Getting Started with Web Services

Getting Started with Web Services

A web service is a set of functions packaged into a single entity that is available to other systems
on a network. The network can be a corporate intranet or the Internet. Other systems can call
these functions to request data or perform an operation. Because they rely on basic, standard
technologies which most systems provide, they are an excellent means for connecting distributed
systems together. The standard technologies underlying web services are defined by the World

Wide Web Consortium.

Web services are a useful way to provide data to an array of consumers over the Internet, like
stock quotes and weather reports. But they take on a new power in the enterprise, where they
offer a flexible solution for integrating distributed systems, whether legacy systems or new
technology. Workshop for WebLogic makes it easy for you to build and deploy applications that
provide or access web services.

Topics Included in This

Current Release Information: Section

o W@'s New

Unﬂtadinq to 10.0

Tutorial: Web Service

Describes the basic steps for creating a
simple web service and testing it.

Useful Links:
. Tugovals Tutorial: Advanced Web Services
Demonstrates additional techniques for
Tigs*and Tricks working with web services.
Other Resources: Introduction to Web Service
. Onfine Docs Technologies
Discusses the standard technologies
D ev underlying web services.

Diﬁi}ssion Forums

Building Web Services with
De¥elopment Blogs Workshop for WebLogic

Describes the basic components of a web
service built with Workshop for WebLogic.

Using Design View to Create Web
Services

Describes how to use the web service
Design View.

Web Service Development Starting
Points

Provides an overview of the different
design scenarios: (1) starting from a
WSDL, (2) starting from an XML Schema,
and (3) starting from Java.

file:///F|/depot/dev/src/workshop/product/pluging/com.bea....t.wl.doc/html/webservices/navGettingStartedWebService.html (1 of 2)1/29/2007 10:23:02 AM

http://www.w3.org/
http://www.w3.org/
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conWhatsNew.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/upgrading/navUpgrading.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conWorkshopTutorials.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conTipsAndTricks.html
http://edocs.bea.com/more_wlworkshop.html
http://dev2dev.bea.com/workshop/
http://forums.bea.com/bea/index.jspa
http://dev2dev.bea.com/community/blogs/product.html

Getting Started with Web Services

Testing Web Services with the Test
Client

Provides an overview of testing,
debugging, and deploying a web service.

WSDL Files: Web Service
Descriptions

Discusses how WSDL files are used to
describe web service interfaces.

Web Service Dialogs

These topics explain the web service
related Ul dialogs and wizards.

Related Topics

Designing Asynchronous Interfaces

2002-2007 BEA Systems, Inc. All Rights Ressrved

file:///F|/depot/dev/src/workshop/product/pluging/com.bea....t.wl.doc/html/webservices/navGettingStartedWebService.html (2 of 2)1/29/2007 10:23:02 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/navAsynchronousInterfaces.html

Tutorial: Web Service

Tutorial: Web Service

This tutorial is subdivided into two parts. The first part shows you how to build a web service
project containing a simple web service. The second part builds on the project and web service
created in the first part by adding a simple custom control that calls methods on existing controls.

You will also learn how to use the Web Service Design View, a graphical editor for creating web
services.

Note: This tutorial requests that you create a new workspace; if you already have a
workspace open, this will restart the IDE. Before beginning, you might want to launch
help in standalone mode to avoid an interruption the restart could cause, then locate
this topic in the new browser. See Using Help in a Standalone Mode for more

information.

Part I : Simple Web Service

In the first part of the tutorial, you will use the IDE to build a web service project and a simple
web service.

These are the steps you will follow for Part | of the tutorial:

1. Create a web service project.

2. Add a web service to the project.

3. Add an operation (web method) to the web service.
4

. Test the web service.

Part Il : Web Service That Calls Methods on Provided Controls

In the second part of the tutorial, you will create a custom control that calls methods on pre-
existing controls that are provided to you. You will then add a method to your web service that
calls a method on this custom control. The result is to return data from a sample database.

These are the steps you will follow for Part Il of the tutorial:

5. Copy existing controls into the web service project created in Part I.

6. Create a new custom control called Mai | i ngLi st Control that calls methods on the imported
controls.

7. Add Mai | i ngLi st Cont r ol to the web service created in Part | and add an operation
(method) to the web service that calls a method on Mai | i ngLi st Control .

8. Test the web service.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvclntro.html (1 of 2)1/29/2007 10:23:03 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conDocRoadmap.html#standalone_help

Tutorial: Web Service

Start Workshop for WeblLogic
If you haven't started Workshop for WebLogic yet, use these steps to do so.

. On Microsoft Windows:

On the Start Menu, click All Programs > BEA Products > Workshop for
WebLogic Platform 10.0

. On Linux:

Run BEA_HOME/workshop100/workshop4WP/workshop4WP.sh

Create a New Workspace

1. In the Workspace Launcher dialog, click the Browse button.

2. In the Select Workspace Directory dialog, navigate to a directory of your choice
and click Make New Folder.

3. Name the new folder webSvcTutorial, press the Enter key and Click OK.

4. In the Workspace Launcher dialog, click OK.

Click the arrow to navigate through the tutorial:

=

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html /webservices WST utorial /tutWebSvcl ntro.html (2 of 2)1/29/2007 10:23:03 AM

Web Service Tutorial: Step 1: Create a New WebL ogic Web Service Project

Part 1 : Simple Web Service
Step 1: Create a New WeblLogic Web Service Project

In this section, you will create the project that will contain your web service. You will also create a related
Enterprise Application (EAR) project. The EAR project represents a deployed EAR file, but is not needed to run
a web service.

1. Click File = New > Project.
2. In the New Project dialog, Expand Web Services and select Web Service Project.

3. Click Next.

W New Project

Select a wizard

Creake a Web Service Project.

Wyizards:

| kvpe Filker bextk

ﬁ Jawa Project
% Java Project From Existing Ank Buildfile
1,;[:‘3 Plug-in Project
= General
= WS
= EJB
(=% J2EE
= Java
[Plug-in Development
= wWeb
= Web Services
E-J Web Service Project
[~ Examples

&8-858

[] show &ll Wizards.

4. In the New Web Service Project dialog, in the Project name box, enter Ser vi cesWb.

5. Select the Add project to an EAR check box and ensure that ServicesWebEAR is selected in the
EAR Project Name box.

file:///F|/depot/dev/srciworkshop/product/pluging/com.bea...ct.wl.doc/html/webservices/ WST utorial /tutWebSveStepl.html (1 of 2)1/29/2007 10:23:04 AM

Web Service Tutorial: Step 1: Create a New WebL ogic Web Service Project

W New Web Service Project

wWeb Service Project

Project nare: | ServicesWweh

Project conkents:
s defaulk

Targek Funkime

BEA WeblLogic w10.0

Configurations

Annotated Web Service Facets (Recommended)

EAR Membership
[“]iadd project to an EAR:

EAR Project Mame: | ServicesWebEAR.

< Back][Mexk = ” Einish!%J[Zancel

6. Click Finish

7. If the Package Explorer view is not displayed, display it by selecting Window > Show View >
Other, then selecting Java = Package Explorer and clicking OK.

Notice that the Package Explorer displays the two projects you just created — Ser vi cesWbEAR, the EAR
project, and Ser vi ces\Web, the web service project.

Click one of the following arrows to navigate through the tutorial:

e =)

file:///F|/depot/dev/srciworkshop/product/pluging/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSveStepl.html (2 of 2)1/29/2007 10:23:04 AM

Web Service Tutorial: Step 2: Add a Web Service to the Project

Step 2: Add a Web Service to the Project

In this section, you will add a simple web service to the project you created in Step 1 by first
creating a Java package and then inserting the web service into the package.

1. In the Package Explorer, expand ServicesWeb, right-click the src folder, then
select New > Package.

2. In the New Java Package dialog, in the Name box, enter servi ces and click Finish.

Notice that a package named services is now displayed under the ServicesWeb/src
directory in the Package Explorer. Physically, services is a directory.

3. Right-click the services package.
4. Click New = WebLogic Web Service.

5. In the New Web Service dialog, in the File name box, enter Mai | i ngLi st Ser vi ce.
j ava, then click Finish.

file:///F|/depot/dev/srciworkshop/product/pluging/com.bea...ct.wl.doc/html /webservices/W ST utorial /tutWebSvcStep2.html (1 of 4)1/29/2007 10:23:04 AM

Web Service Tutorial: Step 2: Add a Web Service to the Project

W New Web Service

Web Service

Zreate a new web service,

Enter or select the parent folder:

ServicesWeb/sro)services

= E Services\Weh
=)= src

= services

File name: | MailingListService.javal

The preceding steps created the new Java file Mai | i ngLi st Servi ce. j ava in the services folder.
You should now see Mai | i ngLi st Servi ce. j ava in Design View.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep2.html (2 of 4)1/29/2007 10:23:04 AM

Web Service Tutorial: Step 2: Add a Web Service to the Project

EE MailingListService.java [Designer] X = O

{} MailingListService ‘Web Service

Cesign Yiew Source Yiew

Design View gives a graphical representation of your web service, its methods, and any controls it
contains. The web service MailingListService.java has one method, named hello, and no controls.
The hello method is created by default with each new web service.

To see the underlying source code for the web service, click the Source View link at the bottom
of Design View. The source code for the web service appears as follows:

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep2.html (3 of 4)1/29/2007 10:23:04 AM

Web Service Tutorial: Step 2: Add a Web Service to the Project

MailingListService.java [Designet] N MailinglistService java X = 0O

!pac!kage Services:
import Jjavax.jws.*;

@Teh3ervice
public class MailingList3ervice |

= dWehMethod
public void hello() {
¥

Design Yiew Source Yiew

Note the use Java 5 annotations in the source code. For example, the @\¢bSer vi ce annotation

specifies that the Mai | i st Li st Servi ce class implements a web service. Java 5 annotations are
used to set properties on the web service class and its methods.

Click one of the following arrows to navigate through the tutorial:

@ -y

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep2.html (4 of 4)1/29/2007 10:23:04 AM

Web Service Tutorial: Step 3: Add a Web Method to the Web Service

Step 3: Add a Web Method to the Web Service

In this section, you'll create a simple web method (a method that can be invoked over the web) in
the web service. This operation is designed to return customer data. In a real world application,
this method would probably perform some database lookups. In this simple example, your service
will simply return the name "John Smith" to all customer enquiries.

Before you start, be sure that Workshop for WebLogic has Mai | i ngLi st Servi ce. j ava open for

editing in the Design View. To ensure that the file is open for editing, double-click on
Mai | i ngLi st Servi ce. j ava in the Package Explorer view.

1.

2.

3.

In Design View, right-click the hello method icon (either the arrows or the link text
will work) and select Edit Signature.

E& MailingListService.java [Designer] X El MailingListService.java

|@ MailingListService “Web Service

i

Edit Source

Conversation Skart

Caonversation Conkinue

In the editing area that appears, change the text from void hello() to String
getCustomers() and press Enter.

Bl *MailinglistService.java [Designer] X El *MailingLiskService. java

|@ MailingListService “Web Service
|

{: :} String getCustomers(l)

At this point, the method will be marked with red-underlining, indicating a compile
error. In the next step, you will correct that error.

In Design View, right-click the hello method icon and select Edit Source.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep3.html (1 of 3)1/29/2007 10:23:05 AM

Web Service Tutorial: Step 3: Add a Web Method to the Web Service

B *MailingListService.java [Designer] X m *MailingLiskService. java

|@ MailingListService “Web Service |
|
(———= -- |
Edit Signatur! !

Conversation Skark
Canversation Continue
Canversation Finish

4. In the method body enter the following return statement:
return "John Smth";
The final method should appears as follows:

@\ebMet hod
public String getCustoners() {
return "John Smth";

}

5. Save the file with the File > Save command or by pressing Ctrl+S.

In Source View, the class should now look like this:

package services;
i mport javax.jws.*;

@\ebServi ce
public class MilingListService {

@\ebMet hod()

public String getCustoners() {
return "John Smith";

}

In Design View, the class should look like this:

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep3.html (2 of 3)1/29/2007 10:23:05 AM

Web Service Tutorial: Step 3: Add a Web Method to the Web Service

EE MailingListService.java [Designer] X m MailingListService, java = O

{} MailingListService ‘Web Service

<: ' . > gekCustomers

Cesign Yiew Source Yiew

Click one of the following arrows to navigate through the tutorial:

@ -y

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep3.html (3 of 3)1/29/2007 10:23:05 AM

Web Service Tutoria: Step 4: Test the Web Service

Step 4: Test the Web Service

In this section, you will define and start a server and then use the server's built-in test functionality to test the web service you created in the
preceding sections.

Workshop for WebLogic creates a server as part of installation and you will use this local server for testing the application you will create through
this tutorial. You must set up the server before you can test any applications.

To Create the Server

1. In the J2EE perspective, the following views should be visible as tabs at the bottom (by default) of the IDE: Problems, Tasks, Properties,
Servers, Database Explorer, Snippets.

2. Click the Servers view tab, right-click in its window, then click New > Server.

Problems | Tasks | Properties m.atabase Explorer | Snippets

Server Skatus Skate

3. In the New Server dialog, under Select the server type, confirm that BEA Systems > BEA WebLogic Server v10.0 is selected, then
click Next.

4. In the Domain home box, ensure that the dropdown shows the domain directory as the following, where <BEA_HOME= is the location
of your BEA installation:

<BEA_HOME=>/weblogic100/samples/domains/workshop

5. Click Finish.

To Assign the Server to the EAR Project

Now you'll associate the server you just created with the EAR project. The EAR project, which contains your web service project, will be deployed to
it.

1. In the Package Explorer, right-click ServicesWebEAR, then click Properties.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl .doc/html /webservices’/WST utorial /tutWebSvcStep4.html (1 of 5)1/29/2007 10:23:05 AM

Web Service Tutoria: Step 4: Test the Web Service

2. In the Properties dialog, in the left pane, select Server. In the right pane, in the Default server box, select BEA WeblLogic Server
v10.0.

3. Click OK.

To Start the Server

. In the Servers view, right-click BEA WebLogic Server v10.0, then click Start.

Note: If you are working through this tutorial for a second time, you must remove previous, duplicate projects (modules) from the server

To Test a Web Service

A web service does not do anything unless a request is received from a client. For testing your web service, Workshop for WebLogic provides a test
client through which you can send messages to the service and review the response message. The test client runs in the IDE as an editor window.

To test the web service:

1. In the Package Explorer view, expand the services package.

2. Right-click Mai | i ngLi st Servi ce. j ava and select Run As = Run On Server.

3. In the Run On Server dialog, select the Set server as project default check box. This will reduce the number of steps in the next part
of this tutorial, as the IDE will remember your server choice.

4. Click Finish.

5. After the server starts and the application is deployed (note the status bar in the lower right corner of the IDE), the IDE displays the test
client as shown here:

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl .doc/html /webservices/WST utorial /tutWebSvcStep4.html (2 of 5)1/29/2007 10:23:05 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash

Web Service Tutoria: Step 4: Test the Web Service

MailingListService. java [Designer] m MailingListService. java Logic Test Client X =0

q}':h |http:,l',l'lu:u:alhclst:?tltll,l'wIs_utc,l'?ws|:|IUrl=http°fo3.ﬁ.°fo2F°fo2FIDcalhnst‘:‘.-“.:.S.ﬁ.?EIEI1‘=‘.-“.:.2F53rvin:es'-.-'-.-'e|:|%ZFMaiIingListService‘:‘.-“.:.SF'- v| B
P S
.r“h I WebLogic Test Client
= 16d
Choose Another WSDL http:/localhost:7001/ServicesWeb/MailingListService ?WSDL
Show Operations

Message Log

Clear Log getCustomers |

Operations

getCustomers

@l Mzjor Yersion: 10.0
Build 10: 253302
Copyright 2007 & BEL Systerns, Inc. Al rights reserved.

