
B E A W e b L o g i c X M L / N o n - X M L T r a n s l a t o r 1 . 0
D o c u m e n t E d i t i o n 1 . 0

J a n u a r y 2 0 0 1

User Guide

BEA WebLogic
XML/Non-XML

 Translator

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

BEA WebLogic XML/Non-XML Translator User Guide

Document Edition Part Number Date Software Version

1.0 January 2001 BEA WebLogic XML/Non-XML Translator
1.0

Contents

About This Document
What You Need to Know ... vii

e-docs Web Site ... viii

How to Print the Document... viii

Related Information... viii

Contact Us! .. ix

Documentation Conventions ... ix

1. BEA WebLogic XML/Non-XML Translator Overview
Understanding XML Translation .. 1-2

What is XML Translator?.. 1-3

The Design-Time Component .. 1-4

The Run-Time Component... 1-5

Binary to XML Translation... 1-5

XML to Binary Translation... 1-6

Post Translation Options and Considerations.. 1-7

Performing XML Transformation .. 1-7

Working with BEA WebLogic Process Integrator..................................... 1-8

Getting Started with the BEA WebLogic XML/Non-XML Translator 1-9

2. Building Format Definitions
Understanding the Data Formats Used with XML Translator 2-2

About Binary Data (Non-XML Data) .. 2-2

About XML Documents... 2-3

About MFL Documents ... 2-6

Analyzing the Data to be Translated ... 2-7

Using the Format Builder .. 2-8
BEA WebLogic XML/Non-XML Translator User Guide iii

Starting Format Builder .. 2-8

Using the Format Builder Main Window... 2-8

Using the Tree Pane .. 2-10

Using the Menu Bar .. 2-12

Using the Toolbar.. 2-12

Using the Shortcut Menus ... 2-15

Using Drag and Drop .. 2-16

Creating a Message Format .. 2-17

Valid Names.. 2-18

Creating a Group .. 2-18

Creating a Field .. 2-21

Creating a Comment... 2-25

Creating References.. 2-26

Working with Pallets .. 2-29

Adding Items to the Pallet ... 2-29

Deleting Items From the Pallet.. 2-30

Adding Pallet Items to a Message Format .. 2-30

Saving a Message Format... 2-30

Opening an Existing Message Format.. 2-31

Importing a COBOL Copybook ... 2-32

Setting Format Builder Options.. 2-34

Format Builder Menus.. 2-35

File Menu .. 2-35

Edit Menu.. 2-36

Insert Menu ... 2-38

View Menu.. 2-38

Tools Menu ... 2-39

Test Menu.. 2-39

Help Menu... 2-39

3. Testing Format Definitions
Running the Tester... 3-1

Debugging Formats ... 3-4
iv BEA WebLogic XML/Non-XML Translator User Guide

4. Using the Run-Time Component
Binary to XML .. 4-1

Generating XML with a Reference to a DTD .. 4-2

Passing in a Debug Writer.. 4-4

XML to Binary .. 4-5

 Converting a Document object to Binary.. 4-6

Passing in a debug writer ... 4-8

Debug Output: ... 4-8

 XML to XML Transformation ... 4-8

Initialization methods... 4-10

init() method.. 4-10

Java API Documentation.. 4-12

A. Supported Data Types
MFL Data Types... A-1

COBOL Copybook Importer Data Types... A-7

Glossary
BEA WebLogic XML/Non-XML Translator User Guide v

vi BEA WebLogic XML/Non-XML Translator User Guide

About This Document

This document describes BEA WebLogic XML/Non-XML Translator, hereafter
referred to as XML Translator, and provides instructions for using it to translate data
from binary format to XML and from XML to binary format.

This document covers the following topics:

n BEA WebLogic XML/Non-XML Translator Overview

n Building Format Definitions

n Testing Format Definitions

n Using the Run-Time Component

n Supported Data Types

n Glossary

What You Need to Know

This document is intended mainly for application programmers and technical analysts
who perform data translations from binary to XML and XML to binary.
BEA WebLogic XML/Non-XML Translator User Guide vii

sing

L

the
BEA

obe
e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by u
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic XML/Non-XM
Translator documentation Home page on the e-docs Web site (and also on the
documentation CD). You can open the PDF in Adobe Acrobat Reader and print
entire document (or a portion of it) in book format. To access the PDFs, open the
WebLogic XML/Non-XML Translator documentation Home page, click the PDF
files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Ad
Web site at http://www.adobe.com/.

Related Information

The following BEA publications are also available:

n BEA WebLogic XML/Non-XML Translator Installation Guide

n BEA WebLogic XML/Non-XML Translator Getting Started Guide

n BEA Format Builder online help system
viii BEA WebLogic XML/Non-XML Translator User Guide

Contact Us!

Your feedback on the BEA WebLogic XML/Non-XML Translator documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the BEA WebLogic XML/Non-XML Translator documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic XML/Non-XML Translator 1.0 release.

If you have any questions about this version of BEA WebLogic XML/Non-XML
Translator, or if you have problems installing and running BEA WebLogic
XML/Non-XML Translator, contact BEA Customer Support through BEA
WebSupport at www.bea.com. You can also contact Customer Support by using the
contact information provided on the Customer Support Card, which is included in the
product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.
BEA WebLogic XML/Non-XML Translator User Guide ix

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
x BEA WebLogic XML/Non-XML Translator User Guide

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA WebLogic XML/Non-XML Translator User Guide xi

xii BEA WebLogic XML/Non-XML Translator User Guide

CHAPTER
1 BEA WebLogic
XML/Non-XML
Translator Overview

Within most enterprise application integration (EAI) problem domains, data
translation is an inherent part of an EAI solution. XML is quickly becoming the
standard for exchanging information between applications, and is invaluable in
integrating disparate applications. However, most data transformation engines do not
support translations between binary data formats and XML. BEA WebLogic
XML/Non-XML Translator (hereafter referred to as XML Translator) provides for an
exchange of information between applications by supporting data translations between
binary formats from legacy systems and XML.

This section provides information about the following topics:

n Understanding XML Translation

n What is XML Translator?

l The Design-Time Component

l The Run-Time Component

n Post Translation Options and Considerations

l Performing XML Transformation

l Working with BEA WebLogic Process Integrator

n Getting Started with the BEA WebLogic XML/Non-XML Translator
BEA WebLogic XML/Non-XML Translator User Guide 1-1

1 BEA WebLogic XML/Non-XML Translator Overview
Understanding XML Translation

Data that is sent to, or received from, legacy applications is often platform-specific
binary data that is in the native machine representation. Binary data is not
self-describing, so in order to be understood by an application, the layout of this data
(metadata) must be embedded within each application that uses the binary data.

XML is becoming the standard for exchanging information between applications
because XML embeds a description of the data within the data stream, thus allowing
applications to share data more easily. XML is easily parsed and can represent
complex data structures. As a result, the coupling of applications no longer requires
metadata to be embedded within each application.

When you translate binary to XML data, you convert structured binary data to an XML
document so that the data can be accessed via standard XML parsing methods. You
must create the metadata used to perform the conversion. The translation process
converts each field of binary data to XML according to the metadata defined for each
field of data. In the metadata you specify the name of the field, the data type, the size,
and whether the field is always present or optional. It is this description of the binary
data that is used to translate the binary data to XML. Figure 1-1 shows a sample of
XML data translation.

Figure 1-1 XML Data Translation of: Tom;Jones;1345;19;

Applications developed on the WebLogic platform often use XML as the standard data
format. If you want the data from your legacy system to be accessible to applications
on the WebLogic platform, you may use XML Translator to translate it from binary to
XML or from XML to binary. If you need the XML in a particular XML dialect for
end use, you must transform it using an XML data mapping tool.
1-2 BEA WebLogic XML/Non-XML Translator User Guide

What is XML Translator?

f
ta
What is XML Translator?

XML Translator facilitates the integration of data from diverse enterprise applications
by supporting data translations between binary formats from legacy systems and XML.
XML Translator normalizes legacy data into XML so it may be directly consumed by
XML applications, transformed into a specific XML grammar, or used directly to start
workflows in BEA WebLogic Process Integrator. XML Translator supports non-XML
to XML translation and vice versa and is made up of two primary components:

n The Design-Time Component

n The Run-Time Component.

To perform a translation, you create a description of your binary data using the
design-time component (Format Builder). This involves analyzing binary data so that
its record layout is accurately reflected in the metadata you create in Format Builder.
You then create a description of the input data in Format Builder and save this
metadata as a Message Format Language (MFL) document.

You can then use XML Translator’s run-time component to translate instances o
binary data to XML. Figure 1-2 shows the flow of events for non-XML to XML da
translation.

Figure 1-2 Flow of Events for Non-XML to XML Translation Using XML
Translator
BEA WebLogic XML/Non-XML Translator User Guide 1-3

1 BEA WebLogic XML/Non-XML Translator Overview
The Design-Time Component

The design-time component is a Java application called Format Builder. Format
Builder is used to create descriptions of binary data records. Format Builder allows you
to describe the layout and hierarchy of the binary data so that it can be translated to or
from XML. With Format Builder, you can describe sequences of bytes as fields. Each
field description includes the type of data (floating point, string, etc.), the size of the
data, and the name of the field. Format Builder allows you to further define groupings
of fields (groups), repetition of fields and groups, and aggregation.

The description you create in Format Builder is saved in an XML grammar called
Message Format Language (MFL). MFL documents are metadata used by the run-time
component of XML Translator to translate an instance of a binary data record to an
instance of an XML document (or vice-versa). Figure 1-3 shows the process flow of
binary and XML data through Format Builder during the design-time phase.

Figure 1-3 Design Time Process Flow through Format Builder

You can also use Format Builder to retrieve, validate, and edit stored MFL documents
and to test message format definitions with your own data. The test feature allows you
to select the option of testing the translation of XML data to binary format, or binary
data to XML format. You may save the transformed data to a file for future testing.
1-4 BEA WebLogic XML/Non-XML Translator User Guide

What is XML Translator?
The Run-Time Component

The run-time component of XML Translator is a Java class with various methods used
to translate data between binary and XML formats. This Java class can be deployed in
an EJB using BEA WebLogic Server, invoked from a workflow in BEA WebLogic
Process Integrator, or integrated into any Java application. Figure 1-4 shows the
run-time process flow for binary to XML translations and XML to binary translation.

Figure 1-4 Run-Time Process Flow

Binary to XML Translation

Listing 1-1 is a code sample that shows the parsing of a file containing binary data into
an XML document object. The MFL file mymfl.mfl is used as the description of the
binary data contained in the file mybinaryfile.

Binary to XML

XML to Binary
BEA WebLogic XML/Non-XML Translator User Guide 1-5

1 BEA WebLogic XML/Non-XML Translator Overview
Listing 1-1 Sample Code for Binary to XML Translation

import com.bea.wlxt.*;
import org.w3.dom.Document;
import java.io.FileInputStream;
import java.net.URL;

try
{
 WLXT wlxt = new WLXT();
 URL mflDocumentName = new URL("file:mymfl.mfl");
 FileInputStream in = new FileInputStream("mybinaryfile");

 Document doc = wlxt.parse(mflDocumentName, in, null);
}
catch (Exception e)
{
 e.printStackTrace(System.err);
}

XML to Binary Translation

Listing 1-2 is a code sample that shows the translation of the XML data contained in
the file myxml.xml to the a binary format specified by the MFL document mymfl.mfl.
The binary data is written to the file mybinaryfile.

Listing 1-2 Sample Code for XML to Binary Translation

import com.bea.wlxt.*;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.net.URL;

try
{
 WLXT wlxt = new WLXT();
 URL mflDocumentName = new URL("file:mymfl.mfl");
 FileInputStream in = new FileInputStream("myxml.xml");
 FileOutputStream out = new FileOutputStream("mybinaryfile");
 wlxt.serialize(mflDocumentName, in, out, null);
}
catch (Exception e)
1-6 BEA WebLogic XML/Non-XML Translator User Guide

Post Translation Options and Considerations
{
 e.printStackTrace(System.err);
}

Post Translation Options and Considerations

After you have successfully translated your binary data to XML, or vice versa, you
have numerous options for additional processing of the XML data. The XML data can
be transformed to a specific XML dialect or to a display format. The XML data can be
sent to other applications that consume XML such as WebLogic Process Integrator.
Once your binary data has been put in a self-describing format such as XML, this data
is available for use in other applications.

