o9,

Pl ’
" ’
L/ ea

BEA WebLogic Workshop™ Help

Version 8.1 SP4
December 2004

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreeme
It is against the law to copy the software except as specifically allowed in the agreement. This document ma
not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic mediur
or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software—Restricted Rights
Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software——Licensing clau:
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on tr
part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR

THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E—Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Configuration File Reference

Table of Contents

Configuration File REIEIENCE........uiiiiieeeeeeeeeeeeee e 1
jws—config.properties Configuration File...............oooii i 2

workshopLogCfg.xml Configuration Fil@...........cooiiiiiii i aae e aneeeneenreanreanrennnes 4

WIW—config.Xml ConfIQUIAtION FlE....... ... e e e b e e s besssesssssssessssessesseesseeeseeeseeeeeees 10
wlw-runtime—config.xml Configuration File..................c 24

wlw—manifest.xml ConfigUIation FilE......... ... i eee e eeerrerrererreeeerrerrreeeaereeeees 30
WS-Security Policy File Reference(WSSEFile REfErENCE)........uuviiiiiiiiiiiiiiiiiiiiiieiieeiveee e 41

Configuration File Reference

The following configuration files are associated with WebLogic Workshop.

Topics Included in This Section

jws—config.properties Configuration File

The jws—config.properties file specifies WebLogic Workshop runtime configuration for a WebLogic Server
domain.

workshopLogCfg.xml Configuration File

The workshopLogCfg.xml file specifies the WebLogic Workshop logging configuration and logging levels
for WebLogic Server. By default this configuration file writes debugging information to the log file
weblogic_debug.log. (Use this log file when working with technical support.) By default, exceptions are
written to workshop_errors.log. Both weblogic_debug.log and weblogic_errors.log are located in the
BEA HOME\weblogic81\workshop directory.

wlw—config.xml Configuration File

The wlw—config.xml file allows you to configure runtime parameters of web services, both on the
development server and production servers. wiw—config.xml is specific to a WebLogic Workshop application
Note that values entered in the wiw—config.xml file cannot be overridden by other runtime configuration
mechanisms, because these values become hardcoded into the deployment EAR file. For this reason, we
recommend that you use the wiw-runtime—config.xml file for most runtime configuration purposes.
wlw-runtime—config.xml Configuration File

The wiw—runtime—config.xml file allows you to configure runtime parameters of web services, both on the
development server and production servers. wiw-runtime—config.xml is specific to a WebLogic Workshop
application.

wlw—manifiest.xml Configuration File

The wiw—manifest.xml file is autogenerated when a WebLogic Workshop application is compiled into a
deployable EAR file. This file tells server administrators what resources are necessary on the EAR file's targ
server.

Web Service Security Policy Configuration File (WSSE File)

WSSE files configure security for web services that implement the web serivces security standard.

Configuration File Reference 1

jws—config.properties Configuration File

The jws—config.properties file specifies domain—wide configuration parameters for the WebLogic Workshop
runtime. The file is located in the domain root directory.

Properties

The jws—config.properties file defines the following properties:
weblogic.jws.InternalIMSServer=<JMS server name>

Specifies the name of the JMS server to be used by WebLogic Workshop JMS controls, JMS transport and
JMS queues used as message buffers. The named JMS server must be configured in the current domain.

Default value: cgJMSServer

weblogic.jws.InternalIMSConnFactory=<JMS connection factory JNDI name>

Specifies the INDI name of the JMS connection factory to be used by WebLogic Workshop JMS controls,
JMS transport and JMS queues used as message buffers. The named JMS connection factory must be
configured in the current domain.

Default value: weblogic.jws.jms.QueueConnectionFactory

weblogic.jws.ConversationDataSource=<data source JNDI hame>

Specifies the INDI name of the data source to be used for conversational persistence. The named data sou
must be configured in the current domain.

Default value: cgDataSource
weblogic.jws.JMSControlDataSource=<data source JNDI name>

Specifies the INDI name of the data source to be used for JMS control state management. The named data
source must be configured in the current domain.

Default value: cgDataSource
weblogic.jws.ConversationMaxKeyLength=<integer>

Specifies the maximum length of a conversation ID. Conversational web services have an associated
conversation identifier. The identifier is proposed by the client and must be guaranteed to be unigue across
web services and conversations in the current domain.

Default value: 768

Note: The conversation ID is used as the primary key in a conversation state table that resides in the databse
associated with the data source identified by weblogic.jws.ConversationDataSource (above). Setting
weblogic.jws.ConversationMaxKeyLength to a value larger than what can be accommodated by the
associated database table will result in errors.

jws—config.properties Configuration File 2

Configuration File Reference

weblogic.jws.MessageTransactionTimeout=<integer>

The timeout for asynchronous message requests. Takes an integer indicating seconds.

Related Topics
How Do I: WebLogic Workshop—Enable an Existing WebLogic Server Domain?

How Do I: Create a New WebLogic Workshop—enabled WebLogic Server Domain?

jws—config.properties Configuration File

workshopLogCfg.xml Configuration File

The workshopLogCfg.xml file specifies the WebLogic Workshop logging configuration and logging levels
for WebLogic Server. You may use this logging facility in your applications. You may also be directed by
BEA Technical Support personnel to modify WebLogic Workshop's logging behavior in order to diagnose
problems you experience. This topic describes the basic features of WebLogic Workshop's logging
mechanism.

 Log4j Library

» WebLogic Workshop Logging

» Understanding the Contents of workshopLogCfg.xml

» Adding Log4j Log Messages to Your Application Code
 Tracking Log Information in a Clustered Environment

Log4j Library

WebLogic Workshop uses the Log4j Java logging facility developed by the Jakarta Project of the Apache
Foundation. The names of the XML tags in workshopLogCfg.xml directly correspond to names of classes ar
fields defined in the Log4j APl Specification. You can learn more about Log4j at The Log4j Project. A brief
introduction to Log4j is included below.

Loggers

Log4j defines the Logger class. An application may create multiple loggers, each with a unique name. In a
typical usage of Log4j, an application creates a Logger instance for each application class that will emit log
messages. The name of the logger is typically the same as the partially qualified name of the application cla
For example, the application class com.mycompany.MyClass might create a Logger with the name
"mycompany.MyClass". Loggers exist in a namespace hierarchy and inherit behavior from their ancestors ir
the hierarchy.

The Logger class defines four methods for emitting log messages: debug, info, warn and error. The
application class invokes the appropriate method (on its local Logger) for the situation being reported.

Appenders

Log4j defines Appenders to represent destinations for logging output. Multiple Appenders may be defined.
For example, an application may define an Appender that sends log messages to the console, and another
Appender that writes log messages to a file. Individual Loggers may be configured to write to zero or more
Appenders. One example usage would be to send all logging messages (all levels) to a log file, but only errc
level messages to the console.

Layouts

Log4J defines Layouts to control the format of log messages. Each Layout specifies a particular message
format in which may be substituted the data such as the current time and date, the log level, the Logger nan
the log message and other information. A specific Layout is associated with each Appender. This allows yol
to specify a different log message format for console output than for file output, for example.

workshopLogCfg.xml Configuration File 4

Configuration File Reference

Configuration

All aspects of Log4j configuration at runtime. This is typically accomplished with an XML configuration file
whose format is defines by the Log4j library. The configuration file may be specified at runtime using the
logdj.configuration Java property.

The configuration file may declare Loggers, Appenders and Layouts and configure combinations of them to
provide the logging style desired by the application.

WebLogic Workshop Logging

By default, WebLogic Workshop's logging configuration is defined in the file

<BEA HOME>/<WEBLOGIC HOME>/common/lib/workshopLogCfg.xml. The workshopLogCfg.xml file
contains XML tags that describe how the WebLogic Workshop environment logs various types of messages
The names of these tags directly correspond to names of classes and fields defined in the Log4j API
Specification.

If you want to customize the way WebLogic Workshop logs messages, you can either modify

workshopLogCfg.xml, or provide your own Log4j configuration file. If you provide your own version, you
need to set the log4j.configuration Java property to the location of this file. For example, using the same
command line that you used to start WebLogic Server, type —Dlog4j.configuration=<path to config file>.

