Developing Enterprise JavaBeans

Developing Enterprise JavaBeans

These topics show how to develop Enterprise JavaBeans. BEA Workshop for WebLogic Platform
provides you with the tools to make EJB development much easier, taking care of many
implementation details for you and allowing you to focus on design.

Topics Included in This

Current Release Information: Section

o W[@ys New

Unﬂ?}dinq to 10.0

Tutorial: Enterprise JavaBeans

This advanced tutorial provides a step-by-
step guide to developing Enterprise

Useful Links: JavaBeans.
. Tugérial . i
Tugals Enterprise JavaBeans in Workshop
TigS'and Tricks for WebLogic
Provides an overview of Enterprise
Other Resources: JavaBeans and the EJB Project, the role of
ej bgen annotations, and EJB controls.
. Or_‘[l_’_rgg Docs
D ev Developing Entity Beans

This topic discusses the development of

Dig€tission Forums .
o entity beans.

Da&gﬂopment Blogs

Developing Session Beans

This topic discusses the development of
session beans.

Developing Message-Driven Beans

This topic discusses the development of
message-driven beans.

EJB Properties Dialog

This topic explains how to set project-level
EJB properties.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/gjb/navEJIB.html 1/26/2007 2:32:30 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conWhatsNew.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/upgrading/navUpgrading.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conWorkshopTutorials.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conTipsAndTricks.html
http://edocs.bea.com/more_wlworkshop.html
http://dev2dev.bea.com/workshop/
http://forums.bea.com/bea/index.jspa
http://dev2dev.bea.com/community/blogs/product.html

Enterprise JavaBeans in Workshop for WebLogic

Enterprise JavaBeans in Workshop for WeblLogic

In Workshop for WebLogic, the WebLogic EJB project greatly eases development of Enterprise
JavaBeans. This topic provides an overview of EJBs and the WebLogic EJB project in platform
applications. It includes the following sections:

. What is an Enterprise JavaBean?

. What is EJB Project?

. EJB Project and ejbgen Annotations

. Building and Deploying EJBs

. What are EJB Controls?

Note: Workshop for WebLogic provides tool support for EJB-related technologies
available with WebLogic Server. For a few of developing Enterprise JavaBeans outside
the context of Workshop for WebLogic, see Programming WebLogic Enterprise
JavaBeans.

What is an Enterprise JavaBean?

An EJB is a server-side component that encapsulates the business logic of an application. The
business logic is the code that fulfills the purpose of the application, as opposed to code that
provides infrastructure and plumbing for the application. In an inventory control application, for
example, the EJBs might implement the business logic in methods called checkl nvent oryLevel

and or der Pr oduct . By invoking these methods, remote clients can access the inventory services
provided by the application.

EJBs always execute within an EJB container, which provides system services to EJBs. These
services include transaction management, persistence, pooling, clustering and other aspects of
infrastructure. The J2EE and EJB architecture is built on a number of underlying technology
standards, such as the JDBC API for database connectivity, JMS for messaging, and JNDI for
naming and directory functionality. To learn more about these technology standards, see your
favorite J2EE documentation and http://java.sun.com.

In Java EE 5 there are three types of EJBs: session, entity, and message-driven. Each of these
types is described briefly in the following sections.

Session EJBs

A session EJB is used to execute business tasks for a client on the application server. The session
EJB might execute only a single method for a client, in the case of stateless session beans, or it
might execute several methods for that same client, in the case of stateful session beans. A
session bean is never shared by clients. A session EJB is not persistent, so when the client
terminates, its session EJB disconnects and is no longer associated with the client.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/conEIBsInWorkshop.html (1 of 5)1/26/2007 2:32:31 PM

http://e-docs.bea.com/wls/docs100/ejb/index.html
http://e-docs.bea.com/wls/docs100/ejb/index.html
http://java.sun.com/

Enterprise JavaBeans in Workshop for WebLogic

You'll find more information on developing session beans in Developing Session Beans.

Note: For a few of developing session Enterprise JavaBeans outside the context of Workshop for
WebLogic, see Session EJBs.

Entity EJBs

An entity EJB represents a business object in a persistent storage mechanism. Some examples of
business objects are customers, orders, and products. The persistent storage mechanism is a
relational database. Typically, each entity bean has an underlying table in a relational database,
and each instance of the bean corresponds to a row in that table. Unlike session beans, entity
beans are persistent, allow shared access, have primary keys, and may participate in relationships
with other entity beans.

Developing Entity Beans provides information on how Workshop for WebLogic supports this
component type.

Note: For a few of developing session Enterprise JavaBeans outside the context of Workshop for
WebLogic, see Entity EJBs.

Message-Driven EJBs

A message-driven EJB is an enterprise bean that is able to listen for Java Message Service (JMS)
messages. The messages may be sent by any JMS-compliant component or application. Message-
driven EJBs provide a mechanism for J2EE applications to participate in relationships with
message-based legacy applications.

For more information, see Developing Message-Driven Beans.

Note: For a few of developing session Enterprise JavaBeans outside the context of Workshop for
WebLogic, see Message-Driven EJBs.

EJB Interfaces

EJB 2.0 exposes four types of interfaces for session and entity beans, called the local home
interface, the local business interface (or simply, the local interface), the remote home interface,
and the remote business interface (or simply, the remote interface). When you use annotations to
develop EJBs, these interfaces are generated for you by the IDE. Attribute values in the
annotations specify the names for the generated interfaces.

Client applications can obtain an instance of the EJB with which to communicate by using the
remote home interface. The methods in the remote home interface are limited to those that
create or find EJB instances. Once a client has an EJB instance, it can invoke methods of the EJB's
remote business interface to do real work. The business interface directly accesses the business
logic encapsulated in the EJB.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/conEIBsInWorkshop.html (2 of 5)1/26/2007 2:32:31 PM

http://e-docs.bea.com/wls/docs100/ejb/session.html
http://e-docs.bea.com/wls/docs100/ejb/entity.html
http://e-docs.bea.com/wls/docs100/ejb/message_beans.html

Enterprise JavaBeans in Workshop for WebLogic

Interactions between EJBs defined in the same Workshop for WebLogic application, as well as
interactions between EJBs and web services or page flows in the same Workshop for WebLogic
application, can use the local interfaces instead, which provides a performance advantage over
remote interfaces. In other words, the local home and business interfaces define the methods that
can be accessed by other beans, EJB controls, web services, and page flows in the same
Workshop for WebLogic application, while the remote home and business interfaces define the
methods that can be accessed by other applications.

Message-driven beans do not have these interfaces, because these beans' methods do not get
invoked directly by other beans or client applications. Instead they process messages from client
applications or other EJBs that are delivered via the Java Message Service (JMS). When a
message is delivered, the EJB container calls the message-driven bean's onMessage method to

process the message. For more information on Java Message Service, see your favorite J2EE
documentation. Workshop for WebLogic also provides JMS controls to work with a Java Message
Service.

Deployment Descriptor

During run time, information about how EJBs should be managed by the EJB container is read
from a deployment descriptor. The deployment descriptor describes the various beans packaged
in an EJB JAR file, settings related to transaction management, and EJB QL for find methods, to
name a few examples.

Note: The deployment descriptor should never be checked in to a source control
system. The descriptor is repeatedly updated by Workshop for WebLogic during
development.

Annotation attribute values in your EJB source code specify the values to be used in descriptors,
which are then automatically generated by the IDE.

Note: For more on deployment descriptors, see EJB Deployment Descriptors.

EJB JAR

The EJB JAR contains one or more EJBs, including their interface definitions, any related Java
classes that are being used by the EJBs, and a deployment descriptor describing these EJBs.

What is the WebLogic EJB project?

The WebLogic EJB project is the development environment for session, entity, and message-
driven beans in a Workshop for WebLogic application. A WebLogic EJB project contains one or
more EJBs. A Workshop for WebLogic application can have one or more WebLogic EJB projects, as
well as other types of projects such as web service projects and web application projects.

When you create a WeblLogic EJB project and choose to associate it with an a WebLogic EAR
project, a dependency is automatically created from all WebLogic Web projects currently in the
EAR to the new EJB project (the creation of these dependencies can be disabled). To your
WebLogic EJB project you can add EJB source code by using any of three source code templates:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/conEIBsInWorkshop.html (3 of 5)1/26/2007 2:32:31 PM

http://e-docs.bea.com/wls/docs100/ejb/understanding.html#wp1125688

Enterprise JavaBeans in Workshop for WebLogic

WebLogic Entity Bean, WebLogic Session Bean, and WebLogic Message Driven Bean.

As with other source artifacts, you can use the Annotation view to edit annotation attribute values
that determine how EJB interfaces are generated, what goes into deployment descriptors, and so
on.

A key advantage of developing EJBs in the WebLogic EJB project is that one file is used to store
the definition of the EJB class, its interfaces, and deployment descriptor specific settings. Instead
of managing the overhead of using several JAVA files to store this information, you can use one
file to represent an EJB. This is accomplished by using EJBGen annotations.

Note: When developing Enterprise JavaBeans with Workshop for WebLogic be sure to
use the WebLogic EJB Project project type, rather than the EJB Project also provided.
The WebLogic EJB Project includes WebLogic EJB Extensions provided with the IDE.

WebLogic EJB Project and EJBGen Annotations

When developing EJBs in Workshop for WebLogic, you use EJBGen annotations in the EJB source
file. These annotations are used to mark methods to be exposed when generating remote and
home interfaces and to specify deployment descriptor settings. In the IDE, you can find generated
deployment descriptors will be under src/META-INF; generated interfaces are located under .
apt_src.

You can edit these annotations directly or use the Annotations view. You might find that using the
Annotations view, which is aware of the constant values that some annotation attributes require,
makes things easier.

For more about EJBGen annotations, see the EJBGen Reference.

Building and Deploying EJBs

When you build an EJB project, the EJBs' source code is compiled and checked for errors. The
build output of an EJB project is an EJB JAR containing the various JAVA and CLASS files for the
bean class, its interfaces, and any dependent value or primary key classes, as well as the
deployment descriptor for these beans. After the build completes, the beans are (re)deployed on
the server. In addition, when you add, change, or remove EJB source files, Workshop for
WebLogic runs the EJBGen tool to regenerate interfaces and deployment descriptors.

If the WebLogic EJB project is associated with a WebLogic Server server, the EJB module will be
deployed to the server (either as a standalone EJB module or a the child of an EAR); if changes
were made to the project since the last publish, ejbc is executed to generate and compile

WebLogic EJB container classes for the EJBs.

What are EJB Controls?

EJB controls provide an alternative approach to make locating and referencing the EJB easy. Once
you have created the EJB control, the client application can define the EJB control and use its
methods, which have the same method names as the EJB it controls, to execute the desired

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/conEIBsInWorkshop.html (4 of 5)1/26/2007 2:32:31 PM

http://e-docs.bea.com/wls/docs100/ejb/EJBGen_reference.html
http://edocs.beasys.com/wls/docs100/ejb/appc_ejbc.html

Enterprise JavaBeans in Workshop for WebLogic

business logic without having to be involved with locating and referencing the EJB itself. In other
words, EJB controls take care of the prepatory work necessary to use an EJB, allowing you to
focus on the business logic instead.

See Related Topics

Applications and Projects

Tutorial: Building Enterprise JavaBeans

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/conEIBsInWorkshop.html (5 of 5)1/26/2007 2:32:31 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html

EJB Tutorial: Building Enterprise JavaBeans

Tutorial: Building Enterprise JavaBeans

This tutorial introduces you to the basics of building Enterprise JavaBeans with BEA Workshop for
WebLogic Platform (Workshop for WebLogic). Through the tutorial you'll build a very simple
application that includes a session bean, an entity bean, and a Java Page Flow (as a client).

Note: This tutorial requests that you create a new workspace; if you already have a
workspace open, this will restart the IDE. Before beginning, you might want to launch
help in standalone mode to avoid an interruption the restart could cause, then locate
this topic in the new browser. See Using Help in a Standalone Mode for more

information.

Before You Begin

In general, this tutorial assumes you already know something about Enterprise JavaBeans and
how they fit into applications built on J2EE. The Enterprise JavaBeans subject is large enough to
fill — indeed, it has filled — entire books, so it's not described in detail here.

However, if you happen not to be familiar with Enterprise JavaBeans, this tutorial includes brief
notes along the way about, for example, what entity and session beans are. But it's just enough
to keep things moving along. For further reading, you might get started with the following:

. Sun Microsystems' Enterprise JavaBeans Technology home at the Sun web site

. BEA System's WebLogic Server documentation on Programming WebLogic Enterprise
JavaBeans on eDocs

. BEA Workshop for WebLogic Platform's documentation Developing Enterprise JavaBeans

Focus of this Tutorial

This tutorial introduces you to Enterprise JavaBeans development with Workshop for WebLogic. As
you work through this tutorial, you will:

. Learn about three types of Workshop for WebLogic projects, including the WebLogic EAR
project, WebLogic EJB project, and WebLogic web project.

. Create two types of Enterprise JavaBeans: an entity bean that stores visits to a web page and
a session bean that models tracking and greeting visitors.

. Learn how to use EJBGen annotations to speed EJB development.
. Learn how to use an EJB control to ease client development.

. Test your EJBs using a web project as a test client.

Application Overview

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIBIntro.html (1 of 2)1/26/2007 2:32:31 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conDocRoadmap.html#standalone_help
http://java.sun.com/products/ejb/
http://e-docs.bea.com/wls/docs100/ejb/
http://e-docs.bea.com/wls/docs100/ejb/

EJB Tutorial: Building Enterprise JavaBeans

The visitor tracking application you'll build with this tutorial includes the following components:

. A Vi sitBean entity bean that keeps track of visits to the test web page.

. AVisitTracker Bean session bean that greets visitors and checks the entity bean for the
number of visits made to the web page.

. AVisitWbTest web project within which to build a page flow that will be a test client for
Vi si t Bean and Vi si t Tracker Bean.

. AVisitTrackerBeanCr| EJB control that will be the test page flow's means for calling
methods of the Vi si t Tracker Bean session bean.

Steps in this Tutorial

Create a Workspace for Development

You'll use Workshop for WebLogic to create a workspace, adding projects that will contain
your component code.

Create the VisitBean Entity Bean
Here, you'll write code for the EJB in your application that will represent a visit.

Create the VisitTrackerBean Session Bean
The session bean you'll create here will be responsible for counting visits.

Create and Start a Server on Which to Test
Specifying a WebLogic Server on which to test is easy; you'll do that in this step.

Create a Test Project

You'll use a page flow to test the EJBs you've built; here, you'll create a web project to get
started.

Write Test Source Code and Test the EJBs
At last, you'll try out your code using an EJB control in a page flow.

Related Topics

Applications and Projects

Click the following arrow to navigate through the tutorial:

=

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIBIntro.html (2 of 2)1/26/2007 2:32:31 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html

EJB Tutorial: Step 1: Create a Workspace for Devel opment

Step 1: Create a Workspace for Development

In this step you'll get your workspace set up, then create two projects to get your EJB source code
going. You'll start writing EJB source code in the next step.

In this section, you will:

. Start Workshop for WebLogic

. Create a workspace

. Create an EAR project

. Create an EJB project

To Start Workshop for WeblLogic

If you haven't started Workshop for WebLogic yet, use these steps to do so.

... on Microsoft Windows
If you are using a Windows operating system, follow these instructions.

. From the Start menu, click BEA Products > Workshop for WebLogic Platform 10.0

...on Linux
If you are using a Linux operating system, follow these instructions.

. Run BEA HOME/workshop100/workshop4WP/workshop4WP.sh

To Create a Workspace

You use a workspace to contain related source code. This one will end up containing both your EJB
source and the source you'll test the EJB with.

1. If the Workshop Launcher dialog is not displayed, select File > Switch Workspace.
Otherwise, skip to the next step.

2. In the Workspace Launcher dialog, click Browse, then browse to the directory that you
want to contain your new workspace directory.

This can be any directory. You'll be creating a new directory inside this one for your
workspace.

3. When you have a directory selected, click Make New Folder. Name the new folder

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Stepl.html (1 of 6)1/26/2007 2:32:31 PM

EJB Tutorial: Step 1: Create a Workspace for Devel opment

EJBTut ori al press Enter to create the folder, then click OK.

4. In the Workspace Launcher, click OK.

5. Workshop for WebLogic will create a new empty workspace in the folder you created, then
refresh to display the workspace.

To Create an EAR Project

An EAR project is a special kind of project that represents an enterprise application. When you "add" a
project to an EAR project, you're actually adding a project reference. Projects added to the EAR project

in this way will end up as part of a single Enterprise ARchive (EAR) file, which can be deployed to
WebLogic Server. An EAR project is also a way to designate libraries that are to be shared across
projects.

1. Click File = New > Project.

2. In the New Project dialog, expand J2EE, select Enterprise Application Project, then
click Next.

W New Project

Select a wizard
Create a J2EE EAR. project [

Wizards:

bype Filker kext

ﬁ Java Project ﬁ

B lava Praoject from Existing Ant BuildFile

'-,;[:{i Plug-in Project

= General

(= Cvs

= EJB

(= JZEE
FE application Client Project
ﬁ' Zonneckor Project
nﬁ Enterprise Application Proj
B, Utility Project

= Java w

m--E--E--|

eck

[] show all Wizards.

@

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Stepl.html (2 of 6)1/26/2007 2:32:31 PM

EJB Tutorial: Step 1: Create a Workspace for Devel opment

(7) Mexk = | Cancel |

3. In the New EAR Application Project dialog, in the Project name box, enter
EJBTut ori al _EARPr oj ect , then click Next.

4. Under Select Project Facets, leave the Presets dropdown as it is. It should say
WebLogic EAR Project Facets. Selecting this preset group of facets ensures that you'll
have the JARs you need to support your EAR project.

Click Finish.

W New EAR Application Project

Project Facets

Enables the project ko be deployed as an EAR module,

Configurations: | WeblLogic EAR Project Facets

Project Facek Wersion

Ve E5% 14

|=| Weblogic EAR Extensions 10,0

<« Show Runkimes

< Back ” Mext = | | Einish %J | Cancel

5. After Workshop for WebLogic has finished creating your EAR project, if the Package
Explorer is not displayed, display it by selecting Window > Show View > Other, then
selecting Java > Package Explorer.

In the Package Explorer view notice that the new project has been marked with an error (indicated by

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Stepl.html (3 of 6)1/26/2007 2:32:31 PM

EJB Tutorial: Step 1: Create a Workspace for Devel opment

the red X mark in the lower left-hand corner of the EAR project folder). That's as it should be — an
EAR project must contain references to other projects. You'll remedy it in just a moment.

: Package Explorer X — O

SR =3 ETutarial_EARProject
=) fz= EarContent
= APP-INF
5 META-INF

To Create an EJB Project

Now that you've got an EAR project, you can create an EJB project within which to build your EJBs. The
EJB project will contain your EJB source code.

1. Click File = New = Project.
2. In the New Project dialog, expand EJB, click WebLogic EJB Project, then click Next.

3. In the New EJB Project dialog, in the Project name box, enter Vi si t EJBPr oj ect .

4. Place a check next to Add project to anEAR and select EJBTutorial EARProject from
the dropdown menu. (This is the EAR project you created earlier.)

Click Next.

5. Under Select Project Facets, note that you're provided support for creating EJB source
code that includes annotations for faster development.

Click Finish.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Stepl.html (4 of 6)1/26/2007 2:32:31 PM

EJB Tutorial: Step 1: Create a Workspace for Devel opment

W New WebLogic EJB Project

Project Facets

Adds support For processing Java annotations,

Configurations: | eblogic EJ6 Project Facets (Recommended)

Project Facet Yersion
[v]eEl EJB Module 2.1 ...

[#]&f] Java 5.0...
2l Java Annotation Processing Suppork R
[v]eE| Weblogic EJB Extensions 10.0
[2] | 5| MLBeans

<< Show Runtimes

< Back ” Mext = | | Finish %J | Cancel

You should now see both your EAR project and EJB project in the Navigator view. Also, after you've
created the EJB project, you'll see that the error flag on the EAR project has gone away.

Note that the new project you created, VisitEJBProject, has an error flag next to it. The error flag is
present because no EJB code exists yet in the project. In the next step you will remove this error flag
by adding EJB code to the project.

Related Topics

Enterprise JavaBeans in Workshop for WeblLogic

Click one of the following arrows to navigate through the tutorial:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Stepl.html (5 of 6)1/26/2007 2:32:31 PM

EJB Tutorial: Step 1: Create a Workspace for Devel opment

e —p

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Stepl.html (6 of 6)1/26/2007 2:32:31 PM

EJB Tutorial: Step 2: Create the VisitBean Entity Bean

Step 2: Create the VisitBean Entity Bean

In this step you'll create the source code for your entity bean. As described in the WebLogic Server topic, How Do
Applications Use EJBs?, an entity bean represents a set of persistent data. In the case of this application, the data

is stored in a database. An entity bean representing database data will typically represent a single row in the
database.

You can also think of entity beans as representing things your application interacts with. In this case, the thing is
a visit.

