
Version 8.1 SP4
December 2004

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the agreement. This document may
not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium
or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software−Restricted Rights
Clause at FAR 52.227−19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227−7013, subparagraph (d) of the Commercial Computer Software−−Licensing clause
at NASA FAR supplement 16−52.227−86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the
part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR
THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E−Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Table of Contents
Securing Portal Applications...1

Portal Security Scenario...5

Implementing the Portal Security Scenario...6

Implementing Authentication..13

How WebLogic Portal Uses the WebLogic Server Security Framework..17

Using Multiple Authentication Providers in Portal Development...19

Unified User Profiles Overview...20

Setting up Unified User Profiles..24

Securing Portal Applications

i

Securing Portal Applications
This topic provides a basic overview of WebLogic Portal security. The other portal topics, listed in Topics
Included in this Section, provide implementation instructions.

WebLogic Portal uses the underlying WebLogic Server security architecture to let you create secure portal
applications. The ultimate goal of portal security is to restrict access to portal resources and administrative
functions to only those users who need access to those resources and functions.

Topics Included in This Section

Overview

Provides overview information on authentication, user and group management, authorization, and WebLogic
Portal security management tools and resources.

Portal Security Scenario

Provides a scenario describing a fictitious company's portal application.

Implementing the Portal Security Scenario

Uses the portal scenario to identify the security touch points and link to implementation information.

Implementing Authentication

Provides details on the authentication examples contained in the Tutorial Portal.

Using Multiple Authentication Providers in Portal Development

Describes how to develop applications with users stored in external authentication providers.

How WebLogic Portal Uses the WebLogic Server Security Framework

Discusses WebLogic portal support and limitations for working with multiple authentication providers.

Overview

Note: Implementing security in a portal requires a basic understanding of standard security concepts, many of
which are outside the scope of WebLogic documentation; for example, encryption, injection of SQL
statements at login, and secure socket layers (SSL). The Related Topics section contains, among other things,
links to information that will help give you a broader, more complete view of security and the issues
surrounding it.

WebLogic Portal provides built−in functionality for authentication ("Who are you?") and authorization
("What can you access?").

Securing Portal Applications 1

Authentication

WebLogic Portal provides many authentication samples that you can incorporate into your portals. WebLogic
Portal also provides many tools for user/group management.

Samples

Implementing Authentication contains details about the authentication examples contained in the Tutorial
Portal.

WebLogic Portal also provides two sample login portlets you can reuse in your portals to authenticate
WebLogic users:

Login to Portal portlet − Provides basic login functionality.•
Login Director portlet − Provides login and shows the user the first desktop to which he is entitled.•

You can also build other types of authentication supported by WebLogic Server.

User/Group Management

The WebLogic Administration Portal provides tools for managing users, groups, and setting user/group
properties. For information on managing users and groups, see:

Creating User Proflie Properties•
User/Group Management JSP Tags•
Using Portal Controls•
WebLogic Portal Javadoc•
The WebLogic Administration Portal help system•

Authorization

There are three fundamental categories of things that can be secured in portals:

The WebLogic Administration Portal•
Portal Resources•
Java 2 Enterprise Edition (J2EE) Resources•

Using the WebLogic Server concept of security roles, WebLogic Portal lets you dynamically match users to
roles at login. Different roles are, in turn, assigned to different portal resources, administrative tools, and J2EE
resources so users can access only the resources and tools that their assigned roles allow.

WebLogic Administration Portal

The WebLogic Administration Portal provides the tools for managing users, portal delegated administration
roles, visitor entitlement roles, interaction management rules, content management, and portal resources.

You can lock down the WebLogic administration portal with delegated administration, which provides
secure administrative access to the WebLogic Administration Portal tools. Delegated administration security
is based on the delegated administration roles you create.

Securing Portal Applications

Securing Portal Applications 2

Portal Resources

The WebLogic Workshop Portal Extensions and the WebLogic Administration Portal provide tools for
creating and managing portals, desktops, shells, books, pages, layouts, look & feels, and portlets. You can
control access to portal resources for two types of users: administrators and visitors.

Administrators − You can control the portal resources that can be managed by portal administrators using
delegated administration.

Visitors − You can control visitor access to portals and portal resources with visitor entitlements. Visitor
entitlements are based on the visitor entitlement roles you create.

J2EE Resources

J2EE resources are the application framework and logic (Web applications, JSPs, EJBs, and so on) for which
you can control visitor access. Security on J2EE resources is based on global security roles set up in
WebLogic Server and applied to the individual J2EE resources. Security roles for J2EE resources are different
than security roles that users can belong to, though both types of roles use the same roles architecture.

Default Users

The portal sample domain <BEA_HOME>\<WEBLOGIC_HOME>\samples\domains\portal and any portal
domain you create with the Configuration Wizard include the following default users. You can add these
usernames and passwords to your existing domains.

Username Password Belongs to these groups

weblogic

Note: This is the
username for the
portal sample
domain. In a
new portal
domain created
with the
Configuration
Wizard, this can
be whatever was
used for the
primary system
administrator.

weblogic

Note: This is the
password for the
portal sample
domain. In a
new portal
domain created
with the
Configuration
Wizard, this can
be whatever was
used for the
primary system
administrator.

Administrators

PortalSystemAdministrators

portaladmin

This is a default
user for
managing and
setting up
delegated
administration
on portals. If

portaladmin Administrators

PortalSystemAdministrators

Securing Portal Applications

Securing Portal Applications 3

your domain
does not contain
portals, you can
safely delete this
user.

Related Topics

WebLogic Server Security

The Open Web Application Security Project (OWASP)

Setting up Unified User Profiles

Creating User Profile Properties

Using Portal Controls (for user/group management)

User/Group Management JSP Tags

For details on managing users and groups, see the WebLogic Administration portal online help system, also
available on e−docs.

Securing Portal Applications

Securing Portal Applications 4

Portal Security Scenario
The following scenario describes the portal implementation needs of a fictitious company called Avitek, many
of which involve security considerations. The topic that follows, Implementing the Portal Security Scenario,
describes the security touch points in the scenario and provides links to implementation information.

Avitek needs two types of portal−based Web presence: an internal site for its employees and partners called
"Inweb," and a public portal for its customers called "Outweb." It needs authentication for both sites. Inweb
must live behind a firewall.

Outweb is set up on a server cluster for load balancing and failover.

For Inweb, Avitek needs to cater to three different types of users: managers, regular employees, and partners.

For the three types of users, Avitek wants to create only two portals: one for managers and employees and one
for partners. Since there are five different partners, each partner must have a separate view of Inweb.

Some of the partners also perform contract work for Avitek, so they must also be able to access the employee
portal desktop.

Avitek wants all Inweb users to authenticate before seeing any view of the portals.

For Outweb, Avitek provides information and services on a subscription basis, so it wants to provide a portal
that lets all users see unsecured company information and log in to see secure information.

Avitek has a staff of two to administer all portals, and it wants to grant limited administrative access to certain
partners to let them maintain their partner portal.

There are two JSP−based administration portlets that can never be seen by anyone other than Avitek's
in−house administrators.

Avitek also wants to use its existing content management system for delivering content to its portals. The
content management system vendor has created an interface to connect to BEA's Virtual Content Repository.

Avitek will use two user databases: The Intranet site will use an existing user database, and the public site will
use the default WebLogic Server LDAP user database and is gradually adding users to it.

Related Topics

Implementing the Portal Security Scenario

Securing Portal Applications

Portal Security Scenario 5

Implementing the Portal Security Scenario
This topic walks you through the Portal Security Scenario, highlights the security touch points in the scenario,
and points to the tools and information for implementing security.

Scenario Security Touch Points

Avitek needs two types of
portal−based Web presence: an
internal site for its employees
and partners called "Inweb,"
and a public portal for its
customers called "Outweb." It
needs authentication for both
sites. Inweb must live behind a
firewall.

Outweb is set up on a server
cluster for load balancing and
failover.

Because one site must reside behind a firewall
and the other outside the firewall, two servers are
needed.

See Using WebLogic Server Clusters in
the WebLogic Server documentation,
especially the section on Security
Options for Cluster Architectures.

•

For Inweb, Avitek needs to
cater to three different types of
users: managers, regular
employees, and partners.

