
Version 8.1 SP4
December 2004

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the agreement. This document may
not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium
or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software−Restricted Rights
Clause at FAR 52.227−19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227−7013, subparagraph (d) of the Commercial Computer Software−−Licensing clause
at NASA FAR supplement 16−52.227−86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the
part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR
THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E−Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Table of Contents
Annotations Reference..1

Common Annotations...2

@common:context Annotation..3

@common:control Annotation..4

Integration Controls Annotations...5

Application View Control Annotations...6

@jc:av−identity Annotation...7

@jc:av−service Annotation..9

ebXML Control Annotations...10

@jc:ebxml Annotation..11

@jc:ebxml−method Annotation..13

Email Control Annotations..14

@jc:email Annotation...15

@jc:send−email Annotation...17

File Control Annotations..19

@jc:file Annotation...20

@jc:file−operation Annotation..22

Http Control Interfaces and Annotations...24

Http Control Interface..25

Http Control Annotations..26

@jc:httpsend−data..27

JMS Control Annotations..28

Message Broker Control Annotations...29

Annotations Reference

i

Table of Contents
@jc:mb−publish−control Annotation...30

@jc:mb−publish−method Annotation..31

@jc:mb−subscription−control Annotation...32

@jc:mb−subscription−method Annotation..33

@jc:mb−subscription−callback Annotation...34

MQSeries Control Interfaces and Annotations..35

MQSeries Control Interface...36

MQSeries Control Annotations...41

@jc:MQConnectionType...42

@jc:MQConnectionPoolProps..43

@jc:ConnectionPoolTimeout...44

@jc:MQQueueManager...45

@jc:MQAuthorization..46

@jc:TCPSettings...47

@jc:DefaultQueue...49

@jc:ImplicitTransaction ..50

Process Control Annotations...51

RosettaNet Control Annotations...52

@jc:rosettanet Annotation...53

Service Broker Control Annotations...55

Worklist Control Annotations...56

@jc: advanced Annotation...59

@jc:assignee Annotation..61

Annotations Reference

ii

Table of Contents
@jc:select Annotation...62

@jc:task Annotation...65

@jc:task−abort Annotation...66

@jc:task−assign Annotation..67

@jc:task−claim Annotation...68

@jc:task−complete Annotation...69

@jc:task−create Annotation..70

@jc:task−delete Annotation...73

@jc:task−event Annotation..74

@jc:task−get−info Annotation...75

@jc:task−get−property Annotation..76

@jc:task−get−property−name Annotation...77

@jc:task−get−request Annotation...78

@jc:task−get−response Annotation..79

@jc:task−remove−property Annotation...80

@jc:task−resume Annotation..81

@jc:task−return Annotation..82

@jc:task−set−property Annotation...83

@jc:task−start Annotation...84

@jc:task−stop Annotation..85

@jc:task−suspend Annotation...86

@jc:task−update Annotation...87

@jc:task−worker Annotation..88

Annotations Reference

iii

Table of Contents
Business Process Annotations..89

@jpd:ebxml Annotation...91

@jpd:ebxml−method Annotation..93

@jpd:mb−static−subscription Annotation...94

@jpd:process Annotation...96

@jpd:rosettanet Annotation..98

@jpd:selector Annotation..100

@jpd:transform Annotation..101

@jpd:unexpected−message Annotation..102

@jpd:version Annotation...103

@jpd:xml−list Annotation..104

@jpd:xquery Annotation...105

@common Annotations..106

@jws (Web Service) Annotations..107

General Properties..108

Variable Properties...109

Control Properties..110

Data Transformation Annotations..111

@dtf:xquery Annotation..112

@dtf:transform Annotation...115

@dtf:schema−validate Annotation..118

@dtf:xquery−function Annotation..119

General Properties..120

Annotations Reference

iv

Annotations Reference
This section provides reference information about WebLogic Integration−specific Workshop annotations,
which are formatted like Javadoc tags.

WebLogic Workshop provides custom annotations based on Javadoc technology. Originally developed as a
way to embed documentation into source code as comments, Javadoc is extended by WebLogic Workshop
through custom annotations that help to define the functionality of a Web application component. For
example, in WebLogic Integration, annotations can be used to define the purpose of an Integration control or a
business process.

To learn about Workshop annotations not specific to WebLogic Integration (that is, Web service annotations,
page flow annotations, and so on), see the WebLogic Workshop Reference.

Topics Included in This Section

CommonAnnotations Reference

Provides reference information for common annotations. Common annotations are those annotations that are
available to more than one type of file (JWS, JXCX, JPD, and so on) in WebLogic Workshop.

Integration Controls Annotations Reference

This section provides reference information for WebLogic Integration controls annotations.

Business Process Annotations Reference

This section provides reference information for WebLogic Integration business process (JPD) annotations
(that is, annotations that are of the following format: @jpd:name_of_annotation).

Data Transformation Annotations Reference

This section provides reference information for WebLogic Integration data transformation (dtf) annotations
(that is, annotations that are of the following format: @dtf:name_of_annotation).

Annotations Reference 1

Common Annotations
This section provides reference information for common annotations. Common annotations are available to
more than one type of file in WebLogic Workshop.

Topics Included in This Section

@common:context Annotation

Specifies to WebLogic Server the type of component for which it creates a context. The components include
business processes, controls, Web services and so on.

@common:control Annotation

Specifies that the object annotated by this annotation is a WebLogic Workshop control in a JCX file.

Common Annotations 2

@common:context Annotation
The @common:context annotation specifies that WebLogic Server should create a context for the component
(e.g., a business process or a control). The context ensures that conversations between the component and a
client are correlated correctly and that the component's state is maintained. The @common:context annotation
precedes the declaration of the context object; the type of the context object depends on the container you are
using. For business processes, the context object is of type JpdContext; for controls, ControlContext.

Syntax

@common:context

Attributes

None.

Remarks

The following rules apply to this annotation's use:

Only one @common:context annotation may appear within a single Javadoc comment block.•
The @common:context annotation must appear on the instance declaration of the context object.•

For example, the annotation and instance declaration for the JpdContext object appear as follows:

 /** @common:context */

 JpdContext context;

If the @common:context annotation is not present on the instance declaration, the component that defines it
does function properly.

Related Topics

jpdContext Interface

@common:context Annotation 3

@common:control Annotation
The @common:control annotation indicates that the object annotated by this annotation is a WebLogic
Workshop control in a JCX file.

Syntax

@common:control

Attributes

None.

Remarks

The following rules apply to this annotation's use:

Only one @common:control annotation can be specified within a single Javadoc comment block.•
Must appear on each control instance declaration.•

If the @common:control annotation is not present on a control instance declaration, the control will not
function properly; attempts to invoke the control's methods will result in Null Pointer Exceptions (NPEs).

Related Topics

Using Integration Controls

@common:control Annotation 4

Integration Controls Annotations
This section provides reference information for WebLogic Integration controls annotations.

Topics Included in This Section

Application View Control Annotations

Describes the Application View control annotations.

ebXML Control Annotations

Describes the ebXML control annotations.

Email Control Annotations

Describes the Email control annotations.

File Control Annotations

Describes the File control annotations.

JMS Control Annotations

Describes the JMS control annotations.

Message Broker Control Annotations

Describes the Message Broker Publish and Message Broker Subscription control annotations.

Process Control Annotations

Describes the Process control annotations.

RosettaNet Control Annotations

Describes the RosettaNet control annotations.

Service Broker Control Annotations

Describes the Service Broker control annotations.

Worklist Control Annotations

Describes the Worklist control (Task control and Task Worker control) annotations.

Note: There is a TPM Control, but this control has no annotations.

Integration Controls Annotations 5

Application View Control Annotations
The Application View control annotations provide information to WebLogic Server about how the control
functions. This section contains information about the Application View control annotations, including the
syntax to use and the available attributes that can be set for the control.

Topics Included in This Section

@jc:av−identity Annotation

Specifies the target Application View for an Application View control.

@jc:av−service Annotation

Specifies the Application View service associated with a method of an Application View control.

Application View Control Annotations 6

@jc:av−identity Annotation
Specifies the target Application View for an Application View control.

Note: The @jc:av−identity annotation appears in Application View controls with the .jcx extension.
Application View controls with the .ctrl extension, which were created in a previous version of WebLogic
Workshop, use the @jws:av−identity annotation. Controls with the .ctrl extension continue to be supported in
WebLogic Workshop.

Syntax

@jc:av−identity

name="applicationViewName"
app="applicationName"
namespaceEnforcementEnabled="true | false"

Attributes

name

Required. Specifies the name of the target Application View. The name is fully qualified and dot separated.
The Application View must be deployed before the Application View control will function.

app

Required. Specifies the name of the associated WebLogic Workshop application. This is usually the same as
the current WebLogic Workshop application.

This parameter allows you to reuse an application view between WebLogic Workshop applications. First,
define the application view in the context of the primary application. Then, define an Application View
control in a process within a second application and specify the primary application in the app parameter.
When reusing an application view from another application, all services are accessed synchronously.

namespaceEnforcementEnabled

If true, indicates that the client requires response instances and event instances to declare the namespace
indicated in the response/event definitions, and force the proper namespace declaration onto the
response/event if needed. Some legacy adapters do not provide responses/events using the namespaces
declared in the response/event schema. This option allows clients that perform schema−based XML checking
to use such adapters. The option is disabled by default, because it can have serious performance implications
for adapters that return their responses/events as raw XML text (not parsed). In this case, this option forces a
parse of the XML text in order to inject the proper namespace declaration.

Remarks

The following rules apply to this annotation's use:

Only one @jc:av−identity annotation may appear within a single Javadoc comment block.•

@jc:av−identity Annotation 7

The @jc:av−identity annotation may appear in the Javadoc comment on the main interface defined in
a Application View control's JCX file.

•

Related Topics

Application View Control

@jc:av−service Annotation

Annotations Reference

@jc:av−identity Annotation 8

@jc:av−service Annotation
Specifies the Application View service associated with a method of an Application View control.

Note: The @jc:av−service annotation appears in Application View controls with the .jcx extension.
Application View controls with the .ctrl extension, which were created in a previous version of WebLogic
Workshop, use the @jws:av−service annotation. Controls with the .ctrl extension continue to be supported in
WebLogic Workshop.

Syntax

@jc:av−service

name="avServiceName"
async="true | false"

Attributes

name

Required. Specifies the name of the service in the target Application View with which this Application View
control method is associated.

async

Required. Specifies whether or not the service is asynchronoous. The default value is false (synchronous).

Remarks

The following rules apply to this annotation's use:

The @jc:av−service annotation may only occur on a method declaration in an interface that extends
weblogic.jws.control.ApplicationViewControl.

•

The @jc:av−service annotation may only occur in a JCX file.•
The @jc:av−service annotation may only appear once per method.•

Related Topics

Application View Control

@jc:av−identity Annotation

@jc:av−service Annotation 9

ebXML Control Annotations
The ebXML control enables WebLogic Workshop business processes to exchange business messages and
data with trading partners via ebXML. The ebXML control supports both the ebXML 1.0 and ebXML 2.0
messaging services. You use ebXML controls in initiator business processes to manage the exchange of
ebXML business messages with participants.

This section contains information about ebXML control annotations, including the syntax to use and the
available attributes that can be set for the control.

Topics Included in This Section

@jc:ebxml Annotation

Specifies the JCX class−level annotations for the ebXML control

@jc:ebxml−method Annotation

Specifies the method−level annotations for the ebXML control.

ebXML Control Annotations 10

@jc:ebxml Annotation
Specifies JCX class−level annotations for the ebXML control.

Note: For most attributes, annotations can also be specified at the instance and method level. The order of
precedence is:

1. JCX method level.

2. JCX instance level.

3. JCX class level.

Syntax

jc:ebxml
 [from="initiatorID"] | [from−selector="{xquery−expression}"]
 [to="participantID"] | [to−selector="{xquery−expression}"]
 [ebxml−service−name="ebxml−service−name"]
 [ebxml−action−mode="default | non−default"]

Attributes

from

Business ID of the initiator. Must match the business ID for the trading partner as defined in the TPM
repository.

from−selector

XQuery expression that selects the business ID of the initiator. To learn how to specify the initiator business
ID dynamically, see "Dynamically Specifying Business IDs" in Using an ebXML Control.

Note: This attribute is not available for all methods at the control type level in the control definition file (JCX
file). It only applies to the send method in the control definition or to control instance declarations in the
business process file (JPD file).

to

Business ID of the participant. Must match the business ID for the trading partner as defined in the TPM
repository.

to−selector

XQuery expression that selects the business ID of the participant. To learn how to specify the participant
business ID, see "Dynamically Specifying Business IDs" in Using an ebXML Control.

