Building Custom Java Controls

Developing Custom Controls

BEA Workshop for WebLogic Platform allows you to create custom controls tailored to your project
or application. Custom controls can be used to create re-usable controls that might be found in a
company for sharing, or those provided by ISVs for their products. This section explains how to
create these controls and how to share them.

For a complete overview of controls in Workshop for WebLogic, including how to create them, see
Getting Started with Beehive Controls.

Topics Included in This Section

Creating Custom Controls
Describes the basics of creating and using custom controls.

Source Files for Custom Controls
Describes the files that are necessary in any custom control.

Testing Controls
Discusses how to test custom controls.

Exporting Controls into JARs
Describes how to export controls into a JAR file that can be shared.

Distributing Controls as Plug-Ins
Shows you how to customize controls more extensively and how to package/distribute
controls for a wider audience.

Related Topics

Using System Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.wor...op.product.wl.doc/html/control s/'custom/navCustomControl s.html 1/29/2007 10:34:59 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conGettingStartedWithControls.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/navSystemControlsOverview.html

Working with Custom Controls

Creating Custom Controls
This topic describes how to use a custom custom control. It explains how to:

. Create a custom control

. Use a custom control in your application
Custom control files can be located:

. In your web project.

. In a utility project. To access such controls in a web application, both the web project and the
utility project must be linked to the same EAR project.

To Create a Custom Control

The following instruction assume you are in the J2EE perspective (Window = Open Perspective
> J2EE).

1.
You cannot create a control in the default package. So the first step is to create a package
for the control. For example:
<ProjectRoot>/src/controls/myControl/
2.
Right-click the package and select New > Custom Control.
3.
In the Control name field, enter the class name for the control.
The Java interface and implementation classes will be based on the name entered here. For
example, if you enter Hello, two classes will be created:
Hello.java (=the interface class)
and
Hellolmpl.java (=the implementation class)
4.

Click Finish.

Default control interface and implementation classes are produced. Assuming that your control is
named Hello, the following class files are produced:

Hello.java Interface Class File

package controls. nyControl;

file:///F|/depot/dev/srciworkshop/product/plugins/com.be...c/html/control §/custom/conWorkingWithCustomControl s.html (1 of 3)1/29/2007 10:34:59 AM

Working with Custom Controls

i nport org. apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface
public interface Hello {

}
Hellolmpl.java Implementation Class File

package controls. nyControl;

i mport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on;
i mport java.io.Serializable;

@ontrol | mpl enent ati on
public class Hellolnpl inplenents Hello, Serializable {
private static final long serial VersionUD = 1L;

Continue the composition of the custom control by adding methods to these class files.

To Use a Custom Control in an Application

If you have an existing custom control in your project or in a utility project in the current
workspace, you can add a reference to that control to a control client by right-clicking anywhere
within the client's Java source file and selecting Insert > Control.

A list of available controls appears. The heading Existing Project Controls lists the controls in
the same project as the client. The heading Existing Application Controls lists the controls in
the utility projects in the same workspace.

When you add a control reference to a client, Workshop for WebLogic Platform modifies your
client's source code to include an annotation and variable declaration for the control. The
annotation ensures that the control is recognized by Workshop for WebLogic Platform, and the
variable declaration gives you a way to work with the control from your client code. For example,
if you add a new custom control named Hel | o, the following code will be added to your client:

i mport org. apache. beehi ve. control s. api . bean. Control ;
i mport controls. myControl. Hell o;

@ont r ol

private Hello hello;

Once you have a reference to a control, your client can call methods on that control. For more
detail on calling a control method, see Invoking a Control Method.

Related Topics

file:///F|/depot/dev/srciworkshop/product/plugins/com.be...c/html/control §/custom/conWorkingWithCustomControl s.html (2 of 3)1/29/2007 10:34:59 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conInvokingControlMethod.html

Working with Custom Controls

Invoking a Control Method

Source Files for Custom Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.be...c/html/control §/custom/conWorkingWithCustomControl s.html (3 of 3)1/29/2007 10:34:59 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conInvokingControlMethod.html

Source Files for custom controls

Source Files for Custom Controls

Custom controls consist of two Java source files: an interface class file and an implementation
class file.

