
Version 8.1 SP2
November 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the agreement. This document may
not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium
or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software−Restricted Rights
Clause at FAR 52.227−19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227−7013, subparagraph (d) of the Commercial Computer Software−−Licensing clause
at NASA FAR supplement 16−52.227−86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the
part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR
THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E−Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Table of Contents
Guide to Building Business Processes...1

Creating a Business Process Application..5

Components of Your Application..6

Designing Your Application...8

Starting Your Business Process...13

Designing Start Nodes...14

Client Request Start (Asynchronous)..17

Client Request with Return Start (Synchronous)..18

Subscription Start (Asynchronous)...25

Subscription Start (Synchronous)...29

Event Choice Start..34

Exception Handlers on Start Nodes..36

Interacting With Clients...37

Receiving Messages From Clients...38

Sending Messages to Clients..42

Buffering Client Messages..46

Interacting With Resources Using Controls...47

Create Control Nodes in Your Business Process...48

Designing Your Control Nodes..50

Adding Instances of Controls to Your Business Process Project...51

 Configuring Control Nodes...57

Setting Control Properties...60

Receiving Multiple Events..63

Guide to Building Business Processes

i

Table of Contents
Create an Event Choice Node in Your Business Process..64

Design Your Event Choice Group...66

Creating Parallel Paths of Execution..68

Understanding Parallel Execution in Your Business Process...69

Create a Parallel Node in Your Business Process..70

Design Your Parallel Node...71

Defining Conditions For Branching..73

Creating a Decision Node in Your Business Process...74

Designing Your Decision Node..76

Creating Case Statements..81

Creating a Switch Node..82

Designing a Switch Node..84

Writing Custom Java Code in Perform Nodes...88

Creating Looping Logic..90

Understanding While Node Groups..91

Creating While Node Groups in Your Business Process...92

Designing While Node Groups...94

Looping Through Items in a List...96

Creating For Each Nodes in Your Business Process...97

Designing For Each Nodes...98

Specifying Endpoints in Your Business Process..101

Grouping Nodes in Your Business Process...102

Handling Exceptions...105

Guide to Building Business Processes

ii

Table of Contents
Adding Message Paths..112

Adding Timeout Paths..116

Running and Testing Your Business Process...119

Business Process Variables and Data Types...124

Creating Variables..125

Deleting Variables...129

Working with Data Types..130

Assigning MFL Data to XML Variables and XML Data to MFL Variables..133

Versioning Business Processes...141

Validating Schemas...146

Building Stateless and Stateful Business Processes..148

Building Synchronous and Asynchronous Business Processes...150

Transaction Boundaries...153

Business Process Source Code...160

Building ebXML Participant Business Processes..165

About the ebXML Participant Business Process File..166

Creating an ebXML Participant Business Process..167

Customizing an ebXML Participant Business Process..168

Building RosettaNet Participant Business Processes...171

About the RosettaNet Participant Business Process File..172

Creating a RosettaNet Participant Business Process...175

Customizing a RosettaNet Participant Business Process..176

Guide to Building Business Processes

iii

Guide to Building Business Processes
WebLogic Integration's business process management (BPM) functionality enables the integration of diverse
applications and human participants, as well as the coordinated exchange of information between trading
partners outside of the enterprise. Business Processes allow you to orchestrate the execution of business logic
and the exchange of business documents among back−end systems, users and trading partners (systems and
users) in a loosely coupled fashion.

This guide introduces the tools in WebLogic Workshop that allow you to create Business Processes
graphically, allowing you to focus on the application logic rather than on implementation details as you
develop.

The first step in the design of your business process is to build a graphical representation of the business
process that meets the business requirements for your project. You create a graph of component nodes in your
business process by dragging components from the Business Process Palette and dropping them onto the
Design View pane. Program control is represented visually by these nodes (or shapes) and the connections
between them. Effectively, you create a graphical representation of your business process and its interactions
with clients and resources, such as databases, JMS queues, file systems, and other components.

Topics Included in This Section

Creating a Business Process Application

Describes how to start WebLogic Workshop and WebLogic Server and provides step−by−step instructions
for creating a business process project in WebLogic Workshop. Describes how some of the high−level
components you create as you build your business process application (specifically, the names you choose for
these components) surface in the finished application.

Starting Your Business Process

Describes how to design the trigger that starts your business process. You can design your business process to
start as the result of receiving a request from a client, as the result of receiving a message from a message
broker channel to which the business process is subscribed, or as the result of receiving any one of the former
types of messages, via an Event Choice node.

Interacting With Clients

Provides step−by−step instructions for creating nodes in your business process that handle interactions with
client applications. A business process must be able to receive messages from clients and send messages to
clients.

Interacting With Resources Using Controls

Describes how to create nodes in your business process that manage the interactions with external resources,
such as databases, EJBs, Web services, and so on. WebLogic Workshop Controls represent the interface
between a business process and these external resources.

Receiving Multiple Events

Guide to Building Business Processes 1

Describes how to create nodes at which your business process waits to receive multiple events, from clients
or controls. Event Choice nodes handle the receipt of multiple events. Event Choice nodes, in turn, contain
Client Response or Control Receive, or both.

Creating Parallel Paths of Execution

Describes how you can design your business process to execute tasks in parallel.

Defining Conditions For Branching

Describes how to design a Decision node and its associated conditions in your business process. A Decision
node is used to select exactly one path of execution based on the evaluation of one or more conditions.

Creating Case Statements

Describes how to design Java−like case statements through using Switch nodes. A Switch node is used to
select one path of execution based on the evaluation of an expression specified on a condition node. A Switch
node contains one condition node, one or more case paths, and one default path.

Writing Custom Java Code in Perform Nodes

Describes the Perform nodes, which you can customize with Java code.

Creating Looping Logic

Describes how you can design logic in your business process in which the activities enclosed in a loop are
performed repeatedly while a specific condition is true.

Looping Through Items in a List

Describes how to design For Each nodes in a business process, that is, how to create the logic that allows
your business process to perform a set of activities repeatedly, once for each item in a list.

Specifying Endpoints in Your Business Process

Describes how to design the final node in your business process.

Grouping Nodes in Your Business Process

Describes how to combine business process nodes into a group, for which you can specify properties, such as
exception, message, and timeout paths.

Handling Exceptions

Describes exception handlers: global exception handlers, exception handlers on a block or group of nodes,
and exception handlers for individual nodes.

Adding Message Paths

Describes how to use Message Paths to execute process nodes in a parallel path to a node or group of nodes
after a certain message is received from a client or a resource (via a control). Message paths can be associated

Guide to Building Business Processes

Guide to Building Business Processes 2

with individual nodes, a group of nodes, or with the process (global).

Adding Timeout Paths

Describes how to use timeout paths to execute process nodes in a parallel path to a node or group of nodes
after a certain amount of time has lapsed. Timeout paths can be associated with individual nodes, a group of
nodes, or with the process (global).

Running and Testing Your Business Process

Describes how you can compile and test a business process using the Test Browser tool.

Business Process Variables and Data Types

Describes the data types supported in your business process application and how to create business process
variables.

Versioning Business Processes

Describes how to you can make changes to your business process without interrupting any instances of the
process that are currently running by using the WebLogic Workshop versioning feature.

Validating Schemas

Describes the different methods you can use to validate your schemas.

Building Stateless and Stateful Business Processes

Describes the differences between building Stateless vs. Stateful business processes.

Building Synchronous and Asynchronous Business Processes

Describes the differences between building Synchronous vs. Asynchronous business processes.

Transaction Boundaries

Describes the rules for implicit and explicit transaction boundaries and how to create explicit transaction
boundaries.

Business Process Source Code

Describes the source code WebLogic Workshop writes to a business process file (a JPD file), in keeping with
your business process design in the graphical design environment.

Building ebXML Participant Business Processes

Describes the template that you can use to build an ebXML participant business process in WebLogic
Workshop.

Building RosettaNet Participant Business Processes

Guide to Building Business Processes

Guide to Building Business Processes 3

Describes how to build public participant business processes for RosettaNet conversations using the
RosettaNet participant business process file in WebLogic Workshop.

Related Topics

How Do I: Use the Design View?

Calling Business Processes

Guide to Building Business Processes

Guide to Building Business Processes 4

Creating a Business Process Application
WebLogic Integration extends the WebLogic Workshop graphical design environment to allow the building
of integrated enterprise applications. An application in turn contains projects and files. A project can contain
several components including, business processes, Web services, and XML files.

This section describes the components of an application, the steps you follow to create an application in
WebLogic Workshop, and how to incorporate a business process in your application. It includes the following
topics:

Components of Your Application•
Designing Your Application•

Creating a Business Process Application 5

Components of Your Application
This section outlines some of the high−level components you create as you build your business process
application and how they appear in the deployed application based on the names that you choose for these
components. Note the following components:

Application�The components of the application you are creating are represented in a hierarchical tree
structure on the Application pane in your WebLogic Workshop environment. If the Application pane is not
visible in WebLogic Workshop, choose View �> Application from menu bar. An example Application pane
is shown in the following figure:

J2EE applications and their components are deployed on WebLogic Server as Enterprise Application Archive
(EAR) files. The name you specify for the application becomes the name of the EAR file that you use to
deploy your application.

Projects�Projects contained in your application represent WebLogic Server Web applications. That is, when
you create a project, you are creating a Web application. The name of your project will be included in the
URL your clients use to access your application. For example, the preceding figure represents an application
named tutorial_process_application. It contains a project named tutorial_process_applicationWeb, which in
turn contains a business process named RequestQuote.jpd. Clients can access your business process via the
following URL:

http://host:port/tutorial_process_applicationWeb/requestquote/RequestQuote.jpd

In the preceding URL, host and port represent the name of your host server and the listening port.

Note: When you create a Process Application, a Web application (process project folder) is created in the
application, by default. The default process project folder (and therefore, the Web application) is named using
the name you specified for your application with the word Web appended to it (that is,
process_application_nameWeb). If you create additional process projects (Web applications) in your Process
Application, you can specify any name you want for them; the additional process projects will not include the
Web suffix.

Components of Your Application 6

Schemas�To make the XML Schemas, MFL files, and Channel files in your application available in your
business process, you must place them in a Schemas folder. When you create your process application or
project using a template, the Schemas folders are created as child folders of your business process application
folder, as shown in the preceding figure. When you add XML Schemas and MFL files to the Schemas folder
in your business process project, they are compiled to generate XML Beans. In this way, WebLogic
Workshop generates a set of interfaces that represent aspects of your XML Schemas. XML Bean types
correspond to types in the XML Schema itself. XML Beans provides Java counterparts for all built−in
Schema types, and generates Java counterparts for any derived types in your Schema.

To learn more about schemas, see Importing Schemas.

Guide to Building Business Processes

Components of Your Application 7

Designing Your Application
You build your application in WebLogic Workshop by adding projects to an application. A project contains
components of your application such as business processes, Web services, control files, and XML files.

Creating a Business Process Application

To quickly get started designing business processes, you can create an application that contains a basic
business process file, which you can customize with your business process logic. To do so, complete the
following procedure:

To Create a New Application

Choose File �> New �> Application from the WebLogic Workshop menu to display a New
Application dialog box.

1.

To create a business process application, select Process in the left pane in the dialog box. In the right
pane, select Process Application.

2.

This creates an application that contains a basic business process project, which includes a business
process file that contains only a Start and Finish node (process.jpd).

Note: If you select Tutorial: Process Application instead of Process Application, WebLogic
Workshop creates an application containing components for the Business Process and Data
Transformation tutorials. To learn about taking the tutorial, see Tutorial: Building Your First Business
Process, and Tutorial: Building Your First Data Transformation. You can also build an ebXML or
RosettaNet participant business process in WebLogic Workshop by using specially created templates.
For more information about how to create these participant processes, see Building ebXML
Participant Business Processes and Building RosettaNet Participant Business Processes.

Specify the directory in which to create the Application folder.3.
Specify a name for your new application.4.
In the Server field, select the sample integration domain or any other WebLogic Integration domain
in which your application runs. Click Browse to browse the file system to find a WebLogic Server
configuration file.

5.

Click Create.6.

Your application is displayed on the Application tab in WebLogic Workshop, as shown in the
following figure:

Designing Your Application 8

The How Do I: Use the Design View? topic briefly describes the components and tools you use to design
your business process in the WebLogic Workshop graphical design environment.

Subsequent topics in this guide describe in detail how to design specific business process patterns, including
tasks such as:

Adding methods and callbacks to client nodes in your business process to create the interface
between your business process and its clients.

•

Adding controls to represent the interfaces with resources such as Web services, databases, and EJBs.•
Mapping disparate data types in your business process, using XML Schemas, and constructing
sequences of XML elements over which your business process can iterate to perform specified
activities.

•

Viewing and editing the JPD file in the Source View.•

To learn about these tasks and others, see Topics Included in This Section.

Setting the Business Process Properties

There are several properties which you can view and configure for your business process in the Property
Editor of your business process start node.

To Set the Business Process Properties

Select the Start node of the business process for which you want to configure the properties.1.
If the Property Editor is not visible in WebLogic Workshop, choose View �> Property Editor from
the menu bar.

2.

In the Property Editor, the following properties are displayed: general, process, and version.

general

name�This is the name of your business process, which is displayed throughout the WebLogic
Workshop application, including the WebLogic Integration Administration Console. You can change
the name to anything you would like by clicking this property and entering a new name.

•

notes�Enter any notes that you want associated with your business process by clicking this property
and then clicking to open the Property Text Editor. Notes entered in the editor will be also be
displayed in the WebLogic Integration Administration Console.

•

process

freeze on failure�When a business process fails and there is no exception handler configured to
handle the exception thrown, the business process is placed into an aborted state and no recovery is
possible. However, if the business process is configured to freeze on failure, the business process rolls
back to the last commit point and the state is persisted if it fails. The process can then be restarted
from the WebLogic Integration Administration Console. To configure a business process to freeze on
failure: select true from the freeze on failure drop−down menu.

•

For more information about business process exception handlers, see Handling Exceptions. For more
information about how to unfreeze business processes in the WebLogic Integration Administration
Console, see Process Instance Monitoring in Managing WebLogic Integration Solutions at the
following URL:

Guide to Building Business Processes

Designing Your Application 9

http://edocs.bea.com/wli/docs81/manage/processmonitoring.html

persistence�This property sets how a stateful business process is persisted. More specifically, it
determines whether a conversation is maintained in memory or stored in a database repository.
Normally, stateful processes are persisted to a database. However, you may want to use
non−persistent stateful processes for the following:

•

When the native communication mechanism requires it.♦
When multiple send−receive operations need to be done in parallel.♦
When the performance of a stateful process using a database does not meet performance
goals.

♦

To set the type of persistence, from the persistent drop−down menu:

Select always when you want your process conversations saved in the database repository.
These conversations can be recovered in the event of an abnormal shutdown or crash. This
setting is the WebLogic Integration default.

♦

Select never when you do not want your process conversations saved in the database
repository. These conversations cannot be recovered in the event of an abnormal shutdown or
crash.

♦

Select on overflow when you want your process conversations save in the database
repository after reaching a certain number. Until this number is reached, conversations are
non−persistent. To set the overflow, set the Max Beans in Cache deployment descriptor. To
learn more about configuring deployment descriptors, see EJB−>Configuration−>Descriptors
in the WebLogic Server Administration Console Online Help at the following URL:

edocs.bea.com/wls/docs81/ConsoleHelp/domain_ejbcomponent_config_descriptors.html

♦

on sync failure�This property only applies to your process if it is configured to be a synchronous
subprocess, it is ignored for any other business processes. If a synchronous subprocess fails, the
default behavior is to mark it as rollback, which causes both the subprocess and the parent process to
rollback. However, if the on sync failure property is set to rethrow, only the subprocess is rolled
back. To learn more about synchronous subprocesses and the on sync failure property, see Working
with Subprocesses.

•

retry count�Specify how many times, after the first attempt, the process engine should try to execute
the business process.

•

If your business process contains an asynchronous Client Request node or multiple Client Request
nodes, any one of which is asynchronous, then you can set the retry count for the business process.
You cannot set the retry count property for business processes that contain only synchronous Client
Request nodes (that is, Client Request with Return nodes).

retry delay�Specify the amount of time (in seconds) you want to pass before a retry is attempted.•

If your business process contains an asynchronous Client Request node or multiple Client Request
nodes, any one of which is asynchronous, then you can set the retry delay for the business process.
You cannot set the retry delay property for business processes that contain only synchronous Client
Request nodes (that is, Client Request with Return nodes).

stateless�This property is for viewing only, it cannot be edited. It displays whether your business
process is stateless (property displays true) or stateful (property displays false). To learn more about
stateless and stateful business processes, see Building Stateless and Stateful Business Processes.

•

binding�This property specifies whether the business process uses the Web service, ebXML, or
RosettaNet protocol. The default value is webservice. If your business process is an ebXML or a

•

Guide to Building Business Processes

Designing Your Application 10

RosettaNet process, select ebxml or rosettanet. In keeping with your selection in the Property
Editor, an attribute is written to the @jpd: process annotation in the source code. For example:

@jpd:process binding="rosettanet" process::

To learn about ebXML and RosettaNet business processes, see Building ebXML Participant Business
Processes and Building RosettaNet Participant Business Processes.

version

strategy�This describes how to invoke sub processes when different versions of the parent process
exists. From the strategy drop−down menu:

•

Select loosely−coupled if you want the subprocess version to be set at the time that the sub
process is invoked.