The three different audiences can be identified by
their user profile settings. For example, you can
create a user profile property called "user_type"
that has three possible values: manager,
employee, and partner. Each user is assigned an
appropriate value.

While user profile properties are not a direct
security feature, you can use the properties to
define the roles that determine secure access to
resources.

See Creating User Profile Properties in
this help system.

•

For information on creating visitor
entitlement roles and mapping those roles
to portal resources to secure the
resources, see the WebLogic
Administration help system.

•

Users will use VPN to gain access through the
firewall.

Implementing the Portal Security Scenario 6

For the three types of users,
Avitek wants to create only
two portals: one for managers
and employees and one for
partners. Since there are five
different partners, each partner
must have a separate view of
Inweb.

This requirement is easily solved by the
flexibility of the WebLogic Portal architecture.

When you create a portal file with the WebLogic
Workshop Portal Extensions, you can add books,
pages, and portlets to that file. The portal file
serves as a template with which portal
administrators can create multiple portal
instances, or desktops. Each desktop can contain
any combination of books, pages, and portlets
provided by the template, and those portal
resource instances can be assigned their own
visitor entitlement and delegated administration
roles for security.

To meet this requirement, then, only one portal is
required. That portal can be used as a template to
create separate desktops for managers,
employees, and for each of the five partners.
When any user logs in, the system knows which
type of user they are (based on user profile
properties), and they are shown only the
desktop(s) they can access (based on visitor
entitlement and delegated administration roles
that are tied to the user profile properties).

There are two other options for meeting this
requirement: creating two portal files within a
single Web application (project), or creating two
projects with a portal in each.

A decision to create two portal files is simply an
organizational decision. Both portal files serve as
templates for portal administrators to construct
portal desktops, and the same mechanisms for
applying visitor entitlements and delegated
administration apply.

If Avitek created separate projects for the portals
(Web applications), they could secure the J2EE
resources (such as JSPs) in each separately, since
Web applications have separate security scopes
in WebLogic Server. However, since you can
secure individual resources in a single Web
application, you can secure J2EE resources for
different audiences in that application using
WebLogic Server security.

Using separate Web applications for each portal
means Avitek might have to implement single

Securing Portal Applications

Implementing the Portal Security Scenario 7

sign−on as a convenience for partners who can
access the employee portal and employees who
can access the partner portal. Users will be able
to see all desktops they are entitled to in both
Web applications.

See Assembling Portal Applications in
this help system for instructions on
creating portals.

•

See Securing WebLogic Resources in the
WebLogic Server documentation,
especially the sections dealing with
securing URL (Web) resources such as
JSPs and Enterprise Java Beans (EJBs).

•

The Portal Samples contain an example
implementation of single sign−on.

•

Some of the partners also
perform contract work for
Avitek, so they must also be
able to access the employee
portal desktop.

Because you need to identify someone by certain
characteristics, you could again use a user profile
property to identify a user as both a partner and
an employee. Instead of making the property a
"choose one value" type (single, restricted), you
could make the property a "choose multiple
values" type (multiple, restricted).

You can handle security access to portal desktops
and other resources with visitor entitlements. If
the employee and partner portals are located in
separate Web applications, you can provide
single sign−on for partners as a convenience,
then handle security access to portal desktops and
other resources with visitor entitlements.

See Creating User Profile Properties in
this help system.

•

For information on creating visitor
entitlement roles and mapping those roles
to portal resources to secure the
resources, see the WebLogic
Administration help system.

•

The Portal Samples, especially the
Tutorial Portal, contain example
implementations of authentication,
including single sign−on.

•

Avitek wants all Inweb users to
authenticate before seeing any
view of the portals.

You can set up the Intranet portal to use a
front−end login JSP. After successful login, users
are taken to the portal desktop to which they have
access.

Designation of a login JSP occurs in the
WebLogic Administration Portal. When

•

Securing Portal Applications

Implementing the Portal Security Scenario 8

creating a portal, enter the name of the
login JSP file in the optional Portal URI
field of the portal properties window. For
information on creating portals, see the
WebLogic Administration Portal help
system.
You can also secure J2EE resources,
including specific URL patterns, using
your application's deployment
descriptors. See Securing WebLogic
Resources in the WebLogic Server
documentation, especially the sections
dealing with securing URL (Web)
resources.

•

The Portal Samples, especially the
Tutorial Portal, contain example
implementations of authentication.

•

For Outweb, Avitek provides
information and services on a
subscription basis, so it wants
to provide a portal that lets all
users see unsecured company
information and log in to see
secure information.

Unlike the previous requirement in the scenario
where a separate login JSP was required to access
the portal, this requirement lets users access a
portal without authenticating. The only time they
must authenticate is when they want to view the
protected information.

Providing authentication based on whether or not
users are subscribers is another instance where
user properties are useful. For example, you
could create a "subscriber" property and set it to
"true" or "false." You could create a "subscriber"
role that allows only subscribers view protected
information at login.

A best practices way of providing secure
information is by putting secure portlets on a
dedicated page. The page itself could even be
secured (entitled).

See Creating User Profile Properties in
this help system.

•

The Portal Samples contain a Login to
Portal Portlet you can reuse in your
portals. The samples also contain
example implementations of
authentication.

•

For information on creating pages and
adding portlets to them, see Assembling
Portal Applications in this help system
and the Portal Management topics in the
WebLogic Administration Portal help
system.

•

Securing Portal Applications

Implementing the Portal Security Scenario 9

Avitek has a staff of two to
administer all portals, and it
wants to grant limited
administrative access to certain
partners to let them maintain
their partner portal.

Delegated administration for WebLogic Portal is
set up in the WebLogic Administration Portal. A
system administrator or super portal
administrator can set up other administrators and
delegate different levels of access to them.

Delegated administration for tools and portal
resources in the WebLogic Administration Portal
can be defined by roles, users, and groups. In this
part of the scenario you could create an
administrator role based on user properties and
define delegated administration accordingly. Or
you could create two groups: "local
administrators" and "partner administrators," add
users to those groups, and set up delegated
administration with those groups.

With delegated administration roles set up, you
can apply those roles to individual portal
resources, giving the staff administrators full
access and the partner administrators access to
only their portal resources.

For information on creating users and
groups and setting up delegated
administration, see the WebLogic
Administration Portal help system.

•

See Creating User Profile Properties in
this help system.

•

There are two JSP−based
administration portlets that can
never be seen by anyone other
than Avitek's in−house
administrators.

Securing portlets is simple, straightforward, and
powerful using visitor entitlements. In this
requirement of the scenario, there may be a need
for backup security assurance. This can be
accomplished by securing the JSPs in question
with WebLogic Server security policies. Security
policies are server−level global roles that are
applied to J2EE resources.

See Securing WebLogic Resources in the
WebLogic Server documentation,
especially the sections dealing with
securing URL (Web) resources such as
JSPs and Enterprise Java Beans (EJBs).

•

Avitek also wants to use its
existing content management
system for delivering content
to its portals. The content
management system vendor
has created an interface to
connect to BEA's Virtual

By adding compatible third−party content
management systems into the Virtual Content
Repository, content security in those third−party
systems is maintained in the Virtual Content
Repository.

Securing Portal Applications

Implementing the Portal Security Scenario 10

Content Repository. WebLogic Portal's Virtual Content Repository
also provides limited content security beyond the
security provided by compatible third−party
content management systems.

See To control user access in the My
Content Portlet topic.

•

See the Content Management topics in
the WebLogic Administration Portal help
system.

•

Avitek will use two user
databases: The Intranet site
will use an existing user
database, and the public site
will use the default WebLogic
Server LDAP user database
and is gradually adding users
to it.

Inweb − Uses existing RDBMSRealm in the
existing domain. This can remain the
authentication provider/user database or Avitek
can migrate the user database to the WebLogic
Server LDAP user database.

Outweb − Uses WebLogic Server's default LDAP
user database.

WebLogic Server's default LDAP user database
provides all the power and functionality of the
WebLogic Server security architecture.

See Managing WebLogic Security in the
WebLogic Server documentation.

•

Summary

Following is a summary of the configuration Avitek will use for its Inweb and Outweb portal sites:

Inweb Outweb

Inweb can experience minor down time,
so it can be set up on a single server.

Because there are many existing internal
users Avitek wants to retain, it will use
its existing RDBMSRealm for user
storage and authentication.

