o9,

Pl ’
" ’
L/ ea

BEA WebLogic Workshop™ Help

Version 8.1 SP4
December 2004

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreeme
It is against the law to copy the software except as specifically allowed in the agreement. This document ma
not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic mediur
or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software—Restricted Rights
Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software——Licensing clau:
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on tr
part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR

THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E—Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

XML Map Tag Reference

Table of Contents

D I Y = Vo T 1= Vo L= (= =1 o o =P 1
SXMEAMIDOULES TaAG. . i iiiiiiiiiiice
SXIMEDINAS ATTTDULE ...ttt e e ekt e e e e bt e e e sttt e e sttt e e e nnbn e e e e e nnee s ‘
B L= \YZ= S 0] oo i I Vo IRt (
SXMEMAP—TIES TAQ..ciiiiiiiiiiie e, |
SXMEMUILIPIES ATTIDULE ..ot e aaaaeens €
D R U ST 1= T 1
0 RV Z= [1= I Vo TRt 1
B] T T o B I Vo PRSPPI 1

XML Map Tag Reference

Through XML maps, you can customize the way values in XML messages received and sent by your servic
methods are mapped to the variables of your method's implementation. You use the following tags and
attributes inside XML maps.

Topics Included in This Section

<xm:attribute> Tag

Specifies the variable to use when mapping an XML attribute value.

<xm:bind> Attribute

Declares a variable within a map and initializes to a variable of the declaration.

<xm:java—-import> Tag

Specifies Java classes that should be imported to support variables in an XML map file.
<xm:map-file> Tag

Specifies that its contents constitute an XML map file.

<xm:multiple> Attribute

Specifies the data structure variable to which a specific repeating XML element should be mapped.
<xm:use> Tag

Specifies a function or XML map to invoke for processing XML.

<xm:value> Tag

Specifies the variable to use when mapping a specific XML element content.

<xm:xml-map> Tag

Specifies that its contents constitute an XML map; also provides the signature defining calls to this map.
Related Topics

Why Use XML Maps?

Deprecated. XML Maps are deprecated as of the WebLogic Platform 8.1 release. For new code, use XQuer
maps. For more information, see Introduction to XQuery Maps.

XML Map Tag Reference 1

<xm:attribute> Tag

Specifies the variable to use when mapping an XML attribute value.

Syntax

<xm:attribute

name="attributeName"

obj="[dataType]attributeValueVariable][, ...]"
>

Attributes

name
The name of the attribute that is being mapped.
obj

The portion of the Java declaration to which this attribute's value should be mapped, such as a parameter o
"return”.

Remarks

Use the <xm:attribute> tag to assign an attribute value from an XML message to a portion of your Java
declaration. In the following example, max_records is an anticipated attribute of the <query> element:

/**

* @common:operation

* @jws:parameter—-xml xml-map::

* <query>

* <xm:attribute name="max_records" obj="resultSize"/>
* <element>

* <name>{criterionName}</name>

* <value>{criterionValue}</value>

* </element>

* </query>

* on

*/”

public void searchData(String criterionName, String criterionValue, int resultSize)

{
}

System.out.printin("The maximum number of records to return is " + resultSize);

As an alternative to using the <xm:attribute> tag, you can use curly braces shorthand. The following snippet
equivalent to the preceding example:

/**

* @jws:parameter—xml xml-map::

* <query max_records="{resultSize}">
* <element>

<xm:attribute> Tag 2

XML Map Tag Reference

* <name>{criterionName}</name>
* <value>{criterionValue}</value>
* </element>

* </query>

*
*/
public void searchData(String criterionName, String criterionValue, int resultSize)

{
}

System.out.printin("The maximum number of records to return is " + resultSize);

Specify a data type when the variable is not declared with a type elsewhere in the map's context (such as
elsewhere in the map, in Java code at the class level, or in the code for the method to which the map applie

/**

* @jws:parameter—xml xml-map::

* <query max_records="{int resultSize}">
* <element>

* <name>{java.sql.String criterionName}</name>
* <value>{java.sgl.String criterionValue}</value>
* </element>

* </query>

*
*/
public void searchData(String criterionName, String criterionValue, int resultSize)

{

System.out.printin("The maximum number of records to return is " + resultSize);

}

Note: The xm prefix and its URI are declared implicitly in any JWS file. However, you must declare the
namespace prefix and URI to use the prefix in XMLMAP files.