♦

Select tightly−coupled if you want the subprocess version to be set at the time the parent
process is invoked.

♦

For more detailed information about the version strategy property, see Configuring the New
Versions of Your Business Process.

ebxml

For information about ebXML properties, see @jpd:ebxml Annotation.

rosettanet

For information about RosettaNet properties, see @jpd:rosettanet Annotation.

Related Topics

How Do I: Start WebLogic Workshop?

How Do I: Start and Stop WebLogic Server?

How Do I: Create a New Application?

How Do I: Create a New Project?

How Do I: Create a New Business Process File?

How Do I: Open an Existing Business Process?

How Do I: Use the Design View?

Handling Exceptions

Process Instance Monitoring at http://edocs.bea.com/wli/docs81/manage/processmonitoring.html

Building Synchronous and Asynchronous Business Processes

Building Stateless and Stateful Business Processes

Guide to Building Business Processes

Designing Your Application 11

Versioning Business Processes

Guide to Building Business Processes

Designing Your Application 12

Starting Your Business Process
This section describes how to design the first node in your business process (the Start node) to represent the
starting point of a business process.

A business process can be started as a result of receiving a request from a client, as the result of receiving a
message from a Message Broker channel to which the business process is subscribed (a business process can
subscribe to channels to receive events from for example: File event generators, JMS event generators, and
Timer Event Generators), and by a choice of one of several events. This section includes the following topics:

Designing Start Nodes•
Exception Handlers on Start Nodes•

Related Topics

How Do I: Call a Business Process?•

Starting Your Business Process 13

Designing Start Nodes
A Start node represents the starting point of a business process. Depending on the method by which your
business process starts, the Starting Event of your process can contain any combination of Client Request,
Client Request with Return, or Subscription nodes. You design the Starting Event of your process by
double−clicking the Starting Event place holder placed just below your Start node.

To create a new business process, complete the tasks described in Creating a Business Process Application.
When you create a new business process, it initially contains an empty Start node, a Starting Event place
holder, and a Finish node, as shown in the following figure:

The first action in the business process is specified at the Start node. That is, you specify how the business
process is started at run time by defining a Starting Event. The empty node attached to the Start node, as
well as the gray check box , shown in the preceding figure, indicate that the start method for this business
process is not defined.

While you are building your business process by adding process nodes to it, you can go back to the start node
to check the stateless status of your process. If your process at any time becomes stateful, the stateless
property in the Start node property editor displays false. To learn more about stateless and stateful business
processes, see Building Stateless and Stateful Business Processes.

The Start Node also indicates any business−process−wide problems, such as when a control declaration has
an error or when an incorrect variable type is used for a variable. Any such problems are indicated by an
appearing next to the Start Node. If you place your cursor over this icon,WebLogic Workshop will display a
message about the problems.

To Define the Start Method for Your Business Process

You can design the start node properties by invoking the starting event node builder. Node builders provide a
task−driven interface that allow you to specify the logic required at nodes in your business process.

Double−click the Starting Event placeholder on the Start node in the Design View to display the
Start node builder.

1.

In the node builder, select the method by which you want your business process to start:2.
Invoked via a Client Request♦

Designing Start Nodes 14

Select this option if you want your business process start as the result of receiving a message
from a client.

Invoked synchronously via a Client Request with Return♦

Select this option if you want your business process start as the result of receiving a
synchronous request from a client. Any nodes added between the receive and send nodes
inside the Client Request with Return group will be executed within the scope of the
synchronous operation.

Subscribe to a Message Broker channel and start via an Event (Time, Email, File,
Adapter, etc.)

♦

Select this option if you want your business process to start as a result of receiving an
asynchronous message from a Message Broker channel. You create a static subscription to a
Message Broker channel on this node. This option also allows you to start your business
process via an event through File, JMS, Email, or Timer controls, which facilitate publishing
events to Message Broker channels.

Note: In WebLogic Integration, subscriptions to Message Broker channels defined at a Start
node are referred to as static subscriptions, and subscriptions defined using a Message Broker
Subscription control are referred to as dynamic subscriptions. See "Note about Static and
Dynamic Subscriptions" in @jpd:mb−static−subscription Annotation.

Subscribe synchronously to a Message Broker channel and start via an Event♦

Select this option if you want your business process to start as a result of receiving a
synchronous message from a Message Broker channel. You create a static subscription to a
Message Broker channel on this node. This option also allows you to start your business
process via an event through File, JMS, Email, or Timer controls, which facilitate publishing
events to Message Broker channels.

Invoked via one of several Client Requests or Subscriptions (Event Choice)♦

Select this option if you want your business process to start as a result of receiving one of a
number of possible events. When an Event Choice node is used at the start of a business
process, you can configure it to contain Client Request, Client Request with Return, or
Message Broker Subscription nodes.

To close the node builder, click the X in the top right−hand corner.3.

The drop target on the Start node is populated with an icon representing the method by which the
business process starts.

To learn about further specifying the appropriate start node for your business process, see:

Client Request Start (Asynchronous)•
Client Request with Return Start (Synchronous)•
Subscription Start (Asynchronous)•
Subscription Start (Synchronous)•
Event Choice Start•

Guide to Building Business Processes

Designing Start Nodes 15

Related Topics

How Do I: Call a Business Process?

Guide to Building Business Processes

Designing Start Nodes 16

Client Request Start (Asynchronous)
If you specified that your business process starts when it receives a message from a client, that is using the
Invoked via a Client Request option, your Start node is displayed as shown in the following figure:

To Complete the Design of Your Client Request Node

Double−click the Client Request node to invoke the node builder for the Client Request node.1.
To complete the specification of events for your Client Request node, see Design Your Client
Request Node.

2.

Related Topics

Sending Messages to Clients

Handling Exceptions

Client Operations and Control Communication Methods

How Do I: Call a Business Process?

Client Request Start (Asynchronous) 17

Client Request with Return Start (Synchronous)
If you specified that your business process starts when it receives a message from a client and a synchronous
response is sent back to the client, that is using the Invoked synchronously via a Client Request with
Return option, your Start node is displayed as shown in the following figure:

Note the following properties for the Client Request with Return group node:

 indicates that the design of this node is incomplete. To complete the design, see To Complete the
Design of Your Client Request with Return Node Group.

•

By default the name for the node is Client Request with Return. You can change the name in the
following ways:

•

Right−click the node name in the Design View and select Rename from the drop−down
menu. Then enter a new name to replace Client Request with Return.

♦

Double−click the node name in the Design View, then enter a new name to replace Client
Request with Return.

♦

Double−click either of the Client Request with Return icons in your business process to
display the one of the node builders. Click the name beneath the node builder icon and enter a
new name to replace Client Request with Return.

♦

After you add any node to your business process, you can design its properties and behavior by invoking the
node builder and completing the tasks appropriate for that node. You can also add optional nodes between the
Request and Return part of the Client Request with Return node. This allows you to process data or perform
tasks after the message from the client is received and before the return is sent back to the client. For more
information on how to add optional nodes to your Client Request with Return node, see Adding Nodes to
Your Client Request with Return Node Group.

The following sections describe how to complete the design of your Client Request with Return nodes:

To Complete the Design of Your Client Request with Return Node Group

Client Request with Return Start (Synchronous) 18

To complete the design of your Client Request with Return node, you need to complete the following
sections:

Specify General Settings for the Request Part of Your Node Group•
Specify Receive Data Settings for the Request Part of Your Node Group•
Specify General Settings for the Return Part of Your Node Group•
Specify Send Data Settings for the Return Part of Your Node Group•

Specify General Settings for the Request Part of Your Node Group

Double−click the icon (upper icon) in the Client Request with Return node group in your

business process.

1.

The request part of the node builder is displayed. It contains two tabs: General Settings and Receive
Data.

In the General Settings tab, enter a name in the Method Name field to specify the name of the
method on this Client Request with Return node.

2.

The name you assign to the method is the name of the method that is exposed via the Web Services
Description Language (WSDL) when you make your business process available as a Web service. To
learn more about how the methods in your project are exposed to clients, see Components of Your
Application.

In the General Settings tab, click Add and select the type and format of the data your Client
Request with Return node expects to receive from clients (that is, the data type for the method
parameter). You can also specify a name for the method parameter.

3.

Select the type and format of your data. The possible variable types options are available:4.
XML Types♦

Lists the XML Schemas that are available in your business process project and the untyped
XMLObject and XMLObjectList data types. To learn how to import a Schema into your
project, see Importing Files into the Schemas Project.

Non−XML Types♦

Lists the Message Format Language (MFL) files available in your business process project
and the untyped RawData data type. WebLogic Integration uses a metadata language called
Message Format Language (MFL), based on XML, to describe the structure of non−XML
data. Every MFL file available in your project is listed in Non−XML Types. Note that an
XML Schema representation of each MFL file is built by WebLogic Workshop and is also
available in the XML Types listing.

Java Types♦

Lists Java primitive data types.

For more detailed descriptions of the data types, see Working with Data Types.

Guide to Building Business Processes

Client Request with Return Start (Synchronous) 19

After you selected the data type, click OK. The parameter type field is populated with that parameter
type.

5.

Note: If you selected typed XML or typed non−XML data type in the previous step, you can select
the Validate box to have the incoming message validated against your specified schema before the
message is received by the node. For more information about schemas, see Validating Schemas and
Importing Files into the Schemas Project.

In the General Settings tab, continue clicking Add and select the type and format of your data until
you have added as many parameters as you want to use.

6.

To remove a variable from the node builder pane, select the variable in the list and then click
Remove.

7.

Note: This action removes the variable from the node builder, not from your business process. The
variable is still included in your business process; it is visible in the Variables pane in the Data
Palette.

Specify Receive Data Settings for the Request Part of Your Node Group

Click the Receive Data tab.1.

This tab allows you to define one or more variables to hold the data that your business process
receives from clients.

If the data types of your method parameters and the data type of the variables you are going to use
match, you can map your variables to the corresponding methods directly.

2.

If not already selected, select the Variable Assignment option.a.

The Client Sends field is populated with the parameter(s) you specified on the General
Settings tab.

If you want to assign a variable that you have already created in your project to the method
parameters, under Select Variables to assign, click the arrow in the drop−down list and
select it from the menu. The variable you select is added to the node builder pane.

b.

If you want to create a new variable and assign it to the method parameter, click the arrow in
the drop−down list, select Create new variable..., then follow the instructions in the To
Create a New Variable in the Node Builder section.

c.

If the data types of your method parameters and your variables match, close the node builder
by clicking the X in the top right−hand corner.

d.

If the data types of your method parameters and your variables are different, you can use the data
mapping tool included in WebLogic Integration to map between heterogeneous data types. The data
transformations you create using the tool are stored in Data Transformation Files (DTF). When DTFs
containing your data transformations are built, they are built as controls. The controls expose
transformation methods, which business processes invoke to map disparate data types.

3.

To create a transformation map, select the Transformation option in the node builder.a.

The node builder transformation window displays the data types expected by your method in
the Client Sends pane.

In Step 1 of the Transformation option window, click Select Variable to select one or more
variables to be used.

b.

Guide to Building Business Processes

Client Request with Return Start (Synchronous) 20

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not from your
business process. The variable is still included in your business process; it is visible in the
Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
(defined by a DTF file) for you to create the map.

If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the Transformation
Mapping tool window. This automatically applies changes to the builder and opens a
transformation editor in a new window.

c.

The mapping tool displays a representation of the source schema and target schema in
Source and Target panes. You can create a map between the data type of the method
parameter and the data type of the variable, or variables, to which you assign the data. To
learn how to create and test a map using the mapping tool, see the Guide to Data
Transformations.

Note: To return to node builder, in the Application pane, double−click the JPD file.

If the appropriate instance of a Transformation control is available in your project, click
Advanced... in the node builder. The Advanced Option window opens. In this window select
the Control and Method. If the method arguments and return type matches those as selected
in the Transformation pane, click OK.

d.

To close the node builder, click the X in the top right−hand corner.e.

About Editing Node Configurations

You can edit the configuration at any node by opening the node builder and changing the existing
specifications. If you add or remove variables in a node builder that already contains a configured
transformation, you must edit or recreate the transformation. To do so, add or remove the variables, then click
Edit Transformation or Create Transformation.

Note: When selecting a variable in a node builder's Transformation pane, and then clicking Remove removes
the selected variable from the node builder, not from your business process. The variable is still included in
your business process; it is visible in the Variables pane in the Data Palette.

Specify General Settings for the Return Part of Your Node Group

Double−click the icon (lower icon) in the Client Request with Return node in your

business process.

1.

The request part of the node builder is displayed. It contains two tabs: General Settings and Send
Data.

In the General Settings tab, enter a name in the Method Name field to specify the name of the
method on this Client Receive with Return node.

2.

Guide to Building Business Processes

Client Request with Return Start (Synchronous) 21

The name you assign to the method is the name of the method that is exposed via the Web Services
Description Language (WSDL) when you make your business process available as a Web service. To
learn more about how the methods in your project are exposed to clients, see Components of Your
Application.

In the General Settings tab, click Select and select the type and format of the data your Client
Request with Return node expects to send to clients (that is, the data type for the return value).

3.

Select the type and format of your data. The possible variable types options are:4.
XML Types♦

Lists the XML Schemas that are available in your business process project and the untyped
XMLObject data type. To learn how to import a Schema into your project, see Importing
Files into the Schemas Project.

Non−XML Types♦

Lists the Message Format Language (MFL) files available in your business process project
and the untyped RawData data type. WebLogic Integration uses a metadata language called
Message Format Language (MFL), based on XML, to describe the structure of non−XML
data. Every MFL file available in your project is listed in Non−XML Types. Note that an
XML Schema representation of each MFL file is built by WebLogic Workshop and is also
available in the XML Types listing.

Java Types♦

Lists Java primitive data types.

For more detailed descriptions of the data types, see Working with Data Types.

After you selected the data type, click OK. The return type field is populated with the parameter
types you added in the preceding steps.

5.

Specify Send Data Settings for the Return Part of Your Node Group

Click the Send Data tab.1.

This tab allows you to define one or more variables to hold the data your business process send to
clients is displayed.

If the data types of your return value and the data type of the variables you are going to use match,
you can map your variables to the corresponding return value directly.

2.

If not already selected, select the Variable Assignment option.a.

The Client Expects field is populated with the return type you specified on the General
Settings tab.

If you want to assign a variable that you already created in your project to the return value,
select it from the drop−down menu.

b.

If you want to create a new variable and assign it to the method parameter, select Create
new variable..., then follow the instructions in the To Create a New Variable in the Node
Builder section.

c.

Guide to Building Business Processes

Client Request with Return Start (Synchronous) 22

If the data types of your return value and your variables match, close the node builder by
clicking the X in the top right−hand corner.

d.

If the data types of your return value and your variables are different, you can use the data mapping
tool included in WebLogic Workshop to map between heterogeneous data types. The data
transformations you create using the tool are stored in Data Transformation Format (DTF) files. When
DTF files containing your data transformations are built, they are built as controls. The controls
expose transformation methods, which business processes invoke to map disparate data types.

3.

To create a transformation map, select the Transformation option.a.

The node builder transformation window displays the data types expected by your method
displayed in the Client Expects pane.

In Step1 of the Transformation option window, click Select Variable to select one or more
variables to be used.

b.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not from your
business process. The variable is still included in your business process; it is visible in the
Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
(defined by a DTF file) for you to create the map.

If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the Transformation
Mapping tool window. This automatically applies changes to the builder and opens a
transformation editor in a new window.

c.

The mapping tool displays a representation of the source schema and target schema in
Source and Target panes. You can create a map between the data type of the method
parameter and the data type of the variable, or variables, to which you assign the data. To
learn how to create and test a map using the mapping tool, see Guide to Data
Transformations.

Note: To return to node builder, in the Application pane, double−click the JPD file.

If the appropriate instance of a Transformation control is available in your project, click
Advanced.... The Advanced Option window opens. In this window select the Control and
Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

d.

To close the Mapping tool window, click the X in the top right−hand corner.e.

Note: To learn about changing the configuration you design in the Transformation pane of a
node builder, see About Editing Node Configurations.

To close the node builder, click the X in the top right−hand corner.4.

In the Design View, the icon indicates that you completed the configuration and design of this
node.

Guide to Building Business Processes

Client Request with Return Start (Synchronous) 23

To save your work, select File �> Save.5.

Adding Nodes to Your Client Request with Return Node Group

The Client Request with Return node functions as a combination of a Client Request node and a Client
Receive node within a synchronous interaction. As such, you can add additional nodes in between the request
and the return part of your Client Request Node but you cannot add any nodes that wait or block. To add a
node to your Client Request with Return node, select the node you want to add in the Palette and drag and
drop it into your Client Request with Return node.

The following nodes can be added:

Client Response (See Create a Client Response Node in Your Business Process.)•
Control Send (See Create Control Nodes in Your Business Process.)•
Control Send with Return (See Create Control Nodes in Your Business Process.)•
Perform (See To Create a Perform Node in Your Business Process.)•
Decision (See To Create a Decision Node in Your Business Process.)•
Switch (See Creating Case Statements.)•
While Do (See To Add A While group to Your Business Process.)•
Do While (See To Add A While group to Your Business Process.)•
For Each (See To Add A For Each Node to Your Business Process.)•

Naming the Methods on Client Request with Return Nodes

The names that you assign to methods on your Client Request with Return nodes correspond to the names
of the methods that are exposed via the Web Services Description Language (WSDL) when you make your
business process available as a Web service. The name must be a valid Java class name.