Inweb is set up behind a firewall, so
users will use VPN to gain access from
outside the firewall.

Because of the flexibility of the portal
framework, only one portal is needed.
Multiple desktops can be created and
entitled based on that single portal.

Avitek will use BEA's Virtual Content

Outweb cannot experience down time,
so it must be set up on a cluster.

It will use the default WebLogic LDAP
user database and authentication
provider.

Because of the flexibility of the portal
framework, only one portal is needed.
Multiple desktops can be created and
entitled based on that single portal.

Avitek will use BEA's Virtual Content
Repository to connect to its
BEA−compatible third−party content
management system.

Securing Portal Applications

Implementing the Portal Security Scenario 11

Repository to connect to its
BEA−compatible third−party content
management system.

Samples

Portal Samples

Login to Portal Portlet

Related Topics

Securing Portal Applications

Portal Security Scenario

Securing Portal Applications

Implementing the Portal Security Scenario 12

Implementing Authentication
WebLogic Portal provides many different ways to implement user login and authentication against any
available authentication providers. The following sections provide nine authentication samples to help you
better understand the choices you have in implementing authentication. These sections are taken directly from
the samples in the Tutorial Portal.

Note: This topic describes how to implement authentication after authentication providers have been
configured for use with WebLogic Server. For information on setting up authentication providers, see Using
Multiple Authentication Providers In Portal Development.

In these samples, the portal Web project root is <WEBLOGIC_HOME>/samples/portal/portalApp/tutorial.
Paths in the samples are relative to this root. All resources and configuration for these samples is included in
the tutorial portal Web project which uses the <WEBLOGIC_HOME>/samples/domains/portal/config.xml
server (called portalServer). To use these samples in your own domains and portal Web projects, import or
mimic the files and configurations used in the samples.

This topic includes the following samples:

Form Based1.
Client Certificate2.
Backing File3.
Multi−Page User Registration Using Page Flow4.
Single Sign−on Within WebLogic with a Second Application5.
Auto Login6.
Basic Authentication7.
Portal Access that Requires Login8.
Perimeter Login9.
User Login Control10.

1. Form Based

Source Location: /portlets/login/formLogin/

The example /WEB−INF/web.xml specifies a CONFIDENTIAL transport−guarantee so the
/portlets/login/formLogin/login_link.jsp must build a HTTPS URL to access the redirect.jsp. The redirect.jsp
simply redirects back to the portal. This example leaves the protocol in HTTPS, but you could switch back to
HTTP in redirect.jsp if you only wanted HTTPS to protect your username/password during login.

Note: The <form−login−page> URLs specified in web.xml will be different based on whether you are running
the portal from a .portal file in WebLogic Workshop or assembled from the database when you create a
desktop in the WebLogic Administration Portal. For example, when running a file based portal such as
sample.portal (in development) the <form−login−page> element might be specified with
/samplel.portal?_nfpb=true&_pageLabel=login. When running an assembled portal (in production) the
<form−login−page> element might be specified with
/appmanager/samplePortal/sampleDesktop?_nfpb=true&_pageLabel=login.

Implementing Authentication 13

2. Client Certificate

Source Location: /portlets/login/clientCert/

These are the steps for using client certificate authorization:

Comment out the FORM or BASIC <login−config> in /WEB−INF/web.xml and uncomment the
CLIENT−CERT <login−config>. This is necessary because the Web application can have only a
single login−config.

1.

Next you can do one of 2 things:
Import the democlient−cert.p12 client certificate into your browser, located in
/portlets/login/clientCert/.

or

♦

Generate your own certificate using openssl.♦
Note: democlient−cert.p12 was created for demonstration purposes and is not meant for production
use. If you choose to generate your own certificate using openssl, they have instructions at their Web
site at www.openssl.org.

2.

If you import democlient−cert.p12, the following is for importing into IE version 6:
Double−click the democlient−cert.p12 file.a.
Click Next when the Certificate Import Wizard appears.b.
democlient−cert.p12 should be displayed in the filename textbox. Click Next.c.
Do not type a password for the private key. Click Next.d.
You can select a certificate store or not. Click Next.e.
Click Finish.f.

3.

The following steps are for configuring WebLogic Server to use SSL and the democlient−cert correctly.

With a running portalServer, open the WebLogic Administration Console
(http://<server>:<port>/console).

4.

Using the tree view pane, navigate to Security > Realms > realmName > Providers > Authentication
> DefaultIdentityAsserter.

5.

In the User Name Mapper Class Name textbox, enter examples.login.ExampleUserNameMapper.6.
Move the X.509 certificate type to the Chosen box and click Apply.7.
Navigate to Security > Realms > realmName > Users and create a new user called support with
password of password.

8.

Navigate to Servers > portalServer and click the Keystores and SSL tab.9.
Click the Show link for the Advanced Options at the bottom of the page.10.
Select Client Certs Requested But Not Enforced from the Two Way Client Cert Behavior drop down
(or enforced depending on the desired behavior) and click Apply.

11.

Add the examples.login.ExampleUserNameMapper.class to the system classpath. This can be
accomplished by adding the class to netuix_system.jar. The ExampleUserNameMapper extracts the
username from the e−mail of the Subject DN in the X.509 certificate. For example, the
democlient−cert.p12 has a Subject DN with an e−mail of support@bea.com and the resulting
username is "support". This is why the support user was added to the realm in the previous steps.

12.

Because the form−based login example uses SSL, the one−way SSL was already configured for the server. If
you need to enable client−certificate authentication for any server, it is a prerequisite to configure one−way
SSL (see "Configuring SSL" in "Managing WebLogic Security" at
http://e−docs.bea.com/wls/docs81/secmanage/ssl.html).

Securing Portal Applications

Implementing Authentication 14

After you take these steps, you can access the portal and /portlets/login/formLogin/login_link.jsp to use your
client certificate to get logged in to the portal Web application. See the form−based login example for an
explanation of the use of the login link to access a protected resource.

3. Backing file

Source Location: /portlets/login/backingFileLogin/

This example uses portal personalization code and a backing file to log in
(/WEB−INF/src/portlet/login/LoginBacking.java). The backing file also redirects back to the portal so that
database state is not clobbered by control state.

4. Multi−Page User Registration Using Page Flow

Source Location: /portlets/login/pageflowLogin/

This example uses Java Page Flow to show how a multi−page user registration portlet can be accomplished.
This example has 4 pages:

The first displays a simple user registration page.1.
The second page gathers more user information that could be stored in user properties
(personalization code).

2.

The third page will optionally authenticate the user or show a summary page (2 links).3.
The fourth page is either the logged in status of the user or the summary page.4.

5. Single Sign−on Within WebLogic with a Second Application

Source Location: /portlets/login/ssoLogin/

This is an example of single sign−on between two Web applications. For single sign−on to work, both Web
applications must have matching cookie name entries in web.xml. Since by default WebLogic sets the cookie
names to be identical if unspecified for a Web application, this behavior should work by default.

6. Auto Login

Source Location: /portlets/login/autologin/

Note: This example uses cookies, which is an insecure authentication method.

This example shows how to use cookies and encoding for autologin. When you login and select the
"autologin" checkbox, it will encode your username and password. The username and password will be added
as a cookie to the response for a life of 1 day. After this point, if you leave the portal and come back, you will
be logged in automatically, including when you exit the browser. If you log out, the cookies will be deleted
and you will no longer be automatically logged in when you revisit the portal.

This example uses a backing file (/WEB−INF/src/portlet/login/AutoLoginBacking.java).

Securing Portal Applications

Implementing Authentication 15

7. Basic Authentication

Source Location: /portlets/login/basicLogin/

This example uses the same principles as the form−based login. To use basic authentication, simply
uncomment the FORM or CLIENT−CERT based authentication methods in web.xml, and use the basic
method of authentication. You can use one of the default users in the realm such as visitor1/password to log
in.