This web service has only one operation (getCustomers). If there were input values required by getCustomers, there would be input
fields that would allow you to specify values. Clicking the getCustomers button sends a request message to the web service.

6. Click the getCustomers button now to invoke the getCustomers method.

The test client displays the results of invoking the web service operation (including the returned value) and also the detail of the SOAP-

encoded request that was sent to the web service and the response that was received, including the string returned by the
getCustomers operation/method: "John Smith".

= MailingListService. java [Designer] m MailingListService. java # weblogic Test Client X = O

I P e | kFemc Hlae alback 700 fle k- f-allitinar sbicn dacicaccinnid=kRllnFoREe] LePuoosd 79000 1w BV SeAnn TdarmD Al s | [I
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl .doc/html /webservices/WST utorial /tutWebSvcStep4.html (3 of 5)1/29/2007 10:23:05 AM

Web Service Tutoria: Step 4: Test the Web Service
"\J—’ l‘:.l} I 1 I\.\.'—'llllllﬂ_'_'-lll (L= L UULf\'\'I_’_UL_f'—UIIV'—'L—I L LA L I|UU_|_|_’L-_"_’H_'I =114 n v vl _"I_I'_’I.F;l' ;I'ULJI\;I'_'A'_'\'_'_"H'_"_'_' I\:"_II'\UIII 1 - I r -

i
. l\ J M&bLogic Test Client

- ¥
& -
L

http://localhost:7001/ServicesWeb/MailingListService ?WSDL

Choose Another WSDL

Show Oncrations getCustomers Request Summary
Arguments: [woidd]
Message Log Returned: John Smith
= getCustomers Submitted: Thu Nov 30 140918 PST 2006
Clear Log Duration: 331 ms

getCustomers Request Detail
=7 Service Request

=g Envelope
¥minsem="http:f'schemas ¥mlsoap.orgfsoapfenelopea =

=Header xmins="http:ffschemas xmisoap.orgfsoapfenvelope i=
=eny:Bady=
=getCustomers xmins="http:fsemices" =
=fenv:Body=
=lenvErvelopes

=7 Service Response

=g Envelope
¥minsem="http:f'schemas ¥mlsoap.orgfsoapfenelopea =

=pnv:Header 1=

=eny:Bady=
=migetCustomersResponse xmins:m="hitp:fsemnices"=

=mreturn=John Smith=/m:return=
=im:getCustomersResponses
=fenv:Body=
=lenvErvelopes

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl .doc/html /webservices/WST utorial /tutWebSvcStep4.html (4 of 5)1/29/2007 10:23:05 AM

Web Service Tutoria: Step 4: Test the Web Service

@I Major Yerzion: 10.0
BEuild |0 863302
Copyright 2007 & BEL Systerns, Inc. Al rights reserved.

7. You can test your web service operation again by clicking Show Operations at the top left corner. You can also examine the
automatically generated WSDL (Web Service Description Language) file by clicking the link at the top of the Test Client page.

Click the arrow to navigate through the tutorial:

~ —

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl .doc/html /webservices/WST utorial /tutWebSvcStep4.html (5 of 5)1/29/2007 10:23:05 AM

Web Service Tutorial: Step 5: Import Controls into your Web Services Project

Part Il : Web Service That Calls Methods on Provided Controls
Step 5: Import Controls into Your Web Services Project

In this section, you will import into your web services project a group of complex control classes
that have already been created.

1. Open Windows Explorer (or your operating system's equivalent) and navigate to the
following directory

BEA HOME/workshopl100/workshop4WP/eclipse/plugins/com.bea.workshop.product.wil.
samples_1.0.0/tutorials/resources/webService/

2. Drag the controls and model folders into the IDE's Package Explorer pane and
directly onto the folder ServicesWeb/src.

3. The src folder under ServicesWeb should now have the controls and model
packages underneath it. If you expand those two packages, you should see a directory
tree like this:

i Package Explorer X —
=

o &
ServicesWweh 3

conkrals

Eﬂj CustornerControl java
E& CustornerControllmpl. java
@ CustormerDE. java
=4 model
E] Cuskomer, java
=4 services
Eg}, MailingListService.java
B JRE Svwskern Library [BEA Weblogic w1C
B, BEA WeblLogic +w10.0 [BEA \WebLogic 1
B Web App Libraries
B Enterprise Application Libraries [Service w
£ >

Click one of the following arrows to navigate through the tutorial:

o =

file:///F|/depot/dev/srciworkshop/product/plugins/com.beawor...roduct.wl.doc/html /webservices/W ST utorial /tutWebSveStep5.html 1/29/2007 10:23:06 AM

Web Service Tutorial: Step 6: Create a Custom Control

Step 6: Create a Custom Control

In this step, you will create a new custom control. You will also insert a method into the control
that calls a method on one of the controls you imported earlier.

In the Package Explorer view, right-click the ServicesWeb/src/controls folder.

2. Click New = Custom Control.
In the New Control dialog, in the Control name box, enter Mai | i ngLi st Contr ol .

j ava, then click Finish.

W New Control

Custom Control

Zreate a new Beehive Cusktam Contral,

Enter or select the parent folder:

ServicesWeb/srcfcontrols

= E Services\Web

=)= src
== controls

= model

= services

Control name: | MailingListControl. javal

| Einish[: || Cancel

Through the preceding steps, you should have created the following two Java files in

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep6.html (1 of 3)1/29/2007 10:23:06 AM

Web Service Tutorial: Step 6: Create a Custom Control

the controls folder:

o MailingListControl.java — the control interface file

o MailingListControllnpl.java — the control implementation file that implements
Mai | i ngLi st Control .| ava.

These files contain only a default framework at this point. You will add a method in the
following steps.

4. In the Package Explorer view, double-click MailingListControllmpl.java.

5. In the source editor, right-click anywhere within the source code for
MailingListControllmpl.java and click Insert > Control.

6. In the Select Control dialog, select CustomerControl - controls, then click OK.

7. Add the following import statement to support code you are about to add:
i nport nodel . Cust oner ;
8. After the variable declaration for customerControl, add the following method:

public Customer[] getLocal Customers()
{

}

return custonerControl . get CustonmersByState("CA");

9. Although you have created a new method in this class, the corresponding abstract
method definition does not yet exist in Mai | i ngLi st Control . j ava, the interface that

this class implements.

To correct this situation place the editor's cursor anywhere in the name of the method
(get Local Cust oner s) and press Ctrl+1. Select Create in super type

'‘MailingListControl® and press Enter.

@ Rename in file (Ctrl+2, R direct access)
i_reake in super kype 'MailingListConkrol

Mai | i ngLi st Control . java opens in the editor with the new method definition in
place.

10. Press Ctrl+Shift+S to save all of the edited files.

The get Local Cust oner s method on this control uses the imported controls to query a sample

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html /webservices WST utorial /tutWebSveStep6.html (2 of 3)1/29/2007 10:23:06 AM

Web Service Tutorial: Step 6: Create a Custom Control

database for all customers in a given state. In this example, we have hard-coded the state to be
California. The data returned from the database is returned to the calling method as an array of
Customer objects.

Click one of the following arrows to navigate through the tutorial:

o >

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep6.html (3 of 3)1/29/2007 10:23:06 AM

Web Service Tutorial: Step 7: Use the Control from the Web Service

Step 7: Use the Control from the Web Service
In this section, you will insert a method in the web service to call a method on the custom control.

Insert a Control

1. In the Package Explorer, double-click the web service file MailingListService.java.

2. Right-click in the Design View editor, then select New Control Reference.

B3 MailingL . [J] MailingListCantro. .. [J] MailingListContro. .. 5 = O

9

gebi_ustomers

Edit Source

Mew Wweb Method
Mew Zallback.

ontrol Reference, .,

Print...
Preferences...

Run &s L4
Debug As k
Profile As k
‘alidate

Upgrade Source File(s). ..
Team

Compare YWith

Feplace wWith

Web Services

Y vy v v

Insert 3

Design View Source View

In the Select Control dialog, note that you can choose from various existing controls, including MailingListControl,
the one you created earlier in the controls package.

3. Select MailingListControl - controls, then click OK.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep7.html (1 of 4)1/29/2007 10:23:07 AM

Web Service Tutorial: Step 7: Use the Control from the Web Service

W Select Control

&vailable Contrals:

[=l[= Existing Project Conkrols

li] CustomerZontrol - contraols

lﬂ] CustomerDE - controls

li] MailingLiskControl - controls
[=[= Existing Application Contrals

<MNo Controls Available =

== Mew System Conkral

'®| EJB Control

@l IDEC Contral

P IMS Contral

L{é Service Contral

E_J:j Timer Conkrol

@ [(04 %J[Zancel

4. Press Ctrl+Shift+S to save your work.

In Design View, the web service should look like this:

B MailinglistServic,,, X SRR A e g [J] MailingListContra. . i = 0

|{€l} MailingListService ‘Web Service

geticuskomers

getlLocalCuskomers

[Diesign View Source Wiew

The web service code in Source View should be as follows:

package services;

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...ct.wl.doc/html /webservices/WSTutorial /tutWebSvcStep7.html (2 of 4)1/29/2007 10:23:07 AM

Web Service Tutorial: Step 7: Use the Control from the Web Service

i mport javax.jws.*;
i nport org. apache. beehi ve. control s. api . bean. Control ;
i mport controls. MailingListControl;

@\ébSer vi ce
public class MailingListService {

@cControl
private MilingListControl nailingListControl;

@\bMet hod

public String getCustoners() {
return "John Smth";
}

Note that Workshop for WebLogic added the required imports for MailingListControl. It also added a variable declaration for a
control of type Mai | i ngLi st Control named nai | i ngLi st Cont r ol . Workshop for Weblogic declared mai | i ngLi st Control to be a
control by adding the @ontr ol annotation.

Call a Method on the Control

You will now add a method to the service that will call a method on mai | i ngLi st Control , the instance of Mai | i ngLi st Cont r ol
you just created.

1. In Design View, right-click the control method getlLocalCustomers and select Generate Delegate Method.

I MailnglistServic,.. X SROLE IO J] MailingListCantra... 72 = O | 5% outline 22 Anm

an outline is not awvailable

|@ MailingListService ‘Web Service

getCuskomers . n
|ﬁ mailingListConktrol & |

: —— | p—
| | Cpen Control Implementation

Cpen Control Interface

relegate Method

Fun As r
Debug As 3
Profile As k
Yalidate

Upgrade Source Fileis). ..
Team

Compate ‘With

Replace With

Weh Services

T v v v

Insert k

A corresponding method is added to the web service client interface.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep7.html (3 of 4)1/29/2007 10:23:07 AM

Web Service Tutorial: Step 7: Use the Control from the Web Service

E *MailingListSerwvi,.. m *MailingListServi. .. |I| MailingLiskConkra, .. 5 = O

|@ MailingListService ‘Web Service
gebCustamers . n i
Q—\—\—D | %/ mailingListControl A
| <:_—_> getLocalCustomers
getlocalCustomers

Design View Source Wiew

The source code for the web service class should now be as follows:

package services;

i mport javax.jws.*;

i mport org. apache. beehi ve. control s. api . bean. Control ;
i mport controls. MailingListControl;

@\ebServi ce
public class MailingListService {

@cont r ol
private MilingListControl mailingListControl;

@\ébMet hod()

public String getCustoners() {
return "John Smth";

}

@ebMet hod

publi c nodel . Customer[] getLocal Custoners() {
return nailingListControl.getlLocal Custoners();

}

The new method calls the control method get Local Cust oner s, which will return an array of Customer objects for all customers
in California in the sample database.

In the next step, we will test the new method.

Click one of the following arrows to navigate through the tutorial:

e =

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...ct.wl.doc/html/webservices/WST utorial /tutWebSvcStep7.html (4 of 4)1/29/2007 10:23:07 AM

Web Service Tutorial: Step 8: Test the Web Service

Step 8: Test the Web Service

In this section, you will start a server (or use one you already have running), then use the server's built-in test functionality to test the method you added to the
web service you created in the preceding section.

Test the Web Service Methods

Now you are ready to use the test client built into WebLogic Server to test the web service.

1. In the Package Explorer, right-click MailingListService.java and select Run As > Run On Server.
2. If the Run on Server - Define a New Server dialog box appears, click Finish.

3. The IDE displays the test client, as shown here:

"

—
MailingLiskServic. . . m MailingListServic. .. m MailingLiskContra. .. m MailingLiskContrao. .. . weblogic Test Client X 1 =0

@h | http: [flocalhost: 7001 fuils_utc/PrsdliUrl=http%34 %2 F%2Flocalhost % 3A 7001 %4 2F Services\eb % 2FMailingListService % 3FwW S0DL v| [
)} Qe
.,-i] Z WebLogic Test Client
. 11Ed T
Choose Another WSDL http:/localhost:7001/ServicesWeb/MailingListService 7ZWSDL
Show Operations .
Operations

getCustomers

Message Log

= getCustomers getCustomers |

Clear Log
getlLocalCustomers
gethcilcustnmers |
@l Major Wersion: 10.0

Euild 10: 863302
Copyright 2007 & BEA Systerns, Inc. Ml rights resarved,

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/W ST utorial /tutWebSvcStep8.html (1 of 3)1/29/2007 10:23:07 AM

Web Service Tutorial: Step 8: Test the Web Service

4. Note that this form includes test buttons for each of the two methods you created in Mai | i ngLi st Servi ce. j ava.

If you click the first one, getCustomers, you will see the string "John Smith" that the method returns.

If you click the second button, getLocalCustomers, you will see a SOAP-encoded message returned by the control and containing all the customers
the sample database has for the state of California.

MailingListServic. .. m MailingListServic. .. m MailingListConkrao, .. m MailingLiskContrao. .. # weblogic Test Client X
A= @h | htkp:) flocalhosk: 7001 fwls_ukcfcalloperation, do .
- -'-’ F.
.,Jnr 1' - - —
“hea WebLogic Test Client
[4
g Ba

Choose Another WSDL http:/localhost:7001/ServicesWeb/MailingListService ?WSDL
Show Operations
getLocalCustomers Request Summary

Arguments: [woid]
Message Log Returned: [complex type]
= getCustomers Submitted: Thu Nov 30 15:21:55 PST 2006
= getCustomers Duration: 1412 ms
= getLocalCustomers
Clear Log

getLocalCustomers Request Detail
7 Service Request

=emEnvelope xminsem="http:fschemas xmlsoap.orgisoapfeneloper=
=Header xmins="http:fschemas xmlsoap.orgisoapfenveloper =
=gny:Body=
=getLocalCustamers xmins="http:fsemnices" I=
=lenv:Body=
=fenv Ervelopes

=~ Service Response

=g Envelope ¥minsemnv="http.l'schemas xmlsoap.orglsoaplenvelopert=
=gmHeader f=
=eny:Body=
=m:.getLocalCustomersResponse xmins:m="http.I'services"=
=rm.return=

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/W ST utorial /tutWebSvcStep8.html (2 of 3)1/29/2007 10:23:07 AM

Web Service Tutorial: Step 8: Test the Web Service

sjava.Customer ¥xmins:java="java:model"=
=java.City=San Jose=fjava: City=
=java:Companyblame=ABC Systems Inc =fjava.Companytame=
=java Email=Kcottle@ABC.Com<=/java.Email=
=java Firsttflame=Karen=fjava:Firsthame=
=javald=3F=lfava:ld=
=javaLasttfame=Cottle=ijava:Lasthlame=
=java:Phone=407-538-6080=/java.Phone=
=java State=CA=ijava: State=
=java Lip=95113=ljava fip=
=ljava:Custamers
=/ return=
=lm:getLocalCustomersResponses
=lenv:Body=
=fenv Ervelopes

Click the arrow to navigate through the tutorial:

-

file:/I/F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html/webservices/WST utoria /tutWebSvcStep8.html (3 of 3)1/29/2007 10:23:07 AM

Tutorial: Advanced Web Services

Tutorial: Advanced Web Services

This tutorial demonstrates how to create a web service and insert code to access an existing
control. The tutorial then demonstrates how to generate a new web service control from a WSDL
and how to access that control from another control.