It is helpful to understand the contents of the workshopLogCfg.xml. Once you understand the elements and
attributes defined in this file, you can either use this knowledge to customize workshopLogCfg.xml, or write :
separate Log4j configuration file that better suits your logging requirements.

Understanding the Contents of workshopLogCfg.xml

The workshopLogCfg.xml file contains two major sets of configuration values. The first set of configurations
use the <appender> element to define log files that receive messages from the WebLogic Workshop
environment. Note that this element shares the same name as the Appender class defined in the Log4j API
Specification. The following snippet illustrates an entry in this section of the configuration file:

<appender name="SYSLOGFILE" class="org.apache.log4j.RollingFileAppender">
<param name="File" value="workshop_debug.log" />
<param name="Append" value="true" />
<param name="MaxFileSize" value="500000KB" />
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%d{DATE} %-5p %—-15c{1} [%t][%X]: Yom%n"/>
</layout>
</appender>

This entry causes WebLogic Workshop to create a Log4j Appender object of type RollingFileAppender.
RollingFileAppender is a special kind of Log4j Appender class that backs up log files when they reach a
certain size. The Log4j specification defines several different types of Appender classes. You can use the cl
attribute of the <appender> element to use any of these types. For instance, if you would like WebLogic
Workshop to send certain types of messages to the console, then you can set the class attribute of an
<appender> element to org.apache.log4j.ConsoleAppender. The name attribute of the <appender> element
assigns a variable name to the Appender object. workshopLogCfg.xml uses that name later in the
configuration file to assign specific messages to that Appender.

workshopLogCfg.xml Configuration File 5

Configuration File Reference

The <param> elements use name-value pairs to assign values to various fields of the Appender object. The
File value defines the name of the physical file to which message sources log their messages. To learn mor
about the default log files to which WebLogic Workshop writes log messages, see Message Logging. The
Append value indicates that WebLogic Workshop should append any new log messages to the end of the Ic
file. The MaxFileSize value specifies the file size limit of this log file.

Finally the class attribute of the layout element defines a Log4j Layout class. Layout classes define the form
of log messages. The ConversionPattern value further defines these formats. For more information on
providing conversion patterns, see the Log4j API Specification.

The second set of configurations use the <category> element to define message sources. It also relates the
sources to log files defined in the <append> elements of the workshopLogCfg.xml. The following snippet
illustrates an entry in this portion of the configuration file:

<category name="weblogic.servlet.jsp">
<priority value="warn" />
<appender-ref ref="SYSLOGFILE" />
<appender-ref ref="SYSERRORLOGFILE" />
</category>

Note that the ref attribute of the <appender—ref> element refers to the names of Appender objects defined ir
the first half of workshopLogCfg.xml. The priority value defines the lowest priority message type that
WebLogic Workshop will send to these Appender objects. In this case, weblogic.servlet.jsp reports all
messages of type warn or higher. This means that weblogic.servlet.jsp will also log messages of type error
since messages of type error have a higher priority than messages of type warn. Info, warn, and error are al
Log4j message types. For more information, see the Log4j Specification.

The name attribute of the <category> element defines the message source. In this case, WebLogic Worksh
sends all warning messages originating from a JSP file to both the SYSLOGFILE and SYSERRORLOGFILE
Appender objects.

The workshopLogCfg.xml file also defines three category elements that are useful when debugging the
request-response chain associated with a JWS (WebLogic Workshop web service) invocation. The categor
are defined in the configuration file as shown here:

<category name="WLW.REQUEST">
<priority value="info"/>
<appender-ref ref="APPLOGFILE"/>
</category>

<category name="WLW.RESPONSE">
<priority value="info"/>
<appender-ref ref="APPLOGFILE"/>
</category>

<category name="WLW.INVOKE">
<priority value="warn"/>
<appender-ref ref="APPLOGFILE"/>
</category>

You may adjust the priority levels of these categories to enable or disable logging for the entire call stack th:
is involved in web service method invocation.

workshopLogCfg.xml Configuration File 6

Configuration File Reference
Adding Log4J Log Messages To Your Application Code

To cause your code to emit messages to the workshop.log file, obtain a Logger for your file. You may obtain
Logger by calling the JwsContext.getLogger method, typically with the qualified name of your class as the
Logger name (e.g. "async.HelloWorldAsync" for the sample web service async/HelloWorldAsync.jws). Then
simply call the Logger's debug, info, warn or error methods as appropriate.

The default logging level is info. This means log messages emitted by Logger.debug() will not be logged by
default. To enable logging of all message levels, set the log level for the "wlw" category to debug in
workshopLogCfg.xml, as shown here:

<!-- The wlw category is used for messages logged using the Logger API from JwsContext and ControlContext ——>
<category name="wlw">

<priority value="debug" />

<appender-ref ref="APPLOGFILE" />
</category>

The example code below illustrates use of logging in a JWS file. Portions of the source file have been omitte
for brevity.

package async;

import com.bea.control.JwsContext;
import com.bea.control. TimerControl;
import com.bea.wlw.util.Logger;

public class HelloWorldAsync
{
/** @common:context */
JwsContext context;
/**
* @common:operation
* @jws:conversation phase="start"
*/
public void HelloAsync()
{
Logger logger = context.getLogger("async.HelloWorldAsync");
logger.debug("about to start timer");
/I all we do here is start the timer.
helloDelay.start();
logger.debug("timer started");
return;
}
private void helloDelay_onTimeout(long time)
{
Logger logger = context.getLogger("async.HelloWorldAsync");
/I send the client a hello message.
logger.debug("in timer handler: calling client");
callback.onHelloResult("Hello, asynchronous world");

/I we don't want any more timer events for this conversation.
logger.debug("in timer handler: stopping timer");
helloDelay.stop();

return;

workshopLogCfg.xml Configuration File 7

Configuration File Reference

The code above results in the following content in workshop.log when the HelloAsync method of
HelloWorldAsync.jws is invoked. Log entries not emitted by the preceding code have been removed from th
output below.

13 Jun 2003 14:49:23,796 DEBUG HelloWorldAsync: about to start timer

13 Jun 2003 14:49:24,171 DEBUG HelloWorldAsync: timer started

13 Jun 2003 14:49:33,921 DEBUG HelloWorldAsync: in timer handler: calling client
13 Jun 2003 14:49:33,937 DEBUG HelloWorldAsync: in timer handler: stopping timer

Tracking Log Information in a Clustered Environment

If you deploy your application to a clustered environment, you may want to track log information for
individual servers in the cluster. You can modify the configuration for Appenders in workshopLogCfg.xml to
include a variable that returns the name of the server which logged the message. When WebLogic Server
starts, it sets an environment variable weblogic.Name with the server name. You can refer to this variable
from the log file.

If the number of log messages you expect is fairly low and there are not too many servers in the cluster
writing to a single log file all at once, you can modify each Appender so that the server name is written out f
each logged message. In this case you should modify the value of the <param> tag named ConversionPatte
which is a child of the <layout> tag, to include the server variable. Here's an example of what the modified
Appender would look like:

<appender name="APPLOGFILE" class="org.apache.log4j.RollingFileAppender">
<param name="File" value="workshop.log" />
<param name="Append" value="true" />
<param name="MaxFileSize" value="3000KB" />
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="server:${weblogic.Name} %d{DATE} %-5p %-15c{1}: %m%n"/>
</layout>
</appender>

Note that the value of the ConversionPattern parameter includes the variable ${weblogic.Name}. This patter
now writes an entry like the following example to the log file when a message is logged. Note that the name
of the server appears as cgServer.

server:cgServer 05 Jun 2003 10:50:21,194 INFO RMClient: ConversationlD=1054835390772; Protocol=java—call;
URI=/R MClientWeb/TestDriver.jws;Method=onTimeout; Phase=continue;Callback=null

If you are expecting a high volume of log messages, you can modify each Appender so that a separate log 1
is written for each server. In this case you modify the value of the <param> tag named File to prepend the
server name to generate a unique log file for each server, as shown in the following example:

<appender name="APPLOGFILE" class="org.apache.log4j.RollingFileAppender">
<param name="File" value="${weblogic.Name}.workshop.log" />
<param name="Append" value="true" />
<param name="MaxFileSize" value="3000KB" />
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%d{DATE} %-5p %-15c{1}: %m%n"/>
</layout>
</appender>

Related Topics

workshopLogCfg.xml Configuration File 8

Configuration File Reference

Message Logging

Configuration File Reference

workshopLogCfg.xml Configuration File

wlw-config.xml Configuration File

The wlw—config.xml file allows you to configure runtime parameters of web services, both on the
development server and production servers. This file is used by wiwBuild when preparing WebLogic
Workshop application EAR files for deployment to a production server.