In this section, you will:

. Create VisitBean source files

. Set useful annotation values

. Define CMP fields for entity data

. Add ejbCreate and ejbPostCreate methods

To Create VisitBean Source Files
Here, you'll create the package and source file to contain the code for your entity bean.

1. In the Package Explorer, expand VisitEJBProject.
2. Right-click src and select New > Package.

3. In the New Java Package dialog, in the Name box, enter hel | o, then click Finish.

4. In the Package Explorer, right-click the hello package you just created and select New >
WebLogic Entity Bean.

file:/I/F|/depot/dev/src/iworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step2.html (1 of 7)1/26/2007 2:32:32 PM

http://e-docs.bea.com/wls/docs100/ejb/understanding.html#HowDoApplicationsUseEJBs
http://e-docs.bea.com/wls/docs100/ejb/understanding.html#HowDoApplicationsUseEJBs

EJB Tutorial: Step 2: Create the VisitBean Entity Bean

: Package Explorer X

=-#2 EIBTutorial_EARProject
=== EarContent
= APP-INF
= META-IMF
=82 visitEIBPraject

™ Project...

= MET
B JRESys Openin Mew Window % Project
B Apache Open Type Hierarchy F4 (% Falder
= BEA We .
= Enterpri 5= Copy Chri+C LT File
=, EAR Libi 52 Copy Qualified Mame @] JDBC Contral
= build E Paste Chrl+Y @] EJB Control
¥ Delete Dielete L‘ﬁ Custom Conkrol
@ Page Flow
Build Path k ﬁ} -
erver
Source AlE+Shifc+5 # .
Refactar al+shife+7 »| B Package
& Class
g Import...] Warkshap ISP
Ly Export.., 54§ Service Control
" Refresh =3 {@ WebLogic Web Service
Gé& Weblogic Session Bean
EUE A: E 'weblogic Entity Bean
ebug As
Profile As , 5§ WebLogic Message Driven Bean
Yalidake = Example...
Team r
=
Compare YWith w [Cther..,

Restare From Local Hiskary, ..

Properties alk+Enter

5. In the File name box, enter Vi si t Bean, then click Finish.

In the generated source code, you'll see a few annotations — code that begins wi t h an @sign.

file:///F|/depot/dev/src/iworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step2.html (2 of 7)1/26/2007 2:32:32 PM

EJB Tutorial: Step 2: Create the VisitBean Entity Bean

B visitBean.java X = 0O

package hello;

(3

Fimport javax.ejb.EntityEBean;:[]

—ll."'.\".\'

* fooderGenericEntityBean</code> subeclass automatically geherat
*

* Please review and update the existing content Lo ensure it s
* intended use [(esp. the Entity and JondiName annotations and tlh

* gjbhlreate|) and ejbPostCreate|) methods).
*/
FEntityieijblName = "VisitEean™, datalSourcelasine = "cglatalSource™,
[Indillame [local = "ejbh.VisitBeanLocalHome™) N
[FileGeneration(localClass = Constants.Bool.TRUE, localHome = Co
ahstract public class VisitBean extends GenericEntitvyvEean implem
= l.."fr?r

* IMPORTAMNT: Autowatically generated <coderejbCreate)</ cod
* Please change a= appropriate.
*/
= public Jjava. lang. Integer ejbhCreatejava. lang. Integer kevyl
throws CreateException {
setkey (key) ;
return null;

These annotations are used at compile time by the WebLogic Server EJBGen tool to generate Remote and Home

classes, as well as the deployment descriptor for the entity bean. All of the generated files are needed for
developing entity beans, but the annotations you'll add remove the need for you to create the files yourself — you
need only create one.

Note: For general information about the classes and interfaces that make up Enterprise JavaBeans, see
EJB Anatomy and Environment in the WebLogic Server documentation on eDocs. For other WebLogic-

specific information, see Create EJB Classes and Interfaces, also on eDocs.

Throughout code in Workshop for WebLogic, you can use annotations as an efficient way to automate these and
other development tasks. There are many annotations and attributes that can be applied to an entity bean class
such as Vi si t Bean. To see all of the applicable annotations, use the Annotations view.

By default in the J2EE perspective, the Annotations view should be available at the right side of the IDE. With the
Annotations view docked at the right side of the IDE and your cursor in the source code on the Vi si t Bean class

name, you should see something like the following illustration:

file:/I/F|/depot/dev/src/iworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step2.html (3 of 7)1/26/2007 2:32:32 PM

http://e-docs.bea.com/wls/docs100/ejb/EJBGen_reference.html
http://e-docs.bea.com/wls/docs100/ejb/understanding.html#EJAnatomyandEnvironment
http://e-docs.bea.com/wls/docs100/ejb/implementing.html#CreateEJBClasses

EJB Tutorial: Step 2: Create the VisitBean Entity Bean

S -

isitEean - Class Declaration

Properky Yalue L

- Entity
abstractSchemaMame UMSPECIFIED
cacheBetweenTransactions UMSPECIFIED
checkExistsOnMethod UMSPECIFIED
clientsOn=amesServer UMNSPECIFIED
clusterInvalidationDisabled UMSPECIFIED
concurrency Strategy UMZPECIFIED
dataSourceMame cgDataSource
databaseType UMSPECIFIED
dbIsShared UMZPECIFIED
defaultDbrmsTablesDdl UMEPECIFIED
defaultTransaction UMSPECIFIED
delayDatabaselnsertdntil UMSPECIFIED
delayUpdatesUntilEndOfTx UMSPECIFIED
disableWarning UMNSPECIFIED
dispatchPalicy UMSPECIFIED
ejbMame ¥isitBean
enableBatchOperations UMSPECIFIED
enableCallByReference UMSPECIFIED
enableDynamicQueries UMNSPECIFIED
findersLoadBean UMEPECIFIED
hormeCallRouterClassMName UMSPECIFIED b

£ >

The annotations listed here apply to the class, but most are set to their default values. When you edit annotations
or attributes to non-default values, the annotations and attributes are written into the source code. You can scroll
through the Annotations view to find the annotations whose attributes have been set to default values. They're
shown in bold, as shown in the preceding illustration.

The annotations with default values include:

. @ntity — Specifies values for properties scoped to the entity bean class. Many of this annotation’s attributes

correspond to elements in an EJB deployment descriptor; the descriptor is generated in part from annotation
values. The attributes shown here in code include:

Attribute Description

ej bNane Descriptive name of the entity bean.

dat aSour ceName Data source that holds the database table(s) the entity bean uses.

pri mkeyd ass Name of the Java class of the primary key. In case of a compound
primary key, this class will be generated by EJBGen.

t abl eNane Table to which this entity bean is mapped.

. @il eCenerati on — Specifies the interface, compound primary key, and value classes that are to be auto-
generated during build.

file:/I/F|/depot/dev/src/iworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step2.html (4 of 7)1/26/2007 2:32:32 PM

EJB Tutorial: Step 2: Create the VisitBean Entity Bean

Attribute Description

| ocal O ass Specifies whether to generate the local interface for this EJB. The
default value is TRUE.

| ocal Hore Specifies whether to generate the local home interface for this
EJB. The default value is TRUE.

renot eC ass Specifies whether to generate the remote interface for this EJB.
The default value is FALSE.

renot eHone Specifies whether to generate the remote home interface for this
EJB. The default value is FALSE.

val ued ass Specifies whether to generate the value class for this EJB. The

default value is TRUE

. @ndi Name — Specifies the local or remote JNDI names of an EJB; that is, the JNDI name associated with its
local or remote interface. The attributes shown here in code include:

Attribute Description
| ocal Local JNDI name of the EJB.

Note: If you're experienced with EJBGen annotations in platform versions prior to 9.0, you will notice
that the syntax has changed. As of version 9.0, EJBGen uses Java 5 annotations based on JSR 175, and

supported in JDK version 1.5.

To Set Annotation Values

The annotations provided here are a starting place for your development work. You'll need to edit some of the
values so that they are useful for your specific EJB. You can edit annotation values directly in source code or in
the Annotations view. Procedures in this tutorial will usually use the Annotations view so that you can become
acquainted with it, but these topics will also show the updated annotation code.

1. In the the source code, put your cursor in the @nt ity annotation.

Notice that Annotations view displays values for this annotation only.

2. In the Annotations view, ensure that the Entity property is expanded, then locate the tableName
attribute.

3. Change the tableName attribute value to EJB Vi sits.

4. Locate the primKeyClass attribute. Change the value to j ava. | ang. Stri ng.

This change is in preparation for the method changes you will make below. The updated annotation
code should appear something like this:

@ntity(ej bName = "VisitBean", dataSourceNanme = "cgDataSource",
tabl eName = "EJB Visits", prinKeyC ass = "java.lang. String")
To Define CMP Fields for Entity Data

Now you'll add code that defines two container-managed persistence (CMP) fields. CMP fields are "virtual™ fields
represented by columns in a data source, rather than variable definitions in this class. Using the accessors you'll
add, Vi si t Bean will get its data from the cgDataSource you specified above in the dat aSour ceNane attribute. The

annotations specify the details of the entity bean's correspondence to the data source row.

file:/I/F|/depot/dev/src/iworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step2.html (5 of 7)1/26/2007 2:32:32 PM

http://www.jcp.org/en/jsr/detail?id=175
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

EJB Tutorial: Step 2: Create the VisitBean Entity Bean

1. Delete the methods getKey() and setKey(String key) from the class.

/**
* | MPORTANT: Automatically generated primary key field getter nethod.
* P| ease change nanme and cl ass as appropri ate.
*/

@npFi el d(col unmm = "key", prinkeyField = Constants. Bool . TRUE)

@.ocal Met hod()

public abstract java.lang. String getKey();

/**

* | MPORTANT: Automatically generated primary key field setter nethod.
* P| ease change nanme and cl ass as appropri ate.

*/

@ocal Met hod()

public abstract void setKey(java.lang. String key);

2. Add the following methods to the body of the Vi si t Bean class to define two container-managed
persistence (CMP) fields.

@npFi el d(col um = "vi sitorNane", prinkeyField = Constants. Bool . TRUE)
@ocal Met hod()
public abstract java.lang.String getVisitorNane();

@.ocal Met hod()
public abstract void setVisitorNane(java.lang. String visitorNane);

@cnpFi el d(col utm = "vi si t Nunmber ™)
@.ocal Met hod()
public abstract int getVisitNunber();

@.ocal Met hod()
public abstract void setVisitNunber(int nunber);

Note: If you're copying and pasting code into your source window, you can format it in Workshop for
WebLogic by right-clicking and selecting Source > Format.

This code includes the following annotations:

@npFi el d — Defines a virtual CMP field.

Attribute
col um

pri nKeyFi el d

Description

Column in a database table to which this CMP field will be
mapped.

Whether this field is the primary key field, or part of the
compound primary key.

. @.ocal Met hod — Defines a method for an entity or session bean's local (business) interface. No attribute
values need to be set for this annotation.

To Add ejbCreate and ejbPostCreate Methods

Now you'll add ej bCr eat e and ej bPost Cr eat e methods. EJBs live out their life in a container, which is a server
feature that creates entity beans and manages their relationship with the data source with which they're

associated .

file:///F|/depot/dev/src/iworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step2.html (6 of 7)1/26/2007 2:32:32 PM

EJB Tutorial: Step 2: Create the VisitBean Entity Bean

The EJB container will use these new methods to create new Vi si t Bean entity beans. It will call the
ej bCr eat e method before writing the bean's state to the database. After this method has finished

executing, a new database record based on the CMP fields will have been created. The container
calls the ej bPost Cr eat e method after the bean has been written to the database and its data has

been assigned to an EJB object.

1. Edit the body of the ej bCr eat e method so it appears as follows. Make sure to remove the line set Key
(key) from the method.

public String ejbCreate(String visitorNane)
throws Creat eException{
set Vi si t or Nane(vi si t or Nane) ;
set Vi si t Nunber (1) ;
return null;

This method will be called to create a new Vi si t Bean. When it's called the visitor name and visit
number will be added to the database that stores values for the Vi si t Bean.

2. Beneath the ej bCr eat e method code, edit the ej bPost Cr eat e method so it appears as follows.

public void ejbPostCreate(String visitorNanme){}

3. Press Ctrl+Shift+S to save your work.

You've written all the code you'll need for your entity bean. In the next step, you'll create a session bean that will
keep track of visits.

Related Topics

Developing Entity Beans

Click one of the following arrows to navigate through the tutorial:

N =

file:/I/F|/depot/dev/src/iworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step2.html (7 of 7)1/26/2007 2:32:32 PM

EJB Tutorial: Step 3: Creste the VisitTrackerBean Session Bean

Step 3: Create the VisitTrackerBean Session Bean

In the preceding step you created an entity bean that models a visit. That bean represents a row of visit data in the
database. In this step, you'll create the session bean (another kind of EJB) that models visit tracking.

As described in the WebLogic Server topic, How Do Applications Use EJBs?, a session bean implements business logic and
acts on behalf of the client. In the case of the application you're building with this tutorial, the client will be a test web
page (and, by extension, you, the page's user). In order to meet its client's requests, the session bean you're about to
create will know how to find a visitor by name, know how to increment the visit number, and so on.

In this section, you will create the Vi si t Tr acker Bean source files.

To Create VisitTrackerBean Source Files

1. In the Package Explorer, expand VisitEJBProject> src, right-click hello, then click New > WebLogic
Session Bean.

2. In the New Session Bean dialog, in the File name box, enter Vi si t Tr acker Bean, then click Finish.

As with the Vi si t Bean entity bean, this new session bean comes with a few annotations already entered for
you. These are:

o @essi on— Defines the class-scope properties of a session bean.

Attribute Description
ej bNanme Descriptive name of the session bean.

3. @ndi Nane — Specifies the local and remote JNDI name of an EJB; that is, the JNDI name associated with its
local and remote interface. The attributes shown here in code include:

Attribute Description
renot e Remote JNDI name of the EJB.

4. @il eCGenerati on — Specifies the interface, compound primary key, and value classes that are to be auto-
generated during build.

Attribute Description

| ocal d ass Whether to generate the local interface of the EJB.

| ocal Hone Whether to generate the local home interface of the EJB.
renmot eCl ass Whether to generate the remote interface of the EJB.

r enot eHome Whether to generate the remote home interface of the EJB.
val ueC ass Specifies whether to generate the value class for this EJB.

5. Add the following i nport statements to support code you're about to add.

i nport javax. nami ng. | nitial Context;
i mport javax. nam ng. Nam ngExcepti on;
i mport javax.ejb. EJBExcepti on;

i nport javax. ej b. Fi nder Excepti on;

i nport javax. ej b. Creat eExcepti on;

i mport webl ogi c. ej bgen. Ej bLocal Ref s;
i mport webl ogi c. ej bgen. Ej bLocal Ref;

6. Above the @essi on annotation, paste the following @j bLocal Ref s annotation, along with the nested
@) bLocal Ref annotation.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop. product.wl.doc/html/ejb/tutorial /tutEIB Step3.html (1 of 3)1/26/2007 2:32:32 PM

http://e-docs.bea.com/wls/docs100/ejb/understanding.html#HowDoApplicationsUseEJBs

EJB Tutorial: Step 3: Create the VisitTrackerBean Session Bean

@j bLocal Ref s({
@j bLocal Ref (hone = "hell 0. Vi si t BeanLocal Hone",
j ndi Nane = "ej b. Vi sitBeanLocal Hone",
|l ocal = "hell o. Vi sit BeanLocal ",
name = "ej b/ VisitBean",
type = Constants. Ref Type. ENTI TY)
})

The following table describes the attributes you're setting.

Attribute Description

hore Local home interface of the referenced EJB.

j ndi Nane Local JNDI name of the referenced EJB.

| ocal Local (business) interface of the referenced EJB.
name Name used to reference the other bean.

type EJB type of the referenced bean.

7. Add the following vi si t Honme field above the ej bCr eat e method that was added for you. Your code will use
this variable later to create a Vi si t Bean instance for a particular visitor.

private VisitBeanLocal Home vi sit Hone;
8. Edit the ej bCr eat e method so that it looks like the following. This code will retrieve a Vi si t Bean instance.

public void ejbCreate()

{
try
{
j avax. nam ng. Context initial Context = new I nitial Context();
vi sit Home = (VisitBeanLocal Hore) initial Context.| ookup("java: conp/env/ejb/VisitBean");
} catch (Nam ngException ne)
{
t hr ow new EJBExcepti on(ne);
}
}

9. Beneath the ej bCr eat e method code, add the following gr eet Vi si t or method code.

public String greetVisitor(String visitorNane)
{

Vi si t BeanLocal theVisit;

i nt visitNunber;

try
{
/[l Try to find the visitor in the database.
theVisit = visitHonme. findByPrimaryKey(visitorNane);
} catch (Fi nder Exception fe)

{
try
{
/1 If the visitor isn't in the database,
/| create a new visitor with the nane given.
vi si t Hone. creat e(vi si t or Nane) ;
/|l Geet the new visitor.
return "Hello, " + visitorName + "!";
} catch (Creat eException ce)
{
t hr ow new EJBExcepti on(ce);
}
}

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step3.html (2 of 3)1/26/2007 2:32:32 PM

EJB Tutorial: Step 3: Create the VisitTrackerBean Session Bean

/1l Get the returning visitor's visit number and
[/ increment it fromthis visit.

vi si t Number = theVisit.getVisitNunber();

theVi sit.setVisitNunber (visitNunmber + 1);

/!l Greet the returning visitor.

if (visitNunber == 1)

{
return "Hello again, " + visitorNane + "!";
} else
{
return "Hello, " + visitorName + "! This is visit nunmber "
+ theVisit.getVisitNunber() + ".";
}

10. With a cursor in the greet Vi si t or method code, locate the RemoteMethod property in Annotations view.

11. Right-click the RemoteMethod property, then click Add Annotation. The @enot eMet hod() annotation
should be added immediately preceding the gr eet Vi si t or method.

12. Press Ctrl+S to save your work.

With code for your entity and session beans, you're ready to start testing them. You'll get set up to do this in the next
step.

Related Topics

Developing Session Beans

Click one of the following arrows to navigate through the tutorial:

~ =

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop. product.wl.doc/html/ejb/tutorial /tutEIB Step3.html (3 of 3)1/26/2007 2:32:32 PM

EJB Tutorial: Step 4: Create and Start a Server on Which to Test

Step 4: Create and Start a Server on Which to Test

In this step you'll configure WebLogic server to use a domain on which you can test your EJBs.
Then you'll start up the server before creating a project to test with.

Note: If you have executed the EJB tutorial before your server might already contain previous
deployments of the EJB projects. Before proceeding, it is recommended that you either (1)
remove previous EJB tutorial code from your server or (2) create a new server domain.

In this section, you will:

. Create the server

. Assign the server to the EAR project

To Create the Server

1. In the J2EE perspective, the following views should be visible as tabs at the bottom
(by default) of the IDE: Problems, Tasks, Properties, Servers, Database Explorer,
Snippets.

2. Click the Servers view tab, right-click in its window, then click New > Server.

*I:iim.atahase Explorer | Snippets

Skatus Skake

T TN

r *

3. In the New Server dialog, under Select the server type, confirm that BEA
Systems > BEA WebLogic Server v10.0 is selected, then click Next.

4. In the Domain home box, ensure that the dropdown shows the domain directory as
the following, where <BEA HOME=> is the location of your BEA installation:

<BEA_HOME=>/weblogic100/samples/domains/workshop

5. Click Finish.

To Assign the Server to the EAR Project

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/egjb/tutorial /tutEIB Step4.html (1 of 2)1/26/2007 2:32:33 PM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html

EJB Tutorial: Step 4: Create and Start a Server on Which to Test

Now you'll associate the server you just created with the EAR project. The EAR project, which
contains your EJB project, will be deployed to it.

1. In the Package Explorer, right-click EJBTutorial_EARProject, then click
Properties.

2. In the Properties dialog, in the left pane, select Server. In the right pane, in the
Default server box, select BEA WebLogic Server v10.0.

3. Click OK.

To Start the Server

. In the Servers view, right-click BEA WebLogic Server v10.0, then click Start.

You've written the code for both of your EJBs, you've created a server on which to test, and
you've started the server. Now it's time to create a test client. In the next step, you'll create a
web application for that purpose.

Related Topics

None.

Click one of the following arrows to navigate through the tutorial:

~ =y

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Stepd.html (2 of 2)1/26/2007 2:32:33 PM

EJB Tutorial: Step 5: Create a Test Project

Step 5: Create a Test Project

You'll use the steps in this topic to create a web project with which to test your EJBs. As with the
EJB project you created earlier, this project is a framework within which to write your source
code. You'll add the code in the next step.

In this section, you will:

. Create a web project for testing the EJB

. Set properties to build and run

To Create a Web Project for Testing the EJB

Begin by creating a web project that will contain the user interface code you'll use to make sure
your EJB is doing what it should.

When you create a WebLogic web project, you get the beginnings of a Java Page Flow (also
known as a JPF or page flow). A page flow makes it easier for you to keep client logic and
presentation separate, as you'll see in the next step.