Note: This tutorial requests that you create a new workspace; if you already have a
workspace open, this will restart the IDE. Before beginning, you might want to launch
help in standalone mode to avoid an interruption the restart could cause, then locate
this topic in the new browser. See Using Help in a Standalone Mode for more

information.

The steps in the tutorial are:
1. Create a LoanApplication web service that calls the existing loan approval control.

2. Create a new credit scoring web service control that accesses the CreditScore web service;
then modify the loan approval control to use the new credit scoring control.

Control Basics

A control is simply a Java Bean that provides standardized access to a resource or to encapsulated
business logic. Controls use Java 5 metadata annotations for more convenient configuration.
Workshop for WebLogic automatically generates code and annotations to create controls and
access them. Workshop for WebLogic implements many types of controls. The easiest way to
access a web service is to create a web service control, as this tutorial will demonstrate.

A control is implemented as annotated class and interface definitions that look something like the
following (note that the annotation line precedes the class declaration line):

In the control's interface file:

@ontrol I nterface
public interface LoanApproval Contr ol

{
}

/! method decl arati ons

In the control's implementation file:

@ontrol | mpl enent ati on
public class LoanApproval Control I mpl inplenments LoanApproval Contr ol

{
}

/'l object body (nethods, etc.)

file:///F|/depot/dev/srciworkshop/product/plugins/com.be...wl.doc/html/webservices AdvW ST utorial /tutAdvWSI ntro.html (1 of 2)1/29/2007 10:23:07 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/introduction/conDocRoadmap.html#standalone_help

Tutorial: Advanced Web Services

To access a control, you declare the control like this:

@ont r ol
private LoanApproval Control | oanApproval Control ;

The declaration causes an object to be instantiated before your code runs and the control's
methods can then be called like regular object methods:

abc = | oanApproval Control . get LoanApproval (ssn, anount);

For more detailed information on controls, consult the Beehive documentation at Working with
Beehive Controls. For more information on Java 5 annotation consult http://sun.com.

Related Topics

For a discussion of how to build a custom control that accesses other controls and then access
that custom control through a web service refer to Tutorial: Web Service.

Click the arrow to navigate through the tutorial:

=

file:///F|/depot/dev/srciworkshop/product/plugins/com.be...wl.doc/html/webservices AdvW ST utorial /tutAdvWSI ntro.html (2 of 2)1/29/2007 10:23:07 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/navBeehiveControls.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/navBeehiveControls.html
http://sun.com/

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace
In this step, you will import an existing set of projects that contains the initial components of your application.

The tasks in this step are:

. Start Workshop for WebLogic and create the tutorial workspace

. Import projects into the workspace from an archive

. Review the existing projects and their contents

. Test the Web Service

To Start Workshop and Create the Tutorial Workspace

If you haven't started Workshop for WebLogic yet, use these steps to do so
...on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

1. From the Start menu, click Programs > BEA Products > Workshop for WebLogic Platform 10.0
2. When prompted for the name of your workspace, click the Browse button and create a new (empty) workspace for this tutorial.

3. When the Workshop for WebLogic window opens, check that you are in the J2EE perspective (indicated just below the toolbar at the top of the
window. If you are not in J2EE perspective, set that perspective by clicking Window > Open Perspective > Other, then selecting J2EE and

clicking OK.
4. If the Package Explorer is not displayed, display it by clicking File = Show View > Other, then selecting Java > Package Explorer and
clicking OK.
...on Linux

If you are using a Linux operating system, follow these instructions.
. Run BEA_HOME/workshop100/workshop4WP/workshop4WP.sh
When prompted for the name of your workspace, click the Browse button and create a new (empty) workspace for this tutorial.

. When the Workshop for WebLogic window opens, check that you are in the J2EE perspective (indicated just below the toolbar at the top of the
window. If you are not in J2EE perspective, set that perspective by clicking Window > Open Perspective > Other, then selecting J2EE and
clicking OK.

. If the Package Explorer is not displayed, display it by clicking File = Show View = Other, then selecting Java > Package Explorer and

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html /webservices/ AdvW ST utorial /tutAdvWSStepl.html (1 of 9)1/29/2007 10:23:08 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace
clicking OK.

To Import the Tutorial Projects into Your Workspace

Workshop for WebLogic keeps track internally of the project structure within a workspace. Simply copying folders into the workspace directory does not cause
them to appear as projects inside Workshop for WebLogic. The tutorial projects are stored in a ZIP archive file. There is no need to unzip the files, the IDE will
import the ZIP file directly.

To import these projects and their files:

1. Click File > Import.

2. In the Import dialog, expand General, click Existing Projects into Workspace, then click Next.

W Import §|

Select
Create new projects from an archive file or directory, | E - 5

Select an import source:

kype filker bexk

=I-[= General
[E, archive File
@E,:' Breakpaoints
= Existing Projects into MWarkspace
L, File System
L Preferences
= Vs
= EJE
(= J2EE
(= Plug-in Developrment
[= Team
= weh
= Cther

o o [e O R I O

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html /webservices/ AdvW ST utorial /tutAdvWSStepl.html (2 of 9)1/29/2007 10:23:08 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

3. Select the Select archive file option, then click that option's Browse button.

W import

Import Projects

Select a directory to search for existing Eclipse projects,

() Select root directory:

T

(*) Select archive File: | Browse, k
Projects:
Select all

Deselect Al

Refresh

4. Navigate to the location of the tutorial sample files, packaged as a ZIP file. This should be:

BEA_HOME/workshop100/workshop4WP/eclipse/plugins/com.bea.workshop.product.wl.samples_1.0.0/tutorials/resources/
AdvancedWSTutorial/AdvancedWSTutorial.zip

5. Click Open.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html /webservices/ AdvW ST utorial /tutAdvWSStepl.html (3 of 9)1/29/2007 10:23:08 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

Import Projects

Select a directory ko search For existing Eclipse projects,

() gelect rook direckary:

() Select archive File: STutarial\AdvancedwsTutorial.zip Browse. ..
Projects:
CreditScoreEAR. Select Al
CreditScoreit's
Loanfpp Deselect Al
LoandpprovalEAR.

Refresh

ol 1

@ Eini5h>3j[Cancel

6. Click Finish to continue. The import process will take few moments, because several projects and their contents must be imported.

To Review the Contents of Your Workspace
The import process brought two applications into your workspace:

The LoanApprovalEAR application contains the project LoanApp. That project contains controls to provide loan approvals. Inside of the LoanApp project,
there are two controls (inside LoanApp/src/controls/):

. LoansDB.java is a control that tracks loan requests. Since this is a demo application, the control creates a database the first time that it is called for
easier setup. Request information is then stored in the database.

. LoanApprovalControl.java defines the method bool ean get LoanApproval (i nt ssn, float anopunt) which returns true if the loan is approved. Note
that LoanApprovalControl has two files: an interface file that defines the class methods and an implementation file for the actual code.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html /webservices/ AdvW ST utorial /tutAdvWSStepl.html (4 of 9)1/29/2007 10:23:08 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

Inspect the code for these controls by double clicking on their names in the src folder of the LoanApp project. The source will appear in the editor window.

Note the simple logic used for loan approval: if the person (identified by SSN) does not have a loan in the database, return true (approval) and store the SSN

and loan amount. If the person already has a loan, return false (decline).

You cannot test the code for the control yet because there is no web service or page flow that instantiates and invokes it.

The CreditScoreEAR application contains the single project CreditScoreWS. Open the web service at CreditScoreWS/src/services/CreditScoreService.java by

double-clicking on the Java file.

When you open a web service in Workshop for WeblLogic, it is displayed in Design View by default. Design View gives a graphical view of a web service. The

Design View for the web service CreditScoreService.java shows that it has a single method called getCreditScore.

Web method icon. Two blue arrows

indicates this method takes
parameters and returns a value.

(% Package Explorer 572

+- B CreditScoreEAR
- [CreditScorews

] O O O o O O O

+

CH

[src

--H4 services
+- | &L CreditScoreService. j

=i, JRE Svystem Library [BES We
=i, BEA Weblaogic w39.2 [BEA Prc
=i, Web App Libraries
=i, Enterprise Application Librari
=i, WWeblogic JZEE Library [wls-o
=i, Weblogic 1ZEE Library [beet
=i, Weblogic 12EE Library [wehl
=i, Apache ¥MLBeans
== build
[= WWebZontent

+- [Loandpp
+- B¢ LoanApprovalEaR,

Click this link text to edit the source

code for the method getCreditScore.

getCreditScore

Switch between Design View
and Source \View

[esign View Source Yiew

Click the link text Source View at the bottom of Design View to view the source code for the web service.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html /webservices/ AdvW ST utorial /tutAdvWSStepl.html (5 of 9)1/29/2007 10:23:08 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

1. Expand the ¢ fdder and the
semices padkage. Then double
dids on the source file to open itin
the editor.

2. Note that the file contains a web servce
(indimted by the @WebServdce annotation)
with a single operatonfrethod
gebCreditScore (indicated by the
@awWebMethod annotation.

5] Package Explorer 23 0 creditscoreservice.java X = B
package =services:; L
+- 15 CreditScoreEAR
- CreditScoreWws
=[5 sre
-3 services
+ @,CreditScureService.java public class Creditfcore3ervice
+-=, Weblogic JZEE Library [beehive-controls-1.0] 1
+-2=4), Weblogic J2EE Library [weblogic-contrals-1.0] static final Aong serizlVersionlIh = 1L:
+-2), JRE Swstem Library [BEA WebLogic +9,.2 IRE)]
+-2), BEA Webloqic w3.2 [BEA Praducts (BEAHOME : PR
B, Web App Libraries * Returngl the credit score for a given S3M. Returns -1 if an ir
=i, Enterprise fpplication Libraries [CreditScoreEaF w7
+(= buid EWebMethod
J.r ARSI public int gecCrediti3core (int s=3n)
+ '&4 Laandpp

{

Loand Ear
+ LoanApprova if{ssn > O &£& ssn < 300000000)

return 5S500;

The getCreditScore method checks credit ratings for the individual, based on their Social Security Number (SSN), the most common identification number
used in the United States. The SSN is a 9-digit number. The credit scoring system used in this example assigns a 3-digit valuation to individuals where higher
values are better (for example, 700 is a good credit rating and 500 is not as good).

Test the Web Service

1. If this is your second time through the tutorial, you should remove previous versions of the CreditScoreEAR and LoanApprovalEAR projects
from the server before deploying the current versions. For instructions on removing previous deployed projects see Adding and Removing Projects

from the Server.

2. Test the web service by right-clicking on the file name CreditScoreService.java in the Package Explorer view and clicking Run As > Run on
Server.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html /webservices/ AdvW ST utorial /tutAdvWSStepl.html (6 of 9)1/29/2007 10:23:08 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

Define a New Server -

Choose the type of server to create

How do wou want to select the server?

(%) Manually define a new server
Server's host name: | localhost -

Select the server byvpes
Don'k see your server lisked? Click here

+- [~ Apache
=l [BE& Systems
I EE S Weblogic Server 10,0

Wigw By [vendor w

Description: BEA WeblLogic Server w10.0

Server runkime: |BEA Wehlagic v10.0 % | | Installed Runtimes. ..

[]5et server as project defaulk {do nok ask again)

3. Click Next.

4. In the Run On Server dialog, in the Domain home dropdown, select the default samples domain (BEA_HOME/weblogic100/samples/domains/
workshop).

5. Click Finish. Wait for the server to start and the application to deploy.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html /webservices/ AdvW ST utorial /tutAdvWSStepl.html (7 of 9)1/29/2007 10:23:08 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

A window will open displaying the Test Client, a special application that allows you to interact with your web service.

. weblogic Test Clisnt = 0O

Q§?‘ |http:,l',l'ln:ucalhn:ust:?DDI,l'wIs_utn:,l'?wsdILIrI=http°f.:3.ﬁ.°.-’o2F°£02Flncalhnst"a“ﬁ.ﬁ.?l:ll:l1%EFCreditSc|:|reWS%2FCreditScnreService"ﬂ:SFw v| =

oo L\ j W WebLogic Test Client

zhea
http:/localhost: 7001/ CreditScoreWS/CreditScoreService 7WSDL
Show Operations
(0] pe rations

getCreditScore

Message Log

int ssn: :
Clear Log 123456789

@l Major Version: 1000
Biuild 10 363302
Copyright 2007 & BEA Swsterns, Inc. A rights reserved.

6. You can enter values into the ssn parameter field and click on the getCreditScore button to send a value to the web service and get a response.
For example, entering the value 123456789 returns a credit score of 500 as shown below.

file:///F|/depot/dev/srciworkshop/product/pl ugins/com.bea.workshop. product.wl.doc/html/webservices/ AdvWST utorial /tutAdvWSStepl.html (8 of 9)1/29/2007 10:23:08 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

. webl ogic Test Clisnt X

= 0

&

.;_r;,{h |http:,l',l'ln:n:alhn:ust:?IZIIZII,l'wls_utc,l'calleeratiu:ln.u:h:l;jsessinnid=wR1BFW':.fCmEszELNzKMDC2jBkaBE-WELTHFchEISFGnE?jxkg?g!663 v| =3

Show Operations

‘\"“"__J Qo

Choose Another WSDL

Message Log
= getCreditScore

Clear Log

WebLogic Test Client

_—

http:/localhost:7001/CreditScoreWS/CreditScoreService ZWSDL

getCreditScore Request Summary

Arguments; int ssn: 123456789
Returned: 500

Submitted: Fri Dec 01 15:33:30 PST 2006
Duration: 431 ms

L

getCreditScore Request Detail
=~ Service Request

=g Envelope xmins em="hitpdischemas xmilsoap.orgizoapienvelopef=

=Header xmins="http:fschemas xmlsoap.orogrsoapfenveloper f=

=gy Body=

=petCreditScore xmins="http.fserices"=

255h=123456789=Is2n=

=igetCreditScore=

=fermBody=

=fer Envelope=

Click one of the following arrows to navigate through the tutorial:

-

=)

file:///F|/depot/dev/srciworkshop/product/pl ugins/com.bea.workshop. product.wl.doc/html/webservices/ AdvWST utorial /tutAdvWSStepl.html (9 of 9)1/29/2007 10:23:08 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

Advanced Web Services Tutorial: Step 2: Create a New Web Service to Access the LoanApproval
Control

You could test the loan application control through a page flow or a web service. In this step, you will create a web service that accesses the control.
The tasks in this step are:

. Create the new web service

. Access the control from the web service

. Test the web service (and the control)

To Create a New Web Service

To create a new web service:

1. Create a new package for the web service by right clicking on the LoanApp project's src folder and choosing New > Package. Set the package
name to be servi ces and click Finish.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop. product.wl.doc/html/webservicess AdvWST utorial /tutAdvWSStep2.html (1 of 8)1/29/2007 10:23:09 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

X

W New Java Package

Java Package

Create a Java package.