Related Topics

Sending Messages to Clients

XQuery Statements

Handling Exceptions

Client Operations and Control Communication Methods

How Do I: Call a Business Process?

Guide to Building Business Processes

Client Request with Return Start (Synchronous) 24

Subscription Start (Asynchronous)
If you specified that your business process is started via the Subscribe to a Message Broker channel and
start via an Event (Time, Email, File, Adapter, etc.) option (see To Define the Start Method for Your
Business Process), your Start node is displayed as shown in the following figure:

A static subscription to a Message Broker channel is defined on the Subscription node. Your business
process is started as the result of receiving a message from a Message Broker channel.

Note: In WebLogic Integration, subscriptions to Message Broker channels defined at a Start node are referred
to as static subscriptions, and subscriptions defined using a Message Broker Subscription control are referred
to as dynamic subscriptions. See "Note about Static and Dynamic Subscriptions" in
@jpd:mb−static−subscription Annotation.

The following sequence concisely describes the message flow at run time:

A service publishes a message to a Message Broker channel, using a MB (Message Broker) Publish
control, a File event generator, Timer event generator, or a JMS event generator. To learn more about
how events are published to Message Broker channels, see Message Broker Publish Control and
Using Event Generators to Publish to Message Broker Channels.

1.

A business process instance subscribes to, and receives messages from the Message Broker channel
via the Subscription node. To ensure scalability of your application, the inbound messages by default
are buffered on the queue for the current business process. To learn about buffering, see Buffering
Client Messages.)

2.

Note: An asynchronous subscription start causes the subscribed business process to run in a different
transaction from the publisher's transaction. In general, this is the recommended design pattern to use when
you want to design your business process to start when it receives a message from a Message Broker channel.
To learn about the scenarios for which a synchronous subscription start is recommended, see About Choosing
Synchronous or Asynchronous Subscription Start Nodes.

To Complete the Design of Your Subscription Start Node

Double−click the Subscription node associated with the Start node in your business process to
invoke the Subscription node builder.

1.

Subscription Start (Asynchronous) 25

Tabs on the node builder include:

General Settings♦
Specify Filter♦
Receive Data♦

The following steps describe the tasks available on these tabs.

Complete the following tasks on the General Settings tab:2.
In the Method Name field, enter a name for the subscription request method.a.

The data type and format of the data your subscription request method (that is, the data type
for the method parameter) is specified automatically, based on the configuration of your
channel file.

Select a channel name from the drop−down list of Message Broker channels associated with
the Channel Name field.

b.

Note: If no appropriate channels are available for you to select, you must create a file that
specifies the Message Broker channels for your application. To learn how to create this file,
see How Do I Create Message Broker Channels?

Click the Specify Filter tab.3.

Specifying a filter is optional. Filters can be applied to the data type the business process receives
from the channel, or when you have specified a qualified metadata type in your channel configuration.

The field in the Specify Filter tab is populated with the data type for the subscription method
parameter you specified on the preceding tab. If you specified your channel to be able to receive
qualified metadata, the Qualified Metadata attribute is also listed and you can filter on that
parameter instead.

To specify a filter:

Select the input type or schema element on which you want to filter.a.
An XQuery expression is generated, and the Filter field is populated with the XQuery
expression based on your selection in the preceding step.

b.

Note: If you want to filter on an XMLObject parameter, you have to enter the XQuery

Guide to Building Business Processes

Subscription Start (Asynchronous) 26

statement in the Filter field or edit your source code directly.

In the Filter Value field, enter a value against which you want to match the filter.c.
Click the Receive Data tab.4.

This tab allows you to define one or more variables to hold the data that your business process
receives from the channel.

If the data types of your method parameters and the data type of the variables you are going to use
are the same, you can map your variables to the corresponding methods directly.

5.

If it is not already selected, select the Variable Assignment option.a.

The Client Sends field is populated with the parameter(s) you specified on the General
Settings tab, in other words, the parameter type of the channel.

If you want to assign a variable that you already created in your project to the method
parameters, select it from the drop−down menu.

b.

If you want to create a new variable and assign it to the method parameter, select Create
new variable..., then follow the instructions in the To Create a New Variable in the Node
Builder section.

c.

If the data types of your method parameters and your variables match, click the X in the top
right−hand corner to close the node builder.

d.

If the data types of your method parameters and your variables are different, you can use the data
mapping tool included in WebLogic Integration to map between heterogeneous data types. The data
transformations you create using the tool are stored in Data Transformation Format (DTF) files. When
DTF files containing your data transformations are built, they are built as controls. The controls
expose transformation methods, which business processes invoke to map disparate data types.

6.

To create a transformation map, select the Transformation option.a.

The node builder transformation screen is displayed; the data types expected by your method
are displayed in the Client Sends pane.

In Step 1 on the Transformation option window, click Select Variable to select one or
more variables to be used.

b.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not from your
business process. The variable is still included in your business process; it is visible in the
Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
(defined by a DTF file) for you to create the map.

If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the transformation tool.
This automatically applies changes to the builder and opens the transformation tool in a new
window.

c.

The transformation tool displays a representation of the source schema and target schema in
Source and Target panes. You can create a map between the data type of the method

Guide to Building Business Processes

Subscription Start (Asynchronous) 27

parameter and the data type of the variable, or variables, to which you want to assign the data.
To learn how to create and test a map using the mapping tool, see Guide to Data
Transformations.

Note: To return to node builder, in the Application pane, double−click the JPD file.

If the appropriate instance of a Transformation control is available in your project, click
Advanced.... The Advanced Option window opens. In this window select the Control and
Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

d.

Close the Transformation tool by clicking the X in the top right−hand corner.e.

Note: To learn about changing the configuration you design in the Transformation pane of a
node builder, see About Editing Node Configurations.

To close the node builder, click the X in the top right−hand corner.7.

In the Design View, the icon indicates that you completed the configuration and design of this node. To
learn about buffering on your subscription node, see Buffering Client Messages.

To save your work, select File �> Save.8.

Related Topics

Subscription Start (Synchronous)

Sending Messages to Clients

Handling Exceptions

Client Operations and Control Communication Methods

How Do I Create Message Broker Channels?

How Do I: Call a Business Process?

Message Broker Publish Control

Using Event Generators to Publish to Message Broker Channels.

Guide to Building Business Processes

Subscription Start (Asynchronous) 28

Subscription Start (Synchronous)
If you specified that your business process is started via the Subscribe synchronously to a Message Broker
channel and start via an event option (see To Define the Start Method for Your Business Process), your
Start node is displayed as shown in the following figure:

A synchronous static subscription to a Message Broker channel is defined on the Synchronous Subscription
node. Your business process is started as the result of receiving a synchronous message from a Message
Broker channel.

Note: In WebLogic Integration, subscriptions to Message Broker channels defined at a Start node are referred
to as static subscriptions, and subscriptions defined using a Message Broker Subscription control are referred
to as dynamic subscriptions. See "Note about Static and Dynamic Subscriptions" in
@jpd:mb−static−subscription Annotation.

The following sequence summarizes the message flow at run time for the scenario in which you design a
Synchronous Subscription node at the start of your business process:

A service publishes a message to a Message Broker channel, using a MB (Message Broker) Publish
control, a File event generator, Timer event generator, or a JMS event generator. To learn more about
how events are published to Message Broker channels, see Message Broker Publish Control and
Using Event Generators to Publish to Message Broker Channels.)

1.

A business process instance subscribes to, and receives messages from the Message Broker channel
via the Synchronous Subscription node.

2.

About Choosing Synchronous or Asynchronous Subscription Start Nodes

In general, an asynchronous subscription start pattern is recommended because it causes the subscribed
business process to run in a different transaction from the publisher's transaction. In contrast, a synchronous
subscription start causes the subscribed business process to run in the same transaction as the publisher. This
type of subscription decreases loose coupling and can associate the results of a transaction rollback of one
subscriber with an otherwise independent subscriber. However, there are two scenarios in which the

Subscription Start (Synchronous) 29

synchronous subscription start pattern is recommended:

JMS event generators publish to Message Broker channel which has one subscriber.•

When a JMS event generator publishes to a channel that is known to have one subscriber, it generally
improves performance to use the synchronous subscription start method on the subscriber. Note that
in this case, the subscriber is doing work on the event generator thread, so you should adjust the event
generator thread count accordingly.

JMS event generators and subscribers use the suppressible attribute.•

Setting suppressible to true specifies that the static subscription is suppressed in favor of dynamic
subscriptions. In other words, you use suppressible=true to prevent specific messages on a Message
Broker channel from starting a new business process; instead the messages can be received, using a
dynamic subscription, by a business process that is already running.

To learn about this scenario, see Using the Suppressible Attribute for a Static Subscription.

To Complete the Design of Your Synchronous Subscription Start Node

Double−click the Subscription node associated with the Start node in your business process to
invoke the Subscription node builder.

1.

Note: You can configure only the node that represents the message received by the business process.
That is, you can only invoke a node builder for the first of the icons in the pair that represents the
Synchronous Subscription Start node.

Tabs on the node builder include:

General Settings♦
Specify Filter♦
Receive Data♦

The following steps describe the tasks available on these tabs.

Complete the following tasks on the General Settings tab:2.
Select a channel name from the drop−down list of Message Broker channels associated with
the Channel Name field.

a.

Note: If no appropriate channels are available for you to select, you must create a file that
specifies the Message Broker channels for your application. To learn how to create this file,
see How Do I Create Message Broker Channels?

In the Method Name field, enter a name for the subscription request method.b.

The data type and format of the data your subscription request method (that is, the data type
for the method parameter) is specified automatically, based on the configuration of your
channel file.

Click the Specify Filter tab.3.

Guide to Building Business Processes

Subscription Start (Synchronous) 30

Specifying a filter is optional. Filters can be applied to the data type the business process receives
from the channel, or when you have specified a qualified metadata type in your channel configuration.

The field in the Specify Filter tab is populated with the data type for the subscription method
parameter you specified on the preceding tab. If you specified your channel to be able to receive
qualified metadata, the Qualified Metadata attribute is also listed and you can filter on that
parameter instead.

To specify a filter:

Select the data type on which you want to filter.a.
An XQuery expression is generated, and the Filter field is populated with the XQuery
expression based on your selection in the preceding step.

b.

Note: If you want to filter on an XMLObject parameter, you will have to enter the XQuery
statement in the Filter field or edit your source code directly.

In the Filter Value field, create a value against which you want to match the filter.c.
Click the Receive Data tab.4.

This tab allows you to define one or more variables to hold the data that your business process
receives from the channel.

If the data types of your method parameters and the data type of the variables you are going to use
are the same, you can map your variables to the corresponding methods directly.

5.

If it is not already selected, select the Variable Assignment option.a.

The Client Sends field is populated with the parameter(s) you specified on the General
Settings tab, in other words, the parameter type of the channel.

If you want to assign a variable that you already created in your project to the method
parameters, click Select Variable and select it from the drop−down menu. The variable you
select is added to the node builder pane.

b.

If you want to create a new variable and assign it to the method parameter, select Create
new variable..., then follow the instructions in the To Create a New Variable in the Node
Builder section.

c.

If the data types of your method parameters and your variables match, close the node builder
by clicking X in the top right−hand corner.

d.

Guide to Building Business Processes

Subscription Start (Synchronous) 31

If the data types of your method parameters and your variables are different, you can use the data
mapping tool included in WebLogic Integration to map between heterogeneous data types. The data
transformations you create using the tool are stored in Data Transformation Format (DTF) files. When
DTF files containing your data transformations are built, they are built as controls. The controls
expose transformation methods, which business processes invoke to map disparate data types.

6.

To create a transformation map, select the Transformation option.a.

The node builder transformation pane is displayed; the data types expected by your method
are displayed in the Client Sends pane.

In Step 1 on the Transformation option pane, click Select Variable to select one or more
variables to be used.

b.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not from your
business process. The variable is still included in your business process; it is visible in the
Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
(defined by a DTF file) for you to create the map.

If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the Transformation
Mapping tool. This automatically applies changes to the builder and opens the transformation
tool in a new window.

c.

The transformation tool displays a representation of the source schema and target schema in
Source and Target panes. You can create a map between the data type of the method
parameter and the data type of the variable, or variables, to which you want to assign the data.
To learn how to create and test a map using the mapping tool, see Guide to Data
Transformations.

Note: To return to node builder, in the Application pane, double−click the JPD file.

If the appropriate instance of a Transformation control is available in your project, click
Advanced.... The Advanced Option window opens. In this window select the Control and
Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

d.

To close the node builder, click the X in the top right−hand corner.e.

Note: To learn about changing the configuration you design in the Transformation pane of a
node builder, see About Editing Node Configurations.

In the Design View, the check box icon indicates that you completed the configuration and design of this
node.

To save your work, select File �> Save.7.

Related Topics

Guide to Building Business Processes

Subscription Start (Synchronous) 32

Subscription Start (Asynchronous)

Sending Messages to Clients

Handling Exceptions

Client Operations and Control Communication Methods

How Do I Create Message Broker Channels?

How Do I: Call a Business Process?

Message Broker Publish Control

Using Event Generators to Publish to Message Broker Channels

Guide to Building Business Processes

Subscription Start (Synchronous) 33

Event Choice Start
If you specified that your business process is Invoked via one of several Client Requests or Subscriptions
(Event Choice), (see To Define the Start Method for Your Business Process), your Start node is displayed as
shown in the following figure:

By default, Event Choice nodes are created with two branches. Click to create additional branches. A
new branch is added on the left or right of the existing branches.

You can add additional nodes to the paths in your Event Choice node to specify the events executed at run
time after the business process starts. The Starting Event targets at the start of each branch indicate that only
certain nodes are allowed at these locations: specifically, when you use an Event Choice node at the start
node in your business process, it can contain only Client Request, Client Request with Return or
Subscription nodes.

Note: When you create an Event Choice node at locations other than the Start node in your business
process, it can contain Client Request nodes and Control Receive nodes. To learn more about designing
Event Choice nodes, see Receiving Multiple Events.

To Complete the Design of Your Event Choice Start Node

To specify the events to be executed on each branch of your Event Choice Start node, complete the
following tasks for each branch of the node:

Double−click the Starting Event placeholder to invoke the node builder.1.

Event Choice Start 34

From the node builder, select the event for which this branch waits:2.
A Client Request♦
A Client Request with Return♦
A Message Broker Subscription♦
A Synchronous Message Broker Subscription♦

Close the node builder by clicking the X in the top right−hand corner.3.

The drop target on your Event Choice branch is changed to reflect the event you specified.

To complete the specification of events, double−click the event nodes on the Event Choice branches
to invoke the associated node builder:

4.

To learn how to use the node builder to complete the Client Request node, see Design Your
Client Request Node.

♦

To learn how to use the node builder to complete the Client Request with Return node, see
To Complete the Design of Your Client Request with Return Node Group.

♦

To learn how to use the node builder to complete the Message Broker Subscription node, see
To Complete the Design of Your Subscription Start Node.

♦

To learn how to use the node builder to complete the Synchronous Message Broker
Subscription node, see To Complete the Design of Your Synchronous Subscription Start
Node.

♦

To save your work, select File �> Save.5.

Related Topics

How Do I: Create a New Business Process File?

How Do I: Open an Existing Business Process?

Message Broker Control

File Control

JMS Control

Business Process Source Code

Handling Exceptions

Adding Message Paths

Adding Timeout Paths

How Do I: Call a Business Process?

Guide to Building Business Processes

Event Choice Start 35

Exception Handlers on Start Nodes
You can create a global exception handler for your business process by creating an exception path for the
Start node. You create the logic for the exception handler path to define the flow of execution in the case
when an exception is thrown by your business process. A global exception handler responds to exceptions that
are otherwise not handled in the business process.

To learn how to create exception handler paths on Start nodes, see Handling Exceptions.

Exception Handlers on Start Nodes 36

Interacting With Clients
Clients invoke business processes to perform one or more operations. Business Processes expose their
functionality through methods.

Client Request nodes represent the points in a business process at which a client invokes a method on the
business process and possibly sends input to the business process. The names you assign to methods on Client
Request nodes correspond to the names of the methods that are exposed via the Web Services Description
Language (WSDL) when you make your business process available as a Web service.

Note: The nodes in a business process are always communicating asynchronously with clients, except for
when you invoke a Start node of a business process by using the Client Request with Return option or
configure the starting event on a Message path to wait for a Client Request with Return. To learn more
about using the Client Request with Return node, see Client Request with Return Start (Synchronous).

Client Response nodes represent the points in a business process at which business processes send messages
to clients.

This section describes how to add nodes to your business process and design the interactions of business
processes with clients. It includes the following topics:

Receiving Messages From Clients�Design nodes in your business process to receive asynchronous
messages from clients. A business process can be started as a result of receiving a message from a
client.

•

Sending Messages to Clients�Design nodes in your business process to send asynchronous messages
to clients.

•

Buffering Client Messages�Design your business process in such a way that the messages sent to
clients from Client Response nodes are buffered.

•

Interacting With Clients 37

Receiving Messages From Clients
Client Request nodes provide a way for a client to make a request to a business process.

The tasks you must complete to design a Client Request node include:

Create a Client Request Node in Your Business Process•
Design Your Client Request Node•
Naming the Methods on Client Request Nodes•

Create a Client Request Node in Your Business Process

On the Application tab, click the business process (JPD file) you want to design.1.

Your business process is displayed in the Design View.

If the Palette is not visible in WebLogic Workshop, choose View �> Windows �> Palette from the
WebLogic Workshop menu.

2.

