
Version 8.1 SP4
December 2004

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the agreement. This document may
not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium
or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software−Restricted Rights
Clause at FAR 52.227−19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227−7013, subparagraph (d) of the Commercial Computer Software−−Licensing clause
at NASA FAR supplement 16−52.227−86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the
part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR
THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E−Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Table of Contents
Designing Asynchronous Interfaces..1

Getting Started: Using Asynchrony to Enable Long−Running Operations..2

Introduction to Asynchronous Interfaces...3

Introduction to Asynchronous Java Controls..5

Using Callbacks to Notify Clients of Events...7

Using Buffering to Create Asynchronous Methods and Callbacks..8

Designing Conversational Web Services...12

Overview: Conversations...14

Life of a Conversation..16

Implementing Conversations...19

Managing Conversation Lifetime..23

Supporting Serialization...28

Conversing with Non−Workshop Clients...30

Best Practices for Designing Asynchronous Interfaces...34

Using Polling as an Alternative to Callbacks...35

Designing Robust Asynchronous Interfaces...37

Designing Asynchronous Interfaces

i

Designing Asynchronous Interfaces
Interactions between software components can be synchronous or asynchronous. An interaction is
synchronous if the caller of a method must wait for the method's work to complete before the caller can
continue its processing. An interaction is asynchronous if the called method returns immediately, allowing the
caller to continue its processing without delay. An asynchronous interaction typically initiates a computation
but does not wait for the result to be available, which means it must provide some way for the caller to obtain
the results of the computation at a later time.

The distributed nature of web applications introduces unpredictable and sometimes very long latencies, which
means it may take an operation a long time to complete. If a business process executing over the network
involves human interaction at the back end, an operation can take on the order of days. If all interactions over
the web were synchronous, clients with pending operations could consume resources on their host systems for
unacceptably long periods of time.

WebLogic Workshop provides tools that make it easy for you to build asynchronous web services and Java
controls that don't require clients to block execution while waiting for results. WebLogic Workshop provides
multiple approaches for returning results to your web services' and Java controls' clients; you can choose the
one that best suits each situation.

This section describes how to build asynchronous interfaces.

Topics Included in This Section

Getting Started: Using Asynchrony to Enable Long−Running Operations

Describes when and how to build asynchronous web services and Java controls by using callbacks and
buffering.

Designing Conversational Web Services

Discusses how to maintain state for an asynchronous web service using conversations.

Best Practices for Designing Asynchronous Interfaces

Describes a number of design principles to consider when building web services and Java controls.

Related Topics

Building Web Services

Working with Java Controls

How Do I...

Samples

Designing Asynchronous Interfaces 1

Getting Started: Using Asynchrony to Enable
Long−Running Operations
WebLogic Workshop provides tools that make it easy for you to build asynchronous web services and
asynchronous Java controls. This section introduces the concept of a callback, which is one of the critical
design components when building an asynchronous web service or Java control, and describes the
requirements for using callbacks. In addition, this section describes how to add buffering to methods and
callbacks to enable the handling of high−volume traffic.

Topics Included in This Section

Introduction to Asynchronous Interfaces

Introduces asynchronous interfaces in web services and Java controls, and explains when and how to
implement them.

Introduction to Asynchronous Java Controls

Introduces special issues surrounding use of asynchrony in Java controls.

Using Callbacks to Notify Clients of Events

Describes how to use callbacks to notify a client of your web service or Java control that some event has
occurred.

Using Buffering to Create Asynchronous Methods and Callbacks

Explains how buffering methods and callbacks can help your web services and Java controls handle
high−volume loads.

Samples

Conversation.jws

Related Topics

Designing Conversational Web Services

Best Practices for Designing Asynchronous Interfaces

Getting Started: Using Asynchrony to Enable Long−Running Operations 2

Introduction to Asynchronous Interfaces
Web applications, including web services, typically use the Hypertext Transport Protocol (HTTP) to provide
communication between a client and a server (the application). HTTP is a request−response protocol. In a
request−response protocol, each operation consists of a request message sent from the client to a server
followed by a response message returned from the server to the client. The server must always send a
response for the operation to complete successfully. Such requests are called synchronous because during the
request the client is synchronized with the server; the client cannot continue processing until the server
responds or the request times out (the client may time out if a response is not received within a specific period
of time).

In a web application, some of the operations the application performs may be long−running. If an operation
involves human interaction such as approval by a loan officer of a bank, the operation could take days to
complete. It would be a poor design if individual request−response cycles were allowed to span days; such
requests would unnecessarily engage resources on both the client and server hosts.

With WebLogic Workshop, you can design your application to be asynchronous, which means that the
application notifies the client when the response is ready. This allows the client to continue performing other
work while the application completes the requested operation. It also keeps each request−response interaction
between the client and application as short as possible.

To create an asynchronous web service, you provide one or more methods that accept requests from clients
that begin an operation but do not wait for the operation to complete. Such methods typically return
immediately, supplying the response portion of the initial request−response interaction but not supplying the
actual result of the requested operation. In an asynchronous interface, you also provide a mechanism for the
client to obtain the results of the long−running operation when the results are ready. There are two ways to
accomplish this:

Implement methods that initiate requests and define callbacks to send results.•
Implement methods that initiate requests, methods that return request status (for example, "pending"
or "complete") and methods the return results. This approach is referred to as a polling interface.

•

Using Callbacks

When you define a callback for a web service, you are defining a message for the web service to send to the
client that notifies the client of an event that has occurred in your web service. In this design, the client first
calls the web service with a request. This request call typically returns immediately (completing the first
request−response interaction), meaning that the client does not have to wait for the operation to be completed.
The client can now continue doing other tasks. When the web service or Java control has finished processing
the client's request, it sends a callback, that is, it sends a message back to the client notifying it that the request
has been processed and/or providing the results. Note that a callback constitutes a second request−response
interaction in which the request (not the response) is sent to the client. To learn more about the callback
mechanism, see Using Callbacks to Notify Clients of Events.

To use a callback, two requirements must be met. First, if a web service defines a callback the web service
must be conversational. Conversational web services keep track of the originator of a request and can
therefore send the callback to the appropriate caller. Secondly, the client must be capable of receiving and
interpreting the callback. If the callback is defined by a web service, then in essence the client must itself be a
web service since it must be capable of receiving messages. It must also be capable of correlating an incoming
message with a previous request that it initiated. To learn more about conversations, see Designing

Introduction to Asynchronous Interfaces 3

Conversational Web Services.

Using Polling

When the client of a web service or Java control is not conversational, as is the case for web pages and
non−conversational web services, callbacks cannot be used to notify the client of request completion. In
addition, if the client of your web service resides on a host that rejects unsolicited incoming traffic or is
protected by firewalls, the host will reject callbacks because callbacks are, by nature, unsolicited, and the
client will not receive the callback. To handle these scenarios, web services and Java controls must provide a
polling interface. In a polling interface, the client first calls the web service or Java control to that an operation
be initiated. This request call is synchronous but typically returns immediately, meaning that the client does
not have to wait for the operation to be completed. The client can now continue doing other tasks, but must
periodically call the web service or Java control to check the status of its pending request. When a periodic
check shows that the request has been completed, the client then calls the web service or Java control to obtain
the result. To learn more about implementing a polling interface, see Using Polling as an Alternative to
Callbacks.

Polling and callbacks are two different mechanisms to achieve asynchrony. Unless you are absolutely certain
that the clients of your web service or Java control will always require only one of these mechanisms, you
may want to implement both approaches in order to handle all situations. Doing so provides the convenience
of callbacks to those clients who can handle them, and a polling interface for clients who cannot accept
callbacks. For more information, see Best Practices for Designing Asynchronous Interfaces.

