
Working with Java Controls

Working with Beehive Controls
BEA Workshop for WebLogic Platform incorporates Beehive controls that make it easy for you to
encapsulate business logic and to access enterprise resources such as databases, web services,
EJBs, JMS message queues, and legacy applications.

 Current Release Information:

● What's New

● Upgrading to 10.0

Useful Links:

● Tutorials

● Tips and Tricks

Other Resources:

● Online Docs

● Dev2Dev

● Discussion Forums

● Development Blogs

Topics Included in This
Section

Getting Started with Beehive
Controls
Provides an overview of Beehive controls.

Tutorial: Creating a Web Service
with Timer Control
Walks you through creating a web service
that uses the timer control.

Tutorial: Testing Controls with JUnit
Shows you how to create a control and
test it using JUnit.

Using Controls
Describes how to use existing controls.

Using System Controls
Describes the system controls that
Workshop for WebLogic provides for you
to connect to databases, set timers, send
messages, and perform other common
tasks.

Developing Custom Controls
Explains how to develop your own custom
controls and share them with others.

Control Dialogs
These topics explain the control related UI
dialogs and wizards.

Related Topics
Workshop for WebLogic Platform
Documentation
Timer Control

Custom Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/navBeehiveControls.html (1 of 2)1/26/2007 2:28:52 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conWhatsNew.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/upgrading/navUpgrading.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conWorkshopTutorials.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conTipsAndTricks.html
http://edocs.bea.com/more_wlworkshop.html
http://dev2dev.bea.com/workshop/
http://forums.bea.com/bea/index.jspa
http://dev2dev.bea.com/community/blogs/product.html

Working with Java Controls

Apache Beehive Documentation
EJB Control Developer's Guide

Jdbc Control Developer's Guide

The JMS Control Developer's Guide

Controls: Getting Started

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/navBeehiveControls.html (2 of 2)1/26/2007 2:28:52 PM

http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html
http://beehive.apache.org/docs/1.0.1/controls/index.html

Getting Started with Controls

Getting Started with Beehive Controls

Controls provide a convenient way for your applications to access resources and encapsulate
application logic.

This topic provides an overview of controls in enterprise applications. It includes the following
sections:

What Are Controls?

Control Types: System and Custom Controls

Control Authoring Models

What Are Controls?

Controls are reusable components you can use (almost) anywhere within a enterprise application.
You can use the system controls provided with Workshop for WebLogic Platform, or you can
create your own.

Uses for Controls. The framework that supports controls is flexible, supporting a wide variety of
uses for controls. Controls can:

●

Provide access to resources such as databases or other resources.

● Encapsulate logic for reuse in other applications.

● Modularize logic you want to keep separate from other application code.

Setting Control Properties with Annotations. Controls take advantage of Java 5 annotations
for setting control properties. The system controls have a rich set of properties that are
parameterized through annotation settings. As for custom controls, the control author can define
annotation parameterization for any set of control properties.

Apache Beehive Control Framework. Controls are built on the Apache Beehive Control
framework. For more information, see Controls: Getting Started in the Apache Beehive
documentation.

Note: Controls that require assembly are not currently supported within an EJB.

Control Types: System and Custom Controls

Controls are divided into two main types: system controls and custom controls.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...uct.wl.doc/html/controls/conGettingStartedWithControls.html (1 of 3)1/26/2007 2:28:52 PM

http://beehive.apache.org/docs/1.0.1/controls/index.html

Getting Started with Controls

System controls provide you a way to connect to common application resources, such as
databases, EJBs, JMS queues, web services, and so on. These controls require little or no
modification to use in your application.

Workshop for WebLogic Platform provides several system controls, mainly designed to provide
access to enterprise resources. For example, you can use the EJB control for access to Enterprise
JavaBeans, the JMS control for access to the Java Message Service, and so on. For more
information about the system controls, see Using System Controls.

Note that the System controls fall into two groups.

One group represents unmodified Beehive controls. These controls are:

●

JDBC

●

JMS

●

EJB

The other group represents controls that are provided by BEA or some other vendor, based on the
Beehive control framework. These controls are:

●

Timer

●

Service Control

Custom controls provide a way to fully customize access to a resource or encapsulate some
application functionality. You can design a custom control to do any task in an application.

You can build your own custom controls that are based on the same framework on which system
controls are based. You design a custom control from the ground up, designing its interface and
implementation, adding other controls as needed. You can design a custom control for use in one
project, or you can design a custom control for easy reuse in multiple projects. For more
information about the custom controls, see Building Custom Controls.

Control Authoring Models

There are three kinds of authoring and usage models for Beehive controls.

1. Ground-up authoring. On this model you author the control interface and implementation
from scratch. The author also defines what control properties are accessible through
annotations. This authoring model applies only to custom controls.

2. Extension authoring. On this model, the core control classes already exists. You add to the

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...uct.wl.doc/html/controls/conGettingStartedWithControls.html (2 of 3)1/26/2007 2:28:52 PM

Getting Started with Controls

base functionality of the control by extending the base control interface class. On this model,
the control user may also set control properties through annotation property setters defined
by the control author. Applies to all system controls except the timer control.

3. No authoring/unmodified usage. On this model, you simply import the control and call its
methods directly, without authoring a new extension class. Applies to the timer control.

Related Topics

Tutorial: Accessing a Database from a Web Application

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...uct.wl.doc/html/controls/conGettingStartedWithControls.html (3 of 3)1/26/2007 2:28:52 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webapplications/tutorial/tutWebAppIntro.html

Tutorial: Creating a Web Service with Timer Control

Tutorial: Creating a Web Service with Timer Control

In this mini-tutorial, you will create and test a web service with a timer control. This is an advanced tutorial and we assume that you know the basics of Workshop
for WebLogic, including how to create workspaces, projects and packages and how to run a web service and test operations with the Test Client. If you are new to
Workshop for WebLogic, we recommend that you complete Tutorial: Getting Started and Tutorial: Web Service before beginning this tutorial.

Note: This tutorial requests that you create a new workspace; if you already have a workspace open, this will restart the IDE. Before beginning, you
might want to launch help in standalone mode to avoid an interruption the restart could cause, then locate this topic in the new browser. See Using Help
in a Standalone Mode for more information.

The tasks in this step are:

● Create the Web Service

● Set up Web Service and Timer Control Annotations

● Test the Web Service / Timer Control

In this tutorial, we will create a web service that declares/instantiates a timer control (an instance of the com.bea.control.TimerControl base class) that calls
back the client web service every two seconds. For this example, we will have two web service operations (web methods):

● start will start the timer control; once started the timer control will call back the web service every two seconds

● stop will stop the timer control

When the callback is received, the sample program will simply display text in the console window. Normally some programming logic would be inserted in the
callback routine to perform some appropriate action.

To Create the Web Service

A timer control can only be created within a conversational (not stateless) web service. To create the web service for this tutorial:

1. Launch Workshop for WebLogic and create a new, empty workspace.

2. Create an EAR project with File > New > Project > J2EE > Enterprise Application Project.

3. Define a new domain and server.

4. Click File > New > Project. Expand Web Services and double click on Web Service Project. Specify the project name. Click Add project to an
EAR and choose your EAR project from the pulldown. Click Finish.

5. Create a package for your web service by right clicking on the Java Resources/src folder of your web service project in the Project Explorer view at
the left and clicking New > Package. Specify the package name and click Finish.

6. Create a web service within the package by right clicking on the package in the Project Explorer view and clicking New > WebLogic Web Service.
Specify the web service name as TimerService and click Finish. The web service designer displays the new, empty web service with a single default
method.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (1 of 15)1/26/2007 2:28:53 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/TutorialGettingStarted/tutGS_Intro.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/WSTutorial/tutWebSvcIntro.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conDocRoadmap.html#standalone_help
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conDocRoadmap.html#standalone_help
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html

Tutorial: Creating a Web Service with Timer Control

To Set up Web Service and Timer Control Annotations

At this point, you have a project containing a package with a web service with the Web Service Design View (Designer pane) displayed in the editor pane.

Conversational web services must implement the java.io.Serializable interface. To set this in your web service:

1. Edit the source file for your web service by right clicking on the designer and choosing Edit Source. On the class definition line for your web service,
insert implements Serializable so that the class definition looks something like this:

public class TimerService implements Serializable {

Note that an error marker has appeared in the marker bar on the class declaration line. Right click on the error marker and choose Quick Fix.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (2 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

2. The Quick Fix pull-down will appear:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (3 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

Click Import Serializable and press Enter and a new import line will be generated to resolve the error. Save the file with File > Save.

By default, a hello() method was inserted when you created the web service. This method is not needed.

1. Click on the Designer tab of your web service. Right click on the standard hello() method and choose Delete.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (4 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

Confirm the deletion by clicking Yes.

To create the timer control:

1. Right click on the Designer pane and click New Control Reference . Under New System Control, click on Timer Control and click OK. The control
declaration is inserted into the body of the class, with the name (timerControl) highlighted. If you click on the TimerControl.java tab, you can verify
that the following code was inserted:

@Control
private TimerControl timerControl;

The properties of the TimerControl annotation are displayed in the Annotations view to the right. Click on the Annotations tab if it is not already
open and visible.

2. Click in the cell under the Value column beside the repeatsEverySeconds property.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (5 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

Type 2 and push the Enter key. In the source code editor window, the control annotation is updated to:

 @Control
 @TimerControl.TimerSettings(repeatsEverySeconds=2)
 private TimerControl timerControl;

and the new property value is also displayed in the Annotations view.

We now have a timer control called timerControl which will call back the web service every two seconds. Next we will define two web methods, one to start the
timer control and one to stop it.

To define the web method to start the timer:

1. From the Designer pane, right click and choose New Web Method. A new operation (web method) is created in the editor, with the default name of
the method highlighted and the properties of the web method in the Annotations view at the right. Enter the new method name: start and press the
Enter key.

2. Right click on the start method name and choose Conversation Start from the pulldown.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (6 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

3. Now edit the source code and replace the return; statement of the method body to call the timer start method with

timerControl.start();
System.out.println("**************");
System.out.println("Timer started");
System.out.println("**************");

The web method now looks like this:

@Conversation(Conversation.Phase.START)
@WebMethod
public void start()
{
 timerControl.start();
 System.out.println("**************");
 System.out.println("Timer started");
 System.out.println("**************");
}

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (7 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

To define the web method that ends the timer:

1. Insert a web method named stop as above.

2. Right click on the method name and choose Conversation Finish .

3. From the source code editor, change the method declaration to return a String value.

4. Replace the return; statement of the method body to call the timer stop method with

timerControl.stop();
System.out.println("**************");
System.out.println("Timer stopped");
System.out.println("**************");
return "ok";

The web method now looks like this:

@Conversation(Conversation.Phase.FINISH)
@WebMethod
public String stop()
{
 timerControl.stop();
 System.out.println("**************");
 System.out.println("Timer stopped");
 System.out.println("**************");
 return "ok";
}

To define the event handler for when the timer control signals that the timer has elapsed:

1. Right click on the Designer pane or the source code pane and choose Insert > Control Event Handler.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (8 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

From the Insert Event Handler dialog, click on timerControl and click OK.

2. Insert the following lines into the event handler body in the source code pane:

System.out.println("***********************************");
System.out.println("Callback received from timer firing");
System.out.println("***********************************");

The event handler should look like this:

@EventHandler(field="timerControl", eventSet=TimerControl.Callback.class, eventName="onTimeout")
protected void timerControl_Callback_onTimeout(long p0, Serializable p1) {

{
 System.out.println("***********************************");
 System.out.println("Callback received from timer firing");
 System.out.println("***********************************");
}

3. Save all of your changes with the File > Save command.

We now have a web service that contains:

● a timer control

● an operation (web method) to start the timer

● an operation (web method) to stop the timer

● an event handler to invoke whenever the timer elapses (every two seconds in our case)
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (9 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

The source for your web service should now look like this:

package timer;

import java.io.Serializable;

import javax.jws.*;
import org.apache.beehive.controls.api.bean.Control;
import com.bea.control.TimerControl;
import weblogic.jws.Conversation;
import org.apache.beehive.controls.api.events.EventHandler;

@WebService
public class TimerService implements Serializable{

 @Control
 @TimerControl.TimerSettings(repeatsEverySeconds=2)
 private TimerControl timerControl;
 private static final long serialVersionUID = 1L;

 @WebMethod
 @Conversation(Conversation.Phase.START)
 public void start() {
 timerControl.start();
 System.out.println("**************");
 System.out.println("Timer started");
 System.out.println("**************");
 }

 @WebMethod
 @Conversation(Conversation.Phase.FINISH)
 public String stop() {
 timerControl.stop();
 System.out.println("**************");
 System.out.println("Timer stopped");
 System.out.println("**************");
 return "ok";
 }

 @EventHandler(field = "timerControl", eventSet = TimerControl.Callback.class, eventName = "onTimeout")
 protected void timerControl_Callback_onTimeout(long p0, Serializable p1) {
 System.out.println("***********************************");
 System.out.println("Callback received from timer firing");
 System.out.println("***********************************");
 }
}

Test the Web Service / Timer Control

To test the web service and the timer control:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (10 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

1. Right click on the editor pane and choose Run As > Run on Server. The WebLogic Test Client will run in a tab in the editor window.

2. Click the start button to invoke the start operation. The Test Client will display the results returned from the start operation.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (11 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

3. Switch to the WebLogic Server console window (command prompt window with the header bar WebLogic Server - 10.0) to see the startup and
callback results. The console window is iconized on the status bar by default. When you open the console window, you can see the timer starting and
the message lines:

Timer started

generated by the start operation. This message will quickly scroll away, since the timer will immediately begin firing every two seconds.

The console window will then show the timer firing. Each time the timer fires, a block of status information will be displayed, including the lines:

Callback received from timer firing

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (12 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

that are generated by the event handler that receives callbacks when the timer fires every two seconds.

4. To stop the timer firing, click on the Continue this conversation link just above the start Request Summary in the body of the test client window.
The test client will then display the operation(s) for the next phase of the conversation, in this case, the stop operation.

5. Click stop. The result of the stop operation will be displayed in the test client window:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (13 of 15)1/26/2007 2:28:53 PM

Tutorial: Creating a Web Service with Timer Control

The console window will no longer show the timer firing every two seconds, and will display the lines:

Timer stopped

to indicate that the stop operation was successful.

Related Topics

Tutorial: Getting Started with BEA Workshop for WebLogic Platform

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (14 of 15)1/26/2007 2:28:53 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/TutorialGettingStarted/tutGS_Intro.html

Tutorial: Creating a Web Service with Timer Control

Using WebLogic System Controls

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html (15 of 15)1/26/2007 2:28:53 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Control Tutorial: Testing Controls with JUnit

Tutorial: Testing Controls with JUnit

This tutorial shows you how to build a simple custom control and test it using JUnit with Workshop
for WebLogic.

Focus of this Tutorial

As you work through this tutorial, you will:

● Learn about Workshop for WebLogic utility projects.

● Create a simple custom control.

● Test your control using JUnit.

● Learn Workshop for WebLogic shortcuts for developing JUnit tests.

Steps in this Tutorial

Create a Custom Control
Use Workshop for WebLogic to create a workspace, utility project and a custom control.

Create the Test Class
Use Workshop for WebLogic to create a JUnit test class.

Run the Test Case
Use Workshop for WebLogic to run the test case.

Related Topics

Testing Controls

Utility Projects

Click the following arrow to navigate through the tutorial:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/tutorial/tutTestControlIntro.html1/26/2007 2:28:54 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#UtilityProject
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#UtilityProject

Control Tutorial: Step 1: Create a Custom Control

Step 1: Create a Custom Control

In this step you will create a Utility project to house your control so they can be used by multiple
modules in an application.

In this step, you will:

● Start Workshop for WebLogic

● Create a workspace

● Create an Utility project

● Create an Custom Control

To Start Workshop for WebLogic

If you haven't started Workshop for WebLogic yet, use these steps to do so.

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

● From the Start menu, click All Programs > BEA Products > Workshop for WebLogic
Platform 10.0

...on Linux

If you are using a Linux operating system, follow these instructions.

● Run BEA_HOME/workshop100/workshop4WP/workshop4WP.sh

To Create a Workspace

You use a workspace to contain related source code. This one will end up containing both your control
source and the source you'll test the control with.

1. If the Workshop Launcher dialog is not displayed, select File > Switch Workspace.
Otherwise, skip to the next step.

2. In the Workspace Launcher dialog, click Browse, then browse to the directory that you
want to contain your new workspace directory.

This can be any directory. You'll be creating a new directory inside this one for your
workspace.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep1.html (1 of 3)1/26/2007 2:28:54 PM

Control Tutorial: Step 1: Create a Custom Control

3. When you have a directory selected, click Make New Folder. Name the new folder
JUnitTutorial press Enter to create the folder, then click OK.

4. In the Workspace Launcher, click OK.

5. Close the Welcome view.

Workshop for WebLogic will create a new empty workspace in the folder you created, then refresh to
display the workspace. Note that the Navigator view is empty.

To Create an Utility Project

An utility project contains shared code that can be used across multiple different projects.

1. Click File > New > Project.

2. In the New Project dialog, expand J2EE, select Utility Project, then click Next.

3. In the New Java Utility Module dialog, in the Project name field, enter
MySharedControls, then click Next.

4. Under Select Project Facets, confirm that the "Beehive Contols" facet is selected. (This
facet must be selected because it contains ControlTestCase, an extension of junit.
framework.TestCase, as well as the control validation and build libraries.)

Click Finish.

To Create a Custom Control

In this step you will create the control to be tested.

1. On the Project Explorer view, expand the node MySharedControls, right-click the src
folder and select New > Package.

2. In the New Java Package dialog, in the Name field, enter sharedcontrols, and click
Finish.

3. On the Project Explorer view, right-click the sharedcontrols package and select New >
Custom Control.

4. In the New Control dialog, in the Control name field, enter EmployeeControl and click
Finish.

5. On the Project Explorer view, open the package sharedcontrols and double-click
EmployeeControlImpl.java to open the file's source code. Edit the source code so it
appears as follows. Code to add appears in red.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep1.html (2 of 3)1/26/2007 2:28:54 PM

Control Tutorial: Step 1: Create a Custom Control

package sharedcontrols;

import org.apache.beehive.controls.api.bean.ControlImplementation;
import java.io.Serializable;

@ControlImplementation
public class EmployeeControlImpl implements EmployeeControl, Serializable {
 private static final long serialVersionUID = 1L;

 public String[] getManagerNames() {
 return new String[]{"Jane","Bob","Amy"};
 }
}

6. Place the cursor inside the method name getManagerNames and press Ctrl+1.
This will bring up an options menu.
Double-click the option Create in super type 'EmployeeControl'.
This will add the method signature to the control interface file EmployeeControl.java.