Note that the values appearing in wlw—config.xml are hardcoded into the deployment EAR and cannot be
overridden by other runtime configuration mechanisms. For most cases you should use
wlw-runtime—config.xml to configure the runtime information for your Workshop application.

General Structure

<wlw-config>
<hostname>
<protocol>
<http—port>
<https—port>
<transaction—isolation—level>
<transaction—-timeout>
<message-transaction—timeout>
<ejb—concurrency-strategy>
<max-beans-in—cache>
<idle-timeout—-seconds>
<read-timeout—-seconds>
<initial-beans—-in—free—pool>
<max-beans-in—-free—pool>
<web-tier—controls>
<class—-name>
<component—-group URI="" protocol="">
<component URI="" default=boolean>
<service>
<class—-name>
<protocol>

<wlw-config>
The <wlw-config> element is the root element of the wlw-config.xml file.

<wlw-config>
<hostname>
<protocol>
<http—port>
<https—port>
<transaction—isolation—level>
<transaction—timeout>
<message-transaction-timeout>
<ejb-concurrency-strategy>
<max—-beans—-in—cache>
<idle-timeout—-seconds>

wlw-config.xml Configuration File 10

Configuration File Reference

<read-timeout-seconds>
<initial-beans—-in—free—pool>
<max-beans-in—-free—pool>
<web-tier—controls>
<component—group URI=
<service>

protocol="">

Syntax

<wlw-config>
<l——

Children elements defining the runtime information about the deployed application.
-—>

</wlw-config>

Attributes

none.

Hierarchy
Parents: none.

Children: <hostname>, <protocol>, <http—port>, <https—port>, <transaction-isolation-level>,
<transaction—-timeout>, <message-transaction—timeout>,

<ejb—concurrency-strategy>, <max-beans-in—cache>, <idle-timeout-seconds>, <read-timeout-seconds>
<initial-beans—in—free—pool>, <max—beans-in—free—pool>, <component—group>, <service>.

<hostname>

The <hosthame> element specifies the name of the machine where your application will be deployed. If the
value is not set in wlw—config.xml, the value may also be set at runtime in the wlw-runtime-config.xml file,
which resides in the server's domain root folder. Also, it may be set at runtime via the server configuration
parameter FrontendHost: in the WebLogic Server console navigate to Server ——> Protocols ——> HTTP ——>
Advanced Options.

Note: that if you specify the <hostname> in wiw—config.xml, the value will be fixed and it cannot be
overridden by other configuration techniques. For this reason it is generally preferable to use the alternative
configuation techniques described above.

<wlw-config>
<hostname>

Syntax

<hostname> hostnameString </hostname>

wlw-config.xml Configuration File 11

Configuration File Reference

Attributes

none.

Hierarchy

Parents: <wlw-config>.

Children: none.

<protocol>
The <protocol> element defines the default exposure protocol for your web application. Unless otherwise
specified in the <service> element, web resources within the web application will be exposed on the protoco

specified here. Possible values are http or https.

<wlw-config>
<protocol>

Syntax

<protocol> [HTTP | HTTPS] </protocol>
Attributes

none.

Hierarchy

Parents: <wlw-config>.

Children: none.

<http—port>

The <http—port> element specifies which port should be used for HTTP traffic. The range of values is 1 to
65535. If omitted the value is set to 7001.

<wlw-config>
<http—port>

Syntax

<http—port> httpPort </http—port>

Attributes

none.

wlw-config.xml Configuration File 12

Configuration File Reference

Hierarchy
Parents: <wlw-config>.

Children: none.

<https—port>

The <https—port> element specifies which port should be used for https traffic. The range of values is 1 to
65535. If omitted the value is set to 7002.

<wlw-config>
<https—port>

Syntax
<https—port> httpsPort </https—port>
Attributes

none.

Hierarchy
Parents: <wlw-config>.

Children: none.

<transaction—isolation—level>

The <transaction—isolation—level> tag specifies the transaction isolation level of the EJB that is produced
when a web service is compiled. The value of <transaction—isolation—level> will be mapped to the EJB's
deployment descriptors at compile time. If no value is specified, then no value is written to the deployment
descriptor; this will cause the runtime container to use whichever isolation level the target database (used b
the EJB) is configured for. Valid values are

TRANSACTION_READ_COMMITTED

TRANSACTION_READ_UNCOMMITTED

TRANSACTION_REPEATABLE_READ

TRANSACTION_SERIALIZABLE

<wlw-config>
<transaction—isolation—level>

wlw-config.xml Configuration File 13

Configuration File Reference
Syntax

<transaction—isolation—level>
[TRANSACTION_READ_COMMITTED | TRANSACTION_READ_UNCOMMITTED | TRANSACTION_REPEATABLE_READ |
</transaction—isolation—level>

Attributes

none.

Hierarchy
Parents: <wlw-config>.

Children: none.

<transaction—timeout>

The transaction—timeout element specifies the maximum duration for an EJB's container—initiated
transactions. If a transaction lasts longer than transaction—timeout, WebLogic Server rolls back the
transaction. Note that this element applies to Workshop web services, since web services are compiled into
transactional EJBs. Takes an integer indicating seconds. The default value is 30 seconds.

<wlw-config>
<transaction—timeout>

Syntax

<transaction—timeout> timoutSeconds </transaction—timeout>
Attributes

none.

Hierarchy

Parents: <wlw—-config>.

Children: none.

<message-transaction—-timeout>
The message-transaction—timeout element specifies the maximum duration for asynchronous message
requests. If a transaction lasts longer than message-transaction-timeout, WebLogic Server rolls back the

transaction. Takes an integer indicating seconds. The default value is 30 seconds.

<wlw-config>
<message-transaction—timeout>

wlw-config.xml Configuration File 14

Configuration File Reference

Syntax
<message-transaction-timeout> timoutSeconds </message-transaction-timeout>

Attributes

none.

Hierarchy
Parents: <wlw—config>.

Children: none.

<ejb—concurrency-strategy>

The <ejb—concurrency-strategy> element is used to specify the EJB concurrency strategy of the EJBs that
back conversational web services. Valid values are

Exclusive
Database
Optimistic

Default value is Exclusive for non—production builds, and Database for production builds. For clustered
environments a value of Database is required. Non—clustered environments may use Exclusive.

WebLogic Workshop requires that method invocations on conversational web services occur serially. Serial
access is enforced via record locking on the conversation's database record. When SQL Server or Oracle is
used as the persistent store for conversation state, record locking is provided by the SQL statements used
internally and <ejb—concurrency-strategy> may be set to Optimistic. When PointBase is used as the
conversation store, <ejb—concurrency-strategy> must be Exclusive or race conditions may occur in
conversation state access.

Note: if your project contains stateful processes, compilation will fail if you set the
<ejb—concurrency-strategy> value to "optimistic". Some examples of stateful processes are: (1) an
asynchronous web service or (2) a business process that involves stateful nodes or transactions. For more
information on stateful web services and business processes see Default Transactional Behavior in WebLog
Workshop and Building Stateless and Stateful Business Processes

<wlw-config>
<ejb—concurrency-strategy>

Syntax

<ejb-concurrency-strategy> [Exclusive | Database | Optimistic] </ejb—concurrency-strategy>

wlw-config.xml Configuration File 15

Configuration File Reference

Attributes

none.

Hierarchy
Parents: <wlw-config>.

Children: none.

<max-beans-in—-cache>

The max—beans—in—cache element specifies the maximum number of objects of this project that are allowe
in memory. When max—bean-in—cache is reached, WebLogic Server passivates some EJBs that have not
recently been used by a client. max—beans—in—cache also affects when EJBs are removed from the WebLo
Server cache, as described in Stateful Session EJB Life Cycle. The default value is 1000.

