
Version 8.1 SP4
December 2004

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the agreement. This document may
not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium
or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software−Restricted Rights
Clause at FAR 52.227−19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227−7013, subparagraph (d) of the Commercial Computer Software−−Licensing clause
at NASA FAR supplement 16−52.227−86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the
part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR
THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E−Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Table of Contents
Java Language Keywords..1

abstract Java Keyword...3

boolean Java Keyword...4

break Java Keyword...5

byte Java Keyword...6

case Java Keyword..7

catch Java Keyword..8

char Java Keyword...10

class Java Keyword...11

continue Java Keyword..12

default Java Keyword...13

do Java Keyword...14

double Java Keyword...15

else Java Keyword...16

extends Java Keyword..17

false Java Keyword...18

final Java Keyword...19

finally Java Keyword..20

float Java Keyword...21

for Java Keyword..22

if Java Keyword..23

implements Java Keyword...24

import Java Keyword...25

Java Language Keywords

i

Table of Contents
instanceof Java Keyword...26

int Java Keyword..27

interface Java Keyword..28

long Java Keyword...29

native Java Keyword..30

new Java Keyword..31

null Java Keyword..32

package Java Keyword...33

private Java Keyword...34

protected Java Keyword...35

public Java Keyword..36

return Java Keyword..37

short Java Keyword..38

static Java Keyword..39

super Java Keyword...40

switch Java Keyword..41

synchronized Java Keyword..42

this Java Keyword...43

throw Java Keyword...44

throws Java Keyword...45

transient Java Keyword...46

try Java Keyword..47

true Java Keyword..49

Java Language Keywords

ii

Table of Contents
void Java Keyword...50

volatile Java Keyword..51

while Java Keyword..52

Java Language Keywords

iii

Java Language Keywords
The Java language defines the following keywords and reserved words.

Topics Included in This Section

The abstract Keyword

The boolean Keyword

The break Keyword

The byte Keyword

The case Keyword

The catch Keyword

The char Keyword

The class Keyword

The continue Keyword

The default Keyword

The do Keyword

The double Keyword

The else Keyword

The extends Keyword

The false Keyword

The final Keyword

The finally Keyword

The float Keyword

The for Keyword

The if Keyword

The implements Keyword

The import Keyword

Java Language Keywords 1

The instanceof Keyword

The int Keyword

The interface Keyword

The long Keyword

The new Keyword

The null Keyword

The package Keyword

The private Keyword

The protected Keyword

The public Keyword

The return Keyword

The short Keyword

The static Keyword

The super Keyword

The switch Keyword

The synchronized Keyword

The this Keyword

The throw Keyword

The throws Keyword

The transient Keyword

The try Keyword

The true Keyword

The void Keyword

The while Keyword

Related Topics

None.

Java Language Keywords

Java Language Keywords 2

abstract Java Keyword
The abstract keyword may modify a class or a method.

An abstract class can be extended (subclassed) but cannot be instantiated directly.

An abstract method is not implemented in the class in which it is declared, but must be overridden in some
subclass.

Examples

 public abstract class MyClass
 {
 }

 public abstract String myMethod();

Remarks

A class with an abstract method is inherently abstract and must be declared abstract.•
An abstract class cannot be instantiated.•
A subclass of an abstract class can only be instantiated if it implements all of the abstract methods of
its superclass. Such classes are called concrete classes to differentiate them from abstract classes.

•

If a subclass of an abstract class does not implement all of the abstract methods of its superclass, the
subclass is also abstract.

•

The abstract keyword cannot be applied to methods that are static, private or final, since such methods
cannot be overridden and therefore cannot be implemented in subclasses.

•

No methods of a final class may be abstract since a final class cannot be subclassed.•

Related Topics

final Java Keyword

private Java Keyword

static Java Keyword

abstract Java Keyword 3

boolean Java Keyword
boolean is a Java primitive type.

A boolean variable may take on one of the values true or false.

Examples

boolean valid = true;

 if (valid)
 {
 <statement>
 }

Remarks

A boolean variable may only take on the values true or false. A boolean may not be converted to or
from any numeric type.