7. Press Ctrl+Shift+S to save your work.

Related Topics

Testing Controls

Click one of the following arrows to navigate through the tutorial:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep1.html (3 of 3)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

Step 2: Create a Test Class

In this step you will create a test class that will run tests on the control you just created. You can put tests in a
separate source folder for better organization and so it's easier to exclude them later during packaging for production.
Better yet, you can put the tests in a completely separate project, provided that the project dependencies are
correctly configured. But, in this simple case, we will leave the control and test class in the same project.

In this section, you will:

● Create a new Source Folder and Package

● Create the Test Class

To Create a New Source Folder and Package

Here, you'll create a new source folder to hold the test class.

1. On the Project Explorer view, right-click MySharedControls and select New> Other.

2. In the New dialog, open the Java node, select Source Folder, and click Next.

3. In the Folder name field, enter src-test and click Finish.

4. On the Project Explorer view, right-click the src-test folder and select New > Package.

5. In the New Java Package dialog, in the Name field, enter sharedcontrols.test and click Finish.

To Create the Test Class

In this step you will create the class that tests your control.

1. On the Project Explorer view, right-click the sharedcontrol.test package and select New > Other.

2. In the New dialog open nodes Java > JUnit, select JUnit Test Case, and click Next.

3. In the New JUnit Test Case dialog, click the link Click here.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep2.html (1 of 6)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

4. In the Properties for MySharedControls dialog, click OK.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep2.html (2 of 6)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

5. In the New JUnit Test Case dialog, in the Name field, enter EmployeeControlTestCase.
In the Superclass field, enter org.apache.beehive.controls.test.junit.ControlTestCase.
(Hint: in the Superclass field enter ControlTestCase and press Ctrl+Space Bar to fill in the remaining
package names.)
In the Class under test field, enter sharedcontrols.EmployeeControl.
Click Next.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep2.html (3 of 6)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

6. Click Select All and then Finish.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep2.html (4 of 6)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

7. Edit the source code for EmployeeTestCase.java so it appears as follows. Code to add appears in red.
Make sure to delete the line of code fail("Not yet implemented");.

package sharedcontrols.test;

import org.apache.beehive.controls.api.bean.Control;
import org.apache.beehive.controls.test.junit.ControlTestCase;

public class EmployeeControlTestCase extends ControlTestCase {

 @Control
 sharedcontrols.EmployeeControl employeeControl;

 /*
 * Test method for 'sharedcontrols.EmployeeControl.getManagerNames()'
 */
 public void testGetManagerNames() {
 String[] mgrs = employeeControl.getManagerNames();
 assertNotNull("Didn't find managers!", mgrs);
 assertTrue("Found wrong number of managers!",
 mgrs.length == 3);

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep2.html (5 of 6)1/26/2007 2:28:54 PM

Control Tutorial: Step 2: Create a Test Class

 }
}

(Notice that you were able to use the control simply by using the @Control field notation and didn't have to
programmatically instantiate it yourself. That's the magic of ControlTestCase. By extending that class you
inherit its setUp() and tearDown() methods that do the declarative wire-up for you.)

8. Select Ctrl+Shift+S to save your work.

Related Topics

Testing Controls

Click one of the following arrows to navigate through the tutorial:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep2.html (6 of 6)1/26/2007 2:28:55 PM

Control Tutorial: Step 3: Run the Test Case

Step 3: Run the Test Case

In this step you'll run the test against the control class.

In this step, you will:

● Run a Successful Test

● Run a Failed Test

Run a Successful Test

1. In the Project Explorer, right-click EmployeeControlTestCase and select Run As > JUnit Test.

The JUnit view will appear with the green progress bar, meaning that all tests have passed.

Run a Failed Test

1. Edit the testGetManagerNames method so that the expected array length is 2 instead of 3 and run the test again.

The JUnit view will look like the following. The red bar indicates that the test has failed and an error message is shown.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep3.html (1 of 2)1/26/2007 2:28:55 PM

Control Tutorial: Step 3: Run the Test Case

Notice that at no time during this test was a server started, the test was running in a pure JUnit environment. The only special class used was
a standard sub-class of TestCase. (This is not universally true for all controls. In cases where the control takes a dependency on a server-
bound resource, the control cannot be thoroughly tested in a pure JUnit environment.)

Also, notice that the setup of the test case was very straight forward. Most of the setup was in making sure the test class lived in its own
source folder. By extending ControlTestCase and letting the JUnit wizard generate the stub methods, all you had to do was write your test
code.

Related Topics

Testing Controls

Click one of the following arrows to navigate through the tutorial:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wo...oduct.wl.doc/html/controls/tutorial/tutTestControlStep3.html (2 of 2)1/26/2007 2:28:55 PM

Using System Controls

Using Controls

BEA Workshop for WebLogic Platform's controls make it easy to access encapsulated logic.

You can also create your own custom controls to encapsulate business logic in a reusable
component. For information on creating custom controls, see Custom Controls.

Topics Included in This Section

Invoking a Control Method
Describes how to insert a control into your code and invoke control methods.

Overriding Control Properties
Discusses how to override the properties that are set in the control.

Handling Control Events
Describes how to work with events generated by the control.

Handling Control Method Exceptions
Describes how to handle exceptions thrown by a control.

Control Transactions
Describes how to do transactions with a control.

Related Topics

Working with Beehive Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/navUsingControls.html1/26/2007 2:28:55 PM

Invoking a Control Method

Invoking a Control Method

The following topic explains how to utilize a (system or custom) control resource in an application.
This topic is divided into the following sections:

Adding a Control Declaration

Invoking a Method

Adding a Control Declaration

To invoke a control method, first add a control declaration to the calling client and then invoke a
method on that control.

To add a control declaration, open the J2EE perspective (Window > Open Perspective >
J2EE), right-click anywhere with the Java source of the client class and select Insert > Control.
Select from the list of controls available to your client.

See the topic Select Control Dialog for a complete description of the dialog below.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....product.wl.doc/html/controls/conInvokingControlMethod.html (1 of 4)1/26/2007 2:28:55 PM

Invoking a Control Method

Selecting a control from the dialog will add two things to your client class: (1) a control class
import statement and (2) a control class declaration:

 MyClient.java

 import controls.CustomerControl;

 @Control
 private CustomerControl customerControl;

Once the control class declaration is in place, you can call the control's methods.

Invoking a Method

Once you've added a control class declaration to your client class, you can invoke its methods
using the standard Java dot notation. For example, assume that you have added a declaration for
the control class CustomerControl:

 @Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....product.wl.doc/html/controls/conInvokingControlMethod.html (2 of 4)1/26/2007 2:28:55 PM

Invoking a Control Method

 private CustomerControl customerControl;

Also assume that the control defines a method getCustomers():

 public Customer[] getCustomers();

You can invoke this method from your client code as follows:

 Customer[] custResult = customerControl.getCustomers();

Overriding Default Control Properties

Sometimes it is desirable to override a control property from within client code without editing the
control code. For example, suppose you have a database control where the JNDI data source
name is set by an annotation.

@JdbcControl.ConnectionDataSource(jndiName = "myDataSource")
public interface CustomerDB extends JdbcControl

But also suppose the JNDI name has changed, or you want to reuse the database control in
another context where the JNDI name of the data source is different. It might be inconvenient (or
impossible) to manually change the annotation value and recompile the control. In this case it is
desirable to override the JNDI value directly from within client code. To override the annotation
value you call into another class: the control's associated ControlBean class. The ControlBean
class implements all of the control's methods but also gives you programmatic access to the
control's annotation-based properties. The ControlBean is a generated JavaBean class that is
created automatically by Beehive when a control is built.

The following sections explain what this generated ControlBean class is and how to use it to
override default control annotation values.

You can also override annotation values that are set in the client class. For details see Overriding
Control Annotation Values Through the ControlBean below.

The ControlBean Generated Class

Every control has an associated ControlBean class. The ControlBean is generated automatically
and provides a programmatic way to access settings that otherwise would only be available
through the controls annotations. The ControlBean class typically does not exist as a JAVA source
file; instead only the compiled CLASS file is present within the application.

The ControlBean generated class is derived from the members and methods in the control. The
ControlBean generated class is really a superset of the original control class that provides a
broader set of access points into the control. In the case of the Timer control, the shape of the
ControlBean generated class is fixed (because the members and methods of the Timer control are
fixed). But in the case of extensible system controls (EJB, JDBC, and JMS controls) and custom
controls the ControlBean generated class is variable (because the members and methods of the
source controls are variable).

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....product.wl.doc/html/controls/conInvokingControlMethod.html (3 of 4)1/26/2007 2:28:55 PM

Invoking a Control Method

The name of the generated ControlBean class is the control name appended with 'Bean'. If the
control name is CustomerDB.java, then the generated ControlBean class will be CustomerDBBean.
class.

For more infomation about the ControlBean generated from control sources see the Apache
Beehive documentation: The Control Authoring Model.

Related Topics

The Control Authoring Model

Overriding Control Properties

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....product.wl.doc/html/controls/conInvokingControlMethod.html (4 of 4)1/26/2007 2:28:55 PM

http://beehive.apache.org/docs/1.0.1/controls/programming.html#control_auth
http://beehive.apache.org/docs/1.0.1/controls/programming.html#control_auth

Overriding Control Properties

Overriding Control Properties

Sometimes it is desirable to override a control definition property from within client code or from an external configuration file. Common examples
overriding the endpoint address on a service control or the data source on a database control. Suppose that you have a database control definition where
the data source is configured as follows.

DatabaseControl.java (Control Definition Code)

 @JdbcControl.ConnectionDataSource(jndiName = "myDataSource")
 public interface CustomerDB extends JdbcControl

What if you want to reuse the database control in another context where the data source is different? It might be inconvenient (or impossible) to manually
change the annotation value and recompile the control definition. In this case it is desirable to override the data source value from another source.

To override the annotation value in the control definition, you can do one of the following:

1.
configure the value in the client code's control declaration (for use by developers)

2.
set the value programmatically using the ControlBean API (for use by developers)

3.
configure the value using a deployment plan (for use by administrators)

Developers use option (2) when the properties of the control instance are not known until runtime. In this case you will typically first determine the
appropriate control properties and then reset those properties programmatically using the ControlBean API.

Option (3) is for use by server administrators who are managing the deployment of an application into a different environment. For example, if an
application is being promoted from a testing environment into a real world production environment. A deployment plan can override annotation values on
any of the control contexts in the application, including either the control definition or the control declaration in client code. Note that deployment plans can
only override contexts already established by annotations, they cannot add new contexts or override any value set through the ControlBean.

The hierarchical rules of precedence for these override methods are described below in Order of Precedence.

The diagram below shows the different options available to developers and administrators.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conOverridingControlProperties.html (1 of 6)1/26/2007 2:28:56 PM

Overriding Control Properties

Requirements for Annotation Overrides

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conOverridingControlProperties.html (2 of 6)1/26/2007 2:28:56 PM

Overriding Control Properties

Annotation overrides are supported only when the following requirements are met:

●

Overrides are supported only for applications, not stand-alone modules.

●

The application must reference the weblogic controls EAR library (weblogic-controls-1.0).

●

Application scoped controls must be packaged in the APP-INF/lib directory. Controls referenced through the manifest classpath are not supported.

Method 1: Overriding Control Annotation Values Through the Control Declaration Field

You can override a control's default properties on the control's declaration field in your client code.

The database control above is declared with its default properties in the following way.

MyWebService.java (Client Code)

 @Control
 private DatabaseControl dbControl;

To override the default jndiName property, use the following declaration.

 @Control
 @DatabaseControl.ConnectionDataSource(jndiName = "myOtherDataSource")
 private DatabaseControl dbControl;

In the above declaration, the database control will use myOtherDataSource instead of the value used in the control definition. This override value will apply
to all method calls from within MyWebService.java.

Method 2: Overriding Control Annotation Values Through the ControlBean Class

The ControlBean class implements all of the control's methods but also gives you programmatic access to the control's annotation-based properties. The
ControlBean is a generated JavaBean class that is created automatically by Beehive when a control is built. (Note that the control author may disable
overrides of control properties. See the @PropertySet annotation for details.)

The name of the generated ControlBean class is the control name appended with 'Bean'. If the control name is CustomerDB.java, then the generated
ControlBean class will be CustomerDBBean.class.

Use caution when you use this approach because it cannot be overridden by a deployment plan (method 3 below).

For more infomation about the ControlBean generated from control sources see the Apache Beehive documentation: The Control Authoring Model.

Calling ControlBean Methods

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conOverridingControlProperties.html (3 of 6)1/26/2007 2:28:56 PM

http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/properties/PropertySet.html
http://beehive.apache.org/docs/1.0.1/controls/programming.html#control_auth

Overriding Control Properties

Suppose you have a database control where jndiName attribute points at the data source myDataSource.

DatabaseControl.java

 @JdbcControl.ConnectionDataSource(jndiName = "myDataSource")
 public interface CustomerDB extends JdbcControl

To override all other competing values of the urls property, add the database control's generated ControlBean class to your client and reset the JNDI (by
calling the appropriate method). Note that using the ControlBean class will override all competing values, including the value in the control definition, any
value set on a control declaration field, and any external configuration through a deployment plan.

To reference the ControlBean class, use the following declaration.

 @Control
 private controls.CustomerDBBean customerDBBean;

To override the JNDI value, call the setConnectionDataSourceJndiName(String name) method.

 customerDBBean.setConnectionDataSourceJndiName("myOtherDataSource");

Calling Methods on the Control Definition Class

In some cases the appropriate setter method is not on the ControlBean class, but on the control definition class. For example, to override the target url of
a service control, you call a method on a service control definition. The following control definition property:

@ServiceControl.Location(urls = {"http://some.domain.com/WebServices/HelloWorld"})
...
public interface HelloWorldServiceControl extends ServiceControl

is overridden by the setEndpointAddress(String url) method on the control definition class.

Method 3: External Configuration in a Deployment Plan

Some annotation values can be overridden through an external configuration file as part of a deployment plan. For details on deployment plans see
Configuring Applications for Production Deployment in the WebLogic Server documentation.

Deployment plan configuration files can override annotation values both in the control definition class and on the control declaration field (in client code).
Also deployment plans can only change the values for annotations that are already present in the code. You cannot create a new configuration context
through a deployment plan.

Control authors have control over which control properties can be overridden using external configuration in a deployment plan. For details see the
@PropertySet annotation.

To create a deployment plan for a control, follow these steps:
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conOverridingControlProperties.html (4 of 6)1/26/2007 2:28:56 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/ServiceControl.html#setEndpointAddress(java.lang.String)
http://e-docs.bea.com/wls/docs100/deployment/config.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/properties/PropertySet.html

Overriding Control Properties

1. Ensure that the application is packaged and deployed as an EAR file. The WebLogic Server console does not support deployment plans for exploded
applications.

To package your application as an EAR, select File > Export > EAR file.

To use the WebLogic Server console to deploy the application EAR, see Install an Enterprise Application in the WebLogic Server documentation.

2.
Click the Lock & Edit button and click the Deployments link to go to the Summary of Deployments page and click the application name.

3.
Select the Deployment Plan tab and then the Resource Dependencies (sub-)tab.

4.
Within the Controls node, controls are located either under the module's name or Application (if the controls are part of a utility project). Controls
are organized by classname, then instances, then fields. Select the annotation to be overridden. This will display the Array Value Overrides table.

5.
Select a cell in the Override Value column, enter the override value, and press the Enter key.

6.
After entering the new value click Save button on the Array Value Overrides table.

7.
Select a location to store the deployment plan and click Finish.

8. Return to the Deployments page by clicking the Deployments link.

If the application is not started (its state is marked as "Prepared"), then select the checkbox next to the application, and click the Start button.

If the application is already running (its state is marked as "Active"), then select the checkbox next to the application and click the Update button.
Select the first choice: Update this application in place, then click the Finish button.

9. Click the Activate Changes button.

Order of Precedence

The ControlBean always takes the highest order of precedence when overriding annotations values. The following order of precedence is used:

1.
First, the values programmatically set through the ControlBean are consulted (see Method 2 above).

2.
Second, any deployment plan overrides of values configured on the control declaration field are consulted (see Method 3 above).

3.
Third, the values configured on the field declaration are consulted (Method 1 above).

4.
Fourth, any deployment plan overrides of values set in the control definition are consulted (see Method 3 above).

5.
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conOverridingControlProperties.html (5 of 6)1/26/2007 2:28:56 PM

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/applications/DeployEnterpriseApplications.html

Overriding Control Properties

Finally, the values in the control definition class are consulted.

Note that programmatically calling ControlBean methods takes precedence over all other values.

For example, suppose you declare a timer control in your client code and set the timeoutSeconds value with an annotation:

 @TimerControl.TimerSettings(repeatsEverySeconds=2, timeoutSeconds = 100)
 @Control
 private TimerControl timerControl;

You can override this timeout value programmatically by calling into the TimerControlBean class.

First declare the TimerControlBean in your client.

 @Control
 private com.bea.control.TimerControlBean timerControlBean;

Then call the appropriate method to reset the timeout value.

 timerControlBean.setTimerSettingTimeoutSeconds(200);

Related Topics

The Control Authoring Model

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conOverridingControlProperties.html (6 of 6)1/26/2007 2:28:56 PM

http://beehive.apache.org/docs/1.0.1/controls/programming.html#control_auth

Handling Control Events

Handling Control Events

Controls allow the specification of event methods. Event methods provide a way for a control to asynchronously notify
its client that something has occurred. Event methods are especially useful when you don't want client resources to be
bound up with a network request or a long running operation. Instead of forcing the client to waste resources waiting
for the control to return a value, the client can disengage from the control and engage in other processes while it listens
for an event from the control.

A control event causes something to happen in the client code. When an control event method is triggered it sends an
event to the client, causing an event handler (implemented in the client) to execute. The event handler is a method like
any other, except that the client code does not determine when it is called; instead the control event method
determines when the event handler is executed.

Events and Callbacks

Events and callbacks both have same underlying intent: to provide a way to asynchronously notify client code that
something has occurred. The difference between the two technologies is, for the most part, terminological and a
question of scope: web services send "callback" messages, controls send "event" messages.