<wlw-config>
<max—beans—-in—cache>

Syntax

<max-beans-in—cache> maxinteger </max-beans-in—-cache>
Attributes

none.

Hierarchy

Parents: <wlw-config>.

Children: none.

<idle-timeout-seconds>

idle—timeout-seconds defines the maximum length of time a stateful EJB should remain in the cache. After

this time has elapsed, WebLogic Server removes the bean instance if the number of beans in cache approa
the limit of max—beans—in—cache. The removed bean instances are passivated. See Stateful Session EJB L
Cycle for more information. The default value is 600 seconds.

<wlw-config>
<idle—timeout—seconds>

Syntax

<idle-timeout—seconds> timeoutSeconds </idle-timeout—-seconds>

wlw-config.xml Configuration File 16

Configuration File Reference

Attributes

none.

Hierarchy
Parents: <wlw-config>.

Children: none.

<read-timeout-seconds>
The read-timeout-seconds element specifies the number of seconds between ejbLoad() calls on a Read-C
entity bean. By default, read-timeout—seconds is set to 600, and WebLogic Server calls ejbLoad() only whe

the bean is brought into the cache.

<wlw-config>
<read—-timeout—seconds>

Syntax
<read-timeout-seconds> secondsinteger </read-timeout-seconds>

Attributes

none.

Hierarchy

Parents: <wlw-config>.

Children: none.

<initial-beans—-in—free—pool>

If you specify a value for initial-beans—in—-free—pool, you set the initial size of the pool. WebLogic Server
populates the free pool with the specified number of bean instances for every bean class at startup. Populat
the free pool in this way improves initial response time for the EJB, because initial requests for the bean car

be satisfied without generating a new instance. Default value is 0.

<wlw-config>
<initial-beans—-in—free—pool>

Syntax

<initial-beans-in—-free—pool> beansinteger </initial-beans-in-free—pool>

wlw-config.xml Configuration File 17

Configuration File Reference

Attributes

none.

Hierarchy
Parents: <wlw-config>.

Children: none.

<max-beans-in—-free—pool>

WebLogic Server maintains a free pool of EJBs for every stateless session bean and message—driven bean
class. The max—beans-in—free—pool element defines the size of this pool. By default,
max-beans—in—free—pool has no limit; the maximum number of beans in the free pool is limited only by the
available memory. See Stateful Session EJB Life Cycle for more information. Default value is 1000.

<wlw-config>
<max-beans-in—-free—pool>

Syntax
<max-beans—in—free—pool> maxBeansInteger </max-beans-in-free—pool>
Attributes

none.

Hierarchy
Parents: <wlw-config>.

Children: none.

<web-tier—controls>

Controls code generation for controls referenced from the web tier. Use this element as an optimization to
reduce the number of generated EJBs. If the <web-tier—controls> element is empty, then no EJBs will be
generated. Note that referenced controls will successfully compile, but will fail at runtime.

<wlw-config>
<web—tier—controls>
<class—nhame>

Syntax

<web-tier-controls>
<I--
Child elements listing control classes referenced from the web-tier
-2

wlw-config.xml Configuration File 18

Configuration File Reference

</web-tier-controls>

Attributes

none.

Hierarchy
Parents: <wlw—config>.

Children: <class—name>.

<class—name>

Control file class names that are referenced from the web-tier. This element gives the fully qualified class
name, including package. No file extension should be included. E.g.,
<class—name>my.package.name.Foo</class—name>.

<wlw-config>

<web-tier—controls>
<class—name>

Syntax
<class—name> JavaClassNameString </class—name>

Attributes

none.

Hierarchy
Parents: <web-tier—controls>.

Children: none.

<component—group>
The <component—group> element is used to group together different versions of a component.
<wlw-config>

<component-group>
<component>

Syntax

<component—-group>
<l——

Child elements listing the different versions of the component
-—>

wlw-config.xml Configuration File 19

Configuration File Reference

</component-group>

Attributes

Attribute Description

URI Required string. Any string indicating part of the URI space.
protocol Optional string.

Hierarchy

Parents: <wlw—-config>.

Children: <component>.

Example

<component—group URI="version/MyWebService.jws">
<component URI="version/MyWebService3.jws" default="true"/>
<component URI="version/MyWebService2.jws" />
<component URI="version/MyWebServicel.jws" />
</component-group>

<component>

Defines an individual version in a component group.

<wlw-config>
<component-group>
<component>

Syntax

<component
URI="[uriString]"
default="[boolean]"

/>

Attributes

Attribute Description

URI Required string.
default Optional boolean.
Hierarchy

Parents: <component-group>.

Children: none.

wlw-config.xml Configuration File

20

Configuration File Reference

Example

<component—group URI="version/MyWebService.jws">
<component URI="version/MyWebService3.jws" default="true"/>
<component URI="version/MyWebService2.jws" />
<component URI="version/MyWebServicel.jws" />
</component-group>

<service>

Defines a web service—protocol mapping. Use the child elements <class—name> and <protocol> elements
specify the transport protocol for individual web resources in a web application.

<wlw-config>
<service>
<class—name>
<protocol>

Syntax

<service>

<l—

Child elements specifying the transport protocol for individual web resources.
—-—>

</service>

Attributes

none.

Hierarchy
Parents: <wlw—-config>.

Children: <class—name>, <protocol>.

Example

<service>
<class—name>HelloWorld</class-name>
<protocol>http</protocol>

</service>

<service>
<class—name>HelloWorldSecure</class—name>
<protocol>https</protocol>

</service>

<class—name>

The <class—name> element is used in conjunction with the <service> and <protocol> elements to specify th
transport protocols of individual web resources. Possible values are the class names of web resources. For
example, to specify a web service Foo.jws, use <class—name>Foo</class—name>. Values of the

wlw-config.xml Configuration File 21

Configuration File Reference

<class—name> element are case sensitive.
<wlw-config>

<service>
<class—name>

Syntax

<class—name> JavaClassString </class—name>
Attributes

none.

Hierarchy

Parents: <service>.

Children: none.

<protocol>

Defines an HTML protocol to be used by a given class / web resource. Valid values are either HTTP or
HTTPS.

Specifies
<wlw-config>

<service>
<protocol>

Syntax

<protocol> protocolString </protocol>
Attributes

none.

Hierarchy

Parents: <service>.

Children: none.

Related Topics

wiwBuild Command

wlw-config.xml Configuration File 22

Configuration File Reference

wlw-runtime—config.xml Configuration file

wlw-config.xml Configuration File

23

wlw-runtime—config.xml Configuration File

The wiw-runtime—config.xml file allows you to configure runtime parameters of web resources on a
production server.

The wlw-runtime—config.xml file must be placed in the root of the WebLogic Server domain directory in
order to impact the configuration of WebLogic Workshop applications deployed within the domain.

You can use the example at the bottom of this topic as a template wiw-runtime—config.xml file.

General Structure

<wlw-runtime—config>
<wlw-config>
<hostname>
<protocol>
<http—port>
<https—port>
<component-group>
<component>
<service>
<class—-name>
<protocol>

<wlw-runtime—config>

The <wlw-runtime—config> element is the root element of the wlw-runtime—config.xml file. All other
elements are children of <wlw-runtime—config>.

<wlw-runtime—config>
<wlw-config>

Syntax

<wlw-runtime-config
xmlns="stringNamespace"
>

Attributes
none.

Hierarchy
Parents: none.

Children: <wlw-config>.

wlw-runtime—config.xml Configuration File 24

Configuration File Reference
<wlw-config>

The <wlw-config> element defines name and the context—path for a given deployed application. Include a
<wlw-config> element for each deployed application. Child elements configure the application's hostname,
transport protocol, etc.

<wlw-runtime—config>
<wlw-config>
<hostname>
<protocol>
<http—port>
<https—port>
<service>

Syntax

<wlw-config
application—-name="stringAppName"
context—path="stringContextPath"
>
<l—
Child elements configure the application's hostname, transport protocol, etc.
—-—>
</wlw-config>

Attributes

Attribute Description
application—nam@equired string. Specifies the name of the application.

context-path |Required string. The context—path attribute specifies the first part of the URL path, after
the hostname. The following URL shows the location of the context path.

http://localhost:7001/WebApp/binaryFlow/BinaryFlowController.jpf

Hierarchy
Parents: <wlw-runtime—config>.