Note: This attribute is not available for all methods at the control type level in the control definition file (JCX
file). It only applies to the send method in the control definition or to control instance declarations in the
business process file (JPD file).

@jc:ebxml Annotation 11

ebxml−service−name

Name of an ebXML service. For initiator and participant business processes that participate in the same
conversation, the settings for ebxml−service−name must be identical. This service name corresponds to the
eb:Service entry in the ebXML message envelope.

ebxml−action−mode

Action mode for this ebXML control. Determines the value specified in the eb:Action element in the message
header of the ebXML message, which becomes important in cases where multiple message exchanges occur
within the same conversation. One of the following values:

− default�Sets the eb:Action element to SendMessage (default name).

− non−default�Sets the eb:Action element to the name of the method (on the ebXML control) that sends the
message in the initiator business process. For sending a message from the initiator to the participant, this name
must match the method name of the Client Request node in the corresponding participant business process.
For sending a message from the participant to the initiator, the method name in the callback interface for the
client callback node in the participant business process must match the method name (on the ebXML control)
in the control callback interface in the initiator business process. Using non−default is recommended to ensure
recovery and high availability.

If unspecified, the ebxml−action−mode is set to non−default.

Related Topics

@jc:ebxml−method Annotation

Annotations Reference

@jc:ebxml Annotation 12

@jc:ebxml−method Annotation
Specifies method−level annotations for the ebXML control.

Syntax

jc:ebxml−method
 [to−selector="{xquery−expression}"]
 [envelope="{env}"]

Attributes

to−selector

XQuery expression that selects the recipient business ID. To learn how to specify the business ID
dynamically using selectors in the Property Editor, see "Dynamically Specifying Business IDs" in Using an
ebXML Control.

envelope

Used with a callback method to assign the ebXML envelope of an incoming message.

Note: You can rename the default value (env) as long as it matches the name of the parameter specified in the
method.

Related Topics

@jc:ebxml Annotation

@jc:ebxml−method Annotation 13

Email Control Annotations
This section describes the Email control annotations.

Topics Included in This Section

@jc:email Annotation

@jc:send−email Annotation

Email Control Annotations 14

@jc:email Annotation
Specifies class− and method−level configuration attributes for the Email control.

Syntax

jc:email

[from−address="from−address"]
[from−name="from−name"]
[smtp−address="smtp−address"]
[reply−to−address="reply−to−address"]
[reply−to−name="reply−to−name"]
[smtp−username="smtp−username"]
[smtp−password="smtp−password"]
[smtp−password−alias="smtp−password−alias"]
[header−encoding="header−encoding"]

Attributes

These attributes determine the default behavior of the Email control. The Email control may be configured
during its lifetime by calling methods of the EmailControl class.

from−address

A string containing the originating e−mail address. This attribute is required if the from−name attribute is
present.

from−name

A string containing the display name for the originating e−mail address. This attribute is optional.

smtp−address

A string containing the address of the SMTP server in host:port or host form. If the port is not specified, the
standard SMTP port of 25 is used. This attribute is required.

reply−to−address

A string containing the e−mail address to reply to. This attribute is required if the reply−to−name attribute is
present.

reply−to−name

A string containing the display name for the reply−to−address. This attribute is optional.

smtp−username

A string containing the username for server's that require authentication to send. This attribute is optional.

@jc:email Annotation 15

smtp−password

A string containing the associated password. This attribute is optional.

smtp−password−alias

A string containing the password alias. The alias is used to look up the password in the password store. This
attribute is optional and is mutually exclusive with the smtp−password attribute.

header−encoding

A string specifying the encoding to be used for the mail headers as specified by from−name, reply−to−name,
to, bc, bcc, subject, and attachments. If no header encoding is specified, the system default encoding is used.

Related Topics

Email Control

@jc:send−email Annotation

Annotations Reference

@jc:email Annotation 16

@jc:send−email Annotation
Specifies class− and method−level configuration attributes for the Email control.

Syntax

jc:send−email

[to="To−recipients"]
[cc="CC−recipients"]
[bcc="BCC−recipients"]
[subject="subject"]
[body="body"]
[content−type="content−type"]
[attachments="file−list"]

Attributes

These attributes determine the default behavior of the Email control. The Email control may be configured
during its lifetime by calling methods of the EmailControl class.

Parameter substitution can be used for any of the following method attributes. Substitutions are allowed in
the middle of the subject or body. For example, upon receiving an order, you can send the following e−mail:

"Thanks for your order. Your order number is {orderNumber}.
Please reference this number in all your future correspondence."

to

The list of To recipients. This attribute takes a comma separated list of Strings. This attribute is required.

cc

The list of CC recipients. This attribute takes a comma separated list of Strings. This attribute is optional.

bcc

The list of BCC recipients. This attribute takes a comma separated list of Strings. This attribute is optional.

subject

A string containing the subject of the e−mail. This attribute is optional.

body

A string containing the body of the e−mail. This attribute is optional.

content−type

A string containing the content−type of the body. If not specified, the default is text/plain for String bodies

@jc:send−email Annotation 17

and text/xml for XmlObject bodies. Aside from the default text/plain, expected content types include
text/html, text/xml, and application/xml. This attribute is optional.

attachments

The list of files to send as attachments. This attribute takes a comma separated list of Strings. This attribute is
optional.

Unqualified paths specifying attachment locations are relative to the location of the domain's startWeblogic
command file. Because the domain root may be deep in the directory structure, we recommend the use of
absolute paths for specifying attachment locations.

The to and cc recipient lists can include display names as shown in the following examples:

Joe User <joe.user@myorg.com>, Jane User <jane.user@myorg.com>

"Joe A. User" <joe.user@myorg.com>, "Jane B. User" <jane.user@myorg.com>

Related Topics

Email Control

@jc:email Annotation

Annotations Reference

@jc:send−email Annotation 18

File Control Annotations
This section describes the File control annotations.

Topics Included in This Section

@jc:file Annotation

@jc:file−operation Annotation

File Control Annotations 19

@jc:file Annotation
Specifies the annotations for the File control.

Syntax

@jc:file

[directory−name="directory name"]
[file−mask="file name or file mask"]
[suffix−name="file name suffix"]
[suffix−type="timestamp or index"]
[create−mode="over−write or rename−old"]
[ftp−host−name="ftp host name"]
[ftp−username−name="ftp user name"]
[ftp−password="password"]
[ftp−password−alias="password alias"]
[ftp−local−directory="local directory name"]

Attributes

These attributes determine the default behavior of the File control. The File control can be configured during
its lifetime by calling methods of the FileContol class. To learn more about the FileControl class, see the
javadoc for the File Control.

directory−name

A directory name is the absolute path name for the directory. In other words, it includes the drive
specification as well as the path specification. For example, following are valid directory names:

C:\directory (Windows)

/directory (Unix)

\\servername\sharename\directory (Win32 UNC)

The directory−name attribute is required. Leaving the directory−name attribute unspecified results in an
error.

file−mask

The file−mask attribute can specify either a file name or a file mask. If the file−mask contains a wild−card
character (such as "*") it will be treated as a file mask. Typically, a wild−card character is specified to get the
list of files in a directory. It is illegal to specify a wild−card character for any other operation.

File names are used for read, write and append operations.

suffix−name

@jc:file Annotation 20

This suffix will be used along with a timestamp or incrementing index for creating the file names. The default
suffix−name will be "_". For example:

file_01, file_02, file_0809021230123

suffix−type

This option specifies if a timestamp or an incrementing index should be used as a suffix for the file names.
The allowed options are: index and timestamp.

create−mode

This option specifies what needs to be done when a write operation is creating a new file and a file with the
same name already exists. The allowed options are: over−write and rename−old.

ftp−host−name

This option specifies the name of the FTP host, for example, ftp://ftp.bea.com.

ftp−user−name

This option specifies the name of the FTP user.

ftp−password

This option specifies the FTP user's password. If you specify this attribute, you cannot specify the
ftp−password−alias attribute.

ftp−password−alias

This option specifies the alias for a user's password. The alias is used to look up a password in a password
store. If you specify this attribute, you cannot specify the ftp−password attribute.

ftp−local−directory

This option specifies the directory used for transferring files between the remote file system and the local file
system. When reading a remote file, the file is copied from the remote system to the local directory and then
read. Similarly, when writing to a remote file system, the file is written to the local directory and then copied
to the remote system.

Related Topics

File Control

@jc:file−operation Annotation

Annotations Reference

@jc:file Annotation 21

@jc:file−operation Annotation
Specifies configuration attributes for a File control.

Syntax

@jc:file−operation

[io−type="read, readline, write or append"]
[file−content="file content description"]
[record−size="number of bytes per record"]
[encoding="character set encoding"]

Attributes

These attributes determine the default behavior of the File control. The File control can be configured during
its lifetime by calling methods of the FileContol class. To learn more about the FileControl class, see the
javadoc for the File Control.

io−type

This attribute specifies the type of operation. The valid values are: read, write, append and readline. (To learn
about the readline value, see record−size).

file−content

This option specifies a description of the contents of the file.

record−size

This option is used with methods of type @jc:file−operation io−type="readline". The record size, a positive
integer, is expressed in bytes.

The record−size attribute is valid for methods with a return type of RawData and String, but not XmlObject.
If this attribute is not specified, the default platform−specific line delimiters, such as carriage returns or line
feeds, are used.

The following code illustrates the use of the record−size attribute:

/**
* @jc:file−operation io−type="readline" record−size="80"
*/
RawData readLine();

encoding

This option is used to specify the character set encoding for the file. The file type must be String or
XMLObject. This option can not be used if large files are being processed.

Related Topics

@jc:file−operation Annotation 22

File Control

@jc:file Annotation

Annotations Reference

@jc:file−operation Annotation 23

Http Control Interfaces and Annotations
This section describes the Http control interfaces and annotations and provides a sample of an extended Http
control.

Topics Included in This Section

Http Control Annotations

A reference for Http control annotations.

Http Control Interfaces and Annotations 24

Http Control Interface

Sample Extended Http Control

The following code shows an example of an extended control. This code is automatically created by the
control wizard.

package processes;

import com.bea.control.*;

import com.bea.wli.control.httpResponse.ResponseDocument;

import com.bea.wli.control.httpParameter.ParametersDocument;

import com.bea.xml.XmlObject;

 /*

 * A custom Http control.

 */

 /**

 * @jc:httpsend−data url−name="edocs.bea.com"

 */

public interface dddd extends HttpControl, com.bea.control.ControlExtension

 {

 /*

 * A version number for this JCX. This will be incremented in new versions of

 * this control to ensure that conversations for instances of earlier

 * versions were invalid.

 */

 static final long serialVersionUID = 1L;

 ResponseDocument sendDataAsHttpGet(ParametersDocument parameters,String charset);

 byte[] getResponseBodyData();

}

Http Control Interface 25

Http Control Annotations
This section includes information on Http control annotations. It includes the following topics:

@jc:httpsend−data

Http Control Annotations 26

@jc:httpsend−data
Specifies the URL to which an Http message is to be sent, and from which response is to be received.

Syntax

@jc:httpsend−data url−name

[url−name="name of the URL"]

@jc:httpsend−data 27

JMS Control Annotations
The JMS Control annotations provide information to WebLogic Server about how the control functions.

The WLI JMS control is an extension of the JMS control. The following JMS control annotations also apply
to the WLI JMS control:

@jc:jms−headers Annotation•
@jc:jms−property Annotation•

Related Topics

WLI JMS Control

JMS Control Annotations 28

Message Broker Control Annotations
This section describes the Message Broker Publish and Subscription control annotations.

Topics Included in This Section

Message Broker Publish Control Annotations

@jc:mb−publish−control Annotation

Defines class level attributes for the Publish control.

@jc:mb−publish−method Annotation

Defines method level attributes for the Publish control.

Message Broker Subscription Control Annotations

@jc:mb−subscription−control Annotation

Defines class level attributes for the Subscription Control.

@jc:mb−subscription−method Annotation

Defines method level attributes for the Subscription Control.

@jc:mb−subscription−callback Annotation

Defines callback attributes for the Subscription Control.

Message Broker Control Annotations 29

@jc:mb−publish−control Annotation
This section describes the class attributes supported for the Publish control.

Syntax

@jc:mb−publish−control

[channel−name="channel name"]
[message−metadata="message metadata"]

Attributes

channel−name

The name of the Message Broker channel to which the MB Publish control publishes messages.

message−metadata

By default, this XML header is included in messages published with this control. Valid values include a
string containing XML.