Bl
Rl

Creates folders corresponding ko packages,

Source Folder: | LoanApp)stc

Mame: services|

':'E';' I Einish %J [Zancel

2. Create a new web service by right clicking on the new package and choosing New = WebLogic Web Service. Set the name of the web service to
be LoanAppl i cati onServi ce and click Finish.

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop. product.wl.doc/html/webservices/ AdvWST utorial /tutAdvWSStep2.html (2 of 8)1/29/2007 10:23:09 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

X

W New Web Service

Web Service

Creake a new web service,

Enter or select the parent folder:

Loandpp,srofservices

+ E CreditScorein's
= 5 Loandpp
+-[= huild
== src
= contrals
= services

File name: | Loanapplicationservice]

@ [Einish%J[Cancel

To Access an Existing Control from a Web Service

After creating the web service, it is automatically displayed in Design View. To modify the web service to access the existing loan approval control, do the
following steps:

1. Insert the code to instantiate the current loan application control by right-clicking on the Design View editor and choosing New Control
Reference.

2. On the Select Control dialog, select LoanApprovalControl - controls and click OK.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop. product.wl.doc/html/webservices/ AdvWST utorial /tutAdvWSStep2.html (3 of 8)1/29/2007 10:23:09 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

W Select Control

Ayvailable Controls:

—|-[= Existing Project Controls

\i] LoandpprovalZonkral - contraols

|@] LoansDE - contrals
== Existing &pplication Contrals

<Mo Controls Available =

= [Mew System Control

@] EJB Contral

|@] JDBC Contral

[IMS Contral

|l Setvice Control

£41 Timer Control

@ I (8] 4 [%J[Zancel

The new control is added to the right-hand side of Design View.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop. product.wl.doc/html/webservices/ AdvWST utorial /tutAdvWSStep2.html (4 of 8)1/29/2007 10:23:09 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

E3 *LoanApplicationService. java [Designer] X

|@ LoanApplicationService ‘Web Service

hello

[esign Yiew Source View

aetloanspproyal

|
| _1] loanApprovalControl

|5|m|

Cpen Control Implementation
Cpen Control Interface

Run &s
Debug As
Profile Az
Yalidate

4. We now have a web service that:

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop. product.wl.doc/html/webservices/ AdvWST utorial /tutAdvWSStep2.html (5 of 8)1/29/2007 10:23:09 AM

3. Right-click the control method getLoanApproval and select Generate Delegate Method.

A corresponding web method is added to the web service client interface.

o Instantiates a LoanApproval control object (with the @Control annotation line and the declaration following the @Control annotation line).

Step 2: Create a New Web Service to Access the LoanApproval Control
o Defines a single web method (through the @WebMethod annotation) that uses the LoanApproval control to determine loan approvals.

5. Save the new web service with File > Save or by pressing Ctrl+S.

To Test the Web Service

Now that the web service contains an operation, you can test it. To test the web service:

1. Switch to Design View, right-click anywhere within Design View and select Run As = Run on Server.

B3 LoanapplicationService, java [Designer] X EI LoanfpplicationService. java

wel ServIiCe

PPICACION3Er¥ICE

qetLoansporoyal
| [i] loanApprovalControl

hiello
getloanép

Edit Source

Mew Web Method
Mew Callback,
Mew Contral Reference. ..

Prink...

Preferences. ..

& 1 Run on Server A AlE+Shift+, R
Debug As 3
Profile s 3 ﬁ Run...

Yalidate |

2. In the Run On Server dialog click Next.

3. On the field Domain home, click the dropdown and select the default sample domain BEA_HOME/weblogic100/samples/domains/
workshop.

4. Click Finish.

5. The test client window appears in the editors pane, showing the getLoanApproval web method.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop. product.wl.doc/html/webservices/ AdvWST utorial /tutAdvWSStep2.html (6 of 8)1/29/2007 10:23:09 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

LoanApplicationService. java [Designer] m LoanApplicationService. java . wieblogic Test Client X =0

] .;‘:}"h |http:,l',l'ln:ucalhn:ust:?IIIIZII,l'wls_utu:,l'?ws|:|ILIrI=http':‘foS.ﬁ.':‘foZF"foEFIDcthnst"foS.ﬁ.?DD1%2FLnan.ﬁ.pp%2FLDan.ﬁ.ppIicatiDnService‘:‘ﬁ:-SFWSDL v| =

oo L\ J W WebLogic Test Client

7, bea
Choose Another WSDL http://localhost:7001/LoanApp/LoanApplicationService ?WSDL
Show Operations
Dperatiuns

getLoanApproval

Message Log

int ssn:
Clear Log
float amount:
getLoanApproval |
hello
@l Major Yersion: 10.0

Euild 10: 263302
Copyright 2007 & BES Swysterns, Inc. A rights reserved.

Enter a 9-digit ssn and a loan amount and click getLoanApproval. When you have reviewed the result of running the operation, click Show
Operations to return to the main test client page so that you can run another test.

6. Enter the same ssn value and a loan amount and click getLoanApproval again. This time, the operation should return false since the person with
this ssn already has a loan.

7. Click Show Operations to return to the operations page.

8. Note that the Message Log at the left now has two entries, one for each test. You can click on an entry in the message log and the results of that
test will be displayed again.

9. You can also click on the link to the right of the Show Operations link to display the WSDL file that was generated automatically for your web
service.

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop.product.wl.doc/html /webservices/ AdvW ST utorial /tutAdvWSStep2.html (7 of 8)1/29/2007 10:23:09 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

Click one of the following arrows to navigate through the tutorial:

~ =

file:///F|/depot/dev/src/workshop/product/pl ugins/com.bea.workshop. product.wl.doc/html/webservices/ AdvWST utorial /tutAdvWSStep2.html (8 of 8)1/29/2007 10:23:09 AM

Step 3: Create a Service Control to Access the CreditScore Web Service

Advanced Web Services Tutorial: Step 3: Create a Service
Control to Access the CreditScore Web Service

In this step, you will enhance the logic of the LoanApproval control to access the CreditScore web
service. The existing logic of the LoanApproval control is:

If a loan exists for this SSN then turn down the application (return false to caller) otherwise
accept the application (return true to the caller).

We are going to expand that logic to:

If the person with this ssn already has a loan then turn down their application (return false)
otherwise check the credit score. If the credit score is < 700, turn down the application (return
false). If the credit score is 700 or higher, accept the application (return true).

To access the external web service, we will create a new web service control ("service control™) to
access the CreditScore web service. We will then modify the LoanApproval control to use the new
web service control.

To Create a Control to Access a Web Service

To create a new control we will first generate a WSDL file from a web service and then generate a
service control from the WSDL.

1. On the Package Explorer view, open the nodes CreditScoreWS = src > services,
right-click the web service CreditScoreService.java, and select Web Services >
Generate WSDL.

We will use this WSDL to automatically generate our new control.

2. To copy the WSDL file, right-click on the file CreditScoreWS/src/services/
CreditScoreService.wsdl and select Copy.

3. Right-click on the LoanApp/src/controls package and select Paste.

4. Generate a web service control by right-clicking on LoanApp/src/controls/
CreditScoreService.wsdl and selecting Web Services = Generate Service Control.

Confirm that the name for the service control is CreditScoreServiceControl.java. Click
Finish.

file:///F|/depot/dev/src/workshop/product/pluginsg/com.be...wl.doc/html/webservices AdvWST utorial /tutAdvW SStep3.html (1 of 3)1/29/2007 10:23:09 AM

Step 3: Create a Service Control to Access the CreditScore Web Service

F New Service Control

Select Service Control Extension File Location

JAax-RPC types will be used, Select the location and file name for the
Service Control Extension,

Enter or select the parent Falder:

Loandpp)stcfcontrals

= E Loanapp
+- == build
== src
= conkrols
= services

SR -HR_ editScoreSer viceConkrol S ELE)

| Finish %J | iZancel

5. In the Package Explorer view, double click the file LoanApprovalControllmpl.java to
open it in the editor.

Right click on the editor window and choose Insert = Control. Choose the new
CreditScoreServiceControl and click OK.

Code will appear that declares and instantiates the control

@cont r ol

private CreditScoreServiceControl creditScoreServiceControl;

6. Now replace the current code for getLoanApproval method of the LoanApproval
control to expand its logic and use the new web service control.

file:///F|/depot/dev/src/workshop/product/pluginsg/com.be...wl.doc/html/webservices AdvWST utorial /tutAdvW SStep3.html (2 of 3)1/29/2007 10:23:09 AM

Step 3: Create a Service Control to Access the CreditScore Web Service

publ i ¢ bool ean get LoanApproval (i nt ssn, float amount) throws SQLException

{
init();
/[l if they are already borrow ng, don't allow another | oan
i f (|l oansDB. get LoanVal ue(ssn) > 0)
return fal se;
i f(creditScoreServiceControl.getCreditScore(ssn) < 700)
return fal se;
/] otherwi se, allow the | oan.
| oansDB. i nsert Loan(ssn, anount);
return true;
}

Save your changes with File > Save.

7. Test the updated web service by right-clicking on LoanApplicationService.java in the
services package of the LoanApp project and choosing Run As = Run on Server.

Click one of the following arrows to navigate through the tutorial:

A >

file:///F|/depot/dev/src/workshop/product/pluginsg/com.be...wl.doc/html/webservices AdvWST utorial /tutAdvW SStep3.html (3 of 3)1/29/2007 10:23:09 AM

Summary: Advanced Web Services Tutorial

Summary: Advanced Web Services Tutorial

This topic lists the ideas this tutorial introduced, along with links to topics for more information.
You may also find it useful to look at the following:

. Tutorial: Getting Started describes the Workshop for WebLogic interface and discusses
navigation, common tasks and documentation resources.

. Tutorial: Web Service contains a simple example of creating a web service and a simple
custom control.

. Tutorial: Accessing a Database from a Web Application describes how to integrate database
operations into web applications using controls.

Concepts and Tasks Introduced in This Tutorial

. A control is a Java object that provides standardized access to resources or encapsulated
business logic. Controls use Java 5 metadata annotations for more convenient configuration.
Controls in Workshop for WebLogic are based on the Beehive open souce framework,
described in detail at Working with Beehive Controls.

. The easiest way to access a web service from an application is to create a control for the web
service. Workshop for WebLogic can use the WSDL file for a web service to automatically
create a control.

. Once a control has been created, you can access a web service's operations through simple

method calls. The methods exchange SOAP messages with the web service to perform the
requested operations.

Click the arrow to navigate back through the tutorial:

-

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaw....wl.doc/html/webservices/ AdvWST utorial /tutAdvW SSummary .html 1/29/2007 10:23:09 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/TutorialGettingStarted/tutGS_Intro.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webapplications/tutorial/tutWebAppIntro.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/navBeehiveControls.html

Introduction to Web Service Technologies

Introduction to Web Service Technologies

A web service makes software application resources available over networks using standard technologies. Because
web services are based on standard interfaces, they can communicate even if they are running on different operating
systems and are written in different languages. For this reason they are an excellent approach for building distributed
applications that must incorporate diverse systems over a network.

The following topic outlines the standard technologies that you use to build web services and the advanced
functionality available through asynchronous web services.

Standard Technologies

Web services are able to expose their resources in this generally accessible way because they adhere to recognized
standards. A web service:

Publicly describes its own functionality through a WSDL file
Communicates with other applications via XML messages, often formatted with SOAP

Employs a standard network protocol such as HTTP

WSDL Files

The Web Service Description Language (WSDL) is a standard XML format for describing web services. A WSDL file
describes a particular web service so that other software applications can interface with it.

WSDLs are generally publicly accessible and provide enough detail so that potential clients can figure out how to
operate the service solely from reading the WSDL file. If a web service translates English sentences into French, the
WSDL file will explain how the English sentences should be sent to the web service, and how the French translation
will be returned to the requesting client. For more information on WSDL files see WSDL Files: Web Service

Descriptions.

XML and SOAP

Extensible Markup Language (XML) messages provide a common language by which different applications can talk to
one another over a network. Most web services communicate via XML. A client sends an XML message containing a
request to the web service, and the web service responds with an XML message containing the results of the
operation. In most cases these XML messages are formatted according to SOAP syntax.

Simple Object Access Protocol (SOAP) specifies a standard format for applications to call each other's methods and
pass data to one another. The types of messages supported by a particular web service are delineated in the service's
WSDL file.

Network Protocols

Web services receive requests and send responses using widely used protocols such as HyperText Transfer Protocol
(HTTP) and Java Message Service (JMS). A web service may support more than one protocol. The protocols that a
web service supports are published in the WSDL file.

Web Service Architecture

The following illustration shows the relationship between a web service (in the center), its client software applications
(on the left), and the resources it uses, including databases, other web services, and so on (on the right). A web

file:/I/F|/depot/dev/src/workshop/product/pluginsg/com.bea....doc/html /webservi ces/conBasi cWebServiceTechnol ogies.html (1 of 3)1/29/2007 10:23:10 AM

Introduction to Web Service Technologies

service communicates with clients and resources over standard protocols such as HTTP by exchanging XML
messages. The WebLogic Server on which the web service is deployed is responsible for routing incoming XML
messages to the web service code that you write. The web service exports a WSDL file to describe its interface, which
other developers may use to write components to access the service.

Setvice expaorts inkerface
description as a WSDL file

Application Server

Other
FESOUFCES as

’ needed
{including data
sources, Enterprise
Java Beans, JM5

Web Service

SOAP-Formatted XML
| messages senk via HTTP |

components,

/ \ and so on)
Client ! N
; F

L_/J B
) 4 External
4 m pp— g web service
4 ;

¥
|

Code ko accept client request
and call on ather resources as
needed to process the request

and return a result

Asynchronous Web Services

Many business processes take more than a few moments to complete, but traditional architectures make it hard to
handle long-running tasks efficiently. Workshop for WebLogic helps you architect asynchronous web services easily
using conversations and callbacks. Conversations help manage the typical problems in asynchronous messaging,
namely correlating messages and managing some information or state between message exchanges. In an ongoing
conversation, a web service can notify a client when the results of an operation are ready using a callback.

In addition, WebLogic Sever supports the use of Java Message Service (JMS) queues as message buffers to ensure
that web service messages are not lost regardless of server load. JMS can also be used to communicate with back
end resources. For more information on using buffers see Creating Buffered Web Services in the WebLogic Server

documentation.

Two Models for Asynchronous Computing with Web Services

BEA WebLogic Platform supports two models for asynchronous web services. One model uses "callbacks"; the other
uses "asynchronous request-response”. The two models differ in the way that the web service and the client divide up
the work of coordinating the asynchronous communication.

file:/I/F|/depot/dev/src/workshop/product/pluginsg/com.bea....doc/html /webservi ces/conBasi cWebServiceTechnol ogies.html (2 of 3)1/29/2007 10:23:10 AM

http://edocs.bea.com/wls/docs100/webserv/advanced.html#buffering

Introduction to Web Service Technologies

Callbacks

On the callback model of asynchronous web services, both the web service and its client (a web service control) are
specially designed for asynchronous communication with one another. On this model, the web service is explicitly
designed to be called asynchronously, including specially annotated callback methods that send data back to the
client. Similarly the web service control is explicitly designed to listen for and receive callbacks from the web service
using specially annotated event set methods.