Buffered Methods and Callbacks

When a conversational web service's request method is called by multiple clients at the same time, a client
might have to wait until its call, however short, has been processed by the web service. In addition, when a
web service has completed processing multiple requests and needs to send multiple callback messages, it must
wait for a message to be processed by the client before it can send the next callback. For a conversational web
service, and especially for a web service receiving high−volume traffic, it is recommended to always add
buffers to the web service's methods and callbacks. When clients call a buffered method, the call is stored in a
buffer and the client does not have to wait for the web service to handle the call. When a web service sends a
callback, the message is stored in a buffer and the web service does not have to wait until the client processes
the callback. To learn more about asynchronous methods and callbacks, see Using Buffering to Create
Asynchronous Methods and Callbacks.

It's important to distinguish between an asynchronous web service and an asynchronous method. A web
service can be designed to be asynchronous without using asynchronous methods. For example, a web service
can provide a synchronous request operation that returns an acknowledgement but not the result, and later
calls a synchronous callback that sends the result and receives an acknowledgement from the client. Both the
method and the callback are synchronous, but the web service is asynchronous.

Related Topics

Building Web Services with WebLogic Workshop

Designing Asynchronous Interfaces

Introduction to Asynchronous Interfaces 4

Introduction to Asynchronous Java Controls
Before reading this topic, you should understand the general concepts related to asynchronous interfaces. To
learn about asynchronous interfaces, see Introduction to Asynchronous Interfaces.

In WebLogic Workshop, Java controls can have the same asynchronous behavior as web services. However,
the behavior of a Java control is dependent on the nature of the Java control's client.

To understand this concept, think about how Java controls are used by their clients: the client is a web service,
a page flow or another Java control and the Java control instance is declared as a member variable of the
client. This means that the Java control instance cannot have a lifetime that exceeds that of its client.

Using Java Controls from Web Services

WebLogic Workshop web services can be conversational. Conversations allow you to control the lifetime of
an instance of a web service. Since the lifetime of member variables of a web service is the same as the
lifetime of the instance of the web service, Java controls references by a web service also have the same
lifetime. Therefore, if a Java control's client is a web service the Java control may freely use callbacks to
communicate with its client because the client is guaranteed to exist if the Java control instance exists. Note
that the Java control's client must still explicitly implement handlers for each Java control callback it wishes to
receive.

To learn more about conversations and WebLogic Workshop web services, see Designing Conversational
Web Services.

Using Java Controls from Page Flows

A page flow may also declare a Java control member variable. However, page flows ultimately represent web
pages, and web pages operate on a strictly request−response basis from the user's browser. There is no way to
"push" information to the browser with a browser−originated request initiated by or on behalf of the user.
Since data cannot be "pushed" to the browser, it doesn't make sense to "push" data to a page flow, which is
what a callback would represent. Therefore, page flows are not capable of receiving callbacks from a Java
control.

However, it is possible to use an intermediary Java control with a polling interface to provide an "adapter"
between a page flow and a Java control that uses callbacks. See Example 2, below, but substitute page flow
for the non−conversational web service in the example.

With page flows, the limiting issue is not conversational lifetime as it is for web services. The limiting issue
with page flows is the inability to "push" information out to the browser. The scenario in Example 2 below
hides the "push" (the callback) in Java control A, which presents only a "pull" interface to its client.

To learn more about polling interfaces, see Using Polling as an Alternative to Callbacks.

Using Java Controls from Other Java Controls

Whether callbacks can be sent form one Java control to another depends on the ultimate client at the end of
the chain of Java controls. This is probably best illustrated by examples:

Introduction to Asynchronous Java Controls 5

Example 1

Assume that you have a conversational web service that uses Java control A, which in turn uses Java control
B. The lifetime of the Java control A instance is the same as the lifetime as the web service's conversation,
and the lifetime of the Java control B instance is the same as that of Java control A (everything has the same
lifetime: that of the web service's conversation). In this situation Java control B may use callbacks to
communicate with Java control A, and Java control A may use callbacks to communicate with the web
service.

Example 2

Assume the same situation as Example 1, but with a non−conversational web service. Since the web service is
non−conversational, the lifetime of an instance of the web service spans only a single invocation of any of the
web service's methods. Therefore the lifetime of the web services member variables, including its instance of
Java control A, is the same, and the lifetime of the member variables of Java control A, including Java control
B, is also the same. Java control A cannot use callbacks to the web service because once the web service
method completes Java control A no longer exists. However, if Java control A were to provide a polling
interface to be used by the web service, then Java control B may use callbacks to communicate with Java
control A. Here is a scenario:

A web service client calls a web service method and an instance of the web service is created.1.
An instance of Java control A is created because it is a member variable of the web service.2.
An instance of Java control B is created because it is a member variable of Java control A.3.
The web service method calls the "start request" method of a polling interface provided by Java
control A.

4.

The "start request" method of Java control A calls a "start request" method of Java control B that will
eventually result in a callback to Java control A.

5.

The web service method repeatedly calls a "check status" method of Java control A. The method
returns false until the result is available.

6.

When Java control B's work is completed, it calls a callback of Java control A.7.
The callback handler of Java control A stores the result.8.
The next time the web service calls the "check status" method of Java control A, it returns true.9.
The web service calls a "get result" method on Java control A.10.
The web service returns the result as the return value of the method invoked in step 1.11.
The web service instance is released, causing the release of the instance of Java control A and in turn
the release of the instance of Java control B.

12.

Note that step 6 is not advisable if Java control B's work will take a long time. The initial request to the web
service in step 1 may time out.

Related Topics

Building Web Services with WebLogic Workshop

Designing Conversational Web Services

Using Polling as an Alternative to Callbacks

Designing Asynchronous Interfaces

Introduction to Asynchronous Java Controls 6

Using Callbacks to Notify Clients of Events
Callbacks notify a client (caller) of your web service or Java control that some event has occurred. For
example, you can notify a client when the results of that client's request are ready, or when the client’s request
cannot be fulfilled.

You can easily add callbacks to the interface of your web service or custom Java control using the Add
Callback action in Design View. However, you should be aware that doing so places demands on the client
that not all potential clients will be able to meet. This topic describes callbacks and explains some of the
things to keep in mind when working with them.

Understanding Callbacks: Messages to the Client

When you add a method to a web service or custom Java control, you implement a message that a client can
send to the web service or Java control to perform some operation. When you add a callback to a web service
or custom Java control, you are defining a message that the web service or Java control can send to the client
notifying the client of an event that has occurred. So adding a method and defining a callback are completely
symmetrical processes, with opposite recipients.

WebLogic Server allows a web service to receive XML and SOAP messages, and routes them automatically
to your web service. In order to receive callbacks, the calling client must be operating in an environment that
provides the same services. This typically means the client is a web service running on a web server. If the
client does not meet these requirements, it is likely not capable of receiving callbacks from your web service.
The same requirement applies for Java controls that may use XML and SOAP messaging, such as a web
service control, and Java controls whose Java method and callbacks are triggered directly.

The notion that callbacks are messages to the client is important if you want to apply XML maps to callback
parameters or return values. The parameters to a callback go into the outgoing message to the client, and the
return value is converted from the resulting incoming message from the client. This can seem strange because
programmers typically associate all parameters with incoming data and return values with outgoing data.

Maintaining Message Formats

For web services, as well as Java controls using XML messaging, the protocol and message format used for
callbacks is always the same as the protocol and message format used by the conversation start method that
initiated the current conversation. If you attempt to override the protocol or message format of a callback, an
error is thrown.

Related Topics

Introduction to Asynchronous Interfaces

Designing Conversational Web Services

Using Polling as an Alternative to Callbacks

Using Callbacks to Notify Clients of Events 7

Using Buffering to Create Asynchronous Methods
and Callbacks
When a conversational web service's request method is called by multiple clients at the same time, a client
might have to wait until its call, however short, has been processed by the web service. In addition, when a
web service has completed processing multiple requests and needs to send multiple callback messages, it must
wait for a message to be processed by the client before it can send the next callback.