The interface class contains the control's publicly accessible methods. Clients of the control call
the methods in the implementation class.

The implementation class contains the control’'s behind the scenes implementation code.

There is also a third class associated with each custom control: the generated JavaBean class.
This is a build artifact created from the interface and implementation source files. The generated
JavaBean class provides supplemental programmatic access to the control, especially the ability to
override default annotation values in the control. For more information about this class see
Overriding Control Annotation Values Through the Control JavaBean

Custom Control Interface Classes
A custom control interface class must be decorated with the @ontr ol | nt er f ace annotation.

package controls. hell o;
i mport org. apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface
public interface Hello {

The @ont rol | nt er f ace annotation informs the compiler to treat this class as a part of the
Beehive Control framework.

The interface class also lists the control's publicly available methods. The following example shows
a control with one publicly available method.

package controls. hell o;
i mport org.apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface
public interface Hello {

public String hello();

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.....doc/html/control s/custom/conCustomControl SourceFiles.html (1 of 2)1/29/2007 10:35:00 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conOverridingControlProperties.html
http://beehive.apache.org/docs/1.0.1/controls/index.html

Source Files for custom controls

Custom Control Implementation Classes

A custom control implementation class contains the control's logic - the code that defines what
the control does. In this file you define what each of the control's methods do.

The minimum requirements for a custom control implementation class are listed below.

1.
The class must be decorated with the @Cont r ol | npl enent ati on annotation.
i mport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on;
@ontrol | npl enent ati on
public class Hell ol npl
2.
The class must implement the corresponding custom control interface file.
i nport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on;
@ontrol | mpl emrent ati on
public class Hellolnpl inplenents Hello
3.

The classes must either:
(a) implement java.io.Serializable

i mport java.io.Serializable;

@ontrol | npl enent ati on
public class Hellolnpl inplenents Hello, Serializable

(b) or set @Controllmplementation(isTransient=true)

@Cont rol | npl ement ati on(i sTransi ent =true)
public class Hellolnpl inplenments Hello {

}
Related Topics

Controls: Getting Started

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.....doc/html/control s/custom/conCustomControl SourceFiles.html (2 of 2)1/29/2007 10:35:00 AM

http://beehive.apache.org/docs/1.0.1/controls/index.html

Testing Controls

Testing Controls

Beehive controls can be tested either inside of an application container or outside in a standalone
Java environment. Testing in a standalone Java environment is especially useful when running
unit tests.

Beehive controls can be integrated into the JUnit test framework using the ControlTestCase base
class. This base class provides a control container and provides help in instantiating a control
declaratively via the

@Control annotation.

Note that not all controls can be tested within the test container because some controls have
requirements beyond what ControlTestCase provides. For example, a control that uses JNDI
lookups will not be testable with ControlTestCase. Likewise controls (such as the Service Control)

that take a dependency on a J2EE container (such as WebLogic Server) may not be testable out of
that J2EE container.

For details on testing controls with ControlTestCase see Control Tutorial: Testing Controls with
Junit.

Related Topics

Testing Controls with JUnit

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/control §/conTestingControl s.html 1/29/2007 10:35:00 AM

http://www.junit.org/index.htm
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/test/junit/ControlTestCase.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/bean/Control.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/service/navServiceControl.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/tutorial/tutTestControlIntro.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/tutorial/tutTestControlIntro.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/tutorial/tutTestControlIntro.html

Exporting Beehive Controls

Exporting Controls into JARS

Workshop for Weblogic Platform lets you package your control classes as JAR files that can be
reused in other Java projects. This is the simplest way to distribute controls.

This approach is somewhat limited, providing no custom labels, no custom icons, no insertion
wizards. If you are creating controls that will have very wide distribution (e.g., an ISV developing
controls for customers), you may want to package your custom control as a plug-in.

To package a Beehive control as a JAR file, select File > Export > Beehive Control JAR File.

Only control files in utility projects are available for JAR file packaging; controls in other project
types are not available for export.

All Java class files in the utility project are included in the JAR file, including control interface,
control implementation classes, and all other Java classes. Note that by default, only class files
are included in the JAR file. To include the Java source files, place a checkmark next to Include
Java source files.