Children: <hostname>, <protocol>, <http—port>, <https—port>, <service>.
<hostname>

Specifies the name of the machine where your web application will be deployed.

<wlw-runtime-config>
<wlw-config>
<hostname>

wlw-runtime—config.xml Configuration File 25

Configuration File Reference
Syntax
<hostname> stringHostname </hostname>

Attributes

none.

Hierarchy
Parents: <wlw—config>.

Children: none.

<protocol>

Defines the default exposure protocol for your web application. Unless otherwise specified in the
class—specific <protocol> element, web resources within the web application will be exposed on the protoco
specified here. Possible values are http or https.

<wlw-runtime-config>

<wlw-config>
<protocol>

Syntax

<protocol> [HTTP | HTTPS] </protocol>
Attributes

none.

Hierarchy

Parents: <wlw—config>.

Children: none.

<http—port>

Specifies which port should be used for http traffic. The range of values is 1 to 65535. If omitted the value is
set to 7001.

<wlw-runtime—config>

<wlw-config>
<http—port>

wlw-runtime—config.xml Configuration File 26

Configuration File Reference
Syntax
<http—port> portinteger </http—port>

Attributes

none.

Hierarchy
Parents: <wlw—config>.

Children: none.

<https—port>

Specifies which port should be used for https traffic. The range of values is 1 to 65535. If omitted the value i
set to 7002.

<wlw-runtime-config>
<wlw-config>
<https—port>
Syntax
<https—port> portinteger </https—port>

Attributes

none.

Hierarchy
Parents: <wlw—-config>.

Children: none.

<service>

Use the <service>, and its children <class—name> and <protocol> elements, to specify the transport protocc
for individual web resources in a web application.

<wlw-runtime—config>
<wlw-config>
<service>
<class—-name>
<protocol>

wlw-runtime—config.xml Configuration File 27

Configuration File Reference
Syntax

<service>
<l——

Child elements specifying a resource and exposure protocol.
-—>

</service>

Attributes

none.

Hierarchy
Parents: <wlw-config> .

Children: <class—name>, <protocol>.

<class—name>
Specifies the transport protocols of individual web resources. Possible values are the class names of web
resources. For example, to specify a web service Foo.jws, use <class—name>Foo</class—name>. Values of
<class—name> element are case sensitive.
<wlw-runtime-config>

<wlw-config>

<service>
<class—name>

Syntax

<class—name> stringClassName </class—name>
Attributes

none.

Hierarchy

Parents: <service>.

Children: none.

<protocol>

Specifies the exposure protocol for individual web resources. Overrides the application—scoped <protocol>
element.

<wlw-runtime-config>
<wlw-config>

wlw-runtime—config.xml Configuration File 28

Configuration File Reference

<service>
<protocol>

Syntax
<protocol> [HTTP | HTTPS] </protocol>

Attributes

none.

Hierarchy
Parents: <service>.

Children: none.

Example

<?xml version="1.0" encoding="UTF-8"?>
<wlw-runtime—config xmlns="http://www.bea.com/2003/03/wlw/config/">
<wlw-config application—name="cluster_client" context—path="/cluster_clusterAsClientWeb">
<hostname>myMachine</hostname>
<protocol>http</protocol>
<http—port>7120</http—port>
</wlw-config>
</wlw-runtime-config>

Related Topics
wlwBuild Command

wiw—config.xml Configuration File

wlw-runtime—config.xml Configuration File

29

wlw—-manifest.xml Configuration File

The wiw—manifest.xml file provides infomation about the server resources referenced in an EAR file built
with the wiwBuild command. Server administrators should examine the wiw—manifest.xml file to determine
the resources necessary for successful deployment. For detailed information about using the
wlw—manifest.xml file in deployment, see How Do |: Deploy a WebLogic Workshop Application to a
Production Server?

General Structure

<wlw-manifest>
<project>
<async-request—queue>
<async-request—error-queue>
<top-level-component>
<conversation—-state—table>
<column>
<column—-name>
<column-type>
<external—callbacks>
<control>
<role-name>
<roles—allowed>
<role-name>
<roles-referenced>
<role-name>

<wlw—manifest>
The root level element of the wiw—manifest.xml file.

<wlw-manifest>
<project>

Syntax

<wlw—-manifest>
<l—

Child elements specifying the individual projects within the application EAR.
—-—>
</wlw-manifest>

Attributes

none.

Hierarchy

Parents: none.

wlw—manifest.xml Configuration File 30

Configuration File Reference

Children: <project>.
<project>
Defines an individual project within the EAR file.

<wlw-manifest>
<project>
<async-request—queue>
<async-request-error-queue>
<top-level-component>

Syntax

<project
name="stringName"
>
<l—
Child elements defining the JMS queues and EJBs (the compiled products of web services) within the project.
-—>

</project>

Attributes

Attribute Description
name Required string.
Hierarchy

Parents: <wlw—manifest>.

Children: <async-request—queue>, <async-request—error—-queue>, <top-level-component>.

<async—request—queue>
Defines the JMS queue where asynchronous requests to web services and business preocesses are queue
<wlw-manifest>
<project>
<async-request—queue>
Syntax

<async-request—queue> queueNameString </async-request—-queue>

Attributes

none.

wlw—manifest.xml Configuration File 31

Configuration File Reference

Hierarchy
Parents: <project>.

Children: none.

<async-request-error-queue>

Defines the JMS queue where errors associated with asynchronous requests to web services and business
preocesses are queued.

<wlw—manifest>
<project>
<async-request—queue>

Syntax

<async-request—queue> queueNameString </async-request—-queue>

Attributes

none.

Hierarchy
Parents: <project>.

Children: none.

<top-level-component>
Defines resources for a top—level component (JWS, JPD or control) of the project.

<wlw-manifest>
<project>
<top-level-component>

<conversation—-state—table>
<external—callbacks>
<roles—allowed>
<roles-referenced>

Syntax

<top-level-component
class—-name="classString"
component-type="[JWS | JPD | Control]"
run—as-role="roleString"
>
<I--
Child elements defining the resources and security configuration for the top—level component.
—-—>
</top-level-component>

wlw—manifest.xml Configuration File 32

Configuration File Reference

Attributes

Attribute Description

class—name |Required string. The class name of the EJB
component-typgRequired string. Possible values are JWS, JPD, or Control.
run—as—principgOptional string. A security principal. This class runs with the permissions equivalent o the
specified principal.
run—as—-role [Optional string. A security role. This class runs with permissions equivalent to the specified
role.

Hierarchy
Parents: <project>.

Children: <conversation—state—table>, <external—callbacks>, <roles—allowed>, <roles-referenced>.

<conversation—state—table>

Defines a database table to hold conversation state data for a web service or business process. Adminstrat
must create these tables on the server where the component resides.

<wlw—-manifest>
<project>
<top-level-component>
<conversation—-state—table>

Syntax

<conversation—state—table
table—-name="nameString"

>

<l—

Child elements defining the table's columns.

-—>

</conversation—state-table>

Attributes

Attribute Description
table-name Required string. Defines the name of the conversational state table.
Hierarchy

Parents: <top—level-component>.

Children: <column>.

<column>

Defines column information for a single column of a conversation state data table.

wiw—manifest.xml Configuration File 33

Configuration File Reference

<wlw—-manifest>
<project>
<top-level-component>
<conversation—-state—table>
<column>

Syntax

<column>
<l——

Child elements defining column information.
-—>

</column>

Attributes

none.

Hierarchy
Parents: <conversation—state—table>.

Children: <column—-name>, <column-type>.

<column—-name>

Defines the name of a single column of a conversation state data table.
<wlw-manifest>
<project>
<top-level-component>
<conversation—state—table>

<column>
<column—-name>

Syntax

<column-name> stringColumnName </column-name>

Attributes

none.

Hierarchy
Parents: <column>.

Children: none.

wlw—manifest.xml Configuration File

34

Configuration File Reference
<column-type>
Defines the data type of a single column of a conversation state data table.
<wlw-manifest>
<project>
<top-level-component>
<conversation—state—table>

<column>
<column-type>

Syntax
<column-type> dataTypeString </column-type>

Attributes

none.

