
Version 8.1 SP4
December 2004

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the agreement. This document may
not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium
or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software−Restricted Rights
Clause at FAR 52.227−19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227−7013, subparagraph (d) of the Commercial Computer Software−−Licensing clause
at NASA FAR supplement 16−52.227−86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the
part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR
THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E−Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Table of Contents
WebLogic Workshop Tutorials...1

The Getting Started Tutorials..2

Getting Started: Web Services...3

Getting Started: Web Service Core Concepts..5

Step 1: Create a Web Service Project...8

Step 2: Implement Synchronous Communication...12

Step 3: Implement Asynchronous Communication...15

Summary: Getting Started Web Services Tutorial..22

Getting Started: Web Applications...23

Getting Started: Web Application Core Concepts..24

Step 1: Create a Web Application Project..26

Step 2: Submitting Data...29

Step 3: Processing Data..39

Step 4: Displaying Results..45

Summary: Getting Started Web Application Tutorial..48

Getting Started: Java Controls..49

Getting Started: Java Control Core Concepts...50

Step 1: Create a Control Project...53

Step 2: Define the Database Control...57

Step 3: Define the Custom Control..62

Step 4: Test the Controls..67

Summary: Getting Started Control Tutorial ...71

Getting Started: Enterprise JavaBeans..72

WebLogic Workshop Tutorials

i

Table of Contents
Getting Started: EJB Core Concepts..73

Step 1: Create an EJB Project...76

Step 2: Define the Entity Bean...80

Step 3: Define the Session Bean...87

Step 4: Test the EJBs..92

Summary: Getting Started EJB Tutorial ...97

Getting Started: Portals...98

Getting Started: Portal Core Concepts...100

Step 1: Create a Portal Project..104

Step 2: Organize Content in a Portal..109

Step 3: Personalize a Web Application...117

Summary: Getting Started Portal Tutorial..127

Tutorial: Java Control..128

Step 1: Begin the Investigate Java Control...131

Step 2: Add a Database Control..147

Step 3: Add a Web Service Control...156

Step 4: Add a JMS Control..164

Step 5: Add an EJB Control..171

Step 6: Add Support for Cancellation and Exception Handling..175

Step 7: Transport Security...181

Step 8: Compile the Java Control and Add a Property..189

Summary: Java Control Tutorial..197

Tutorial: Web Services...198

WebLogic Workshop Tutorials

ii

Table of Contents
Step 1: Begin the Investigate Web Service...200

Step 2: Add Support for Asynchronous Communication...208

Step 3: Add Support for Synchronous Communication...217

Step 4: Add Support for XML Mapping..222

Step 5: Add a Script for XML Mapping...231

Step 6: Web Service Security...235

Summary: Web Service Tutorial...244

Tutorial: Page Flow..246

Step 1: Begin the Page Flow Tutorial..249

Step 2: Processing Data with Page Flows...255

Step 3: Create the JSP Pages...264

Step 4: Role−Based Security..273

Summary: Page Flow Tutorial ..281

Tutorial: Building Your First Business Process...282

Tutorial: Building Your First Data Transformation...283

Portal Tutorials...286

Tutorial: Building Your First Portal...287

Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server.........................288

Step 2: Create a Portal...289

Tutorial: Changing a Portal's Look & Feel and Navigation...291

Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server.........................292

Step 2: Change the Portal Look & Feel and Navigation...293

Tutorial: Showing Personalized Content in a Portlet..295

WebLogic Workshop Tutorials

iii

Table of Contents
Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server.........................297

Step 2: Create a User Profile Property Set...298

Step 3: Create Two Users...299

Step 4: Load Content..300

Step 5: Create a JSP...301

Step 6: Add Content Selectors to the JSP...302

Step 7: Create a Portlet with the JSP..305

Step 8: Test the Personalized Portlet..306

Tutorial: Creating a Login Control Page Flow Using the Wizard...308

Step 1: Create a Page Flow Using the Wizard...309

Step 2: Place the Page Flow in a Portlet...313

Tutorial: Using Page Flows Inside Portlets..319

Step 1: Create a Portal Application..320

Step 2: Create a Simple Navigation Page Flow..321

Step 3: Create Portlets that Communicate...327

Step 4: Create an EJB Control Page Flow portlet...334

Tutorial: Enterprise JavaBeans...337

Part One: Building Your First EJBs...340

Step 1: Begin the EJB Tutorial..341

Step 2: Import an EJB from a JAR...345

Step 3: Create a Session Bean..349

Step 4: Run a Web Application...353

Part Two: Defining an Entity Relationship..358

WebLogic Workshop Tutorials

iv

Table of Contents
Step 5: Create a New Entity Bean...359

Step 6: Update the Band Entity Bean...365

Step 7: Update the Session Bean..369

Step 8: Run a Web Application...371

Step 9: Build and Run a Web Service Application..373

Part Three: Adding a Message−Driven Bean...376

Step 10: Create a Message−Driven Bean..378

Step 11: Update the Recording Bean..382

Step 12: Update the Music Bean..384

Step 13: Run a Web Application...389

Summary: Enterprise JavaBean Tutorial ..391

WebLogic Workshop Tutorials

v

WebLogic Workshop Tutorials
WebLogic Workshop includes tutorials that walk you through the process of creating each of the core
component types of WebLogic Workshop applications.

Topics Included in This Section

The Getting Started Tutorials

The Getting Started tutorials are a series of independent tutorials that provide a quick step−by−step
introduction to the core components of WebLogic Workshop.

Tutorial: Java Controls

Provides a step−by−step guide to building a custom Java control.

Tutorial: Web Services

Provides a step−by−step guide to building Java Web Services.

Tutorial: Page Flows

Provides an introduction to developing web applications based on Java Page Flows.

Tutorial: Your First Business Process

Provides step−by−step instructions to build a basic integration application.

Tutorial: Your First Data Transformation

Provides step−by−step instructions to building an XML−to−XML data transformation in an integration
application.

Tutorial: Enterprise JavaBeans

Provides step−by−step instructions to developing Enterprise JavaBeans.

WebLogic Workshop Tutorials 1

The Getting Started Tutorials
The Getting Started tutorials is a series of short tutorials that offers a basic step−by−step introduction to the
core J2EE components and how you can develop these components with WebLogic Workshop. Each tutorial
is self−contained, and can be run independently of any of the other tutorials. You can do any or all of these
tutorials in any order you want.

Topics Included in This Section

Getting Started: Web Services

Provides a step−by−step introduction to building Web Services.

Getting Started: Web Applications

Provides a step−by−step introduction to building Web Applications.

Getting Started: Controls

Provides a step−by−step introduction to building Java controls.

Getting Started: Enterprise JavaBeans

Provides a step−by−step introduction to building EJBs.

Getting Started: Portal

Provides a step−by−step introduction to building Portal applications.

Related Topics

The Getting Started Samples

The Getting Started Tutorials 2

Getting Started: Web Services

The Problem with Making Applications Interact

Today, companies rely on thousands of different software applications each with their own role to play in
running a business. To name just a few, database applications store information about customers and
inventories, web applications allow customers to browse and purchase products online, and sales tracking
applications help business identify trends and make decisions for the future.

These different software applications run on a wide range of different platforms and operating systems, and
they are implemented in different programming languages. As a result, it is very difficult for different
applications to communicate with one another and share their resources in a coordinated way.

Take, for example, a company that has its customer data stored in one application, its inventory data stored in
another application, and its purchasing orders from customers in a third. Until now, if this company wanted to
integrate these different systems, it had to employ developers to create custom bridging software to allow the
different applications to communicate with one another. However, these sorts of solutions are often piecemeal
and time consuming. As soon as a change is made to one application, corresponding changes have to be made
to the applications linked to it and to the bridges that link the applications together.

Another solution would be for a human being to bridge the communication gap between two applications, an
inefficient and error−prone approach.

The Web Services Solution

To solve the problem of application−to−application communication, businesses need a standardized way for
applications to communicate with one another over networks, no matter how those applications were
originally implemented. Web services provide exactly this solution by providing a standardized method of
communication between software applications. With a standardized method of communication in place,
different applications can be integrated together in ways not possible before. Different applications can be
made to call on each other's resources easily and reliably, and the different resources that applications already
provide can be linked together to provide new sorts of resources and functionality.

Moreover, application integration becomes much more flexible because web services provide a form of
communication that is not tied to any particular platform or programming language. The interior
implementation of one application can change without changing the communication channels between it and
the other applications with which it is coordinated. In short, web services provide a standard way to expose an
application's resources to the outside world so that any user can draw on the resources of the application.

What this Tutorial Teaches

In this tutorial you will learn the basic concepts behind building web services with WebLogic Workshop. You
will create a web service that receives a name a returns a greeting. Specifically, you will learn how to build a
synchronous method that will receive the name and return the greeting, and how to build an asynchronous,
buffered method that will receive the name and invoke a buffered callback method to return a greeting.

Related Topics

Building Web Services

Getting Started: Web Services 3

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Getting Started: Web Services 4

Getting Started: Web Service Core Concepts
This topic will familiarize you with the basic concepts of web service development.

What is a Web Service?

A web service is a set of functions packaged into a single entity that is available to other systems on a
network. The network can be a corporate intranet or the Internet. Other systems can call these functions to
request data or perform an operation. Because they rely on basic, standard technologies which most systems
provide, they are an excellent means for connecting distributed systems together.

Standards−Based

Web services are built on standard technologies such as HTTP and XML. All web service messages are
exchanged using a standard XML−messaging protocol known as SOAP, and web service interfaces are
described using documents in the WSDL standard. These standards are all completely agnostic of the platform
on which the web services were built. In short, the following standards are used:

WSDL. A Web Service Description Language (WSDL) file describes how the web service is operated
and how other software applications can interface with the web service. Think of a WSDL file as the
instruction manual for a web service explaining how a user can draw on the resources provided by the
web service.

•

XML. Extensible Markup Language (XML) messages provide the common language by which
different applications can talk to one another over a network. To operate a web service a user sends an
XML message containing a request for the web service to perform some operation; in response the
web service sends back another XML message containing the results of the operation.

•

SOAP. Typically XML messages are formatted according to SOAP syntax. Simple Object Access
Protocol (SOAP) specifies a standard format for applications to call each other's methods and pass
data to one another. Note that other non−SOAP forms of XML messages are possible, depending on
the specific requirements of the web service. (The type of XML message and the specific syntax
required is given in the web service's WSDL file.)

•

HTTP & JMS. To make web services accessible to other applications across networks, web services
receive requests and send responses using widely used protocols such as HyperText Transfer Protocol
(HTTP) and Java Message Service (JMS).

•

Asynchrony

Many business processes take more than a few moments to complete; it could take a few minutes, even
longer, or sometimes response time is variable and hard to predict. This is a problem for a synchronous
relationship, in which a client invokes a method of the web service and is blocked from continuing its own
processes until it receives the return value from the web service.

In WebLogic Workshop you can use asynchrony to overcome this problem. In asynchronous communication,
the client communicates with the web service in such a way that it is not forced to halt its processes while the
web service produces a response. In particular, the client invokes a method of the web service that
immediately returns a simple acknowledgement to the client, thereby allowing the client to continue its own
processes. When the web service has produced a response, it sends a callback method to the client containing
that response. Asynchronous web services use conversations to correlate messages and manage state between
message exchanges. This will ensure that the web service sends its response back to the correct client.

Getting Started: Web Service Core Concepts 5

Buffering

When a conversational web service's request method is called by multiple clients at the same time, a client
might have to wait until its call, however short, has been processed by the web service. In addition, when a
web service has completed processing multiple requests and needs to send multiple callback messages, it must
wait for a message to be processed by the client before it can send the next callback. For a conversational web
service, and especially for a web service receiving high−volume traffic, it is recommended to always add
buffers to the web service's methods and callbacks. When clients call a buffered method, the call is stored in a
buffer and the client does not have to wait for the web service to handle the call. When a web service sends a
callback, the message is stored in a buffer and the web service does not have to wait until the client processes
the callback.

Designing Web Services with WebLogic Workshop

Web services are developed using WebLogic Workshop, a visual tool for designing J2EE applications. The
image below shows the finished tutorial.

The Application tab (area 1) shows the application's source files. A web service is stored as a file with a JWS
extension.

WebLogic Workshop Tutorials

Getting Started: Web Service Core Concepts 6

The main work area (area 2) shows the Design View or the Source view of the component you are building. In
the above picture a web service is shown in Design View.

The Property Editor (area 3) allows you to see and set properties of a web service or web service method
selected in the main area.

A web service project folder holds one or more web services used in the application. In this tutorial you will
develop a web service in a web service project folder called MyJWSProject (area 4).

Related Topics

Getting Started with Web Services

Designing Asynchronous Interfaces

Using Buffering to Create Asynchronous Methods and Callbacks

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Getting Started: Web Service Core Concepts 7

Step 1: Create a Web Service Project
In this step you will create the application that you will be working with throughout this tutorial. In WebLogic
Workshop, an application contains one or more projects. For this application you will create a web service
project to hold the web service you are going to build.

The tasks in this step are:

To Start WebLogic Workshop•
To Create a New Application and Select a WebLogic Server Domain•
To Create a New Web Service Project•
To Start WebLogic Server•

To Start WebLogic Workshop

If you have an instance of WebLogic Workshop already running, you can skip this step.

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

From the Start menu, choose Programs−−>WebLogic Platform 8.1−−>WebLogic Workshop 8.1.•

...on Linux

If you are using a Linux operating system, follow these instructions.

Open a file system browser or shell.•
Locate the Workshop.sh file at the following address:

$HOME/bea/weblogic81/workshop/Workshop.sh

•

In the command line, type the following command:

sh Workshop.sh

•

To Create a New Application and Select a WebLogic Server Domain

To create the web service project, you must first create the application to which it will belong:

From the File menu, select New−−>Application. The New Application dialog appears.1.
In the New Application dialog, in the upper left−hand pane, select All.
In the upper right−hand pane, select Empty Application.
In the Directory field, use the Browse button to select a location to save your source files. A
suggested location is BEA_HOME\user_projects\applications\GettingStarted_WebServices.
In the Name field, enter GettingStarted_WebServices.
In the Server field, from the drop−down list, select
BEA_HOME\weblogic81\samples\domains\workshop.

2.

Step 1: Create a Web Service Project 8

Click Create.3.

To Create a New Web Service Project

In the Application tab, right−click the GettingStarted_webServices folder and select New−−>Project.1.
In the New Project dialog, in the upper left−hand pane, confirm that Web Services is selected.
In the upper right−hand pane, select Web Service Project.
In the Project Name field, enter MyJWSProject.

2.

WebLogic Workshop Tutorials

Step 1: Create a Web Service Project 9

Click Create.3.

The Application Tab should now look like the picture shown to the right.

The top−level folder GettingStarted_WebServices is the containing folder for the entire application. All of the
source files for your application exist in this folder.

The folder MyJWSProject is a project folder. An application can contain any number of project folders and
there are many different kinds of project folders, including Web projects, Web Services projects, Schema
projects, and so forth. MyJWSProject is a web services project. A web service project always contains the
WEB−INF folder. This folder stores JSP tag libraries, configuration files, compiled class files, and other
runtime resources.

The Modules folder is for the storage of stand−alone applications (packaged as WAR and JAR files) that can
deployed parallel with your web service, if you wish.

The Libraries folder is for the storage of resources that are to be used across multiple projects, provided the
resources are packaged as JAR files. For example, if you had a control or an EJB that you wanted to re−use
across all your projects, you would store it in the Libraries folder.

WebLogic Workshop Tutorials

Step 1: Create a Web Service Project 10

The Security Roles folder lets you define security roles and test users for your web application. You can test
the security design of your web application by logging in as a test user.

To Start WebLogic Server

Since you will be deploying and running your Java control on WebLogic Server, it is helpful to have
WebLogic Server running during the development process.

You can confirm whether WebLogic Server is running by looking at the status bar at the bottom of WebLogic
Workshop. If WebLogic Server is running, a green ball is displayed as pictured below.

If WebLogic Server is not running, a red ball is displayed, as pictured below.

If you see the red ball in the status bar, then follow these instructions to start WebLogic Server:

From the Tools menu, choose WebLogic Server−−>Start WebLogic Server.•
On the WebLogic Server Progress dialog, you may click Hide and continue to the next task.•

Related Topics

Getting Started with Web Services

How Do I...? Web Service Topics

The WebLogic Workshop Development Environment

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 1: Create a Web Service Project 11

Step 2: Implement Synchronous Communication
In this step you will create the web service and you will add a synchronous method to this web service.
Remember that when a client invokes a synchronous method, it is blocked from continuing its own processes
until it receives the return value from the web service.

The tasks in this step are:

Create the Web Service•
Add a Method•
Test the Web Service•

Create the Web Service

Right−click MyJWSProject in the Application tab, and select New−−>Web Service.1.
In the New File dialog, ensure that Web Service is selected and enter the file name Hello.jws.2.

Click Create.3.

Add a Method

Right−click the web service in the main area and select Add Method.1.

Step 2: Implement Synchronous Communication 12

The method newMethod1 appears. Rename this method hello_sync. If you step off the method before
you have finished renaming it, right−click the method and select Rename.

2.

Click the hello_synch method to go to Source View and modify the method as shown in red below:

 /**
 * @common:operation
 */
 public String hello_synch(String name)
 {
 return "Hello, " + name + "!";
 }

3.

You have now created a web service with the method hello_synch. This method is considered synchronous
because when the method is invoked, the invoking client has to wait until the method has finished processing
and returns a String result. A synchronous method that returns a result to the invoking client is depicted in
Design View as a straight blue arrow pointing to the right, with white arrows in both directions on top of the
blue arrow.

Test the Web Service

Next you will test the web service to examine its behavior.

Click the Start button, shown below:1.

When the Workshop Test Browser launches, in the Name field, enter [your_name] and click hello.2.

WebLogic Workshop Tutorials

Step 2: Implement Synchronous Communication 13

Examine the result returned by the hello_synch method. Scroll down to the Service Response section
and notice that the method returned Hello, [your_name]!

3.

Return to WebLogic Workshop and press the Stop button to close the Test Browser.4.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Implement Synchronous Communication 14

Step 3: Implement Asynchronous Communication
In this step you will enable asynchronous communication for the web service. You will add an asynchronous
method that immediately returns a simple acknowledgement to the client, thereby allowing the client to
continue its own processes. You will also add a callback method that returns the response to the client.
Finally, you will add buffers to the method and the callback to further minimize the time the client or web
service has to wait while the method invoked or callback returned is processed by the receiving party.

The tasks in this step are:

Add a Method•
Add a Callback•
Edit the Method•
Add Buffers•
Test the Web Service•

Add a Method

Right−click the web service in the main area and select Add Method.1.

The method newMethod1 appears. Rename this method hello_async. If you step off the method
before you have finished renaming it, right−click the method and select Rename.

2.

Make sure that hello_asynch is still selected and go to the Property Editor. Locate the conversation
section and for the phase attribute, select start.

3.

Step 3: Implement Asynchronous Communication 15

A green start icon will appear on the blue arrow in front of the hello_asynch method.

Add a Callback

Right−click the web service in the main area and select Add Callback.1.

The method newCallback1 appears. Rename this method hello_callback. If you step off the method
before you have finished renaming it, right−click the method and select Rename.

2.

Make sure that hello_callback is still selected and go to the Property Editor. Locate the conversation
section and for the phase attribute, select finish.

3.

WebLogic Workshop Tutorials

Step 3: Implement Asynchronous Communication 16

A red stop icon will appear on the blue arrow in front of the hello_asynch method.
Click hello_callback to go to Source View and modify the method as shown in red below:

 public interface Callback extends com.bea.control.ServiceControl
 {
 /**
 * @jws:conversation phase="finish"
 */
 void hello_callback(String message);
 }

4.

In Design View the web service should now look like this:

Edit the Method

Now you will edit the hello_asynch method to invoke the hello_callback callback.

In Design View, click hello_asynch to go to Source View and modify the method as shown in red
below:
 /**
 * @common:operation
 * @jws:conversation phase="start"
 */
 public void hello_asynch(String name)
 {
 String greeting;

1.

WebLogic Workshop Tutorials

Step 3: Implement Asynchronous Communication 17

 greeting = "Hello, " + name + "!";
 this.callback.hello_callback(greeting);

 }

Add Buffers

Click the Design View tab.1.
In Design View, select the hello_asynch method by selecting the blue arrow in front of the method.2.
In the Property Editor, locate the message−buffer section and set the enable attribute to true. Notice
that a buffer icon appears on the blue arrow.

3.

In Design View, select the hello_callback method by selecting the blue arrow in front of the method.4.
In the Property Editor, locate the message−buffer section and set the enable attribute to true. Notice
that a buffer icon appears on the blue arrow.

5.

The completed web service should look like this:

WebLogic Workshop Tutorials

Step 3: Implement Asynchronous Communication 18

Test the Web Service

Next you will test the web service to examine its behavior.

Click the Start button, shown below:1.

When the Workshop Test Browser launches, in the Name field, enter [your_name] and click
hello_asynch.

2.

Notice that the method returns immediately. Scroll down to the Service Response section and notice
that the method did not return anything. Also notice that the conversation has started.

3.

WebLogic Workshop Tutorials

Step 3: Implement Asynchronous Communication 19

Click the Continue this conversation link. Notice in the Message Log that the the hello_callback
method has been invoked and that the conversation is finished. Also notice that no greeting is returned
as a return value of the method; instead the callback method sends the greeting as a parameter to the
invoking client.

4.

Return to WebLogic Workshop and press the Stop button to close the Test Browser.5.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 3: Implement Asynchronous Communication 20

WebLogic Workshop Tutorials

Step 3: Implement Asynchronous Communication 21

Summary: Getting Started Web Services Tutorial
This tutorial introduced you to the basics of building web services with WebLogic Workshop.

Concepts and Tasks Introduced in This Tutorial

Using a web service to provide standards−based communication•
Using asynchrony and buffering to prevent the invoking client from having to halt its process•

Now that you have finished the basic web service tutorial, you can continue with one of the other basic
tutorials to learn more about the other core components you can develop in WebLogic Workshop. For more
information, see The Getting Started Tutorials. If you want to learn more about web service development, go
to the advanced Tutorial: Web Services. You can learn more about the web service design at Building Web
Services.

Related Topics

The Getting Started Tutorials

Tutorial: Web Services

Building Web Services

Designing Asynchronous Interfaces

Using Buffering to Create Asynchronous Methods and Callbacks

Click one of the following arrows to navigate through the tutorial:

Summary: Getting Started Web Services Tutorial 22

Getting Started: Web Applications

The Problem with 'Old−Style' Web Applications

Many web application developers are constantly faced with the problem of successfully making changes to a
web site. These developers use web application technology that doesn't allow an easy separation of the user
interface and the logic to interpret user input. Their web applications use CFM, ASP, or JSP pages in which
HTML code, JavaScript, and server−side code are all embedded in the same page. Because the server−side
logic needed to process a web page is stored directly in the page, similar logic is often reduplicated throughout
the various web pages instead of being coded once in a central location. As a result, if you need to change the
way data is interpreted, you need to make these changes in all the web pages that implement that logic.

This problem is compounded by the fact that this 'old−style' web application technology does not come with
an easy way to get a visual overview of how the various web pages relate to each other. A web developer
either needs to rely on his/her own memory to remember the flow through a web site or needs to use a
mapping tool to take a snapshot of the relations between the pages in a web application. Because a snapshot is
a static reflection, it is outdated as soon as changes to the web application have been made.

The Page Flow Solution

WebLogic Workshop uses Page Flows that make it easy to separate the user interface from the navigation and
business logic. A page flow consists of JSP pages that contain the user interface elements and a controller
(JPF) file that contains instructions on how data provided by a user is processed and what page will be
returned to the user next. A page flow provides a visual overview of the web application that enables you to
see how the various JSP pages relate to each other and allows you quickly build the overall architecture of the
web application.

What this Tutorial Teaches

In this tutorial you will learn the basic concepts behind building web applications with WebLogic Workshop.
You will create a page flow that allows a user to enter his/her name and receive a greeting. Specifically, you
will learn how to (1) build a JSP page on which a user can enter input, (2) build a controller file that receives
this data, processes it, and forwards a results to another JSP page, and (3) build a second JSP page that
displays data.

Related Topics

Developing Web Applications

Click one of the following arrows to navigate through the tutorial:

Getting Started: Web Applications 23

Getting Started: Web Application Core Concepts
This topic will familiarize you with the basic concepts of page flow design and development.

What is a Page Flow?

A page flow application is a web application with a special architecture. It contains the following elements.

JSP Files

The JSP files contains the presentation elements of a page flow applications. In other words, it contains the
user interface displayed in a browser. The web application can have as many JSP pages as necessary, and each
JSP page can contain all the elements of any regular JSP page. A JSP page in a page flow typically contains
HTML elements and netui tags, which are custom tags provided in WebLogic Workshop.

Controller Files

The controller file contains the business logic and the navigation logic of a web application. You can have
exactly one controller file for your web application, or you can have many controller files with each controller
file implementing the business and navigation logic of a part of the web application. A controller file typically
contains numerous Action Methods. When a user sends a request to the server, for instance by hitting a Submit
button on a web page, a specific action method contains the business logic describing how to process this user
request. The action method also contains the navigation logic describing what JSP page should be returned to
the user next. A controller file can be read in a special graphical view called the Flow View that shows the
navigational flow through the web application.

Data Binding

A user request typically contains data that the user provided by filling in fields on a JSP page. When a user
submits this data, for instance his name and age, it must be properly received by the controller file such that it
is unequivocally clear what data corresponds to his name and what data corresponds to his age. The process of
properly tying user input entered in a field to a certain property is called data binding.

Conversely, a JSP page often needs to display data. This data is not static but might be read from a database,
received earlier from a user, or computed on the basis of other dynamic data. Again, data binding must be
done correctly such that a certain presentation element on a JSP page displays the correct data.

There are various methods to accomplish data binding. User input is typically handled using a form bean,
which contains a set of properties corresponding to the data entered in the fields on a page. For instance, a
form bean might have a String name property to store the name, an int age property to store the age, and so
forth. To display data, you can use a form bean or you can add parameters to a URL, to name just two
examples. In this tutorial you will make the data to be displayed an attribute of a request object, which is a
special object readable by a JSP page.

Designing Page Flows with WebLogic Workshop

Page flows are developed using WebLogic Workshop, a visual tool for designing J2EE applications. The
image below shows the finished tutorial.

Getting Started: Web Application Core Concepts 24

The Application tab (area 1) shows the application's source files.

The main work area (area 2) shows several views of the page flow components you are building. In the above
picture a controller (JPF) file is shown in Flow View. The Flow View shows the navigational flow of the web
application.

The Property Editor (area 3) allows you to see and set properties of the page flow component opened in the
main area.

A web project folder holds all the page flow components required to run a web application. In this tutorial you
will develop the page flow application in a web project folder called GettingStarted_WebApp (area 4).

Related Topics

Guide to Building Page Flows

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Getting Started: Web Application Core Concepts 25

Step 1: Create a Web Application Project
In this step you will create the application that you will be working with throughout this tutorial. In WebLogic
Workshop, an application contains one or more projects that hold the various components of the application.
In this tutorial you will create a web project for the page flow.

The tasks in this step are:

To Start WebLogic Workshop•
To Create a Web Application•
To Start WebLogic Server•

To Start WebLogic Workshop

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

From the Start menu, choose Programs−−>WebLogic Platform 8.1−−>QuickStart.1.
In the QuickStart dialog, click Experience WebLogic Workshop 8.1.2.

...on Linux

If you are using a Linux operating system, follow these instructions.

Open a file system browser or shell.1.
Locate the Workshop.sh file at the following address:
$HOME/bea/weblogic81/workshop/Workshop.sh

2.

In the command line, type the following command:
sh Workshop.sh

3.

To Create a Web Application

From the File menu, select New−−>Application.1.
In the New Application dialog, in the upper left−hand pane, select All,
in the upper left−hand pane, select Default Application,
in the Name field, enter GettingStarted_WebApp,
in the Directory field, use the Browse button to select a location to save your source files. A suggested
location is BEA_HOME\user_projects\applications\GettingStarted_WebApp is selected,
in the Server field, select BEA_HOME\weblogic81\samples\domains\workshop.

2.

Step 1: Create a Web Application Project 26

Click Create.3.

When you create a new Default Application, Workshop creates the application structure shown to the right.

The top−level folder GettingStarted_WebApp is the containing folder
for the entire application. All of the source files for your application
exist in this folder.

The folder GettingStarted_WebAppWeb is a project folder. An application can contain any number of project
folders and there are many different kinds of project folders, including Web projects, Web Services projects,
Schema projects, and so forth. GettingStarted_WebAppWeb is a Web project, created by default when you
created the default application in the last dialog. Web projects contain the following common resources for
web applications:

The resources folder stores commonly reused JSP elements, including CSS files and JSP templates.•
The WEB−INF folder stores JSP tag libraries, configuration files, compiled class files, and other
runtime resources.

•

The Controller.jpf, error.jsp, and index.jsp are the components of the default parent page flow. You
may use this page flow as the master error handler and/or the master navigational controller for other

•

WebLogic Workshop Tutorials

Step 1: Create a Web Application Project 27

page flows in your portal.

The Modules folder is for the storage of stand−alone applications (packaged as WAR and JAR files) that can
deployed parallel with your web application, if you wish.

The Libraries folder is for the storage of resources that are to be used across multiple projects, provided the
resources are packaged as JAR files. For example, if you had a control or an EJB that you wanted to re−use
across all your projects, you would store it in the Libraries folder.

The Security Roles folder lets you define security roles and test users for your web application. You can test
the security design of your web application by logging in as a test user.

To Start WebLogic Server

In order to run and test your page flow application, it must first be deployed on WebLogic Server. For
convenience you will start WebLogic Server now, so you can test your page flow as you design it.

From the Tools menu, select WebLogic Server−−>Start WebLogic Server.1.
On the Start up Progress dialog, you may click Hide and continue to the next task.2.

You can confirm whether WebLogic Server is running by looking at the status bar at the bottom of WebLogic
Workshop. If WebLogic Server is running, a green ball is displayed.

If WebLogic Server is not running, a red ball is displayed.

You are now ready to begin designing your web application.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 1: Create a Web Application Project 28

Step 2: Submitting Data
In this step you will set up the basic page flow application, create the JSP page on which users will enters their
name, and create the form bean to hold the user input. The tasks in this step are:

Create a Page Flow•
Make a Submission Page, a Form Bean, and a Method•
Test the Web Application•

Create a Page Flow

On the Application tab, right−click GettingStarted_WebAppWeb folder and select New−−>Page
Flow.

1.

In the Page Flow Wizard−Page Flow Name dialog, in the Page Flow Name field, enter hello. Click
Next.

2.

Step 2: Submitting Data 29

On the Page Flow Wizard−Select Page Flow Type dialog, click Create.3.

WebLogic Workshop Tutorials

Step 2: Submitting Data 30

The new page flow that is created resides in a folder named hello and
consists of a JSP file named index.jsp and a Controller file named
HelloController.jpf. The JSP page is the default home page of the
Page Flow. The Controller file contains Java methods for processing
data and for forwarding users to different JSP pages.

This controller file is opened in the main area in Flow View as is shown below. The Flow View is a pictorial
view of the Controller file, which shows the relationships between the JSP pages and the methods of the page
flow.

In this case, the Flow View depicts:

A method, named begin•
An arrow, indicating that the begin method forwards users to the index.jsp page•
A JSP page named index.jsp•

Make a Submission Page, a Form Bean, and a Method

In this step you will create a JSP page where users can submit data. You will also create a form bean and a
method to handle the submission. The submission process has two steps: (1) the submitted data is loaded into
matching fields in a form bean and (2) the form bean is passed to a method for processing.

WebLogic Workshop Tutorials

Step 2: Submitting Data 31

In Flow View, right−click the icon index.jsp and select Rename.1.

In the field provided, enter submit and press the Enter key.2.

Double−click the icon submit.jsp to open this page in the main area.3.

Right−click the text New Web Application Page and select Cut.4.

WebLogic Workshop Tutorials

Step 2: Submitting Data 32

From the Palette tab, drag and drop the Form icon into Design View. The Form Wizard − Choose
Action dialog appears.

Note. If the Palette tab is not shown, go to the View menu and select Windows−−>Palette.

5.

In the Form Wizard − Choose Action dialog, in the Action Name field, enter hello.6.

WebLogic Workshop Tutorials

Step 2: Submitting Data 33

Click New... to bring up the New Form Bean dialog.7.
In the New Form Bean dialog, in the Property Name field, enter name. You have now defined a
name property in the form bean of type String.

8.

Click Ok to return to the Form Wizard − Choose Action dialog.9.
In the Form Wizard − Choose Action dialog, click Create.10.

WebLogic Workshop Tutorials

Step 2: Submitting Data 34

Press Ctrl+S to save your work. 11.

As this point you have added three new elements to the Page Flow:

a set of JSP tags has been added to the JSP page submit.jsp•
an action method hello has been added to the Controller file HelloController.jpf. You can verify this
by opening this file in Flow View. (To view the Controller file in Flow View, double−click
HelloController.jpf and click the Flow View tab.)

•

a form bean HelloForm has been added to the Controller file HelloController.jpf. This form bean is
associated with the hello method. You can verify this by opening this file in Flow View and selecting
this action method. The form bean is displayed in the Form Bean tab. (If this tab is not shown, go to
the View menu and select Windows−−>Form Bean.)

•

These three elements work together to submit data in the following way: (1) the submitted name field is
bound to the name field in the HelloForm Form Bean and (2) the Form Bean is passed to the method hello for
processing.

WebLogic Workshop Tutorials

Step 2: Submitting Data 35

You can deduce this submission process from the Design View of submit.jsp and the Flow View of
HelloController.jpf. The next two sections explain how to read these views.

Reading the Design View of submit.jsp

After completing the Form Wizard, the Design View of
submit.jsp should look like the image to the right. Design
View depicts the added JSP tags as three gray icons
labeled Form, TextBox, and Button:

Notice that the Form icon includes the text action='hello'. This indicates that the form passes data to
the hello action method in the controller file

•

Notice that the TextBox icon includes the text {actionForm.name}. This indicates that the TextBox
data is bound to the name property of the form bean that is passed to the hello method

•

Reading the Flow View of HelloController.jpf

The same submission process can be deduced from the
Flow View of the Controller file. Notice the following
graphical elements in Flow View:

an icon labeled hello: this represents the action method hello•
a small box in the lower right−hand corner of the hello icon: this indicates that a form bean is passed
to hello

•

an arrow pointing from the submit.jsp icon to the hello icon: this indicates that data is submitted from
the JSP, loaded into a Form Bean, and then passed to the method hello.

•

WebLogic Workshop Tutorials

Step 2: Submitting Data 36

Test the Web Application

Let's now test the page flow to make sure you have correctly executed the above steps.

Make sure that the HelloController.jfp file is displayed in the main area.1.
Click the Start button, shown below:2.

When the Workshop Test Browser launches, in the Name field, enter [your_name] and click hello.

The following error is displayed in the Workshop Test Browser.

The reason an error is displayed is because the hello method does not contain instructions on the next

3.

WebLogic Workshop Tutorials

Step 2: Submitting Data 37

JSP page that needs to be called. You will correct this situation in the next step.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Submitting Data 38

Step 3: Processing Data
In this step you will learn how to process data submitted from users and forward users to a page where the
results are displayed. The tasks in this step are:

Edit the hello Method to Construct a Message•
Edit the hello Method to Forward the User•
Rearrange the Icons in Flow View•
Test the Web Application•

Edit the hello Method to Construct a Message

First you will edit the hello action method to implement the business logic for handling the user input.
Specifically, you will construct a String message that takes the name from the form bean and you will make
this message available to the next page. The message is made available to the next page by making it an
attribute (property) of the request object, which can be read by the next JSP page.

Make sure that HelloController.jfp is displayed in Flow View in the main area.1.
In Flow View, double−click the hello icon to see the source code for this action.2.

In Source View, edit the hello method so it appears as follows. The added code is shown below in red:

 /**
 * @jpf:action
 */
 protected Forward hello(HelloForm form)
 {
 // Construct a message from the submitted name.
 String message = "Hello, " + form.getName() + "!";

 // Place the message on the request object.
 getRequest().setAttribute("message", message);

 return new Forward("success");
 }

3.

Press Ctrl+S to save your work.4.

Edit the hello Method to Forward the User

Now you will enhance the hello method to implement the navigation logic. Specifically, you will modify the
action method to call the response.jsp page.

In Source View, place the cursor somewhere within the signature of the hello method.1.

Step 3: Processing Data 39

In the Property Editor, click the plus sign to the right of the section labeled forward List.2.

In the Property Editor, click the plus sign to the left of forward(1).3.

In the Property Editor in the section below forward(1), in the name property, enter success, and press
the Enter key.

4.

WebLogic Workshop Tutorials

Step 3: Processing Data 40

In the Property Editor in the section below forward(1), in the path property, enter response.jsp, and
press the Enter key.

5.

Press Ctrl+S to save your work.6.

The hello method is now complete and should like this in Source View.

WebLogic Workshop Tutorials

Step 3: Processing Data 41

Rearrange the Icons in Flow View

Let's rearrange the icons in Flow View so that it becomes easier to read the flow.

Click the Flow View tab.1.
Rearrange the icons so that they appear as follows.

Notice that the response.jsp icon is grey out. This indicates that the JSP page response.jsp is referred
to in the Controller file, but does not yet exist in the Page Flow folder.

2.

Press Ctrl+S to save your work.3.

Test the Web Application

Let's now test the page flow to make sure you have correctly executed the above steps.

Make sure that the HelloController.jfp file is displayed in the main area.1.
Click the Start button, shown below:2.

When the Workshop Test Browser launches, in the Name field, enter [your_name] and click hello.3.

WebLogic Workshop Tutorials

Step 3: Processing Data 42

The following error is displayed in the Workshop Test Browser.

WebLogic Workshop Tutorials

Step 3: Processing Data 43

The reason an error is displayed is because the hello method forwards the user to the response.jsp
page but that does not yet exist. You will correct this situation in the next step.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 3: Processing Data 44

Step 4: Displaying Results
In this step you will learn how to display data to a user. The tasks in this step are:

Create the Response Page•
Edit the Page•
Test the Web Application•

Create the Response Page

In Flow View, right−click the response.jsp icon and select Create.•

Edit the Page

In Flow View, double−click the response.jsp icon to open this page in Design View.1.

In Design View, right click the text New Web Application Page and select Cut.2.

From the Palette tab, drag and drop the Label icon into Design View.3.

Step 4: Displaying Results 45

Click the gray label icon to ensure that it is selected.4.

In the Property Editor, in the section labeled General, in the value property, enter {request.message},
and press the Enter key. This will cause the String message, which is created by the hello method, to
be displayed on the page.

5.

Press Ctrl+S to save your work.6.

WebLogic Workshop Tutorials

Step 4: Displaying Results 46

Test the Web Application

On the Application tab, double−click the file HelloController.jpf.1.
Click the Start button, shown below:2.

When the Workshop Test Browser launches, in the Name field, enter [your_name], and click hello.3.

Your data is submitted to the hello method, a message is contructed, and that message is displayed on
the response.jsp page.

4.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 4: Displaying Results 47

Summary: Getting Started Web Application Tutorial
This tutorial introduced you to the basics of building Page Flows with WebLogic Workshop.

Concepts and Tasks Introduced in This Tutorial

Using page flows to separate user interface from business and navigation logic•
Data binding•

Now that you have finished the basic web application tutorial, you can continue with one of the other basic
tutorials to learn more about the other core components you can develop in WebLogic Workshop. For more
information, see The Getting Started Tutorials. If you want to learn more about page flow development, go to
the advanced Tutorial: Page Flow. You can learn more about the page flow design at Guide to Building Page
Flows.

Related Topics

The Getting Started Tutorials

Tutorial: Page Flow

Guide to Building Page Flows

Click one of the following arrows to navigate through the tutorial:

Summary: Getting Started Web Application Tutorial 48

Getting Started: Java Controls

The Problem of Organizing Business Logic

When you model a real−world problem in a software application, you are faced with modeling the behavior of
multiple business objects including the rules that govern their interactions. To model the business objects, you
need some way to persistently represent their properties, that is, store the information in a database. To model
the rules, you need to be able to break the business logic into smaller subtasks that comprise a complex
interaction, and you need to have some way to encapsulate these subtasks such that they can be reused to
model other interactions. For instance, if your software application is an online solution for a customer buying
books or CDs, you need a way to save information regarding customers, books, CDs, credit cards, and so
forth. In addition, buying a CD and buying a book are two tasks that have common subtasks, such as the use
of a credit card to pay for the purchased item. You want to be able to separate this subtask and reuse it in both
purchase scenarios.

The Java Control Solution

WebLogic Workshop provides Java controls that make it easy for you to encapsulate business logic and to
access enterprise resources such as databases, legacy applications, and external web services. Java controls
that access enterprise resources are known as built−in controls. An example of a built−in control is a database
control, which specializes in querying relational databases to access stored information.

Java controls that are specifically used to encapsulate business logic are called custom controls. A custom
control can invoke other custom controls that handle parts of the larger task. For instance, a custom control
that handles a book purchase might invoke another custom control that handles payment of a product by credit
card. Also, a custom control can invoke built−in controls, such as a database control to retrieve the data
required to execute the business task. For instance, a custom control that handles a book purchase might
invoke a database control to verify that the book is still in stock.

What This Tutorial Teaches

In this tutorial you will learn the basics of using a custom control to encapsulate business logic, and using a
database control to query information stored in relational databases. You will create two controls to model a
simplified login procedure. The procedure consists of a user submitting a name and receiving a greeting that is
based on the number of times the user has submitted his/her name previously. To model this procedure you
will create (1) a database control that creates records in a database regarding the number of visits by a user,
and (2) a custom control that receives the user input, queries the database control to find out the status of the
user, and returns a status−specific greeting.

Related Topics

Getting Started with Java Controls

Click the arrow to navigate to the next step.

Getting Started: Java Controls 49

Getting Started: Java Control Core Concepts
This topic will familiarize you with the basic concepts of Java control design and development.

What is a Java control?

Java controls are reusable components that are optimized to access enterprise resources and execute business
tasks. In this tutorial you will see how to use custom controls and one type of built−in control called the
database control. Other built−in controls are discussed in the advanced Tutorial: Java Control. For an
overview of Java controls, see Working with Java Controls.

A database control makes it easy to access a relational database. A database control method is associated with
an SQL query against a database. When a database method is invoked, the corresponding SQL query is
executed to retrieve data, perform operations like inserts and updates, and even make structural changes to the
database. In this tutorial you will define methods for all these operations, that is, you will create methods to
create a database table, insert a new record, update an existing record, and read a record. The database control
automatically handles the work of connecting to the database, so you don�t have to understand JDBC to work
with a database.

Custom controls model business logic and are often an intermediary between your client application, such as a
web application, and built−in controls. For instance, a Purchase custom control might take an 'add to
shopping cart' request for a particular product through a web page, use a database control to query whether
this product is still in stock, and return a response to the web application that the product is not available, is
backordered, or is available and has been successfully added to the cart.

Developing Java Controls with WebLogic Workshop

Java controls are developed using WebLogic Workshop, a visual tool for designing J2EE applications. The
image below shows the finished tutorial.

Getting Started: Java Control Core Concepts 50

The Application tab (area 1) shows the application's source files. A custom control is stored in two files, that
is a .jcs and a .java file. When you define a custom control, you only work in the .jcs file; WebLogic
Workshop automatically synchronizes the associated .java file. A database control, like most built−in controls,
is stored in a file with a .jcx extension.

The main work area (area 2) shows the Design or Source View of the components you are building, in this
case the Design View of a custom control.

The Property Editor (area 3) allows you to see and set properties of the Java control under development.

A Java control project folder contains Java controls that are developed for reuse throughout the application as
well as in other applications. A Java control project is like an organizational unit; when building controls you
build all the Java controls in a project and the resulting files are wrapped in a single JAR file with the same
name as the project. You can have one or multiple control projects in an application. In this tutorial you will
develop all Java controls using one Java control project folder called MyControlProject (area 4). It is also
possible to develop a Java control directly in a web or web service project; in that case the Java controls are
meant to be used only in the web or web service project and not throughout the application or across
applications.

Other components of the application are built in other projects. In this tutorial you will build a test web
service, which you will use as a client application to test the controls. Web services are created in a web

WebLogic Workshop Tutorials

Getting Started: Java Control Core Concepts 51

service project folder, called MyControlTestProject in this tutorial (area 5).

Related Topics

Getting Started with Java Controls

Overview: Database Controls

Building Custom Java Controls

Click the arrow to navigate to the next step.

WebLogic Workshop Tutorials

Getting Started: Java Control Core Concepts 52

Step 1: Create a Control Project
In this step you will create the application that you will be working with throughout this tutorial. In WebLogic
Workshop, an application contains one or more projects. You will create two projects, namely a control
project for the Java controls and, during a later step, a web service project for the test web service used to test
the Java controls.

The tasks in this step are:

To Start WebLogic Workshop•
To Create a New Application and Select a WebLogic Server Domain•
To Create a New Control Project•
To Start WebLogic Server•

To Start WebLogic Workshop

If you have an instance of WebLogic Workshop already running, you can skip this step.

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

From the Start menu, choose Programs−−>WebLogic Platform 8.1−−>WebLogic Workshop 8.1.•

...on Linux

If you are using a Linux operating system, follow these instructions.

Open a file system browser or shell.•
Locate the Workshop.sh file at the following address:

$HOME/bea/weblogic81/workshop/Workshop.sh

•

In the command line, type the following command:

sh Workshop.sh

•

To Create a New Application and Select a WebLogic Server Domain

To create the control project, you must first create the application to which it will belong:

From the File menu, select New−−>Application. The New Application dialog appears.1.
In the New Application dialog, in the upper left−hand pane, select All.
In the upper right−hand pane, select Empty Application.
In the Directory field, use the Browse button to select a location to save your source files. A
suggested location is BEA_HOME\user_projects\applications\GettingStarted_Control.
In the Name field, enter GettingStarted_Control.
In the Server field, from the drop−down list, select
BEA_HOME\weblogic81\samples\domains\workshop.

2.

Step 1: Create a Control Project 53

Click Create.3.

To Create a New Control Project

You will need a control project to contain the Java controls that you are going to create. A control project can
be thought of as a unit of work; all controls in a given project will be built together and will be packaged in
the same JAR file.

In the Application tab, right−click the GettingStarted_Control folder and select New−−>Project.1.
In the New Project dialog, in the upper left−hand pane, confirm that Business Logic is selected.
In the upper right−hand pane, select Control Project.
In the Project Name field, enter MyControlProject.

2.

WebLogic Workshop Tutorials

Step 1: Create a Control Project 54

Click Create.3.

To Start WebLogic Server

Since you will be deploying and running your Java control on WebLogic Server, it is helpful to have
WebLogic Server running during the development process.

You can confirm whether WebLogic Server is running by looking at the status bar at the bottom of WebLogic
Workshop. If WebLogic Server is running, a green ball is displayed as pictured below.

If WebLogic Server is not running, a red ball is displayed, as pictured below.

If you see the red ball in the status bar, then follow these instructions to start WebLogic Server:

From the Tools menu, choose WebLogic Server−−>Start WebLogic Server.•
On the WebLogic Server Progress dialog, you may click Hide and continue to the next task.•

WebLogic Workshop Tutorials

Step 1: Create a Control Project 55

Related Topics

Getting Started with Java Controls

How Do I...? Java Control Topics

The WebLogic Workshop Development Environment

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 1: Create a Control Project 56

Step 2: Define the Database Control
In this step you will create the database control VisitDB, which runs queries against a database table
containing information about visitors and number of prior visits. A database control queries a database table to
store, find, and update information.

The tasks in this step are:

To Create a Package•
To Create a Database Control•
To Define Methods•
Build the Database Control•

To Create a Package

All Java controls (and all Java classes) must be part of a Java package.

Right−click the MyControlProject folder in the Application tab, and select New−−>Folder.1.
Enter the folder name hello.2.
Click OK.3.

To Create a Database Control

Right−click the hello folder in the Application tab, and select New−−>Java Control.1.
In the New Java Control dialog, select Database and enter the file name VisitDB.2.

Click Next.3.
In STEP 2, make sure that cgSampleDataSource is selected. If this is not the case, click the Browse
button to select it. If this data source is not given as an option, you selected the wrong domain in the
previous step when you created the application.

4.

Step 2: Define the Database Control 57

Click Create.5.

The database control opens in Design View. The Application tab should now
look like the picture on the right.

The top−level folder GettingStarted_Control is the containing folder for the entire application. All of the
source files for your application exist in this folder.

The folder MyControlProject is the control project folder. An application can contain any number of project
folders and there are many different kinds of project folders, including Web projects, Web Services projects,
Schema projects, and so forth.

The Modules folder is for the storage of stand−alone applications (packaged as WAR and JAR files) that can
deployed parallel with your web service, if you wish.

The Libraries folder is for the storage of resources that are to be used across multiple projects, provided the
resources are packaged as JAR files. For example, if you had a control or an EJB that you wanted to re−use
across all your projects, you would store it in the Libraries folder.

The Security Roles folder lets you define security roles and test users for your web application. You can test
the security design of your web application by logging in as a test user.

WebLogic Workshop Tutorials

Step 2: Define the Database Control 58

To Define Methods

Next you will define the methods of the database control that, when invoked, execute a SQL query. A
database control method consists of two parts, namely the method signature and the SQL query that is
executed by the method. The first method you are going to create is called createTable, and it executes the
SQL query that will create the database table VISITORS_GS_CONTROL used by the database control.

Right−click VisitDB in design view, and select Add Method. A method newMethod1 appears.1.
Rename this method createTable. If you step off the method prematurely, right−click the method and
select Rename.

2.

Right−click the method and select Edit SQL. The Edit SQL and Interface dialog appears.3.
In the SQL field, enter the following SQL query expression:

CREATE TABLE VISITORS_GS_CONTROL (
 VISITOR_NAME VARCHAR(40),
 VISITS INT
)

The dialog should now look like this

4.

Click OK.5.

In the preceding steps you learned how to add a method to a database control. Next you are going to add three
additional methods in the same manner. These methods are:

getVisits. This method takes the visitor's name as an argument and returns the number of previous
visits by this visitor

•

insertVisitor. This method takes the visitor's name and adds the name to the database•
updateVisits. This method takes the visitor's name and a number of visits as arguments and updates
the database to store the number of visits for this visitor

•

Right−click VisitDB in design view, and select Add Method. A method newMethod1 appears.
Rename this method getVisits.

1.

Right−click the getVisits method and select Edit SQL. In the SQL field of the Edit SQL and
Interface dialog, enter the following SQL query expression:

SELECT VISITS FROM VISITORS_GS_CONTROL WHERE VISITOR_NAME = {name}

2.

WebLogic Workshop Tutorials

Step 2: Define the Database Control 59

In the Java field of the Edit SQL and Interface dialog, change the signature of the method to:

int getVisits(String name)

Click OK.
Right−click VisitDB in design view, and select Add Method. A method newMethod1 appears.
Rename this method insertVisitor.

3.

Right−click the insertVisitor method and select Edit SQL. In the SQL field of the Edit SQL and
Interface dialog, enter the following SQL query expression:

INSERT INTO VISITORS_GS_CONTROL (VISITOR_NAME, VISITS) VALUES ({name}, 1)

In the Java field of the Edit SQL and Interface dialog, change the signature of the method to:

int insertVisitor(String name)

Click OK.

4.

Right−click VisitDB in design view, and select Add Method. A method newMethod1 appears.
Rename this method updateVisits.

5.

Right−click the updateVisits method and select Edit SQL. In the SQL field of the Edit SQL and
Interface dialog, enter the following SQL query expression:

UPDATE VISITORS_GS_CONTROL SET VISITS = {visits} WHERE VISITOR_NAME = {name}

In the Java field of the Edit SQL and Interface dialog, change the signature of the method to:

int updateVisits(String name, int visits)

Click OK.