Related Topics

Message Broker Controls

@jc:mb−publish−control Annotation 30

@jc:mb−publish−method Annotation
This section describes the method attributes supported for the Publish control.

Syntax

@jc:mb−publish−method

[message−metadata="message metadata"]
[message−body="message body"]

Attributes

message−metadata

XML header to include in messages published with the control method to which it is associated. Valid values
include a string containing XML, or a method parameter in curly braces. For example: {parameter1}.

message−body

Valid values include a string containing text that is used as the message body in the published message, or a
method parameter in curly braces. For example: {parameter2}.

Related Topics

Message Broker Controls

@jc:mb−publish−method Annotation 31

@jc:mb−subscription−control Annotation
This section describes the class attributes supported for the Subscription control.

Syntax

@jc:mb−subscription−control

[channel−name="channel name"]
[xquery="xquery"]

Attributes

channel−name

The name of the Message Broker channel to which the control subscribes. This is a required class−level
annotation that cannot be overridden.

xquery

The XQuery expression that is evaluated for each message published to a subscribed channel. Messages that
do not satisfy this expression are not dispatched to a subscribing business process. This is an optional
class−level annotation that cannot be overridden.

Related Topics

Message Broker Controls

@jc:mb−subscription−control Annotation 32

@jc:mb−subscription−method Annotation
This section describes the method attributes supported for the Subscription control.

Syntax

@jc:mb−subscription−method

[filter−value−match="filter value match"]

Attributes

filter−value−match

The filter−value that the XQuery expression results must match for the message to be dispatched to a
subscribing business process. This is an optional method−level annotation. Valid values for the
filter−value−match annotation include a string constant that is compared directly to the XQuery results, or a
method parameter in curly braces. For example: {parameter1}

Related Topics

Message Broker Controls

@jc:mb−subscription−method Annotation 33

@jc:mb−subscription−callback Annotation
This section describes the callback attributes supported for the Subscription control.

Syntax

@jc:mb−subscription−callback

[message−metadata="message metadata"]
[message−body="message body"]

Attributes

message−metadata

The name of a parameter in the callback method that receives the metadata from the message that triggered
the subscription. This parameter can be of an XmlObject or typed XML.

message−body

The name of a parameter in the callback method that receives the body from the message that triggered the
subscription. This parameter must be of type XmlObject (or a typed XBean), String, RawData, or a non−XML
MFL class (a subclass of MflObject).

Related Topics

Message Broker Controls

@jc:mb−subscription−callback Annotation 34

MQSeries Control Interfaces and Annotations
This section describes the MQSeries control interfaces and annotations and provides a sample of an extended
MQSeries control.

Topics Included in This Section

MQSeries Control Interface

Describes the MQSeries control interface with an example of an extended MQSeries control.

MQSeries Control Annotations

A reference for MQSeries control annotations.

MQSeries Control Interfaces and Annotations 35

MQSeries Control Interface
The MQSeries control supports the sending and receiving of messages to and from MQSeries queues. The
supported message types are Bytes, String and XML.

The MQSeries control supports two types of connections, that is, TCP and Bindings. The connection options,
such as Queue Manager Name, Queue Name and so on, for the MQSeries control can be specified while
configuring the MQSeries control.

The following are the MQSeries control methods:

public interface MQControl extends Control

{

 /**

 * Begins a MQ transaction

 * @exception ResourceException if transaction state is invalid

 */

 void begin() throws javax.resource.ResourceException;

 /**

 * Rolls back a MQ transaction

 * @exception ResourceException if transaction state is invalid

 */

 void rollback() throws javax.resource.ResourceException;

 /**

 * Commits a MQ transaction

 * @exception ResourceException if transaction state is invalid

 */

 void commit() throws javax.resource.ResourceException;

 /**

 * Sets the dynamic properties for the control.

 * @param mqDynPropsDoc the MQDynamicProperties document containing

 * the dynamic properties to be set

 */

MQSeries Control Interface 36

 void setDynamicProperties(com.bea.wli.control.mqDynamicProperties.MQDynamicPropertiesDocument mqDynPropsDoc);

 /**

 * Gets a byte array(binary) message from the queue This function calls the

 * generic getMessage function

 * @param queue the queue from which the message is to be got

 * @param mqmd the MQMDHeaders document containing the MQMD attributes based on which the message is to be got

 * @return byte[] the byte array representing the message got

 * @exception ResourceException if any exception occurs while get

 */

 byte[] getMessageAsBytes(java.lang.String queue, com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument mqmd) throws javax.resource.ResourceException;

 /**

 * Gets a String(text) message from the queue This function calls the generic

 * getMessage function

 * @param queue the queue from which the message is to be got

 * @param mqmd the MQMDHeaders document containing the MQMD attributes based on which the message is to be got

 * @return String the String representing the message got

 * @exception ResourceException if any exception occurs while get

 */

java.lang.String getMessageAsString(java.lang.String queue, com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument mqmd) throws javax.resource.ResourceException;

 /**

 * Gets a XmlObject(xml) message from the queue This function calls the

 * generic getMessage function

 * @param queue the queue from which the message is to be got

 * @param mqmd the MQMDHeaders document containing the MQMD attributes based on which the message is to be got

 * @return XmlObject the XmlObject representing the message got

 * @exception ResourceException if any exception occurs while get

 */

Annotations Reference

MQSeries Control Interface 37

 com.bea.xml.XmlObject getMessageAsXml(java.lang.String queue, com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument mqmd) throws javax.resource.ResourceException;

 /**

 * Puts a XmlObject(xml) message into the queue This function calls the

 * generic putMessage function

 * @param message the xml message to be put into the queue

 * @param queue the queue to which the message is to be put

 * @param mqmd the MQMDHeaders document containing the MQMD attributes of the message to be put

 * @return MQMDHeadersDocument representing the attributes of the message put

 * @exception ResourceException if any exception occurs while put

 */

 com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument putMessageAsXml(com.bea.xml.XmlObject message, java.lang.String queue, com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument mqmd) throws javax.resource.ResourceException;

 /**

 * Puts a String(text) message into the queue This function calls the generic

 * putMessage function

 * @param message the String message to be put into the queue

 * @param queue the queue to which the message is to be put

 * @param mqmd the MQMDHeaders document containing the MQMD attributes of the message to be put

 * @return MQMDHeadersDocument representing the attributes of the message put

 * @exception ResourceException if any exception occurs while put

 */

 com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument putMessageAsString(java.lang.String message, java.lang.String queue, com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument mqmd) throws javax.resource.ResourceException;

 /**

 * Puts a byte array(binary) message into the queue This function calls the

 * generic putMessage function

 * @param message the byte array message to be put into the queue

 * @param queue the queue to which the message is to be put

 * @param mqmd the MQMDHeaders document containing the MQMD attributes of the message to be put

 * @return MQMDHeadersDocument representing the attributes of the message put

Annotations Reference

MQSeries Control Interface 38

 * @exception ResourceException if any exception occurs while put

 */

 com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument putMessageAsBytes(byte[] message, java.lang.String queue, com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument mqmd) throws javax.resource.ResourceException;

}

Sample Extended MQSeries Control

The following code shows an example of an extended control. This code is automatically created by the
control wizard.

package processes;

import com.bea.control.*;

import com.bea.xml.XmlCursor;

import com.bea.control.MQControl;

import com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument;

import com.bea.wli.control.mqDynamicProperties.MQDynamicPropertiesDocument;

import javax.resource.ResourceException;

import com.bea.xml.XmlObject;

 /*

 * A custom MQ control.

 */

 /**

 * @jc:MQConnectionType connectionType="Bindings"

 * @jc:MQConnectionPoolProps mqPoolSize="20"

 * @jc:ConnectionPoolTimeout conTimeout="3600"

 * @jc:MQQueueManager queueManager="QM_bea_aruna"

 * @jc:MQAuthorization requireAuthorization="No"

 * @jc:TCPSettings host=""

 port="1414"

 channel=""

Annotations Reference

MQSeries Control Interface 39

 ccsid="819"

 user=""

 password=""

 sendExit=""

 receiveExit=""

 securityExit=""

 * @jc:DefaultQueue defaultQueueName="default"

 * @jc:ImplicitTransaction implicitTransactionRequired="true"

 */

public interface newjcx extends MQControl, com.bea.control.ControlExtension

 {

 /*

 * A version number for this JCX. This will be incremented in new versions of

 * this control to ensure that conversations for instances of earlier

 * versions were invalid.

 */

 static final long serialVersionUID = 1L;

}

Annotations Reference

MQSeries Control Interface 40

MQSeries Control Annotations
This section includes information on MQSeries control annotations.

Topics Included in This Section

@jc:MQConnectionType

@jc:MQConnectionPoolProps

@jc:ConnectionPoolTimeout

@jc:MQQueueManager

@jc:MQAuthorization

@jc:TCPSettings

@jc:DefaultQueue

@jc:ImplicitTransaction

MQSeries Control Annotations 41

@jc:MQConnectionType
Specifies the connection type for an MQSeries control.

Syntax

@jc:MQConnectionType

[connectionType="TCP|Bindings"]

Attributes

This attribute determines the type of connection to an MQSeries queue manager.

connectionType

The connection type can be TCP or Bindings. When the Bindings type of connection is used, WebLogic
Workshop application and the MQSeries server are running on the same machine. When the TCP connection
type is used, WebLogic Workshop application and the MQSeries server may be running on different
machines.

@jc:MQConnectionType 42

@jc:MQConnectionPoolProps
Specifies the MQSeries connection pool properties for the MQSeries control.

Syntax

@jc:MQConnectionPoolProps

[mqPoolSize="pool size value"]

Attributes

This attribute determines the MQSeries connection pool size.

connectionType

The mqPoolSize is a positive integer greater than 0, representing the MQSeries connection pool size.

Related Topics

@jc:MQConnectionPoolProps 43

@jc:ConnectionPoolTimeout
Specifies the MQSeries connection pool timeout in seconds.

Syntax

@jc:ConnectionPoolTimeout

[conTimeout="connection timeout value in seconds"]

Attributes

This attribute determines the MQSeries connection pool timeout value in seconds.

conTimeout

The connection timeout value should be a positive integer greater than 0.

@jc:ConnectionPoolTimeout 44

@jc:MQQueueManager
Specifies the name of the queue manager for connection.

Syntax

@jc:MQQueueManager

[queueManager="queue manager name"]

Attributes

This attribute determines the MQSeries queue manager to which connection is to be obtained.

queueManager

The queue manager name should be a String value, representing the queue manager to which connection is to
be obtained.

@jc:MQQueueManager 45

@jc:MQAuthorization
Specifies the MQSeries authorization property for the MQSeries control.

Syntax

@jc:MQAuthorization

[requireAuthorization="Yes|No"]

Attributes

This attribute determines whether MQSeries authorization is required or not.

requireAuthorization

The requireAuthorization attribute value should be either Yes or No.

@jc:MQAuthorization 46

@jc:TCPSettings
Specifies the TCP connection settings for the MQSeries control.

Syntax

@jc:TCPSettings

[host="host name"]

[port="port number"]

[channel="server connection channel name"]

[ccsid="Coded Character Set Id"]

[user="User name"]

[password="Password"]

[sendExit="Send Exit class name"]

[receiveExit="Receive Exit class name"]

[securityExit="Security Exit class name"]

Attributes

These attributes determine the TCP connection settings while connecting to the queue manager using the
TCP connection mode.

host

This represents the host name of the machine where the queue manager is running.

port

This represents the port number of the queue manager.

channel

This represents the server connection channel of the queue manager through which the connection is to be
obtained.

ccsid

This represents the Coded Character Set Id to be used while connecting to the queue manager.

user

@jc:TCPSettings 47

This represents the user who is connecting to the queue manager.

password

This represents the password of the user connecting to the queue manager.

sendExit

This represents the fully qualified name of the class implementing the MQSeries MQSendExit interface.

receiveExit

This represents the fully qualified name of the class implementing the MQSeries MQReceiveExit interface.

securityExit

This represents the fully qualified name of the class implementing the MQSeries MQSecurityExit interface.

Annotations Reference

@jc:TCPSettings 48

@jc:DefaultQueue
Specifies the default queue name to be used for sending and retrieving messages.

Syntax

@jc:DefaultQueue

[defaultQueueName="name of the default queue"]

This attribute determines the name of the default queue to be used for sending and retrieving messages.

defaultQueueName

The default queue name attribute value should be a String value representing a valid MQSeries queue name
present in the queue manager to which connection is to be obtained.