Performing XML Transformation

Once you have translated binary data into XML, you may need to transform the XML
data to a different XML grammar, to a display format (HTML), or to another binary
format. The process of transforming XML to another XML grammar is referred to in
this document as XML transformation. XML transformation can be accomplished via
third-party tools such as Apache’s Xalan XSLT engine. You might want to transform
XML for several reasons:

n Transform the XML to a specific XML dialect (RosettaNet or ebXML)

n Transform the XML to a display format (HTML)

n Transform the XML so that it matches another MFL document and can be
converted to a different binary format by XML Translator

XSL (extensible stylesheet language) is an XML language that describes a series of
transformations that are to be performed on nodes of an XML document. A stylesheet
is an XSL document that can be used to map an XML document to another XML
dialect or to another text format (such as HTML or PDF). A stylesheet can also be used
with the run-time component of XML Translator to transform XML.
BEA WebLogic XML/Non-XML Translator User Guide 1-7

1 BEA WebLogic XML/Non-XML Translator Overview
Figure 1-5 demonstrates one XML grammar converted to another using an XSLT
engine. The transformation metadata in this case is an XSL style sheet that describes
how one XML grammar is mapped into another.

Figure 1-5 XML Data Transformation of: Tom;Jones,1345;19

Working with BEA WebLogic Process Integrator

BEA WebLogic Process Integrator is a powerful workflow engine that automates
workflow, business-to-business processes, and enterprise application assembly.
WebLogic Process Integrator runs on BEA WebLogic Server and is a robust, J2EE
standards-based workflow and process integration solution.

Using an intuitive flowchart paradigm, business analysts use the WebLogic Process
Integrator Studio to define business processes that span applications or to automate
human interaction with applications. Developers can use WebLogic Process Integrator
to assemble application components quickly without programming. The assembled
applications are executed and managed by the WebLogic Process Integrator engine.

A sample application is included with XML Translator that demonstrates how you can
integrate it with WebLogic Process Integrator. The sample application ia a workflow
that simulates integration with legacy HR and payroll systems that do not accept XML.
In the sample application, an XML document from a JMS topic or a manual form entry
is used to initiate the creation of paychecks for employees. The document contains the
employee number, hours worked, and pay period ending date. The employee name and
1-8 BEA WebLogic XML/Non-XML Translator User Guide

Getting Started with the BEA WebLogic XML/Non-XML Translator
pay rate must be extracted from the HR system. The pay is calculated and then sent to
the payroll system. Neither the HR nor payroll systems accept XML data. Included
with the sample are the following:

n EJB wrapper for XML Translator Java classes

n EJBs that simulate HR and payroll legacy applications

n Pre-built WebLogic Process Integrator workflow

For detailed information about using the sample application, see BEA WebLogic
XML/Non-XML Translator Samples Guide.

Getting Started with the BEA WebLogic
XML/Non-XML Translator

The steps outlined in Table 1-1 provide you with a high-level guideline to all of the
tasks and processes that you must perform to install, configure, and work with the
XML Translator. Think of these steps as a road map to guide you through the process
and to point you to the resources available to help you.

Table 1-1 Steps for Working with the XML Translator

Task Resource

1. Read the BEA WebLogic
XML/Non-XML Translator Release
Notes.

BEA WebLogic XML/Non-XML Translator
Release Notes.

2. Make sure that all of the
platform/environment prerequisites
listed in the Installation and
Configuration Guide and in the
Release Notes have been met.

BEA WebLogic XML/Non-XML Translator
Release Notes and BEA WebLogic XML/Non-XML
Translator Installation and Configuration Guide.

3. Install the BEA WebLogic
XML/Non-XML Translator.

BEA WebLogic XML/Non-XML Translator
Installation and Configuration Guide.
BEA WebLogic XML/Non-XML Translator User Guide 1-9

1 BEA WebLogic XML/Non-XML Translator Overview
4. Define the data format using Format
Builder and generate translation
metadata.

BEA WebLogic XML/Non-XML Translator User
Guide.

5. Test the translation BEA WebLogic XML/Non-XML Translator User
Guide.

Task Resource
1-10 BEA WebLogic XML/Non-XML Translator User Guide

CHAPTER
2 Building Format
Definitions

The following sections provide information on building format definitions using the
Format Builder included with BEA WebLogic XML/Non-XML Translator (hereafter
referred to as XML Translator):

n Understanding the Data Formats Used with XML Translator

n Analyzing the Data to be Translated

n Using the Format Builder

The Format Builder included with XML Translator allows users to build format
definitions for binary data that will be translated to or from XML. Format definitions
are the metadata used to parse or create binary data.
BEA WebLogic XML/Non-XML Translator User Guide 2-1

2 Building Format Definitions
Understanding the Data Formats Used with
XML Translator

To understand how the Format Builder is used, it helps to understand the data formats
used by XML Translator: binary data, XML, MFL, DTD and Schema.

About Binary Data (Non-XML Data)

Because computers are based on the binary numbering system, applications often use
a binary format to represent data. A file stored in binary format is computer-readable
but not necessarily human-readable. Binary formats are used for executable programs
and numeric data, and text formats are used for textual data. Many files contain a
combination of binary and text formats. Such files are usually considered to be binary
files even though they contain some data in a text format.

Unlike XML data, binary data is not self-describing. In other words, binary data does
not provide a description of how the data is grouped, divided into fields, or arranged
in a layout. Binary data is a sequence of bytes that can be interpreted as an integer, a
string, or a picture, depending on the intent of the application that generates the
sequence of bytes. In order for binary data to be understood by an application, the
layout must be embedded within each application that uses this data. Binary data may
also be embedded using different character sets. For example, character data on an
IBM mainframe is usually encoded using the EBCDIC character set while data from a
desktop computer is either ASCII or unicode.

The Format Builder is used to create a Message Format Language (MFL) file that
describes the layout of the binary data. MFL is an XML language that includes
elements to describe each field of data, as well as groupings of fields (groups),
repetition, and aggregation. The hierarchy of a binary record, the layout of fields, and
the grouping of fields and groups are expressed in an MFL document. This MFL
document is used by XML Translator at run-time to translate the data to and from an
XML document.
2-2 BEA WebLogic XML/Non-XML Translator User Guide

Understanding the Data Formats Used with XML Translator

e “<“
Listing 2-1 Example of Binary Data

1234;88844321;SUP:21Sprockley’s Sprockets01/15/2000123 Main St.;
Austin;TX;75222;555 State St.;Austin;TX;75222;PO12345678;666123;150;Red
Sprocket;

About XML Documents

Extended Markup Language, or XML, is a text format for exchanging data between
different systems. It allows data to be described in a simple, standard, text-only format.
In contrast to binary data, XML data embeds a description of the data within the data
stream. Applications can share data more easily, since they are not dependent on the
layout of the data being embedded within each application. Since the data is presented
in a standard form, applications on disparate systems can interpret the data using XML
parsing tools, instead of having to interpret data in proprietary binary formats.

Instances of XML documents contain character data and markup. The character data
is referred to as content, while the markup provides hierarchy for that content. Markup
is distinguished from text by angle brackets. Information in the space between th
and the “>” is referred to as the tags that markup the content. Tags provide an
indication of what the content is for, and a mechanism to describe parent-child
relationships. Listing 2-2 shows an example of an XML document.

Listing 2-2 Example of XML Document

<?xml version="1.0"?>
<PurchaseRequest>
 <PR_Number>1234</PR_Number>
 <Supplier_ID>88844321</Supplier_ID>
 <Supplier_Name>Sprockley's Sprockets</Supplier_Name>
 <Requested_Delivery_Date>2000-01-15T00:00:00:000</Requested_Delivery_Date>
 <Shipping_Address>
 <Address>
 <Street>123 Main St.</Street>
 <City>Austin</City>
 <State>TX</State>
 <Zip>75222</Zip>
 </Address>
BEA WebLogic XML/Non-XML Translator User Guide 2-3

2 Building Format Definitions

the
ribes

e
dard

L
the
d

an
 </Shipping_Address>
 </PurchaseRequest>

An XML document can conform to a content model. A content model allows Metadata
about XML documents to be communicated to an XML parser. XML documents are
said to be “valid” if they conform to a content model. A content model describes
data that can exist in an instance of an XML document. A content model also desc
a top-level entity, which is a sequence of subordinate entities. These subordinat
entities are further described by their tag names and data content. The two stan
formats for XML content models are XML Document Type Definition (DTD) and
XML Schema. A Schema is an XML document that defines what can be in an XM
document. A DTD also defines what content can exist in an XML document, but
Schema definition is more specific than the DTD, and provides much finer-graine
control over the content that can exist in an XML document.

Listing 2-3 shows an example of a Document Type Definition. Listing 2-4 shows
example of an XML Schema.

Listing 2-3 Example DTD

<!ELEMENT PurchaseRequest
(PR_Number,Supplier_ID,Supplier_Name?,Requested_Delivery_Date,Shipping_Address,
Billing_Address,Payment_Terms,Purchase_Items)>
<!ELEMENT PR_Number (#PCDATA) >
<!ATTLIST PR_Number type CDATA #FIXED "nonNegativeInteger">
<!ELEMENT Supplier_ID (#PCDATA) >
<!ATTLIST Supplier_ID type CDATA #FIXED "nonNegativeInteger">
<!ELEMENT Supplier_Name (#PCDATA) >
<!ATTLIST Supplier_Name type CDATA #FIXED "string">
<!ELEMENT Requested_Delivery_Date (#PCDATA) >
<!ATTLIST Requested_Delivery_Date type CDATA #FIXED "timeInstant">
<!ELEMENT Shipping_Address (Address)>
<!ELEMENT Address (Street,City,State,Zip)>
<!ELEMENT Street (#PCDATA) >
<!ATTLIST Street type CDATA #FIXED "string">
<!ELEMENT City (#PCDATA) >
<!ATTLIST City type CDATA #FIXED "string">
<!ELEMENT State (#PCDATA) >
<!ATTLIST State type CDATA #FIXED "string">
<!ELEMENT Zip (#PCDATA) >
<!ATTLIST Zip type CDATA #FIXED "nonNegativeInteger">
2-4 BEA WebLogic XML/Non-XML Translator User Guide

Understanding the Data Formats Used with XML Translator
Listing 2-4 Example XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<xsd:annotation>
<xsd:documentation>
This schema created for MFL MessageFormat PurchaseRequest.
</xsd:documentation>
</xsd:annotation>

<xsd:element name="PurchaseRequest">
<xsd:complexType content="elementOnly">
<xsd:sequence>
<xsd:element ref="PR_Number" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Supplier_ID" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Supplier_Name" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="Requested_Delivery_Date" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Shipping_Address" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="PR_Number" type="xsd:nonNegativeInteger"/>

<xsd:element name="Supplier_ID" type="xsd:nonNegativeInteger"/>

<xsd:element name="Supplier_Name" type="xsd:string"/>

<xsd:element name="Requested_Delivery_Date" type="xsd:timeInstant"/>

<xsd:element name="Shipping_Address">
<xsd:complexType content="elementOnly">
<xsd:sequence>
<xsd:element ref="Address" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
BEA WebLogic XML/Non-XML Translator User Guide 2-5

2 Building Format Definitions

L

g

he

ine

at

t
About MFL Documents

Message Format Language (MFL) is an XML language that describes the layout of
binary data. This language includes elements to describe each field of data, as well as
groupings of fields (groups), repetition, and aggregation. The hierarchy of a binary
record, the layout of fields, and the grouping of fields and groups is expressed in an
MFL document. MFL documents are created using Format Builder. These MFL
documents are then used to perform run-time translation. MFL documents are created
for you when you define and save definitions from within Format Builder.