6.

Save your results.7.

As you might have noticed above, arguments in the method are passed to the SQL query, and the results
returned by the query are in turn returned by the method. For example, the method getVisits takes a String
name as an argument. This name is passed to the SQL query, as shown below in bold:

SELECT VISITS FROM VISITORS_GS_CONTROL WHERE VISITOR_NAME = {name}

This query returns a number, which is returned as an int value by the method.

Note. The insertVisitor and updateVisits methods return the values 0 and 1, indicating whether the
insertion/updating of a record failed or was successful. In this tutorial you will not explicitly test the returned
values to determine success or failure.

The VisitDB control should now look like this in Design View:

WebLogic Workshop Tutorials

Step 2: Define the Database Control 60

Build the Database Control

Now let's build the database control to make sure it is defined correctly.

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyControlProject, and select Build MyControlProject.2.
Monitor the Build window and verify that the build completes correctly3.
Open the Libraries folder in the Application pane, and notice that the file MyControlProject.jar has
been created.

4.

If you encounter build errors, verify that the various SQL queries and Java methods have been created
correctly.

Related Topics

Database Control

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Define the Database Control 61

Step 3: Define the Custom Control
In this step you will create the custom control Hello. The custom control will have two methods, createTable
and hello. The createTable method will be called only once by the client application and calls the
corresponding method on the database control visitDB to create the table to be used in this application. The
hello method can be invoked repeatedly by the client application. This method takes a visitor's name as an
argument, in turn calls the visitDB database control to determine how many times the visitor has visited
before, and returns a greeting that takes into account the number of prior visits. In other words, the custom
control implements the business logic that governs a particular interaction.

The tasks in this step are:

To Create a Custom Control•
To Add the Database Control•
To Add the Methods•
Build and Deploy•

To Create a Custom Control

Right−click the hello folder in the Application tab and select New−−>Java Control. The New Java
Control dialog appears.

1.

Make sure that Custom is selected in the top panel and enter the file name HelloImpl.2.

Click Create.3.

Step 3: Define the Custom Control 62

The files HelloImpl.jcs and Hello.java now appear in the Application tab above
VisitDB.jcx in the hello folder. As you build your Java control you will work in
the JCS file. WebLogic Workshop automatically updates the code in JAVA file to
reflect the changes you made in the JCS file. In other words, you should not edit
the JAVA file directly.

Also notice that the custom control opens in Design View in the main area of the IDE.

To Add the Database Control

The Hello custom control will use the VisitDB database control to determine if a visitor is new or returning. In
order for the custom control to invoke the database control's methods, a database control instance must be
defined for the custom control. To do so, you simply drag and drop the database control into the custom
control's Design View.

Make sure the Hello custom control is opened in Design View.1.
In the Application tab, locate VisitDB.jcx, and drag and drop it onto Hello.2.

The VisitDB database control has now been added to the Hello custom control.

WebLogic Workshop Tutorials

Step 3: Define the Custom Control 63

To Add the Methods

Now you will implement the methods createTable and hello to create a table and to implement the business
logic that computes a response to a user on the basis of his/her previous number of visits.

Ensure that the Hello control is displayed in Design View.1.
Right−click Hello and choose Add Method. A method called newMethod1 appears.2.
Rename the method createTable. If you step off the method and need to rename it, right−click the
method and select Rename.

3.

Click the createTable method to go to Source View and modify the method as shown in red
below:

 /**
 * @common:operation
 */
 public void createTable()
 {

 visitDB.createTable();
 }

4.

Return to Design View, right−click Hello and choose Add Method. A method called newMethod1
appears.

5.

Rename the method hello. If you step off the method and need to rename it, right−click the method
and select Rename.

6.

Click the component method to go to Source View and modify the method as shown in red below:

 /**
 * @common:operation
 */
 public String hello(String name)
 {
 int visits = visitDB.getVisits(name) + 1;

 if(visits == 1)
 {
 visitDB.insertVisitor(name);
 return "Hello, " + name + "!";
 }
 else if(visits == 2)
 {
 visitDB.updateVisits(name, visits);

7.

WebLogic Workshop Tutorials

Step 3: Define the Custom Control 64

 return "Hello again, " + name + "!";
 }
 else
 {
 visitDB.updateVisits(name, visits);
 return "Hello, " + name + "! This is visit number " + visits + ".";
 }
 }

Save your results.8.

In the hello method, the visitDB's getVisits method is called to determine the number of previous visits, and
this number is updated by one. If the user is not known in the database, the value 0 is returned by the getVisits
method, the visitor is entered into the database, and a greeting is returned. In all other cases the number of
visits is updated for this known visitor, and a different greeting is returned to the invoking client application.
Also, visitors who have one prior visit will be returned a different message than visitors who have multiple
prior visits.

When you return to Design View, the Hello control should look like this:

Build and Deploy

Now let's build the control project and make sure both controls are defined correctly.

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyControlProject, and select Build MyControlProject.2.
Monitor the Build window and verify that the build completes correctly3.
Open the Libraries folder in the Application pane, and notice that the file MyControlProject.jar has
been recreated.

4.

If you encounter build errors, verify that the hello and createTable methods have been created correctly.

Related Topics

Building Custom Java Controls

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 3: Define the Custom Control 65

WebLogic Workshop Tutorials

Step 3: Define the Custom Control 66

Step 4: Test the Controls
In this step you are going to test the two controls and examine whether their behavior is as intended. To do so,
you must create a client application, such as a web application, to invoke the custom control. Here you will
build a test web service instead.

The tasks in this step are:

To Create a Web Service Project•
To Generate the Test Web Service•
To Run the Test Web Service•

To Create the Web Service Project

Web service development is done in a separate project in the application.

In the Application tab, right−click the GettingStarted_Control folder and select New−−>Project.1.
In the New Project dialog, in the upper left−hand pane, select Web Services.
In the upper right−hand pane, select Web Service Project.
In the Project Name field, enter MyControlTestProject.

2.

Click Create.3.
In the Application tab, right−click MyControlTestProject and select New−−>Folder. Enter hello.4.
Click OK.5.

To Generate the Test Web Service

Step 4: Test the Controls 67

A test web service is a web service that exposes the methods of a control. In this particular case the test web
service is a client application that calls the methods on the custom control Hello. To learn more about web
services, see the Getting Started Tutorial: Web Services.

In the Application tab, right−click HelloImpl.jcs and select Generate Test JWS File (Stateless). The
following message appears:

•

Click OK. The file HelloTest.jws is created.•
In the Application tab, drag and drop HelloTest.jws to the hello folder in MyControlTestProject.•

The test web service HelloTest has now been moved to the web service project. The Application pane
should look like this:

•

WebLogic Workshop Tutorials

Step 4: Test the Controls 68

In the Application tab, double−click HelloTest.jws to open the test web service in Design View•

To Run the Test Web Service

Let's run the test web service and test the behavior of the Java controls.

Make sure the HelloTest web service is open.1.
Click the Start button.

Workshop launches the Workshop Test Browser.

2.

If this is the first time you have ever run this application, click the createTable button to make the
table the database control is going to query.

3.

Scroll down to the Service Response section, and notice that no exceptions are thrown.4.
Scroll back up and click the Test Operations link.5.
Enter your name in the String field and click the hello button.6.
Scroll down to the Service Response section, and notice that the response is Hello, <your name>!

In the preceding two steps the web service invoked the hello method on the custom control. The
control called the getVisits method of the VisitDB database control to find out the number of previous
visits. Because you were running this test for the first time, this method returned 0, your name was
added to the database using the database contro'ls insertVisitor method, and the Hello control returned
the appropriate response.

7.

Click the Test Operations link, enter your name again, click the hello button, and notice that the
response is Hello again, <your name>!

In this step the Hello control again invoked the getVisits method of the VisitDB database control to
find out the number of previous visits. This method returned 1, the database record was updated to
reflect that this was your second visit using the VisitDB's updateVisits method, and the Hello control
returned the appropriate response.

8.

Click the Test Operations link, enter your name again, click the hello button, and notice that the
response is Hello <your name>! This is visit number 3.

9.

Repeat the test with a different name and observe the outcome.10.
Return to WebLogic Workshop and press the Stop button to close the Test Browser.11.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 4: Test the Controls 69

WebLogic Workshop Tutorials

Step 4: Test the Controls 70

Summary: Getting Started Control Tutorial
This tutorial introduced you to the basics of working with Java Controls in WebLogic Workshop.

Concepts and Tasks Introduced in This Tutorial

An introduction to Java controls, and the problems Java controls solve•
What is a database control, and how do you define a database control in WebLogic Workshop?•
What is a custom control, and how do you define a custom control in WebLogic Workshop?•

Now that you have finished the basic Java control tutorial, you can continue with one of the other basic
tutorials to understand the other core components you can develop in WebLogic Workshop. For more
information, see The Getting Started Tutorials. If you want to learn more about Java control development, go
to the advanced Tutorial: Java Control. You can learn more about the Java control technology at Working
with Java Controls.

Related Topics

The Getting Started Tutorials

Tutorial: Java Control

Working with Java Controls

Click the arrow to navigate through the tutorial:

Summary: Getting Started Control Tutorial 71

Getting Started: Enterprise JavaBeans

The Problem of Organizing Business Logic

When you model a real−world problem in a software application, you are faced with modeling the behavior of
multiple business objects including the rules that govern their interactions. To model the business objects, you
need some way to represent their properties. To model the rules, you need to be able to break the business
logic into smaller subtasks that comprise a complex interaction, and you need to have some way to
encapsulate these subtasks such that they can be reused to model other interactions. For instance, if your
software application is an online solution for a customer buying books or CDs, you need a way to represent
customers, books, CDs, credit cards, and so forth. In addition, buying a CD and buying a book are two tasks
that have common subtasks, such as the use of a credit card to pay for the purchased item. You want to be able
to separate this subtask and re−use it in both cases.

The Enterprise JavaBean Solution

The Enterprise JavaBeans (EJB) technology solves this problem by providing specialized server−side
components to handle data and to encapsulate business logic. Entity beans are the EJBs that specialize in
representing business objects, such as customers, books, CDs, and credit cards. An entity bean interacts with a
database to ensure that business object properties are stored in a persistent manner. Session beans are the EJBs
that specialize in encapsulating business logic and governing the interactions between business objects.
Furthermore, these EJBs operate in an EJB container on the server. The EJB container takes care of managing
other processes that are crucial for an application to work successfully but are not an integral part of the
application design. For example, the EJB container takes care of transaction management such that when an
error occurs during the online purchase of a book, the customer does not end up being charged for a book that
he will not receive. In other words, if a transaction fails, the EJB container makes sure that any changes made
during that transaction (such as charging a credit card) are rolled back.

What This Tutorial Teaches

In this tutorial, you will learn the basics of using EJBs to encapsulate business logic and represent business
objects. You will create two EJBs to model the server−side logic of a simplified login procedure. The
procedure consists of a user submitting a name, and receiving a greeting that is based on the number of times
the user has submitted his/her name previously. To model this procedure you will create (a) an entity bean that
creates records in a database regarding the number of visits by a user, and (b) a session bean that will receive
the user input, query the entity bean to find out the status of this user, and return a status−specific greeting.

Related Topics

Getting Started with EJB Project

Click the arrow to navigate to the next step.

Getting Started: Enterprise JavaBeans 72

Getting Started: EJB Core Concepts
This topic will familiarize you with the basic concepts of EJB design and development.

What is an EJB?

EJBs are server−side components that are optimized to handle data and execute business tasks. There are three
types of EJBs: entity beans, session beans, and message−driven beans. In this tutorial you will only learn
about entity beans and session beans. Message−driven beans are discussed in the advanced Tutorial:
Enterprise JavaBeans.

Entity beans model business objects. For instance, a Customer entity bean defines its properties and has
methods to get and set the customer's name, age, and so forth. In addition, the Customer bean will likely have
methods to create a new customer, delete a customer and find customers with certain properties. An entity
bean ensures that the properties of a business object are mapped to a database table, so that these properties
can be stored, updated and retrieved. What is interesting about using an entity bean is that you do not issue the
SQL commands to interact with the database. The database−specific commands are entirely done in the
background by the EJB container. This for instance means that to change the customer's age in the database,
you only need to change this property, for instance, by calling the setAge(newAge) method on the Customer
bean instance; the EJB container will ensure that the corresponding record in the database is updated to reflect
this change.

Session beans model business logic and are often an intermediary between your client application, such as a
web application, and entity beans. For instance, a Purchase session bean might take an 'add to shopping cart'
request for a particular product through a web page, query an entity bean to find out whether this product is
still in stock, and return a response to the web application that the product is not available, or is backordered,
or is available and has been successfully added to the cart. There are two types of session beans, stateless and
stateful. A stateful session bean maintains conversational state. In other words, a stateful session bean
remembers the calling client application from one method to the next. Stateless session beans do not maintain
conversational state. Stateless session beans are more commonly used and will be addressed in this tutorial.

All EJBs must adhere to a certain set of design specifications (as set by the Java Community Process). For
instance, all session and entity beans must have a home interface containing methods to obtain a reference to a
(new or existing) bean instance. These beans must also have a business interface containing the methods to get
or set data, and execute business logic. These interfaces can be local, meaning that only other objects in the
same application can call these methods, remote, meaning that objects in the same and other applications can
call these methods, or both.

According to the EJB design specifications, the definitions of the bean class and the various interfaces need be
stored in separate Java files (and the corresponding compiled .class files), which means that a developer needs
to keep the various files and definitions synchronized. In WebLogic Workshop you use only one file to
develop the bean class and interfaces. When you build this file, the various Java files for the bean class and
the interfaces are automatically generated for you, releasing you of the task to keep this information
synchronized.

Developing EJBs with WebLogic Workshop

EJBs are developed using WebLogic Workshop, a visual tool for designing J2EE applications. The image
below shows the finished tutorial.

Getting Started: EJB Core Concepts 73

The Application tab (area 1) shows the application's source files. Enterprise JavaBeans are stored as .ejb files,
which is a special Java file with an .ejb extension.

The main work area (area 2) shows the Design and Source View of the components you are building. In the
above picture an entity bean is shown in Design View. You can develop EJBs in Design View with the
assistance of dialogs and wizards and/or you can add source code directly to the Source View.

The Property Editor (area 3) allows you to see and set properties of the EJB shown in the main area as well as
properties of the EJB project.

An EJB project folder holds EJBs that are developed in an application. An EJB project is like an
organizational unit; when building EJBs you build all the EJB in a project and the resulting files are wrapped
in a JAR file with the same name as the EJB project. You can have one or multiple EJB projects in an
application. In this tutorial you will develop all EJBs using one EJB Project folder called MyEJBProject (area
4).

Other components of the application are built in other projects. In this tutorial you will build a test web
service, which you will use as a client application to test the EJBs. Web services are created in a web service
project folder, called MyTestProject in this tutorial (area 5).

Related Topics

WebLogic Workshop Tutorials

Getting Started: EJB Core Concepts 74

Getting Started with EJB Project

Click the arrow to navigate to the next step.

WebLogic Workshop Tutorials

Getting Started: EJB Core Concepts 75

Step 1: Create an EJB Project
In this step you will create the application that you will be working with throughout this tutorial. In WebLogic
Workshop, an application contains one or more projects. You will create two projects, namely an EJB project
for the Enterprise JavaBeans and, during a later step, a web service project for the test web service used to test
the EJBs.

The tasks in this step are:

To Start WebLogic Workshop•
To Create a New Application and Select a WebLogic Server Domain•
To Create a New EJB Project•
To Start WebLogic Server•

To Start WebLogic Workshop

If you have an instance of WebLogic Workshop already running, you can skip this step.

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

From the Start menu, choose Programs−−>WebLogic Platform 8.1−−>WebLogic Workshop 8.1.•

...on Linux

If you are using a Linux operating system, follow these instructions.

Open a file system browser or shell.•
Locate the Workshop.sh file at the following address:

$HOME/bea/weblogic81/workshop/Workshop.sh

•

In the command line, type the following command:

sh Workshop.sh

•

To Create a New Application and Select a WebLogic Server Domain

To create the EJB project, you must first create the application to which it will belong:

From the File menu, select New−−>Application. The New Application dialog appears.1.
In the New Application dialog, in the upper left−hand pane, select All.
In the upper right−hand pane, select Empty Application.
In the Directory field, use the Browse button to select a location to save your source files. A
suggested location is [BEA_HOME]\user_projects\applications\GettingStarted_EJB.
In the Name field, enter GettingStarted_EJB.
In the Server field, from the drop−down list, select
BEA_HOME\weblogic81\samples\domains\workshop.

2.

Step 1: Create an EJB Project 76

Click Create.3.

To Create a New EJB Project

You will need an EJB project to contain the EJBs that you are going to create. An EJB project can be thought
of as a unit of work; all EJBs in a given project will be build together and will be packaged in the same JAR
file.

In the Application tab, right−click the GettingStarted_EJB folder and select New−−>Project.1.
In the New Project dialog, in the upper left−hand pane, confirm that EJB is selected.
In the upper right−hand pane, select EJB Project.
In the Project Name field, enter MyEJBProject.

2.

WebLogic Workshop Tutorials

Step 1: Create an EJB Project 77

Click Create.3.

To Start WebLogic Server

Since you will be deploying and running your EJBs on WebLogic Server, it is helpful to have WebLogic
Server running during the development process.

You can confirm whether WebLogic Server is running by looking at the status bar at the bottom of WebLogic
Workshop. If WebLogic Server is running, a green ball is displayed as pictured below.

If WebLogic Server is not running, a red ball is displayed, as pictured below.

If you see the red ball in the status bar, then follow these instructions to start WebLogic Server:

From the Tools menu, choose WebLogic Server−−>Start WebLogic Server.•
On the WebLogic Server Progress dialog, you may click Hide and continue to the next task.•

WebLogic Workshop Tutorials

Step 1: Create an EJB Project 78

Related Topics

Getting Started with EJB Project

How Do I...? EJB Topics

The WebLogic Workshop Development Environment

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 1: Create an EJB Project 79

Step 2: Define the Entity Bean
In this step you will create the entity bean Visit, which will hold information about visitors and the number of
prior visits. An entity bean interacts with a database table to store, find, and update information.

The tasks in this step are:

To Create a Package•
To Create a Entity Bean•
To Change the Database Table•
To Define CMP Fields•
To Add EJBCreate•
Build and Deploy•

To Create a Package

All EJBs (and all Java classes) must be part of a Java package.

Right−click the MyEJBProject folder in the Application tab, and select New−−>Folder.1.
Enter the folder name hello.2.
Click OK.3.

To Create an Entity Bean

Right−click the hello folder in the Application tab, and select New−−>Entity Bean.1.
Enter the file name VisitBean.ejb.2.

Step 2: Define the Entity Bean 80

Click Create.3.

The entity bean opens in Design View. The Application tab should
now look like the picture on the right.

The top−level folder GettingStarted_EJB is the containing folder for the entire application. All of the source
files for your application exist in this folder.

The folder MyEJBProject is the EJB project folder. An application can contain any number of project folders
and there are many different kinds of project folders, including Web projects, Web Services projects, Schema
projects, and so forth.

The Modules folder is for the storage of stand−alone applications (packaged as WAR and JAR files) that can
deployed parallel with your web service, if you wish.

The Libraries folder is for the storage of resources that are to be used across multiple projects, provided the
resources are packaged as JAR files. For example, if you had a control or an EJB that you wanted to re−use
across all your projects, you would store it in the Libraries folder.

The Security Roles folder lets you define security roles and test users for your web application. You can test
the security design of your web application by logging in as a test user.

To Change the Database Table

WebLogic Workshop Tutorials

Step 2: Define the Entity Bean 81

When a new entity bean is created, a number of properties are automatically set for you. These properties are
listed in the Property Editor. For example, notice that the ejb−name is Visit, the data−source−name is
MyDataSource, the name of the database table used to store the data is visit, and that the create−tables setting
is set to CreateOnly. The latter setting means that when you build and deploy this EJB, the table will be
automatically created for you. To learn more about the other table creation options set with this property, see
@ejbgen:jar−settings Annotation. Notice that the create−tables setting is part of the JAR settings. In other
words, for every entity bean created as part of this project, the same table creation setting applies.

Also notice that the names of the bean's local interfaces are already set. The home interface class, set in the
Home class name property, is called VisitHome, while the business interface, set in the Bean class name
property, is Visit. Finally, the JNDI name, used to locate the entity bean, is ejb.VisitLocalHome. JNDI naming
is discussed in detail in the next step. To learn more about the entity bean architecture, see Getting Started
with Entity Beans.

Let's use the Property Editor to make two changes. First, the data source name for the Visit bean does not
match the name of the data source that is used in the workshop domain. Second, let's rename the database
table to better reflect that it is part of this tutorial:

From the Tools menu, select WebLogic Server−−>DataSource Viewer. The DataSource Viewer
dialog appears.

1.

Notice that one of the data sources is called cgSampleDataSource. Click OK.

Note. If you cannot find cgSampleDataSource, verify that the correct workshop domain was selected
in Step 1 of the tutorial.

2.

In the Property Editor, locate data−source−name and change the entry to cgSampleDataSource.3.
In the Property Editor, locate table−name and the table name to visit_GS_EJB.4.

When you build and deploy the Visit bean, the table with the table name visit_GS_EJB will be created for
you, and the bean will interact with this database table to persist data about visits.

To Define CMP Fields

Now you define the container−managed persistence (CMP) fields for the Visit bean. CMP fields are virtual
fields that are not defined in the entity bean itself but are mapped to columns in the database table. The entity
bean code only implements the accessor (getter and setter) methods to read and write the data stored in these
fields. In WebLogic Workshop these accessor methods are by default added to the bean's local business
interface for you.

You need to define two fields that hold the name of the visitor and the number of visits. The name of the
visitor will also be used as the primary key. The primary key is the unique index in a database table. In other
words, you make the assumption that each visitor's name is unique and that you can use it to uniquely identify
what stored data about the number of visits belongs to him/her.

Ensure that the Visit bean is displayed in Design View.1.
Right−click the VisitBean and choose Add CMP field. A CMP field called String field1 appears in the
CMP Fields section.

2.

Rename the field String visitorName. If you step off the field and need to rename it, right−click the
field and select Change declaration.

3.

Right−click the field String visitorName and select Primary Key. A key icon appears in front of the
field definition. The yellow diamond indicates that the method getVisitorName and setVisitorName
will be declared in the local business interface.

4.

WebLogic Workshop Tutorials

Step 2: Define the Entity Bean 82

Make sure the visitorName declaration in Design View is still selected and verify in the Property
Editor tab, which now displays the properties for this field, that the database column is visitorName.
If this is not the case, make this change now.

5.

Right−click the VisitBean again, and choose Add CMP field. A CMP field called String field1
appears in the CMP Fields section.

6.

Rename the field int visitNumber. If you step off the field and need to rename it, right−click the field
and select Change declaration.

7.

Select the visitNumber declaration in Design View and verify in the Property Editor tab that the
database column is visitNumber. If this is not the case, make this change now.

8.

Save your results.9.
Go to source view and examine the code. Notice that the getter and setter methods have been defined
for these properties but that there are no variables declared in the bean class to hold the actual
property values.

10.

Now you have defined two CMP fields and their accessor methods. Also, you have mapped these fields to
columns with the same names in the database table. (The name of the CMP field and the corresponding
column name can be different, but for consistency reasons you have given them the same name here.) Finally,
you have assigned one of these fields to function as the primary key.

To Add EJBCreate

Now you will add an ejbCreate method, which when invoked creates a new Visit bean and adds the
corresponding record to the database table. To create a new instance, you must minimally provide the primary
key to unique identify the record.

In addition to creating the ejbCreate method in the bean class, a corresponding create method must be defined
in the bean's home interface. When you follow the steps below to define the ejbCreate method, WebLogic
Workshop automatically defines the corresponding create method in the home interface for you.

Ensure that the Visit bean is displayed in Design View.1.
Right−click the Visit bean and and choose Add EJBCreate. The Add ejbCreate method dialog
appears.

2.

WebLogic Workshop Tutorials

Step 2: Define the Entity Bean 83

Click OK. The method you created appears in the EJB Create Methods section.3.
Click the ejbCreate method to go to Source View, and add the following line shown in red:

 public java.lang.String ejbCreate(java.lang.String VisitorName)
 {
 setVisitorName(VisitorName);

 setVisitNumber(1);

 return null; // FIXME return PK value
 }

4.

Save your results.5.

When a new Visit bean instance is created using this ejbCreate method, the name of the visitor, passed as an
argument in the method, is entered in the database. Also, it is noted that this is the visitor's first visit. In the
next step of the tutorial you will see how to invoke this method.

An entity bean can have multiple ejbCreate methods. For instance, you could create another ejbCreate method
for the Visit bean that would take a String name and an int number as arguments, and use these to set the
name and visit number for a new bean instance. Each ejbCreate method must be unique, that is, it must have a
unique set of parameters as arguments. For instance, for the Visit bean you cannot create a second ejbCreate
method that has a String parameter as its sole argument.

When you go back to Design View, the Visit bean should look like this:

WebLogic Workshop Tutorials

Step 2: Define the Entity Bean 84

Build and Deploy

Now let's build the entity bean to make sure it is defined correctly. If the Visit bean builds successfully, it will
be automatically deployed on the server.

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyEJBProject, and select Build MyEJBProject.2.
Monitor the Build window and verify that the build completes correctly, and that the EJB JAR
MyProjectEJB.jar is created. You will see this JAR appear in the MyEJBProject folder.

3.

After the build completes, the EJB deploys: Watch the green ball in the WebLogic Server status bar at
the bottom of WebLogic Workshop turn yellow with the message Updating Server. Wait until the ball
turns green again. The EJB is now deployed on the server.

4.

If you encounter build errors, verify that the various methods and interfaces have been created correctly. If
you encounter a deployment error, make sure that the data source and database table settings are set correctly.

Optionally you can expand MyProjectEJB.jar and the contained hello folder. In this folder you will see
(among other files) the Java classes for the bean and its interfaces, and the corresponding compiled .class
classes.

Related Topics

WebLogic Workshop Tutorials

Step 2: Define the Entity Bean 85

Getting Started with Entity Beans

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Define the Entity Bean 86

Step 3: Define the Session Bean
In this step you will create the (stateless) session bean Hello. The session bean will have one method, hello,
which is invoked by a client application and takes a visitor's name as an argument. The session bean in turns
calls the Visit entity bean to determine whether this visitor is known, and if so, how many times the visitor has
visited before, and returns an appropriate greeting to the client application. In other words, the session bean
implements the business logic that governs a particular interaction.

The tasks in this step are:

To Create a Session Bean•
To Reference the Entity Bean•
To Add an ejb−local−ref Tag•
To Add a Component Method•
Build and Deploy•

To Create a Session Bean

Right−click the hello folder in the Application tab, and select New−−>Session Bean.1.
Enter the file name HelloBean.ejb.2.

Click Create.3.

Step 3: Define the Session Bean 87

The file HelloBean.ejb should now appear in the Application
tab above VisitBean.ejb in the hello folder. Also notice that
the bean opens in Design View, and that the Property Editor
shows that a number of properties have been automatically
set. In particular notice that the remote business interface, set
in the Bean class name property, is Hello, the remote home
interface, set in the Home class name property, is HelloHome, and that the remote JNDI name is
ejb.HelloRemoteHome. JNDI naming is discussed in more detail below.

When you go to Source View, you will notice that an ejbCreate method with no arguments has already been
defined. This method is called to create a new session bean instance. A stateless session bean, like the Hello
bean, will always have this ejbCreate method. Unlike entity beans, a stateless session bean cannot have
additional ejbCreate methods.

To Reference the Entity Bean

The Hello bean will use the Visit bean to determine if a visitor is new or returning. In order for the Hello bean
to invoke the Visit bean's methods, it must first locate and obtain a reference to the bean's home interface. To
do so, you modify the Hello bean's ejbCreate method to include code that obtains this reference.

Select the Source View tab.1.
Locate the ejbCreate method in HelloBean.ejb, and modify its definition as shown in red below:

 public void ejbCreate() {
 try {
 javax.naming.Context ic = new InitialContext();
 visitHome = (VisitHome)ic.lookup("java:comp/env/ejb/MyVisitBean");
 }
 catch (NamingException ne) {
 throw new EJBException(ne);
 }
 }

2.

Locate the import section at the top of the file and add the following import statements, or use
Alt+Enter when prompted by the IDE to automatically add these import statements:

import javax.naming.InitialContext;
import javax.naming.NamingException;

3.

Go to the beginning of the class definition and define visitHome as shown in red below:

public class HelloBean
 extends GenericSessionBean
 implements SessionBean
{
 private VisitHome visitHome;

 public void ejbCreate() {
 ...

4.

When the ejbCreate method executes, the Visit bean is looked up using JNDI API, a standard naming and
directory API. This API is described in more detail below. (More information can also be found in many
books on J2EE and at http://java.sun.com.) Notice that the lookup method returns a reference to the local
home interface of the Visit bean, which is called VisitHome (as you saw in the previous step), and stores this
reference in the visitHome variable.

WebLogic Workshop Tutorials

Step 3: Define the Session Bean 88

To Add an ejb−local−ref Tag

The Java Naming and Directory Interface (JNDI) API provides a set of methods to map an easy−to−remember
name to the actual location of an object. It works essentially the same as other naming services you are
already familiar with, such as the telephony naming system. A phone directory lists phone numbers, which are
easy−to−remember names to call certain telephones. Each phone number is mapped to an actual phone
somewhere, such that when you call the number the appropriate phone starts ringing. The telephone company
does this mapping for you; all you need to remember is the telephone number and the context in which this
phone number is relevant, meaning whether you are calling locally and don't need an area code, whether you
do need an area code, or whether you are calling internationally and need a country code too.

In the above ejbCreate method the name ejb/MyVisitBean is used to refer to the Visit bean. To make the
lookup procedure successful, you must map this name to the actual EJB location, in this case the Visit bean.
This mapping is done in an XML file called the deployment descriptor. However, in WebLogic Workshop
you don't modify the deployment descriptor directly but use ejbgen tags inserted in the ejb file instead. To
map this name to the actual Visit bean definition, you need to insert an ejbgen:ejb−local−ref tag.

Ensure that the Hello bean is displayed in Design View.1.
Right−click the Design View, and select Insert EJB Gentag−−>ejb−local−ref. A new
ejbgen:ejb−local−ref section appears in the Property Editor.

2.

In the Property Editor, make the following changes:3.

By adding this tag, you specify that the reference ejb/MyVisitBean as used in the Hello bean's code maps to
an entity bean with the JNDI name ejb.VisitLocalHome, the local business interface name Visit, and the local
home interface VisitHome. (Remember that you defined these names for the entity bean in the previous step.)
Notice that this mapping uses another JNDI name reference, ejb.VisitLocalHome, which is the Visit bean
reference used in the entire EJB container (the latter reference is automatically mapped for you). This
concatenation of mapping is similar to the concatenation of country code, area code, and local phone number
in the telephony naming system.

The ejb/MyVisitBean reference is only valid within the context of the Hello bean. If you were to create
another bean that refers to the Visit bean, you might name that reference ILikeThisVisitBean, and map this
name to the Visit bean location using a ejbgen:ejb−local−ref tag in the new bean's definition

To Add a Component Method

Now you will implement the business logic to receive a client's request and return a response.

Ensure that the Hello bean is displayed in Design View.1.

WebLogic Workshop Tutorials

Step 3: Define the Session Bean 89

Right−click the Hello bean and choose Add Component Method. A component method called void
method() appears in the Component Methods section.

2.

Rename the method String hello(String visitorName). If you step off the method and
need to rename it, right−click the method and select Rename.

3.

Click the component method to go to Source View and modify the method as shown in red below:

 /**
 * @ejbgen:remote−method
 */
 public String hello(String visitorName)
 {
 Visit theVisit;
 int visitNumber;

 try {
 // Find the visitor in the database
 theVisit = visitHome.findByPrimaryKey(visitorName);
 }
 catch(FinderException fe) {
 try {
 // Name of visitor not found. Enter the visitor in the database
 visitHome.create(visitorName);
 return "Hello, " + visitorName + "!";
 }
 catch(CreateException ce) {
 throw new EJBException(ce);
 }
 }
 // visitor was found. Find the number of previous visits
 visitNumber = theVisit.getVisitorNumber();
 theVisit.setVisitorNumber(visitNumber + 1);
 if(visitNumber == 1) {
 return "Hello again, " + visitorName + "!";
 }
 else {
 return "Hello, " + visitorName + "! This is visit number " + theVisit.getVisitorNumber() + ".";
 }
 }

4.

Save your results.5.

In this method, you use the reference stored in the visitHome variable to find the record corresponding to the
visitor name using the findByPrimaryKey method. You did not explicitly define this method for the Visit
bean, because this method was automatically generated for you and defined in the bean's home interface by
the EJB container. If the name of the visitor cannot be found, a FinderException will be thrown and caught.
When caught, a new record will be created for this new visitor and a welcoming message is returned. If the
visitor's name was found in the database, his/her number of previous visits is obtained, the number of visits is
increased by one, and a message is returned to the invoking client application. Visitors who have one prior
visit will be returned a different message than visitors who have multiple prior visits.

When you return to Design View, the Hello bean should look like this:

WebLogic Workshop Tutorials

Step 3: Define the Session Bean 90

Build and Deploy

Now let's build both beans to make sure they are defined correctly. Again, once compiled these beans will be
automatically deployed on the server.

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyEJBProject, and select Build MyEJBProject.2.
Monitor the Build window and verify that the build completes correctly, and that the EJB JAR
MyProjectEJB.jar is recreated. You will see this Jar disappear and re−appear in the MyEJBProject
folder.

3.

After the build completes, the EJB deploys: Watch the green ball in the WebLogic Server status bar at
the bottom of WebLogic Workshop turn yellow with the message Updating Server. Wait until the ball
turns green again. The EJB is are deployed on the server.

4.

If you encounter build errors, verify that the hello method has been created correctly.

Related Topics

Getting Started with Session Beans

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 3: Define the Session Bean 91

Step 4: Test the EJBs
In this step you are going to test the EJBs and examine whether their behavior is as intended. Because EJBs
are server−side components, you must first create a client application, such as a web application. Here you
will build a test web service instead. This requires generating an EJB control for the EJB, and generating a test
web service for the EJB control.

The tasks in this step are:

To Create a Web Service Project•
To Create the EJB Control•
To Generate the Test Web Service•
To Run the Test Web Service•

To Create the Web Service Project

Web service development is done in a separate project in the application.

In the Application tab, right−click the GettingStarted_EJB folder and select New−−>Project.1.
In the New Project dialog, in the upper left−hand pane, select Web Services.
In the upper right−hand pane, select Web Service Project.
In the Project Name field, enter MyTestProject.

2.

Click Create.3.

To Create the EJB Control

Step 4: Test the EJBs 92

When you want to invoke a session bean from a client application, you must first look up the session bean in
the EJB container's JNDI registry and obtain a reference to the EJB's home interface, before you can create an
EJB instance and invoke the EJB's business methods. You can do this by calling the standard JNDI API
methods, or you can use EJB controls that do this for you. In this tutorial you will create an EJB control for
the Hello session bean.

Right−click MyTestProject and select New−−>Folder. The Create New Folder dialog appears.1.
Enter helloControl. Click OK.2.
Right−click helloControl and select New−−>Java Control. The New Java Control dialog appears.3.
Select EJB Control. In the File name field, enter HelloBeanCtrl.4.

Click Next to go to the next page5.
Click Browse application EJBs and select Hello (remote jndi).6.

Click Select.7.

WebLogic Workshop Tutorials

Step 4: Test the EJBs 93

Click Create.8.

The EJB control HelloBeanCtrl is created and
appears in Design View. Notice that there are
no methods defined in the EJB Control. An
EJB control is only used to obtain a reference
to the EJB. It does not define methods of its
own, but simply provides a window to the EJB
it exposes. To see exactly which methods are
exposed, you need to use the EJB control in a client application such as the test web service that you will
generate next.

If you examine the Property Editor, you will see that the EJB control uses the Hello bean's remote JNDI name
ejb.HelloRemoteHome to reference its remote interfaces. Remember that this JNDI name was defined when
you created the session bean and can be used to look up the EJB within the context of the EJB container.

To learn more about EJB controls, see the help topic EJB Controls. To learn more about Java controls in
general, see Getting Started Tutorial: Java Controls

To Generate the Test Web Service

In the Application tab, right−click HelloBeanCtrl.jcx and select Generate Test JWS File (Stateless)

The test web service HelloBeanCtrlTest is generated. The Application pane should now look like this:

•

WebLogic Workshop Tutorials

Step 4: Test the EJBs 94

Double−click HelloBeanCtrlTest.jws to open it.•

A test web service is a web service that exposes the methods of a Java control. In this particular case the test
web service is a client application that calls the methods on the EJB control helloBeanCtrl, which in turn
exposes the methods of the Hello bean. Remember that the Hello bean has two methods, namely the create
method to obtain a reference to a Hello bean instance, and the component method hello. When you use an EJB
control, you do not have to call the create method first to obtain a reference, because the EJB control will
handle this automatically for you. Instead you can simply invoke the hello method directly. To learn more
about web services, see the Getting Started Tutorial: Web Services.

To Run the Test Web Service

Let's run the test web service and test the behavior of the EJBs.

Make sure the HelloBeanCtrlTest Web Service is open.1.
Click the Start button.

Workshop launches the Workshop Test Browser.

2.

Enter your name in the String field and click the hello button.3.
Scroll down to the Service Response section, and notice that the response is Hello, <your name>!

In the preceding two steps the web service invoked the hello method on the Hello bean via the EJB
control. The Hello bean invoked the findByPrimary method of the Visit bean to find out if your name
is stored in the database. Because you are running this test for the first time, your name could not be
found. A record with your name was created in the database and the Hello bean sent the appropriate
response.

4.

Click the Test Operations link.5.
Enter your name again, click the hello button, and notice that the response is Hello again, <your
name>!

In this step the Hello bean again invoked the findByPrimary method of the Visit bean to find out if
your name is stored in the database. Your name was found, the database record was updated to reflect
that this was your second visit, and the Hello bean sent the appropriate response.

6.

Click the Test Operations link, enter your name again, click the hello button, and notice that the
response is Hello <your name>! This is visit number 3.

7.

Repeat the test with a different name and observe the outcome.8.
Return to WebLogic Workshop and press the Stop button to close the Test Browser.9.

WebLogic Workshop Tutorials

Step 4: Test the EJBs 95

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 4: Test the EJBs 96

Summary: Getting Started EJB Tutorial
This tutorial introduced you to the basics of building Enterprise JavaBeans with WebLogic Workshop.

Concepts and Tasks Introduced in This Tutorial

An introduction to the J2EE and EJB architecture, and the problems EJBs solve•
What are entity beans, and how do you develop these in WebLogic Workshop?•
What are session beans, and how do you develop these in WebLogic Workshop?•
The use of ejbgen tags to do all the development of an EJB in one file•
Understanding JNDI naming services, the JNDI API, and EJB controls•

Now that you have finished the basic EJB tutorial, you can continue with one of the other basic tutorials to
learn more about the other core components you can develop in WebLogic Workshop. For more information,
see The Getting Started Tutorials. If you want to learn more about EJB development, go to the advanced
Tutorial: Enterprise JavaBeans. You can learn more about the EJB technology at Developing Enterprise
JavaBeans.

Related Topics

The Getting Started Tutorials

Tutorial: Enterprise JavaBeans

Developing Enterprise JavaBeans

Click the arrow to navigate through the tutorial:

Summary: Getting Started EJB Tutorial 97

Getting Started: Portals

The Problem of Organizing Web Content

Suppose your company needs to manage a suite of different web applications: a product catalog for
customers, a human resources site for employees, and an information site for business partners. The different
applications need to be organized so that users can easily navigate the content and the applications need to be
personalizable so that different kinds of users can access different kinds of content. Customers need to access
the product catalog, but they shouldn't be allowed to browse the employee intranet.

The Portal Solution

Portals solve this problem by giving you a way to organize all your web applications and web−based content
into a single web site. Portals give you a way to visually arrange different applications into a single web site.
Using tabs and windows, and other navigational devices, you can arrange disparate content into a visual whole
that is easy to navigate. Portals also let you personalize web content. Portal's personalization features allow
you (1) to filter content depending on the characteristics of the user, (2) to make applications respond to
individual patterns of use, and (3) to allow users to personalize the look and feel of the Portal.

What This Tutorial Teaches

In the following tutorial you will learn the basics of organizing and personalizing web content using Weblogic
Portal. You will create a Portal that surfaces two applications: one application allows users to login into the
Portal, the other application allows users to select a favorite color.

The Login Application The Favorite Color Application

You will also use Portal personalization features to remember the user's favorite color while the user is logged
out of the Portal.

The tutorial is divided into three steps:

In the first step you will create an empty Portal.•
In the second step you will populate the Portal with application content and layout the Portal's
navigiation scheme. You will learn the basics of organizing Portal content and navigation.

•

In the third step you will learn how to make different application work together in a Portal. You will
make the favorite color application accessible only to logged in users. You will also learn how to
access the data in a user profile and utilize that data to personalize a web application.

•

Getting Started: Portals 98

Related Topics

Portal Overview

Click the arrow below to navigate through the tutorial:

WebLogic Workshop Tutorials

Getting Started: Portals 99

Getting Started: Portal Core Concepts
This topic will familiarize you with the basic concepts of Portal design and development.

What is a Portal?

A Portal is a web application that presents and organizes disparate web content in a personalizable manner.

A Portal can present a wide variety of different web content from static HTML files to complex web
applications, all of them organized into a single web site. A good example Portal is the Sample Portal, which
contains portlets for logging in, news feeds, collaboration, and content management.

Personalizing the Portal might be as a simple as allowing users to choose a color scheme or as complex as
presenting different Portal content depending on whether the user is a customer, employee, or manager.

Designing Portals with WebLogic Workshop

Portals are designed using WebLogic Workshop, a visual tool for designing Java and web applications. The
image below shows a Portal being designed within WebLogic Workshop. WebLogic Workshop allows you to
design a Portal by dragging and dropping components and setting properties on those components.

Getting Started: Portal Core Concepts 100

The Application tab (area 1) shows the Portal's source files. A Portal is stored as a .portal file, an XML file
with the .portal extention. When a browser is pointed at a .portal file, the Portal is rendered as HTML.

The main work area (area 2) contains a picture of your Portal. You add content to the Portal by dropping and
dragging elements into the main work area.

The Property Editor (area 3) allows you to set properties on Portal elements. When you select a Portal
element in the main work area, its associated properties appear in the Property Editor.

Organizing Content

When you have lots of different kinds of content, you need some way to organize it into a coherent whole.
Portals let you organize your content using common visual and navigational tools devices such as tabs, menus
and windows. The following list describes the basic devices used to organize web content within a Portal.
Consult the image above to see how these organizational tools are rendered in the Workshop design
environment.

WebLogic Workshop Tutorials

Getting Started: Portal Core Concepts 101

A book (area 4) is a high−level organizational container for web content. By default a book is rendered in a
web browser as a series of tabs, but you may choose to render them as a list of links, or in some other way. A
book can contain other books or pages. A Portal can contain as many books as you like, but each Portal has
one main book, which is the top−level container for all the content in the Portal.

A page (area 5) is a low−level organizational container for web content. By default a page is rendered as a
single tab in a web browser. A page is typically divided into different columns and windows. These windows
contain the actual web content of the Portal.

Web content is surfaced through Portlets (area 6). Portlets are embedded windows in your Portal that behave
much like application windows: they are maximizable, minimizable, and closable. A Portlet can contain
something simple, like a static HTML page, or something complex, like a feature rich web application.

Personalization Features

The following list describes some of the ways that you can personalize the content of a Portal

Desktops

A desktop is a user−specific view of the Portal content. A single Portal can support many different desktops,
each designed with a specific kind of user in mind. A customer−specific desktop might show that content that
appeals especially to customers, such as a product catalog, a shopping cart, and a wish−list. An
employee−specific desktop might show a broader view of the Portal content, such as an inventory tracking
application, an employee directory, or other sensitive information that should not be exposed to the general
public.

User Controls

You can personalize the behavior of an individual application within the Portal by using a user control. A user
control allows you to store and retrieve information about an individual user. The information might include
the last date the user visited the Portal, the user's preferences, or a user profile.

Campaigns

Campaigns allow you to expose users to web content based on specfic rules. The content might be advertising
in the form of a pop−up window, email, or a web banner. The rules you use might be based on the user's
demographic profile, purchasing history, or navigational patterns inside the Portal.

Administration of Portals

Portals are web applications that are constantly evolving. After a Portal has been designed and put into
production on the web, often a new need arises for different content, or old content becomes outdated. For
these reasons, there needs to be a way to change the Portal without an extensive re−design process.

This is where the Portal Administrator steps in. The Portal Administrator Console lets you perform common
administration and design tasks at runtime without having to put the Portal through another design process.
For example, a Portal Administrator can add new desktops, pages, and portlets, or change the behavior of a
campaign.

WebLogic Workshop Tutorials

Getting Started: Portal Core Concepts 102

Portal Administrators also manage the Portal's users. They can create or delete user accounts, or they can edit
the user's entitlements within the Portal.

Related Topics

Portal Overview

Click the arrow below to navigate through the tutorial:

WebLogic Workshop Tutorials

Getting Started: Portal Core Concepts 103

Step 1: Create a Portal Project
In this step you will set up the design environment for a Portal application. You will build your Portal using
WebLogic Workshop, a visual tool for designing Portals.

You will also create a Portal project. Portal projects contain supporting resources for Portal web applications
including JSP tag libraries, skins, and personalization tools.

The tasks in this step are:

To Start WebLogic Workshop•
To Create a Portal Application•
To Create a Portal Project•
To Start WebLogic Server•

To Start WebLogic Workshop

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

From the Start menu, choose Programs−−>WebLogic Platform 8.1−−>QuickStart.1.
In the QuickStart dialog, click Experience WebLogic Workshop 8.1.2.

...on Linux

If you are using a Linux operating system, follow these instructions.

Open a file system browser or shell.1.
Locate the Workshop.sh file at the following address:
$HOME/bea/weblogic81/workshop/Workshop.sh

2.

In the command line, type the following command:
sh Workshop.sh

3.

To Create a Portal Application

From the File menu, select New−−>Application.1.
In the New Application dialog, in the upper left−hand pane, select All.
In the upper right−hand pane, select Portal Application.
In the Name field, enter GettingStarted_Portal.
In the Directory field, confirm that [BEA_HOME]\user_projects\applications\GettingStarted_Portal is
selected.
In the Server field, select [BEA_HOME]\weblogic81\samples\domains\portal.

2.

Step 1: Create a Portal Project 104

Click Create.3.

When you create a new Portal Application, Workshop creates the file structure shown to the right.

The data folder contains a Datasync project. A Datasync project contains personalization services that can be
used in Portals, including user profiles, events, session properties, campaigns, and others.

The Modules folder contains stand−alone applications (packaged as WAR and JAR files) that can help you
develop and administer your portal. The primary application is the WebLogic Administration Portal
(adminPortal.war), which is used to administer a Portal both at design time and runtime.

The Libraries folder contains resources commonly used in Portal applications, such as the User Provider
Control, which lets you store and retrieve information about the current user of the Portal.

The Security Roles folder lets you define security roles and test users for your Portal. You can test the security
design of your Portal by logging in as a test user.

To Create a Portal Project

Right−click the GettingStarted_Portal folder and select New−−>Project....1.

WebLogic Workshop Tutorials

Step 1: Create a Portal Project 105

In the New Project dialog, in the upper left−hand pane, confirm that All is selected.
In the upper right−hand pane, select Portal Web Project.
In the Project Name field, enter PortalProj.

2.

Click Create.3.

When you create a new Portal project Workshop creates the file structure shown to the right.

WebLogic Workshop Tutorials

Step 1: Create a Portal Project 106

The campaigns folder is provided as a convenient place to store your campaign rules. Campaigns let you
target users with content (general web content, emails, advertisement, etc.) based on fine−grained rules. For
example, a campaign can present a user with web advertisement based on the user's purchasing history,
demographics, navigational patterns, or any number of criteria.

The framework folder contains resources for determining the look and feel of your Portal, including skins and
themes.

The resources folder stores commonly re−used JSP elements, including CSS files and JSP templates.

The visitorTools folder stores an application that lets users set their own Portal preferences. If you wish, you
can include this application in your Portal.

The WEB−INF folder stores JSP tag libraries, configuration files, compiled class files, and other runtime
resources.

The Controller.jpf, error.jsp, and index.jsp are the components of the default parent page flow. You may use
this page flow as the master error handler and/or the master navigational controller for other page flows in
your portal.

To Start WebLogic Server

In order to run and test your Portal application, it must first be deployed on WebLogic Server. For
convenience you will start WebLogic Server now, so that you can test your Portal as you design it.

From the Tools menu, select WebLogic Server−−>Start WebLogic Server.1.
On the WebLogic Server Progress dialog, you may click Hide and continue to the next task.2.

WebLogic Workshop Tutorials

Step 1: Create a Portal Project 107

You can confirm whether WebLogic Server is running by looking at the status bar at the bottom of WebLogic
Workshop. If WebLogic Server is running, a green ball is displayed.

If WebLogic Server is not running, a red ball is displayed.

You are now ready to begin designing your Portal.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 1: Create a Portal Project 108

Step 2: Organize Content in a Portal
In this step you will create a Portal and import two web applications into the Portal.

The tasks in this step are:

To Create a Portal File•
To Add a Page•
To Import Two Web Applications•
To Place the Web Applications in the Portal•
To Test the Portal•

To Create a Portal File

In this step you will create a Portal file, an XML file with the .portal file extension. The .portal file is the
central defining file of a Portal. It refers to all of the major components of the portal: the desktops, books,
pages, portlets, etc. When users visit the Portal, they will point their browsers at this file:
http://localhost:7001/PortalProj/my.portal.

On the Application tab, right−click the PortalProj folder, and select New−−>Portal.1.
In the New File dialog, in the upper−left pane, confirm that Portal is selected.
In the upper−right pane, confirm that Portal is selected.
In the File name field, enter my.portal.

2.

Click Create.3.

Step 2: Organize Content in a Portal 109

When you create
a .portal file, a
visual
representation of
the Portal is
displayed in the
main work area.
The picture to the
right shows the
main visual
components of a
Portal.

A desktop is a user−specific view of the Portal content. A Portal can support many desktops. A single Portal
might support an employee−specific desktop, a customer−specific desktop, and others, where each desktop
exposes different kinds of users to different sets of content. For example, a employee−specific desktop would
probably be a wider view of the Portal content compared to a customer−specific view. The employee desktop
might include access to sensitive information that the company wouldn't want in the hands of customers or
rival companies. Any part of a Portal can be included or excluded from a desktop, including a book, a page, a
specific application, or an individual link.

Desktops can also define the look and feel attributes of a Portal. Desktops can be associated with a particular
skin which defines the color scheme, fonts, and images used. Desktops also contain a header and footer: you
can place images, text, or any web content in these areas to give consistency to the look and feel of a desktop.

A book gives you a way to organize your content and navigation in a hierarchical manner. Books can contain
other books or pages. In a browser, a book is rendered as a set of tabs or links. Each Portal contains a main
book called by default "Main Page Book".

A page consists of a set of columns and/or windows that organize the actual content of your Portal. You
navigate to a page by clicking on an individual tab or a link.

To Add a Page

In this step you will add a second page to the Portal's main book. When the Portal is rendered in a browser,
the two pages will appear as two clickable tabs. You add a new page by dragging a dropping the new page
into the main work area. You will also set properties on the new page using the Property Editor.

From the Palette tab, drag and drop the Page icon to the area directly to the right of the Page 1 tab.1.

