.

Alternately, you can:

1. Copy the JAR file to the APP-INF/lib folder of the associated EAR project.

2. Add a reference to that control to a control client by right-clicking anywhere within the
client's Java source file and selecting Insert > Control.

3. A list of available controls appears. The heading Existing Application Controls lists the
available controls, including controls in JAR files.

As long as the JAR is inserted into the user's classpath as described above, the control will be
discovered automatically by Workshop for WebLogic and property set/event handler features will
be provided.

Related Topics

Apache Beehive Documentation

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...shop.product.wl.doc/html/control s/'conExportingControl s.html (1 of 2)1/26/2007 2:29:03 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#UtilityProject

Exporting Beehive Controls

Building Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...shop.product.wl.doc/html/control s/'conExportingControl s.html (2 of 2)1/26/2007 2:29:03 PM

http://beehive.apache.org/docs/1.0.1/controls/projects.html

Distributing Controls as Plug-ins

Distributing Controls as Plug-ins

If you want to distribute your custom control to a wide audience (e.g., if you are an ISV developing controls for your customers) or if you
want to customize your control more extensively, you can package a control within a plug-in. This method allows:

Customized label and icon

Customized insertion wizard

This topic describes how to package a control into a plug-in. This method creates an Eclipse plug-in and basic knowledge of Eclipse plug-
ins and their creation would be useful before attempting this process.

Note that this method wraps a control JAR in a plug-in. For distribution within your own company, you may simply want to share the
control JAR file directly, without the additional work of creating a plug-in.

This method consists of the following steps:

1. Export the control into a control JAR

2. Create the control plug-in project

3. Copy the control JAR into the plug-in project

4. Set plug-in project dependencies

5. Add extension and customize settings

6. Create the insertion delegate code

7. Build and test your plug-in

8. Export the plug-In

Step 1: Export the Control into a Control JAR

Follow the steps outlined in Exporting Controls into JARs.

Step 2: Create the Control Plug-in Project

1. Create a plug-in project with File > New > Project. Expand Plug-in Development and choose Plug-in Project. If you do not see
the correct project type, you may need to click Show All Wizards to display it.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPluglnDevGuide.html (1 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

W New Project E]

Select a wizard

i

Zreate a Plug-in Project [

Wizards:

| bype Filber bext

= lava
== Plug-in Development
i Feature Pakch
Eﬁ Feature Project
qﬁ Fragment Project
._=_’$ Plug-in Fram existing JAR archives
4Tl -in Project
¢<}' IJpdate Site Project
= web
[= ‘WebLogic Portal
[= wWeb Services
[Examples

[

=

[]show all wizards,

Click Next to proceed.

W New Plug-in Project

Plug-in Project

Zreate a new plug-in project

Project name: | MyCDntrDﬂ

IUse default location

| Browse, .,

Project Settings
Create a Java project

Source Folder; | KD |

Cutput Folder: | bin |

Target Platform
This plug-in is targeted ko run with:

() Eclipse version:

() an 005G Framewark:

':':’:' < Back ” Mext = Finish Cancel

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....rkshop.product.wl.doc/html/control s’'conPlugl nDevGuide.html (2 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

@ s][ty]| o |

From the next screen, fill in the Plug-in Provider field and click Finish to create the project.

W New Plug-in Project

Plug-in Content

Enter the data required to generate the plug-in,

Flug-in Properties

Plug-in I0: | My Conkrol

Plug-in Mersion; | 1.0.0

Plug-in Provider: | BEA Syskems, Inc.|

|
|
Plug-in Mame: | My Control Plug-in |
|
|

Classpath: |

Plug-in Qptions

Generate an activator, a Java class that controls the plug-in's life cycle

Activator: | mycontrol, Ackivator

This plug-in will make contributions ko the LI

Rich Client Application
Would wou like to create a rich client application? ives (%Mo

(7 < Back ” Mext = %[Finish H Zancel

Click Yes to change to Plug-in Development perspective.

Step 3: Copy the Control JAR into the Plug-In Project

Create a folder named lib in the root of your plug-in project (not under the src folder). Copy the control JAR (created in the previous step)
into the lib directory.

i Package Explorer X Flug-ins = 0O
=

@ BS

= ID‘J- v Cankrol
[e
B JRE Swskem Library [jdk150_0&]
B Plug-in Dependencies
= lib

SR TestContral. jar
= META-IMF

@ build, properties

&

Step 4: Set Plug-in Project Dependencies

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....rkshop.product.wl.doc/html/control s/conPlugl nDevGuide.html (3 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

If the manifest editor window is not visible, double click on the MANIFEST.MF file to open it. From the editor, click on the Dependencies
tab or click on the Dependencies link in the Plug-in Content section. From the Required Plug-ins section, click on the Add button and
select the following plug-ins:

. com.bea.workshop.controls.core
. com.bea.workshop.controls.ui

. org.eclipse.core.runtime

. org.eclipse.core.resources

. org.eclipse.jdt.core

. org.eclipse.ui

i X =8
Dependencies

Required Plug-ins Imported Packages
Specify the list of plug-ins required For the operation of this packages on which this plug-in depends without

plug-in: F Plug-in Selection |:|[E|[z| ariginating plug-in:

Specit

?qlkurg.eclipse.ui Add. ..