@jc:DefaultQueue 49

@jc:ImplicitTransaction
Specifies the transaction mode of the MQSeries control.

Syntax

@jc:ImplicitTransaction

[implicitTransactionRequired="true|false"]

Attributes

This attribute determines whether the implicit transaction mode is required or not, while sending and
receiving messages.

implicitTransactionRequired

The implicit transaction required attribute value can be either True or False.

@jc:ImplicitTransaction 50

Process Control Annotations
This section describes the process control annotations.

The Process control extends WebLogic Workshop controls and uses some of the same annotations. For more
information, see the following annotations:

@common:message−buffer Annotation•
@jc:conversation Annotation•
@jc:location Annotation•

Related Topics

Process Control

Process Control Annotations 51

RosettaNet Control Annotations
This section describes the RosettaNet control annotations.

RosettaNet Control Annotations 52

@jc:rosettanet Annotation
Specifies the JCX class−level annotations for the RosettaNet control.

Note: Annotations can be specified at the JCX class level, at the JCX instance level, and at the JCX method
level, in increasing order of precedence.

Syntax

jc:rosettanet
 [from="initiatorID"] | [from−selector="{xquery−expression}"]
 [to="participantID"] | [to−selector="{xquery−expression}"]
 [="rnif−version"]
 [="pip"]
 [="pip−version"]
 [="from−role"]
 [="to−role"]

Attributes

The following attributes specify class− and method−level configuration attributes for the RosettaNet control:

from

DUNS of the initiator. Must match the business ID for the trading partner as defined in the TPM repository.

from−selector

XQuery expression that selects the business ID of the initiator. To learn how to specify the initiator business
ID dynamically, see "Dynamically Specifying Business IDs" in Using a RosettaNet Control.

Note: This attribute is not available at the control type level in the control definition file (JCX file). It only
applies to control instance declarations in the business process file (JPD file).

to

DUNS of the participant. Must match the business ID for the trading partner as defined in the TPM
repository.

to−selector

XQuery expression that selects the business ID of the participant. To learn how to specify the recipient
business ID dynamically, see "Dynamically Specifying Business IDs" in Using a RosettaNet Control.

Note: This attribute is not available at the control type level in the control definition file (JCX file). It only
applies to control instance declarations in the business process file (JPD file).

rnif−version

Version of the RosettaNet Implementation Framework. Must be either 1.1 or 2.0.

@jc:rosettanet Annotation 53

pip

RosettaNet PIP code, such as 3B2. Must be a valid PIP code as defined in
http://www.rosettanet.org/pipdirectory.

pip−version

RosettaNet PIP version. Must be a valid version number associated with the PIP.

from−role

RosettaNet role name for the sender as defined in the PIP specification, such as Buyer, Seller, Supplier,
Receiver, Shipper, and so on. A PIP request might be rejected if an incorrect value is specified.

to−role

RosettaNet role name for the recipient as defined in the PIP specification, such as Buyer, Seller, Supplier,
Receiver, Shipper, and so on. A PIP request might be rejected if an incorrect value is specified.

Annotations Reference

@jc:rosettanet Annotation 54

Service Broker Control Annotations
This section describes the service control annotations.

The Service Broker control extends WebLogic Workshop controls and uses some of the same tags and
annotations. For more information, see the following annotations:

@common:define Annotation•
@jc:conversation Annotation•
@jc:location Annotation•
@jc:wsdl Annotation•

Related Topics

Service Broker Control

Service Broker Control Annotations 55

Worklist Control Annotations
This section includes information on Task control and Task Worker control annotations.

These annotations along with their attributes determine the default behavior of the Worklist controls. The
Task and Task Worker controls may be configured during their lifetimes by calling methods in the
TaskControl and TaskWorkerControl classes. The information contained in the annotations include the
following:

The object type that you must create to pass or return from methods at run time.•
The object type on which you must base the formatting of the text or the specified java.lang.String
value you provide.

•

All worklist annotation tags can receive string values in the format of the relevant object type.•
Some annotations accept enumerations, limited to a choice of defined values.•
Each annotation specifies which Task or Task Worker control it uses.•
Values that may be arrays show the base class with a suffix of [], for example, String[].•

Topics Included in This Section

@jc: advanced Annotation

Notations for advanced options.

@jc:assignee Annotation

Assigns user and groups to Tasks.

@jc:select Annotation

Accepts values to search for Tasks, including TaskSelector objects, and returns a set of Task IDs.

@jc:task Annotation

Assigns a Task to the Assignees List.

@jc:task−abort Annotation

Change the state of a task to ABORTED.

@jc:task−assign Annotation

Assigns a Task to the Assignees List.

@jc:task−claim Annotation

Sets a default user as having put a Task in a claimed state, as a claimant.

@jc:task−complete Annotation

Creates Worklist control methods that place Tasks in a completed state.

Worklist Control Annotations 56

@jc:task−create Annotation

Creates Tasks.

@jc:task−delete Annotation

Creates Worklist control methods that delete Tasks.

@jc:task−event Annotation

Provides Task information for implementing callback method interfaces.

@jc:task−get−info Annotation

Creates Worklist control methods that return information from Tasks.

@jc:task−get−property Annotation

Creates methods that return the value of a Task property as a String.

@jc:task−get−property−name Annotation

Creates Worklist control methods that return Task property names.

@jc:task−get−request Annotation

Creates Worklist control methods that return Task request data.

@jc:task−get−response Annotation

Creates Worklist control methods that return Task response data.

@jc:task−remove−property Annotation

Remove properties with the name you specify from Tasks.

@jc:task−resume Annotation

Creates Worklist control methods that remove Tasks from a suspended state.

@jc:task−return Annotation

Create Worklist control methods that place Tasks in an assigned state using the original Assignees List.

@jc:task−set−property Annotation

Sets the value of a single Task property.

@jc:task−start Annotation

Creates Worklist control methods that place Tasks in a started state.

Annotations Reference

Worklist Control Annotations 57

@jc:task−stop Annotation

Creates Worklist control methods that change Tasks from started to claimed states.

@jc:task−suspend Annotation

Creates Worklist control methods that place Tasks in a suspended state.

@jc:task−update Annotation

Updates one or more Task properties at a time for a method.

@jc:task−worker Annotation

Specifies that the control is a Task Worker control.

Related Topics

Task Control Interface

Worklist Controls

Annotations Reference

Worklist Control Annotations 58

@jc: advanced Annotation
Notations for advanced options.

Used by the Task control.

Syntax

ajc:advanced

[can−be−reassigned="true|false"]
[can−be−returned="true|false"]
[can−be−aborted="true|false">]
[claim−due−business−date="the business due date"]
[completion−due−business−date="the completion business due date"]
[completion−user−calendar="the user completion due date calendar"]
[claim−user−calendar="the user claim due date calendar"]
[completion−calendar="the completion due date calendar"]
[claim−calendar="the claim due date calendar"]

Attributes

can−be−reassigned

A Boolean that determines whether the Task can be reassigned to a different Assignees List. If the value is set
to true, the Task can be reassigned. If the value is set to false, the Task cannot be reassigned by the assignee or
claimant of the Task.

can−be−returned

A Boolean that determines whether the Task can be returned to an assigned state, which specifies the users
who are allowed to become the claimant. If the value is set to true, a Task can be returned to an assigned state.
If the value is set to false, the Task cannot be returned by the assignee or claimant of the Task.

can−be−aborted

A Boolean that determines whether a Task can be aborted. If the value is set to true, a Task can be aborted. If
the value is set to false, the Task cannot be aborted by the assignee or claimant of the Task.

claim−due−business−date

A string that sets due date for a Task to be claimed, using a business time duration.

completion−due−business−date

A string for setting the business duration that a Task is due to be completed.

completion−user−calendar

A string that directs a Task to use the calendar of the user whose name you specify for the completion date.

@jc: advanced Annotation 59

claim−user−calendar

A string that directs the Task to use the calendar of the user whose name you specify for the claim due date.

completion−calendar

A string that sets the calendar for the date that a Task is due to be completed.

claim−calendar

A string that indicates which business calendar to use for setting the date that a Task should be in a claimed
state.

Annotations Reference

@jc: advanced Annotation 60

@jc:assignee Annotation
Assigns user and groups to Tasks.

Used by the Task control.

Syntax

@jc:assignee

[user="user1,user2,user3,...,userN"]
[group="group1,group2,group3,...,groupN"]
[algorithm=["ToUser" | "ToUserInGroup" | "ToUsersAndGroups"]

Attributes

user

A string or string array. This setting consists of one or more user names for the Assignees List. You must
separate each group name with a comma.

group

A string or string array. This annotation consists one or more group names for the Assignees List. You must
separate each group name with a comma.

algorithm

A string for determining how to assign Tasks from users on the Assignees List. It must be one of the
following values:

ToUser�assigns the Task to a user by name.

ToUserInGroup�assigns the Task to the user in the group that has the least work to perform.

ToUsersAndGroups�assigns the Task to any list of users, list of groups, or combination of users and groups.

@jc:assignee Annotation 61

@jc:select Annotation
Accepts values to search for Tasks, including TaskSelector objects, and returns a set of Task IDs.

Used by the Task Worker control.

Syntax

@jc:select

[assigned−group="group(s) for assignee list"]
[assigned−user="user(s) for assignee list"]
[claimant="the claimant user"]
[claim−due−date−after="search for Tasks with claim due dates after this value"
[claim−due−date−before="search for Tasks with claim due dates before this value"
[comment="the Task comment"]
[completion−due−date−after="search for Tasks with completion due dates after this value"]
[completion−due−date−before="search for Tasks with completion due dates before this value"]
[creation−date−after="search for Tasks with creation dates after this value"]
[creation−date−before="search for Tasks with creatoin dates before this value"]
[max−priority="return Tasks with priorities less than or equal to this value"]
[min−priority="return Tasks with priorities greater than or equal to this value"]
[owner="search by Task owner"]
[property−name="search by property name"]
[property−value="search by the value of the setting for property−name"]
[selector="a TaskSelector object to use for searching Tasks"]
[states="search by Task state"]
[task−id="search by Task ID"]

Attributes

assigned−group

A string or string array (string []) that specifies a search by groups on the Assignees List for a Task.

assigned−user

A string or string array (string []) that specifies a search by users on the Assignees List for a Task.

claimant

A string or string array (string []) that specifies a search by the claimant for a Task.

claim−due−date−after

Specifies a search by Tasks with a due date after the value you provide (java.lang.Date).

claim−due−date−before

Specifies a search by Tasks with a claim due date before the value you provide (java.lang.Date).

@jc:select Annotation 62

comment

A string that specifies a search by Task comments.

completion−due−date−after

Specifies a search by Tasks with a completion due date after the value you provide (java.lang.Date).

completion−due−date−before

Specifies a search by Tasks with a completion due date before the value you provide (java.lang.Date).

creation−date−after

Specifies a search by Tasks with a creation date after the value you provide (java.lang.Date).

creation−date−before

Specifies a search by Tasks with a creation date before the value you provide (java.lang.Date).

max−priority

Specifies a search by Tasks with no greater priority than the value you provide (java.lang.Long).

min−priority

Specifies a search by Tasks with no lesser priority of the value you provide (java.lang.Long).

owner

A string or string array (string []) that specifies a search by the Task owner.

property−name

A string that specifies a search by Tasks with a given property.

property−value

A string that specifies a search by Tasks with a given value for the property defined by property−name.

selector

A TaskSelector that specifies a search by the configuration of the TaskSelector object you provide for this
value.

states

Specifies searching of Tasks by state. Values can be as follows:

A string or string array of valid state types, such as completed or assigned.

Annotations Reference

@jc:select Annotation 63

An integer or integer array representation of state types (java.lang.Long).

A com.bea.wli.worklist.api.StateType or StateType array.

task−id

A string or string array (string []) that specifies a search by the unique Task ID.

assigned−group

A string or string array (string []) that specifies a search by the groups on the Assignees Lists for a Task.

Annotations Reference

@jc:select Annotation 64

@jc:task Annotation
Assigns a Task to the Assignees List.

Used by the Task control.

Syntax

@jc:task

[name="task name"]
[owner="task owner user"]
[description="task description"]

Attributes

name

A string specifying the Task name displayed in WebLogic Workshop.

owner

A string specifying the name of the Task owner.

description

A string for describing a Task to provide information.

@jc:task Annotation 65

@jc:task−abort Annotation
Change the state of a task to ABORTED.

Used by the Task and Task Worker controls.

Syntax

@jc:task−abort

[enabled="true"]

Attributes

enabled

When set to true, this Boolean creates Worklist control methods that place Tasks in an aborted state.