Related Topics
How Do XML Maps Work?

Why Use XML Maps?

Deprecated. XML Maps are deprecated as of the WebLogic Platform 8.1 release. For new code, use XQuer
maps. For more information, see Introduction to XQuery Maps.

<xm:attribute> Tag

<xm:bind> Attribute

Declares a variable within a map and initializes to a variable of the declaration.

Syntax

<elementName xm:bind="elementName variableNameVariable is dataStructure.arrayMemberf,...]"
>

Attributes
bind

A statement declaring a variable and initializing it to a parameter variable.

Remarks

The <xm:bind> attribute is especially useful when you need to bind the XML value to a member of a data
structure, while also assigning it a short variable name. The <xm:bind> attribute also specifies that the objec
corresponding to the variable you're binding should not be instantiated unless the tag is encountered in the
instance document.

In the following example, <xm:bind> makes it possible to declare a new variable a of type Address (which
must be a type available in the scope of the code, such as an internal class), then initialize the new variable
the address member of the customerData structure. Using <xm:bind> as an attribute of the <address> tag
means that the <address> element's value will be mapped to the new variable. In addition, the new a variab
can be used in the <street> and <zip> elements.

/**
* @jws:parameter—xml xml-map::
* <customer>
* <name>{String customerData.name}</name>
<address xm:bind="Address a is customerData.address">
<street>{a.street}</street>
<zip>{a.zip}</zip>
</address>
</customer>

* %k * 3k

*/
public void addCustomerData(MyStructure customerData)
{ System.out.printin("Customer name is " + customerData.get("name")); System.out.printin("Customer zipcode is " + ((Addr

}

Note that the is operator is a reserved word in the context of the <xm:bind> attribute. This means that using
variables or types called "is" in the value of the <xm:bind> attribute will generate an error.

Note: The xm prefix and its URI are declared implicitly in any JWS file. However, you must declare the
namespace prefix and URI to use the prefix in XMLMAP files.

Related Topics

<xm:bind> Attribute 4

XML Map Tag Reference

Declaring Variables with the <xm:bind> Attribute

Why Use XML Maps?

Deprecated. XML Maps are deprecated as of the WebLogic Platform 8.1 release. For new code, use XQuer
maps. For more information, see Introduction to XQuery Maps.

<xm:bind> Attribute 5

<xm:java—-import> Tag
Specifies Java classes that should be imported to support variables in an XML map file.

Syntax

<xm:java—-import
class="fullyQualifiedClassName"
/>

Attributes

class

The fully—qualified name of the class.

Remarks

Use the <xm:java—import> tag in an XMLMAP file just as you would use the import directive in a JAVA or
JWS file. As with the Java import directive in Java code, you use <xm:java—import> to specify classes and
packages needed for type context in XML maps. For example, to use Date as a short type name in XML ma
first import the Date type as follows:

<xm:java—-import class="java.sqgl.Date"/>

You may use multiple <xm:java-import> tags, but all must occur immediately following the <xm:map-file>
tag and before any XML maps.

Note: The xm prefix and its URI are declared implicitly in any JWS file. However, you must declare the
namespace prefix and URI to use the prefix in XMLMAP files.

Related Topics

Creating Reusable XML Maps

Deprecated. XML Maps are deprecated as of the WebLogic Platform 8.1 release. For new code, use XQuer
maps. For more information, see Introduction to XQuery Maps.

<xm:java—-import> Tag 6

<xm:map-file> Tag

Specifies that its contents constitute an XML map file.

Syntax

<xm:map-file
xmins:xm="http:bea.com/jws/xmimap"
>

Attributes

xmlns:xm

URI defining the namespace for tags with an xm prefix.

Remarks

The <xm:map—file> tag is used only in map files—files with an .xmImap extension that contain XML maps.
A map file must begin and end with <xm:map-file> tags.

Note: The xm prefix and its URI are declared implicitly in any JWS file. However, you must declare the
namespace prefix and URI to use the prefix in XMLMAP files. You may change the prefix by declaring
another prefix.