?qlkurg.eclipse.mre. Select a Plug-in:

?iI?-:Dm.I:uea.wu:urkshu:up.u:u:ummu:un.usagetrack.startup (1.0,
?iI:‘l:Dm.bea.WDFkSth.EDI‘I‘II‘I‘IDI‘I.LIt“ 1.0.0)
EJ'11.TJ=-:u:um.l:uaa.I.-m:urlc:shu:q:u.u:u:ummu:un.w-'EIu:u:iI:y (1.0.0)

E{I?-:Dm.l:ue Jworkshop, comman, xmicatalog (1.0.00

rkshop,contrals, care

?ilicnm.l:uea.wnrkshup.netui.cl:ure (1.0,0
?iI?l:Dm.bea.WDFkSth.I‘IEtLIi.prDjEEt.EDrE (1.0.0)
?ibcum.bea.wurkshup.netui.ui (1.0.0)
?ibcum.bea.wurkshup.netui.ui.jsp (1.0.0)
?iI?cDm.I:uea.wu:urkshu:up.pru:uduct.wl (1.0.0)
?ilicam.hea.w::nrkshn:np.prn:nduct.wl.heehive.dn:n: (1.0.00

LR TORU VUV JU RN S TP SO SR W S PR Y

< *

':':’:' [Ok ’\(][Cancel]
b

F Automated Management of Dependencies b Dependency Analysis
Cwerview | Dependencies | Runtime | Extensions | Extension Points | Build | MAMNIFEST.MF | build, properties
Click OK to add the dependencies. Click File > Save All to save the dependencies in the MANIFEST.MF file.

Step 5: Add Extension and Customize Settings
Click on the Extensions tab. Click Add and choose

. com.bea.workshop.controls.core.controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPluglnDevGuide.html (4 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

E X =g

Extensions =
W New Extension E]

Extension Point Selection

Create a new Controls exkension, 1 j—“

All Extensions

Extension Paints | Extension Wizards

Extension Point Filker: |

b |c0m . bea, waorkshop, conkrals, core, contrals

[

=4 com.bea.workshop, controls, core, excludedContrals
=] org.eclipse. core . contentbype, content Types

= org.eclipse, core.resources. builders

=i org.eclipse. core resources, FileModification'alidator
= org.eclipse.care resources, markers

=i org.eclipse. core, resources, modelProviders

=i org.eclipse. core resources, moveleleteHook

=il arg.eclipse. core.resources.natures

=l orq.eclipse. core.resources. refreshProviders

[£

Showe only extension points From the required plug-ins

Extension Point Descripkion: Conkrols

This extension is used to contribute contrals,

Available templates For controls:

':':’:' < Back Mexk = Finish L\\\J [Zancel

¢ Body Text

Owerview | Dependencies | Runtime | Extensions | Extension Points | Build | MANIFEST.MF | build, properties | plugin.xml

Click Finish to add the extension. Click File > Save All to save the change.
Note that a new file: plugin.xml has been added to the project. That file now contains the extension information:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<?ecl i pse version="3.2"?>
<pl ugi n>
<ext ensi on
poi nt ="com bea. wor kshop. control s. core. control s">
</ ext ensi on>
</ pl ugi n>

The com.bea.workshop.controls.core.controls extension point requires a nested <control> tag with at least the id, class,
isControlExtension, and isExtensible attributes specified. For example:

<?xm version="1.0" encodi ng="UTF-8"?>
<?ecl i pse version="3.0"?>
<pl ugi n>
<ext ensi on poi nt="com bea. wor kshop. control s. Control s">

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPluglnDevGuide.html (5 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

<control
i d="com nyconpany. exanpl e. My/Exanpl eControl | d"
cl ass="com myconpany. exanpl e. control . MyExanpl eControl "
i sCont r ol Ext ensi on="f al se"
i sExt ensi bl e="fal se" />
</ ext ensi on>
</ pl ugi n>

The <control> tag has the following attributes:

Attribute Description Required Default
id A unique id string. Cannot be duplcated within the Yes [none]
contributed controls in this plug-in.
class Fully qualified classname of the control interface Yes [none]
class.
isControlExtension Yes Indicates whether this is an

extension of a Beehive extensible
control. (See the Beehive control
documentation for more
information on extensible controls.)
isExtensible Yes Indicates whether this is an
extensible control. Indicating true
will allow the default insertion to
better handle requiring the user to
create a control extension rather
than a regular control. (See the
Beehive control documentation for
more information on extensible

controls.)
label The text to be displayed on the Insert > Control No Simple, unqualified classname from
dialog. the class attribute.
icon The icon displayed to the left of the control label No generic icon
on the Insert > Control dialog.
priority Position relative to others in the same group of No 10
controls, ascending order. This is a path relative
to the plugin root
groupName Group heading for the control(s). Note that if No Value of the label attribute. Note
there are less than 3 controls, no group will be that if controls are not in a group,
created. If there are 3 or more controls, a group or if there are not 3 controls in a
will be created if groupName is specified. group, they will all be listed at the
top level and the label attribute will
be ignored.
groupPriority Ordering of the group relative to other groups, No 100
ascending order.
insertionDelegateClass Class triggered when the control is inserted into No com.bea.workshop.controls.core.
an application. In addition to any desired actions, DefaultControlinsertionDelegate
the insertion delegate must to copy the control
JAR from the plug-in JAR to the user's project.
description Description of control. No [none]

The following is an example of a <control> tag using more attributes:

<ext ensi on poi nt="com bea. wor kshop. control s. core. control s">
<control

cl ass="com nyconpany. control s. MyControl "
i d="My/Control 12"
gr oupName="My Conpany"
groupPriority="10"
i ncl udel nPal ette="true"
i nsertionDel egat ed ass="com nyconpany. wor kshop. Myl nserti onDel egat e"
i sCont rol Ext ensi on="f al se"
i sExt ensi bl e="f al se"
| abel =" Sanpl e Control "
pal ettePriority="10"
priority="10"
/>
</ ext ensi on>

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugl nDevGuide.html (6 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins
Step 6: Create the Insertion Delegate Code

The insertionDelegateClass attribute of the <control> tag indicates the insertion delegate and triggers the delegate when the control is
inserted into a file. You can use this for many purposes, but if it's not already in the project (e.g., as a facet or a library module), you
would typically use this to copy the control JAR to the user's project, as described below.

When you ship the control in a plug-in, the JAR file is located in the plug-in, NOT in the control user's project. To copy the JAR from the
plug-in to the project that is using the control, you must insert code similar to the following into your insertion delegate. This will copy the
control JAR to the user's project when your insertion delegate is called.

To create an insertion delegate, create a package in the src folder and create a file for the class of the insertion delegate.
Sample insertion delegate code is listed below. You will need to update the package and class name, of course.

package org. exanpl e. control s. wor kshop;

import java.io.File;

i mport org.eclipse.core.runtine.| Status;

i mport org. eclipse.core.runtine. Status;

i mport org.eclipse.jdt.core.|JavaEl enent;

i mport org.eclipse.jface.dial ogs. ErrorDi al og;
i mport org.eclipse.swt.w dgets. D spl ay;

i mport com bea. workshop. control s. core. nodel .| Control | nsertionDel egat eCont ext ;
i nport com bea. wor kshop. control s. ui. acti ons. Def aul t Control | nserti onDel egat e;

public class Sanpl el nsertionDel egate extends Default Control I nsertionDel egate {

@verride
public |JavaEl ement insertControl (I ControllnsertionDel egateContext ctxt) {
try {

File file = getFil eFronPl ugi n(Activator.getDefault(), "/lib/TestControl.jar");
copyJar | fNecessary(ctxt, file, file.getNanme());
return super.insertControl (ctxt);
} catch (Exception e) {
String nessage = "Error inserting control";
error(nessage, €e);
}

return null;

}

private void error(String nessage, Exception e) {
Error D al og. openError (Di spl ay. get Current (). get Acti veShel | (),
"Control Insert Error",
nessage + " - " + e.getMessage(),
new Status(l Status. ERROR, Activator. PLUG N_ID, 1,"Control Insert Error",e));

The sample above covers the "insert your control into the project" case. To also do a custom wizard that collects parameters and inserts
additional annotations, you can update the code to look like this:

public |JavaEl ement insertControl (I ControllnsertionDel egateContext ctxt) {
try {
/1 Launch and conpl ete your w zard here, collecting paraneters as necessary
/1 then proceed to the next steps to copy the file and use the paraneters entered
/] as annotation val ues

File file = getFil eFronPl ugi n(Activator.getDefault(), "/lib/TestControl.jar");
copyJar | f Necessary(ctxt, file, file.getName());

HashMap<String, String> attrs = new HashMap<String, String>();
attrs.put("attr", "aVal ue");

return super.insertControl (ctxt, "org.exanpl e.controls. Sanpl eControl . Sanpl ePropertySet", attrs);
} catch (Exception e) {

String nessage = "Error inserting control";

error (nessage, €);