A Control Event Scenario

The diagram below shows a simple control event scenario. The scenario contains two main components: a web service
(the client) and a control (used by the client web service). (Notice that only the control interface class is depicted
below; the implementation class is not depicted.)

Rightward pointing arrows depict ordinary method calls; leftward pointing arrows depict events and event handlers.

The following sequence explains how the client web service invokes the control and receives an event from the control.

1. The client web service method start is executed, which invokes the control method requestMessage.

 ClientWebService.java

 @Control
 private MyControl myControl;

 public void start() {
 myControl.requestMessage();
 }

2. The control method requestMessage is executed

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....duct.wl.doc/html/controls/conHandlingControlCallbacks.html (1 of 6)1/26/2007 2:28:56 PM

Handling Control Events

Notice that the requestMessage method signature is defined in the control interface class while the method body is
defined in the control implementation class. The message body invokes the event method. (See stage 3 below for
details on event method syntax.)

 MyControl.java (Control Interface)

 public void requestMessage();

 MyControlImpl.java (Control Implementation)

 public void requestMessage() {

 // Invoke the event method to send the event to the client.
 eventSet.onMessage("This is a message from the custom control.");
 }

3. The the event method onMessage is invoked an sends an event to the client.

The control interface class exposes the event set interface. Notice that the event set interface must be decorated by the
@EventSet annotation. The @EventSet annotation exposes all methods in the interface as event methods: methods
capable of triggering the corresponding event handlers in the client.

 MyControl.java (Control Interface)

 @EventSet
 public interface MyEventSet {
 void onMessage(String aMessage);
 }

Notice that is there is no implementation of the onMessage event method in either the control interface or
implementation classes. Only the event method signature (void onMessage(String aMessage)) exists in the control
interface class. This is because the only purpose of an event method is to invoke the event handler in the client and
pass data to that handler.

In this scenario, the event method onMessage has one parameter String aMessage, which is transmitted to the client's
method handler.

The @Client annotation causes the ControlBean to initialize an implementation of the event interface. This
implementation is used to fire events back to the client.

 MyControlImpl.java (Control Implementation)

 @Client
 MyEventSet eventSet;

 public void requestMessage() {
 eventSet.onMessage("This is a message from the custom control.");
 }

4. The event handler executes.

 ClientWebService.java

 @EventHandler(field = "myControl", eventSet = MyControl.MyEventSet.class, eventName = "onMessage")
 protected void myControl_MyEventSet_onMessage(String aMessage) {
 System.out.println("Got message from myControl: " + aMessage);
 }

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....duct.wl.doc/html/controls/conHandlingControlCallbacks.html (2 of 6)1/26/2007 2:28:56 PM

Handling Control Events

The @EventHandler annotation provides the pathway that allows the control event method onMessage to invoke the
client's event handler method. Notice that the @EventHandler contains all of the information necessary to indicate
which event method the handler is sensitive to: the target control, the event set, and the particular event in that event
set.

The event handler name can be anything (because the @EventHandler annotation does all of the work of sensitizing the
handler to the appropriate event method). By convention we have named the event handler according to the following
rule:

 <control-reference-field-name>_<event-set-name>_<event-name>

Workshop for WebLogic uses this naming rule by default when a event handler is added to a client class using Right-
click > Insert > Control Event Handler.

Note that the parameter set of the event method must match the parameter set of the event handler for the event
handler to be successfully invoked. In the above example, both the event method and its handler have matching
parameter sets, namely, one String parameter:

 @EventSet
 public interface MyEventSet {
 void onMessage(String aMessage);
 }

 @EventHandler(field = "myControl", eventSet = MyControl.MyEventSet.class, eventName = "onMessage")
 protected void myControl_MyEventSet_onMessage(String aMessage) {
 ...
 }

Control Event Set Definition

An event set definition in a control consists of two elements:

(1) An @EventSet declaration on the event set interface:

 MyControl.java

 @ControlInterface
 public interface MyControl {

 public void requestMessage();

 @EventSet
 public interface MyEventSet {
 void onMessage(String aMessage);
 }

 }

Multiple event methods may be defined in the @EventSet declaration:

 MyControl.java

 @ControlInterface
 public interface MyControl {

 public void requestMessage();

 @EventSet
 public interface MyEventSet {

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....duct.wl.doc/html/controls/conHandlingControlCallbacks.html (3 of 6)1/26/2007 2:28:56 PM

Handling Control Events

 void onMessage(String aMessage);
 void onReady(boolean boolReady);
 }

 }

(2) A @Client declaration in the control implementation:

MyControlImpl.java

 @Client MyEventSet eventSet;

For events to be sent, you must invoke the event method somewhere within the control implementation.

 public void requestMessage() {
 eventSet.onMessage("This is a message from the custom control.");
 }

Note that the event method definition has no body -- only the method signature, including the return type and any
parameters.

It is common for event methods to have names that begin with on because the event handler in the client will be called
on occurrence of the event.

Event Handler Definition

The client application is responsible for implementing the handler for a control's event method.

The following shows an example of a event handler as it might appear in a client application:

 @EventHandler(field = "myControl", eventSet = MyControl.MyEventSet.class, eventName = "onMessage")
 protected void eventHandler(String aMessage) {

 // do something with the message here ...

 }

For the event handler to successfully listen for an associated event, the following two conditions must be fulfilled:

(1) The @EventHandler annotation must point at the appropriate control, event set, and event.

This means that the field attribute must refer to the control field as it is declared in the client. Suppose the control field
is declared as so:

 @Control
 private MyControl myControl;

Then the @EventHandler must refer to this field:

 @EventHandler(field = "myControl",

The @EventHandler must also refer to the EventSet and the particular event method as they are defined on the control.
Suppose the control defines the following EventSet and event method:

 @EventSet
 public interface MyEventSet {
 void onMessage(String aMessage);

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....duct.wl.doc/html/controls/conHandlingControlCallbacks.html (4 of 6)1/26/2007 2:28:56 PM

Handling Control Events

 }

Then the @EventHandler must refer to the EventSet and event method as so:

 @EventHandler(field = "myControl", eventSet = MyControl.MyEventSet.class, eventName = "onMessage")

(2) The event method and its handler must have matching parameter sets. That is, the number of parameters, their
order, and their types must match. For example, the following event method and handler have matching parameter
sets.

 @EventSet
 public interface MyEventSet {
 void onMessage(String aMessage, boolean status);
 }

 @EventHandler(...)
 protected void eventHandler(String aMessage, boolean status) {

Limitations for External Events

External events are supported only for web service clients. Other clients cannot cannot handle event notification over a
network protocol.

Adding Event Sets and Event Handlers with Workshop for WebLogic

The following commands are available for adding event sets and event handlers.

To Add an Event Set

To add an event set to a control, right-click anywhere within the control interface source view and select Insert >
Event Set. By default an event set interface named NewEventSet with one event method, named onEvent1(), is added
to the control interface:

 SomeControl.java

 @EventSet
 public interface NewEventSet {
 void onEvent1();
 }

And the corresponding @Client declaration is added to the control implementation file:

 SomeControlImpl.java

 @Client
 NewEventSet eventSetClient;

You must manually rename default the event set and event method names. Add additional event methods as necessary.

To Add an Event Handler

To add an event handler to a control client, right-click anywhere in source view and select Insert > Control Event
Handler. A dialog will appear presenting you with the controls declared on the client and the events exposed by those
controls. Select the control, event set, and particular event method to construct an event handler for that event method.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....duct.wl.doc/html/controls/conHandlingControlCallbacks.html (5 of 6)1/26/2007 2:28:56 PM

Handling Control Events

An event handler will be added to your client's source:

 @EventHandler(field = "myControl", eventSet = MyControl.MyEventSet.class, eventName = "onMessage")
 protected void myControl_MyEventSet_onMessage(String aMessage) {

 }

Related Topics

Designing Asynchronous Interfaces

Apache Beehive documentation: @EventSet

Apache Beehive documentation: @EventHandler

Apache Beehive documentation: @Client

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....duct.wl.doc/html/controls/conHandlingControlCallbacks.html (6 of 6)1/26/2007 2:28:56 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/navAsynchronousInterfaces.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/index.html?org/apache/beehive/controls/api/events/EventSet.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/index.html?org/apache/beehive/controls/api/events/EventHandler.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/index.html?org/apache/beehive/controls/api/events/Client.html

Handling Control Method Exceptions

Handling Control Method Exceptions

The designer of a custom control may choose whether or not to explicitly declare that exceptions
are thrown by the control's methods. If a control method is declared to throw exceptions, you
must enclose your invocations of that method in a try-catch block.

Even if the designer of the control chooses not to declare exceptions, the support code that
implements the control can still throw exceptions. The type of exception thrown is com.bea.
control.ControlException.

You should strongly consider handling all control exceptions that may be thrown by the controls
you use. If you do not handle the exception, the exception will be passed on to the client of your
control. In most cases, the exception is useless to the client and the client does not have the
necessary information to diagnose or remedy the problem.

Related Topics

None

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.work...product.wl.doc/html/controls/conHandlingControlExceptions.html1/26/2007 2:28:56 PM

Control Transactions

Control Transactions

Ordinary control methods, event set methods, and web service control callback methods are transaction-enabled.
This topic provides an overview of transaction support in controls.

Transaction Behavior

The transaction behavior of a method, event set method, or callback method is specified by the
@TransactionAttribute annotation. The following example shows a web service callback decorated with
@TransactionAttribute.

public interface MyServiceControl extends ServiceControl
{

 @ServiceControl.HttpSoapProtocol
 @ServiceControl.SOAPBinding(style = ServiceControl.SOAPBinding.Style.RPC, use = ServiceControl.
SOAPBinding.Use.ENCODED)
 @EventSet(unicast=false)
 public interface Callback {
 @TransactionAttribute(TransactionAttributeType.REQUIRES)
 public void onCallback(java.lang.String message);
 }

 public void requestCallback();
}

In the above example, TransactionAttributeType.REQUIRES means that if a transaction was already started in the
callback thread, that transaction will be used; otherwise a new transaction will be started just before the callback
method is called. Depending on the result of the operation, the transaction could either be committed, rolled-back,
or marked as rollback (if started elsewhere).

The @TransactionAttribute has 6 legal settings:

●

REQUIRED - If the client is running within a transaction, the method/callback executes within the client's
transaction. If the client is not associated with a transaction, the interceptor starts a new transaction before
running the method/callback. Most control runtime-managed transactions use REQUIRED. This is the default
setting.

●

REQUIRES_NEW - If the client is running within a transaction, the control runtime suspends the client's
transaction, starts a new transaction, delegates the call to the method/callback, and finally resumes the client's
transaction after the method/callback completes. If the client is not associated with a transaction, the control
runtime starts a new transaction before running the method/callback.

●

MANDATORY - If the client is running within a transaction, the method/callback executes within the client's
transaction. If the client is not associated with a transaction, the control runtime throws a ControlException. Use
the MANDATORY attribute if the method/callback must use the transaction of the client.

●

NOT_SUPPORTED - If the client is running within a transaction and invokes the control bean's method/callback, the
control runtime suspends the client's transaction before invoking the method/callback. After the method/callback
has completed, the control runtime resumes the client's transaction. If the client is not associated with a
transaction, the control runtime does not start a new transaction before running the method/callback. Use the
NOT_SUPPORTED attribute for method/callbacks that don't need transactions. Because transactions involve
overhead, this attribute may improve performance.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...op.product.wl.doc/html/controls/conControlTransactions.html (1 of 2)1/26/2007 2:28:57 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/annotations/TransactionAttribute.html

Control Transactions

SUPPORTS - If the client is running within a transaction and invokes the control bean's method/callback, the
method/callback executes within the client's transaction. If the client is not associated with a transaction, the
control runtime does not start a new transaction before running the method/callback. Because the transactional
behavior of the method/callback may vary, you should use the SUPPORTS attribute with caution.

●

NEVER - If the client is running within a transaction and invokes the control bean's method/callback, the control
runtime throws a ControlException. If the client is not associated with a transaction, the control runtime does
not start a new transaction before running the method/callback.

Exception Handling

Checked exceptions (those exceptions that are a sub-class of Exception, not RuntimeException) are handled
differently from other exceptions.

You can control the response to checked exceptions with the annotation attribute rollbackOnCheckedException:

 @TransactionAttribute(rollbackOnCheckedException=<boolean>)

If rollbackOnCheckedException is true, then the transaction will be rolled back (or be marked for rollback) when a
control method or callback method results in a checked exception. By default, rollbackOnCheckedException is set
to false. The default behavior is that a transaction will not be automatically rolled back, even if the method/callback
invocation results in a checked exception being thrown. If invoking a control method/callback results in a system
exception (exceptions that are a sub-class of java.lang.RuntimeException and java.lang.Error), the transaction will
be rolled back (or marked for rollback) automatically.

Related Topics

@TransactionAttribute

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...op.product.wl.doc/html/controls/conControlTransactions.html (2 of 2)1/26/2007 2:28:57 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/annotations/TransactionAttribute.html

Using System Controls

Using System Controls

BEA Workshop for WebLogic Platform's system controls make it easy to access J2EE resources like
databases and Enterprise JavaBeans from within your application. The control handles the work of
connecting to the enterprise resource for you, so that you can focus on the business logic to make
your application work.

You can also create your own custom controls to encapsulate business logic in a reusable
component. For information on creating custom controls, see Custom Controls.

Topics Included in This Section

Timer Control
Describes how to use the timer control to run code at specific time intervals.

Service Control
Discusses how to use a web service control to access web service operations through method
calls.

EJB Control
Describes how to use the EJB control to access an Enterprise JavaBean.

JMS Control
Describes how to access a JMS message queue or topic with a JMS control.

JDBC Control
Describes how to access use a JDBC control to access a database.

Related Topics

Working with Beehive Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.work...uct.wl.doc/html/controls/system/navSystemControlsOverview.html1/26/2007 2:28:57 PM

Timer Control

Timer Control

A timer monitors elapsed time:

● When a specific relative amount of time has passed (e.g., an hour)

● When a specific absolute moment has passed (e.g., midnight of February 12, 2015)

● At recurring intervals (e.g., every ten seconds)

● After an absolute time or a relative amount of time has passed, in recurring intervals
thereafter (e.g., after an hour, then every five minutes thereafter OR after noon on Tuesday,
then every hour thereafter)

The BEA Workshop for WebLogic Platform (Workshop for WebLogic) timer control allows you to
easily incorporate timer functionality into a web service.

To learn about other Workshop for WebLogic controls, see Using WebLogic System Controls.

Topics Included in this Section

Tutorial: Creating a Web Service with Timer Control
Walks through a step-by-step description of how to implement a simple timer control that
calls back every two seconds.

Overview: Timer Control
Discusses how the timer works, how times are specified, general techniques for working with
a timer control.

Creating and Configuring a Basic Timer Control
Describes how to declare/instantiate a timer control, configure settings, how to set up single-
instance timers and recurring timers, timer control methods and properties.

Setting up Web Service Operations to Access a Timer Control
Explains how to create web methods to start/stop a timer control and an event handler to
process the callback(s) when the timer elapses.

Changing Timer Settings Dynamically
Explains how to use methods on TimerControlBean as an alternative to using the
TimerControl interface and the Annotations view to change settings dynamically.

Using a Timer Control
Provides a detailed feature summary.

Related Topics

TimerControl Interface

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...duct.wl.doc/html/controls/system/timer/navTimerControl.html (1 of 2)1/26/2007 2:28:57 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Timer Control

Using WebLogic System Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...duct.wl.doc/html/controls/system/timer/navTimerControl.html (2 of 2)1/26/2007 2:28:57 PM

Overview: Timer Control

Overview: Timer Control

The timer control can notify a web service in the following ways:

1. A specific (absolute) timeout has passed (e.g., January 23, 2012 midnight)

2. A relative timeout has passed (e.g., an hour and seventeen minutes)

3. A recurring time interval has elapsed (e.g., every 3 minutes)

4. Both an intial timeout and a recurring interval (e.g., after one hour, every 5 minutes OR after
January 1, 2010, every hour thereafter)

The timer control can perform only one of these tasks at a time. If you wish to do more than one
timer task, you may create additional timer controls. Alternately, you may run a timer and on
completion, change the timer settings and start the timer again.

If a timer is created with NO time specified, then it will perform the default timer--a relative
timeout of 0 seconds.

All timer controls are instances of the com.bea.control.TimerControl base class or the com.bea.
control.TimerControlBean base class. A timer control is declared directly in a .java file. Timer
controls are based on the EJB 2.1 timer service. Timer controls make a best-effort to do a callback
to the client when a timer elapses, suitable for application timers. However timer controls are not
a true real-time time service. Timer controls are allowed only in conversational (stateful) web
services.

Creating and Configuring a Basic Timer Control

To create a basic timer control, the IDE provides commands that will insert the declaration/
annotation for a TimerControl into the code for your web service and set attributes.

To specify a relative timeout and/or recurring time, set the timer property values in the
Annotations view.

To specify an absolute timeout, call the setTimeoutAt method on the timer control instance

before starting the timer. You can also stop the timer, reset the absolute timeout value and start
the timer again. If a recurring time value has been specified previously from Annotations view,
the recurring timer begins after the initial absolute time has elapsed.

To define a payload to be returned on the callback, call the setPayload method in your web

service before starting the timer.

To set other configuration values, you can use the Annotations view to set properties that
optionally specify the type of timer intervals (coalesced vs. non-coalesced), whether the timer is
transactional, and the JNDI Provider URL and Context Factory.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....ct.wl.doc/html/controls/system/timer/ovwTimerControls.html (1 of 2)1/26/2007 2:28:57 PM

Overview: Timer Control

Setting up Web Service Operations to Access a Timer Control

To run the timer, once the timer has been declared and configured, you must create a
conversational web service and then within your web service you create operations (web
methods) that start/stop/restart the timer, based on the annotation settings or based on method
calls. The timer control requires a stateful conversational web service, so the web methods must
be set up appropriately.

To specify what happens when the timer elapses, you must set up an event handler in the
web service to process callbacks.

Changing Timer Settings Dynamically

To change settings programatically, (other than the absolute timeout value), you must use
TimerControlBean. The bean is generated by the Beehive control framework at build time and

implements the TimerControl interface, providing additional properties and methods that allow
you to control all of the properties in the Annotations view at run-time.