To use a control in another web application:

1. Copy the JAR file to the WEB-INF/lib folder.

2. Add a reference to that control to a control client by right-clicking anywhere within the
client's Java source file and selecting Insert > Control.

3. A list of available controls appears. The heading Existing Project Controls lists the
available controls, including controls in JAR files.

Alternately, you can:

1. Copy the JAR file to the APP-INF/lib folder of the associated EAR project.

2. Add a reference to that control to a control client by right-clicking anywhere within the
client's Java source file and selecting Insert > Control.

3. A list of available controls appears. The heading Existing Application Controls lists the
available controls, including controls in JAR files.

As long as the JAR is inserted into the user's classpath as described above, the control will be
discovered automatically by Workshop for WebLogic and property set/event handler features will
be provided.

Related Topics

Apache Beehive Documentation

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....hop.product.wl.doc/html/control s/conExportingControl s.html (1 of 2)1/29/2007 10:35:00 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#UtilityProject

Exporting Beehive Controls

Building Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....hop.product.wl.doc/html/control s'conExportingControl s.html (2 of 2)1/29/2007 10:35:00 AM

http://beehive.apache.org/docs/1.0.1/controls/projects.html

Distributing Controls as Plug-ins

Distributing Controls as Plug-ins

If you want to distribute your custom control to a wide audience (e.g., if you are an ISV developing controls for your customers) or if you
want to customize your control more extensively, you can package a control within a plug-in. This method allows:

Customized label and icon

Customized insertion wizard

This topic describes how to package a control into a plug-in. This method creates an Eclipse plug-in and basic knowledge of Eclipse plug-
ins and their creation would be useful before attempting this process.

Note that this method wraps a control JAR in a plug-in. For distribution within your own company, you may simply want to share the
control JAR file directly, without the additional work of creating a plug-in.

This method consists of the following steps:

1. Export the control into a control JAR

2. Create the control plug-in project

3. Copy the control JAR into the plug-in project

4. Set plug-in project dependencies

5. Add extension and customize settings

6. Create the insertion delegate code

7. Build and test your plug-in

8. Export the plug-In

Step 1: Export the Control into a Control JAR

Follow the steps outlined in Exporting Controls into JARs.

Step 2: Create the Control Plug-in Project

1. Create a plug-in project with File > New > Project. Expand Plug-in Development and choose Plug-in Project. If you do not see
the correct project type, you may need to click Show All Wizards to display it.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea...kshop.product.wl.doc/html/control ’conPluglnDevGuide.html (1 of 10)1/29/2007 10:35:01 AM

Distributing Controls as Plug-ins

W New Project E]

Select a wizard

i

Zreate a Plug-in Project [

Wizards:

| bype Filber bext

= lava
== Plug-in Development
i Feature Pakch
Eﬁ Feature Project
qﬁ Fragment Project
._=_’$ Plug-in Fram existing JAR archives
4Tl -in Project
¢<}' IJpdate Site Project
= web
[= ‘WebLogic Portal
[= wWeb Services
[Examples

[

=

[]show all wizards,

Click Next to proceed.

W New Plug-in Project

Plug-in Project

Zreate a new plug-in project

Project name: | MyCDntrDﬂ

IUse default location

| Browse, .,

Project Settings
Create a Java project

Source Folder; | KD |

Cutput Folder: | bin |

Target Platform
This plug-in is targeted ko run with:

() Eclipse version:

() an 005G Framewark:

':':’:' < Back ” Mext = Finish Cancel

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...kshop. product.wl .doc/html/control s/'conPlugl nDevGuide.html (2 of 10)1/29/2007 10:35:01 AM

Distributing Controls as Plug-ins

@ s][ty]| o |

From the next screen, fill in the Plug-in Provider field and click Finish to create the project.

W New Plug-in Project

Plug-in Content

Enter the data required to generate the plug-in,

Flug-in Properties

Plug-in I0: | My Conkrol

Plug-in Mersion; | 1.0.0

Plug-in Provider: | BEA Syskems, Inc.|

|
|
Plug-in Mame: | My Control Plug-in |
|
|

Classpath: |

Plug-in Qptions

Generate an activator, a Java class that controls the plug-in's life cycle

Activator: | mycontrol, Ackivator

This plug-in will make contributions ko the LI

Rich Client Application
Would wou like to create a rich client application? ives (%Mo

(7 < Back ” Mext = %[Finish H Zancel

Click Yes to change to Plug-in Development perspective.