The MFL documents you create using Format Builder can contain the following
elements:

n Message Format — The top level element. Defines the message name and MF
version.

n Field — Sequence of bytes that have some meaning to an application. (For
example, the field EMPNAME contains an employee name.) Defines the formattin
for the field. The formatting parameters you can define include:

l Tagged — Indicates that a literal precedes the data field, denoting the
beginning of the field.

l Length — Indicates that a length value precedes the data field, denoting t
length of this field.

l Occurrence — Repeating fields appear more than once in the message
format. You can set a specific number of times the field is to repeat, or def
a delimiter to indicate the end of the repeating field.

l Optional— The field may or may not be present in the named message
format.

n Groups — Collections of fields, comments, and other groups or references th
are related in some way (for example, the fields PAYDATE, HOURS, and RATE
could be part of the PAYINFO group). The parameters you can define include:

l Occurrence — Repeating groups appear more than once in the message
format: You can set a specific number of times the group is to repeat, or
define a delimiter to indicate the end of the repeating group.

l Choice of Children — Defining a group as “Choice of Children” means tha
only one item in the group will appear in the message format.
2-6 BEA WebLogic XML/Non-XML Translator User Guide

Analyzing the Data to be Translated

sts
ield
 for
a
ce.

ML
OM.
one

ption
ntify

he
 need
l Optional— The group of data within this structure may or may not be
present in the named message format.

n References — Indicates that another instance of the field or group format exi
in the data. Reference fields or groups have the same format as the original f
or group, but you can change the optional setting and the occurrence setting
the reference field or group. For example, if you have a “bill to” address and
“ship to” address in your data, you only need to define the address format on
You can create the “bill to” address definition and create a reference for the
“ship to” address.

n Comments — Notes or additional information about the message format.

Analyzing the Data to be Translated

Before a message format can be created, the layout of the binary data must be
understood. Legacy purchase order sample data and corresponding MFL and X
documents for a purchase order record are included on the XML Translator CD-R
The sample purchase order illustrates how XML Translator translates data from
format to another. For more information on this sample data, refer to the BEA
WebLogic XML/Non-XML Translator Samples Guide.

The key to translating binary data to and from XML is to create an accurate descri
of the binary data. For binary data (data that is not self-describing), you must ide
the following elements:

n Hierarchical groups

n Group attributes, such as name, optional, repeating, delimited

n Data fields

n Data field attributes, such as name, data type, length/termination, optional,
repeating

The Format Builder (the design-time portion of XML Translator) is used to build t
format definitions that are used for data translations. For details on the steps you
to perform to thoroughly analyze your data, refer to the BEA WebLogic
XML/Non-XML Translator Samples Guide.
BEA WebLogic XML/Non-XML Translator User Guide 2-7

2 Building Format Definitions
Using the Format Builder

Format Builder assists you in creating format descriptions for binary data. You use
Format Builder to create hierarchical and detail information derived from structural
and detailed analysis of your data. These format descriptions are stored in an MFL
document. You can also use Format Builder to test your format descriptions before you
apply them to your actual data.

Starting Format Builder

To start Format Builder, choose Start→Programs→BEA WebLogic E-Business
Platform→Format Builder. The Format Builder main window displays. If you did not
use the installation directory defaults, your path may be different.

Using the Format Builder Main Window

The main window of Format Builder is split into two panes. The left pane (the Tree
Pane) shows the structural information for the data format. The right pane (the
Properties Pane) shows the detail for the item selected in the tree pane.
2-8 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Figure 2-1 Format Builder Main Window

The structure of the binary data is defined in the tree pane using a combination of fields
and groups that match the target data.

The following topics discuss the parts of the main window and provide instructions for
navigating and executing commands from the main window of Format Builder:

n Using the Tree Pane

n Using the Menu Bar

n Using the Toolbar

n Using Drag and Drop

n Using the Shortcut Menus
BEA WebLogic XML/Non-XML Translator User Guide 2-9

2 Building Format Definitions

oice
 the
h the
Using the Tree Pane

The Tree Pane represents hierarchical/structural information about the format of the
binary data in a tree. The root node of the tree will correspond to the MFL document
being created or edited. The root node is referred to as the Message node. Child nodes
are labeled with group or field names. Fields are represented by leaf nodes in the tree.
Groups contain fields or other groups and are represented by non-leaf nodes in the tree.

The icon for each node encapsulates information about the node. The icon indicates
whether the node represents a message, a group, a field, a comment, or a reference. The
icon also indicates whether a group or field is repeating, whether a group is a “Ch
of Children”, and whether a group or field is optional or mandatory. You also have
ability to add, delete, move, copy, or rename nodes in the tree. This is done throug
menus or the toolbar (see Using the Menu Bar and Using the Toolbar).

The icons that appear in the Tree Pane are described in the following table.

Table 2-1 Tree Icon Descriptions

Tree Icon Icon Name Description

Message Format The top level element.

Group Collections of fields, comments, and other
groups or references that are related in
some way (for example, the fields
PAYDATE, HOURS, and RATE could be part
of the PAYINFO group). Defines the
formatting for all items contained in the
group.

Optional Group A group that has 0 or more occurrences.

Repeating Group A group that has one or more occurrences.

Optional Repeating Group May or may not be included, but if
included, more than one will occur.
2-10 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Group Reference Indicates that another instance of the
group exists in the data. Reference groups
have the same format as the original
group, but you can change the optional
setting and the occurrence setting for the
reference group.

Group Choice Choose Choice of Children if only one of
the items in the group will be included in
the message format.

Field Sequence of bytes that have some
meaning to an application. (For example,
the field EMPNAME contains an employee
name.) Defines the formatting for the
field.

Optional Field A field that may or may not be present.

Repeating Field A field that has one or more occurrences.

Field Reference Indicates that another instance of the field
exists in the data. Reference fields have
the same format as the original field, but
you can change the optional setting and
the occurrence setting for the reference
field.

Optional Repeating Field A field that has 0 or more occurrences.

Comment Contains notes about the message format
or the data translated by the message
format.

Table 2-1 Tree Icon Descriptions

Tree Icon Icon Name Description
BEA WebLogic XML/Non-XML Translator User Guide 2-11

2 Building Format Definitions
Using the Menu Bar

The Menu bar displays the menu headings. The menu items that are available depend
on what is selected in the tree pane and the state of the tree. Click a menu heading to
open the menu and choose a command.

Figure 2-2 Format Builder Menu Bar

Note: Menu items that appear in gray are unavailable for the current selection.

For a complete description of the menu commands, see Format Builder Menus.

Using the Toolbar

The toolbar provides buttons that access some of the frequently used commands in the
menus. To activate a command, click its toolbar button. If a command is unavailable,
its button appears “grayed-out.”

Figure 2-3 Format Builder Toolbar

The toolbar buttons provided with Format Builder are described below:

Collapse A minus sign next to an object indicates
that it can be collapsed.

Expand A plus sign next an object indicates that it
can be expanded to show more objects.

Table 2-1 Tree Icon Descriptions

Tree Icon Icon Name Description
2-12 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Toolbar Button Name Description

New Creates a new Message Format

Open Opens an existing Message Format

Save Saves the current Message Format

Cut Removes the item currently selected in the
left-hand pane, and it’s child objects, from the tree.
The item can be pasted elsewhere in the tree.

Note: This action is not available if the Message
Format (root) item is selected.

Copy Makes a copy of the item currently selected in the
left-hand pane for insertion elsewhere in the tree.

Note: This action is not available if the Message
Format (root) item is selected.

Paste as
Sibling

Inserts the cut or copied item as a sibling object of
the selected item.

Paste as
Reference

Inserts a reference to the cut or copied item as a
sibling object of the selected item.

Undo Reverses the previous action. The tool tip changes
to indicate the action that can be undone. For
example, changing the name of a field to Address
and clicking Apply causes the tool tip to read
“Undo Apply Field Address”. Format Builder
supports multi-level undoing and redoing.
BEA WebLogic XML/Non-XML Translator User Guide 2-13

2 Building Format Definitions

l
Redo Reverses the effects of an Undo command. The
tool tip changes to indicate the action that can be
redone. For example, changing the name of a field
to Address and then undoing that action causes the
tool tip to read “Redo Apply Field Address”.
Format Builder support multi-level undoing and
redoing.

Insert Field Inserts a field as a sibling of the item selected in the
tree pane.

Insert Group Inserts a group as a sibling of the item selected in
the tree pane.

Insert
Comment

Inserts a comment as a sibling of the item selected
in the tree pane.

Move Up Moves the selected item up one position under its
parent.

Move Down Moves the selected item down one position under
its parent.

Promote item Promotes the selected item to the next highest leve
in the tree. For example, Field1 is the child object
of Group1. Selecting Field1 and clicking the
Promote tool makes it a sibling of Group1.

Demote item Demotes the selected item to the next lower level
in the tree. For example, Group1 is the sibling of
Field1. Field1 immediately follows Group1 in the
tree. Selecting Field1 and clicking the Demote tool
makes it a child of Group1.

Expand Expands all items in the tree pane to show child
items.

Toolbar Button Name Description
2-14 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder

d

s
s a

p

 a

ent
Using the Shortcut Menus

Instead of using the standard menus to find the command you need, use the right mouse
button to click an item in the tree pane. The menu that appears shows the most
frequently used commands for that item.

The following commands are available from the Shortcut Menus.

Note: Some commands may be unavailable, depending on the item you have selected
in the tree, or the state of the tree at the time.

Table 2-2 Shortcut Menus

Collapse Collapses the tree pane to show first level items
only.

Toolbar Button Name Description

Menu Command Description

Cut Removes the item currently selected in the left-hand pane,
and it’s child objects, from the tree.

Copy Makes a copy of the item currently selected in the left-han
pane for insertion elsewhere in the tree.

Paste Inserts the cut or copied item. An additional menu display
when you select Paste. You can choose to paste the item a
child or sibling of the selected item. In addition, you can
choose to paste a reference to the cut or copied item as a
sibling of the selected item.

Insert Group Inserts a new group. You select whether to insert the grou
as a child or sibling of the selected item.

Insert Field Inserts a new field. You select whether to insert the field as
child or sibling of the selected item.

Insert Comment Inserts a comment. You select whether to insert the comm
as a child or sibling of the selected item.
BEA WebLogic XML/Non-XML Translator User Guide 2-15

2 Building Format Definitions

Using Drag and Drop

You can use the drag and drop feature of XML Translator to copy and/or move the
items in the tree pane.

Note: The node being copied or moved is always inserted as a sibling of the selected
node during the drag and drop process.

To use drag and drop to move an item:

1. Select the item you want to move.

2. Press and hold the left mouse button while you drag the item to the desired node.

3. When the item is in the desired location, release the left mouse button. The item
is moved to the new location.

To use drag and drop to copy an item:

1. Select the item you want to copy.

2. Press and hold the CTRL key.

3. Keeping the CTRL key depressed, press and hold the left mouse button while you
drag the item to the desired node.

4. With the sibling object selected, release the left mouse button. A copy of the item
is placed at the new location.

Duplicate Makes a copy of the currently selected item. The duplicate
item contains the same values as the original item. The name
of the duplicate item is the same as the original item name,
with the word “New” inserted before the original name. For
example, duplicating a group called “Group1” results in a
group with the name “NewGroup1”.

When you duplicate an item with a numeric value in its
name, the new item name contains the next sequential
number. For example, duplicating “NewGroup1” results in a
group named “NewGroup2”.

Delete Deletes the selected item.

Menu Command Description
2-16 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Creating a Message Format

The first step in creating a Message Format Definition file is to create a message format
(the root node of a message format file).

To create a message format:

1. Choose File→New. The Message Format Pane displays in the detail window.

Figure 2-4 Message Format Properties

2. Enter data in the fields as described in the following table.

Note: The previous example and the examples that follow are based on MFL version
2.0 documents.

Table 2-3 Message Format Properties

Field Description

Message Format Properties

Name The name of the message format. This value will be used as the root
element in the translated XML document. This name must comply
with XML element naming conventions.

Version The version of MFL you are using. Version 1.0 of MFL was
introduced with BEA eLink Information Integrator. Format Builder
adds new features, and its default version is 2.0.

Apply Saves your changes to the message format document.

Reset Discards your changes to the detail window and resets all fields to the
last saved values.
BEA WebLogic XML/Non-XML Translator User Guide 2-17

2 Building Format Definitions
Valid Names

Message Formats, Fields, and Groups are identified by a Name. The name that is
specified is used as the XML tag when binary data is translated to XML by XML
Translator. Thus the name must conform to the XML rules for a name.