•

Expressions containing boolean operands can contain only boolean operands.•
The Boolean class is a wrapper class for the boolean primitive type.•

Related Topics

false Java Keyword

true Java Keyword

boolean Java Keyword 4

break Java Keyword
The break keyword is used to prematurely exit a for, while, or do loop or to mark the end of a case block in a
switch statement.

Examples

 for (i=0; i<max; i++)
 {
 if (<loop finished early>)
 {

break;
 }
 }

 int type = <some value>;
 switch (type)
 {
 case 1:
 <statement>

break;
 case 2:
 <statement>

break;
 default:
 <statement>
 }

Remarks

break always exits the innermost enclosing while, for, do or switch statement.•

Related Topics

continue Java Keyword

do Java Keyword

for Java Keyword

switch Java Keyword

while Java Keyword

break Java Keyword 5

byte Java Keyword
byte is a Java primitive type.

A byte can store an integer value in the range [−128, 127].

Examples

byte b = 124;

Remarks

The Byte class is a wrapper class for the byte primitive type. It defines MIN_VALUE and
MAX_VALUE constants representing the range of values for this type.

•

All integer literals in Java are 32−bit int values unless the value is followed by l or L as in 235L,
indicating the value should be interpreted as a long.

•

Related Topics

int Java Keyword

long Java Keyword

short Java Keyword

byte Java Keyword 6

case Java Keyword
The case is used to label each branch in a switch statement.

Examples

 int arg = <some value>;
 switch (arg)
 {

case 1:
 <statements>
 break;

case 2:
 <statements>
 break;
 default:
 <statements>
 break;
 }

Remarks

A case block does not have an implicit ending point. A break statement is typically used at the end of
each case block to exit the switch statement.

•

Without a break statement, the flow of execution will flow into all following case and/or default
blocks.

•

Related Topics

break Java Keyword

default Java Keyword

switch Java Keyword

case Java Keyword 7

catch Java Keyword
The catch keyword is used to define exception handling blocks in try−catch or try−catch−finally statements.

Examples

 try
 {
 <block that may throw exceptions>
 }

catch (<java.lang.Exception or subclass> e)
 {
 <code to handle exception e>
 }

 try
 {
 <block that may throw different exceptions>
 }

catch (FooException e)
 {
 <code to handle FooException e>
 }

catch (BarException e)
 {
 <code to handle BarException e>
 }

 try
 {
 <block that may throw exceptions>
 }

catch (<java.lang.Exception or subclass> e)
 {
 <code to handle exception e>
 }
 finally
 {
 <statements that execute with or without exception>
 }

Remarks

The opening and closing curly braces { and } are part of the syntax of the catch clause and may not be
omitted even if the clause contains a single statement.

•

Every try block must have at least one catch or finally clause.•
If a particular exception class is not handled by any catch clause, the exception propagates up the call
stack to the next enclosing try block, recursively. If an exception is not caught by any enclosing try
block, the Java interpretor will exit with an error message and stack trace.

•

Related Topics

catch Java Keyword 8

finally Java Keyword

try Java Keyword

Java Language Keywords

catch Java Keyword 9

char Java Keyword
char is a Java primitive type.

A char variable can store a single Unicode character.

Examples

char delimiter = ';';

Remarks

The following char constants are available:

\b − Backspace•
\f − Form feed•
\n − Newline•
\r − Carriage return•
\t − Horizontal tab•
\' − Single quote•
\" − Double quote•
\" − Backslash•
\xxx − The Latin−1 character with the encoding xxx. The \x and \xx forms are legal but may
lead to confusion.

•

\uxxxx − The Unicode character with the hexadecimal encoding xxxx.•

•

The Character class includes useful static methods for dealing with char variables, including isDigit(),
isLetter(), isWhitespace() and toUpperCase().

•

char values are unsigned.•

Related Topics

None

char Java Keyword 10

class Java Keyword
The class keyword is used to declare a new Java class, which is a collection of related variables and/or
methods.