@jc:task−abort Annotation 66

@jc:task−assign Annotation
Assigns a Task to the Assignees List.

Used by Task and Task Worker controls.

Syntax

@jc:task−assign

user="user1,user2,user3,...,userN"]
[group="group1,group2,group3,...,groupN"]
[algorithm=["ToUser" | "ToUserInGroup" | "ToUsersAndGroups"]

Attributes

algorithm

A string for determining how to assign or claim Tasks from users on the Assignees List. It must be one of the
following values:

ToUser�claims the Task to a user by name.

ToUserInGroup�assigns the Task to the user in the group that has the least work to perform.

ToUsersAndGroups�assigns the Task to any list of users, list of groups, or combination of users and groups.

group

A string or string array. This annotation consists one or more group names for the Assignees List. You must
separate each group name with a comma.

user

A string or string array. This setting consists of one or more user names for the Assignees List. You must
separate each group name with a comma.

@jc:task−assign Annotation 67

@jc:task−claim Annotation
Sets a default user as having put a Task in a claimed state, as a claimant.

Used by the Task Worker control.

Syntax

@jc:task−claim

[enabled="true"]
[claimant="user"]

Attributes

enabled

When set to true, this Boolean creates Worklist control methods that place Tasks in a claimed state.

claimant

A string that specifies the name of the claimant user.

@jc:task−claim Annotation 68

@jc:task−complete Annotation
Creates Worklist control methods that place Tasks in a completed state.

Used by the Task Worker Control.

Syntax

@jc:task−complete

[enabled="true"]

Attributes

enabled

When set to true, this Boolean creates Worklist control methods that place Tasks in a completed state.

@jc:task−complete Annotation 69

@jc:task−create Annotation
Creates Tasks.

Used by the Task and Task Worker controls.

Syntax

@jc:task−create

name="the Task name"
[description="task description"]
[comment="the text of a comment"]
[request−mime−type="the mime type of the request"]
[request=the data of the request]
[response−mime−type="the mime type of the response"]
[response=the data of the response]
[priority="an integer for priority"]
[owner="the new task owner"]
[can−be−reassigned="true|false"]
[can−be−aborted="true|false">]
[can−be−returned="true|false"]
[claim−due−business−date="the business due date"]
[claim−due−date="the claim due date"]
[completion−user−calendar="the user completion due date calendar"]
[completion−calendar="the completion due date calendar"]
[claim−user−calendar="the user claim due date calendar"]
[claim−calendar="the claim due date calendar"]
[completion−due−date="the completion due date"]
[completion−due−business−date="the completion business due date"]

Attributes

can−be−aborted

A Boolean that determines whether a Task can be aborted. If the value is set to true, a Task can be aborted. If
the value is set to false, the Task cannot be aborted by the assignee or claimant of the Task.

can−be−reassigned

A Boolean that determines whether the Task can be reassigned to a different Assignees List. If the value is set
to true, the Task can be reassigned. If the value is set to false, the Task cannot be reassigned by the assignee or
claimant of the Task.

can−be−returned

A Boolean that determines whether the Task can be returned to an assigned state, which specifies the users
who are allowed to become the claimant. If the value is set to true, a Task can be returned to an assigned state.
If the value is set to false, the Task cannot be returned by the assignee or claimant of the Task.

@jc:task−create Annotation 70

claim−calendar

A string that indicates which business calendar to use for setting the date that a Task should be in a claimed
state.

claim−due−business−date

A string that sets due date for a Task to be claimed, using a business time duration.

claim−due−date

Sets the date that a Task is due to be in a claimed state (java.lang.Date).

claim−user−calendar

A string that directs the Task to use the calendar of the user whose name you specify for the claim due date.

comment

A string for setting for comments about the Task.

completion−calendar

A string that sets the calendar for the date that a Task is due to be completed.

completion−due−business−date

A string for setting the business duration that a Task is due to be completed.

completion−due−date

Sets the date that a Task is due to be completed (java.lang.Date).

completion−user−calendar

A string that directs a Task to use the calendar of the user whose name you specify for the completion date.

description

A string for describing a Task to provide information.

name

A string specifying the Task name displayed in WebLogic Workshop.

owner

A string specifying the name of the Task owner.

priority

Annotations Reference

@jc:task−create Annotation 71

This integer sets the magnitude of the priority of the Task. The default is 1.

request

The data of the Task request. Can be any type or format that can accept any serializable Java object that is
imported and accessible to your control.

request−mime−type

A string that specifies the mime type of the request data. This annotation exists for information purposes only
and does not provide any handling of data or validation.

Annotations Reference

@jc:task−create Annotation 72

@jc:task−delete Annotation
Creates Worklist control methods that delete Tasks.

Used by the Task Worker control.

Syntax

@jc:task−delete

[enabled="true"]

Attributes

enabled

When set to true, this Boolean creates a Worklist control method for deleting Tasks.

@jc:task−delete Annotation 73

@jc:task−event Annotation
Provides Task information for implementing callback method interfaces.

Used by the Task control.

Syntax

@jc:task−event

event−type=
"["abort"|"claim"|"claimExpire"|"complete"|"expire"
|"resume"|"return"|"start"|"stop"|"suspend"]"
[response="the Task response data"]
[time="the time of the event"]
[user="the user who changed the Task state"]

Attributes

event−type

A string (enumeration) that specifies the possible events that can trigger a callback method. It must be one of
the following values:

abort
claim
claimExpire
complete
expire
resume
return
start
stop
suspend

response

A parameter for the response data of the Task. Can be any type or format that can accept any serializable Java
object that is imported and accessible to your control.

time

Specifies text in java.lang.Date format that represents the time of the event listed for the event−type.

user

A string that specifies the active user who triggers the event listed for the event−type.

@jc:task−event Annotation 74

@jc:task−get−info Annotation
Creates Worklist control methods that return information from Tasks.

Used by the Task and Task Worker controls.

Syntax

@jc:task−get−info

[enabled="true"]

Attributes

enabled

When set to true, this Boolean creates Worklist control methods that return information from Tasks.

Remarks

Methods in the Task Worker control with this annotation can have the following return types:

String, String[]
TaskInfo, TaskInfo[]
TaskInfoXML, TaskInfoXML[]

The jc:task−get−info annotation is used in correlation with @jc:task−get−info.

The return type determines the value returned by the method:

String �> the taskId
TaskInfo �> the TaskInfo object
TaskInfoXML �> the taskInfoXML

If you need to select more than one Task with @jc:task−get−info, use an array instead. If you specify a return
type for a single task and multiple tasks are selected, a run−time exception occurs when the code executes. If
you are unsure, it is better to return an array, as shown in the following example:

/**
 * @jc:task−get−info enabled="true"
 * @jc:select task−id="{taskId}"
 */

 public TaskInfo getTaskInfo(String taskId);

 /**
 * @jc:task−get−info enabled="true"
 * @jc:select task−id="{taskIds}"
 */

 public TaskInfoXMLDocument[] getTasksInfoXML(String[] taskIds);

@jc:task−get−info Annotation 75

@jc:task−get−property Annotation
Creates methods that return the value of a Task property as a string.

Used by the Task and Task Worker controls.

Syntax

@jc:task−get−property

name="the property name"

Attributes

name

Creates methods that return the value of a Task property as a string.

@jc:task−get−property Annotation 76

@jc:task−get−property−name Annotation
Creates Worklist control methods that return Task property names.

Used by the Task Worker control.

Syntax

@jc:task−get−property−name

[enabled="true"]

Attributes

enabled

When set to true, this Boolean creates Worklist control methods that return Task property names.

@jc:task−get−property−name Annotation 77

@jc:task−get−request Annotation
Creates Worklist control methods that return Task request data.

Used by the Task and Task Worker controls.

Syntax

@jc:task−get−request

[enabled="true"]

Attributes

enabled

When set to true, this Boolean creates Worklist control methods that return Task request data.

@jc:task−get−request Annotation 78

@jc:task−get−response Annotation
Creates Worklist control methods that return Task response data.

Used by the Task and Task Worker controls.

Syntax

@jc:task−get−response

[enabled="true"]

Attributes

enabled

When set to true, creates Worklist control methods that return Task response data.

@jc:task−get−response Annotation 79

@jc:task−remove−property Annotation
Removes a property with the name you specify from Tasks.

Used by the Task and Task Worker controls.

Syntax

@jc:task−remove−property

[name="the name of a property to remove"]

Attributes

name

A string that removes properties with the name you specify from Tasks.

@jc:task−remove−property Annotation 80

@jc:task−resume Annotation
Creates Worklist control methods that remove Tasks from a suspended state.

Used by the Task and Task Worker control.

Syntax

@jc:task−resume

[enabled="true"]

Attributes

enabled

When this Boolean is set to true, creates Worklist control methods that remove Tasks from a suspended state.

@jc:task−resume Annotation 81

@jc:task−return Annotation
Create Worklist control methods that place Tasks in an assigned state using the original Assignees List.

Used by the Task Worker control.

Syntax

@jc:task−return

[enabled="true"]

Attributes

enabled

When set to true, this Boolean creates Worklist control methods that place Tasks in an assigned state using
the original Assignees List.

@jc:task−return Annotation 82

@jc:task−set−property Annotation
Sets the value of a single Task property. To set the values for more than one property at a time, use
@jc:task−update Annotation.

Used by the Task control.

Syntax

@jc:task−set−property

[name="the name of a property to set"]
[value="the value to set the property"]

Attributes

name

A string that specifies the name of the property.

value

A string that specifies the value to assign the property.

@jc:task−set−property Annotation 83

@jc:task−start Annotation
Creates Worklist control methods that place Tasks in a started state.

Used by the Task Worker control.

Syntax

@jc:task−start

[enabled="true"]

Attributes

enabled

When set to true, this Boolean creates Worklist control methods that place Tasks in a started state.

@jc:task−start Annotation 84

@jc:task−stop Annotation
Creates Worklist control methods that change Tasks from started to claimed states.

Used by the Task Worker control.

Syntax

@jc:task−stop

[enabled="true"]

Attributes

enabled

When set to true, this Boolean creates Worklist control methods that change Tasks from started to claimed
states.

@jc:task−stop Annotation 85

@jc:task−suspend Annotation
Creates Worklist control methods that place Tasks in a suspended state.

Used by the Task and Task Worker controls.

Syntax

@jc:task−suspend

[enabled="true"]

Attributes

enabled

When set to true, this Boolean creates Worklist control methods that place Tasks in a suspended state.

@jc:task−suspend Annotation 86

@jc:task−update Annotation
Updates one or more Task properties at a time for a method. It offers the same attributes that are available
through the task−create attribute, except that it offers response−related attributes and it does not offer the
description attribute.

Used by the Task and Task Worker controls.

Syntax

@jc:task−update

[comment="the text of a comment"]
[request−mime−type="the mime type of the request"]
[request=the data of the request]
[response−mime−type="the mime type of the response"]
[response=the data of the response]
[priority="an integer for priority"]
[owner="the new task owner"]
[can−be−reassigned="true|false"]
[can−be−aborted="true|false">]
[can−be−returned="true|false"]
[name="the Task name"]
[claim−due−business−date="the business due date"]
[claim−due−date="the claim due date"]
[completion−user−calendar="the user completion due date calendar"]
[completion−calendar="the completion due date calendar"]
[claim−user−calendar="the user claim due date calendar"]
[claim−calendar="the claim due date calendar"]
[completion−due−date="the completion due date"]
[completion−due−business−date="the completion business due date"]

Attributes

For a list of other available attributes, see @jc:task−create Annotation.

response

Specifies the data the Task sends back to the calling process. Can be any type or format that can accept any
serializable Java object that is imported and accessible to your control.

response−mime−type

A string that provides a comment for the person implementing the control that indicates the response data
type.

@jc:task−update Annotation 87

@jc:task−worker Annotation
Specifies that the control is a Task Worker control.

Used by the Task Worker control.

Syntax

@jc:task−worker

This annotation uses no attributes.

@jc:task−worker Annotation 88

Business Process Annotations
This section provides reference information for WebLogic Integration business process annotations
(@jpd:name_of_annotation). A number of Web Service annotations are also supported in business processes
(JPD files). Web Service annotations are of the format @jws:name_of_annotation. This section provides
reference to the Web Service annotations supported in JPDs.

Topics Included in This Section

@jpd:ebxml Annotation

Specifies settings for participant business processes involved in exchanging ebXML business messages.

@jpd:ebxml−method Annotation

Specifies settings for methods in participant business processes involved in exchanging ebXML business
messages.