8. Portal Access that Requires Login

Source Location: /portlets/login/loginRequiredPortal/

This example shows a portal that is only accessible after user authentication. To enable this, simply add a
security constraint entry in web.xml for all URL resources. For Example:

<security−constraint>
 <web−resource−collection>
 <web−resource−name>login</web−resource−name>
 <description>Security constraint for the whole portal</description>
 <url−pattern>/*</url−pattern>
 </web−resource−collection>
 <auth−constraint>
 <description>all users</description>
 <role−name>AnonymousRole</role−name>
 </auth−constraint>
</security−constraint>

9. Perimeter Login

Source Location: /portlets/login/perimeterLogin/

See the following WebLogic Server documentation topics:

"The Authentication Process" in "WebLogic Security Service Architecture" at
http://e−docs.bea.com/wls/docs81/secintro/archtect.html.

•

"Configuring Security Providers" at http://edocs/wls/docs81/secmanage/providers.html, especially the
following sections:

Configuring a WebLogic Authentication Provider♦
Configuring a WebLogic Identity Assertion Provider♦

•

Related Topics

Tutorial Sample

How WebLogic Portal Uses the WebLogic Server Security Framework

Securing Portal Applications

Implementing Authentication 16

How WebLogic Portal Uses the WebLogic Server
Security Framework
When you build portal applications, you secure them using authentication (Who are you?) and authorization
(What can you access?).

Authentication − WebLogic Portal uses WebLogic Server for login authentication, whether you are using
only WebLogic Server's default LDAP user store, one or more external authentication providers configured
for use with WebLogic Server, or both. The WebLogic Portal user and group management framework
communicates with multiple authentication providers through WebLogic Server for basic user and group
operations.

See: Using Multiple Authentication Providers in Portal Development | Implementing Authentication

Authorization − WebLogic Portal has its own authorization framework that lets you define roles for who can
access which portal resources. You can define delegated administration roles for your portal administrators,
and you can define entitlement roles for visitors to your portals. When a portal administrator logs in to the
WebLogic Administration portal, the administrator sees only the areas he can administer. When a visitor logs
in to a portal, the visitor sees only the books, pages, and portlets to which he is entitled.

See: Delegated Administration Overview | Overview of Visitor Entitlements

The following illustration shows authentication and authorization in more detail.

In this example, three authentication providers are being used by WebLogic Server: an OpenLDAP provider,
an RDBMS (relational database) provider, and WebLogic Server's default LDAP provider. The two external
authentication provider servers are running, and they have been added to WebLogic Server as authentication
providers in the WebLogic Server Administration Console.

How WebLogic Portal Uses the WebLogic Server Security Framework 17

1

The user logging in is authenticated against all available authentication
providers. Moe belongs to the RDBMS authentication provider and can log
in successfully (unless authentication is set to "REQUIRED" on more than
one provider).

2

On successful login to a portal, WebLogic Portal uses its
DefaultRoleMapper to see if the user belongs to any delegated
administration and visitor entitlement roles, and the user is granted access to
only the resources he is allowed to access. The role called "manager" is
defined so that anyone belonging to the group called "managerGroup" is part
of that role. The HR portlet is set up so that only members of the "manager"
role can view it.

If you are using more than the LDAP authentication provider supplied by WebLogic Server, see Using
Multiple Authentication Providers in Portal Development.

Related Topics

Implementing Authentication

Securing Portal Applications

How WebLogic Portal Uses the WebLogic Server Security Framework 18

Using Multiple Authentication Providers in Portal
Development
WebLogic Portal supports the use of multiple authentication providers in a Portal domain, which means that
users in external providers can log in to your portal applications. It also means that in your code you have
access to potentially multiple user stores.

In Portal Controls, JSP tags, and classes in the Portal API that deal with user and group management, you can
specify the authentication provider you want. (Use the WebLogic Administration Portal to see a list of
available authentication providers.)

For user and group management, the roles you specify in the WebLogic Administration Portal Authentication
Security Provider Service determine who can perform certain management tasks in your portal applications.

Note: It is possible (but not recommended) to store an identical username or group name in more than one
authentication provider. For example, user "foo" can reside in the default WebLogic Server LDAP provider
and in an external RDBMS provider. In that case, WebLogic Portal uses only one user profile for user "foo."

If you are using an RDBMS authentication provider, be aware of case sensitivity when entering names for
users and groups. For example, user "Bob" is different than user "bob."

Setting up Multiple Authentication Providers

For information on setting up and configuring multiple authentication providers, see Using Multiple
Authentication Providers with WebLogic Portal in the WebLogic Administration Portal help system.

Related Topics

How WebLogic Portal Uses the WebLogic Server Security Framework

Using Multiple Authentication Providers in Portal Development 19

Unified User Profiles Overview
If you have an existing store of users, groups, and additional properties (such as address, e−mail address,
phone number, and so on), unified user profiles are a necessary part of bringing those user properties into the
WebLogic Portal environment, where they can be used for retrieving and editing property values and setting
up personalization, delegated administration, and visitor entitlements.

This topic describes the unified user profile, when to use it, and when not to use it.

Note: This topic contains the terms "user store" and "data store." A user store can contain users and groups, as
well as additional properties. A data store implies that the store does not have to contain users and groups. It
can simply contain properties.

What is a Unified User Profile?

Here is an example that explains what a unified user profile is and does:

Let's say you're creating a new portal application that you want users to be able to log in to. Let's also say your
users are stored in an RDBMS user store outside of the WebLogic environment. You could connect
WebLogic Server (your portal application's domain server instance) to your RDBMS system, and your users
could log in to your portal application as if their usernames and passwords were stored in WebLogic Server. If
authentication was all you wanted to provide through your RDBMS user store, you could stop here without
needing a unified user profile.

However, let's say you also stored e−mail and phone number information (properties) for users in your
RDBMS user store, and you wanted to be able to access those properties in your portal applications. In this
case, you need to create a unified user profile for your RDBMS user store that lets you access those additional
properties from your code.

Technically speaking, a unified user profile is a stateless session bean you create (with associated classes) that
lets WebLogic Portal read property values stored in external data stores, such as LDAP servers and databases.
Once connected to an external data store with a unified user profile, you can use portal JSP tags, controls, and
the WebLogic Portal API to retrieve user property values from that store. You can also take the extra step of
surfacing these external properties in the WebLogic Administration portal, where the properties can be used to
define rules for personalization, visitor entitlements, and delegated administration.

Whether or not you have additional properties stored in your external user store, the external users and groups
you connect to WebLogic Server are automatically assigned the default user property values you have set up
in WebLogic Portal, without the use of a unified user profile. With the WebLogic Administration Portal, you
can change the default WebLogic Portal property values for those users. These values are stored in WebLogic
Portal's RDBMS data store using the Portal schema.

The following figure shows where a unified user profile fits between an external user store and the WebLogic
environment.

Unified User Profiles Overview 20

1

This external RDBMS user store, which supports authentication, contains
users (principals) and passwords in one database table and groups
(principals) in another. Giving a user store authentication capabilities (as
an authentication provider or identity asserter) involves configuration steps
not associated with the unified user profile configuration process. (See
Developing Security Providers for WebLogic Server.) Unified user profile
configuration is not dependent on the authentication provider configuration
and vice versa.

Once the RDBMS authentication provider is connected to WebLogic
Server, WebLogic Server (and WebLogic Portal) can see those users and
groups. Those users can log in to your portal applications, and you can
include those users and groups in your rules for personalization, delegated
administration, and visitor entitlements. Also, WebLogic Portal's
ProfileWrapper maps the principals to properties kept in the Portal schema,
thereby establishing the user profile.

2 Unified User Profile − The same external table that contains users and
passwords also contains additional properties (email and phone) for each
user. These additional properties are not part of authentication; but they are

Securing Portal Applications

Unified User Profiles Overview 21

part of each user's profile. If you want to access these properties in your
portal applications (with the WebLogic Portal JSP tags, controls, or API),
you must create a unified user profile for the RDBMS user store. When
you create the unified user profile, the ProfileWrapper includes the external
properties in the user profile. The unified user profile consists of a stateless
session bean and associated classes that you create.

If you want to surface any of these properties in the WebLogic
Administration Portal to be used in defining rules for personalization,
delegated administration, or visitor entitlements, create a user profile
property set for the external user store in addition to implementing your
unified user profile session bean. The property set provides metadata about
your external properties so that WebLogic Workshop and the WebLogic
Administration Portal know how to display them.

Properties from an external data store are typically read only in the
WebLogic Administration Portal.