Related Topics

Using WebLogic System Controls

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....ct.wl.doc/html/controls/system/timer/ovwTimerControls.html (2 of 2)1/26/2007 2:28:57 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Creating and Configuring a Basic Timer Control

Creating and Configuring a Basic Timer Control

To set up a timer control, you must insert the initial timer control into the web service and then
configure the settings for the control.

Using IDE Commands to Insert a Timer Control

To declare a new timer control, follow these steps:

1. Be sure that you are in the J2EE perspective. The current perspective is displayed just below
the toolbar at the top of the workbench. If you are not in J2EE perspective, click Window >
Open Perspective > J2EE to switch perspectives.

2. Double click the .java file name in the Project Explorer view at the left to open the Java
source file in the editor.

3. Right click on the editor pane and choose Insert > Control. The Select Control dialog
opens.

4. Expand New System Control and choose Timer Control. Click OK.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea..../html/controls/system/timer/conSettingUpATimerControl.html (1 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

5. The timer control annotation is inserted into the code:

@Control
private TimerControl timerControl1;

and the default name of the new control (timerControl1) is highlighted.

When you create a timer control, Workshop for WebLogic also inserts a line at the top of your .
java file to import the timer control class, com.bea.control.TimerControl.

Note that you cannot create a new timer control in a Beehive page flow or a Java Server Page
(JSP file), because the timer control defines a callback, the onTimeout method, but page flow and
JSP pages cannot accept callbacks.

Before using a timer control, you must specify when the timer elapses. If you do not specify when
the timer elapses, the timer control will time out immediately (i.e., it will default to zero seconds).
Elapsed time is specified in an additional annotation @TimerControl.TimerSettings() that is
inserted into your code. Typically you will not edit the annotation manually but instead will use the
Annotations view to set property values.

Specifying Relative Timer Values through the Annotations View

For relative times, you can specify the timeout or the repeated time interval from the
Annotations view, which is available in J2EE perspective. Absolute times must be specified by
calling the control's method(s) as described in Setting an Absolute Timer with a Method Call.

To set a relative timeout or recurring time interval:

1. From the editor window, as long as the control name is highlighted, the Annotations view at
the right displays the properties of the new control. To set a relative timeout, click the
timeout or timeoutSeconds field and enter the amount of time you want to elapse before
the timer fires. This timer will elapse only once. The time value is a string, as described
below.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea..../html/controls/system/timer/conSettingUpATimerControl.html (2 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

2. To set a recurring timer, in the repeatsEvery or repeatsEverySeconds field, specify the
interval between firings after the timer fires the first time. The time value is a string, as
described below.

Note that you should set ONLY ONE of timeout, timeoutSeconds and only ONE of
repeatsEvery, or repeatsEverySeconds. If you set both values, the xxxSeconds value
will be used.

Entering Relative Time Value Strings

When entering timeout or recurring time values, you must specify the relative time as a text
string--integers followed by case-insensitive time units. These time units can be separated by
spaces.

For example,

1 hour 30 min

means one hour and 30 minutes and

file:///F|/depot/dev/src/workshop/product/plugins/com.bea..../html/controls/system/timer/conSettingUpATimerControl.html (3 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

30 s

means 30 seconds.

The following time string is a valid duration specification that exercises all the time units, spelled
out fully:

99 years 11 months 13 days 23 hours 43 minutes 51 seconds

This example creates a timer control which will elapse in almost 100 years.

Units may also be truncated. For example, valid truncations of "months" are "month", "mont",
"mon", "mo", and "m". If both months and minutes are specified, use long enough abbreviations
to be unambiguous.

Text strings may also be in ISO 8601 extended format with the string "p" (case insensitive) at the
beginning of a text string. If it is present, then single-letter abbreviations and no spaces must be
used and parts must appear in the order y m d h m s. (http://www.w3.org/TR/xmlschema-2/
#duration)

The following timer control declaration is equivalent to the previous example, but uses the fully
truncated form:

P99Y11Mo13D23H43M51S

Durations are computed according to Gregorian calendar rules, so if today is the 17th of the
month, 3 months from now is also the 17th of the month. If the target month is shorter and
doesn't have a corresponding day (for example, no February 31), then the closest day in the
same month is used (for example, February 28 in a normal year, February 29 in a leap year).

Using the Properties of the TimerControl Interface

The timer control interface has three properties:

● timeoutAt: initial timeout interval (date)

● isRunning: tests if the timer control is currently running (boolean)

● payload: extra data that you can set before starting a timer; this data is passed back to the
event handler during each timeout event (serializable)

file:///F|/depot/dev/src/workshop/product/plugins/com.bea..../html/controls/system/timer/conSettingUpATimerControl.html (4 of 9)1/26/2007 2:28:58 PM

http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#duration

Creating and Configuring a Basic Timer Control

Property Type Getter Setter Description
timeoutAt Date Date

getTimeoutAt()
void
setTimeoutAt
(Date arg0)

Initial timeout
interval (relative
time). Format is
java.util.Date.

isRunning boolean boolean
isRunning()

 Whether the timer
control is currently
running
(true=running,
false=stopped).

payload Serializable Serializable
getPayload()

void setPayload
(Serializable
arg0)

Extra data to be
passed back to the
event handler in
each timer
callback.

Setting a Timer Payload with a Method Call

To set a payload that will be supplied to the callback handler during a timeout event, call the

setPayload(Serializable payload)

method before starting the timer. Calling this method after the timer is started will have no effect.
Since the payload is serializable, you must be careful that the class that the serializable
represents still exists, so that the object can be deserialized.

Setting an Absolute Timer with setTimeoutAt()

You can configure a timer control to fire at an absolute time by setting the TimeoutAt property of
the TimerControl interface by calling setTimeoutAt().

The setTimeoutAt method configures the timer to fire an event as soon as possible on or after
the supplied absolute time. If you supply an absolute time in the past, the timer will fire as soon
as possible.

If setTimeoutAt is called while the timer is already running, it will have no effect until the timer is
stopped and restarted.

The setTimeoutAt method takes as its argument a java.util.Date object. Please see the
documentation for the java.util.Date class to learn how to manipulate Date objects. Other Java
classes that are useful when dealing with Date are java.util.GregorianCalendar and java.
text.SimpleDateFormat.

The getTimeoutAt method returns the time at which the timer is next scheduled to fire, if the
repeats-every attribute is set to a value greater than zero. If the repeats-every attribute is set to
zero, then the getTimeoutAt method returns the value set by the setTimeoutAt method or the

file:///F|/depot/dev/src/workshop/product/plugins/com.bea..../html/controls/system/timer/conSettingUpATimerControl.html (5 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

value set in the timeout attribute. If you call the getTimeoutAt method from within the
onTimeout callback handler, the first timeout has already fired, so getTimeoutAt will return either
the time of the next timeout or the time of the first timeout if the timer is not set to repeat.

The following code snippet calls the setTimeoutAt method to specify that the first timeout fires at
thirty seconds past the current minute, then calls the setRepeatsEvery method to specify that
the timer subsequently fires every sixty seconds.

@Control
private TimerControl tTimer;
@WebMethod()
@Conversation(value= Conversation.Phase.START)
public void StartTimer()
{
 Calendar cd = new GregorianCalendar();
 cd.set(cd.SECOND, 30);
 tTimer.setTimeoutAt(cd.getTime());
 tTimer.setRepeatsEvery(60);
 tTimer.start();
}

Setting Other Timer Control Behavior

You can specify other settings of a timer control in J2EE perspective by setting the control's
properties in the Annotations view. For example, if you highlight the name of the timer control
instance named _timer in the code editor, the Annotations view displays the following
properties:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea..../html/controls/system/timer/conSettingUpATimerControl.html (6 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

These properties correspond to attributes of the @TimerControl.TimerSettings annotation,
which identifies the timer control in your code. The @TimerControl.TimerSettings annotation
has the following properties:

Property Description/Values
timeout Time until the timer control fires the first time, once

started (default: 0 seconds).
timeoutSeconds Time in seconds until the timer control fires the first time,

once started (default: 0).
repeatsEvery How often the timer control should fire after the first time

(default: 0 seconds i.e., non-recurring).
repeatsEverySeconds How often the timer control should fire after the first time

(default: 0 i.e., non-recurring).

file:///F|/depot/dev/src/workshop/product/plugins/com.bea..../html/controls/system/timer/conSettingUpATimerControl.html (7 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

coalesceEvents Specifies whether multiple undelivered firing events of a
Timer control are delivered as a single onTimeout (true) or
as separate callbacks (false). Default: true.

At times, a Timer control may be unable to deliver one or
more callbacks to its referring service. This may occur
because the referring service is busy or because high
system load delays delivery. A set of undelivered callbacks
may accumulate. If the coalesceEvents attribute is true,
these accumulated callbacks are collapsed into a single
callback when the service becomes available. If
coalesceEvents is false, the accumulated callbacks are
delivered individually.

transactional True if timers participate in transactions and are durable
(default: true).

jndiContextFactory JNDI context factory class (default: none).
jndiProviderURL JNDI provider URL (default: none).

Understanding the Timer Control Declaration

When you create a new timer control, its declaration appears in the source file. The following code
snippet is an example of what a typical timer control declaration looks like:

import com.bea.control.TimerControl;
...
@TimerControl.TimerSettings(repeatsEverySeconds=5)
@Control
private TimerControl delayTimer;

The actual attributes that are present on the @TimerControl() annotation depend on the values
you specify for the properties in the Annotations view.

The @Control annotation informs Workshop for WebLogic that the associated declaration is a
control. Without this annotation, the control is not properly connected to supporting code and will
not function.

The @TimerControl() annotation controls the behavior of the timer control. All of the attributes of
the @TimerControl() annotation are optional and have default values.

The timer control, named delayTimer in the example above, is declared as an instance of
TimerControl.

Related Topics

Using WebLogic System Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea..../html/controls/system/timer/conSettingUpATimerControl.html (8 of 9)1/26/2007 2:28:58 PM

Creating and Configuring a Basic Timer Control

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea..../html/controls/system/timer/conSettingUpATimerControl.html (9 of 9)1/26/2007 2:28:58 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Setting up a Web Service to Access a Timer Control

Setting up a Web Service to Access a Timer Control

Timer controls are used within conversational, stateful web services. Conversational web services have three
phases: start, continue, and finish.

To use a timer in a conversational web service, after declaring the timer control as described in Setting up a
Timer Control, you must implement a conversational web service to access the timer control. The minimum
requirements to access a timer control are:

1. Ensure that the web service implements the Serializable interface.

2. Define at least a start and finish operation.

3. Define an event handler to receive the callback(s) from the timer control when the timer elapses.

Setting the Web Service to Implement Serializable

Conversational web services must implement the java.io.Serializable interface. To set this in your web service,
on the class definition line for your web service, insert implements Serializable so that the class definition
looks something like this:

public class TimerService implements Serializable {

This will cause an error marker to appear in the marker bar on the class declaration line. Right click on the error
marker and choose Quick Fix.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/controls/system/timer/conUsingATimerControl.html (1 of 4)1/26/2007 2:28:58 PM

http://edocs.bea.com/wls/docs100/webserv/advanced.html#conversations

Setting up a Web Service to Access a Timer Control

Right click on the error marker and choose Quick Fix. The Quick Fix pull-down will appear:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/controls/system/timer/conUsingATimerControl.html (2 of 4)1/26/2007 2:28:58 PM

Setting up a Web Service to Access a Timer Control

Click Import Serializable and press Enter and a new import line will be generated to resolve the error.

Defining Start/Stop Conversational Web Methods

A conversational web service differs from a regular web service in only one way: the Conversation property is
set to START, CONTINUE or FINISH. A web service typically has three operations:

1. An operation to start the timer which has Conversation set to START and contains a call to the timer
control's start() method.

2. An operation to stop the timer which has Conversation set to STOP and contains a call to the timer
control's stop() method.

3. An optional operation to restart the timer which has Conversation set to CONTINUE and contains a call to
the timer control's restart() method. This is primarily used for resetting a relative timeout or recurring time
intervals.

To define a conversational web method, right click on the code editor window and click Insert > Web Method.
With the name of the new web method highlighted, click on the Conversation setting in the Annotations view.
Use the pulldown to set the conversational state for the method.

Calling the Methods of the TimerControl Interface

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/controls/system/timer/conUsingATimerControl.html (3 of 4)1/26/2007 2:28:58 PM

Setting up a Web Service to Access a Timer Control

Once you have declared and configured a timer control, you can invoke its methods from within your application
to start and stop the timer and to change its configuration. For complete information on each method, see
TimerControl Interface.

The following list contains the methods of the TimerControl interface that you can use to start and stop the
timer:

● start(): starts timer operation. The timer control will fire after the period specified by the timeout,
timeoutSeconds, repeatsEvery or repeatsEverySeconds attribute has passed. The start() method can
be called in either the START or CONTINUE phase of the conversation.

● restart(): stops the timer control and starts it again. This method is only useful when working with relative
timeout or recurring time intervals, since the timer is restarted with the same parameters.

● stop(): stops the timer control from firing again. Calling start() will start the timer again. The stop()
method can be called in either the FINISH or CONTINUE phase of the conversation. Be sure to call the stop()
method when the conversation ends. Note that if you do not call the stop() method, the container will
automatically terminate the timer for you.

Setting up an Event Handler for Timer Callbacks

In addition to the web methods that start/stop the timer, the web service must provide for callbacks when the
timer elapses.

The timer control defines one callback: onTimeout. You can add code to the callback event handler to run when
the timer fires. The callback event handler for the onTimout event is named timerName_onTimeout, where
timerName is the name of the timer control instance.

The callback event handler takes two parameters: the time in seconds since the timer was started and the
payload. Note that this is not the same as the time at which the callback handler executes. A delay may occur
between timer control expiration and callback handler invocation, depending on the system load.

To create the callback event handler for a timer control's onTimeout callback, right click on the code window and
choose Insert > Control Event Handler. Workshop for WebLogic creates a callback event handler and places
the cursor in the callback event handler.

Related Topics

Using WebLogic System Controls

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/controls/system/timer/conUsingATimerControl.html (4 of 4)1/26/2007 2:28:58 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Using a Timer Control

Changing Timer Settings Dynamically

If you want to reconfigure timer settings dynamically, you must use TimerControlBean instead of
the basic TimerControl interface.

TimerControlBean provides additional methods to programmatically get/set all of the parameter
values displayed on the Annotations view.

Using the TimerControlBean

When you use the Insert > Control command to create a timer control, the default annotation
that is inserted uses the TimerControl interface.

@Control
private TimerControl timerControl;

To use TimerControlBean instead, simply change TimerControl to TimerControlBean in the
timer control declaration line. This will cause an error marker to appear in the marker bar on the
class declaration line because TimerControlBean requires an additional import. Right click on the
error marker and choose Quick Fix. The Quick Fix pull-down will appear:

click on Import 'TimerControlBean' and press Enter. A new import line

import com.bea.control.TimerControlBean;

will be inserted at the top of your code and the problem marker will disappear.

Calling Methods on the TimerControlBean

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oc/html/controls/system/timer/conAdvancedTimerControl.html (1 of 3)1/26/2007 2:28:59 PM

Using a Timer Control

TimerControlBean implements the TimerControl interface and also defines the following
additional methods to get/set timer properties to get/set the property values:

Method Description
String getTimerSettingJNDIContextFactory
()

Returns the JNDI Context Factory.

String getTimerSettingJNDIProviderURL() Returns the JNDI Provider URL.
String getTimerSettingRepeatsEvery() Returns the relative time string for the

recurring timer setting.
Long getTimerSettingRepeatsEverySeconds() Returns the number of seconds for the

recurring timer.
String getTimerSettingTimeout() Returns the relative time string for the

timeout.
Long getTimerSettingTimeoutSeconds() Returns the number of seconds for the

timeout.
void setTimerSettingJNDIContextFactory
(String arg0)

Sets the JNDI Context Factory.

void setTimerSettingJNDIProviderURL
(String arg0)

Sets the JNDI Provider URL.

void setTimerSettingRepeatsEvery(String
arg0)

Sets the recurring timer by specifying a
relative time string.

void setTimerSettingRepeatsEverySeconds
(Long arg0)

Sets the recurring timer to the specified
number of seconds.

void setTimerSettingTimeout(String arg0) Sets the relative timeout to the relative
time string.

void setTimerSettingTimeoutSeconds(Long
arg0)

Sets the relative time to the specified
number of seconds.

Note that the setTimerSettingxxx methods have no effect if the timer is already started. To set
values, you must stop the timer, call the method to set the value, and start the timer. This will
not create a new timer object, but will simply restart the existing control.

The getTimerSettingxxx methods work whether the timer is running or stopped.

Related Topics

Using WebLogic System Controls

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oc/html/controls/system/timer/conAdvancedTimerControl.html (2 of 3)1/26/2007 2:28:59 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Using a Timer Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oc/html/controls/system/timer/conAdvancedTimerControl.html (3 of 3)1/26/2007 2:28:59 PM

Using a Timer Control

Using a Timer Control

IDE Commands to Work with Timer Control

To insert a timer control, right click on the code editor and choose Insert > Control.

To insert a timer control using the TimerControlBean:

1. Right click on the code editor and choose Insert > Control.

2. Manually edit the annotation to change TimerControl to TimerControlBean.

3. Do the required import for TimerControlBean by right clicking on the problem marker in the marker bar beside the
annotation line and and choosing Quick Fix. Use the Quick Fix menu to do the necessary import for TimerControlBean.

To display the properties of the timer control (or timer control bean) in Annotations view,

1. Be sure that J2EE perspective is open (as displayed just below the toolbar at the top of the workbench window); if it is not
open, click Window > Open Perspective to open J2EE perspective.

2. Double click on the timer control (or bean) name. The properties of the annotation will be displayed in the Annotations
view.

The IDE does not validate time strings that are entered in the Annotations view. Times are validated only at run-time.

Requirements for Web Services that use a Timer Control

Timer controls can only be used within a web service that is conversational and implements Serializable. See Designing
Conversational Web Services for more information.

TimerControl Annotation

See the TimerControl.TimerSettings annotation for a description of the annotations to set timer control parameters

The TimerControl Interface

The following properties and methods are provided on the TimerControl interface.