@jpd:mb−static−subscription Annotation

Specifies the subscription parameters for a business process.

@jpd:process Annotation

Specifies settings for a business process.

@jpd:rosettanet Annotation

Specifies settings for participant business processes involved in exchanging RosettaNet business messages.

@jpd:selector Annotation

Precedes an XQuery definition in a business process (JPD) file. The XQuery definition can specify the
dynamic callback properties for a Client Response node, or in the case of a Process or a Service Broker
control, specifies the dynamic selection of subprocesses to call at run time.

@jpd:transform Annotation

Annotates a WebLogic Integration transformation control instance, which is instantiated automatically at run
time.

@jpd:unexpected−message Annotation

Specifies settings that allow a business process to ignore a message received before the process flow
encounters the node at which the message is expected.

@jpd:version Annotation

Specifies how to invoke sub processes when different versions of the parent process exist.

Business Process Annotations 89

@jpd:xml−list Annotation

Annotates business process variable of Untyped XML�XmlObjectList.

@jpd:xquery Annotation

Precedes the global XQuery definitions in a business process (JPD) file.

@common Annotations

Describes the @common annotations supported by WebLogic Integration business processes.

@jws (Web Service) Annotations

Describes the @jws annotations supported by WebLogic Integration business.

General Properties

Describes a set of general properties that are displayed in the Property Editor for all the nodes in a business
process.

Variable Properties

Specifies the properties for business process variables.

Control Properties

Displays the properties for business process controls: Control Send, Control Receive, Control Send with
Return.

Annotations Reference

Business Process Annotations 90

@jpd:ebxml Annotation
Specifies annotations for participant business processes involved in exchanging ebXML business messages.

Syntax

@jpd:ebxml

protocol−name="ebXML"

ebxml−service−name="serviceName"

ebxml−action−mode="default" | "non−default"

Attributes

protocol−name

The protocol name, which is always ebXML.

ebxml−service−name

The name of the ebXML service associated with this business process and defined in the TPM repository.
Defaults to the name of the business process file. The name specified here must match the service name
specified on the initiator side (for example, in the ebxml−service−name annotation on the ebXML control in
the initiator business process). You provide this service name to your trading partners.

Note: This service name corresponds to the eb:Service entry in the ebXML message envelope.

ebxml−action−mode

Action mode for this business process. Determines the value specified in the eb:Action element in the
message header of the ebXML message, which becomes important in cases where multiple message
exchanges occur within the same conversation. One of the following values:

default�Sets the eb:Action element to SendMessage (default name).♦
non−default�Sets the eb:Action element to the name of the method (on the ebXML control)
that sends the message in the initiator business process. For one−way conversations, this
name must match the method name of the Client Request node in the corresponding
participant business process. For round trip conversations, the method name in the callback
interface for the Client Callback node in the participant business process must match the
method name (on the ebXML control) in the control callback interface in the initiator
business process. Using non−default is recommended to ensure recovery and high
availability.

♦

Note: If unspecified, the ebxml−action−mode is set to non−default.

Remarks

None.

@jpd:ebxml Annotation 91

Related Topics

ebXML Control

WebLogic Workshop Reference

Introducing Trading Partner Integration

Annotations Reference

@jpd:ebxml Annotation 92

@jpd:ebxml−method Annotation
Specifies settings for methods in participant business processes involved in exchanging business messages
via ebXML.

Syntax

@jpd:ebxml−method

envelope="{env}"

Attributes

envelope

Represents the message envelope in an incoming ebXML business message. You can rename the default
value (env) as long as it matches the name of the parameter specified in the method.

Remarks

Use this annotation with the request method in a client request nodes to assign the ebXML envelope of an
incoming message.

Example

The following example code shows an implementation of request in a participant business process that
retrieves the ebXML envelope from a business message.

/**
*@jpd:ebxml−method envelope="{env}"
*/
public void request(XmlObject payload, XmlObject env) {
}

Related Topics

ebXML Control

WebLogic Workshop Reference

Introducing Trading Partner Integration

@jpd:ebxml−method Annotation 93

@jpd:mb−static−subscription Annotation
Specifies the subscription parameters for a business process that is started as the result of receiving a message
from a Message Broker channel to which the process is subscribed.

Business processes are started by messages. The first activity in a business process (that is, the first child of
the <process> tag) must be either a Client Request node or an Event Choice node. When the client invokes
this operation, an instance of the business process is started.

A special case of message−started processes is when the Message Broker starts the process as a result of a
subscription to a Message Broker channel. The subscription parameters are defined by annotating the starting
clientRequest method to indicate that this process is invoked by the Message Broker when it delivers the
message.

See Note About Static and Dynamic Subscriptions.

Syntax

@jpd:mb−static−subscription

channel−name="/prefix/xxxx/Name"
[xquery="xquery"]
[filter−value−match="myvalue"]
[message−metadata="{x1}"] [message−body="{x0}"]

Attributes

channel−name

Required. The name of the Message Broker channel to which the business process subscribes. Channel files
(filename.channel) define the Message Broker channels available in a WebLogic Integration application.
Channel files must be placed in a Schemas project in your application. To learn how to create Message
Broker channels, see How Do I: Create Message Broker Channels?

xquery

Optional. Specifies the xquery to use for filtering. Element variables are named by Filter−body and
Filter−header. The element variables are named by the message−body and message−metadata attributes.

filter−value−match

Optional string constant. (Required if xquery is specified.) The value of the filter−value−match attribute is
compared against the results of the xquery.

message−metadata

Optional string constant. This attribute maps a named parameter in the xquery to the SOAP headers of an
incoming message.

message−body

@jpd:mb−static−subscription Annotation 94

Optional string constant. This attribute maps a named parameter in the xquery to the XML body of an
incoming message.

Note About Static and Dynamic Subscriptions

There are two categories of subscriptions to a Message Broker channel for WebLogic Integration business
processes:

You can create an instance of a Message Broker Subscription control and design the subscription to a
Message Broker channel using the control.

•

For the special case of a process that is started as a result of a subscription to a Message Broker
channel, you design the subscription on the process' Start node. (See How Do I: Subscribe to Message
Broker Channels?)

•

Subscriptions on a Start node in a business process are called static subscriptions because WebLogic
Integration is aware of the subscription when the business process (JPD) is deployed. At deployment time,
WebLogic Integration updates its in−memory tables with the subscription information. Tables remain updated
until the business process is undeployed.

Subscriptions to Message Broker channels that are defined at a Control node, which communicates with a
Message Broker Subscription control, are called dynamic subscriptions. This means that WebLogic
Integration is not aware of the subscription when the business process (JPD) is deployed (because the
subscription is embedded in the JPD code). When the Message Broker Subscription control node is executed
at run time, WebLogic Integration update the tables with the subscription information. The dynamic part for
dynamic subscriptions refers to:

The subscription state (subscribed or not)•
The filter value for the filter expression•

Related Topics

Message Broker Control Annotations

Subscription Start (Asynchronous)

Subscription Start (Synchronous)

Event Choice Start

How Do I: Create Message Broker Channels?

Annotations Reference

@jpd:mb−static−subscription Annotation 95

@jpd:process Annotation
Contains the process logic settings for a business process.

Syntax

@jpd:process [binding="webservice | ebxml | rosettanet"] process::

<process name="processname" [freezeOnFailure="true | false"] [onSyncFailure="rethrow | rollback"]
[retryCount="<count>"] [retryDelay="<delay>"]>

Note: See also the stateless attribute in the following section.

Attributes

binding

This property specifies whether the business process uses the Web service, ebXML, or RosettaNet protocol.
The default value is webservice. If your business process is an ebXML or a RosettaNet process, select
ebxml or rosettanet. In keeping with your selection in the Property Editor, an attribute is written to the
@jpd: process annotation in the source code. For example:

@jpd:process binding="rosettanet" process::

To learn about ebXML and RosettaNet business processes, see Building ebXML Participant Business
Processes and Building RosettaNet Participant Business Processes.

name

This is the name of your business process, which is displayed throughout the WebLogic Workshop
application, including the WebLogic Integration Administration Console. You can change the name by
clicking on this property in the Property Editor and entering a new name.

freeze on failure

When a business process fails and there is no exception handler configured to handle the exception thrown,
the business process is placed into an aborted state and no recovery is possible. However, if the business
process is configured to freeze on failure, the business process rolls back to the last commit point and the state
is persisted if it fails. The process can then be restarted from the WebLogic Integration Administration
Console. To configure a business process to freeze on failure: select true from the freeze on failure
drop−down menu.

To learn how to unfreeze business processes in the WebLogic Integration Administration Console, see
Process Instance Monitoring in Managing WebLogic Integration Solutions.

on sync failure

This property only applies to your process if it is configured to be a synchronous subprocess; it is ignored for
any other business processes. If a synchronous subprocess fails, the default behavior is to mark it as rollback,
which causes both the subprocess and the parent process to rollback. However, if the on sync failure property

@jpd:process Annotation 96

is set to rethrow, only the subprocess is rolled back. To learn more about synchronous subprocesses and the
on sync failure property, see Working with Subprocesses.

retry count

Specify how many times, after the first attempt, the process engine should try to execute the business process.

If your business process contains an asynchronous client request node or multiple client request nodes, any
one of which is asynchronous, then you can set the retry count for the business process. You cannot set the
retry count property for business processes that contain only synchronous client request nodes (that is, Client
Request with Return nodes).

retry delay

Specify the amount of time (in seconds) you want to pass before a retry is attempted.

If your business process contains an asynchronous client request node or multiple client request nodes, any
one of which is asynchronous, then you can set the retry delay for the business process. You cannot set the
retry delay property for business processes that contain only synchronous client request nodes (that is, Client
Request with Return nodes).

stateless

This property is read only; it cannot be edited. It specifies whether your business process is stateless (property
displays true) or stateful (property displays false). To learn more about stateless and stateful business
processes, see Building Stateless and Stateful Business Processes.

Annotations Reference

@jpd:process Annotation 97

@jpd:rosettanet Annotation
Specifies settings for participant business processes involved in exchanging RosettaNet business messages.

Syntax

@jpd:rosettanet

protocol−name="rosettanet"

protocol−version="1.1" | "2.0"

pip−name="pipName"

pip−version="pipVersion"

pip−role="pipRole"

Attributes

protocol−name

The protocol name, which is always rosettanet.

protocol−version

RNIF (RosettaNet Implementation Framework) version. One of the following values:
− 1.1
− 2.0

pip−name

RosettaNet PIP code, such as 3B2. Must be a valid PIP code as defined in
http://www.rosettanet.org/pipdirectory.

pip−version

RosettaNet PIP version. Must be a valid version number associated with the PIP.

pip−role

RosettaNet role name for the recipient as defined in the PIP specification, such as Seller, Supplier, Shipper,
and so on. A PIP request might be rejected if an incorrect value is specified.

Remarks

None.

Related Topics

@jpd:rosettanet Annotation 98

RosettaNet Control

WebLogic Workshop Reference

Introducing Trading Partner Integration

Annotations Reference

@jpd:rosettanet Annotation 99

@jpd:selector Annotation
The @jpd:selector annotation precedes an XQuery definition in a business process (JPD) file. The XQuery
definition can specify the dynamic callback properties for a Client Response node, or in the case of a Process
or a Service Broker control, the XQuery allows dynamic selection of subprocesses at run time. In other words,
configuration of the business process at run time allows one of multiple subprocesses to be called.

Syntax

@jpd:selector xquery::

Remarks

The XQuery definition can specify the dynamic callback properties for a Client Response node, or in the case
of a Process or a Service Broker control, the XQuery allows dynamic selection of subprocesses at run time.

For a Process control or a Service Broker control, the dynamic selector allows you to configure a lookup
property based on a LookupControl or TPM function. You can then configure your business process in the
WebLogic Integration Administration Console such that at run time, the security of the callback to the client
is handled differently, based on the value of the lookup property that you specified in the dynamic selector.

To learn about adding dynamic callback properties for Client Response nodes in a business process, see
"Adding Dynamic Callback Properties" in Sending Messages to Clients.

To design a dynamic selector for a Process control, see Editing and Testing a Dynamic Selector.

To design a dynamic selector for a Service Broker control, see Editing and Testing a Dynamic Selector.

@jpd:selector Annotation 100

@jpd:transform Annotation
The @jpd:transform annotation annotates a WebLogic Integration data transformation control instance,
which is instantiated automatically at run time.

Syntax

@jpd:transform

Remarks

None.