The rules for names are as follows:

n Must start with a letter or underscore

n Can contain letters, digits, the period character, the hyphen character, or the
underscore character.

The following are valid name examples:

MyField
MyField1
MyField_again
MyField-again

The following are invalid name examples:

1MyField - may not start with a digit
My>Field - the greater-than sign (>) is an illegal character
My Field - a space is not permitted

Creating a Group

Groups are collections of fields, comments, references and other groups that are related
in some way (for example, the fields PAYDATE, HOURS, and RATE could be part of the
PAYINFO group). You can create a group as a child of the message format item, as a
child of another group, or as a sibling of a group or field.

To create a group:

1. Select an item in the tree pane.

2. Choose Insert→Group→As Child if you want to create the group as the child of
the message format or another group. Choose Insert→Group→As Sibling if you
want to create the group as the sibling of another group or a field. The Group
Details display in the detail window.
2-18 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Figure 2-5 Group Details

3. Enter data in the fields as described in the following table.

Note: The following example applies to MFL version 2.0.

Field Description

Group Description

Name The name of the group. This name must comply with XML element
naming conventions.

Optional Choose Optional if this is an optional group.

Choice of Children Choose Choice of Children if only one of the items in the group will
be included in the message format.

Group Occurrence
BEA WebLogic XML/Non-XML Translator User Guide 2-19

2 Building Format Definitions

a,

Occurrence Choose one of the following to indicate how often this group
appears in the message format:

n Once — Indicates the group appears only once.

n Repeat Delimiter — Indicates the group will repeat until the
specified delimiter is encountered.

n Repeat Field — Indicates the group will repeat the number of
times specified in the field denoted as the repeat field.

n Repeat Number — Indicates the group will repeat the
specified number of times.

n Unlimited — Indicates the group ill repeat an unlimited
number of times.

Note: Unless a group is defined as Optional, all groups occur at
least once.

Group Delimiter

Delimited Select this option if the end of the group is marked with a delimiter.
A delimiter identifies the end of a group of fields.

Note: Normally, groups are not delimited. They are usually
parsed by content (the group ends when all child objects
have been parsed).

Delimiter is Shared Indicates that the delimiter marks both the end of the group of dat
and the end of the last field of the group. The delimiter is shared
among the group and the last field of the group, to delimit the end
of the data.

Delimiter Tab Groups can have their termination point specified by a delimiter. A
delimiter is a string of characters that marks the end of the group of
fields. The group continues until the delimiter characters are
encountered.

Value — Enter the delimiter that marks the end of the group of
fields.

Field Description
2-20 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder

,

Creating a Field

Fields are a sequence of bytes that have some meaning to an application. (For example,
the field EMPNAME contains an employee name.) You can create a field as a child of the
message format item, as a child of a group, or as a sibling of a group or another field.
The field name is used as the element name in the XML document and must comply
with XML naming conventions.

Delimiter Field Tab Groups can have their termination point specified by a field that
contains a delimiter character string. A delimiter is a string of
characters that mark the end of the group. The group continues until
the delimiter character string contained in the specified field is
encountered.

n Field — Select the field that contains the delimiter character
string. A list of valid fields will be presented in a drop-down
list.

n Default — Enter the default delimiter character that will be
used if the above field is not present in the data. This value is
required.

Group Update Buttons

Apply Saves your changes to the message format document.

Duplicate Makes a copy of the group currently displayed. The duplicate group
contains the same values as the original group. The name of the
duplicate group is the same as the original group name, with the
word “New” inserted before the original name. For example,
duplicating a group called “Group1” results in a group with the
name “NewGroup1”.

When you duplicate an item with a numeric value in its name, the
new item name contains the next sequential number. For example
duplicating “NewGroup1” results in a group named “NewGroup2”.

Reset Discards your changes to the detail window and resets all fields to
the last saved values.

Field Description
BEA WebLogic XML/Non-XML Translator User Guide 2-21

2 Building Format Definitions
To create a field:

1. Select an item in the tree pane.

2. Choose Insert→Field→As Child if you want to create the field as the child of the
message format or group. Choose Insert→Field→As Sibling if you want to
create the field as the sibling of another field or a group. The Field Details
display in the detail window.

Figure 2-6 Field Details

3. Enter data in the fields as described in the following table.

Note: The following example applies to MFL version 2.0.
2-22 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Field Description

Field Description

Name The name of the field. This name must comply with XML element
naming conventions. Refer to Valid Names for more information.

Optional Select this option if this is an optional field. Optional means that the
data for the field may or may not be present.

Tagged Select this option if this is a tagged field. Being tagged means that a
literal precedes the data, indicating that the data is present. You
must also choose the data type of the tag field from the drop-down
list box. For example: SUP:ACME INC, SUP: is the tag. ACME
INC is the field data.

Tag If you selected the Field is Tagged option, enter the tag here.

Type Select the data type of the field from the drop down list. The default
is String.

Note: The Field Type you select dictates the Field Data Options
that appear on the dialog.

Refer to Appendix A, “Supported Data Types,” for a list of data
types supported by XML Translator.

Field Occurrence
BEA WebLogic XML/Non-XML Translator User Guide 2-23

2 Building Format Definitions

pe

t
ll

ific
Occurrence Choose one of the following to indicate how often this field
appears in the message format:

n Once — Indicates the field appears only once.

n Repeat Delimiter — Indicates the field will repeat until
the specified delimiter is encountered.

n Repeat Field — Indicates the field will repeat the
number of times specified in the field denoted as the
repeat field.

n Repeat Number — Indicates the field will repeat the
specified number of times.

n Unlimited — Indicates the field will repeat an unlimited
number of times.

Note: Unless a field is defined as optional, the field will occur at
least one time.

Note: The fields that display in the following sections of the dialog depend on the Field
Type selected.

Field Data Options

Data Base Type If the field is a date or time field, the base type indicates what ty
of characters (ASCII, EBCDIC, or Numeric) make up the data.

Year Cutoff If the field is a date field that has a 2-digit year, the year cutoff
allows the 2-digit year to be converted to a 4-digit year. If the 2-digi
year is greater than or equal to the year cutoff value, a '19' prefix wi
be added to the year value. Otherwise a '20' prefix will be used.

Code Page The character encoding of the field data.

Value The value that appears in a literal field.

Field Delimiter (Termination)

Length Tab Variable-size data types can have their length specified by a spec
length value.

Value — Enter the length of the field data.

Field Description
2-24 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder

ied
s

ed

t
Delimiter Tab Variable-sized data types can have their termination point specified
by a delimiter. A delimiter is a character that marks the end of the
field. The field data continues until the delimiter character is
encountered.

Value — Enter the delimiter that marks the end of the field data.

Length Field Tab Variable-sized data types can have their termination point specif
by a length field. A length field precedes the data field and indicate
how many bytes the data contains.

n Type — Select the type of the length field.

n Length — Select this option if the length field is a variable
length; then, enter the number of bytes in the length field.

n Delimiter — Select this option if the end of the length field is
marked by a delimiter; then, enter the delimiter character.

n Length Occurs Before Tagged Field — Select this option if
the length field should appear before the tag in the data. The
default order is tag before length.

Note: The Length and Delimiter selection will be disabled if the
type of the length field determines its length (see
Supported Data Types for more information on field
types).

Delimiter Field Tab Variable-sized data types can have their termination point specifi
by a field that contains a delimiter character. A delimiter is a
character that marks the end of the field. The field data continues
until the field containing the delimiter character is encountered.

n Field — Select the field that contains the delimiter character.

n Default — Enter the delimiter character. You must supply a
default value. The default is used when the delimiter field is no
present.

Field Update Buttons

Apply Saves your changes to the message format file.

Field Description
BEA WebLogic XML/Non-XML Translator User Guide 2-25

2 Building Format Definitions

e,
Creating a Comment

Comments contain notes about the message format or the data translated by the
message format. Comments are included in the message format definition for
documentation and informational purposes only. You can create a comment as a child
or sibling of any message format, group, or field. Comments are unnumbered in the
MFL document and are not transformed to the XML or Binary data.

Note: Conventionally, the comment usually precedes the node it intends to
document.

To create a comment:

1. Select an item in the tree pane.

2. Choose Insert→Comment→As Child if you want to create the comment as the
child of the selected item. Choose Insert→Comment→As Sibling if you want to
create the comment as the sibling of the selected item. The Comment Details
display in the detail window.

Duplicate Makes a copy of the field currently displayed. The duplicate field
contains the same values as the original field. The name of the
duplicate field is the same as the original field name, with the word
“New” inserted before the original name. For example, duplicating
a field called “Field1” results in a field with the name “NewField1”.

When you duplicate an item with a numeric value in its name, the
new item name contains the next sequential number. For exampl
duplicating “NewField1” results in a group named “NewField2”.

Reset Discards your changes to the detail window and resets all
fields to the last saved values.

Field Description
2-26 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder

our
ress
e for

e, the

roup
Figure 2-7 Comment Details

3. Enter data in the fields as described in the following table.

Creating References

References indicate that the description of the field or group format has been
previously defined and you want to reuse this description without re-entering the data.
Reference fields or groups have the same format as the original field or group, but you
can change only the optional setting and the occurrence setting for the reference field
or group. For example, if you have a “bill to” address and a “ship to” address in y
data and the format for the address is the same, you only need to define the add
format once. You can create the “bill to” address definition and create a referenc
the “ship to” address.

Note: References are named exactly the same as the original item. For exampl
“bill to” address definition and the “ship to” address definition would be
named the same. If you want to reuse a group definition, create a generic g

Field Description

Comment Details Enter the comment text.

Apply Saves your changes to the message format document.

Reset Discards your changes to the detail window and resets all
fields to the last saved values.
BEA WebLogic XML/Non-XML Translator User Guide 2-27

2 Building Format Definitions
and embed it within a specific group. For example, in the previous example,
you can create an address group within a bill_to group and reference address
within a ship_to group.

To create a reference:

1. Select a field or group in the tree pane.

2. Choose Edit→Copy.

3. Choose the proper sibling in the tree.

4. Choose Edit→Paste→As Reference.

Figure 2-8 Reference Details

5. Enter data in the fields as described in the following table.

Field Description

Reference Description

Name Displays the name of the original field for group for which you
created this reference. This value cannot be changed.

Optional Select this option if the reference field or group is optional.

Occurrence
2-28 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder

at

e
Working with Pallets

The pallet allows you to store commonly used message format items and insert them
into your message format definitions. These items are stored in an MFL document, and
you can use the drag and drop feature (see Using Drag and Drop) to copy items from
the pallet into your message format definition.

You may reorder or change the hierarchy within the pallets by using drag and drop or
the Context menu. The contents of the pallet are automatically saved when you exit
Format Builder.

Note: You can only copy items from the tree pane to the pallet and vice versa. You
cannot move items between the windows.

Occurrence Choose one of the following to indicate how often this
reference field or group appears in the message format:

n Once — Indicates the reference appears only once.

n Repeat Delimiter — Indicates the reference will repeat
until the specified delimiter is encountered.

n Repeat Field — Indicates the reference will repeat the
number of times specified in the field denoted as the repe
field.

n Repeat Number — Indicates the reference will repeat the
specified number of times.

n Unlimited — Indicates the reference will repeat an unlimited
number of times.

Field Update Buttons

Apply Saves your changes to the message format document.

Edit Reference Displays the detail window for the original item so you can edit th
details of the referenced field or group.

Reset Discards your changes to the detail window and resets all
fields to the last saved values.

Field Description
BEA WebLogic XML/Non-XML Translator User Guide 2-29

2 Building Format Definitions
The XML Translator pallet contains some common date formats, literals, and strings.
You can use these items in the message formats you create, as well as adding your own
items to the pallet.

Adding Items to the Pallet

To add items to the pallet:

1. Choose View→Show Pallet to display the pallet.

Note: If the Pallet window is already displayed, skip this step.

2. From the tree pane of the XML Translator window, choose the item you want to
add to the pallet.

3. Click and hold the left mouse button and drag the item into the pallet window.

4. When the item is placed in the position you want it (as sibling of the desired
item), release the mouse button. The item is copied from the XML Translator
window to the pallet window.