1. Click File > New > Project.

2. In the New Project dialog, expand Web, click Dynamic Web Project, then click
Next.

3. In the New Dynamic Web Project dialog, in the Project name box, enter
Vi si t WebTest .

4. Place a check next to Add project to an EAR. From the dropdown menu, select
EJBTutorial _EARProject.

5. Click Finish.

To Set Properties to Build and Run
With these steps, you'll set web project properties to useful values for testing the EJBs.

1. In the Package Explorer, right-click VisitWebTest, then click Properties.
2. In the properties dialog, in the left pane, click Server.

3. In the right pane, in the Default server box, click BEA WebLogic Server v10.0.
This ensures that your test web project uses the server domain you created earlier.

4. Click OK.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step5.html (1 of 2)1/26/2007 2:32:33 PM

EJB Tutorial: Step 5: Create a Test Project

With your test project created, it's time to move on to writing test code.
Related Topics
None.

Click one of the following arrows to navigate through the tutorial:

~ =y

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/egjb/tutorial /tutEIB Step5.html (2 of 2)1/26/2007 2:32:33 PM

EJB Tutorid: Step 6: Write Test Source Code and Test the EJBs

Step 6: Write Test Source Code and Test the EJBs

You're almost ready to test. In this step you'll write page flow source code that invokes your session EJB — which, in turn, invokes
your entity EJB. Specifically, rather than writing typical EJB invocation code, you'll use an EJB control that handles that for you.

In this section, you will:

. Add an EJB control to the test project

. Add EJB Control Reference and Method Invocations to the Page Flow

. Create a User Interface and Test the EJB

To Add an EJB Control to the Test Project
In these steps you create an EJB control that will represent your entity bean to your test code.

1. In the Package Explorer, expand VisitWebTest, right-click src, then click New > Package.

2. In the New Java Package dialog, in the Name box, enter control s, then click Finish.

3. Switch to the Page Flow perspective by selecting Window > Open Perspective > Page Flow.

4. In the Page Flow Explorer, right-click the Referenced Controls node and select Add Control.

5. In the Select Control dialog, under New System Control, select EJB Control. Click OK.

6. In the New Control dialog, in the parent folder box, expand the tree to VisitWebTest > src > controls, then select

the controls node.

7. In the Control name box, enter Vi si t Tr acker BeanCt r | , then click Next.

W New Control §|

EJB Control

Create a new Beehive EJB Control For simplified EJB access,

Enter or select the parent Folder:

WisitWebTest srcfcontrols

= & visitwebTest
== sre
[-= controls

Contral name: | YisitTrackerBeanCkl|

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step6.html (1 of 7)1/26/2007 2:32:33 PM

EJB Tutorid: Step 6: Write Test Source Code and Test the EJBs

8. Under EJB Control, click Browse Application EJBs.
In the Browse Resources dialog, note that the two EJBs you've created are listed.

9. Select VisitTrackerBean (remote jndi), then click Finish.

Select application EJE Resource

WisitBean {local jndi
MisitBean {local ejb-link,

MisitTrackerBean {remote jndi)
MisitTrackerBean {remote ejb-link)

'i':?:' [Finish %J [Cancel

10. Confirm that the settings displayed are as follows, then click Finish.

file:/I/F|/depot/dev/src/workshop/product/pluginsg/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEJB Step6.html (2 of 7)1/26/2007 2:32:33 PM

EJB Tutorid: Step 6: Write Test Source Code and Test the EJBs

W New Control

X

EJB Control

Create a new Beehive EJB Control For simplified EJB access,

This EJ& control finds the EJB with this IMDT name or EJ6 link
G} MDD name: | ejb. VisitTrackerBeanF.emokeHome

(IETE link:

This EJE control uses these interfaces

Home interface: hella . visitTrackerBeanRemateHome

Business intetface: | hello, visitTrackerBeanRemote

This EJB control is a () Session contral () Enkity control

| Browvise Application EJBs. .. | [BFDWSE Server EJBs. ..

)] I Firish %J [Cancel

You'll get EJB control source code such as the following in VisitTrackerBeanCtrl.java:

EI VisitBean, java EI WisitTrackerBean.java EI *Contraller, java B visitTrackerBeanctrl.java X

Epac!kage controls;
Fimport org.apache.beshive.controls.system.ejb. 3essionEJEControl;[]

AControlExtension

FEJEHom: [jndilMame = "ejb.VizitTrackerBeanRemoteHome ™)

public interface VisitTrackerBeanCtrl extends hello.VisitTrackerBeanRemotel
hello.VisitTrackerBeanRemote, // business interface
SezgionEJEBControl /) control interface

static £inal long serizlVersionUID = 1L;

The code's simplicity masks its capability. For example, by extending the Sessi onEJBCont r ol interface, the control supports implicit
retrieval of the target EJB's home and business interface instances as well as a check to discover whether a target instance is
available for method invocation. In other words, this is plumbing common to using an EJB for which you don't need to write code —
the control takes care of it.

The @ont r ol Ext ensi on annotation designates to the compiler that this interface is a control. The @JBHone annotation specifies the
JNDI name of the home interface for the target EJB that this control provides access to.

To Add EJB Control Reference and Method Invocations to the Page Flow

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step6.html (3 of 7)1/26/2007 2:32:33 PM

EJB Tutorid: Step 6: Write Test Source Code and Test the EJBs

In the following steps you'll add page flow code to use the control you created. In page flows, a controller is a central place for client
logic — a place to contain state variables and data that would otherwise need to be contained in separate files (such as in JSPs).

In the case of VisitWebTest, your controller will be responsible not only for invoking your session bean via the EJB control you
created, but also for passing the bean's responses along to the JSP files that make up the presentation components in your
application.

1. On the Page Flow Explorer tab, locate Controller.java and double-click it.

2. In the Controller.java source code, note that a variable representing the control has been added.

EI ‘isitBean, java EI WisitTrackerBean, java b *controller.java X EI WisitTrackerBeanCtrl. java

* gupression <codexf{pageFlov.sowePropertyl </ codes. A O
+

* There may be only one page flow in any package.

L
fIpf.Controller (gimplelictions = { @Jpf.3implelction(name = "hegin®™, path =
public class Controller extends PageFlowController
private static final long seriglVersionUID = -1049433930L;
AControl

private VisitTrackerBeanCtrl

= ,."'"""7"'
* Callhack that iz invoked when this controller instance iz created. w
< [>

3. In the Page Flow Editor tab, locate the begin icon, right-click it and select Convert to a Method.

Page Flow Editar X — -

B | Page Flow: [YisitWebTest/srelContraller java
| Flow Paths: beagin
e - 3 | SimpleAction | e - 3
fz}m ;::default:b >) ndex.5p

Edit Source

Caonvert ko a Method

#dd Form Bean ¥

o

©

4. In the source code for Controller.java, add the following import statements to support code you'll be adding.

i mport java.rm . Renot eExcepti on;
i mport javax.ejb. Creat eExcepti on;

5. Edit the begi n method so it appears as follows. This code looks up and stores the home interface for the entity bean
Vi si t Tr acker Bean and forwards processing to index.jsp.

@pf . Action(forwards =

{
@pf. Forward(nane = "success", path = "index.jsp")
}
)
protected Forward begin()
{
try
{

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step6.html (4 of 7)1/26/2007 2:32:33 PM

EJB Tutorid: Step 6: Write Test Source Code and Test the EJBs

visitTrackerBeanCtrl.create();
} catch(Creat eException ce) {}
cat ch(Renot eException re) {}
return new Forward("success");

6. Beneath the begi n method code, add the following code. This code provides an action that can be called from index.jsp;
that action will invoke the session bean. If the action is successful, the result will be forwarded to showForm.jsp, which
you'll create in a moment.

@pf.Action(forwards =

{
@pf . Forward(name = "success", path = "showFormjsp")
}
)
protected Forward i nvokeEJB(| nvokeEJBForm form
{
String response;
try
{
response = visitTrackerBeanCtrl.greetVisitor(form getNane());
} cat ch(Renot eException re)
{
response = "An error has occurred";
}
get Request ().setAttri bute("returnval ue", response);
return new Forward("success");
}
/**
* Get and set nethods may be overwitten by the Form Bean editor.
*/
public static class |nvokeEIJBForm inplenents java.io.Serializable
{
private static final |ong serial VersionU D = 1L;
private String nang;
public void setNane(String nane)
{
thi s. nane = nane;
}
public String get Name()
{
return this.nane;
}
}

7. Press Ctrl+Shift+S to save your work.

To Create a User Interface and Test the EJB

Here you'll update files in your application's user interface so that the page flow controller can use them to present the results of its
interaction with your EJBs.

1. In the Page Flow Explorer tab, open the node Pages > index.jsp. Double-click index.jsp to open the file.

2. Modify the <net ui : ht Ml > tag so that it appears as follows. This code calls the i nvokeEJB action you coded in the
preceding steps.

<netui:htm >
<head>
<title>
EJB Tester
</[title>
</ head>

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step6.html (5 of 7)1/26/2007 2:32:33 PM

EJB Tutorid: Step 6: Write Test Source Code and Test the EJBs

<body>
<h2> EJB Tester </h2>
<net ui : form acti on="i nvokeEJB" >
<t abl e>
<tr valign="top">
<t d>Your Nane: </td>
<t d>
<net ui : t ext Box dat aSour ce="acti onFor m nane"/ >
</td>
</[tr>
</t abl e>
<br/ >
<net ui : button val ue="i nvoke EJB" type="submt"/>
</netui:fornm
</ body>
</netui:htm >

3. On the Page Flow Explorer tab, right-click the Pages = showForm.jsp node and select Create.
4. Double-click the Pages > showForm.jsp node to open its source code.

5. Replace its source code with the following. This code receives results from a successful invocation of the session bean
and displays a response.

<% page | anguage="j ava" content Type="text/htn ; charset =UTF- 8" %

<U@aglib uri="http://beehive. apache. org/ netui/tags-htm -1.0" prefix="netui"%

<U@aglib uri="http://beehive. apache. or g/ net ui / t ags- dat abi ndi ng- 1. 0" prefi x="net ui -dat a" %
<U@aglib uri="http://beehive. apache. org/ netui/tags-tenplate-1.0" prefix="netui-tenpl ate"%

<netui: htm >

<head>

<title>
EJB Response

</title>

</ head>

<body>
<bl ockquot e>
<h2>EJB Response</ h2>
<p>
Here is the result returned from EJB: <netui: | abel val ue="${request Scope.returnval ue}"></net ui

| abel >
</ bl ockquot e>
<hr >
<net ui : anchor href="index.jsp">Let's do this agai n</netui:anchor>
</ body>

</netui:htn >

Press Ctrl+Shift+S to save your work.
On the Page Flow Explorer tab, right-click Controller.java, then click Run As = Run on Server.

If the Select Tasks dialog is displayed, click Finish.

ORNORRS IS

After Workshop for WebLogic has finished building your application's components, it will display the index.jsp.

10. Enter a name in the box provided, then click invoke EJB.

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEIB Step6.html (6 of 7)1/26/2007 2:32:33 PM

EJB Tutorid: Step 6: Write Test Source Code and Test the EJBs

[J] visitBean. java index. jsp ERTIE L m}3 =

(= fﬁh |http:,l',l'Iu:u:thu:ust:?IZIIZI1,l"u'isitWeI:uTest,l'Cu:untrnller.ij v| L=

E.JB Tester

Tour IMame: |Glad3,f5 Kravitz

invoke EJB h

11. Note that the response page includes the name you entered echoed back to you. Remember that the logic that generates
this message is contained in the Vi si t Tr acker Bean session bean that you created in Step 3.

m VisitBean. java showForm, jsp # FIE Response X =0

] [q}(h |http:,l',l'|DEa|hDSt:?EIEI1,I"l.l'isitWEtlTESt,I'in'\kaEEJE.dDjjSESSiDI‘lid=|G|dFVV v| [

E.JB Response

Here 1z the result returned from ETB: Helle, Gladys Erawitzl

Let's do thizs again

12. To keep testing, click Let's do this again, enter the same name as before, then click invoke EJB again. With each test
you'll see an updated response.

That's it! You've built and tested two Enterprise JavaBeans with Workshop for WebLogic. The next step in this tutorial is a summary
of what the tutorial covered, along with links to information you might find helpful.

Related Topics
None

Click one of the following arrows to navigate through the tutorial:

L =

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/ejb/tutorial /tutEJB Step6.html (7 of 7)1/26/2007 2:32:33 PM

Summary: Building Enterprise JavaBeans

Summary: Building Enterprise JavaBeans

Through this tutorial, you used Workshop for WebLogic to build a very simple application that
uses Enterprise JavaBeans to model the parts of a visitor tracking application. You also created a
page flow to use as a test client.

Concepts and Tasks Introduced in This Tutorial

. In Workshop for WebLogic, EJB source code is contained in a single JAVA file. Supporting files,
such as those for implemented EJB interfaces, are generated for you at build time based on
the annotations you use in source code.

. When developing EJBs you annotate source code to specify the details for automatically
generated source artifacts. For example, the @i | eGener at i on annotation's attributes specify
whether to generate files, as well as the names of generated files.

. Some source code annotations are used at build time to generate values for deployment
descriptors. For example, the @nt ity annotation's pri nKeyCd ass attribute value is used in
the <pri m key- cl ass> element of the bean's deployment descriptor.

. Most annotations in EJB source code are defined by the WebLogic Server EJBGen tool. This
tool is invoked at build time to process your annotations. Note that you do not need to
separately run EJBGen on your Workshop for WebLogic source code. For more information on
EJBGen, see EJBGen Reference on eDocs.

. An EAR project is a special kind of project through which you can generate a single Enterprise
ARchive file that contains the outputs of multiple projects — such as projects whose outputs
make up a single application. Use an EAR project to represent your application as a whole.

. You can use EAR project library modules to collect classpath dependencies that are shared
across development artifacts. In this way, you needn't copy the same JAR files into the project
hierarchy of each project.

. The EJB control is a handy way to invoke EJBs from within client code. The EJB control handles
typical EJB client plumbing by virtue of your specifying annotation values that indicate which
EJB the control represents.

. A good way to test EJBs as you develop is to use a page flow as a test client. You can create
an EJB control that represents your EJB, then call control methods within your page flow code.
For more information about page flows, see Page Flow Overview at the Apache Beehive web

site.

Related Topics

Developing Enterprise JavaBeans

Enterprise JavaBeans in Workshop for WebLogic

Click the following arrow to navigate through the tutorial:

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/gjb/tutorial /tutEIB Summary.html (1 of 2)1/26/2007 2:32:33 PM

http://e-docs.bea.com/wls/docs100/ejb/EJBGen_reference.html
http://beehive.apache.org/docs/1.0.1/netui/overview.html

Summary: Building Enterprise JavaBeans

=

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/gjb/tutorial /tutEIB Summary.html (2 of 2)1/26/2007 2:32:33 PM

Developing Entity Beans

Developing Entity Beans

An entity EJB models a real-world business object that persists as a record in a relational
database. Entity beans are persistent, allow shared access, have primary keys, and may
participate in relationships with other entity beans. All topics listed below discuss development of
container-managed persistence (CMP) entity beans.

Topics Included in This Section

Getting Started with Entity Beans
Provides an overview of entity beans.

Defining an Entity Bean
Discusses how to create an entity bean in Workshop for WebLogic, what an entity bean
definition minimally must contain, how to remove a bean instance, and provides a short
introduction to the various interfaces extended/implemented by an entity bean definition.

Automatic Primary Key Generation
Discusses how to auto-generate primary keys when creating a new entity bean.

Entity Relationships
Discusses how to define an entity relationship between two CMP entity beans.

Query Methods and EJB QL
Discusses how to use EJB QL in the definition of CMP select and find methods.

Life Cycle of an Entity Bean
Discusses the life cycle of an entity bean.

Related Topics

Tutorial: Building Enterprise JavaBeans
Provides a step-by-step guide to developing Enterprise JavaBeans.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/egj b/entity/navEntityBeans.html 1/26/2007 2:32:34 PM

Getting Started with Entity Beans

Getting Started with Entity Beans

This topic provides an overview of CMP entity beans development. It contains the following
sections:

What are CMP Entity Beans?

. Home and Business Interfaces

. CMP Fields

. Create Methods

. Component Methods

. Home Methods

. Finder and Select Methods

. Relations

. Other Methods

What are CMP Entity Beans?

An entity bean represents a business object in a persistent storage mechanism. In other words,
entity beans are used to model real-world objects with properties that need to be stored and
remembered over time. Examples of business objects are customers, products, orders, credit
cards, and addresses. Typically, each entity bean has an underlying table in a relational database,
and each bean instance corresponds to a row in that table. An entity bean has one or more
primary keys, or unique indices, to uniquely identify an object, that is, a particular record in the
database.

Container-managed persistence (CMP) entity beans are entity beans for which the EJB container
takes care of mapping property and relationship fields to the underlying database and knows how
to insert, update, and delete data for an entity bean.

Developing Entity Beans with Workshop for WebLogic

In Workshop for WebLogic, you develop an entity bean by creating a class that extends weblogic.
ejb.GenericEntityDrivenBean and implements javax.ejb.EntityBean. You annotate this class with
@Entity, @JndiName, and @FileGeneration annotations (and others, as needed) that specify EJB
characteristics. You also add annotations to designate virtual fields, select and find methods, and
relations that the entity has with other entities.

You can get started easily in the IDE by using the WebLogic Entity Bean template. When you use
the template, the IDE generates code such as the following:

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...l.doc/html/egjb/entity/conGettingStartedWithEntityBeans.html (1 of 5)1/26/2007 2:32:34 PM

Getting Started with Entity Beans

*

Ceneri ceEntityBean subcl ass automatically generated by Wrkshop.

E A

Pl ease revi ew and update the existing content to ensure it matches your
i ntended use (esp. the Entity and Jndi Nane annotations and the prinary key
field, ejbCreate() and ej bPostCreate() nethods).

*

*/
@ntity(ej bName = "MyEntityBean",
dat aSour ceNarme = "sanpl esDat aSour ce",
t abl eNane = "MyEntityBean",
pri nKeyC ass = "java.lang. | nteger")
@ndi Nanme(l ocal = "ejb. MyEntityBeanLocal Honme")
@i | eGeneration(l ocal Cl ass = Constants. Bool . TRUE,
| ocal Home = Const ant s. Bool . TRUE,
renot eC ass = Const ants. Bool . FALSE,
renot eHonme = Const ants. Bool . FALSE,
val ueC ass = Const ants. Bool . TRUE)
abstract public class MyEntityBean
extends Generi cEntityBean
i npl enents EntityBean {

/**
* | MPORTANT: Automatically generated ej bCreate() nethod.
* Pl ease change as appropriate.
*/
public java.lang. | nteger ejbCreate(java.lang.|nteger key)
throws Creat eException {
set Key(key) ;
return null;

}

/**

* | MPORTANT: Automatically generated ej bPost Create() nethod.
* Pl ease change as appropriate.
*/

public void ej bPostCreate(java.lang.|nteger key) {

}

/**
* | MPORTANT: Automatically generated primary key field getter nethod.
* Pl ease change nanme and cl ass as appropriate.
*/

@mpFi el d(colum = "key", prinkeyField = Constants. Bool . TRUE)

@.ocal Met hod()

public abstract java.lang.|nteger getKey();

/**

* | MPORTANT: Automatically generated primary key field setter nethod.
* Pl ease change name and cl ass as appropriate.
*/

@.ocal Met hod()

public abstract void setKey(java.lang.!|nteger key);

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...l.doc/html/egjb/entity/conGettingStartedWithEntityBeans.html (2 of 5)1/26/2007 2:32:34 PM

Getting Started with Entity Beans

Note: To use the WebLogic Entity Bean template, in the Package Explorer right-click the
package that will contain the bean, select New > Other, expand EJB, then click
WebLogic Entity Bean.

The code includes typical values for the commonly used class-level annotation attributes. In
addition, the template-generated code includes the container-managed persistence (CMP) fields
for a primary key. The idea is to provide a starting place for your own code -- for you to rewrite it
with your code for the create methods, for virtual field declarations, methods for business logic,
and so on.

Workshop for WebLogic uses these annotations to generate the interfaces and descriptor files that
are required for EJB entity beans. The following sections describe these entity bean pieces and
characteristics.

Home and Business Interfaces

An entity bean can have four different interfaces, called the local home interface, the local
business interface (or simply, the local interface), the remote home interface, and the remote
business interface (or simply, the remote interface). The local interfaces define the bean's
methods that can be used by other EJBs, EJB controls, web services, and page flows defined
within the same application. That is, if you define an entity bean and only plan to use it within
that application, you can use local interfaces. In contrast, the remote interfaces define the bean's
methods that be invoked by EJBs, EJB controls, web services, and page flows defined in other
applications.

In Workshop for WebLogic, you can use the Annotations view to set or view the interface names
for a given entity bean. To do this, open the bean's source code and place your cursor in the bean
class code (in other words, not a method or other member or annotation). In the Annotations
view, scroll to where the FileGeneration annotation's attributes are listed. There, you'll see
attributes such as localHomeName and localClassName (the business interface), as well as
remoteHomeName and remoteClassName (the remote interface). These correspond to attributes
for the @FileGeneration Annotation in your source code.