Related Topics

Guide to Data Transformation

Tutorial: Building Your First Data Transformation

Adding Instances of Controls to Your Business Process Project

@jpd:transform Annotation 101

@jpd:unexpected−message Annotation
Allows a business process to ignore messages received by a business process for a Control Receive node or a
Client Request node (in positions in the business process other than at the Start node) before the process flow
encounters the node at which the message is expected.

Syntax

@jpd:unexpected−message

action = "save | discard"

Attributes

action

Specifies the action to be taken for messages that are received by a business process before the process flow
encounters the node at which the message is expected. Possible values are save (the default) and discard.

Remarks

Business processes can include Control Receive or Client Request nodes, at which the process flow waits at
run time for delivery of a message before continuing. By default, messages that arrive before they are
expected�that is, before the business process encounters the Control Receive or Client Request node in the
process flow�are buffered and are delivered when the process is ready to receive them (that is, when the
Control Receive or Client Request node is encountered). You can design your process such that any such
unexpected (early) messages are discarded. This enables the Control Receive and Client Request nodes to
ignore messages that arrived and were buffered by the business process, but that are no longer relevant to the
process. The jpd:unexpected−message annotation is available for Control Receive nodes and Client Request
nodes in positions other than the Start node. This annotation gives you the ability to control this behavior on a
node−by−node basis at design time.

To Specify the jpd:unexpected−message Annotation

Switch your view of the business process to the Source View.1.
Click on the Control Receive or Client Request node's method header. The Property Editor displays
the unexpected−message property. Note that the action attribute is specified as the default value:
save.

2.

In the Property Editor, change the specification from save to discard. The annotation is written into
the JPD source code, immediately preceding the method header:

3.

/**
* @jpd:unexpected−message action="discard"
*/

Related Topics

Interacting With Clients

Interacting With Resources Using Controls

@jpd:unexpected−message Annotation 102

@jpd:version Annotation
Specifies how to invoke sub processes when different versions of the parent process exist.

Syntax

@jpd:version

strategy="loosely−coupled |tightly−coupled"

Attributes

loosely−coupled

Select loosely−coupled if you want the subprocess version to be set at the time that the sub process is
invoked.

tightly−coupled

Select tightly−coupled if you want the subprocess version to be set at the time the parent process is invoked.

Remarks

When a business process is displayed in the Design View or the Source View, the Property Editor displays
the version property. By default the strategy is specified as loosely coupled. You can change the specification
from the strategy drop−down menu in the Property Editor. The annotation is written into the JPD source
code�for example:

::
* @jpd:version strategy="loosely−coupled"
*/

Related Topics

Versioning Business Processes

@jpd:version Annotation 103

@jpd:xml−list Annotation
The @jpd:xml−list annotation annotates business process variables of Untyped XML, specifically variables
of type XmlObjectList.

Syntax

@jpd:xml−list

Remarks

An XMLObjectList data type represents a sequence of non−typed XML format data. In other words, this data
type represents a sequence of XML elements (a set of repeating elements) that is not valid against an XML
Schema.

Related Topics

Business Process Variables and Data Types

For an example of working with XmlObjectList data types, see Step 9. Create Quote Document in the
Tutorial: Building Your First Business Process

@jpd:xml−list Annotation 104

@jpd:xquery Annotation
Precedes the global XQuery definitions in a business process (JPD) file. The definitions are in scope for all
XQueries in the business process. Namespaces are declared in the xquery prologue.

Syntax

@jpd:xquery prologue ::

xquery_namespaces_and_function_definitions
::

Where xquery_namespaces_and_function_definitions represents the XQuery namespaces and function
definitions specified in the annotation.

Remarks

In WebLogic Workshop, expand the region of code labeled /** Process Language*/ in the Source View for
a business process (JPD) to see the Java code that describes the business process you created in the Design
View. XQuery statements are written to the JPD file in this region.

The XQuery statements are preceded by the following annotation:

@jpd:xquery prologue::

For example, when you select a repeating XML node using the For Each node builder, as described in
Designing For Each Nodes, an XQuery expression is created in your JPD file. The expression returns the set
of XML elements over which the For Each node iterates. XQuery expressions are also written in your JPD
file when you create conditions on Decision nodes. XQuery expressions also define the transformations you
create between disparate data types using the mapping tool.

Related Topics

To learn about XQueries, see XQuery Reference.

To learn about For Each nodes and Decision nodes, see the following topics:

Looping Through Items in a List

Defining Conditions For Branching

To learn data transformations, see the following topics:

Guide to Data Transformations

Tutorial: Building Your First Data Transformation

@jpd:xquery Annotation 105

@common Annotations
Common annotations (those annotations available to more than one type of file in WebLogic Workshop) are
also supported in JPD files. They are of the format @common:name_of_annotation.

The following links provide reference to the common annotations used in business processes:

Common Annotations
include . . .

@common:control
Indicates that the object annotated by this annotation is a WebLogic Workshop
control in a JCX file.

@common:message−buffer
Specifies that there should be a queue between the component's implementation
code and the message transport wire for the specified method or callback.

@common:security
Specifies the security configuration for a class or an individual method within a
class.

@common:xmlns Defines an XML namespace prefix for use elsewhere in the component class.

To learn about all the @common annotations, see Common Annotations.

@common Annotations 106

@jws (Web Service) Annotations
A number of Web Service annotations are supported in WebLogic Integration business processes (JPD files).
Web Service annotations are of the format @jws:name_of_annotation.

The following links provide reference to the Web Service annotations used in business processes:

Web Service Annotations
include . . .

@jws:conversation−lifetime

Specifies the maximum age and the maximum idle time for a service's
conversations.

See also, Managing Conversations

@jws:handler Specifies SOAP message handlers for a web service.

@jws:location
Specifies the URL at which a Web service control accepts requests for each
supported protocol.

@jws:protocol
Specifies the protocols and message formats a Web service can accept or a
Web Service control will send to the service it represents.

@jws:reliable

Specifies that a Web service should use reliable messaging, and specifies how
long messages must be retained by the server in order to perform detection and
removal of duplicates. Once you have specified that the Web service should use
reliable messaging, you can then enable or disable it for a given method.

@jws:wsdl Specifies a WSDL file that is implemented by a web service.

To learn about all the @jws annotations, see Web Service Annotations.

Note: WS−Security policy (WSSE) files are not supported for business processes (JPDs). Therefore, the
following annotations are not supported for JPD files: @jws:ws−security−callback and
@jws:ws−security−service. To learn more about WSSE in Web services, see WS−Security Policy File
Reference.

@jws (Web Service) Annotations 107

General Properties
General Properties are displayed in the Property Editor for all the nodes in a business process.

For a given node, the following properties are displayed:

name

This is the name of the node selected in WebLogic Workshop. You can change the name of the associated
node by clicking on this property and entering a new name. Note that the name is changed in the Design View
in keeping with the change you make in the Property Editor.

Note that for the scenario in which the Start node of a business process is selected in the Design View, the
name of the business process (JPD file) is displayed.

notes

Enter any notes that you want associated with your business process by clicking on this property to open the
Property Text Editor. Notes entered in the editor will also be displayed in the WebLogic Integration
Administration Console at run time.

Related Topics

Guide to Building Business Processes

General Properties 108

Variable Properties
When you click on any business process variable in the Data Palette, its Variable Properties are displayed
in the Property Editor.

For a given variable, the following properties are displayed:

name

Displays the name of the variable. You can double click the name and change it in the Property Editor.

type

Displays the data type for the variable. This is a read−only field.

value

Displays the initial value for the variable if one has been assigned. Click ... in the value field to access the
Source View for the variable in question�you can edit the initial value assigned to a given variable in the
Source View.

Related Topics

Business Process Variables and Data Types

Creating Variables

Variable Properties 109

Control Properties
When you click any control node of a business process (Control Send, Control Receive, Control Send with
Return) in the Design View, its Properties are displayed in the Property Editor in a control group. The
properties in the Property Editor are read−only.

The properties that are displayed in the Property Editor depend on which type of control you select in the
Design View:

Control Send•
Control Receive•
Control Send with Return•

Control Send

target control

The control to which this node is sending a message.

target method

The method being invoked on the target control.

Control Receive

source control

The control from which this node is receiving a message.

callback method

The callback method on the source control.

Control Send with Return

target control

The control to which this node is sending a message.

target method

The method being invoked on the target control.

Related Topics

@common:control Annotations

Using Integration Controls

@common:context Annotations

Control Properties 110

Data Transformation Annotations
This section provides reference information for WebLogic Integration data transformation annotations
(@dtf:name_of_annotation).

Topics Included in This Section

@dtf:xquery Annotation

Specifies global XQuery namespaces and XQuery functions that can be used by the queries specified in a
DTF file.

@dtf:transform Annotation

Specifies the XQuery and XSLT abstract methods in a DTF file. During run time, a business process (JPD)
invokes the abstract method which in turn invokes the associated XSLT or query (written in the XQuery
language.)

@dtf:schema−validate Annotation

Specifies if the source parameters and/or the return value should be schema validated. The schema−validate
annotation is an optional annotation associated with @dtf:transform methods.

@dtf:xquery−function Annotation

Specifies that a user defined Java method (non−abstract) method in a DTF file can be invoked from queries
(written in the XQuery language).

General Properties

Describes a set of general properties that are displayed in the Property Editor for the methods in a DTF file.

Data Transformation Annotations 111

@dtf:xquery Annotation
The @dtf:xquery annotation with the prologue attribute defines global XQuery namespaces and XQuery
functions that can be used by the queries specified in a DTF file.

Note: The @dtf:xquery annotation is optional.

Syntax

The syntax of the @dtf:xquery annotation depends on the number of XQuery namespace and function
definitions as described in the following options:

For XQuery namespaces and function definitions on multiple lines, the following syntax is used:•

@dtf:xquery prologue ::

xquery_namespaces_and_function_definitions
::

Where xquery_namespaces_and_function_definitions defines the XQuery namespaces and function
definitions specified on multiple lines in the annotation.

For XQuery namespaces and function definitions on a single line, the following syntax can be used:•

@dtf:xquery prologue="xquery_namespace_and_function_definition"

Where xquery_namespace_and_function_definition defines the XQuery namespaces and function definitions
specified on a single line in the annotation.

Note: The only attribute supported for the @dtf:xquery annotation is the prologue attribute.

QUESTION FOR REVIEWERS: We only support namespace and function definitions, right? Or do we
support everything that is supported in a QueryProlog? See
http://www.w3.org/TR/2002/WD−xquery−20020816/#id−query−prolog. I tried sticking in the following
"import schema" into the annotation and I got an error in the class file:

import schema "http://www.w3.org/1999/xhtml"

at "http://example.org/xhtml/xhtml.xsd"

declare namespace xhtml = "http://www.w3.org/1999/xhtml"

Remarks

The following example @dtf:xquery annotation defines two namespaces and a function (on multiple lines)
called myDtfXqueryFunction:

/**
 * @dtf:xquery prologue ::
 * declare namespace price = "http://www.example.org/price"
 * declare namespace po = "http://www.example.org/po"

@dtf:xquery Annotation 112

 * define function myDtfXqueryFunction(xs:string $str) returns xs:string {
 * concat("DTF XQuery: ", $str)
 * }
 * define function myXqueryFunction(xs:string $str) returns xs:string {
 * concat("DTF XQuery: ", $str)
 * }
 * ::
*/

Caution: The namespaces definitions must be listed before the function definitions in the annotation.

You can add the @dtf:prologue annotation using one of the following procedures:

Using the Property Editor:•
Open the DTF file in the Design View.a.
Select the DTF name in the Design View.b.
Click prologue in the Property Editor.c.
Click . . . next to the prologue field.d.

The Property Test Editor is displayed.

In the Property Test Editor, enter the desired namespaces and function definitions and click
OK.

e.

Open the DTF file in the Source View and enter the @dtf:prologue annotation after the last import
statements but before the class definition statement for the DTF as shown highlighted in bold in the
following example code listing:

•

package examples;
import com.bea.xml.XmlObject;
import com.bea.xml.XmlObjectList;
/**
 * @dtf:xquery prologue::
 * declare namespace price = "http://www.example.org/price"
 * ::
 */
public abstract class examplesimplements com.bea.transform.TransformSource
{
 static final long serialVersionUID = 1L;
 /**
 * @dtf:transform xquery−ref="myTransMethod.xq"
 * @dtf:schema−validate return−value="false" parameters="false"
 */
 public abstract stockquotes.PriceQuoteDocument myTransMethod(stockquotes.PriceQuoteDocument PriceQuoteDoc);
 /**
 * @dtf:transform xquery−ref="mySecondTransMethod.xq"
 * @dtf:schema−validate return−value="false" parameters="false"
 */
 public abstract org.example.quote.QuoteDocument mySecondTransMethod(noNamespace.SupplierDocument SupplierDoc);
}

The @dtf:xquery annotation is a class level annotation. The namespace and functions defined in the DTF
class can be used by all the queries defined in the DTF file. In the preceding example, the price namespace
can be used in both the myTransMethod query (stored in the myTransMethod.xq file) and the
mySecondTransMethod query (stored in the mySecondTransMethod.xq file).