Classes are the basic building blocks of object−oriented programming. A class typically represents some
real−world entity such as a geometric Shape or a Person. A class is a template for an object. Every object is an
instance of a class.

To use a class, you instantiate an object of the class, typically with the new operator, then call the classes
methods to access the features of the class.

Examples

 public class Rectangle
 {
 float width;
 float height;

 public Rectangle(float w, float h)
 {
 width = w;
 height = h;
 }

 public float getWidth()
 {
 return width;
 }

 public float getHeight()
 {
 return height;
 }
 }

Remarks

None.

Related Topics

new Java Keyword

class Java Keyword 11

continue Java Keyword
The continue keyword is used to skip to the next iteration of a for, while, or do loop.

Examples

 for (i=0; i<max; i++)
 {
 <statements>
 if (<done with this iteration>)
 {

continue;
 }
 <statements>
 }

Remarks

continue always skips to the next iteration of the innermost enclosing while, for or do statement.•

Related Topics

break Java Keyword

do Java Keyword

for Java Keyword

while Java Keyword

continue Java Keyword 12

default Java Keyword
The default keyword is used to label the default branch in a switch statement.

Examples

 int arg = <some value>;
 switch (arg)
 {
 case 1:
 <statements>
 break;
 case 2:
 <statements>
 break;

default:
 <statements>
 break;
 }

Remarks

A default block does not have an implicit ending point. A break statement is typically used at the end
of each case or default block to exit the switch statement upon completion of the block.

•

Without a default statement, a switch statement whose argument matches no case blocks will do
nothing.

•

Related Topics

break Java Keyword

case Java Keyword

switch Java Keyword

default Java Keyword 13

do Java Keyword
The do keyword specifies a loop whose condition is checked at the end of each iteration.

Examples

do
 {
 <statements>
 }
 while (!found);

Remarks

The body of a do loop is always executed at least once.•
The semicolon after the condition expression is always required.•

Related Topics

break Java Keyword

continue Java Keyword

for Java Keyword

while Java Keyword

do Java Keyword 14

double Java Keyword
double is a Java primitive type.

A double variable may store a double−precision floating point value.

Examples

double ratio = .01;
double diameter = 6.15;
double height = 1.35E03; // 1.35 * 103 or 1350.0
double height = 1e−2; // 1.0 * 10−2 or 0.01

Remarks

Since floating point data types are approximations of real numbers, you should generally never
compare floating point numbers for equality.

•

Java floating point numbers can represent infinity and NaN (not a number). The Double wrapper class
defines the constants MIN_VALUE, MAX_VALUE, NEGATIVE_INFINITY,
POSITIVE_INFINITY and NaN.

•

Related Topics

float Java Keyword

double Java Keyword 15

else Java Keyword
The else keyword is always used in association with the if keyword in an if−else statement. The else clause is
optional and is executed if the if condition is false.

Examples

 if (condition)
 {
 <statements>
 }

else
 {
 <statements>
 }

Remarks

None.

Related Topics

if Java Keyword

else Java Keyword 16

extends Java Keyword
The extends keyword is used in a class or interface declaration to indicate that the class or interface being
declared is a subclass of the class or interface whose name follows the extends keyword.

Examples

 public class Rectangle extends Polygon
 {
 }

Remarks

In the example above, the Rectangle class inherits all of the public and protected variables and
methods of the Polygon class.

•

The Rectangle class may override any non−final method of the Polygon class.•
A class may only extend one other class.•

Related Topics

class Java Keyword

implements Java Keyword

interface Java Keyword

extends Java Keyword 17

false Java Keyword
The false keyword represents one of the two legal values for a boolean variable.

Examples

 boolean isComplete = false;

Remarks

None.

Related Topics

boolean Java Keyword

true Java Keyword

false Java Keyword 18

final Java Keyword
The final keyword may be applied to a class, indicating the class may not be extended (subclassed).

The final keyword may be applied to a method, indicating the method may not be overridden in any subclass.