Drag and drop Client Request from the Palette onto the business process in the Design View,
placing it on the business process at the point at which you want to design the client interaction.

3.

Note: As you drag your selection onto the Design View, targets appear on your business process.
Each target represents a location in the flow where you can place the node. As you drag the node near
a location, the target is activated and the cursor changes to an arrow . When this happens, you

can release the mouse button and the node snaps to the business process at the location indicated by
the active target. If the location you chose is not a valid one, an will appear next to your node. If
you place your cursor over this icon,WebLogic Workshop will display a message about the violation.

The Client Request node is displayed in your business process in the Design View.

Note the following properties for the Client Request node:

 indicates that the design of this node is incomplete. To complete the design, see Design Your
Client Request Node.

•

By default the name for the node is Client Request. You can change the name in the following ways:•
Double−click the node name in the Design View and enter a new name to replace Client
Request.

♦

Right−click the node name in the Design View and select Rename from the drop−down
menu. Then enter a new name to replace Client Request.

♦

Double−click the Client Request node in your business process to display the node builder.
Click the name beneath the node builder icon and enter a new name to replace Client
Request.

♦

Design Your Client Request Node

After you add any node to your business process, you can design its properties and behavior by invoking the
node builder and completing the tasks appropriate for that node. The following section describes how to
complete the design of interactions with clients in your Client Request nodes:

Receiving Messages From Clients 38

To Specify General Settings•
To Specify Receive Data•

To Specify General Settings

Double−click the Client Request node in your business process.1.

The node builder is displayed. It contains two tabs: General Settings and Receive Data.

In the General Settings tab, enter a name in the Method Name field to specify the name of the
method on this Client Receive node.

2.

The name you assign to the method is the name of the method that is exposed via the Web Services
Description Language (WSDL) when you make your business process available as a Web service. To
learn more about how the methods in your project are exposed to clients, see Components of Your
Application.

In the General Settings tab, click Add to select the type and format of the data your Client Request
node expects to receive from clients (that is, the data type for the method parameter). The node
builder displays the following types of data:

3.

XML Types♦

Lists the XML Schemas that are available in your business process project and the untyped
XMLObject and XMLObjectList data types. To learn how to import a Schema into your
project, see Importing Files into the Schemas Project.

Non−XML Types♦

Lists the Message Format Language (MFL) files available in your business process project
and the untyped RawData data type. WebLogic Integration uses a metadata language called
Message Format Language (MFL), based on XML, to describe the structure of non−XML
data. Every MFL file available in your project is listed in Non−XML Types. Note that an
XML Schema representation of each MFL file is built by WebLogic Workshop and is also
available in the XML Types listing.

Java Types♦

Lists Java primitive data types.

For more detailed descriptions of the data types, see Working with Data Types.

Click OK.4.

After you select a data type, the field is populated with the parameter types you added in the
preceding steps.

Note: If you selected a typed XML or typed non−XML data type in the previous steps, you can select
the Validate box to have the incoming message validated against your specified schema before the
message is received by the node. For more information about schemas, see Validating Schemas and
Importing Files into the Schemas Project.

Guide to Building Business Processes

Receiving Messages From Clients 39

To Specify Receive Data

Click the Receive Data tab.1.

This tab allows you to define one or more variables to hold the data your business process receives
from clients is displayed.

If the data types of your method parameters and the data type of the variables you are going to use
match, you can map your variables to the corresponding methods directly.

2.

If not already selected, select the Variable Assignment option.a.

The Client Sends field is populated with the parameter(s) you specified on the General
Settings tab.

If you want to assign a variable that you already created in your project to the method
parameters, select it from the drop−down menu.

b.

If you want to create a new variable and assign it to the method parameter, select Create
new variable..., then follow the instructions in To Create a New Variable in the Node
Builder.

c.

If the data types of your method parameters and your variables match, click the X in the top
right−hand corner to close the node builder.

d.

If the data types of your method parameters and your variables are different, you can use the
Transformation tool included in WebLogic Workshop to map between heterogeneous data types. The
data transformations you create using the tool are stored in Data Transformation Format (DTF) files.
When DTF files containing your data transformations are built, they are built as controls. The controls
expose transformation methods, which business processes invoke to map disparate data types.

3.

To create a transformation map, select the Transformation option.a.

The node builder transformation screen is displayed with the data types expected by your
method displayed in the Client Sends pane.

In Step 1 of the Transformation option window, click Select Variable to select one or more
variables to be used.

b.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not from your
business process. The variable is still included in your business process; it is visible in the
Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
(defined by a DTF file) for you to create the map.

If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the Transformation
Mapping tool window. This automatically applies changes to the builder and opens a
transformation editor in a new window.

c.

The mapping tool displays a representation of the source schema and target schema in
Source and Target panes. You can create a map between the data type of the method
parameter and the data type of the variable, or variables, to which you assign the data. To

Guide to Building Business Processes

Receiving Messages From Clients 40

learn how to create and test a map using the mapping tool, see Guide to Data
Transformations.

Note: To return to node builder, in the Application pane, double−click the JPD file.

If the appropriate instance of a Transformation control is available in your project, click
Advanced.... The Advanced Option window opens. In this window, select the Control and
Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

d.

Close the Transformation tool by clicking the X in the top right−hand corner.e.
To close the node builder, click the X in the top right−hand corner.4.

In the Design View, the icon indicates that you completed the configuration and design of this
node.

Note: To learn about changing the configuration you design in the Transformation pane of a node builder, see
About Editing Node Configurations.

To save your work, select File �> Save.5.

Naming the Methods on Client Request Nodes

The names that you assign to methods on your Client Request nodes correspond to the names of the methods
that are exposed via the Web Services Description Language (WSDL) when you make your business process
available as a Web service. The name must be a valid Java class name.

Related Topics

Sending Messages to Clients

Buffering Client Messages

XQuery Statements

Handling Exceptions

Client Operations and Control Communication Methods in Business Process Source Code

Adding Message Paths

Adding Timeout Paths

Guide to Building Business Processes

Receiving Messages From Clients 41

Sending Messages to Clients
Client Response nodes provide a way for a business process to send messages to clients. The tasks you must
complete to design a Client Response node include:

Create a Client Response Node in Your Business Process•
Design Your Client Response Node•

Create a Client Response Node in Your Business Process

On the Application tab, click the JPD file you want to design.1.

Your business process is displayed in the Design View.

If the Palette is not visible in WebLogic Workshop, choose View �> Windows �> Palette from the
WebLogic Workshop menu.

2.

Click Client Response in the Palette.3.
Drag and drop the Client Response node onto the business process in the Design View, placing it on
the business process at the point in your business process at which you want to send a message to a
client.

4.

Note: As you drag your selection onto the Design View, targets appear on your business process.
Each target represents a location in the flow where you can place the node. As you drag the node near
a location, the target is activated and the cursor changes to an arrow . When this happens, you

can release the mouse button and the node snaps to the business process at the location indicated by
the active target. If the location you chose is not a valid one, an will appear next to your node. If
you place your cursor over this icon,WebLogic Workshop will display a message about the violation.

The Client Response node is displayed in your business process in the Design View.

Note the following properties for the Client Response node:

 indicates that the design of this node is incomplete. To complete the design, see Design Your
Client Response Node.

•

By default the name for the node is Client Response. You can change the name in the following
ways:

•

Double−click the node name in the Design View and enter a new name to replace Client
Response.

♦

Right−click the node name in the Design View and select Rename from the drop−down
menu. Then enter a new name to replace Client Response.

♦

Double−click the Client Response node in your business process to display the node builder.
Click the name beneath the node builder icon and enter a new name to replace Client
Response.

♦

Design Your Client Response Node

The following section describes how to complete the design of interactions with clients in your Client
Response nodes:

Sending Messages to Clients 42

To Specify General Settings•
To Specify Send Data•

To Specify General Settings

Double−click the Client Response node in your business process.1.

The node builder is displayed. It contains two tabs: General Settings and Send Data.

In the General Settings tab, enter a name in the Method Name field to specify the name of the
method on this Client Response node.

2.

In the General Settings tab, click Add to specify the type and format of the data your business
process sends to clients via the Client Response node (that is, the data type for the method
parameter). The node builder displays the following types of data:

3.

XML Types♦

Lists the XML Schemas that are available in your business process project. To learn how to
import a Schema into your project, see Importing Files into the Schemas Project.

Non−XML Types♦

Lists the Message Format Language (MFL) files available in your business process project.
WebLogic Integration uses a metadata language called Message Format Language (MFL),
based on XML, to describe the structure of non−XML data. Every MFL file available in your
project is listed in Non−XML Types. Note that an XML Schema representation of each MFL
file is built by WebLogic Workshop and is also available in the XML Types listing.

Java Types♦

Lists Java primitive data types, and XMLObject, XMLObjectList, and RawData types.

To learn more about data types, see Working with Data Types.

Click OK.4.

After you select a data type from the list of supported types, the field is populated.

To Specify Send Data

Click the Send Data tab.1.

This tab allows you to define one or more variables to hold the data your business process sends to
clients.

If the data types of your method parameters and the data type of the variables you are going to use
match, you can map your variables to the corresponding methods directly.

2.

If not already selected, select the Variable Assignment option.a.

The Client Expects field is populated with the parameter(s) you specified on the General
Settings tab.

Guide to Building Business Processes

Sending Messages to Clients 43

If you want to assign a variable that you already created in your project to the method
parameters, select it from the drop−down menu.

b.

If you want to create a new variable and assign it to the method parameter, select Create
new variable..., then follow the instructions in To Create a New Variable in the Node
Builder.

c.

If the data types of your method parameters and your variables match, close the node builder
by clicking the X in the top right−hand corner

d.

If the data types of your method parameters and your variables are different, you can use the data
mapping tool included in WebLogic Workshop to map between heterogeneous data types. The data
transformations you create using the tool are stored in Data Transformation Format (DTF) files. When
DTF files containing your data transformations are built, they are built as controls. The controls
expose transformation methods, which business processes invoke to map disparate data types.

3.

To create a transformation map, select the Transformation option.a.

The node builder transformation screen is displayed with the data types expected by your
method displayed in the Client Expects pane.

In Step 1 in the Transformation tab, click Select Variable to select one or more variables to
be used.

b.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not from your
business process. The variable is still included in your business process; it is visible in the
Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
(defined by a DTF file) for you to create the map.

If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the Transformation
Mapping tool window.

c.

The mapping tool displays a representation of the source schema and target schema in
Source and Target panes. You can create a map between the data type of the method
parameter and the data type of the variable, or variables, to which you assign the data. To
learn how to create and test a map using the mapping tool, see Guide to Data
Transformations.

Note: To return to node builder, in the Application pane, double−click the JPD file.

If the appropriate instance of a Transformation control is available in your project, click
Advanced Option. The Advanced Option window opens. In this window select the Control
and Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

d.

To close the node builder, click the X in the top right−hand corner.e.
In the Design View, the icon indicates that you completed the configuration and design of this
node.

Note: To learn about changing the configuration you design in the Transformation pane of a node builder, see
About Editing Node Configurations.

Guide to Building Business Processes

Sending Messages to Clients 44

To save your work, select File �> Save.4.

Adding Dynamic Callback Properties

You can set dynamic callback properties for your Client Response node by using the XQuery Dynamic
Selector. The Dynamic Selector allows you to configure a lookup property based on a LookupControl or
TPM function. You can then configure your business process in the WebLogic Integration Administration
Console such that, at run time, the security of the callback to the client is handled differently, based on the
value of the lookup property that you specified in the Dynamic Selector.

To Set the Dynamic Callback Property

Select the Client Response node for which you want to set a Dynamic Callback property.1.
In the Property Editor, in the xquery field under the selector section, click .2.

The Dynamic Selector window opens with the method schema that is configured for the Client
Response node displayed.

Select the LookupControl or the TPM option.3.
Select the element which you want to use as the base for your lookup in the method schema.4.

An xquery function is created for you and displayed in the XQuery pane of the window.

If you want to test your xquery, click the Test tab. The Test tab displays the Source XML in the left
pane.

5.

Click Test to display the Result XML. Your xquery execution status is displayed in the XQuery
Execution Messages pane of the window.

6.

Click OK to close the Dynamic Selector window.7.

The xquery you created is displayed in the Property Editor of the Client Response node.

For information about how to configure the security information associated with your dynamic callback
property, see "Adding or Changing Dynamic Client Callback Selectors" in Process Configuration in
Managing WebLogic Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/manage/processconfig.html

To save your work, select File �> Save.8.

Related Topics

Receiving Messages From Clients

Buffering Client Messages

Handling Exceptions

Client Operations and Control Communication Methods in Business Process Source Code

Guide to Building Business Processes

Sending Messages to Clients 45

Buffering Client Messages
To ensure the scalability of your business process applications, incoming messages from clients are buffered
by default on the queue for the Web application.

Outgoing messages to clients are not buffered by default, but they can be configured to be buffered on the
same Web application queue.

To Buffer an Outgoing Client Message

Select the Client Response node that is configured with the callback method you want to buffer.1.
In the Property Editor, in the message buffer property:2.

From the enable attribute drop−down menu, select true.a.
Select the retry−count attribute, then enter a value for the callback method. This specifies
how many times the process engine should try to send your message to the queue.

b.

Select the retry−delay attribute, then enter a value for the for the callback method. This
specifies the amount of time (in seconds) you want to pass before a retry is attempted.

c.

This completes the configuration of the callback method on the Client Response node; the callback message
is configured to be buffered.

Note: The business process considers a buffered operation completed when the message is successfully
enqueued, not when the message is delivered to the client.

To save your work, select File �> Save.3.

Related Topics

Receiving Messages From Clients

Sending Messages to Clients

Handling Exceptions

Client Operations and Control Communication Methods in Business Process Source Code

Buffering Client Messages 46

Interacting With Resources Using Controls
WebLogic Workshop controls make it easy to access enterprise resources, such as databases, Enterprise Java
Beans (EJBs), and Web services, from within your application.

When you access a resource through a control, your interaction with the resource is greatly simplified; the
underlying control implementation takes care of most of the details for you. You add an instance of a control
to your business process project and then invoke its methods. Controls expose Java interfaces that can be
invoked from your business process.

You can use controls generated from other services built with WebLogic Workshop or generate controls from
WSDL files available from other services (regardless of the programming language in which those services
were implemented).

Designing Interactions Between Business Processes and
Resources

Control Send nodes represent points in business processes at which processes send asynchronous messages
to resources (via controls). Control Receive nodes represent points in business processes at which processes
receive asynchronous messages from resources (via controls). A business process waits at a Control Receive
node until it receives a message from the specified control. Control Send with Return nodes handle
synchronous exchange of messages between business processes and resources (via controls). These three
types of controls are mutable. In other words, you can change them into another type of control by dragging
and dropping a control method of a different type.

This section describes how to add nodes to your business process that represent the interactions of your
business process with resources. It includes the following topics:

Create Control Nodes in Your Business Process•
Designing Your Control Nodes•
Adding Instances of Controls to Your Business Process Project•
Configuring Control Nodes•
Setting Control Properties•

Related Topics

Using Integration Controls

Interacting With Resources Using Controls 47

Create Control Nodes in Your Business Process
To Create a Control Node in Your Business Process

In the Design View, an interaction between a business process and an external resource is represented by one
of three Control nodes: Control Send, Control Receive, or Control Send with Return. The following steps
describe how to add a Control node to your business process:

On the Application tab, click the business process (JPD file) you want to design.1.
Click the Design View tab to view your business process.2.
Add a control node to your business process using one of the following methods:3.

Drag and Drop a Method from a Control in the Data Palette onto the Design View♦
Create a Control in the Design View First, Then Assign the Appropriate Method♦

Drag and Drop a Method from a Control in the Data Palette onto the Design View

If the Data Palette is not visible in WebLogic Workshop, choose View �> Windows �>
Data Palette from the WebLogic Workshop menu.

a.

If you have already added an instance of your control to your business project (Adding
Instances of Controls to Your Business Process Project), select the relevant method on that
control by clicking the method in the Data Palette.

b.

Drag and drop the method onto the business process in the Design View at the location at
which you want to define the interaction.

c.

As you drag your selection onto the Design View, targets appear on your business
process. Each target represents a location in the flow where you can place the node. As you
drag the node near a location, the target is activated and the cursor changes to an arrow

 . When this happens, you can release the mouse button and the node snaps to the business

process at the location indicated by the active target. If the location you chose is not a valid
one, an will appear next to your node. If you place your cursor over this icon,WebLogic
Workshop will display a message about the violation.

The Control node is created in your business process in the Design View; it is named
according to the method you dragged and dropped from the Data Palette.

Create a Control in the Design View First, Then Assign the Appropriate Method

If the Palette is not visible in WebLogic Workshop, choose View �> Windows �> Palette
from the WebLogic Workshop menu.

a.

If you have not yet created a control, click the control on the Palette that fits the action you
want to create:

b.

 Control Send�Select the Control Send if you want to create an asynchronous call from
your business process to a control.

 Control Send with Return�Choose the Control Send with Return node if you want to
create a synchronous call from your business process to a control.

Create Control Nodes in Your Business Process 48

 Control Receive�Choose the Control Receive if you want to create a handler for a
callback from a control to your business process.

Drag and drop the Control node onto the business process in the Design View at the location
at which you want to define the interaction.

c.

The Control node is created in your business process in the Design View; it is named
Control Send, Control Send with Return, or Control Receive, depending on which control
you dragged onto the Design View from the Palette.