Notes: You cannot add any node that depends on the existence of another node to the
pallet. For example, you cannot add Field or Group References, and you
cannot add items that have a Repeat Field specified.

Adding comments is possible, but not recommended since comments do not
have unique names and therefore are indistinguishable on the pallet.

Deleting Items From the Pallet

To delete items from the pallet:

1. Select the item in the pallet to be deleted and click the right mouse button. The
Shortcut Menu displays.

2. Choose Delete. A message displays asking you to confirm the deletion.

3. Click OK to delete the item.

Adding Pallet Items to a Message Format

To copy items from the pallet to a message format:
2-30 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
1. Choose View→Show Pallet to display the pallet.

Note: If the Pallet window is already displayed, skip this step.

2. From the pallet window, choose the item you want to add to your message
format.

3. Click and hold the left mouse button and drag the item into the tree pane of the
Format Builder window.

4. When the item is placed in the position you want it (as the sibling of the desired
item), release the mouse button. The item is copied from the pallet to the message
format.

Saving a Message Format

To save a message format file for the first time:

1. Choose File→Save As. The Save As dialog displays.

Figure 2-9 Save As Dialog

2. Navigate to the directory where you want to save the file.

3. In the File Name text box, type the name you want to assign to the file.
BEA WebLogic XML/Non-XML Translator User Guide 2-31

2 Building Format Definitions
4. Format Builder automatically assigns the .mfl extension to message format files
by default if no extension is given.

5. Click Save As to save the file in the specified location with the specified name
and extension.

To save a message format file using the same name, choose File→Save. The file is
saved in the same location with the same name and extension.

To save a message format file using a different name, choose File→Save As and
follow steps 1 through 5 above.

Opening an Existing Message Format

To open an existing message format file:

1. Choose File→Open. The Open dialog displays.

Figure 2-10 Open Dialog

2. Navigate to the directory containing the desired file and select the file name.

3. Click Open. The file is loaded into Format Builder.
2-32 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Importing a COBOL Copybook

XML Translator includes a feature that allows you to import a COBOL copybook into
Format Builder creating a message definition to translate the COBOL data. When
importing a copybook, comments are used to document the imported copybook and the
Groups and Fields it contains.

To import a COBOL copybook:

1. Choose Tools→Import→COBOL Copybook Importer. The COBOL Copybook
Importer dialog displays.

2. Enter data in the fields as described in the following table:

Field Description

Filename Type the path and name of the file you want to import.

Browse Click to navigate to the location of the file you want to import.

Byte Order

Big Endian Select this option to set the byte order to Big Endian.

Note: These values are attributes of the copybook data, not
the copybook description file.

Little Endian Select this option to set the byte order to Little Endian.

Note: These values are attributes of the copybook data, not
the copybook description file.
BEA WebLogic XML/Non-XML Translator User Guide 2-33

2 Building Format Definitions
Once you have imported a copybook, you may work with it as you would any message
format definition. If an error or unsupported data type is encountered in the copybook,
a message is displayed informing you of the error. You can choose to display the error
or save the error to a log file for future reference.

Setting Format Builder Options

You can set several options to control the overall operation of Format Builder.

To set Format Builder options:

1. Choose Tools→Options. The Options dialog displays.

Character Set

EBCDIC Select this option to set the character set to EBCDIC.

Note: These values are attributes of the copybook data, not
the copybook description file.

ASCII Select this option to set the character set to ASCII.

Note: These values are attributes of the copybook data, not
the copybook description file.

Action Buttons

OK Imports the COBOL Copybook using the settings you defined.

Cancel Closes the dialog and returns to Format Builder without
importing.

About Displays information about the COBOL Copybook importer
including version and supported copybook features.

Field Description
2-34 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Figure 2-11 Format Builder Options Dialog

2. Enter data in the fields as described in the following table.

Field Definition

Default Message Format Version Select the MFL version used when creating new
documents.

Note: Message formats contain their own format
version specified on the Message Format pane.

XML Formatting Options

Initial Indent Enter the number of spaces to indent the first line of the
Message Format document.

New Line Indent Enter the number of spaces to indent a new child line of
the Message Format document.

XML Content Model Options

Auto-generate DTD Generates a DTD document when you save the MFL
document. This document will be placed in the same
directory as the message format.

Auto-generate Schema Generates an XML Schema file when you save the MFL
document.This document will be placed in the same
directory as the message format.

Action Buttons
BEA WebLogic XML/Non-XML Translator User Guide 2-35

2 Building Format Definitions
Format Builder Menus

The following menus are available in Format Builder.

File Menu

The following commands are available from the File Menu.

Note: Some commands may be unavailable, depending on the actions you have
taken.

Edit Menu

The following commands are available from the Edit Menu.

Note: Some commands may be unavailable, depending on the actions you have taken
and the state of the tree pane and its items.

OK Saves your changes and closes the dialog.

Cancel Discards your changes and closes the dialog.

Field Definition

Menu Command Description

New Creates a new Message Format document

Open Opens an existing Message Format document

Close Closes the current Message Format document

Save Saves the current Message Format document

Save As Saves the current Message Format under a different name
document

Exit Exits the Format Builder program
2-36 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder

.

nd

d

d

ne

en
 or
te

m
e

,

ts
Menu Command Description

Undo Reverses the previous action. The Undo command in the Edit
Menu changes to indicate the action that can be undone. For
example, changing the name of a field to Field1 and clicking
Apply causes the Edit Menu to read “Undo Apply Field Field1”

Redo Reverses the effects of an Undo command. The Redo comma
in the Edit Menu changes to indicate the action that can be
redone. For example, changing the name of a field to Field1 an
then undoing that action causes the Edit Menu to read “Redo
Apply Field Field1”.

Cut Removes the item currently selected in the left-hand pane, an
it’s child objects, from the tree. This item is placed on the
clipboard for pasting into another location.

Note: This action is not available if the Message Format
(root) item is selected.

Copy Makes a copy of the item currently selected in the left-hand pa
for insertion elsewhere in the tree.

Note: This action is not available if the Message Format
(root) item is selected.

Paste Inserts the cut or copied item. An additional menu displays wh
you select Paste. You can choose to paste the item as a child
sibling of the selected item. In addition, you can choose to pas
a reference as a sibling of the selected item.

Duplicate Makes a copy of the item selected in the tree. The duplicate ite
contains the same values as the original item. The name of th
duplicate item is the same as the original item name, but the
word “New” is inserted before the original name. For example
duplicating an item called “Field1” results in an item with the
name “NewField1”.

When you duplicate an item with a numeric value in its name,
the new item name contains the next sequential number. For
example, duplicating “NewGroup1” results in a group named
“NewGroup2”.

Delete Deletes the item selected in the tree, as well as all child objec
of that item.
BEA WebLogic XML/Non-XML Translator User Guide 2-37

2 Building Format Definitions
Insert Menu

The following commands are available from the Insert Menu.

View Menu

The following commands are available from the View Menu.

Move Up Moves the selected item up one position under its parent.

Move Down Moves the selected item down one position under its parent.

Promote Promotes the selected item to the next highest level in the tree.
For example, Field1 is the child object of Group1. Selecting
Field1 and clicking the Promote tool makes it a sibling of
Group1.

Demote Demotes the selected item to the next lower level in the tree. For
example, Group1 is the sibling of Field1. Field1 immediately
follows Group1 in the tree. Selecting Field1 and clicking the
Demote tool makes it a child of Group1.

Menu Command Description

Menu Command Description

Field Inserts a new field. You can choose whether to insert the
field as a child or sibling of the item selected in the tree.

Group Inserts a new group. You can choose whether to insert the
group as a child or sibling of the item selected in the tree.

Comment Inserts a comment. You can choose whether to insert the
comment as a child or sibling of the item selected in the
tree.

Menu Command Description

Show Pallet Displays the pallet window. For more information on the
pallet, see Working with Pallets.
2-38 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Tools Menu

The following commands are available from the Tools Menu.

Test Menu

The following command is available from the Test Menu.

Help Menu

The following commands are available from the Help Menu.

Expand All Expands the entire tree pane to show the child objects of all
items in the tree.

Collapse All Collapses the entire tree pane to show only the root message
format.

Menu Command Description

Menu Command Description

Import Displays a list of the installed importers. Choose the
importer from which you want to import a message.

Options Displays the Format Builder Options dialog. For more
information, see Setting Format Builder Options.

Menu Command Description

Message Format Opens the Format Tester. Refer to “Testing Format
Definitions” for more information.

Menu Command Description

Help Topics Displays the main Help screen.
BEA WebLogic XML/Non-XML Translator User Guide 2-39

2 Building Format Definitions
How Do I. . . Provides step-by-step instructions for performing the
basic tasks in Format Builder.

About Displays version and copyright information about Format
Builder.

Menu Command Description
2-40 BEA WebLogic XML/Non-XML Translator User Guide

CHAPTER
3 Testing Format
Definitions

Once you have built a format definition, you can test it using the built-in test feature of
Format Builder. The test feature parses and reformats data as a validation test and also
generates sample binary or XML data. Using the Tester, you can make sure the
message formats you build with Format Builder produce the expected results. The
Tester uses the runtime WLXT Java class to perform the test translation.

This section discusses the following topics:

n Running the Tester

n Debugging Formats

Running the Tester

To run the tester:

1. Start Format Builder.

Note: To run the Tester, you must have a message format document open in the
Format Builder.

2. Choose Test→Message Format. The Format Tester dialog displays.

Note: The Tester works with the currently loaded message definition document.
BEA WebLogic XML/Non-XML Translator User Guide 3-1

3 Testing Format Definitions
Figure 3-1 Format Tester Dialog

3. Load a data file in the binary or XML edit control or enter your own data

Field Description

MFL Document Displays the name of the message format definition currently
loaded in Format Builder.

Binary

Load Allows you to select the binary data file you want to work
with.

Save Allows you to save the binary data to a file.

Generate Automatically generates binary test data based on the current
message format definition.

Clear Clears the data from the display area.
3-2 BEA WebLogic XML/Non-XML Translator User Guide

Running the Tester
Display Area Displays the results of loading or translating a file. You can
also enter your own data or modify data you have entered.

Note: Clicking the right mouse button in this display area
opens a shortcut menu. From this menu, you can
choose the Cut, Copy, or Paste commands. These
commands allow you to cut or copy text displayed in
this area and paste it in another location within this
display area.

Action Buttons

To XML Translates the binary data in the currently loaded file to XML
format, based on the current message format definition.

To Binary Translates the XML data in the currently loaded file to binary
format, based on the current message format definition.

Debug Select this option if you want to display the actions the Tester
performs during a translation.

XML

Load Allows you to select the XML data file you want to work with.

Save Allows you to save the XML data to a different filename.

Generate Automatically generates XML test data based on the current
message format definition.

Clear Clears the data from the display area.

Display Area Displays the results of loading or translating a file. You can
also enter your own data or modify data you have entered.

Note: Clicking the right mouse button in this display area
opens a shortcut menu. From this menu, you can
choose the Cut, Copy, or Paste commands. These
commands allow you to cut or copy text displayed in
this area and paste it in another location within this
display area.

Debug

Field Description
BEA WebLogic XML/Non-XML Translator User Guide 3-3

3 Testing Format Definitions
Debugging Formats

The following steps illustrate using the Tester to debug a message definition that does
not translate correctly.

1. Start Format Builder.

2. Open a Message Format.

1. Open the Tester dialog box and load the file (either XML or binary) that you want
to translate.

2. Select Debug. The Debug text box opens at the bottom of the Format Tester
dialog.

3. Click the appropriate button (to XML or to Binary) to translate your data. The
Debug window displays the actions that take place during the translation
operation, including any errors that are encountered. The field and group values
will be displayed along with delimiters. To determine the location of the error,
determine the last field that parsed successfully and examine the specification of
the next field on the Tree Pane of Format Builder.

Debug Display Area Displays the actions being performed by the Tester during a
translation.

Field Description
3-4 BEA WebLogic XML/Non-XML Translator User Guide

Debugging Formats
4. Correct the errors and test the translation again.