Step 3: Copy the Control JAR into the Plug-In Project

Create a folder named lib in the root of your plug-in project (not under the src folder). Copy the control JAR (created in the previous step)
into the lib directory.

i Package Explorer X Flug-ins = 0O
=

@ BS

= ID‘J- v Cankrol
[e
B JRE Swskem Library [jdk150_0&]
B Plug-in Dependencies
= lib

SR TestContral. jar
= META-IMF

@ build, properties

&

Step 4: Set Plug-in Project Dependencies

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea...kshop.product.wl.doc/html/control ’conPluglnDevGuide.html (3 of 10)1/29/2007 10:35:01 AM

Distributing Controls as Plug-ins

If the manifest editor window is not visible, double click on the MANIFEST.MF file to open it. From the editor, click on the Dependencies
tab or click on the Dependencies link in the Plug-in Content section. From the Required Plug-ins section, click on the Add button and
select the following plug-ins:

. com.bea.workshop.controls.core
. com.bea.workshop.controls.ui

. org.eclipse.core.runtime

. org.eclipse.core.resources

. org.eclipse.jdt.core

. org.eclipse.ui

i X =8
Dependencies

Required Plug-ins Imported Packages
Specify the list of plug-ins required For the operation of this packages on which this plug-in depends without

plug-in: F Plug-in Selection |:|[E|[z| ariginating plug-in:

Specit

?qlkurg.eclipse.ui Add. ..

?qlkurg.eclipse.mre. Select a Plug-in:

?iI?-:Dm.I:uea.wu:urkshu:up.u:u:ummu:un.usagetrack.startup (1.0,
?iI:‘l:Dm.bea.WDFkSth.EDI‘I‘II‘I‘IDI‘I.LIt“ 1.0.0)
EJ'11.TJ=-:u:um.l:uaa.I.-m:urlc:shu:q:u.u:u:ummu:un.w-'EIu:u:iI:y (1.0.0)

E{I?-:Dm.l:ue Jworkshop, comman, xmicatalog (1.0.00

rkshop,contrals, care

?ilicnm.l:uea.wnrkshup.netui.cl:ure (1.0,0
?iI?l:Dm.bea.WDFkSth.I‘IEtLIi.prDjEEt.EDrE (1.0.0)
?ibcum.bea.wurkshup.netui.ui (1.0.0)
?ibcum.bea.wurkshup.netui.ui.jsp (1.0.0)
?iI?cDm.I:uea.wu:urkshu:up.pru:uduct.wl (1.0.0)
?ilicam.hea.w::nrkshn:np.prn:nduct.wl.heehive.dn:n: (1.0.00

LR TORU VUV JU RN S TP SO SR W S PR Y

< *

':':’:' [Ok ’\(][Cancel]
b

F Automated Management of Dependencies b Dependency Analysis
Cwerview | Dependencies | Runtime | Extensions | Extension Points | Build | MAMNIFEST.MF | build, properties
Click OK to add the dependencies. Click File > Save All to save the dependencies in the MANIFEST.MF file.

Step 5: Add Extension and Customize Settings
Click on the Extensions tab. Click Add and choose

. com.bea.workshop.controls.core.controls

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea...kshop.product.wl.doc/html/control ’conPlugl nDevGuide.html (4 of 10)1/29/2007 10:35:01 AM

Distributing Controls as Plug-ins

E X =g

Extensions =
W New Extension E]

Extension Point Selection

Create a new Controls exkension, 1 j—“

All Extensions

Extension Paints | Extension Wizards

Extension Point Filker: |

b |c0m . bea, waorkshop, conkrals, core, contrals

[

=4 com.bea.workshop, controls, core, excludedContrals
=] org.eclipse. core . contentbype, content Types

= org.eclipse, core.resources. builders

=i org.eclipse. core resources, FileModification'alidator
= org.eclipse.care resources, markers