The node in the Design View indicates only the type of interaction (asynchronous send,
asynchronous receive, or synchronous send/receive) between your business process and a
resource; it does not identify the resource. is a placeholder for a type of control. That is,

it represents a location in your business process where you must specify the type of resource
(control) with which you want your business process to interact.

Specify the control for this placeholder node in one of the following ways:d.

− Drag a control method from an instance of a control in the Data Palette and drop it onto
the placeholder control in the Design View. (To learn how to add instances of controls to
your project, see Adding Instances of Controls to Your Business Process Project.)

− Double click the placeholder control in the Design View to open the node builder for

this control and complete the specifications in the node builder.

Note the following properties for the Control nodes:

 indicates that the design of this node is incomplete. To complete the design, see Configuring
Control Nodes.

•

Each node is labeled with a default name. You can change the name by clicking the name of the node
or right−clicking the node in the Design View and selecting Rename from the drop−down menu.
Then enter a new name to replace Control Send.

•

To save your work, select File �> Save.•

Related Topics

Designing Your Control Nodes

Adding Instances of Controls to Your Business Process Project

Configuring Control Nodes

Setting Control Properties

Guide to Building Business Processes

Create Control Nodes in Your Business Process 49

Designing Your Control Nodes
Designing the Control nodes includes adding an instance of the control with which you want your business
process to interact, then specifying the methods on the control, and the variables to which the messages
exchanged between your business process and the control are assigned. This section describes how to design
Control nodes. It includes the following topics:

Adding Instances of Controls to Your Business Process Project•
Configuring Control Nodes•

Designing Your Control Nodes 50

Adding Instances of Controls to Your Business
Process Project

To Add an Instance of a Control to Your Business Process Project•
To Edit or Delete an Instance of a Control•

To Add an Instance of a Control to Your Business Process Project

Before you can specify the resource with which your business process interacts at this node, you must add an
instance of the associated control to your project.

To add an instance of a control to your project:

In the Data Palette, click Add on the Controls tab. A drop−down list of controls is displayed. These
controls represent the resources with which your business process can interact.

1.

Note: If the Controls tab is not visible in WebLogic Workshop, choose View �> Windows �> Data
Palette from the menu bar. Instances of controls already available in your project are displayed in the
Controls tab.

Select a control from the main controls list or the Integrations Controls drop−down menu.2.

Note: This table contains information about the standard controls used in WebLogic Integration.
Other custom and plug−in controls may be available.

Type of
Control

Description

Application
View

The Application View control allows WebLogic Workshop Web services and
business processes to interact with enterprise applications using simple Java APIs.
They allow access to an enterprise application even if they do not know any of the
details of the application's implementation.The Application View control provides a
means to invoke application view services both synchronously and asynchronously,
and start a new business process when an EIS (Enterprise Information System)
event occurs. In both the service and event cases, you use XML and mapping tools
to interact with the Application View control. It is not necessary to understand the
particular protocol or client API for the enterprise application or EIS. Events are
delivered using the Message Broker Subscription control. Message Broker
integration is provided by publishing all application view events to the Message
Broker through its API.

Note: The Application View control uses application views defined using the
Application Integration Design console provided with WebLogic Integration. The
Application View control is available in WebLogic Workshop only if you are
licensed to use WebLogic Integration.

To learn about Application View controls, application views, and their relationship
to enterprise applications, see Application View Control.

Database

Adding Instances of Controls to Your Business Process Project 51

Database controls provide simplified access to a relational database, allowing your
business process to call Java methods and operate on Java objects that are
appropriate to the operations being performed. The Database control automatically
performs the translation from Java objects to database queries and vice versa.

Each Database control is customized to access a particular database and perform
specified operations on that database.

A Database control can operate on any database for which an appropriate JDBC
(Java Database Connectivity) driver is available and for which a data source is
configured in WebLogic Server. To find out more information about Database
controls, see Database Control.

ebXML

The ebXML control enables WebLogic Workshop business processes to exchange
business messages and data among trading partners via ebXML (Electronic
Business using eXtensible Markup Language). ebXML is a business protocol that
enables enterprises to conduct business over the Internet. The ebXML control
supports both the ebXML 1.0 and ebXML 2.0 messaging services.

Note: The ebXML control is available in WebLogic Workshop only if you are
licensed to use WebLogic Integration.

For more information about ebXML controls, see ebXML Control.

EJB Control

EJB controls provide an interface to an existing EJB. It is a simplified way for your
business process to act as a client of an existing EJB.

After you create an EJB control, your business process can use it to access the
EJB's business methods. The EJB control simplifies the work you need to do to use
an EJB; the control manages communication with the EJB, including all JNDI
lookup, interface discovery, and EJB instance creation and management. To find out
more information about EJB controls, see EJB Control.

Email

The Email control enables WebLogic Workshop Web services and business
processes to send e−mail to a specific destination. The body of the e−mail message
can be text (plain, HTML, or XML) or can be an XML object. The control is
customizable, allowing you to specify e−mail transmission properties in an
annotation or to use dynamic properties passed as an XML variable. To learn more
about Email controls, see, Email Control.

File

File controls can be used to read and write XML and binary files to a local file
system. In addition, through the use of a callback mechanism, the files in a specified
directory can be read as they are created in a directory. For more information about
File controls, see File Control.

HTTP

This control enables WebLogic Workshop and business processes to work with
HTTP requests and to send responses to a specific URL. It supports two modes for
data transfer: GET and POST. By using the GET mode, you can send your business
data along with the URL. By using the POST mode, you can send binary, XML, and
string documents. You can specify HTTP properties in an annotation, or pass
dynamic properties via an XML variable. For more information, see HTTP Control.

JMS Use this control to send and receive messages via a Java Message Service (JMS)
queue or topic that is not involved in exchanging information with enterprise
systems though an integration application. Using JMS controls, your business

Guide to Building Business Processes

Adding Instances of Controls to Your Business Process Project 52

process can interact with any messaging system that provides a JMS
implementation. To learn more about JMS controls, see JMS Control.

To exchange JMS messages as part of an integration application, you use the WLI
JMS. This control is available as part of the integration controls if you have a
current WLI license. For more information, see WLI JMS.

Liquid Data

You can use the Liquid Data control in WebLogic Workshop to develop
applications that use data from Liquid Data queries. For example, data from Liquid
Data queries can be used as an input to business processes. To learn about BEA
Liquid Data, see the Liquid Data documentation at
http://edocs.bea.com/liquiddata/docs81/index.html. Specifically, to learn about the
Liquid Data control, see Using Liquid Data Controls to Develop Workshop
Applications.

MB Publish

Message Broker (MB) Publish controls allow your business process to publish
messages to Message Broker channels.

Publish and subscribe messaging to Message Broker channels is accomplished in
similar fashion to publish and subscribe messaging to JMS topics, but a Message
Broker channel is optimized for use with BPM (business process management)
services. The Message Broker provides typed channels to which messages can be
published and to which services can subscribe to receive messages. Message Broker
also supports a message filtering capability. For more information about Message
Broker Publish controls, see Message Broker Publish Control.

MB
Subscription

Message Broker (MB) Subscription controls allow your business process to
dynamically register for and receive messages from a Message Broker topic.

In WebLogic Integration, subscriptions to Message Broker channels defined at a
Start node are referred to as static subscriptions, and subscriptions defined using a
Message Broker Subscription control are referred to as dynamic subscriptions. See
"Note about Static and Dynamic Subscriptions" in @jpd:mb−static−subscription
Annotation.

Publish and subscribe messaging to Message Broker channels is accomplished in
similar fashion to publish and subscribe messaging to JMS topics, but a Message
Broker channel is optimized for use with BPM (business process management)
services. The Message Broker provides typed channels to which messages can be
published and to which services can subscribe to receive messages. Message Broker
also supports a message filtering capability. To learn more about Message Broker
Subscription controls, see Message Broker Subscription Control.

MQSeries

The MQSeries control enables WebLogic Workshop business processes to work
with MQSeries for sending and receiving messages, to and from MQSeries queues.
MQSeries is a middleware product from IBM that runs on multiple platforms and
enables applications to send messages to other applications. For more information
about the MQSeries control, see MQSeries Control.

Process A Process control provides an interface to another business process in your project.
Using a process control, your business process can invoke the methods and handle
the callbacks on another business process.

To create a Process control, on the Application tab in the Design View, right−click

Guide to Building Business Processes

Adding Instances of Controls to Your Business Process Project 53

a business process (JPD) file to display a drop−down menu. Select Generate
Process Control File from the drop−down menu. WebLogic Workshop creates a
Business Process control file (JCX file) in your project. For more information about
Process controls, see Process Control.

RosettaNet

The RosettaNet control enables WebLogic Workshop business processes to
exchange business messages and data among trading partners via RosettaNet.
RosettaNet is a business protocol that enables enterprises to conduct business over
the Internet.

Note: The RosettaNet control is available in WebLogic Workshop only if you are
licensed to use WebLogic Integration.

To learn more about the RosettaNet controls, see RosettaNet Control.

Service Broker

The Service Broker control allows a business process to send requests to and
receive callbacks from another business process, a Web service, or a remote Web
service defined in a WSDL file. The Service Broker control lets you dynamically set
control attributes. This allows you to reconfigure control attributes without having
to redeploy the application. To learn more about Service Broker controls, see
Service Broker Control.

TPM
The TPM (trading partner management) control provides read−only access to
trading partner information stored in the TPM repository. For more information
about how to use TPM controls, see TPM Control.

Task

The Task control creates a single Task instance, manages its state and data, and
provides callback methods to report status. A Task control identifies intimately with
a single Task instance; their relationship is one to one. You generally use a Task
control in a JPD file like most other IDE controls. For more information about Task
controls, see Worklist Controls.

Task Worker

The Task Worker control assumes ownership of Tasks, works on them, completes
them, and provides administrative privileges�starting, stopping, deleting, assigning,
and other functionality. Task Worker controls allow operations on several Task
instances; the relationship between a Task Worker control and Task instance can be
one to many. You generally use a Task Worker control with JSP user interfaces. For
more information about Task Worker controls, see Worklist Controls.

Timer
A Timer control notifies your business process when a specified period of time has
elapsed or when a specified absolute time has been reached. To learn more about
how to work with Timer control, see Timer Control.

Transformation

Use a Transformation to achieve data transformations for data in your business
processes. A Transformation is defined in a DTF file, which can be created and
edited from within communication nodes in a business process and via the File �>
New �> Transformation File option on the WebLogic Workshop menu. To learn
more, see Note About Transformations.

Tuxedo

You can include one or multiple Tuxedo services in your business process logic by
using a Tuxedo control. By creating connections to Tuxedo services, you can invoke
the Tuxedo services and retrieve the responses, and convert your application's Java
data types to and from Tuxedo buffer types. To learn about the Tuxedo control, see
BEA Tuxedo Control.

Web Service A Web Service control provides an interface to a Web service, allowing your
business process to invoke the methods and handle the callbacks of the Web service.
The Web service can be one developed with WebLogic Workshop or any Web

Guide to Building Business Processes

Adding Instances of Controls to Your Business Process Project 54

service for which a WSDL file is available.

A Service control is defined in a CTRL file. A specific Service control CTRL file
provides a way to communicate with a specific Web service. The name and location
of the Web service are specified in the CTRL file. For more information about how
to work with and configure Web Service controls, see Web Service Control and
Controls and Transactions.

WLI JMS

The WLI JMS Control is an extension for the Workshop JMS control, it is used to
exchange JMS messages as part of an integration application. Once a WLI JMS
control is defined, Web services and business processes may use it like any other
WebLogic Workshop control. For more information, see JMS Control.

Note: The WLI JMS control is available in WebLogic Workshop only if you are
licensed to use WebLogic Integration.If you do not have a current license, use the
JMS control to send and receive messages via JMS. For more information, see JMS.

After you select a type of control from the drop−down list in the Controls tab, an Insert Control
dialog box, which contains tasks specific for the control you selected, is displayed.

3.

In the Insert Control dialog box, enter the information specific for the control you want to create
and click Create. To learn about creating and configuring specific controls, see Using Integration
Controls.

4.

This step completes the creation of an instance of a specific control in your application. The controls
you create are displayed in the Controls tab.

The methods available on the control are shown in the Controls tab.

Note About Transformations

Transformations handle mapping heterogeneous data types in your application. WebLogic Workshop
provides a data mapping tool to map between heterogeneous data types. The data transformations you create
using the tool are stored in Data Transformation Format (DTF) files. The DTF files can hold multiple
transformations and are designed to enable packaging, sharing and reuse of transformation formats. When
DTF files containing your data transformations are built, they are built as controls. The controls expose
transformation methods, which business processes invoke to map the disparate data types.

In addition to creating Transformations from the Controls tab in the Design View, as described in this
section, you can create them in the following ways:

By choosing File �> New �> Transformation File from the WebLogic Workshop menu.•
By choosing File �> New �> Other File Types �> Processes �> Transformation File from the
WebLogic Workshop menu.

•

In the node builders for any Control or Client node in your business process. During the design of a
node that sends or receives data in your business process, you can create a new Transformation, or
write new methods to an existing instance of a Transformation control in your project. In this way you
can create new Transformations or Transformation methods on an existing control from within a
business process node. To learn about node builders, see Node Builders in How Do I: Use the Design
View?

•

To learn about data transformations in business processes, see Guide to Data Transformations.

Guide to Building Business Processes

Adding Instances of Controls to Your Business Process Project 55

To Edit or Delete an Instance of a Control

In the Controls tab, right−click a control to display a drop−down menu. Select Delete or Edit from the
menu. When you select Edit, the control, including its methods and callbacks, is displayed in the Design
View. Click the Source View tab to view and edit the source code for your control.

Related Topics

Create Control Nodes in Your Business Process

Designing Your Control Nodes

Configuring Control Nodes

Setting Control Properties

Using Integration Controls

Using Built−In Java Controls

Guide to Building Business Processes

Adding Instances of Controls to Your Business Process Project 56

Configuring Control Nodes
This section describes how to finalize the design of Control nodes in your business process.

After you add a Control node specific for the type of interaction you want to design�Control Send, Control
Receive, or Control Send with Return�the Control node you selected is displayed in your business process
in the Design View:

As with other nodes in your business process, you can design the properties and behavior of Control nodes
by invoking their node builders. This section describes how to complete the design of the interaction with
resources via your Control nodes.

To Invoke the Control Node Builders

Double−click the appropriate Control node in your business process to invoke its node builder.

Each Control node builder provides a task−driven interface through which you can design the
communication between the Control node and a control. The tasks are displayed on tabs on Control node
builders: General Settings, Send Data, and Receive Data.

The following sections describe how to specify your control settings on the tabs in the node builders:

General Settings (Select a Control Instance and a Target Method)•
Send Data/Receive Data (Map Variables to the Control Send (or Control Callback) Method
Parameters)

•

General Settings (Select a Control Instance and a Target Method)

In the node builder, click the arrow beside the Control field to display a drop−down list of the
instances of controls that are available in your project. (See Adding Instances of Controls to Your
Business Process Project.)

1.

Select a control from the list.2.
The Method panel is populated with the methods available on the control you selected.3.

Note: Asynchronous send and return methods, as well as synchronous send and receive methods can
be defined for a given control. Only the methods appropriate for the kind of control node you are
designing (Control Send, Control Receive, or Control Send with Return) are displayed in the list.

Select the method you want to specify at this point in your business process.4.
To close the node builder, click the X in the top right−hand corner.5.

Send Data/Receive Data
(Map Variables to the Control Send (or Control Callback) Method Parameters)

 Configuring Control Nodes 57

If your Control node is expecting data or sending data, in other words it is a Control Send, a Control
Receive, or a Control Send with Return, the node builders display either Send Data or Receive Data tabs in
addition to the General Settings tab. Tasks on these tabs allow you to define one or more variables to map to
method parameters. At run time, input data sent by your business process to controls, or data returned by
controls is assigned to these variables.

Click the Send Data or Receive Data tab (depending on the type of Control node you are designing).1.

This tab allows you to define one or more variables to hold the data that your business process
receives from clients.

If the data types of your method parameters and the data type of the variables you are going to use
match, you can map your variables to the corresponding methods directly.

2.

If not already selected, select the Variable Assignment option.a.

The Control Expects field is populated with the parameter(s) you specified on the General
Settings tab.

If you want to assign a variable that you already created in your project to the method
parameters, select it from the drop−down menu.

b.

If you want to create a new variable and assign it to the method parameter, select Create
new variable..., then follow the instructions in the To Create a New Variable in the Node
Builder section.

c.

If the data types of your method parameters and your variables match, click X to close the
node builder.

d.

If the data types of your method parameters and your variables are different, you can use the data
mapping tool included in WebLogic Workshop to map between heterogeneous data types. The data
transformations you create using the tool are stored in Data Transformation Format (DTF) files. When
DTF files containing your data transformations are built, they are built as controls. The controls
expose transformation methods, which business processes invoke to map disparate data types.

3.

To create a transformation map, select the Transformation option.a.

The node builder transformation screen is displayed with the data types expected by your
method displayed in the Control Expects pane.

In Step 1 of the Transformation option window, click Select Variable to select one or more
variables to be used.

b.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not from your
business process. The variable is still included in your business process; it is visible in the
Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
(defined by a DTF file) for you to create the map:

If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the Transformation
Mapping tool window. This automatically applies changes to the builder and opens a
transformation editor in a new window.

c.

Guide to Building Business Processes

 Configuring Control Nodes 58

The mapping tool displays a representation of the source schema and target schema in
Source and Target panes. You can create a map between the data type of the method
parameter and the data type of the variable, or variables, to which you assign the data. To
learn how to create and test a map using the mapping tool, see Guide to Data
Transformations.