For a conversational web service, and especially for a web service receiving high−volume traffic, it is
recommended to always add buffers to the web service's methods and callbacks. When clients call a buffered
method, the call is stored in a buffer and the client does not have to wait for the web service to handle the call.
When a web service sends a callback, the message is stored in a buffer and the web service does not have to
wait until the client processes the callback. You can add a message buffer to any method or callback, provided
that the method or callback's parameters are serializable and the return type is void. You can also specify
when and whether to retry an invocation of the buffer if it fails.

This topic explains how to add a message buffer to a method or callback of your web service or Java control,
how to use message buffers with methods and callbacks, how to make parameters serializable, and how to
control retry behavior.

Adding a Message Buffer

You can only add message buffers to methods and callbacks whose parameters are serializable and whose
return type is void. When a method or callback with a message buffer is invoked, the message representing the
method or callback invocation is placed in a queue to be delivered to the web service, Java control, or client
when it is available. Since the queue has no information about the semantics of the message or the destination
software component, it cannot return anything meaningful to the caller. And since the queue must always
return void, any methods or callbacks that are buffered must return void.

Although you can add message buffers to the methods and callbacks of any web service, it is important to
understand what happens when you add message buffers. The queues that provide the buffering always exist
on your end of the wire. WebLogic Server has no way to cause configuration actions like message buffering
in a remote client's infrastructure. The representation of a web service in Design View reinforces this by
drawing the message buffer "spring" icons on the end of the wire closest to the web service. For Java controls,
you add message buffers to the methods as you design the Java control, but you add message buffers to the
callbacks when you add an instance of this control to a web service (or another Java control), reflecting that
you define in the web service how to handle a Java control's callback.

To Add a Message Buffer to a Web Service

In the Design View of the Web Service, select the method or callback you want to buffer.1.
In the Properties pane, navigate to the message−buffer property.2.
Set the enabled attribute to true. WebLogic Workshop adds the Javadoc tag
@common:message−buffer enabled−true to the Javadoc comment preceding the method or callback
in the source code.

Note: In previous releases, the @common:message−buffer tag was known as the
@jws:message−buffer tag. This tag is still supported for backward compatibility.

3.

To Add a Message Buffer to a Java Control's Method

Using Buffering to Create Asynchronous Methods and Callbacks 8

In the Design View of the Java control, select the method you want to buffer.1.
In the Properties pane, navigate to the message−buffer property.2.
Set the enabled attribute to true. WebLogic Workshop adds the Javadoc tag
@common:message−buffer enabled−true to the Javadoc comment preceding the method or callback
in the source code.

3.

To Add a Message Buffer to a Java Control's Callback

In the Design View of the Web Service, click the name of the Java control callback you want to
buffer. WebLogic Workshop goes to the Web Service's code in Source View that implements the
callback.

1.

In the Properties pane, navigate to the message−buffer property.2.
Set the enabled attribute to true. WebLogic Workshop adds the Javadoc tag
@common:message−buffer enabled−true to the Javadoc comment preceding the method or callback
in the source code of the Web Service.

3.

Using Message Buffers on Methods

If you add a message buffer to a method, incoming messages (that is, invocations of the method) are buffered
on the local machine. The method invocation returns to the client immediately. This prevents the client from
waiting until your web service or Java control processes the request. Because the buffering occurs on your end
of the wire, the client still must wait for the network roundtrip even though it will return a void result. But the
client does not have to wait for your web service or Java control to process the message.

Determining the Execution Order of Methods

When a web service or Java control defines buffered (asynchronous) methods, neither the designer nor the
client can make any assumptions about the order in which methods should be executed.

This is especially true when defining both buffered and non−buffered methods in the same web service or
Java control. Invocations of synchronous methods are guaranteed to be in order of arrival. But if buffered
methods are also defined, you cannot determine when their invocations will occur relative to the synchronous
methods.

Using Message Buffers on Callbacks

When you invoke a callback, your web service or Java control is acting as the caller, that is your service or
control is sending an outgoing message (a callback invocation) to the client, which responds with an incoming
message containing the callback's return value.

If you add a message buffer to a callback of a web service, outgoing messages (that is, invocations of the
callback) are buffered on the local machine and the callback invocation returns immediately. This prevents
your service from having to wait while the message is sent to the remote server and the (void) response is
received. In other words, your web service doesn't have to wait for the network roundtrip to occur. If you add
a message buffer to a callback of a Java control, the buffer is implemented by the web service. The Java
control must still wait for the network roundtrip even though it will return a void result, but the Java control
does not have to wait for the web service to process the message.

Designing Asynchronous Interfaces

Using Buffering to Create Asynchronous Methodsand Callbacks 9

All Parameters Must Be Serializable

All objects that are passed as method parameters to buffered methods or callbacks must be serializable.
Method and callback invocations are placed in the queue through Java serialization.

Many built in Java classes are already serializable, and most other classes can be made serializable very easily
by adding implements java.io.Serializable to the class declaration.

For example, if the Person class in the following example is passed as a method parameter, just add the bold
text to the declaration to allow the class to be passed as a parameter to buffered methods or callbacks.

public static class Person implements java.io.Serializable
{
 public String firstName;
 public String lastName;
}

Controlling Retry Behavior

You can control the retry behavior of WebLogic Server during design or at runtime.

To Specify Retry Behavior During Design

Select the asynchronous method or callback as described above.1.
In the Properties pane, navigate to the message−buffer property.2.
Set the retry−count attribute to determine the number of times that redelivery is attempted.3.
Set the retry−delay attribute to determine the delay between delivery attempts.4.

To Specify Retry Behavior at Runtime

You can control the retry behavior of WebLogic Server at runtime from within a buffered method. If the
method is invoked but you do not wish to service the request immediately, you can request that WebLogic
Server reissue the request at a later time. You do this by throwing a weblogic.jws.RetryException from within
the buffered method.

The constructors for the RetryException class, described in the following list, take a retry delay as an
argument:

RetryException("Try sooner", 5)

The second argument is a long, specifying the number of seconds to delay before retrying.

RetryException("Try later", "5 days")

The second argument is a String specifying the delay before retrying.

RetryException("Try default", RetryException.DEFAULT_DELAY)

Passing the DEFAULT_DELAY constant specifies that the value of the retryDelay attribute of the
@jws:message−buffer tag should be used.

Designing Asynchronous Interfaces

Using Buffering to Create Asynchronous Methodsand Callbacks 10

Related Topics

Getting Started with Web Services

Getting Started: Using Asynchrony to Enable Long−Running Operations

Designing Conversational Web Services

Designing Asynchronous Interfaces

Using Buffering to Create Asynchronous Methodsand Callbacks 11

Designing Conversational Web Services
A single web service may communicate with multiple clients at the same time, and it may communicate with
each client multiple times. In order for the web service to track data for the client during asynchronous
communication, it must have a way to remember which data belongs to which client and to keep track of
where each client is in the process of operations. In WebLogic Workshop, you use conversations to uniquely
identify a given communication between a client and your web service and to maintain state between
operations.

Conversations are essential for any web service involved in asynchronous communication. This includes web
services that communicate with clients using callbacks or polling interfaces, and web services that use
controls with callbacks.

Topics Included in This Section

Overview: Conversations

Introduces the concept of conversations.

Life of a Conversation

Describes an example of a web service in a conversation.

Implementing Conversations

Offers guidelines for building web services that supports conversations.

Managing Conversation Lifetime

Describes how you can write code that controls and responds to lifetime events of a conversation.

Supporting Serialization

Introduces Java serialization and explains why it is important for WebLogic Workshop conversations.

Conversing with Non−Workshop Clients

Explains how clients built with tools other than WebLogic Workshop can participate in conversations.

Samples

The following sample web services use conversations:

Conversation.jws•
HelloWorldAsync.jws•
LuckyNumberDBClient.jws•
QuoteClient.jws•

For more information about samples, see Samples.