For more information on the callback model see Web Service Callbacks.

Asynchronous Request-Response

The asynchronous request-response model places all of the burden of asynchronous coordination on the client. On
this model the target web service does not need to be explicitly designed to be asynchronously called. The only
requirement of the target web service is that it comply with the WS-Addressing standard. The client takes on all of

the burden of coordinating the asynchronous response or failures that are later returned by the web service.

For more information on the asynchronous request-response model, see Invoking a Web Service Using Asynchronous

Request-Response.

Related Topics

Building Web Services with Workshop for WebLogic

file:/I/F|/depot/dev/src/workshop/product/pluginsg/com.bea....doc/html /webservi ces/conBasi cWebServiceTechnol ogies.html (3 of 3)1/29/2007 10:23:10 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/callback/ovwAsynchronousWebServices.html
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://edocs.bea.com/wls/docs100/webserv/advanced.html#async_req_res
http://edocs.bea.com/wls/docs100/webserv/advanced.html#async_req_res

Building Web Services with Workshop for WebL ogic

Building Web Services with Workshop for WeblLogic

You can build enterprise-class web services with Workshop for WebLogic. Web services built with
Workshop for WebLogic employ standard web service technologies: XML, SOAP, and WSDL.
Workshop for WebLogic simplifies web service development by allowing you to focus on
application logic, rather than the complex implementation details traditionally required by these
technologies.

Workshop for WebLogic also offers the web service Design View, a graphical tool for designing,
creating, and editing web services.

The following sections explain the basic concepts that you need to know about to begin building
web services with Workshop for WebLogic, and point you to more in-depth information about each.

Web Service Design View

The web service Design View gives a graphical, intuitive view of a web service and its operations.
It also makes it easy to perform complex coding and design tasks. For more information on the
Design View see Using Design View to Create Web Services.

Web Service Projects

You build web services within a web service project. A web service project corresponds to a J2EE

web application with the addition of facets to support web services. You may build multiple web
services within a single project.

For more information on applications and projects, see Applications and Projects.

The Web Service Class

The web service class is the core of your web service. It is an ordinary Java class (decorated with
the @WebService annotation) that determines how your web service behaves, often through the
use of one or more controls that contain the web service's application logic. You can think of a
web service built on Workshop for WebLogic as a Java class which communicates with the outside
world through XML messages. This documentation assumes you are familiar with Java
programming.

You design a web service in the Workshop for WebLogic integrated development environment.

Methods and Callbacks

Your web service has a public interface that clients may call over the internet. This interface is
made up of methods and callbacks. The methods that your web service exposes are called by
clients; the callbacks are methods on the client that your web service calls to send information
back to the client. These methods and callbacks are available over the internet because they are

file:///F|/depot/dev/srciworkshop/product/plugins/com.b...ervices/conBuil dingWebServiceswithwWebL ogicWorkshop.html (1 of 4)1/29/2007 10:23:10 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#webservice
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html
http://e-docs.bea.com/wls/docs100/webserv/annotations.html#WebService

Building Web Services with Workshop for WebL ogic

decorated with the @WebMethod annotation.

Within your web service code, you may also have non-public methods that are not exposed to
clients. These methods perform internal functions in your web service. These methods are not
decorated with @WebMethod.

The controls that your web service uses also expose methods and events. Your web service
functions as a client of the control, calling its methods and implementing its event handlers.

Custom Controls

You can use custom controls in your web service to implement the application logic of your web
service. Custom controls in turn use system controls to access enterprise resources such as
databases, legacy applications, and other web services. In other words, your web service interacts
with a custom control by calling its control methods and implementing event handlers for its
control events, and the custom control calls control methods and implements event handlers for
any system controls it uses.

Workshop for WebLogic provides system controls for connecting to common resources. The
system controls provided with Workshop for WebLogic are:

The service control, for calling another web service

The timer control, which notifies your web service when a specified period of time has elapsed
or when a specified absolute time has been reached

The EJB control, which provides simplified access to Enterprise Java Beans (EJBS).

The JDBC control, which provides simplified access to a relational database

The JMS control, which makes it easy to send messages via a Java Message Service (JMS)
topic or queue.

For more information about system controls, see Using System Controls. For information on
building custom controls, see Custom Controls.

Properties

Most of the elements that make up your web service-methods, callbacks, controls, and the web
service itself-have properties that you can set to specify their characteristics. You can set
properties in the Annotations view in the Workshop for WebLogic IDE. Each element of your web
service has one or more annotations, each with a set of attributes, corresponding to the element's
properties in the Annotations view. Properties are stored in your code as Java 5 annotations
(beginning with @. You can also edit annotations directly in the code editor if you wish.

file:///F|/depot/dev/srciworkshop/product/plugins/com.b...ervices/conBuil dingWebServiceswithwebL ogicWorkshop.html (2 of 4)1/29/2007 10:23:10 AM

http://e-docs.bea.com/wls/docs100/webserv/annotations.html#WebMethod
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/navSystemControlsOverview.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/custom/navCustomControls.html

Building Web Services with Workshop for WebL ogic
Conversations and Asynchronous Communication

Many processes take time to complete. When a client sends a request to a web service, if the web
service doesn't return a response right away, the client may be left waiting for it, unable to
continue other operations. Web services that you build with Workshop for WebLogic can address
this problem by relying on asynchronous communication.

When a client and web service communicate asynchronously, the web service immediately
acknowledges the client's request, then continues processing the request. The client is free to
continue performing other work. For more information on building asynchronous web services, see
Designing Asynchronous Interfaces.

A web service and its client may also participate in a conversation. The conversation keeps track
of state-related data for this exchange between client and service.The conversation correlates the
client's requests and the service's response by means of a conversation ID, a unique identifier
that is generated when the client initiates a conversation with the service.

For more information on conversations, see Creating Conversational Web Services in the
WebLogic Sever documentation and Tutorial: Creating a Web Service with Timer Control.

Starting Points for Designing a Web Service

Developers often design web services around preexisting data structures and contracts. Two
common starting points are WSDL files and XSD files.

Starting from a WSDL

When building a web service, it is often easier to build the web service implementation around an
already existing web service contract (a WSDL file). This method for creating a web service is
sometimes called "WSDL first", "contract first” or "top down" web service design.

Starting from a Schema File

Another common approach to design web services is to start with an XML schema file (an XSD
file), compile XMLBeans from the schema, and then build a web service implementation centered
on those XMLBean classes.

For more information on how Workshop for WebLogic supports both these approaches to web
service design, see Web Service Development Starting Points.

Related Topics

Designing Asynchronous Interfaces

Working with Controls

file:///F|/depot/dev/srciworkshop/product/plugins/com.b...ervices/conBuil dingWebServiceswithwWebL ogicWorkshop.html (3 of 4)1/29/2007 10:23:10 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/navAsynchronousInterfaces.html
http://edocs.bea.com/wls/docs100/webserv/advanced.html#conversations
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/timer/tutCreateSimpleTimer.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/navAsynchronousInterfaces.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/navBeehiveControls.html

Building Web Services with Workshop for WebL ogic

Creating Conversational Web Services

file:///F|/depot/dev/srciworkshop/product/plugins/com.b...ervices/conBuil dingWebServiceswithWebL ogicWorkshop.html (4 of 4)1/29/2007 10:23:10 AM

http://edocs.bea.com/wls/docs100/webserv/advanced.html#conversations

Using Design View to Create Web Services

The web service Design View gives you a graphical overview and editing environment for web services.

Design View is synchronized with the web service Source View, Annotations View, and all other views of the web service: when you make
changes in one view, the changes are reflected in all the others.

This topic describes how to use the graphical elements in Design View to create web services.

Design View Basics

The main areas of Design View are:

The Header gives the class name of the web service being shown.

The Client Interface (left side) represents the web service's methods and callbacks.

The Referenced Controls area (right side) represents the controls used by the web service.
The bottom of the view gives links for switching between Source View and Design View.

B3 Helloworld,java [Designer] X

Web Service class name

Client Interface

T

| |#| helloMessage

ol

hellaMame

hello

Referenced Controls hellaMarne

Switch between
Source View and
Design View

E1Design View Source Yiew

Client Interface

The Client Interface only shows those methods that are publicly accessible over the internet. These include the web service's "web
methods" (those methods that are annotated with @WebMethod). Other methods are visible only in Source View. (An exception to this rule
is when no methods are annotated with @WebMethod. In that case, all of the methods are displayed in Design View, because in this case all
are assumed to be web methods.)

Methods and Callbacks

Each web method is represented by one or two arrows and a label.

Q_‘—k—>@

Hovering over the arrows or label displays the method's return type, package, and class.

hello

String l:Iients.HEIIuWurId.hEIIu! !L

file:///F|/depot/dev/srciworkshop/product/plugins/com.be...uct.wl.doc/html /webservices/conWebServiceDesignView.html (1 of 7)1/29/2007 10:23:11 AM

Using Design View to Create Web Services

Holding down the Ctrl key and hovering over an element shows the corresponding source code.

hello

j@WwebMethiod
public String hellaol) §
return "Hello, World!";

Clicking the label brings you to the method's source code.

Edit the method signature by right-clicking and selecting Edit Signature.

<}_——> lString hello()

Method and Callback Icons

Method and callback icons are constructed according to the following rules:

Two arrows indicates that the client expects a return value (even if that value is voi d).

One arrow indicates the @Oneway annotation, which means that the client should not expect a return value.

Methods are depicted by two arrows where the top arrow points to the right and link text that appears to the right of the arrows.

Callbacks are depicted by two arrows where the top arrow points to the left link text that appears to the left of the arrows.

A blue-colored top arrow represents a parameter set; a blue-colored bottom arrow represents a return value.

The table below shows some of the methods and callbacks represented on the client interface.

Client Interface Method Representations

Method Type Expects Data |Returns
Parameters Data

Inbound no no

(client

invokable)

Inbound yes no

(client

invokable)

Inbound no yes

(client

invokable)

Inbound yes yes

(client

invokable)

Appearance

—
—

—

—

Source Code Example

@\ebMet hod
public void hello() {
}

@\ebMet hod
public void hello(String str) {
}

@\ebMet hod

public String hello() {
return "Hello, Wrld";

}

@\ebMet hod
public String hell oName(String str){
return "Hello, " + str + "I";

}

file:///F|/depot/dev/src/workshop/product/plugins/com.be...uct.wl.doc/html /webservices/conWebServiceDesignView.html (2 of 7)1/29/2007 10:23:11 AM

Using Design View to Create Web Services

Inbound (One no no ,:> @neway()
Way, client @\ebMet hod
expects no public void hello() {
return value) }
Inbound (One yes no — @neway()
Way, client @\ebMet hod
expects no public void hello(String str) {
return value) }
Callback no no <:—'—'_> @cal | backSer vi ce
public interface Call backSvc extends Call backl nterface {
@\bMet hod
public void call back();
}
Callback yes no <:—'—'_> @cal | backSer vi ce
public interface CallbackSvc extends Call backlnterface {
@\ebMet hod
public void callback(String str);
}
Callback no yes Q—‘—’_> @al | backServi ce
public interface Call backSvc extends Call backlnterface {
@\ebMet hod
public String call back();
}
Callback yes yes <:—‘—’_> @al | backServi ce
public interface CallbackSvc extends Call backlnterface {
@\ebMet hod
public String callback(String str);
}

Conversation Decorators
Conversation-related annotations are represented by decorator icons.

Conversation starting, continuing, and ending methods are represented by green, yellow, and red decorators, respectively.

<}:LLF:> start
<}:[I_F:> conkinueCony
—

Finish

The following table summarizes the conversation-related decorator icons.

Conversation Decorator Icons

Decorator Description Source Code

0| Indicates the method starts a @Conversation(Conversation.Phase.START)
conversation.

I Indicates the method continues a @Conversation(Conversation.Phase.CONTINUE)
conversation.

=] Indicates the method finishes a @Conversation(Conversation.Phase.FINISH)

conversation

You can set conversation properties on a method by right-clicking on the method and choosing Conversation Start, Conversation
Continue, or Conversation Finish.

For more information on conversations see Creating Conversational Web Services in the WebLogic Server documentation.

file:///F|/depot/dev/src/workshop/product/plugins/com.be...uct.wl.doc/html /webservices/conWebServiceDesignView.html (3 of 7)1/29/2007 10:23:11 AM

http://edocs.bea.com/wls/docs100/webserv/advanced.html#conversations

Using Design View to Create Web Services

Method Buffer Decorators

Method buffers are represented by the following icon:

|
<}:me> start

You can place message buffer on a method by right-clicking on the method and choosing Message Buffer or Message Buffer and

Oneway.

The following table summarizes the buffer-related decorator icons.

Buffer Decorator Icons

Decorator Description Source Code

1] Indicates a buffer is enabled on a @MessageBuffer() is present on the method
method. declaration.

ITe] Indicates a buffer is enabled at the @MessageBuffer() is present on the class declaration
class level.

For more information on message buffers see Creating Buffered Web Services in the WebLogic Server documentation.

Referenced Controls
Controls referenced by the web service are represented on the right side of Design View.

You can also add controls to the referenced controls area by dragging and dropping from the Package Explorer view.

ckage Explorer X =0 @Hellu'-.-‘-.-‘u::rld.java [Cesigrer] &4
@ | Bg "

conkrols

[

| |#| helloMessage

ol

|_TE] EventSetCDntrDIImpI.jam
|_TE] HelloMessage. java

|_TE] HelloMessagelmpl.java

@ HelloworldServiceControl. ja
@ HunZallback3erviceContral, j: onEvent

helloMame
hello

hellaMame

EF |__E] EventSetControl, java
¥
¥
¥
¥
¥
¥

@ MewsServiceControl. java

|%] HelloWorldService, wsdl . [@3

|%] HwiCallbackService, wsdl

|%] secureCalbackServeriewss
+-24, JRE Svstem Library [BEA WeblLogic «

The follow example depicts a control declaration

The following control declaration...

@ont r ol
private Hel | oMessage hel | oMessage;

...is depicted in Design View as shown below.

ol

| |#| helloMessage

hello
hiellaMarnme

onEvent

file:///F|/depot/dev/srciworkshop/product/plugins/com.be...uct.wl.doc/html/webservices/conWebServiceDesignView.html (4 of 7)1/29/2007 10:23:11 AM

http://edocs.bea.com/wls/docs100/webserv/advanced.html#buffering

Using Design View to Create Web Services
Note that the variable name helloMessage is shown in the Design View, not the Control class name.
All methods in the controls interface file are shown in Design View.
Generating Client Interface Methods

To generate a client interface method that calls a referenced control method, right-click the control method and select Generate Delegate
Method.

| %] helloMessage

ol

Open Conkrol Implementation
j Open Control Interface

The corresponding method is created in the client interface.

F: Helloworld 'Weh Service

ol

| %] helloMessage

hello

hellaMame

Event Handlers

Event handler methods in the web service are shown in Referenced Controls area. Event handlers are displayed with clickable link text.
Clicking on the link text will take you to the event handler source code in the web service.