Note: To return to node builder, in the Application pane, double−click the JPD file.

If the appropriate instance of a Transformation control is available in your project, click
Advanced.... The Advanced Option window opens. In this window, select the Control and
Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

d.

To close the node builder, click the X in the top right−hand corner.4.

In the Design View, the icon indicates that you completed the configuration and design of this
node and is replaced with an icon that represents the resource with which this node

communicates. That is, a new control−specific icon replaces the former placeholder icon.

To save your work, select File �> Save.5.

Related Topics

Create Control Nodes in Your Business Process

Designing Your Control Nodes

Adding Instances of Controls to Your Business Process Project

Setting Control Properties

Client Operations and Control Communication Methods in Business Process Source Code

Guide to Data Transformation

Grouping Nodes in Your Business Process

Handling Exceptions

About Editing Node Configurations

Guide to Building Business Processes

 Configuring Control Nodes 59

Setting Control Properties
Controls you create in your application are represented as JCX files in the Application pane in WebLogic
Workshop. (Transformations are represented as DTF files�see Note About Transformations.) Instances of
controls that you create in your business process are represented in the Data Palette. You can view and edit
the properties of control instances and their parent types in the Property Editor.

To View and Edit Properties for Control Types

To View and Edit Properties for Control Instances

To View and Edit Properties for Control Types

Double−click the control type (JCX or DTF file) on the Application tab.

The file is displayed in the Design View and the Source View, and its properties are displayed in the
Property Editor. The properties you see and edit in the Property Editor depend on the control you are
using.

Values you specify for the properties in the Property Editor are written to the file. In other words, the
Source View is updated in keeping with the work you do in the Property Editor. Properties you specify for
the control are inherited by any instances of the control you create based on this type.

For example if you create a File control named MyFileControl, the control type (MyFileControl.jcx) is
displayed in the Application pane in WebLogic Workshop. The following figure displays the Property
Editor for the example File control (MyFileControl.jcx). It displays the properties you can edit for the
control type.

To View and Edit Properties for Control Instances

Setting Control Properties 60

Double−click the control instance in the Data Palette to display its properties in the Property Editor. The
properties you can see and edit depend on the control you are using. Note that when you open the Property
Editor for an instance of a control, the properties for that instance, are listed at the top of the Property Editor
and the properties specified for the parent control (that is, the control on which the current instance is based)
are listed at the bottom�in the Referenced Control section. The properties displayed in the Referenced
Control section are read−only. You can edit the referenced control properties by opening the JCX file as
described in To View and Edit Properties for Control Types.

Building on the example we used in the preceding section, if you create an instance of a File control in your
business process (based on the MyFileControl.jcx type), and name it myFileControl, the instance is
displayed in the Data Palette. Click myFileControl in the Data Palette to display its properties in the
Property Editor.

The following figure shows the Property Editor for our example myFileControl instance:

Note the properties displayed in the Referenced Control section are those that were specified for the parent
control MyFileControl.jcx. You can edit them by opening the parent control (in this case
MyFileControl.jcx) as described in To View and Edit Properties for Control Types.

Related Topics

Guide to Building Business Processes

Setting Control Properties 61

Using Integration Controls

Adding Instances of Controls to Your Business Process Project

Configuring Control Nodes

Client Operations and Control Communication Methods in Business Process Source Code

Guide to Data Transformation

Handling Exceptions

Guide to Building Business Processes

Setting Control Properties 62

Receiving Multiple Events
An Event Choice node group represents a point in a business process at which the business process waits to
receive one of a possible number of events. Once it receives one of the possible events, the flow of the
business process continues. You design other nodes within an Event Choice node group to handle the
incoming events. The first node on each branch of an Event Choice node group handles the receipt of one
event. The flow of execution proceeds along one branch in an Event Choice node; the branch containing the
event that happens first.

If an Event Choice node is used to start a business process, it can contain Client Request, Client Request
with Return, and Subscription nodes. An Event Choice node at a point other than the Start node in a
business process can contain Client Request nodes and Control Receive nodes. You can also add a Timer
Branch to your Event Choice node to start that branch after a specified amount of time has passed.

To learn about designing an Event Choice node at the Start of your business process, see Designing Start
Nodes.

Note: The Timer branch of an Event Choice node is not available when the node group is used as the
Starting Event of a business process. To do timed starts of a process, you have to use a Message Broker
subscription in tandem with a Timer event generator. For more information about Message Broker
subscriptions and Timer event generators, see Using Integration Controls.

This section describes how to design Event Choice nodes at points in your business process other than the
Start node. It contains the following topics:

Create an Event Choice Node in Your Business Process•
Design Your Event Choice Group•

Receiving Multiple Events 63

Create an Event Choice Node in Your Business
Process
Create an Event Choice node a point in a business process at which the business process should wait to
receive multiple events. The events can include:

Receiving messages from clients.•
Receiving messages from resources, such as a database, a JMS queue, an EJB, and so on. (A business
process interacts with resources using controls.)

•

A Timer event. The timer starts when the execution of the business process reaches the Event Choice
node and pauses to wait for an event.

•

To support these types of events, the first node on a branch can be a Client Request, a Control Receive, or a
Timer node. The flow of execution proceeds along one branch in an Event Choice node; the branch
containing the event that happens first.

To create an Event Choice node:

On the Application tab, click the business process (JPD file) you want to design.1.

Your business process is displayed in the Design View.

If the Palette is not visible in WebLogic Workshop, choose View �> Windows �> Palette from the
WebLogic Workshop menu.

2.

Click Event Choice in the Palette. Then drag and drop it onto the business process in the Design
View, placing it on the business process at the point in your business process where you want to
handle the receipt of multiple events.

3.

The Design View is updated to contain a representation of the Event Choice node as shown in the
following figure:

Note the following characteristics of the Event Choice node:

An Event Choice node is, in effect, a group of nodes. You can view and edit the properties
of your Event Choice node by clicking the outline or label (name) of the group to select it,
then viewing the group properties in the Property Editor. To learn about groups, see
Grouping Nodes in Your Business Process.

♦

Create an Event Choice Node in Your Business Process 64

By default, Event Choice nodes are created with two branches. Click to create additional
branches. A new branch is added on the left or right of the existing branches.

♦

You can add additional nodes to the paths in your Event Choice group to specify the events
executed at run time. The empty nodes (labeled Starting Event) at the start of each branch
indicate that only certain nodes are allowed at these locations: specifically, you can add only
Client Request or Control Receive nodes at the start of the branches.

♦

A Timer branch is not included by default. You can add one Timer branch to your Event
Choice group. To do so, right−click the Event Choice group and select Add Timer
Branch�a Timer branch is added as the right−most branch in an Event Choice group. You
can only add one Timer branch per Event Choice group.

♦

Note: The Timer branch of an Event Choice node is not available when the node group is
used as the Starting Event of a business process. To do timed starts of a process, you have to
use a Message Broker subscription in tandem with a Timer event generator. For more
information about Message Broker subsrciptions and Timer event generators, see Using
Integration Controls.

By default, the group is named Event Choice, and each branch is labeled Message Event,
Add Branch, or Timer Event depending on the type of branch. You can change the names
by double−clicking them and entering a new name.

♦

 indicates that the design of this node is incomplete. When you complete the design of the
node, is replaced by . An Event Choice node is complete when all starting events have
been specified.

♦

To save your work, select File �> Save.4.

Related Topics

Design Your Event Choice Group

Comparing Parallel Nodes and Event Choice Nodes

Handling Exceptions

Adding Timeout Paths

Adding Message Paths

Guide to Building Business Processes

Create an Event Choice Node in Your Business Process 65

Design Your Event Choice Group
Designing your Event Choice node includes specifying the type of events handled on each branch of the
node, and then adding the activities you want executed on each branch when the associated event occurs.

The following sections describe how to complete the tasks necessary to design an Event Choice node:

To Receive Events From Clients or Resources♦
To Receive Timer Events♦

To Receive Events From Clients or Resources

To design a branch in an Event Choice node to receive messages from clients or resources, you must create
Client Request or Control Receive nodes on the branch:

Double−click the empty node (Starting Event) on a branch. The options you can use to design the
starting event for the branch are displayed.

1.

Select the event for which this branch waits during execution of your business process:2.
A Client Request♦
A Control Receive♦

Click X in the top right−hand corner of the node. The drop target on your Event Choice branch is
changed to reflect the event you specified.

3.

To complete the specification of events, double−click the starting event node (Client Request or
Control Receive) on the Event Choice branches to invoke the associated node builder:

4.

To learn how to use the node builder to complete the Client Request node, see Design Your
Client Request Node.

♦

To learn how to use the node builder to complete the Control Receive node, see Designing
Your Control Nodes.

♦

To Receive Timer Events

A Timer event in a Event Choice node is executed if one of the events on another branch (Control Receive
or Client Request) does not execute before a specified time. To create a Timer branch, and specify the timer
value, in your Event Choice node, complete the following tasks:

Right−click the Event Choice node and select Add Timer Branch from the drop−down menu.1.

A Timer branch is added to the Event Choice node, similar to as shown in the following figure:

Design Your Event Choice Group 66

You can set the properties for the Timer branch (and other properties for this group of nodes) in the
Property Editor.

2.

If the Property Editor is not visible in the Design View, choose View �> Property Editor
from the WebLogic Workshop menu.

a.

Select the Timer branch. The Property Editor for the Event Choice node shown in the
preceding figure appears as shown in the following figure:

b.

In the timeout property, select the duration attribute, then specify the number of seconds
before the timer path is triggered. (The expected format is Xs, for example 7s.)

c.

Note that you can change the name of the node, or any of its branches in the Property
Editor.

To save your work, select File �> Save.3.

Related Topics

Create an Event Choice Node in Your Business Process

Grouping Nodes in Your Business Process

Handling Exceptions

Business Process Source Code

Adding Message Paths

Adding Timeout Paths

Guide to Building Business Processes

Design Your Event Choice Group 67

Creating Parallel Paths of Execution
A Parallel node represents a point in a business process at which a number of activities are executed in
parallel.

By default, parallel nodes contain an AND join condition. In this case, the activities on all branches must
complete before the flow of execution proceeds to the node following the parallel node. You can change the
join condition to OR. In this case, when the activities on one branch complete, the execution of activities on
all other branches terminates, and the flow of execution proceeds to the node following the parallel node.

This section describes how to create and define Parallel nodes. It includes the following topics:

Understanding Parallel Execution in Your Business Process•
Create a Parallel Node in Your Business Process•
Design Your Parallel Node•

Creating Parallel Paths of Execution 68

Understanding Parallel Execution in Your Business
Process
Parallel branches of execution in a business process are logically parallel; physically the branches are
executed serially by the business process engine. Business Processes benefit from this logical parallelism
when communication with external systems can involve waiting for responses from those external systems.
While one branch of execution is waiting for a response, another branch of execution in the parallel flow can
progress.

Parallel branches are synchronized only at their termination points. A join condition is defined at the
termination of multiple branches. It specifies how the termination of branches terminates the overall parallel
activity.

Valid join conditions are AND and OR:

When the join condition is AND, the parallel activity terminates when all of its branch activities have
terminated. When the activities on all branches complete, the flow of execution proceeds to the node
that follows the parallel node.

•

When the join condition is OR, the parallel activity terminates when one of its branch activities has
terminated�activities associated with other branch activities are terminated prematurely. In other
words, when the activities on one branch complete, the flow of execution proceeds to the node that
follows the parallel node.

•

Comparing Parallel Nodes and Event Choice Nodes

How does a Parallel node, which specifies an OR join condition, differ from an Event Choice node?

For a scenario in which an OR join condition is specified for a Parallel node, the business process executes
activities on all branches in parallel. When the activities on one branch complete, the execution of activities
on all other branches terminates, and the flow of execution proceeds to the node following the Parallel node.
In other words, the activities on all parallel branches are initiated and proceed until the first one finishes, at
which point the activities on all other branches are terminated.

In the case of an Event Choice node, the business process waits to receive multiple events. The first node on
each branch within an Event Choice node handles the receipt of one event. The flow of execution proceeds
along the branch containing the event that happens first. In other words, the activities on one, and only one
branch in an Event Choice node are executed.

Related Topics

Create a Parallel Node in Your Business Process

Design Your Parallel Node

Understanding Parallel Execution in Your Business Process 69

Create a Parallel Node in Your Business Process
To Add A Parallel Node to Your Business Process

On the Application tab, click the business process (JPD file) you want to design.1.

Your business process is displayed in the Design View.

If the Palette is not visible in WebLogic Workshop, choose View �> Windows �> Palette from the
WebLogic Workshop menu.

2.

Click Parallel in the Palette. Then drag and drop the Parallel node onto the business process in
the Design View, placing it on the business process at the point in your business process at which you
want to create parallel paths of execution.

3.

The Design View is updated to contain a Parallel node, as shown in the following figure:

Note the following characteristics of the Parallel node:

By default, an Parallel node consists of two branches; you can click to add branches.♦
By default, the node is named Parallel, and each branch is labeled Branch or Add Branch.
You can change the names by double−clicking them and entering a new name.

♦

 indicates that the design of this node is incomplete. When you complete the design of the
node, is replaced by . A parallel node is completed when each branch contains at least
one node.

♦

To save your work, select File �> Save.4.

Related Topics

Design Your Parallel Node

Create a Parallel Node in Your Business Process 70

Design Your Parallel Node
Designing a Parallel node includes the following tasks:

To Define a Join Condition•
To Add Logic to the Branches in Your Decision Node•

To Define a Join Condition

A Parallel node is, in effect, a group of nodes. You can set the properties for a group of nodes using the
Property Editor.

View the properties of your Parallel node by clicking the outline of the group to select it, then view
the group properties in the Property Editor.

1.

Note: If the Property Editor is not visible in the Design View, choose View �> Property Editor
from the WebLogic Workshop menu.

To change the value of the Join Condition from AND (the default) to OR, in the Property Editor,
select OR from the drop−down menu associated with Join Condition. The node in your business
process will be updated with a to indicate the OR condition.

2.

To learn how the Join Condition affects the flow of execution in a Parallel node, see Understanding
Parallel Execution in Your Business Process.

To change the name of the node or any of its branches, in the Property Editor, click the name
attribute in the node or branch names, then enter the new name.

3.

To Add Logic to the Branches in Your Decision Node

For each branch in your Parallel node:

In the Palette, click a Process Node that represents the type of logic you want to add to the business
process.

1.

Drag and drop the node from the Palette onto the appropriate branch.2.

Complete the design of the nodes added on each branch. In this way, you create the activities
appropriate for the business logic defined by your business process.

3.

Note: You can create nested Parallel nodes in your business process by dragging a Parallel node from
the Palette on to one of the branches in a Parallel node already created in the Design View.

Design Your Parallel Node 71

To save your work, select File �> Save.4.

Related Topics

Create a Parallel Node in Your Business Process

Grouping Nodes in Your Business Process

Handling Exceptions

Business Process Source Code

Adding Message Paths

Adding Timeout Paths

Guide to Building Business Processes

Design Your Parallel Node 72

Defining Conditions For Branching
A common design pattern in business processes is one which selects one path of execution based on the
evaluation of one or more conditions. You can create this pattern by designing a Decision node in your
business process.

By default, a Decision node consists of one condition, a path below the condition, which represents the path
of execution followed when the decision evaluates to true, and a path to the right of the condition, which
represents the path of execution followed when the condition evaluates to false (the default path). A Decision
node can contain additional conditions, in which case if the first condition evaluates to false, the second
condition is evaluated. If the second condition evaluates to false, the next condition is evaluated, and so on.
The default path is executed if no conditions are met.

Note: To create case statements, WebLogic Integration provides a customized node, called a Switch node. To
learn about how using Switch nodes and how they differ from Decision nodes, see Comparing Decision
Nodes and Switch Nodes in Creating Case Statements.

This section describes how to add a Decision node to your business process, define conditions, and define
activities for the alternative paths of execution in the Decision node. It contains the following topics:

Creating a Decision Node in Your Business Process•
Designing Your Decision Node•

Defining Conditions For Branching 73

Creating a Decision Node in Your Business Process
To Create a Decision Node in Your Business Process

On the Application tab, click the business process (JPD file) you want to design.1.

Your business process is displayed in the Design View.

If the Palette is not visible in WebLogic Integration, choose View �> Windows �> Palette from the
WebLogic Integration menu.

2.

Click Decision on the Palette.3.
Drag and drop the Decision node onto the business process in the Design View, placing it on the
business process at the point in your business process that requires branching to one of several
possible paths of execution, based on the evaluation of one or more conditions.

4.

The Design View is updated to contain a Decision node, as shown in the following figure:

Note the following characteristics of the Decision node:

Adding a Decision node to a business process adds, by default, a single Condition node, and a
representation for the two paths of execution after the Condition node.

•

You can add additional condition nodes. To do so, right−click on the Decision node and selecting
Add Condition from the drop−down list, or click .

•

At run time, when more than one condition is defined, if the first condition evaluates to false, the
second condition is evaluated. If the second condition evaluates to false, the next condition is
evaluated, and so on. The default path is executed if no conditions are met.

You can change the name of the Decision node, the Default branch, and each Condition in a
Decision node. To do so, click the name assigned to the Condition, Add Condition branch, Default
branch, or Decision node and enter a new name.

•

 indicates that the design of this node is incomplete. When you complete the design of the node,
 is replaced by (see Example Decision Node). A Decision node is completed when all

conditions have been configured.