5. Continue this process until the translation is successful.

Note: You can leave the Tester dialog box open while you modify the Message
Format from within Format Builder. Any changes to the message definition
are automatically used by the Tester.

Errors encountered during translation process
BEA WebLogic XML/Non-XML Translator User Guide 3-5

3 Testing Format Definitions
3-6 BEA WebLogic XML/Non-XML Translator User Guide

Binary to XML
4 Using the Run-Time
Component

The run-time component of XML Translator consists of a Java class named WLXT.
This class has various methods used to translate data between binary and XML
formats. This Java class can be deployed in an EJB using BEA WebLogic Server,
invoked from a workflow in BEA WebLogic Process Integrator, or integrated into any
Java application.

The XML Translator class provides several parse() methods that translate binary
data into XML. XML Translator also provides several serialize() methods that
translate XML data to a binary format. Binary data formats are described via MFL
documents. XML Translator uses MFL documents to read and write binary data to or
from XML. MFL documents are specified by a URL in a parse() or serialize()
method. The code samples below illustrate how to use XML Translator to parse binary
data into XML, and serialize XML into binary.

Binary to XML

The following code listing uses the parse() method of XML Translator to parse a file
containing binary data into XML.

Listing 4-1 Sample Binary to XML Parse() Method

1 import com.bea.wlxt.*;
2 import org.w3c.dom.Document;
BEA WebLogic XML/Non-XML Translator User Guide 4-1

4 Using the Run-Time Component
3 import java.io.FileInputStream;
4 import java.net.URL;
5
6 public class Example
7 {
8 public static void main(String[] args)
9 {
10 try
11 {
12 WLXT wlxt = new WLXT();
13 URL mflDocumentName = new URL(“file:mymfl.mfl”);
14 FileInputStream in = new FileInputStream(“mybinaryfile”);
15
16 Document doc = wlxt.parse(mflDocumentName, in, null);
17 String xml = wlxt.getXMLText(doc, 0, 2);
18 System.out.println(xml);
19 }
20 catch (Exception e)
21 {
22 e.printStackTrace(System.err);
23 }
24 }
25}

In the prior listing, a new instance of the XML Translator class is instantiated at line
12. A Uniform Resource Locator (URL) is created for a MFL file that was previously
created with Format Builder. A FileInputStream is created for some binary data that
exists in the file mybinaryfile. The URL for the MFL document, and the stream of
binary data, are then passed into the parse method of XML Translator at line 16. The
parse method converts the binary data into an instance of a W3C Document object.
This object can be converted to XML text via XML Translator getXMLText() method
(as shown on line 17), or manipulated directly via the W3C DOM API.

Generating XML with a Reference to a DTD

WXLT also includes parse () methods that allow a reference to a Document Type
Definition (DTD) or an XML Schema to be output in the resulting XML document.
The following listing illustrates this generation.
4-2 BEA WebLogic XML/Non-XML Translator User Guide

Binary to XML
Listing 4-2 Sample XML Generation with a DTD Reference Code Example

1 import com.bea.wlxt.*;
2 import org.w3c.dom.Document
3 import java.io.FileInputStream;
4 import java.net.URL;
5
6 public class Example2
7 {
8 public static void main(String[] args)
9 {
10 try
11 {
12 WLXT wlxt = new WLXT();
13 URL mflDocumentName = new URL(“file:mymfl.mfl”);
14 FileInputStream in = new FileInputStream(“mybinaryfile”);
15
16 Documentdoc=wlxt.parse(mflDocumentName,in,“mydtd.dtd”,
17 null);String xml = wlxt.getXMLText(doc, 0, 2);
18 System.out.println(xml);
19 }
20 catch (Exception e)
21 {
22 e.printStackTrace(System.err);
23 }
24 }
25 }

The only difference between Listing 4-2 and Listing 4-1 occurs in line 16. On line 16,
a different parse method is invoked that allows a DTD file to be specified (mydtd.dtd),
so that it is referenced in the resulting XML document.

Thus, the resulting XML has a DOCTYPE statement that refers to the DTD
mydtd.dtd (see the following example).

<?xml version=”1.0”?>
<!DOCTYPE someRootNode SYSTEM ‘mydtd.dtd’>

A similar parse method allows the resulting XML to refer to an XML Schema.
BEA WebLogic XML/Non-XML Translator User Guide 4-3

4 Using the Run-Time Component
Passing in a Debug Writer

All of the parse() methods of XML Translator allow a PrintWriter to be passed in as
the last parameter of the parse() method. If this parameter is not null, XML Translator
will print debug messages to this PrintWriter. This allows you to debug the translation
if the MFL document and the binary data do not agree. If debug messages are not
desired, pass in null for this parameter as shown in the previous listings.

Listing 4-3 Passing in a Debug Writer Sample

1 import com.bea.wlxt.*;
2 import org.w3c.dom.Document
3 import java.io.FileInputStream;
4 import java.io.PrintWriter;
5 import java.net.URL;
6
7 public class Example3
8 {
9 public static void main(String[] args)
10 {
11 try
12 {
13 WLXT wlxt = new WLXT();
14 URL mflDocumentName = new URL(“file:mymfl.mfl”);
15 FileInputStream in = new FileInputStream
16 (“mybinaryfile”);
17 Document doc=wlxt.parse(mflDocumentName,in,new
 PrintWriter(System.out,true));
18 String xml = wlxt.getXMLText(doc, 0, 2);
19 System.out.println(xml);
20 }
21 catch (Exception e)
22 {
23 e.printStackTrace(System.err);
24 }
25 }
26 }
4-4 BEA WebLogic XML/Non-XML Translator User Guide

XML to Binary
At line 17, as a last parameter to the parse() method, a PrintWriter object is created
from the System.out PrintStream. This will cause debug messages such as the ones
shown below to be written to the console.

Listing 4-4 Debug Output

Parsing FieldFormat NAME at offset 0
 Field NAME Found delimiter [;]
 Field NAME type String offset 0 value=[John Doe]
Done FieldFormat NAME
Group PAYINFO repeat until delim=[*]
 Parsing 1st instance of StructFormat PAYINFO at offset 18
 Parsing FieldFormat PAYDATE at offset 18
.
.
.

XML to Binary

The following code listing illustrates using XML Translator to convert XML text to
binary format.

Listing 4-5 Sample XML to Binary Conversion

1 import com.bea.wlxt.*;
2 import java.io.FileInputStream;
3 import java.io.FileOutputStream;
4 import java.net.URL;
5
6 public class Example4
7 {
8 public static void main(String[] args)
9 {
10 try
11 {
12 WLXT wlxt = new WLXT();
13 URL mflDocumentName = new URL(“file:mymfl.mfl”);
BEA WebLogic XML/Non-XML Translator User Guide 4-5

4 Using the Run-Time Component
14 FileInputStream in = new FileInputStream(“myxml.xml”);
15 FileOutputStream out = new FileOutputStream(“mybinaryfile”);
16
17 wlxt.serialize(mflDocumentName, in, out, null);
18 out.close();
19 }
20 catch (Exception e)
21 {
22 e.printStackTrace(System.err);
23 }
24 }
25 }

In the code example above, a new instance of XML Translator class is created at line
12. Then a URL is created for an MFL file, and a FileInputStream is created for a
file containing XML text. A FileOutputStream is also instantiated to store the binary
data that will result from the XML to binary translation. On line 17, the serialize ()
method of XML Translator is invoked, to translate the XML data contained in the
FileInputStream ’in’ (myxml.xml), to the binary format described in ’mymfl.mfl ’.
This binary data is written to the FileOutputStream ’out’ (which is the file
’mybinaryfile ’).

 Converting a Document object to Binary

The listing below illustrates converting a W3C Document object to a binary format.

Listing 4-6 Converting a Document Object to Binary

1 import com.bea.wlxt.*;
2 import java.io.FileOutputStream;
3 import java.net.URL;
4
5 import org.w3c.dom.Document;
6
7 import org.apache.xerces.parsers.DOMParser;
8
9 public class Example5
10 {
11 public static void main(String[] args)
4-6 BEA WebLogic XML/Non-XML Translator User Guide

XML to Binary
12 {
13 // Parse XML into a Document object
14 Document doc = null;
15 try
16 {
17 DOMParser parser = new DOMParser();
18 parser.parse("myxml.xml");
19 doc = parser.getDocument();
20 }
21 catch (Exception e)
22 {
23 e.printStackTrace(System.err);
24 System.exit(1);
25 }
26
27 try
28 {
29 WLXT wlxt = new WLXT();
30 URL mflDocumentName = new URL("file:mymfl.mfl");
31 FileOutputStream out = new
 FileOutputStream("mybinaryfile");
32
33 wlxt.serialize(mflDocumentName, doc, out, null);
34 out.close();
35 }
36 catch (Exception e)
37 {
38 e.printStackTrace(System.err);
39 }
40 }
41 }

This example illustrates passing in a Document object to the serialize() method of
the XML Translator class. This is useful when your application already has XML in
the form of a Document object, or has created a Document object using the DOM API.
Lines 14 through 25 convert the XML text in the file ’myxml.xml’ to a Document
object using an XML parser. This Document object is passed to XML Translator on
line 33, to convert it to the binary format specified by the MFL file ’mymfl.mfl’.
BEA WebLogic XML/Non-XML Translator User Guide 4-7

4 Using the Run-Time Component
Passing in a debug writer

The serialize methods also support passing in a PrintWriter parameter for the logging
of debug messages. An example invocation of the serialize method with a PrintWriter
object is given below.

wlxt.serialize(mflDocumentName, in, out, new
 PrintWriter(System.out, true));

This will cause debug messages such as the ones shown below to be written to the
console.

Debug Output:

The following code represents debug output.

Listing 4-7 Debug Output

Processing xml and mfl nodes tcp1
Processing xml node NAME
Checking MFL node NAME
Found matching MFL node NAME
Writing field NAME value John Doe
Processing xml node PAYINFO
Checking MFL node PAYINFO

 XML to XML Transformation

XML Translator also provides methods to transform XML via XSLT. XSLT is a
language for transforming XML documents. A XSLT stylesheet is an XML document
that describes transformations that are to be performed on the nodes of an XML
document. The XML Translator class provides transform() methods that apply an
XSLT stylesheet to an XML document. Using a stylesheet, an XML document can be
transformed into HTML, PDF, or another XML dialect.
4-8 BEA WebLogic XML/Non-XML Translator User Guide

XML to XML Transformation
The listing below illustrates transforming an XML document using one of the
transform methods provided by the XML Translator class.

Listing 4-8 XML to XML Transformation

1 import com.bea.wlxt.*;
2 import java.io.FileInputStream;
3 import java.io.FileOutputStream;
4 import java.net.URL;
5
6 import org.xml.sax.InputSource;
7
8 public class Example7
9 {
10 public static void main(String[] args)
11 {
12
13 try
14 {
15 WLXT wlxt = new WLXT();
16 URL stylesheet = new URL("file:mystylesheet.xsl");
17 FileInputStream in = new FileInputStream("myxml.xml");
18 FileOuputStream out = new FileOutputStream
19 (“myoutputfile”)
20
21 wlxt.transform(new InputSource(in), out, stylesheet);
22
23 out.close();
24 }
25 catch (Exception e)
26 {
27 e.printStackTrace(System.err);
28 }
29 }
30 }

On line 15, an instance of XML Translator is created. On the following line a URL is
created for a previously created XSLT stylesheet. A FileInputStream is then created
for a file containing XML text. A FileOutputStream is also created for the text that
results from the XSLT transformation. On line 20, a transform () method of the XML
Translator class is invoked to transform the XML in the file ’myxml.xml ’, according to
the XSLT stylesheet ’mystylesheet.xsl ’. The output of the transformation is written
to the file ’myoutputfile ’.
BEA WebLogic XML/Non-XML Translator User Guide 4-9

4 Using the Run-Time Component
Initialization methods

The XML Translator class provides several methods to ’preprocess’ MFL documents
and XSLT stylesheets. Once these documents are preprocessed, they are cached
internally, and reused when referenced in an parse(), serialize(), or transform()
method. This greatly improves the performance of these methods, since the MFL
document or XSLT stylesheet has already been processed and cached. This is
particularly useful when XML Translator is used in an EJB or servlet, where the same
MFL documents or XSLT stylesheets are used repeatedly.

init() method

The XML Translator class provides two init() methods that take either a
java.util.Properties object or the file name of a Properties file as a parameter. This
init() method will retrieve the ’WLXT.stylesheets’ and ’WLXT.MFLDocuments’
properties from the Properties object. Each property is expected to contain a
comma-delimited list of documents that are to be preprocessed and cached. When
these documents are later referenced in a parse(), serialize(), or transform()
method, the preprocessed version will be retrieved from the cache. The listing below
demonstrates using an init() method to initialize an instance of the XML Translator
class.