Examples

 public final class MyFinalClass
 {
 }

 public class MyClass
 {
 public final String myFinalMethod()
 {
 <statements>
 }
 }

Remarks

A class may never be both abstract and final. abstract means the class must be extended, while final
means it cannot be.

•

A method may never be both abstract and final. abstract means the method must be overridden, while
final means it cannot be.

•

Related Topics

abstract Java Keyword

final Java Keyword 19

finally Java Keyword
The finally keyword is used to define a block that is always executed in a try−catch−finally statement.

A finally block typically contains cleanup code that recovers from partial execution of a try block.

Examples

 try
 {
 <block that may throw exceptions>
 }
 catch (<java.lang.Exception or subclass> e)
 {
 <code to handle exception e>
 }

finally
 {
 <statements that execute with or without exception>
 }

Remarks

The opening and closing curly braces { and } are part of the syntax of the finally clause and may not
be omitted even if the clause contains a single statement.

•

Every try block must have at least one catch or finally clause.•
If any portion of the try block is executed, the code in a finally block is always guaranteed to be
executed whether an exception occurs or not and independent of whether the try or catch blocks
contain return, continue or break statements.

•

In the absence of exceptions, control flows through the try block and then into the finally block.•
If an exception occurs during execution of the try block and the appropriate catch block contains a
break, continue or return statement, control flows through the finally block before the break, continue
or return occurs.

•

Related Topics

finally Java Keyword

try Java Keyword

finally Java Keyword 20

float Java Keyword
float is a Java primitive type.

A float variable may store a single−precision floating point value.

Examples

float ratio = .01;
float diameter = 6.15;
float height = 1.35E03; // 1.35 * 103 or 1350.0
float height = 1e−2; // 1.0 * 10−2 or 0.01

Remarks

The following rules apply to this keyword's use:

Floating point literals in Java always default to double−precision. To specify a single−precision literal
value, follow the number with f or F, as in 0.01f.

•

Since floating point data types are approximations of real numbers, you should generally never
compare floating point numbers for equality.

•

Java floating point numbers can represent infinity and NaN (not a number). The Float wrapper class
defines the constants MIN_VALUE, MAX_VALUE, NEGATIVE_INFINITY,
POSITIVE_INFINITY and NaN.

•

Related Topics

double Java Keyword

float Java Keyword 21

for Java Keyword
The for keyword specifies a loop whose condition is checked before each iteration.

Examples

 int i;
 for (i=0; i<max; i++)
 {
 <statements>
 }

Remarks

The for statement takes the form for(initialize; condition; increment)

The initialize statement is executed once as the flow of control enters the for statement.

The condition is evaluated before each execution of the body of the loop. The body of the loop is
executed if the condition is true.

The increment statement is executed after each execution of the body of the loop, before the condition
is evaluated for the next iteration.

•

Related Topics

break Java Keyword

continue Java Keyword

do Java Keyword

while Java Keyword

for Java Keyword 22

if Java Keyword
The if keyword indicates conditional execution of a block. The condition must evaluate to a boolean value.

Examples

if (condition)
 {
 <statements>
 }

if (condition)
 {
 <statements>
 }
 else
 {
 <statements>
 }

Remarks

An if statement may have an optional else clause containing code that is executed if the condition is
false.

•

Expressions containing boolean operands can contain only boolean operands.•

Related Topics

boolean Java Keyword

else Java Keyword

if Java Keyword 23

implements Java Keyword
The implements keyword is used in a class declaration to indicate that the class being declared provides
implementations for all methods declared in the interface whose name follows the implements keyword.

Examples

 public class Truck implements IVehicle
 {
 }

Remarks

In the example above, the Truck class must provide implementations for all methods declared in the
IVehicle interface.

•

The Truck class is otherwise independent; it may declare additional methods and variables and may
extend another class.

•

A single class may implement multiple interfaces.•

Related Topics

class Java Keyword

extends Java Keyword

interface Java Keyword

implements Java Keyword 24

import Java Keyword
The import keyword makes one class or all classes in a package visible in the current Java source file.
Imported classes can be referened without the use of fully−qualified class names.