Hierarchy
Parents: <column>.

Children: none.

<external—-callbacks>

Defines information pertaining to call backs directed at this component.

<wlw-manifest>
<project>
<top-level-component>
<external—callbacks>
<control>
<role-name>

Syntax

<external—callbacks>
<I--

Child elements defining the control that handles callbacks and the roles required for callback access.
-—>

</external—callbacks>

Attributes

none.

wlw—manifest.xml Configuration File

Configuration File Reference

Hierarchy
Parents: <top-level-component>.

Children: <control>.

<control>

Defines the control that handles callbacks for a top—level component.

<wlw-manifest>
<project>
<top-level-component>
<external—callbacks>
<control>
<role-name>

Syntax

<control
control-path="pathString"
>
<l—
Child element defining the roles neccessary for calling back the component.
-—>

</control>

Attributes

Attribute Description

control-path |Required string. Path to the control.
Hierarchy

Parents: <external—callbacks>.

Children: <role—name>.

<role—-name>

Defines a role necessary to callback the top-level component.

<wlw—-manifest>
<project>
<top-level-component>
<external—callbacks>
<control>
<role-name>

wlw—manifest.xml Configuration File

36

Configuration File Reference
Syntax
<role-name> roleString </role-name>

Attributes

none.

Hierarchy
Parents: <control>.

Children: none.

<roles—allowed>

Defines a role necessary to invoke the top—level component. The roles defined here do not need to be ident
to the roles required to callback the component.

<wlw-manifest>
<project>
<top-level-component>

<roles—allowed>
<role-name>

Syntax

<roles—allowed>
<l—

Child elements listing the roles required to invoke the top—level component.
-—>

</roles—allowed>

Attributes

none.

Hierarchy
Parents: <top-level-component>.

Children: <role—name>.

<role-name>
A single role required to access a top—level component.
<wlw-manifest>

<project>

<top-level-component>

wlw—manifest.xml Configuration File 37

Configuration File Reference

<roles—allowed>
<role-name>

Syntax
<role-name> roleString </role-name>

Attributes

none.

Hierarchy
Parents: <roles—allowed>.

Children: none.

<roles-referenced>

The top-level component may access other resources using the credentials of the role names specified.
<wlw-manifest>
<project>
<top-level-component>

<roles—referenced>
<role-name>

Syntax

<roles-referenced>
<l—

Child elements listing the roles referenced.
-—>

</roles-referenced>

Attributes

none.

Hierarchy
Parents: <top-level-component>.

Children: <role—name>.

<role—-name>

Defines one role referenced by the top—-level component.

wlw—manifest.xml Configuration File 38

Configuration File Reference

<wlw—-manifest>
<project>
<top-level-component>
<roles-referenced>
<role-name>

Syntax

<role-name> roleString </role-name>

Attributes

none.

Hierarchy
Parents: <roles-referenced>.

Children: none.

Example

The following example is the wiw—manifest.xml file generated when selected web services from the project
SamplesApp/WebServices are compiled into an EAR file.

<?xml version="1.0" encoding="UTF-8"?>
<con:wlw—manifest xmins:con="http://www.bea.com/2003/03/wlw/config/">
<con:project name="WebServices">
<con:async-request—queue>WebServices.queue.AsyncDispatcher</con:async-request-queue>
<con:async-request—error-queue>WebServices.queue.AsyncDispatcher_error</con:async-request—error-queue>
<con:top-level-component class—name="async.Buffer" component-type="JWS">
<con:conversation-state-table table-name="JWS_WEBSERVICES_ASYNC_BUFFER"/>
<con:external—-callbacks/>
<con:security-roles>
<con:role—name xsi:nil="true" xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"/>
</con:security-roles>
</con:top-level-component>
<con:top-level-component class—name="async.Conversation" component-type="JWS">
<con:.conversation—state—table table-name="JWS_ERVICES_ASYNC_CONVERSATION"/>
<con:external—-callbacks>
<con:control control-path="helloAsync$callback"/>
</con:external-callbacks>
<con:security-roles>
<con:role—name xsi:nil="true" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"/>
</con:security—-roles>
</con:top-level-component>
<con:top-level-component run—as—principal="weblogic" run—as-role="Administrators" class—name="security.roleBased.cre
<con:external—-callbacks/>
<con:security-roles>
<con:role-name>Administrators</con:role-name>
</con:security—roles>
</con:top-level-component>
<con:top-level-component class—name="security.roleBased.VeriCheck" component-type="JWS">
<con:conversation-state-table table-name="JWS_CURITY_ROLEBASED_VERICHECK"/>
<con:external-callbacks>

wlw—manifest.xml Configuration File 39

Configuration File Reference

<con:control control-path="bankControl$callback"/>
</con:external—callbacks>

<con:security-roles>
<con:role—name xsi:nil="true" xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"/>

</con:security-roles>
</con:top-level-component>
</con:project>
</con:wlw—manifest>

Related Topics
wiwBuild Command

wlw—config.xml Configuration File

wlw—manifest.xml Configuration File

40

WS-Security Policy File Reference (WSSE File
Reference)

The WS-Security policy file (WSSE file) defines the security policy applied to the SOAP messages that pas:
between web services and their clients. Three security mechanisms can be defined in a WSSE file: (1) secu
tokens, (2) digital signatures, and (3) encryption.

Incoming secured SOAP messages are first processed by WebLogic Workshop in accordance with the WS¢
file. If the incoming SOAP message passes the security regimen defined in the WSSE file, then the messag
passed to the target web service or control for normal processing.

Outgoing SOAP messages are first secured by WebLogic Workshop according to the policy defined in the
WSSE file before they are sent out over the wire. That is, outgoing SOAP messages are enhanced with any
security tokens, signatures, and encryption specified in the WSSE file before they are sent.

General Structure

<wsSecurityPolicy>
<wsSecurityln>
<token>
<encryptionRequired>
<decryptionKey>
<alias>
<password>
<signatureRequired>
<wsSecurityOut>
<userNameToken>
<userName>
<password>
<encryption>
<encryptionKey>
<alias>
<x509Certificate>
<uselnboundSignatureCertificate>
<signatureKey>
<alias>
<password>
<additionalSignedElements>
<secureElement>
<additionalEncryptedElements>
<secureElement>
<keyStore>
<keyStoreLocation>
<keyStorePassword>

<wsSecurityPolicy>

The top level element within a Web Service Security file (WSSE file). Describes the web service security

WS-Security Policy File Reference (WSSE File Reference) 41

Configuration File Reference

policy for a request/response pair.

Syntax

<wsSecurityPolicy
xmlns="nameSpace"
>

Attribute Description
xmins Specifies the name space for the WSSE policy file.
Hierarchy

Parents: none.

Children: <wsSecurityln>, <wsSecurityOut>, <keyStore>.

<wsSecurityln>

Defines the security regimen to be applied to incoming SOAP messages to the web service. SOAP messag:
can be checked for three sorts of security enhancements: (1) security tokens (see the <token> element), (2)
digital signature (see the <signatureRequired> element), and (3) encryption (see the <encryptionRequired>
element).
<wsSecurityPolicy>

<wsSecurityln>

Syntax

<wsSecurityln>
<l--
Elements that describe the security regimen to be applied to
incoming SOAP messages.
—-—>
</wsSecurityln>

Hierarchy
Parents: <wsSecurityPolicy>.

Children: <token>, <signaturedRequired>, <encryptionRequired>.

<token>

When this element is present, then a valid token is expected in the inbound message. This token must
successfully match up with a principal in the WLS Security Framework.

<wsSecurityPolicy>
<wsSecurityln>

WS-Security Policy File Reference (WSSE FileReference) 42

Configuration File Reference

<token>

Syntax

<token

tokenType="username"
>

Attribute Description

tokenType Required string. It has one valid value: "username". When this element is present, a
username/password token must be present in inbound SOAP messages. The
username/password must successfully match a principal known to WebLogic Server.

Hierarchy
Parents: <wsSecurityln>.

Children: none.

<encryptionRequired>

When this element is present, inbound SOAP messages must be encrypted. This element must be
accompanied by a <decryptionKey> child element.