[helloMessage

(e helo

hiellakame

Clicking the link text
takes you tothe event

handlers source anEvent @
code. jﬁ
I

Unhandled events in controls are shown in plain text.

ol

| |#]| helloMessage

LInhandled hell
events are =0
shown in plain hellaMame

text

To add an event handler to the web service, right-click on the unhandled event, and select Create Event Handler.

file:///F|/depot/dev/srciworkshop/product/plugins/com.be...uct.wl.doc/html /webservices/conWebServiceDesignView.html (5 of 7)1/29/2007 10:23:11 AM

Using Design View to Create Web Services

| |#] helloMessage

ol

onE e, | ——

hiello

hielloMarne

Open Event Set Interface

[nt Handler k

An event handler signature is added to the web service, for example:

@vent Handl er (field = "hel | oMessage", event Set = Hel | oMessage. NewEvent Set . cl ass, event Name = "onEvent")
protected void hel |l oMessage_NewEvent Set _onEvent (String nsg) {

}

Design View Palette

When the Design View is active it is accompanied by the Design View Palette.

{2} Design View Palstte X

W=} D=<ign Ele ents

= Method
<j:|:| Callback
s Control Reference
—-[3) Referenced Controls
=1 4| helloMessage
= hello
= helloblame

You can add items to the Design View by dragging and dropping items from the Design View Palette (or by double-clicking on those

same items).

You can add new control references, methods, and callbacks.

Common Tasks

Keyboard Shortcuts

Keyboard Shortcuts
Key Stroke

Shift-F10

Tab / Shift-Tab

Up and down arrow keys

Left and right arrow keys

Setting Preferences

Event

Shows context menu on selected item

Moves forwards/backwards through referenced controls and the web service class. (Note
that pressing Tab will also move focus to the Eclipse toolbar, but focus will eventually return
to the Design View elements, provided that the Tab key is pressed a sufficient number of
times.)

Cycles through the selectable elements including: individual methods, callbacks, event
handlers, referenced controls, and the entire Design View canvas.

When a referenced control is selected, the left and right arrows expand and collapse the
referenced control.

You can set Design View preferences using the Service Design Views dialog available at Windows > Prefs > Workshop > Service

file:///F|/depot/dev/src/workshop/product/plugins/com.be...uct.wl.doc/html /webservices/conWebServiceDesignView.html (6 of 7)1/29/2007 10:23:11 AM

Using Design View to Create Web Services

Design Views.

For more information on this dialog see Service Design Views Preferences.

W Preferences |:|@E]

|type filter text | Service Design Yiews =

+- General
+- Ank Sorking
+- Data * Type, then &lphabetical
+|- File: Templates ™ alphabetical
+-Help
+- InstallfUpdate ® v
+- Internet
1l-Java Automatic Interface Updates

MetlI Page Flow
+- Plug-in Development When a service or control implements or makes use of an interface defined in a
+ Run/Debug seperate file, the design view can make edits to the interface files as needed, This
o Server settiljg dete_rmine:s whether edits to the related files take place automatically or

require confirmation.

+- Team

Yalidation
+-web and XML Interface Update Behavior Always prompt First ﬂ
+- Weblogic
+- Web Services
=1 wWaorkshop

Service Design Views

+- KDoclet

Restore Defaults | apply |

O, | Zancel |

Related Topics

Designing Asynchronous Interfaces

Working with Controls

Creating Conversational Web Services

file:///F|/depot/dev/src/workshop/product/plugins/com.be...uct.wl.doc/html /webservices/conWebServiceDesignView.html (7 of 7)1/29/2007 10:23:11 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/navAsynchronousInterfaces.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/navBeehiveControls.html
http://edocs.bea.com/wls/docs100/webserv/advanced.html#conversations

Web Service Development Starting Points

Web Service Development Starting Points

This topic describes three different starting points for developing web services:

Starting from a WSDL

Starting from an XML Schema

Starting from a Java Class

Starting from a WSDL

In this approach to developing a web service, you begin by defining the WSDL file (or getting a pre-existing one). This is the
web service contract that defines how the web service communicates with clients, including the data types conveyed, the
available methods, and the protocols and message formats used. Hence, this approach to web service development is
sometimes called "contract first" or "top down" development. Note that you can only use JAX-RPC types when using this
development approach, XMLBean types are not available.

To generate a web service from a WSDL:

1.
Import the WSDL into a web service project.

In the Package Explorer or Navigator view, right-click the WSDL and select Web Services > Generate Web Service.

Two artifacts will be created: a web service implementation class and a JAR file. The web service class will contain the web
methods described by the WSDL (the publicly accessible methods and callbacks) without any method bodies. The developer
must fill in the web service's implementation details. The JAR file contains a web service interface class and types referenced
in the original WSDL and is located in the project's WEB-INF/lib directory.

For example the generated web service implementation class will resemble the following:

@\ébSer vi ce(
servi ceNanme="Mai | i ngLi st Servi ceServi ce",
t ar get Nanespace="http://servi ces",
endpoi nt | nt er f ace="nodel . Mai | i ngLi st Servi ce")
@\LHtt pTransport (cont ext Pat h="Ser vi ces\Web", servi ceUri ="Mai | i ngLi st Servi ce",
por t Name=" Mai | i ngLi st Ser vi ceSoapPort")
public class MuilingListServicelnpl inmplements MailingListService {

public MailingListServicelnpl () {

}

public java.lang. String getCustoners() {
//replace with your inmpl here
return null;

Notice that this class implements MailingListService, the interface file found in the generated JAR file.

The developer must fill in the method body for the method get Cust onmer s() .

Starting from an XML Schema

In this approach to developing a web service, you begin with an XML schema (XSD file) that defines XML data structures to

file:///F|/depot/dev/src/workshop/product/pluging/com.be....doc/html /webservices/conWebServiceDevel opmentCycle.html (1 of 3)1/29/2007 10:23:12 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#WebService

Web Service Development Starting Points

be used as parameters and return types in the web service operations. XMLBean Java types are then automatically
generated from the schema for use in your web service. This approach gives you the following benefit of a common set of
data structures for all of the web services in a project or set of projects.

Once the XMLBean types are available, web service development proceeds according to the "Start with a Java Class" method
described below.

To develop starting from an XML schema:

1.
Enable the XML beans builder facet on your web service project.

Import the schema into the project's schena directory. (The schena directory is automatically created when the builder
facet is added to the project.)

Schemas will be automatically compiled into XMLBeans, which you can use in your web service. The XMLBean types will be
automatically re-compiled whenever the schemas in the schenm directory are updated.

Note: You do not have to use the XML beans builder facet to create XMLBean types. Alternatively, you can
generate a JAR by right-clicking any XSD or WSDL in the project and selecting Web Services > Generate Types
JAR File. This will open the Types JAR File Generation Wizard, from which you can generate a JAR containing
XMLBeans. Or, if you already have a JAR containing the XMLBean types, you can import it into the project and use
those types in a web service. Neither of these options provide automatic updating of the XMLBean JAR when the
original schema changes.

Available XMLBean types can be seen in the Navigator view (Window > Show View > Navigator) in the directory .
xbean_src. The . xbean_src and . xbean_bi n directories contain generated files that should never be directly edited.

The following example shows one way to incorporate XMLBean types into a web service. Suppose you import the following
schema:

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" xm ns: ws="http://openuri. org/ beal/ sanpl es/ wor kshop"
t ar get Nanespace="http://openuri . org/ bea/ sanpl es/ wor kshop" el ement For nDef aul t ="qual i fi ed" >
<xs: el ement name="applicant">
<xs:conpl exType m xed="true">
<xs:choi ce m nCccurs="0" maxCccurs="1">
<xs:el ement nanme="bankrupt" type="xs:bool ean"/>
<xs:el ement name="nane_first" type="xs:string"/>
<xs:el ement nanme="nanme_| ast" type="xs:string"/>
<xs:el ement name="risk_estimte" type="xs:string"/>
<xs:el ement name="score_info" type="ws:score_infoType"/>
</ xs: choi ce>
</ xs: conpl exType>
</ xs: el ement >
<xs: conpl exType nanme="score_i nfoType" m xed="true">
<xs: choi ce m nCccurs="0" maxCccurs="1">
<xs:el ement nanme="credit_score" type="xs:short"/>
</ xs: choi ce>
</ xs: conpl exType>
</ xs: schema>

The corresponding generated XMLBean types are ApplicantDocument, ScorelnfoType, etc.

The following web service method uses the ApplicantDocument as an input parameter and performs a simple risk
assessment calculation.

@\bMet hod
public String getRi skEsti mate(Applicant Docunent appDoc) {

bool ean bankrupt = appDoc. get Appl i cant (). get Bankrupt ();
short bal anceRenmai n = appDoc. get Appl i cant (). get Bal anceRenai ni ng() ;

file:///F|/depot/dev/src/workshop/product/pluging/com.be....doc/html /webservices/conWebServiceDevel opmentCycle.html (2 of 3)1/29/2007 10:23:12 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conUsingXMLBeans.html#automatic_generation
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#WebService

Web Service Development Starting Points

if (bankrupt == true && bal anceRemain < 200)
appDoc. get Appl i cant (). set R skEstimate("hi gh");
el se
appDoc. get Applicant().set Ri skEstimate("l ow");

return appDoc. get Applicant().getRi skEstimate();

For detailed information about using XMLBeans see Using XMLBeans in the IDE.

Starting from a Java Class

In this approach, you develop a web service as a Java class. Methods become web service operations and method
parameters and return types can be simple Java Beans. The Java class is annotated to indicate what methods should be
exposed and to set other properties for the service. The following guidelines will help you utilize all of Workshop for
WebLogic's web service features.

1.

Create a new web service class (File > New > Web Service) in an appropriate package within your web service
project. To learn about Workshop for WebLogic projects, see Applications and Projects.

2. All of the following steps can be accomplished using the web service Design View, a graphical editing environment for
creating web services. For more information see Using Design View to Create Web Services.

Add the methods your web service will expose and configure each method's parameters.

Add any callbacks your web service will expose and configure each callback's parameters. To learn more about
callbacks see Web Service Callbacks.

Implement event handlers for relevant events from controls that the web service utilizes. To learn more about event
handlers see Handling Control Events and Handling Web Service Callback Messages.

Determine and configure the conversation phase of each method and callback. To learn more about conversations, see
Designing Conversational Web Services.

7. Determine and configure any buffered methods. To learn more about message buffers see Creating Buffered Web
Services in the WebLogic Server documentation.

8. Once your web service is complete, you can generate a WSDL file by right-clicking on the web service in the Package
Explorer and selecting Web Services > Generate WSDL.

Related Topics

WSDL Files: Web Service Descriptions

file:///F|/depot/dev/src/workshop/product/pluging/com.be....doc/html /webservices/conWebServiceDevel opmentCycle.html (3 of 3)1/29/2007 10:23:12 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conUsingXMLBeans.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#webservice
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html#webservice
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/ideuserguide/conApplicationsProjects.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/callback/ovwAsynchronousWebServices.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/conHandlingControlCallbacks.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/service/conHandlingWebServiceCallbacks.html
file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/async/converse/navMaintainingStatewithConversations.html
http://edocs.bea.com/wls/docs100/webserv/advanced.html#buffering
http://edocs.bea.com/wls/docs100/webserv/advanced.html#buffering

Testing Web Services with the Test Client

Testing Web Services with the Test Client

As you develop a web service, you can typically test it directly by using the Test Client. In some cases, you will need to test indirectly by creating a separate web service that acts as a
client for testing.

Testing Web Services with the Test Client

The Test Client provides a user interface through which you can test web service operations with parameter values you choose. With the Test Client you can:

. Test a web service from the project tree.

. Choose which operation you want to test.

. Examine operation and callback results.

. View the WSDL for the web service you're currently testing.

. Choose another web service to test.

Note: You can also launch the Test Client without using the IDE.

For an example of using the Test Client, see Web Service Tutorial: Step 4: Test the Web Service.

Test Client User Interface

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaworkshop. product.wl.doc/html /webservices/conTestingWebServices.html (1 of 12)1/29/2007 10:23:13 AM

Testing Web Services with the Test Client

Dizplays the list of operationsz
exposed by thiz web service.

Dizplays a form through which Dizplays the operations and callbacks The operations exposed by this web
you can seled the WSDL of tested =o far. Click a log entry to view Displays the WSOL for service. Enter test values and didc an
ancther web service to test. mare information about it. this web service. operation name to test it.
b webLogic Test Chent X =0
= = Q;,':-'-’ | htkp:/localhost: 7001 fwis |utefbegin, do?clearmap=true w ‘ [-

el 1\ ¥ / » WebLogic Test Client

“hea
Choose Another WSDL http://localhost:T001 WebServices'HelloWorldSyncAsync?WSDL
Show Operations —
Operations

requestMessageAsynchronous

Message Log
= requestiessageSynchronous

= requestMessageAsynchronous £M A h
€= callback onMessage reguestiviessageAsyncinronous

string name:

[
tioarlog requestMessageSynchronous
string name:
requestMessageSynchronous
Major Wersion: 100
Build 10: 869302

Copyright 2007 & BEA Systems, I, M rights reserved.

Basic Testing Steps

When you test web services with Workshop for WebLogic, you follow simple steps that launch the Test Client with a visual interface for invoking the web service's operations. Briefly, these
steps are:

1. Start WebLogic Server.

2. Expand the project tree to display the web service source file.

3. Right-click the source file, then click Run As -> Run on Server.
4

. When the Test Client is displayed, choose the operation you want to test.

5. If the operation has parameters, enter test values in the boxes provided.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/htmi /webservices/conT estingWebServices.html (2 of 12)1/29/2007 10:23:13 AM

Testing Web Services with the Test Client

6. Click the button labeled with the operation's name.

7. Examine the result of the test.

8. Use the Message Log list to view the results of multiple tests.

9. If the web service is designed to receive a callback, click the callback's name in the Message Log list to view callback values. (You might need to refresh the Test Client if the callback
is not designed to execute right away.)

10. Click Show Operations to begin another test.
Choosing Operations to Test

When the Test Client is displayed, you choose an operation to test by clicking the button labeled with the operation's name. If the operation has parameters, the Test Client provides boxes
for you to enter the values to test with.

Operations
requestMessagelsynchronous

string name:

requestMessageAsynchronous

requestMessageSynchronous

string name: Gladys Kravitz

requestMessageSynchro

IJE'h

Complex Types as Parameters

When an operation includes complex types as parameters, the Test Client will display an XML template with placeholders for your test values. For example, the following illustration shows
a template in which "Gladys Kravitz" has been entered for one String placeholder and the other placeholder is about to be replaced with a test value.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/htmi /webservices/conT estingWebServices.html (3 of 12)1/29/2007 10:23:13 AM

Testing Web Services with the Test Client
requestMessageSynchronousComplex

=emv.Envelope xminsem="http:rschemas xmlsoap.oraisoaplenvelope=
=goapeny:Body=

=requesthMessageSynchronousComplex xmins="http:rzervices" xminsjava="javasemrices"s
=newFeaple=
=javafirstPerson=Gladys Kravitz=ijavafirstFerson=
=java secondPerson=gilfE=ava secondPersan=
=newFeoples
=lregquesthessageSynchronousComplexs

=/soapenmnBody=
=lzoapenvEnvelopes=

requestMessageSynch usComplex

Navigating Conversational Web Service Tests

The Test Client provides special links through which you can test conversational web services.