Listing 4-9 Properties file myconfig.cfg:

WLXT.MFLDocuments=file:mymfl.mfl
WLXT.stylesheets=file:mystylesheet.xsl

Listing 4-10 Source code example of init() method using file ’myconfig.cfg’

1 import com.bea.wlxt.*;
2 import java.io.FileInputStream;
3 import java.io.FileOutputStream;
4 import java.net.URL;
5
6 import org.xml.sax.InputSource;
7 import org.w3c.dom.Document;
8
9 public class Example8
4-10 BEA WebLogic XML/Non-XML Translator User Guide

XML to XML Transformation
10 {
11 public static void main(String[] args)
12 {
13
14 WLXT wlxt = null;
15
16 // Initialize WLXT with a properties file
17 try
18 {
19 wlxt = new WLXT();
20 wlxt.init("myconfig.cfg");
21 }
22 catch (Exception e)
23 {
24 e.printStackTrace(System.err);
25 }
26
27 // Parse binary data into XML
28 Document doc = null;
29 try
30 {
31 URL mflDocumentName = new URL("file:mymfl.mfl");
32 FileInputStream in = new FileInputStream("mybinaryfile");
33
34 doc = wlxt.parse(mflDocumentName, in, null);
35 }
36 catch (Exception e)
37 {
38 e.printStackTrace(System.err);
39 }
40
41 try
42 {
43 URL stylesheet = new URL("file:mystylesheet.xsl");
44 FileOutputStream out = new FileOutputStream
45 (“myoutputfile”)
46
47 wlxt.transform(doc, out, stylesheet);
48
49 out.close();
50 }
51 catch (Exception e)
52 {
53 e.printStackTrace(System.err);
54 }
55 }
56 }
BEA WebLogic XML/Non-XML Translator User Guide 4-11

4 Using the Run-Time Component
The init() method on line 20 of the listing above, causes the XML Translator object
to preprocess the documents listed in the file ’myconfig.cfg’. When an MFL
document is specified in the parse() method of line 34, this MFL document has
already been processed an cached inside the XML Translator object. The same is true
of the stylesheet that is referenced in the invocation of the transform() method on line
46.

Java API Documentation

For the complete reference to using the XML Translator class, see the Java API
Documentation located in the apidoc subdirectory of your XML Translator
installation.
4-12 BEA WebLogic XML/Non-XML Translator User Guide

APPENDIX
A Supported Data Types

This section lists the following data types supported by XML Translator.

n MFL Data Types

n COBOL Copybook Importer Data Types

MFL Data Types

Table A-1 lists the MFL data types that XML Translator supports. These types are
specified in the “type” attribute of a FieldFormat element.

Table A-1 Supported MFL Data Types

Data Type Description

String A string of characters. Requires a length, a length field, a
delimiter, or a delimiter field. If no length, length field, or
delimiter is defined for a data type String, a delimiter of "\x00"
(a NUL character) will be assumed.

String: NUL terminated A string of characters, optionally NUL (\x00) terminated,
residing within a fixed length field. This field type requires a
length attribute or length field which determines the amount of
data read for the field. This data is then examined for a NUL
delimiter. If a delimiter is found, data following the delimiter is
discarded. If a NUL delimiter does not exist, the fixed length
data is used as the value of the field.
BEA WebLogic XML/Non-XML Translator User Guide A-1

A Supported Data Types
Numeric A string of characters containing only digits, i.e. ’0’ through ’9’.
Requires a length, length field, delimiter, or a delimiter field.

Binary (Base64 encoding) Any character value accepted. Requires a length, length field,
delimiter, or a delimiter field. Resulting XML data for this field
is encoded using base-64.

Binary (Hex encoding) Any character value accepted. Requires a length, length field,
delimiter, or a delimiter field. Resulting XML data for this field
is encoded using base-16.

EBCDIC A string of characters in IBM Extended Binary Coded Decimal
Interchange Code. Requires a length, length field, delimiter, or
a delimiter field.

Packed Decimal: Signed IBM signed packed format. Requires a length, length field,
delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Packed Decimal:
Unsigned

IBM unsigned packed format. Requires a length, length field,
delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Zoned Decimal: Signed IBM signed zoned decimal format. Requires a length, length
field, delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Zoned Decimal: Leading
sign

IBM signed zoned decimal format where the sign indicator is in
the first nibble. Requires a length, length field, delimiter, or a
delimiter field to be specified. The length or length field should
specify the size of this field in bytes.

Zoned Decimal: Leading
separate sign

IBM signed zoned decimal format where the sign indicator is in
the first byte. The first byte only contains the sign indicator and
is separated from the numeric value. Requires a length, length
field, delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Zoned Decimal: Trailing
separate sign

IBM signed zoned decimal format where the sign indicator is in
the last byte. The last byte only contains the sign indicator and
is separated from the numeric value. Requires a length, length
field, delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Data Type Description
A-2 BEA WebLogic XML/Non-XML Translator User Guide

MFL Data Types
Zoned Decimal:
Unsigned

IBM unsigned zoned decimal format. Requires a length, length
field, delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Integer: Signed, 1 byte A one byte signed integer, i.e. ’56’ is 0x38.

Integer: Unsigned, 1 byte A one byte unsigned integer, i.e. ’128’ is 0x80.

Integer: Signed, 2 byte,
Big-Endian

A signed two-byte integer in big endian format, i.e. ’4660’ is
0x1234.

Integer: Signed, 4 byte,
Big-Endian

A signed four-byte integer in big endian format, i.e. ’4660’ is
0x00001234.

Integer: Signed, 8 bytes,
Big-Endian

A signed eight-byte integer in big endian format, i.e. ’4660’ is
0x0000000000001234.

Integer: Unsigned, 2 byte,
Big-Endian

An unsigned two-byte integer in big endian format, i.e. ’65000’
is 0xFDE8.

Integer: Unsigned, 4 byte,
Big-Endian

An unsigned four-byte integer in big endian format, i.e. ’65000’
is 0x0000FDE8.

Integer: Unsigned, 8
bytes, Big-Endian

A unsigned eight-byte integer in big endian format, i.e. ’65000’
is 0x000000000000FDE8.

Integer: Signed, 2 bytes,
Little-Endian

A signed two-byte integer in little endian format, i.e. ’4660’ is
0x3412.

Integer: Signed, 4 bytes,
Little-Endian

A signed four-byte integer in little endian format, i.e. ’4660’ is
0x34120000.

Integer: Signed, 8 bytes,
Little-Endian

A signed eight-byte integer in little endian format, i.e. ’4660’ is
0x3412000000000000.

Integer: Unsigned, 2
bytes, Little-Endian

An unsigned two-byte integer in little endian format, i.e.’65000’
is 0xE8FD.

Integer: Unsigned, 4
bytes, Little-Endian

An unsigned four-byte integer in little endian format, i.e. ’65000’
is 0xE8FD0000.

Integer: Unsigned, 8
bytes, Little-Endian

A unsigned eight-byte integer in little endian format, i.e. ’65000’
is 0xE8FD000000000000.

Data Type Description
BEA WebLogic XML/Non-XML Translator User Guide A-3

A Supported Data Types
FloatingPoint: 4 bytes,
Big-Endian

A four byte big endian floating point number that conforms to
the IEEE Standard 754.

FloatingPoint, 4 bytes,
Little-Endian

A four byte little endian floating point number that conforms to
the IEEE Standard 754.

FloatingPoint: 8 bytes,
Big-Endian

A eight byte big endian floating point number that conforms to
the IEEE Standard 754.

FloatingPoint: 8 bytes,
Little-Endian

A eight byte little endian floating point number that conforms to
the IEEE Standard 754.

Date: YYYYMMDD An eight byte numeric string of the format YYYYMMDD. A
base data of String or EBCDIC may be specified to indicate the
character encoding.

DateTime:
YYYYMMDDhhmmss

A fourteen byte numeric string of the format
YYYYMMDDHHMISS. A Base data type may be specified.

Date: MMDDYY A six digit numeric string defining a date, i.e. 012200.

Date: MMDDYYYY An eight digit numeric string defining a date, i.e. 01222000.

DateTime:
MMDDYYhhmm

A string of numeric digits defining a date and time, i.e.
0122001224.

DateTime:
MMDDYYhhmmss

A string of numeric digits defining a date and time, i.e.
012200122400.

Date: MM/DD/YY A string defining a date, i.e. 01/22/00.

Date: MM/DD/YYYY A string defining a date, i.e. 01/22/2000.

DateTime: MM/DD/YY
hh:mm

A string defining a date and time, i.e. 01/22/00 12:24.

DateTime: MM/DD/YY
hh:mi AM

A string defining a date and time, i.e. 01/22/00 12:24 AM.

DateTime: MM/DD/YY
hh:mm:ss

A string defining a date and time, i.e. 01/22/00 12:24:00.

DateTime: MM/DD/YY
hh:mm:ss AM

A string defining a date and time, i.e. 01/22/00 12:24:00 AM.

Data Type Description
A-4 BEA WebLogic XML/Non-XML Translator User Guide

MFL Data Types
Date: DDMMMYY A string defining a date, i.e. 22JAN00.

Date: DDMMMYYYY A string defining a date, i.e. 22JAN2000.

Date: DD/MM/YY A string defining a date, i.e. 22/01/00.

Date: DD/MM/YYYY A string defining a date, i.e. 22/01/2000.

DateTime: DD/MM/YY
hh:mm

A string defining a date and time, i.e. 22/01/00 12:24.

DateTime: DD/MM/YY
hh:mm AM

A string defining a date and time, i.e. 22/01/00 12:24 AM.

DateTime: DD/MM/YY
hh:mm:ss

A string defining a date and time, i.e. 22/01/00 12:24:00.

DateTime: DD/MM/YY
hh:mm:ss AM

A string defining a date and time, i.e. 22/01/00 12:24:00 AM.

Date: DD-MMM-YY A string defining a date, i.e. 22-JAN-00.

Date: DD-MMM-YYYY A string defining a date, i.e. 22-JAN-2000.

Date: MMM-YY A string defining a date, i.e. JAN-00.

Date: MMM-YYYY A string defining a date, i.e. JAN-2000.

Date: MMMYY A string defining a date, i.e. JAN00.

Date: MMMYYYY A string defining a date, i.e. JAN2000.

Date: MMMDDYYYY A string defining a date, i.e. JAN222000.

Time: hhmmss A string defining a time, i.e. 122400.

Time: hh:mm AM A string defining a time, i.e. 12:24 AM.

Time: hh:mm A string defining a time, i.e. 12:24.

Time: hh:mm:ss AM A string defining a time, i.e. 12:24:00 AM.

Time: hh:mm:ss A string defining a time, i.e. 12:24:00.

Data Type Description
BEA WebLogic XML/Non-XML Translator User Guide A-5

A Supported Data Types
Date: Wed Nov 15
10:55:37 CST 2000

The default date format of the Java platform, i.e. ’WED NOV 15
10:55:37 CST 2000’

Literal A literal value determined by the contents of the value attribute.
When binary data is translated to XML, the presence of the
specified literal in the binary data is verified by WLXT. The
literal is read, but is not translated to the XML data. When XML
data is translated to a binary format, and a literal is defined as
part of the binary format, WLXT writes the literal in the
resulting binary byte stream.

Filler A sequence of bytes that is not translated to XML. This field of
data is skipped over when translating binary data to XML. When
translating XML to binary data, this field is written to the binary
output stream as a sequence of spaces.

Data Type Description
A-6 BEA WebLogic XML/Non-XML Translator User Guide

COBOL Copybook Importer Data Types
COBOL Copybook Importer Data Types

Table lists the COBOL data types and the support provided by the Importer.