Properties

Property Type Getter Setter Description
running boolean boolean isRunning() Tests if the timer is

currently running.
timeoutAt Date Date getTimeoutAt() void setTimeoutAt(Date

arg0)
Initial timeout (absolute
date);date is java.util.Date.
Calling setTimeoutAt()
replaces any existing
relative timer with the
specified absolute time.
Setting an absolute date in
the past causes an
immediate callback.

payload Serializable Serializable getPayload
()

void setPayload
(Serializable arg0)

Extra data that is passed
back to event handler on a
callback. If you specify a
payload, be sure that when
the timer callback occurs,
the object still exists, since
the payload is serializable.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....c/html/controls/system/timer/conReferenceTimerControl.html (1 of 5)1/26/2007 2:28:59 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/converse/navMaintainingStatewithConversations.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/converse/navMaintainingStatewithConversations.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.TimerSettings.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Using a Timer Control

Methods

There are three methods for TimerControl.

Method Description
void start() Starts timer operation. The timer control will fire after the period specified by the timeout,

timeoutSeconds, repeatsEvery or repeatsEverySeconds attribute has passed. The start()
method can be called in either the START or CONTINUE phase of the conversation.

Calling the start() method a second time on a timer has no effect. If a timer has been
stopped, calling start() starts the timer again.

void stop() Stops the timer control from firing again. Calling start() will start the timer again. The stop()
method can be called in either the FINISH or CONTINUE phase of the conversation. Be sure to
call the stop() method when the conversation ends. Note that if you do not call the stop()
method, the container will automatically terminate the timer for you.

Calling the stop() method for a stopped event timer does not generate an exception. Calling
the stop() method more than once on a timer does not generate an exception.

void restart() Stops the timer control and starts it again. This method is only useful when working with
relative timeout or recurring time intervals, since the timer is restarted with the same
parameters.

Events

There is one event generated by the timer control

Event Description
onTimeout void callback(long timeout, Serializable payload) Occurs when the timer expires.

TimerControlBean

TimerControlBean implements the TimerControl interface and provides the following additional methods and properties.

Properties

Property Type Getter Setter Description
coalesceEvents boolean boolean

isTimerSettingCoalesceEvents()
void
setTimerSettingCoalesceEvents
(boolean arg0)

Whether the
timer control is
set to use the
coalesce
method for
recurring events.

transactional boolean boolean
isTimerSettingTransactional()

void
setTimerSettingTransactional
(boolean arg0)

Whether the
timer control is
currently
running in
transactional
mode.

Methods

The following additional methods are provided to get/set the property values displayed in the Annotations view:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....c/html/controls/system/timer/conReferenceTimerControl.html (2 of 5)1/26/2007 2:28:59 PM

Using a Timer Control

Method Description
String getTimerSettingJNDIContextFactory() Returns the JNDI Context Factory.
String getTimerSettingJNDIProviderURL() Returns the JNDI Provider URL.
String getTimerSettingRepeatsEvery() Returns the relative time string for the recurring timer

setting.
Long getTimerSettingRepeatsEverySeconds() Returns the number of seconds for the recurring

timer.
String getTimerSettingTimeout() Returns the relative time string for the timeout.
Long getTimerSettingTimeoutSeconds() Returns the number of seconds for the timeout.
void setTimerSettingJNDIContextFactory(String arg0) Sets the JNDI Context Factory.
void setTimerSettingJNDIProviderURL(String arg0) Sets the JNDI Provider URL.
void setTimerSettingRepeatsEvery(String arg0) Sets the recurring timer by specifying a relative time

string.
void setTimerSettingRepeatsEverySeconds(Long arg0) Sets the recurring timer to the specified number of

seconds.
void setTimerSettingTimeout(String arg0) Sets the relative timeout to the relative time string.
void setTimerSettingTimeoutSeconds(Long arg0) Sets the relative time to the specified number of

seconds.

Note that the setTimerSettingxxx methods have no effect if the timer is already started. To set time values, you must stop the
timer, call the method to set the value, and start the timer. This will not create a new timer object, but will simply restart the
existing control.

If both repeatEverySecond and repeatEvery are set, the timer does not generate an error, it uses the repeatEverySecond
value.

If both timeout and timeoutSeconds are set, the timer does not generate an error, it uses the timeoutSeconds value.

Setting an absolute date in the past or a negative time value in either the setTimeout or setTimeoutSeconds methods causes an
immediate callback.

The getTimerSettingxxx methods work whether the timer is running or stopped.

The following methods are for internal use only and should NOT be used:

Methods for Internal Use Only
getCallbackListener
addCallbackListener
removeCallback
removeCallbackListener
getControlImplementation
setControlImplementation

Events

There are no additional events generated by TimerControlBean.

Relative and Absolute Time Strings

Relative Time Strings

Relative time values are used for relative timeouts and for recurring times. Relative time values are set either through the
Annotations view or by calling a method on TimerControlBean.

Relative time is expressed as a text string, it is formatted as integers followed by case-insensitive time units. These time units
can be separated by spaces. For example, the following code sample is a valid duration specification that exercises all the time
units, spelled out fully:

@TimerControl.TimerSettings(timeout="99 years 11 months 13 days 23 hours 43 minutes 51 seconds")
@Control()

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....c/html/controls/system/timer/conReferenceTimerControl.html (3 of 5)1/26/2007 2:28:59 PM

Using a Timer Control

Timer almostCentury;

This example creates a timer control whose default initial firing will occur in almost 100 years.

Units may also be truncated. For example, valid truncations of "months" are "month", "mont", "mon", "mo", and "m". If both
months and minutes are specified, use long enough abbreviations to be unambiguous.

Text strings may also be in ISO 8601 extended format with the string "p" (case insensitive) at the beginning of a text string. If it
is present, then single-letter abbreviations and no spaces must be used and parts must appear in the order y m d h m s. (http://
www.w3.org/TR/xmlschema-2/#duration)

The following timer control declaration is equivalent to the previous example, but uses the fully truncated form:

@TimerControl.TimerSettings(timeout="P99Y11Mo13D23H43M51S")
@Control()
Timer almostCentury;

Durations are computed according to Gregorian calendar rules, so if today is the 17th of the month, 3 months from now is also
the 17th of the month. If the target month is shorter and doesn't have a corresponding day (for example, no February 31), then
the closest day in the same month is used (for example, February 29 on a leap year).

Absolute Time Strings

To specify that the timer fires at a specific (absolute time), you must use the setTimeoutAt method.

Absolute time is useful when you know the exact moment you want operations to begin and end. For example, your application
can have your web service send a reminder email to remind you that someone's birthday is coming up. Specific times are set as
for with a java.util.Date object (Java 1.5). Since the TimerSetting annotation does not allow you to specify a timeout in java.
util.Date format, you must use the setTimeoutAt method. For more information, see Using Methods of the TimerControlBean
Interface to Set Parameters.

Methods on TimerControl for Backward Compatibility

An additional group of methods are provided on the TimerControl interface to provide backward compatibility with WebLogic
Workshop 8.1 applications. These methods are no longer recommended. The backward compatibility methods are:

Method Description
long getTimeout() Get the current relative timeout value.
String getRepeatsEvery() Returns the recurring time interval in ISO 8601 format (Pxxx).
boolean getCoalesceEvents() Returns whether the timer is running in coalesced or non-coalesced

mode. Deprecated.
void setCoalesceEvents(boolean coalesce) Turns on coalesced mode.
void setRepeatsEvery(long seconds) Sets the recurring timer by specifying a recurring time in seconds.
void setRepeatsEvery(String interval) Sets the recurring timer to the specified interval string.
void setTimeout(String arg0) Sets the relative timeout to the relative time string.
void setTimeout(long seconds) Sets the relative time to the specified number of seconds.

In WebLogic Workshop 8.1, a call to the start() method on a timer that was already started could potentially generate new timer
events. In Workshop for WebLogic 9.2 and 10.0, calling start() on a timer control that has already been started has no effect.

Caveats and Implementation Notes

The file weblogic_timer_control.jar contains the implementation of the timer control. This file defines the control interface and
implementation and a stateless session bean. This JAR is deployed automatically when a web services project is created.

The timer control implementation is provided by com.bea.wlw.control.timer.EjbTimerControlImpl which uses the EJB 2.1
Timer Service. A control bean delegates the creation and canceling of timers through the stateless session bean, using an EJB
Local interface. When a timer is expired, the ejbTimeout method on the session bean will be invoked by the EJB container. The

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....c/html/controls/system/timer/conReferenceTimerControl.html (4 of 5)1/26/2007 2:28:59 PM

http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#duration

Using a Timer Control

ejbTimeout method in turn retrieves the ControlHandle that was stored with the timer when the timer was created, and uses the
ControlHandle to dispatch the callback event to the target TimerControl. This implementation is agnostic of what container the
TimerControl is running in.

Since timer controls are based on the EJB 2.1 timer service, they are a best-effort to do a callback to the client as requested, not
a true real-time time service.

Related Topics

Using WebLogic System Controls

Timer Control

TimerControl Interface

Timer Control Reference

Tutorial: Creating a Web Service with Timer Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....c/html/controls/system/timer/conReferenceTimerControl.html (5 of 5)1/26/2007 2:28:59 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/TimerControl.html

Service Control - Navigation

Service Control

A service control is a proxy for a web service. The web service client uses this proxy to access the
web service. Using a service control allows the web service client to access the operations of a
web service through simple method calls to the service control. A service control makes it easy to
access an external web service from a Workshop for WebLogic client application. You can create a
service control for any web service that publishes a WSDL file.

Note: You should not use a service control to invoke a web service that resides in the
same application. Invoking a web service via a service control means marshalling the
method parameters into a SOAP message on the calling end and unmarshalling the
SOAP message on the receiving end, then again for the method return value. This is
very inefficient when the invocation is local.

Topics Included in this Section

Overview: Service Controls and Web Service Clients
Introduces public contracts, service clients, and other aspects of service controls.

Creating and Using a Service Control
Explains how to create a new service control from a WSDL file, how to add an existing Web
Service control, and how to invoke the control from a web service client.

Handling Web Service Callback Messages
Describes how to handle callback messages sent from web services to a web service control.

Related Topics

Web Service Callbacks

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.works...duct.wl.doc/html/controls/system/service/navServiceControl.html1/26/2007 2:29:00 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/conWsdlFiles.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/callback/ovwAsynchronousWebServices.html

Overview: Service Controls and Web Service Clients

Overview: Service Controls and Web Service Clients

A service control provides web service clients with easy access to a web service. The service
control is provided as one of the system controls. When using a service control, you can invoke a
web service operation by simply calling a method of the service control. The service control
manages the SOAP message exchange with the web service and returns the results of the web
service operation.

All service controls are interfaces that extend the com.bea.control.ServiceControl base class.

A service control provides an interface between your application and a web service, which allows
your application to invoke the methods and handle the callbacks of that web service. Using a
service control, you can connect to any web service for which a WSDL file is available, whether or
not it was built using Workshop for WebLogic.

In order to use web service controls, it may help you to understand several concepts. This topic
provides an overview of some of these concepts.

Understanding Public Contracts

Web services define and expose a public contract, which is typically expressed in a WSDL file. A
public contract describes two things: the operations that the web service can perform and the
format of the messages sent to the service to access its operations and receive operation results.
The contract is completely under the control of the author of the web service; it cannot be altered
by a client of the web service.

The public contract for a web service developed with Workshop for WebLogic is the collection of all
methods marked with the @WebMethod annotation plus all members of the Callback interface.
Each public contract is completely defined in the Java source file for the web service. When you
generate a WSDL file from a web service, the public contract is expressed according to the WSDL
standard.

The Web Service control cannot violate or modify the public contract of the web service it
represents. This restricts the type of changes you can make to a Web Service control. For
example, you can't modify the Service control to use a communication protocol that the target
web service doesn't understand.

Understanding Web Service Controls: Proxies for Web Services

In Workshop for WebLogic, a web service control serves as an intermediary, or proxy, for a web
service. When web service X wants to invoke an operation of web service Y, web service X calls a
Java method of the service control for Y. The service control converts the Java method invocation
into an appropriate message to send to the web service Y, and it communicates with web service
Y using a protocol that service Y can understand. The service control also converts returned
messages from web service Y back into Java method invocations on service X.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w....wl.doc/html/controls/system/service/ovwServiceControl.html (1 of 2)1/26/2007 2:29:00 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/ServiceControl.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/conWsdlFiles.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/conWsdlFiles.html

Overview: Service Controls and Web Service Clients

In these ways, the service control allows web service X to use web service Y merely by
implementing application-level Java code. As the author of web service X, you do not need to
know the details of message formats or protocols.

Related Topics

Service Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w....wl.doc/html/controls/system/service/ovwServiceControl.html (2 of 2)1/26/2007 2:29:00 PM

Creating and Using a New Service Control

Creating and Using a Service Control

A service control makes it easy to access a web service from your application. You create a new
service control to access an existing web service (the target web service).

You can create a service control for a target web service if that web service publishes a WSDL file.

If the target web service was developed with Workshop for WebLogic, you can generate a WSDL
file by right clicking on the web service .java file and choosing Web Services > Generate
WSDL.

Creating a Web Service Control from a WSDL File

This procedure describes how to create a service control from the WSDL file for the target web
service.

1.

Import (or drag and drop) the WSDL file for the web service into a package under the
project's src folder. The project should be a web service project.

2.

Browse to the WSDL file in the Project Explorer view.

3.

Right-click on the WSDL file name and select Web Services > Generate Service Control.

Working with Complex Data Types

When you generate a service control, you will be prompted to create a JAR file that contains the
complex data types, if the web service returns data that is not standard Java data types (integer,
string, etc.).

If you want to work with the complex types without generating a service control, you can right
click on the WSDL and click Web Services > Generate Types JAR File to generate a JAR file
containing the classes needed to support the WSDL's complex types.

Using a Service Control

You use a service control in a client just as you would use any other control: first you declare the
control in the client and then you invoke methods on the control.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....controls/system/service/conCreatingANewServiceControl.html (1 of 2)1/26/2007 2:29:00 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#webservice

Creating and Using a New Service Control

You declare the control as follows:

 @Control
 private HelloWorldServiceControl helloWorldCtrl;

You invoke methods as follows:

 helloWorldCtrl.helloWorld();

For more information on invoking control methods in a client, see Invoking a Control Method and
Handling Control Events.

Related Topics

Overview: Web Service Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....controls/system/service/conCreatingANewServiceControl.html (2 of 2)1/26/2007 2:29:00 PM

Handling Web Service Callback Messages

Handling Web Service Callback Messages

This topic explains how a web service control handles callback messages sent from a web service
and passes them on to a control client.

A Web Service Callback Scenario

Suppose you have a web service that sends callback messages back to the client through a
service control.

The following diagram shows how the client, service control, and web service are related. The
client is a web service named HelloWorldClient.java, the service control is HelloWorldControl.java,
and the target web service is HelloWorldService.java.

Arrows pointing the right are ordinary methods. Arrows pointing to the left depict an event
handler method (onMessage_handler on the client), an event set method (onMessage on the
service control), and a callback method (onMessage on the target web service).

Setting up a Callback Message Handler

Assume that the source code for the callback method onMessage on HelloWorldWebService.java is
as follows:

HelloWorldWebService.java

@WebService
public class HelloWorldWebService {

 ...

 @CallbackService
 public interface CallbackSvc {

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....ontrols/system/service/conHandlingWebServiceCallbacks.html (1 of 2)1/26/2007 2:29:00 PM

Handling Web Service Callback Messages

 @WebMethod
 public void onMessage(String aMessage);
 }
}

To handle this callback message in a service control, add an event set interface that includes a
method with the same name as the callback method, decorated with the annotation
@ServiceControl.ExternalCallbackEvent.

HelloWorldControl.java

 @EventSet(unicast=true)
 public interface Callback
 {
 @ServiceControl.ExternalCallbackEvent
 public void onMessage(java.lang.String aMessage_arg);
 }

For information on using a service control in a client, see Creating and Using a Service Control.

For information on setting up a callback interface in a web service see Web Service Callbacks.

Automatically Generating a Service Control

You can automatically generate a service control with the appropriate event set methods by right-
clicking on the target web service's WSDL and selecting Web Service > Generate Service
Control. A service control will be generated with event set methods corresponding to all of the
callback methods in the target web service.

Related Topics

Creating and Using a Service Control

Web Service Callbacks

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....ontrols/system/service/conHandlingWebServiceCallbacks.html (2 of 2)1/26/2007 2:29:00 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/callback/ovwAsynchronousWebServices.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/callback/ovwAsynchronousWebServices.html

EJB Control

EJB Control

The EJB control makes it easy to use an existing, deployed Enterprise JavaBean (EJB) from your
application.

Enterprise JavaBeans (EJBs) are Java software components of enterprise applications. The Java 2
Enterprise Edition (J2EE) specification defines the types and capabilities of EJBs as well as the
environment (or container) in which EJBs are deployed and executed. Workshop for WebLogic also
provides tools for developing and deploying EJBs.

The EJB control in Workshop for WebLogic is the standard Beehive EJB control.

Topics Included in this Section

Overview: Enterprise JavaBeans and EJB Controls
Describes Enterprise JavaBeans and their relationship to EJB controls.

Creating a New EJB Control
Describes how to create and configure an EJB control.

Using an EJB Control
Describes how to use an existing EJB control from within a web service.

Beehive Documentation for EJB Control
Describes how to work with session and entity beans and how to handle exceptions that
might be thrown by an EJB.

Related Topics

Using System Controls

Developing Enterprise JavaBeans

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/ejb/navEJBControl.html1/26/2007 2:29:00 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/navEJB.html
http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/navEJB.html

Overview: Enterprise JavaBeans and EJB Controls

Overview: Enterprise JavaBeans and EJB Controls

To access the capabilities of an Enterprise JavaBean (EJB) without an EJB control, you must
perform several preparatory operations. You must look up the EJB in the JNDI registry, obtain the
EJB's home interface, obtain an EJB instance, and then finally invoke methods on the EJB's
remote interface to perform tasks.

The EJB control relieves you of all of this preparatory work. Once you have created the EJB
control, a web service, custom control or page flow can use the control to access the EJB's
business methods directly. The EJB control manages communication with the EJB for you,
including all JNDI lookup, interface discovery and EJB instance creation and management.

In short, EJB controls provide an alternative approach that makes it easy for you to use an
existing, deployed EJB from within an application. EJB controls support interaction with two of the
three types of EJBs, that is, session beans and entity beans. The EJB control does not support
direct communication with message-driven EJBs.

Note. You can send requests for messages indirectly to message-driven EJBs using the
JMS control instead. However, unlike the EJB control, the JMS control is not used to
locate and reference an existing message-driven EJB. For more information, see JMS
Control.