Designing Conversational Web Services 12

Related Topics

Getting Started: Using Asynchrony to Enable Long−Running Operations

Designing Asynchronous Interfaces

Designing Conversational Web Services 13

Overview: Conversations
A web service and a client may communicate multiple times to complete a single task. Also, multiple clients
may communicate with the same web service at the same time. Conversations provide a straightforward way
to keep track of data between calls and to ensure that the web service always responds to the right client.

Conversations meet two challenges inherent in persisting data across multiple communications:

Conversations uniquely identify a communication between a client and a web service, so that
messages are always returned to the correct client. For example, in a shopping cart application, a
conversational web service keeps track of which shopping cart belongs to which customer.

•

Conversations maintain state between calls to the web service; that is, they keep track of the data
associated with a particular client between calls. Conversations ensure that the data associated with a
particular client is saved until it is no longer needed or the operation is complete. For example, in a
shopping cart application, a conversational web service remembers which items are in the shopping
cart while the customer continues shopping.

•

Correlating Messages with a Unique Identifier

When a client begins a conversation with a service, WebLogic Server creates a context in which to keep track
of state−related data during the exchange. This new context is identified by a conversation ID, a string that
uniquely identifies the conversation. The web service uses this conversation ID to correlate messages to the
client through each operation it performs. The conversation ID ensures that a message sent or received by the
web service is always associated with the appropriate client.

You can see the conversation ID in action when you test an asynchronous web service in Test View. For
example, if you test the sample service HelloWorldAsynch, you can start multiple conversations and observe
how the results are correlated with the conversation ID in test view.

Maintaining State with Conversations

At any given time during a communication between a client and your web service, the web service may need
to keep track of data for the client. The web service’s state refers to all of the data that it is tracking at a
particular moment. For example, consider the Investigate sample web service (described in Tutorial: Your
First Web Service). In that example, the Investigate service receives a taxpayer ID from its client in the first
call to the service and uses this ID to gather credit information. The service stores the taxpayer ID in a
member variable so it can be retrieved as needed throughout the lifetime of the exchange between client and
service. On the next call, the client does not have to pass the taxpayer ID to the service, which reduces
complexity for both the client and the service. In this example, the taxpayer ID is state−related data—that is,
data that is saved between calls.

Now imagine that the computer on which the service was running suddenly shut down. If the taxpayer ID
were held only by the member variable in the service instance, it would be lost when the instance vanished
from memory as the computer shut down. Fortunately, conversations make your web service more robust by
writing state−related data to disk, so that the data is preserved through a system failure. This additional
security is provided for you automatically when you specify that calls to your web service are part of a
conversation.

Related Topics

Overview: Conversations 14

How Do I: Add Support for Conversations?

Tutorial: Your First Web Service

Implementing Conversations

Designing Asynchronous Interfaces

Overview: Conversations 15

Life of a Conversation
Each method and callback in a conversational web service plays a specific role in the communication between
the web service, its clients, and any Java controls the web service uses. A method may begin a conversation,
and a method or callback may continue or end a conversation.

To indicate that a method or callback should participate in a conversation, you can select that method or
callback in Design View and set the phase attribute of the conversation property for that method or callback.
When you set this property for a method or callback, WebLogic Workshop adds one of the following icons to
indicate whether the item starts, continues, or finishes a conversation:

To learn more about these attributes, see Implementing Conversations.

To understand how a conversation progresses, let's examine the life cycle of a sample scenario that employs
two conversations, one between a web service and its client and another between the web service and a Web
Service control. In this example, the BookLocator web service searches a network of book sellers on behalf of
a customer. The code within the BookLocator service acts as the middleman and exchanges information
between the client and the book seller. The first conversation begins when the client requests a book from the
BookLocator service. The BookLocator service then calls the bookSeller service, implemented via a Web
Service control, to request the title. When the bookSeller service responds to the BookLocator service, that
conversation is complete. The BookLocator then resumes its conversation with the client.

Each of the numbers in the illustration below corresponds to a stage in the life cycle description that follows.
Stages 1, 4, 5, and 6 describe the conversation between the BookLocator service and the client. Stages 2 and 3
describe the conversation between the BookLocator service and the bookSeller control.

Stage 1

The client submits a search request by calling the requestBook method, passing information about the book
and its author. Code in the requestBook() method saves the book title and author name in member variables as
state−related data.

When the request is received, WebLogic Server creates a new context for the service and associates it with the
conversation ID. The conversation ID correlates further interactions between the client and the service,
ensuring that calls back to the client and calls from other controls are correctly associated with this particular

Life of a Conversation 16

instance of the service.

The requestBook() method has a void return value. The requestBook() method returns immediately, so that
the client is not blocked waiting for a response. The result is sent to the client later via the callback.

As the method returns to the client, WebLogic Server starts the conversation's idle and age timers, which may
cause the conversation to time out at a later time for lack of activity.

Stage 2

Next, the code executing as part of the requestBook() method's implementation calls the queryForBook()
method of the bookSeller service.

Because this method begins a conversation implemented by the bookSeller service, WebLogic Server creates
a new context for communication between the BookLocator service and the bookSeller service. This exchange
is managed within its own context with its own conversation ID, and is separate from the exchange between
the client and the BookLocator service.

Stage 3

After the book seller searches its inventory for the requested book, the bookSeller service returns its results
using the onQueryComplete() callback that is part of its interface. This callback finishes the bookSeller
service's conversation with the BookLocator service, and WebLogic Server releases its context and
state−related data. The conversation context for the BookLocator service remains active.

The response is handled by the BookLocator service through the onQueryComplete() callback handler. The
BookLocator service then examines the data returned by the bookSeller service to determine if it is likely to
be useful to the client. In this case, the data includes a long list of books of varying condition and price, so the
BookLocator service requests more information from the client in order to narrow the list.

Stage 4

The BookLocator service requests more information from the client through the onNeedMoreInfo() callback.
Because the callback is part of its interface, the client software is prepared to handle it. The BookLocator
service passes to the client information it can use to decide how to narrow the request.

The onNeedMoreInfo() callback continues the conversation with the client; that is, its conversation phase
attribute is set to continue. The onNeedMoreInfo() callback is an intermediary step in the conversation.

Stage 5

The client then responds with information to narrow the list, passing that information back to the BookLocator
service as parameters of the submitMoreInfo() method. The call to submitMoreInfo(), like the callback made
to the client, also continues the conversation.

Stage 6

The BookLocator service uses the additional information to shorten the list, then employs another
callback—onSearchComplete()—to send the short list to the client. This callback completes the conversation

Designing Asynchronous Interfaces

Life of a Conversation 17

since the callback’s conversation phase attribute is set to finish. Once the callback has executed, WebLogic
Server removes the conversation context and state−related data from memory.

Related Topics

How Do I: Add Support for Conversations?

Implementing Conversations

Designing Asynchronous Interfaces

Life of a Conversation 18

Implementing Conversations
Conversations maintain a web service's state−related data and correlate communications between the web
service, its clients, and other resources. You should implement conversations in any web service design that is
asynchronous or involves multiple communications with a client or Java control in connection with a single
request.

This topic describes the components of a conversation and explains how to build web services that support
conversations. It introduces the phase attribute and provides guidelines for implementing conversational
callbacks and methods.

Understanding Conversation Context

When a client calls a service operation that is annotated to start a conversation, WebLogic Server creates a
conversation context through which to correlate calls to and from the service and to persist its state−related
data.

When a conversation starts, WebLogic Server does the following:

Creates a context through which to maintain the scope of the conversation and associates it with a
conversation ID.

•

Starts an internal timer to measure idle time.•
Starts an internal timer to measure the conversation's age.•

When WebLogic Server performs all of these tasks, it creates a context for the conversation. Each piece of
information—including the conversation ID, persistent data, idle time and age—is part of the conversation's
context.