Client applications and other session or entity beans can obtain an instance of an entity bean with
which to communicate by using methods in the (remote or local) home interface. Methods in the
home interface include cr eat e methods, the fi ndByPri mar yKey method, and other finder

methods that return a single reference or a set of references to entity bean instances. In addition,
Home methods are defined in the local interface. The (remote or local) business interface contains
the methods that manipulate an entity bean instance. These methods include field accessor
(getter and setter) methods and component methods.

CMP Fields

Container-managed persistence (CMP) fields contain the business object's properties. For
example, a Customer bean might contain first name, last price, gender, and age fields. Because
the EJB container takes care of the mapping of these properties to a database, CMP fields are
virtual fields in an entity bean; that is, these fields are not defined in the entity bean itself but
correspond to columns in the database table. The entity bean only defines the accessor (getter

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...l.doc/html/ejb/entity/conGettingStartedWithEntityBeans.html (3 of 5)1/26/2007 2:32:34 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#FileGeneration

Getting Started with Entity Beans

and setter) methods. A CMP field can serve as a primary key field, meaning that this field uniquely
identifies the entity bean instance or, if multiple primary keys are defined, in combination with the
other primary keys uniquely identifies the entity bean instance.

In entity bean code, you designate CMP fields with the @CmpField annotation.

Create Methods

An ej bCr eat e method is used to create a new instance of an entity bean, that is, insert a new
record in the underlying database. At least one ej bCr eat e method must be defined, but multiple
ej bCr eat e methods are not uncommon. Each ej bCr eat e method defined for an entity bean has
the signature public PrimaryKeyC ass ej bCreat e(paraneters). The Pri maryKeyCl ass can be
a primitive type, such as | nt eger, when a single primary key is defined, or it can be a separate
primary keytes a primary key class with the name provided as an attribute in the @FileGeneration
Annotation. To find out which primary key class is used for an entity bean, ensure you are in

Design View and go to the General section in the Property Editor. In Source View, this attribute
is part of the @Entity Annotation.

Multiple ej bCr eat e methods can only be distinguished by their parameter composition. In the
home interface, ej bCr eat e methods are exposed as cr eat e methods and can correspondingly be
distinguished only by the unique set of parameters each one requires.

Component Methods

Component methods are the business methods that are invoked on an entity bean instance. A
simple example of a business method is updat eCust oner (fi rst Nanme, | ast Nanme, age). This

method will in turn invoke the bean’'s set Fi r st Nane, set Last Nane and set Age methods to update
the CMP fields holding this information.

Home Methods

A home method is a business method that relates to the entity bean but is not specific to a single
bean instance. For instance, a Customer bean might have a home method returning the total
number of customers between 25 and 35 years of age. A home method is defined as an

ej bHonmeMet hodNanme method in the bean, and is exposed as a Met hodNane method on the bean's
home interface. For example the method ej bHomeGet NCust oner s defined in the bean class is

exposed as get NCust omrer s in its home interface.

Finder and Select Methods

Finder and select methods are methods that execute queries on the database, using the EJB QL or
WebLogic QL query languages. A finder method is defined in the bean's home interface and
returns a reference to a single bean instance or to a set of references to bean instances. In
contrast, a select method is not defined in any interface and can only be invoked internally, for
instance by a bean's component method. A select method can return a reference to a single bean
instance, a set of bean instances, or one or more individual CMP fields.

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw....doc/html/egjb/entity/conGettingStartedWithEntityBeans.html (4 of 5)1/26/2007 2:32:34 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#CmpField
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#FileGeneration
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#FileGeneration
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Entity

Getting Started with Entity Beans

In addition to the finder and select methods defined for the bean, the method fi ndByPri mar yKey
(PrimaryKeyd ass) is automatically defined by WebLogic in the home interface(s) defined for the
bean class. This method returns a reference to the bean instance that is uniquely defined by the
method's parameter. As before, the Pri mar yKeyd ass can be a primitive type, such as | nt eger,
when a single primary key is defined, or it can be a separate primary key class.

In Workshop for WebLogic, you can use the Annotations view to find out which primary key class
is used for an entity bean. To do this, open the bean's source code and place your cursor in the
class name. In the Annotations view, scroll to where the Entity annotation’'s attributes are listed,
then look for the primKeyClass attribute. This attribute might also be given in the bean's @ntity
annotation in source code.

In entity code, you specify finder and select methods with the @Finder and @Select annotations.
For more information on these and the EJB QL (query language), see Query Methods and EJB QL.

Relations

Entity relationships are used to model dependencies between business objects. For example, a
customer can have one or more credit cards, and a product has a manufacturer. Relations
between two entity beans can be defined such that for a customer, you can easily access its credit
cards by using the accessor method get Cr edi t Car ds. The entity relation accessor methods, also

known as the CMR field accessor methods are defined in the bean's business interface.

In entity code, you designate relations with the @Relation annotation. For more information, see
Entity Relationships.

Other Methods

An entity bean has several predefined methods, as well as a number of callback methods, invoked
by the EJB container during certain operations, that an entity bean must implement. In WebLogic
these callback methods are by default automatically implemented. In many cases you will find it
unnecessary to use these methods, with the possible exception of the r enbve methods used to

remove an entity bean instance. To learn more about predefined methods and remove methods in
particular, see Defining an Entity Bean. To learn more about callback methods, see the Callback

Methods section of that same topic and Life Cycle of an Entity Bean.

Related Topics

@FileGeneration Annotation

@Entity Annotation

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw...|.doc/html/egjb/entity/conGettingStartedWithEntityBeans.html (5 of 5)1/26/2007 2:32:34 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Finder
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Select
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Relation
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#FileGeneration
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Entity

Defining an Entity Bean

Defining an Entity Bean

This topic discusses how to create an entity bean and what an entity bean minimally must
contain. Furthermore, it describes how to remove a bean instance, and discusses the various
interfaces extended by an entity bean. This topic contains the following sections:

. Creating an Entity Bean

. Defining a Basic Entity Bean

. Removing an Entity Bean Instance

. Callback Methods

Creating an Entity Bean

The WebLogic Entity Bean wizard makes it easy to start creating an entity bean from scratch. If
you are designing a new entity bean in a WebLogic EJB project, using the wizard will create basic
entity bean code from a template. To use the wizard, in Workshop for WebLogic, right-click your
WebLogic EJB project folder, point to New, then click WebLogic Entity Bean.

For more information on creating new beans, see Tutorial: Building Enterprise JavaBeans. When

you create a new entity bean, by default the local interfaces and various other defaults are
defined. For more details, see @FileGeneration Annotation.

Note. If you have existing entity beans that you plan to invoke in the application, for
instance via another EJB or an EJB control, but you do not intend to change their
definitions, you can suffice by adding the EJB Jar to the application.

Automatic Table Creation

When you are developing a new entity bean, you can make iterative development easier by
enabling automatic table creation. You can have the server create the table when it is not present,
or to drop an existing table and recreate it if the definition of the entity bean does not match the
table specifications. You enable automatic table creation in the Properties dialog for the WebLogic
EJB project. In that dialog, in the left pane, click WebLogic EJB; in the right pane choose a value
from th "create tables"” dropdown. The default setting is CREATE_ONLY. To recreate a table if the

definition of the entity bean does not match the table specification, use DROP_AND_CREATE. For
more information regarding the possible settings, see @JarSettings Annotation.

Note: Automatic table creation is meant to facilitate development, and is disabled in
production mode.

Defining a Basic Entity Bean

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....duct.wl.doc/html/ejb/entity/conDevel opingAnEntityBean.html (1 of 5)1/26/2007 2:32:34 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#FileGeneration
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#JarSettings

Defining an Entity Bean

The following bean was developed by defining it from scratch, adding the two CMP fields, labeling
one of these as the primary key, and creating an ej bCr eat e method. This entity bean allows you

to add a new product, find a product using its primary key, and get and set its CMP field values.

package nyBeans;

i nport javax.ejb.*;
i mport webl ogic. ejb.*;
i mport webl ogi c. ej bgen. *;

@ntity(ej bNanme = "Product"”,
dat aSour ceNanme = "sanpl esDat aSour ce",
t abl eNane = "product"”,
abstract SchemaNane = "Product”,
pri nKeyd ass = "String")
@\t onat i cKeyGener ati on(cacheSi ze = "1",
name = "NanedSequence",
type = Aut omati cKeyGenerati on. Aut omat i cKeyGener ati onType. SEQUENCE _TABLE)
@ndi Name(| ocal = "ej b. Product Local Hone")
@i | eGeneration(l ocal Cl ass = Constants. Bool . TRUE,
| ocal O assNane = "Product",
| ocal Home = Const ant s. Bool . TRUE,
| ocal HomeNane = "Product Hone",
renot eC ass = Const ants. Bool . FALSE,
renot eHonme = Const ants. Bool . FALSE,

r enot eHoneNane = " Product Renot eHone",
renmot e assName = "Product Renot e",
val ued ass = Const ants. Bool . FALSE,
val ueC assNanme = "Product Val ue",

pkCd ass = Constants. Bool . TRUE)
abstract public class Product Bean
extends Generi cEntityBean
i npl enents EntityBean {
@mpFi el d(col um = "Nane",
pri nkeyFi el d = Const ant s. Bool . TRUE)
@.ocal Met hod()
public abstract String getNanme();

@.ocal Met hod()
public abstract void setNanme(String arg);

@mpFi el d(colum = "Price")
@.ocal Met hod()
public abstract double getPrice();

@.ocal Met hod()
public abstract void setPrice(double arg);

public java.lang. String ej bCreate(java.lang. String Name, double Price) {
set Narme(Nane) ;
setPrice(Price);

return null; // FIXME return PK val ue

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....duct.wl.doc/html/ejb/entity/conDevel opingAnEntityBean.html (2 of 5)1/26/2007 2:32:34 PM

Defining an Entity Bean
}

public void ej bPostCreate(java.lang. String Nanme, double Price) {
}

In Workshop for WebLogic, all the information needed to make an entity bean is stored in a single
file, instead of separate JAVA files for the bean class, the local business interface, the local home

interface, its primary key class, and so forth. When you build an EJB, these other classes are auto-
generated. Workshop for WebLogic interprets ej bgen annotations in your source code to generate

these files. For example, the @FileGeneration annotation specifies the names of the local home
and business interface for the ProductBean. The @LocalMethod annotations on the accessor

methods specify that these methods are defined in the local business interface.

You can view the generated JAVA files in Resource view. In that view, expand the .apt_src folder
to view folders corresponding to your source packages. You'll find the generated files in these
folders. For the Pr oduct Bean, you'd find a Product interface that extends EJBLocal Obj ect and a
Pr oduct Hone interface that extends EJBLocal Hore. You can view the CLASS files compiled from
the generated files (again, in Resource view) by expanding the project's build folder.

If the Product Bean were to use multiple primary keys, the ProductBeanPK.java file containing the
definition of the compound primary key class would also be auto-generated.

Removing an Entity Bean Instance

Any entity bean must define at least one ej bCr eat e method to create a new instance. Also, the
EJB container automatically defines the fi ndByPri mar yKey method in the home interface(s),

which return a bean instance using its primary key (class) as the method parameter. In addition,
all the bean's interfaces will extend a particular interface which contains various useful methods.
These interfaces include:

j avax. ej b. EJBLocal (bj ect , extended by the local interface
. javax. ej b. EJBLocal Hone, extended by the home interface
. javax. ej b. EJBObj ect, extended by the remote interface

. javax. ej b. EJBHone, extended by the remote home interface

Complete details about these interfaces and the methods they define can be found in your favorite
J2EE documentation and the API reference at http://java.sun.com. One of the more frequently

used methods provided by these interfaces is a r enbve method you can use to remove an entity
bean instance. In other words, when you invoke the r enbve method on an entity bean, you
remove the bean and its underlying record in the database.

renbpve methods are defined in all the interfaces. For instance, to remove a bean instance via the
local home interface, you can invoke a remove method that takes instance's primary key as the

file:///F|/depot/dev/srciworkshop/product/pluging/com.bea....duct.wl.doc/html/ejb/entity/conDevel opingAnEntityBean.html (3 of 5)1/26/2007 2:32:34 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#LocalMethod
http://java.sun.com/

Defining an Entity Bean

parameter. To remove a bean instance via the local interface, you can invoke the remove method
for the instance you want to remove. Both approaches are shown below; the session bean’'s
method del et eVi aHone deletes an instance of the Product bean via its local home interface, while
del et eVi aBusi ness delete a Product bean instance via the local interface:

package nyBeans;

i mport javax.ejb.*;
i mport javax.nam ng. I nitial Context;
i mport javax. nam ng. Nam ngExcepti on;

i mport webl ogic. ejb.*;
i mport webl ogi c. ej bgen. *;

@& bLocal Ref s({ @& bLocal Ref (Iink = "Product”) })
@bessi on(ej bName = " SoneSessi on")
@ndi Name(renote = "ej b. SoneSessi onRenot eHone")
@i |l eGeneration(renoteC ass = Constants. Bool . TRUE,
renot eHone = Const ants. Bool . TRUE,
| ocal C ass = Const ants. Bool . TRUE,
| ocal Hone = Const ants. Bool . TRUE,
| ocal C assNane = " SoneSessi onLocal ",
| ocal HomeNane = " SonmeSessi onLocal Hone")
public class SoneSessi on extends Generi cSessi onBean
i mpl ement s Sessi onBean {
private static final long serial VersionUD = 1L;

@ocal Met hod()
public void del eteViaHome(String thePk) {
try {
javax. nam ng. Context ic = new Initial Context();
Pr oduct Honme product Hone (ProductHone) ic
. I ookup("j ava: conp/ env/ ej b/ Product ") ;
pr oduct Home. r enove(t hePk) ;
} catch (Nam ngException ne) {
/| Exception handling code.
} catch (RenoveException re) {
/| Exception handling code.
}

}

@ocal Met hod()
public void del eteVi aBusi ness(String thePk) ({
try {
j avax. nam ng. Context ic = new Initial Context();
Pr oduct Honme product Hone (ProductHone) ic
.l ookup("j ava: conp/ env/ ej b/ Product ") ;
Product theProduct = productHone. findByPri maryKey(thePk);
t hePr oduct . renmove();
} catch (Nam ngException ne) {
/| Exception handling code.
} catch (FinderException ne) {
/| Exception handling code.

file:///F|/depot/dev/srciworkshop/product/pluging/com.bea....duct.wl.doc/html/ejb/entity/conDevel opingAnEntityBean.html (4 of 5)1/26/2007 2:32:34 PM

Defining an Entity Bean

} catch (RenmpveException re) {
/1 Exception handling code.

}
}

public void ejbCreate() {
/! Bean initialization code here.

}

Callback Methods

Every entity bean must implement the j avax. ej b. Enti t yBean interface. This interface defines

callback methods that are called by the EJB container at specific times. The callback methods are
set EntityCont ext, unset Entit yCont ext, ej bActi vat e, ej bPassi vat e, ej bLoad, ej bSt or e, and

ej bRenove. When you define an entity bean from scratch or via a database table, it will extend
webl ogi c. ej b. Generi cEnti t yBean, which contains empty implementations of these callback

methods. In other words, you will only need to define these methods if you need to override the
empty implementation. If you import an entity bean, these callback methods will probably be
implemented directly in the bean's source file.

For more details about the callback methods and their role in the interaction between the entity
bean and the EJB container, see The Life Cycle of an Entity Bean.

Related Topics

The Life Cycle of an Entity Bean

@FileGeneration Annotation

@LocalMethod Annotation

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....duct.wl.doc/html/ejb/entity/conDevel opingAnEntityBean.html (5 of 5)1/26/2007 2:32:34 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#FileGeneration
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#LocalMethod

Automatic Primary Key Generation

Automatic Primary Key Generation

With Workshop for WebLogic you can specify in your bean code that a primary key should automatically be
generated when creating a new CMP entity bean. This eliminates the need for you to provide primary key values.
You can auto-generate primary keys in various vendor-specific ways — using Oracle, SQLServer, or
SQLServer2000 — or you can use a vendor-neutral named sequence table. In all cases auto-generated primary
keys are of type | nt eger or Long.

The topics in this section are:

Primary Key Generation Using Oracle's Sequence

. Primary Key Generation Using SQL Server's IDENTITY

Primary Key Generation Using a Named Sequence Table

Defining the CMP Entity Bean

Primary Key Generation Using Oracle's Sequence

Oracle provides the sequence utility to automatically generate unique primary keys. To use this utility to auto-
generate primary keys for a CMP entity bean, you must create a sequence table and use the
@\ut omat i cKeyCGener at i on annotation to point to this table.

In your Oracle database, you must create a sequence table that will create the primary keys, as shown in the
following example:

create sequence nmyOracl eSequence
start with 1
nomaxval ue;

This creates a sequences of primary key values, starting with 1, followed by 2, 3, and so forth. The sequence
table in the example uses the default increment 1, but you can change this by specifying the i ncr enent keyword,

such as i ncrement by 3. When you do the latter, you must specify the exact same value in the cacheSi ze
attribute of the @\ut onmat i cKeyGener ati on annotation:

@A\ut omat i cKeyCGener ati on(cacheSi ze = "3",
nane = "nyOracl eSequence”,
type = Aut omati cKeyGeneration. Aut omat i cKeyGener ati onType. SEQUENCE)

If you have specified automatic table creation in the CMP bean's project settings, the sequence table will be
created automatically when the entity bean is deployed. For more information, see @JarSettings Annotation. For

more information on the definition of a CMP entity bean, see below.

Primary Key Generation Using SQL Server's IDENTITY

In SQL Server you can use the | DENTI TY keyword to indicate that a primary-key needs to be auto-generated. The
following example shows a common scenario where the first primary key value is 1, and the increment is 1:

CREATE TABLE Custoner (Customer_ID int IDENTITY(1,1), FirstNane varchar(30) LastNane varchar(30))

file:/l/F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/ejb/entity/conA utomati cPrimaryK eyGeneration.html (1 of 3)1/26/2007 2:32:35 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#JarSettings

Automatic Primary Key Generation

In the CMP entity bean definition you need to specify SQLServer(2000) as the type of automatic key generator
you are using. You can also provide a cache size:

@A\ut omat i cKeyGener ati on(cacheSi ze = "3",
nane = "nySql Serverl D",
type = Aut omati cKeyGeneration. Aut omat i cKeyGener ati onType. | DENTI TY)

If you have specified automatic table creation in the CMP bean's project settings, the sequence table will be
created automatically when the entity bean is deployed. For more information, see @JarSettings Annotation. For
more information on the definition of a CMP entity bean, see below.

Primary Key Generation Using a Named Sequence Table

A named sequence table is similar to the Oracle sequence functionality in that a dedicated table is used to
generate primary keys. However, the named sequence table approach is vendor-neutral. To auto-generate
primary keys this way, create a named sequence table using the two SQL statements shown in the example:

CREATE Tabl e MyNanedSequence (SEQUENCE nunber);

I NSERT i nto MyNanedSequence VALUES (0);

In the CMP entity bean definition you need to specify the named sequence table as the type of automatic key
generator you are using. You can also provide a cache size:

@\ut omat i cKeyCGener ati on(cacheSi ze = "100",
nane = "MNanmedSequence",
type = Aut omati cKeyGeneration. Aut omat i cKeyGener ati onType. SEQUENCE_TABLE)

If you have specified automatic table creation in the CMP bean's project settings, the sequence table will be
created automatically when the entity bean is deployed. For more information, see @JarSettings Annotation. For
more information on the definition of a CMP entity bean, see the next section.

Note. When you specify a cacheSi ze value for a named sequence table, a series of unique values are

reserved for entity bean creation. When a new cache is necessary, a second series of unique values is
reserved, under the assumption that the first series of unique values was entirely used. This guarantees
that primary key values are always unique, although it leaves open the possibility that primary key
values are not necessarily sequential. For instance, when the first series of values is 10. . . 20, the

second series of values is 21- 30, even if not all values in the first series were actually used to create
entity beans.

Defining the CMP Entity Bean

When defining a CMP entity bean that uses one of the primary key generators, you use the the
@\ut omat i cKeyCGener at i on annotation to point to the name of the primary key generator table to obtain primary

keys. Also, you must define a primary key field of type | nt eger or Long to set and get the auto-generated
primary key. However, the ej bCr eat e method does not take a primary key value as an argument. Instead the
EJB container adds the correct primary key to the entity bean record.