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugl nDevGuide.html (7 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

}

return null;

}

The previous example is a convenience API if you have a single additional annotation to add. If you have multiple annotations to add, you
could do something like this with a list of Annotationinfo objects:

public |JavaEl enent insertControl (I ControllnsertionDel egateContext ctxt) {
try {
// Launch and conpl ete your wi zard here, collecting paraneters as necessary
/1 then proceed to the next steps to copy the file and use the paraneters entered
/] as annotation val ues

File file = getFil eFronPl ugi n(Activator.getDefault(), "/lib/TestControl.jar");
copyJar | f Necessary(ctxt, file, file.getNanme());

List infos = new ArrayList();
HashMap<String, String> attrsl = new HashMap<String, String>();
attrsl.put("attr", "aValue");
Annot ati onl nfo i nfol = new Annot ati onl nf o(

"org. exanpl e. control s. Sanpl eControl . Sanpl ePropertySet", attrsl);
i nfos. add(infol);

HashMap<String, String> attrs2 = new HashMap<String, String>();
attrs2. put("anotherAttribute", "aValue");
Annot ati onl nfo i nfo2 = new Annot ati onl nf o(
"org. exanpl e. control s. Sanpl eControl . Sanpl ePropertySet", attrs2);
i nf os. add(i nf02);

return super.insertControl (ctxt,infos);

} catch (Exception e) {
String nessage = "Error inserting control";
Activator.getDefault().|ogError(message, e);
error (nessage, €);

}

return null;
}

For more information on the APIs provided by the DefaultControllnsertionDelegate, see the Javadoc.

Step 7: Build and Test your Plug-in

Be sure that the plug-in includes the lib directly by clicking on the Build tab. Click on the lib folder under the Binary Build section to
make sure that it is building correctly.

To run your plug-in, use the Run As > Eclipse Application command to test that your plug-in works correctly.
Step 8: Export the Plug-in

Click on the Overview tab. Click Export Wizard to create the plug-in JAR which will include the control JAR, the insertion delegate and
any other required files. If this view is not available, you can open it by right clicking on META-INF/MANIFEST.MF and choosing Open.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....rkshop.product.wl.doc/html/control s/conPlugl nDevGuide.html (8 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

Overview

General Information
This section describes general information about this plug-in,

10 My Conkrol
Versian: 1.0.0

Marne: My Control Plug-in
Provider: BEA Swstems, Inc,

FlatFarm filker:

Activatar: rscontral, Ackivator

Activate this plug-in when one of its classes is loaded

Execution Environments
Specify the minimum execution environments required ko run

this plug-in:

Zonfigure JRE associations. ..

Ipdate the classpath and the compiler compliance settings

Plug-in Content

The content of the plug-in is made up of bwo sections:

,_’,? Dependencies: lists all the plug-ins required on this plug-in's classpath to compile
and rurn,

,_’,? Runkime : lists the libraries that make up this plug-in's runtime,

Extensions

This plug-in may define extensions and extension points:
,_’,? Extensions: declares contributions this plug-in makes to the platform.

__’,? Extension Points : declares new function paints this plug-in adds to the platform,

Testing @

Test this plug-in by launching a separate Eclipse application:

G Launch an Eclipse applicakion

fﬁ Launch an Edlipse application in Debug mode

Exporting @

To package and export the plug-in:

1. Qrganize the plug-in using the Oroanize Manifests Wizard

2, specify what needs to be packaged in the deployvable plug-in on the Build
Zonfiguration page

3. Export the plug-in in a format suitable For deployment using the EXD%% Wizard

Cwerview | Dependencies | Runtime | Extensions | Extension Points | Build | MAMNIFEST.MF | build, properties | plugin.xml

From the export dialog, be sure to set the directory where the plug-in file will be created. Note that by default, the Include source code
option is disabled so that the control's source code will not be available to plug-in users. Specify a destination directory for the plug-in and

click Finish to create the control plug-in file.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugl nDevGuide.html (9 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

Deployable plug-ins and fragments

Export the selected projects inko a Form suitable For deploving in an
Eclipse product

Available Plug-ins and Fragments:

“l=MyiControl (1.0.0)

Select Al
Deselect Al

Working Set...

e

1 out of 1 selected.

Destination |Optiu:uns J&R. Signing
(%) Directory:!

| CiMyPluginTeskDireckory,

VH Browse. .,
(3 archive File:

Finish RJ [Zancel

You can then distribute the resulting plug-in file to other developers, like any other Eclipse plug-in.

Related Topics

Developing Custom Controls

Exporting Controls into JARs

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...kshop. product.wl.doc/html/control s/conPlugl nDevGuide.html (10 of 10)1/26/2007 2:29:04 PM

Control Dialogs

Control Dialogs

These topics describe dialogs and wizards available for creating custom and system controls.