The conversation ID is a particularly useful item in the conversation’s context. It attaches to each
communication, which helps each of the resources, web services, and clients involved in the conversation
identify which communications belong to which conversation. To learn more about conversation IDs, see
Overview: Conversations.

Designing a Web Service to Use Conversations

As you build services that support conversations, you should keep in mind a few characteristics of
conversations. First, WebLogic Server automatically handles correlation between two web services that
support conversations. In other words, if your web service supports conversations and calls the conversational
methods of another web service that supports conversations, WebLogic Server manages the conversation,
including the conversation ID, automatically.

However, the scope of conversation context is limited to the service itself. You cannot assume that the state of
another web service is being persisted simply because your service calls one of its methods during the course
of a conversation. The other web service is responsible for its own state maintenance.

Also keep in mind that a web service's state is only updated on the successful completion of methods or
callback handlers that are marked with the conversation phase attributes start, continue, or finish. This
excludes internal methods of your service, which are not operations and so can not be conversational.

Implementing Conversations 19

Applying the Conversation Phase Attribute

When you apply a conversation phase attribute to a method or callback, you identify it as having a role in
conversations. In Design View, you can apply the attribute using the Properties Editor when a method is
selected. When you set the conversation phase property, a corresponding annotation like the one shown here is
added to your web service's source code immediately preceding the method or callback declaration:

@jws:conversation phase="start"

The possible values for the conversation phase attribute are start, continue, finish, and none. The following
sections describe these values.

The start Value

You can apply the start value to methods only. It specifies that a call to the method starts a new conversation.
Each call creates a new conversation context and an accompanying unique conversation ID, saves the
service's state, and starts its idle and age timer.

The continue Value

You can apply the continue value to methods and callbacks. It specifies that a call to this method or callback
is part of a conversation in progress. WebLogic Server attempts to use the incoming conversation ID to
correlate each call to an existing conversation. Each call to a continue method saves the service's state and
resets its idle timer.

Set the phase attribute to continue for any method or callback that is likely to be used for communication with
a client in connection with an ongoing operation. This includes methods that are clearly intended to be called
subsequent to the conversation's start and before its finish as well as requests for responses with additional
information, requests for progress or status, and so on.

The finish Value

You can apply the finish value to methods and callbacks. It specifies that a call to this method or callback
finishes an existing conversation. A call to a finish method or callback marks the conversation for destruction
by WebLogic Server. At some point after a finish method returns successfully, all data associated with the
conversation's context is removed.

It is also possible to finish a conversation by calling the JwsContext interface finishConversation method. For
more information, see Managing Conversation Lifetime.

The none Value

You can apply the none value to methods and callbacks. It specifies that a call to this method or callback has
no meaning in the context of the conversation. none is the default value for the conversation phase attribute.

For more information on adding support for conversations with the conversation phase attribute, see How Do
I: Add Support for Conversations?

Designing Asynchronous Interfaces

Implementing Conversations 20

Implementing Conversational Methods and Callbacks

In practice, adding support for conversations is simply a matter of annotating methods and callbacks with the
conversation phase attribute, as described above. Even so, as you write code for methods and callback
handlers that will be annotated for use in conversations, you might want to keep the following issues in mind.

Handle Exceptions

Be sure to handle exceptions thrown from conversational methods and callback handlers. An unhandled
exception thrown from a conversational method or callback handler cancels any update of state from that
method or handler. In other words, state data will not be serialized. So as you plan exception handling for
conversational methods and callback handlers, you should consider what an appropriate response to the
exception is. The JwsContext interface provides an onException callback handler that is invoked whenever an
exception is thrown from an operation (a method marked with the @common:operation annotation) or
callback handler.

Depending on your web service's design, your code in the onException handler might:

Log the error in an application log.•
Notify the client of the failure.•
Finish the conversation.•

Keep Methods and Callbacks Short−Lived

Keep conversational methods and callbacks short−lived. Only one method or callback may be executing
within a conversation at a given time. This is a benefit in that it means you needn't worry about a new call
interfering with one that is already being processed. But because new calls are blocked until the current one
finishes executing, you should try to implement each method or callback so that it executes in a short amount
of time. Use buffering where appropriate to prevent subsequent clients from being blocked while the web
service is busy.

Ensure Support for Serialization

Ensure serialization support for variables that will hold state−related data. In Java, serialization is a
technology that makes it possible to write information about an object instance to disk. This requirement can
in most cases be met with no extra effort. For more information, see Supporting Serialization.

Stay Within the Code of a Conversation

Do not save state from within code that is not part of a conversation. If your service must save state, you
should always try to do so by writing to member variables from within a method that starts or continues a
conversation.

Related Topics

JwsContext Interface

@jws:conversation Annotation

Designing Asynchronous Interfaces

Implementing Conversations 21

@jws:message−buffer Annotation

Designing Asynchronous Interfaces

Implementing Conversations 22

Managing Conversation Lifetime
WebLogic Server maintains the aspects of a conversation that regulate its life span, including how old it is and
how long it has been idle. You can write code to control and respond to these aspects at run time using
methods and callbacks exposed by the JwsContext interface.

The life span you want for your conversation depends on the specific actions your service performs. For
example, you can extend the maximum age or idle time (or both) when you anticipate that certain processes
will take a long time to complete. You can finish a conversation immediately if you know the conversation
should terminate. Or you can write code that executes when a conversation is about to end, so you can clean
up after your service, release acquired resources, or notify the client that the conversation is about to end.

Using the JwsContext interface, you can manage a conversation's life span by:

Controlling how long a conversation may remain idle•
Limiting a conversation's duration•
Finishing a conversation•
Doing something when a conversation finishes•

Each of these aspects of managing the life span of a conversation is described in greater detail in the sections
that follow.

Controlling How Long a Conversation Can Remain Idle

Maximum idle time is the amount of time that can go by between incoming messages before your web
service's conversation automatically ends. The length of time you specify depends on what you need your
conversation to accomplish. For example, you can temporarily increase the maximum idle time if your code
makes an asynchronous follow−up request to a client and you suspect that it will take longer than the
maximum idle time to respond. Once the client does respond, your code can update the maximum idle time
back to a shorter duration.

You can control the maximum idle time in two ways: you first set the initial idle time at design time, and you
can then change the maximum idle time at run time.

Note: The timer keeping track of idle time is only reset by interactions with a client. The idle timer is not reset
when your web service receives a callback from another web service or Java control (in other words, from
entities on the right side of your service in Design View). To reset the idle timer in such circumstances, you
can call the resetIdleTime method of the JwsContext interface in a callback handler.

Setting the Initial Maximum Idle Time Value at Design Time

To set the initial maximum idle time in Design View, first click the service area. Next, use the Property Editor
window to set the max−idle−time attribute, which is part of the conversation−lifetime property.

By default, the value of this attribute is 0, which means that the conversation may remain idle indefinitely. In
general, you want to estimate a reasonable amount of time for your service to remain idle, then give this
attribute the value you choose. Allowing a conversation to remain idle for a long period of time can absorb
system resources, particularly as new conversation contexts are created for new calls to the service (each with
indefinite idle timeout values!).

Managing Conversation Lifetime 23

WebLogic Workshop annotates your service class with a Javadoc annotation when you change the default
value of the max−idle−time attribute. So if you do not change the default value the annotation does not appear
in your source code. Once the annotation is added, it resembles the following, which sets the value to 2
minutes:

/**
 * @jws:conversation−lifetime max−idle−time="2 minutes"
 */

The value specified in this attribute represents the starting value for maximum idle time when a new
conversation with this service starts. Thereafter, you can update the value through your service's code.

Note: You can change the initial value by editing the Javadoc annotation either in your source code or in the
Property Editor; changes in one are automatically reflected in the other.