Related Topics

Creating Reusable XML Maps

Deprecated. XML Maps are deprecated as of the WebLogic Platform 8.1 release. For new code, use XQuer
maps. For more information, see Introduction to XQuery Maps.

<xm:map-file> Tag 7

<xm:multiple> Attribute

Specifies the data structure variable to which a specific repeating XML element should be mapped.

Syntax

<elementName
xm:multiple="[dataType]JarrayMemberVariable in [dataType JarrayVariable][, ...]"
>

Attributes

xm:multiple

A statement expressing the mapping between an element's value and a method variable, and the variable's
as a member of an array.

Remarks

Use the <xm:multiple> tag to capture the values of repeating XML elements. In the following XML example,
the <part> element (and its children) repeats three times. Because this repetition resembles a list, you can
capture the repeating values by mapping them to a data structure.

<order>
<part>
<partID>19573</partID>
<partQuantity>1</partQuantity>
</part>
<part>
<partiD>28912</partID>
<partQuantity>1</partQuantity>
</part>
<part>
<partiD>39485</partID>
<partQuantity>57</partQuantity>
</part>
</order>

The <xm:multiple> attribute assumes that your Java code has declared collections to store the values of ea
repeating element. The syntax of the <xm:multiple> attribute's value essentially assigns each value of the
repeating element to a place in the collection, which your code can then inspect iteratively.

Note: The in operator is a reserved word in the context of the <xm:multiple> attribute. This means that using
variables or types called "in" in the value of the <xm:multiple> attribute will generate an error.

The following example is designed to operate on an incoming XML message like the preceding example. In
this example, the <xm:multiple> attribute specifies that the contents of the <patID> and <numberOfltems>
elements should be added as members of the serialNumber and quantity arrays.

/**

* @common:operation
* @jws:parameter—xml xml-map::

<xm:multiple> Attribute 8

XML Map Tag Reference

* <placeOrder>

* <order>

* <part xm:multiple="String serial in serialNumber, int quant in quantity">
* <partID>{serial}</partiD>

* <numberOfltems>{quant}</numberOfltems>

* </part>

* </order>

* </placeOrder>

*/“
public void placeOrder(String[] serialNumber, int[] quantity)
{

for (inti = 0; i < serialNumber.length; i++)

{

System.out.printin("Ordered " + quantity[i] + " of part " + serialNumberf[i]);

}
}

Note: The xm prefix and its URI are declared implicitly in any JWS file. However, you must declare the
namespace prefix and URI to use the prefix in XMLMAP files. You may change the prefix by declaring
another prefix.
Related Topics

Handling Repeating XML Values with <xm:multiple>

Deprecated. XML Maps are deprecated as of the WebLogic Platform 8.1 release. For new code, use XQuer
maps. For more information, see Introduction to XQuery Maps.

<xm:multiple> Attribute 9

<xm:use> Tag

Specifies a function or XML map to invoke for processing XML.

Syntax

<xm:use
call="fileName([dataType]JelementValueVariable)"
/>

Attributes

call

A call to an XML map or script function that is external to the service source code.

Remarks

Use the <xm:use> tag when you have an XML map in a map file or ECMAScript functions in a JSX file and
you want to invoke the map or script from within your service source code. The value of the call attribute
specifies the map or function name, along with parameters to pass to the map or function. The names of
parameters in parenthesis must match the names of items in the Java declaration that you are mapping.

fileName can refer to one of the following three types of files:

« An XML map contained in a file with an .xmlmap extension.
« An ECMAScript file with a .jsx extension.

Using XML programming extensions available with WebLogic Server, you can manipulate XML
with ECMAScript. Note that the .jsx file must contain two functions: mymapToXML and
mymapFromXML.
Note: The xm prefix and its URI are declared implicitly in any JWS file. However, you must declare the
namespace prefix and URI to use the prefix in XMLMAP files. You may change the prefix by declaring
another prefix.
Related Topics
Creating Reusable XML Maps

Handling XML with ECMAScript Extensions

Deprecated. XML Maps are deprecated as of the WebLogic Platform 8.1 release. For new code, use XQuer
maps. For more information, see Introduction to XQuery Maps.