The following example shows what the entity bean might look like. Notice that the bean uses the named sequence
option described above, and that ej bCr eat e method does not take a primary key:

@A\ut omat i cKeyCGener ati on(cacheSi ze = "1",

nane = "NanmedSequence",

type = Aut omati cKeyGeneration. Aut omat i cKeyGener ati onType. SEQUENCE_TABLE)
@ntity(defaul t Transacti on = Constants. Transacti onAttri bute. SUPPORTS,

file:/l/F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/ejb/entity/conA utomati cPrimaryK eyGeneration.html (2 of 3)1/26/2007 2:32:35 PM

Automatic Primary Key Generation

pri nKeyd ass = "Integer"”,
ej bNane = "Cust oner _APK",
dat aSour ceNane = "sanpl esDat aSour ce",
tabl eNanme = "ejb_custoner",
abstract SchemaNanme = " Custoner")
@i | eGeneration(l ocal dass = Constants. Bool . TRUE,
| ocal O assNanme = "Automati cPK _Cust oner Local ",
| ocal Home = Const ants. Bool . TRUE,
| ocal HomeNane = "Aut omati cPK_Cust oner Hone",
renot eCl ass = Const ants. Bool . FALSE,
renot eHome = Const ant s. Bool . FALSE,
renot eHoneNane = " Cust omer Renot eHone",
renot eCl assNane = " Cust oner Renot e”,
val ued ass = Const ants. Bool . FALSE,
val ueC assNane = "Custoner Val ue",
pkCl ass = Constants. Bool . TRUE)
@ndi Narre(l ocal = "ej b. Aut onati cPK_Cust onmer Local Honme")
public abstract class Custoner_ APK
extends GenericEntityBean inplenents EntityBean {

@cnpFi el d(col um = "First Nane")
@.ocal Met hod()
public abstract String getFirstName();

@.ocal Met hod()
public abstract void setFirstName(String arg);

@npFi el d(col utmm = "Last Nane")
@.ocal Met hod()
public abstract String getLastNane();

@.ocal Met hod()
public abstract void setlLastNanme(String arg);

@cnpFi el d(prinkeyField = Constants. Bool. TRUE, colum = "Custoner_ID")
@.ocal Met hod()
public abstract Integer getCustoner_|D();

@.ocal Met hod()
public abstract void setCustoner_|ID(Ilnteger arg);

public java.lang.|nteger ejbCreate(java.lang. String FirstNane,
java.lang. String LastNanme) {
set Fi r st Name(Fi r st Nane) ;
set Last Nane(Last Nane) ;

return null;

}

public void ejbPostCreate(java.lang. String FirstNaneg,
java.lang. String LastNane) {

}

Related Topics

@AutomatickeyGeneration Annotation

@JarSettings Annotation

file:/l/F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/ejb/entity/conA utomati cPrimaryK eyGeneration.html (3 of 3)1/26/2007 2:32:35 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#AutomaticKeyGeneration
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#JarSettings

Relationships in Entity Beans

Relationships in Entity Beans

Entity relationships in CMP entity beans are used to model real-world dependencies between business concepts. This
topic gives an overview of the seven relationship types, and for each of these relationships describes
implementation details in the EJBs and the underlying database tables.

For more detailed information, see the WebLogic Server documentation on Using Container-Managed Relationships
and Defining Container-Managed Relationships. Note that much of the WebLogic Server documentation describes
these concepts in the context of EJB descriptors, which are automatically generated by Workshop for WebLogic.

Each of the sections in this topic focuses on a relationship type:

One-to-One, Unidirectional

. One-to-One, Bidirectional

. One-to-Many, Unidirectional

. One-to-Many, Bidirectional

. Many-to-One, Unidirectional

. Many-to-Many, Unidirectional

. Many-to-Many, Bidirectional

One-to-One, Unidirectional

In a one-to-one unidirectional relationship, object A relates to object B. In addition, given object A you can find a
reference to object B, but not the other way around. An example of such a relationship is between a concertgoer
and a ticket, assuming the perspective of the ticket counter. Each concertgoer requires exactly one ticket, and the
concertgoer will have a reference to her ticket. However, given a ticket you don't know the concertgoer. That is, if a
lost ticket is returned to the ticket counter, it is not possible to trace it back to the concertgoer.

Here's how the @Relation annotation on the Concertgoer bean might look:

@rel ati on(rol eName = "ConcertgoerHasTi cket",
cmmField = "ticket",
targetEjb = "Ticket",
multiplicity = Relation.Miltiplicity. ONE
name = "Concertgoer-Ti cket")

abstract public class Concertgoer
extends CenericEntityBean
i mpl enents EntityBean

Here's how the @Relation annotation on the Ticket bean might look:

@Rel ati on(rol eNane = "ConcertgoerHasTi cket",
targetEjb = "Concertgoer",
multiplicity = Relation.Miltiplicity. ONE
nane = "Concertgoer-Ticket")

abstract public class Ticket
ext ends CenericEntityBean
i npl enents EntityBean

The Concertgoer EJB will have a CMR field to set and get a reference to a Ticket object. In contrast, there is no

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.wo...p.product.wl.doc/htmi/ejb/entity/conEntityRel ationships.html (1 of 7)1/26/2007 2:32:35 PM

http://edocs.bea.com/wls/docs100/ejb/entity.html#TypesofRelationships
http://edocs.bea.com/wls/docs100/ejb/entity.html#DefiningCMRs

Relationships in Entity Beans

reference from the Ticket to the Concertgoer, meaning that there is no direct way to find out if a particular ticket
has been assigned to a concertgoer or not and if it has, who the concertgoer is. (To find this out, you would have to
run a query on the Concertgoer EJBs and check each referenced ticket.)

In this particular example, Ticket objects are probably created independently of Concertgoer objects, and the CMR
set method is used to associate the Concertgoer with the Ticket. Also, when the concertgoer returns the ticket (and
removes herself from the ticket counter database), the Ticket object may not be deleted because it can be resold.
When the one-to-one unidirectional relationship is more dependent, as between a Customer and his Address, the
Customer EJB may have an set Addr ess business method, which creates a new Address object first, and then uses

the CMR set method to set the reference, as is shown in the following code snippet:

public void set Address(String street, String apt, String city, String state, String zip) throws
Cr eat eExcepti on
{
Address current Address = this.get Address();
if (currentAddress == null) {
/1 Custoner's current address not known.
newAddr ess = addressHone.create(street, apt, city, state, zip);
set Addr ess(newAddr ess) ;
}
el se {
/'l Update custoner's current address.
current Address. set Street (street);
current Addr ess. set Apt (apt) ;
current Address. setCity(city);
current Address. set State(state);
current Addr ess. set Zi p(zi p);

Notice that first the CMR get method is used to get the reference to the current address. If the address is not
known, a new address object is created after which the reference is set. If there is already a reference to an
address, the address object is updated to reflect the new address.

When a customer is removed from the database, the home address can likely be removed as well. To do so, you can
specify a cascade delete for this entity relationship, which automatically removes the home address when the
customer is removed. For more information, see the @Relation annotation.

With respect to persistent storage of this relationship, one table will have the foreign key column information; that
is, hold the a copy of the primary key of the other EJB. Typically the Concertgoer table will have a "Ticket_Index"
foreign-key column holding the primary key value of the address (assuming that the Ticket EJB defines only one
primary key field; if there are multiple primary key columns, there are multiple foreign key columns holding these
values). It is, however, also possible that the Ticket table holds the primary key value of the Concertgoer.
Regardless of the implementation in the database table, the EJB container will ensure that the relationship is
correctly represented.

One-to-One, Bidirectional

In a one-to-one bidirectional relationship, object A relates to object B and both reference each other. An example of
such a relationship is between a concertgoer and a creditcard, again assuming the perspective of the ticket counter.
Each concertgoer has only one credit card (to purchase a ticket), and if a credit card is inadvertently left behind at
the ticket counter, it can be returned to the owner.

Here's how the @Relation annotation on the Concertgoer bean might look:

@rel ati on(rol eNanme = "ConcertgoerHasCreditCard",
cmField = "creditCard",
targetEjb = "CreditCard",
multiplicity = Relation.Miltiplicity. ONE

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.wo...p.product.wl.doc/htmi/ejb/entity/conEntityRel ationshi ps.html (2 of 7)1/26/2007 2:32:35 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Relation

Relationships in Entity Beans

nane = "Concertgoer-CreditCard")
abstract public class Concertgoer

ext ends CenericEntityBean

i npl enents EntityBean

Here's how the @Relation annotation on the CreditCard bean might look:

@rel ati on(rol eName = " CreditCardNanmesConcert goer",
cnrField = "concergoer",
targetEjb = "Concertgoer",
multiplicity = Relation.Miultiplicity. ONE,
nane = "Concertgoer-CreditCard")
abstract public class CreditCard
extends CenericEntityBean
i mpl ements EntityBean

The Concertgoer EJB will have a CMR field to set and get a reference to a CreditCard object. In addition, the
CreditCard object will have a CMR field to set and get a reference to a Concertgoer object. Also, the bidirectionality
of this relationship is ensured by the EJB container. That is, when you use the Concertgoer's CMR set method to set
a reference to a CreditCard object, the CMR field of the CreditCard object is automatically updated to hold a
reference to this Concertgoer. Similarly, when you change or remove a reference in one object, this change is
automatically applied to the other object. As far as creating and deleting the object a CMR field references, similar
design considerations apply as discussed above for one-to-one unidirectional relationships. With respect to creating
a new creditcard for a concertgoer, it is possible that the Concertgoer EJB has a business method set Credi t Card,

which creates a new creditcard record and then sets the reference, similar to the set Addr ess method shown above.
If on the other hand the CreditCard EJB defines a cr eat e method that creates the CreditCard object and sets the
reference to the Concertgoer object, the reference must be set in the ej bPost Cr eat e step. An example of this is
shown below.

With respect to persistent storage of this relationship, there is again quite some flexibility how this is implemented
in the database tables. One of the possibilities is that only the ConcertGoer table has a foreign key column holding
the primary key value of a creditcard. There are other possibilities as well. Regardless of the implementation in the
database table, the EJB container will ensure that the relationship is correctly represented.

One-to-Many, Unidirectional

In a one-to-many unidirectional relationship, object A relates to many objects B, there are references from object A
to all objects B, but not the other way around. An example of such a relationship is between a concertgoer and CDs
purchased after the concert. A concertgoer can purchase many CDs, but for a purchased CD, again inadvertently
lost and found, it is not possible to trace it back to the concertgoer who made the purchase.

Here's how the @Relation annotation on the Concertgoer bean might look:

@Rel ati on(rol eNane = " Concert goer Bought CDs",
cmrField = "conpact Di sc",
targetEjb = "Conpact Di sc",
multiplicity = Relation.Miltiplicity. ONE,
nane = "Concertgoer-CDs")

abstract public class Concertgoer
extends CenericEntityBean
i npl enments EntityBean

Here's how the @Relation annotation on the CompactDisc bean might look:

@rel ati on(rol eName = " CDsBought ByConcert goer",
targetEjb = "Concertgoer",
multiplicity = Relation.Miltiplicity. MANY,
nane = "Concertgoer-CDs")

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.wo...p.product.wl.doc/htmi/ejb/entity/conEntityRel ationshi ps.html (3 of 7)1/26/2007 2:32:35 PM

Relationships in Entity Beans

abstract public class ConpactDi sc
extends CenericEntityBean
i npl enents EntityBean

The Concertgoer EJB will have a CMR field to set and get a Collection/Set of references to CD objects. In contrast,
there is no CMR field in the CD object. The choice of java. util. Col | ecti on versus java. util.Set depends on

whether from a design perspective it makes sense to have a collection with potentially duplicate references to the
same object, or to have a set without duplicate references.

In this particular example, Concertgoer objects are probably created independently of CD objects, and a new
reference is added to the CMR field uses the Collection/Set's add method, while a reference is deleted without

deleting the CD object using the Collection/Set's r enove method. When the relationship is more dependent, as
between a Band and its Recordings, the Band EJB may have an addRecor di ng business method, which creates a
new Recording object first, and then adds it to the collection, as is shown in the following code snippet:

public void addRecordi ng(String recording) throws CreateException

{
Recordi ng al bum = recordi ngHon®e. cr eat e(get BandNanme(), recording);
Col I ection recordi ngs = getRecordi ngs();
if(album!= null) {
recordi ngs. add(al bum ;
}
}

Notice that this method first creates the album, then uses the CMR get method to obtain a collection of the current
recordings of the band, and then adds the new recording to the collection. Without the last step the recording would
be created, but would not be referenced by the band.

When the Band object is deleted from the database, it might or might not make sense to cascade delete its
recordings, depending on the real-world scenario you are representing.

With respect to persistent storage of this relationship, the only possible implementation is for the CD table to have a
foreign key column holding the primary value of the concertgoer. As you might notice, the model and the actual
implementation are reversed; the EJB container again ensures that the relationship is correctly represented.

Note. WebLogic Server at present doesn't support the use of a join table to implement one-to-many
relationships.

One-to-Many, Bidirectional

In a one-to-many bidirectional relationship, object A relates to many objects B, there are references from object A
to all objects B, and each object B references object A. An example of such a relationship is between a concertgoer
and a creditcard, assuming the perspective of the concertgoer. Each concertgoer can have many credit cards, and if
a credit card is inadvertently lost, it can be returned to the owner. Notice that this is the second example of a
relationship between a concertgoer and creditcard. Above a one-to-one bidirectional relationship was defined,
assuming the perspective of the ticket counter instead of the concertgoer.

Note: Realize that one-to-many bidirectional relationships and many-to-one bidirectional relationships are
conceptually identical and are therefore listed as one type of relationship.

Here's how the @Relation annotation on the Concertgoer bean might look:

@rel ati on(rol eName = "Concertgoer HasCredit Cards",
cmField = "creditCards",
targetEjb = "CreditCard",
multiplicity = Relation.Miltiplicity. ONE,
nane = "Concertgoer-CreditCards")

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.wo...p.product.wl.doc/htmi/ejb/entity/conEntityRel ationships.html (4 of 7)1/26/2007 2:32:35 PM

Relationships in Entity Beans

abstract public class Concertgoer
extends CenericEntityBean
i npl enents EntityBean

Here's how the @Relation annotation on the CreditCard bean might look:

@Rel ation(rol eNane = "Credit CardsBel ongToConcert goer",
cnrField = "concergoer",
targetEjb = "Concertgoer",
multiplicity = Relation.Miltiplicity. MANY,
nane = "Concertgoer-CreditCards")
abstract public class CreditCard
extends CenericEntityBean
i npl ements EntityBean

The Concertgoer EJB will have a CMR field to set and get a Collection/Set of references to CreditCard objects. The
CreditCard object will have a CMR field to set and get a reference to a ConcertGoer object. Again, the bidirectionality
of this relationship is ensured by the EJB container. That is, when you set/add the reference to one of the EJBs, the
reference is automatically updated for the other EJB. As far as creating and deleting the object a CMR field
references, similar design considerations apply as discussed above.

With respect to persistent storage of this relationship, the only possible implementation is for the CreditCard table to
have a foreign key column holding the primary value of the concertgoer.

Note. WebLogic at present doesn't support the use of a join table to implement one-to-many relationships.

Many-to-One, Unidirectional

In a many-to-one unidirectional relationship, many objects A relate to one object B, there is a reference from each
object A to object B, but not the other way around. An example of such a relationship is between a concert and a
venue, assuming the perspective of a concertgoer. There are many different concerts at the same venue but the
concertgoer is probably less concerned to know the concerts given the venue. However, if the latter is a business
requirement, you will model this as a one-to-many (venue-to-concerts) bidirectional relationship.

Here's how the @Relation annotation on the Venue bean might look:

@Rel ati on(rol eNane = "VenueHost sConcerts",
targetEjb = "Concert",
multiplicity = Relation.Miltiplicity. ONE
nane = "Venue- Concerts")

abstract public class Venue
extends CenericEntityBean
i npl enments EntityBean

Here's how the @Relation annotation on the Concert bean might look:

@rel ati on(rol eName = "ConcertsCccur At Venue",
cmrField = "venue",
targetEjb = "Venue",
multiplicity = Relation.Miltiplicity.MANY,
nane = "Venue- Concerts")

abstract public class Concert
ext ends CenericEntityBean
i mpl ements EntityBean

The Concert EJB will have a CMR field to set and get a reference to a Venue object. In contrast, the Venue object
will not have a CMR field. When a new concert is scheduled, the venue likely needs to be known at this time. In
other words, when you create a Concert object, the reference to the Venue object should be set as part of the

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.wo...p.product.wl.doc/htmi/ejb/entity/conEntityRel ationships.html (5 of 7)1/26/2007 2:32:35 PM

Relationships in Entity Beans

create procedure, as is shown in the following example:

abstract public class ConcertBean extends CenericEntityBean inplenments EntityBean

{

public Integer ejbCreate(String bandName, Venue theVenue) {
set BandNane(bandNan®) ;
return null;

}

public void ej bPost Create(String bandNanme, Venue theVenue) ({
set Venue(t heVenue) ;

}

Notice that ej bCr eat e sets the name of the performing band, while the reference to the Venue object is set in the
corresponding ej bPost Cr eat e method. References must by design always be set in the ej bPost Cr eat e method,
because the primary key(s) needed to set the reference may not be available yet until after creation of the object.

Cascade deletions will most likely not make sense for this relationship. That is, removing one concert should not
lead to the destruction of the venue, as many other concerts are scheduled for this venue.

With respect to persistent storage of this relationship, the only possible implementation is for the Concert table to
have a foreign key column holding the primary value of the venue.

Note. WebLogic at present doesn't support the use of a join table to implement one-to-many relationships.

Many-to-Many, Unidirectional

In a many-to-many unidirectional relationship, object A relates to many objects B, object B relates to many objects
A, there are references from each object A to its objects B, but not the other way around. An example of such a
relationship is between concertgoers and concerts. A concertgoer will attend many concerts, each concerts will
attract many concertgoers, given a concertgoer you might want to know the concerts he/she attended, but given a
concert you likely don't want to know the particular concertgoers that were attending it.

Here's how the @Relation annotation on the Concertgoer bean might look:

@Rel ati on(rol eNane = "ConcertgoerAttendsConcerts",
cmField = "concerts",
targetEjb = "Concert",
multiplicity = Relation.Miltiplicity. MANY,
nane = "Concertgoer-Concerts")

abstract public class Concertgoer
extends CenericEntityBean
i npl enments EntityBean

Here's how the @Relation annotation on the Concert bean might look:

@=el ati on(rol eName = " Concert sHaveManyConcert goers",
targetEjb = "Concertgoer",
multiplicity = Relation.Miltiplicity. MANY,
nane = "Concertgoer-Concerts")
abstract public class Concert
extends Generi cEntityBean
i mpl ements EntityBean

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.wo...p.product.wl.doc/htmi/ejb/entity/conEntityRel ationships.html (6 of 7)1/26/2007 2:32:35 PM

Relationships in Entity Beans

The Concertgoers EJB will have a CMR field to set and get a collection/set of references to Concert objects. In
contrast, the Concert object will not have a CMR field. As far as manipulating the CMR field, and creating and
deleting the objects the CMR field references, similar design considerations apply as discussed above. Cascade
deletions typically do not make sense for many-to-many relationships.

With respect to persistent storage of this relationship, a join table is used. Each record in a join table has two
foreign-key columns, one holding the primary key value of a concertgoer and the other holding the primary key
value of the concert (again assuming that both EJBs are defined to have one unique primary key field).

Many-to-Many, Bidirectional

In a many-to-many bidirectional relationship, object A relates to many objects B, object B relates to many objects
A, there are references from each object A to its objects B as well as references from each object B to its objects A.
An example of such a relationship is between a passenger and a flight. A passenger can take multiple flights, a flight
is typically booked by multiple passengers, given a passenger you want to know the flights, and for a flight you want
to know exactly which passengers should be on the airplane.

Here's how the @Relation annotation on the Passenger bean might look:

@=el ati on(rol eName = "PassengersTakeFl i ghts",
cnmField = "flights",
targetEjb = "Flight",
multiplicity = Relation.Miltiplicity. MANY,
nane = "Paesengers-Flights")

abstract public class Passenger
extends Generi cEntityBean
i mpl ements EntityBean

Here's how the @Relation annotation on the Flight bean might look:

@rel ati on(rol eName = "Fl i ght sHaveManyPassengers",

cnrField = "passengers",

targetEjb = "Passenger",

multiplicity = Relation.Miltiplicity. MANY,
name = "Passengers-Flights")

abstract public class Flight
ext ends Generi cEntityBean
i mpl ements EntityBean

The Passenger EJB will have a CMR field to set and get a collection/set of references to Flight objects. The Flight EJB
will have a CMR field to set and get a collection/set of references to Passenger objects. As far as manipulating the
CMR field, and creating and deleting the objects the CMR field references, similar design considerations apply as
discussed above. In this particular example it is possible that a passenger books a flight for several passengers at
the same time. You can use the Collection/Set's addAl | method to add multiple references. Also notice that

bidirectionality is again assured by the EJB container, and that cascade deletions typically do not make sense for
many-to-many relationships.

With respect to persistent storage of this relationship, a join table is used. Each record in a join table has two
foreign-key columns, one holding the primary key value of a concertgoer and the other holding the primary key
value of the concert (again assuming that both EJBs are defined to have one unique primary key field).

Related Topics

@Relation Annotation

file:///F)/depot/dev/src/workshop/product/plugins/com.bea.wo...p.product.wl.doc/htmi/ejb/entity/conEntityRel ationships.html (7 of 7)1/26/2007 2:32:35 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Relation

Query Methods and EJB QL

Query Methods and EJB QL

Workshop for WebLogic supports annotations through which you can more easily add find and select methods to
your entity beans. You may already have used these annotations through the EJBGen tool provided with WebLogic
Server. This topic provides an introduction to find and select methods and EJB QL. For more complete
documentation on the annotations, see the EJBGen Reference.