WebLogic Workshop Tutorials

Step 2: Organize Content in a Portal 110

(If you do not see the Palette tab, select View−−>Windows−−>Palette.)

In the main work area, select New Page.2.

On the Property Editor tab, in the Title property, enter Page 2 and press the Enter key.

When you enter a value in the Property Editor, note the change that occurs in the main work area: the
title of the page has changed from "New Tab" to "Page 2".

3.

WebLogic Workshop Tutorials

Step 2: Organize Content in a Portal 111

Press Ctrl+S to save your work.4.

To Import Two Web Applications

In this task you will import the source code for two applications into your Portal Project. These two
applications are web applications built using WebLogic Workshop's Page Flow technology. To learn more
about Page Flow web applications see the Getting Started Tutorial: Web Applications.

On the Application tab, right−click the PortalProj folder and select Import....1.
In the Import Files to Project 'PortalProj' dialog navigate to and select the portlets folder located in
[BEA_HOME]/weblogic81/samples/platform/tutorial_resources/GettingStarted_Portal.

2.

Click Import.3.

To Place the Web Applications in the Portal

Portlets are windows that surface web applications and other web content. A Portlet can contain content that is
as simple as an HTML file or as complex as a large web application. In the following step you will add two
Portlets to your Portal, one will surface the login application, the other will surface the favorite color
application.

Note that Portlets are automatically created for you whenever you drag and drop new content into the Portal.

On the Application tab, navigate to the file
GettingStarted_Portal/PortalProj/portlets/favoriteColor/favoriteColorController.jpf.

1.

On the Application tab, drag and drop the file favoriteColorController.jpf onto the left column of
Page 2.

(Note that each page is by default divided into two columns. These columns are provided as a
convenience for arranging your Portal content. To change the number of columns, use the Layout
Type property on the Property Editor tab.)

2.

WebLogic Workshop Tutorials

Step 2: Organize Content in a Portal 112

In the Create Portal dialog, click Yes.3.

In the Portlet Wizard dialog, click Finish.4.

WebLogic Workshop Tutorials

Step 2: Organize Content in a Portal 113

Note that a new .portlet file has been created in the favoriteColor folder.

In the main work area, click the tab labeled Page 1.

On the Application tab, locate the file
GettingStarted_Portal/PortalProj/portlets/userLogin/UserLoginController.jpf.

5.

On the Application tab, drag and drop the file UserLoginController.jpf onto the left column of Page
1.

6.

WebLogic Workshop Tutorials

Step 2: Organize Content in a Portal 114

In the Create Portal dialog, click Yes.7.
In the Portlet Wizard dialog, click Finish.8.
Press Ctrl+S to save your work.9.

You now have a Portal that surfaces two web applications.

To Test the Portal

In this task you will test the Portal using the Workshop Test Browser. The Workshop Test Browser can be
used to test any web application you build with WebLogic Workshop.

There are two things to note as you test the behavior of the Portal at this point:

The login and favorite color applications do not communicate with one another. In particular, the
favorite color application has no way of knowing whether the user is logged in or not.

1.

The favorite color application has no way of remembering a user's favorite color once the user has
logged out.

2.

In the next step of the tutorial you will correct both of these problems. You will make the favorite color
application accessible only to logged in users and you will provide a way for the favorite color application to
store a user's favorite color while the user is logged out.

WebLogic Workshop Tutorials

Step 2: Organize Content in a Portal 115

Click the Start button, shown below.1.

When the Workshop Test Browser launches, click the Page 2 tab. (Notice that you can access the
favorite color application even though you have not logged in.)

2.

Click the Page 1 tab.3.

Login in with the username / password: weblogic / weblogic.4.
Once you have logged in, click the Page 2 tab, and select a favorite color.5.
Log out of the Portal. (Click the Page 1 tab and click logout.)6.
Log back into the Portal. Click the Page 2 tab. (Notice that the application has failed to remember the
favorite color selected since you last logged in.)

7.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Organize Content in a Portal 116

Step 3: Personalize a Web Application
So far, you have a Portal which surfaces two applications. But the Portal lacks any personalization features.
The favorite color application has no way to know when a user is logged in and it has no way of remembering
a user's favorite color after the user has logged out of the Portal.

In this step you will make the favorite color application capable of remembering the user's favorite color after
the user has logged out. You will add a User Profile Control to the application, a control which can save
information about individual Portal users. The User Profile Control saves the information in a database (a
database entirely managed by the control) and accesses the information using a set of property/value pairs.

The tasks in this step are:

To Edit the Application to Require Login•
To Add a User Profile Control•
To Edit the Web Application to Use the Control•
To Test the Portal•

To Edit the Application to Require Login

In this step you will edit the application so that it is accessible only to logged in users. You will accomplish
this by setting properties on the favorite color application. First, you will set the application's login−required
property to true. This will cause the application to throw a NotLoggedInException anytime a non−logged in
user tries to access the application. Second, you will edit the application's catch property. The catch property
provides error handling instructions to the application. In this case the application will handle the exception by
sending non−logged in users to a JSP page that instructs them that they must first log on to use the
application.

On the Application tab, double−click the file favoriteColorController.jpf to open the file.1.
On the Property Editor tab, set the login required property to true.2.

On the Property Editor tab, click the plus sign to the right of the catch List property.3.

Step 3: Personalize a Web Application 117

On the Property Editor tab, click the plus sign to the left of catch(1).4.

In the type property, enter com.bea.wlw.netui.pageflow.NotLoggedInException and press the Enter
key.

5.

WebLogic Workshop Tutorials

Step 3: Personalize a Web Application 118

In the path property, enter notLoggedIn.jsp and press the Enter key.6.

Press Ctrl+S to save your work.7.

To Add a User Profile Control

In this task you will add a User Profile Control to the favorite color application. A User Profile Control
provides access to a user's User Profile: a store of information that is maintained by the Portal. The User
Profile stores information about the user as a set of property/values pairs. Most importantly the User Profile
persists after a user has logged out of the Portal. In this case you will save the user's favorite color in the User
Profile.

In the main work area, click the Action View tab.1.

WebLogic Workshop Tutorials

Step 3: Personalize a Web Application 119

On the Data Palette tab, to the right of the Controls heading, click Add.2.

From the menu, select Portal Controls−−>Profile.3.

In the Insert Control − User Profile Control dialog, enter userProfileControl.4.

Click Create.5.
Press Ctrl+S to save your work.6.

The User Profile Control you have added contains methods for storing user information (setProperties and
setProperty) and methods for retreiving user information (such as getProfile and getProfileForUser). You can
use these methods to store and retrieve user preferences and other information over a history of visits to the
Portal.

WebLogic Workshop Tutorials

Step 3: Personalize a Web Application 120

To Edit the Web Application to Use the Control

In this task you will edit the favorite color application code to take advantage of the User Profile Control.
When the user selects a favorite color, it will be saved in the User Profile. When the user revisits the Portal,
the favorite color will be retrieved from the User Profile.

In the main work area, click the Source View tab.1.

At the top of the file, click the plus sign to the left of the import... area.2.

WebLogic Workshop Tutorials

Step 3: Personalize a Web Application 121

Edit the set of import statements so it looks like the following. Code to add is shown in red.
import com.bea.wlw.netui.pageflow.FormData;
import com.bea.wlw.netui.pageflow.Forward;
import com.bea.wlw.netui.pageflow.PageFlowController;
import com.bea.p13n.usermgmt.profile.ProfileWrapper;

3.

In the main work area, click the Action View tab.4.

In the main work area, click the link text for the begin method.5.

Edit the source code for the begin method so it appears as follows. Code to add appears in red:

 /**
 * @jpf:action
 * @jpf:forward name="showColor" path="color.jsp"
 */
 protected Forward begin()

throws Exception
 {
 // Get the current user's profile.
 ProfileWrapper pw = userProfileControl.getProfileFromRequest(getRequest());

 // If the favorite color retrieved from the user profile is not null...
 if(pw.getPropertyAsString("favorites", "favoriteColor") != null)
 {
 // ...load the favorite color into the member variable _fav
 _fav = pw.getPropertyAsString("favorites", "favoriteColor");
 }

 // Render the color.jsp page
 return new Forward("showColor");
 }

6.

In the main work area, click the Action View tab.7.

In the main work area, click the link text for the setFav method.8.

WebLogic Workshop Tutorials

Step 3: Personalize a Web Application 122

Edit the source code for the setFav method so it appears as follows. Code to add appears in red:

 /**
 * @jpf:action
 * @jpf:forward name="showColor" path="color.jsp"
 */
 protected Forward setFav(SelectFavForm form)

throws Exception
 {
 // Get the current user's profile.
 ProfileWrapper pw = userProfileControl.getProfileFromRequest(getRequest());

 // Save the selected color in the user's profile.
 // This color will be read from the profile on the
 // user's next visit to the portal.
 pw.setProperty("favorites",
 "favoriteColor",
 form.getFavoriteColor());

 // Load the selected color into the global variable _fav.
 // The JSP page color.jsp reads the display color from _fav.
 _fav = form.getFavoriteColor();

 // Render the JSP page color.jsp.
 return new Forward("showColor");
 }

9.

Press Ctrl+S to save your work.10.

To Test the Portal

As you test the Portal, notice it has two new capabilities:

The favorite color application is accessible only to logged in users1.
The favorite color application remembers a user's favorite color while the user is logged out2.

On the Application tab, double−click my.portal to display the file in the main work area.1.
Click the Start button, shown below.2.

When the Workshop Test Browser launches, click the Page 2 tab.

Notice that the user must be logged in to access the Favorite Color application.

3.

WebLogic Workshop Tutorials

Step 3: Personalize a Web Application 123

Click the Page 1 tab and click the login link.4.

Login with the username/password combination weblogic/weblogic.5.

Click the Page 2 tab.

Notice that the Favorite Color Application is visible once the user is logged in.

6.

Select a favorite color and click Click.7.

WebLogic Workshop Tutorials

Step 3: Personalize a Web Application 124

Click the Page 1 tab and click the logout link.8.

Login again with the username/password combination weblogic/weblogic.9.

Click the Page 2 tab.

Notice that the Portal remembered the user's favorite color while the user was logged out.

10.

WebLogic Workshop Tutorials

Step 3: Personalize a Web Application 125

Related Topics

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 3: Personalize a Web Application 126

Summary: Getting Started Portal Tutorial
This topic reviews the concepts introduced in the tutorial and provides links to more information on Portals.

Concepts Introduced in the Tutorial

Organizing Content

Portals let you organize a variety of web content into a single, easy to navigate web site. For more
information on organizing content in a Portal see Assembling Portal Applications.

•

There are extensive tools for determining the look and feel of a Portal. For more information, see Look & Feel
Architecture.

Personalization

The User Profile Control can be used to personalize the user's Portal experience. For more
information on using the User Profile Control see User Profile Control.

•

This tutorial only serves as a first introduction to personalization. Portal personalization also include the
following features:

There are a variety of other controls that can be used to personalize the Portal experience. For more
information see Using Portal Controls.

•

Desktops are an important personalization feature for different kinds of users. For information on
filtering content using desktops see How Do I: Create a Desktop? For information on using the Visitor
Tools application to allow users to set the look and feel of the Portal themselves see Adding Visitor
Tools to Portals.

•

Campaigns let you target users with content based on user properties, behavior, events, and other
fine−grained criteria. For more information on campaigns see Creating Campaigns.

•

Using a Unified User Profile takes your User Profile to the next level. A Unified User Profile lets you
draw user information from external sources, such as LDAP servers, legacy systems and databases.
For more information on Unified User Profiles see Setting up Unified User Profiles.

•

Portlets

Portlets are containers that hold web content within a Portal. For more information on how to
customize Portlet behavior see Customizing Portlets.

•

Click one of the following arrows to navigate through the tutorial:

Summary: Getting Started Portal Tutorial 127

Tutorial: Java Control

The Big Picture

The Java control tutorial is the first in a
series of three tutorials that builds the
Investigate Application, an application
designed to assemble a credit−worthiness
report on loan applicants. (Note: you do
not need to execute the tutorial series in
order. You may skip ahead to the web
services tutorial or page flow tutorial if you
wish.)

This, the first tutorial in the series, builds the core of the application: the Investigate Java control. The
Investigate Java control consults a variety of components to assemble the credit−worthiness report. The
Investigate Java control and its components are shown in blue in the diagram to the right. The remaining two
tutorials focus on different ways to access the core functionality encapsulated by the Investigate Java control.

The second tutorial in the series, Tutorial: Web Service, builds the web services tier of the application.

The third tutorial in the series, Tutorial: Page Flow, builds a web−based user interface for the Investigate
Application.

Tutorial Goals

Through this tutorial, you will learn how to create and test a Java control with WebLogic Workshop. Along
the way, you will also learn how to create methods that expose a control's functionality, become acquainted
with WebLogic Workshop's support for asynchronous communication and loose coupling, and learn how to
use WebLogic Workshop's built−in Java controls to help you connect to backend resources and to speed the
design process.

Tutorial Overview

The Java control you build with this tutorial collects credit−related information about a loan applicant,
computes a credit worthiness score, and returns the combined information to the client.

There are six actors in this scenario:

Tutorial: Java Control 128

The clients of your Java control. Clients of Investigate are loan or credit application processing
systems. An example might be a credit card application processing system at a department store.
These systems will use Investigate to determine the applicant's credit worthiness. They will supply
you with the applicant's taxpayer ID, and your control will compute and return a credit score.

•

The Investigate Java control. Investigate receives a taxpayer ID as part of requests from clients and
respond with information about the applicant's credit worthiness.

•

•
A credit card reporting web service with information about the applicant's credit history. You should
imagine that that the credit card reporting web service is an external application accessible over the
internet. But for the purposes of the tutorial, this web service will deployed on the same server as the
Investigate Java control.
A database containing bankruptcy information about credit applicants.•
A credit scoring application, exposed through the Java Message Service (JMS), designed to calculate
a credit score based on information you've collected.

•

An Enterprise Java Bean (EJB) designed to provide a credit rating based on the score.•

This tutorial guides you through the process of adding functionality in increments, and shows you how to test
your Java control as you build it.

Steps in This Tutorial

Step 1: Begin the Investigate Java Control — 25 minutes

In this step you build and run your first WebLogic Workshop Java control. You start WebLogic Workshop
and WebLogic Server, then create the access points clients use to request and retrieve credit reports.

Step 2: Add a Database Control — 20 minutes

You add a control for access to a database, then query the database for bankruptcy information.

Step 3: Add a Web Service Control — 25 minutes

You use a Web service control to invoke another web service, collecting credit card data on the applicant.
This step also uses XMLBeans to parse the response from the Web service.

Step 4: Add a JMS Control — 20 minutes

You will take the data you have gathered and request help from an in−house application to retrieve a credit
score.

Step 5: Add an EJB Control — 20 minutes

You will send the credit score to an Enterprise Java Bean (EJB) that will use it to measure the applicant's
credit risk.

Step 6: Add Support for Cancellation and Exception Handling — 20 minutes

You enhance Investigate to handle a client's desire to cancel the request, an overly long wait for a response
from the credit card service, and exceptions thrown from your service's methods.

Step 7: Security — 20 minutes

WebLogic Workshop Tutorials

Tutorial: Java Control 129

You modify the Investigate Java control so it can access a web service over SSL (Secure Socket Layer).

Step 8: Compile the Java Control and Add a Property — 25 minutes

You add a property to the Investigate Java control so that developers using the control can change the way it
functions and you package the control as a JAR file for general distribution.

Summary: Java Control Tutorial

You review the concepts and technologies covered in the tutorial. This step provides additional links for more
information about each area covered.

To begin the tutorial, see Step 1: Begin the Investigate Java Control.

Click the arrow to navigate to the next step.

WebLogic Workshop Tutorials

Tutorial: Java Control 130

Step 1: Begin the Investigate Java Control
In this step, you create a simple Java control that assembles credit−worthiness reports on loan applicants. You
will focus on the public interface that is presented to users rather than the underlying implementation code
that assembles the credit report. The public interface you build works as follows: users begin by requesting a
credit report from the Investigate Java control, then the Investigate Java control builds a credit report based on
those requests, and finally sends a completed report back to the user through a callback.

Callbacks are part of your Java control's support for asynchronous communication with its users. By
supporting asynchronous communication, users are not forced to halt execution of their own processes while
the credit report is being prepared. For detailed information of callbacks and asynchronous communication,
see Designing Asynchronous Interfaces.

The tasks in this step are:

To start WebLogic Workshop•
To create a new application and select a WebLogic server domain•
To create a new project•
To start WebLogic Server•
To create the Investigate Java control•
To create the Applicant class•
To add a member variable•
To add a method•
To add a message buffer•
To a specify a parameter and method body•
To add a callback•
To add code to invoke the callback after the credit−worthiness report has been assembled•
To generate a test client for the Investigate Java control•
To test the Investigate Java control•

To Start WebLogic Workshop

If you have an instance of WebLogic Workshop already running, you can skip this step.

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

From the Start menu, choose Programs−−>WebLogic Platform 8.1−−>QuickStart.1.
In the QuickStart dialog, click Experience WebLogic Workshop 8.1.2.

...on Linux

If you are using a Linux operating system, follow these instructions.

Open a file system browser or shell.1.
Locate the Workshop.sh file at the following address:
$HOME/bea/weblogic81/workshop/Workshop.sh

2.

In the command line, type the following command:
sh Workshop.sh

3.

Step 1: Begin the Investigate Java Control 131

To Create a New Application and Select a WebLogic Server Domain

The Investigate Java control uses four different resources to assemble a credit report: (1) a web service, (2) a
database, (3) an EJB application, and (4) a message driven EJB application. In this task you will create a new
application that contains all four of these resources. The application you create below already contains the
web service resource. The server domain you select below contains the remaining three resources.

From the File menu, select New −−> Application. The New Application dialog appears.1.
In the New Application dialog, in the upper left−hand pane, select Tutorial.
In the upper right−hand pane, select Tutorial: Java Control.
In the Directory field, use the Browse button to select a location to save your source files. (The folder
you choose is up to you, the default location is shown in the illustration below.)
In the Name field, enter JavaControlTutorial.
In the Server field, from the dropdown list, select
BEA_HOME\weblogic81\samples\domains\workshop.

2.

Click Create.3.

A new application is created. The application contains six sub−folders named
CreditCardReport_JCSTutorial, Read_Me, Schemas, Modules, Libraries, and Security Roles.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 132

The folder CreditCardReport_JCSTutorial contains a web service that your Java control will utilize. This
web service offers credit card information on loan applicants. The Read_Me folder contains a message
directing users to this tutorial. This message is provided in case a user should open a new Java Control
Tutorial Application by accident. The Schemas folder contains schema files used for parsing XML
documents. The Modules folder is provided with every WebLogic application: use this folder to store
stand−alone applications. The Libraries folder is used to store JAR files and other application resources. The
Security Roles folder is used to define the security roles used in your application.

To Create a New Project

For the sake of convenience, you will develop your Java control within a web application project instead of a
Java control project. This way, it is easier to generate and use Workshop's testing support. When the
Investigate Java control is complete, you will move the source code to a Java control project for final
packaging.

On the Application tab, right−click the JavaControlTutorial folder and select New−−>Project.1.
In the New Project dialog, in the upper left−hand pane, confirm that All is selected.
In the upper right−hand pane, select Web Project.
In the Project Name field, enter JavaControlTutorialWeb.

2.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 133

Click Create.3.

To Start WebLogic Server

Since you will be deploying and running your Java control on WebLogic Server, it is helpful to have
WebLogic Server running during the development process.

You can confirm whether WebLogic Server is running by looking at the status bar at the bottom of WebLogic
Workshop. If WebLogic Server is running, a green ball is displayed as pictured below.

If WebLogic Server is not running, a red ball is displayed, as pictured below.

If you see the red ball in the status bar, then follow the instruction below to start WebLogic Server.

To start WebLogic Server: from the Tools menu, choose WebLogic Server−−>Start WebLogic
Server.

•

Note: on the WebLogic Server Progress dialog, you may click Hide and continue to the next task.

To Create the Investigate Java Control

You are now ready to begin development of your Java control.

On the Application tab, right−click the JavaControlTutorialWeb folder and select New−−>Folder.1.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 134

In the Create New Folder dialog, enter investigateJCS, as shown in the following illustration.2.

Click OK.

A new folder named investigateJCS is created inside the JavaControlTutorialWeb folder.

3.

Right−click the investigateJCS folder and select New−−>Java Control.4.
In the New Java Control Extension dialog, select Custom.
In the File Name field, enter InvestigateImpl. ("Impl" indicates that this file contains the
implementation code for your control.)

5.

Click Create.

Note that two files are created: a JCS (Java Control Source) file, and a Java file.

The JCS file contains the implementation code for your Java control, the Java file contains the public
interface for the underlying implementation code. The Java file is the public face of your Java control:
it is essentially a list of methods that users can call to access the functionality contained within the
underlying implementation code. For the most part, you do not have to directly edit the Java file,
because WebLogic Workshop automatically maintains the Java file as you edit the JCS file.

6.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 135

To Create the Applicant Class

The code you add below, the Applicant class, contains fields for storing the information about credit
applicants, such as the applicant's name, currently available credit, and so on. Each time your Java control is
invoked a new instance of the Applicant class is created to store data on a particular applicant.

(Note that the Applicant class implements the Serializable interface. This allows WebLogic Workshop to save
a particular Applicant object to disk while it is assembling a credit−worthiness report. This is important for
two reasons. First, assembling a credit−worthiness report may take a long time, so it is convenient to be able
to save data to disk instead of keeping it in memory. Second, the Investigate Java control will ultimately be
exposed through a web service access point and web services require that the data they transport over the wire
be serializable.)

On the Application tab, right−click the investigateJCS folder and select New −−> Java Class. The
New File dialog appears.

1.

In the New File dialog, in the upper right−hand pane, confirm that Java Class is selected.
In the File name field enter Applicant.java.
Click Create.
A new Java file, Applicant.java, is created.

2.

Edit Applicant.java to look like the following. Add the elements appearing in red.3.

package investigateJCS;

public class Applicant implements java.io.Serializable
{
 /*
 * This long allows for versioning of this class.
 */
 static final long serialVersionUID = 1L;

 public String taxID;
 public String firstName;
 public String lastName;
 public boolean currentlyBankrupt;
 public int availableCCCredit;
 public int creditScore;
 public String approvalLevel;
 public String message;

 public Applicant() {}
}

Press Ctrl+S to save Applicant.java, then press Ctrl+F4 to close the file.4.

To Add a Member Variable

Each time a new report is requested from the Investigate Java control, a new instance of the Applicant object
is created to store the report data. The following code constructs a new Applicant object each time a new
report is requested.

Confirm that InvestigateImpl.jcs is displayed in the main work area. (To display any file in the main
work area, double−click its icon on the Application tab.)

1.

Click the Source View tab.2.
Add the following code to body of InvestigateImpl.3.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 136

 /*
 * Construct a new instance of the Applicant class to store
 * the credit report data.
 */
 public Applicant m_currentApplicant = new Applicant();

Press Ctrl+S to save your work.4.

To Add a Method

In this task you add a method through which users will request a new credit report. When users invoke this
method, it starts off the process of assembling a credit report. (When the credit report is done, the report will
be sent back to the user through a callback method, added below.)

Confirm that InvestigateImpl.jcs is displayed in the main work area.1.
Click the Design View tab.2.

In Design View, right−click the picture of your Java control and select Add Method.3.

In the space provided, replace newMethod1 with requestCreditReport and press Enter.

Note: If you switched from WebLogic Workshop to another application (for example,
to read this topic), the method name may no longer be available for editing. To
re−open it for editing, right click its name, select Rename, type requestCreditReport,
and then press Enter.

4.

Press Ctrl+S to save your work.5.

To Add a Message Buffer

By adding a message buffer to a method, the method immediately returns a simple method invocation
acknowledgement to the user. This allows the user to continue with its own processes while the
requestCreditReport method executes.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 137

In Design View select the requestCreditReport method. You select a method by clicking the arrow
icon next to the method's name.

1.

On the Property Editor tab, in the section labeled message buffer, select the enable property. Using
the drop−down list, set the value to true.

A buffer icon is added to the method's arrow icon, as shown below.

2.

To Specify a Parameter and Method Body

The Investigate Java control assembles a credit report based on a subject's tax identification number. In this
task you will add a parameter to the requestCreditReport method through which you can specify the subject's
tax identification number.

You will also add code to the method body that assembles a credit report on the applicant. For the time being
the assembly process is not very informative about the applicant, but as you progress in the tutorial, the
assembly process will become more complex.

In Design View, click the name of the requestCreditReport method, as shown in the following
illustration.

Clicking the method's name in Design View, displays the method's source code in Source View.

Note the two Javadoc annotations that appear above the requestCreditReport method.

The Javadoc annotation @common:operation indicates that this method is part of the public interface
of InvestigateImpl.jcs. When this annotation is present, WebLogic Workshop includes this method as
part of the public interface listed in Investigate.java. In Design View, this annotation is depicted by
the blue arrow icon.

1.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 138

The Javadoc annotation @common:message−buffer indicates that this method immediately returns an
acknowledgment to the user after he invokes the method. In Design View this annotation is depicted
by the buffer icon.
Edit the requestCreditReport method declaration and body so that they appear as follows. Code to
add appears in red. Do not edit the annotations above the method declaration.
 public void requestCreditReport(String taxID)
 {
 /*
 * Assemble a credit worthiness report on the applicant.
 */
 m_currentApplicant.taxID = taxID;
 m_currentApplicant.firstName = "unknown";
 m_currentApplicant.lastName = "unknown";
 m_currentApplicant.approvalLevel = "unknown";
 m_currentApplicant.message = "There was insufficient data available to assemble a full report on this applicant.";
 }

2.

Press Ctrl+S to save your work.3.

To Add a Callback

When the Investigate Java control has assembled a complete credit report it sends the report to the user
through a callback method. In this task you will add the callback method through which users will receive the
completed credit report. You will also add a parameter to your callback method. When you add a parameter to
a callback method, the parameter you add will be sent to the client of your Java control.

Confirm that InvestigateImpl.jcs is displayed in the main work area.1.
Click the Design View tab.2.
In Design View, right−click the picture of your Java control and select Add Callback.3.
In the space provided, replace newCallback1 with onCreditReportDone and press Enter.

A callback is added to your Java control.

4.

Click the name of the callback onCreditReportDone.

Clicking a callback opens the control's interface file (a Java file).

5.

Edit the Callback interface so it appears as follows.

 interface Callback
 {

6.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 139

 void onCreditReportDone(investigateJCS.Applicant applicant);
 }

Press Ctrl+S to save your work.7.
Click the X in the upper right−hand corner of the main work area to close the Investigate.java file.8.

Add Code to Invoke the Callback After the Credit−worthiness Report Has Been Assembled

At this point the Investigate Java control has (1) a method through which a client can request a
credit−worthiness report (requestCreditReport) and (2) a callback methods which sends the credit−worthiness
report to the client (onCreditReportDone). In this following task you will connect these two methods, so that
when the credit−worthiness report is complete, it will be sent to the client.

Confirm that InvestigateImpl.jcs is displayed in the main work area.1.
If necessary, click the Design View tab.2.
Click the name of the requestCreditReport method.3.

Edit the source code for the requestCreditReport method so it appears as follows. Code to add
appears in red.

 public void requestCreditReport(String taxID)
 {
 /*
 * Assemble a credit−worthiness report on the applicant.
 */
 m_currentApplicant.taxID = taxID;
 m_currentApplicant.firstName = "unknown";
 m_currentApplicant.lastName = "unknown";
 m_currentApplicant.approvalLevel = "unknown";
 m_currentApplicant.message = "There was insufficient data available to assemble a full report on this applicant.";

 /*
 * Send the credit−worthiness report to the client via a callback.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }

4.

Press Ctrl+S to save your work.5.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 140

As it is now written, the Investigate Java control works like this: the user begins the process by invoking the
requestCreditReport method, supplying a tax identification number as a method parameter. The
requestCreditReport then immediately returns a request acknowledgement to the user (this is the role of the
message buffer). Next the Investigate Java control assembles a credit report on the applicant. Finally the
completed credit report is sent back to the user through the callback onCreditReportDone.

To Generate a Test Client for the Investigate Java Control

In this task you will generate a client to test your Java control. The test client is a web service that allows you
to invoke the methods of the Investigate Java control and view the results of those method invocations.

On the Application tab, right−click InvestigateImpl.jcs and select Generate Test JWS File
(Conversational).

A new web service, InvestigateTest.jws, is created and placed in the investigateJCS folder.

1.

On the Application tab, double−click InvestigateTest.jws to open the file.

When you auto generate a test web service, WebLogic Workshop creates a set of web service
methods corresponding to the methods of your Java control plus two more: a startTestDrive method
and a finishTestDrive method. These two extra methods are used to start and finish a web service
conversation. Conversations are used to group together the different method calls and callbacks into a
single session. This is especially useful if you make multiple requests for credit reports: it lets you
associate each invocation of the requestCreditReport method with the corresponding credit report
returned by the callback onCreditReportDone. The green, yellow, and red icons on the web service
methods indicate the phases of the conversation: a green icon indicates that the method starts a new
conversation, a yellow icon indicates that the method continues an already existing conversation, and
a red icons indicates that the method ends an already existing conversation.

Autogenerated test web services are optimized for Java controls with complex public interfaces. In a
typical test cycle you would start a new conversation by invoking the startTestDrive method, continue
the conversation by invoking the methods corresponding to your Java control, and finally end the
conversation by invoking the finishTestDrive method. But our Java control has a simple public
interface, so you will modify the test web service to make it easier to use.

2.

On the Design View tab, right−click the startTestDrive method and select Delete.3.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 141

In the dialog warning you that you are attempting to edit an auto generated file, click OK.4.

On the Design View tab, right−click the finishTestDrive method and select Delete.5.

On the Design View tab, select the arrow icon for the requestCreditReport method.6.

On the Property Editor tab, in the section labeled conversation, find the phase property. Using the
drop−down list, set the value to start.

7.

On the Design View tab, select the arrow icon for the onCreditReportDone method.8.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 142

On the Property Editor tab, in the section labeled conversation, find the phase property. Using the
drop−down list, set the value to finish.

Design View should look like the following.

9.

Click the Source View tab.10.
Edit the requestCreditReport method so it looks like the following. Add the code appearing in red.

 /**
 * <p>Use the following taxID's to test the Investigate web service.</p>
 *
 * <blockquote>111111111

 * 222222222

 * 333333333

 * 444444444

 * 555555555

 * 123456789</blockquote>
 *
 * @common:operation
 * @jws:conversation phase="start"
 */
 public void requestCreditReport(java.lang.String taxID)
 { investigate.requestCreditReport(taxID); }

11.

Press Ctrl+S to save your work.12.

To Test the Investigate Java Control

In the following task you will use the test web service to invoke the methods of the Investigate Java
control. The test web service also lets you view detailed information about the methods while they are
executing.
Confirm that InvestigateTest.jws is displayed in the main work area.1.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 143

Click the Start button.

Workshop builds InvestigateTest.jws and launches the Workshop Test Browser.

2.

In the Workshop Test Browser, in the taxID field, enter some value and click the
requestCreditReport button.

3.

Click Refresh until the callback.onCreditReportDone appears in the Message Log.

In the image above, the Message Log contains information about the method invocation
requestCreditReport and the callback onCreditReport. The right−hand column, underneath the
heading Service Request requestCreditReport, gives detailed information about the time the
requestCreditReport method was invoked, the parameter that was entered, the conversation phase, and
the conversation ID that was assigned to this method invocation.

In the left−hand column, note the number appearing directly above requestCreditReport. This is the
conversation ID that groups together the requestCreditReport method and the onCreditReport
callback. This conversation ID appearing in your Test Browser will be different than the one
illustrated here: this is because a new conversation ID is generated each time the requestCreditReport
method is invoked.

4.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 144

The right−hand column (not fully pictured here, see your Test Browser) gives you the run−time
implementation details about how the web service and the Investigate Java control interact. (As you
can see, from a run−time perspective their interaction is fairly complex. But from an application
development perspective you do not have to worry about these details, they are taken care of by the
WebLogic Workshop runtime.) The most important part of this interaction is the invocation of the
requestCreditReport method on the Investigate Java control and the acknowledgment it immediately
returns to the web service client (illustrated below). Recall that the acknowledgment is returned
because you placed a message buffer on the requestCreditReport method.

In the Message Log, click callback.onCreditReportDone.

Notice that the results are displayed in the form of an XML document. This is because the test web
service converts the Applicant object into an XML message before it is displayed in the test browser.
(Note that web services always send XML messages to their clients, typically in a SOAP format.)

Also notice the <conversationID> element. This is the same conversation ID that was assigned to the
requestCreditReport method when the conversation began.

5.

Return to WebLogic Workshop and press the Stop button to close the Test Browser.6.

Related Topics

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 145

Designing Asynchronous Interfaces

Building Custom Java Controls

Click one of the following arrows to navigate through the tutorial.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Java Control 146

Step 2: Add a Database Control
In this step you add a database control to the Investigate Java control. The database control provides access to
a database containing bankruptcy and other information about credit applicants.

The database control you add is a pre−built control provided by WebLogic Workshop. Pre−built controls act
as interfaces to common data resources, such as databases, web services, Java Message Services, and
Enterprise Java Beans. Pre−built controls free you from having to design a new interface each time you want
to connect to one of these kinds of resources.

The tasks in this step are:

To add the Record class•
To create a database control file•
To add a method•
To associate a SQL query with the method•
To edit the Investigate Java control code to incorporate the database control file•
To test the Investigate Java control using the debugger•

To Add the Record Class

The Record class is a Java object that represents an individual record within a database. In particular, it
represents an individual record of the BANKRUPTCIES table. In the following tasks you will create a
database control file that queries the BANKRUPTCIES table and then returns a Record object containing the
results of the query.

Right−click the investigateJCS folder and select New−−>Java Class.1.
In the New File dialog, in the File Name field enter Record.java.2.
Click Create.3.
Edit the Record.java file so it appears as follows. Code to add appears in red.4.

package investigateJCS;

public class Record
{
 static final long serialVersionUID = 1L;

 public String firstname;
 public String lastname;
 public String taxID;
 public boolean currentlyBankrupt;
}

Press Ctrl+S to save your work. Press Ctrl+F4 to close Record.java.5.

To Create a Database Control File

In this task you will create a database control file, called BankrupctiesDatabase.jcx. "JCX" stands for "Java
Control Extension". A JCX file extends one of Workshop's pre−built control classes, in this case the
com.bea.control.DatabaseControl class, which allows easy access to a database.

Step 2: Add a Database Control 147

On the Application tab, double−click InvestigateImpl.jcs to display the file in the main work area.
(Throughout this tutorial make sure that you do not confuse InvestigateImpl.jcs and
InvestigateTest.jws. They are easy to confuse because of their similar names.)

1.

Click the Design View tab.2.
From the Insert menu, choose Controls−−>Database.

The Insert Control dialog appears.

3.

Enter values as shown in the following illustration:4.

Click Create.

A new JCX file called BankruptciesDatabase.jcx is created in the investigateJCS folder and a new
database control icon appears in Design View.

5.

To Add a Method

In this task, you will add a method to the database control file. This method will ultimately be able to query a
database and return a Record object containing the results of the query.

In Design View, double−click the icon of the database control.1.

The database control file, BankruptciesDatabase.jcx, appears in Design View.

WebLogic Workshop Tutorials

Step 2: Add a Database Control 148

Right−click the picture of the database control and select Add Method.2.

In the space provided, replace newMethod1 with checkForBankruptcies and press Enter.

A new method is added to the database control file.

3.

To Associate a SQL Query with the Method

In this task you will associate a SQL query with the checkForBankruptcies method, so that when the method
is invoked, it will query the BANKRUPTCIES table. The results of the query will be returned by the method
as a return value.

Click the blue arrow icon for the checkForBankruptcies.1.

On the Property Editor tab, in the section labeled SQL, find the property named statement. To the far
right side of the value field, click the elipses symbol.

2.

WebLogic Workshop Tutorials

Step 2: Add a Database Control 149

In the Edit SQL and Interface dialog, enter values as shown in the illustration. Note that the
illustration does not contain selectable text. As a convenience, use the selectable text shown in red.
Also: to enter text into the dialog, select the target pane and press Ctrl+V.

Enter into the SQL pane...

SELECT TAXID, FIRSTNAME, LASTNAME, CURRENTLYBANKRUPT FROM BANKRUPTCIES WHERE TAXID={taxID}

Enter into the Java pane...

public Record checkForBankruptcies(String taxID)

3.

WebLogic Workshop Tutorials

Step 2: Add a Database Control 150

Click Ok.4.
Click the name of the method checkForBankruptcies.

The source code for the checkForBankruptcies method should appear as follows.

The checkForBankruptcies method works in the following way. (1) A client, in this case the
Investigate Java control, invokes the checkForBankruptcies method by passing in an applicant's taxID
as a parameter. (2) The checkForBankruptcies method then uses the taxID parameter to query the

5.

WebLogic Workshop Tutorials

Step 2: Add a Database Control 151

BANKRUPTCIES table with a SQL query, appearing in the @jc:sql annotation. (3) Finally, the
checkForBankruptcies method automatically constructs a Record object based on the results returned
from the database and returns the Record object to the client. (The checkForBankruptcies method is
able to automatically construct a Record object from the results of the database query because the
field names of the BANKRUPTCIES table match those of the Record class.)
Press Ctrl+S to save your work and press Ctrl+F4 to close BankruptciesDatabase.jcx.6.

To Edit the Investigate Java Control to Incorporate the Database Control File

In this task you will modify the Investigate Java control to use the database control. You will edit the method
requestCreditReport to invoke the database control method checkForBankruptcies. The data returned by the
checkForBankruptcies method will be stored in the member variable m_currentApplicant.

If InvestigateImpl.jcs is not displayed, then, from the Window menu, select InvestigateImpl.jcs.1.
Click the Source View tab.2.
Edit the requestCreditReport method to look like the following. (Delete the entire body of the
requestCreditReport method and replace it with the code shown in red below.)
 public void requestCreditReport(String taxID)
 {
 /*
 * Assemble a credit−worthiness report on the applicant.
 */
 // m_currentApplicant.taxID = taxID;
 // m_currentApplicant.firstName = "unknown";
 // m_currentApplicant.lastName = "unknown";
 // m_currentApplicant.approvalLevel = "unknown";
 // m_currentApplicant.message = "There was insufficient data available to assemble a full report on this applicant.";

 /*
 * Send the credit−worthiness report to the client via a callback.
 */
 // callback.onCreditReportDone(m_currentApplicant);

m_currentApplicant.taxID = taxID;

 /*
 * Retrieve data from the database and store it in the rec object.
 */
 Record rec = bankruptciesDB.checkForBankruptcies(taxID);

 /*
 * If the database returns substantial data, then store that data
 * in the m_currentApplicant object.
 */
 if(rec != null)
 {
 m_currentApplicant.firstName = rec.firstname;
 m_currentApplicant.lastName = rec.lastname;
 m_currentApplicant.currentlyBankrupt = rec.currentlyBankrupt;

 /*
 * Send the credit report to the client via a callback.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }
 /*
 * If the database does not return substantial data, notify the client
 * that there is a problem.

3.

WebLogic Workshop Tutorials

Step 2: Add a Database Control 152

 */
 else
 {
 m_currentApplicant.message = "No data could be found on the applicant. Please call (555) 555−5555 for assistance. ";

 /*
 * Send the the error message to the client via a callback.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }
 }

Press Ctrl+S to save your work.4.

To Test the Web Service Using the Debugger

Next you will test your Java control using the debugger. The debugger allows you to set breakpoints in your
code and track how your code is running line−by−line. Setting a breakpoint in your code will cause the Java
Virtual Machine to halt execution of your code immediately before the breakpoint, allowing you to step
through your code beginning at that point.

Confirm that InvestigateImpl.jcs is displayed in the main work area. If necessary, click the Source
View tab.

1.

Place the cursor on the first line of code within the method requestCreditReport. (The first line of
code is "m_currentApplicant.taxID = taxID;")

2.

Click the Toggle Breakpoint button on the toolbar, as shown here:

A breakpoint is set as shown below.

3.

On the Application tab, double−click InvestigateTest.jws.4.
Press the Start button, shown below.5.

In the Workshop Test Browser, in the taxID field, enter the 9 digit number 222222222 and click the
requestCreditReport button.

Note: The bankruptcies database contains data on 6 individuals. The taxIDs of these individuals are
123456789, 111111111, 222222222, 333333333, 444444444, and 555555555. Use these six taxIDs to
test your Java control throughout the tutorial.

6.

Note that the execution of code halts at the breakpoint as shown below.7.

On the Locals tab, expand the entries for this and m_currentApplicant, as shown below.8.

WebLogic Workshop Tutorials

Step 2: Add a Database Control 153

Click the Step Over button on the toolbar, shown here:

Each time you press the Step Over button, Workshop executes the current line of code and moves to
the next line of code (within the current file).

9.

Click the Step Over button until the web service finishes executing. The fields of the
m_currentApplicant object are modified as data is retrieved from the database. As you click the Step
Over button, watch the values of m_currentApplicant change on the Locals tab of the Debug Window.
(Execution will stop after a total of 8 clicks of the Step Over button.)

10.

Return to the Test Browser and click Refresh.11.
Under Message Log, click callback.onCreditRepotDone. Notice that the database has provided three
new pieces of information about the applicant: a first name, last name, and his bankruptcy status.

12.

WebLogic Workshop Tutorials

Step 2: Add a Database Control 154

Return to WebLogic Workshop and press Ctrl+F9 to clear the breakpoint from InvestigateImpl.jcs.13.
Click the Stop button to close the Workshop Test Browser14.

Related Topics

Debugging Your Application

Database Control

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Add a Database Control 155

Step 3: Add a Web Service Control
In this step you will add a web service control to the Investigate Java control. A web service control allows
your Java control to communicate with a web service. This web service control is, like the database control in
the previous step, a pre−built control provided by WebLogic Workshop. In this case, you will add a control
for the Credit Card Report web service, a web service that provides credit card data on loan applicants. You
should imagine that the Credit Card Report web service is an independent application that exists externally
out on the Internet; but for the purposes of this tutorial, it has been included as a project within the Tutorial:
Java Control application.

Because Credit Card Report is a web service, it returns an XML document to its clients. (By definition, web
services return XML documents, typically SOAP XML documents.) In this task you will learn how to process
these XML documents using XMLBean classes.

The tasks in this step are:

To generate a WSDL file from a JWS file•
To generate a web service control from a WSDL file•
To add the web service control file to the Investigate Java control•
To add code to invoke the web service•
To add code to handle callbacks from the web service•
To test the Investigate Java control•

To Generate a WSDL File from a JWS File

Web services advertise their functionality through WSDL files. WSDL files are like instruction manuals for a
web service: they set out the available functionality of a web service and how to access that functionality. In
this step you will generate a WSDL file for the Credit Card Report web service. In the next task you will
generate a web service control from the WSDL file.

On the Application tab, navigate to
JavaControlTutorial/CreditCardReport_JCSTutorial/webservice/CreditCardReport.jws.

1.

On the Application tab, right−click the CreditCardReport.jws file and select Generate WSDL File.

A new WSDL file, CreditCardReportContract.wsdl, is generated and placed underneath
CreditCardReport.jws.

2.

Hold the mouse button down over CreditCardReportContract.wsdl and drag it into the
JavaControlTutorial/JavaControlTutorialWeb/investigateJCS folder.

3.

Step 3: Add a Web Service Control 156

To Generate a Web Service Control from a WSDL file

On the Application tab, right−click CreditCardReportContract.wsdl and select Generate Service
Control.

A new web service control file, CreditCardReportControl.jcx, is created and placed in the
investigateJCS folder.

Note that the CreditCardReportControl.jcx file is a pre−built Workshop control that allows easy
access to the CreditCardReport web service.

•

To Add a Web Service Control to The Investigate Java Control

In this task you will add the web service control CreditCardReportControl.jcx to the Investigate Java Control.

On the Application tab, double−click InvestigateImpl.jcs.1.
Click the Design View tab, if necessary. (Note make sure that InvestigateImpl.jcs is displayed in
Design View and not InvestigateTest.jws. It is very easy to confuse a Java control and its test web
service.)

2.

From the Application Tab, click CreditCardReportControl.jcx and drag and drop it into Design
View. A new web service control is added to the Investigate Java control.

3.

WebLogic Workshop Tutorials

Step 3: Add a Web Service Control 157

The web service control is added to the Investigate Java control.

Press Ctrl+S to save your work.4.

To Add Code that Invokes the Web Service

In this task you will add code that invokes the Credit Card Report web service. When the Credit Card Report
web service is ready to provide data to the Investigate Java control, it will send it through a callback. Note that

WebLogic Workshop Tutorials

Step 3: Add a Web Service Control 158

data provided by the Credit Card Report web service is in the form of an XML document. In the next task you
will modify the Investigate Java control so it can process XML documents.

Confirm that InvestigateImpl.jcs is displayed in the main work area.1.
Click name of the requestCreditReport method.2.

Edit the source code for the requestCreditReport method as shown below. Code to add is shown in
red. Make sure that you remove the lines of code shown crossed out.
 public void requestCreditReport(String taxID)
 {
 m_currentApplicant.taxID = taxID;

 /*
 * Retrieve data from the database and store it in the rec object.
 */
 Record rec = bankruptciesDB.checkForBankruptcies(taxID);
 /*
 * If the database returns substantial data, then store that data
 * in the m_currentApplicant object.
 */
 if(rec != null)
 {
 m_currentApplicant.firstName = rec.firstname;
 m_currentApplicant.lastName = rec.lastname;
 m_currentApplicant.currentlyBankrupt = rec.currentlyBankrupt;

 /*
 * Send the credit report to the client via a callback.
 */
 callback.onCreditReportDone(m_currentApplicant);

 /*
 * Invoke the Credit Card Report web service.
 * Results from the web service will be provided via a callback.
 */
 creditCardReportControl.getCreditCardData(taxID);
 }
 /*
 * If the database does not return substantial data, notify the client
 * that there is a problem.
 */
 else
 {
 m_currentApplicant.message = "No data could be found on the applicant. Please call (555) 555−5555 for assistance. ";
 /*
 * Send an error message to the client via a callback.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }
 }

3.

To Add Code to Handle Callbacks from the Web Service

When your Java control receives a callback from the Credit Card Report web service, it needs to know what to
do with the data received. In this task you will add code to handle the XML document delivered by the Credit

WebLogic Workshop Tutorials

Step 3: Add a Web Service Control 159

Card Report web service. The code you add does three things: first, extracts the relevant data from the XML
document. Second, it stores the extracted data in the member variable m_currentApplicant. Third, it sends the
applicant profile back to the client using the callback onCreditReportDone.

The first task, the extraction of data from the XML document, is accomplished with the help of a set of
XMLBean classes (CreditCardDataDocument and others), classes that know how to parse the XML
documents returned by the web service. These XMLBean classes can be viewed in the Schemas project.

These XMLBean classes were produced by compiling a schema file (XSD file). Schema files are like "meta
XML" documents. Schema files are like ordinary XML documents in that they obey ordinary XML syntax;
but they are special in that they define the general shape of other XML documents, called "instances" of the
schema file. When you compile a schema file in Workshop, XMLBean classes are produced that know how to
parse any instances of the schema file. (Schema files can be compiled in a Schema type project.)

In this case, the XML messages returned by the Credit Card Report web service are instances of the schema
file CreditCardData.xsd. When CreditCardReport.xsd is compiled, a set of XMLBean classes (CardType,
CardType.Name, etc.) is produced that know how to parse any of the XML instance documents returned by
the Credit Card Report web service.

Confirm that InvestigateImpl.jcs is displayed in the main work area. If necessary, click the Source
View tab.

1.

Add the following import statements to the top of the InvestigateImpl.jcs file, directly underneath the
package declaration.

Note that these are the XMLBean classes that know how to parse the XML documents returned by the
Credit Card Report web service.

import com.bea.xml.XmlException;
import org.openuri.bea.samples.workshop.CardType;
import org.openuri.bea.samples.workshop.CustomerType;
import org.openuri.bea.samples.workshop.CreditCardDataDocument.CreditCardData;
import org.openuri.bea.samples.workshop.CreditCardDataDocument;

2.

Click the Design View tab.3.

WebLogic Workshop Tutorials

Step 3: Add a Web Service Control 160

Click the link text for the callback handler onCreditCardDataReady.4.

Edit the callback handler creditCardReportControl_onCreditCardDataReady to look like the
following. Add the code appearing in red.
 public void creditCardReportControl_onCreditCardDataReady(java.lang.String cardData)
 {
 try
 {
 /*
 * When the XML document containing the credit card report is delivered,
 * extract the relevant credit card data, and store it in m_currentApplicant.
 *
 * Note that the data is extracted with the aid of XMLBean classes, classes
 * produced from the compilation of the schema file CreditCardData.xsd.
 */
 CreditCardDataDocument cardInfo = CreditCardDataDocument.Factory.parse(cardData);
 CustomerType[] customer = cardInfo.getCreditCardData().getCustomerArray();
 CardType[] cards = customer[0].getCardArray();
 for(int i = 0; i < cards.length; i++)
 {
 m_currentApplicant.availableCCCredit += cards[i].getAvailableCredit();
 }

 /*
 * Send the complete report back to the client.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }
 catch(XmlException xe)
 {
 /*
 * If there is a problem with extracting the credit card info,
 * store an error message in m_currentApplicant.
 */
 m_currentApplicant.message = "There was an error retrieving the credit card information.";

 /*
 * Send the the error message back to the client.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }
 }

5.

Press Ctrl+S to save your work.6.

To Test the Investigate Java Control

On the Application tab, double−click InvestigateTest.jws.1.
On the toolbar, click the Start button, shown here:2.

WebLogic Workshop Tutorials

Step 3: Add a Web Service Control 161

Workshop builds InvestigateTest.jws and launches the Test Browser.
In the Workshop Test Browser, in the taxID field, enter the 9 digit number 222222222 and click the
requestCreditReport button.
Note: Use one of the following (9 digit) taxID's to test your Java control throughout the tutorial:

123456789, 111111111, 222222222, 333333333, 444444444, and 555555555.

3.

Click Refresh until callback.onCreditReportDone appears in the Message Log.4.
Under Message Log, click callback.onCreditReportDone.

Notice that a new piece of information has been added to the applicant profile:
<availableCCCredit>2000</availableCCCredit>. This information was provided by the Credit Card
Report web service.

5.

To see the entire credit card report provided by the web service, under Message Log, click the entry
investigate:CreditCardReportControl.onCreditDataReady.

6.

WebLogic Workshop Tutorials

Step 3: Add a Web Service Control 162

Notice that the web service returns the credit card data in the form of an XML document. It is this
XML document that the XMLBeans parse when they extract the credit card data.
Return to WebLogic Workshop, and click the Stop button to close the Workshop Test Browser7.

Related Topics

Web Service Control

Getting Started with XMLBeans

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 3: Add a Web Service Control 163

Step 4: Add a JMS Control
In this step, you will add functionality to generate a credit score for the loan applicant.

To generate the credit score, you will use an in−house, legacy credit scoring application. (The legacy
application is already running on WebLogic Server as part of the Workshop sample domain: this is the server
you selected when you created the Tutorial: Java Control application.) To make this legacy application
available to other components, it has been exposed through a Java messaging service (JMS). You will send an
XML message to the credit scoring application containing loan applicant data, and receive an XML message
containing a credit score.

Messaging systems are often used to create bridges between otherwise incompatible software components.
Messaging is also useful when asynchronous communication is needed, since the requesting component
doesn't have to wait for a response in order to continue working. Here, asynchrony is useful because you have
no way of knowing how long the credit scoring application will take to respond to your request. For more
information about messaging, see Overview: Messaging Systems and JMS.