Examples

import java.io.File;
import java.net.*;

Remarks

Many Java programmers use only specific import statements (no '*') to avoid ambiguity when
multiple packages contain classes of the same name.

•

Related Topics

package Java Keyword

import Java Keyword 25

instanceof Java Keyword
The instanceof keyword is used to determine the class of an object.

Examples

 if (node instanceof TreeNode)
 {
 <statements>
 }

Remarks

In the example above, if node is an instance of the TreeNode class or is an instance of a subclass of
TreeNode, the instanceof expression evaluates to true.

•

Related Topics

None.

instanceof Java Keyword 26

int Java Keyword
int is a Java primitive type.

A int variable may store a 32−bit integer value.

Examples

int number = 5;
int octalNumber = 0377;
int hexNumber = 0xff;

Remarks

The Integer class is a wrapper class for the int primitive type. It defines MIN_VALUE and
MAX_VALUE constants representing the range of values for this type.

•

All integer literals in Java are 32−bit int values unless the value is followed by l or L as in 235L,
indicating the value should be interpreted as a long.

•

Related Topics

byte Java Keyword

long Java Keyword

short Java Keyword

int Java Keyword 27

interface Java Keyword
The interface keyword is used to declare a new Java interface, which is a collection of methods.

Interfaces are a powerful feature of the Java language. Any class may declare that it implements one or more
interfaces, meaining it implements all of the methods defined in those interfaces.

Examples

 public interface IPolygon
 {
 public float getArea();
 public int getNumberOfSides();
 public int getCircumference();
 }

Remarks

Any class that implements an interface must provide implementations for all methods in that interface.•
A single class may implement multiple interfaces.•

Related Topics

class Java Keyword

interface Java Keyword 28

long Java Keyword
long is a Java primitive type.

A long variable may store a 64−bit signed integer.

Examples

long number = 5;
long anotherNumber = 34590L;
long octalNumber = 0377;
long hexNumber = 0xffl;

Remarks

The Long class is a wrapper class for the long primitive type. It defines MIN_VALUE and
MAX_VALUE constants representing the range of values for this type.

•

All integer literals in Java are 32−bit int values unless the value is followed by l or L as in 235L,
indicating the value should be interpreted as a long.

•

Related Topics

byte Java Keyword

int Java Keyword

short Java Keyword

long Java Keyword 29

native Java Keyword
The native keyword may be applied to a method to indicate that the method is implemented in a language
other then Java.

Examples

 native String getProcessorType();

Remarks

Native methods are beyond the scope of this documentation.•

Related Topics

None.

native Java Keyword 30

new Java Keyword
The new keyword is used to create a new instance of a class.

Examples

 String sName = new String();
 Float fVal = new Float(0.15);

Remarks

The argument following the new keyword must be a class name followed by a series of constructor
arguments in required parentheses.

•

The collection of arguments must match the signature of a constructor for the class.•
The type of the variable on the left side of the = must be assignment−compatible with the class or
interface being instantiated.

•

Related Topics

None.

new Java Keyword 31

null Java Keyword
null is a Java reserved word representing no value.

Examples

 Integer i;
 i = null;

 String s;
 if (s != null)
 {
 <statements>
 }

Remarks

Assigning null to a non−primitive variable has the effect of releasing the object to which the variable
previously referred.

•

null cannot be assigned to variables of primitive types (byte, short, int, long, char, float, double,
boolean)

•

Related Topics

None.

null Java Keyword 32

package Java Keyword
The package keyword specifies the Java package in which the classes declared in a Java source file reside.

Examples

package com.mycompany;

 public class MyClass
 {
 }

Remarks

The package statement, if present, must be the first non−comment text in a Java source file.•
In the example above, the fully−qualified class name of the MyClass class is
com.mycompany.MyClass.

•

If a Java source file does not contain a package statement, the classes defined in the file are in the
default package. Note that classes in the default package may not be referenced from classes in
non−default packages.

•

Related Topics

import Java Keyword

package Java Keyword 33

private Java Keyword
The private keyword is an access control modifier that may be applied to a class, a method or a field (a
variable declared in a class).