You define find and select methods for CMP (2.0) entity beans using EJB QL. This query language, similar to SQL
used in relational databases, is used to select one or more entity EJBs or entity bean fields. The WebLogic platform
fully supports EJB QL 2.0 and offers a number of additional methods that can be used in conjunction with EJB QL.

Without the EJBGen annotations, you would typically specify these query methods through a combination of
method declarations and the bean’s deployment descriptor. Through values you specify in the annotations,
Workshop for WebLogic updates the descriptor for you and generates the needed method declarations in bean
interfaces.

Note. The EJB QL is used for all query methods, with the exception of fi ndByPri mar yKey, which is
automatically generated by the EJB container.

The topics in this section are:

Specifying Find Methods

. Specifying Select Methods

. Standard EJB QL Operators

Specifying Find Methods

A find method is invoked by other EJBs or client applications on a CMP entity bean's local or remote home interface,
and returns local or remote references to one or more instances of this entity bean that match the query. A find
method can return a reference to a single entity instance, such as fi ndByPri mar yKey, or to multiple entity

instances returned as aj ava. util. Col | ecti on. Find methods must start with the prefix fi nd.

In Workshop for WebLogic, you specify a find method by using the @Finder annotation on the class declaration.
You collect multiple find methods within an @Finders annotation. Through the @Finder annotation's attributes you
indicate query method features. Basic features include the query language to use (EJB QL or WebLogic QL), which
interfaces the method should be declared in (local or remote home), and the method's Java signature.

The following example illustrates two find methods declared within an | t emsBean_F entity bean. Both use EJB QL
and both will appear within the bean’'s local home interface.

@i nders({
@i nder (ej bQ = "SELECT OBJECT(0) fromlItensBean_F as o " +
"WHERE o.itemanme = ?1",
gener at eOn = Fi nder. Gener at eOn. LOCAL,
signature = "Collection findByltenNanme(java.lang.String itemane)"),
@i nder (ej bQ = "SELECT OBJECT(i) from ManufacturerBean_F as o, " +
"IN(o.itens) AS i WHERE o.usManufacturer = 1",
gener at eOn = Fi nder. Gener at eOn. LOCAL,
signature = "Collection findByUSManufacturer()")

})

Note: For more information on the @Finder annotation, see weblogic.ejbgen.Finder in the EJBGen

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea...oduct.wl.doc/html/ejb/entity/conQueryM ethodsandEIBQL .html (1 of 7)1/26/2007 2:32:36 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Finder

Query Methods and EJB QL

Reference.
In the IDE, you can view and set annotation values using the Annotations view. To do this, follow these basic steps:
1. With your bean source code visible, place your cursor in the bean class declaration.
public abstract class Itemstan_F extends GenericEntityEBean |
= [CmpField {colwmn = "ITEMNUMBEER"™, primkeyField = Constants.Bool.TRUE)

ALocalMethod)
public abhstract Integer getltemnumber () :

2. In the Annotations view, scroll to where the Finders annotation is listed, right-click it, then click Add
Annotation.

E B . ¥ =0

ItemsBean_F - Class Declaration
Property | Yalue |
valueClass TRUE
valueClassMarne Item¥0
- Finder
cachingMarne
cormment
ejbql
generateCn
groupMame
id
includeldpdates
isolationLevel
maxElements
signature
sql=electDistinct
transactionAttribute
wehlogicEjb gl
= W_-_
value | 1= 2OPY
IndiNam
local
rernot [
Messagell
destin.
name =
provid =
Messagelestinationfer
rmessagelestinationLin

— Ll Ll -

%2

Note that the @Finders annotation is written to your source code.

3. With your cursor in the class declaration or the new @Finders annotation, in Annotations view right-click
Finders, then click Add Member weblogic.ejbgen.Finder.

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea...oduct.wl.doc/html/ejb/entity/conQueryM ethodsandEIBQL .html (2 of 7)1/26/2007 2:32:36 PM

Query Methods and EJB QL

PEOIR cE D0

2 soroeie: X
temsBean_F - Class Declaration

Property

| Yalue

Ea

valueZlass
valueClassMame

TRUE
Item¥O

= Finder

cachingMare

comment

ejbdl

generateon

groupMarme

id

includellpdates

izolationLevel

rmaxElernents

signature

sqlSelectDistinct

transactionattribute

weblogicEjb gl
- Finders i
mﬂ_ﬁ
= IndiMame | =] “9PY

local

rermote
ST EIEN w Add Member weblogic, ejbgen. Finder

destinat

initialCo

name

pravider P
[Messagele < Unda

messagelDestinationLin

— L L -

B Restare Default Yalue

M Celete Property weblogic,ejbgen. Finder

45 add Annotation

The @Finder annotation is written to your source code. Note in Annotations view that all Finder attribute
values are set to their default UNSPECIFIED values.

4. In Annotations view, set Finder annotation values in the value column.

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea...oduct.wl.doc/html/ejb/entity/conQueryM ethodsandEIBQL .html (3 of 7)1/26/2007 2:32:36 PM

Query Methods and EJB QL

@ x BB X -Pdo -0
Finder - Annotation
Property | Yalue |
-1 Finder
cachingMarme UMSPECIFIED
cammment UMNSPECIFIED
ejbl SELECT OBJECT{o)...
generateon LoCAL - |
groupharne LMSPECIFIED
id
includelpdates EEH?—T._E\JH i
isolationLevel UMSPECIFIED
rmaxElerments UMSPECIFIED
signature Collection findByIt...
sglSelectDistinct UMSPECIFIED
transactionattribute UMSPECIFIED
weblogicEjbil UMNSPECIFIED

Find Method Examples

The following list shows common uses of EJB QL queries with find methods:

Selecting all. The method Col | ection findAll (), defined in the home interface of the |t ensBean_F, returns

all records in the database table:

@i nder (generateOn = Fi nder. Gener at eOn. LOCAL,
ej bQ = "SELECT OBJECT(0) fromItensBean_F as 0",
signature = "Collection findAII1()")

Notice that an EJB QL query always uses the EJB's abstract schema name | t ensBean_F to reference it. This
name is typically the same as the EJB's descriptive hame. For more details on these names, see the @Entity
Annotation. When the @Entity annotation’s abstractSchemaName attribute isn't specified, the its ejpName
attribute value will be used.

. Usiing input parameters. The method Col | ecti on findByltenmNanme(java.lang. String itemane), defined

in the home interface of the | t ensBean_F, returns all references to bean instances matching the item name:
@i nder (ej bQ = "SELECT OBJECT(0) fromltenmsBean_F as o " +

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea...oduct.wl.doc/html/ejb/entity/conQueryM ethodsandEIBQL .html (4 of 7)1/26/2007 2:32:36 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Entity
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Entity

Query Methods and EJB QL

"WHERE o.itemmanme = ?1",
generateOn = Fi nder. Gener at eOn. LOCAL,
signature = "Collection findByltenName(java.lang. String itemane)")

Notice that the method argument i t emmane is matched to input parameter ?1.

Specifying literal values. The method Col | ecti on fi ndUSManuf act urers(), defined in the home interface of
the Manuf act ur er Bean_F, returns all references to Manuf act ur er Bean_F instances who are US manufacturers:

@i nder (ej bQ = "SELECT OBJECT(0) from ManufacturerBean_F as o WHERE o. usManufacturer = 1",
generateOn = Fi nder. Gener at eOn. LOCAL,
signature = "Col |l ection findUSManufacturer()")

. Making relationship queries. A Manuf act ur er Bean_F and an |t ensBean_F are defined to have an entity
relation, such that each item has a manufacturer, and a manufacturer can produce multiple items. For each
item, the | t ensBean_F's CMR field manuf act ur er stores a unique index to a manufacturer. The method
Col I ection findAll Manuf acturers(), defined in the home interface of the Manuf act ur er Bean_F, queries the
| t emsBean_F to return the different manufacturers for all the items. It is possible that multiple items are
created by the same manufacturer, yielding multiple references to the same manufacturer in the returned

results:

@i nder (ej bQ = "SELECT OBJECT(m) fromItensBean_F as o, |IN(o.manufacturer) AS ni,
generat eOn = Fi nder. Gener at eOn. LOCAL,
signature = "Collection findAl |l Manufacturers()")

Notice that the keyword | N is used to return object references via a CMR field.

Getting unique records. A Manuf act ur er Bean_F and an | t ensBean_F are defined to have an entity relation,
such that each item has a manufacturer, and a manufacturer can produce multiple items. For each item, the

It emsBean_F's CMR field manuf act ur er stores a unique index to a manufacturer. The method Col | ecti on
findDi stinct Manuf acturer (), defined in the home interface of the Manuf act ur er Bean_F, queries the

I t emsBean_F to return the different manufacturers for all the items. It is possible that multiple items are
created by the same manufacturer, yielding multiple references to the same manufacturer, but the keyword
DI STI NCT is used to not return duplicates:

@i nder (ej bQ = "SELECT DI STI NCT OBJECT(n) fromltenmsBean_F as o, |N(o.nmanufacturer) AS ni,
generat eOn = Fi nder. Gener at eOn. LOCAL,
signature = "Col l ection findDi stinctManufacturer()")

Select Methods

A select method is defined using EJB QL and it can either return (local or remote) references to entity beans or
values of an individual CMP field. A select method is not defined in the EJB's interfaces. In other words, it is a
private method that can only be used internally by a CMP entity bean class. When returning object references, a
select method can return a reference to a single entity instance, or to multiple entity instances which are returned
asajava.util.Collectionorjava.util.Set. Select methods must start with the prefix ej bSel ect .

In Workshop for WebLogic, you specify a select method by adding the method’s declaration to your bean class,
then annotating method with the @Select annotation. As with the @Finder annotation, you use the @Select
annotation's attributes to indicate query method features, such as the language to use.

The following example shows a select method declared within an |t ensBean_S entity bean. It uses EJB QL.

@el ect (ej bQ = "SELECT OBJECT(0) fromItensBean_S as 0")
public abstract java.util.Collection ejbSelectAl() throws FinderException;

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea...oduct.wl.doc/html/ejb/entity/conQueryM ethodsandEIBQL .html (5 of 7)1/26/2007 2:32:36 PM

Query Methods and EJB QL

Note: For more information on the @Select annotation, see weblogic.ejbgen.Select in the EJBGen
Reference.

In the IDE, you can view and set @Select annotation values using the Annotations view. To do this, do as described
above for adding a find method, except that your cursor should be in a method declaration.

Select Method Examples
The following list shows common uses of EJB QL queries with select methods:

. Object References. A select method can use the same queries as find methods to return object references.
The method j ava. util.Collection ejbSelectAll (), defined in the | t emsBean_S class (but not its

interfaces), returns all records in the database table:

@el ect (ej bQ = "SELECT OBJECT(0) fromItensBean_S as 0")
public abstract java.util.Collection ejbSelectAl () throws FinderException;

. CMP Fields. The method j ava. util. Coll ecti on ej bSel ectltemNanes(), defined in the | t ensBean_S class,
returns only the item names of all items:

@el ect (ej bQ = "SELECT o.itemane fromltensBean_S as 0")
public abstract java.util.Collection ejbSel ectltenmNames()
throws Fi nder Excepti on;

Just as with a query that returns object references, a query that returns CMP fields can have input parameters,
literal values, relationship querying with the | N keyword, and the DI STI NCT keyword to avoid duplicate records.

The method j ava. util. Collection ejbSel ect ByltenNane(java.lang. String itemane), defined in the
I t emsBean_S class, returns only the item names of the items that match the argument i t etrmane:

@el ect (ej b@ = "SELECT o.itemane fromltensBean_S as o WHERE o.itemane = ?1")
public abstract java.util.Collection ejbSel ect NameByltemNane(String itemmane)
t hrows Fi nder Excepti on;

Standard EJB QL Operators

EJB QL 2.0 defines a number of standard operators. Some of these, like I N, DI STI NCT, and the use of '." as a
navigational operator (for instance, to access a EJB's CMP field) have been described above. Other operators
include:

The comparison operators <, >, <=, >=, =, and <>.
. The logical operators NOT, AND, and OR.
. The arithmetic operators +, - (unary); *, /, +, and -.

. The arithmetic functions ABS(number) , returning the absolute value of a (i nt, doubl e, or fl oat) number, and
SQRT(double) returning the square root.

. LIKE is used for pattern matching with Stri ng fields. Use % to match with any number of characters and _ to
match with exactly one character (use \ if these characters actually occur in the pattern). For instance, the
following query will select all items whose price ends in .95:

SELECT OBJECT(0) from ItemsBean_S as o WHERE o. price LIKE ' % 95'

The St ri ng functions CONCAT(Stringl, String2) , LENGTH(String) , LOCATE(StringToFind, ContainingString [,

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea...oduct.wl.doc/html/ejb/entity/conQueryM ethodsandEIBQL .html (6 of 7)1/26/2007 2:32:36 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Select

Query Methods and EJB QL

starting position]) - equivalent to j ava. | ang. String. i ndextf -, and SUBSTRI NG String, startposition,
endposition) .

BETVEEEN specifies a range of values (inclusive). For instance, the following query returns all items between $20
and $40:

SELECT OBJECT(0) from ItemsBean as o WHERE o. pri ce BETWEEN 20. 00 AND 40. 00

. |'S NULL is used to test for null fields. CMP fields that hold an object (such as a String) and CMR fields that hold
a single object can be null, while CMP fields holding primitive values and CMR fields holding a collection of
objects cannot. For instance, the following query returns all items whose manufacturer is not known (assuming
the same entity relationship as mentioned above):

SELECT OBJECT(0) fromltensBean as o WHERE o. manufacturer IS NULL

. |'S EMPTYis used to test for empty sets, in particular CMR fields that holds a collection of objects. For example,
the following query returns all manufacturers without known items in the database:

SELECT OBJECT(0) from ManufacturerBean as o WHERE o.itens | S EMPTY

. MEMBER OF is used to evaluate whether an object is part of a collection-based relationship. For example, the
following query returns the manufacturer of a given item:

SELECT OBJECT(0) from ManufacturerBean as o, IN (o.itens) AS allltens, |tensBean oneltem
WHERE oneltemitemane = ?1 AND oneltem MEMBER CF al lltens

For more detailed information on EJB QL queries and the operators defined in this language, see the Finder and
Select Methods Samples, or your favorite J2EE documentation.

Related Topics

@Finder Annotation

@Select Annotation

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea...oduct.wl.doc/html/ejb/entity/conQueryM ethodsandEIBQL .html (7 of 7)1/26/2007 2:32:36 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Finder
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Select

Life Cycle of an Entity Bean

Life Cycle of an Entity Bean

When developing an entity bean you can take advantage of the bean’s relationship with the
container to execute logic and optimizations outside the context of the bean's core logic. As the
container creates and pools an instance, assigns data to it, executes bean methods, and eventually
removes the instance, the container provides opportunities for your code to execute. This topic
provides an overview of an entity bean’s life cycle, pointing out some of these opportunities.

The following figure shows the life cycle of an entity bean. An entity bean has the following three
states:

. Does not exist. In this state, the bean instance simply does not exist.

Pooled state . When WebLogic server is first started, several bean instances are created and
placed in the pool. A bean instance in the pooled state is not tied to particular data, that is, it
does not correspond to a record in a database table. Additional bean instances can be added to
the pool as needed, and a maximum number of instances can be set (for more information, see

the @Entity Annotation).

. Ready state. A bean instance in the ready state is tied to particular data, that is, it represents
an instance of an actual business object.

The various state transitions as well as the methods available during the various states are
discussed below.

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.w....product.wl .doc/html/ejb/entity/conEntityBeanLifeCycle.html (1 of 5)1/26/2007 2:32:36 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Entity

Life Cycle of an Entity Bean

Does Not
Exist
setEntityContext unsetEntityContext
feihSeient)

Pooled <
fincByPrimaryKey eibPassivate
ejbFind

ejbCreate ejbRemoye
ejbPostCreate remove
(“"‘-—-—-_-—J.T-F"
Ready
business =
me thod — — gjbStore

reiheeicet)

Moving from the Does Not Exist to the Pooled State

When WebLogic server creates a bean instance in the pool, it calls the callback method publ i c
voi d setEntityContext(EntityContext ctx). This method has the parameter j avax. ej b.
Enti t yCont ext , which contains a reference to the entity context; that is, the interface to the EJB

container. The entity context contains a number of methods to self-reference the entity bean
object, identify the caller of a method, and so forth. Complete details about the j avax. ej b.

EntityCont ext can be found in your favorite J2EE documentation and the API reference at http://
java.sun.com.

If you want to use the Enti t yCont ext reference in the entity bean, you must implement this

callback method and store the reference. In addition, this method is also frequently used to look
up the home interface of other beans later invoked in one of the bean's methods. The following
code sample shows both:

@.ocal Ref s({
@ocal Ref (1i nk="Recordi ng")

})

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.w....product.wl.doc/html/ejb/entity/conEntityBeanL ifeCycle.html (2 of 5)1/26/2007 2:32:36 PM

http://java.sun.com/
http://java.sun.com/

Life Cycle of an Entity Bean

abstract public class BandBean extends GenericEntityBean inplenents EntityBean

{
private EntityContext ctx;

private Recordi ngHome recordi ngHone;
public void setEntityContext(EntityContext c) {

/1l store the reference to the EntityContext
ctx = c;

/1 1ook up the hone interface of the Recordi ngBean

try {
j avax. nam ng. Context ic = new Initial Context();

recordi ngHome = (Recordi ngHone)i c. | ookup("j ava:/conp/ env/ej b/ Recordi ng");

}
catch(Exception e) {

Systemout.println("Unable to obtain Recordi ngHonme: " + e.get Message());
}

Pooled State

When a bean instance is in the pooled state, it is not tied to any particular business object. When
in the pooled state, the methods defined in the home interface can be invoked, effectively
transitioning it from the pooled to the ready state, with the exception of ej bHone methods. When a

home method is invoked, a result that is not bean instance specific is returned to the caller, and
the bean instance remains in the pooled state. Home methods in turn often invoke ej bSel ect

methods to query bean instances.

Moving from the Pooled to the Ready State

The following methods move a bean instance from the pooled to the ready state to represent a
business object:

. €j bCreat e and ej bPost Cr eat e. When the create method is invoked on the bean's home
interface, the ej bCr eat e and ej bPost Cr eat e methods are invoked by the container. The bean

instance moves to the ready state and represents this newly created business object. After
creation, a (local or remote) reference to this object is returned to the caller, enabling the
caller to invoke business methods on this instance. The ej bPost Cr eat e method is used to set

references to other entity beans as part of the creation of a new bean instance. For more
information, see Entity Relationships.

. findByPri mar yKey. When this method is invoked on the bean's home interface with the

(compound) primary key as the parameter, the bean instance moves to the ready state and
represents the business object uniquely identified by the parameter. Also a (local or remote)
reference to this object is returned to the caller, enabling the caller to invoke business methods
on this instance.

. Find methods. When a find method is invoked on the bean's home interface, one or a set of
references to objects matching the queries are returned to the caller. In many cases the
corresponding bean instance(s) are not loaded with data and move to the ready state until at a

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.w....product.wl .doc/html/ejb/entity/conEntityBeanL ifeCycle.html (3 of 5)1/26/2007 2:32:36 PM

Life Cycle of an Entity Bean

later point when a business method is actually invoked on this object, a concept known as lazy
loading. However, you can specify eager loading, that is, tell the EJB container to load (part of)
the data and move the entity bean instance(s) to the ready state as a part of the finder
method execution.

Ready State

When a bean instance is in the ready state, it represents data for a business object. At this point
any business method, that is any component method and accessor method, can be invoked on this
object. (A component method may in turn call an ej bSel ect method.) After a business method

executes, the bean returns to the ready state to allow another business method invocation.

From the perspective of the EJB container, the execution of a component method is sandwiched
between two synchronization steps:

1. Before a business method is executed, the EJB container updates the fields of the bean
instance with the latest data from the database table to ensure that the bean instance has the
latest data. Just after the data is updated, the EJB container invokes the callback method
ej bLoad. If your entity bean needs to execute some custom logic as part of this

synchronization step, you can use implement it using this callback method.
2. The business method executes and completes.

3. The EJB container now updates the database table to ensure that it contains the latest data
from the entity bean instance. In other words, if the business method changes data values,
this synchronization step ensures these changes are stored. Just prior to updating the
database table, the EJB container invokes the callback method ej bSt or e. If your entity bean

needs to execute some custom logic as part of this synchronization step, you can implement it
using this callback method.

Because a record in a database table can be accessed by multiple bean instances at the same
time, these synchronization steps ensure that each bean instance always has the latest data.
However, in some cases these synchronization steps might be overkill and unnecessarily slow
down performance. For instance, an entity bean might be read-only, reading data that is changed
rarely if at all. In these cases one can safely bypass the synchronization steps without risking
violations to data integrity.