When testing a conversational web service, the Test Client will only display the operations that are valid in the current phase of the conversation. In other words, when you begin testing,
only START methods show. The Test Client provides the following buttons for navigating conversations:

Click the Continue this conversation (or the conversation's log heading — such as "Conversation 2535 " in the following illustration) link to display the list of operations after you
invoke a START method — then only CONTINUE and FINISH methods are displayed.

. Click Start New Conversation to display the list of operations so that you can choose one and start a new conversation.

. Click Re-Invoke to re-invoke an operation (here, requestMessageAsynchronous) on the conversation that is already running.

Note that the message log groups the operations invoked according to the conversation in which they were tested with each message shown chronologically within the conversation.

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaworkshop. product.wl.doc/htmi /webservices/conT estingWebServices.html (4 of 12)1/29/2007 10:23:13 AM

Testing Web Services with the Test Client

\\- e

. bea
Choose Another WSDL

Start New Conversation
Gontinue this Conversation

Message Log

= Comversation 7018
= reguesthlessageAsynchronous
4= callbackonhessage
= requestMessagelsynchronous
4= callbackonMessage

Clear Log

Examining Message Contents

“ WebLogic Test Client

http://localhost: 7001 WebServices/'HelloWorldSyncAsync?WSDL

requestiessageAsynchronous Request Summary

Arguments: string name: Gladys Kravitz
Submitted: Thu Nowv 30 21:28:02 PST 2006
Duration: 20ms

requestMessageAsynchronous Request Detail
~ Service Request

zgnyEnvelope xmins:er="httpfschemas ¥misoap orgisoap/envelopes

sHaadar vralne—"hHn-forharmacs vwalonan armfcnanfanvalana® =

When you execute an operation, the Test Client refreshes to display information about the message exchanged by the operation. The user interface provides a summary of message values
as well as the message XML itself. This information is provided for both operation messages and callback messages. When an exception occurs, a fault message is displayed.

Notice that in the message XML, all but the most important parts of the message payload are displayed in grey.

Operation Messages

After you have executed a web service operation, the Test Client displays information about messages related to the operation. The request summary provides a shorthand version of the
message's contents. It gives parameter and return values (if any), along with time stamp information.

Each test of a web service operation will have its own entry in the Message Log list. In this way you can compare tests that use different values.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html /webservices/conT estingWebServices.html (5 of 12)1/29/2007 10:23:13 AM

Testing Web Services with the Test Client

. wWeblogic Test Client X

=8

http://localhost:7001/ WehServices/HelloWorldSynchsync?WSDL
Show Operations
requestMessageSynchronous Request Summary

Argumernts: string name: Gladys Kravitz
Message Log Returned: Hello, Gladys Krawvitz!
= requestvessageSynchronous Submitted: Thu Nowv 30 21:41:39 PST 2006

Clear Log Duration: 180 ms

<o Q.§° | http: fflocalhost: 7001 fwls_utc/callDperation. do
) Qs
oy . .
“bea WebLogic Test Client

v|i-
(4

requestMessageSynchronous Request Detail
=7 Service Request

=gmv.Envelope xminsem="http:rschemas xmlsoap.oraisoaplenvelope=
=Header xmins="httpischemas xmlsoap.arafsoapienvelopel=
=gallhack:CallbackTo xmins:callback="http s openuri.argf 20060 3callbhack'=

=wsaAddress

=testclient.callback xmins testolient="httpMerane bea comiZ 00605 testclient'=

=testclient key=4d368640-9bbc-dde5-ad 16-TO0T 7 34ae <itestclient key=
=testclient serice={http:/services}HelloWorldSyncAsyncSenvice =ftestclient service=

tocto it ot Llalla Aol Ao nse S oanDoat oo ot Lot m ot

kminswsa="httpischemas xmlzoap.arghbes 200403 addressing"=http/127.0.0.1: 7001 'wils _atc/CallbackHandler =fwsa:Address=
=wsa ReferenceFarameters xminsxwsa="hitpischemas ¥xmlsoap.orghwsf2004/08/addressing" =

=testelientwsdl=http:docalhost: 7001 WebSerdces HelloWorldSync Async PWSDL =festelientwsdl=

Beneath the request summary the message XML is displayed, as shown in the following image. Messages for both the operation's request and its return value are displayed.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html /webservices/conT estingWebServices.html (6 of 12)1/29/2007 10:23:13 AM

Testing Web Services with the Test Client

=0
=] Q.§° | http: fflocalhost: 7001 fwls_utc/callDperation. do v| = -
-
requestMessageSynchronous Request Detail
=7 Service Request
=gnv.Envelope xminsem="http:rschemas xmlsoap.oraisoaplenvelope=
=Header xmins="httpischemas xmlsoap.argfsoapienvelopel=
=callback CallbackTo xmins:callback="http:famway. openur.orgf 200603 callback'=
=ywsaAddress
¥milnswsa="httpischemas kxmlsoap.orghwsr2004085addressing"=http:/M127.0.0.1:700 1 wls e /CallbackHandler =twsa Address=
=wsa ReferenceFarameters xminsxwsa="hitpischemas xmlsoap.orghwsl2004/08/addressing" =
=testclientcallback xminstestolient="httpferese bea comiZ 00605 e stclient'=
=testelientwsdi=http:ilocalhost: 7001 WebSenvices HelloWorldSync Async PWSDL =jtestelientwsdl=
=testclient key=4d368640-%bbc-dde5-ad 16-TO0MT 7 34ae <itestclient key=
=testclient:service={littp:iserdcesiHelloWorldSync AsyncSenvice =ftestelient service=
=testclientport=HelloWorldSync AsyncSoapPort =/ftestclient port=
=ftestclientcallback=
=hwsa ReferenceFarameters=
=/tallbackCallbackTo=
=/Header=
=env.Body=
=reguestMessageSynchronous smins="http:rservices"=
=name=Gladys Kravitz=/mame=
=frequestessageSynchronous=
=fervBody=
=fenv.Envelope=
= Service Response 0
=gmvEnvelope xminsems"hitpischemas xmlsoap.arafsoaplenvelope=
=gmvHeader i=
=gy Bady=
=merequestvessageSynchronousResponse xmins:m="http:iserices"=
=mireturn=Hello, Gladys Kravitz!=/m:return=
=ftrrequestMessageSynchronousResponse=
=fenv:Body=
=ferEmvelope=
@I Major Wersion: 10.0
Build 1D: 869302 —
Copyright 2007 & BEL Systerns, e, M rights reserved. e

Callback Messages

If your web service sends a callback, you can view the results of the callback's execution by clicking its name in the Message Log list. Note that because the callback log entry won't show
up until after the callback executes, you might need to refresh the Test Client after an interval to get the entry (you can click the Refresh button at the top of the message log).

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html /webservices/conT estingWebServices.html (7 of 12)1/29/2007 10:23:13 AM

Testing Web Services with the Test Client

As with operation messages, the Test Client displays callback message data as a summary as well as the message XML. The callback request message will describe the data sent to your
web service by the callback.

=08

& wWeblogic Test Client X

=] Qﬂh |http:,l',l'localhnst:?IZIDlfwls_utc,fselectResult.du?result=c6?e1a4a-2dF2-4445-ada?-83h53ca3Fe11&1:0nversatiu:un1d=Nu:une v| = .
A

T
Pt »< \J Q> WebLogic Test Client

http://localhost:7001/ WebServices/HelloWorldSynchAsync?WSDL
Show Operations
onMessage Requegt 5ummaw

Arguments: string response:
Message Log Returned: [Test Client Test Data]
= reguestMessageAsynchronous Received: Thu Nov 30 21:46:39 PST 2006
4= callback.onMessage {b
Clear Loqg

onMessage Request Detail
= Callback Request

=g Envelope xminsem="httpfschemas xmlsoap.argfsoapienvelopel=
=gmrHeader xminswsa="hittp:schemas xmlsoap. orghwslZ004/08faddressing" =
=wsaMessagelD=umid:8702a 1 1dd5dec(i8:- 77 5d69h 5 10F 306 3e- Tidf =Mvws 3 MessagelD=
=weaAction=hmtpisenices HelloWorldSyncAsyncSerdce _CallbackSve/onMessage =hwsaAction=
=n1:callback xmins:nl="http:heasne bea. comiZ006I0 e stclient'=
=testelientwsdl
¥minsiestclient="http s ea comiZ0068/084estclient' =hitp:/docalhost: 7001 WebSendcesHelloWorldSync Async?
WSDL =itestclientwsdl=
=testelient key xminstestclient="hitp M hea comfZ 00605 e stclient' =ed530b 79-0620-4cd7-a059-
Fdad845a087 =itestclient key=
=testelientservice xmins testelient="httphwanv hea. comiZ006M0Stestclient ={lttp:iserdces)
HelloWorldsyncAsyncSenvice=iiestclient service=
=testclient port
rminstestclient="httpfwavee bea. comiZ006/058e stclient" =HelloWorldSync AsyncSoapPort =ftestclient port=
=intcallhack=
=ywsa To=http 1270001700 Uwls c/CallbackHandler =fwsaTo=
=g RephTo=
=waaAddress=httprischemas.xmlsoap.org/ws 200408 addressing role anonyimous =hwsaAddress=
=hwsaReplTos
=fervHeader=
=gt Body=
=m:onessage xmins:m="http.fserices"=
=m:response=Hello, Gladys Kravitzi=im:response=
=im.onMessages
=fer:Body=
=phyvEnvelone:s

file:///F|/depot/dev/srciworkshop/product/plugins/com.beaworkshop. product.wl.doc/htmi /webservices/conT estingWebServices.html (8 of 12)1/29/2007 10:23:13 AM

Testing Web Services with the Test Client
Exception Messages

When testing the web service generates a fault or exception, the Test Client displays the resulting message. Note in the following summary example that a fault has been noted. Here, a
String was provided for the operation's argument rather than an int.

The message XML below is also displayed.

guessMyWeight Request Summary

Arguments: int guessAmount: ninety-two
Fault: For input string: "ninety-two™
Submitted: Thu How 30 21:52:57 PST 2006
Duration: 220 ms

= Service Response

=emiEmelope xminsemnv="httpfschemas xmlsoap org/soapfenelopel’=
=gty Header /=

=y Body=
=eny.Fault=

=faulicode=emsServer=faultcode=

=faultstring=For input string: "ninety-two™ <=faultstring=

=detail=

=hea_faultstackirace xmins bea_fault="hitpMannne hea comisenershils T 0wehsendcefault .0.0" =
javadang.NumberFormatException: For input string: "ninety-two™

at com.bea.xbean.util.XsTypeConverter.parselntXsdlumber{XsTypeConverter java:67 1)
at com.bea.xbean.til.XsTypeConverter.parselnt{XsTypeConverter java:624)
at com.bea.xbeanatil.XsTypeConverter lexint{XsTypeConverter.java:268)
at weblogic.xml.dom.DOMStreamReaderExt.getintValue{DOMStreamReader Ext. java:98)
at com.hea.staxb.runtime.internal. InmarshalResult.getintValue{UnmarshalResult.java:4 15)
at com.bea.staxb.runtime.imternal.int TypeComverter.getObject{int TypeConverter.java:27)
at com.bea.staxb.runtime.internal. BaseSimple TypeComnverter.unmarshal{BaseSimpleTypeConmverter java:39)
at com.bea.staxb.runtime.ilternal.UnmarshalResult.unmar shalBinding Type{UnmarshalResult.java: 17 4)
at com.bea.staxb.runtime.imernal.Unmar shalResult.unmar shalType{UnmarshalResult.java: 2 12)
at com.bea.staxb.runtime.imternal. UnmarshallerimplanmarshalType(Unmarshallerimpljava: 127)
at weblogic.wsee.bind.runtime.internal.LiteralDeserializer ComtextunmarshalType(LiteralDeserializer Context.java: 70}
at weblogic.wsee bind.runtime.internal.BaseDeserializer Context.internalDeserialize Type(BaseDeserializer Context.java: 170)
at weblogic.wsee bind.runtimea.internal BaseDeserializerC ontext deserialize TwneiRaseDeserializerContext iavazf 4

Viewing the WSDL File

You can view the WSDL file for the web service you're testing by clicking the WSDL URL provided at the top of the Test Client window.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html /webservices/conT estingWebServices.html (9 of 12)1/29/2007 10:23:13 AM

Testing Web Services with the Test Client
_./

http://localhost:7001/ WebServices/HelloWao rI{ISyn(:Aﬁynu:?Wi%L

requeastMessageSynchronous Request Summary

Armunante: etrinn nama Glachee Kroaasdts

. http: flacalhost: 7001 /4 s IHed Synchsy 3 = 8
=] [Q|_,><h |http:,l',l'lucalhust:T-"IZID1,l"l.-'u'eI:nServices,l'HelanDrIdSync.ﬁ.sync?WSDL ﬂ b=

|

<7uml version="1.0" encoding="UTF-8" 7=
- «definitions name="HelloWorldSyncAsyncServiceDefinitions" targetMamespace="http://services"
smilns="http://schemas.xmlsoap.org/wsdl /"
umins:s0="http:/ fschemas.xmlsoap.org/ws/2003/05/partner-link/" =mlns:s1="http:/ /services"
xmins: s2="http:/ fschemas.xmlsoap.org/wsdl/soap/">
- «sh:partrnerLinkType name="HelloWorldSyncAsyncService_CallbackSvc'=)
- <sirole name="Service">
s portType name="s1:HelloWorldSyncAsync" /=
=/s0: role=
- =s0:role name="Callback"=
zs0:portType name="s1:HelloWorldSyncAsyncService_CallbackSvc" />
=/l roles
</s0; partnerLink Type:
- «typess
+ <usischema attributeFormbDefault="unqualified" elementFormbDefault="qualified"
targetMamespace="http:/ /services"
amlns: s0="http:/ /schemas.xmlsoap.org/ws /2003705 /partner-link/" xmins:s1="http:/ /services'
#mins:s2="http://schemas.xmlsoap.org/wsdl/soap/"
#mins: xs="http:f fwww.w3.0rg/2001/XMLSchema'=
< /types=
- <message name="requestiessageAsynchronous":
<part element="s1:request®MessageAsynchronous" name="parameters" />
</messages
- <message name="requestMessageAsynchronousResponse":- 3

Choosing Another Web Service to Test

You can test another web service without closing the Test Client by clicking the Choose Another WSDL link at the top of the Test Client window. The Test Client will display a page with a
box where you enter the WSDL URL, then click Test to display the test form for that web service.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea workshop. product.wl.doc/htmi /webservices/conTestingWebServices.html (10 of 12)1/29/2007 10:23:13 AM

Testing Web Services with the Test Client

=08

L= = Q.§° |http:,l',l'localhnst:?DDl,fwls_utc,fselecthdl.jsp V| [

A X ‘/ “‘ WebLogic Test Client

Enter WSDLURL: | http:/localhost7001/MyProj/MyWebService?WSDL m

Recent WSDL Files
WSDL Service NHame WSsDL URL
@ HelloWorlidSyncAsyncService hmtp:localhost:7001WebServices HelloWorldSyncAsync 7WSDL

@I Major Yersion: 10.0
Build IDO: 869302
Copyright 2007 & BEL Systerns, e, M1 rights reserved.

Launching the Test Client Without the IDE
You can use the Test Client outside the IDE by launching the client through a web browser.
1. With the server running, open a browser window and navigate to the following URL to start the Test Client:

http://localhost:7001/wls_utc

2. In the Enter WSDL URL box, enter the URL for the WSDL of the web service you want to test, then click Test.

Setting Up a Web Service Client for Indirect Testing

Some web services can not be tested standalone with the Test Client. In these cases, you will need to create a separate web service to act as a client of the main web service for the
purpose of testing. You will need to test in this "indirect" way if the web service you want to test:

. Contains reliable messaging.