3

WebLogic Portal lets you create user/group properties and set default
values for those properties. Any user or group in WebLogic Server,
whether created in the default LDAP store or brought in through a
connection to an external user store, is automatically assigned those default
property values; and you can change the default values for each user or
group, programmatically or in the WebLogic Administration Portal. This
does not involve unified user profiles, because the properties to be
retrieved are local, not stored in an external data store.

In the illustration, after the authentication provider or identity asserter
provides the principals, the ProfileWrapper combines the principals with
the external properties of email and phone (retrieved by the unified user
profile) and the default WebLogic Portal properties of address and postal
code, all of which make up the full user profile.

What a Unified User Profile is Not

A user profile is not a security realm, and it does not provide authentication. It is not even the external user
store itself. It is the connection (stateless session bean with associated classes) that lets you read properties in
the external user store.

When Should You Create a Unified User Profile?

Create a unified user profile for an external data store if you want to do any of the following:

Use WebLogic Portal's JSP tags, controls, or API to retrieve property values from that external store.•
Surface external properties in the WebLogic Administration Portal for use in defining rules for
personalization, delegated administration, or visitor entitlements. Users and groups are not considered
properties.

•

Securing Portal Applications

Unified User Profiles Overview 22

When Don't You Need a Unified User Profile?

You do not need to create a unified user profile for an external data store if you only want to:

Provide authentication for users in the external user store.•
Define rules for personalization, delegated administration, or visitor entitlements based only on users
or groups in an external user store, not on user properties.

•

Define rules for personalization, delegated administration, or visitor entitlements based on the
WebLogic Portal user profile properties you create in WebLogic Workshop, which are kept in the
Portal schema.

•

Setting up a Unified User Profile

See Setting up Unified User Profiles.

Related Topics

Using Multiple Authentication Providers in Portal Development (external user stores)

Securing Portal Applications

Unified User Profiles Overview 23

Setting up Unified User Profiles
This topic provides guidelines and instructions on creating a unified user profile to access user/group
properties from an external user store. (See Unified User Profiles Overview for overview information.)

Best Practices: When possible, use WebLogic Portal's user profile functionality (default UserProfileManager)
to assign properties to users and groups. Given the choice between creating and storing additional properties
in an external user store (which requires write access to that external store, which must be implemented) and
creating and storing them in WebLogic Portal, doing so in WebLogic Portal can greatly improve performance
on accessing property values. If you are storing users and groups in an external store, the ideal configuration is
storing only users, groups, and passwords in the external store and creating and setting additional properties in
WebLogic Portal. With that configuration, performance is optimal and you do not have to create a unified user
profile.

To create a UUP to retrieve user data from external sources, complete the following tasks:

Create an EntityPropertyManager EJB to Represent External Data

Deploy a ProfileManager That Can Use the New EntityPropertyManager

If you have an LDAP server for which you want to create a unified user profile, WebLogic Portal provides a
default unified user profile you can modify. See Retrieving User Profile Data from LDAP.

Create an EntityPropertyManager EJB to Represent External Data

To incorporate data from an external source, you must first create a stateless session bean that implements the
methods of the com.bea.p13n.property.EntityPropertyManager remote interface. EntityPropertyManager is the
remote interface for a session bean that handles the persistence of property data and the creation and deletion
of profile records. By default, EntityPropertyManager provides read−only access to external properties.

In addition, the stateless session bean should include a home interface and an implementation class. For
example:

MyEntityPropertyManager
extends com.bea.p13n.property.EntityPropertyManager

MyEntityPropertyManagerHome
extends javax.ejb.EJBHome

Your implementation class can extend the EntityPropertyManagerImpl class. However the only requirement is
that your implementation class is a valid implementation of the MyEntityPropertyManager remote interface.
For example:

MyEntityPropertyManagerImpl extends
com.bea.p13n.property.internal.EntityPropertyManagerImpl

or

MyEntityPropertyManagerImpl extends
javax.ejb.SessionBean

Setting up Unified User Profiles 24

Recommended EJB Guidelines

We recommend the following guidelines for your new EJB:

Your custom EntityPropertyManager is not a default EntityPropertyManager. A default
EntityPropertyManager is used to get/set/remove properties in the Portal schema. Your custom
EntityPropertyManager does not have to support the following methods. It can throw
java.lang.UsupportedOperationException instead:

getDynamicProperties()♦
getEntityNames()♦
getHomeName()♦
getPropertyLocator()♦
getUniqueId()♦

•

If you want to be able to use the portal framework and tools to create and remove users in your
external data store, you must support the createUniqueId() and removeEntity() methods. However,
your custom EntityPropertyManager is not the default EntityPropertyManager so your
createUniqueId() method does not have to return a unique number. It must create the user entity in
your external data store and then it can return any number, such as −1.

•

The following recommendations apply to the EntityPropertyManager() methods that you must
support:

getProperty() − Use caching. You should support the getProperties() method to retrieve all
properties for a user at once, caching them at the same time. Your getProperty() method
should use getProperties().

♦

setProperty() − Use caching.♦
removeProperties(), removeProperty() − After these methods are called, a call to
getProperty() should return null for the property. Remove properties from the cache, too.

♦

•

Your implementations of the getProperty(), setProperty(), removeProperty(), and removeProperties()
methods must include any logic necessary to connect to the external system.

•

If you want to cache property data, the methods must be able to cache profile data appropriately for
that system. (See the com.bea.p13n.cache package in the WebLogic Portal Javadoc.)

•

If the external system contains read−only data, any methods that modify profile data must throw a
java.lang.UnsupportedOperationException. Additionally, if the external data source contains users
that are created and deleted by something other than your WebLogic Portal createUniqueId() and
removeEntity() methods can simply throw an UnsupportedOperationException.

•

To avoid class loader dependency issues, make sure that your EJB resides in its own package.•
For ease of maintenance, place the compiled classes of your custom EntityPropertyManager bean in
your own JAR file (instead of modifying an existing WebLogic Portal JAR file).

•

Before you deploy your JAR file, follow the steps in the next section.

Deploy a ProfileManager That Can Use the New EntityPropertyManager

A "user type" is a mapping of a ProfileType name to a particular ProfileManager. This mapping is done in the
UserManager EJB deployment descriptor.

To access the data in your new EntityPropertyManager EJB, you must do one of the following:

Modifying the Existing ProfileManager Deployment Configuration − In most cases you will be able
to use the default deployment of ProfileManager, the UserProfileManager. You will modify the
UserProfileManager's deployment descriptor to map a property set and/or properties to your custom
EntityPropertyManager. If you support the createUniqueId() and removeEntity() methods in your

•

Securing Portal Applications

Setting up Unified User Profiles 25

custom EntityPropertyManager, you can use WebLogic Administration Portal to create a user of type
"User" with a profile that can get/set properties using your custom EntityPropertyManager.
Configuring and Deploying a New ProfileManager − In some cases you may want to deploy a newly
configured ProfileManager that will be used instead of the UserProfileManager. This new
ProfileManager is mapped to a ProfileType in the deployment descriptor for the UserManager. If you
support the createUniqueId() and removeEntity() methods in your custom EntityPropertyManager,
you can use the WebLogic Administration Portal (or API) to create a user of type "MyUser" (or
anything else you name it) that can get/set properties using the customized deployment of the
ProfileManager that is, in turn, configured to use your custom EntityPropertyManager.

•

ProfileManager is a stateless session bean that manages access to the profile values that the
EntityPropertyManager EJB retrieves. It relies on a set of mapping statements in its deployment descriptor to
find data. For example, the ProfileManager receives a request for the value of the "DateOfBirth" property,
which is located in the "PersonalData" property set. ProfileManager uses the mapping statements in its
deployment descriptor to determine which EntityPropertyManager EJB contains the data.

Modifying the Existing ProfileManager Deployment Configuration

If you use the existing UserProfileManager deployment to manage your user profiles, perform the following
steps to modify the deployment configuration.

Under most circumstances, this is the method you should use to deploy your UUP. An example of this method
is the deployment of the custom EntityPropertyManager for LDAP property retrieval, the
LdapPropertyManager. The classes for the LdapPropertyManager are packaged in p13n_ejb.jar. The
deployment descriptor for the UserProfileManager EJB is configured to map the "ldap" property set to the
LdapPropertyManager. The UserProfileManager is deployed in p13n_ejb.jar.