A short description of session and entity beans is provided below. To learn more about message-
driven beans, J2EE, and EJBs, consult the J2EE programming book of your choice.

Session EJBs

A session EJB is used to execute business tasks for a client on the application server. Stateful
session beans maintain conversational state when engaged by a client. That is, conversational
state is used to keep track of data between method invocations and to ensure that the bean
responds to the correct client. Stateless session beans do not use conversational state and the
contract with a client only lasts for the duration of the method invocation. A stateless session EJB
is not persistent, so when the client terminates, its session EJB disconnects and is no longer
associated with the client.

Entity EJBs

An entity EJB represents a business object in a persistent storage mechanism. Some examples of
business objects are customers, orders, and products. The persistent storage mechanism is a
relational database. Typically, each entity bean has an underlying table in a relational database,
and each instance of the bean corresponds to a row in that table. Unlike session beans, entity
beans are persistent, allow shared access, have primary keys, and may participate in relationships
with other entity beans.

EJB Interfaces

EJB 2.0 exposes four types of interfaces, called the local home interface, the local business

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....ml/controls/system/ejb/ovwOverviewEnterpriseJavaBeans.html (1 of 2)1/26/2007 2:29:01 PM

Overview: Enterprise JavaBeans and EJB Controls

interface (or simply, the local interface), the remote home interface, and the remote business
interface (or simply, the remote interface). Client applications can obtain an instance of the EJB
with which to communicate by using the remote home interface. The methods in the remote home
interface are limited to those that create or find EJB instances. Once a client has an EJB instance,
it can invoke methods of the EJB's remote business interface to do real work. The business
interface directly accesses the business logic encapsulated in the EJB. Interactions between EJBs
defined in the same Workshop for WebLogic application, as well as interactions between EJBs and
web services, custom controls or page flows in the same Workshop for WebLogic application, can
use the local interfaces instead, which provides a performance advantage over remote interfaces.
In other words, the local home and business interfaces define the methods that can be accessed
by other beans, EJB controls, web services, and page flows in the same Workshop for WebLogic
application, while the remote home and business interfaces define the methods that can be
accessed by other applications.

To create an EJB control to represent an EJB, you must know the names of the home and
business interfaces. The name for the home interface is typically of the form com.mycompany.
MyBeanNameHome or com.mycompany.MyBeanNameLocalHome, and the business interface is typically
of the form com.mycompany.MyBeanName or com.mycompany.MyBeanNameLocal. The EJB control
uses either the EJB's local interfaces or the remote interfaces. For more information about making
an EJB control, see Creating a New EJB Control. To learn more about how EJB controls interact
with session and entity EJBs, see Using an EJB Control.

Related Topics

Getting Started with EJB Project

EJB Control

Using WebLogic System Controls

Designing Conversational Web Services

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....ml/controls/system/ejb/ovwOverviewEnterpriseJavaBeans.html (2 of 2)1/26/2007 2:29:01 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/converse/navMaintainingStatewithConversations.html

Creating a New EJB Control

Creating a New EJB Control

Enterprise JavaBean (EJB) controls make it easy for you to use an existing, deployed session or
entity EJB from within an application. To create an EJB control, you must first make sure that the
EJB's (local or remote) home and business interfaces are available to your application.

Making EJB Interfaces Available to Your Application

Before you can create an EJB Control, the EJB's local or remote interfaces must be known in your
application. If the EJB is not part of the application, you make it available by adding the EJB's JAR
file to your Workshop for WebLogic application. While the complete EJB JAR file allows Workshop
for WebLogic to access the EJB's interfaces, the only classes actually required are the EJB's home
and remote interface classes and any other classes used externally by the EJB (for example, as
method parameters or method return types). The EJB compiler ejbc is capable of producing a
client JAR that will serve this purpose.

Creating a New EJB Control

To create a new EJB control:

1. Locate or create the package (folder) where you want to create the EJB control. This can be a
package in a utility project, dynamic web project, or web service project.

2. Right-click the package and choose New > EJB Control. The New Control dialog opens.

3. In the Control name field, enter the name of the new EJB control. Click Next.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oc/html/controls/system/ejb/conCreatingANewEJBControl.html (1 of 4)1/26/2007 2:29:01 PM

Creating a New EJB Control

4. Click the Browse application EJBs or Browse server EJBs button. The Browse
Resources dialog appears and you can select the EJB for which this control is being created.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oc/html/controls/system/ejb/conCreatingANewEJBControl.html (2 of 4)1/26/2007 2:29:01 PM

Creating a New EJB Control

The Browse application EJBs button will return a list of all the EJBs known within the
current application. These are EJBs developed in the application as well as EJBs defined in
EJB JARs added as modules to the application. If only the EJB's local interface is defined, the
EJB will appear in the list with a local ejb-link reference. If an EJB's local interface and
local JNDI name are defined, the EJB will also appear with a local jndi reference. The same
analogy applies to remote interfaces.

If the server is running, the Browse server EJBs button will return a list of all the EJBs
known on the server used by the current application. Only included in this list are EJBs whose
remote (home and business) interfaces are defined.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oc/html/controls/system/ejb/conCreatingANewEJBControl.html (3 of 4)1/26/2007 2:29:01 PM

Creating a New EJB Control

5. Select the appropriate EJB from the list and click Finish. The name appears in the jndi-
name field, and the interfaces used by this EJB appear in the home interface and bean
interface fields.

6. Click Finish.

To insert the EJB control into a web service, web application or another control, see Using an EJB
Control.

Modifying EJB Controls

If you open an EJB control in the editor window, you will notice that the control simply extends
the EJB's interfaces. Unlike some other controls, the EJB control's class definition does not contain
method declarations that invoke the EJB's methods. In other words, the EJB control only serves to
reference the EJB and to expose its methods, and cannot be used to limit access to, or modify,
these methods.

To see the EJB methods exposed by the EJB control, insert an EJB control in a web service or
page flow.

When you modify the EJB's methods or add additional methods to the interfaces that the EJB
control references, you do not need to modify the EJB control (but you must rebuild the EJB).
When you modify the name of the used interfaces, the JNDI name (if the EJB control uses the jndi
name), or the bean name or EJB JAR name (if the EJB control uses a ejb-link), you must modify
the EJB control to reflect these changes.

For more information, consult the Beehive documentation for EJB control.

Related Topics

Using System Controls

Using an EJB Control

Tutorial: Enterprise JavaBeans

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oc/html/controls/system/ejb/conCreatingANewEJBControl.html (4 of 4)1/26/2007 2:29:01 PM

http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial/tutEJBIntro.html

Using an EJB Control

Using an EJB Control

You can add an EJB control to any of the following:

● another control

● a page flow

● a web service

To Insert a New EJB Control

To create a new EJB control and insert it into your source code in a single step:

1. Make sure you have opened the target web service, page flow controller or control in the
editor window.

2. Right click on the editor window and choose Insert > Control.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....html/controls/system/ejb/conUsingAnExistingEJBControl.html (1 of 3)1/26/2007 2:29:01 PM

Using an EJB Control

Under New System Control, click on EJB Control and click OK.

3. Follow the instructions in Creating a New EJB Control.

To Insert an Existing EJB Control

1. Make sure you have opened the target web service, page flow controller, control or JSP in
the editor window.

2. Right click on the editor window and choose Insert > Control.

Click on the name of the control and click OK.

Accessing the Methods of an EJB

After you have created an EJB Control, you can invoke a target EJB method via the EJB control.
Specifically, the EJB control exposes all and only the EJB methods defined in the EJB interfaces
that the control extends. You can invoke these methods simply by invoking the method with the
same signature on your EJB control.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....html/controls/system/ejb/conUsingAnExistingEJBControl.html (2 of 3)1/26/2007 2:29:01 PM

Using an EJB Control

The EJB control automatically manages locating and referencing the EJB instance, and directs
method invocations to the correct instance of the target EJB. Whether or not you must first create
an instance of the target EJB using the EJB's create method depends on whether the EJB control
references a session or an entity bean. Consult the Beehive documentation for EJB control for
more information.

Related Topics

Overview: Enterprise JavaBeans and EJB Controls

Creating a New EJB Control

Getting Started with Session Beans

Getting Started with Entity Beans

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....html/controls/system/ejb/conUsingAnExistingEJBControl.html (3 of 3)1/26/2007 2:29:01 PM

http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/ejb/guide.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/session/conGettingStartedWithSessionBeans.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/entity/conGettingStartedWithEntityBeans.html

JMS Control

JMS Control

The JMS control enables applications built in Workshop for WebLogic to easily interact with
messaging systems that provide a JMS implementation, such as WebLogic Server.

A specific JMS control is associated with particular facilities of the messaging system. Once a JMS
control is defined, clients may use it like any other Workshop for WebLogic control. To learn how
to create, configure and register JMS queues, topics and connection factories, consult the
WebLogic Server documentation on Programming WebLogic JMS.

The following changes have been made in the JMS control that was provided in WebLogic
Workshop 8.1:

● In WebLogic Workshop 8.1, there was {parm} support in method level annotations. This is no
longer supported. You have to annotate parms to specify header or property values.

● New transacted annotation needs to be false when used in a container-managed transaction.

The JMS control in Workshop for WebLogic is the standard Beehive JMS control.

Topics Included in This Section

Creating a New JMS Control
Describes how to create a JMS control.

Using a JMS Control
Describes how to use a JMS control in a client.

Beehive Documentation for JMS Control
Describes how to set message body, header and properties.

Related Topics

Using System Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/jms/navJMSControl.html1/26/2007 2:29:01 PM

http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html

Creating a New JMS Control

Creating a New JMS Control

The JMS control enables applications built in Workshop for WebLogic to interact with messaging
systems that provide a JMS implementation. This topic describes how to create a new JMS control
and provides an example of a valid JMS control file.

To create a new JMS control:

1. Locate or create the package (folder) where you want to create the JMS control. This can be
a package in a utility project, dynamic web project, or web service project.

2. Right-click the package and choose New > JMS Control. The New Control dialog opens.

3. In the Control name field, enter the name of the new JMS control. Click Next.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...c/html/controls/system/jms/conCreatingANewJMSControl.html (1 of 3)1/26/2007 2:29:01 PM

Creating a New JMS Control

4. From the next dialog, choose the JMS queue settings:

In the JNDI name of queue or topic field, type the name of the queue or topic that will
receive messages. If you do not know the name, click Browse, choose from the available list
and click Finish.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...c/html/controls/system/jms/conCreatingANewJMSControl.html (2 of 3)1/26/2007 2:29:01 PM

Creating a New JMS Control

In the JNDI name of connection factory field, type the name of the connection factory to
create connections to the queue or topic. If you do not know the name, click Browse,
choose from the available list and click Finish.

5. Click Finish.

To insert the JMS control into a web service, web application or another control, see Using a JMS
Control.

Related Topics

JMS Control

Using System Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...c/html/controls/system/jms/conCreatingANewJMSControl.html (3 of 3)1/26/2007 2:29:01 PM

Using an EJB Control

Using a JMS Control

You can add a JMS control to any of the following:

● another control

● a page flow

● a web service

To Insert a New JMS Control

To create a new JMS control and insert it into your source code in a single step:

1. Make sure you have opened the target web service, page flow controller or control in the
editor window.

2. Right click on the editor window and choose Insert > Control.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....html/controls/system/jms/conUsingAnExistingJMSControl.html (1 of 3)1/26/2007 2:29:02 PM

Using an EJB Control

Under New System Control, click on JMS Control and click OK.

3. Follow the instructions in Creating a New JMS Control.

To Insert an Existing JMS Control

1. Make sure you have opened the target web service, page flow controller or control in the
editor window.

2. Right click on the editor window and choose Insert > Control.

Click on the name of the control and click OK.

Once you've set up the JMS control, you can add code to send and receive messages via JMS.

JMS Control Properties

The properties of the JMS control can be set using Annotations view from J2EE perspective when
the client .java file is open in the editor and the cursor is located in the JMS control name. You
specify the messaging style (queue, topic or automatic) and provide the JNDI identification for the

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....html/controls/system/jms/conUsingAnExistingJMSControl.html (2 of 3)1/26/2007 2:29:02 PM

Using an EJB Control

queue or topic. You also specify a connection factory for the control. For detailed information on
the @JMSControl annotation and its attributes, see the Beehive documentation for the JMS
control.

JMS Control Methods

The JMS control has the following default methods:

● getConnection() - returns the javax.jms.Connection

getDestination() - returns the javax.jms.Destination

getSession() - gives you programmatic access to the JMS session.

● setHeader(HeaderType, Object) - Sets a JMS header to be assigned to the next JMS message
sent.

setHeaders(Map) - Sets multiple JMS headers to be assigned to the next JMS message sent.

setProperties(Map) - Sets JMS properties to be assigned to the next JMS message sent.

setProperty(String, Object) - Sets a JMS property to be assigned to the next JMS message
sent.

● One of the following methods for sending a message to the service, depending on what value
you selected for the Message Type when you created the control: sendTextMessage(),
sendBytesMessage(), sendObjectMessage(), or sendJMSMessage(). You can use one or more
of these methods, or you can define your own methods for sending a message to the service.

All of the methods you define on the JMS control send or publish to the queue or topic named by
the sendJndiName attribute of the @JMSControl annotation.

Consult the Beehive documentation for JMS control for more information.

Related Topics

JMS Control

Using System Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....html/controls/system/jms/conUsingAnExistingJMSControl.html (3 of 3)1/26/2007 2:29:02 PM

http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/guide.html

JDBC Control

JDBC Control

A JDBC control makes it easy to access a relational database from your application. Using the
JDBC control, you can issue SQL commands to the database. The JDBC control automatically
performs the translation from database queries to Java objects, so that you can easily access
query results.

A JDBC control can operate on any database for which an appropriate Java Database Connectivity
(JDBC) driver is available or which has a data source configured in WebLogic Server. When you
add a new JDBC control to your application, you specify a data source for that control. The data
source indicates which database the control is bound to.

Topics Included in this Section

Tutorial: Accessing a Database from a Web Application
Provides step-by-step instructions for using a JDBC control in a web application (page flow).

Overview: JDBC Controls
Introduces the basic concepts behind database controls.

Creating a New JDBC Control
Explains how to create a new database control.

Using a JDBC Control
Explains how to use an existing database control.

Adding a Method to a Database Control
Describes how to write methods on a database control.

Using the Backward-Compatible RowSet feature (WebLogic Workshop 8.1)
Describes how to work with a RowSet (using an XSD to define metadata) from an application
upgraded from WebLogic Workshop 8.1. This feature is deprecated, and should not be used
for developing new applications.

Beehive documentation for JDBC control
Describes how to work with a JDBC control including controlling the data returned, handling
exceptions, parameter substitution, stored functions and procedures, and JDBC control return
types (including mapping ResultSets to RowSets).

Related Topics

Using System Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.work...oduct.wl.doc/html/controls/system/jdbc/navDatabaseControl.html1/26/2007 2:29:02 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webapplications/tutorial/tutWebAppIntro.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html

Overview: Database Controls

Overview: JDBC Controls

A JDBC control makes it easy to access a relational database from your Java code using SQL
commands.

The methods that you add to a JDBC control execute SQL commands against the database. You
can send any SQL command to the database via the JDBC control, so that you can retrieve data,
perform operations like inserts and updates, and even make structural changes to the database.

All JDBC controls are subclassed from the JdbcControl interface. The interface defines methods
that JDBC control instances can call from an application.

Related Topics

None

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.work...duct.wl.doc/html/controls/system/jdbc/ovwDatabaseControls.html1/26/2007 2:29:02 PM

Creating a New Database Control

Creating a New JDBC control

A JDBC control makes it easy to access a relational database via SQL commands. When you
create a new JDBC control, you specify which database it connects to and write methods to access
data using SQL commands. This topic describes the mechanics of creating a JDBC control.

Choosing a Data Source

Before you can perform operations on a database, you must have a connection to the database.
The JDBC control handles all of the details of managing the database connection, but you must
supply the name of a data source that has been configured with the information necessary to
access a database.

To learn how to create, configure and register a data source, see the documentation provided for
WebLogic Server.

Adding a JDBC control

You can add a JDBC control in any of the following types of files:

● another control

● a page flow

● a web service

To create a new JDBC control:

1. Locate or create the package (folder) where you want to create the JDBC control. This can be
a package in a utility project, dynamic web project, or web service project.

2. Right-click the package and choose New > JDBC Control. The New Control dialog opens.

3. In the Control name field, enter the name of the new JDBC control. Click Next.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....l/controls/system/jdbc/conCreatingANewDatabaseControl.html (1 of 3)1/26/2007 2:29:02 PM

http://edocs.bea.com/

Creating a New Database Control

4. Click the Browse button to select the data source.

The JNDI Entries dialog appears. Navigate to the data source you want to select and click
Select.

5.
Click Finish.

To learn how to add a method to a JDBC control, see Adding a Method to a JDBC control.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....l/controls/system/jdbc/conCreatingANewDatabaseControl.html (2 of 3)1/26/2007 2:29:02 PM

Creating a New Database Control

Related Topics

System Controls Overview

JDBC control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....l/controls/system/jdbc/conCreatingANewDatabaseControl.html (3 of 3)1/26/2007 2:29:02 PM

Using an EJB Control

Using a JDBC Control

You can add a JDBC control to any of the following:

● another control

● a page flow

● a web service

To Insert a New JDBC Control

To create a new JDBC control and insert it into your source code in a single step:

1. Make sure you have opened the target web service, page flow controller or control in the
editor window.

2. Right click on the editor window and choose Insert > Control.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...l/controls/system/jdbc/conUsingAnExistingJDBCControl.html (1 of 3)1/26/2007 2:29:02 PM

Using an EJB Control

Under New System Control, click on JDBC Control and click OK.

3. Follow the instructions in Creating a New JDBC Control.

To Insert an Existing JDBC Control

1. Make sure you have opened the target web service, page flow controller or control in the
editor window.

2. Right click on the editor window and choose Insert > Control.

Click on the name of the control and click OK.

Accessing the Methods of a JDBC Control

After you have created a JDBC Control, you can invoke the methods of the control in the same
way as accessing the methods of a regular object. Consult the Beehive documentation for JDBC
control for more information.

Related Topics

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...l/controls/system/jdbc/conUsingAnExistingJDBCControl.html (2 of 3)1/26/2007 2:29:02 PM

http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html

Using an EJB Control

Using System Controls

Creating a JDBC Control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...l/controls/system/jdbc/conUsingAnExistingJDBCControl.html (3 of 3)1/26/2007 2:29:02 PM

Adding a Method to a Database Control

Adding a Method to a JDBC control

The JDBC control provides access to a relational database. The methods that you add to the JDBC
control execute SQL commands against the database. This topic discusses the mechanics of
adding a method to a JDBC control.