. Contains message-level security.

You can test it by setting up a service control and a client web service for that control. The following gives the basic steps for setting up a service control and control client. Note that you
do not need to create a separate web service client for every testing scenario.

1. To create a new web service project, select File > New > Project > Web Services > Web Service Project. You should create all of your client-related classes in a different project
than the target web services.

2. To generate a WSDL file, on the Package Explorer tab, right-click the target web service file and select Web Services > Generate WSDL. When the WSDL file has been generated,
drag and drop it into the new web service project. The WSDL should be dropped into an appropriate package under the sr c directory.

3. To generate a web service control, right-click the WSDL file and select Web Services > Generate Service Control.

4. To generate a client web service, select File > New > WebLogic Web Service. Complete the New Web Service dialog to create a web service class.

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea workshop. product.wl.doc/htmi /webservices/conTestingWebServices.html (11 of 12)1/29/2007 10:23:13 AM

http://localhost:7001/wls_utc

Testing Web Services with the Test Client
5. Add the web service control to the client by right-clicking anywhere in the source view of the client class and selecting Insert > Control. Select the service control generated above.

6. Add any event handler to the client by right-clicking anywhere in the source view of the client class and selecting Insert > Control Event Handler. Select the desired event methods
from the service control.

7. Finally add methods to the client that invoke methods on the service control.

8. Run the client by right-clicking it in the Package Explorer and selecting Run As > Run on Server. By default, web services are shown in Test Client.

Debugging Transactional and Conversational Web Services

When debugging a transactional web service, you should consider increasing the transaction timeout period in order to compensate for delays caused by the debugger. The default timeout
is 30 seconds, which may be too short in some debugging situations, especially when the web service is conversational.

To increase the timeout period, use the ti neout attribute on the @webl ogi c. j ws. Transacti onal annotation:

@\ebServi ce

@ransactional (val ue=true, timeout=600) // Increase the tinmeout period to 600 seconds/10 m nutes.
public class Transactional Service inplenments Serializable {

}
Related Topics

Service Control

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea workshop. product.wl.doc/html /webservices/conTestingWebServices.html (12 of 12)1/29/2007 10:23:13 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/service/navServiceControl.html

WSDL Files: Web Service Descriptions

WSDL Files: Web Service Descriptions

Files with the WSDL extension contain web service interfaces expressed in the Web Service
Description Language (WSDL). WSDL is a standard XML document type specified by the World
Wide Web Consortium (W3C, see www.w3.org for more information).

WSDL files are used to communicate interface information between web service producers and
consumers. A WSDL description allows a client to utilize a web service's capabilities without
knowledge of the implementation details of the web service.

Contents of a WSDL File

A WSDL file contains all of the information necessary for a client to invoke the methods of a web
service:

The data types used as method parameters or return values
The individual methods names and signatures (WSDL refers to methods as operations)
The protocols and message formats allowed for each method

The URLs used to access the web service

Imported WSDL Files

When you want to use an external web service from within Workshop for WebLogic, you should
first obtain the WSDL file for the service you want to use. For public web services, the WSDL file
will typically be available on the web site of the organization that publishes the web service. For
private web services, contact the organization that supports the web service to obtain the WSDL
file.

WSDL files can also be found through both public and private UDDI registries. To learn more
about UDDI, visit http://www.uddi.org.

Once you have the WSDL file, you may use Workshop for WebLogic to create a service control.
The service control may then be used from your application like any other Workshop for WebLogic
control.

Some web service tools produce WSDL files that do not contain an XML declaration. Workshop for
WebLogic requires that all XML files contain an XML declaration. The XML declaration is just the
first line of an XML file of the following form:

<?xm version="1.0" encodi ng="utf-8" ?>

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html /webservices/conWsdlFiles.html (1 of 3)1/29/2007 10:23:13 AM

http://www.w3.org/TR/wsdl
http://www.uddi.org/

WSDL Files: Web Service Descriptions

If you receive a WSDL file that does not contain an XML declaration, you must add a declaration
to the file using a text editor before you can use the WSDL file in Workshop for WebLogic.

Note that the encoding attribute is not required. If an encoding attribute is not present, the
default encoding is utf-8.

Generating a WSDL From a Web Service Class

When you want to make your web service available to others, you do so by producing a WSDL file
for your web service and making it available to your service's clients.

To generate the WSDL file for you web service:

On the Package Explorer or Navigator tab, right-click the web service class and select Web
Services > Generate WSDL.

The generate WSDL can then copied to the client's machine.

Generating a Service control from a WSDL

If the client is a web service or some other Java component built with Workshop for WebLogic, it
can use a service control file generated directly from the WSDL file.

To generate a service control from a WSDL:

On the Package Explorer or Navigator tab, right-click the WSDL and select Web Services >
Generate Service Control.

Generating a Web Service from a WSDL

You can also generate a web service class from a WSDL. The resulting web service class will
contain the public endpoint interface described by the WSDL (the public methods and callbacks)
without the implementation. After the web service has been generated, the developer must fill in
the web service implementation details.

To generate a web service from a WSDL:

On the Package Explorer or Navigator tab, right-click the WSDL and select Web Services >
Generate Web Service.

Related Topics

Service Control

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html /webservices/conWsdlFiles.html (2 of 3)1/29/2007 10:23:13 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/system/service/navServiceControl.html

WSDL Files: Web Service Descriptions

W3C WSDL Specification

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html /webservices/conWsdlFiles.html (3 of 3)1/29/2007 10:23:13 AM

http://www.w3.org/TR/wsdl.html

Web Service Dialogs

Web Service Dialogs

These topics describe dialogs and wizards available for web services.

Topics Included in This Section

Types JAR File Generation Wizard
Create a JAR containing types listed in a WSDL file.

New Web Service From WSDL Wizard
Create a web service from a WSDL file.

Web Service Design View
Design web services with a graphical user interface.

Service Design Views Preferences
Set preferences on the Web Service Design View.

Web Service Design View Palette
Drag and drop elements into the Web Service Design View.

Related Topics

Service Control Generation Wizard

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/webservices/ui/navWebServiceUl .html 1/29/2007 10:23:14 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/ui/uiServiceControlGenerationWizard.html

New Web Service From WSDL Wizard

New Web Service From WSDL Wizard

Use this dialog to create a new web service based on a WSDL file. The web service created will
reflect the web accessible methods and callbacks in the web service. The developer must
implement these methods after the generation is complete.

How To Open This Dialog

To open this dialog, in the Package Explorer right-click the WSDL and select Web Service =
Generate Web Service.

How To Use This Dialog

In Source folder field, enter or browse to the source directory for the web service package. Note
this directory should not include package folders. (Use slashes between path elements.)

In the Package field, enter the package of the web service. (Use periods between package
elements.)

file:///F|/depot/dev/srciworkshop/product/plugins/com.b...t.wl.doc/html /webservices/ui/uiNewW SFromWSDL Wizard.html (1 of 2)1/29/2007 10:23:14 AM

New Web Service From WSDL Wizard

W New Web Service from WSDL

web Service Package

Select a package For the generated web service,

Source Folder: | WebServicelients/src Browse, ..
Package: | clients, security Browse. ..
Finish Cancel

Related Topics

Types JAR File Generation Wizard

Service Control Generation Wizard

file:///F|/depot/dev/srciworkshop/product/plugins/com.b...t.wl.doc/html /webservices/ui/uiNewW SFromWSDL Wizard.html (2 of 2)1/29/2007 10:23:14 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/ui/uiServiceControlGenerationWizard.html

Types JAR File Generation Wizard

Types JAR File Generation Wizard
Use this dialog to create a JAR file containing types referenced in a WSDL file.
How To Open This Dialog

To open this dialog, on the Package Explorer view, right click the WSDL file and select Web
Services > Generate Types JAR File.

How To Use This Dialog

The Type Family dropdown lets you select the data types contained in the JAR file. Choose
between JAX-RPC types or Apache XmlBeans types.

w Types JAR File Generation Wizard

Select Type Family

Select the kind of kvpe wou wish ko create,

== A pache =miEeans

Mext = %l Cancel

In Enter or select the parent folder, select the directory location, where the new JAR archive
should be saved. If the desired directory does not already exit, you may enter the directory path
to create the desired directory. The default location is <ProjectRoot>/WebContent/WEB-INF/lib.

file:///F|/depot/dev/src/workshop/product/pluging/com.b...c/html/webservices/ui/uiGenerateW SDL TypesJARW i zard.html (1 of 2)1/29/2007 10:23:14 AM

Types JAR File Generation Wizard

In the File name field, enter the desired name of the JAR archive, if a name other than the
default is desired.

w Types JAR File Generation Wizard

Select Types JAR File Location

Select the location and file name for the Types JAR file,

Enter or select the parent Folder:
| WebServiceClients MyYebContent MYEB-TMF ik

- {8 webServiceClients
[= .setkings
+- = build
+[= sro
--[= WebContent
= META-INF
(= WEB-INF

File name:

Finish Cancel

< Back

Related Topics

New Web Service From WSDL Wizard

Service Control Generation Wizard

file:///F|/depot/dev/src/workshop/product/pluging/com.b...c/html/webservices/ui/ui GenerateW SDL TypesJARW i zard.html (2 of 2)1/29/2007 10:23:14 AM

file:///F|/depot/dev/src/workshop/product/plugins/com.bea.workshop.product.wl.doc/html/controls/ui/uiServiceControlGenerationWizard.html

Web Service Design View

Web Service Design View

The web service Design View is a graphical editing environment for web services.

i 4
B2 Hello'World,java [Designer] X = 0
{} HelloWorld ‘Web Service
hell
<:—|_:> T | #| helloMessage &
.{: hellofame | : el
ella
<:—|—>;:§ hellatarme
onEwvent :}
£ Il | ¥
Design Yiew Source Yiew

How To Open This Dialog

To open this dialog:

In the Package Explorer, double-click a web service .java file. The web service will open in
Design View by default.

How To Use This Dialog

Detailed instruction on using the web service Design Palette are available at Using Design View to
Create Web Services.

Related Topics

JWS Design Palette

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html /webservices/ui/uiW SDesignView.html 1/29/2007 10:23:15 AM

Service Design Views Preferences

Service Design Views Preferences

Use this dialog to set preferences on service and control design views.

How To Open This Dialog

To open this dialog, select Windows > Prefs > Workshop > Service Design Views.

How To Use This Dialog

W Preferences

| tvpe Filker bext j Service Design Yiews

General
Ant Sorking

Data + Type, then alphabetical

File Templates " Alphabetical
Help

Install/Update
Internet

Java

MetUI Page Flow

Plug-in Development When a service or control implements ar makes use of an inkerface defined in a
Run/Debug seperate file, the design view can make edits to the interface files as needed. This
sekking determines whether edits to the relaked files take place autormatically or
trequire confirmation.

(" Source

e O s o [o e B

fukomatic Interface Updates

Server

Tean

Yalidation
+-\Web and ¥ML Interface Update Behaviar Always prompt Firsk j
+- \WeblLogic
+-\Web Services

Workshop

Service Design VYiews

wDoclet

Restare Defaults apply

Cancel |

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...wl.doc/html /webservices/ui/uiWSDesignViewPreferences.html (1 of 2)1/29/2007 10:23:15 AM

Service Design Views Preferences

The section labeled Sorting sets the display order of elements in the Design View.
In the web service Design View, this property sets the display order of:

the methods/callbacks in the client interface

the order of the referenced controls

the order of the methods/callbacks within a referenced control

The section labeled Automatic Interface Updates sets the behavior of the IDE when a control
implementation file is changed. There are three possible settings:

Always prompt first: the IDE will prompt the user if the interface file should be changed to be
consistent with the implementation file.

Update interface automatically: the IDE will change the interface file without prompting the user.

Do not update interface: the IDE will neither change the interface file nor prompt the user.

Related Topics

file:///F|/depot/dev/src/workshop/product/plugins/com.bea...wl.doc/html /webservices/ui/uiWSDesignViewPreferences.html (2 of 2)1/29/2007 10:23:15 AM

Web Service Design View Palette

Web Service Design View Palette
Use this dialog to to drag and drop web service design elements into the web service Design View.
How To Open This View

To open this view:

In the Package Explorer, double-click a web service .java file. The web service will open in
Design View and the Design View Palette by default.

How To Use This View

Detailed instruction on using the web service Design View Palette are available at Using Design
View to Create Web Services.

Related Topics

Using Design View to Create Web Services

file:///F|/depot/dev/srciworkshop/product/plugins/com.bea.workshop. product.wl.doc/html/webservices/ui/ui JW SDesignPal ette.html 1/29/2007 10:23:15 AM

	navGettingStartedWebService.html
	Local Disk
	Getting Started with Web Services

	tutWebSvcIntro.html
	Local Disk
	Tutorial: Web Service

	tutWebSvcStep1.html
	Local Disk
	Web Service Tutorial: Step 1: Create a New WebLogic Web Service Project

	tutWebSvcStep2.html
	Local Disk
	Web Service Tutorial: Step 2: Add a Web Service to the Project

	tutWebSvcStep3.html
	Local Disk
	Web Service Tutorial: Step 3: Add a Web Method to the Web Service

	tutWebSvcStep4.html
	Local Disk
	Web Service Tutorial: Step 4: Test the Web Service

	tutWebSvcStep5.html
	Local Disk
	Web Service Tutorial: Step 5: Import Controls into your Web Services Project

	tutWebSvcStep6.html
	Local Disk
	Web Service Tutorial: Step 6: Create a Custom Control

	tutWebSvcStep7.html
	Local Disk
	Web Service Tutorial: Step 7: Use the Control from the Web Service

	tutWebSvcStep8.html
	Local Disk
	Web Service Tutorial: Step 8: Test the Web Service

	tutAdvWSIntro.html
	Local Disk
	Tutorial: Advanced Web Services

	tutAdvWSStep1.html
	Local Disk
	Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

	tutAdvWSStep2.html
	Local Disk
	Step 2: Create a New Web Service to Access the LoanApproval Control

	tutAdvWSStep3.html
	Local Disk
	Step 3: Create a Service Control to Access the CreditScore Web Service

	tutAdvWSSummary.html
	Local Disk
	Summary: Advanced Web Services Tutorial

	conBasicWebServiceTechnologies.html
	Local Disk
	Introduction to Web Service Technologies

	conBuildingWebServiceswithWebLogicWorkshop.html
	Local Disk
	Building Web Services with Workshop for WebLogic

	conWebServiceDesignView.html
	Local Disk
	Using Design View to Create Web Services

	conWebServiceDevelopmentCycle.html
	Local Disk
	Web Service Development Starting Points

	conTestingWebServices.html
	Local Disk
	Testing Web Services with the Test Client

	conWsdlFiles.html
	Local Disk
	WSDL Files: Web Service Descriptions

	navWebServiceUI.html
	Local Disk
	Web Service Dialogs

	uiNewWSFromWSDLWizard.html
	Local Disk
	New Web Service From WSDL Wizard

	uiGenerateWSDLTypesJARWizard.html
	Local Disk
	Types JAR File Generation Wizard

	uiWSDesignView.html
	Local Disk
	Web Service Design View

	uiWSDesignViewPreferences.html
	Local Disk
	Service Design Views Preferences

	uiJWSDesignPalette.html
	Local Disk
	Web Service Design View Palette