Examples

 public class MyPublicClass
 {

private class MyPrivateClass
 {
 }

private int i;

private String myMethod()
 {
 <statements>
 }
 }

Remarks

A private (inner) class, method or field may only be referenced from within the class in which it is
declared. It is not visible outside the class or to subclasses.

•

The default access for all class members is package access, meaning that unless a specific access
control modifier is present the class members are accessible from within any class in the same
package.

•

Related Topics

protected Java Keyword

public Java Keyword

private Java Keyword 34

protected Java Keyword
The protected keyword is an access control modifier that may be applied to a class, a method or a field (a
variable declared in a class).

Examples

 public class MyPublicClass
 {

protected class MyPrivateClass
 {
 }

protected int i;

protected String myMethod()
 {
 <statements>
 }
 }

Remarks

A protected class, method or field may be referenced from within the class in which it is declared, any
other classes in the same package, and any subclasses regardless of the package in which a subclass is
declared.

•

The default access for all class members is package access, meaning that unless a specific access
control modifier is present the class members are accessible from within any class in the same
package.

•

Related Topics

private Java Keyword

public Java Keyword

protected Java Keyword 35

public Java Keyword
The public keyword is an access control modifier that may be applied to a class, a method or a field (a
variable declared in a class).

Examples

public class MyPublicClass
 {

public class MyPrivateClass
 {
 }

public int i;

public String myMethod()
 {
 <statements>
 }
 }

Remarks

A public class, method or field may only be referenced from any other class or package.•
The default access for all class members is package access, meaning that unless a specific access
control modifier is present the class members are accessible from within any class in the same
package.

•

Related Topics

private Java Keyword

protected Java Keyword

public Java Keyword 36

return Java Keyword
The return keyword causes a method to return to the method that called it, passing a value that matches the
return type of the returning method.

Examples

 public void myVoidMethod()
 {
 <statements>

return;
 }

 public String myStringMethod()
 {
 String s = "my response";

return s;
 }

 public int myIntMethod()
 {
 int i = 5;

return(i);
 }

Remarks

If the method has a non−void return type, the return statement must have an argument of the same or
a compatible type.

•

The parentheses surrounding the return value are optional.•

Related Topics

None.

return Java Keyword 37

short Java Keyword
short is a Java primitive type.

A short variable may store a 16−bit signed integer.

Examples

short number = 5;
short octalNumber = 0077;
short hexNumber = 0xff;

Remarks

The Short class is a wrapper class for the short primitive type. It defines MIN_VALUE and
MAX_VALUE constants representing the range of values for this type.

•

All integer literals in Java are 32−bit int values unless the value is followed by l or L as in 235L,
indicating the value should be interpreted as a long.

•

Related Topics

byte Java Keyword

int Java Keyword

long Java Keyword

short Java Keyword 38

static Java Keyword
The static keyword may be applied to an inner class (a class defined within another class), method or field (a
member variable of a class).

Examples

 public class MyPublicClass
 {
 public final static int MAX_OBJECTS = 100;

static int _numObjects = 0;

static class MyStaticClass
 {
 }

static int getNumObjects()
 {
 }
 }

Remarks

In general, the static keyword means that the entity to which it is applied is available outside any particular
instance of the class in which the entity is declared.

•

A static (inner) class may be instantiated and reference by other classes as though it were a top−level class.
In the example above, code in another class could instantiate the MyStaticClass class by qualifiying it's
name with the containing class name, as MyClass.MyStaticClass.

•

A static field (member variable of a class) exists once across all instances of the class.•
A static method may be called from outside the class without first instantiating the class. Such a reference
always includes the class name as a qualifier of the method call. In the example above code outside the
MyClass class would invoke the getNumObjects() static method as MyClass.getNumObjects().

•

The pattern:

public final static <type> varName = <value>;

is commonly used to declare class constants that may be used from outside the class. A reference to such a
constant is qualified with the class name. In the example above, another class could reference the
MAX_OBJECTS constant as MyClass.MAX_OBJECTS.