<xm:use> Tag 10

<xm:value> Tag

Specifies the variable to use when mapping a specific XML element content.

Syntax

<xm:value
obj="[dataType]JelementValueVariable][, ...]"
/>

Attributes
obj

The portion of the Java declaration to which this element content should be mapped.

Remarks

Use the <xm:value> tag to assign element content from an XML message to a portion of your Java
declaration. The following example maps criterionName and criterionValue to the <name> and <value>
elements, respectively.

/**

* @common:operation
* @jws:parameter—xml xml-map::

* <query>
* <xm:attribute name="max_records" obj="resultSize"/>
* <element>
* <name><xm:value obj="criterionName"/></name>
* <value><xm:value obj="criterionValue"/></value>
* </element>
* </query>
* .
*/
public void searchData(String criterionName, String criterionValue, int resultSize)
{
System.out.printin("The maximum number of records to return is " + resultSize);
}

As an alternative to using the <xm:value> tag, you can use curly braces shorthand. The following snippet is
equivalent to the preceding example:

/**

* @common:operation

* @jws:parameter—xml xml-map::

* <query max_records="{resultSize}">
* <element>

* <name>{criterionName}</name>
* <value>{criterionValue}</value>
* </element>

* </query>

*
*/
public void searchData(String criterionName, String criterionValue, int resultSize)

<xm:value> Tag 11

XML Map Tag Reference
{

System.out.printin("The maximum number of records to return is " + resultSize);

}

Specify a data type when the variable is not declared with a type elsewhere in the map's context (such as
elsewhere in the map, in Java code at the class level, or in the code for the method to which the map applie

/**

* @jws:parameter—-xml xml-map::

* <query max_records="{resultSize}">
* <element>

* <name>{java.sql.String criterionName}</name>
* <value>{java.sgl.String criterionValue}</value>
* </element>

* </query>

*
*/
public void searchData(String criterionName, String criterionValue, int resultSize)

{
System.out.printin("The maximum number of records to return is " + resultSize);

}

Note: The xm prefix and its URI are declared implicitly in any JWS file. However, you must declare the
namespace prefix and URI to use the prefix in XMLMAP files. You may change the prefix by declaring

another prefix.
Related Topics
How Do XML Maps Work?

Why Use XML Maps?

Deprecated. XML Maps are deprecated as of the WebLogic Platform 8.1 release. For new code, use XQuer
maps. For more information, see Introduction to XQuery Maps.

<xm:value> Tag 12

<xm:xml-map> Tag

Specifies that its contents constitute an XML map; also provides the signature defining calls to this map.

Syntax

<xm:xml-map
signature="mapSignature"
>

Attributes

signature

The signature of map enclosed in <xm:xml-map> tags.

Remarks

The <xm:xml-map> tag is used only in map files — files with an .xmImap extension that contain XML maps.
You must enclose every map in a map file between <xm:xml-map> tags. The signature attribute specifies
name of the XML map and parameters expected for a call to the enclosed map. For example, consider the
following map:

<!-- Defined in a file called "BookMaps.xmimap" ——>
<xm:xml-map signature="getlnventory(String partID)">
<checklnventory>
<partID>{partID}</partID>
</checkinventory>
</xm:xml-map>

A call to the map in this example might look something like the following.

/**

* @common:operation

* @jws:parameter—xml xml-map::

* <checklnventory>

* {BookMaps.getinventoryString(String ISBN)}
* </checklnventory>

* e

n

*/

public String checkinventory(String ISBN)
{

return "You checked for copies of " + ISBN + ".";

}

Note: The xm prefix and its URI are declared implicitly in any JWS file. However, you must declare the
namespace prefix and URI to use the prefix in XMLMAP files. You typically do this in the <xm:map—file>
tag.

Related Topics

<xm:xml-map> Tag 13

Creating Reusable XML Maps

<xm:map-file> Tag

<xm:xml-map> Tag

XML Map Tag Reference

14

	Table of Contents
	XML Map Tag Reference
	<xm:attribute> Tag
	<xm:bind> Attribute
	<xm:java-import> Tag
	<xm:map-file> Tag
	<xm:multiple> Attribute
	<xm:use> Tag
	<xm:value> Tag
	<xm:xml-map> Tag