•

A Decision node is, in effect, a group of nodes. You can view and edit the properties of your
Decision node by clicking the outline of the group to select it, then viewing the group properties in
the Property Editor. To learn about groups, see Grouping Nodes in Your Business Process.

•

Creating a Decision Node in Your Business Process 74

Related Topics

Designing Your Decision Node

Creating Case Statements

Guide to Building Business Processes

Creating a Decision Node in Your Business Process 75

Designing Your Decision Node
To create logic for your Decision node, you must complete the following steps:

To Design the Condition Logic•
To Add Activities to the Paths in Your Decision Node•

To Design the Condition Logic

Double−click the Condition node to invoke the decision builder.1.
Select one of the options:2.

Variable�Select this option if, at run time, you want the business process to make a
decision, based on the value of an element in an XML or non−XML variable.

♦

Method�Select this option if, at run time, you want the business process to make a decision,
based on a boolean result returned from Java code that you create.

♦

The node builder displays different options depending on whether you selected Variable or Method.

Complete the selections in the node builder appropriate for the selection you made in the preceding
step: Variable (Schema) or Method.

3.

Variable (Schema)

The following steps describe how to select a business process variable that is associated with an XML or
MFL schema.

Note: To learn about creating business process variables and importing schemas to your project, see Business
Process Variables and Data Types and Importing Files into the Schemas Project.

In the condition builder, select a business process variable by clicking .1.

A drop−down list of business process variables in your project is displayed.

For example, if you imported an XML Schema (QuoteRequest.xsd) into your project, and created a
business process variable (requestXML) of type quoteRequest (based on the QuoteRequest.xsd
schema), the requestXML variable is available in the drop−down list of business process variables.

Click the arrow in the Select Variable drop−down list, then select a variable that contains the XML
or typed non−XML on which you want to build the condition.

2.

A representation of the XML Schema associated with that variable is displayed in the Select
Expression Node field.

Designing Your Decision Node 76

The elements and attributes of an XML document, assigned to this variable, are represented as nodes
in a hierarchical representation, as shown in the preceding figure. Note that the schema in the example
(QuoteRequest.xsd) specifies a root element (quoteRequest), and child elements: customerName,
shipAddress, and widgetQuoteRequests. The widgetQuoteRequests element, in turn, specifies a
repeating element: widgetQuoteRequest. (A repeating XML element is represented by in the
GUI representation of the Schema.)

In the Select Expression Node field, select the node in the XML Schema for which you want to
define the condition.

3.

To continue with the example, supposed you selected customerName from the XML variable
represented in the preceding figure. The Selected Expression field is populated with the following
expression:

data($requestXML/ns0:customerName)

Click Select. Your new variable is displayed in the Left Hand Expression field.4.
Select an operator from the Operator drop−down list.5.

For example, =

In the Right Hand Expression field, enter a value or choose a variable and expression with which to
create the decision logic.

6.

For example, enter BEA.

Click Add. The condition you created is added to the condition list.7.

For example, data($requestXML/ns0:customerName = "BEA"

There are two ways to additional conditions to the condition list:8.
To add a condition based on an existing value in the Left Hand Expression field, see Step.♦
To add a condition that uses♦

select a join option of either AND or OR to qualify your conditions.9.

Guide to Building Business Processes

Designing Your Decision Node 77

To add a condition based on an existing value in the Left Hand Expression field:10.
In the condition list pane, select a condition. The Left Hand Expression, Operator, and
Right Hand Expression fields are populated with the appropriate values.

a.

In the Right Hand Expression field, select the value.b.

For example, BEA.

Change the entry you selected.c.

For example, Avitek.

Select the arrow beside the Update button, then select Add from the menu.d.

The new condition is added to the bottom of the condition list.

To edit the conditions after you create them:11.
In the condition list pane, click the condition that you want to change. The Left Hand
Expression, Operator, and Right Hand Expression fields are populated with the
appropriate values.

a.

Change the value in any of the fields.b.
Click Update.c.

Alternatively, you can edit conditions directly in the code. To do so, in the Condition
builder, click View Code in the lower left−hand corner. The XQuery function that was
written to the file from the design work in the condition builder is displayed at the line of
code in your JPD file; it is indicated by the @jpd:xquery prologue annotation.

To edit Join Options after you create them:12.
In the condition list pane, click the Join Option that you want to change.a.
Select the appropriate join option.b.
Click Update.c.

In the Design View, click X in the top right−hand corner of the condition builder.13.

In the Design View, note that the Condition in your Decision node displays the following icons:

 is a visual reminder that the condition you defined on this node is based on the evaluation
of an XML document.

♦

 is a visual reminder that the condition you defined on this node is based on the evaluation
of a MFL file.

♦

Defining an XML or MFL condition produces an XQuery function that is written to your
JPD file, which you can see in the Source View. The condition defined by following the
preceding example (in steps 1 through 7) creates the following XQuery function in the JPD
file:

//* Process Language */

* @jpd:xquery prologue::

 * define function cond_requestXML_1(element $requestXML)
 * returns xs:boolean {
 * data($requestXML/customerName) = "BEA"

Guide to Building Business Processes

Designing Your Decision Node 78

 * }
 * ::

To save your work, select File �> Save.14.

Method

The following steps describe how to select a business process variable that is associated with an XML or
MFL schema.

In the Java Method Name field, enter a name for the Java method, or, to choose an existing method,
click .

1.

Click View Code in the lower left−hand corner of the node builder.2.

The Source View is displayed at the line of code in your JPD file at which the Java method is
written.

Edit your Java method.3.
To return to the Design View, click the Design View tab.4.
Close the condition builder by clicking X in the top right−hand corner.5.

In the Design View, note that the Condition in your Decision node displays the following icon: .
It is a representation of the condition you defined in source code that specifies the Java method on
which to base the decision. To make any further changes to the condition represented on this node,
you must edit the source code in the Source View.

To save your work, select File �> Save.6.

To Add Activities to the Paths in Your Decision Node

After you define the condition that is evaluated when the flow transitions to the Decision node at run time,
you are ready to define the actions on the paths that represent the paths of execution in the flow.

Add a node (or nodes) to each path in the Decision node to define the activity that is executed when
the conditions you defined on the Condition node at the beginning of the path evaluates to true.

1.

This can be any node that performs an activity appropriate for your business process business logic.
For example you can use a control to interact with an external resource, such as a database, a JMS
queue, or an EJB.

Add a node (or nodes) to the default path that defines which activities are executed when no
condition evaluates to true at run time. The nodes on the default path can be any that define activities
appropriate for your business process business logic.

2.

When you complete the addition of activities on the paths of your Decision node, your decision logic is
represented as a series of conditions and actions in your business process.

Example Decision Node

The following figure shows an example Decision node in the Design View.

Guide to Building Business Processes

Designing Your Decision Node 79

Building on the QuoteRequest example used in building the Variable (Schema) condition, two Perform
nodes are added to the paths on the Decision node. At run time, the following sequence represents the flow of
control in this decision node:

The condition defined on the Check Customer condition node is evaluated:1.

data($requestXML/ns0:customerName = "BEA"

Note: The XML evaluated by the condition node is assigned to the requestXML business process
variable.

If the Check Customer condition evaluates to true at run time, the activities defined on the BEA
Orders node are performed, then the flow exits the Decision node.

2.

If the Check Customer condition evaluates to false at run time, the path of execution is the Default
path. The activities defined on the Non BEA Orders node are performed, then the flow of control
exits the Decision node.

3.

Related Topics

Creating a Decision Node in Your Business Process

Grouping Nodes in Your Business Process

Handling Exceptions

Adding Message Paths

Adding Timeout Paths

Business Process Source Code

Interacting With Resources Using Controls

Guide to Building Business Processes

Designing Your Decision Node 80

Creating Case Statements
A Switch node is used to select one path of execution based on the evaluation of an expression specified on a
condition node. A Switch node contains one condition node, one or more case paths, and one default path. At
run time, the expression on the condition node is executed, and the resulting value is compared to the values
associated with each case path. Execution continues with activities inside the first case path that contains a
matching value (case paths are evaluated left−to−right in the Switch node). When no conditions are met,
activities defined on the default path are executed.

This section describes how to add a Switch node to your business process, define conditions, and define
activities for the alternative paths of execution in the Switch node. It contains the following topics:

Comparing Decision Nodes and Switch Nodes•
Creating a Switch Node•
Designing a Switch Node•

Comparing Decision Nodes and Switch Nodes

How does a Decision node differ from a Switch node?

A Decision node can include one or more conditions to be evaluated at run time. For a scenario in which a
Decision node is defined, the business process evaluates the conditions (one on each path) sequentially, and
executes the path for the first condition that evaluates as true. (Conditions are evaluated left−to−right in the
Decision node.) In other words, if the first condition evaluates to false, the second condition is evaluated. If
the second condition evaluates to false, the next condition is evaluated, and so on. The activities defined on
the default path are executed if no conditions are met.

A Switch node includes a single condition. For a scenario in which a Switch node is defined, the business
process evaluates an expression specified on a single condition node and selects one path of execution based
on the evaluation of that expression. The possible paths of execution in a Switch node include one or more
case paths, and one default path. Execution continues with activities inside the first case path that contains a
matching value. (Case paths are evaluated left−to−right in the Switch node.) If the value resulting from the
evaluation of the condition expression does not match any of the case paths, then the activities defined on the
default path are executed.

Creating Case Statements 81

Creating a Switch Node
To Create a Switch Node in Your Business Process

On the Application tab, click the business process (JPD file) you want to design.1.

Your business process is displayed in the Design View.

If the Palette is not visible in WebLogic Workshop, choose View �> Windows �> Palette from the
WebLogic Workshop menu.

2.

Click Switch in the Palette.3.
Drag and drop the Switch node onto the business process in the Design View, placing it on the
business process at the point in your business process that requires branching to one of several
possible paths of execution, based on the evaluation of one or more conditions.

4.

The Design View is updated to contain a Switch node, as shown in the following figure:

Note the following characteristics of the Switch node:

Adding a Switch node to a business process adds, by default, a single Switch node, a Case node, and
a Default node.

•

You can add one or more additional Case nodes. To do so, right−click on the Switch node and
selecting Add Case from the drop−down list, or click the on either side of the Case tree.

•

At run time, the case branch which matches the received data on the node is executed. If no matching
case is found, the default path is executed.

You can change the name of the Switch node and each Case in a Switch node. To do so,
double−click the name assigned to the Case or Switch node and enter a new name.

•

 indicates that the design of this node is incomplete. When you complete the design of the node,
 is replaced by . A Switch node is completed when the condition and all cases are fully

configured.

•

A Switch node is, in effect, a group of nodes. You can view and edit the properties of your Switch
node by clicking the outline of the group to select it, then viewing the group properties in the
Property Editor. To learn about groups, see Grouping Nodes in Your Business Process.

•

Related Topics

Designing a Switch Node

Creating a Switch Node 82

Guide to Building Business Processes

Creating a Switch Node 83

Designing a Switch Node
To create logic for your Switch node, you must complete the following steps:

To Design the Switch Logic•
To Specify the Case Statement•
To Add Activities to the Paths in Your Switch Node•

To Design the Switch Logic

Double−click the Switch node to invoke the condition builder.1.
Select the option which you want the left side of your condition to be based on:2.

Variable�Select this option if, at run time, you want the business process to evaluate a
match based on the value of an element in an XML document or a MFL file.

♦

Method�Select this option if, at run time, you want the business process to evaluate a match,
based on a result returned from Java code that you create.

♦

The node builder displays options depending on whether you selected Variable or Method.

Complete the selections in the node builder appropriate for the selection you made in the preceding
step: Schema or Method.

3.

Variable (Schema)

The following steps describe how to select a business process variable, which is associated with an XML or
MFL schema, select one or more nodes in the schema on which to define a switch or case node.

In the decision builder, select a business process variable by clicking Select Variable.1.

A drop−down list of business process variables in your project is displayed.

Select a variable that you have already created in your project, or create a new variable to use in your
switch node:

2.

If you want to use a variable that is already created, select the variable that contains the XML
or typed non−XML on which you want to build the condition.

a.

For example, if we import an XML Schema (QuoteRequest.xsd) into our project, and create a
business process variable (requestXML) of type quoteRequest (based on the
QuoteRequest.xsd schema), the requestXML variable is available in the drop−down list of
business process variables:

Note: (To learn about creating business process variables and importing schemas to your
project, see Business Process Variables and Data Types and Importing Files into the Schemas
Project.)

When you select a variable, a representation of the XML Schema associated with that
variable is displayed in the Select Node pane. Go to step 3.

Designing a Switch Node 84

If you want to create a new variable, select Create new variable... from the drop−down list.b.

The Create Variable dialog box opens.

Enter a name for your new variable in the Variable Name field.c.
Select the XML, nonXML option, depending on whether your variable is based on a XML
document or MFL file and select the appropriate variable type in the displayed list of type
options.

d.

Click OK.e.

The Create Variable dialog box closes and your new variable is displayed in the Select
Node pane.

Building on our requestXML variable example, the following graphic shows the XML Schema
represented when the requestXML variable is selected:

3.

The elements and attributes of an XML document, assigned to this variable, are represented as nodes
in a hierarchical representation, as shown in the preceding figure. Note that the schema in our
example (QuoteRequest.xsd) specifies a root element (quoteRequest), and child elements:
customerName, shipAddress, and widgetQuoteRequests. The widgetQuoteRequests element, in turn,
specifies a repeating element: widgetQuoteRequest. (A repeating XML element is represented by

 in the GUI representation of the Schema.)

In the Select Node panel, select the node in the XML Schema for which you want to define the
switch.

4.

The node which you selected is displayed in the Selected Element field. For example, if you selected
the element street in the preceding example, the data($requestXML/ns0:shipAddress/@street) is
displayed in the Selected Element field.

5.

Click the X in the top right−hand corner to return to the Design View.6.

In the Design View, note that the Condition in your Decision node displays the following icons:

 is a visual reminder that the condition you defined on this node is based on the evaluation
of an XML document.

♦

 is a visual reminder that the condition you defined on this node is based on the evaluation
of a MFL file.

♦

To save your work, select File �> Save.7.

Method

Enter a name for the Java method in the Java Method Name field.1.

Note: To select an existing method, click on the right side of the Java Method Name field.

Guide to Building Business Processes

Designing a Switch Node 85

Click View Code in the lower right−hand corner of the Switch builder.2.

The Source View is displayed at the line of code in your JPD file at which the Java method is
written.

Edit your Java method and click the Design View tab to return to the Design View.3.
Click the X in the top right−hand corner to close the decision builder.4.

In the Design View, note that the Condition in your Switch node displays the following icon: . It
is a representation of the condition you defined in source code to specify the Java method, on which
to base the decision. To make any further changes to the condition represented on this node, you must
edit the source code in the Source View.

To Specify the Case Statement

Double−click the Case node to invoke the case builder.1.
Select the option which you want the right side of your condition to be based on:2.

Schema�Select this option if, at run time, you want the business process to evaluate a match
based on the value of an element in an XML document or an MFL file.

♦

Method�Select this option if, at run time, you want the business process to evaluate a match
based on a result returned from Java code that you create.

♦

Constant or Variable�Select this option if, at run time, you want the business process
evaluate a match based on a constant that you specify.

♦

The node builder displays options depending on whether you selected Schema, Method, or
Constant or Variable.

Complete the selections in the node builder appropriate for the selection you made in the preceding
step: Schema, Method, or Constant or Variable.

3.

Schema

For information about how to complete the Case builder when using the Schema option, see Variable
(Schema) in the preceding section.

Method

For information about how to complete the Case builder when using the Method option, see Method in the
preceding section.

Constant or Variable

In the Value field, enter the constant value or variable that you want to match the case statement to.1.

Note: You can select an existing variable or create a new one by clicking on the right side of the
Constant Value field.

To close the node builder, click the X in the top right−hand corner.2.

To Add Activities to the Paths in Your Switch Node

Guide to Building Business Processes

Designing a Switch Node 86

After you define the condition that is evaluated when the flow transitions to the Switch node at run time, you
are ready to define the actions on the paths that represent the paths of execution in the flow.

Add a node (or nodes) to each path in the Switch node to define the activity that is executed when the
conditions you defined on the Case nodes at the beginning of the path matches.

1.

This can be any node that performs the activity appropriate for your business process business logic.
For example you can use a control to interact with an external resource, such as a database, a JMS
queue, or an EJB.

Add a node (or nodes) to the default path, to define activities that are executed when none of the case
statements match at run time. The nodes on the default path can be any that define activities
appropriate for your business process business logic.

2.

When you complete the addition of activities on the paths of your Switch node, your decision logic is
represented as a series of conditions and actions in your business process.

To save your work, select File �> Save3.

Related Topics

Grouping Nodes in Your Business Process

Creating a Switch Node

Handling Exceptions

Adding Message Paths

Adding Timeout Paths

Guide to Building Business Processes

Designing a Switch Node 87

Writing Custom Java Code in Perform Nodes
Although users are free to modify and write custom Java code almost anywhere, Perform nodes provide a
means for visually representing custom code within the process diagram. When you add a Perform node to
your business process, a method is created in the JPD file. You subsequently customize the method signature
in the Source View.

This section describes how to create and customize a Perform node for your business process.

To Create a Perform Node in Your Business Process

On the Application tab, click the business process (JPD file) you want to design.1.

Your business process is displayed in the Design View.

If the Palette is not visible in WebLogic Workshop, choose View �> Windows �> Palette from the
WebLogic Workshop menu.