Annotations Reference

@dtf:xquery Annotation 113

QUESTION FOR REVIEWERS: Do you think I should call out both ways of adding this annotation? Using
the property editor and using the Source View? Anyone test this?

QUESTION FOR REVIEWERS: Did anyone test adding methods and namespaces at the DTF level and
using them in the queries of the DTF?

Related Topics

To learn more see XQuery Prologs.

To learn about the XQuery language, see the XQuery 1.0: An XML Query Language Specification − W3C
Working Draft 16 August 2002 available from the W3C web site at the following URL:

http://www.w3.org/TR/2002/WD−xquery−20020816/

To learn data transformations, see the following topics:

Guide to Data Transformations

Tutorial: Building Your First Data Transformation

Annotations Reference

@dtf:xquery Annotation 114

@dtf:transform Annotation
The @dtf:transform annotation annotates the XQuery and XSLT abstract methods in a DTF file. During run
time, a business process (JPD) invokes the abstract method which in turn invokes the associated XSLT or
query (written in the XQuery language.)

Syntax

The @dtf:transform annotation can specify one of the following attributes:

xquery−ref Attribute•
xquery Attribute•
xslt−ref Attribute•
xslt Attribute•

xquery−ref Attribute

@dtf:transform

xquery−ref="myTrans.xq"

Where myTrans specifies the XQ file that contains the query written in the XQuery language. During run
time, if the abstract method is invoked by a business process, the associated query stored in the XQ file is
invoked by the XQuery engine.

The following example code segment shows a @dtf:transform annotation specifying the xquery−ref attribute:

/**
 * @dtf:transform xquery−ref="myXQueryMethod.xq"
 * @dtf:schema−validate return−value="false" parameters="false"
 */
public abstract noNamespace.SupplierDocument myXQueryMethod(noNamespace.PurchaseOrderDocument PurchaseOrderDoc);

During run time, if the myXQueryMethod abstract method is invoked by a business process, the query stored
in the myXQueryMethod.xq is invoked by the XQuery engine.

A dtf:transform annotation with the xquery−ref attribute is generated when you create a transformation
method in a DTF file and configure the transformation method to be a XQuery method. To learn more, see
Creating a Transformation File and a Transformation Method in the Guide to Data Transformation.

xquery Attribute

@dtf:transform xquery ::

xquery_code
::

Where xquery_code specifies the inline query (written in the XQuery language) to be invoked by the business
process during run time.

The following example code segment shows a @dtf:transform annotation specifying the xquery attribute:

@dtf:transform Annotation 115

/**
 * @dtf:transform xquery ::
 * <Supplier>
 * <id>{ data($PurchaseOrderDoc/partId) }</id>
 * </Supplier>
 * ::
 */
public abstract noNamespace.SupplierDocument myXQueryInlineMethod(noNamespace.PurchaseOrderDocument PurchaseOrderDoc);

The source variables used in the XQuery code must correspond in name and type to the Java transformation
(abstract) method parameters defined in the DTF file. As shown highlighted in bold in the preceding example
code listing, the source $PurchaseOrderDoc variable used in the inline XQuery code is defined as the
parameter in the myXQueryInlineMethod transformation method as type: PurchaseOrderDocument.

QUESTION FOR REVIEWERS: Arvind said this: "The unbound variables in the XQuery have to correspond
in name and type to the Java method parameters." Is this a typo, do you think he meant inbound?

QUESTION FOR REVIEWERS: What the advantage of this approach vs. using xquery−ref? Should we
expose this approach? Has it been tested? Is the example above correct?

You can add the @dtf:transform annotation with the xquery attribute using one of the following procedures:

Open the DTF file in the Source View and enter the @dtf:transform annotation with the xquery
attribute as shown in the presiding example code listing.

•

Using the Property Editor:•
Open the DTF file in the Design View.a.
In the Design View, select a Transformation (abstract) method.b.
In the Property Editor, under transform, click the xquery attribute.c.

The field to the right of the xquery attribute becomes active.

Paste the query into the xquery field.d.

xslt−ref Attribute

@dtf:transform

xslt−ref="myXSL.xsl"

Where myXSL specifies the XSL file that contains the eXtensible Stylesheet Language code. XLST is an
older language defined by the W3C that supports the use of style sheets for the conversion of XML data.

The following example code segment shows a @dtf:transform annotation specifying the xslt−ref attribute:

/**
 * @dtf:transform xslt−ref="../myXSLT.xsl"
 */
public abstract com.bea.xml.XmlObject myXsltMethod(com.bea.xml.XmlObject source);

During run time, if the myXsltMethod abstract method is invoked by a business process, the associated XSLT
stored in the myXSLT.xsl is invoked by the XSLT processor.

Annotations Reference

@dtf:transform Annotation 116

A dtf:transform annotation with the xquery−ref attribute is generated when you create a transformation
method in a DTF file and configure the transformation method to be a XSLT method. To learn more, see
Transforming Data Using XSLTs in the Guide to Data Transformation.

xslt Attribute

@dtf:transform xslt ::

XSL_Code
::

Where XSL_code specifies the inline XSL code to be invoked by the business process during run time.

The return type and the first parameter of the method has to be an XML Bean. The remaining parameters are
treated as XSLT parameters.

QUESTION FOR REVIEWERS: Do I have the syntax right? Has this been tested?

You can add the @dtf:transform annotation with the xslt attribute using one of the following procedures:

Open the DTF file in the Source View and enter the @dtf:transform annotation with the xslt attribute
above the Java code defining the XSLT transformation method.

•

Using the Property Editor:•
Open the DTF file in the Design View.a.
In the Design View, select a Transformation (abstract) method.b.
In the Property Editor, under transform, click the xslt attribute.c.

The field to the right of the xslt attribute becomes active.

Paste the XSL code into the xslt field.d.

Related Topics

Guide to Data Transformation

Tutorial: Building Your First Data Transformation

Annotations Reference

@dtf:transform Annotation 117

@dtf:schema−validate Annotation
Specifies if the source parameters and/or the return value should be schema validated. The schema−validate
annotation is an optional annotation associated with @dtf:transform methods.

Syntax

@dtf:schema−validate

return−value="true" | "false"
parameters="true" | "false"

Attributes

return−value

If this parameter is set to true, during run time, if the return type has an associated schema, it will be validated
against its schema type after the transformation is executed. A typed XML return value will be schema
validated against its XML Schema and a typed non−XML return value will be validated against the schema in
the MFL file. A return types which is untyped or is a Java primitive will not be validated because it does not
have an associated schema.

parameters

If this parameter is set to true, during run time, the source parameters that have an associated schema will be
validated against their schema types before the transformation is executed. All typed XML parameters will be
schema validated against their XML Schema and typed non−XML parameters will be validated against the
schema in the MFL file. Source parameters which are untyped or are Java primitives will not be validated
because they do not have an associated schema.

Remarks

In the following example, the @dtf:schema−validate annotation defines that during run time, when the
transformation method myXQueryMethod is executed, the return value will be schema validated but the
source parameters of the transformation method will not, as shown highlighted in bold in the following code
segment:

/**
 * @dtf:transform xquery−ref="myXQueryMethod.xq"
 * @dtf:schema−validate return−value="true" parameters="false"
 */
public abstract noNamespace.SupplierDocument myXQueryMethod(noNamespace.PurchaseOrderDocument PurchaseOrderDoc);

Related Topics

See "Schema Validating During Run Time" in Validating in the Guide to Data Transformation.

@dtf:transform Annotation

@dtf:schema−validate Annotation 118

@dtf:xquery−function Annotation
Specifies that a user defined Java method (non−abstract) method in a DTF file can be invoked from queries
(written in the XQuery language).

Syntax

@dtf:xquery−function

Remarks

In the following example, the @dtf:xquery−function annotation defines that the Java method
calculateTotalPrice that can be invoked from a query during run time:

/**
 * @dtf:xquery−function
 */
public float calculateTotalPrice(float taxRate, int quantity, float price, boolean fillOrder)
{
 float totalTax, costNoTax, totalCost;
 if (fillOrder)
 {
 // Calculate the total tax
 totalTax = taxRate * quantity * price;
 // Calculate the total cost without tax
 costNoTax = quantity * price;
 // Add the tax and the cost to get the total cost
 totalCost = totalTax + costNoTax;
 }
 else
 {
 totalCost = 0;
 }
 return totalCost;
}

Related Topics

See "Invoking Functions or Operators in a Query" in Modifying Links Using the Target Expression Tab in
the Guide to Data Transformation.

See "Create a User−Defined Java Method to Invoke From the Join Query" in Step 4: Mapping a Repeating
Element (Join) in the Tutorial: Building Your First Data Transformation.

@dtf:xquery−function Annotation 119

General Properties
General Properties are displayed in the Property Editor for all the methods in a DTF file.

For a given method, the name property is displayed. The name property defines the name of the selected
DTF method. You can change the name of the associated method by clicking on this property and entering a
new name. Note that the name is changed in the Design View in keeping with the change you make in the
Property Editor.

Related Topics

Guide to Data Transformation

@dtf:transform Annotation

General Properties 120

	Table of Contents
	Annotations Reference
	Common Annotations
	@common:context Annotation
	@common:control Annotation
	Integration Controls Annotations
	Application View Control Annotations
	@jc:av-identity Annotation
	@jc:av-service Annotation
	ebXML Control Annotations
	@jc:ebxml Annotation
	@jc:ebxml-method Annotation
	Email Control Annotations
	@jc:email Annotation
	@jc:send-email Annotation
	File Control Annotations
	@jc:file Annotation
	@jc:file-operation Annotation
	Http Control Interfaces and Annotations
	Http Control Interface
	Http Control Annotations
	@jc:httpsend-data
	JMS Control Annotations
	Message Broker Control Annotations
	@jc:mb-publish-control Annotation
	@jc:mb-publish-method Annotation
	@jc:mb-subscription-control Annotation
	@jc:mb-subscription-method Annotation
	@jc:mb-subscription-callback Annotation
	MQSeries Control Interfaces and Annotations
	MQSeries Control Interface
	MQSeries Control Annotations
	@jc:MQConnectionType
	@jc:MQConnectionPoolProps
	@jc:ConnectionPoolTimeout
	@jc:MQQueueManager
	@jc:MQAuthorization
	@jc:TCPSettings
	@jc:DefaultQueue
	@jc:ImplicitTransaction
	Process Control Annotations
	RosettaNet Control Annotations
	@jc:rosettanet Annotation
	Service Broker Control Annotations
	Worklist Control Annotations
	@jc: advanced Annotation
	@jc:assignee Annotation
	@jc:select Annotation
	@jc:task Annotation
	@jc:task-abort Annotation
	@jc:task-assign Annotation
	@jc:task-claim Annotation
	@jc:task-complete Annotation
	@jc:task-create Annotation
	@jc:task-delete Annotation
	@jc:task-event Annotation
	@jc:task-get-info Annotation
	@jc:task-get-property Annotation
	@jc:task-get-property-name Annotation
	@jc:task-get-request Annotation
	@jc:task-get-response Annotation
	@jc:task-remove-property Annotation
	@jc:task-resume Annotation
	@jc:task-return Annotation
	@jc:task-set-property Annotation
	@jc:task-start Annotation
	@jc:task-stop Annotation
	@jc:task-suspend Annotation
	@jc:task-update Annotation
	@jc:task-worker Annotation
	Business Process Annotations
	@jpd:ebxml Annotation
	@jpd:ebxml-method Annotation
	@jpd:mb-static-subscription Annotation
	@jpd:process Annotation
	@jpd:rosettanet Annotation
	@jpd:selector Annotation
	@jpd:transform Annotation
	@jpd:unexpected-message Annotation
	@jpd:version Annotation
	@jpd:xml-list Annotation
	@jpd:xquery Annotation
	@common Annotations
	@jws (Web Service) Annotations
	General Properties
	Variable Properties
	Control Properties
	Data Transformation Annotations
	@dtf:xquery Annotation
	@dtf:transform Annotation
	@dtf:schema-validate Annotation
	@dtf:xquery-function Annotation
	General Properties