•

Related Topics

final Java Keyword

static Java Keyword 39

super Java Keyword
The super keyword refers to the superclass of the class in which the keyword is used.

Examples

 public class MyClass
 {
 public MyClass(String arg)
 {

super(arg);
 }

 public String myStringMethod()
 {
 return super.otherStringMethod();
 }

Remarks

super as a standalone statement represents a call to a constructor of the superclass.•
super.<methodName>() represents a call to a method of the superclass. This usage is only necessary
when calling a method that is overridden in this class in order to specify that the method should be
called on the superclass.

•

Related Topics

None.

super Java Keyword 40

switch Java Keyword
The switch statement is used to select execution of one of multiple code blocks based on an expression.

Examples

 int arg = <some value>;
switch (arg)

 {
 case 1:
 <statements>
 break;
 case 2:
 <statements>
 break;
 default:
 <statements>
 break;
 }

 char arg = <some value>;
switch (arg)

 {
 case 'y':
 case 'Y':
 <statements>
 break;
 case 'n':
 case 'N':
 <statements>
 break;
 default:
 <statements>
 break;
 }

Remarks

The switch condition must evaluate to a byte, char, short or int.•
A case block does not have an implicit ending point. A break statement is typically used at the end of
each case block to exit the switch statement.

•

Without a break statement, the flow of execution will flow into all following case and/or default
blocks.

•

Related Topics

break Java Keyword

case Java Keyword

default Java Keyword

switch Java Keyword 41

synchronized Java Keyword
The synchronized keyword may be applied to a method or statement block and provides protection for critical
sections that should only be executed by one thread at a time.

Examples

 public class MyClass
 {
 public synchronized static String mySyncStaticMethod()
 {
 }

 public synchronized String mySyncMethod()
 {
 }
 {

 public class MyOtherClass
 {
 Object someObj;

 public String myMethod()
 {
 <statements>

synchronized (someObj)
 {
 <statements affecting someObj>
 }
 }
 }

Remarks

The synchronized keyword prevents a critical section of code from being executed by more than one
thread at a time.

•

When applied to a static method, as with MySyncStaticMethod in the examples above, the entire class
is locked while the method is being executed by one thread at a time.

•

When applied to an instance method, as with MySyncMethod in the examples above, the instance is
locked while being accessed by one thread at at time.

•

When applied to an object or array, the object or array is locked while the associated code block is
executed by one thread at at time.

•

Related Topics

None.

synchronized Java Keyword 42

this Java Keyword
The this keyword refers to the current instance.

Examples

 public class MyClass
 {
 int number;

 public MyClass(int number)
 {

this.number = number;
 }
 }

Remarks

The this keyword is used to refer to the current instance when a reference may be ambiguous.•
In the example above, the constructor argument number has the same name as a member variable of
the class. this.number means specifically the number member variable of this instance of MyClass.

•

Related Topics

None.

this Java Keyword 43

throw Java Keyword
The throw keyword is used to raise an exception.

Examples

 import java.io.IOException;

 public class MyClass
 {
 public method readFile(String filename) throws IOException
 {
 <statements>
 if (error)
 {

throw new IOException("error reading file");
 }
 }
 }

Remarks

The throw statement takes a java.lang.Throwable as an argument. The Throwable is propagated up the
call stack until it is caught by an appropriate catch block.

•

Any method that throws an exception that is not a RuntimeException must also declare the exceptions
it throws using a throws modifier on the method declaration.

•

Related Topics

catch Java Keyword

finally Java Keyword

throws Java Keyword

try Java Keyword

throw Java Keyword 44

throws Java Keyword
The throws keyword may be applied to a method to indicate the method raises particular types of exceptions.

Examples

 import java.io.IOException;

 public class MyClass
 {
 public method readFile(String filename) throws IOException
 {
 <statements>
 if (error)
 {
 throw new IOException("error reading file");
 }
 }
 }

Remarks

The throws keyword takes a comma−separated list of java.lang.Throwables as an argument.•
Any method that throws an exception that is not a RuntimeException must also declare the exceptions
it throws using a throws modifier on the method declaration.