Back up the p13n_ejb.jar file in your enterprise application root directory.1.
From p13n_ejb.jar, extract META−INF/ejb−jar.xml and open it for editing.2.
In ejb−jar.xml, find the <env−entry> element, as shown in the following example:
<!−− map all properties in property set ldap to ldap server −−>
<env−entry>
 <env−entry−name>PropertyMapping/ldap</env−entry−name>
 <env−entry−type>java.lang.String</env−entry−type>
 <env−entry−value>LdapPropertyManager</env−entry−value>
</env−entry>

and add an <env−entry> element after this to map a property set to your custom
EntityPropertyManager, a shown in the following example:
<!−− map all properties in UUPExample property set to MyEntityPropertyManager −−>
<env−entry>
 <env−entry−name>PropertyMapping/UUPExample</env−entry−name>
 <env−entry−type>java.lang.String</env−entry−type>
 <env−entry−value>MyEntityPropertyManager</env−entry−value>
</env−entry>

3.

In ejb−jar.xml, find the <ejb−ref> element shown in the following example:
<!−− an ldap property manager −−>
<ejb−ref>
 <ejb−ref−name>ejb/LdapPropertyManager</ejb−ref−name>
 <ejb−ref−type>Session</ejb−ref−type>
 <home>com.bea.p13n.property.EntityPropertyManagerHome</home>
 <remote>com.bea.p13n.property.EntityPropertyManager</remote>
</ejb−ref>

4.

Securing Portal Applications

Setting up Unified User Profiles 26

and add an <ejb−ref> element after this to map a reference to an EJB that matches the name from the
previous step with ejb/ prepended as shown in the following example:
<!−− an example property manager −−>
<ejb−ref>
 <ejb−ref−name>ejb/MyEntityPropertyManager</ejb−ref−name>
 <ejb−ref−type>Session</ejb−ref−type>
 <home>examples.usermgmt.MyEntityPropertyManagerHome</home>
 <remote>examples.usermgmt.MyEntityPropertyManager</remote>
</ejb−ref>

The home and remote class names match the classes from your EJB JAR file for your custom
EntityPropertyManager.
If your EntityPropertyManager implementation handles creating and removing profile records, you
must also add Creator and Remover entries. For example:
<env−entry>
 <env−entry−name>Creator/Creator1</env−entry−name>
 <env−entry−type>java.lang.String</env−entry−type>
 <env−entry−value>MyEntityPropertyManager</env−entry−value>
</env−entry>

<env−entry>
 <env−entry−name>Remover/Remover1</env−entry−name>
 <env−entry−type>java.lang.String</env−entry−type>
 <env−entry−value>MyEntityPropertyManager</env−entry−value>
</env−entry>

This instructs the UserProfileManager to call your custom EntityPropertyManager when creating or
deleting user profile records. The names "Creator1" and "Remover1" are arbitrary. All Creators and
Removers will be iterated through when the UserProfileManager creates or removes a user profile.
The value for the Creator and Remover matches the ejb−ref−name for your custom
EntityPropertyManager without the ejb/ prefix.

5.

From p13n_ejb.jar, extract META−INF/weblogic−ejb−jar.xml and open it for editing.6.
In weblogic−ejb−jar.xml, find the elements shown in the following example:
<weblogic−enterprise−bean>
 <ejb−name>UserProfileManager</ejb−name>
 <reference−descriptor>
 <ejb−reference−description>
 <ejb−ref−name>ejb/EntityPropertyManager</ejb−ref−name>
 <jndi−name>${APPNAME}.BEA_personalization. EntityPropertyManager</jndi−name>
 </ejb−reference−description>

and add an ejb−reference−description to map the ejb−ref for your custom EntityPropertyManager to
the JNDI name. This JNDI name must match the name you assigned in weblogic−ejb−jar.xml in the
JAR file for your customer EntityPropertyManager. It should look like the following example:
<weblogic−enterprise−bean>
 <ejb−name>UserProfileManager</ejb−name>
 <reference−descriptor>
 <ejb−reference−description>
 <ejb−ref−name>ejb/EntityPropertyManager</ejb−ref−name>
 <jndi−name>${APPNAME}.BEA_personalization. EntityPropertyManager</jndi−name>
 </ejb−reference−description>
 <ejb−reference−description>
 <ejb−ref−name>ejb/MyEntityPropertyManager</ejb−ref−name>
 <jndi−name>${APPNAME}.BEA_personalization. MyEntityPropertyManager</jndi−name>
 </ejb−reference−description>

7.

Securing Portal Applications

Setting up Unified User Profiles 27

Note the ${APPNAME} string substitution variable. The WebLogic EJB container automatically
substitutes the enterprise application name to scope the JNDI name to the application.
Update p13n_ejb.jar for your new deployment descriptors. You can use the jar uf command to update
the modified META−INF/ deployment descriptors.

8.

Edit your application's META−INF/application.xml to add an entry for your custom
EntityPropertyManager EJB module as shown in the following example:
<module>
 <ejb>UUPExample.jar</ejb>
</module>

9.

If you are using an application−wide cache, you can manage it from the WebLogic Administration
Console if you add a <Cache> tag for your cache to the META−INF/application−config.xml
deployment descriptor for your enterprise application like this:
<Cache Name="UUPExampleCache" TimeToLive="60000"/>

10.

Verify the modified p13n_ejb.jar and your custom EntityPropertyManager EJB JAR archive are in the
root directory of your enterprise application and start WebLogic Server.

11.

Use the WebLogic Server Administration Console to verify your EJB module is deployed to the
enterprise application and then use the console to add your server as a target for the EJB module. You
need to select a target to have your domain's config.xml file updated to deploy your EJB module to
the server.

12.

Use the WebLogic Workshop Property Set Designer to create a User Profile (property set) that
matches the name of the property set that you mapped to your custom EntityPropertyManager in
ejb−jar.xml for the UserProfileManager (in p13n_ejb.jar). You could also map specific property
names in a property set to your custom EntityPropertyManager, which would allow you to surface the
properties and their values in the WebLogic Administration Portal for use in creating rules for
personalization, delegated administration, and visitor entitlements.

13.

Your new Unified User Profile type is ready to use. You can use the WebLogic Administration Portal to
create a user, and it will use your UUP implementation when the "UUPExample" property set is being
modified. When you call createUser("bob", "password") or createUser("bob", "password", null) on the
UserManager, several things will happen:

A user named "bob" is created in the security realm.•
A WebLogic Portal Server profile record is created for "bob" in the user store.•
If you set up the Creator mapping, the UserManager will call the default ProfileManager deployment
(UserProfileManager) which will call your custom EntityPropertyManager to create a record for Bob
in your data source.

•

Retrieving Bob's profile will use the default ProfileManager deployment (UserProfileManager), and
when you request a property belonging to the "UUPExample" property set, the request will be routed
to your custom EntityPropertyManager implementation.

•

Configuring and Deploying a New ProfileManager

If you are going to deploy a newly configured ProfileManager instead of using the default ProfileManager
(UserProfileManager) to manage your user profiles, perform the following steps to modify the deployment
configuration. In most cases, you will not have to use this method of deployment. Use this method only if you
need to support multiple types of users that require different ProfileManager deployments�deployments that
allow a property set to be mapped to different custom EntityPropertyManagers based on ProfileType.

An example of this method is the deployment of the custom CustomerProfileManager in customer.jar. The
CustomerProfileManager is configured to use the custom EntityPropertyManager
(CustomerPropertyManager) for properties in the "CustomerProperties" property set. The UserManager EJB

Securing Portal Applications

Setting up Unified User Profiles 28

in p13n_ejb.jar is configured to map the "WLCS_Customer" ProfileType to the custom deployment of the
ProfileManager, CustomerProfileManager.

To configure and deploy a new ProfileManager, use this procedure.

Back up the p13n_ejb.jar file in your enterprise application root directory.1.
From p13n_ejb.jar, extract META−INF/ejb−jar.xml, and open it for editing.2.
In ejb−jar.xml, copy the entire <session> tag for the UserProfileManager, and configure it to use your
custom implementation class for your new deployment of ProfileManager.
In addition, you could extend the UserProfileManager home and remote interfaces with your own
interfaces if you want to repackage them to correspond to your packaging (for example.,
examples.usermgmt.MyProfileManagerHome, examples.usermgmt.MyProfileManager).
However, it is sufficient to replace the bean implementation class:
You must create an <env−entry> element to map a property set to your custom
EntityPropertyManager. You must also create a <ejb−ref> element to map a reference to an EJB that
matches the name from the PropertyMapping with ejb/ prepended. The home and remote class names
for your custom EntityPropertyManager match the classes from your EJB JAR file for your custom
EntityPropertyManager.