Topics Included in This Section

New Custom Control Dialog
Create a new Beehive-based custom control.

New Extensible Control Dialog
Create a new Beehive-based extensible control.

Insert Control Event Handler Dialog
Create a event handler based on a event method.

New EJB Wizard
Create a new EJB Control.

New JDBC Wizard
Create a new JDBC Control.

New JMS Wizard
Create a new JMS Control.

Service Control Generation Wizard
Generate a Web Service Control from a WSDL file.

Select Control Dialog
Add an Existing Control.

Related Topics

none.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/control ui/navControl Ul .html 1/26/2007 2:29:04 PM

New Control Dialog

New Control Dialog
Use this dialog to create a new custom control.

How To Open this Dialog

To open the New Control dialog, select File = New = Other = Controls > Custom Control.

How To Use the Dialog

In Enter or select the parent folder, select to the directory location, where the new control is
be created. If the desired directory does not already exit, you may enter the directory path to
create the desired directory.

In Control name enter a valid Java class name. Two files will be created based on this name:

<ControlName>.java

2.
<ControlName=>=Impl.java

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....op.product.wl.doc/html/control s/ui/uiNewCustomControl .html (1 of 2)1/26/2007 2:29:05 PM

New Control Dialog

W New Control

Custom Control

Create a new Beehive Custom Contral,

Enter or select the parent folder:

| MyWebProject)src/plig

- '[:“' MyWi'ebProject
+-[= build
[src

Zonkral name: | HelloWarld, java

Finish Cancel

Related Topics

Custom Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....op.product.wl.doc/html/control s/ui/uiNewCustomControl .html (2 of 2)1/26/2007 2:29:05 PM

New Extensible Control Dialog

New Extensible Control Dialog

Use this dialog to create a new extensible custom control. This is a custom control that can be
customized by extension of the interface class.

How To Open This Dialog

To open this dialog, select File = New = Other = Controls > Extensible Custom Control.

How To Use This Dialog

Upon completion of the dialog, two files will be created based on name entered in the Control
name field:

<ControlName>.java

2.
<ControlName=Impl.java

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...product.wl.doc/html/control s/ui/uiNewExtensi bleControl .html (1 of 2)1/26/2007 2:29:05 PM

New Extensible Control Dialog

W New Control

Extensible Custom Control

Create a new Beehive Custom Contral allowing For customization by inkerface
exkension.

Enter or select the parent folder:

| 15PwWeb)sre)fcontrols

= i% 15FwWeb
+-[= build
== sre
= businessObjects
[~ conkrols

Zonkral name: | ExtensibleCtr]

< Back Finish Cancel

Related Topics

Custom Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...product.wl.doc/html/control s/ui/uiNewExtensi bleControl .html (2 of 2)1/26/2007 2:29:05 PM

Insert Control Event Handler Dialog

Insert Control Event Handler Dialog

Use this dialog to add a control event handler based on an event method.

How To Open this Dialog

To open the this dialog, open a client class which contains a control declaration, for example:

@ont r ol
private HWCal | backServi ceControl wsControl;

The declared control must contain an event set for the dialog to appear.

Right click anywhere within the client class source view and select Insert > Control Event
Handler.

The dialog will appear displaying a list of event handlers corresponding to the event sets in the
declared control.

How To Use the Dialog

Select the control (first level nodes), event set (second level nodes) and method (third level
nodes) for which an event handler should be constructed.

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...doc/html/control s/ui/uil nsertControl EventHandl erDial og.html (1 of 2)1/26/2007 2:29:05 PM

Insert Control Event Handler Dialog

W Insert Event Handler

Select events ko handle:

BRm]scortral Select Al

--[] Callback.
onMessage : void Deselect all
[] onasyncFailure : void

(0] Cancel

Related Topics

Custom Controls

Handling Control Events

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...doc/html/control s/ui/uil nsertControl EventHandl erDial og.html (2 of 2)1/26/2007 2:29:05 PM

New EJB Control Dialog

New EJB Control Dialog

Use this dialog to create a new EJB control.

How To Open This Dialog

You can open the dialog in one these ways:

From any perspective, select File = New > Other > Controls > EJB Control.

In the J2EE perspective, select File = New = EJB Control.

In the Page Flow perspective, right-click the Referenced Controls node on the Page Flow
Explorer tab, and select Add Control > New System Control > EJB Control > Ok.

. From the source editor window, right click and choose Insert > Control then expand New
System Control and choose EJB Control.