=i org.eclipse. core, resources, modelProviders

=i org.eclipse. core resources, moveleleteHook

=il arg.eclipse. core.resources.natures

=l orq.eclipse. core.resources. refreshProviders

[£

Showe only extension points From the required plug-ins

Extension Point Descripkion: Conkrols

This extension is used to contribute contrals,

Available templates For controls:

':':’:' < Back Mexk = Finish L\\\J [Zancel

¢ Body Text

Owerview | Dependencies | Runtime | Extensions | Extension Points | Build | MANIFEST.MF | build, properties | plugin.xml

Click Finish to add the extension. Click File > Save All to save the change.
Note that a new file: plugin.xml has been added to the project. That file now contains the extension information:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<?ecl i pse version="3.2"?>
<pl ugi n>
<ext ensi on
poi nt ="com bea. wor kshop. control s. core. control s">
</ ext ensi on>
</ pl ugi n>

The com.bea.workshop.controls.core.controls extension point requires a nested <control> tag with at least the id, class,
isControlExtension, and isExtensible attributes specified. For example:

<?xm version="1.0" encodi ng="UTF-8"?>
<?ecl i pse version="3.0"?>
<pl ugi n>
<ext ensi on poi nt="com bea. wor kshop. control s. Control s">

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea...kshop.product.wl.doc/html/control ’conPluglnDevGuide.html (5 of 10)1/29/2007 10:35:01 AM

Distributing Controls as Plug-ins

<control
i d="com nyconpany. exanpl e. My/Exanpl eControl | d"
cl ass="com myconpany. exanpl e. control . MyExanpl eControl "
i sCont r ol Ext ensi on="f al se"
i sExt ensi bl e="fal se" />
</ ext ensi on>
</ pl ugi n>

The <control> tag has the following attributes:

Attribute Description Required Default
id A unique id string. Cannot be duplcated within the Yes [none]
contributed controls in this plug-in.
class Fully qualified classname of the control interface Yes [none]
class.
isControlExtension Yes Indicates whether this is an

extension of a Beehive extensible
control. (See the Beehive control
documentation for more
information on extensible controls.)
isExtensible Yes Indicates whether this is an
extensible control. Indicating true
will allow the default insertion to
better handle requiring the user to
create a control extension rather
than a regular control. (See the
Beehive control documentation for
more information on extensible

controls.)
label The text to be displayed on the Insert > Control No Simple, unqualified classname from
dialog. the class attribute.
icon The icon displayed to the left of the control label No generic icon
on the Insert > Control dialog.
priority Position relative to others in the same group of No 10
controls, ascending order. This is a path relative
to the plugin root
groupName Group heading for the control(s). Note that if No Value of the label attribute. Note
there are less than 3 controls, no group will be that if controls are not in a group,
created. If there are 3 or more controls, a group or if there are not 3 controls in a
will be created if groupName is specified. group, they will all be listed at the
top level and the label attribute will
be ignored.
groupPriority Ordering of the group relative to other groups, No 100
ascending order.
insertionDelegateClass Class triggered when the control is inserted into No com.bea.workshop.controls.core.
an application. In addition to any desired actions, DefaultControlinsertionDelegate
the insertion delegate must to copy the control
JAR from the plug-in JAR to the user's project.
description Description of control. No [none]

The following is an example of a <control> tag using more attributes:

<ext ensi on poi nt="com bea. wor kshop. control s. core. control s">
<control

cl ass="com nyconpany. control s. MyControl "
i d="My/Control 12"
gr oupName="My Conpany"
groupPriority="10"
i ncl udel nPal ette="true"
i nsertionDel egat ed ass="com nyconpany. wor kshop. Myl nserti onDel egat e"
i sCont rol Ext ensi on="f al se"
i sExt ensi bl e="f al se"
| abel =" Sanpl e Control "
pal ettePriority="10"
priority="10"
/>
</ ext ensi on>

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea...kshop.product.wl.doc/html/control 'conPlugl nDevGuide.html (6 of 10)1/29/2007 10:35:01 AM

Distributing Controls as Plug-ins
Step 6: Create the Insertion Delegate Code

The insertionDelegateClass attribute of the <control> tag indicates the insertion delegate and triggers the delegate when the control is
inserted into a file. You can use this for many purposes, but if it's not already in the project (e.g., as a facet or a library module), you
would typically use this to copy the control JAR to the user's project, as described below.