•

The caller of a method with a throws clause is required to enclose the method call in a try−catch
block.

•

Related Topics

catch Java Keyword

finally Java Keyword

throws Java Keyword

try Java Keyword

throws Java Keyword 45

transient Java Keyword
The transient keyword may be applied to member variables of a class to indicate that the member variable
should not be serialized when the containing class instance is serialized.

Examples

 public class MyClass
 {
 private transient String password;
 }

Remarks

Related Topics

None.

transient Java Keyword 46

try Java Keyword
The try keyword is used to enclose blocks of statements that might throw exceptions.

Examples

try
 {
 <block that may throw exceptions>
 }
 catch (<java.lang.Exception or subclass> e)
 {
 <code to handle exception e>
 }

try
 {
 <block that may throw different exceptions>
 }
 catch (FooException e)
 {
 <code to handle FooException e>
 }
 catch (BarException e)
 {
 <code to handle BarException e>
 }

try
 {
 <block that may throw exceptions>
 }
 catch (<java.lang.Exception or subclass> e)
 {
 <code to handle exception e>
 }
 finally
 {
 <statements that execute with or without exception>
 }

Remarks

Every try block must have at least one catch or finally clause.•
If a particular exception class is not handled by any catch clause, the exception propagates up the call
stack to the next enclosing try block, recursively. If an exception is not caught by any enclosing try
block, the Java interpretor will exit with an error message and stack trace.

•

Related Topics

catch Java Keyword

try Java Keyword 47

finally Java Keyword

Java Language Keywords

try Java Keyword 48

true Java Keyword
The true keyword represents one of the two legal values for a boolean variable.

Examples

 boolean isComplete = true;

Remarks

None.

Related Topics

boolean Java Keyword

false Java Keyword

true Java Keyword 49

void Java Keyword
The void keyword represents a null type.

Examples

 public class MyClass
 {
 public void doSomething();
 {
 <statements>
 return;
 }
 }

Remarks

void may be used as the return type of a method to indicate the method does not return a value.•

Related Topics

None.

void Java Keyword 50

volatile Java Keyword
The volatile keyword may be used to indicate a member variable that may be modified asynchronously by
more than one thread.

Note: the volatile keyword is not implemented in many Java Virtual Machines.

Examples

 public class MyClass
 {

volatile int sharedValue;
 }

Remarks

volatile is intended to guarantee that all threads see the same value of the specified variable.•

Related Topics

None.

volatile Java Keyword 51

while Java Keyword
The while keyword specifies a loop that is repeated as long as a condition is true.

Examples

while (!found)
 {
 <statements>
 }

Remarks

None.

Related Topics

break Java Keyword

continue Java Keyword

do Java Keyword

for Java Keyword

while Java Keyword 52

	Table of Contents
	Java Language Keywords
	abstract Java Keyword
	boolean Java Keyword
	break Java Keyword
	byte Java Keyword
	case Java Keyword
	catch Java Keyword
	char Java Keyword
	class Java Keyword
	continue Java Keyword
	default Java Keyword
	do Java Keyword
	double Java Keyword
	else Java Keyword
	extends Java Keyword
	false Java Keyword
	final Java Keyword
	finally Java Keyword
	float Java Keyword
	for Java Keyword
	if Java Keyword
	implements Java Keyword
	import Java Keyword
	instanceof Java Keyword
	int Java Keyword
	interface Java Keyword
	long Java Keyword
	native Java Keyword
	new Java Keyword
	null Java Keyword
	package Java Keyword
	private Java Keyword
	protected Java Keyword
	public Java Keyword
	return Java Keyword
	short Java Keyword
	static Java Keyword
	super Java Keyword
	switch Java Keyword
	synchronized Java Keyword
	this Java Keyword
	throw Java Keyword
	throws Java Keyword
	transient Java Keyword
	try Java Keyword
	true Java Keyword
	void Java Keyword
	volatile Java Keyword
	while Java Keyword