For reference information about the @jws:conversation annotation, see @jws:conversation−lifetime
Annotation.

Changing the Maximum Idle Time Value at Run Time

To manage the maximum idle time at run time, you can use the following JwsContext methods:

void setMaxIdleTime(long seconds): Sets a new value to the specified number of seconds.•
void setMaxIdleTime(String duration): Sets a new value using a string expressing the idle time
duration (such as "2 minutes," "5 days," and so on).

•

long getMaxIdleTime(): Returns the current maximum idle time as a number of seconds.•
void resetIdleTime(): Resets the idle timer. This may be useful when the conversation involves some
activity besides receiving messages from the client, but this activity is still considered "non−idle."
This could include interacting with other web services or Java controls.

•

long getCurrentIdleTime(): Returns the number of seconds the conversation has been idle.•

In the following example involving a database query, maximum idle time is set to allow at least five minutes
for the database query to return:

public void getEmployeeContactInfo(String employeeID)
{
 context.setMaxIdleTime("5 minutes");
 Employee m_contactInfo =
 employeeDataControl.getContactInformation(employeeID);
}

Limiting the Duration of a Conversation

A conversation's maximum age is the maximum time a conversation instance will exist before it is finished by
WebLogic Server.

You can set the maximum age at design time, and you can change the maximum age during run time. This can
be useful, for example, if it appears that the combined actions taken by your service to return a response to the
client will take longer than originally expected.

Designing Asynchronous Interfaces

Managing Conversation Lifetime 24

Setting the Initial Maximum Age Value at Design Time

To set the initial maximum age in Design View, click the service area, then use the Property Editor window to
set the conversation−lifetime max−age attribute.

By default, the value of this attribute is 1 day, meaning that the conversation automatically finishes 24 hours
after it starts. In general, it is a good practice to estimate a reasonable amount of time for your service to
remain active, then set this attribute to that value. Allowing a conversation to remain active for a long period
of time can absorb system resources, particularly as new conversation contexts are created for new calls to the
service.

When you change the max−age attribute, WebLogic Workshop annotates your service class with a Javadoc
annotation resembling the following example, which sets the value to 7 days.

/**
 * @jws:conversation−lifetime max−age="7 days"
 */

The value specified in this attribute is the starting value for the maximum age when a new conversation with
this service starts. Thereafter, you can update the value through your service's code.

Note: You can change the initial value by editing the Javadoc annotation either in your source code or through
the Properties window; changes in one are automatically reflected in the other. Also, note that WebLogic
Workshop does not add the Javadoc annotation to your source code until you change the default value of
max−age in the Properties window.

For reference information about the @jws:conversation−lifetime annotation, see @jws:conversation−lifetime
Annotation.

Changing the Maximum Age Value at Run Time

To manage a conversation's maximum age at run time, you can use the following JwsContext methods:

void setMaxAge(String duration): Sets a new value using a string expressing the maximum age
duration (such as 3 hours, 2 days, and so on).

•

void setMaxAge(java.util.Date date): Sets a new value to the specified number of seconds.•
long getMaxAge(): Returns the maximum age of the conversation number in seconds.•
long getCurrentAge(): Returns the number of seconds since the conversation began.•

The following simple example illustrates how you can set the maximum age to a duration intended to allow
time for a client to gather more information related to their request and return. Extending the conversation's
life allows the service's context (along with any persistent state accumulated so far) to remain active until the
client returns.

public void needMoreInfo(String neededInfoDescription)
{
 context.setMaxAge("2 days");
 callback.onRequestMoreInfo(neededInfoDescription);
}

Designing Asynchronous Interfaces

Managing Conversation Lifetime 25

Finishing a Conversation

The end of a conversation marks the conversation context to allow WebLogic Server to remove it from
memory. All data that is part of its persistent state is removed. The following list describes the four ways in
which a conversation can finish:

On completion of a web service method annotated with finish or one that invokes a client callback
marked finish.

•

When the conversation's maximum idle time is exceeded.•
When the conversation's maximum age is exceeded.•
When your code calls the JwsContext interface's finishConversation method.•

Note that a conversation never ends during a method invocation. The conversation terminates immediately
after the current method or callback invocation completes.

Defining What Happens When a Conversation Finishes

You can write code that executes when a conversation finishes, regardless of how the conversation meets its
end. To do this, you implement a handler for JwsContext's onFinish callback handler. You can add this
handler to any web service that supports conversations.

When a conversation ends, your callback handler receives a boolean value that indicates whether or not the
conversation ended by expiring. A conversation expires if it lasts longer than the value set in the service's
conversation−lifetime property max−age attribute or if it has remained idle longer than the value set in the
conversation−lifetime property max−idle−time attribute.

The onFinish callback handler will receive a value of false if the conversation ended because your code called
the JwsContext.finishConversation method or via execution of an method or callback whose conversation
phase attribute is set to finish.

To Add Code to Handle the End of a Conversation

Declare a variable for com.bea.control.JwsContext:

/** @common:context */
com.bea.control.JwsContext context;

1.

Using the variable name, add a callback handler for the onFinish callback exposed by the JwsContext
interface.
Your callback handler declaration should resemble the following example, where the variable is
context:

public void context_onFinish(boolean expired)
{
}

2.

Add the code you would like to have execute when the conversation finishes. For example, if for
debugging purposes you wanted to write a message to the console to indicate how the conversation
had ended, you might implement the handler in the following way:
public void context_onFinish(boolean expired)
{
 String finishStatus = "";
 if(expired){
 finishStatus = "Conversation expired.";

3.

Designing Asynchronous Interfaces

Managing Conversation Lifetime 26

 }
 else{
 finishStatus = "Conversation finished normally.";
 }
 context.getLogger("myWebService").debug(finishStatus);

}

Related Topics

Life of a Conversation

Implementing Conversations

JwsContext Interface

@jws:conversation−lifetime Annotation

Designing Asynchronous Interfaces

Managing Conversation Lifetime 27

Supporting Serialization
When you build web services that use conversations, the conversation state is persisted between method
invocations by serializing the web service instance to a database. Serialization is the technique through which
Java objects may be written to a persistent store as a stream of bytes. When an object is serialized, methods
are ignored but all member variables are serialized unless the member variable is marked transient. This
means that all member variables of conversational web services must be serializable unless the variable is
marked transient.

Note: Since Java controls used by a web service are represented as member variables in the web service, each
Java control will also be serialized, meaning the Java control's member variables must also be serializable.
The same is true for Java controls that are used, in turn, by Java controls. The WebLogic Workshop compiler
will issue compiler errors if member variables are not serializable.

Note: In the case of Web Service controls, the state of the Web Service control will only be serialized of the
target web service is conversational.

Note: Remember that a Java control is only a proxy for the resource it represents. Serialization of a control
persists the state of the proxy, not the state of the resource itself.

During a conversation, a web service's state is serialized after each successful execution of:

A method marked with a @common:operation annotation and marked with a @jws:conversation
phase attribute of start or continue.

•

A control callback handler.•

Note that serialization will not occur for these if the method, callback, or callback handler throws an
unhandled exception.

The requirement that member variables be serializable is typically easy to meet. For Java primitive types,
serialization is supported by default. These types include byte, boolean, char, short, int, long, double, and
float. Also, while classes in Java must implement the Serializable interface to be serializable, many of the Java
classes representing common data types already do so. These types include those that are wrappers around the
primitive types—such as Boolean, Long, Double, Integer, and so on—as well as String and StringBuffer.
(When you are in doubt about whether a particular common class implements Serializable, check reference
information for the class before using it.)

When you create your own classes for use in typing member variables, or when you handle classes created by
others, you must take care to ensure that these classes implement the Serializable interface. Even so, this is
typically easy to do because the interface contains no methods to implement—implementing the interface
merely marks the class as supporting serialization. Your class code must simply import the package
containing the interface and its declaration must be marked with the implements keyword, as follows:

import java.io.Serializable;

public class MyClass implements Serializable
{...}

For more information on Java object serialization, please consult your favorite Java book.