The tasks in this step are:

To add a JMS control•
To add code to construct an XML message•
To add code to invoke the JMS control•
To edit the callback handler to parse the XML response•
To test the Investigate Java Control•

To Add a JMS Control

On the Application tab, double click InvestigateImpl.jcs. (Don't confuse your Java control with its
test web service!)

1.

In necessary, click the Design View tab.2.
From the Insert menu select Controls −−> JMS.
The Insert Control − JMS dialog appears.

3.

Enter values as shown in the following illustration.

Note: Use the Browse buttons in the dialog below to fill in the send−jndi−name, receive−jndi−name,
and connection−factory fields.

Note: The value for the connection−factory field is not fully displayed by the illustration below. If
you enter the value manually instead of using the Browse button, you must enter
weblogic.jws.jms.QueueConnectionFactory.

4.

Step 4: Add a JMS Control 164

Click Create.5.

Your Java control now includes the creditScoreJMS control, as shown in the following illustration.

WebLogic Workshop Tutorials

Step 4: Add a JMS Control 165

To Add Code to Construct an XML Message

The credit score application exposed over JMS is designed to expect an incoming XML message of the
following shape.

<score_request>
 <credit_remaining>[integer_value]</credit_remaining>
 <is_bankrupt>[boolean_value]</is_bankrupt>
</score_request>

In this task you will add a method that constructs a message of this shape using XMLBeans compiled from the
schema file ScoreMessageJMS.xsd, a schema file already included in the Schemas project.

Confirm that InvestigateImpl.jcs is displayed in the main work area.1.
Click the Source View tab.2.
Add the following import statements to the list of import statements at the top of InvestigateImpl.jcs,
directly underneath the package declaration.

import org.openuri.bea.samples.workshop.ScoreRequestDocument;

3.

WebLogic Workshop Tutorials

Step 4: Add a JMS Control 166

import org.openuri.bea.samples.workshop.ScoreRequestDocument.ScoreRequest;
import org.openuri.bea.samples.workshop.ScoreResponseDocument;

Note: these XMLBean classes know how to parse and construct the XML documents that form the
JMS traffic between the Investigate Java control and the legacy credit scoring application. These
XMLBean classes were produced by the compilation of the schema file ScoreMessageJMS.xsd.
Add the following method to the body of InvestigateImpl.jcs.

 /**
 * This method uses the XMLBean ScoreRequestDocument (compiled from the XML schema
 * ScoreMessageJMS.xsd) to construct a string of the following form.
 *
 * <score_request>
 * <credit_remaining>[integer_value]</credit_remaining>
 * <is_bankrupt>[boolean_value]</is_bankrupt>
 * </score_request>
 */
 private String makeMessageToJMS(int availableCredit, boolean currentlyBankrupt)
 {
 ScoreRequestDocument reqDoc = ScoreRequestDocument.Factory.newInstance();
 ScoreRequest req = reqDoc.addNewScoreRequest();
 req.setCreditRemaining((short)availableCredit);
 req.setIsBankrupt(currentlyBankrupt);
 String str = reqDoc.xmlText();
 return reqDoc.xmlText();
 }

4.

Press Ctrl+S to save your work.5.

To Add Code to Invoke the JMS Control

In this task you will add code to invoke the JMS control.

Confirm that InvestigateImpl.jcs is displayed in the main work area.1.
Click the Design View tab.2.
Click the link text for the onCreditCardDataReady callback handler.3.

Edit the creditCardReportControl_onCreditCardDataReady callback handler code so it appears as
follows. Code to edit appears in red. Make sure to delete the lines of code shown crossed out below.
 public void creditCardReportControl_onCreditCardDataReady(java.lang.String cardData)
 {
 try
 {
 /*
 * When a report is delivered, extract the relevant credit card info,
 * and store it in m_currentApplicant
 */
 CreditCardDataDocument cardInfo = CreditCardDataDocument.Factory.parse(cardData);

4.

WebLogic Workshop Tutorials

Step 4: Add a JMS Control 167

 CustomerType[] customer = cardInfo.getCreditCardData().getCustomerArray();
 CardType[] cards = customer[0].getCardArray();
 for(int i = 0; i < cards.length; i++)
 {
 m_currentApplicant.availableCCCredit += cards[i].getAvailableCredit();
 }

 /*
 * Send the complete report back to the client.
 */
 // callback.onCreditReportDone(m_currentApplicant);

 }
 catch(XmlException xe)
 {
 /*
 * If there is a problem with extracting the credit card info,
 * store an error message in m_currentApplicant.
 */
 m_currentApplicant.message = "There was an error retrieving the credit card information. Please call (555) 555−5555 for assistance.";

 /*
 * Send an error message back to the client.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }

 /*
 * Construct and send an XML message through the JMS control
 * to the credit scoring application.
 */
 String messageToJMSControl = makeMessageToJMS(m_currentApplicant.availableCCCredit, m_currentApplicant.currentlyBankrupt);
 creditScoreJMS.subscribe();
 creditScoreJMS.sendTextMessage(messageToJMSControl);
 }

To Edit the Callback Handler to Parse the XML Response

In this task you will use the XBeans classes to parse the XML response from the JMS control and extract the
credit score.

Click the Design View tab.1.
Click the link text for the receiveTextMessage callback handler.2.

Edit the creditScoreJMS_receiveTextMessage callback handler code so that it appears as follows:
 public void creditScoreJMS_receiveTextMessage(java.lang.String payload)
 {
 try

3.

WebLogic Workshop Tutorials

Step 4: Add a JMS Control 168

 {
 /*
 * Extract the the credit score from the JMS response string
 * and store it in m_currentApplicant.
 */
 ScoreResponseDocument scoreInfo = ScoreResponseDocument.Factory.parse(payload);
 m_currentApplicant.creditScore = scoreInfo.getScoreResponse().getCalculatedScore();

 /*
 * Send the complete report back to the client.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }
 catch(XmlException e)
 {
 m_currentApplicant.message = "There was a problem retrieving the credit score. Please call (555) 555−5555.";

 /*
 * Send the the error message back to the client.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }
 }

Click Ctrl+S to save your work.4.

To Test the Investigate Java Control

From the Window menu, select InvestigateTest.jws.1.
Click the Start button, shown here:

Workshop builds InvestigateTest.jws and launches the Workshop Test Browser.

2.

In the Workshop Test Browser, in the taxID field, enter the 9 digit number 555555555 and click the
requestCreditReport button.
Note: Use one of the following (9 digit) taxID's to test your Java control throughout the tutorial:

123456789, 111111111, 222222222, 333333333, 444444444, and 555555555.

3.

Click Refresh until callback.onCreditReportDone appears in the Message Log. Click
callback.onCreditReportDone.
Note that a new piece of information appears in the applicant profile:
<creditScore>810</creditScore>. This new piece of information was returned by the legacy credit
scoring application exposed over JMS.

4.

WebLogic Workshop Tutorials

Step 4: Add a JMS Control 169

Return to WebLogic Workshop, and click the Stop button to close the Workshop Test Browser.5.

Related Topics

JMS Control

Getting Started with XMLBeans

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 4: Add a JMS Control 170

Step 5: Add an EJB Control
In this task you will add an Enterprise Java Bean control to the Investigate Java control. This control provides
accesses to an EJB (already deployed on the server as part of the Workshop samples domain) that calculates
an approval rating on credit applicants. The tasks in this step are:

To add an EJB control•
To add code that requests credit validation•
To test the Investigate Java control•

To Add an EJB Control

The ValidateCredit EJB you will be accessing is designed to take the credit score and return a response about
the applicant's credit worthiness. To access the ValidateCredit bean, you will add an EJB control.

Note: In order for you to add an EJB control to a web service project, the compiled home and remote
interfaces for the EJB must be in the project also. The JAR file containing the home and remote interfaces is
already within the Libraries folder of the application.

On the Application tab, double−click InvestigateImpl.jcs and click the Design View tab.1.
From the Insert menu, choose Controls −−>EJB Control. The Insert Control − EJB Control dialog
appears.

2.

Enter values as shown in the following illustration. Use the Browse server EJBs button to fill in the
jndi−name values required in Step 3 of the dialog. When you select financial.ValidateCredit from
the list provided and click Select, the home interface and bean interface values will be added
automatically.

3.

Step 5: Add an EJB Control 171

Click Create.4.

WebLogic Workshop adds an EJB control to your design, as shown below. The control shows that the EJB
exposes two methods: create and validate. The validate method is the one you will use (all EJBs expose a
create method that is used by WebLogic Server; you will not need to call this).

Now you need to connect the score received through the creditScore JMS control to the validateCredit EJB
control. You will do this by updating the JMS control's callback handler. The code you add will send the
credit score to the EJB for validation.

To Add Code that Requests Credit Validation

Confirm that InvestigateImpl.jcs is displayed in the main work area.1.
Click the Design View tab.2.
Click the link text of the receiveTextMessage callback handler. Its source code appears in Source
View.

3.

WebLogic Workshop Tutorials

Step 5: Add an EJB Control 172

Edit the creditScoreJMS_receiveTextMessage callback handler so that it appears as follows. Code to
edit appears in red. Make sure to delete the code shown crossed out.
 public void creditScoreJMS_receiveTextMessage(java.lang.String payload)
 {
 try
 {
 /*
 * Extract the the credit score from the JMS response string
 * and store it in m_currentApplicant.
 */
 ScoreResponseDocument scoreInfo = ScoreResponseDocument.Factory.parse(payload);
 m_currentApplicant.creditScore = scoreInfo.getScoreResponse().getCalculatedScore();

 /*
 * Send the complete report back to the client.
 */
 // callback.onCreditReportDone(m_currentApplicant);
 }
 catch(XmlException e)
 {
 m_currentApplicant.message = "There was a problem retrieving the credit score. Please call (555) 555−5555.";

 /*
 * Send the the error message back to the client.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }

 try
 {
 /*
 * Pass the credit score to the EJB's validate method. Store the value returned
 * with other applicant data.
 */
 m_currentApplicant.approvalLevel = validateCreditEJB.validate(m_currentApplicant.creditScore);

 /*
 * Send the complete report back to the client.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }
 catch(java.rmi.RemoteException e)
 {
 m_currentApplicant.message = "There was a problem retrieving the approval level. Please call (555) 555−5555.";

 /*
 * Send an error message back to the client.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }

4.

WebLogic Workshop Tutorials

Step 5: Add an EJB Control 173

 }

Press Ctrl+S to save your work.5.

To Test the Investigate Java control

On the Application tab, double−click InvestigateTest.jws to display the file.1.
Click the Start button, shown here:

Workshop builds InvestigateTest.jws and launches the Workshop Test Browser.

2.

In the Workshop Test Browser, in the taxID field, enter the 9 digit number 555555555 and click the
requestCreditReport button.
Note: Use one of the following (9 digit) taxID's to test your Java control throughout the tutorial:

123456789, 111111111, 222222222, 333333333, 444444444, and 555555555.

3.

Click Refresh until callback.onCreditReportDone appears in the Message Log.4.
When callback.onCreditReportDone appears, click it. Your screen should resemble the following:5.

Notice the new element in the applicant profile <approvalLevel>Applicant is a low risk.</approvalLevel>.
This element was provided by the EJB credit validating application.

Related Topics

EJB Control

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 5: Add an EJB Control 174

Step 6: Add Support for Cancellation and Exception
Handling
Working through the first steps of this tutorial has given you a sense of how a Java control works. In ideal
conditions, it does what it is supposed to do. But as it now stands, it isn't quite ready for prime time. Here are
a few possible problems:

The client may want to cancel the credit report before Investigate has sent back a response. Providing
this ability is especially important in asynchronous exchanges, which may be long−lived.

•

Investigate's dependency on the credit card web service (which is accessed asynchronously) may
make the overall response time to the client quite long.

•

You have no way of knowing how long it will take the credit card service to respond to your requests.
To better manage this, you can use a timer to set a limit on how the resource may take to respond.

•

Operation methods (such as requestCreditReport) may throw an uncaught exception.•

Below you will enhance the Investigate Java control to better handle these possible problems.

This tasks in this step are:

To add a method so that clients can cancel operations•
To add a Timer Control to limit the time allowed for response•
To handle exceptions thrown from operation methods•
To test the Investigate Java Control•

To Add a Method so that Clients Can Cancel Operations

On the Application tab, double−click InvestigateImpl.jcs.1.
Click the Design View tab.2.
From the Insert menu, select Method.3.
In the field that appears, type cancelInvestigation and press Enter.4.
Click the link text cancelInvestigation to view its code in Source View.5.
Edit the cancelInvestigation method code so it appears as follows. Code to add is shown in red.
 /**
 * @common:operation
 */
 public void cancelInvestigation()
 {
 /*
 * Cancel the request to the credit card company because it is now unnecessary.
 */
 creditCardReportControl.cancelRequest();
 /*
 * Use the callback to send a message to the client. Note that this also ends
 * the conversation because the callback's conversation phase property is set to "finish".
 */
 m_currentApplicant.message = "Investigation canceled.";
 callback.onCreditReportDone(m_currentApplicant);
 }

6.

Press Ctrl+S to save your work.7.

To Add a Timer Control to Limit the Time Allowed for Response

Step 6: Add Support for Cancellation and Exception Handling 175

It can be difficult to predict how long an asynchronous resource will take to respond to a request. For
example, Investigate's call to the credit card report web service may take hours. Here, you will add a way to
limit the amount of time the credit card's web service has to respond. Using a Timer control, you can specify
an amount of time after which the operation should be canceled.

Confirm that InvestigateImpl.jcs is displayed in the main work area.1.
Click the Design View tab.2.
From the Insert menu, select Controls−−>Timer. The Insert Control dialog appears.3.
Enter values as shown in the following illustration:

These values specify that the Timer control will send its onTimeout callback five minutes after the
timer starts.

4.

Click Create.5.
Click the link text for the requestCreditReport method to view its code in Source View.6.
Add the code shown in red:
 public void requestCreditReport(String taxID)
 {
 m_currentApplicant.taxID = taxID;

 /**
 * Retrieve data from the database and store it in the rec object.
 */
 Record rec = bankruptciesDB.checkForBankruptcies(taxID);
 /**
 * If the database returns substantial data, then store that data
 * in the m_currentApplicant object.
 */
 if(rec != null)
 {
 m_currentApplicant.firstName = rec.firstname;
 m_currentApplicant.lastName = rec.lastname;

7.

WebLogic Workshop Tutorials

Step 6: Add Support for Cancellation and Exception Handling 176

 m_currentApplicant.currentlyBankrupt = rec.currentlyBankrupt;

 /**
 * Invoke the Credit Card Report web service.
 * Results from the web service will be provided via a callback.
 */
 creditCardReportControl.getCreditCardData(taxID);

 /*
 * Start the timer. If the credit card report is not
 * received within 5 minutes, the conversation will be finished
 * and the client will be notified that
 * there was a problem.
 */
 creditCardReportTimer.start();

 }
 /**
 * If the database does not return substantial data, notify the client
 * that there is a problem.
 */
 else
 {
 m_currentApplicant.message = "No data could be found on the applicant. Please call (555) 555−5555 for assistance. ";
 /*
 * Send the error message to the client via a callback.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }
 }

This starts the timer as soon as the credit card service is called. If the credit card service does not
respond by the time the timeout duration is reached, then the timer's onTimeout callback handler is
invoked.
Click the Design View tab to view to Design View for InvestigateImpl.jcs. 8.
Click the link text onCreditCardDataReady (the callback handler for the web service control) to view
its code in Source View.

9.

Edit the code for creditCardReportControl_onCreditCardDataReady so it appears as follows. Add
the code appearing in red.
 public void creditCardReportControl_onCreditCardDataReady(java.lang.String cardData)
 {
 /*
 * Stop the timer that was started when the Credit Card Report web service
 * was called, because the callback from the web service has been received.
 */
 creditCardReportTimer.stop();

 try
 {
 /*
 * When a report is delivered, extract the relevant credit card info,
 * and store it in m_currentApplicant
 */
 CreditCardDataDocument cardInfo = CreditCardDataDocument.Factory.parse(cardData);
 CustomerType[] customer = cardInfo.getCreditCardData().getCustomerArray();
 CardType[] cards = customer[0].getCardArray();
 for(int i = 0; i < cards.length; i++)
 {
 m_currentApplicant.availableCCCredit += cards[i].getAvailableCredit();
 }

10.

WebLogic Workshop Tutorials

Step 6: Add Support for Cancellation and Exception Handling 177

 }
 catch(XmlException xe)
 {
 /*
 * If there is a problem with extracting the credit card info,
 * store an error message in m_currentApplicant.
 */
 m_currentApplicant.message = "There was an error retrieving the credit card information. Please call (555) 555−5555 for assistance.";

 /*
 * Send the the error message back to the client.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }

 /*
 * Construct and send an XML message through the JMS control
 * to the credit scoring application.
 */
 String messageToJMSControl = makeMessageToJMS(m_currentApplicant.availableCCCredit, m_currentApplicant.currentlyBankrupt);
 creditScoreJMS.subscribe();
 creditScoreJMS.sendTextMessage(messageToJMSControl);
 }

Click the Design View tab to view InvestigateImpl.jcs in Design View.11.
On the Timer control, click the link text for the onTimeout callback handler to view its source code.12.
Edit the onTimeout callback handler source code so that it appears as follows. Code to add appears in
red.
 public void creditCardReportTimer_onTimeout(long time)
 {
 /**
 * Because the Credit Card Report web service has not calledback in the time allowed,
 * cancel the request for a report from the web service
 */
 creditCardReportControl.cancelRequest();

 /**
 * Cancel the current investigation.
 */
 cancelInvestigation();
 }

13.

Press Ctrl+S to save your work.14.

To Handle Exceptions Thrown from Operation Methods

Unhandled exceptions thrown from operations (such as methods exposed to clients) can leave the client
hanging and the Java control may simply continue operating on the system, unnecessarily using resources.

In this step, you will add code to implement a handler for the ControlContext.onException callback. The
callback handler receives the exception object thrown from the operation, the name of the method that threw
the exception, and the parameters passed to the method.

WebLogic Workshop provides a way for you to preserve information about exceptions by logging it in a text
file. You will add exception handling code to log the exception, then send an appropriate response to the
client.

If InvestigateImpl.jcs is not displayed in Source View, click the Source View tab.1.

WebLogic Workshop Tutorials

Step 6: Add Support for Cancellation and Exception Handling 178

Add the following import statement to the list of import statements at the top of the
InvestigateImpl.jcs directly underneath the package declaration.

import com.bea.wlw.util.Logger;

2.

Add the following annotation and declaration to the body of InvestigateImpl.jcs.

 /**
 * @common:context
 */
 ControlContext context;

3.

In Source View, add the following onException callback handler to the body of InvestigateImpl.jcs.4.

 public void context_onException(Exception e, String methodName, Object[] arguments)
 {
 /*
 * Create a logger variable to use for logging messages. Assigning it the
 * "Investigate" category name will make it easier to find its messages
 * in the log file.
 */
 Logger logger = context.getLogger("*** Investigate ***");

 /*
 * Log an error message, giving the name of the method that threw the
 * exception and a stack trace from the exception object.
 * The message will be written to the jws.log file located
 * in the server root folder, in this case:
 * BEA_HOME/weblogic81/samples/domains/workshop
 */
 logger.error("Exception in " + methodName + ": " + e);

 /*
 * Send a callback to the client with notification that an error has occurred.
 */
 m_currentApplicant.message = "Unable to respond to request at this time. Please contact us at (555) 555−5555.";
 callback.onCreditReportDone(m_currentApplicant);
 }

Press Ctrl+S to save your work.5.

By default the log file is located in the server's domain root folder, in this case the Workshop domain root
folder:

BEA_HOME/weblogic81/samples/domains/workshop/workshop.log

An entry in the log will resemble the following:

21 Aug 2003 16:38:26,610 ERROR *** Investigate ***: Exception in requestCreditReport: com.bea.control.ServiceControlException: SERVICE FAULT:
Code:java.io.FileNotFoundException
String:Response: '401: Unauthorized xxx' for url: 'https://weblogic:wrong_password@localhost:7002/CreditCardReport_JCSTutorial/webservice/CreditCardReport.jws'
Detail:
END SERVICE FAULT [ServiceException]

To test the Investigate Java Control

Try the following test scenarios through InvestigateTest.jws.

WebLogic Workshop Tutorials

Step 6: Add Support for Cancellation and Exception Handling 179

Enter a random string when you invoke requestCreditReport, such as "qwe123qwe". (Note: this will
not raise an error in workshop.log, instead a message will be sent to the client saying that no data
could be found.)

•

Test the timer control by changing its timeout value to 1 second. Unless your computer is very fast, 1
second should not be enough time for the Credit Card Report web service to send a callback before
the timeout. After changing the timeout value, run InvestigateImplTest.jws, wait one second, then
click the Refresh link. The message log will resemble the following.

•

Test the exception handler by throwing an exception from somewhere in your code. Then check the
workshop.log file to see the message that results.

•

Related Topics

Timer Control

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 6: Add Support for Cancellation and Exception Handling 180

Step 7: Transport Security
There is no need to secure the Investigate Java control against Internet traffic, because it can only be called
directly by other local components. But it is necessary to secure Investigate's communications with other
applications across the Internet. In this step you will secure one of those communication routes: the
communication route between Investigate and the Credit Card Report web service.

The tasks in this step are:

To configure CreditCardReport.jws for SSL•
To configure CreditCardReport.jws for basic authentication•
To edit Investigate to use the right password to access CreditCardReport.jws•
To Edit the Credit Card Report Control File•
To Test the Investigate Java Control•

To Configure CreditCardReport.jws for SSL

You configure a web resource for SSL through the web.xml and weblogic.xml files, located in your
application's WEB−INF directory.

By placing the following <security−constraint> element in web.xml, all communication with the resource is
encrypted, ensuring the confidentiality of the communication.

On the Application tab, navigate to the folder
JavaControlTutorial/CreditCardReport_JCSTutorial/WEB−INF and open the web.xml file.

1.

Step 7: Transport Security 181

Add the following <security−constraint> XML element to web.xml. Make sure that you add the
<security−constraint> element after the final </taglib> end tag, but before the final </web−app> end
tag. Code to add is shown in red.

 <taglib>
 <taglib−uri>netui−tags−template.tld</taglib−uri>
 <taglib−location>/WEB−INF/netui−tags−template.tld</taglib−location>
 </taglib>

<security−constraint>
 <display−name>
 Security Constraint for the Credit Card Report web service
 </display−name>
 <web−resource−collection>
 <web−resource−name>CreditCardReport.jws</web−resource−name>
 <description>A web service secured by SSL and basic authentication</description>
 <url−pattern>/webservice/CreditCardReport.jws</url−pattern>
 <http−method>GET</http−method>
 <http−method>POST</http−method>
 </web−resource−collection>
 <user−data−constraint>
 <transport−guarantee>CONFIDENTIAL</transport−guarantee>
 </user−data−constraint>
 </security−constraint>

</web−app>

2.

To configure CreditCardReport.jws for basic authentication

WebLogic Workshop Tutorials

Step 7: Transport Security 182

Basic authentication requires that clients provide a valid username and password to access a web resource.
(The registration processes by which users originally acquire a username and password is an important
consideration that is beyond the scope of this tutorial.) Also, the <auth−constraint> element you add below
requires that users be members of the RegisteredCreditCardUsers role to access the Credit Card Report web
service. Whereas SSL ensures that communications are confidential, basic authentication ensures that you
know the identity of your clients. In this case, basic authentication ensures that Credit Card Report knows its
client, the Investigate Java control, really is the Investigate Java control, and not another potentially malicious
third party.

Confirm that web.xml is displayed in the main work area.1.
Edit the <security−constraint> element so it appears as follows. Also add a <security−role> element
immediately after the <security−constraint> element. Code to add appears in red.

2.

 <taglib>
 <taglib−uri>netui−tags−template.tld</taglib−uri>
 <taglib−location>/WEB−INF/netui−tags−template.tld</taglib−location>
 </taglib>

 <security−constraint>
 <display−name>
 Security Constraint for the Credit Card Report web service
 </display−name>
 <web−resource−collection>
 <web−resource−name>CreditCardReport.jws</web−resource−name>
 <description>A web service secured by SSL and basic authentication</description>
 <url−pattern>/webservice/CreditCardReport.jws</url−pattern>
 <http−method>GET</http−method>
 <http−method>POST</http−method>
 </web−resource−collection>

<auth−constraint>
 <role−name>RegisteredCreditCardReportUsers</role−name>
 </auth−constraint>
 <user−data−constraint>
 <transport−guarantee>CONFIDENTIAL</transport−guarantee>
 </user−data−constraint>
 </security−constraint>

<security−role>
 <description>Users who have successfully completed
 Credit Card Report's registration process and have been given a username
 and password</description>
 <role−name>RegisteredCreditCardReportUsers</role−name>
 </security−role>

</web−app>

Press Ctrl+S to save your work.3.

Next you grant one user the role of RegisteredCreditCardReportUser. The user, "weblogic", is a
preconfigured administrative user in WebLogic Server. The password for this user is "weblogic".
On the Application tab double−click
JavaControlTutorial/CreditCardReport_JCSTutorial/WEB−INF/weblogic.xml to open the file. Add
the following <security−role−assignment> element immediately after the opening
<weblogic−web−app> tag. Code to add appears in red.

4.

WebLogic Workshop Tutorials

Step 7: Transport Security 183

<weblogic−web−app>

<security−role−assignment>
 <role−name>RegisteredCreditCardReportUsers</role−name>
 <principal−name>weblogic</principal−name>
 </security−role−assignment>

 <jsp−descriptor>
 <!−− Comment the jspServlet param out to go back to weblogic's jspc −−>
 <jsp−param>
 <param−name>jspServlet</param−name>
 <param−value>weblogic.servlet.WlwJSPServlet</param−value>
 </jsp−param>
 <jsp−param>
 <param−name>debug</param−name>
 <param−value>true</param−value>
 </jsp−param>
 </jsp−descriptor>

 <url−match−map>
 weblogic.servlet.utils.SimpleApacheURLMatchMap
 </url−match−map>

</weblogic−web−app>

Press Ctrl+S to save your work.5.

To Edit Investigate to Use the Correct Username and Password to Access CreditCardReport.jws

Now the Credit Card Report web service requires that its clients provide a valid username and password and
that those clients be assigned the role of RegisteredCreditCardReportUsers. In this task you will edit
Investigate to provide the correct username and password when accessing Credit Card Report.

On the Application tab, double−click InvestigateImpl.jcs.1.
Edit the requestCreditReport method so it appears as follows. Code to add is shown in red.2.

 public void requestCreditReport(String taxID)
 {
 m_currentApplicant.taxID = taxID;

 /*
 * Retrieve data from the database and store it in the rec object.
 */
 Record rec = bankruptciesDB.checkForBankruptcies(taxID);
 /*
 * If the database returns substantial data, then store that data
 * in the m_currentApplicant object.
 */
 if(rec != null)
 {
 m_currentApplicant.firstName = rec.firstname;
 m_currentApplicant.lastName = rec.lastname;
 m_currentApplicant.currentlyBankrupt = rec.currentlyBankrupt;

 /*
 * Set the username and password necessary to access the Credit
 * Card Report web service.
 * Then invoke the getCreditCardData method.
 * Results from the web service will be provided via a callback.

WebLogic Workshop Tutorials

Step 7: Transport Security 184

 */
 creditCardReportControl.setUsername("weblogic");
 creditCardReportControl.setPassword("weblogic");
 /*
 * Invoke the Credit Card Report web service.
 * Results from the web service will be provided via a callback.
 */
 creditCardReportControl.getCreditCardData(taxID);

 /*
 * Start the timer. If the credit card report is not
 * received within 5 minutes, the conversation will be finished
 * and the client will be notified that
 * there was a problem.
 */
 creditCardReportTimer.start();
 }
 /*
 * If the database does not return substantial data, notify the client
 * that there is a problem.
 */
 else
 {
 m_currentApplicant.message = "No data could be found on the applicant. Please call (555) 555−5555 for assistance. ";
 /*
 * Send the error message to the client via a callback.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }
 }

Press Ctrl+S to save your work.3.

To Edit the Credit Card Report Control File

If you were to test your Java control now, it would not succeed in invoking the Credit Card Report web
service. This is because the Credit Card Report currently listens for clients on the HTTPS port 7002, but the
Investigate Java control sends its requests through the HTTP port 7001. In this task you will configure the
Credit Card Report control (used by the Investigate Java control) to send communications through port 7002.

On the Application tab double−click CreditCardReportControl.jcx to display the file.1.
Click the Source View tab to view the source code for CreditCardReportControl.jcx.2.
Edit the @jc:location annotation so it appears as follows. Code to edit appears in red.3.

/**
 * @jc:location http−url="https://localhost:7002/CreditCardReport_JCSTutorial/webservice/CreditCardReport.jws"
 * @jc:wsdl file="#CreditCardReportWsdl"
 */
public interface CreditCardReportControl extends com.bea.control.ControlExtension, com.bea.control.ServiceControl

When you try to modify this control file, Workshop will warn you that you are trying to edit an
autogenerated file. Click Yes when Workshop asks you if want to edit this file.

WebLogic Workshop Tutorials

Step 7: Transport Security 185

Press Ctrl+S to save your work and press Ctrl+F4 to close the file.4.

To Test the Investigate Java Control

In this task you will perform two tests. First you will test to see if the right password results in successful
communication, then you will test to see if the wrong password results in failed communication.

Testing for Successful Communication

On the Application tab, double−click InvestigateTest.jws.1.
Click the Start button, shown here:

Workshop builds InvestigateTest.jws and launches the Test Browser.

2.

In the Workshop Test Browser, in the taxID field, enter the 9 digit number 555555555 and click the
requestCreditReport button.
Note: Use one of the following (9 digit) taxID's to test your Java control throughout the tutorial:

123456789, 111111111, 222222222, 333333333, 444444444, and 555555555.

3.

Click Refresh until callback.onCreditReportDone appears in the Message Log.4.
When callback.onCreditReportDone appears, click it. Your screen should resemble the following:5.

Testing for Failed Communication

From the Window menu, select InvestigateImpl.jcs and click the Source View tab.1.

WebLogic Workshop Tutorials

Step 7: Transport Security 186

Edit the relevant portion of the requestCreditReport method to look like the following. Note that you
are intentionally providing the wrong password when calling Credit Card Report.

2.

 /**
 * Set the username and password necessary to access the Credit
 * Card Report web service.
 * Then invoke the getCreditCardData method.
 * Results from the web service will be provided via a callback.
 */
 creditCardReportControl.setUsername("weblogic");
 creditCardReportControl.setPassword("wrong_password");
 /**
 * Invoke the Credit Card Report web service.
 * Results from the web service will be provided via a callback.
 */
 creditCardReportControl.getCreditCardData(taxID);

From the Window menu, select InvestigateTest.jws to open the file.3.
Click the Start button, shown here:4.

Workshop builds InvestigateTest.jws and launches the Test Browser.5.
In the Workshop Test Browser, in the taxID field, enter the 9 digit number 555555555 and click the
requestCreditReport button.

6.

Click Refresh until investigate:creditCardReportControl.getCreditCardData appears in the Message
Log. Your screen should resemble the following:

The red exclamation mark next to the method invocation arrow indicates that an error has occurred. In
this case, the getCreditCardData method throws an error because Investigate provided the wrong
password to the Credit Card Report web service.

7.

Note the error message in the External Service Response section on the Test Browser

External Service Response
Submitted at Friday, Aug 21, 2003 16:38:26 PM PST
External Service Failure: Response: '401: Unauthorized xxx' for url:
'https://weblogic:wrong_password@localhost:7002/CreditCardReport_JCSTutorial/webservice/CreditCardReport.jws'

If you check the file BEA_HOME/weblogic81/samples/domains/workshop/workshop.log you will see
the following entry.

21 Aug 2003 16:38:26,610 ERROR *** Investigate ***: Exception in requestCreditReport: com.bea.control.ServiceControlException: SERVICE FAULT:
Code:java.io.FileNotFoundException
String:Response: '401: Unauthorized xxx' for url: 'https://weblogic:wrong_password@localhost:7002/CreditCardReport_JCSTutorial/webservice/CreditCardReport.jws'
Detail:
END SERVICE FAULT [ServiceException]

8.

WebLogic Workshop Tutorials

Step 7: Transport Security 187

Note that the error is interpreted as a "FileNotFoundException" because the the Investigate Java
control thinks of the URL
"https://weblogic:wrong_password@localhost:7002/CreditCardReport_JCSTutorial/webservice/CreditCardReport.jws"
as a file resource. When the Investigate Java control cannot access the file, it throws a file not found
exception, although the real cause of the problem is the wrong password.
Don't forget to open InvestigateImpl.jcs and replace "wrong_password" with the correct password:
"weblogic".

9.

Related Topics

Transport Security

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 7: Transport Security 188

Step 8: Compile the Java Control and Add a Property
In the previous steps you built a control that encapsulates some useful business logic. In this step, you’ll
compile the Investigate Java control into a JAR file for greater portability.

For many needs, it’s perfectly fine to use the control’s source files directly within the same project as the
control's container or client, as is the case with Investigate's web service container, InvestigateTest.jws. But
what if you’re designing a control that might be useful from many containers? It could get tedious to copy a
set of source files from project to project. To solve this problem we will package the control in a JAR file
that’s much easier to copy into different containers.

You begin the process of packaging by moving the control into its own control project. A control project
includes files and annotations that support the control as a separately distributable package. You can even
develop the sources for multiple controls within a single project, and package them all in a single JAR file for
distribution.

Before you compile the Investigate Java control, you will add one more layer of functionality. You will add a
property to the Investigate control, which will allow developers using the control to change the way it
functions.

You'll start by creating a project in which to further develop your Java control's source files.

The tasks in the step are:

To move Investigate to a Control Project•
To set Investigate's properties•
To create a new property for Investigate•
To edit Investigate to use the new property•
To compile the Investigate control•
To test the Investigate Java control•

To Move Investigate to a Control Project

In this task you will move two items. First you will move the test web service InvestigateTest.jws into its own
folder. Second you will move the Investigate Java control into its own Control project. It is necessary to
separate the Investigate Java control from its test web service because web services aren't enabled in Control
projects.

On the Application tab, right click the JavaControlTutorialWeb folder and select New−−>Folder.1.
In the Create New Folder dialog, enter test.2.

Step 8: Compile the Java Control and Add a Property 189

Click Ok.3.
On the Application tab, hold the mouse button down over the test web service InvestigateTest.jws and
drag it into the folder JavaControlTutorialWeb/test.

4.

On the Application tab, right−click the JavaControlTutorial folder and choose New−−>Project.5.
In the New Project dialog, in the upper left−hand pane, confirm that All is selected.
In the upper right−hand pane, select Control Project.
In the Project Name field, enter Investigate.

6.

Click Create.
WebLogic Workshop adds a new control project called Investigate.

7.

On the Application tab, hold down the mouse button over folder investigateJCS, drag it into the
Investigate project folder.

The Application tab should look like the following.

8.

WebLogic Workshop Tutorials

Step 8: Compile the Java Control and Add a Property 190

To Set Investigate's Properties

Open the investigateJCS folder you just moved, then double−click InvestigateImpl.jcs. Click the
Design View tab.

1.

Make sure that the control's design is selected by clicking its title bar in Design View.2.

On the Property Editor tab, in the section labeled jc−jar, edit the property attributes as shown in the
following figure. (You may want to re−size the Property Editor tab to make it easier to work with.)

3.

WebLogic Workshop Tutorials

Step 8: Compile the Java Control and Add a Property 191

These properties provide information that WebLogic Workshop will present to a developer using the
Investigate Java control. The label corresponds to the control's name on menus and palettes; the
icon−16 attribute value is a relative path to the image associated with the control in the IDE. Finally,
if you look at the InvestigateImpl.jcs source code, you'll see that the values for these attributes have
been written into the source as annotation attributes.

Press Ctrl+S to save your work.4.
Right−click the investigateJCS folder and select New−−>Folder.5.
In the Create New Folder dialog, type images and click OK.6.
Holding down the mouse button over the image below, drag it to WebLogic Workshop's Application
tab, and drop it in the images folder you just created.

Before packaging and testing the control project, you’ll make one more enhancement to the control.
With a little more code, you’ll make it possible for an application developer using your control to set
the phone number users should call if they run into an error.
You’ll start by defining a property for the Investigate Java control. To do this, you’ll create an
InvestigateProperties.xml file to hold a description of the control's new property.

7.

To Create a New Property for Investigate

In the Application tab, right−click the investigateJCS folder and select New−−>Other File Types.1.
In the New File dialog, in the left−hand pane, click Business Logic.
In the right−hand pane, click Control Annotation File.
In the File name box, type InvestigateProperties.xml.

2.

WebLogic Workshop Tutorials

Step 8: Compile the Java Control and Add a Property 192

Click Create.

WebLogic Workshop creates the new XML file and displays it in the main work area. It contains a
simple XML declaration and sample tags.

3.

Edit InvestigateProperties.xml so it appears as follows. Overwrite any XML elements already
appearing in the file.
<?xml version="1.0" ?>
<control−tags xmlns="http://www.bea.com/2003/03/controls/">
 <control−tag name="error−message">
 <description>Properties relating to the error message.</description>
 <attribute name="phone−number" required="false">
 <description>
 Sets the phone number to call in case of an error.
 </description>
 <type>
 <text/>
 </type>
 <default−value>(555) 555−5555</default−value>
 </attribute>
 </control−tag>
</control−tags>

The <control−tag> element has a name attribute that specifies what the property will be called
(error−message). The <description> element describes the property. The <attribute> element defines
an attribute for the property: phone−number. The <attribute> element's "required" attribute is set to
false, meaning that it's not necessary for a developer using the control to actually set the attribute in
order for the control to work. As a result, the <default−value> element must be included here so that
WebLogic Workshop knows what value to use if the developer doesn't explicitly set it. Finally, the
<type> element specifies the attribute's type, similar to a data type. WebLogic Workshop will use this
<type> value to do a bit of validation when the developer tries to set its value.

4.

Press Ctrl+S to save your work. Press Ctrl+F4 to close InvestigateProperties.xml.5.

WebLogic Workshop Tutorials

Step 8: Compile the Java Control and Add a Property 193

To Edit Investigate to Use the New Property

On the Application tab, double−click InvestigateImpl.jcs.1.
Click the Design View tab, if necessary.2.
On the Property Editor tab, in the section labeled control−tags, to the right of the property named
file, click the ellipses symbol.

3.

In the Property Text Editor, enter InvestigateProperties.xml.4.

Click Ok.5.
Click the Source View tab.6.
Add the following code to the the body of InvestigateImpl.jcs.7.

 private String _phoneNumber;

Add the following code to the top of the requestCreditReport method. Code to add appears in red.8.

 /**
 * @common:operation
 * @common:message−buffer enable="true"
 */
 public void requestCreditReport(String taxID)
 {

 _phoneNumber = context.getControlAttribute("jc:error−message", "phone−number");

WebLogic Workshop Tutorials

Step 8: Compile the Java Control and Add a Property 194

 m_currentApplicant.taxID = taxID;

 /*
 * Retrieve data from the database and store it in the rec object.
 */
 Record rec = bankruptciesDB.checkForBankruptcies(taxID);

Press Ctrl+R.9.
In the Replace Text dialog, in the Text to find field, enter (555) 555−5555
In the Replace with field, enter " + _phoneNumber + "

10.

Click Replace.11.
In the Confirm Replace dialog click All.12.
Press Ctrl+S to save your work.13.

To Compile the Investigate Control

On the Application tab, right−click the Investigate project folder and select Build Investigate.

The Investigate project is compiled, packaged as a JAR file named Investigate.jar and placed in the
Libraries folder. If you open the Libraries folder on the Application tab, you will see the following:

•

Note that this is a distributable JAR file: place it the the Libraries folder of any application to use the
functionality of the Investigate Java control. (Note that any application that uses the JAR file must also have
access to the Database, web service, JMS application, and EJB application that are used by the Java control.)

Also note that once you have compiled a Java control, WebLogic Workshop uses the JAR version by default,
instead of working directly from the source code contained in the control project. For this reason, you could
remove the control project from your application, and your test web service would still run successfully,
because it would use the JAR version of the Java control.

To Test the Investigate Java Control

On the Application tab, double−click InvestigateTest.jws.1.

WebLogic Workshop Tutorials

Step 8: Compile the Java Control and Add a Property 195

Click the Design View.2.
Select the icon for the Investigate control. (Note that the GIF file has been incorporated into the new
icon.)

3.

On the Property Editor tab, in the section labeled error−message, locate the phone−number
property, and enter (123) 456−7890.

4.

Click the Start button, shown here:

Workshop builds TestClient.jws and launches the Test Browser.

5.

In the Workshop Test Browser, in the taxID field, enter wrong_taxid and click the
requestCreditReport button.
Note that you are intentionally entering an invalid taxID to cause an error message. When the callback
arrives you should see the following message.

Note the value of the <ns:message> element has incorporated the phone number you specified: (123)
456−7890.

6.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 8: Compile the Java Control and Add a Property 196

Summary: Java Control Tutorial
This tutorial introduced you to the basics of building Java controls.

This topic lists ideas this tutorial introduced. You may also find it useful to look at the following:

For links to topics about the basics of using built−in Java controls in WebLogic Workshop, see Using
Built−In Java Controls.

•

For links to topics about building your own custom Java controls, see Building Custom Java Controls.•

Concepts and Tasks Introduced in This Tutorial

Java controls are built from a Java control source file (JCS) and an interface file (JAVA) .•
You can use Java controls to encapsulate complex functionality.•
Java controls can communicate asynchronously with other components.•
Java controls can be compiled into JAR files for general distribution to other containers.•
Control property attribute values are stored as Javadoc annotations in source code.•

Click one of the following arrows to navigate through the tutorial:

Summary: Java Control Tutorial 197

Tutorial: Web Services

The Big Picture

The web service tutorial is the second in a
series of three tutorials, which builds the
Investigate Application. The Investigate
Application is designed to assemble a
credit−worthiness report on loan
applicants. (Note: you do not need to
execute the tutorial series in order. You
may proceed with this tutorial, even if you
have not completed the previous tutorial in
the series. Or you may skip ahead to the
next tutorial in the series if you wish.)

The first tutorial in the series, the Tutorial: Java Control, builds the core of the application: the Investigate
Java control, which consults a variety of components to compile the credit−worthiness report.

This, the second tutorial in the series, builds the web services tier of the application. You will build two web
service access points to the functionality encapsulated by the Investigate Java control. These two web service
access points are shown in blue in the diagram to the right.

The third tutorial in the series, the Tutorial: Page Flow, builds a web−based user interface for the Investigate
Application.

Tutorial Goals

This tutorial will teach you how to create and test a web service with WebLogic Workshop. Along the way,
you will also learn how to create methods that expose a service's functionality, become acquainted with
WebLogic Workshop's support for asynchronous communication and loose coupling, and learn how controls
speed the design process.

Tutorial Overview

Steps in This Tutorial

Step 1: Begin the Investigate Web Service — 20 minutes

Tutorial: Web Services 198

In this step you build and run your first WebLogic Workshop web service. You start WebLogic Workshop
and WebLogic Server, then create a web service that has a single method.

Step 2: Add Support for Asynchronous Communication — 20 minutes

You will work around a problem inherent in communication across the web: the problem of network latency.
Network latency refers to the time delays that often occur when transmitting data across a network.

Step 3: Add Support for Synchronous Communication — 20 minutes

You add support for clients that cannot hear callbacks.

Step 4: Add Support for XML Mapping — 25 minutes

You will add an XML transformation to your web service.

Step 5: Add a Script for XML Mapping — 15 minutes

Modify the XML transformation with a call to a script file.

Step 6: Web Service Security — 20 minutes

You secure your web services with SSL and web service security (WSSE security).

Summary: Web Service Tutorial

You review the concepts and technologies covered in the tutorial. This step provides additional links for more
information about each area covered.

To begin the tutorial, see Step 1: Begin the Investigate Web Service.

Click the arrow to navigate to the next step.

WebLogic Workshop Tutorials

Tutorial: Web Services 199

Step 1: Begin the Investigate Web Service
In this step, you will use WebLogic Workshop to create a simple, synchronous web service called the
Investigate web service. You will also deploy and run Investigate on WebLogic Server.

The tasks in this step are:

To start WebLogic Workshop•
To create a new application•
To start WebLogic Server•
To create a new web service•
To add a method•
To specify a parameter and return value•
To test the Investigate Web Service•

To Start WebLogic Workshop

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

From the Start menu, choose Programs−−>WebLogic Platform 8.1−−>QuickStart.1.
In the QuickStart dialog, click Experience WebLogic Workshop 8.1.2.

...on Linux

If you are using a Linux operating system, follow these instructions.

Open a file system browser or shell.1.
Locate the Workshop.sh file at the following address:
$HOME/bea/weblogic81/workshop/Workshop.sh

2.

In the command line, type the following command:
sh Workshop.sh

3.

To Create a New Application

From the File menu, select New −−> Application. The New Application dialog appears.1.
In the New Application dialog, in the upper left−hand pane, select Tutorial.
In the upper right−hand pane, select Tutorial: Web Service.
In the Directory field, use the Browse button to select a location to save your source files. (The folder
you choose is up to you. The default location is shown in the illustration below.)
In the Name field, enter WebServiceTutorial.
In the Server field, from the dropdown list, select
BEA_HOME\weblogic81\samples\domains\workshop.

2.

Step 1: Begin the Investigate Web Service 200

Click Create.

A new Tutorial: Web Service application is created. Note that this application contains a number of
resources that you will use in this tutorial. The most import resource is the Investigate Java control.
For details on the structure of and functionality of the Investigate Java control see Tutorial: Java
control.

3.

To Start WebLogic Server

Once you have created a new web service tutorial application, you must ensure that WebLogic Server is
running while you build your web service.

You can confirm whether WebLogic Server is running by looking at the status bar at the bottom of WebLogic
Workshop. If WebLogic Server is running, a green ball is displayed as pictured below.

If WebLogic Server is not running, a red ball is displayed, as pictured below.

If you see the red ball in the status bar, then follow the instruction below to start WebLogic Server.

To start WebLogic Server: from the Tools menu, choose WebLogic Server−−>Start WebLogic
Server.

•

Note: On the Start up Progress dialog, you may click Hide and continue to the next task.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Web Service 201

To Create a New Web Service

In this step you will create a new web service called Investigate.jws. The code for a web service is contained
within a JWS file ("JWS" stands for "Java Web Service"). A JWS file is a JAVA file in that it contains code
for an ordinary Java class. But, because a file with a JWS extension contains the implementation code
intended specifically for a web service class, the extension gives it special meaning in the context of
WebLogic Server, where your web service will be deployed.

On the Application tab, right−click the folder
WebServiceTutorial/WebServiceTutorialWeb/investigateJWS folder and select New−−>Web
Service.

1.

In the New File dialog, in the upper left−hand pane, confirm that Web Services is selected.
In the upper right−hand pane, confirm that Web Service is selected .
In the File name field, enter Investigate.jws.

2.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Web Service 202

Click Create.

A new JWS file, Investigate.jws, is created and displayed in the main work area in Design View.

3.

To Add a New Method

Web services expose their functionality through methods, methods that clients invoke when they want to
request something from the web service. In this case, clients will invoke a method to request credit reports.
The service you are building will eventually collect credit information from other sources. But for now, to
keep things simple, you will provide a method that returns a simple report immediately.

Confirm that Investigate.jws is displayed in the main work area. (Throughout this tutorial, to display a
file in the main work area, double−click its icon on the Application tab.)

1.

Click the Design View tab.2.

From the Insert menu, select Method.3.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Web Service 203

In the space provided, replace newMethod1 with requestCreditReport and press Enter.

Note: If you switched from WebLogic Workshop to another application (for example,
to read this topic), the method name may no longer be available for editing. To
re−open it for editing, right−click its name, select Rename, type requestCreditReport,
and then press Enter.

4.

To Specify a Parameter and Return Value

In this task you will complete the requestCreditReport method by adding a parameter and a return value.

In Design View, click the link text for the requestCreditReport method, as shown in the following
illustration.

The web service switches from Design View to Source View, with the cursor placed in front of the
requestCreditReport method, as shown below.

Note: the method has a Javadoc comment (Javadoc comments always begin with /** and end with */).
Javadoc was originally introduced as a way to specify inline documentation that could be extracted
and presented as HTML. WebLogic Workshop uses a variety of Javadoc annotations to indicate how
web service code should be treated by WebLogic Server at runtime. In this case, the Javadoc
annotation "@common:operation" indicates that the method should be exposed to clients as accessible
over the internet.

1.

Edit the requestCreditReport method body so it appears as follows. Code to edit appears in red.
 /**
 * @common:operation
 */
 public String requestCreditReport(String taxID)
 {
 return "Applicant " + taxID + " is approved.";
 }

As you can see, this is not a very interesting credit evaluation process. In the next step of the tutorial,
you will implement a more precise evaluation process.

2.

Press Ctrl+S to save your work.3.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Web Service 204

As it is now written, the requestCreditReport method works like this: the client invokes the method by
supplying a tax identification number, the method then immediately returns a String to the client saying that
the applicant with the supplied tax identification number was approved.

Before you go on to test your web service, click the Design View tab.

The long blue arrow indicates that the requestCreditReport method is an operation: a method of your web
service that is exposed to clients. (The long blue arrow is the graphical equivalent of the Javadoc annotation
@common:operation.)

The white arrow pointing to the right indicates that the requestCreditReport method takes one or more
parameters. In this case, the requestCreditReport takes one parameter: the String taxID.

The white arrow pointing to the left indicates that the method returns some data. In this case, the method
returns the String value "Applicant " + taxID + " is approved."

To Test the Investigate Web Service

You can test and debug code with the Workshop Test Browser, a browser−based tool through which you can
call methods of your web service.

Click the Start button, shown in the following illustration.1.

Clicking the Start button prompts WebLogic Workshop to build your project, checking for errors
along the way. WebLogic Workshop then launches a web browser through which you can test your
web service. The following illustration shows the Test Form page that appears after you click the Start
button.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Web Service 205

As you can see, this page provides tabs for access to other pages of the Test View. Test Form and Test
XML provide alternative ways to specify the content of the call to your service's methods. Overview
and Console include additional information and commands useful for debugging a service.
If it is not already selected, click the Test Form tab.2.
In the string taxID field, enter a value. (This value can be any string value.)3.
Click requestCreditReport.4.

The browser refreshes to display a summary of your request parameters and your service's response,
as shown here:

Under Service Request, the summary displays the essence of what was sent by the client (= you)
when the method was called. It shows the parameter values passed with the method call, as in the
following example:

taxID = 123456789

Under Service Response, the summary displays what was returned by the Investigate web service.
The response is formatted as a fragment of Extensible Markup Language (XML), this is the payload
of the SOAP message returned by the web service.

To the left of the request and response is the Message Log area. This area lists a separate entry for
each test call to the service method. Entries in the Message Log correspond to your service's methods,
updating with a new entry for each test you make.

To try this out, click the Test operations link to return to the original Test Form page, then enter a
new value in the string taxID box and click requestCreditReport. When the page refreshes, request

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Web Service 206

and response data corresponding to your second test is displayed as a second entry in the Message
Log. You can click each log entry to view the data for the corresponding test. Click Clear Log to
empty the list of log entries and start fresh.

Return to WebLogic Workshop, and click the Stop button (shown below) to close the Workshop Test
Browser.

5.

Related Topics

Applications and Projects

Click one of the following arrows to navigate through the tutorial.

WebLogic Workshop Tutorials

Step 1: Begin the Investigate Web Service 207

Step 2: Add Support for Asynchronous
Communication
In this step you will construct a web service entry point for the Investigate Java control (the Investigate Java
control is the subject of Tutorial: Java Controls). Making a web service entry point for the Investigate Java
control solves one of the problems inherent in communication across the web: the problem of network
latency. Network latency refers to the time delays that often occur when transmitting data across a network.