Table 4-1 COBOL Data Types

COBOL Type Support

BLANK WHEN ZERO (zoned) supported

COMP-1, COMP-2 (float) supported

COMP-3, PACKED-DECIMAL supported

COMP, COMP-4, BINARY (integer) supported

COMP, COMP-4, BINARY (fixed) supported

COMP-5, COMP-X supported

DISPLAY (alphanumeric) supported

DISPLAY numeric (zoned) supported

edited alphanumeric supported

edited float numeric supported

edited numeric supported

group record supported

INDEX supported

JUSTIFIED RIGHT ignored

OCCURS (fixed array) supported

OCCURS DEPENDING (variable-length) supported

OCCURS INDEXED BY ignored

OCCURS KEY IS ignored
BEA WebLogic XML/Non-XML Translator User Guide A-7

A Supported Data Types
Support for these data types is limited. The following formats:

05 pic 9(5) comp-5

05 pic 9(5) comp-x

will be converted to an unsigned 4 byte integer type, while the following will
generate errors:

05 pic X(5) comp-5

05 pic X(5) comp-x

In these samples, pic9(5) could be substituted for pic x(5).

The following values are defined as follows:

n Supported - the data type will be correctly parsed by the importer and converted
to a message format field or group.

n Unsupported - this data type is not supported and the importer reports an error
when the copybook is imported.

POINTER supported

PROCEDURE-POINTER supported

REDEFINES supported

SIGN IS LEADING SEPARATE (zoned) supported

SIGN IS TRAILING (zoned) supported

SIGN IS TRAILING SEPARATE (zoned) supported

SIGN IS LEADING (zoned) supported

SYNCHRONIZED ignored

66 RENAMES ignored

66 RENAMES THRU ignored

77 level supported

88 level (condition) ignored

COBOL Type Support
A-8 BEA WebLogic XML/Non-XML Translator User Guide

COBOL Copybook Importer Data Types

n

book.
ent

 be
n Ignored - the data type is parsed and a comment is added to the message format.
No corresponding field or group is created.

Some vendor-specific extensions are not recognized by the importer, however, any
copybook statement that conforms to ANSI standard COBOL will be parsed correctly
by the Importer. The Importer’s default data model, which is based on the IBM
mainframe model, can be changed in Format Builder to compensate for character set
and data “endianness”.

When importing copybooks, the importer may identify fields generically that, upo
visual inspection, could easily be identified by a more specific data type. For this
reason, the copybook importer creates comments for each field found in the copy
This information is useful in assisting you in editing the MFL data to better repres
the original Copybook. For example:

original copybook entry:

05 birth-date picxx/xx/xx

results in:

A field of type EBCDIC with a length of 8

Closer inspection indicates that this is intended to be a date format and could
defined as

A field of type Date: MM/DD/YY

or

A field of type Data: DD/MM/YY
BEA WebLogic XML/Non-XML Translator User Guide A-9

A Supported Data Types
A-10 BEA WebLogic XML/Non-XML Translator User Guide

Glossary

Binary Data

A file format for data encoded as a sequence of bits, but not necessarily consisting
of a sequence of printable characters (text). The term is often used for executable
machine code.

Big Endian

Binary format where most significant byte has the lowest address. This format is
used on IBM 370 and most RISC designs.

COBOL Copybook Importer

Reads a COBOL Copybook and generates a message format reflecting the data
structure of the COBOL Copybook.

Code Page

In the context of this documentation, the character encoding of the field data.

Data Transformation

In the context of this documentation, data transformation is the term used to de-
scribe the mapping of XML data to another XML format. An example would be
mapping an instance of a RosettaNet document to an instance of a ebXML docu-
ment.

Data Translation

In the context of this application, data translation is the process of converting bi-
nary data to or from XML.

Delimiter

A sequence of bytes that denote the end of a field or group of data.

Document Type Definition (DTD)

Defines what content can exist in an XML document. DTDs are part of the W3C
XML Specification 1.0.
BEA WebLogic XML/Non-XML Translator User Guide G-1

eXtensible Stylesheet Language: Transformations (XSLT)

An XML language designed for transforming one XML document into another.
An XSLT document, or stylesheet, describes data transformations that are to be
performed on nodes of an XML document. Using XSLT, an XML document can
be transformed into a variety of text formats (XML, HTML, PDF, etc.). XSLT is
a W3C recommendation.

Field

 A sequence of bytes that are interpreted by an application as a unit of data.

Group

A set of fields and/or groups that are to be treated as having a unifying relation-
ship.

Group Choice

A group comprised of fields or other groups that are mutually exclusive in the ac-
tual binary data.

Java Message Service (JMS)

A peer-to-peer messaging system for java programs to send and receive messages.
A JMS application is capable of sending or receiving application defined messag-
es (asynchronous requests, reports, or events) to other JMS applications so that
these separate applications can collaborate or coordinate their efforts.

Little Endian

Binary format in which bytes at lower address have lower significance. This for-
mat is used on Intel and VAX processors.

Message Format

The description of a binary format produced by Format Builder.

Metadata

Data that is used to describe other data. Message Formats created using Format
Builder are the metadata used to parse binary data.

Message Format Language (MFL)

An XML language created by BEA that describes the native representation and hi-
erarchy of binary data. MFL is an XML description of binary data.
G-2 BEA WebLogic XML/Non-XML Translator User Guide

e-
ges
ty,

ters;
de-
or-

f an
on.
Reference

A group or field that relies on a prior definition to determine its name, type, and
termination attributes.

Schema

An XML document that defines what can be in an XML document. A Schema def-
inition is more specific than a DTD and provides much finer-grained control over
the content that can exist in an XML document.

Servlet

A server-side Java program that is usually executed in response to an HTTP re-
quest and produces its output in a browser.

Stylesheet

An XSL document. A stylesheet describes data transformations (or mappings) that
are to be performed on an XML document. A stylesheet describes which nodes of
an XML document are to be manipulated (using XPath) and which manipulations
are to be performed.

WebLogic Process Integrator

Workflow engine for BEA WebLogic application servers that automates work-
flow, business-to-business processes, and application assembly.

WebLogic Server

WebLogic’s standards-based, pure-java application server, for assembling, d
ploying and managing distributed Java applications. WebLogic Server mana
application components and DBMS connections to ensure security, scalabili
performance, and transaction integrity.

XML - Extensible Markup Language

Data format that is easily read and manipulated by both humans and compu
data and meta-data are both included in the data, to provide a standard self-
scribing syntax for representing information. XML is a World Wide Web Cons
tium (W3C) standard.

XPath

Used within XSLT, XPath is an XML language that identifies parts of an XML
document to be processed. XPath is used in XSLT to specify which nodes o
XML document are to be copied or manipulated during an XSLT transformati
XPath is a W3C recommendation.
BEA WebLogic XML/Non-XML Translator User Guide G-3

G-4 BEA WebLogic XML/Non-XML Translator User Guide

Index

B
binary data, about 2-2

C
choice of children 2-19
COBOL copybook

importing 2-32
COBOL copybook importer data types A-7
COBOL data types A-7
code page

field data option 2-24
comment, creating 2-25
comments 2-7
customer support contact information ix

D
data base type

field data options 2-24
data fields 2-7
data types

COBOL A-7
MFL A-1
support A-1

debug writer 4-4
delimited

group delimiter 2-20
delimiter

field 2-24
group 2-20

delimiter field
field delimiter 2-25

delimiter is shared
group delimiter 2-20

document type definition 4-2
documentation, where to find it viii

E
edit menu 2-36

copy 2-37
cut 2-37
delete 2-37
demote 2-38
duplicate 2-37
move down 2-37
move up 2-37
paste 2-37
promote 2-37
redo 2-36
undo 2-36

F
field 2-6

creating 2-21
data type 2-23
delimiter 2-24
name 2-23
occurrence 2-23
optional 2-23
parameters 2-6
BEA Laguna User Guide I-1

tag 2-23
field data options

data base type 2-24
value 2-24
year cutoff 2-24

field data options, code page 2-24
field delimiter 2-24

delimiter 2-24
delimiter field 2-25
length 2-24
length field 2-24

field occurrence
once 2-23
repeat delimiter 2-23
repeat field 2-23
repeat number 2-23
unlimited 2-23

file menu 2-35
close 2-36
exit 2-36
new 2-36
open 2-36
save 2-36
save as 2-36

Format Builder
setting options 2-34
starting 2-8
using 2-8

G
group

creating 2-18
delimiter 2-20
description 2-19
occurrence 2-19

group attributes 2-7
group delimiter

delimited 2-20
delimiter 2-20
delimiter is shared 2-20

group occurence
once 2-20
repeat delimiter 2-20
repeat field 2-20
repeat number 2-20
unlimited 2-20

H
help menu 2-39

about 2-39
help topics 2-39
how do I 2-39

hierarchical groups 2-7

I
insert menu 2-38

comment 2-38
field 2-38
group 2-38

L
length

field delimiter 2-24
length field

field delimiter 2-24

M
menu bar 2-12
Message Format 2-6

adding pallet items 2-30
default version 2-35
opening 2-31
saving 2-30

message node 2-10
MFL data types A-1
MFL documents, about 2-6
I-2 BEA Laguna User Guide

N
name

field 2-23
group 2-19

O
occurrence

group 2-20
occurrence

field 2-23
once

field occurrence 2-23
group occurrence 2-20

optional
field 2-23
group 2-19

P
pallet

adding items 2-29
deleting items 2-30

pallets 2-29
printing product documentation viii
Properties Pane 2-8

R
references 2-7

creating 2-26
related information viii
repeat delimiter

field occurrence 2-23
group occurrence 2-20

repeat field
field occurrence 2-23
group occurrence 2-20

repeat number
field occurrence 2-23
group occurrence 2-20

root node 2-10

S
shortcut menus 2-15
support

technical ix

T
test menu 2-39

message format 2-39
toolbar 2-12

buttons 2-12
tools menu 2-39

import 2-39
options 2-39

Tree Pane 2-8
using 2-10

U
unlimited

field occurrence 2-23
group occurrence 2-20

V
valid names 2-18
value

field data option 2-24
view menu 2-38

collapse all 2-38
expand all 2-38
show pallet 2-38

X
XML content model options 2-35
XML documents, about 2-3
XML formatting options 2-35
BEA Laguna User Guide I-3

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 BEA WebLogic XML/Non-XML Translator Overview
	Understanding XML Translation
	What is XML Translator?
	The Design-Time Component
	The Run-Time Component
	Binary to XML Translation
	XML to Binary Translation

	Post Translation Options and Considerations
	Performing XML Transformation
	Working with BEA WebLogic Process Integrator

	Getting Started with the BEA WebLogic XML/Non-XML Translator

	2 Building Format Definitions
	Understanding the Data Formats Used with XML Translator
	About Binary Data (Non-XML Data)
	About XML Documents
	About MFL Documents

	Analyzing the Data to be Translated
	Using the Format Builder
	Starting Format Builder
	Using the Format Builder Main Window
	Using the Tree Pane
	Using the Menu Bar
	Using the Toolbar
	Using the Shortcut Menus
	Using Drag and Drop

	Creating a Message Format
	Valid Names

	Creating a Group
	Creating a Field
	Creating a Comment
	Creating References
	Working with Pallets
	Adding Items to the Pallet
	Deleting Items From the Pallet
	Adding Pallet Items to a Message Format

	Saving a Message Format
	Opening an Existing Message Format
	Importing a COBOL Copybook
	Setting Format Builder Options
	Format Builder Menus
	File Menu
	Edit Menu
	Insert Menu
	View Menu
	Tools Menu
	Test Menu
	Help Menu

	3 Testing Format Definitions
	Running the Tester
	Debugging Formats

	4 Using the Run-Time Component
	Binary to XML
	Generating XML with a Reference to a DTD
	Passing in a Debug Writer

	XML to Binary
	Converting a Document object to Binary
	Passing in a debug writer
	Debug Output:

	XML to XML Transformation
	Initialization methods
	init() method

	Java API Documentation

	A Supported Data Types
	MFL Data Types
	COBOL Copybook Importer Data Types

	Glossary
	Index