Moving from the Ready to the Pooled State

When a caller invokes a remove method to delete an entity bean instance and its underlying record
in the database table, the EJB container will delete the bean instance. Just prior to deleting the
instance, it will call the callback method ej bRenove. If your entity bean needs to execute some
custom logic prior to deletion, you can implement it using this callback method. After the data is
deleted, the bean instance returns to the pooled state. The bean instance is no longer tied to any
particular business object, and can be used to execute a home method or one of the methods that
will tie it to a new set of data and move it to the ready state.

For more information on how to delete an entity bean instance, see Defining an Entity Bean.

Activation and Passivation

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.w....product.wl .doc/html/ejb/entity/conEntityBeanL ifeCycle.html (4 of 5)1/26/2007 2:32:36 PM

Life Cycle of an Entity Bean

To more optimally manage resources, the EJB container might passivate a bean instance by
moving it from the ready state to the pooled state. During passivation the entity bean instance is
dissociated from the business object it represents, and becomes available to represent another set
of data. Conversely, a passivated bean might be activated, meaning that it moves from the pooled
to ready state to represent a business object.

It should be noted that the caller (a client application or another EJB) of the entity bean instance
will be unaware of passivation having taken place. The caller's reference to the entity bean
instance is still maintained and valid; that is, if the caller subsequently invokes a business method
on this entity bean instance, an instance from the pooled state will be moved to the ready state to
represent this business object.

A bean instance can be passivated when none of its business methods are invoked. Passivation
occurs after synchronization has completed, guaranteeing that the database has stored any
changes to the business object. Just prior to actual passivation, the callback method ej bPassi vat e

is invoked. If your entity bean needs to execute some custom logic prior to passivation, you can
implement it using this callback method.

When a previously passivated bean instance is activated to service business method invocation,
the callback method ej bAct i vat e is invoked. If your entity bean needs to execute some custom
logic prior to activation, you can implement it using this callback method. For instance, you might
use this callback method to reinitialize values of nonpersistent fields; that is, fields not stored in
the database. After the callback method executes and completes, the synchronization - business
method invocation - synchronization procedure described above follows as during any other
business method invocation; that is, first synchronization happens during which the latest bean
instance is updated with the latest data of the database, followed by the invocation of the ej bLoad
callback method. After this completes the business method is invoked, and when this completes,
the second synchronization happens during which the ej bSt or e callback method is invoked and

the latest bean instance data is stored to the database.

Moving from the Pooled to the Does Not Exist State

To more optimally manage resources, or when WebLogic server shuts down, the EJB container
might remove a bean instance from the pooled state to the does not exist state, allowing it to be
garbage collected. Just prior to its destruction, the callback method unset Enti t yCont ext is

invoked. If your entity bean needs to execute some cleanup prior to garbage collection, you can
implement it using this callback method.

Related Topics

Entity Relationships

file:///F|/depot/dev/src/workshop/product/pluging/com.bea.w....product.wl .doc/html/ejb/entity/conEntityBeanL ifeCycle.html (5 of 5)1/26/2007 2:32:36 PM

Developing Session Beans

Developing Session Beans

A session bean is used to model business processes or tasks for a client on the application server.
The topics listed below discuss development of session beans.

Topics Included in This Section

Getting Started with Session Beans
Provides an overview of session beans.

Defining a Session Bean
Discusses how to create a session bean in WeblLogic, what a session bean definition
minimally must contain, and provides a short introduction to the various interfaces extended/
implemented by an session bean definition.

Life Cycle of a Session Bean
Discusses the life cycle of stateful and stateless session beans.

Related Topics

Tutorial: Enterprise JavaBeans
Provides a step-by-step guide to developing Enterprise JavaBeans.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ejb/session/nav SessionBeans.html 1/26/2007 2:32:37 PM

Getting Started with Session Beans

Getting Started with Session Beans

This topic provides an overview of session bean development. It contains the following sections:

What are Session Beans?

. Stateful and Stateless

. Home and Business Interfaces

. Create Methods

. Component Methods

. Other Methods

What are Session Beans?

Session beans are used to execute business tasks for a client on the server. A session bean
typically implements a certain kind of activity, such as ordering products or signing up for
courses, and in executing the business rules typically invokes entity beans. For instance, ordering
products is likely to involve stored information about products, customers, and credit cards, while
signing up for courses is likely going to require invoking entity beans representing students and
courses.

Developing Session Beans with Workshop for WebLogic

In Workshop for WebLogic, you develop a session bean by creating a class that extends webl ogi c.
ej b. Generi cSessi onBean and implements j avax. ej b. Sessi onBean. You annotate this class with

@Session, @JndiName, and @FileGeneration annotations (and others, as needed) that specify EJB
characteristics.

You can get started easily in the IDE by using the WebLogic Session Bean template. When you
use the template, the IDE generates code such as the following:

Generi cSessi onBean subcl ass automatically generated by
Wor kshop.

* ok ¥ X kX

Pl ease conplete the ejbCreate() nethod, add all desired business

nmet hods and review the Session, Jndi Nane and Fil eGenerati on annotations to
* ensure the settings match your intended use.
*/

@bessi on(ej bNanme = "My/Sessi onBean")

@ndi Name(renote = "ej b. MySessi onBeanRenot eHone")

@il eGeneration(renoteC ass = Constants. Bool . TRUE,

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....oc/html/ejb/session/conGettingStartedWithSessionBeans.html (1 of 4)1/26/2007 2:32:37 PM

http://edocs.bea.com/wls/docs100/javadocs/weblogic/ejb/GenericSessionBean.html
http://edocs.bea.com/wls/docs100/javadocs/weblogic/ejb/GenericSessionBean.html
https://java.sun.com/javaee/5/docs/api/javax/ejb/SessionBean.html

Getting Started with Session Beans

renot eHone = Constants. Bool . TRUE,
| ocal Cl ass = Constants. Bool . FALSE,
| ocal Honme = Const ant s. Bool . FALSE)
public class MySessi onBean
ext ends Ceneri cSessi onBean
i npl enents Sessi onBean {

private static final |ong serial VersionU D = 1L;

/*
* (non-Javadoc)
*
* @ee webl ogic. ej b. Generi cSessi onBean#ej bCr eat e()
*/
public void ejbCreate() {
/1 1 MPORTANT: Add your code here

}

/1 | MPORTANT: Add busi ness net hods

Note: To use the WebLogic Session Bean template, in the Package Explorer right-click
the package that will contain the bean, select New > Other, expand EJB, then click
WebLogic Session Bean.

The code includes typical values for the commonly used class-level annotation attributes. The idea
is to provide a starting place for your own code — for you to rewrite it with your code for methods
for business logic, and so on.

Workshop for WebLogic uses these annotations to generate the interfaces and descriptor files that
are required for EJB session beans. The following sections describe these session bean pieces and
characteristics.

Stateful and Stateless

There are two types of session beans: stateful and stateless. A stateful session bean maintains
conversational state. In other words, a stateful session bean remembers the calling client
application from one method to the next. For a stateful session bean, the results produced by one
method might be co-dependent on the results of its prior methods invoked by the same client. A
stateful session bean maintains this conversation with the client until the conversation times out
or the client explicitly ends the conversation by invoking the bean's r enove method.

In contrast, a stateless session bean does not maintain any conversational state; that is, it does
not remember which client invoked one of its methods, and does not maintain an internal state
between methods. Each session bean method is independent, and the only client input is the data
passed in its parameters.

Note: When creating a new EJB, a stateless bean is created by default.

Stateful session beans are tied to a particular client for the duration of the conversation, while

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....oc/html/ejb/session/conGettingStartedWithSessionBeans.html (2 of 4)1/26/2007 2:32:37 PM

Getting Started with Session Beans

stateless session beans are only tied to a particular client for the duration of a method execution.
After method execution completes, a stateless session bean is ready to serve another client
application. Consequently, a small number of stateless session beans can be used to serve a large
number of client applications. Stateless session beans tend to be more commonly preferred over
stateful session beans for this reason. When the client application is a page flow or a
conversational web service, conversational state is remembered by the client application itself,
making it possible to use a stateless session bean while maintaining a continuous session with the
user of the client application.

In Workshop for WebLogic, you specify whether a session bean is stateful or stateless by using
the @Session annotation's type attribute.

Home and Business Interfaces

Like an entity bean, a session bean can have four different interfaces, called the local home
interface, the local business interface (or simply, the local interface), the remote home interface,
and the remote business interface (or simply, the remote interface). The local interfaces define
the bean's methods that can be used by other EJBs, EJB controls, web services and page flows
defined within the same application. That is, if you define a session bean and only plan to use it
within that application, you can use local interfaces. In contrast, the remote interfaces define the
bean's methods that be invoked by EJBs, EJB controls, web services and page flows defined in
other applications.

You can view and set the interfaces defined for a session bean through the Annotations view. With
your cursor in the bean class's declaration, scroll to where the FileGeneration annotation is listed.
The localHomeName and remoteHomeName attributes specify the local and remote interface
names. As these are set, corresponding @FileGeneration Annotation values should be visible in

your source code.

A session bean's (remote or local) home interface contains the cr eat e methods used to obtain a

reference to the bean instance. Its (remote or local) business interface contains the component
methods that are used to encapsulate a particular piece of business logic.

Create Methods

For a stateless session bean, you must define exactly one ej bCr eat e() method with no

parameters. This method must be invoked to obtain to a reference to a session bean instance.
Once you have obtained a reference, you can invoke the session bean's component methods. If
you call a stateless session bean via an EJB control, you do not need to call the cr eat e method

explicitly; the EJB control will create a reference for you when you call a component method.

A stateful session bean must have at least one ej bCr eat e method and, like entity beans, can
have multiple ej bCr eat e methods. One of these methods must be invoked to obtain a reference

to the session bean instance before you can invoke the session bean's component methods. If you
call a stateful session bean via an EJB control, you must first call (one of) its cr eat e methods to

obtain a reference.

Unlike stateless session beans, when you can call a stateful session bean's cr eat e method to

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....oc/html/ejb/session/conGettingStartedWithSessionBeans.html (3 of 4)1/26/2007 2:32:37 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Session
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#FileGeneration
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/ejb/navEJBControl.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/ejb/navEJBControl.html

Getting Started with Session Beans

obtain a reference and subsequently invoke several component methods, each method is
guaranteed to be handled by the same bean instance on the server. For more information, see
Life Cycle of a Session Bean.

Component Methods

Component methods are the business methods that are invoked on a session bean instance. A
simple example of a business method is r eserveTi cket s(cust omer, novi eNane, date), which

would be used to reserve tickets for a movie.

In principle there is no difference between component methods for a stateful and a stateless
session bean. However, the component methods of a stateless session bean must be passed all
the necessary data to execute business logic as parameters, while this is not necessary for the
component methods of a stateful session bean. For instance, for a stateful session bean the
component method r eserveTi cket s can be used to make ticket reservations for a movie after

the component method set Cust orer (cust oner) is called to set the customer data, set Movi e
(name) is called to make the movie selection, and set Dat e(dat e) is called to set the movie time.

For a stateless session bean, these parameters must be passed to the component method making
the actual reservations each time, as in reserveTi cket s(cust omer, novi eNane, date).

Other Methods

A session bean has several predefined methods, as well as a number of callback methods, invoked
by the EJB container during certain operations, that a session bean must implement. In WebLogic
these callback methods are by default automatically implemented. In many cases you will find it
unnecessary to use these methods. To learn more about these methods, see Defining a Session

Bean and Life Cycle of a Session Bean.

Related Topics

None.

file:///F|/depot/dev/src/workshop/product/pluginsg/com.bea....oc/html/ejb/session/conGettingStartedWithSessionBeans.html (4 of 4)1/26/2007 2:32:37 PM

Defining a Session Bean

Defining a Session Bean

This topic discusses how to create a session bean, what a session bean minimally must contain,
and provides an overview of the various interfaces extended by a session bean. This topic
contains the following sections:

. Creating a Session Bean

. Defining a Basic Session Bean

. Predefined and Callback Methods

Creating a Session Bean

The WebLogic Session Bean wizard makes it easy to start creating an session bean from scratch.
If you are designing a new session bean in a WebLogic EJB project, using the wizard will create
basic session bean code from a template. To use the wizard, in Workshop for WebLogic right-click
your WebLogic EJB project folder, point to New, then click WebLogic Session Bean.

For step-by-step information on creating new beans, see Tutorial: Building Enterprise JavaBeans.

Note: If you have existing session beans that you plan to invoke in the application, for
instance via another EJB or an EJB control, but you do not intend to change their
definitions, you can suffice by adding the EJB Jar to the application.

Defining a Basic Session Bean

The following stateless session bean's component method receives the name of a product and
returns the price when known, or a '‘product unknown' message if the product cannot be found. It
uses the Pr oduct Bean, shown in Defining an Entity Bean, to look up a product in the database

and return its price.

package nypackage;

i mport javax.ejb.*;
i mport webl ogic. ejb.*;
i mport webl ogi c. ej bgen. *;

@bessi on(ej bName = "PriceChecker")

@ndi Name(l ocal = "ejb.PriceCheckerLocal Home")

@i | eGeneration(renot eC ass = Constants. Bool . FALSE,
renot eHone = Const ants. Bool . FALSE,
| ocal C ass = Const ants. Bool . TRUE,

| ocal C assNane = "PriceCheckerLocal ",
| ocal Hone = Const ants. Bool . TRUE,
| ocal HomeNane = "Pri ceCheckerLocal Hone")

@& bLocal Ref s({
@ bLocal Ref (Iink = "Product")

file:///F|/depot/dev/src/workshop/product/pluging/com.bea....uct.wl.doc/html/ej b/session/conDevel opingA SessionBean.html (1 of 3)1/26/2007 2:32:37 PM

Defining a Session Bean

})

public class PriceCheckerBean
ext ends Generi cSessi onBean
i npl enents Sessi onBean {

private ProductHone product Hone;

public void ejbCreate() {
try {
j avax. nanmi ng. Context ic = new Initial Context();
pr oduct Horre =
(Product Hone) ic.lookup("java: conp/ env/ej b/ Product");
} catch (Nam ngException ne) {
t hrow new EJBExcepti on(ne);
}
}

@.ocal Met hod()

public String returnPrice(String product) {
Product theProduct;
i nt visitNunber;

try {
t hePr oduct = product Hone. fi ndByPri mar yKey(pr oduct) ;

} catch (FinderException fe) {
return "Product not known";

}

return "The price of this product is " + theProduct.getPrice();

The @Session annotation contains the actual name of the session bean. For stateful session beans
this annotation will contain the attribute t ype = Sessi on. Sessi onType. STATEFUL. In the

ej bCr eat e method a reference to the Product entity bean's local home interface is obtained. The
JNDI reference Product used in the | ookup method to look up the Product bean, is mapped to
this bean’'s local interface using an @EjbLocalRef annotation, which is defined at the top of the

Pri ceChecker bean class definition. To learn more about JNDI naming, consult your favorite J2EE
documentation or go to http://java.sun.com.

The method r et ur nPri ce implements the business logic for this class. It finds a particular product

using the Product bean and returns its price. If the product cannot be found in the database, it
returns a Product not known message instead.

In Workshop for WebLogic, all the information needed to make a session bean is stored in a single
file, instead of separate JAVA files for the bean class, the local business interface, the local home

interface, and so forth. When you build a session bean, these classes are auto-generated. Various
ej bgen annotations are used to hold the information required to make this generation possible.

Specifically, the @FileGeneration annotation specifies the names of the local home and business
interface for the Pri ceChecker bean, and the @LocalMethod annotation on the component
method specifies that the method should be defined in the local business interface.

file:///F|/depot/dev/src/workshop/product/pluging/com.bea....uct.wl.doc/html/ej b/session/conDevel opingA SessionBean.html (2 of 3)1/26/2007 2:32:37 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Session
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#EjbLocalRef
http://java.sun.com/
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#FileGeneration
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#LocalMethod

Defining a Session Bean
You can view the generated JAVA files in Resource view. In that view, expand the .apt_src folder
to view folders corresponding to your source packages. You'll find the generated files in these

folders. You can view the CLASS files compiled from the generated files (again, in Resource view)
by expanding the project's build folder.

Predefined and Callback Methods

The interfaces of session (and entity) beans extend a particular interface which contains various
useful methods. These interfaces include:

j avax. ej b. EJBLocal Obj ect , extended by the local interface
. javax.ejb. EJBLocal Hore, extended by the home interface
. javax.ejb. EJBObj ect , extended by the remote interface

. javax. ej b. EJBHone, extended by the remote home interface

For example, the interfaces contain a r enove method to remove a bean instance and, for a
stateful session bean, end the conversation. Complete details about these interfaces and the
methods they define can be found in your favorite J2EE documentation and the API reference at
http://java.sun.com.

Every session bean must implement the j avax. ej b. Sessi onBean interface. This interface defines
callback methods that are called by the EJB container at specific times. The callback methods are
set Sessi onCont ext, ej bActi vat e, ej bPassi vat e, and ej bRenove. When you define a session
bean from scratch, it will extend webl ogi c. ej b. Generi cSessi onBean, which contains empty
implementations of these callback methods. In other words, you will only need to define these
methods if you need to override the empty implementation. If you import a session bean, these
callback methods will probably be implemented directly in the bean's ej b file. For more details
about the callback methods and their role in the interaction between the session bean and the EJB
container, see Life Cycle of a Session Bean.

Related Topics

Life Cycle of a Session Bean

@FileGeneration Annotation

@LocalMethod Annotation

@Session Annotation

file:///F|/depot/dev/src/workshop/product/pluging/com.bea....uct.wl.doc/html/ej b/session/conDevel opingA SessionBean.html (3 of 3)1/26/2007 2:32:37 PM

http://java.sun.com/
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#FileGeneration
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#LocalMethod
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Session

Life Cycle of a Session Bean

Life Cycle of a Session Bean
This topic discusses the life cycle methods of session beans and contains the following sections:

. Life Cycle of a Stateless Session Bean

. Life Cycle of a Stateful Session Bean

Life Cycle of a Stateless Session Bean

The following figure shows the life cycle of a stateless session bean. A stateless session bean has
two states:

. Does not exist. In this state, the bean instance simply does not exist.

. Ready state. When WebLogic Server is first started, several bean instances are created and
placed in the Ready pool. More instances might be created by the container as needed by the
EJB container.

The various state transitions as well as the methods available during the various states are
discussed below.

Does Not
Exist

setSessionContext

ejbRemove
ejbCreate

Ready

business
me thod

Moving from the Does Not Exist to the Ready State

When the EJB container creates a stateless session bean instance to be placed in the ready pool, it

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oduct.wl.doc/html/ej b/session/conSessionBeanL ifeCycle.html (1 of 4)1/26/2007 2:32:38 PM

Life Cycle of a Session Bean

calls the callback method publ i ¢ voi d set Sessi onCont ext (Sessi onCont ext ct x). This method
has the parameter j avax. e] b. Sessi onCont ext , which contains a reference to the session context,

that is, the interface to the EJB container, and can be used to self-reference the session bean
object. Complete details about the j avax. ej b. Sessi onCont ext can be found in your favorite J2EE

documentation and the API reference at http://java.sun.com.

After the callback method set Sessi onCont ext is called, the EJB container calls the callback
method ej bCr eat e. You can implement this callback method to, for instance, obtain the home
interfaces of other EJBs invoked by the session bean, as shown in Defining a Session Bean. The

ej bCr eat e method is only called once during the lifetime of a session bean, and is not tied to the
calling of the cr eat e method by a client application. For a stateless session bean, calling the

cr eat e method returns a reference to a bean instance already in the ready pool; it does not create

a new bean instance. The management of stateless session bean instances is fully done by the EJB
container.

Ready State

When a bean instance is in the ready state, it can service client requests; that is, execute
component methods. When a client invokes a business method, the EJB container assigns an
available bean instance to execute the business method. Once execution has finished, the session
bean instance is ready to execute another business method.

Moving from the Ready to the Does Not Exist State

When the EJB container decides to reduce the number of session bean instances in the ready pool,
it makes the bean instance ready for garbage collection. Just prior to doing this, it calls the
callback method ej bRenpve. If your session bean needs to execute some cleanup action prior to

garbage collection, you can implement it using this callback method. The callback method is not
tied to the r enrove method invoked by a client. For a stateless session bean, calling the r enove

method invalidates the reference to the bean instance already in the ready pool, but it does not
move a bean instance from the ready to the does not exist state, as the management of stateless
session bean instances is fully done by the EJB container.

Life Cycle of a Stateful Session Bean

The following figure shows the life cycle of a stateful session bean. It has the following states:

. Does not exist. In this state, the bean instance simply does not exist.

. Ready state. A bean instance in the ready state is tied to particular client and engaged in a
conversation.

. Passive state. A bean instance in the passive state is passivated to conserve resource.