This can be a particular problem on the internet, which has highly unpredictable performance characteristics
and uncertain reliability. There may be additional latency if it takes a long time for a web service to process a
request (for example, if a person "behind" the web service must review the applicant's credit before a response
can be returned).

So far, the design of the Investigate web service forces the client calling the requestCreditReport method to
halt its own processes and wait for the response from the web service. This is called a synchronous
relationship, in which the client software invokes a method of the web service and is blocked from continuing
its own processes until that method returns a value.

You will solve the latency problem by enabling your web service to communicate with its clients
asynchronously. In asynchronous communication, the client communicates with the web service in such a way
that it is not forced to halt its processes while the web service produces a response. In particular, you will add
a method to the web service that immediately returns a simple acknowledgement to the client, thereby
allowing the client to continue its own processes. You will also add a callback that returns the full results to
the client at a later time. Finally, you will implement support for conversations that enable your web service to
remember which client to send the full response to via the callback.

The tasks in this step are:

To add the Investigate Java control•
To edit the requestCreditReport method•
To add a callback•
To edit the callback handler•
To add a buffer and conversation support•
To test the Investigate web service•

Add the Investigate Java Control

In this task you will add the functionality provided by the Investigate Java control.

Confirm that Investigate.jws is displayed in the main work area.1.
Click the Design View tab.2.
Click View−>Windows−>Data Palette.3.
On the Data Palette, in the section labeled Controls, select Add−−>Investigate.4.

Step 2: Add Support for Asynchronous Communication 208

In the Insert Control − Insert Investigate dialog, enter investigateControl and click Create.

The Investigate Java control is added to your web service.

5.

To Edit the requestCreditReport Method

WebLogic Workshop Tutorials

Step 2: Add Support for Asynchronous Communication 209

In this task you will edit your web service's requestCreditReport method so that (1) it returns an
acknowledgement to the invoking client without returning any information about the applicant and (2)
invokes the requestCreditReport method on the Investigate Java control. The Investigate Java control will
respond by sending a callback containing the credit report to your web service.

Confirm that Investigate.jws is displayed in the main work area.1.
If necessary, click the Design View tab.2.
Click the link text for the requestCreditReport method.3.

Edit the requestCreditReport method code so that it appears as follows. Code to edit appears in red.
 /**
 * <p>Use the following taxID's to test the Investigate web service.</p>
 *
 * <blockquote>111111111

 * 222222222

 * 333333333

 * 444444444

 * 555555555

 * 123456789</blockquote>
 *
 * @common:operation
 */
 public void requestCreditReport(String taxID)
 {
 /*
 * Invoke the requestCreditReport method on the
 * Investigate Java control passing in the taxID
 * as a parameter.
 */
 investigateControl.requestCreditReport(taxID);
 }

4.

To Add a Callback

Once the web service gets the credit report from the Investigate Java control, you want to be able to pass the
credit report along to the client. The callback you add below will send the credit report to your web service's
clients.

Confirm that Investigate.jws is displayed in the main work area.1.
Click the Design View tab.2.
Right−click the picture of the Investigate web service and select Add Callback.3.

WebLogic Workshop Tutorials

Step 2: Add Support for Asynchronous Communication 210

In the input field that appears, replace newCallback1 with onCreditReportDone and press Enter.4.

Click the link text for the onCreditReportDone callback.5.

Edit the code for onCreditReportDone so that it appears as follows. Add the code appearing in red.6.

 public interface Callback extends com.bea.control.ServiceControl
 {
 void onCreditReportDone(investigateJCS.Applicant applicant);
 }

To Edit the Callback Handler

When the Investigate Java control sends a callback message to your web service, your web service needs to
know how to handle the message. In this task you will edit the handler for callbacks sent from the Investigate
Java control.

Confirm that Investigate.jws is displayed in the main work area.1.
Click the Design View tab.2.
Click the link text for the investigate Java Control callback handler onCreditReportDone.3.

Edit the callback handler investigateControl_onCreditReportDone to look like the following. Code to
edit appears in red.

4.

WebLogic Workshop Tutorials

Step 2: Add Support for Asynchronous Communication 211

 public void investigateControl_onCreditReportDone(investigateJCS.Applicant m_currentApplicant)
 {
 /*
 * When the callback message from the Investigate control arrives,
 * then pass the message along to the Investigate web service callback
 * onCreditReportDone.
 */
 callback.onCreditReportDone(m_currentApplicant);
 }

Note: Callback handlers always have a name composed of the name of the control, plus the underscore
character, plus the name of the callback method being handled. So "investigateControl_onCreditReportDone"
means: the handler for investigateControl's callback method onCreditReportDone.

The request/response cycle now works like this: (1) a client invokes your web service's requestCreditReport
method; (2) your web service then invokes the Investigate Java control's method requestCreditReport; (3)
when the Investigate Java control has assembled the credit report, it send a callback to your web service; (4)
your web service's callback handler investigateControl_onCreditReportDone invokes your web service's
callback onCreditReportDone; (5) finally your web service's callback onCreditReportDone sends the complete
credit report to the original client.

To Add Buffer and Conversation Support to the Web Service

Now you are ready to add a buffer and conversation support to your web service.

The buffer, which you will add to the requestCreditReport method, serves two purposes. First, it saves client
requests in a message queue which prevents requests from being lost during server outages. Second, the buffer
immediately returns an acknowledgement to the client, which allows the client to continue its own processes
without waiting for the full response from the web service.

Adding conversation support to your web service lets the client know for sure that the result your service
sends back through the onCreditReportDone callback is associated with the request the client originally made.
If the same client makes two independent calls with the same taxpayer ID (say, for separate loan applications
from the same applicant), how will it know which finished report corresponds to which request? With all the
interaction back and forth between the client and your web service, your service needs a way to keep things
straight.

Also, if the server goes down (taking the m_applicant member variable with it), the data that the client sent as
a parameter is lost. The service not only loses track of the client's request, but of who the client was in the first
place.

You can solve these problems by associating each exchange of information (request, response, and any
interaction needed in between) with a unique identifier—an identifier known to both the client and the service.

In web services built with WebLogic Workshop, you do this by adding support for a conversation. For
services participating in a conversation, WebLogic Server stores state−related data, such as the member
variable you added, on the computer's hard drive and generates a unique identifier to keep track of the data
and of which responses belong with which requests. This infrastructure remains in place as long as the
conversation is ongoing. When the conversation is finished, the resources allocated to the infrastructure are
released.

When you add methods to a web service that supports conversations, you can indicate whether each method

WebLogic Workshop Tutorials

Step 2: Add Support for Asynchronous Communication 212

starts, continues or finishes a conversation. Adding support for a conversation is very easy. With methods that
represent both the first step of the transaction (requestCreditReport) and the last step (onCreditReportdone),
you want to indicate when the conversation starts and when it finishes. To add a buffer and conversation
support to your web service follow the steps below.

Confirm that Investigate.jws is displayed in the main work area.1.
Click the Design View tab.2.
Click the arrow icon associated with the requestCreditReport method.3.

On the Property Editor tab, in the section labeled conversation, set the phase property to start, as
shown in the following illustration.

4.

In the message−buffer section, set the enable property to true, as shown in the following illustration.5.

In Design View, click the arrow icon next to your web service's onCreditReportDone callback.6.

WebLogic Workshop Tutorials

Step 2: Add Support for Asynchronous Communication 213

On the Property Editor tab, in the section labeled conversation, set the phase property to finish, as
shown in the following illustration.

7.

In the message−buffer section, set the enable property to true, as shown in the following illustration.8.

Press Ctrl+S to save your work.

After modifying your web service through the Property Editor, the Design View picture of your web
service should look like the following image. Notice the new conversation and buffer icons associated
with the requestCreditReport method and the onCreditReportDone callback.

9.

To Test the Investigate Web Service

Now you are ready to compile and test your web service.

Confirm that Investigate.jws is displayed in the main work area.1.
Click the Start button, shown below.2.

Your web service compiles and Workshop Test Browser launches.

WebLogic Workshop Tutorials

Step 2: Add Support for Asynchronous Communication 214

In the taxID field enter the 9 digit number 222222222.
Note: Use one of the following (9 digit) taxID's to test your web service throughout the tutorial:

123456789, 111111111, 222222222, 333333333, 444444444, and 555555555.

3.

Click the requestCreditReport button.

The Test Browser refreshes to display a summary of the request parameters sent by the client and
your service's response, as shown here:

Note: The Service Request section displays what the client (in this case, the Workshop Test Browser)
sent to the Investigate web service to invoke the requestCreditReport method. Note the conversation
identification number, this is a unique number generated for each time a converstation starting method
is invoked. The web service uses this id to associate the initial client request and the callback response
it will later send back to the client.
The Service Response section shows what the Investigate web service has sent back (so far) to the
client. In this case it sends back an XML message, <Void xmlns:xsi..., serving as an
acknowledgement to the client that its request has been received.

4.

Click Refresh until the Message Log shows an entry for callback.onCreditReportDone.5.
Click callback.onCreditReportDone to view the contents of the callback sent from the Investigate
web service to the client, as shown here:

The Client Callback section displays the SOAP message that the client receives, including data about
the credit applicant. The two other entries in the Message Log show some of the activity of the
Investigate Java control as it assembles the report on the credit applicant.

6.

WebLogic Workshop Tutorials

Step 2: Add Support for Asynchronous Communication 215

Return to WebLogic Workshop, and click the Stop button (shown below) to close the Workshop Test
Browser.

7.

Related Topics

Overview: Conversations

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Add Support for Asynchronous Communication 216

Step 3: Add Support for Synchronous
Communication
The Investigate web service sends callbacks to its clients. But not all clients can hear callbacks, so not all
clients can use the Investigate web service as an access point to the Investigate Java control. In this step you
will build a synchronous web service interface that allows non−callbackable clients to access the Investigate
Java control.

The tasks in this step are:

To create a web service•
To add the Investigate Java control•
To add two member variables•
To add polling logic•
To add code to finish the conversation•
To Test InvestigateSync.jws•

To Create a Web Service

On the Application tab, right−click the investigateJWS folder and select New−−>Web Service.1.
In the New File dialog, in the File name field, enter InvestigateSync.jws, and click Create.2.

To Add the Investigate Java Control

On the Data Palette, in the section labeled Controls, select Add−−>Application
Controls−−>Investigate.

1.

In the Insert Control − Insert Investigate dialog, enter investigateControl and click Create.
The Investigate Java control is added to your web service.

2.

To Add Two Member Variables

In this step you will add two member variables to the InvestigateSync web service: one to store the credit
report returned by the Investigate Java control, the other to record the status of the investigation process.

Click the Source View tab to view the source code for InvestigateSync.jws1.
Add the following code to the body of InvestigateSync.jws. Code to add is shown in red.2.

 /*
 * m_applicant stores the credit report returned by the Investigate Java control
 * for retrieval at a latter time by the client.
 */
 public investigateJCS.Applicant m_applicant = new investigateJCS.Applicant();

 /*
 * m_isReportReady is set to true when the credit report from the Investigate Java control
 * has been received, signaling the client to retrieve the report.
 */
 public boolean m_isReportReady = false;

To Add Polling Logic

Step 3: Add Support for Synchronous Communication 217

In this task you will add the methods through which the client will request and collect the credit report from
the InvestigateSync web service. These methods are designed to work in the following way: (1) the client
invokes the web service's requestCreditReport method. (2) The web service pass the request onto the
Investigate Java control and waits for a callback containing the credit report. (3) When the callback from the
Investigate Java control arrives the Investigate web service stores the report in the member variable
m_applicant and sets m_isReportReady to true. (4) If the client has been checking the value of
m_isReportReady (through the isReportReady method), it now knows that it can collect the credit report
through the getCreditReport method.

These methods are collectively referred to as "polling logic" because the client polls the methods, asking for
the status of the credit report.

If InvestigateSync.jws is not displayed in Source View, click the Source View tab.1.
Add the following methods to the body of InvestigateSync.jws. Code to add is shown in red.2.

 /**
 * Calling this method requests a credit report from the Investigate Java control.
 *
 * @common:operation
 * @common:message−buffer enable="true"
 * @jws:conversation phase="start"
 */
 public void requestCreditReport(String taxID)
 {
 investigateControl.requestCreditReport(taxID);
 }

 /**
 * After making a request for credit report, clients check this method periodically
 * to see if the report is ready. When this method returns true, clients should invoke
 * the getCreditReport method to retrieve the credit report.
 *
 * @common:operation
 * @jws:conversation phase="continue"
 */
 public boolean isReportReady()
 {
 return m_isReportReady;
 }

 /**
 * Clients collect the completed credit report by invoking this method.
 *
 * @common:operation
 * @jws:conversation phase="continue"
 */
 public investigateJCS.Applicant getCreditReport()
 {
 /*
 * If m_isReportReady is true (i.e., if the callback handler investigateControl_onCreditReportDone
 * has been invoked) return the results to the client.
 * If m_isReportReady is false, tell the client to check back later for the results.
 */
 if(m_isReportReady)
 {
 return m_applicant;
 }
 else

WebLogic Workshop Tutorials

Step 3: Add Support for Synchronous Communication 218

 {
 m_applicant.message = "The report is not yet ready. Please check back later.";
 return m_applicant;
 }
 }

 /**
 * This method allows the client to cancel the request for a credit report.
 *
 * @common:operation
 * @jws:conversation phase="finish"
 * @jws:message−buffer enable="true"
 */
 public void cancelInvestigation()
 {
 investigateControl.cancelInvestigation();
 }

 /*
 * When the callback handler is invoked by the Investigate Java control,
 * store the credit report in the member variable m_applicant
 * and set m_isReportReady to true.
 */
 public void investigateControl_onCreditReportDone(investigateJCS.Applicant applicantReport)
 {
 m_applicant = applicantReport;

 m_isReportReady = true;
 }

Press Ctrl+S to save your work.3.
Click the Design View tab. You web service should look like the following illustration.4.

To Add Code to End the Conversation

There is one problem yet to be solved: how will the web service's conversation ever end, since the client will
typically never invoke a method marked with the annotation @jws:conversation phase="finish"? You will
solve this problem by adding an API call to the getCreditReport method.

If InvestigateSync.jws is not displayed in Source View, click the Source View tab.1.

WebLogic Workshop Tutorials

Step 3: Add Support for Synchronous Communication 219

Add the following code to the body of InvestigateSync.jws

 /**
 * @common:context
 */
 com.bea.control.JwsContext context;

2.

Edit the getCreditReport method to look like the following. Code to add appears in red.

 public investigateJCS.Applicant getCreditReport()
 {
 /*
 * If m_isReportReady is true (i.e., if the callback handler investigateControl_onCreditReportDone
 * has been invoked) return the results to the client.
 * If m_isReportReady is false, tell the client to check back later for the results.
 */
 if(m_isReportReady)
 {
 /*
 * Calling context.finishConversation ends the current conversation.
 *
 * Although the call to context.finishCoversation() appears before the return
 * statement, it is executed after the return statement.
 */
 context.finishConversation();
 return m_applicant;
 }
 else
 {
 m_applicant.message = "The report is not yet ready. Please check back later.";
 return m_applicant;
 }
 }

3.

Press Ctrl+S to save your work.4.

To Test InvestigateSync.jws

The Workshop Test Browser is an appropriate client for testing InvestigateSync.jws because it is a client that
cannot hear callbacks from web services.

Confirm that InvestigateSync.jws is displayed in the main work area.1.
Click the Start button, shown below.

Your web service compiles and Workshop Test Browser launches.

2.

In the taxID field, enter 222222222 and click the requestCreditReport button.
Note: Use one of the following (9 digit) taxID's to test your web service throughout the tutorial:

123456789, 111111111, 222222222, 333333333, 444444444, and 555555555.

3.

Click Continue this Conversation.4.
Click the isReportReady button.
If the isReportReady method returns false, then go back to step 4 above.
If the isReportReady method returns true, then continue to step 6 below.

5.

Click Continue the Conversation.6.

WebLogic Workshop Tutorials

Step 3: Add Support for Synchronous Communication 220

Click the getCreditReport button.
The complete credit report appears in the Service Response section.

7.

Return to WebLogic Workshop, and click the Stop button (shown below) to close the Workshop Test
Browser.

8.

Press Ctrl+F4 to close the InvestigateSync.jws web service.9.

Related Topics

Using Polling as an Alternative to Callbacks

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 3: Add Support for Synchronous Communication 221

Step 4: Add Support for XML Mapping
Currently your web services return XML reports of the following form.

<applicant>
 <availableCCCredit>2000</availableCCCredit>
 <currentlyBankrupt>false</currentlyBankrupt>
 <lastName>Smith</lastName>
 <firstName>John</firstName>
 <approvalLevel>Applicant is a high risk.</approvalLevel>
 <creditScore>560</creditScore>
 <taxID>222222222</taxID>
</applicant>

But what if a client asked you to return an XML report of the following form?

<applicant id="222222222">
 <name_last>Smith</name_last>
 <name_first>John</name_first>
 <bankrupt>false</bankrupt>
 <balance_remaining>2000</balance_remaining>
 <risk_estimate>Applicant is a high risk.</risk_estimate>
 <score_info>
 <credit_score>560</credit_score>
 <us_percentile>19.0</us_percentile>
 </score_info>
 <message>Credit Report complete.</message>
</applicant>

In this step you will construct a credit report to your client's specifications with the aid of the schema file
ClientB.xsd and a set of corresponding XMLBeans classes, ApplicantDocument and
ApplicantDocument.Applicant, which are located in the Schemas folder.

Step 4: Add Support for XML Mapping 222

When a schema file is placed in the Schemas project, WebLogic Workshop produces a set of XMLBean Java
classes corresponding to the schema. These XMLBean classes let you construct or parse XML documents that
are instances of the original schema. In this case, you will use the XMLBean classes to construct an XML
document of the form desired by your client.

The tasks in this step are:

to add an XQuery map•
to test the Investigate web service•

To Add an XQuery Map

In this task you will place an XQuery map on the callback onCreditReportDone. The XQuery map will
reshape the XML document currently sent back to clients into an XML document that conforms to the schema
ClientB.xsd.

From the Window menu, select Investigate.jws.1.
Click the Design View tab.2.
Select the arrow icon for the onCreditReportDone callback.3.

On the Property Editor, in the section labeled parameter−xml, locate the xquery property. Click the
ellipses on the far right−hand side of the value field, as shown in the following illustration.

4.

Click Yes, when asked if you would like to define a schema for this operation.5.

In the XQuery Mapper − Select Schema Element dialog, click Choose.

(Look under Sample XML. Note that the method onCreditReportDone already has a default schema
associated with it. This is the schema that the method currently uses to convert Applicant objects into
XML messages.)

6.

WebLogic Workshop Tutorials

Step 4: Add Support for XML Mapping 223

In the Select Schema Element dialog, select XML Types−−>ClientB.xsd−−>applicant and click Ok.7.

WebLogic Workshop Tutorials

Step 4: Add Support for XML Mapping 224

(In the XQuery Mapper − Select Schema Element, look under Sample XML. Notice that the new
schema, ClientB.xsd, is now associated with onCreditReportDone method.)
In the XQuery Mapper − Select Schema Element dialog, click Edit XQuery.8.

WebLogic Workshop Tutorials

Step 4: Add Support for XML Mapping 225

In the XQuery − Edit XQuery dialog, map the XML elements by dropping and dragging icons from
the Source Schema pane to the Target Schema pane. Form the following matching pairs:

9.

Source Schema Target Schema

taxID id

firstname name_first

lastName name_last

currentlyBankruptbankrupt

availableCCCreditbalance_remaining

creditScore credit_score

approvalLevel risk_estimate

message message

The Map tab of The XQuery Mapper − Edit XQuery dialog should like the following illustration.

WebLogic Workshop Tutorials

Step 4: Add Support for XML Mapping 226

(Solid lines indicate a data conversion function is applied to the mapping. For example the mapping
availableCCCredit−−>balance_remaining also includes a data conversion from the int data type to the
short data type. Dotted lines indicate that no data conversion function is applied.)
On the XQuery Mapper − Edit XQuery dialog, in the Target Schema pane, select the us_percentile
element.

10.

In the Advanced Options Panel, click the Target Expression tab.11.
In the Edit Function pane, enter the value 50 and click Apply.

(This is a default value. You will add a script to calculate the <us_percentile> element in the next step
of the tutorial.)

12.

WebLogic Workshop Tutorials

Step 4: Add Support for XML Mapping 227

Click Ok to close the XQuery Mapper − Edit XQuery dialog.13.
Click Ok to close the XQuery Mapper − Select Schema Element dialog.14.
In Design View, click the name of the onCreditReportDone callback.

(Notice that the arrow icon for the onCreditReportDone callback has a green color. This indicates that
there is an XQuery map now associated with this callback.)

The callback onCreditReportDone now has the following XQuery map associated with it.

15.

WebLogic Workshop Tutorials

Step 4: Add Support for XML Mapping 228

In the XQuery map, there are two schemas at work: (1) the default schema automatically created for
the Applicant object and (2) the new schema which you are imposing, i.e., ClientB.xsd. When an
Applicant object is being prepared as an XML document for transport over the wire, XQuery
expressions (such as xs:int(data($input/ns0:applicant/ns0:taxID))) select values from the default
XML schema and insert them into the imposed schema (such as <ns1:applicant id="...">). The result
is an XML document conforming to the imposed schema.
Press Ctrl+S to save your work.16.

Your web service's onCreditReportDone callback now sends XML messages that conform to the ClientB.xsd
schema.

To Test the Investigate Web Service

Confirm that Investigate.jws is displayed in the main work area.1.
Click the Start button, shown below.2.

Your web service compiles and Workshop Test Browser launches.3.

WebLogic Workshop Tutorials

Step 4: Add Support for XML Mapping 229

In the taxID field, enter 222222222 and click the requestCreditReport button.
Note: Use one of the following (9 digit) taxID's to test your web service throughout the tutorial:

123456789, 111111111, 222222222, 333333333, 444444444, and 555555555.

4.

Click Refresh until the Message Log shows an entry for callback.onCreditReportDone.5.
Click callback.onCreditReportDone.

Note that the shape of the XML message conforms to the schema ClientB.xsd.

6.

Return to WebLogic Workshop, and click the Stop button (shown below) to close the Workshop Test
Browser.

7.

Related Topics

Getting Started with XMLBeans

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 4: Add Support for XML Mapping 230

Step 5: Add a Script for XML Mapping
In the previous step, you added an XML map to your web service, but one part of the map was left unfinished.
The <us_percentile> element, which gives the applicant's percentile ranking, currently displays a default value
of 50% in all cases.

<applicant id="222222222">
 <name_last>Smith</name_last>
 <name_first>John</name_first>
 <bankrupt>false</bankrupt>
 <balance_remaining>2000</balance_remaining>
 <risk_estimate>Applicant is a high risk.</risk_estimate>
 <score_info>
 <credit_score>560</credit_score>

<us_percentile>50</us_percentile>
 </score_info>
 <message>Credit Report complete.</message>
</applicant>

In the following step you will finish the XML map by calculating a value for the <us_percentile> element. To
do this, you will write a function in ECMAScript (also known as JavaScript), and then refer to the function
from the XML map.

The tasks in this step are:

To add a script file for use with mapping•
To edit the XQuery map•
To test the Investigate Web Service•

To Add a Script File for Use with Mapping

Right−click the investigateJWS folder and select New−−>Other File Types.
The New File dialog opens.

1.

Enter values as shown in the following illustration:2.

Step 5: Add a Script for XML Mapping 231

Click Create. This adds a JSX file called PercentileScript.jsx. WebLogic Workshop displays the new
file in Source View.

3.

Paste the following code into PercentileScript.jsx. Overwrite all of the code already in the file.

/* A function to calculate the applicant's credit score percentile. */
function calcPercentile (score) {
 var percentile = 0;
 var scoreLowEnd = 300;
 var number = 3162.5;
 percentile = Math.ceil((Math.pow(score, 2) − Math.pow(scoreLowEnd, 2))/(2 * number));
 return percentile;
}

4.

Press Ctrl+S to save your work. Press Ctrl+F4 to close close PercentileScript.jsx.5.

To Edit the XQuery Map to Call Script

In this task you will edit the XQuery map to use PercentileScript.jsx to fill in the value of the <us_percentile>
element.

If Investigate.jws is not displayed, from the Window menu, select Investigate.jws. Click the Source
View tab.

1.

Edit the XQuery map to look like the following. Code to edit appears in red.

 public interface Callback extends com.bea.control.ServiceControl
 {
 /**
 * @common:message−buffer enable="true"
 * @jws:conversation phase="finish"
 * @jws:parameter−xml schema−element="ns0:applicant" xquery::
 * declare namespace ns0 = "http://www.openuri.org/"
 * declare namespace ns1 = "http://openuri.org/bea/samples/workshop"
 *

2.

WebLogic Workshop Tutorials

Step 5: Add a Script for XML Mapping 232

 * <ns1:applicant id = "{ xs:int(data($input/ns0:applicant/ns0:taxID)) }">
 * <ns1:balance_remaining>{ xs:short(data($input/ns0:applicant/ns0:availableCCCredit)) }</ns1:balance_remaining>
 * <ns1:bankrupt>{ data($input/ns0:applicant/ns0:currentlyBankrupt) }</ns1:bankrupt>
 * {
 * for $message in $input/ns0:applicant/ns0:message
 * return
 * <ns1:message>{ data($message) }</ns1:message>
 * }
 * {
 * for $firstName in $input/ns0:applicant/ns0:firstName
 * return
 * <ns1:name_first>{ data($firstName) }</ns1:name_first>
 * }
 * {
 * for $lastName in $input/ns0:applicant/ns0:lastName
 * return
 * <ns1:name_last>{ data($lastName) }</ns1:name_last>
 * }
 * {
 * for $approvalLevel in $input/ns0:applicant/ns0:approvalLevel
 * return
 * <ns1:risk_estimate>{ data($approvalLevel) }</ns1:risk_estimate>
 * }
 * <ns1:score_info>
 * <ns1:credit_score>{ xs:short(data($input/ns0:applicant/ns0:creditScore)) }</ns1:credit_score>
 * <ns1:us_percentile> {investigateJWS.PercentileScript.calcPercentile(data($input/ns0:applicant/ns0:creditScore))} </ns1:us_percentile>
 * </ns1:score_info>
 * </ns1:applicant>
 * ::
 */
 void onCreditReportDone(investigateJCS.Applicant applicant);
 }

Note that the value of the <us_percentile> element is based on the value of the <credit_score>
element: when the calcPercentile() function is called, the value of the <credit_score> element is
passed in as a parameter.
Press Ctrl+S to save your work.3.

To Test the Investigate Web Service

Confirm that Investigate.jws is open and displayed in the main work area.1.
Press Ctrl+F5 run Investigate.jws. (Pressing Ctrl+F5 is equivalent to clicking the Start button:)2.

Your web service compiles and Workshop Test Browser launches.
In the Workshop Test Browser, in the taxID field enter the 9 digit number 222222222.
Note: Use one of the following (9 digit) taxID's to test your web service throughout the tutorial:

123456789, 111111111, 222222222, 333333333, 444444444, and 555555555.

3.

Click the requestCreditReport button.4.
Click Refresh until the Message Log shows an entry for callback.onCreditReportDone.

Note the value of the <us_percentile> element.

5.

WebLogic Workshop Tutorials

Step 5: Add a Script for XML Mapping 233

Related Topics

Handling XML with ECMAScript Extensions

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 5: Add a Script for XML Mapping 234

Step 6: Web Service Security
In this task you will use Web Service Security, sometimes referred to with the acronyms "WS−Security" or
simply "WSSE", to secure the communications between the Investigate Web Service and a client web service
TestClient.jws. (TestClient.jws is located in the folder WebServiceTutorialWeb/WSSETestClient/.) The two
web services communicate through SOAP messages, as shown in the following diagram.

The communication will be secured by enhancing the SOAP messages with username/password tokens and
encryption, as shown in the following diagram. TestClient's requests for a credit report will include a
username and password, allowing the Investigate web service can authenticate TestClient. The credit report
returned by Investigate will be encrypted before it is sent out over the wire, ensuring that the credit report is
confidential.

Step 6: Web Service Security 235

These security enhancements are specified in a web service security policy file, or "WSSE file". WSSE files
are XML files that specify the security behavior of your web service or web service control.

Note: that WSSE security is not the only option for securing a web service. SSL and Basic Authentication are
other important options; for an example, see Java Control Tutorial Step 7: Transport Security.

The tasks in this step are:

To associate the WSSE policy file with Investigate web service•
To associate a WSSE policy file with the Investigate control file•
To Test the Investigate web service•

To Associate a WSSE Policy with the Investigate Web Service

In this task you will apply a web service security policy file (WSSE file) to the Investigate web service. This
policy file specifies how incoming and outgoing SOAP message should be treated.

Before you begin this task, on the Application tab, double−click the file
WebServiceTutorialWeb/investigateJWS/Investigate.wsse to view the file.

WebLogic Workshop Tutorials

Step 6: Web Service Security 236

WSSE files contain two main elements. (1) The <wsSecurityIn> element specifies the kinds of security
requirements that must be met by incoming SOAP messages. (2) The <wsSecurityOut> element specifies the
sorts of security enhancements that should be added to outgoing SOAP messages.

The <wsSecurityIn> specifies that incoming SOAP messages must be accompanied by a valid username and
password pair. If a SOAP message is sent to Investigate.jws without a valid username/password pair, then the
SOAP message will be rejected by the web service and go unprocessed. The reason for setting up this security
requirement is that it is important to know who is asking for credit reports: the Investigate web service doesn't
want to be sending out credit reports to anonymous users. Note that this security strategy requires a
registration mechanism to be fully implemented. This registration mechanism is outside the scope of this
tutorial. But it would go something like this: candidate users would be required to provide some information
about themselves: an email, a phonenumber, etc., and, upon verification of this information, the user would be
given a username/password with which to login to the Investigate web service. For testing purposes we will
use a test user already known to the WebLogic Security framework.

The <wsSecurityOut> element specifies that outgoing SOAP messages are to be encrypted before they are
sent out over the wire. This will ensure that the credit report will remain confidential and can only be read by
the intended recipient.

The <keyStore> element points to a Java KeyStore file (JKS file). This file contains the message recipient's
public key with which the SOAP messages are encrypted. When data is encrypted in this way, only the
matching private key, known only to the message recipient, can successfully decrypt the message, ensuring

WebLogic Workshop Tutorials

Step 6: Web Service Security 237

confidentiality of communication.

The follow diagram shows how Investigate.wsse controls the SOAP traffic coming into and out of
Investigate.jws.

From the Window menu select Investigate.jws.1.
Click the Design View tab.2.
In Design View, select the picture of the Investigate web service. You can select the web service by
clicking the picture's title bar, as shown below.

3.

On the Property Editor tab, in the section labeled ws−security−service, on the right side of the file
property. Click the ellipses button.

4.

In the Property Text Editor dialog, enter Investigate.wsse, and click Ok.5.

WebLogic Workshop Tutorials

Step 6: Web Service Security 238

On the Property Editor tab, in the section labeled ws−security−callback, on the right side of the file
property, click the ellipses button.

6.

In the Property Text Editor dialog, enter Investigate.wsse, and click Ok.7.
Press Ctrl+S to save your work.8.
Click the Source View tab.9.
Hover the mouse pointer over the green wavy line underneath "@jws:ws−security−service
file="Investigate.wsse"

Notice the tool tip that appears. This tool tip is warning you that your WSSE files are not encrypted.
When you deploy a WSSE file to a production server, the passwords within the WSSE files appear in
plain text. By leaving the passwords in plain text, you run the risk of allowing anyone with local
access to the production server to view those passwords. To mitigate this risk, WebLogic Workshop
has provided utilities to encrypt the passwords within WSSE files. (For detailed information on these
utilities see the Help topic Securing WS−Security Passwords.) Note that it is not possible to
successfully encrypt and run a WSSE file within a development environment, so we will ignore these
warnings.

10.

To Associate a WSSE Policy with the Investigate Web Service Control

In this task you will place a security policy on InvestigateControl.jcx, not on TestClient.jws. The reason you
place a policy on the control file is because you are primarily interested in changing the way that
TestClient.jws communicates with the particular web service Investigate.jws, but you are not interested in
changing the way TestClient.jws communicates with any and all web services. This is a typical pattern in
WSSE: to secure the communication between a client web service and its target web service, you place
security policies on the target web service and on the target web service control file used by the client web
service, but you leave the client web service without a policy of its own.

Before you complete this task double−click the file
WebServiceTutorialWeb/WSSETestClient/InvestigateControl.wsse to view the file.

WebLogic Workshop Tutorials

Step 6: Web Service Security 239

Notice that InvesigateControl.wsse has a security policy to complement Investigate.wsse. Incoming SOAP
messages must be encrypted; and outgoing SOAP messages are enhanced with a username and password
before they are send out over the wire. The following diagram shows how InvestigateControl.wsse controls
the SOAP traffic coming into and out of the control file InvestigateControl.jcx.

WebLogic Workshop Tutorials

Step 6: Web Service Security 240

On the Application tab, double−click the control file
WebServiceTutorial/WebServiceTutorialWeb/WSSETestClient/InvestigateControl.jcx.

1.

If InvestigateControl.jcx is not displayed in Design View, click the Design View tab.2.
On the Property Editor tab, in the section labeled ws−security−service, on the right side of the file
property, click the ellipses button.

3.

In the Property Text Editor dialog, enter InvestigateControl.wsse, and click Ok.4.

On the Property Editor tab, in the section labeled ws−security−callback, on the right side of the file
property, click the ellipses button.

5.

In the Property Text Editor dialog, enter InvestigateControl.wsse, and click Ok.6.
Press Ctrl+S to save your work. Press Ctrl+F4 to close the InvestigateControl.jcx file.7.

To Test the Investigate Web Service

WebLogic Workshop Tutorials

Step 6: Web Service Security 241

In this task you will perform two tests. First you will test to see if the right passwords result in successful
communication, then you will test to see if the wrong passwords result in failed communication.

Testing for Successful Communication

On the Application tab, double−click TestClient.jws.1.
Press Ctrl+F5 run TestClient.jws.2.

Your web service compiles and the Workshop Test Browser launches.
In the Workshop Test Browser, in the taxID field, enter the 9 digit number 222222222.
Note: Use one of the following (9 digit) taxID's to test your web service throughout the tutorial:

123456789, 111111111, 222222222, 333333333, 444444444, and 555555555.

3.

Click the requestCreditReport button.4.
Click Refresh until the Message Log shows an entry for callback.onCreditReportDone.5.

Testing for Failed Communication

On the Application tab, double−click InvestigateControl.wsse.1.
Edit the the <wsSecurityOut> element to look like the following. Edit the code appearing in red. Note
that you are intentionally entering the wrong password.

2.

 <wsSecurityOut>
 <userNameToken>
 <userName>weblogic</userName>
 <password type="TEXT">wrong_password</password>
 </userNameToken>
 </wsSecurityOut>

On the Application tab, double−click TestClient.jws.3.
Press Ctrl+F5 to run TestClient.jws4.
In the Workshop Test Browser, in the taxID field, enter the 9 digit number 222222222.5.
Click the requestCreditReport button.

Note that the invocation of the Investigate web service fails with the following exception.

6.

Remember to re−edit the InvestigateControl.wsse file so that it sends the correct password.7.

Related Topics

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 6: Web Service Security 242

WebLogic Workshop Tutorials

Step 6: Web Service Security 243

Summary: Web Service Tutorial
This topic lists ideas this tutorial introduced, along with links to topics for more information. You may also
find it useful to look at the following:

For an overview of WebLogic Workshop, see Building Web Services with WebLogic Workshop.•
For a links to information on tasks you can accomplish in WebLogic Workshop, see the How Do I?
topics.

•

For a list of the samples provided, see Samples.•

Concepts and Tasks Introduced in This Tutorial

You interact with web service source files through a WebLogic Workshop project. You use projects
to group files associated with a web service or related web services.
For more information about projects, see Applications and Projects.

•

As you develop web services, you test and debug code on a running instance of WebLogic Server.•
You design a web service as you might make a drawing of it and its relationships with clients and
other resources. WebLogic Workshop provides a Design View you can use to generate code to start
with as you create your design.

•

The source file for a web service is a JWS file, which is automatically recognized as a web service
when deployed with WebLogic Server.

•

You expose the functionality of a web service by creating methods within a JWS file. You can add the
method in Design View, setting properties to specify its characteristics, including powerful server
features.

•

To test a service, you use the Test View, a dynamically generated HTML page through which you can
invoke service methods with specific parameter values.

•

You can use asynchronous communications to handle latency issues inherent on the Internet, and
sometimes with web services in general. Through asynchrony, you avoid situations in which client
software is blocked from proceeding until it receives the results of its requests.
For an introduction to asynchrony and the WebLogic Workshop tools that support it, see Designing
Asynchronous Interfaces.

•

Callbacks provide a useful way to return results to clients where asynchronous communication is
needed. Callbacks require an agreement that the client will implement a means to handle the callback
a service makes.

For more details, see Using Callbacks to Notify Clients of Events.

•

You can use conversations to maintain consistent state even between disparate asynchronous
exchanges. Conversations make it possible to correlate these exchanges with the original request and
the client that made it.
For more information, see Designing Conversational Web Services and Getting Started: Using
Asynchrony to Enable Long−Running Operations.

•

When you need to handle or control the specific shape of XML messages your service exchanges with
other components, you can use Workshop's extensive XML tools such as XQuery and XMLBeans.

For more on Workshop's XML tools, see Getting Started with XMLBeans and Transforming XML
Messages with XQuery Maps.

•

By supporting polling, your web service can offer an alternative to clients that aren't capable of
receiving callbacks. With polling, a client can periodically ask your web service if the response to its
request is ready yet.

•

Summary: Web Service Tutorial 244

For information about polling, see Using Polling as an Alternative to Callbacks.
You can make your web service secure with WS−Security or more traditional transport security.
For more detail, see Web Service Security and Transport Security.

•

WebLogic Workshop Tutorials

Summary: Web Service Tutorial 245

Tutorial: Page Flow
The following tutorial demonstrates advanced capabilities of Page Flows. For an introductory tutorial see
Getting Started: Web Applications.

The Big Picture

The page flow tutorial is the last in a series
of three tutorials, which builds the
Investigate Application, an application
designed to assemble a credit−worthiness
report on a loan applicant. (Note: you do
not need to execute the tutorial series in
order. You may proceed with this tutorial,
even if you have not completed the
previous tutorials in the series.)

The first tutorial in the series, the Tutorial: Java Control, builds the core of the application: the Investigate
Java control, which consults a variety of components to assemble the credit−worthiness report.

The second tutorial in the series, the Tutorial: Web Service, builds the web services tier of the application.

This, the third tutorial in the series, builds the Investigate Web Application, a web−based user interface that
lets users request and receive credit reports through a web browser. The components built are shown in blue in
the diagram to the right.

Tutorial Goals

In this tutorial, you will learn:

How to create a web application's user interface with JSPs•
How to access a web application's back−end data resources with Java controls•
How to coordinate navigation, user data input, and back−end data resources with page flow files•
How to use page flow technology to separate data processing and data presentation•
How to secure a web application with role−based security.•

Tutorial: Page Flow 246

Tutorial Overview

In this tutorial you will build a web−based user interface for the Investigate credit reporting web service, a
service that provides credit profiles on loan applicants. As you progress in the tutorial, you will learn how to
access data with web service controls, how to present data with JSPs, and how to control user navigation, user
requests, and back−end resources with page flows.

The user interface you build consists of main three main layers (see the diagram to the right):

The user−facing, presentation layer consists of two JSP pages: request.jsp and response.jsp. Users
request and view credit reports through these pages.

1.

The middle, coordinating layer consists of Java page flow file: investigateJPFController.jpf. This file
controls user navigation between JSP pages, how user requests are handled, and how credit reports are
retrieved and displayed to the user.

2.

The back−end, data resource layer consists of a web service control file: InvestigateSyncControl.jcx.
This file provides access to the Investigate web service, which, along with the Investigate Java
control, assembles the credit reports.

3.

The numbered arrows represent a typical request−responce cycle. (1) Users submit a request for a credit report
to the page flow file investigateJPFController.jpf. (2) This request is passed on to the web service control
InvestigateSyncControl.jcx. (3) After the web service control has had time to assemble the credit report, it is
retrieved and stored in the page flow file investigateJPFController.jpf. (4) Finally, the credit report is

WebLogic Workshop Tutorials

Tutorial: Page Flow 247

displayed to the user on the response.jsp page.

Steps in This Tutorial

Step 1: Begin the Investigate Page Flow

In this step you will deploy the back−end resources that assemble credit reports.

Step 2: Processing Data with Page Flows

In this step you will (1) create a page flow file (JPF file), which controls user requests and retrieval of credit
reports, and (2) create a web service control, which lets you access the resources that provides the credit
reports.

Step 3: Create the JSP pages

In this step you will create the JSP pages that let users request and view credit reports.

Step 4: Role−Based Security

In this step you will set role restrictions on the Investigate page flow.

Summary: Page Flow Tutorial

Related Topics

Getting Started with Page Flows

Click the arrow to navigate to the next step in the tutorial.

WebLogic Workshop Tutorials

Tutorial: Page Flow 248

Step 1: Begin the Page Flow Tutorial
In this step you will create the Investigate page flow. A page flow is a Java class (with the JPF file extension)
that controls how your web application functions and what it does. Page flows control all of the major features
of a web application: how users navigate from page to page, user requests, and access to the web application's
back−end resources.

Page flows control the features of a web application through the use of Action methods. An Action method
may do something simple, such as forward a user from one JSP page to another; or it may do something
complex, such as receive user input from a JSP page, calculate and/or retrieve other data based on the user
input, and forward the user to a JSP page where the results are displayed.

The page flow you create in this step contains one simple Action method. This simple navigational Action
method forwards users to the index.jsp page. In the next step, you will create a more complex Action method.

The tasks in this step are:

To start WebLogic Workshop•
To create a new application•
To start WebLogic Server•
To create a new page flow•
To test the page flow•

To Start WebLogic Workshop

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

From the Start menu, choose Programs−−>WebLogic Platform 8.1−−>QuickStart.1.
In the QuickStart dialog, click Experience WebLogic Workshop 8.1.2.

...on Linux

If you are using a Linux operating system, follow these instructions.

Open a file system browser or shell.1.
Locate the Workshop.sh file at the following address:
$HOME/bea/weblogic81/workshop/Workshop.sh

2.

In the command line, type the following command:
sh Workshop.sh

3.

Create a New Application

The application you create in this task contains resources for the page flow tutorial. The resources consist of
the Invesitgate Java control (and its sub−components) and the Investigate web service. The Investigate Java
control is a custom Java control that assembles a credit−worthiness report on loan applicants. The Investigate
web service is a web service that gives web access to the Investigate Java control. For a detailed descriptions
of these resources see Tutorial: Java Control and Tutorial: Web Service.

Step 1: Begin the Page Flow Tutorial 249

From the File menu, select New−−>Application1.
In the New Application dialog, in the upper left−hand pane, select Tutorial.
In the upper right−hand pane, select Tutorial: Page Flow.
In the Directory field, use the Browse button to select a location to save your source files. (The folder
you choose is up to you. The default location is shown in the illustration below.)
In the Name field, type PageFlowTutorial.
In the Server field, from the dropdown list, select
BEA_HOME\weblogic81\samples\domains\workshop.

2.

Click Create.3.

To Start WebLogic Server

As you develop the Investigate page flow, you will deploy it to WebLogic Server to test its functionality. In
this task you will start WebLogic Server to ensure that it is available during the development process.

You can confirm whether WebLogic Server is running by looking at the status bar at the bottom of WebLogic
Workshop. If WebLogic Server is running, a green ball is displayed as pictured below.

If WebLogic Server is not running, a red ball is displayed, as pictured below.

If you see the red ball in the status bar, then follow the instruction below to start WebLogic Server.

To start WebLogic Server: from the Tools menu, choose WebLogic Server−−>Start WebLogic•

WebLogic Workshop Tutorials

Step 1: Begin the Page Flow Tutorial 250

Server.

To Create a New Page Flow

You will develop your page flow within a Web Application project. This project has been pre−loaded into
WebLogic Workshop as part of the new application you created above.

On the Application tab, right click the PageFlowTutorialWeb folder and select New−−>Page Flow.1.

In the Page Flow Wizard − Page Flow Name dialog, in the Page Flow Name field, enter
investigateJPF, and click Next.

2.

WebLogic Workshop Tutorials

Step 1: Begin the Page Flow Tutorial 251

In the Page Flow Wizard − Select Page Flow Type dialog, confirm that Basic page flow is selected.3.

Click Create.4.

A new page flow, investigateJPFController.jpf, is created along with one JSP page, index.jsp. When you
create a new page flow, it is automatically displayed in Flow View, a graphical representation of your page
flow.

WebLogic Workshop Tutorials

Step 1: Begin the Page Flow Tutorial 252

Flow View currently shows one Action method, named begin, and one JSP page, named index.jsp. The arrow,
labeled "success", that points from the Action method to the JSP page tells you that the begin method is a
navigational Action method: when the method is executed, it forwards users to the index.jsp page. (Not all
Action methods are navigational: Action methods can do anything that a Java method can do.)

Every page flow must have a begin method. The begin method is the first method executed when your page
flow is invoked by a web browser. When a user points a web browser at the page flow's URL

 http://localhost:7001/PageFlowTutorialWeb/investigateJPF/investigateJPFController.jpf

the begin method will be executed and the user will be forwarded to the index.jsp page.

To see the source code for the begin method, double−click the icon for the begin method.

The source code for the begin method is displayed in Source View.

Note that the begin method has two annotations within the Javadoc comment above the method signature:
@jpf:action and @jpf:forward. Javadoc was originally introduced as a way to specify inline documentation
that could be extracted and presented as HTML. WebLogic Workshop uses a variety of Javadoc annotations
to indicate how code should be treated at compile time and at run time. The @jpf:action annotation declares
that the method should be compiled as a Action method and that it should implement all of the functionality of
an Action method. The @jpf:forward annotation declares that the method has navigational functionality. In
this case, the @jpf:forward is able to forward users to the index.jsp page.

The begin method works as follows. (1) When the method is invoked, it returns a Forward object with the
parameter "success". (2) The WebLogic Workshop runtime then searches for a @jpf:forward annotation that
defines the destination corresponding to the parameter "success", in this case, the index.jsp page. When it
finds the destination, it forwards the user to the index.jsp page.

To Test the Page Flow

WebLogic Workshop Tutorials

Step 1: Begin the Page Flow Tutorial 253

Confirm that investigateJPFController.jpf is displayed in the main work area. (Throughout this
tutorial, to display a file in the main work area, double−click its icon on the Application tab.)

1.

Click the Start button, shown below.

The page flow builds and the Workshop Test Browser launches. Notice the address bar of the Test
Browser points to the page flow file investigateJPFController.jpf, but the browser displays the
index.jsp page. When you point a browser at a page flow file, it executes its begin() method. In this
case the begin() method forwards the user to the index.jsp page.

2.

Click the arrow to navigate to the next step in the tutorial.

WebLogic Workshop Tutorials

Step 1: Begin the Page Flow Tutorial 254

Step 2: Processing Data with Page Flows
In this step you will create the data processing elements of your page flow. The data processing of your page
flow consists of three parts: (1) accepting user requests for a credit report, (2) the retrieval of credit reports
from a web service, and (3) the storage of the credit reports within the page flow.

(1) The first task is accomplished through a Form Bean. Form Beans act as intermediaries between the
requests that users enter into JSP pages and your page flow. The data that users submit is typically stored in a
Form Bean, which is then passed to an Action method for further processing.

(2) The second task is accomplished through an Action method which requests and retrieves credit reports
from a web service.

(3) The third task is accomplished through a member variable. Member variables are Java objects that you
place on your page flow, typically to store some data content. In this case you will store the credit reports
retrieved from the web service, so that they can be displayed to the user.

The tasks in this step are:

To generate a WSDL file and a web service control•

To add a web service control•
To add an Action method and Form Bean•
To edit the Form Bean•
To edit the Action method•
To add a member variable•
To re−arrange the Flow View icons•

To Generate a WSDL File and a Web Service Control

In this step you will create a control for the InvestigateSync web service, which allows your page flow to
request and receive credit−worthiness reports from the web service.

On the Application tab, within the folder PageFlowTutorial/InvestigateWebService/investigateJWS,
right−click the web service InvestigateSync.jws and select Generate WSDL File.

1.

Step 2: Processing Data with Page Flows 255

The WSDL file InvestigateSyncContract.wsdl is created and placed into the folder investigateJWS.
On the Application tab, hold the mouse button down over the InvestigateSyncContract.wsdl file and
drag it into the PageFlowTutorial/PageFlowTutorialWeb/investigateJPF folder.

2.

On the Application tab, right−click the WSDL file InvestigateSyncContract.wsdl and select Generate
Service Control.

The control file, InvestigateSyncControl.jcx, is created and placed into the folder investigateJPF.

3.

To Add a Web Service Control

In this task you connect the page flow and the web service through the web service control you created in the
previous task.

WebLogic Workshop Tutorials

Step 2: Processing Data with Page Flows 256

Confirm that the investigateJPFController.jpf file is displayed in the main work area.1.
Click the Action View tab.2.
On the Application tab, click the InvestigateSyncControl.jcx file and drag and drop it into Action
View.

A new web service control is add to your page flow.

3.

Action View shows you the controls and their methods available to your page flow file. In this case,
one control is available containing four methods: cancelInvestigation, getCreditReport,
isReportReady, and requestCreditReport.

WebLogic Workshop Tutorials

Step 2: Processing Data with Page Flows 257

Press Ctrl+S to save your work.4.

To Add an Action Method and a Form Bean

In this task you will add an Action method that processes user requests for credit reports. This Action method
receives user input, retrieves a credit report from the InvestigateSync web service, and then forwards the user
to a JSP page where the credit report is displayed.

You will also add a Form Bean. Form Beans are used to separate the data presentation layer from the data
processing layer of your web application. Form Beans are used as intermediaries between the data that users
input into JSP pages and the Action methods. Instead of submitting the data directly to the Action method, the
data is first databound to a Form Bean and this Form Bean is then passed as a parameter to the Action
method. This helps to separate the presentation layer (i.e., the user input forms on the JSP pages) and the
processing layer (i.e., the Action methods), because the Form Bean can play a flexible, intermediary role.

Confirm that the investigateJPFController.jpf file is open and displayed.1.
Click the Action View tab.2.
Right−click within the grey area of the page flow picture and select New Action.3.

In the New Action dialog, in the Action section, in the Create New field enter pollForCreditReport.
In the Form Bean section, check Create New and enter PollForCreditReportForm.

4.

WebLogic Workshop Tutorials

Step 2: Processing Data with Page Flows 258

Click Ok.

A new Action method is added to your page flow file.

Note the Action method icon displays a small box on its lower right−hand corner. This indicates that
the Action method takes a Form Bean parameter. Form Beans are used as intermediaries between user
input and an Action method. When a user submits data from a JSP page, this data is loaded into a
Form Bean, and then this Form Bean is passed as a parameter to an Action method.

5.

Edit the Form Bean

In this task you will add a taxID field to the Form Bean. This field will carry the data that users input into the
JSP page (a page not yet created).

In Action View, right−click the icon for the method pollForCreditReport and select Edit Form Bean.1.

In the Edit Form Bean dialog, in the Property Name field, enter taxID.2.

WebLogic Workshop Tutorials

Step 2: Processing Data with Page Flows 259

Click Ok.3.

Before you move on to the next task, click the Source View tab, to see the code that has been generated. You
have just added one Action method and one Form Bean shown below.

Notice that the Action method pollForCreditReport takes the Form Bean parameter PollForCreditReportForm
form. Also notice that the Form Bean takes the form of an ordinary Java class with fields, and setter and getter
methods on those fields.