Syntax

<encryptionRequired>
<l--
Contains information for decrypting the incoming encrypted SOAP message.
-—>

</encryptionRequired>

Hierarchy
Parents: <wsSecurityln>.

Children: <decryptionKey>.

<decryptionKey>

This element contains information to resolve the decryption key pair. The private key is used to decrypt the
incoming message. The public key (contained within the X509 Digital Certificate) is put into the WSDL so
that clients of the web service can use it to encrypt SOAP messages.

The child elements, <alias> and <password> are provided for access to the private key.
<wsSecurityPolicy>
<wsSecurityln>

<encryptionRequired>
<decryptionKey>

WS-Security Policy File Reference (WSSE FileReference) 43

Configuration File Reference

<alias>
<password>

Syntax

<decryptionKey>
<l--
Information for retrieving the private key from the keystore.
—-—>

</decryptionKey>

Hierarchy

Parents: <encryptionRequired>.

Children: <alias>, <password>.

<alias>
Specifies the alias used to look up the private key (or key pair) in the keystore.
<wsSecurityPolicy>
<wsSecurityln>
<encryptionRequired>

<decryptionKey>
<alias>

Syntax

<alias> stringAlias </alias>
Hierarchy

Parents: <decryptionKey>

Children: none.

<password>

This element specifies the password used to look up the private key in the keystore. (Note this element doe:
not have the same syntax as the <password> element used as the child of the <userNameToken> element.

Note: Passwords appear in plain text in the WSSE policy file. For tools to encrypt these passwords, see
Securing WS-Security Passwords.

<wsSecurityPolicy>
<wsSecurityln>
<encryptionRequired>
<decryptionKey>
<password>

WS-Security Policy File Reference (WSSE FileReference) 44

Configuration File Reference

Syntax

<password> stringPassword </password>

Hierarchy
Parents: <decryptionKey>.

Children: none.

<signatureRequired>

Takes boolean values. If this the value of this element is true, then inbound SOAP messages are expected |
be signed.

<wsSecurityPolicy>
<wsSecurityln>
<signatureRequired>

Syntax

<signaturedRequired> boolean </signaturedRequired>

Hierarchy
Parents: <wsSecurityln>

Children: none.

<wsSecurityOut>

This element defines how outgoing SOAP messages should be secured before they are sent out over the w
Three security enhancements can be applied to outgoing messages: (1) security tokens (see the
<userNameToken> element), (2) digital signature (see the <signatureKey> element), and (3) encryption (se
the <encryption> element).

<wsSecurityPolicy>
<wsSecurityOut>
<userNameToken>
<encryption>
<signatureKey>
<additionalSignedElements>
<additionalEncryptedElements>

Syntax

<wsSecurityOut>
<l——
Children elements that describe how to enhance
outbound SOAP messages.

WS-Security Policy File Reference (WSSE FileReference) 45

Configuration File Reference

-—>
</wsSecurityOut>

Hierarchy
Parents: <wsSecurityPolicy>

Children: <userNameToken>, <encryption>, <signatureKey>, <additionalSignedElements>,
<additionalEncryptedElements>

<userNameToken>

When this element is present, outbound SOAP messages are enhanced with a username and password tok
This element must have two children elements: <userName> and <password>.

<wsSecurityPolicy>

<wsSecurityOut>
<userNameToken>

Syntax

<userNameToken>
<l——
Children elements specifying the username and password
to include with the outbound SOAP message
—-—>
</userNameToken>

Hierarchy
Parents: <wsSecurityOut>.

Children: <userName>, <password>.

<userName>

Takes String values. The String must correspond to a username in the security realm associated with the w
service's running WebLogic Server domain.

<wsSecurityPolicy>
<wsSecurityOut>

<userNameToken>
<userName>

Syntax

<userName> stringUserName </userName>

WS-Security Policy File Reference (WSSE FileReference) 46

Configuration File Reference

Hierarchy
Parents: <userNameToken>

Children: none.

<password>

This password must be the correct password of the user in the security realm associated with the web servi
running WebLogic Domain.

Note: Passwords appear in plain text in the WSSE policy file. For tools to encrypt these passwords, see
Securing WS-Security Passwords.

<wsSecurityPolicy>

<wsSecurityOut>
<userNameToken>

<password>

Attribute Description
type Required string. There is one valid value: "TEXT".

Syntax

<password> stringPassword </password>
Hierarchy

Parents: <userNameToken>.

Children: none.

<encryption>

If this element is present then the body of the SOAP message will be encrypted on the way out. The SOAP
recipient's public key used for encryption can be designated by directly providing the public key or using the
public key that was provided for the inbound Signature (assuming that there is a previous inbound SOAP
message containing a digital signature). The <encryption> element must have the child element
<encryptionKey> or <uselnboundSignatureCertificate>.

To sign elements in the SOAP header, see <additionalEncryptedElements>.

<wsSecurityPolicy>
<wsSecurityOut>
<encryption>
<encryptionKey>
<uselnboundSignatureCertificate>

WS-Security Policy File Reference (WSSE FileReference) 47

Configuration File Reference

Syntax

<encryption>
<l--

Child elements specifying how to encrypt the outbound SOAP message.
—-—>

</encryption>

Hierarchy
Parents: <wsSecurityOut>

Children: <encryptionKey>, <uselnboundSignatureCertificate>

<encryptionKey>

This is the key used to encrypt the outbound SOAP message. In the case where the web service control is
initiating a conversation with another web service the x509Certificate may have been initially created from
the target web service's WSDL file.

<wsSecurityPolicy>
<wsSecurityOut>
<encryption>
<encryptionKey>

Syntax

<encryptionKey>

<I--

Child element specifying either that the public key should be retrieved from the keystore,
or from a x509 cert.

-—>

</encryptionKey>

Hierarchy
Parents: <encryption>

Children: <alias>, <x509Certificate>.

<alias>

Specifies the alias used to look up the public key in the keystore when retrieving a key for encryption of
outbound SOAP messages.

<wsSecurityPolicy>
<wsSecurityOut>
<encryption>
<encryptionKey>
<alias>

WS-Security Policy File Reference (WSSE FileReference) 48

Configuration File Reference
Syntax
<alias> stringAilas </alias>
Hierarchy
Parents: <encryptionKey>.

Children: none.

<x509Certificate>

Specifies the base64 encoded X509 certificate for the purpose of the retrieving the public key from it.
<wsSecurityPolicy>
<wsSecurityOut>
<encryption>

<encryptionKey>
<x509Certificate>

Syntax

<x509Certificate> base64EncodedCert </x509Certificate>
Hierarchy

Parents: <encryptionKey>.

Children: none.

<uselnboundSignatureCertificate>

Specifies that outbound SOAP message should be encrypted with the public key in the inbound SOAP
message's x509 certificate. If this element is omitted the value is false.

<wsSecurityPolicy>
<wsSecurityOut>

<encryption>
<uselnboundSignatureCertificate>

Syntax

<uselnboundsSignatureCertificate> boolean </uselnboundSignatureCertificate>
Hierarchy

Parents: <encryption>.

Children: none.

WS-Security Policy File Reference (WSSE FileReference) 49

Configuration File Reference
<signatureKey>

This element is used to designate the private key that will be used for signing. This keypair should also have
certificate associated with so that the validation certificate can be added to the message. If this element is
present, only the SOAP body is signed. To sign header elements, see <addtionalSignedElements>.
<wsSecurityPolicy>
<wsSecurityOut>
<signatureKey>

<alias>
<password>

Syntax

<signatureKey>
<l-—-

Child elements specifying the alias and password used to retrieve the signing private key from the keystore.
—-—>

</signatureKey>
Hierarchy
Parents: <wsSecurityOut>.

Children: <alias>, <password>.

<alias>
This alias is used to look up the private key (or key pair) in the keystore.
<wsSecurityPolicy>

<wsSecurityOut>

<signatureKey>
<alias>

Syntax
<alias> stringAlias </alias>
Hierarchy

Parents: <signatureKey>.

Children: none.

<password>

The password associated with the alias used to retrieve the private key from the keystore.

WS-Security Policy File Reference (WSSE FileReference) 50

Configuration File Reference

Note: Passwords appear in plain text in the WSSE policy file. For tools to encrypt these passwords, see
Securing WS—-Security Passwords.