When you ship the control in a plug-in, the JAR file is located in the plug-in, NOT in the control user's project. To copy the JAR from the
plug-in to the project that is using the control, you must insert code similar to the following into your insertion delegate. This will copy the
control JAR to the user's project when your insertion delegate is called.

To create an insertion delegate, create a package in the src folder and create a file for the class of the insertion delegate.
Sample insertion delegate code is listed below. You will need to update the package and class name, of course.

package org. exanpl e. control s. wor kshop;

import java.io.File;

i mport org.eclipse.core.runtine.| Status;

i mport org. eclipse.core.runtine. Status;

i mport org.eclipse.jdt.core.|JavaEl enent;

i mport org.eclipse.jface.dial ogs. ErrorDi al og;
i mport org.eclipse.swt.w dgets. D spl ay;

i mport com bea. workshop. control s. core. nodel .| Control | nsertionDel egat eCont ext ;
i nport com bea. wor kshop. control s. ui. acti ons. Def aul t Control | nserti onDel egat e;

public class Sanpl el nsertionDel egate extends Default Control I nsertionDel egate {

@verride
public |JavaEl ement insertControl (I ControllnsertionDel egateContext ctxt) {
try {

File file = getFil eFronPl ugi n(Activator.getDefault(), "/lib/TestControl.jar");
copyJar | fNecessary(ctxt, file, file.getNanme());
return super.insertControl (ctxt);
} catch (Exception e) {
String nessage = "Error inserting control";
error(nessage, €e);
}

return null;

}

private void error(String nessage, Exception e) {
Error D al og. openError (Di spl ay. get Current (). get Acti veShel | (),
"Control Insert Error",
nessage + " - " + e.getMessage(),
new Status(l Status. ERROR, Activator. PLUG N_ID, 1,"Control Insert Error",e));

The sample above covers the "insert your control into the project" case. To also do a custom wizard that collects parameters and inserts
additional annotations, you can update the code to look like this:

public |JavaEl ement insertControl (I ControllnsertionDel egateContext ctxt) {
try {
/1 Launch and conpl ete your w zard here, collecting paraneters as necessary
/1 then proceed to the next steps to copy the file and use the paraneters entered
/] as annotation val ues

File file = getFil eFronPl ugi n(Activator.getDefault(), "/lib/TestControl.jar");
copyJar | f Necessary(ctxt, file, file.getName());

HashMap<String, String> attrs = new HashMap<String, String>();
attrs.put("attr", "aVal ue");

return super.insertControl (ctxt, "org.exanpl e.controls. Sanpl eControl . Sanpl ePropertySet", attrs);
} catch (Exception e) {

String nessage = "Error inserting control";

error (nessage, €);

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea...kshop.product.wl.doc/html/control ’conPluglnDevGuide.html (7 of 10)1/29/2007 10:35:01 AM

Distributing Controls as Plug-ins

}

return null;

}

The previous example is a convenience API if you have a single additional annotation to add. If you have multiple annotations to add, you
could do something like this with a list of Annotationinfo objects:

public |JavaEl enent insertControl (I ControllnsertionDel egateContext ctxt) {
try {
// Launch and conpl ete your wi zard here, collecting paraneters as necessary
/1 then proceed to the next steps to copy the file and use the paraneters entered
/] as annotation val ues

File file = getFil eFronPl ugi n(Activator.getDefault(), "/lib/TestControl.jar");
copyJar | f Necessary(ctxt, file, file.getNanme());

List infos = new ArrayList();
HashMap<String, String> attrsl = new HashMap<String, String>();
attrsl.put("attr", "aValue");
Annot ati onl nfo i nfol = new Annot ati onl nf o(

"org. exanpl e. control s. Sanpl eControl . Sanpl ePropertySet", attrsl);
i nfos. add(infol);

HashMap<String, String> attrs2 = new HashMap<String, String>();
attrs2. put("anotherAttribute", "aValue");
Annot ati onl nfo i nfo2 = new Annot ati onl nf o(
"org. exanpl e. control s. Sanpl eControl . Sanpl ePropertySet", attrs2);
i nf os. add(i nf02);

return super.insertControl (ctxt,infos);

} catch (Exception e) {
String nessage = "Error inserting control";
Activator.getDefault().|ogError(message, e);
error (nessage, €);

}

return null;
}

For more information on the APIs provided by the DefaultControllnsertionDelegate, see the Javadoc.