Supporting Serialization 28

Conversations and Clusters

Clusters are not directly aware of conversations. Conversational state is stored in a database that is available
from all servers in the cluster. The cluster handles a conversation continuing or finishing request in the
following way: (1) the request gets routed to a cluster member, (2) the current conversational state is loaded
from the database, (3) the operation is run, and (4) the conversational state is updated in the database.
Subsequent conversational requests are handled this way each time, regardless of which server in the cluster
handles the request.

The conversational state is stored in the database and is updated by conversational operations from whatever
cluster member handles the request. Row−level locks on the database prevent the execution of multiple,
simultaneous queries to the same conversation. The transactional capabilities of the database are used to
insure that conversational state is consistent and durable.

To optimize performance, if the request continues a conversation and the conversational state hasn't changed,
only the last−access−time field in the database is updated. This writes a Java.lang.long data type to the
database, but avoids writing a BLOB.

Related Topics

Overview: Conversations

How Do I: Add Support for Conversations?

Designing Asynchronous Interfaces

Supporting Serialization 29

Conversing with Non−Workshop Clients
For services you build with WebLogic Workshop, adding support for conversations is easy. At design time,
you simply set the conversation property's phase attribute for your service's methods and callbacks.

The SOAP messages that invoke conversational web service methods contain extra SOAP headers that
include a conversation ID. If both the client and web service are build in WebLogic Workshop, the
conversation SOAP headers are managed automatically. Web service clients built using other tools, however,
must manually provide the necessary SOAP headers when invoking conversational WebLogic Workshop web
service methods.

Note: If you are developing web services with Microsoft .NET (or need to interoperate with .NET services),
you may be interested in the ConversationClient.asmx.cs sample. This file contains code for a conversational
web service client written in C#. For more information, see .NET Client Sample.

The three SOAP headers related to conversations are:

<StartHeader>: The client sends this header with the call to a method marked to "start" a
conversation. The <StartHeader> contains <conversationID> and <callbackLocation> elements.

•

<ContinueHeader>: The client sends this with any subsequent calls to the web service's methods. It
contains the conversation ID the client used to start the conversation.

•

<CallbackHeader>: The client receives this header when it receives a callback from the web service.
The <CallbackHeader> includes the conversation ID the client used to start the conversation.

•

As you can see, one piece of information all of the headers carry is the conversation ID. The client proposes a
conversation ID with any request to a start method. The same ID is then passed back and forth between the
client and the web service for each subsequent exchange. This way, both know to which conversation each
message is related.

Conversation SOAP Headers

A client's first request, which begins a conversation, is always sent to a method marked to "start" the
conversation. The SOAP message for this request must include the <StartHeader> header. In the message, this
header looks like the following:

<SOAP−ENV:Header>
 <StartHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">
 <conversationID>someUniqueIdentifier</conversationID>
 <callbackLocation>http://www.mydomain.com/myClient</callbackLocation>
 </StartHeader>
</SOAP−ENV:Header>

The <StartHeader> element simply contains the header information. The XML namespace must be specified
as it is shown here.

The <conversationID> element is technically optional. If it is omitted, WebLogic Server will invent one for
use locally. However, the client will have no way of knowing what this conversation ID is if they don't send it.
This means that they will be unable to correlate any responses received with the original request. For this
reason, the client should only omit the conversation ID if they do not expect any further conversation with the
web service. The value of the conversation ID is a string with a maximum length of 768 bytes. The
conversation ID should be unique across all possible conversational clients of the target web service. To

Conversing with Non−Workshop Clients 30

construct such an identifier, you may wish to combine data such as the process ID of the client, the current
date and time and the host name or host IP address of the client.

The <callbackLocation> element, also optional, contains the URL to which callbacks should be sent. The
client needs to send this only if it expects to handle callbacks from the web service. All callbacks intended for
this client will be sent to the specified URL.

After the first request, the client either continues its side of the conversation by calling additional methods of
the web service or receives callbacks from the web service. Each subsequent call to the web service must
include the <ContinueHeader>. Note that this means even calls to web service methods marked to "finish" the
conversation must include the <ContinueHeader>. The <ContinueHeader> looks like the following:

<SOAP−ENV:Header>
 <ContinueHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">
 <conversationID>theUniqueIdentifierSentWithTheStartHeader</conversationID>
 </ContinueHeader>
</SOAP−ENV:Header>

In order to correctly correlate this invocation, the <conversationID> used here must be the same as the ID sent
with the <StartHeader>.

Finally, the client may be designed to handle callbacks from the web service. This means that the client
software includes an operation capable of receiving the message sent by the WebLogic Workshop web
service's callback. How this is implemented differs depending on the technology used to build the client. In
general, though, the message sent with a callback contains the callback's parameter values.
The callback message also contains the <CallbackHeader>. The <CallbackHeader> also includes the
conversation ID. It looks like the following:

<SOAP−ENV:Header>
 <CallbackHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">
 <conversationID>theUniqueIdentifierSentWithTheStartHeader</conversationID>
 </CallbackHeader>
</SOAP−ENV:Header>

Notice that there is no "finish" header. The conversation is over when the web service finishes it. This may be
through execution of an operation (method or callback) marked with the conversation phase set to "finish".
The web service can also call the finish method of the JwsContext interface (something it might do in the
event of an exception). Using the WSDL file for the web service, the client knows which operations are
designed to finish the conversation.

Once a conversation is finished, any further continue messages sent with that conversation ID will result in a
SOAP fault.

What to Look for in a Conversational Web Service's WSDL File

By looking at the WSDL file generated from a WebLogic Workshop service, a developer of a client of the
web service can discover which of the service's operations start, continue or finish a conversation. They can
also see which SOAP header each operation requires.

The following excerpt is from a WSDL generated from the Conversation.jws web service in the WebLogic
Workshop samples project. In this example:

Designing Asynchronous Interfaces

Conversing with Non−Workshop Clients 31

The name of each operation (method and callback) is highlighted in bold.•
The phase attribute describing the operation's role in a conversation is highlighted in blue.•
The part attribute describing which header the service will receive (as an "input" header) and which it
will send (as an "output" header) is highlighted in red.

•

By looking at this excerpt, you can see that:

The startRequest operation starts the conversation and requires a <StartHeader>.•
The getRequestStatus operation continues the conversation and requires a <ContinueHeader>.•
The terminateRequest operation finishes the conversation and requires a <ContinueHeader>.•
The onResultReady operation finishes the conversation and sends a <CallbackHeader>.•

 <binding name="ConversationSoap" type="s0:ConversationSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
 <operation name="startRequest">
 <soap:operation soapAction="http://www.openuri.org/startRequest" style="document" />
 <cw:transition phase="start" />
 <input>
 <soap:body use="literal" />
 <soap:header wsdl:required="true" message="s0:StartHeader_literal" part="StartHeader" use="literal" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="getRequestStatus">
 <soap:operation soapAction="http://www.openuri.org/getRequestStatus" style="document" />
 <cw:transition phase="continue" />
 <input>
 <soap:body use="literal" />
 <soap:header wsdl:required="true" message="s0:ContinueHeader_literal" part="ContinueHeader" use="literal" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="terminateRequest">
 <soap:operation soapAction="http://www.openuri.org/terminateRequest" style="document" />
 <cw:transition phase="finish" />
 <input>
 <soap:body use="literal" />
 <soap:header wsdl:required="true" message="s0:ContinueHeader_literal" part="ContinueHeader" use="literal" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="onResultReady">
 <soap:operation soapAction="http://www.openuri.org/onResultReady" style="document" />
 <cw:transition phase="finish" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 <soap:header wsdl:required="true" message="s0:CallbackHeader_literal" part="CallbackHeader" use="literal" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" />
 </output>
 </operation>
 </binding>

Designing Asynchronous Interfaces

Conversing with Non−Workshop Clients 32

Related Topics

Life of a Conversation

Overview: Conversations

How Do I: Add Support for Conversations?