Specifying the SQL Statement

A method on a JDBC control always has an associated SQL statement, which executes against the
database when the method is called. The method's @JdbcControl.SQL annotation describes the
method's SQL statement.

A sample method is provided in the comment header when you create a JDBC control:

@JdbcControl.SQL(statement="SELECT ID, NAME FROM CUSTOMERS WHERE ID = {id}")

Customer findCustomer(int id) throws SQLException;

The method's SQL statement may include substitution parameters. These parameters are replaced
at runtime with the values that were passed to the method. The names of the substitution
parameters in the SQL statement must match those in the method signature, so that Workshop
for WebLogic knows which parameter to replace with which value. Within the SQL statement,
substitution parameters are enclosed in curly braces.

In the example above, the SQL statement includes the substitution{id}. This maps to the id
parameter of the findCustomer method. When the method is invoked, the values of any
referenced parameters are substituted in the SQL statement before it is executed. Note that
parameter substitution is case sensitive, so parameters mentioned in substitutions must exactly
match the spelling and case of the parameters to the method.

The method signature declares a method that a user of this control may invoke. You should
design this method so that its arguments and return value are convenient and useful to
developers of applications that will use this control.

The rules of parameter substitution in JDBC control method SQL statements are described in the
Beehive documentation for JDBC control.

The return type of the database operation is determined by the return type of the Java method.
Workshop for WebLogic attempts to format the results in whatever type you have specified for the
method to return.

A method of a JDBC control can return a single value, a single row, or multiple rows. To learn
more about the values returned by JDBC control methods, see the Beehive documentation for
JDBC control.

Related Topics

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...trols/system/jdbc/conAddingAMethodToADatabaseControl.html (1 of 2)1/26/2007 2:29:02 PM

http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/guide.html

Adding a Method to a Database Control

Using System Controls

JDBC control

Creating a New JDBC control

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...trols/system/jdbc/conAddingAMethodToADatabaseControl.html (2 of 2)1/26/2007 2:29:02 PM

Using the Backward-Compatible RowSet feature (WebLogic Workshop 8.1)

Using the Backward-Compatible RowSet feature (WebLogic
Workshop 8.1)

This deprecated feature should not be used for new development.

When you upgrade a WebLogic Workshop 8.1 application, the upgrade wizard converts the
RowSet control to use a backward-compatible JDBC control that includes support for RowSets.
The RowSet control is documented in WebLogic Workshop 8.1 documentation at:

● RowSet Control

● RowSet Controls and SQL Join Queries

The backward-compatible JDBC control is documented at:

● Backward-Compatible JDBC control that supports RowSet feature

● RowSet Annotation

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.wor...uct.wl.doc/html/controls/system/jdbc/conBackCompatRowSet.html1/26/2007 2:29:03 PM

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/conRowSetControl.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/conTableJoins.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/JdbcControl.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/reference/api/com/bea/control/JdbcControl.SQLRowSet.html

Building Custom Java Controls

Developing Custom Controls

BEA Workshop for WebLogic Platform allows you to create custom controls tailored to your project
or application. Custom controls can be used to create re-usable controls that might be found in a
company for sharing, or those provided by ISVs for their products. This section explains how to
create these controls and how to share them.

For a complete overview of controls in Workshop for WebLogic, including how to create them, see
Getting Started with Beehive Controls.

Topics Included in This Section

Creating Custom Controls
Describes the basics of creating and using custom controls.

Source Files for Custom Controls
Describes the files that are necessary in any custom control.

Testing Controls
Discusses how to test custom controls.

Exporting Controls into JARs
Describes how to export controls into a JAR file that can be shared.

Distributing Controls as Plug-Ins
Shows you how to customize controls more extensively and how to package/distribute
controls for a wider audience.

Related Topics

Using System Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/custom/navCustomControls.html1/26/2007 2:29:03 PM

Working with Custom Controls

Creating Custom Controls

This topic describes how to use a custom custom control. It explains how to:

● Create a custom control

● Use a custom control in your application

Custom control files can be located:

● In your web project.

● In a utility project. To access such controls in a web application, both the web project and the
utility project must be linked to the same EAR project.

To Create a Custom Control

The following instruction assume you are in the J2EE perspective (Window > Open Perspective
> J2EE).

1.
You cannot create a control in the default package. So the first step is to create a package
for the control. For example:

<ProjectRoot>/src/controls/myControl/

2.
Right-click the package and select New > Custom Control.

3.
In the Control name field, enter the class name for the control.

The Java interface and implementation classes will be based on the name entered here. For
example, if you enter Hello, two classes will be created:

 Hello.java (=the interface class)

 and

 HelloImpl.java (=the implementation class)

4.
Click Finish.

Default control interface and implementation classes are produced. Assuming that your control is
named Hello, the following class files are produced:

Hello.java Interface Class File

package controls.myControl;

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...oc/html/controls/custom/conWorkingWithCustomControls.html (1 of 3)1/26/2007 2:29:03 PM

Working with Custom Controls

import org.apache.beehive.controls.api.bean.ControlInterface;

@ControlInterface
public interface Hello {

}

HelloImpl.java Implementation Class File

package controls.myControl;

import org.apache.beehive.controls.api.bean.ControlImplementation;
import java.io.Serializable;

@ControlImplementation
public class HelloImpl implements Hello, Serializable {
 private static final long serialVersionUID = 1L;

}

Continue the composition of the custom control by adding methods to these class files.

To Use a Custom Control in an Application

If you have an existing custom control in your project or in a utility project in the current
workspace, you can add a reference to that control to a control client by right-clicking anywhere
within the client's Java source file and selecting Insert > Control.

A list of available controls appears. The heading Existing Project Controls lists the controls in
the same project as the client. The heading Existing Application Controls lists the controls in
the utility projects in the same workspace.

When you add a control reference to a client, Workshop for WebLogic Platform modifies your
client's source code to include an annotation and variable declaration for the control. The
annotation ensures that the control is recognized by Workshop for WebLogic Platform, and the
variable declaration gives you a way to work with the control from your client code. For example,
if you add a new custom control named Hello, the following code will be added to your client:

 import org.apache.beehive.controls.api.bean.Control;
 import controls.myControl.Hello;

 @Control
 private Hello hello;

Once you have a reference to a control, your client can call methods on that control. For more
detail on calling a control method, see Invoking a Control Method.

Related Topics

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...oc/html/controls/custom/conWorkingWithCustomControls.html (2 of 3)1/26/2007 2:29:03 PM

Working with Custom Controls

Invoking a Control Method

Source Files for Custom Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...oc/html/controls/custom/conWorkingWithCustomControls.html (3 of 3)1/26/2007 2:29:03 PM

Source Files for custom controls

Source Files for Custom Controls

Custom controls consist of two Java source files: an interface class file and an implementation
class file.

The interface class contains the control's publicly accessible methods. Clients of the control call
the methods in the implementation class.

The implementation class contains the control's behind the scenes implementation code.

There is also a third class associated with each custom control: the generated JavaBean class.
This is a build artifact created from the interface and implementation source files. The generated
JavaBean class provides supplemental programmatic access to the control, especially the ability to
override default annotation values in the control. For more information about this class see
Overriding Control Annotation Values Through the Control JavaBean

Custom Control Interface Classes

A custom control interface class must be decorated with the @ControlInterface annotation.

package controls.hello;

import org.apache.beehive.controls.api.bean.ControlInterface;

@ControlInterface
public interface Hello {

 ...

}

The @ControlInterface annotation informs the compiler to treat this class as a part of the
Beehive Control framework.

The interface class also lists the control's publicly available methods. The following example shows
a control with one publicly available method.

package controls.hello;

import org.apache.beehive.controls.api.bean.ControlInterface;

@ControlInterface
public interface Hello {

 public String hello();

}

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/controls/custom/conCustomControlSourceFiles.html (1 of 2)1/26/2007 2:29:03 PM

http://beehive.apache.org/docs/1.0.1/controls/index.html

Source Files for custom controls

Custom Control Implementation Classes

A custom control implementation class contains the control's logic - the code that defines what
the control does. In this file you define what each of the control's methods do.

The minimum requirements for a custom control implementation class are listed below.

1.
The class must be decorated with the @ControlImplementation annotation.

 import org.apache.beehive.controls.api.bean.ControlImplementation;

 @ControlImplementation
 public class HelloImpl

2.
The class must implement the corresponding custom control interface file.

 import org.apache.beehive.controls.api.bean.ControlImplementation;

 @ControlImplementation
 public class HelloImpl implements Hello

3.
The classes must either:

(a) implement java.io.Serializable

 import java.io.Serializable;

 @ControlImplementation
 public class HelloImpl implements Hello, Serializable

(b) or set @ControlImplementation(isTransient=true)

 @ControlImplementation(isTransient=true)
 public class HelloImpl implements Hello {

 }

Related Topics

Controls: Getting Started

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/controls/custom/conCustomControlSourceFiles.html (2 of 2)1/26/2007 2:29:03 PM

http://beehive.apache.org/docs/1.0.1/controls/index.html

Testing Controls

Testing Controls

Beehive controls can be tested either inside of an application container or outside in a standalone
Java environment. Testing in a standalone Java environment is especially useful when running
unit tests.

Beehive controls can be integrated into the JUnit test framework using the ControlTestCase base
class. This base class provides a control container and provides help in instantiating a control
declaratively via the
@Control annotation.

Note that not all controls can be tested within the test container because some controls have
requirements beyond what ControlTestCase provides. For example, a control that uses JNDI
lookups will not be testable with ControlTestCase. Likewise controls (such as the Service Control)
that take a dependency on a J2EE container (such as WebLogic Server) may not be testable out of
that J2EE container.

For details on testing controls with ControlTestCase see Control Tutorial: Testing Controls with
JUnit.

Related Topics

Testing Controls with JUnit

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conTestingControls.html1/26/2007 2:29:03 PM

http://www.junit.org/index.htm
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/test/junit/ControlTestCase.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/bean/Control.html

Exporting Beehive Controls

Exporting Controls into JARs

Workshop for Weblogic Platform lets you package your control classes as JAR files that can be
reused in other Java projects. This is the simplest way to distribute controls.

This approach is somewhat limited, providing no custom labels, no custom icons, no insertion
wizards. If you are creating controls that will have very wide distribution (e.g., an ISV developing
controls for customers), you may want to package your custom control as a plug-in.

To package a Beehive control as a JAR file, select File > Export > Beehive Control JAR File.

Only control files in utility projects are available for JAR file packaging; controls in other project
types are not available for export.

All Java class files in the utility project are included in the JAR file, including control interface,
control implementation classes, and all other Java classes. Note that by default, only class files
are included in the JAR file. To include the Java source files, place a checkmark next to Include
Java source files.

To use a control in another web application:

1. Copy the JAR file to the WEB-INF/lib folder.

2. Add a reference to that control to a control client by right-clicking anywhere within the
client's Java source file and selecting Insert > Control.

3. A list of available controls appears. The heading Existing Project Controls lists the
available controls, including controls in JAR files.

Alternately, you can:

1. Copy the JAR file to the APP-INF/lib folder of the associated EAR project.

2. Add a reference to that control to a control client by right-clicking anywhere within the
client's Java source file and selecting Insert > Control.

3. A list of available controls appears. The heading Existing Application Controls lists the
available controls, including controls in JAR files.

As long as the JAR is inserted into the user's classpath as described above, the control will be
discovered automatically by Workshop for WebLogic and property set/event handler features will
be provided.

Related Topics

Apache Beehive Documentation

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...shop.product.wl.doc/html/controls/conExportingControls.html (1 of 2)1/26/2007 2:29:03 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#UtilityProject

Exporting Beehive Controls

Building Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...shop.product.wl.doc/html/controls/conExportingControls.html (2 of 2)1/26/2007 2:29:03 PM

http://beehive.apache.org/docs/1.0.1/controls/projects.html

Distributing Controls as Plug-ins

Distributing Controls as Plug-ins

If you want to distribute your custom control to a wide audience (e.g., if you are an ISV developing controls for your customers) or if you
want to customize your control more extensively, you can package a control within a plug-in. This method allows:

● Customized label and icon

● Customized insertion wizard

This topic describes how to package a control into a plug-in. This method creates an Eclipse plug-in and basic knowledge of Eclipse plug-
ins and their creation would be useful before attempting this process.

Note that this method wraps a control JAR in a plug-in. For distribution within your own company, you may simply want to share the
control JAR file directly, without the additional work of creating a plug-in.

This method consists of the following steps:

1. Export the control into a control JAR

2. Create the control plug-in project

3. Copy the control JAR into the plug-in project

4. Set plug-in project dependencies

5. Add extension and customize settings

6. Create the insertion delegate code

7. Build and test your plug-in

8. Export the plug-In

Step 1: Export the Control into a Control JAR

Follow the steps outlined in Exporting Controls into JARs.

Step 2: Create the Control Plug-in Project

1. Create a plug-in project with File > New > Project. Expand Plug-in Development and choose Plug-in Project. If you do not see
the correct project type, you may need to click Show All Wizards to display it.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugInDevGuide.html (1 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

Click Next to proceed.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugInDevGuide.html (2 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

From the next screen, fill in the Plug-in Provider field and click Finish to create the project.

Click Yes to change to Plug-in Development perspective.

Step 3: Copy the Control JAR into the Plug-In Project

Create a folder named lib in the root of your plug-in project (not under the src folder). Copy the control JAR (created in the previous step)
into the lib directory.

Step 4: Set Plug-in Project Dependencies

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugInDevGuide.html (3 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

If the manifest editor window is not visible, double click on the MANIFEST.MF file to open it. From the editor, click on the Dependencies
tab or click on the Dependencies link in the Plug-in Content section. From the Required Plug-ins section, click on the Add button and
select the following plug-ins:

● com.bea.workshop.controls.core

● com.bea.workshop.controls.ui

● org.eclipse.core.runtime

● org.eclipse.core.resources

● org.eclipse.jdt.core

● org.eclipse.ui

Click OK to add the dependencies. Click File > Save All to save the dependencies in the MANIFEST.MF file.

Step 5: Add Extension and Customize Settings

Click on the Extensions tab. Click Add and choose

● com.bea.workshop.controls.core.controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugInDevGuide.html (4 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

Click Finish to add the extension. Click File > Save All to save the change.

Note that a new file: plugin.xml has been added to the project. That file now contains the extension information:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>
 <extension
 point="com.bea.workshop.controls.core.controls">
 </extension>
</plugin>

The com.bea.workshop.controls.core.controls extension point requires a nested <control> tag with at least the id, class,
isControlExtension, and isExtensible attributes specified. For example:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin>
 <extension point="com.bea.workshop.controls.Controls">

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugInDevGuide.html (5 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

 <control
 id="com.mycompany.example.MyExampleControlId"
 class="com.mycompany.example.control.MyExampleControl"
 isControlExtension="false"
 isExtensible="false" />
 </extension>
</plugin>

The <control> tag has the following attributes:

Attribute Description Required Default
id A unique id string. Cannot be duplcated within the

contributed controls in this plug-in.
Yes [none]

class Fully qualified classname of the control interface
class.

Yes [none]

isControlExtension Yes Indicates whether this is an
extension of a Beehive extensible
control. (See the Beehive control
documentation for more
information on extensible controls.)

isExtensible Yes Indicates whether this is an
extensible control. Indicating true
will allow the default insertion to
better handle requiring the user to
create a control extension rather
than a regular control. (See the
Beehive control documentation for
more information on extensible
controls.)

label The text to be displayed on the Insert > Control
dialog.

No Simple, unqualified classname from
the class attribute.

icon The icon displayed to the left of the control label
on the Insert > Control dialog.

No generic icon

priority Position relative to others in the same group of
controls, ascending order. This is a path relative
to the plugin root

No 10

groupName Group heading for the control(s). Note that if
there are less than 3 controls, no group will be
created. If there are 3 or more controls, a group
will be created if groupName is specified.

No Value of the label attribute. Note
that if controls are not in a group,
or if there are not 3 controls in a
group, they will all be listed at the
top level and the label attribute will
be ignored.

groupPriority Ordering of the group relative to other groups,
ascending order.

No 100

insertionDelegateClass Class triggered when the control is inserted into
an application. In addition to any desired actions,
the insertion delegate must to copy the control
JAR from the plug-in JAR to the user's project.

No com.bea.workshop.controls.core.
DefaultControlInsertionDelegate

description Description of control. No [none]

The following is an example of a <control> tag using more attributes:

<extension point="com.bea.workshop.controls.core.controls">
 <control

 class="com.mycompany.controls.MyControl"
 id="MyControl12"
 groupName="My Company"
 groupPriority="10"
 includeInPalette="true"
 insertionDelegateClass="com.mycompany.workshop.MyInsertionDelegate"
 isControlExtension="false"
 isExtensible="false"
 label="Sample Control"
 palettePriority="10"
 priority="10"
 />
</extension>

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugInDevGuide.html (6 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

Step 6: Create the Insertion Delegate Code

The insertionDelegateClass attribute of the <control> tag indicates the insertion delegate and triggers the delegate when the control is
inserted into a file. You can use this for many purposes, but if it's not already in the project (e.g., as a facet or a library module), you
would typically use this to copy the control JAR to the user's project, as described below.

When you ship the control in a plug-in, the JAR file is located in the plug-in, NOT in the control user's project. To copy the JAR from the
plug-in to the project that is using the control, you must insert code similar to the following into your insertion delegate. This will copy the
control JAR to the user's project when your insertion delegate is called.

To create an insertion delegate, create a package in the src folder and create a file for the class of the insertion delegate.