<wsSecurityPolicy>
<wsSecurityOut>

<signatureKey>
<password>

Syntax

<password> stringPassword </password>
Hierarchy

Parents: <signatureKey>.

Children: none.

<additionalSignedElements>

Contains namespace and element pairs that need to be secured. Note that only the SOAP body is signed, if
signature is called for by a <signatureKey> element. <additionalSignedElements> is used to specify SOAP
header elements for signing.

<wsSecurityPolicy>
<wsSecurityOut>

<additionalSignedElements>
<secureElement>

Syntax

<additionalSignedElements>
<I--
Child elements listing the elements to be signed.
—-—>

</additionalSignedElements>

Hierarchy

Parents: <wsSecurityOut>.
Children: <secureElement>.
<secureElement>

Specifies an element to be signed.

Attribute Description
name Required string. Names an XML element to be signed.

WS-Security Policy File Reference (WSSE FileReference) 51

Configuration File Reference

nameSpace |Required string. Any URI value.

<wsSecurityPolicy>
<wsSecurityOut>
<additionalSignedElements>
<secureElement>

Syntax

<secureElement
name="stringName"
nameSpace="stringURI"
>

Hierarchy
Parents: <additionalSignedElements>.

Children: none.

<additionalEncryptedElements>

Specifies an element to be encrypted. Note that the <encryption> element encrypts only the SOAP body by
default. Use <additionalEncryptedElements> to encrypt sensitive elements in the SOAP header.

<wsSecurityPolicy>
<wsSecurityOut>

<additionalEncryptedElements>
<secureElement>

Syntax

<additionalEncryptedElements>
<l—
Child elements listing the elements to be encrypted.
-—>

</additionalEncryptedElements>

Hierarchy

Parents: <wsSecurityOut>.
Children: <secureElement>.
<secureElement>

Specifies an element to be encrypted.

Attribute Description
name Required string. Names an XML element to be encrypted.

WS-Security Policy File Reference (WSSE FileReference) 52

Configuration File Reference

nameSpace |Required string. Any URI value.

<wsSecurityPolicy>
<wsSecurityOut>
<additionalEncryptedElements>
<secureElement>

Syntax

<secureElement
name="stringName"

nameSpace="stringURI"
>

Hierarchy
Parents: <additionalEncryptedElements>.

Children: none.

<keyStore>

This element is optional. If a keystore is not designated then Weblogic Server's default keystore is used. If
present, the <keyStore> element must have the child elements <keyStoreLocation> and <keyStorePasswor

<wsSecurityPolicy>
<keyStore>

<keyStoreLocation>
<keyStorePassword>

Syntax

<keyStore>
<I--
Child elements specifying the keystore location and password.
-—>

</keyStore>

Hierarchy
Parents: <wsSecurityPolicy>.

Children: <keyStoreLocation>, <keyStorePassword>.

<keyStoreLocation>

The <keyStoreLocation> element specifies the path to the keystore. An absolute path or relative path can be
designated. If a relative path is used then the base directory is the active Weblogic Server domain directory
(e.g., BEA_HOME\Wweblogic81\samples\domains\workshop is the samples domain directory).

WS-Security Policy File Reference (WSSE FileReference) 53

Configuration File Reference

<wsSecurityPolicy>
<keyStore>
<keyStorelLocation>

Syntax

<keyStoreLocation> stringPath </keyStoreLocation>
Hierarchy

Parents: <keyStore>.

Children: none.

<keyStorePassword>

The <keyStorePassword> specifies the password required to access the keystore.

Note: Passwords appear in plain text in the WSSE policy file. For tools to encrypt these passwords, see
Securing WS-Security Passwords.

<wsSecurityPolicy>
<keyStore>
<keyStorePassword>

Syntax

<keyStorePassword> stringPassword </keyStorePassword>

Hierarchy
Parents: <keyStore>.

Children: none.

Examples

Example #1

The following WSSE policy file requires that inbound SOAP messages must be encrypted.

<wsSecurityPolicy xsi:schemalocation="WSSecurity—policy.xsd" xmIns="http://www.bea.com/2003/03/wsse/config" xmIns:xsi="h
<wsSecurityln>
<encryptionRequired>
<decryptionKey>
<alias>companyB</alias>
<password>{3DES}OZyVt5STUUSBMMJILPGSKYQ==</password>
</decryptionKey>
</encryptionRequired>
</wsSecurityln>
<keyStore>

WS-Security Policy File Reference (WSSE FileReference) 54

Configuration File Reference

<keyStoreLocation>wlwwsse.jks</keyStoreLocation>
<keyStorePassword>{3DES}OZyVt5STUUSBMMJILPGSkYQ==</keyStorePassword>
</keyStore>
</wsSecurityPolicy>

Example #2

The following WSSE policy file requires that inbound SOAP messages include a username token and be
encrypted. Outbound messages are encrypted before they are sent out over the wire.

<wsSecurityPolicy xsi:schemalocation="WSSecurity—policy.xsd" xmIns="http://www.bea.com/2003/03/wsse/config" xmiIns:xsi="h
<wsSecurityln>
<token tokenType="username"/>
<encryptionRequired>
<decryptionKey>
<alias>companyB</alias>
<password>{3DES}OZyVi5STUUSBMMJLPGSKYQ==</password>
</decryptionKey>
</encryptionRequired>
<signatureRequired>true</signatureRequired>
</wsSecurityln>
<wsSecurityOut>
<encryption>
<encryptionKey>
<alias>companyB</alias>
</encryptionKey>
</encryption>
</wsSecurityOut>
<keyStore>
<keyStoreLocation>wlwwsse.jks</keyStoreLocation>
<keyStorePassword>{3DES}OZyVt5STUUSBMMJILPGSkYQ==</keyStorePassword>
</keyStore>
</wsSecurityPolicy>

Example #3

The following WSSE policy file requires that inbound SOAP messages include a (1) username/password
token, (2) a signature, and (3) be encrypted.

<wsSecurityPolicy xsi:schemalLocation="WSSecurity—policy.xsd" xmIns="http://www.bea.com/2003/03/wsse/config" xmIns:xsi="h
<wsSecurityln>
<token tokenType="username"/>
<encryptionRequired>
<decryptionKey>
<alias>companyB</alias>
<password>{3DES}OzyVt5STUUBBMMJILPGSKYQ==</password>
</decryptionKey>
</encryptionRequired>
<signatureRequired>true</signatureRequired>
</wsSecurityln>
<keyStore>
<keyStoreLocation>wlwwsse.jks</keyStoreLocation>
<keyStorePassword>{3DES}OZyVt5STUUSBMMJILPGSkYQ==</keyStorePassword>
</keyStore>
</wsSecurityPolicy>

WS-Security Policy File Reference (WSSE FileReference) 55

Configuration File Reference
Example #4

The <encryption> element directs that the body of outgoing SOAP messages be encrypted and, additionally
the <additionalEncrptedElements> element directs that the <person> element in the SOAP header be

encrypted.

<wsSecurityPolicy xsi:schemal ocation="WSSecurity—policy.xsd" xmIns="http://www.bea.com/2003/03/wsse/config" xmIns:xsi="h
<wsSecurityOut>
<encryption>
<encryptionKey>
<alias>companyB</alias>
</encryptionKey>
</encryption>
<additionalEncryptedElements>
<secureElement name="person" namespace="http://www.bea.com/person"/>
</additionalEncryptedElements>
</wsSecurityOut>
<keyStore>
<keyStoreLocation>wlwwsse.jks</keyStoreLocation>
<keyStorePassword>{3DES}OZyVt5STUUSBMMJILPGSkYQ==</keyStorePassword>
</keyStore>
</wsSecurityPolicy>

Related Topics
Applying WS-Security Policy Files

WS-Security File Elements

WS-Security Policy File Reference (WSSE FileReference) 56

	Table of Contents
	Configuration File Reference
	jws-config.properties Configuration File
	workshopLogCfg.xml Configuration File
	wlw-config.xml Configuration File
	wlw-runtime-config.xml Configuration File
	wlw-manifest.xml Configuration File
	WS-Security Policy File Reference (WSSE File Reference)