How Do I: Tell Developers of Non−WebLogic Workshop Clients How to Participate in Conversations?

Designing Asynchronous Interfaces

Conversing with Non−Workshop Clients 33

Best Practices for Designing Asynchronous
Interfaces
This section discusses the best practices for creating and using web services and Java controls with
asynchronous interfaces. The first topic describes how to use polling as an alternative to callbacks. Then,
various design principles are recommended for designing web services and Java controls that can be called by
both other web services and JSP (web) pages.

Topics Included in This Section

Using Polling as an Alternative to Callbacks

Describes how to provide polling interfaces for clients of your web service or Java control that cannot handle
callbacks.

Designing Robust Asynchronous Interfaces

Discusses how to design robust asynchronous web services and Java controls.

Related Topics

Building Web Services

Developing Web Applications

Best Practices for Designing Asynchronous Interfaces 34

Using Polling as an Alternative to Callbacks
Because callbacks are, by definition, separated from the original request to which the callback is a response,
they appear as unsolicited messages to the client's host. Many hosts refuse unsolicited network traffic, either
because they directly reject such traffic or because they are protected by firewalls or other network security
apparatus. Clients that run in such environments are therefore not capable of receiving callbacks.

Another requirement for handling callbacks is that the client is persistent by being conversational. If the client
is a web application, that is, a JSP page, or a non−conversational web service, it cannot handle callbacks.

In order to allow clients that can't accept callbacks to use your web services, you can supply a polling
interface as an alternative. In a polling interface, you provide one or more methods that a client can call
periodically to determine whether the result of a previous request is ready. Although the web service or Java
control will still be asynchronous in design, the interactions with a client are handled with synchronous
(unbuffered) methods.

A typical design of a polling interface will have these three methods:

A start_request method that the client will call to initiate a request. If the client calls a web service,
the start_request method will start a conversation.

•

A check_status method that the client will periodically call to check the status of the request. The
method returns a boolean value indicating whether or not the request has been handled. If the client
calls a web service, the check_status method will continue the conversation.

•

A get_results method that the client will call to get the results of the request. The results may for
instance be returned as a String or an object of some kind, or null if the request could not be processed
successfully. If the client calls a web service, the get_results method will finish the conversation.

•

Notice that a client using a polling interface needs to periodically check the status of the request, because the
web service or Java control cannot notify the client when its request has been processed. Also notice that the
three methods will not be buffered. The check_status and get_results methods do not return void and cannot
be buffered, while the start_request method cannot be buffered because you need to ensure that this method
has been handled before the check_status is handled. (Remember that the relative handling order of buffered
and unbuffered methods is uncertain. For more information, see Using Buffering to Create Asynchronous
Methods and Callbacks.)

There are several other ways to implement a polling interface. The following example taken from the source
code of the Conversation.jws Sample web service shows one such variation:

public class Conversation {
 /**
 * @common:operation
 * @jws:conversation phase="start"
 */
 public void startRequest()
 {
 ...
 }
 /**
 * @common:operation
 * @jws:conversation phase="continue"
 */
 public String getRequestStatus()
 {

Using Polling as an Alternative to Callbacks 35

 ...
 }
 /**
 * @common:operation
 * @jws:conversation phase="finish"
 */
 public void terminateRequest()
 { }
}

A client uses the startRequest method to initiate a request from a conversational web service. The client then
calls getRequestStatus periodically to check on the result. As before, the client is free to perform other
processing between calls to getRequestStatus. The getRequestStatus method returns an indication that the
request is pending until the request is complete. The next time the client calls getRequestStatus after the
request is complete, the result is returned to the client. The client then calls terminateRequest to finish the
conversation.

Related Topics

Web Services Development Cycle

Getting Started: Using Asynchrony to Enable Long−Running Operations

Designing Conversational Web Services

Designing Asynchronous Interfaces

Using Polling as an Alternative to Callbacks 36

Designing Robust Asynchronous Interfaces
The preceding sections have presented various design options that can be included when building web
services and Java controls. Given these options, what exactly constitutes a good design and creates a
successful and robust web service or Java control? This topic explores several typical design solutions.

Do I Need an Asynchronous Interface?

The first question you might need to answer for a web service or Java control is whether the service or control
needs to be asynchronous. There are certainly cases where a non−conversational, synchronous service or
control will suffice, especially when the functionality it implements is relatively small, the request handling is
relatively short, and the underlying infrastructure supporting this web service is solid, for instance if you are
working on a fail−proof intranet or if your control is called by a (synchronous) web service on the same
server. However, if any of these factors are not true or uncertain at the time of design, you will want to make
your service or control asynchronous.

Do I Need to Use Callbacks?

Callbacks are a powerful approach to designing asynchronous web services or Java controls, relieving the
client from periodically checking a request's status, as is required with polling. Especially when it is unclear
how long a request will take to process, or if processing times vary wildly, using a callback is likely the most
elegant implementation of asynchrony and loose coupling. Using callbacks in combination with buffering of
both methods and callbacks is particularly effective in dealing with high−volume traffic. However, callbacks
require that the client is designed to accept incoming messages and is hosted in an environment that supports
message delivery.

Do I Need to Use Polling?

All asynchronous web services and Java controls should provide a polling interface. If the web service or Java
control is asynchronous, a polling interface is required by any client that cannot accept callbacks; a polling
interface is the only way such a client can obtain the results of operations initiated by asynchronous method
invocations. You should think of a polling interface as the foundation interface of a web service or Java
control, and callbacks as "extra" functionality that is convenient for clients who can handle callbacks.

The exception to this guideline is a Java control for which the only clients will be conversational web services
or Java controls invoked by conversational web services. Conversational WebLogic Workshop web services
can always accept callbacks. However, Java controls should be designed to be reusable. Assuming that the
only clients a Java control will ever have are WebLogic Workshop web services limits the reusability of the
Java control.

A Robust Web Service or Java Control

To create an asynchronous web service or Java control that is robust and handles all situations, it is
recommended that you implement both a callback and a polling interface. Your design might (among others)
include the following methods:

A start_request_asynch buffered method that the client will call to initiate a request. The method
starts a conversation and notes that the callback mechanism will be used when the results are ready.

•

Designing Robust Asynchronous Interfaces 37

A callback_results buffered callback that sends the results to the client when the request is completed
and finishes the conversation.

•

A start_request_synch buffered method that the client will call to initiate a request. The method starts
a conversation and notes that the polling mechanism will be used when the results are ready.

•

A check_status unbuffered method that the client will periodically call to check the status of the
request. The method continues a conversation and returns a Boolean value indicating whether or not
the request has been completely handled.

•

A get_results unbuffered method that the client will call to get the results of the request. The method
finishes the conversation.

•

Other implementations of this design are possible. For a variation, see Using Polling as an Alternative to
Callbacks.

Related Topics

Building Web Services with WebLogic Workshop

Designing Asynchronous Interfaces

Designing Robust Asynchronous Interfaces 38

	Table of Contents
	Designing Asynchronous Interfaces
	Getting Started: Using Asynchrony to Enable Long-Running Operations
	Introduction to Asynchronous Interfaces
	Introduction to Asynchronous Java Controls
	Using Callbacks to Notify Clients of Events
	Using Buffering to Create Asynchronous Methods and Callbacks
	Designing Conversational Web Services
	Overview: Conversations
	Life of a Conversation
	Implementing Conversations
	Managing Conversation Lifetime
	Supporting Serialization
	Conversing with Non-Workshop Clients
	Best Practices for Designing Asynchronous Interfaces
	Using Polling as an Alternative to Callbacks
	Designing Robust Asynchronous Interfaces