How To Use This Dialog

In Enter or select the parent folder, select to the directory location, where the new control is
be created. If the desired directory does not already exit, you may enter the directory path to
create the desired directory.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....kshop.product.wl.doc/html/control S/ui/uiNewEJIB Control .html (1 of 3)1/26/2007 2:29:05 PM

New EJB Control Dialog

W New Control

EJB Control

Create a new Beehive EJB Control For simplified EJB access,

Enter or select the parent Folder:

| WisitWw'ebTestfsrcfcontrols

=l fik WisitWebTest
+-[=- ,apk_src
+-[= build
== src
[conkrols

Conkral narme: | MvEJBControl

Finish Cancel

The Browser Application EJBs button will display a list of EJBs in the current project.

Provided that WebLogic Server is running, you can browse for deployed EJBs using the Browse
Server EJBs button. If the server is not running and you know the name, you can just type it in.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....kshop.product.wl.doc/html/control S/ui/uiNewEJIB Control .html (2 of 3)1/26/2007 2:29:05 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html

New EJB Control Dialog

W New Control

EJB Control

Create a new Beehive EJB Control For simplified EJB access,

This EJB control finds the EJB with this JNDI name ar EJE link.
(+ IMDI name: | %ib, VisitBeanLocalHome

- [:%JB link: |

This EJB control uses these interfaces

Home interface: | hella, VisitBeanLocalHome

Business inkerface: | hello, visitBeanLocal

This EJB contralis & ¢ Session control © Enkiky contral

Browse Application EJBs, .. Browse Server EJBs, ..

Finish Cancel

Related Topics

none.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....kshop.product.wl.doc/html/control S/ui/uiNewEJIB Control .html (3 of 3)1/26/2007 2:29:05 PM

New JDBC Control Dialog

New JDBC Control Dialog

Use this dialog to create a new JDBC control.

How To Open This Dialog

You can open the dialog in one these ways:

From any perspective, select File = New > Other > Controls > JDBC Control.

In the J2EE perspective, select File = New = JDBC Control.

In the Page Flow perspective, right-click the Referenced Controls node on the Page Flow
Explorer tab, and select Add Control > New System Control > JDBC Control > Ok.

. From the source editor window, right click and choose Insert > Control then expand New
System Control and choose JDBC Control.

How To Use This Dialog

In Enter or select the parent folder, select to the directory location, where the new control is
be created. If the desired directory does not already exit, you may enter the directory path to
create the desired directory.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....shop.product.wl.doc/html/control s/ui/uiNewJDBCControl .html (1 of 3)1/26/2007 2:29:05 PM

New JDBC Control Dialog

W New Control

JDBC Control

Creake a new Beehive JDBC Control For simplified database access,

Enter or select the parent folder:

| J15PwWeb/srcfcontrols

=4 15Fweh
+- = build
== src
= businessObijects
[conkrols

Control name: | My IDBCCt|

Provided that WebLogic Server is running, you can browse for available data sources. If the server
is not running and you know the name, you can just type it in.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....shop.product.wl.doc/html/control s/ui/uiNewJDBCControl .html (2 of 3)1/26/2007 2:29:05 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html

New JDBC Control Dialog

W New Control

JDBC Control

Create a new Beehive JDBC Contral For simplified database access,

iZonnection name For this Database conkrol

Data source: |samplesDataSDurce Browse. .. |

Related Topics

none

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....shop.product.wl.doc/html/control s/ui/uiNewJDBCControl .html (3 of 3)1/26/2007 2:29:05 PM

New JMS Control Dialog

New JMS Control Dialog

Use this dialog to create a new JMS control.

How To Open This Dialog

You can open the dialog in one these ways:

From any perspective, select File > New > Other > Controls > JMS Control.

In the J2EE perspective, select File = New = JMS Control.

In the Page Flow perspective, right-click the Referenced Controls node on the Page Flow
Explorer tab, and select Add Control > New System Control > JMS Control > Ok.

. From the source editor window, right click and choose Insert > Control then expand New
System Control and choose JMS Control.

How To Use This Dialog

In Enter or select the parent folder, select to the directory location, where the new control is
be created. If the desired directory does not already exit, you may enter the directory path to
create the desired directory.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....kshop.product.wl.doc/html/control S/ui/uiNewJM SControl .html (1 of 3)1/26/2007 2:29:06 PM

New JMS Control Dialog

W New Control

I¥S Control

Create a new Beehive M5 Control For simplified IMS access,

Enter or select the parent folder:

| J15PwWeb/srcfcontrols

= {i 15FwWeb
+-[= build
== src

= businessObijects
g conkrols

Conkral name: | IS

Provided that WebLogic Server is running, you can browse for available JMS queues, topics and
connection factories.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....kshop.product.wl.doc/html/control S/ui/uiNewJM SControl .html (2 of 3)1/26/2007 2:29:06 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html

New JMS Control Dialog

W New Control

I¥S Control

Create a new Beehive M5 Control For simplified IMS access,

Message bvpe: Auko j

M3 send destination type futo v |

Mame of gueue or topic on which ko send messages

JMDI name of gqueus or topic: | WS, quele

Zonnection Factory to create connections ko the queue or kopic

JMDI narne of connection Fackor,: |weblngic.jws.jms.QueueCDnnE Browse., ..