Step 7: Build and Test your Plug-in

Be sure that the plug-in includes the lib directly by clicking on the Build tab. Click on the lib folder under the Binary Build section to
make sure that it is building correctly.

To run your plug-in, use the Run As > Eclipse Application command to test that your plug-in works correctly.
Step 8: Export the Plug-in

Click on the Overview tab. Click Export Wizard to create the plug-in JAR which will include the control JAR, the insertion delegate and
any other required files. If this view is not available, you can open it by right clicking on META-INF/MANIFEST.MF and choosing Open.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea...kshop.product.wl.doc/html/control ’conPlugl nDevGuide.html (8 of 10)1/29/2007 10:35:01 AM

Distributing Controls as Plug-ins

Overview

General Information
This section describes general information about this plug-in,

10 My Conkrol
Versian: 1.0.0

Marne: My Control Plug-in
Provider: BEA Swstems, Inc,

FlatFarm filker:

Activatar: rscontral, Ackivator

Activate this plug-in when one of its classes is loaded

Execution Environments
Specify the minimum execution environments required ko run

this plug-in:

Zonfigure JRE associations. ..

Ipdate the classpath and the compiler compliance settings

Plug-in Content

The content of the plug-in is made up of bwo sections:

,_’,? Dependencies: lists all the plug-ins required on this plug-in's classpath to compile
and rurn,

,_’,? Runkime : lists the libraries that make up this plug-in's runtime,

Extensions

This plug-in may define extensions and extension points:
,_’,? Extensions: declares contributions this plug-in makes to the platform.

__’,? Extension Points : declares new function paints this plug-in adds to the platform,

Testing @

Test this plug-in by launching a separate Eclipse application:

G Launch an Eclipse applicakion

fﬁ Launch an Edlipse application in Debug mode

Exporting @

To package and export the plug-in:

1. Qrganize the plug-in using the Oroanize Manifests Wizard

2, specify what needs to be packaged in the deployvable plug-in on the Build
Zonfiguration page

3. Export the plug-in in a format suitable For deployment using the EXD%% Wizard

Cwerview | Dependencies | Runtime | Extensions | Extension Points | Build | MAMNIFEST.MF | build, properties | plugin.xml

From the export dialog, be sure to set the directory where the plug-in file will be created. Note that by default, the Include source code
option is disabled so that the control's source code will not be available to plug-in users. Specify a destination directory for the plug-in and

click Finish to create the control plug-in file.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea...kshop.product.wl.doc/html/control ’conPluglnDevGuide.html (9 of 10)1/29/2007 10:35:01 AM

Distributing Controls as Plug-ins

Deployable plug-ins and fragments

Export the selected projects inko a Form suitable For deploving in an
Eclipse product

Available Plug-ins and Fragments:

“l=MyiControl (1.0.0)

Select Al
Deselect Al

Working Set...

e

1 out of 1 selected.

Destination |Optiu:uns J&R. Signing
(%) Directory:!

| CiMyPluginTeskDireckory,

VH Browse. .,
(3 archive File:

Finish RJ [Zancel

You can then distribute the resulting plug-in file to other developers, like any other Eclipse plug-in.

Related Topics

Developing Custom Controls

Exporting Controls into JARs

file:///F|/depot/dev/src/workshop/product/pl ugins/com.be...shop.product.wl.doc/html/control s/conPluglnDevGuide.html (10 of 10)1/29/2007 10:35:01 AM

	navCustomControls.html
	Local Disk
	Building Custom Java Controls

	conWorkingWithCustomControls.html
	Local Disk
	Working with Custom Controls

	conCustomControlSourceFiles.html
	Local Disk
	Source Files for custom controls

	conTestingControls.html
	Local Disk
	Testing Controls

	conExportingControls.html
	Local Disk
	Exporting Beehive Controls

	conPlugInDevGuide.html
	Local Disk
	Distributing Controls as Plug-ins