To Edit the Action Method

In this task you will add code to the pollForCreditReport Action method. The code you add has two purposes:

WebLogic Workshop Tutorials

Step 2: Processing Data with Page Flows 260

(1) it polls the web service for a credit report and (2) it controls user navigation.

Polling is a form of synchronous communication between a client and a web service. When a client polls a
web service it first asks the web service to begin some process. The client then waits some predetermined
amount of time after which it asks the web service if the process is complete. If the process is complete then
the client retrieves the result of the process; if the process is not complete, then the client continues to wait for
the process to be completed.

Confirm that investigateJPFController.jpf is displayed in the main work area.1.
Click the Action View tab.2.
On the Action View tab, click the link text for the pollForCreditReport method.

The source code for the pollForCreditReport method is displayed in Source View.

3.

Edit the pollForCreditReport to look like the following. Code to edit appears in red. (Note that the
code below mentions the "reponse.jsp" page, which will be added in the next tutorial step.)

4.

 /**
 * @jpf:action
 * @jpf:forward name="response" path="response.jsp"
 */
 protected Forward pollForCreditReport(PollForCreditReportForm form)
 throws java.lang.InterruptedException
 {
 /**
 * Request a credit report from the InvestigateSync
 * web service.
 */
 investigateSyncControl.requestCreditReport(form.taxID);

 /**
 * Poll the isReportReady method 20 times, once a second,
 * to check if the result is ready.
 */
 for(int i=0; i<20; i++)
 {
 /*
 * If the report is ready, get the credit report,
 * store it in m_applicant, and forward the user to
 * response.jsp.
 */
 if(investigateSyncControl.isReportReady() == true)
 {
 m_applicant = investigateSyncControl.getCreditReport();
 return new Forward("response");
 }
 else
 {
 /*
 * If the report is not ready, wait one second before
 * polling again.
 */
 Thread.sleep(1000,0);
 }
 }

WebLogic Workshop Tutorials

Step 2: Processing Data with Page Flows 261

 /*
 * The credit report was not delivered in the time allowed.
 * Store a message in the applicant object and Forward the user
 * to the response.jsp page.
 */
 m_applicant.message = "The Investigate Web Service did not respond it the time allowed.";
 return new Forward("response");
 }

Press Ctrl+S to save your work. (Note that you will see red jagged lines under some of the elements
of this code. This indicates that the compiler does not recognize these elements. In the next task you
will remove these red lines.)

5.

To Add a Member Variable

In this step you add a member variable to your page flow file. This member variable will store the credit
report provided by the InvestigateSync web service.

Confirm that the investigateJPFController.jpf file is open and displayed.1.
Click the Source View tab.2.
Add the following code to the body of investigateJPFController. (Note that the comment attached to
the code below mentions the "response.jsp" page. This JSP page will be added in the next step of the
tutorial.)

3.

 /**
 * The m_applicant object stores the credit report provided
 * by the InvestigateSync web service.
 * The tag on response.jsp is data bound to m_applicant.
 */
 public InvestigateSyncControl.Applicant m_applicant;

Click Ctrl+S to save your work.4.

Re−arrange the Flow View Icons

This task does not change the functionality of your page flow, but it does make it easier to understand how the
different parts of the page flow are related to one another.

Confirm that investigateJPFController.jpf is displayed in the main work area.1.
Click the Flow View tab.2.
By selecting and dragging Action method and JSP icons, arrange the elements as shown below.

Notice that the JSP page response.jsp is greyed out. This indicates that response.jsp is referred to by
the page flow file, but that it does not yet exist within the page flow folder. In the next task you will
create the response.jsp page within the page flow folder.

3.

WebLogic Workshop Tutorials

Step 2: Processing Data with Page Flows 262

Also notice that there is no way for a user to interact with the pollForCreditReport Action. In the next
step you will add a JSP page which will allow the user to submit requests to the pollForCreditReport
Action.

Related Topics

A Detailed Page Flow Example

Using Form Beans to Encapsulate Data

Using Polling as an Alternative to Callbacks

Tutorial: Web Services, Step 3: Add Support for Synchronous Communication

Click the arrow to navigate to the next step in the tutorial.

WebLogic Workshop Tutorials

Step 2: Processing Data with Page Flows 263

Step 3: Create the JSP Pages
In this step you complete the presentation components of your page flow. The presentation components
consist of two JSP pages: (1) request.jsp allows users to request a credit report and (2) response.jsp displays
the completed credit report to the user.

Page flows allow you to separate how your web application processes data from how it presents that data to
users. When data processing is separated from data presentation, it's much easier to re−use the data processing
aspects of the application in other contexts and to manage any future changes to your web application. Page
flows link data processing and data presentation by means of databinding. Databinding is accomplished
through the use of a special library of JSP tags that allow you to associate the presentation of data on the JSP
pages with the data processing inside the page flow file. The special library of JSP tags begin with the prefix
"netui−databinding".

The JSP pages you create in this step demonstrate two cases of databinding: (1) databinding when a user
submits data, (2) databinding when data is displayed to the user.

(1) The request.jsp page demonstrates databinding when a user submits data to a page flow. In this case, the
data that a user inputs into the request.jsp page is databound to a Form Bean. The Form Bean acts as an
intermediary between the submitted data and the Action method that consumes the data. This helps to separate
the presentation and processing layers, because changes to one layer do not necessitate changes to the other.
Instead, developers need only change the Form Bean that intermediates between the two layers.

(2) The response.jsp page demonstrates databinding for display to the user. In this case, you databind to a Java
object in order to render it as HTML in the browser. In particular, you will bind to the credit report (= the
m_applicant object) to render it as HTML on the response.jsp page.

The tasks in this step are:

To create the request page•
To create the response page•
To test the user interface•

To Create the Request Page

In this task you will rename the index.jsp page and add a user input form to the page. The form you add is
databound to the PollForCreditReportForm Form Bean. The Form Bean is used as an intermediary between
the data submitted by the user and the Action method that processes that data.

Confirm that the page flow file investigateJPFController.jpf is displayed in the main work area.1.
Click the Flow View tab.2.
Right−click the index.jsp icon and select Rename.3.

Step 3: Create the JSP Pages 264

In the editable field provided, replace the text index.jsp with the text request.jsp and press Enter.4.

Double−click the request.jsp icon to display the JSP file in the main work area in Design View.5.
On the Design View tab, right−click the text New Web Application Page and select Cut.6.

On the Palette tab, in the section labeled NetUI, select the Form icon and drag it into Design View.7.

WebLogic Workshop Tutorials

Step 3: Create the JSP Pages 265

The Form Wizard dialog appears.
In the Form Wizard − Choose Action dialog, confirm that Select Existing Action is selected and that
the Action Name field displays pollForCreditReport.

8.

Click Create.

A user input form is added to the request.jsp page.

9.

In Design View, select the gray pollForCreditReport button underneath the input box.10.

WebLogic Workshop Tutorials

Step 3: Create the JSP Pages 266

On the Properties Editor tab, in the value field and enter Submit (overwritting the text
pollForCreditReport).

11.

Press Enter.

Note the change that takes place in Design View.

12.

Click the Source View tab to view the code you have just added to request.jsp.13.

WebLogic Workshop Tutorials

Step 3: Create the JSP Pages 267

When a user submits this <netui:form>, two things occur: (1) the user's data is databound to a new
instance of the Form Bean PollForCreditReportForm and (2) this Form Bean instance is passed as a
parameter to the method pollForCreditReport.

The databinding is specified by the data binding expression {actionForm.taxID}. {actionForm....}
refers to the Form Bean; {actionForm.taxID} refers to the taxID field of the Form Bean.

The target method is specified by the attribute action="pollForCreditReport". The action attribute
specifies that the form submits its values to the pollForCreditReport method.

The following diagram shows how these expressions in request.jsp refer to elements in the page flow
file.

WebLogic Workshop Tutorials

Step 3: Create the JSP Pages 268

Press Ctrl+S to save your work, then press Ctrl+F4 to close request.jsp.14.

To Create the Response Page

In this task you will create a JSP page to display the credit report. You will render the credit report as an
HTML table.

Confirm that investigateJPFController.jpf is displayed in the main work area.1.
If necessary, click the Flow View tab.2.
Right−click the response.jsp icon and select Create.

A new JSP page, response.jsp, is created in the investigateJPF folder.

3.

Double−click the response.jsp icon.

The response.jsp page is displayed in the main work area in Design View.

4.

Click the Source View tab. Edit the source code so it looks like the following. Overwrite any code
that already exists in the response.jsp file.

5.

WebLogic Workshop Tutorials

Step 3: Create the JSP Pages 269

<%@ page language="java" contentType="text/html;charset=UTF−8"%>
<%@ taglib uri="netui−tags−databinding.tld" prefix="netui−data"%>
<%@ taglib uri="netui−tags−html.tld" prefix="netui"%>
<%@ taglib uri="netui−tags−template.tld" prefix="netui−template"%>
<netui:html>
 <head>
 <title>
 Investigate: Credit Report
 </title>
 </head>
 <body>
 <table border="1">
 <tr>
 <td colspan="2" bgcolor="#ccccff">
 Credit Report
 </td>
 </tr>
 <tr>
 <td>Tax ID Number:</td>
 <%−−
 The following netui:label tags use different databinding expressions to refer to
 different fields on the m_applicant object. The m_applicant object is a member variable
 of the page flow file investigateJPFController.jpf
 −−%>
 <td><netui:label value="{pageFlow.m_applicant.taxID}"/></td>
 </tr>
 <tr>
 <td>First Name</td>
 <td><netui:label value="{pageFlow.m_applicant.firstName}"/></td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td><netui:label value="{pageFlow.m_applicant.lastName}"/></td>
 </tr>
 <tr>
 <td>Available Credit Card Balance</td>
 <td><netui:label value="{pageFlow.m_applicant.availableCCCredit}"/></td>
 </tr>
 <tr>
 <td>Bankrupt?</td>
 <td><netui:label value="{pageFlow.m_applicant.currentlyBankrupt}"/></td>
 </tr>
 <tr>
 <td>Credit Score</td>
 <td><netui:label value="{pageFlow.m_applicant.creditScore}"/></td>
 </tr>
 <tr>
 <td>Approval Level</td>
 <td><netui:label value="{pageFlow.m_applicant.approvalLevel}"/></td>
 </tr>
 <tr>
 <td>Message</td>
 <td><netui:label value="{pageFlow.m_applicant.message}"/></td>
 </tr>
 </table>
 <p>Request another credit report
 </body>
</netui:html>

WebLogic Workshop Tutorials

Step 3: Create the JSP Pages 270

Note the <netui:label> tags in the code above. Each <netui:label> tag uses a databinding expression to
refer to different fields of the m_applicant object, a member variable of the page flow file
investigateJPFController.jpf.

The expression {pageFlow....} refers to the current pageFlow file: investigateJPFController.jpf.

The expression {pageFlow.m_applicant} refers to the member variable m_applicant on the current
page flow file.

The expressions {pageFlow.m_applicant.taxID}, {pageFlow.m_applicant.firstName}, etc. refer to
different fields of the m_applicant object. (The different fields of the m_applicant object are specified
by its data type: InvestigateSyncControl.Applicant. Open the InvestigateSyncControl.jcx file to see
this type.)
Press Ctrl+S to save your work, then press Ctrl+F4 to close response.jsp.6.

To Test the User Interface

Confirm that investigateJPFController.jpf is displayed in the main work area.1.
Click the Start button, shown below.

Your page flow is built and the Workshop Test Browser launches.

2.

In the Workshop Test Browser, in the TaxID field, enter the 9 digit number 333333333 and click
Submit.

Note: Use one of the following (9 digit) taxID's to test your page flow:

123456789, 111111111, 222222222, 333333333, 444444444, and 555555555.

The response.jsp page displays the results.

3.

WebLogic Workshop Tutorials

Step 3: Create the JSP Pages 271

Related Topics

Using Data Binding in Page Flows

Click one of the following arrows to navigate through the tutorial.

WebLogic Workshop Tutorials

Step 3: Create the JSP Pages 272

Step 4: Role−Based Security
In this step you will secure you page flow application using role−based security. You will restrict access to the
page flow to only those users who have been granted the Investigators role.

Any time you implement a role−based security strategy you must do two things: you must set up (1) an
authentication procedure and (2) an authorization procedure.

An authentication procedure verifies that an incoming user is who he says he is. In this case, the
authentication procedure will be based on a username/password challenge. A user who wants to access the
Investigate page flow will be asked to provide a matching username and password.

An authorization procedure decides whether a given (already authenticated) user has been granted the
necessary permissions to access a given resource. In this case, the authorization procedure will be based on
role membership. We will modify the Investigate page flow so that only users in the Investigators role can
access the page flow.

Note that the authorization procedure assumes that the authentication procedure has already been completed.
This is because a user's role membership can be decided only once his identity has been established by the
authentication procedure.

The tasks in this step are:

to set up an authentication procedure•
to set up an authorization procedure•
to add a test user•
to test the Investigate page flow•

Set up an Authentication Procedure

In this task you will place a security constraint on the Investigate page flow, a constraint that requires clients
to provide a valid username and password before they can access the Investigate page flow. You will use a set
of login JSP pages that are already included in the page flow application. The security constraint specifies that
users who try to access the Investigate page flow will be redirected to the login pages. If they successfully
login in they will be directed back to the page flow.

This sort of authentication procedure is sometimes called "Form−based" security, because of the HTML form
submitted from the login JSP pages. (Note that this sort of authentication procedure should not be used to log
in users once they have entered the page flow. This is because page flows do not support redirection away
from and back to the navigational Action methods within the page flow. But this kind of authentication
procedure can be used to login users before they enter the page flow.)

On the Application tab, double−click the file
PageFlowTutorial/PageFlowTutorialWeb/WEB−INF/web.xml.

1.

Add the following <security−constraint>, <login−config> and <security−role> elements to the
web.xml file. Add the elements immediately before the closing </web−app> tag. Code to add is
shown in red. Do not add code shown in black.

2.

 <taglib>
 <taglib−uri>netui−tags−template.tld</taglib−uri>
 <taglib−location>/WEB−INF/netui−tags−template.tld</taglib−location>

Step 4: Role−Based Security 273

 </taglib>

<!−−
 The following <security−constraint> element specifies which web resource should be protected.
 It also specifies that only users granted the Users role can access the resource.
 Note that this role restriction is "toothless" because any successfully logged in user
 will automatically pass the role restriction (since all logged in users are members of the 'users'
 group, which is mapped to the Users role).
 The purpose of the role restriction is its side effect: it causes WebLogic Server to login candidate users
 to the web resource.
 −−>
 <security−constraint>
 <web−resource−collection>
 <web−resource−name>The Investigate Page Flow</web−resource−name>
 <description>
 Protect the following web resources with a username / password challenge.
 </description>
 <url−pattern>/investigateJPF/investigateJPFController.jpf</url−pattern>
 <http−method>GET</http−method>
 <http−method>POST</http−method>
 </web−resource−collection>
 <auth−constraint>
 <description>
 These are the roles who have access the web resources above.
 </description>
 <role−name>
 Users
 </role−name>
 </auth−constraint>
 <user−data−constraint>
 <description>
 This is how the user data must be transmitted.
 </description>
 <transport−guarantee>NONE</transport−guarantee>
 </user−data−constraint>
 </security−constraint>

 <!−−
 Log users in with "Form−based" authentication.
 Use the JPS pages login.jsp and fail_login.jsp
 to login candidate users.
 −−>
 <login−config>
 <auth−method>FORM</auth−method>
 <realm−name>default</realm−name>
 <form−login−config>
 <form−login−page>/login_pages/login.jsp</form−login−page>
 <form−error−page>/login_pages/fail_login.jsp</form−error−page>
 </form−login−config>
 </login−config>

 <!−−
 The following <security−role> element declares the Users role
 so that it can be mapped to the users principal. For the mapping
 see weblogic.xml.
 −−>
 <security−role>
 <description>
 The Users role is mapped to the users group, a pre−defined principal in WebLogic Server's
 default authentication provider. For the mapping see weblogic.xml.
 </description>

WebLogic Workshop Tutorials

Step 4: Role−Based Security 274

 <role−name>
 Users
 </role−name>
 </security−role>

</web−app>

On the Application tab, double−click the WEB−INF/weblogic.xml file.3.
Add the following <security−role−assignment> element to weblogic.xml. Make sure to add the code
directly after the opening <weblogic−web−app> tag. Code to add is shown in red. Do not add code
shown in black.

<weblogic−web−app>

<!−−
 Grants the Users role to clients who possess the users principal.

 The users group is a pre−defined pricipal in the WebLogic Server default authentication provider.
 All clients who log in with a valid username/password pair automatically
 possess the users principal.

 Since logged in clients automatically possess the users principal,
 and the <security−role−assignment> below grants the Users role to anyone possessing
 the users principal, anyone who logs in with a valid username/password pair
 is automatically granted the Users role.
 −−>
 <security−role−assignment>
 <role−name>Users</role−name>
 <principal−name>users</principal−name>
 </security−role−assignment>

 <jsp−descriptor>
 <!−− Comment the jspServlet param out to go back to weblogic's jspc −−>
 <jsp−param>
 <param−name>jspServlet</param−name>
 <param−value>weblogic.servlet.WlwJSPServlet</param−value>
 </jsp−param>
 <jsp−param>
 <param−name>debug</param−name>
 <param−value>true</param−value>
 </jsp−param>
 </jsp−descriptor>

 <url−match−map>
 weblogic.servlet.utils.SimpleApacheURLMatchMap
 </url−match−map>
</weblogic−web−app>

In web.xml, the <auth−constraint> element, standing for authorization constraint, states that clients
must be granted the Users role in order to access the Investigate page flow. It may seem strange to set
up an authorization procedure at this point. Wasn't the idea to set up an authentication procedure?
There is a trick here: the presence of the <auth−constraint> element causes WebLogic Server to both
authenticate and authorize the client. WebLogic Server first asks the candidate user for a
username/password pair; second WebLogic Server applies the authorization procedure called for by
the <auth−constraint>.

Also note that any client who passes the username/password challenge automatically passes the
authorization procedure. This is because any client with a valid username/password pair is

4.

WebLogic Workshop Tutorials

Step 4: Role−Based Security 275

automatically granted the users principal by WebLogic Server (users is a pre−configured principal in
WebLogic Server) and the users principle is mapped to the Users role in weblogic.xml. So at this
point we have set up a authentication procedure that challenges clients for a username and password
and a "toothless" authorization procedure that an authenticated client will automatically pass. We will
set up the "real" authorization procedure below.
Press Ctrl+S to save your work. Press Ctrl+F4 twice to close web.xml and weblogic.xml.5.

Set up an Authorization Procedure

In this task you will place an authorization constraint on the Investigate page flow, such that only those users
who have been granted the role of Investigator will be able to gain access to the Investigate page flow.

Confirm that investigateJPFController.jpf is displayed in the main work.1.
Click the Flow View tab, if necessary.2.
In Flow View, click a spot within the white space to confirm that the page flow file as a whole is
selected.

3.

On the Property Editor tab, in the Roles Allowed property, enter Investigator.4.

Press Enter.5.
Press Ctrl+S to save your work.6.

Declare the Investigator Security Role, Add a Test User, and Map this User to the Investigator Security Role

In this task you do three things. First, you will declare the security role Investigator. This role is a
scoped−role. It is scoped at the application level. Application−scoped roles are declared in the
META−INF/application.xml file. (This file does not appear on the Application tab by default, but, if you
wish, you can see this file by opening PageFlowTutorial/META−INF/application.xml using your operating
system.) Second, you will add a test user with the same name: Investigator. Third you will map this user to the
security role. (The mapping is declared in the PageFlowTutorial/META−INF/weblogic−application.xml file)

WebLogic Workshop Tutorials

Step 4: Role−Based Security 276

On the Application tab right−click the Security folder and select Create new role.1.

In the New Security Role dialog, in the Name field, enter Investigator. In the section labeled
Principal Name, ensure that Use role name is selected.

2.

Click Ok.

The New Security Role dialog has three effects:

(1) A new (application−scoped) role is added to the application.

(2) A new user is added to the WebLogic Workshop security framework. When "Use role name" is
selected, this user has the same name as the role. By default, the password for this user is password.

(3) The user is mapped to the role.

(For more information on creating security users and roles with the New Security Role dialog, see the
help topic How Do I: Create An Application−Scoped Security Role?)

3.

Test the Investigate Page Flow

Test for Successful Authentication and Successful Authorization

In this test you will ensure that users who have been granted the role of Investigator can pass both the

WebLogic Workshop Tutorials

Step 4: Role−Based Security 277

authentication procedure and authorization procedure.

Confirm that investigateJPFController.jpf is displayed in the main work area.1.
Right−click the folder PageFlowTutorialWeb and select Build PageFlowTutorialWeb. (It is a good
idea to re−compile your web application project after making changes to the configuration files
web.xml and weblogic.xml. This helps ensure that the web application properly deploys to WebLogic
Server.)

2.

Click the Start button.

The Investigate page flow builds and the login.jsp page launches.

3.

In the login.jsp page, in the Username field, enter Investigator.
In the Password field, enter password.
Click Submit.

4.

In the Workshop Test Browser, in the TaxID field, enter the 9 digit number 222222222 and click
Submit.

The credit report is retrieved and displayed.

5.

Close the Workshop Test Browser.6.

Test for Successful Authentication but Failed Authorization

In this test you will ensure that users who have not been granted the role of Investigator do not pass the
authorization process. You will do this by logging in as the user 'weblogic'. This user will pass the
authentication procedure, since it is a user know to the WebLogic Security authentication provider. But
'weblogic' has not been granted the Investigator role, so it will fail the the authorization procedure.

Confirm that investigateJPFController.jpf is displayed in the main work area.1.
Click the Start button.

The Investigate page flow builds and the login.jsp page launches.

2.

In the login.jsp page, in the Username field, enter weblogic.
In the Password field, enter weblogic.
Click Submit

3.

WebLogic Workshop Tutorials

Step 4: Role−Based Security 278

The Workshop Test Browser displays the following error.

Close the Workshop Test Browser.4.

Test For Failed Authentication and Failed Authorization

In this test you will ensure that users that are unknown to the WebLogic Server authentication provder cannot
successfully login.

Confirm that investigateJPFController.jpf is displayed in the main work area.1.
Click the Start button.

The Investigate page flow builds and the login.jsp page launches.

2.

In the login.jsp page, in the Username field, enter wrong_user.
In the Password field, enter wrong_password.
Click Submit

The Workshop Test Browser displays the failed_login.jsp page.

3.

Related Topics

Role−Based Security

Handling Exceptions in Page Flows

WebLogic Workshop Tutorials

Step 4: Role−Based Security 279

Click one of the following arrows to navigate through the tutorial.

WebLogic Workshop Tutorials

Step 4: Role−Based Security 280

Summary: Page Flow Tutorial
This tutorial introduced you to the basics of building web applications with WebLogic Workshop page flows.

Concepts and Tasks Introduced in This Tutorial

JSP files make up the presentation layer of a web application•
JPF files contain the code, individual Action methods, that determines the major features of a
Workshop web application: how users navigate from page to page, and how data moves around the
application.

•

User input data is data bound to Form Beans before the data is submitted to an Action method.•
Built−in Workshop Java controls (web service controls, database controls, etc.) and custom Java
controls (JCS files) provide access to the back−end data resources of a web application.

•

You can use the <netui...> tag library to data bind to Java objects and render them as HTML.•

Related Topics

Getting Started with Page Flows

Click the arrow to navigate through the tutorial:

Summary: Page Flow Tutorial 281

Tutorial: Building Your First Business Process
WebLogic Integration's business process management (BPM) functionality enables the integration of diverse
applications and human participants, as well as the coordinated exchange of information between trading
partners outside of the enterprise.

This tutorial provides a tour of the features available to design business processes in the WebLogic Workshop
graphical design environment. It describes how to create a business process that orchestrates the processing of
a Request for Quote.

Tutorial Goals

The goal of the tutorial is to provide the steps to create and test a business process using the graphical
environment provided in WebLogic Workshop. It includes:

Designing communication nodes in a business process�that is, creating the interface between your
business process and its clients and resources. Clients of business processes can be any other
resources or services that invoke business processes to perform one or more operations.

•

Designing the interactions with clients, including creating the methods that expose your business
process's functionality.

•

Designing the interactions with resources using controls. WebLogic Platform controls make it easy to
access enterprise resources, such as databases, Enterprise Java Beans (EJBs), Web services, and other
business processes (including those that use RosettaNet and ebXML business processes) from within
your application.

•

Handling XML, non−XML, and Java data types in the business process�includes working with XML
schemas and transforming data between disparate data types using the Transformation tool.

•

Designing business processes to publish and subscribe to message broker channels.•

Tutorial: Building Your First Business Process 282

Tutorial: Building Your First Data Transformation
Data transformation is the mapping and conversion of data from one format to another. For example, XML
data can be transformed from XML data valid to one XML Schema to another XML document valid to a
different XML Schema. Other examples include the data transformation from non−XML data to XML data.
This tutorial introduces the basics of building a data transformation by describing how to create and test a
XML−to−XML data transformation using WebLogic Workshop.

In WebLogic Integration business processes, a data transformation transforms data using queries (written in
the XQuery language). This tutorial describes the steps for building a query in the XQuery language�a
language defined by the World Wide Web Consortium (W3C) that provides a vendor independent language
for the query and retrieval of XML data.

To learn about the XQuery language, see the XQuery 1.0: An XML Query Language Specification − W3C
Working Draft 16 August 2002 at the W3C web site at the following URL:

http://www.w3.org/TR/2002/WD−xquery−20020816

The WebLogic XQuery engine invoked by a business process conforms to the August 16, 2002 draft of the
XQuery Specification.

To learn more about XML and XML Schemas, see Java and XML Basics.

The data transformation created in this tutorial is invoked in the RequestQuote business process. This
business process is created to meet the business needs of an enterprise. The enterprise starts the business
process as a result of receiving a Request for Quote from clients, checks the enterprise's inventory and pricing
systems to determine whether the order can be filled, and sends a quote for the requested items to the client.
To learn more about creating business processes and the RequestQuote business process, see Tutorial:
Building Your First Business Process.

The following figure shows the flow of data in the RequestQuote business process of the Tutorial Process
application.

Tutorial: Building Your First Data Transformation 283

The purpose of the RequestQuote business process is to provide price and availability information for a set of
widgets. The flow of the data through the RequestQuote business process is represented by the following
steps:

The business process receives the set of widget IDs.1.
The business process determines the tax rate for the shipment and puts the result in the taxRate float
business process variable.

2.

The business process gets the price of each of the requested widgets from a source and places the
resulting XML data into the priceQuote business process variable. (This XML data is valid to the
XML Schema in the PriceQuote.xsd file.)

3.

The business process gets information about availability for the widgets from another source and
places the resulting XML data into the availQuote business process variable. (This XML data is valid
to the XML Schema in the AvailQuote.xsd file.)

4.

The business process invokes the Combine Price and Avail Quotes node. The Combine Price and
Avail Quotes node calls the myJoin Transformation method stored in the Transformation file called
MyTutorialJoin.dtf file. The business process passes the values of the priceQuote, availQuote, and
taxRate business process variables to the myJoin method. The myJoin method invokes the query
written in the XQuery language and stored in the myJoin.xq file. The query merges all the price,
availability, and tax rate information into a single set of XML data and returns the result as the return
value of the myJoin method. The data returned from this myJoin method is valid to the XML Schema
in the Quote.xsd file. After the myJoin method is invoked, the Combine Price and Avail Quotes
node assigns the resulting XML data to the Quote business process variable.

5.

Tutorial Goals

The tutorial provides steps to create and test a transformation using the graphical environment provided in

WebLogic Workshop Tutorials

Tutorial: Building Your First Data Transformation 284

WebLogic Workshop. Specifically, in this tutorial you will create the following:

The MyTutorialJoin Transformation file.•
The myJoin Transformation method in the MyTutorialJoin Transformation file.•
The query invoked by the myJoin Transformation method. This query is stored in the XQ file called
myJoin.xq.

•

Steps in This Tutorial

Follow the steps in this tutorial to create and test a data transformation. Specifically, the steps include:

Step 1: Getting Started

Describes how to load the prepackaged Tutorial Process Application.

Step 2: Building the Transformation

Provides a step−by−step procedure to create and select source and target types for a Transformation method.

Step 3: Mapping Elements and Attributes

Provides a step−by−step procedure to create mappings between source and target elements and attributes in a
Transformation method.

Step 4: Mapping Repeating Elements�Creating a Join

Provides a step−by−step procedure to add a join between repeating elements to the Transformation method.

WebLogic Workshop Tutorials

Tutorial: Building Your First Data Transformation 285

Portal Tutorials
The following tutorials highlight the processes and features of portal development with the WebLogic
Workshop Portal Extensions.

Building Your First Portal

Changing a Portal's Look & Feel and Navigation

Showing Personalized Content in a Portlet

Creating a Login Control Page Flow

Using Page Flows Inside Portlets

Related Topics

Portal Samples

Portal Tutorials 286

Tutorial: Building Your First Portal
This tutorial guides you through the brief process of creating a portal with working portlets. The tutorial takes
about 15 minutes to complete.

Tutorial Goals

At the end of this tutorial you will have built a fully functional portal in a short time with little effort.

Tutorial Overview

The WebLogic Workshop Portal Extensions include a graphical Portal Designer that lets you surface
application functionality easily and quickly in a sophisticated portal interface. Sample portlets included with
the WebLogic Workshop Portal Extensions provide instant, reusable functionality for a portal, as this tutorial
illustrates.

Steps in This Tutorial

Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server — 5 minutes

In this step you start WebLogic Workshop, open the sample portal application, and start WebLogic Server.

Step 2: Create a Portal − 10 minutes

In this step you create a portal file for an existing portal project, add a page to the portal, add portlets to the
pages, and view your finished portal.

Click the following arrow to navigate through the tutorial:

Tutorial: Building Your First Portal 287

Step 1: Start WebLogic Workshop, Open an
Application, and Start WebLogic Server
In this step, you will start the development environment for building a portal.

The tasks in this step are:

Start WebLogic Workshop•
Open the Sample Portal Application•
Start WebLogic Server•

Start WebLogic Workshop

Windows − Choose Start−−>Programs−−>BEA WebLogic Platform 8.1−−>WebLogic Workshop.
The start script is located in the <BEA_HOME>/weblogic81/workshop directory.

•

Open the Sample Portal Application

The portal application you open contains all the necessary portal resources to complete the tutorial. In Java 2
Enterprise Edition (J2EE) terms, this application is an enterprise application that contains Web applications
and related resources. Each Web application can contain multiple portals.

In the WebLogic Workshop menu, choose File−−>Open−−>Application.1.
In the Open Workshop Application dialog, select the
<BEA_HOME>\weblogic81\samples\portal\portalApp\portalApp.work file and click Open.

The portalApp application directory tree appears in the Application window.

2.

Start WebLogic Server

To develop portals and portal applications in WebLogic Workshop, WebLogic Server must be running on
your development machine. For this tutorial, you will start the domain server used by the WebLogic Portal
samples. The portalApp application you opened in the previous step contains all the necessary server
configuration settings. To start WebLogic Server:

In the WebLogic Workshop menu, choose Tools−−>WebLogic Server−−>Start WebLogic Server.

On Windows systems, you can bring up the command window from the Windows task bar to watch
the startup progress. When the server starts, the WebLogic Workshop status bar shows the message
"Server Running."

•

Click one of the following arrows to navigate through the tutorial:

Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server 288

Step 2: Create a Portal
In this step, you will create a portal file for an existing portal project, add a page to the portal, add portlets to
the pages, and view your finished portal.

The tasks in this step are:

Create a Portal File•
Add a Page to the Portal•
Add a Portlet to the Portal•
View the Portal•

Create a Portal File

A portal file is an XML file that contains all configuration information for a portal. The XML file is rendered
graphically in the Portal Designer of the WebLogic Workshop Portal Extensions. As you build the portal in
the graphical interface, the XML is generated automatically behind the scenes. To create a portal file:

In the Application window, right−click the sampleportal project and choose New−−>Portal.1.
In the New File dialog, enter my.portal in the File name field. You must keep the file extension.2.
Click Create.3.

The new file is added to the sampleportal project, and a new portal file appears in the Portal Designer. The
new portal has a header, footer, and a main body containing a default book and page. The Document Structure
window displays the component hierarchy.

Add a Page to the Portal

A new portal already contains a page. In this step you will add a second page to your portal and rename the
tabs of both pages.

In the Palette window, drag the Page control into the Portal Designer next to the existing page tab. A
page tab called "New Page" appears.

1.

Click the New Page tab.2.
In the Property Editor window, change the page's Title property to My Page 2.3.
In the Portal Designer, click the Page 1 tab.4.
In the Property Editor window, change the page's Title property to My Page 1 and press Enter.5.

Add a Portlet to the Portal

In this step you will add a pre−built sample portlet from the sampleportal project to each page.

In the Portal Designer, click the My Page 1 tab.1.
In the Data Palette window, drag the Login to Portal portlet into the left placeholder of My Page 1.2.
In the Portal Designer, click the My Page 2 tab.3.
In the Data Palette window, drag the RSS News Feed into the left placeholder of My Page 2 and the
Dev2Dev portlet into the right placeholder.

Note: The RSS News Feed portlet requires an Internet connection to access the content feed.

4.

Save the portal file.5.

Step 2: Create a Portal 289

View the Portal

You can view your portal with the WebLogic Test Browser or with your default browser.

WebLogic Test Browser − In the WebLogic Workshop toolbar, click the Start button (or press
Ctrl+F5). Navigate between the portal pages using the My Page 1 and My Page 2 links.

•

Default Browser − In the WebLogic Workshop menu, choose Portal−−>Open Current Portal.
Navigate between the portal pages using the My Page 1 and My Page 2 links.

•

Congratulations! You have built a portal.

What You Can Do Next

The portal development lifecycle involves development with the WebLogic Workshop Portal Extensions and
administration with the WebLogic Administration Portal. The tutorial you have just completed covers the
development phase. The following steps instructions for starting a tutorial that covers the administration
phase. The second phase of the portal−building process involves administering the portal you have created. To
run a companion tutorial for administering a portal:

In the WebLogic Workshop menu, choose Portal−−>Open Portal Administration.1.
Log in with Username: weblogic Password: weblogic.2.
When the Administration Portal appears, click Show Help in the upper left corner of the window.3.
In the Help window, click the Tutorials tab, select Build Your First Portal, and follow the tutorial.4.

Related Topics

Developing Portal Applications

Building Portlets

Portal Samples

Click the following arrow to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Create a Portal 290

Tutorial: Changing a Portal's Look & Feel and
Navigation
This tutorial shows you how easy it is to modify the look and feel of a portal and modify the navigation style
used for the portal pages. The tutorial takes about 10 minutes to complete.

Tutorial Goals

At the end of this tutorial you will have changed the look and feel and page navigation style of a portal.

Tutorial Overview

This tutorial involves modifying two elements of a portal's physical appearance and behavior: look and feel,
and navigation.

The WebLogic Workshop Portal Extensions provide a flexible, extensible architecture for controlling the look
and feel and page navigation in a portal. A portal look and feel is made up of a skin (graphics, a cascading
style sheet, and JavaScript functions) and skeletons (JSP files that determine the rendering�the physical
boundaries�of individual portal components, such as desktops, pages, and portlets).

Ultimately the look and feel of a portal, and its navigation style, are determined by the portal administrator
and end users. All look and feel and navigation resources that are available to developers in the WebLogic
Workshop Portal Extensions are also available to delegated administrators in the WebLogic Administration
Portal and to end users in the Visitor Tools when the portal is put into production.

When an administrator creates a desktop based on a .portal file in the WebLogic Administration Portal, that
portal is decoupled from the development environment and can be modified as needed by the administrator,
and in turn by end users when the portal is put into production. The initial look and feel and navigation
settings you provide in development serve as the default settings for portal administrators and end users. This
tutorial merely shows how easy it is to change look and feel and navigation elements in the development
environment.

Steps in This Tutorial

Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server — 5 minutes

In this step you start WebLogic Workshop, open the sample portal application, and start WebLogic Server.

Step 2: Change the Portal Look and Feel and Navigation — 5 minutes

In this step you change a portal's look and feel and page navigation style.

Click the following arrow to navigate through the tutorial:

Tutorial: Changing a Portal's Look & Feel and Navigation 291

Step 1: Start WebLogic Workshop, Open an
Application, and Start WebLogic Server
In this step, you will start the development environment for working with portals.

The tasks in this step are:

Start WebLogic Workshop•
Open the Sample Portal Application•
Start WebLogic Server•

Start WebLogic Workshop

Windows − Choose Start−−>Programs−−>BEA WebLogic Platform 8.1−−>WebLogic Workshop.
The start script is located in the <BEA_HOME>/weblogic81/workshop directory.

•

Open the Sample Portal Application

The portal application you open contains all the necessary portal resources to complete the tutorial. In Java 2
Enterprise Edition (J2EE) terms, this application is an enterprise application that contains Web applications
and related resources.

In the WebLogic Workshop menu, choose File−−>Open−−>Application.1.
In the Open Workshop Application dialog, select the
<BEA_HOME>\weblogic81\samples\portal\portalApp\portalApp.work file and click Open.

The portalApp application directory tree appears in the Application window.

2.

Start WebLogic Server

To develop portals and portal applications in WebLogic Workshop, WebLogic Server must be running on
your development machine. For this tutorial, you will start the domain server used by the WebLogic Portal
samples. The portalApp application you opened in the previous step contains all the necessary server
configuration settings. To start WebLogic Server:

In the WebLogic Workshop menu, choose Tools−−>WebLogic Server−−>Start WebLogic Server.

On Windows systems, you can bring up the command window from the Windows task bar to watch
the startup progress. When the server starts, the WebLogic Workshop status bar shows the message
"Server Running."

•

Click one of the following arrows to navigate through the tutorial:

Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server 292

Step 2: Change the Portal Look & Feel and Navigation
In this step, you will change a portal's look and feel, change the navigation scheme for the portal pages, and
view the results.

The tasks in this step are:

Open the Sample Portal•
View the Portal in a Browser•
Add a Book to the Main Page Book•
Change the Portal's Look and Feel•
Change the Portal's Navigation•
View the Modified Portal in a Browser•

Open the Sample Portal

The Sample portal is included with the WebLogic Workshop Portal Extensions. It contains a set of pre−built
sample portlets you can reuse in your own portals. You will change the Sample portal's look and feel and page
navigation scheme.

In the Application window, expand the sampleportal folder.1.
Double−click sample.portal. The portal file opens in the Portal Designer.2.

View the Portal in a Browser

In this step, view the existing look and feel and navigation of the Sample portal to see what it looks like
before you change it.

In the WebLogic Workshop toolbar, click the Start button (or press Ctrl+F5) to view the portal in the
Workshop Test Browser.

Click the page navigation tabs and note the behavior.

1.

Close the WebLogic Test Browser.2.

Add a Book to the Main Page Book

In the Palette window, drag the Book control into the Main Page Book area of the Portal Designer,
next to My Page. A new book appears in the main page book.

Do NOT drag the Book control into a placeholder on one of the pages.

1.

Click the New Book tab. Notice that it automatically contains a new page as well.2.

Change the Portal's Look and Feel

In the Document Structure window, click Desktop.1.
In the Property Editor window, change the Look and Feel property from avitek to Classic.2.

Change the Portal's Navigation

In the Document Structure window, click Book: Main Page Book.1.

Step 2: Change the Portal Look & Feel and Navigation 293

In the Property Editor window, change the Navigation property from Single Level Menu to Multi
Level Menu. Multi−level menus display links to nested books and pages with drop−down navigation.

2.

Save the portal file.3.

View the Modified Portal in a Browser

You can view the portal with the WebLogic Test Browser or with your default browser.

WebLogic Test Browser − In the WebLogic Workshop toolbar, click the Start button (or press
Ctrl+F5).

•

Default Browser − In the WebLogic Workshop menu, choose Portal−−>Open Current Portal.•

Use the page and book navigation links and note the different navigation behavior. The New Book link should
provide a drop−down navigation menu to access the page it contains.

Congratulations! You have changed a portals look and feel and page navigation style.

Related Topics

Changing a Page Layout

Creating Look and Feels

Click the following arrow to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Change the Portal Look & Feel and Navigation 294

Tutorial: Showing Personalized Content in a Portlet
This tutorial has you develop personalization functionality and surface that functionality in a portlet. The
tutorial takes about 30 minutes to complete.

Tutorial Goals

At the end of this tutorial you will have created a portlet that displays different personalized content to
different users.

Tutorial Overview

The WebLogic Workshop Portal Extensions include a graphical Portal Designer that lets you create and
surface application functionality easily and quickly in a sophisticated portal interface. In this tutorial you will
use the WebLogic Workshop Portal Extensions and the WebLogic Administration Portal to create the users,
properties, content, and code that results in a complete personalization solution. You will perform minimal
JSP development using Portal JSP tags in an easy−to−use, integrated interface.

Steps in This Tutorial

Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server — 5 minutes

In this step you start WebLogic Workshop, open the sample portal application, and start WebLogic Server.

Step 2: Create a User Profile Property Set — 5 minutes

In this step you will create the user properties that uniquely identify authenticated users and determine what
the users see.

Step 3: Create Two Users — 5 minutes

In this step you will create two test users and assign property values to them.

Step 4: Load Content— 5 minutes

In this step you will load content into the BEA Virtual Content Repository.

Step 5: Create a JSP — 1 minute

In this step you will create a JSP file.

Step 6: Add Content Selectors to the JSP — 10 minutes

In this step you will add JSP tags to the JSP to enable personalization.

Step 7: Create a Portlet with the JSP — 1 minute

In this step you will create a portlet out of the JSP and add it to an existing portal.

Tutorial: Showing Personalized Content in a Portlet 295

Step 8: Test the Personalized Portlet — 5 minutes

In this step you will log in as both users to see the personalized portlet in action.

Click the following arrow to navigate through the tutorial:

WebLogic Workshop Tutorials

Tutorial: Showing Personalized Content in a Portlet 296

Step 1: Start WebLogic Workshop, Open an
Application, and Start WebLogic Server
In this step, you will start the development environment for working with portals.

The tasks in this step are:

Start WebLogic Workshop•
Open the Sample Portal Application•
Start WebLogic Server•

Start WebLogic Workshop

Windows − Choose Start−−>Programs−−>BEA WebLogic Platform 8.1−−>WebLogic Workshop.
The start script is located in the <BEA_HOME>/weblogic81/workshop directory.

•

Open the Sample Portal Application

The portal application you open contains all the necessary portal resources to complete the tutorial. In Java 2
Enterprise Edition (J2EE) terms, this application is an enterprise application that contains Web applications
and related resources.

In the WebLogic Workshop menu, choose File−−>Open−−>Application.1.
In the Open Workshop Application dialog, select the
<BEA_HOME>\weblogic81\samples\portal\portalApp\portalApp.work file and click Open.

The portalApp application directory tree appears in the Application window.

2.

Start WebLogic Server

To develop portals and portal applications in WebLogic Workshop, WebLogic Server must be running on
your development machine. For this tutorial, you will start the domain server used by the WebLogic Portal
samples. The portalApp application you opened in the previous step contains all the necessary server
configuration settings. To start WebLogic Server:

In the WebLogic Workshop menu, choose Tools−−>WebLogic Server−−>Start WebLogic Server.

On Windows systems, you can bring up the command window from the Windows task bar to watch
the startup progress. When the server starts, the WebLogic Workshop status bar shows the message
"Server Running."

•

Click one of the following arrows to navigate through the tutorial:

Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server 297

Step 2: Create a User Profile Property Set
In this step, you will create a user profile property set. This property set will contain properties that can be set
for all users. Each user can have different property values. In this tutorial, property values determine the
personalized content users see.

The tasks in this step are:

Create a Property Set File•
Add a Property to the Property Set•

Create a Property Set File

In the Application window, expand the data project.1.
Right−click the userprofiles folder, and choose New−−>User Profile Property Set.2.
In the New File dialog, enter userpreferences.usr in the File name field. You must keep the file
extension.

3.

Click Create. The Property Set Designer appears.4.

Add a Property to the Property Set

In the Palette window, drag the Single Restricted icon into the Property Set Designer.1.
In the Property Editor window, enter the following text in the Property Name field: Graphic
Preference.

2.

Click the ellipsis icon [...] in the Value(s) field.3.
In the Enter Property Value dialog, enter modern in the top field and click Add. Enter classic in the
top field and click Add.

4.

Click OK.5.
Save and close the property set file.6.

Click one of the following arrows to navigate through the tutorial:

Step 2: Create a User Profile Property Set 298

Step 3: Create Two Users
In this step, you will create two test users that have different preferences set in their user profiles. When you
log in as each user at the end of the tutorial, each users will see different content displayed in the portlet based
on their different user profile property values.

The tasks in this step are:

Start the WebLogic Administration Portal•
Create Two Users and Set Their Profile Preferences•

Start the WebLogic Administration Portal

In the WebLogic Workshop menu, choose Portal−−>Open Portal Administration.1.
Log in with Username: weblogic Password: weblogic.2.
When the WebLogic Administration Portal appears, select Users & Groups under Users, Gropus, &
Roles in the top Menu in the editor pane.

3.

Create Two Users and Set Their Profile Preferences

In the Users & Groups resource tree, click everyone (All Users).1.
Select the Add Users page in the editor pane.2.
Click Create New User in the main window.3.
In the Add a New User dialog that appears, enter modernuser, enter a password of password (which is
the default), and click Add New User. A confirmation message appears at the top of the Add Users
page.

4.

Create a second user called classicuser with a password of password.5.
Select the Edit Users page.6.
In section 1 of the page, enter an asterisk (*) in the Search field and click Search.7.
In section 2 of the page,click the classicuser name. The Editing User window appears.8.
Select the Edit User Profile Values page.9.
In the Properties from property set field, select userpreferences. This is the property set you created.10.
Expand the Graphic Preference property line. Change the Graphic Preference property value to
classic, and click Update Value.

11.

In the left resource tree, select everyone (All Users).12.
In section 1 of the page, enter an asterisk (*) in the Search field and click Search.13.
In section 2 of the page,click the modernuser name. The Editing User window appears.14.
On the Edit User Profile Values page, change the user's Graphic Preference to modern, and click
Update Value.

15.

You now have two users with different user profile preferences.

Click one of the following arrows to navigate through the tutorial:

Step 3: Create Two Users 299

Step 4: Load Content
In this step, you will load sample content into the Virtual Content Repository that will be used later in this
tutorial. This step requires WebLogic Server to be running, as described in Step 1.

Open a command window and change to the following directory:

<BEA_HOME>\weblogic81\portal\bin

1.

Enter the following command:

load_cm_data.cmd

or

sh load_cm_data.sh

2.

The script loads sample content into the sample domain's Virtual Content Repository under the default "BEA
Repository." You can view this sample content in the WebLogic Administration Portal using the following
steps:

Choose Portal−−>Open Portal Administration in WebLogic Workshop or by entering
http://localhost:7001/portalAppAdmin in a browser.

1.

Log in as weblogic/weblogic.2.
In the WebLogic Administration Portal, select Content in the top Menu in the editor pane.3.
In the left resource tree, expand the BEA Repository.4.

Click one of the following arrows to navigate through the tutorial:

Step 4: Load Content 300

Step 5: Create a JSP
In this step, you will create a Java Server Page (JSP) that will display the personalized content in a portlet.

The tasks in this step are:

Create a JSP•

Create a JSP

In WebLogic Workshop, right−click the sampleportal project in the Application window and choose
New−−>JSP File.

1.

In the New File dialog, enter myp13n.jsp in the File name field. You must keep the file extension.2.
Click Create. A new JSP file appears.3.
Click the Source View tab at the bottom of the JSP Designer, and delete the text and tags that appear
inside the <body> tag.

4.

Click the Design View tab at the bottom of the JSP Designer.5.

Click one of the following arrows to navigate through the tutorial:

Step 5: Create a JSP 301

Step 6: Add Content Selectors to the JSP
In this step, you will add content selector JSP tags to the JSP, along with two other JSP tags to display the
personalized content. In the process of adding the content selector JSP tags, you will also create content
selectors (XML files) that contain the queries for retrieving content from the BEA Virtual Content Repository
and the rules that trigger the queries to run.

The tasks in this step are:

Add the <pz:contentSelector> Tag to the JSP•
Add the <es:forEachInArray> Tag to the JSP•
Add an Image Tag•
Create a Second Content Selector•

Add the <pz:contentSelector> Tag to the JSP

In the JSP Designer, make sure the Design View tab at the bottom of the window is selected.1.
In the Palette window, locate the Portal Personalization category and drag the Content Selector tag
into the JSP Designer.

2.

In the Property Editor window, enter nodes in the id field.3.
In the rule field, click the ellipsis icon [...]. The Select content selector dialog appears.4.
Click New content selector, and click Select.5.
In the New content selector dialog, enter modern and click OK.6.
In the Property Editor window, click the −> icon in the rule field. The Content Selector Designer
appears.

Now you will define the query the content selector uses to retrieve content from the Virtual Content
Repository.

7.

In the Content Selector Designer, click the [empty content search] link. The Content Search window
appears.

8.

In the Property set field, select Standard.9.
In the Property field, make sure cm_binaryName is selected, and click Add. The Content Search
Values window appears.

10.

In the Comparison field, select contains.11.
In the Value field, enter college and click Add.12.
Click OK. You are returned to the Content Search window. Click OK.13.
In the Available Conditions area of the Content Selector Designer, deselect any checkboxes that are
selected, then select The visitor has specific characteristics.

14.

In the top of the Content Selector Designer, click the [characteristics] link. The Visitor
Characteristics window appears.

15.

In the Visitor property set field, select userpreferences.16.
In the Visitor property field, make sure Graphic Preference is selected, and click Add. The Visitor
Characteristic Values window appears.

17.

In the Comparison field, make sure is equal to is selected.18.
In the Value field, select modern, click Add, and click OK.19.
In the Visitor Characteristics window, click OK.20.
Save and close the file.21.

Add the <es:forEachInArray> Tag to the JSP

Step 6: Add Content Selectors to the JSP 302

Switch to the myp13n.jsp file if you are not already there.1.
In the Palette window, locate the Portal Utilities category, and drag the For Each In Array tag into
the JSP Designer, to the right of the <pz:contentSelector> tag.

2.

Click the Source View tab in the JSP designer and set the following properties on the For Each In
Array tag:

<es:forEachInArray array="<%=nodes%>" id="node" type="com.bea.content.Node">

3.

Add an Image Tag

Switch back to Design View in the JSP designer.1.
In the Palette window, locate the HTML category, and drag the Image tag on top of the
forEachInArray tag. In the ImageWizard dialog that appears, click OK. This should put the image tag
inside the forEachInArray tag.

2.

Go back to Source View in the JSP designer and add the following path to the image:
<img src="<%=request.getContextPath() + "/ShowBinary" + node.getPath()%>">

3.

Create a Second Content Selector

In Source View, copy the block of JSP tags and the image reference you created, and paste the block
just below itself.

1.

In the copy of the JSP tags, change the <pz:contentSelector> tag's rule attribute to classic. You
should now have two content selector blocks of code. The only difference between the two is the rule
attribute value. One value is modern and the other is classic.

2.

Switch to Design View in the JSP designer.3.
Select the second <pz:contentSelector> tag. It appears as classic.4.
In the Property Editor window, click the ellipsis icon [...] in the rule field. The Select content
selector window appears.

5.

Click New content selector, and click Select. The New content selector window appears.6.
Enter the name classic, and click OK.7.
In the Property Editor window, click the −> icon in the rule field. The Content Selector Designer
appears.

8.

In the Content Selector Designer, click the [empty content search] link. The Content Search window
appears.

9.

In the Property set field, select Standard.10.
In the Property field, make sure cm_binaryName is selected, and click Add. The Content Search
Values window appears.

11.