Related Topics

none.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....kshop.product.wl.doc/html/control S/ui/uiNewJM SControl .html (3 of 3)1/26/2007 2:29:06 PM

Service Control Generation Wizard

Service Control Generation Wizard

Use this dialog to create a new service control.

To create a service control using this dialog, you must first have a local copy of the WSDL file for
the target web service.

How To Open This Dialog

To open this dialog, right-click a folder in the Project Explorer view and select New > Service
Control.

How To Use This Dialog

On the first page, navigate to the WSDL file for the target web service.

W New Service Control

Select WSDL File

Select the WSDL file to use in generating the service conkrol.

Select a WL File:

| ICuskomerCare/srcfwebservice/MyWebServiceService, wsd|

- @ _uskomerCare
R 1
[conkrols
[customerManagerment
[model
=l [webservice

MyWebServiceService, wsdl

Mext = QJ Cancel

On the second page, select the content types in the generated JAR file. Depending on your

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw....doc/html/control s/ui/ui ServiceControl GenerationWizard.html (1 of 4)1/26/2007 2:29:06 PM

Service Control Generation Wizard

selection, either JAX-RPC or XMLBean types will be generated.

This page will not appear if your service has only simple types or if the necessary types are
already available.

W New Service Control

Mo Existing Types Found

Select whether to create new tyvpes or generate Service Conkrol arway.

Existing bypes were not Found, Choose an option below,

{* Create new ZMLEBeans

{7 Create new JA%-RPC Types

Mext = %J Cancel

On the third page, select the location where you wish the JAR file to be saved. By default, the JAR
will be saved to WEB-INF/lib (in a web or web service project) or APP-INF/lib (in a utility project).

If you choose a different location, you must ensure that the chosen location is on the classpath.

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw....doc/html/control s/ui/ui ServiceControl GenerationWizard.html (2 of 4)1/26/2007 2:29:06 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conUsingXMLBeans.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#WebProject
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#WebService
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#UtilityProject

Service Control Generation Wizard

W New Service Control

Select Types JAR File Location

Select the location and file name for the Types JAR File,

Enter or select the parent folder:

| iZustomerCare)srcfwebservice

- '@ _uskomerCare
[.setkings
+-[= build
B =
[~ conkrols
[customerManagement

+-[= WebContent

File name: | MyWebServiceService Types_xmilbeans_apache. jar

Mext = N

On the fourth page, in the Enter or select the parent folder field, enter the directory location

where the new service control is be created. If the desired directory does not already exit, you
may type the directory path to create the desired directory.

In the File name field, enter the desired name of the service control. The default name is the
name of the WSDL appended with "Control".

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw....doc/html/control s/ui/ui ServiceControl GenerationWizard.html (3 of 4)1/26/2007 2:29:06 PM

Service Control Generation Wizard

W New Service Control

Select Service Control Extension File Location

Apache ¥mlBeans types will be used, Select the location and File narme
For the Service Control Extension,

Enter or select the parent folder:

| iZustomerCare)srcfwebservice

- '@ _uskomerCare
=l sro
[conkrols
[customerManagement

= model
E? webservice

File name: | MyWebServiceControl . java

Related Topics

Types JAR File Generation Wizard

New Web Service From WSDL Wizard

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw....doc/html/control s/ui/ui ServiceControl GenerationWizard.html (4 of 4)1/26/2007 2:29:06 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/ui/uiGenerateWSDLTypesJARWizard.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/ui/uiNewWSFromWSDLWizard.html

Select Control Dialog

Select Control Dialog

Use this dialog to select an existing control or create a new control.

How To Open This Dialog

You can open the dialog in one of the following ways:

From the Page Flow perspective, right-click the Referenced Controls node on the Page
Flow Explorer tab and select Add Control.

From the J2EE or Page Flow perspectives, right-click anywhere within a Java source file and
select Insert > Control.

How To Use This Dialog
The EXxisting Project Controls node displays the controls that reside in the current project.

The Existing Application Controls node displays the controls that reside in other projects in the
same workspace. Only controls from utility projects and projects dependent on the current project
are displayed.

The New System Control node displays wizards for creating a new control.

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw....product.wl.doc/html/control s/ui/ui Sel ectControl Dialog.html (1 of 2)1/26/2007 2:29:06 PM

Select Control Dialog

W Select Control

&vailable Cantrals:

R Pl E ciskinig Project Contkrols
%] CustomerControl - contrals
‘%] ExtensibleCtrl - controls
[ﬂ..] IMSCkr| - {defaulk package)
== Existing &pplication Controls
<Mo Controls Available =
== Mew System Conkrol
@] EJB Control
\d) JDBC Cantral

M IMS Cantrol
FA Timer Control
+- = BInkegration Contrals

Zancel

Related Topics

none.