Also, if your EntityPropertyManager implementation handles creating and removing profile records,
you must also add Creator and Remover entries. This instructs your new ProfileManager to call your
custom EntityPropertyManager when creating or deleting user profile records.

Note: The name suffixes for the Creator and Remover, "Creator1" and "Remover1", are arbitrary. All
Creators and Removers will be iterated through when your ProfileManager creates or removes a user
profile. The value for the Creator and Remover matches the <ejb−ref−name> for your custom
EntityPropertyManager without the ejb/ prefix.

3.

In ejb−jar.xml, you must add an <ejb−ref> to the UserManager EJB section to map your ProfileType
to your new deployment of the ProfileManager, as shown in the following example:
<ejb−ref>
 <ejb−ref−name>ejb/ProfileType/UUPExampleUser</ejb−ref−name>
 <ejb−ref−type>Session</ejb−ref−type>
 <home>com.bea.p13n.usermgmt.profile.ProfileManagerHome</home>
 <remote>com.bea.p13n.usermgmt.profile.ProfileManager</remote>
</ejb−ref>

The <ejb−ref−name> must start with ejb/ProfileType/ and must end with the name that you want to
use as the profile type as an argument in the createUser() method of UserManager.

4.

From p13n_ejb.jar, extract META−INF/weblogic−ejb−jar.xml and open it for editing.5.
In weblogic−ejb−jar.xml, copy the <weblogic−enterprise−bean> tag, shown in the following example,
for the UserProfileManager and configure it for your new ProfileManager deployment:
<weblogic−enterprise−bean>
 <ejb−name>MyProfileManager</ejb−name>
 <reference−descriptor>
 <ejb−reference−description>
 <ejb−ref−name>ejb/EntityPropertyManager</ejb−ref−name>
 <jndi−name>${APPNAME}.BEA_personalization. EntityPropertyManager</jndi−name>
 </ejb−reference−description>
 <ejb−reference−description>
 <ejb−ref−name>ejb/PropertySetManager</ejb−ref−name>
 <jndi−name>${APPNAME}.BEA_personalization. PropertySetManager</jndi−name>
 </ejb−reference−description>
 <ejb−reference−description>
 <ejb−ref−name>ejb/MyEntityPropertyManager</ejb−ref−name>

6.

Securing Portal Applications

Setting up Unified User Profiles 29

 <jndi−name>${APPNAME}.BEA_personalization. MyEnitityPropertyManager</jndi−name>
 </ejb−reference−description>
 </reference−descriptor>
 <jndi−name>${APPNAME}.BEA_personalization. MyProfileManager</jndi−name>
</weblogic−enterprise−bean>

You must create an <ejb−reference−description> to map the <ejb−ref> for your custom
EntityPropertyManager to the JNDI name. This JNDI name must match the name you assigned in
weblogic−ejb−jar.xml in the JAR file for your custom EntityPropertyManager.
Note the ${APPNAME} string substitution variable. The WebLogic Server EJB container
automatically substitutes the enterprise application name to scope the JNDI name to the application.
In weblogic−ejb−jar.xml, copy the <transaction−isolation> tag for the UserProfileManager, shown in
the following example, and configure it for your new ProfileManager deployment:
<transaction−isolation>
 <isolation−level>TRANSACTION_READ_COMMITTED</isolation−level>
 <method>
 <ejb−name>MyProfileManager</ejb−name>
 <method−name>*</method−name>
 </method>
</transaction−isolation>

7.

Create a temporary p13n_ejb.jar for your new deployment descriptors and your new ProfileManager
bean implementation class. This temporary EJB JAR archive should not have any container classes in
it. Run ejbc to generate new container classes.

8.

Edit your application's META−INF/application.xml to add an entry for your custom
EntityPropertyManager EJB module, as shown in the following example:
<module>
 <ejb>UUPExample.jar</ejb>
</module>

9.

If you are using an application−wide cache, you can manage it from the WebLogic Server
Administration Console if you add a <Cache> tag for your cache to the
META−INF/application−config.xml deployment descriptor for your enterprise application as shown
in the following example:
<Cache Name="UUPExampleCache" TimeToLive="60000"/>

Verify the modified p13n_ejb.jar and your custom EntityPropertyManager EJB JAR archive are in the
root directory of your enterprise application and start your server.

10.

Use the WebLogic Server Administration Console to verify your EJB module is deployed to the
enterprise application and add your server as a target for the EJB module. You must select a target to
have your domain's config.xml file updated to deploy your EJB module to the server.

11.

Use the WebLogic Workshop Property Set Designer to create a User Profile (property set) that
matches the name of the property set that you mapped to your custom EntityPropertyManager in
ejb−jar.xml for the UserProfileManager (in p13n_ejb.jar). You could also map specific property
names in a property set to your custom EntityPropertyManager, which would allow you to surface the
properties and their values in the WebLogic Administration Portal for use in creating rules for
personalization, delegated administration, and visitor entitlements.

12.

Your new Unified User Profile type is ready to use. You can use the WebLogic Administration Portal to
create a user, and it will use your UUP implementation when the "UUPExample" property set is being
modified. That is because you mapped the ProfileType using an <ejb−ref> in your UserManager deployment
descriptor, ejb/ProfileType/UUPExampleUser.

Now, when you call createUser("bob", "password", "UUPExampleUser") on the UserManager, several things
will happen:

Securing Portal Applications

Setting up Unified User Profiles 30

A user named "bob" is created in the security realm.•
A WebLogic Portal Server profile record is created for "bob" in the WebLogic Portal RDBMS
repository.

•

If you set up the Creator mapping, the UserManager will call your new ProfileManager deployment,
which will call your custom EntityPropertyManager to create a record for Bob in your data source.

•

Retrieving Bob's profile will use your new ProfileManager deployment, and when you request a
property belonging to the "UUPExample" property set, the request will be routed to your custom
EntityPropertyManager implementation.

•

Retrieving User Profile Data from LDAP

WebLogic Portal provides a default unified user profile for retrieving properties from an LDAP server. Use
this procedure to implement the LDAP unified user profile for retrieving properties from your LDAP server.

The LdapRealm security realm and the LdapPropertyManager unified user profile (UUP) for retrieving user
properties from LDAP are independent of each other. They do not share configuration information and there
is no requirement to use either one in conjunction with the other. A security realm has nothing to do with a
user profile. A security realm provides user/password data, user/group associations, and group/group
associations. A user profile provides user and group properties. A password is not a property.

In order to successfully retrieve the user profile from the LDAP server, ensure that you've done the following:

If you have already deployed the application on a WebLogic Portal instance, stop the server.1.
Extract p13n_ejb.jar from your application root to a temporary directory.2.
In the temporary directory, open META−INF/ejb−jar.xml, which contains a commented block called
"Ldap Property Manager." Uncomment and reconfigure this section using the following steps:

Remove the closing comment mark (−−>) from the end of the "Ldap Property Manager"
block, just before the "Property Set Web Service EJB" block, and add it to the end of the first
paragraph of the Ldap Property Manager block, like this:

<!−− Ldap Property Manager
 To use this, uncomment it here as well as in weblogic−ejb−jar.xml.
 Configure the LDAP connection and settings using the env−entry values (see descriptions below).
 Do not forget to uncomment the ejb−link and method−permission tags for the LdapPropertyManager.
 An easy way to ensure you don't miss anything is to search for "ldap" (case−insensitive) here AND in
 weblogic−ejb−jar.xml. Search from the beginning to the end of the file.
−−>

a.

In the "Ldap Property Manager" block, look for the following default settings and replace
them with your own:

ldap://server.company.com:389
Change this to the
value of your LDAP
server URL.

uid=admin, ou=Administrators,
ou=TopologyManagement, o=NetscapeRoot

Change this to the
value of your LDAP
server's principal.

<env−entry−value>weblogic</env−entry−value>

Change "weblogic"
to your LDAP
server's
principalCredential.

b.

3.