In the Comparison field, select contains.12.
In the Value field, enter IRACampaign and click Add.13.
Click OK. You are returned to the Content Search window. Click OK.14.
In the Available Conditions area of the Content Selector Designer, deselect any checkboxes that are
selected, then select The visitor has specific characteristics.

15.

In the top of the Content Selector Designer, click the [characteristics] link. The Visitor
Characteristics window appears.

16.

In the Visitor property set field, select userpreferences.17.
In the Visitor property field, make sure Graphic Preference is selected, and click Add. The Visitor
Characteristic Values window appears.

18.

In the Comparison field, make sure is equal to is selected.19.
In the Value field, select classic, click Add, and click OK.20.
In the Visitor Characteristics window, click OK.21.
Save and close the content selector file and the JSP file.22.

WebLogic Workshop Tutorials

Step 6: Add Content Selectors to the JSP 303

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 6: Add Content Selectors to the JSP 304

Step 7: Create a Portlet with the JSP
In this step, you will drag the JSP into an existing portal to create a portlet out of it with the Portlet Wizard.

The tasks in this step are:

Create a Portlet by Adding the JSP to a Portal•

Create a Portlet by Adding the JSP to a Portal

In the Application window, expand the sampleportal project, and double−click sample.portal to open
it in the Portal Designer.

1.

In the Application window, drag myp13n.jsp below the Login portlet in the Portal Designer, and click
Yes in the Create Portlet dialog that appears. The Portlet Wizard appears.

2.

In the Portlet Details window, enter the following text in the Title field: My Personalized Portlet.3.
Click Finish. The new portlet appears below the Login to Portal Portlet.4.
Save the portal file.5.

Click one of the following arrows to navigate through the tutorial:

Step 7: Create a Portlet with the JSP 305

Step 8: Test the Personalized Portlet
In this step, you will test the portlet to see personalization in action.

The tasks in this step are:

View the Sample Portal•
Log in as One User and View the Portlet•
Log in as the Other User and View the Portlet•

View the Sample Portal

You can view the portal with the WebLogic Test Browser or with your default browser.

WebLogic Test Browser − In the WebLogic Workshop toolbar, click the Start button (or press
Ctrl+F5).

•

Default Browser − In the WebLogic Workshop menu, choose Portal−−>Open Current Portal.•

Log in as One User and View the Portlet

In the Login portlet, log in with Username: classicuser Password: password.1.
View the updated contents of the personalized portlet.2.
Click Logout.3.

Log in as the Other User and View the Portlet

Log in with Username: modernuser Password: password.1.
View the contents of the personalized portlet.2.

Congratulations! You have created a portlet that uses personalization.

What You Can Do Next

The portal development lifecycle involves development with the WebLogic Workshop Portal Extensions and
administration with the WebLogic Administration Portal. The tutorial you have just completed covers the
development phase. The following steps instructions for starting a tutorial that covers the administration
phase. The second phase of the portal personalization process involves administering the content selectors you
have created. To run a companion tutorial for administering content selectors:

In the WebLogic Workshop menu, choose Portal−−>Open Portal Administration.1.
Log in with Username: weblogic Password: weblogic.2.
When the Administration Portal appears, click Show Help in the upper right corner of the window.3.
In the Help window, click the Tutorials tab, select Add Personalized Content to Your Portal, and
follow the tutorial.

4.

Related Topics

Developing Personalized Applications

Assembling Portal Applications

Step 8: Test the Personalized Portlet 306

<pz:contentSelector> Tag

<es:forEachInArray> Tag

Click the following arrow to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 8: Test the Personalized Portlet 307

Tutorial: Creating a Login Control Page Flow Using
the Wizard
This tutorial shows you how easy it is to add a Portal Control into a Page Flow. The tutorial takes about 20
minutes to complete.

At the end of this tutorial you will have created a Page Flow that includes a Portal Control, and that can be
placed inside a portlet to expose the login functionality.

Tutorial Overview

This tutorial introduces the use of Portal Controls with Page Flows, and should help familiarize you with
databinding in forms.

NOTE: For instructions on adding the User Login Control without the wizard, consult the User Login Control
help.

Steps in This Tutorial

Step 1: Create a Portal Control Page Flow — 10 minutes

In this step you create a new Page Flow, which includes selecting the Login Control.

Step 2: Place the Page Flow in a Portlet— 10 minutes

In this step the new Page Flow is used to create a new portlet.

Click the following arrow to navigate through the tutorial:

Tutorial: Creating a Login Control Page Flow Using the Wizard 308

Step 1: Create a Page Flow Using the Wizard
In this step, you will create a Portal Control Page Flow using the Page Flow Wizard.

Create the Page Flow

From a Portal Web application project within WebLogic Workshop, create a new Page Flow by
right−clicking on the portlets directory within the current Portal project and selecting New −> Page
Flow.

1.

The Page Flow Wizard appears. Name this new Page Flow "userLogin", and click Next.2.

At the Select Page Flow Type prompt, select Page Flow from a Java Control, select the User Login
Control, and Click Next.

3.

Step 1: Create a Page Flow Using the Wizard 309

From the Select Actions prompt, select the login() method, which returns the ProfileWrapper type.
Click Create.

4.

The resulting Page Flow should appear in Flow View.5.

WebLogic Workshop Tutorials

Step 1: Create a Page Flow Using the Wizard 310

Click Ctrl+S to save your work. Notice that in addition to the userLoginController page flow file, the
wizard has also generated index.jsp and login.jsp.

6.

The wizard has created a page flow with all the necessary elements in place, but they must be
configured to fit your application. The pageflow needs to be modified to pass in the "request" to the
methods. By default, the pageflow will create a formbean property for every parameter.

7.

Open the userLoginController.jpf in Source View, and within the control method login, replace this
code:

com.bea.p13n.usermgmt.profile.ProfileWrapper var = myControl.login(
aForm.username, aForm.password, aForm.request);

with this:

com.bea.p13n.usermgmt.profile.ProfileWrapper var = myControl.login(
aForm.username, aForm.password, super.getRequest());

8.

Now open the userLoginController.jpf in Action View, and from the Data Palette, open the control (it
should be called myControl), and drag the logout() method into the Page Flow.

Double−clicking on the logout action will open the Source View to the code:

/**
* @jpf:action
*/
protected Forward logout(LogoutForm form)
{
myControl.logout(form.getRequest());
return new Forward("success");
}

9.

To the action method definition for this logout action, add the following line:

* @jpf:forward name="success" path="index.jsp"

10.

WebLogic Workshop Tutorials

Step 1: Create a Page Flow Using the Wizard 311

In the same action code, change the (form.getRequest()); to (this.getRequest());11.
The resulting action method definition should look like this:

/**
* @jpf:action
* @jpf:forward name="success" path="index.jsp"
*/
protected Forward logout(LogoutForm form)
{
myControl.logout(this.getRequest());
return new Forward("success");
}

12.

From the Action View, the userLoginController.jpf should now look like this:13.

Next, double−click on the index.jsp and open Source View. Just below the login form, add a logout
button:

<netui:anchor action="loginLink">
login
</netui:anchor>
<netui:form action="logout">
<netui:button type="submit" value="logout" action="logout"></netui:button>
</netui:form>

The code in bold above places a button of type "submit" in the bottom of the page, associates it with
the logout action, wraps it inside a netui:form that invokes the action="logout".

14.

Save the index.jsp file.15.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 1: Create a Page Flow Using the Wizard 312

Step 2: Place the Page Flow in a Portlet
In this step, you will use the Portlet Wizard to create a Portlet from the new Page Flow.

In the Portal Designer, drag the Page Flow file, called userLoginController.jpf, into a place holder in
a portal. The Portlet Wizard appears.

1.

From the Portlet Details screen, click Finish to create the userLoginController portlet and place it in
the portal.

2.

Open login.jsp in the Design View and select the Password text box. Then, in the Properties Editor,
scroll down the list of General Properties to set Password equal to Yes. This will cause any input in
this field to be masked.

3.

For debugging purposes, the next step shows how to add some code to show which user is logged on.
Open index.jsp in the Source View, adding the following code to the end, just before the last two
lines:

4.

Step 2: Place the Page Flow in a Portlet 313

<%Object res = request.getAttribute ("results");%><%=(res == null ? "<i>none</i>
" : (res +
"
"))%>
<% if (request.getRemoteUser() != null) { %>

you are logged in as: <%=request.getRemoteUser()%>

<%
}
else
{
%>

you are not logged in
<%
}
%>

The index.jsp should read as follows:

<!−−Generated by WebLogic Workshop−−>
<%@ page language="java"
contentType="text/html;charset=UTF−8"%>
<%@ taglib uri="netui−tags−databinding.tld"
prefix="netui−data"%>
<%@ taglib uri="netui−tags−html.tld" prefix="netui"%>
<%@ taglib uri="netui−tags−template.tld"
prefix="netui−template"%>
<netui−template:template
templatePage="/resources/jsp/template.jsp">
<netui−template:setAttribute value="Index" name="title"/>
<netui−template:section name="bodySection">
<p class="pagehead">
 Page Flow: userLogin
</p>
<table width="100%" cellpadding="0" class="tablebody"
cellspacing="0">
<tr>
<td valign="top">
<table width="100%" class="tablebody">
<tr class="tablehead">
<td>Actions With No Parameters</td>
</tr>
</table>
</td>
<td valign="top">
<table width="100%" class="tablebody">
<tr class="tablehead">
<td>Input Forms For Actions With Parameters</td>
</tr>
<tr>
<td>
<netui:anchor action="loginLink">

WebLogic Workshop Tutorials

Step 2: Place the Page Flow in a Portlet 314

login
</netui:anchor>

</td>
</tr>
</table>

</td>
</tr>
<tr class="tablehead">
<td align="left" colspan="2">
Results Area
</td>
</tr>
</table>

<%Object res = request.getAttribute ("results"
);%><%=(res == null ? "<i>none</i>
" : (res +
"
"))%>
<% if (request.getRemoteUser() != null) { %>

you are logged in as:
<%=request.getRemoteUser()%>

<netui:form action="logout">
<netui:button type="submit" value="logout"
action="logout"></netui:button>
</netui:form>

<%
}
else
{
%>

you are not logged in
<%
}
%>

</netui−template:section>
</netui−template:template>
Click Ctrl+S to save your work.5.
In the WebLogic Workshop menu, choose Portal−−>Open Current Portal.6.

WebLogic Workshop Tutorials

Step 2: Place the Page Flow in a Portlet 315

Click on Login, and at the login page, enter weblogic/weblogic. (The password field should be
masked.

7.

WebLogic Workshop Tutorials

Step 2: Place the Page Flow in a Portlet 316

Verify that the next page displays the current logged−in user.8.

Click logout, and verify the page displays the "you are not logged in" message.9.

WebLogic Workshop Tutorials

Step 2: Place the Page Flow in a Portlet 317

Congratulations! You have created a portlet that uses a Page Flow and an EJB control.

Related Topics

WebLogic Portal Tutorials

WebLogic Workshop Portal Extensions Samples

Click on the arrow below to go back in the tutorial:

WebLogic Workshop Tutorials

Step 2: Place the Page Flow in a Portlet 318

Tutorial: Using Page Flows Inside Portlets
This tutorial guides you through the process of learning how to use Page Flows inside portlets. The tutorial
takes about 45 minutes to complete.

Tutorial Goals

At the end of this tutorial you will have some familiarity with how to use Page Flows inside portlets.

Tutorial Overview

The WebLogic Workshop Portal Extensions include a graphical Portal Designer that lets you surface
application functionality easily and quickly in a sophisticated portal interface. Sample portlets included with
the WebLogic Workshop Portal Extensions provide instant, reusable functionality for a portal, as this tutorial
illustrates.

The portal development lifecycle involves development with the WebLogic Workshop Portal Extensions and
administration with the WebLogic Administration Portal. This tutorial covers the development phase. After
you have completed this tutorial, you will see instructions for starting a tutorial that covers the administration
phase.

Steps in This Tutorial

Step 1: Create a Portal Application — 5 minutes

In this step you Create a Portal Application, add a Portal Web Project, and add a Portal, and start WebLogic
Server.

Step 2: Create a Simple Navigation Page Flow portlet − 10 minutes

In this step you create two simple .jpf files and their corresponding portlets.

Step 3: Create portlets that communicate. − 10 minutes

In this step you create a Page Flow portlet that listens to input from another Page Flow portlet.

Step 4: Create an EJB Control Page Flow portlet. − 10 minutes

In this step you create a Page Flow portlet, add a Personalization Control, and edit properties on the Control.

Click the following arrow to navigate through the tutorial:

Tutorial: Using Page Flows Inside Portlets 319

Step 1: Create a Portal Application
In this step, you will create a new Portal Application, add a Portal Web Project, and add a Portal.

The tasks in this step are:

Create a new Portal Application•
Add a Portal•

Create a new Portal Application

To create the necessary framework and resources for portal development, you must do one of two things:

Create a new portal application and add a Portal Web Project to it.

Install Portal into an existing application and add a Portal Web Project to it.

Add a Portal

Create a Portal File to use as the layout framework to view your portlets. Name this portal.portal.

Click one of the following arrows to navigate through the tutorial:

Step 1: Create a Portal Application 320

Step 2: Create a Simple Navigation Page Flow
In this step, you will create a Page Flow that provides navigation from one JSP to another. Then, instead of
designating the JSP files as the content url for the portlet, you will designate the .JPF file as the portlet's
content node. The Page Flow supports JSP transitions within the portlet.

The tasks in this step are:

Create a Page Flow Called simpleFlow•
Test the Page Flow in a portlet•
View the navigation portlets•

Create a Page Flow called simpleFlow

Right−click a project in your web application and create a new folder; name the folder "portlets".1.
Right−click on the portlets folder and select New>Page Flow.

The Page Flow Name window appears.

2.

Name the page flow "simpleFlow" and click Next.

The Select Page Flow Type window appears.

3.

Step 2: Create a Simple Navigation Page Flow 321

Accept the default (Basic page flow) and click Create.

The page flow is generated and the PageFlow editor, in the Flow View, appears.

Note that the basic page flow has a begin action and an index.jsp presentation page.

4.

Click Page in the palette, and drag a new page onto the PageFlow editor.5.
Name the page "page2.jsp".6.
Connect the two pages by doing the following:

Click Action in the palette and drag a new action onto the PageFlow editor.a.
7.

WebLogic Workshop Tutorials

Step 2: Create a Simple Navigation Page Flow 322

The New Action window appears.

Name the acton "goToPage2" and click OK.

An icon for the goToPage2 action appears in the Page Flow editor.

b.

Connect index.jsp to goToPage2 by placing your pointer near the index.jsp icon, clicking to
create the connection, and dragging to goToPage2.

c.

Connect goToPage2 to page2.jsp (as described in step c., above). A red error indicator will
appear under index.jsp. This will be fixed later in this procedure.

d.

Create another action from the palette and name it "goToPage1" on the New Action window. Click
OK.

The goToPage1 action appears in the Page Flow editor.

8.

Using the procedure described in step 7, connect the goToPage1 action to index.jsp and then connect
page2.jsp to goToPage1.

9.

Correct the error indicators on index.jsp by doing the following:
Double−click index.jsp to open the JSP editor (ensure you are in the Source View).a.
Change the text within the <p> </p> elements to "PageFlow Page1".b.
Drag and drop the goToPage2 action from the data palette onto index.jsp .c.
Save and close index.jsp.d.

10.

Correct the error indicators page2.jsp by doing the following:
Double−click page2.jsp to open the JSP editor (ensure you are in the Source View).a.
Change the text within the <p> </p> elements to "PageFlow Page2".b.
Drag and drop the goToPage1 action from the data palette onto page2.jsp.c.
Save and close page2.jsp.d.

Your page flow should now look like this:

11.

WebLogic Workshop Tutorials

Step 2: Create a Simple Navigation Page Flow 323

Test the page flow in the test browser by doing the following:
Click the Start button ().

The page flow will appear in the Test Browser:

a.
12.

WebLogic Workshop Tutorials

Step 2: Create a Simple Navigation Page Flow 324

Click show goToPage2.

The page2.jsp appears.

b.

Click show goToPage1 to return to PageFlow page 1.c.

Test the Page Flow in a Portlet

Create a portal and drag simpleFlowController.jpf into it.

The Portlet Wizard appears.

1.

Accept the Portlet Wizard defaults and click finish to create the portlet.2.
Save the portal and then view it in a browser by selecting .3.

JSP Examples

The JSPs should appear roughly as follows:

index.jsp

<%@ page language="java" contentType="text/html;charset=UTF−8"%>
<%@ taglib uri="netui−tags−databinding.tld" prefix="netui−data"%>
<%@ taglib uri="netui−tags−html.tld" prefix="netui"%>
<%@ taglib uri="netui−tags−template.tld" prefix="netui−template"%>
<netui:html>

WebLogic Workshop Tutorials

Step 2: Create a Simple Navigation Page Flow 325

 <head>
 <title>
 Web Application Page
 </title>
 </head>
 <body>
 <p>
 PageFlow page 1
 <netui:anchor action="goToPage2">show_goToPage2</netui:anchor>
 </p>
 </body>
</netui:html>

page2.jsp

<%@ page language="java" contentType="text/html;charset=UTF−8"%>
<%@ taglib uri="netui−tags−databinding.tld" prefix="netui−data"%>
<%@ taglib uri="netui−tags−html.tld" prefix="netui"%>
<%@ taglib uri="netui−tags−template.tld" prefix="netui−template"%>
<netui:html>
 <head>
 <title>
 Web Application Page
 </title>
 </head>
 <body>
 <p>
 PageFlow Page 2
 <netui:anchor action="goToPage1">show_goToPage1</netui:anchor>
 </p>
 </body>
</netui:html>

View the Navigation Portlet

Save all files and start the server.1.
Preview the portlet by navigating to http://<host>:<port>YourWebappp/portal.portal.2.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Create a Simple Navigation Page Flow 326

Step 3: Create Portlets that Communicate
In this step, you will use Page Flows to create one portlet that listens to another portlet. This particular
example shows two ways of passing information from one portlet to the next: using a Form or using the
Request Parameter. They both use the Page Flow as the means of connecting two portlets. By configuring the
portlets to listen to one another, forms and requests instantiated by a JSP in one Page Flow can be sent to both
Page Flows. This allows the listening portlet to update itself.

The tasks in this step are:

Create two Page Flow portlets•
Create Actions, Additional JPS•
Place Portlets in Portal•
Set Properties on Portlets•

Create two Page Flow portlets

In this task, two Page Flows are created within the portlets directory; one called j1, the other called j2.

Right−click on the portlets directory, and select Create New Page Flow.1.
Name the Page Flow j1, and select Basic Page Flow (with no Java Controls.)2.
Repeat this step, creating a Page Flow called j2.3.

NOTE: WebLogic Workshop automatically creates the Page Flow controller class,
prepending the name of the Page Flow to the Controller.jpf filename.

Edit Page Flows

This example requires modifying the Page Flows so that they can be notified by the listening portlet. The j1
Page Flow will receive form data from its simpleForm.jsp. The j2 Page Flow (in a listening portlet) will also
receive notifications, and store the data, so its portlet can retrieve and display it. \

Step 3: Create Portlets that Communicate 327

NOTE: Use Flow View to set up actions, then touch up the code using the Source View.

Edit j1 Page Flow

Open the j1Controller.jpf and make sure the package declaration is correct:

package portlets.j1;

1.

Edit the begin method, adding a forward named simpleForm:

 /**
 * @jpf:action
 * @jpf:forward name="simpleForm" path="simpleForm.jsp"
 */
 public Forward begin()
 {
 return new Forward("simpleForm");
 }

2.

Add the following three actions to the Page Flow:

 /**
 * @jpf:action
 * @jpf:forward name="simpleForm" path="simpleForm.jsp"
 */
 public Forward passString1(Form form)
 {
 passedText = form.getText();
 return new Forward("simpleForm");
 }

 /**
 * @jpf:action
 * @jpf:forward name="simpleForm" path="simpleForm.jsp"
 */
 public Forward passString2()
 {
 return new Forward("simpleForm");
 }

 /**
 * @jpf:action
 * @jpf:forward name="simpleForm" path="simpleForm.jsp"
 */
 public Forward passString3()
 {
 return new Forward("simpleForm");
 }

3.

Make sure the following Form inner class appears at the end of the Page Flow file:

 public static class Form extends FormData
 {
 private String text;
 public void setText(String text)
 {
 this.text = text;
 }

4.

WebLogic Workshop Tutorials

Step 3: Create Portlets that Communicate 328

 public String getText()
 {
 return this.text;
 }
 }

Edit j2 Page Flow

Open the j2Controller.jpf and make sure the package declaration is correct:

package portlets.j2;

1.

This Page Flow receives data from the j1 portlet and stores it so it can be displayed in the j2 portlet.
directs the j2 portlet to listen to the j1 portlet. Add a variable declaration to the beginning of the class
to hold the text from the j1 Page Flow:

 public class j2Controller extends PageFlowController
 {

public String thePassedText = "";

2.

Edit the begin method, adding a forward named listening, which points to the listening.jsp we'll
create later. The listening.jsp will display in the j2 portlet the data received from the j2 Page Flow.

 /**
 * @jpf:action
 * @jpf:forward name="listening" path="listening.jsp"
 */
 public Forward begin()
 {
 return new Forward("listening");
 }

3.

The first action we'll now add to the Page Flow has the same signature as the j1 passString1 method.
When the j2 portlet is listening to j1, both the j1.passString1 method and the j2.passString1 methods
are called.

 /**
 * @jpf:action
 * @jpf:forward name="listening" path="listening.jsp"
 */
 public Forward passString1(portlets.j1.j1Controller.Form form)
 {
 thePassedText = form.getText();
 return new Forward("listening");
 }

4.

To illustrate other ways to pass strings between Page Flows, add passString2 and passString3 to the
Page Flow for portlet j2.

5.

The passString2 method uses a request to send the data.•
The passString3 method uses the same portlet communication approach as passString2; the only
difference is that the j2 Page Flow sends data to its JSP portlet using an attribute.

•

 /**
 * @jpf:action
 * @jpf:forward name="listening" path="listening.jsp"
 */
 public Forward passString2()
 {
 thePassedText = getRequest().getParameter("string2");

WebLogic Workshop Tutorials

Step 3: Create Portlets that Communicate 329

 return new Forward("listening");
 }

 /**
 * @jpf:action
 * @jpf:forward name="listening" path="listening.jsp"
 */
 public Forward passString3()
 {
 HttpServletRequest request = getRequest();
 String attribValue = request.getParameter("string3");
 request.setAttribute("string3", attribValue);

 return new Forward("listening");
 }

Create Additional JSPs

In this step, we'll create the "From" JSP for the j1 portlet, and the "To" JSP used by the j2 portlet.

Create listening.jsp

In the Application palette, right−click on the portlets/j2 folder and select New JSP file.1.
Name the file listening.jsp.2.
Open the source view, and insert the following code:

<%@ page contentType="text/html;charset=UTF−8" language="java" %>
<%@ taglib uri="netui−tags−html.tld" prefix="netui" %>
<h3>"To" JSP</h3>
Get text from jpf form = <netui:label value="{pageFlow.thePassedText}"/>

Using {request.string3} databinding = <netui:label value="{request.string3}"/>

<% String attribName = "string3"; %>
Using request.getAttribute() = <%=request.getAttribute(attribName)%>

3.

Save listening.jsp.4.

Create simpleForm.jsp

In the Application palette, right−click on the j1 folder and select New JSP file.1.
Name this new JSP file simpleForm.jsp.2.
Switch to Design View.3.
From the Netui Palette, drag a TextBox object onto the form, then a Button object right below it. Use
the Form object to wrap around both of them. Initially, the source for this portion of the jsp will look
something like this:

 <netui:form action="none">
 <netui:textBox></netui:textBox>
 <netui:button>Submit</netui:button>
 </netui:form>

4.

Edit the source of the fragment you created: Add the passString1 action to the form, and designate a
dataSource attribute for the textBox:

5.

WebLogic Workshop Tutorials

Step 3: Create Portlets that Communicate 330

 <netui:form action="passString1">
 <netui:textBox dataSource="text"/>
 <netui:button>Submit</netui:button>
 </netui:form>

From the Netui Palette, drag an anchor element just below the textBox. The Form Wizard appears.
Invoke the passString2 action, labelling it "PassString2", or edit the source code as follows:

 <netui:anchor action="passString2">Pass String 2
 <netui:parameter name="string2" value="STRING 2"/>
 </netui:anchor>

6.

From the Netui Palette, drag one more anchor element just below the previous one, and edit the
resulting code as follows:

 <netui:anchor action="passString3">Pass String 3
 <netui:parameter name="string3" value="STRING 3"/>
 </netui:anchor>

7.

The Design View of simpleForm.jsp should now look something like this:8.

NOTE: As you edit the page flow, you can verify the navigation by opening a viewer that will preview the
pages without the portal. To do this, click on the Start arrow from the WebLogic Workshop toolbar, or press
CTRL+F5.

Place Portlets in Portal

To view the portlets, they need to be placed in a portal.

WebLogic Workshop Tutorials

Step 3: Create Portlets that Communicate 331

Open the portal created in Step 1 in Design View, select a placeholder, and drag the Page Flows into
placeholders on a page, using the Portlet Wizard to create new portlets from each Page Flow.

1.

Use the Property designer to edit the Title attribute for each portlet.2.
From the Portal designer, the portal should now look something like this:3.

Set Properties on Portlets

When a portlet is placed inside a portal, it is assigned an instanceLabel which the framework uses to keep
track of individual portlet placement. In order to make this sample work, the listenTo attribute on portlet j2
needs to be set to the instanceLabel of the j1 portlet on your portal.

Open the portal, select the j1 portlet and verify its instanceLabel. In this example, it is portlet_4_4.1.

WebLogic Workshop Tutorials

Step 3: Create Portlets that Communicate 332

Now open the j2 portlet by double−clicking on it within the portal. The listenTo attribute for this
portlet needs to be set to the instanceLabel for the j1 portlet in your portal.

2.

Save all files and start the server.3.
Preview the portal by navigating to http://<host>:<port>YourWebappp/portal.portal.4.
The resulting portal should look something like this:5.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 3: Create Portlets that Communicate 333

Step 4: Create an EJB Control Page Flow portlet
In this step you create a Page Flow portlet, add a Personalization Control, and edit properties on the Control.

The tasks in this step are:

Create an EJB Control Page Flow•
Place the Page Flow into a Portlet, Place Portlet in a Portal•

Create a New Page Flow

From within the Project tab in your Web application, right−click on the portlets directory and create a
new Page Flow. Name the Page Flow checkuserGroup.

1.

In the Page Flow Wizard, select Page flow from a java control.2.
Select the GroupManager control. Click Next.3.

From the list of Potential Actions, select getGroupNamesForUser. Click Create.4.

Step 4: Create an EJB Control Page Flow portlet 334

The wizard creates an index.jsp page with a link to the getGroupNamesForUser action that invokes
the control.

5.

Place the Page Flow into a Portlet, Place Portlet in a Portal

With the Portal open in Design View, drag the checkUserGroupController.jpf into a placeholder in
the portal.

1.

The Portlet Wizard presents a prompt offering to create a portlet from this resource. Click Yes.2.
The Portlet Details screen appears. Click Finish.3.
Drag the resulting portlet into a placeholder in your portal.4.
Preview the portlet by navigating to http://<host>:<port>YourWebappp/portal.portal.5.
Click on the getGroupNamesForUser link, enter a username and click Submit.6.

WebLogic Workshop Tutorials

Step 4: Create an EJB Control Page Flow portlet 335

In this example, user weblogic is a member of the groups Administrators and
PortalSystemAdministrators.

7.

Click on the arrow below to go back in the tutorial:

WebLogic Workshop Tutorials

Step 4: Create an EJB Control Page Flow portlet 336

Tutorial: Enterprise JavaBeans

The Big Picture

In this tutorial you will learn how to develop an application that uses Enterprise JavaBeans technology. You
will build the EJBProjectTutorial application, which uses session, entity, and message−driven beans to model
a music site, registering information about bands, recordings, and recording ratings. The below diagram shows
the components that you will build in blue. The components in white are predefined in the tutorial.

Note. If you are new to Enterprise JavaBeans technology, you might want to consider running the Getting
Started: Enterprise JavaBeans tutorial first before continuing with this tutorial. The Getting Started Tutorials
is a series of short tutorials that offers a basic step−by−step introduction to the core J2EE components and
how you can develop these components with WebLogic Workshop

The tutorial consists of three parts. In
Part One, you will create a new
application, import an existing entity
bean Band and develop a stateless
session bean Music. You will also
add component methods and EJB
references. In the final section of Part
One you will test the EJBs using two
different page flows. Both page flows
allow you to add bands to the
database and receive a listing of
known bands. One page flow uses an
EJB control to locate and reference
an EJB while the other page flow
uses Java JNDI API directly
embedded in a JSP page.

In Part Two of the tutorial you will develop a second entity bean Recording, and define a relationship between
bands and recordings. you will use another page flow to add bands and recordings for bands, and receive
listings of recordings and bands. You will also develop a test web service to run and test the Bands bean.

In Part Three of the tutorial you will develop a message−driven bean Statistics that creates ratings for
recordings. You will learn how to send a message for this bean from the Music EJB and how to store the
rating information the Statistics bean generates. You will use another page flow to test the EJBs.

Tutorial Goals

In this tutorial you will learn how to develop session, entity, and message−driven beans. Along the way you
will become acquainted with advanced features such as entity relationships. Also, this tutorial shows how to
build a full−fledged application by including a page flow application, and demonstrates popular design

Tutorial: Enterprise JavaBeans 337

patterns used to model EJBs. The tutorial guides you through the process of adding functionality in
increments and shows how to test your EJBs as you build them.

Tutorial Overview

The following components are used in this tutorial:

A Band entity bean, which holds information about bands.•
A Recording entity bean, which holds information about recordings.•
A Music session bean, which references the Band entity bean, and provides the interface to client
applications.

•

A Statistics message−driven bean, which processes messages sent by the Music bean.•
The client applications of the Music bean. In part one of the tutorial, two page flows invoke methods
of the Music EJB to add a band and receive a listing of currently known bands. One of these page
flows uses an EJB control to communicate with the Music bean. In part two of the tutorial, a page
flow invokes the methods of the Music bean to add a band, receive a listing of currently known bands,
and, for a given band, add a recording and receive a listing of currently known recordings. In part
three of the tutorial, a page flow is used that incorporates all the functionality of the page flow used in
part two, plus enables you to view rating information of recordings. The page flows in parts two and
three of the tutorial use EJB controls to communicate with the Music bean.

•

The test web service of the Band bean. This web service is meant to be used for testing purposes only
during development. It allows you to quickly run and test a bean without having to be involved in the
(re)design of page flows. The test web service uses an EJB control to communicate with the Band
bean.

•

A database that will hold the tables used to store information about recordings and bands.•
A JMS provider and queue to send messages to. You will use a provider available in the domain and
create the JMS queue.

•

The entity beans in this tutorial perform operations on database tables that hold information about bands and
recordings. The session bean encapsulates the business logic of the music site. It serves as an intermediary
between client applications and the entity beans − a common design pattern called Session Façade − and also
sends JMS messages. The message−driven bean, which processes these JMS messages, invokes an entity bean
to store information generated during the processing of a message. Message−driven beans are frequently used
in this manner to enable asynchronous handling of business tasks that require involvement of session and/or
entity beans.

Parts in This Tutorial

Part One: Building Your First EJBs

In this part you will create the first set of Enterprise JavaBeans in the tutorial. You will start WebLogic
Workshop and WebLogic Server, create a new application and EJB project, import an entity bean that
represents band objects, and develop the session bean Music.

Part Two: Defining an Entity Relationship

In the second part of the tutorial you will add a second entity bean holding information about recordings,
define the relationship between bands and recordings, and update the session bean to enable client
applications to add recordings and receive listings of recordings for bands.

WebLogic Workshop Tutorials

Tutorial: Enterprise JavaBeans 338

Part Three: Adding a Message−Driven Bean

In part three of the tutorial you will add a message−driven bean that will generate rating information for a
recording, update the Recording bean to store this information, and update the session bean to send a message
for the message−driven bean and enable client applications to view ratings.

Summary: Enterprise JavaBean Tutorial

Reviews what you have done in this tutorial.

To begin the tutorial, see Part One: Building Your First EJBs. You can also click the arrow to navigate to this
next step.

WebLogic Workshop Tutorials

Tutorial: Enterprise JavaBeans 339

Part One: Building Your First EJBs
In part one of the tutorial you will create the first set of Enterprise JavaBeans. You will start WebLogic
Workshop and WebLogic Server, create a new application and EJB project, import an entity bean that
represents band objects, and develop the session bean Music. Finally, you will run various page flow
applications to test the EJBs.

Steps in Part One

Step 1: Begin the EJB Tutorial

In this step you set up your application, create an EJB Project, and start WebLogic Server.

Step 2: Import an EJB from a JAR

In this step you import an entity bean.

Step 3: Create a Session Bean

In this step you create a stateless session bean that references the entity bean.

Step 4: Run a Web Application

In this step you will test the EJBs by running a client application. Two client applications are presented that
differ in the way they locate and reference the session bean, but are otherwise identical.

Related Topics

Developing Enterprise JavaBeans

Click one of the following arrows to navigate through the tutorial:

Part One: Building Your First EJBs 340

Step 1: Begin the EJB Tutorial
In this step you will create the application that you will be working with throughout this tutorial. In WebLogic
Workshop, an application contains one or more projects. Enterprise JavaBeans are developed in an EJB
project.

The tasks in this step are:

To Start WebLogic Workshop•
To Create a New Application and Select a WebLogic Server Domain•
To Create a New EJB Project•
To Start WebLogic Server•

To Start WebLogic Workshop

If you have an instance of WebLogic Workshop already running, you can skip this step.

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

From the Start menu, choose Programs−−>WebLogic Platform 8.1−−>WebLogic Workshop 8.1.•

...on Linux

If you are using a Linux operating system, follow these instructions.

Open a file system browser or shell.•
Locate the Workshop.sh file at the following address:

$HOME/bea/weblogic81/workshop/Workshop.sh

•

In the command line, type the following command:

sh Workshop.sh

•

To Create a New Application and Select a WebLogic Server Domain

To create the EJB project, you must first create the application to which it will belong:

From the File menu, select New−−>Application. The New Application dialog appears.1.
In the New Application dialog, in the upper left−hand pane, select Tutorial.
In the upper right−hand pane, select Tutorial: Enterprise JavaBeans.
In the Directory field, use the Browse button to select a location to save your source files.
In the Name field, enter EJBProjectTutorial.
In the Server field, from the drop−down list, select
BEA_HOME\weblogic81\samples\domains\workshop.

2.

Step 1: Begin the EJB Tutorial 341

Click Create.3.

The new application already contains various web applications that will be used in the tutorial to test your
EJBs. Next you need to create an EJB project for the EJBs you are going to develop.

To Create a New EJB Project

In the Application tab, right−click the EJBProjectTutorial folder and select New−−>Project.1.
In the New Project dialog, in the upper left−hand pane, confirm that EJB is selected.
In the upper right−hand pane, select EJB Project.
In the Project Name field, enter MyEJBProject.

2.

WebLogic Workshop Tutorials

Step 1: Begin the EJB Tutorial 342

Click Create.3.

To Start WebLogic Server

Since you will be deploying and running your EJBs on WebLogic Server, it is helpful to have WebLogic
Server running during the development process.

You can confirm whether WebLogic Server is running by looking at the status bar at the bottom of WebLogic
Workshop. If WebLogic Server is running, a green ball is displayed as pictured below.

If WebLogic Server is not running, a red ball is displayed, as pictured below.

If you see the red ball in the status bar, then follow these instructions to start WebLogic Server:

From the Tools menu, choose WebLogic Server−−>Start WebLogic Server.•

Note: on the WebLogic Server Progress dialog, you may click Hide and continue to the next task.

Related Topics

Getting Started with EJB Project

How Do I...? EJB Topics

WebLogic Workshop Tutorials

Step 1: Begin the EJB Tutorial 343

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 1: Begin the EJB Tutorial 344

Step 2: Import an EJB from a JAR
If you have developed Enterprise JavaBeans in another development environment and plan to continue
development of these EJBs in WebLogic Workshop, you can import these beans into an EJB project. To do so
you must have the EJB JAR and the source code of the EJBs. An EJB Jar typically will contain multiple EJBs
that can be imported at the same time. In this step of the tutorial you will import one entity bean.

The tasks in this step are:

To Import an EJB•
To Inspect the Imported Entity Bean•
To Build the EJBS•

Note. If you have developed EJBs in another development environment and plan to reuse these EJBs in a
WebLogic Workshop application, but are not planning to continue development on these beans, you only have
to add the EJB JAR to the application. For more information, see How Do I: Add an Existing Enterprise
JavaBean to an Application?

To Import an EJB

On the Application tab, right−click the folder MyEJBProject folder and select Import EJB from jar.
The Import Wizard appears.

1.

Click the Browse button next to the top field and select the EJB JAR:

[BEA_HOME]\weblogic81\samples\platform\tutorial_resources\EJBTutorial\import_jar\ejb20_relationships_bands.jar

2.

Click the Browse button next to the bottom field and select the source directory:

[BEA_HOME]\weblogic81\samples\platform\tutorial_resources\EJBTutorial\import_src_dir

3.

Click Next.4.
In Confirm EJB source file locations, confirm that the BandBean is checked and click Finish.5.
An Import Progress window appears. When the import is complete, click OK.6.

To Inspect the Imported Entity Bean

The Application tab displays the BandBean that has been imported. Notice that the package name of the bean
is reflected in the directory structure. In addition to the entity bean, a regular java class, which will be used as
a dependent value class, has been imported.

Step 2: Import an EJB from a JAR 345

The Band EJB in Design View should look like this:

If you have developed Enterprise JavaBeans before, you might notice that the BandBean entity bean is
represented by one file with an ejb extension, instead of several java files for the class definition and the
definition of the various interfaces. In addition, when you double−click BandBean.ejb and go to Source View,
you will notice special tags with the prefix ejbgen. These ejbgen tags are for instance used to mark methods to
be exposed in remote and home interfaces, mark relationship fields, and describe EJB QL queries directly in

WebLogic Workshop Tutorials

Step 2: Import an EJB from a JAR 346

the bean class. Instead of using separate classes for the various interfaces and instead of directly changing the
deployment descriptor, WebLogic Workshop uses these tags to contain all the bean's information in one file.
When you build an EJB Project, the WebLogic tool uses these tags to generate the various interfaces and to
generate the appropriate deployment descriptor. For more information, see Getting Started with EJB Project or
the Getting Started: Enterprise JavaBeans tutorial.

The Band bean defines three CMP fields to represent bands: (1) the band founder, (2) the name of the band,
and (3) the start date when the band was founded. The name field is the primary key field. In other words, the
assumption is made that each band has a unique name. All fields are read−only, that is, no setter methods are
defined for these fields to make changes. The Band bean has three methods. There is one ejbCreate method to
create a new band object, and there are two finder methods: the findByName methods returns the band object
that matches a name argument, and the findAll method returns all band objects stored in the database. The
Property Editor reveals that the ejb−name is BandEJB, the data−source−name is cgSampleDataSource and
the table−name is bands. Also notice in the JAR Settings section that create−tables is set to CreateOnly. The
latter setting means that when you build and deploy this bean, the table will be automatically created for you.
To learn more about the other table creation options set with this property, see @ejbgen:jar−settings
Annotation. Notice that the create−tables setting is part of the JAR settings. In other words, for every entity
bean created as part of this project, the same table creation setting applies.

To Build the EJBs

In this tutorial you will be building the EJBs frequently to verify that changes were made correctly:

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyEJBProject, and select Build MyEJBProject.2.
Monitor the Build window and verify that the build completes correctly, and that the EJB JAR
MyProjectEJB.jar is created.

3.

After the build completes, the EJBs are deployed: Watch the green ball in the WebLogic Server status
bar at the bottom of WebLogic Workshop turn yellow with the message Updating Server. Wait until
the ball turns green again. The two EJBs are now deployed on the server. In addition, the various web
applications that were predefined are deployed to the web container. We will turn to these in the next
step.

4.

(Optional.) Verify the contents of the EJB JAR. In the Application pane, expand Modules, expand
MyProjectEJB.jar, and expand the directory structure reflecting the package name. Verify that the
bean classes and the various interfaces have been created.

5.

If you encounter build errors, verify that both BandBean.ejb and BandInfo.java were imported successfully. If
this is not the case, delete the imported files and repeat the import steps above. In particular make sure that
you are pointing at the correct folder containing the EJB source files. A build error might be followed by a
deployment error, in particular for WebAppOne_Standard and related to an unresolved ejb−link. The link
cannot be resolved because the EJB JAR was not created. Fixing the build problem should resolve this
deployment error.

If you encounter deployment errors that seem to be related to one of the web applications, make sure that you
build the EJB project and not the entire application (because the application contains page flow applications
that have different EJB dependencies from what you have created in this step). If you encounter deployment
errors that seem to be related to the underlying data source, verify that you are working in the workshop
domain by selecting Tools−−>WebLogic Server−−>Server Properties. The Server Home Directory should
point to the workshop domain.

WebLogic Workshop Tutorials

Step 2: Import an EJB from a JAR 347

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 2: Import an EJB from a JAR 348

Step 3: Create a Session Bean
In this step you will create a stateless session bean Music, which will be called by client applications. A client
application has no direct access to the entity bean Band but calls the session bean instead. The Music bean
implements the business logic to respond to a client request, invoke the Band bean to obtain data, and return a
result to the client. This use of a session bean as an intermediary is a common design pattern called Session
Façade.

The tasks in this step are:

To Create a Session Bean•
To Reference the Entity Bean•
To Add an ejb−local−ref Tag•
To Add Component Methods•
To Build the EJBs•

To Create a Session Bean

Right−click the bands folder in the Application tab (the same folder that contains BandBean.ejb and
BandInfo.java), and select New−−>Session Bean.

1.

Enter the file name MusicBean.ejb.2.

Click Create.3.

To Reference the Entity Bean

Step 3: Create a Session Bean 349

The Music EJB will be invoking methods of the Band EJB. In order for the Music bean to invoke the Band
bean's methods, it must first locate and obtain a reference to the bean's home. In this step, you modify the
ejbCreate method in MusicBean.ejb to locate and obtain a reference to the Band EJB.

Note. To learn more about about EJB interfaces, referencing and JNDI naming, see the Getting Started:
Enterprise JavaBeans tutorial.

To modify ejbCreate to obtain a reference to the Band EJB's local home interface:

In the Application pane, double−click MusicBean.ejb and select the Source View tab.1.
Locate the ejbCreate method in MusicBean.ejb, and modify its definition as shown in red below. You
might notice that the method uses Java JNDI to locate and obtain a reference to BandHome:

 public void ejbCreate() {
 try {
 javax.naming.Context ic = new InitialContext();
 bandHome = (BandHome)ic.lookup("java:comp/env/ejb/BandEJB");
 }
 catch (NamingException ne) {
 throw new EJBException(ne);
 }
 }

2.

Locate the import section at the top of the file and add the following import statements, or use
Alt+Enter when prompted by the IDE to automatically add these import statements:

import javax.naming.InitialContext;
import javax.naming.NamingException;

3.

Go to the beginning of the class definition and define bandHome as shown in red below:

public class MusicBean
 extends GenericSessionBean
 implements SessionBean
{
 private BandHome bandHome;

 public void ejbCreate() {
 ...

4.

To Add an ejb−local−ref Tag

In the above ejbCreate method, in the lookup method, you use BandEJB to reference the Band EJB. At
deployment time this reference is mapped to the actual location of the Band bean. This mapping is done in the
deployment descriptor. In WebLogic Workshop you don't modify the deployment descriptor directly but use
ejbgen tags inserted in the ejb file instead. To map the reference to Band EJB in the Music bean to the actual
Band bean location, you need to insert an ejbgen:ejb−local−ref tag in MusicBean.ejb:

Ensure that the Music EJB is displayed in Design View.1.
Right−click the Design View, and select Insert EJB Gentag−−>ejb−local−ref. A new
ejbgen:ejb−local−ref section appears in the Property Editor.

2.

Use the Property Editor to enter the link property, or go to Source View to add the property:
 * @ejbgen:ejb−local−ref link="BandEJB"

Notice that the attribute specified in the link property corresponds to the ejb−name of the Band bean.
To learn more about this tag, place your cursor anywhere inside the tag in Source View and press F1.

3.

WebLogic Workshop Tutorials

Step 3: Create a Session Bean 350

To Add Component Methods

Now you will add the business methods to the Music bean that will be called by the client application. Before
you add the getBands and addBand methods, you first need to define Music bean's local interfaces:

Ensure that the Music EJB is displayed in Design View.1.
In the Property Editor, locate the Naming section. Clear the Remote EJB and check the Local EJB.
In other words, for the Music EJB you will use its local interfaces.

2.

Expand the Local EJB section and enter ejb.Music in the JNDI name field. Verify that the bean class
name is MusicLocal, and the home class name is MusicLocalHome, as is shown in the following
picture:

3.

In Design View, right−click the MusicBean and choose Add Component Method. A component
method called void method() appears in the Component Methods section.

4.

Rename the method Collection getBands(). If you step off the method and need to rename it,
right−click the method and select Rename.

5.

Right−click the arrow to the left of the method and select Local. The business method will now
defined in the local interface during build.

6.

Click the component method to go to Source View and modify the method as shown in red below:

 /**
 * @ejbgen:local−method
 */
 public Collection getBands() {
 try {
 Iterator bands = bandHome.findAll().iterator();
 Collection result = new ArrayList();
 while (bands.hasNext()) {
 Band band = (Band)bands.next();
 result.add(band.getName());
 }
 return result;

 }
 catch (FinderException fe)
 {
 throw new EJBException(fe);
 }
 }

Notice that the getBands method calls uses the BandBean to obtain all the bands currently stored in
the database. The method uses the Band EJB's findAll method to find all bands, and returns a
Collection of band names. To learn more about finder methods, see Query Methods and EJB QL.

7.

Locate the import section at the top of the file and add the following import statements, or use
Alt+Enter when prompted by the IDE to automatically add these import statements:

import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;

8.

WebLogic Workshop Tutorials

Step 3: Create a Session Bean 351

Now repeat steps 4 through 7 for the addBand method. Go to Design View, right−click the
MusicBean and choose Add Component Method. A component method called void method1()
appears in the Component Methods section.

9.

Rename the method void addBand(BandInfo bandInfo).10.
Right−click the arrow to the left of the component method and select Local.11.
Click the component method to go to Source View and modify the method as shown in red below:

 /**
 * @ejbgen:local−method
 */
 public void addBand(BandInfo bandInfo) {
 try {
 bandHome.create(bandInfo.getName(), bandInfo.getFounder(), bandInfo.getStartDate());
 }
 catch (CreateException ce) {
 throw new EJBException(ce);
 }
 }

Notice that the method calls the Band EJB's create method to add a new band to the database.

12.

Save your results.13.

To Build the EJBs

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyEJBProject, and select Build MyEJBProject.2.
Monitor the Build window and verify that the build completes correctly, and that the EJB JAR
MyProjectEJB.jar is created.

3.

After the build completes, the EJBs are deployed: Watch the green ball in the WebLogic Server status
bar at the bottom of WebLogic Workshop turn yellow with the message Updating Server. Wait until
the ball turns green again. The two EJBs are now deployed on the server. In addition, the various web
applications that were predefined are deployed to the web container. We will turn to these in the next
step.

4.

(Optional.) Verify the contents of the EJB JAR. In the Application pane, expand Modules, expand
MyProjectEJB.jar, and expand the directory structure reflecting the package name. Verify that the
bean classes and the various interfaces have been created.

5.

If you encounter a build error related to the ejbgen:ejb−local−ref tag, make sure that you have specified the
BandBean's name correctly. If you encounter build errors related to the component methods, verify that the
methods have been defined correctly and that you have imported the correct classes. A build error might be
followed by a deployment error, in particular for WebAppOne_Standard and related to an unresolved
ejb−link. The link cannot be resolved because the EJB JAR was not created. Fixing the build problem should
resolve this deployment error.

If you encounter deployment errors that seem to be related to one of the web applications, make sure that you
build the EJB project and not the entire application (because the application contains page flow applications
that have different EJB dependencies from what you have created in this step).

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 3: Create a Session Bean 352

Step 4: Run a Web Application
Now you will run two page flow applications to test the EJBs. Both page flows allow you to add a band to a
database and to view the list of bands. The two applications differ only in how they reference the Music EJB.
The first page flow uses EJB Controls in the page flow controller file. The second page flow uses JNDI
naming defined directly in the JSP. You can either run both page flow applications or skip the second one.

Note. Page flows and EJB controls are not the main topics of this tutorial and are used here primarily to
demonstrate how to run EJBs. To learn more about page flows and EJB controls, see the related topics at the
bottom of this page.

The WebAppStepOne_Controls Page Flow

Before you run this page flow, you first might want to examine the structure of this web application.

To Examine the EJB Control

In the Application pane, double−click WebAppStepOne_Controls, double−click EJBControls, and
double−click the EJB control MusicBeanControl.jcx.

•

Go to Source View and verify that the control references the (fully qualified) names of the Music
bean's local JNDI name (ejb.Music), its local home interface
(examples.ejb20.relationships.bands.MusicLocalHome), and its local business interface
(examples.ejb20.relationships.bands.MusicLocal). Remember that you set these Music bean
properties using the Property Editor in the previous step.

•

Note. If the definition of the EJB control reports errors, please go back to the previous step of the tutorial and
make sure that the mentioned names are set correctly in the Property Editor. If you make corrections to the
Music bean, you must rebuild the EJB project.

To Examine the Page Flow

In the Application pane, locate WebAppStepOne_Controls and double−click Controller.jpf. The file
opens in Flow View.

•

Notice that the page flow begins by going to the JSP page addBand.jsp. Also notice the action
addABand, which after executing returns to the JSP page.

•

Go to Source View. At the top of the class definition, notice the definition of the EJB Control variable
library:

/**
 * @common:control
 */
private EJBControls.MusicBeanControl library;

•

Locate the definition of the action addABand, and notice that the EJB's business methods are exposed
and invoked via the EJB control's methods with the same names:

protected Forward addABand(AddABandForm form)
{
 ...
 library.addBand(info);
 allBands = library.getBands();
 ...
}

•

Step 4: Run a Web Application 353

(Optional.) Double−click the JSP page addBand.jsp to examine its content.•

To Run the Page Flow

Make sure that Controller.jpf is opened.•
Click the Start button.

The first time the following dialog might appear:

If this dialog appears, press OK.

Workshop launches the Workshop Test Browser.

•

Enter a band name and press the Submit button. This will call the Music EJB's addBand method,
which will add the band to the database via the Band bean. A list containing only the band you just
entered appears, which is obtained by calling the getBands method. Now enter as many additional
bands as you would like. The names in the list of currently known bands appear in the order that you
entered them, and are not sorted by name. You can enter the names as shown in the below picture, or
you can add the names of your favorite bands. In either case, after adding a few bands, your browser
should be similar to the below picture.

•

WebLogic Workshop Tutorials

Step 4: Run a Web Application 354

Return to WebLogic Workshop and press the Stop button to close the Test Browser.•

The WebAppStepOne_Standard Page Flow

This page flow is solely intended to demonstrate how EJBs can be called directly from a JSP and without
using an EJB control. In general it is recommended that you use an EJB control called from a page flow
controller file instead, as shown in the above page flow application.

Before you run this page flow, you first might want to examine the structure of this web application.

To Examine the web.xml Descriptor

In the Application pane, double−click WebAppStepOne_Standard, double−click WEB−INF, and
double−click web.xml.

•

Locate the <ejb−local−ref> element and verify that it references the fully qualified names of the
Music bean's local home interface and local business interface, and the EJB name qualified by the
EJB JAR name. Notice that the definition is similar to the definition used in the EJB control above.