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw....product.wl.doc/html/control s/ui/ui Sel ectControl Dial og.html (2 of 2)1/26/2007 2:29:06 PM

	navBeehiveControls.html
	Local Disk
	Working with Java Controls

	conGettingStartedWithControls.html
	Local Disk
	Getting Started with Controls

	tutCreateSimpleTimer.html
	Local Disk
	Tutorial: Creating a Web Service with Timer Control

	tutTestControlIntro.html
	Local Disk
	Control Tutorial: Testing Controls with JUnit

	tutTestControlStep1.html
	Local Disk
	Control Tutorial: Step 1: Create a Custom Control

	tutTestControlStep2.html
	Local Disk
	Control Tutorial: Step 2: Create a Test Class

	tutTestControlStep3.html
	Local Disk
	Control Tutorial: Step 3: Run the Test Case

	navUsingControls.html
	Local Disk
	Using System Controls

	conInvokingControlMethod.html
	Local Disk
	Invoking a Control Method

	conOverridingControlProperties.html
	Local Disk
	Overriding Control Properties

	conHandlingControlCallbacks.html
	Local Disk
	Handling Control Events

	conHandlingControlExceptions.html
	Local Disk
	Handling Control Method Exceptions

	conControlTransactions.html
	Local Disk
	Control Transactions

	navSystemControlsOverview.html
	Local Disk
	Using System Controls

	navTimerControl.html
	Local Disk
	Timer Control

	ovwTimerControls.html
	Local Disk
	Overview: Timer Control

	conSettingUpATimerControl.html
	Local Disk
	Creating and Configuring a Basic Timer Control

	conUsingATimerControl.html
	Local Disk
	Setting up a Web Service to Access a Timer Control

	conAdvancedTimerControl.html
	Local Disk
	Using a Timer Control

	conReferenceTimerControl.html
	Local Disk
	Using a Timer Control

	navServiceControl.html
	Local Disk
	Service Control - Navigation

	ovwServiceControl.html
	Local Disk
	Overview: Service Controls and Web Service Clients

	conCreatingANewServiceControl.html
	Local Disk
	Creating and Using a New Service Control

	conHandlingWebServiceCallbacks.html
	Local Disk
	Handling Web Service Callback Messages

	navEJBControl.html
	Local Disk
	EJB Control

	ovwOverviewEnterpriseJavaBeans.html
	Local Disk
	Overview: Enterprise JavaBeans and EJB Controls

	conCreatingANewEJBControl.html
	Local Disk
	Creating a New EJB Control

	conUsingAnExistingEJBControl.html
	Local Disk
	Using an EJB Control

	navJMSControl.html
	Local Disk
	JMS Control

	conCreatingANewJMSControl.html
	Local Disk
	Creating a New JMS Control

	conUsingAnExistingJMSControl.html
	Local Disk
	Using an EJB Control

	navDatabaseControl.html
	Local Disk
	JDBC Control

	ovwDatabaseControls.html
	Local Disk
	Overview: Database Controls

	conCreatingANewDatabaseControl.html
	Local Disk
	Creating a New Database Control

	conUsingAnExistingJDBCControl.html
	Local Disk
	Using an EJB Control

	conAddingAMethodToADatabaseControl.html
	Local Disk
	Adding a Method to a Database Control

	conBackCompatRowSet.html
	Local Disk
	Using the Backward-Compatible RowSet feature (WebLogic Workshop 8.1)

	navCustomControls.html
	Local Disk
	Building Custom Java Controls

	conWorkingWithCustomControls.html
	Local Disk
	Working with Custom Controls

	conCustomControlSourceFiles.html
	Local Disk
	Source Files for custom controls

	conTestingControls.html
	Local Disk
	Testing Controls

	conExportingControls.html
	Local Disk
	Exporting Beehive Controls

	conPlugInDevGuide.html
	Local Disk
	Distributing Controls as Plug-ins

	navControlUI.html
	Local Disk
	Control Dialogs

	uiNewCustomControl.html
	Local Disk
	New Control Dialog

	uiNewExtensibleControl.html
	Local Disk
	New Extensible Control Dialog

	uiInsertControlEventHandlerDialog.html
	Local Disk
	Insert Control Event Handler Dialog

	uiNewEJBControl.html
	Local Disk
	New EJB Control Dialog

	uiNewJDBCControl.html
	Local Disk
	New JDBC Control Dialog

	uiNewJMSControl.html
	Local Disk
	New JMS Control Dialog

	uiServiceControlGenerationWizard.html
	Local Disk
	Service Control Generation Wizard

	uiSelectControlDialog.html
	Local Disk
	Select Control Dialog