Securing Portal Applications

Setting up Unified User Profiles 31

ou=People,o=company.com
Change this to your
LDAP server's
UserDN.

ou=Groups,o=company.com
Change this to your
LDAP server's
GroupDN.

<env−entry−value>uid</env−entry−value>

Change "uid" to
your LDAP server's
usernameAttribute
setting.

<env−entry−value>cn</env−entry−value>

Change "cn" to your
LDAP server's
groupnameAttribute
setting.

In the "User Profile Manager" and "Group Profile Manager" sections, find the following
lines:

<!−− <ejb−link>LdapPropertyManager</ejb−link> −−>
<ejb−link>EntityPropertyManager</ejb−link>

Uncomment the LdapPropertyManager line and delete the EntityPropertyManager line in
both sections.

c.

In the <method−permission> and <container−transaction> sections, find and uncomment the
following:

<!−−
<method>
 <ejb−name>LdapPropertyManager</ejb−name>
 <method−name>*</method−name>
</method>
−−>

d.

Check to see that you have uncommented all Ldap configurations by doing a search for
"Ldap" in the file.

e.

Save and close the file.f.
In the temporary directory, open META−INF/weblogic−ejb−jar.xml and perform the following
modifications:

4.

Uncomment the "LdapPropertyManager" block:

LdapPropertyManager
<weblogic−enterprise−bean>
 <ejb−name>LdapPropertyManager</ejb−name>
 <enable−call−by−reference>True</enable−call−by−reference>
 <jndi−name>${APPNAME}.BEA_personalization.LdapPropertyManager</jndi−name>
</weblogic−enterprise−bean>

a.

In the "Security configuration" section of the file, uncomment the LdapPropertyManager
method:

<method>
 <ejb−name>LdapPropertyManager</ejb−name>
 <method−name>*</method−name>
</method>

b.

Securing Portal Applications

Setting up Unified User Profiles 32

Check to see that you have uncommented all Ldap configurations by doing a search for
"Ldap" in the file.

c.

Save and close the file.d.
Replace the original p13n_ejb.jar with the modified version.5.

Rename the original p13n_ejb.jar to use it as a backup. For example, rename it to
p13n_ejb.jar.backup.

a.

JAR the temporary version of p13n_ejb.jar to which you made changes. Name it
p13n_ejb.jar.

b.

Copy the new JAR to your application's root directory.c.
Start the server and re−deploy the application.6.
The properties from your LDAP server are now accessible through the WebLogic Portal API, JSP
tags, and controls.

If you want to surface the properties from your LDAP server in the WebLogic Administration Portal
(for use in defining rules for personalization, delegated administration, and visitor entitlements),
create a user profile property set called ldap.usr, and create properties in the property set that exactly
match the names of the LDAP properties you want to surface.

7.

Enabling SUBTREE_SCOPE Searches for Users and Groups

The LdapPropertyManager EJB in p13n_ejb.jar allows for the inspection of the LDAP schema to determine
multi−valued versus single−value LDAP attributes, to allow for multiple userDN/groupDN, and to allow for
SUBTREE_SCOPE searches for users and groups in the LDAP server. Following are more detailed
explanations:

The determination of multi−value versus single−value LDAP attributes allows a developer to configure the
ejb−jar.xml deployment descriptor for the LdapPropertyManager EJB to specify that the LDAP schema be
used to determine if a property is single− or multi−value.

To enable SUBTREE−SCOPE for users and groups:

Stop the server.1.
Extract p13n_ejb.jar from your application root directory to a temporary directory and edit the
temporary META−INF/ejb−jar.xml by setting the following env−entries.
<!−− Flag to specify if LDAP attributes will be determined to be single value
or multi−value via the schema obtained from the attribute. If false,
then the attribute is stored as multi−valued (a Collection) only if it has
more than one value. Leave false unless you intend to use multi−valued LDAP
attributes that may have only one value. Using true adds overhead to check
the LDAP schema. Also, if you use true beware that most LDAP attributes are
multi−value. For example, iPlanet Directory Server 5.x uses multi−value for
givenName, which you may not expect unless you are familiar with LDAP schemas.
This flag will apply to property searches for all userDNs and all groupDNs. −−>

<env−entry>
 <env−entry−name>config/detectSingleValueFromSchema</env−entry−name>
 <env−entry−type>java.lang.Boolean</env−entry−type>
 <env−entry−value>true</env−entry−value>
</env−entry>

<!−− Value of the name of the attribute in the LDAP schema that is used
to determine single value or multi−value (RFC2252 uses SINGLE−VALUE).
This attribute in the schema should be true for single value and false

2.

Securing Portal Applications

Setting up Unified User Profiles 33

or absent from the schema otherwise. The value only matters if
config/detectSingleValueFromSchema is true. −−>

<env−entry>
 <env−entry−name>config/singleValueSchemaAttribute</env−entry−name>
 <env−entry−type>java.lang.String</env−entry−type>
 <env−entry−value>SINGLE−VALUE</env−entry−value>
</env−entry>

It is not recommended that true be used for config/detectSingleValueFromSchema unless you are
going to write rules that use multi−valued LDAP attributes that have a single value. Using
config/detectSingleValueFromSchema = true adds the overhead of checking the LDAP schema for
each attribute instead of the default behavior (config/detectSingleValueFromSchema = false), which
only stores an attribute as multi−valued (in a Collection) if it has more than one value.

This feature also implements changes that allow you to use SUBTREE_SCOPE searches for users and
groups. It also allows multiple base userDN and groupDN to be specified. The multiple base DN can
be used with SUBTREE_SCOPE searches enabled or disabled.

A SUBTREE_SCOPE search begins at a base userDN (or groupDN) and works down the branches of
that base DN until the first user (or group) is found that matches the username (or group name).

To enable SUBTREE_SCOPE searches you must set the Boolean config/objectPropertySubtreeScope
env−entry in the ejb−jar.xml for p13n_ejb.jar.jar to true and then you must set the config/userDN and
config/groupDN env−entry values to be equal to the base DNs from which you want your
SUBTREE_SCOPE searches to begin.

For example, if you have users in ou=PeopleA,ou=People,dc=mycompany,dc=com and in
ou=PeopleB,ou=People,dc=mycompany,dc=com then you could set config/userDN to
ou=People,dc=mycompany,dc=com and properties for these users would be retrieved from your
LDAP server because the user search would start at the "People" ou and work its way down the
branches (ou="PeopleA" and ou="PeopleB").

You should not create duplicate users in branches below your base userDN (or duplicate groups
below your base groupDN) in your LDAP server. For example, your LDAP server will allow you to
create a user with the uid="userA" under both your PeopleA and your PeopleB branches. The
LdapPropertyManager in p13n_ejb.jar.jar will return property values for the first userA that it finds.

It is recommended that you do not enable this change (by setting config/objectPropertySubtreeScope
to true) unless you need the flexibility offered by SUBTREE_SCOPE searches.

An alternative to SUBTREE_SCOPE searches (with or without multiple base DNs) would be to
configure multiple base DNs and leave config/objectPropertySubtreeScope set to false. Each base DN
would have to be the DN that contains the users (or groups) because searches would not go any lower
than the base DN branches. The search would cycle from one base DN to the next until the first
matching user (or group) is found.
The new ejb−jar.xml deployment descriptor is fully commented to explain how to set multiple DNs,
multiple usernameAttributes (or groupnameAttributes), and how to set the
objectPropertySubtreeScope flag.
Save and close the file.3.
Replace the original p13n_ejb.jar with the modified version:4.

Securing Portal Applications

Setting up Unified User Profiles 34

Rename the original p13n_ejb.jar to use it as a backup. For example, rename it to
p13n_ejb.jar.backup.

a.

JAR the temporary version of p13n_ejb.jar to which you made changes. Name it
p13n_ejb.jar.

b.

Copy the new JAR to your application's root directory.c.
Start the server and re−deploy the application.5.

Related Topics

Using Multiple Authentication Providers in Portal Development

Securing Portal Applications

Setting up Unified User Profiles 35

	Table of Contents
	Securing Portal Applications
	Portal Security Scenario
	Implementing the Portal Security Scenario
	Implementing Authentication
	How WebLogic Portal Uses the WebLogic Server Security Framework
	Using Multiple Authentication Providers in Portal Development
	Unified User Profiles Overview
	Setting up Unified User Profiles