Sample insertion delegate code is listed below. You will need to update the package and class name, of course.

package org.example.controls.workshop;

import java.io.File;

import org.eclipse.core.runtime.IStatus;
import org.eclipse.core.runtime.Status;
import org.eclipse.jdt.core.IJavaElement;
import org.eclipse.jface.dialogs.ErrorDialog;
import org.eclipse.swt.widgets.Display;

import com.bea.workshop.controls.core.model.IControlInsertionDelegateContext;
import com.bea.workshop.controls.ui.actions.DefaultControlInsertionDelegate;

public class SampleInsertionDelegate extends DefaultControlInsertionDelegate {

 @Override
 public IJavaElement insertControl(IControlInsertionDelegateContext ctxt) {
 try {
 File file = getFileFromPlugin(Activator.getDefault(), "/lib/TestControl.jar");
 copyJarIfNecessary(ctxt, file, file.getName());
 return super.insertControl(ctxt);
 } catch (Exception e) {
 String message = "Error inserting control";
 error(message,e);
 }
 return null;
 }

 private void error(String message, Exception e) {
 ErrorDialog.openError(Display.getCurrent().getActiveShell(),
 "Control Insert Error",
 message + " - " + e.getMessage(),
 new Status(IStatus.ERROR,Activator.PLUGIN_ID,1,"Control Insert Error",e));
 }

}

The sample above covers the "insert your control into the project" case. To also do a custom wizard that collects parameters and inserts
additional annotations, you can update the code to look like this:

public IJavaElement insertControl(IControlInsertionDelegateContext ctxt) {
 try {
 //Launch and complete your wizard here, collecting parameters as necessary
 // then proceed to the next steps to copy the file and use the parameters entered
 // as annotation values

 File file = getFileFromPlugin(Activator.getDefault(), "/lib/TestControl.jar");
 copyJarIfNecessary(ctxt, file, file.getName());

 HashMap<String, String> attrs = new HashMap<String, String>();
 attrs.put("attr", "aValue");

 return super.insertControl(ctxt,"org.example.controls.SampleControl.SamplePropertySet",attrs);
 } catch (Exception e) {
 String message = "Error inserting control";
 error(message,e);

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugInDevGuide.html (7 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

 }
 return null;
}

The previous example is a convenience API if you have a single additional annotation to add. If you have multiple annotations to add, you
could do something like this with a list of AnnotationInfo objects:

public IJavaElement insertControl(IControlInsertionDelegateContext ctxt) {
 try {
 //Launch and complete your wizard here, collecting parameters as necessary
 // then proceed to the next steps to copy the file and use the parameters entered
 // as annotation values

 File file = getFileFromPlugin(Activator.getDefault(), "/lib/TestControl.jar");
 copyJarIfNecessary(ctxt, file, file.getName());

 List infos = new ArrayList();
 HashMap<String, String> attrs1 = new HashMap<String, String>();
 attrs1.put("attr", "aValue");
 AnnotationInfo info1 = new AnnotationInfo(
 "org.example.controls.SampleControl.SamplePropertySet",attrs1);
 infos.add(info1);

 HashMap<String, String> attrs2 = new HashMap<String, String>();
 attrs2.put("anotherAttribute", "aValue");
 AnnotationInfo info2 = new AnnotationInfo(
 "org.example.controls.SampleControl.SamplePropertySet",attrs2);
 infos.add(info2);

 return super.insertControl(ctxt,infos);
 } catch (Exception e) {
 String message = "Error inserting control";
 Activator.getDefault().logError(message, e);
 error(message,e);
 }
 return null;
}

For more information on the APIs provided by the DefaultControlInsertionDelegate, see the Javadoc.

Step 7: Build and Test your Plug-in

Be sure that the plug-in includes the lib directly by clicking on the Build tab. Click on the lib folder under the Binary Build section to
make sure that it is building correctly.

To run your plug-in, use the Run As > Eclipse Application command to test that your plug-in works correctly.

Step 8: Export the Plug-in

Click on the Overview tab. Click Export Wizard to create the plug-in JAR which will include the control JAR, the insertion delegate and
any other required files. If this view is not available, you can open it by right clicking on META-INF/MANIFEST.MF and choosing Open.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugInDevGuide.html (8 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

From the export dialog, be sure to set the directory where the plug-in file will be created. Note that by default, the Include source code
option is disabled so that the control's source code will not be available to plug-in users. Specify a destination directory for the plug-in and
click Finish to create the control plug-in file.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....rkshop.product.wl.doc/html/controls/conPlugInDevGuide.html (9 of 10)1/26/2007 2:29:04 PM

Distributing Controls as Plug-ins

You can then distribute the resulting plug-in file to other developers, like any other Eclipse plug-in.

Related Topics

Developing Custom Controls

Exporting Controls into JARs

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...kshop.product.wl.doc/html/controls/conPlugInDevGuide.html (10 of 10)1/26/2007 2:29:04 PM

Control Dialogs

Control Dialogs

These topics describe dialogs and wizards available for creating custom and system controls.

Topics Included in This Section

New Custom Control Dialog
Create a new Beehive-based custom control.

New Extensible Control Dialog
Create a new Beehive-based extensible control.

Insert Control Event Handler Dialog
Create a event handler based on a event method.

New EJB Wizard
Create a new EJB Control.

New JDBC Wizard
Create a new JDBC Control.

New JMS Wizard
Create a new JMS Control.

Service Control Generation Wizard
Generate a Web Service Control from a WSDL file.

Select Control Dialog
Add an Existing Control.

Related Topics

none.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/ui/navControlUI.html1/26/2007 2:29:04 PM

New Control Dialog

New Control Dialog

Use this dialog to create a new custom control.

How To Open this Dialog

To open the New Control dialog, select File > New > Other > Controls > Custom Control.

How To Use the Dialog

In Enter or select the parent folder, select to the directory location, where the new control is
be created. If the desired directory does not already exit, you may enter the directory path to
create the desired directory.

In Control name enter a valid Java class name. Two files will be created based on this name:

1.
<ControlName>.java

2.
<ControlName>Impl.java

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....op.product.wl.doc/html/controls/ui/uiNewCustomControl.html (1 of 2)1/26/2007 2:29:05 PM

New Control Dialog

Related Topics

Custom Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....op.product.wl.doc/html/controls/ui/uiNewCustomControl.html (2 of 2)1/26/2007 2:29:05 PM

New Extensible Control Dialog

New Extensible Control Dialog

Use this dialog to create a new extensible custom control. This is a custom control that can be
customized by extension of the interface class.

How To Open This Dialog

To open this dialog, select File > New > Other > Controls > Extensible Custom Control.

How To Use This Dialog

Upon completion of the dialog, two files will be created based on name entered in the Control
name field:

1.
<ControlName>.java

2.
<ControlName>Impl.java

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...product.wl.doc/html/controls/ui/uiNewExtensibleControl.html (1 of 2)1/26/2007 2:29:05 PM

New Extensible Control Dialog

Related Topics

Custom Controls

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...product.wl.doc/html/controls/ui/uiNewExtensibleControl.html (2 of 2)1/26/2007 2:29:05 PM

Insert Control Event Handler Dialog

Insert Control Event Handler Dialog

Use this dialog to add a control event handler based on an event method.

How To Open this Dialog

To open the this dialog, open a client class which contains a control declaration, for example:

 @Control
 private HWCallbackServiceControl wsControl;

The declared control must contain an event set for the dialog to appear.

Right click anywhere within the client class source view and select Insert > Control Event
Handler.

The dialog will appear displaying a list of event handlers corresponding to the event sets in the
declared control.

How To Use the Dialog

Select the control (first level nodes), event set (second level nodes) and method (third level
nodes) for which an event handler should be constructed.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...doc/html/controls/ui/uiInsertControlEventHandlerDialog.html (1 of 2)1/26/2007 2:29:05 PM

Insert Control Event Handler Dialog

Related Topics

Custom Controls

Handling Control Events

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w...doc/html/controls/ui/uiInsertControlEventHandlerDialog.html (2 of 2)1/26/2007 2:29:05 PM

New EJB Control Dialog

New EJB Control Dialog

Use this dialog to create a new EJB control.

How To Open This Dialog

You can open the dialog in one these ways:

●

From any perspective, select File > New > Other > Controls > EJB Control.

●

In the J2EE perspective, select File > New > EJB Control.

●

In the Page Flow perspective, right-click the Referenced Controls node on the Page Flow
Explorer tab, and select Add Control > New System Control > EJB Control > Ok.

● From the source editor window, right click and choose Insert > Control then expand New
System Control and choose EJB Control.

How To Use This Dialog

In Enter or select the parent folder, select to the directory location, where the new control is
be created. If the desired directory does not already exit, you may enter the directory path to
create the desired directory.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....kshop.product.wl.doc/html/controls/ui/uiNewEJBControl.html (1 of 3)1/26/2007 2:29:05 PM

New EJB Control Dialog

The Browser Application EJBs button will display a list of EJBs in the current project.

Provided that WebLogic Server is running, you can browse for deployed EJBs using the Browse
Server EJBs button. If the server is not running and you know the name, you can just type it in.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....kshop.product.wl.doc/html/controls/ui/uiNewEJBControl.html (2 of 3)1/26/2007 2:29:05 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html

New EJB Control Dialog

Related Topics

none.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....kshop.product.wl.doc/html/controls/ui/uiNewEJBControl.html (3 of 3)1/26/2007 2:29:05 PM

New JDBC Control Dialog

New JDBC Control Dialog

Use this dialog to create a new JDBC control.

How To Open This Dialog

You can open the dialog in one these ways:

●

From any perspective, select File > New > Other > Controls > JDBC Control.

●

In the J2EE perspective, select File > New > JDBC Control.

●

In the Page Flow perspective, right-click the Referenced Controls node on the Page Flow
Explorer tab, and select Add Control > New System Control > JDBC Control > Ok.

● From the source editor window, right click and choose Insert > Control then expand New
System Control and choose JDBC Control.

How To Use This Dialog

In Enter or select the parent folder, select to the directory location, where the new control is
be created. If the desired directory does not already exit, you may enter the directory path to
create the desired directory.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....shop.product.wl.doc/html/controls/ui/uiNewJDBCControl.html (1 of 3)1/26/2007 2:29:05 PM

New JDBC Control Dialog

Provided that WebLogic Server is running, you can browse for available data sources. If the server
is not running and you know the name, you can just type it in.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....shop.product.wl.doc/html/controls/ui/uiNewJDBCControl.html (2 of 3)1/26/2007 2:29:05 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html

New JDBC Control Dialog

Related Topics

none

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....shop.product.wl.doc/html/controls/ui/uiNewJDBCControl.html (3 of 3)1/26/2007 2:29:05 PM

New JMS Control Dialog

New JMS Control Dialog

Use this dialog to create a new JMS control.

How To Open This Dialog

You can open the dialog in one these ways:

●

From any perspective, select File > New > Other > Controls > JMS Control.

●

In the J2EE perspective, select File > New > JMS Control.

●

In the Page Flow perspective, right-click the Referenced Controls node on the Page Flow
Explorer tab, and select Add Control > New System Control > JMS Control > Ok.

● From the source editor window, right click and choose Insert > Control then expand New
System Control and choose JMS Control.

How To Use This Dialog

In Enter or select the parent folder, select to the directory location, where the new control is
be created. If the desired directory does not already exit, you may enter the directory path to
create the desired directory.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....kshop.product.wl.doc/html/controls/ui/uiNewJMSControl.html (1 of 3)1/26/2007 2:29:06 PM

New JMS Control Dialog

Provided that WebLogic Server is running, you can browse for available JMS queues, topics and
connection factories.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....kshop.product.wl.doc/html/controls/ui/uiNewJMSControl.html (2 of 3)1/26/2007 2:29:06 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html

New JMS Control Dialog

Related Topics

none.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....kshop.product.wl.doc/html/controls/ui/uiNewJMSControl.html (3 of 3)1/26/2007 2:29:06 PM

Service Control Generation Wizard

Service Control Generation Wizard

Use this dialog to create a new service control.

To create a service control using this dialog, you must first have a local copy of the WSDL file for
the target web service.

How To Open This Dialog

To open this dialog, right-click a folder in the Project Explorer view and select New > Service
Control.

How To Use This Dialog

On the first page, navigate to the WSDL file for the target web service.

On the second page, select the content types in the generated JAR file. Depending on your

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w....doc/html/controls/ui/uiServiceControlGenerationWizard.html (1 of 4)1/26/2007 2:29:06 PM

Service Control Generation Wizard

selection, either JAX-RPC or XMLBean types will be generated.

This page will not appear if your service has only simple types or if the necessary types are
already available.

On the third page, select the location where you wish the JAR file to be saved. By default, the JAR
will be saved to WEB-INF/lib (in a web or web service project) or APP-INF/lib (in a utility project).
If you choose a different location, you must ensure that the chosen location is on the classpath.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w....doc/html/controls/ui/uiServiceControlGenerationWizard.html (2 of 4)1/26/2007 2:29:06 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conUsingXMLBeans.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#WebProject
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#WebService
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#UtilityProject

Service Control Generation Wizard

On the fourth page, in the Enter or select the parent folder field, enter the directory location
where the new service control is be created. If the desired directory does not already exit, you
may type the directory path to create the desired directory.

In the File name field, enter the desired name of the service control. The default name is the
name of the WSDL appended with "Control".

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w....doc/html/controls/ui/uiServiceControlGenerationWizard.html (3 of 4)1/26/2007 2:29:06 PM

Service Control Generation Wizard

Related Topics

Types JAR File Generation Wizard

New Web Service From WSDL Wizard

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w....doc/html/controls/ui/uiServiceControlGenerationWizard.html (4 of 4)1/26/2007 2:29:06 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/ui/uiGenerateWSDLTypesJARWizard.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/ui/uiNewWSFromWSDLWizard.html

Select Control Dialog

Select Control Dialog

Use this dialog to select an existing control or create a new control.

How To Open This Dialog

You can open the dialog in one of the following ways:

●

From the Page Flow perspective, right-click the Referenced Controls node on the Page
Flow Explorer tab and select Add Control.

●

From the J2EE or Page Flow perspectives, right-click anywhere within a Java source file and
select Insert > Control.

How To Use This Dialog

The Existing Project Controls node displays the controls that reside in the current project.

The Existing Application Controls node displays the controls that reside in other projects in the
same workspace. Only controls from utility projects and projects dependent on the current project
are displayed.

The New System Control node displays wizards for creating a new control.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w....product.wl.doc/html/controls/ui/uiSelectControlDialog.html (1 of 2)1/26/2007 2:29:06 PM

Select Control Dialog

Related Topics

none.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w....product.wl.doc/html/controls/ui/uiSelectControlDialog.html (2 of 2)1/26/2007 2:29:06 PM

	navBeehiveControls.html
	Local Disk
	Working with Java Controls

	conGettingStartedWithControls.html
	Local Disk
	Getting Started with Controls

	tutCreateSimpleTimer.html
	Local Disk
	Tutorial: Creating a Web Service with Timer Control

	tutTestControlIntro.html
	Local Disk
	Control Tutorial: Testing Controls with JUnit

	tutTestControlStep1.html
	Local Disk
	Control Tutorial: Step 1: Create a Custom Control

	tutTestControlStep2.html
	Local Disk
	Control Tutorial: Step 2: Create a Test Class

	tutTestControlStep3.html
	Local Disk
	Control Tutorial: Step 3: Run the Test Case

	navUsingControls.html
	Local Disk
	Using System Controls

	conInvokingControlMethod.html
	Local Disk
	Invoking a Control Method

	conOverridingControlProperties.html
	Local Disk
	Overriding Control Properties

	conHandlingControlCallbacks.html
	Local Disk
	Handling Control Events

	conHandlingControlExceptions.html
	Local Disk
	Handling Control Method Exceptions

	conControlTransactions.html
	Local Disk
	Control Transactions

	navSystemControlsOverview.html
	Local Disk
	Using System Controls

	navTimerControl.html
	Local Disk
	Timer Control

	ovwTimerControls.html
	Local Disk
	Overview: Timer Control

	conSettingUpATimerControl.html
	Local Disk
	Creating and Configuring a Basic Timer Control

	conUsingATimerControl.html
	Local Disk
	Setting up a Web Service to Access a Timer Control

	conAdvancedTimerControl.html
	Local Disk
	Using a Timer Control

	conReferenceTimerControl.html
	Local Disk
	Using a Timer Control

	navServiceControl.html
	Local Disk
	Service Control - Navigation

	ovwServiceControl.html
	Local Disk
	Overview: Service Controls and Web Service Clients

	conCreatingANewServiceControl.html
	Local Disk
	Creating and Using a New Service Control

	conHandlingWebServiceCallbacks.html
	Local Disk
	Handling Web Service Callback Messages

	navEJBControl.html
	Local Disk
	EJB Control

	ovwOverviewEnterpriseJavaBeans.html
	Local Disk
	Overview: Enterprise JavaBeans and EJB Controls

	conCreatingANewEJBControl.html
	Local Disk
	Creating a New EJB Control

	conUsingAnExistingEJBControl.html
	Local Disk
	Using an EJB Control

	navJMSControl.html
	Local Disk
	JMS Control

	conCreatingANewJMSControl.html
	Local Disk
	Creating a New JMS Control

	conUsingAnExistingJMSControl.html
	Local Disk
	Using an EJB Control

	navDatabaseControl.html
	Local Disk
	JDBC Control

	ovwDatabaseControls.html
	Local Disk
	Overview: Database Controls

	conCreatingANewDatabaseControl.html
	Local Disk
	Creating a New Database Control

	conUsingAnExistingJDBCControl.html
	Local Disk
	Using an EJB Control

	conAddingAMethodToADatabaseControl.html
	Local Disk
	Adding a Method to a Database Control

	conBackCompatRowSet.html
	Local Disk
	Using the Backward-Compatible RowSet feature (WebLogic Workshop 8.1)

	navCustomControls.html
	Local Disk
	Building Custom Java Controls

	conWorkingWithCustomControls.html
	Local Disk
	Working with Custom Controls

	conCustomControlSourceFiles.html
	Local Disk
	Source Files for custom controls

	conTestingControls.html
	Local Disk
	Testing Controls

	conExportingControls.html
	Local Disk
	Exporting Beehive Controls

	conPlugInDevGuide.html
	Local Disk
	Distributing Controls as Plug-ins

	navControlUI.html
	Local Disk
	Control Dialogs

	uiNewCustomControl.html
	Local Disk
	New Control Dialog

	uiNewExtensibleControl.html
	Local Disk
	New Extensible Control Dialog

	uiInsertControlEventHandlerDialog.html
	Local Disk
	Insert Control Event Handler Dialog

	uiNewEJBControl.html
	Local Disk
	New EJB Control Dialog

	uiNewJDBCControl.html
	Local Disk
	New JDBC Control Dialog

	uiNewJMSControl.html
	Local Disk
	New JMS Control Dialog

	uiServiceControlGenerationWizard.html
	Local Disk
	Service Control Generation Wizard

	uiSelectControlDialog.html
	Local Disk
	Select Control Dialog