<ejb−local−ref>
 <ejb−ref−name>ejb/MusicLink</ejb−ref−name>

•

WebLogic Workshop Tutorials

Step 4: Run a Web Application 355

 <ejb−ref−type>Session</ejb−ref−type>
 <local−home>examples.ejb20.relationships.bands.MusicHome</local−home>
 <local>examples.ejb20.relationships.bands.Music</local>
 <ejb−link>MyEJBProject.jar#Music</ejb−link>
</ejb−local−ref>

Note. If the definition of the <ejb−local−ref> element does not match the Music bean's interfaces, please go
back to the previous step of the tutorial and make sure that the mentioned names are set correctly in the
Property Editor. If the name of the JAR file (in the ejb−link descriptor) is incorrect, rename the EJB project
as specified in step 1 of the tutorial. After you make corrections, you must rebuild the EJB project.

To Examine the JSP page

In the Application pane, locate WebAppStepOne_Standard and double−click Controller.jpf. The file
opens in Flow View.

•

Notice that the page flow simply goes to the JSP page addBand.jsp.•
Double−click the JSP page addBand.jsp, and go to Source View. Notice that the Music EJB is
referenced using the ejb/MusicLink reference defined in the deployment descriptor, and that JNDI
API is used to locate and reference the Music bean.

•

To Run the Page Flow

Make sure that Controller.jpf is opened.•
Click the Start button.

Workshop launches the Workshop Test Browser.

•

A listing of the bands you entered with the other page flow appears. Enter a band name and press the
Submit button. This will call the Music EJB's addBand method, which will add the band to the
database using the Band bean. Enter the bands shown in the picture below or add your favorite bands.

•

WebLogic Workshop Tutorials

Step 4: Run a Web Application 356

Return to WebLogic Workshop and press the Stop button to close the Test Browser.•

Related Topics

Getting Started: Java Controls

Getting Started: Web Applications

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 4: Run a Web Application 357

Part Two: Defining an Entity Relationship
In part one of the tutorial you imported the Band entity bean, created the Music session bean, which
referenced the Band bean, and ran two page flows that called the Music bean to add and list bands. In part two
of the tutorial you will add a second entity bean called Recording and define the relationship between the
Recording and Band beans. After updating the session bean to enable client applications to add a recording
and receive a listing of recordings for a given band, you will run a page flow to add and list bands and
recordings. Finally, you will create an EJB control and a test web service to test the Band bean directly.

Steps in Part Two

Step 5: Create a New Entity Bean

In this step you create the entity bean Recording and add an entity relation between the Band and Recording
beans.

Step 6: Update the Band Entity Bean

In this step you update the Band bean and add component methods to add a recording a get a list of
recordings.

Step 7: Update the Session Bean

In this step you add business methods to the Music bean that invoke the new methods defined for the Band
bean.

Step 8: Run a Web Application

In this step you will test the EJBs by running a new client application.

Step 9: Build and Run a Web Service Application

In this step you will develop an EJB control and generate a test web service to test the Band bean.

Related Topics

Developing Enterprise JavaBeans

Click one of the following arrows to navigate through the tutorial:

Part Two: Defining an Entity Relationship 358

Step 5: Create a New Entity Bean
In part one of the tutorial you created the entity bean Band by importing it from an EJB JAR file. It is also
possible to generate an entity bean from an existing database table. In this step, however, you will develop
your own entity bean from scratch.

The tasks in this step are:

To Create a Entity Bean•
To Change the Data Source•
To Define CMP Fields•
To Add EJBCreate•
To Add a Relation•
To Build the EJBs•

To Create an Entity Bean

Right−click the bands folder in the Application tab, and select New−−>Entity Bean.1.
Enter the file name RecordingBean.ejb.2.

Click Create.3.

To Change the Data Source

You need to point the Recording bean to the data source that is defined in the workshop domain:

Step 5: Create a New Entity Bean 359

Ensure that the Recording EJB is displayed in Design View.1.
In the Property Editor, in the General section, locate data−source−name and change the entry to
cgSampleDataSource.

2.

Notice in same section of the Property Editor that the table−name is recordings. Also notice in the Naming
section that the local interfaces and the local JNDI name have been automatically defined, as shown below.

To Define CMP Fields

Now you define the container−managed persistence (CMP) fields for the Recording EJB. Remember that
CMP fields are virtual fields that are not defined in the entity bean itself but correspond to columns in the
database table. The entity bean implements the accessor (getter and setter) methods to read and write to the
table. By default these accessor methods are also added to the bean's local (business) interface. You will
define two primary key fields that hold the name of the recording and the recording band:

Ensure that the Recording EJB is displayed in Design View.1.
Right−click the RecordingBean and choose Add CMP field. A CMP field called String field1 appears
in the CMP Fields section.

2.

Rename the field String bandName. If you step off the field and need to rename it, right−click the
field and select Change declaration.

Note. If you stepped off the field and used Change declaration to rename the field, select the
bandName declaration in Design View and go to the Property Editor to change the ejbgen:cmp−field
tag's column property to bandName. (The name of the CMP field and the corresponding column name
can be different, but for consistency reasons you should give them the same name here.)

3.

Right−click the field String bandName and select Primary Key. A key icon appears in front of the
field definition.

4.

Repeat these steps to create the primary key field String title.5.
Save your results.6.
Go to source view and examine the code. Notice that the accessor methods have been defined, but not
the fields, and that ejbgen tags are used to tag the primary key and to define the accessor methods in
the bean's local interface.

7.

To Add EJBCreate

Now you will add an ejbCreate method, which when invoked creates a new Recording bean and adds the
corresponding record to the database table. When you follow the steps below to define ejbCreate, WebLogic
Workshop automatically adds the corresponding ejbPostCreate to the bean class definition, and defines the
create method in the home interface:

Ensure that the Recording EJB is displayed in Design View.1.
Right−click the RecordingBean and choose Add EJBCreate. The Add ejbCreate method dialog
appears.

2.

WebLogic Workshop Tutorials

Step 5: Create a New Entity Bean 360

In the top panel the correct definition of the ejbCreate method is already displayed. Verify that the
method takes a band name and a title of the recording as arguments. Also verify that the order of the
arguments is correct, as the code that you will add later assumes this order. Click OK.

3.

The method you created appears in the EJB Create Methods section. Click the method to go to
Source View and examine the code.

4.

Save your results.5.

To Add a Relation

In the real world, recordings are made by bands. A band can have one or multiple recordings and, by and
large, a recording is made by one band. (For now we will ignore the scenario where multiple bands contribute
to a recording.) Here you will define this relationship in your Recording bean:

Ensure that the Recording bean is displayed in Design View.1.
Right−click the RecordingBean and choose Add Relation. The Add a Relation dialog appears.2.
From the drop−down list in the right−hand panel select BandEJB as the Target EJB Name.3.
In the Source CMR Field Name in the left−hand panel, enter band.4.
In the Source CMR Field Type, select Band from the drop−down list.5.
ln the Target CMR Field Name in the right−hand panel, enter recordings.6.
In the Target CMR Field Type, select java−util.Collection from the drop−down list.7.

WebLogic Workshop Tutorials

Step 5: Create a New Entity Bean 361

Click Next.8.
You can now decide whether the relationship is modeled using existing columns in the database table
or whether you want WebLogic Workshop to create the necessary columns for you. Because
Workshop is automatically creating the table for you, that is, the table for the Recording bean does not
exist yet, select Workshop generates foreign key columns for recording.

9.

Click Next.10.
Workshop automatically maps the Band bean's primary key name to a new column BandEJB_name in11.

WebLogic Workshop Tutorials

Step 5: Create a New Entity Bean 362

the Recording table. Click Next.

Workshop provides a name for the relationship. Click Finish. The Recording−BandEJB relation
appears in Design View in the Relations section.

12.

Right−click the Recording−BandEJB relation and choose Edit in source view to examine the
ejbgen:relation tag. To learn more about this tag, place the cursor anywhere in the tag and press F1.
Also scroll down and verify that the relationship accessor methods getBand and setBand have been
automatically created. Invoking the getBand method returns a reference to a Band bean object, that is,
a reference to the band who made this recording.

13.

WebLogic Workshop Tutorials

Step 5: Create a New Entity Bean 363

The Recording−BandEJB relation is now also defined in the Band bean. To verify, go to the Band
bean in Design View and observe that the relation is defined. Also, go to Source View to examine the
ejbgen tag and the relationship accessor methods getRecordings and setRecordings. Invoking the
getRecordings method returns a Java Collection containing references to all the relevant Recording
beans, that is, all the recordings made by a particular band.

14.

To Build the EJBs

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyEJBProject, and select Build MyEJBProject.2.
Monitor the Build window and verify that the build completes correctly, and that the EJB JAR
MyProjectEJB.jar is created.

3.

After the build completes, the EJBs are deployed: Watch the green ball in the WebLogic Server status
bar at the bottom of WebLogic Workshop turn yellow with the message Updating Server. Wait until
the ball turns green again. The two EJBs are now deployed on the server. In addition, the various web
applications that were predefined are deployed to the web container. We will turn to these in the next
step.

4.

(Optional.) Verify the contents of the EJB JAR. In the Application pane, expand Modules, expand
MyProjectEJB.jar, and expand the directory structure reflecting the package name. Verify that the
bean classes and the various interfaces have been created.

5.

If you encounter build errors, please run through the instructions in the current step again and verify that you
have entered the correct information. A build error might be followed by a deployment error, in particular for
WebAppOne_Standard and related to an unresolved ejb−link. The link cannot be resolved because the EJB
JAR was not created. Fixing the build problem should resolve this deployment error. If you encounter
deployment errors that seem to be related to one of the web applications, make sure that you build the EJB
project and not the entire application (because the application contains page flow applications that have
different EJB dependencies from what you have created in this step).

Related Topics

Entity Relationships

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 5: Create a New Entity Bean 364

Step 6: Update the Band Entity Bean
In the previous step you defined an entity relation between the Band and Recording beans. In this step you
will use this relation and modify the Band EJB to include business methods that create a new recording for a
band and return a list of recordings for a band.

The tasks in this step are:

To Reference the Entity Bean•
To Add an ejb−local−ref Tag•
To Add Component Methods•
To Build the EJBs•

To Reference the Entity Bean

The Band bean will be calling methods of the Recording bean. To do so, the Band bean must first locate and
obtain a reference to the Recording bean's home. In part one of the tutorial you created a similar reference in
the stateless session bean Music by modifying its ejbCreate method, which is always called to obtain a
reference to an instance of a Music bean. Unlike with session beans, the ejbCreate method is only invoked to
create a new entity bean and is not used to obtain a reference to an existing bean; existing bean instances are
returned by find methods (such as findByPrimaryKey). However, the setEntityContext callback method is
always invoked for an entity bean during its life cycle, and is used in the Band bean to execute the JNDI API
code to obtain a reference to the Recording bean. For more information on the life cycle methods of session
and entity beans, see The Life Cycle of a Session Bean and The Life Cycle of an Entity Bean.

Before you modify Band bean's setEntityContext, verify the name of the Recording bean's home interface:

In the Application pane, double−click RecordingBean.ejb and ensure you are in Design View.1.
In the Property Editor, locate the Naming section and verify that only Local EJB is checked.2.
Expand the Local EJB section and verify that the local home interface is called RecordingHome.3.

Now modify setEntityContext to obtain a reference to the Recording bean's local home interface:

In the Application pane, double−click BandBean.ejb and select the Source View tab.1.
Locate the setEntityContext, and modify its definition as shown in red below to obtain a reference to
RecordingHome:

 public void setEntityContext(EntityContext c) {
 ctx = c;
 try {
 javax.naming.Context ic = new InitialContext();
 recordingHome = (RecordingHome)ic.lookup("java:/comp/env/ejb/Recording");
 }

2.

Step 6: Update the Band Entity Bean 365

 catch(Exception e) {
 System.out.println("Unable to obtain RecordingHome: " + e.getMessage());
 }
 }

Go to the beginning of the class definition and define recordingHome as shown in red below:

abstract public class BandBean implements EntityBean
{
 private EntityContext ctx;
 private RecordingHome recordingHome;
 ...

3.

To Add an ejb−local−ref Tag

In the above setEntityContext method you use ejb/Recording to reference the Recording bean. At deployment
time this reference is mapped to the actual location of the Recording bean. This mapping is done in the
deployment descriptor. As you already saw in part one of the tutorial, in WebLogic Workshop you don't
modify the deployment descriptor directly but use ejbgen tags instead. To map the reference in the Band bean
to the Recording bean, you need to insert an ejbgen:ejb−local−ref tag in BandBean.ejb:

Ensure that the Band EJB is displayed in Design View.1.
Right−click the Design View, and select Insert EJB Gentag−−>ejb−local−ref. A new
ejbgen:ejb−local−ref section appears in the Property Editor.

2.

Use the Property Editor to enter the following properties in their respective fields, or go to Source
View to add these properties:

 * @ejbgen:ejb−local−ref link="Recording"

3.

To Add Component Methods

In this step you will add the business methods addRecording and getRecordingValues:

Ensure that the Band bean is displayed in Design View.1.
Right−click the BandBean and choose Add Component Method. A component method called void
method() appears in the Component Methods section.

2.

Rename the method void addRecording(String recording). If you step off the method and need to
rename it, right−click the method and select Rename.

3.

Click the component method to go to Source View and modify the method as shown in red below:

 /**
 * @ejbgen:local−method
 */
 public void addRecording(String recording) throws CreateException
 {
 Recording album = recordingHome.create(getName(), recording);
 Collection recordings = getRecordings();
 if(album != null) {
 recordings.add(album);
 }
 }

Notice that the method uses the Recording bean's create method, which you defined in an earlier step,
to add a new recording record to the database. Also notice that the method subsequently uses the

4.

WebLogic Workshop Tutorials

Step 6: Update the Band Entity Bean 366

relationship accessor method getRecordings to get a collection of references to all Recording beans
for this band, and then adds the new recording to this collection. This last step ensures that the
BandEJB_name column in the Recording table is set to the Band bean's primary key value. In other
words, this ensures that the entity relation between the two beans is now also set for the new
Recording, and that a subsequent call to the relationship accessor method getRecordings will return a
list of recordings that includes the new recording.
Now repeat these steps for the method getRecordingValues. Go to Design View, right−click the
BandBean and and choose Add Component Method. A component method called void method1()
appears in the Component Methods section.

5.

Rename the method Collection getRecordingValues().

Note. Although you might be tempted to call this method getRecordings() instead, remember that
earlier you already defined a (relationship accessor) method Collection getRecordings().

6.

Click the component method to go to Source View and modify the method as shown in red below:

 /**
 * @ejbgen:local−method
 */
 public Collection getRecordingValues()
 {
 Collection result = new ArrayList();
 try {
 Collection fields = getRecordings();
 Iterator i_recordings = fields.iterator();
 while (i_recordings.hasNext()) {
 Recording one_recording = (Recording)i_recordings.next();
 result.add(one_recording.getTitle());
 }
 }
 catch(Exception e)
 {
 System.out.println("error getting recording infos: " + e.getMessage());
 }
 return result;
 }

Notice that the method uses the relationship accessor method getRecordings to get a collection of all
Recording beans related to this band. For each Recording bean it uses the method getTitle to retrieve
the name of the recording. The method returns the collection of recording titles.

Note. Instead of returning a collection of recording titles, a modeling alternative would be to return a
collection of Recording beans instead, and have the calling method determine which specific
properties it needs.

7.

Save your results.8.

To Build the EJBs

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyEJBProject, and select Build MyEJBProject.2.
Monitor the Build window and verify that the build completes correctly, and that the EJB JAR
MyProjectEJB.jar is created.

3.

After the build completes, the EJBs are deployed: Watch the green ball in the WebLogic Server status
bar at the bottom of WebLogic Workshop turn yellow with the message Updating Server. Wait until

4.

WebLogic Workshop Tutorials

Step 6: Update the Band Entity Bean 367

the ball turns green again. The two EJBs are now deployed on the server. In addition, the various web
applications that were predefined are deployed to the web container. We will turn to these in the next
step.
(Optional.) Verify the contents of the EJB JAR. In the Application pane, expand Modules, expand
MyProjectEJB.jar, and expand the directory structure reflecting the package name. Verify that the
bean classes and the various interfaces have been created.

5.

If you encounter a build error related to the ejbgen:ejb−local−ref tag, make sure that you have specified the
Recording bean's name correctly. If you encounter build errors related to the component methods, verify that
the methods have been defined correctly. A build error might be followed by a deployment error, in particular
for WebAppOne_Standard and related to an unresolved ejb−link. The link cannot be resolved because the
EJB JAR was not created. Fixing the build problem should resolve this deployment error. If you encounter
deployment errors that seem to be related to one of the web applications, make sure that you build the EJB
project and not the entire application (because the application contains page flow applications that have
different EJB dependencies from what you have created in this step).

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 6: Update the Band Entity Bean 368

Step 7: Update the Session Bean
The Music session bean will be called by a page flow application to work with band and recording data. Here
you will add component methods to work with recording data. The tasks in this step are:

To Add Component Methods•
To Build the EJBs•

To Add Component Methods

In this step you add the corresponding business methods addRecording and getRecordings to the Music bean:

Ensure that the Music bean is displayed in Design View.1.
Right−click the MusicBean and choose Add Component Method. A component method called void
method() appears in the Component Methods section.

2.

Rename the method void addRecording(String band, String recording).3.
Right−click the arrow to the left of the component method and select Local. The business method is
now defined in the local interface.

4.

Click the component method to go to Source View and modify the method as shown in red below:

 /**
 * @ejbgen:local−method
 */
 public void addRecording(String band, String recording) {
 try {
 Band bandBean = bandHome.findByPrimaryKey(new BandPK(band));
 if(bandBean != null) {
 bandBean.addRecording(recording);
 }
 }
 catch(CreateException ce) {
 throw new EJBException(ce);
 }
 catch(FinderException fe) {
 throw new EJBException(fe);
 }
 }

Notice that the method uses the Band bean's findByPrimaryKey method to locate the band bean and
uses the band bean's method addRecording to add the recording to the database.

5.

Now repeat the above steps for the getRecordings method. Go to Design View, right−click the
MusicBean and choose Add Component Method. A component method called void method1()
appears in the Component Methods section.

6.

Rename the method Collection getRecordings(String band).7.
Right−click the arrow to the left of the component method and select Local.8.
Click the component method to go to Source View and modify the method as shown in red below:

 /**
 * @ejbgen:local−method
 */
 public Collection getRecordings(String band) {
 Collection result = new ArrayList();
 try {
 Band theBand = bandHome.findByPrimaryKey(new BandPK(band));

9.

Step 7: Update the Session Bean 369

 result.addAll(theBand.getRecordingValues());
 }
 catch(Exception e) {
 System.out.println("error getting recordings from music bean: " + e.getMessage());
 }
 return result;
 }

Notice that the method uses the Band bean's findByPrimaryKey to locate the band bean and uses the
band bean's method getRecordingValues to receive a list of the band's recordings.
Save your results.10.

To Build the EJBs

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyEJBProject, and select Build MyEJBProject.2.
Monitor the Build window and verify that the build completes correctly, and that the EJB JAR
MyProjectEJB.jar is created.

3.

After the build completes, the EJBs are deployed: Watch the green ball in the WebLogic Server status
bar at the bottom of WebLogic Workshop turn yellow with the message Updating Server. Wait until
the ball turns green again. The two EJBs are now deployed on the server. In addition, the various web
applications that were predefined are deployed to the web container. We will turn to these in the next
step.

4.

(Optional.) Verify the contents of the EJB JAR. In the Application pane, expand Modules, expand
MyProjectEJB.jar, and expand the directory structure reflecting the package name. Verify that the
bean classes and the various interfaces have been created.

5.

If you encounter build errors related to the component methods, verify that the methods have been defined
correctly. A build error might be followed by a deployment error, in particular for WebAppOne_Standard and
related to an unresolved ejb−link. The link cannot be resolved because the EJB JAR was not created. Fixing
the build problem should resolve this deployment error. If you encounter deployment errors that seem to be
related to one of the web applications, make sure that you build the EJB project and not the entire application
(because the application contains page flow applications that have different EJB dependencies from what you
have created in this step).

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 7: Update the Session Bean 370

Step 8: Run a Web Application
Now you will run the predefined web application WebAppStepTwo. This page flow uses an EJB control to
reference the Music bean, and is based on page flow WebAppStepOne_Controls, which you ran in part one of
the tutorial. Before you run this page flow, you first might want to examine the structure of this web
application.

To Examine the EJB Control

In the Application pane, double−click WebAppStepTwo, double−click EJBControls, and
double−click the EJB control MusicBeanControl.jcx.

•

Go to Source View and verify that the control references the Music bean. Notice that this definition is
exactly the same as the one used in part one of the tutorial in WebAppStepOne_Controls.

•

To Examine the Page Flow

In the Application pane, locate WebAppStepTwo and double−click Controller.jpf. The file opens in
Flow View.

•

Notice that the page flow begins by going to the JSP page addBand.jsp. Also notice the action
addABand, which after executing returns to addBand.jsp. In addition, a selectBand action leads to the
JSP page addRecording.jsp. This page invokes the actions addARecording, which returns to the same
page, and goToBands, which returns to addBand.jsp.

•

(Optional.) Examine the two JSPs and/or the source code of the actions.•

To Run the Page Flow

Make sure that Controller.jpf is opened.•
Click the Start button.

Workshop launches the Workshop Test Browser.

•

Enter a band name and press the Submit button. This will call the Music EJB's addBand method,
which will add the band to the database using the Band bean. A listing of known bands appears,
which is obtained by calling the getBands method.

•

Select a band from the list and add a recording. This will call the Music EJB's addRecording method,
which will add the recording to the database via the Band bean and the Entity bean. A new record will
contain the title of the recording as well as the recording band. A listing of known recordings appears
for the selected band, which is obtained by calling Music bean's getRecordings method.

•

Return to WebLogic Workshop and press the Stop button to close the Test Browser.•

Related Topics

Tutorial: Java Control

Step 8: Run a Web Application 371

Tutorial: Page Flow

EJB Control

Developing Web Applications

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 8: Run a Web Application 372

Step 9: Build and Run a Web Service Application
Throughout this tutorial you have used predefined web applications to test the EJBs you develop. However, as
you go about developing your own EJBs, you might not be interested in building a page flow in parallel to run
and test your EJBs. WebLogic Workshop offers the test web service as a quick alternative to test your beans.
In this step you will build your own test web service for the Band bean. This requires generating an EJB
control for the EJB, and generating a test web service for the EJB control

The tasks in this step are:

To Create a Web Service Project•
To Create the EJB Control•
To Generate the Test Web Service•
To Run the Test Web Service•

To Create the Web Service Project

In the Application tab, right−click the EJBProjectTutorial folder and select New−−>Project.1.
In the New Project dialog, in the upper left−hand pane, select Web Services.
In the upper right−hand pane, select Web Service Project.
In the Project Name field, enter TestWSProject.

2.

Click Create.3.

To Create the EJB Control

Step 9: Build and Run a Web Service Application 373

Right−click TestWSProject and select New−−>Folder. The Create New Folder dialog appears.1.
Enter EJBControls. Click OK.2.
Right−click EJBControls and select New−−>Java Control. The New Java Control dialog appears.3.
Select EJB Control. In the File name field, enter BandEJBControl. Click Next.4.
Click Browse application EJBs and select BandEJB (local jndi). Click Select.5.
Click Create.6.

To Generate the Test Web Service

In the Application tab, right−click BandEJBControl.jcx and select Generate Test JWS File
(Conversational).

•

To Run the Test Web Service

In the Application tab, double−click the BandEJBControlTest.jws web service to open it in Design
View.

1.

Click the Start button.

Workshop launches the Workshop Test Browser.

2.

In Test View, you can test the EJB using either the Test Form or Test XML tab. Click the Test XML
tab to have access to all methods.

3.

Click startTestDrive to begin testing. This starts the web service's conversation.4.
After Test View refreshes, click the Continue this conversation link for access to test forms and
buttons through which you can test each of your control's methods.

5.

You can now test the methods. After each test, click Continue this conversation to test another
method.

For instance, locate the findByName method, supply the name of a band you entered earlier in the
tutorial as an argument (for instance, <arg0>Art Ensemble of Chicago</arg0>), and click the
findByName button. The test web service returns the reference to the entity bean, as seen in the
Returned from findByName section, and stores this reference as part of the conversation state. In
other words, you can now use another method to test this bean. For instance, click Continue this
conversation, locate the getName method, and click the corresponding getName button. The name of
the entity bean, which you located with findByName, is returned, as showing in the Returned from
getName section.

Note. For some methods, such as findByName in the example, you will notice that a value is returned
correctly, although an XMLEncodingException error is thrown in the service response. These types of
errors result from the return type not being Serializable, which is a prerequisite for a proper XML
response. However, these errors do not affect the operations of the EJB or your ability to use the test
web service to test the EJB.

6.

When you are finished testing, click finishTestDrive to finish testing.7.
Return to WebLogic Workshop and press the Stop button to close the Test Browser.8.

WebLogic Workshop Tutorials

Step 9: Build and Run a Web Service Application 374

When you make changes to the Band bean during testing, you will need to rebuild the bean and, if you
added/removed methods or changed method signatures, regenerate the test JWS. However, in those cases it is
not necessary to recreate the EJB control.

Related Topics

How Do I: Test an Enterprise JavaBean?

Building Web Services

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 9: Build and Run a Web Service Application 375

Part Three: Adding a Message−Driven Bean
In part two of the tutorial you added an entity bean called Recording and modified the Band and Music beans
to enable adding and listing recordings for a band. In part three of the tutorial you will add a message−driven
bean that will compile rating information for recordings.

To understand what this message−driven bean is doing, let's take a step back to provide a background for the
EJBs you have created thus far. Imagine that you are using this EJB application to create an online record of
your favorite bands and recordings. You have created the basics of this web site but the completed
functionality includes the ability to enter copious notes on bands, including the history of the band and its
members, to rate and review recordings, and so forth. In addition, other parts of the EJB application run in the
background to search various web sites and collect information on price, average rating, and so forth. The
latter functionality is what you will build in this part of the tutorial with a message−driven bean.

It might be clear from the above description that a true and accurate implementation of the business logic of
the message−driven bean will require internet search capabilities. At this point you are going to focus on the
core functionality of sending messages and the processing of these messages by message−driven beans
instead, and implement placeholder business logic for the message−driven bean, which could be fully
implemented at a later time.

Steps in Part Three

Step 10: Create a Message−Driven Bean

In this step you create the message−driven bean Statistics.

Step 11: Update the Recording Bean

In this step you update the Recording bean to store the statistics generated by the Statistics bean.

Step 12: Update the Music Bean

In this step you change the Music Bean to send a message that will be processed by the Statistics bean, and to
make rating information stored in the Recording bean available to the client application.

Step 13: Run a Web Application

In this step you will test the EJBs by running a page flow.

Note. As an alternative to updating the Music bean, WebLogic also offers the JMS control to handle JMS
messages. For instance, if for some reason it were impossible to modify the Music bean, you could create a
custom control instead to encapsulate the business logic implemented in step 12. This custom control, which
would be called by a client application, would call the Music bean to add a recording and subsequently call a
JMS control to send a JMS message to be processed by the Statistics bean.

Related Topics

Developing Enterprise JavaBeans

Working with Java Controls

Part Three: Adding a Message−Driven Bean 376

JMS Control

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Part Three: Adding a Message−Driven Bean 377

Step 10: Create a Message−Driven Bean
In this step you will create the message−driven bean Statistics. The tasks in this step are:

To Create a JMS Queue•
To Create a Message−Driven Bean•
To Listen to the JMS Queue•
To Reference the Recording Bean•
To Add an ejb−local−ref Tag•
To Define the onMessage Method•

To Create a JMS Queue

Messages for a message−driven bean are not sent directly to the bean but are delivered via the Java Message
Service (JMS). To send and receive a JMS message you need to set up a new JMS Queue on the domain's
JMS Server:

From the Tools menu, select WebLogic Server−−>WebLogic Console.1.
Sign in using weblogic as username and password.2.
Under Services Configurations, JMS, click Servers.3.
Click cgJMSServer.4.
Click Configure Destinations.5.
Click Configure a new JMS Queue.6.
In the Name field, enter Recording Ratings Queue.7.
In the JNDI field, enter RecordingRatingsQueue.8.
Click the Create button.9.

Note. To learn more about JMS, see your favorite J2EE book or the Java documentation at
http://java.sun.com.

To Create a Message−Driven Bean

Right−click the bands folder in the Application tab, and select New−−>Message−driven Bean.1.
Enter the file name StatisticsBean.ejb.2.

Step 10: Create a Message−Driven Bean 378

Click Create. Notice that a message−driven bean only appears in Source View.3.

Message−driven beans do not have a Design View. Consequently, the StatisticsBean opens in Source View.

To Listen to the JMS Queue

Now you will ensure that the message−driven bean listens to the JMS queue you created above:

Place the cursor in the @ejbgen:message−driven tag.1.
In the Property Editor, locate destination−jndi−name and change the entry to
RecordingRatingsQueue.

2.

Verify that the destination−type is javax.jms.Queue.3.

To Reference the Recording Bean

The Statistics EJB will be using the Recording bean to store a recording's statistics. To do so, the Statistics
bean must first locate and obtain a reference to the Recording bean's home interface. In this step you modify
the Statistics bean's ejbCreate method to locate and obtain that reference:

Go to the beginning of the Statistics bean class definition and define recordingHome as shown in red
below:

public class StatisticsBean
 extends GenericMessageDrivenBean
 implements MessageDrivenBean, MessageListener
{
 private RecordingHome recordingHome;

 public void onMessage(Message msg) {

1.

WebLogic Workshop Tutorials

Step 10: Create a Message−Driven Bean 379

 ...

Add the ejbCreate method as shown in red below:

public class StatisticsBean
 extends GenericMessageDrivenBean
 implements MessageDrivenBean, MessageListener
{
 private RecordingHome recordingHome;

 public void ejbCreate() {
 try {
 javax.naming.Context ic = new InitialContext();
 recordingHome = (RecordingHome)ic.lookup("java:/comp/env/ejb/Recording");
 }
 catch(NamingException ne) {
 System.out.println("Encountered the following naming exception: " + ne.getMessage());
 }
 }
 ...

2.

Locate the import section at the top of the file and add the following import statements, or use
Alt+Enter when prompted by the IDE to automatically add these import statements:

import javax.naming.InitialContext;
import javax.naming.NamingException;

3.

To Add an ejb−local−ref Tag

In the above ejbCreate method you used ejb/Recording to reference the Recording EJB. To map the reference
in the Statistics bean to the actual location of the Recording bean at deployment time (via the deployment
descriptor), you need to insert an ejbgen:ejb−local−ref tag as shown in bold below:

 * ...
 * @ejbgen:ejb−local−ref link="Recording"
 */
public class StatisticsBean
...

To Define the onMessage Method

A message−driven bean's onMessage method is invoked when a message arrives for processing. In this
method you implement the business logic of the bean:

Modify the onMessage method as shown in red below:

 public void onMessage(Message msg) {
 try {
 // read the message
 MapMessage recordingMsg = (MapMessage)msg;
 String bandName = recordingMsg.getString("bandName");
 String recordingTitle = recordingMsg.getString("recordingTitle");
 // placeholder logic for the rating
 Random randomGenerator = new Random();
 String rating = new Integer(randomGenerator.nextInt(5)).toString();
 // save the rating with the recording
 Recording album = recordingHome.findByPrimaryKey(new RecordingBeanPK(bandName, recordingTitle));
 album.setRating(rating);

1.

WebLogic Workshop Tutorials

Step 10: Create a Message−Driven Bean 380

 }
 catch(Exception e) {
 System.out.println("Encountered the following exception: " + e.getMessage());
 }
 }

Notice that the method uses the Recording bean's (currently undefined) setRating method to store the
average rating for this recording. In a later step you will add this accessor method to the Recording
bean. Computing the rating information for an album is done by randomly selecting a number
between 0 and 4.
Locate the import section at the top of the file and add the following import statement, or use
Alt+Enter when prompted by the IDE to automatically add the import statement:

import java.util.Random;

2.

Because the Recording bean's setRating method is not defined yet, building the EJBs would fail. You first
need to update the Recording bean before you can build without generating errors.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 10: Create a Message−Driven Bean 381

Step 11: Update the Recording Bean
In this step you add a CMP field to the Recording bean to store the rating information collected by the
Statistics bean, and change the way tables are created by WebLogic. The tasks in this step are:

To Define a CMP Field•
To Change the create−tables Setting•
To Build the EJBs•

To Define a CMP Field

Ensure that the Recording EJB is displayed in Design View.1.
Right−click the RecordingBean and choose Add CMP field. A CMP field called String field1 appears
in the CMP Fields section.

2.

Rename the field String rating. If you step off the field and need to rename it, right−click the field and
select Change declaration.

Note. If you stepped off the field and used Change declaration to rename the field, select the rating
declaration in Design View and go to the Property Editor to change the ejbgen:cmp−field tag's
column property to rating. (The name of the CMP field and the corresponding column name can be
different, but for consistency reasons you should give them the same name here.)

3.

To Change the create−tables Setting

When you first used the Recording bean, WebLogic automatically created the corresponding table with the
necessary columns to hold the defined CMP fields, as dictated by the CreateOnly setting in the create−tables
property in the Property Editor. This setting does not automatically re−create the table if the definition of
CMP fields changes, that is, if you add a new CMP field or change the definition of an existing CMP field.
Since you have added an additional CMP field above, you must either manually add the column to the table or
tell WebLogic to drop the original table and create a new table. You will do the latter here:

Ensure that the Recording EJB is displayed in Design View.1.
In the Property Editor, locate the create−tables property under JAR Settings. From the drop−down
list choose DropAndCreate. This option will re−create the table whenever the definition of the entity
bean no longer matches the table definition. All data stored in the old table will be lost.

2.

Save your results.3.

To Build the EJBs

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyEJBProject, and select Build MyEJBProject.2.
Monitor the Build window and verify that the build completes correctly, and that the EJB JAR
MyProjectEJB.jar is created.

3.

After the build completes, the EJBs are deployed: Watch the green ball in the WebLogic Server status
bar at the bottom of WebLogic Workshop turn yellow with the message Updating Server. Wait until
the ball turns green again. The two EJBs are now deployed on the server. In addition, the various web
applications that were predefined are deployed to the web container. We will turn to these in the next
step.

4.

Step 11: Update the Recording Bean 382

(Optional.) Verify the contents of the EJB JAR. In the Application pane, expand Modules, expand
MyProjectEJB.jar, and expand the directory structure reflecting the package name. Verify that the
bean classes and the various interfaces have been created.

5.

If you encounter a build error related to the ejbgen:ejb−local−ref tag in Statistics bean, make sure that you
have specified the Recording bean's name correctly. If you encounter build errors related to the component
methods, verify that the methods have been defined correctly. A build error might be followed by a
deployment error, in particular for WebAppOne_Standard and related to an unresolved ejb−link. The link
cannot be resolved because the EJB JAR was not created. Fixing the build problem should resolve this
deployment error. If you encounter deployment errors that seem to be related to one of the web applications,
make sure that you build the EJB project and not the entire application (because the application contains page
flow applications that have different EJB dependencies from what you have created in this step).

Also, you can compare your code for Statistics Bean and Recording bean with the solution source code
located at [BEA_HOME]\weblogic81\samples\platform\tutorial_resources\EJBTutorial\solutions.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 11: Update the Recording Bean 383

Step 12: Update the Music Bean
The Music bean will send a message to the JMS queue whenever a new recording is added by the user. In this
step you will you will modify the component method addRecording to send the message. Also you will add
the component method getRating to retrieve the rating information of a recording from the Recording bean.

The tasks in this step are:

To Reference the Recording Bean•
To Add an ejb−local−ref Tag•
To Add Component Method getRating•
To Reference the JMS Provider and Destination•
To Add resource−ref and resource−env−ref Tags•
To Modify Component Method addRecording•
To Build the EJBs•

To Reference the Recording Bean

The Music EJB will be invoking a method of the Recording EJB. To do so, it must first locate and obtain a
reference to the Recording bean's home. In this step, you modify the ejbCreate method in MusicBean.ejb to
locate and obtain a reference:

In the Application pane, double−click MusicBean.ejb and select the Source View tab.1.
Locate the ejbCreate method and modify its definition as shown in red below:

 public void ejbCreate() {
 try {
 javax.naming.Context ic = new InitialContext();
 bandHome = (BandHome)ic.lookup("java:comp/env/ejb/BandEJB");
 recordingHome = (RecordingHome) ic.lookup("java:comp/env/ejb/Recording");
 }
 catch (NamingException ne) {
 throw new EJBException(ne);
 }
 }

2.

Go to the beginning of the class definition and define recordingHome as shown in red below:

public class MusicBean extends GenericSessionBean implements SessionBean {
 private BandHome bandHome;
 private RecordingHome recordingHome;
 ...

3.

To Add an ejb−local−ref Tag

In the above ejbCreate method you used ejb/Recording to reference the Recording EJB. To map the reference
in the Music bean to the actual location of the Recording bean at deployment time (via the deployment
descriptor), you need to insert an ejbgen:ejb−local−ref tag:

Ensure that the Music EJB is displayed in Design View.1.
Right−click the Design View, and select Insert EJB Gentag−−>ejb−local−ref. A new
ejbgen:ejb−local−ref section appears in the Property Editor.

2.

Step 12: Update the Music Bean 384

Use the Property Editor to enter the link property, or go to Source View to add this property:
 * @ejbgen:ejb−local−ref link="Recording"

3.

To Add Component Method getRating

Ensure that the Music EJB is displayed in Design View.1.
Right−click the MusicBean and choose Add Component Method. A component method called void
method() appears in the Component Methods section.

2.

Rename the method String getRating(String band, String recordingTitle).3.
Right−click the arrow to the left of the component method and select Local. The business method is
now defined in the local interface.

4.

Click the component method to go to Source View and modify the method as shown in red below:

 /**
 * @ejbgen:local−method
 */
 public String getRating(String band, String recordingTitle)
 {
 try {
 Recording theRecording = recordingHome.findByPrimaryKey(new RecordingBeanPK(band, recordingTitle));
 return theRecording.getRating();
 }
 catch(FinderException fe) {
 throw new EJBException(fe);
 }
 }

Notice that the method uses the Recording bean's findByPrimaryKey method to locate the recording
and uses the recording bean's method getRating to retrieve the rating.

5.

To Reference the JMS Provider and Destination

In order to send a JMS message, the Music bean will need to connect to the JMS provider and it will need to
have a destination queue for the message. Next you will modify the ejbCreate method to locate and obtain a
reference to a QueueConnectionFactory that is defined by default in the workshop domain, and the JMS
Queue you defined in step 10 of the tutorial:

In the Application pane, double−click MusicBean.ejb and ensure you are in Source View.1.
Locate the ejbCreate method in MusicBean.ejb, and modify its definition as shown in red below:

 public void ejbCreate() {
 try {
 javax.naming.Context ic = new InitialContext();
 bandHome = (BandHome)ic.lookup("java:comp/env/ejb/BandEJB");
 recordingHome = (RecordingHome) ic.lookup("java:comp/env/ejb/Recording");
 factory = (QueueConnectionFactory) ic.lookup("java:comp/env/jms/QueueConnectionFactory");
 queue = (Queue) ic.lookup("java:comp/env/jms/RecordingRatingsQueue");
 }
 catch (NamingException ne) {
 throw new EJBException(ne);
 }
 }

2.

Locate the import section at the top of the file and add the following import statements, or use
Alt+Enter when prompted by the IDE to automatically add these import statements:

3.

WebLogic Workshop Tutorials

Step 12: Update the Music Bean 385

import javax.jms.Queue;
import javax.jms.QueueConnectionFactory;

Go to the beginning of the class definition and define QueueConnectionFactory and Queue as shown
in red below:

public class MusicBean
 extends GenericSessionBean
 implements SessionBean
{
 private BandHome bandHome;
 private RecordingHome recordingHome;
 private QueueConnectionFactory factory;
 private Queue queue;
 ...

4.

To Add resource−ref and resource−env−ref Tags

In the above step you used jms/QueueConnectionFactory to reference the JMS provider and you used
jms/RecordingRatingsQueue to locate the JMS queue. To map these reference to the actual locations at
deployment time (via the deployment descriptor), you need to insert resource−ref and resource−env−ref tags:

Ensure that the Music EJB is displayed in Design View.1.
Right−click the Music bean and choose Insert EJBGentag−−>resource−ref. A new
ejbgen:resource−ref section appears in the Property Editor.

2.

Define the reference to the JMS provider in the Property Editor by entering the following properties
in the respective fields, or go to Source View to add these properties:
 * @ejbgen:resource−ref
 * auth="Container"
 * jndi−name = "weblogic.jws.jms.QueueConnectionFactory"
 * name = "jms/QueueConnectionFactory"
 * type="javax.jms.QueueConnectionFactory"

3.

In Design View, right−click the Music bean and choose Insert EJBGentag−−>resource−env−ref. A
new ejbgen:resource−env−ref section appears in the Property Editor.

4.

Define the local link in the Property Editor by entering the following properties in the respective
fields, or go to Source View to add these properties:

 * @ejbgen:resource−env−ref
 * jndi−name="RecordingRatingsQueue"
 * name="jms/RecordingRatingsQueue"
 * type = "javax.jms.Queue"

5.

Note. You can verify the JNDI name of the QueueConnectionFactory via the WebLogic console. You will
find the link Connection Factories under Services Configurations, JMS. For more information, see step 10 of
the tutorial. To learn more about these tags, place your cursor inside the tag in Source View, and press F1.

To Modify Component Method addRecording

Ensure that the Music bean is displayed in Design View.1.
Click the method void addRecording(String band, String recording) to go to Source View and modify
the method as shown in red below:

 /**
 * @ejbgen:local−method
 */
 public void addRecording(String band, String recording)

2.

WebLogic Workshop Tutorials

Step 12: Update the Music Bean 386

 {
 try {
 Band bandBean = bandHome.findByPrimaryKey(new BandPK(band));
 if(bandBean != null) {
 bandBean.addRecording(recording);
 //send a message
 QueueConnection connect = factory.createQueueConnection();
 QueueSession session = connect.createQueueSession(true,Session.AUTO_ACKNOWLEDGE);
 QueueSender sender = session.createSender(queue);
 MapMessage recordingMsg = session.createMapMessage();
 recordingMsg.setString("bandName", band);
 recordingMsg.setString("recordingTitle", recording);
 sender.send(recordingMsg);
 connect.close();
 }
 }
 catch(CreateException ce) {
 throw new EJBException(ce);
 }
 catch(FinderException fe) {
 throw new EJBException(fe);
 }
 catch(JMSException ne) {
 throw new EJBException(ne);
 }
 }

Notice that the method creates a message containing the name of the band and the recording title, and
sends this to the JMS queue.
Locate the import section at the top of the file and add the following import statements, or use
Alt+Enter when prompted by the IDE to automatically add these import statements:

import javax.jms.JMSException;
import javax.jms.MapMessage;
import javax.jms.QueueConnection;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.Session;

3.

Save your results.4.

To Build the EJBs

Locate the Build window in the IDE. If the Build window is not there, select
View−−>Windows−−>Build.

1.

In the Application pane, right−click MyEJBProject, and select Build MyEJBProject.2.
Monitor the Build window and verify that the build completes correctly, and that the EJB JAR
MyProjectEJB.jar is created.

3.

After the build completes, the EJBs are deployed: Watch the green ball in the WebLogic Server status
bar at the bottom of WebLogic Workshop turn yellow with the message Updating Server. Wait until
the ball turns green again. The two EJBs are now deployed on the server. In addition, the various web
applications that were predefined are deployed to the web container. We will turn to these in the next
step.

4.

(Optional.) Verify the contents of the EJB JAR. In the Application pane, expand Modules, expand
MyProjectEJB.jar, and expand the directory structure reflecting the package name. Verify that the
bean classes and the various interfaces have been created.

5.

WebLogic Workshop Tutorials

Step 12: Update the Music Bean 387

If you encounter build errors, verify that the above instructions have been followed. A build error might be
followed by a deployment error, in particular for WebAppOne_Standard and related to an unresolved
ejb−link. The link cannot be resolved because the EJB JAR was not created. Fixing the build problem should
resolve this deployment error. If you encounter deployment errors that seem to be related to one of the web
applications, make sure that you build the EJB project and not the entire application (because the application
contains page flow applications that have different EJB dependencies from what you have created in this
step).

Also, you can compare your code for Music Bean with the solution source code located at
[BEA_HOME]\weblogic81\samples\platform\tutorial_resources\EJBTutorial\solutions.

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 12: Update the Music Bean 388

Step 13: Run a Web Application
In this step you will run the predefined web application WebAppStepThree. This page flow uses the same EJB
control as WebAppStepTwo, and uses the same JSPs and action methods to add bands and recordings and
receive listings of bands and recordings. In addition, it is possible to review the rating of a recording.

To Examine the Page Flow

In the Application pane, locate WebAppStepThree and double−click Controller.jpf. The file opens in
Flow View.

•

Notice that this page flow also contains the JSP page recordingStats.jsp and the action methods
goToStats and goToRecordings.

•

(Optional.) Examine the JSP and/or the source code of the actions.•

To Run the Page Flow

Make sure that Controller.jpf is opened.•
Click the Start button.

Workshop launches the Workshop Test Browser.

•

On the first page, locate the list of bands that you created in earlier parts of the tutorial, and click a
band to go to the recordings of this band. Because the Recordings table was re−created, the recordings
that you entered previously are gone.

•

Enter a new recording. This will call the Music EJB's addRecording method, which will add the
recording to the database via the Band bean and the Entity bean. The record that is added to the
database initially contains the title of the recording, the recording band, and the entity relation
between the band and recording stored in the BandEJB_name column. In addition, the addRecording
method sends a message to the JMS queue. When the Statistics bean receives the message, it will
create a rating for this recording and add that to the table via the Recording bean. The operations of a
message−driven bean are asynchronous; after the addRecording method sends the message to the JMS
queue, control immediately returns to the calling page flow action method addARecording.

•

Click a recording to view the rating. This will call the Recording bean's getRating method, which will
return a rating, or null if the Statistics bean has not processed the JMS message yet.

•

Return to WebLogic Workshop and press the Stop button to close the Test Browser.•

Note. If you receive a NamingException when the page flow starts, the EJB container is unable to locate and
reference the Recording bean, the JMS provider, and/or the JMS queue. Go back to step 12 of the tutorial to
verify the references, and use WebLogic console to verify the JNDI names of the JMS provider and queue.
When you make changes to EJBs, you must rebuild these before running the page flow again.

Related Topics

Tutorial: Java Control

Step 13: Run a Web Application 389

Tutorial: Page Flow

EJB Control

Developing Web Applications

Click one of the following arrows to navigate through the tutorial:

WebLogic Workshop Tutorials

Step 13: Run a Web Application 390

Summary: Enterprise JavaBean Tutorial
This tutorial introduced you to the basics of building Enterprise JavaBeans.

Concepts and Tasks Introduced in This Tutorial

EJBs that weren't originally built in WebLogic Workshop can be imported into EJB project•
EJB project uses wizards to facilitate development of EJBs, for instance when defining ejbCreate
methods or entity relations. Developing entity relations is abstracted through the Wizard such that you
can focus on design, with Workshop taking care of the implementation details.

•

The use of message−driven beans for asynchronous processing.•
WebLogic Workshop offers EJB controls for easy interoperability with page flows and web services.•
WebLogic Workshop enables you to build EJBs that are standards compliant and contain no
proprietary elements.

•

Click the arrow to navigate through the tutorial:

Summary: Enterprise JavaBean Tutorial 391

	Table of Contents
	WebLogic Workshop Tutorials
	The Getting Started Tutorials
	Getting Started: Web Services
	Getting Started: Web Service Core Concepts
	Step 1: Create a Web Service Project
	Step 2: Implement Synchronous Communication
	Step 3: Implement Asynchronous Communication
	Summary: Getting Started Web Services Tutorial
	Getting Started: Web Applications
	Getting Started: Web Application Core Concepts
	Step 1: Create a Web Application Project
	Step 2: Submitting Data
	Step 3: Processing Data
	Step 4: Displaying Results
	Summary: Getting Started Web Application Tutorial
	Getting Started: Java Controls
	Getting Started: Java Control Core Concepts
	Step 1: Create a Control Project
	Step 2: Define the Database Control
	Step 3: Define the Custom Control
	Step 4: Test the Controls
	Summary: Getting Started Control Tutorial
	Getting Started: Enterprise JavaBeans
	Getting Started: EJB Core Concepts
	Step 1: Create an EJB Project
	Step 2: Define the Entity Bean
	Step 3: Define the Session Bean
	Step 4: Test the EJBs
	Summary: Getting Started EJB Tutorial
	Getting Started: Portals
	Getting Started: Portal Core Concepts
	Step 1: Create a Portal Project
	Step 2: Organize Content in a Portal
	Step 3: Personalize a Web Application
	Summary: Getting Started Portal Tutorial
	Tutorial: Java Control
	Step 1: Begin the Investigate Java Control
	Step 2: Add a Database Control
	Step 3: Add a Web Service Control
	Step 4: Add a JMS Control
	Step 5: Add an EJB Control
	Step 6: Add Support for Cancellation and Exception Handling
	Step 7: Transport Security
	Step 8: Compile the Java Control and Add a Property
	Summary: Java Control Tutorial
	Tutorial: Web Services
	Step 1: Begin the Investigate Web Service
	Step 2: Add Support for Asynchronous Communication
	Step 3: Add Support for Synchronous Communication
	Step 4: Add Support for XML Mapping
	Step 5: Add a Script for XML Mapping
	Step 6: Web Service Security
	Summary: Web Service Tutorial
	Tutorial: Page Flow
	Step 1: Begin the Page Flow Tutorial
	Step 2: Processing Data with Page Flows
	Step 3: Create the JSP Pages
	Step 4: Role-Based Security
	Summary: Page Flow Tutorial
	Tutorial: Building Your First Business Process
	Tutorial: Building Your First Data Transformation
	Portal Tutorials
	Tutorial: Building Your First Portal
	Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server
	Step 2: Create a Portal
	Tutorial: Changing a Portal's Look & Feel and Navigation
	Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server
	Step 2: Change the Portal Look & Feel and Navigation
	Tutorial: Showing Personalized Content in a Portlet
	Step 1: Start WebLogic Workshop, Open an Application, and Start WebLogic Server
	Step 2: Create a User Profile Property Set
	Step 3: Create Two Users
	Step 4: Load Content
	Step 5: Create a JSP
	Step 6: Add Content Selectors to the JSP
	Step 7: Create a Portlet with the JSP
	Step 8: Test the Personalized Portlet
	Tutorial: Creating a Login Control Page Flow Using the Wizard
	Step 1: Create a Page Flow Using the Wizard
	Step 2: Place the Page Flow in a Portlet
	Tutorial: Using Page Flows Inside Portlets
	Step 1: Create a Portal Application
	Step 2: Create a Simple Navigation Page Flow
	Step 3: Create Portlets that Communicate
	Step 4: Create an EJB Control Page Flow portlet
	Tutorial: Enterprise JavaBeans
	Part One: Building Your First EJBs
	Step 1: Begin the EJB Tutorial
	Step 2: Import an EJB from a JAR
	Step 3: Create a Session Bean
	Step 4: Run a Web Application
	Part Two: Defining an Entity Relationship
	Step 5: Create a New Entity Bean
	Step 6: Update the Band Entity Bean
	Step 7: Update the Session Bean
	Step 8: Run a Web Application
	Step 9: Build and Run a Web Service Application
	Part Three: Adding a Message-Driven Bean
	Step 10: Create a Message-Driven Bean
	Step 11: Update the Recording Bean
	Step 12: Update the Music Bean
	Step 13: Run a Web Application
	Summary: Enterprise JavaBean Tutorial