The various state transitions as well as the methods available during the various states are
discussed below.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oduct.wl.doc/html/ej b/session/conSessionBeanL ifeCycle.html (2 of 4)1/26/2007 2:32:38 PM

http://java.sun.com/

Life Cycle of a Session Bean

Does Not
Exist

setSessionContext)

ejbRemove |
ejbCreate fimneot

ejbAc ivate
4
Ready > Passive

business . .
me thod ejbPassivate

Moving from the Does Not Exist to the Ready State

When a client invokes a cr eat e method on a stateful session bean, the EJB container creates a
new instance and invokes the callback method publ i ¢ voi d set Sessi onCont ext
(Sessi onCont ext ct x) . This method has the parameter j avax. ej b. Sessi onCont ext , which

contains a reference to the session context, that is, the interface to the EJB container, and can be
used to self-reference the session bean object. Complete details about the | avax. ej b.

Sessi onCont ext can be found in your favorite J2EE documentation and the API reference at http://
java.sun.com. After the callback method set Sessi onCont ext is called, the EJB container calls the
callback method ej bCr eat e that matches the signature of the cr eat e method.

The Ready State

A stateful bean instance in the ready state is tied to a particular client for the duration of their
conversation. During this conversation the instance can the execute component methods invoked
by the client.

Activation and Passivation

To more optimally manage resources, the EJB container might passivate an inactive stateful
session bean instance by moving it from the ready state to the passive state. When a session bean
instance is passivated, its (non-transient) data is serialized and written to disk, after which the the
bean instance is purged from memory. Just prior to serialization, the callback method

ej bPassi vat e is invoked. If your session bean needs to execute some custom logic prior to

passivation, you can implement it using this callback method.

If after passivation a client application continues the conversation by invoking a business method,

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oduct.wl.doc/html/ej b/session/conSessionBeanL ifeCycle.html (3 of 4)1/26/2007 2:32:38 PM

http://java.sun.com/
http://java.sun.com/

Life Cycle of a Session Bean

the passivated bean instance is reactivated; its data stored on disk is used to restore the bean
instance state. Right after the state has been restored, the callback method ej bActi vat e is

invoked. If your session bean needs to execute some custom logic after activation, you can
implement it using this callback method. The caller (a client application or another EJB) of the
session bean instance will be unaware of passivation (and reactivation) having taken place.

If a stateful session bean is set up to use the NRU (not recently used) cache-type algorithm, the

session bean can time out while in passivated state. When this happens, it moves to the does not
exist state; that is, it is removed. Prior to removal the EJB container will call the callback method
ej bRenmove. If a stateful session bean is set up to use the LRU (least recently used) algorithm, it

cannot time out while in passivated state. Instead this session bean is always moved from the
ready state to the passivated state when it times out.

The exact timeout can be set using the i dl eTi neout Seconds attribute on the @Session
annotation. The cache-type algorithm can be set using the cacheType attribute on the same
annotation.

Moving from the Ready to the Does Not Exist State

When a client application invokes a r enobve method on the stateful session bean, it terminates the

conversation and tells the EJB container to remove the instance. Just prior to deleting the instance,
the EJB container will call the callback method ej bRenove. If your session bean needs to execute

some custom logic prior to deletion, you can implement it using this callback method.

An inactive stateful session bean that is set up to use the NRU (not recently used) cache-type

algorithm can time out, which moves it to the does not exist state, that is, it is removed. Prior to
removal the EJB container will call the callback method ej bRenove. If a stateful session bean set

up to use the LRU (least recently used) algorithm times out, it always moves to the passivated
state, and is not removed.

The exact timeout can be set using the i dl eTi neout Seconds attribute on the @Session

annotation. The cache-type algorithm can be set using the cacheType attribute on the same
annotation.

Related Topics

Life Cycle of an Entity Bean

@Session Annotation

file:///F|/depot/dev/src/workshop/product/plugins/com.bea....oduct.wl.doc/html/ej b/session/conSessionBeanL ifeCycle.html (4 of 4)1/26/2007 2:32:38 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Session
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#Session

Developing Message-Driven Beans

Developing Message-Driven Beans

An message-driven EJB is used to receive and process asynchronous messages using JMS.
Message-driven EJBs are never directly invoked by other EJBs. However, they in turn can invoke
methods of session and entity beans and send JMS messages to be processed by other message-
driven EJBs. The topics listed below discuss development of message-driven beans.

Topics Included in This Section

Getting Started with Message-Driven Beans
This topic introduces message-driven bean development.

Processing JMS Messages
This topic discusses how message-driven beans can be used to process JMS messages.

Related Topics

None.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.wor...duct.wl.doc/html/ejb/messagedriven/navM essageDrivenBeans.html 1/26/2007 2:32:38 PM

Getting Started with Message-Driven Beans

Getting Started with Message-Driven Beans

This topic provides an overview of message-driven bean development. It contains the following
sections:

What Are Message-Driven Beans?

. Asynchronous and Concurrent Processing

. Topics and Queues

. Life Cycle of a Message-Driven Bean

What are Message-Driven Beans?

Message-driven beans are server-side objects used only to process JMS messages. These beans
are stateless, in that each method invocation is independent from the next. Unlike session and
entity beans, message-driven beans are not invoked by other beans or client applications. Instead
a message-driven bean responds to a JMS message.

Because message-driven beans are not invoked by other EJBs or clients, these beans do not have
interfaces. For each message-driven bean a single method, onMessage, is defined to process a JMS
message. Although message-driven beans cannot be invoked by other EJBs, they can in turn
invoke other EJBs. Also, message-driven beans can send JMS messages. As with the other types of
EJBs, the EJB container is responsible for managing the bean environment, including making
enough instances available for processing and message-acknowledgement.

Developing Message-Driven Beans in Workshop for WebLogic

In Workshop for WebLogic, you develop a message-driven bean by creating a class that extends
weblogic.ejb.GenericMessageDrivenBean and implements javax.ejb.MessageDrivenBean and javax.
jms.MessageListener. You annotate this class with an @MessageDriven annotation that specifies
EJB characteristics.

You can get started easily in the IDE by using the WebLogic Message-Driven Bean template. When
you use the template, the IDE generates code such as the following:

*

Generi cMessageDri venBean subcl ass automati cal ly generated by
Wor kshop.

/

* Ok ok ok F

Pl ease conpl ete the onMessage() nethod and review the MessageDriven
* annotation to ensure it matches your intended use.
*/
@kssageDriven(ej bName = "MyMessageDri venBean",
desti nati onJndi Nanme = "M/MessageDri venBeanJndi Nane",
destinationType = "javax.] ns. Queue")

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/ej b/messagedriven/conGettingStartedWithM DBs.html (1 of 5)1/26/2007 2:32:38 PM

Getting Started with Message-Driven Beans

public class MyMessageDri venBean
ext ends Generi cMessageDri venBean
i npl enents MessageDri venBean, MessagelLi stener {

private static final |ong serial VersionU D = 1L;

/*
* (non-Javadoc)

*

* @ee javax.] ns. Messageli st ener #onMessage(j avax. j ns. Message)
*/
public void onMessage(Message nsg) {
/1 1 MPORTANT: Add your code here
}

Note: To use the WebLogic Message Driven Bean template, in the Package Explorer right-
click the package that will contain the bean, select New > Other, expand EJB, then click
WebLogic Message Driven Bean.

Through the @MessageDriven annotation, you specify the type and JNDI name for the JMS
destination with which the message-driven bean interacts. For more on destinations, see Topics

and Queues below.

Asynchronous and Concurrent Processing

A core feature of message-driven beans is the notion of asynchronous processing. A client
application can send a JMS message to execute a certain business task. After the message has
been sent, the client application can continue right away and does not have to wait for the JMS
message to be received and processed. This is especially helpful when the business task is
complex, requires the use of entity (and session) beans, and takes a long time to complete. In
contrast, if the same client application were to use a session bean to execute a certain business
task, it would have to wait until the session bean method completed and returned control to the
client application. The message facade design pattern formalizes this use of message-driven beans
as an intermediary between client applications and entity beans to achieve asynchrony.

Another important feature of message-driven beans is that JMS messages are processed
concurrently. That is, although each bean instance handles a message at a time, the EJB container
takes care of creating enough bean instances to handle the message load at a given moment. In
WebLogic you can set the initial number and max number of bean instances created by the
container. For more information, see the @MessageDriven Annotation.

Because message-driven beans are stateless and processing of JIMS messages occurs in an
asynchronous message, there is no guarantee that messages are processed in the order they were
sent. Therefore, sending multiple messages such that one message is dependent on the successful
processing of another message might cause unexpected results. Instead, you should reconsider
the granularity of your business task such that one message can initiate its execution, possibly by
handling one piece of the task, and then sending a JMS message to be processed by another
message-driven bean for the remainder of the business task.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/ej b/messagedriven/conGettingStartedWithM DBs.html (2 of 5)1/26/2007 2:32:38 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#MessageDriven
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#MessageDriven

Getting Started with Message-Driven Beans

Topics and Queues

A message-driven bean listens to a particular channel, or destination, for IMS messages. There are
two types of channels, namely topics and queues. Topics implement the publish-and-subscribe
messaging model, in which a given message can be received by many different subscribers, that
is, many different message-driven bean classes (not instances) listening to the same topic. In
contrast, queues implement the point-to-point messaging model, in which a given message is
received by exactly one message-driven bean class, even when multiple classes are listening to
this queue.

You specify the destination type (topic or queue) and JndiName with attributes of the
@MessageDriven annotation.

Life Cycle of a Message-Driven Bean

The EJB container is responsible for creating a pool of message-driven bean instances. When it
creates an instance, it calls the set MessageDri venCont ext () and the ej bCreat e() methods. At

this point the message-driven bean is ready to receive messages. When a bean instance is
processing a JMS message, its onMessage method is being invoked. When the EJB container

removes a bean instance, it first calls the ej bRenove method before the instance is ready for
garbage collection. The life cycle of a message-driven bean is depicted in the following figure.

Does Not
Ezist
setMess ageDrivenContext
ejbRemove
ejbCreate
Reacdy
onMessage

When defining a message-driven bean in WebLogic, in most cases you will implement the
onMessage method to execute a particular business task, and use the ej bCr eat e method to

implement actions that only need to be executed once, such as looking up the home interfaces of
entity beans that are invoked by the message-driven bean's onMessage method. A typical example

of simple message-driven bean is given below. Notice that the ej bCr eat e method is used to find

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/ej b/messagedriven/conGettingStartedWithM DBs.html (3 of 5)1/26/2007 2:32:38 PM

Getting Started with Message-Driven Beans

the home interface of a Recording entity bean, while the onMessage method processes the
message and invokes the Recording bean:

@&j bLocal Ref s({
@&j bLocal Ref (1 i nk = "Recordi ng") })
@kessageDriven(ej bName = "Statistics",
destinationJndi Name = "j nms. EJBTut ori al Sanpl eJnsQ',
destinati onType = "javax. | ms. Queue")
public class StatisticsBean
extends Generi cMessageDri venBean
i mpl ements MessageDri venBean, Messageli stener {

private static final |ong serial VersionU D = 1L;
private Recordi ngHome recordi ngHone;

public void ejbCreate() {
try {
j avax. nam ng. Context ic = new Initial Context();
recordi ngHone = (Recordi ngHone) ic
. I ookup("java:/ conp/ env/ ej b/ Recordi ng");
} catch (Nam ngException ne) {
System out. println("Encountered the follow ng nam ng exception: "
+ ne. get Message());

}

public void onMessage(Message neg) {
try {
/'l Read the nmessage
MapMessage recordi ngMsg = (MapMessage) nsg;
String bandName = recordi ngMsg. get Stri ng("bandNane");
String recordingTitle = recordi ngMsg. getString("recordingTitle");

/'l Placeholder logic for the rating
Random r andonmGener at or = new Random() ;
String rating = new I nteger(randonGenerator.nextlnt(5)).toString();

/1l Save the rating with the recording

Recordi ng al bum = recordi ngHone
. findByPri mar yKey(new Recor di ngBeanPK(bandNane,

recordingTitle));
al bum set Rati ng(rating);
} catch (Exception e) {

System out. println("Encountered the foll owi ng exception: "

+ e. get Message());

You can implement the ej bRenmove method if cleanup is required before the object is removed, and
you can implement set MessageDri venCont ext method if you need access to the j avax. ej b.
MessageDri venCont ext provided by the EJB container. The MessageDri venCont ext contains
information about the container, in particular its transaction methods; for more information, see

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/ej b/messagedriven/conGettingStartedWithM DBs.html (4 of 5)1/26/2007 2:32:38 PM

Getting Started with Message-Driven Beans

your favorite J2EE documentation. A message-driven bean defined in WebLogic by default extends
webl ogi c. ej b. Generi cMessageDri venBean, which provides empty definitions for all these

methods with the exception of the onMessage method; the definition of your bean must therefore
implement the onMessage method.

Related Topics

none.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.....doc/html/ej b/messagedriven/conGettingStartedWithM DBs.html (5 of 5)1/26/2007 2:32:38 PM

Processing IMS Messages

Processing JMS Messages

When a JMS message is sent to a topic or queue, a message-driven bean instance will interpret
and process the message, as specified in its onMessage method. When a JMS message is sent to a

topic — a publish-and-subscribe system — an instance of every message-driven bean class
listening to this topic will in principle receive and process this message. However, if the message
contains a message selector, only the message-driven bean(s) matching the message selector will
process the message. When a JMS message is sent to a queue — a point-to-point system — only
one message-driven bean will process the message, even when multiple bean classes are listening
to the queue. Again, the use of a message selector might limit the bean processing the message.

How the JMS message is processed fully depends on the business task that is being modeled. It
might range from simply logging the message to executing a range of different tasks which
include invoking methods on session and entity beans. The following code sample shows one use
of a message-driven bean. This bean responds only to JIMS messages delivered via the j ns/

Sanpl esAppMDBQ queue and contain the message selector Command = ' Del et e' . When processing
a JMS message, an instance of this bean invokes the query method fi ndAl | of the entity bean

Si npl eToken_M and subsequently deletes all records corresponding to Si npl eToken_Mfrom the
underlying database.

@j bLocal Refs({

@&j bLocal Ref (1'i nk = "Si npl eToken_M') 1})
@/kssageDri ven(defaul t Transacti on = MessageDri ven. Def aul t Transacti on.
NOT_SUPPORTED,

nessageSel ector = "Command = 'Del ete' ",
ej bName = "Del et eVi aQvD",
desti nati onJndi Name = "j ns/ Sanpl esAppMDBQ',
destinati onType = "javax. | ns. Queue")
public cl ass Del et eVi aQvDBean
ext ends Generi cMessageDri venBean
i npl enents MessageDri venBean, Messageli stener {

private static final |ong serial VersionU D = 1L;
private SinpleTokenHonme M t okenHore;

public void ejbCreate() {
try {
j avax. nanmi ng. Context ic = new Initial Context();
t okenHone = (Sinpl eTokenHonme_ M ic
.l ookup("java:/conp/ env/ej b/ Si npl eToken_M") ;
} catch (Nam ngException ne) {
Systemout. println("Encountered the foll ow ng nam ng exception: "
+ ne. get Message());

}

public void onMessage(Message nsg) {

try {
Iterator alllter = tokenHone.findAlI().iterator();

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....|.doc/html/ejb/messagedriven/conProcessingIM SM essages.html (1 of 2)1/26/2007 2:32:38 PM

Processing IMS Messages

while (alllter.hasNext()) {
((Sinpl eToken_M alllter.next()).remove();
}
} catch (Exception e) {
Systemout. println("Encountered the foll owi ng exception: "
+ e. get Message());

Acknowledgement and Transactions

When a message-driven bean instance receives a message, and it is not part of a container-
managed transaction, by default it immediately sends an acknowledgement to the JMS provider
notifying that the message has been received. This will prevent the JMS provider from attempting
to redeliver it. However, the acknowledgement only indicates that a message has been
successfully received; it does not guarantee that the message is successfully processed. For
instance, a system exception might occur when attempting to locate an entity bean or update its
records, causing the processing to fail.

If you want to ensure that a message is redelivered when processing fails, you can make the
message-driven bean be part of a transaction. The easiest approach is to use container-managed
transaction, where the EJB container is responsible for transaction management. To enable
container-managed transaction for a message-driven bean, make sure that your cursor is placed
inside the @MessageDriven annotation and use the Annotations view to set the transactionType

attribute to CONTAINER and the defaultTransaction attribute to REQUIRED. When JMS message
processing executes successfully, any changes made during this business task, such as update to
entity bean records, are committed and acknowledgement is sent to the JMS provider. However,
when JMS message processing fails due to a system exception, any changes are rolled back and
receipt is not acknowledged. In other words, after processing fails, the JMS provider will attempt
to resend the JMS message until processing is successfully or until the maximum number of
redelivery attempts specified for this topic or queue has been reached.

Note: When a message-driven bean is part of a transaction, it executes as part of its
own transaction. In other words, if the transaction fails, changes that were made as part
of the onMessage method are rolled back, but the occurrence of an exception has no

direct effect on the EJB or client application sending the JMS message, as the sender
and the message-driven bean are decoupled.

Related Topics

@MessageDriven Annotation

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea....|.doc/html/ejb/messagedriven/conProcessingIM SM essages.html (2 of 2)1/26/2007 2:32:38 PM

http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#MessageDriven
http://edocs.bea.com/wls/docs100/ejb/EJBGen_reference.html#MessageDriven

EJB Properties

EJB Properties Dialog
Use this dialog to set project-level properties for an EJB project.
How To Open This Dialog

To open this dialog, in the Package Explorer, right-click a WeblLogic EJB project and select
Properties. On the left side menu, select WeblLogic EJB.

How To Use this Dialog
Contains project-level properties for the EJB project.

EJBC Flags: see extra-ejbc-options in the WebLogic Server documentation.

Jar settings - create tables: see weblogic.ejbgen.JarSettings in the WebLogic Server
documentation.

Jar settings - EJB client jar: see weblogic.ejbgen.JarSettings in the WebLogic Server
documentation.

Jar settings - enable bean class redeploy: see weblogic.ejbgen.JarSettings in the WebLogic
Server documentation.

Jar settings - disable warning: see weblogic.ejbgen.JarSettings in the WebLogic Server
documentation.

Related Topics

none.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/ejb/ui/uiWebl ogi cEIB Properti es.html 1/26/2007 2:32:39 PM

http://e-docs.bea.com/wls/docs100/schemaref/config/http.www.bea.com.ns.weblogic.920.domain/types/servertype.extra-ejbc-options.html
http://e-docs.bea.com/wls/docs100/ejb/EJBGen_reference.html#JarSettings
http://e-docs.bea.com/wls/docs100/ejb/EJBGen_reference.html#JarSettings
http://e-docs.bea.com/wls/docs100/ejb/EJBGen_reference.html#JarSettings
http://e-docs.bea.com/wls/docs100/ejb/EJBGen_reference.html#JarSettings

	navEJB.html
	Local Disk
	Developing Enterprise JavaBeans

	conEJBsInWorkshop.html
	Local Disk
	Enterprise JavaBeans in Workshop for WebLogic

	tutEJBIntro.html
	Local Disk
	EJB Tutorial: Building Enterprise JavaBeans

	tutEJBStep1.html
	Local Disk
	EJB Tutorial: Step 1: Create a Workspace for Development

	tutEJBStep2.html
	Local Disk
	EJB Tutorial: Step 2: Create the VisitBean Entity Bean

	tutEJBStep3.html
	Local Disk
	EJB Tutorial: Step 3: Create the VisitTrackerBean Session Bean

	tutEJBStep4.html
	Local Disk
	EJB Tutorial: Step 4: Create and Start a Server on Which to Test

	tutEJBStep5.html
	Local Disk
	EJB Tutorial: Step 5: Create a Test Project

	tutEJBStep6.html
	Local Disk
	EJB Tutorial: Step 6: Write Test Source Code and Test the EJBs

	tutEJBSummary.html
	Local Disk
	Summary: Building Enterprise JavaBeans

	navEntityBeans.html
	Local Disk
	Developing Entity Beans

	conGettingStartedWithEntityBeans.html
	Local Disk
	Getting Started with Entity Beans

	conDevelopingAnEntityBean.html
	Local Disk
	Defining an Entity Bean

	conAutomaticPrimaryKeyGeneration.html
	Local Disk
	Automatic Primary Key Generation

	conEntityRelationships.html
	Local Disk
	Relationships in Entity Beans

	conQueryMethodsandEJBQL.html
	Local Disk
	Query Methods and EJB QL

	conEntityBeanLifeCycle.html
	Local Disk
	Life Cycle of an Entity Bean

	navSessionBeans.html
	Local Disk
	Developing Session Beans

	conGettingStartedWithSessionBeans.html
	Local Disk
	Getting Started with Session Beans

	conDevelopingASessionBean.html
	Local Disk
	Defining a Session Bean

	conSessionBeanLifeCycle.html
	Local Disk
	Life Cycle of a Session Bean

	navMessageDrivenBeans.html
	Local Disk
	Developing Message-Driven Beans

	conGettingStartedWithMDBs.html
	Local Disk
	Getting Started with Message-Driven Beans

	conProcessingJMSMessages.html
	Local Disk
	Processing JMS Messages

	uiWeblogicEJBProperties.html
	Local Disk
	EJB Properties