2.

Click Perform in the Palette. Then drag and drop the Perform node onto the business process

in the Design View, placing it on the business process at the point in your business process at which
you want to create custom Java code.

3.

The Design View is updated to contain the Perform node.

Double−click the Perform node in the Design View to open the node builder.4.

This node builder allows you to name the node and the associated Java method.

Note: You can select an existing method by clicking on the right side of the Java Method Name
field.

Click View Code in the lower right−hand corner of the Perform builder.5.

The Source View is displayed at the line of code in your JPD file at which the Java method is
written.

For example, if you created a method named checkInventory, the following code is written to the
source file.

public void checkInventory() throws Exception {
}

Customize this method with your Java code.6.
Click the Design View tab to return to the Design View.7.
Click the X in the top right−hand corner to close the node builder.8.

Your JPD file is updated to reflect the changes you made in the node builder.

To save your work, select File �> Save.9.

Related Topics

Writing Custom Java Code in Perform Nodes 88

Perform Methods in Business Process Source Code

Handling Exceptions

Guide to Building Business Processes

Writing Custom Java Code in Perform Nodes 89

Creating Looping Logic
Frequently, your business logic requires that you create looping logic in your business processes. That is, you
need to design logic in your business process in which the activities enclosed in a loop are performed
repeatedly while a specific condition is true.

Do While, While Do, and For Each node groups represent such points in your business processes. This
section describes how to design looping logic in your business processes. It includes the following topics:

Understanding While Node Groups•
Creating While Node Groups in Your Business Process•
Designing While Node Groups•
Looping Through Items in a List•
Creating For Each Nodes in Your Business Process•
Designing For Each Nodes•

Creating Looping Logic 90

Understanding While Node Groups
Both Do While and While Do node groups support looping logic. Both types of groups represent a point in a
business process at which the activities enclosed by the group are performed repeatedly while a specific
condition is true. However, Do While and While Do groups represent different execution logic, as described
in the following sections:

While Do Node Groups•
Do While Node Groups•

While Do Node Groups

At run time, the condition on a While Do group is evaluated before the activities in the loop are performed.
Therefore, the activities inside While Do groups are performed zero or many times, depending on the results
of the evaluation of the condition.

Do While Node Groups

In the case of Do While groups, business process activities are added before the condition in the loop. At run
time, the activities defined in a Do While loop are performed; then the condition is evaluated. Therefore, the
activities inside a Do While group are performed one or many times, depending on the results of the
evaluation of the condition.

Related Topics

Creating While Node Groups in Your Business Process

Designing While Node Groups

Understanding While Node Groups 91

Creating While Node Groups in Your Business
Process
To Add A While group to Your Business Process

On the Application tab, click the business process (JPD file) you want to design.1.

Your business process is displayed in the Design View.

If the Palette is not visible in WebLogic Workshop, choose View �> Windows �> Palette from the
menu bar.

2.

Determine whether you need While Do or Do While looping logic, and click While Do or Do
While in the Palette.

3.

Drag and drop the node group you selected onto the business process, placing it on the business
process at the point in your business process at which you want to design a looping logic.

4.

The Design View is updated to contain a representation of the group you selected.

Note the following characteristics of the While groups:

Each While group represents a placeholder for one or more additional nodes, a looping mechanism,
and a condition builder . The condition builder allows you to build the condition, which your

business process evaluates for each iteration through the loop at run time.

•

In the case of While Do groups, the design specifies that the condition on the group is evaluated
before the activities in the loop are performed. In contrast, in the case of the Do While groups, the
design specifies that the activities defined in the loop are executed first at run time, then the condition
is evaluated.

•

You can change the name of the While groups by double−clicking the name of the group in the
Design View, and entering a new name.

•

 indicates that the design of a group is incomplete. When you complete the design of the group,
 is replaced by . While groups are completed when the condition group is properly configured.

•

Related Topics

Designing While Node Groups

Creating While Node Groups in Your Business Process 92

Understanding While Node Groups

Guide to Building Business Processes

Creating While Node Groups in Your Business Process 93

Designing While Node Groups
To create logic for your While group, you must complete the following steps:

Design the Condition Logic•
Add Activities to the Paths in Your While group•

Design the Condition Logic

Double−click in the While group you want to design.

The node builder is displayed. It allows you to create the condition or conditions that are evaluated at run
time by the business process.

Note: The node builder in which you create the conditions for looping is the same as that in which you create
conditions on Decision groups. To learn how to design the condition logic for the While group, see To Design
the Condition Logic in Defining Conditions For Branching.

Add Activities to the Paths in Your While group

After you define the condition that is evaluated in your While loop at run time, you are ready to define the
actions on the loop. To do so, add a node (or nodes) to the path in the While loop. You can add any nodes that
perform the activities appropriate for the business logic that you require at this point in your business process.

When you complete the addition of activities on the group, your looping logic is represented by a condition
or conditions and a series of business process nodes in the While loop.

You can view and edit the properties of your While group by clicking the outline of the group to select it,
then viewing the group properties in the Property Editor.

For any group of nodes in your business process, including While groups, you can collapse the group to save
space on the Design View canvas. Collapsed groups appear in the Design View as shown in the following
figure:

To expand the group, click .

Related Topics

Defining Conditions For Branching

Looping Through Items in a List

Grouping Nodes in Your Business Process

Designing While Node Groups 94

Handling Exceptions

Adding Message Paths

Adding Timeout Paths

Guide to Building Business Processes

Designing While Node Groups 95

Looping Through Items in a List
A frequently designed pattern in your business processes is one that specifies the performance of a set of
activities once for every iteration of the flow over a sequence of XML elements, retrieved from an XML
document.

For Each nodes represent points in a business process at which a set of activities is performed repeatedly,
once for each item in a list. For Each nodes includes an iterator node (on which a list of items is specified)
and a loop (in which the activities to be performed for each item in the list are defined). An XML document
(or a section of an XML document) is passed into the For Each loop in a business process variable. An
iteration variable holds the current element being processed in the For Each loop, for the life of the loop.

This section describes how to add this looping logic to your business process. It includes the following topics:

Creating For Each Nodes in Your Business Process•
Designing For Each Nodes•

Looping Through Items in a List 96

Creating For Each Nodes in Your Business Process
To Add A For Each Node to Your Business Process

On the Application tab, click the business process (JPD file) you want to design.1.

Your business process is displayed in the Design View.

If the Palette is not visible in WebLogic Workshop, choose View �> Windows �> Palette from the
WebLogic Workshop menu.

2.

Click For Each in the Palette. Then drag and drop the For Each node onto the business process,
placing it on the business process at the point in your business process at which you want to design a
pattern in which a set of activities is performed repeatedly, once for each item in a list.

3.

The Design View is updated to contain a representation of the For Each node as shown in the
following figure:

Note the following characteristics of the For Each node:

The For Each node represents a placeholder for one or more additional nodes, and a looping
mechanism. The node builder, which is described in Designing For Each Nodes, allows you
to easily select a sequence of nodes from a business process variable.

♦

By default, the node is named For Each. You can change the name by double−clicking the
name and entering the new name.

♦

 indicates that the design of this node is incomplete. When you complete the design of the
node, is replaced by . A For Each node is completed when the iterator has been
specified in the node builder.

♦

Related Topics

Designing For Each Nodes

Creating For Each Nodes in Your Business Process 97

Designing For Each Nodes
Before you can add the logic that causes the iteration over a sequence of XML nodes in your business
process, your project must contain an XML Schema or MFL file that defines the repeating XML or MFL
element over which you want your business process to iterate. To learn how to import an XML Schema or
MFL file into your project, see Importing Files into the Schemas Project.

After importing an XML Schema or MFL file into your project, you can complete the design of the For Each
node. It includes the following tasks:

To Select a Repeating XML or MFL Element Over Which to Iterate•
To Add Activities to the For Each Node•

To Select a Repeating XML or MFL Element Over Which to Iterate

The For Each node only iterates over repeating elements. The node builder allows you to select a repeating
node from the variable you created in the preceding section.

In the Design View, double−click the For Each node to invoke its node builder.1.
Click Select Variable to select a variable that you have already created in your project or create a
new variable to use in your decision node:

2.

If you want to use a variable that is already created, select the variable that contains the XML
or typed non−XML on which you want to build the condition.

a.

For example, if we import an XML Schema (QuoteRequest.xsd) into our project, and create a
business process variable (requestXML) of type quoteRequest (based on the
QuoteRequest.xsd schema), the requestXML variable is available in the drop−down list of
business process variables:

Note: To learn about creating business process variables and importing schemas to your
project, see Business Process Variables and Data Types and Importing Files into the Schemas
Project.

Go to step 3.

If you want to create a new variable, select Create new variable... from the drop−down list.b.

The Create Variable dialog box opens.

Enter a name for your new variable in the Variable Name field.c.
Select the XML or nonXML option, depending on if your variable is based on a XML
document or MFL file and select the appropriate variable type in the displayed list of type
options.

d.

Click OK.e.

Designing For Each Nodes 98

The Create Variable dialog box closes and your new variable is displayed in the Select
Node pane.

Continuing with our example, a representation of the XML in the requestXML variable is displayed
in the Select Node panel.

3.

Note the following characteristics of the QuoteRequest.xsd schema as displayed in the preceding
figure:

The elements and attributes of the XML Schema are represented as nodes. Note that the
Schema in the example (QuoteRequest.xsd) specifies a root element named quoteRequest.

♦

Child elements include: customerName, shipAddress, and widgetRequest.♦
The shipAddress element specifies the following attributes: street, city, state, zip.♦
The widgetRequest element is a repeating element.♦

There can be one or more occurrences of the widgetRequest element in an associated XML
document; this is represented by in the GUI representation of the schema. The
widgetRequest element, in turn, contains two elements: widgetId and quantity.

Note: In the example in the preceding figure, the repeating XML element (one or more
occurrences) is represented by in the GUI representation of the schema. A repeating
XML element that specifies zero or more occurrences is represented by .

Select a repeating element in the Select Node field.4.

The Repeating Element and Iteration Variable fields are populated with data:

Repeating Element�Contains an XPath expression, which when applied against the XML
document associated with the XML variable, returns the set of repeating XML elements.
Building on our example, if you select the repeating element widgetRequest in the Select
Node panel, the Repeating Element field is populated with the following expression:
$requestXML/ns0:widgetRequest. This expression returns all the widgetRequest elements in
an XML document.

♦

Iteration Variable�Contains the name of an iteration variable. An iteration variable is
generated to hold the current element being processed in the For Each loop at run time. In
our example, the iteration variable is named iter_forEach1, by default. You can change the
name by entering a new name in the Iteration Variable field.

♦

Click the X in the top right−hand corner to close the node builder and return to the Design View.5.

Guide to Building Business Processes

Designing For Each Nodes 99

In the Design View, note that the icon in your For Each node displays the following graphics:

 is a visual reminder that the iteration variable you defined on this node is based on an
XML element.

♦

 is a visual reminder that the iteration variable you defined on this node is based on a MFL
or typed non−XML element.

♦

To save your work, select File �> Save.6.

To Add Activities to the For Each Node

You must define the activity or set of activities that are performed for each item in the list you created in the
preceding step (To Select a Repeating XML or MFL Element Over Which to Iterate). Each iteration of the
For Each loop executes the activity or activities you specify in a node (or nodes) in the loop.

In the Palette, click a node that represents the logic you want to add to the business process.1.
Drag and drop the node from the Palette onto the business process in the Design View, placing it on
the business process within the For Each loop.

2.

As you drag a node onto the For Each loop, a target appears on the loop, representing a valid
location in the For Each loop where you can place the node. As you drag the node near the valid
location, the target is activated and the cursor changes to an arrow . You can release the

mouse button and the node snaps to the For Each loop.

On the node (or nodes) you add to the For Each loop, create the activities appropriate for your
business process's business logic.

3.

To learn about designing For Each loops and how data is assigned to variables within the loops, see Looping
Through Items in a List in Tutorial: Building Your First Business Process.

Related Topics

Creating Looping Logic

Grouping Nodes in Your Business Process

Handling Exceptions

Adding Message Paths

Adding Timeout Paths

Guide to Building Business Processes

Designing For Each Nodes 100

Specifying Endpoints in Your Business Process
When you create a business process, it contains by default a Start and a Finish node. You can specify
additional (optional) endpoints of your business process by adding Finish nodes to those locations where you
want the business process to cease execution. A Finish node is always the last node in a business process.
You can place a Finish node at the end of the main flow or on any branch of a business process.

To Create a Finish Node in Your Business Process

On the Application tab, click the business process (JPD file) you want to design.1.

Your business process is displayed in the Design View.

If the Palette is not visible in WebLogic Workshop, choose View �> Windows �> Palette from the
WebLogic Workshop menu.

2.

Click Finish in the Palette.3.
Drag and drop the Finish node onto the business process, placing it on a branch in the business
process at the point where you want to specify the termination of your business process.

4.

The Design View is updated to contain your Finish node.

To save your work, select File �> Save.5.

Specifying Endpoints in Your Business Process 101

Grouping Nodes in Your Business Process
You can create a group from one or more nodes or other groups. You can simplify the display of your
business process in the Design View, by collapsing a group of nodes into a single node. A group can provide
an extra level of exception handling logic�exception handlers that you specify for a group catch exceptions
that are not handled by exception handlers defined for nodes inside the group.

You can specify groups of nodes in a business process. Also, some business process nodes are implicit
groups�Client Request with Return, Decision, For Each, Do While, While Do, Parallel, Switch and Event
Choice. Groups that represent these nodes and groups defined by you have the same characteristics.

This section describes how to work with groups in your business processes. It includes the following topics:

To Create Groups�Alternative 1•
To Create Groups�Alternative 2•
To Delete, Ungroup, Collapse, or Expand Groups•
To Activate Exception, Message, and Timeout Paths for Groups•

To Create Groups�Alternative 1

In the Design View, shift−click on the nodes you want to group to select them or click and drag your
mouse around the nodes you want to group.

1.

Right−click one of the selected nodes and select Group Selected from the drop−down menu.2.

The specified nodes are grouped inside a collapsible box in the Design View.

You can name the group by double−clicking the default name (Group) and entering the name you
want to assign.

Note: If you select a set of nodes and right−click to display the drop−down menu, the Group Select
command is unavailable if the grouping of these nodes would create an invalid business process.

To Create Groups�Alternative 2

In the Design View, drag and drop Group from the Palette onto the business process, placing it
on the business process at the point at which you want to create a group.

1.

An empty Group is created in the business process.

Drag and drop nodes from the Palette that you want to add to the group onto the business process,
placing them within the group.

2.

To Delete, Ungroup, Collapse, or Expand Groups

Click the outline or label (name) of a group to select it.1.
Right−click to display the drop−down menu.2.

To collapse the group into a single entity, select Collapse. The group is collapsed.♦

Grouping Nodes in Your Business Process 102

To expand the representation of the group again, right−click the collapsed group, select
Expand.

♦

To undo the grouping of the node, select Ungroup.♦

Note: You must first expand a collapsed group to ungroup it.

Collapsing simplifies the view of your business process in the Design View.

You can also toggle between collapsed and expanded groups by clicking or in the upper
left−hand corner of the group.

Select Delete to delete the group.♦

Warning: When you delete a group, you delete all the contents of that group.

To Activate Exception, Message, and Timeout Paths for Groups

Activate an exception, a message, or a timeout path for a group of nodes in the following way:

In the Design View, click the outline of the group to select it.1.
Right−click and select Add Exception Path, Add Message Path, or Add Timeout Path from the
drop−down menu.

2.

The following graphic associated with a group indicates that an exception handling path is
activated for the group:

♦

For more information about exception paths and how to configure them, see Handling
Exceptions. To learn about the settings in the Property Editor, see Creating Exception
Handler Paths.

The following graphic associated with a group indicates that an message path is activated for
the group:

♦

Guide to Building Business Processes

Grouping Nodes in Your Business Process 103

For information about how to configure your message path, see Adding Message Paths

The following graphic associated with a group indicates that an Timeout path is activated for
the group:

♦

For information about how to configure your timeout path, see Adding Timeout Paths

You can add business process nodes to the paths shown in the preceding figure, as required to define the
exception handling logic.

Related Topics

Handling Exceptions

Adding Message Paths

Adding Timeout Paths

Each of the nodes described in the following topics is implicitly a group of nodes:

Defining Conditions For Branching (Decision nodes)

Creating Case Statements (Switch nodes)

Receiving Multiple Events (Event Choice nodes)

Creating Looping Logic (While Do and Do While nodes)

Looping Through Items in a List (For Each nodes)

Guide to Building Business Processes

Grouping Nodes in Your Business Process 104

Handling Exceptions
Business Process exceptions are Java exceptions that are not caught by the Java handler methods. This
section describes the ways in which you can handle exceptions in your business processes. It includes the
following topics:

Types of Exception Handlers•
Creating Exception Handler Paths•
Deleting Exception Handler Paths•
Order of Execution of Exception Handlers•
Handling Exceptions in Transaction Blocks•
Using Exception Handlers for Compensation•

Types of Exception Handlers

You can use the Design View to create exception paths on business process nodes, collapsible groups of
nodes, and the Start node. Specifically, using the Design View, you can create the following types of
exception handlers in your business process:

Global exception handler•

You can create a global exception handler for your business process by creating an exception path for
the Start node. You create logic for the exception handler path to define the flow of execution in case
of an exception. A global exception handler responds to exceptions that are otherwise not handled in
the business process.

Exception handler for a group of nodes•

You can associate an exception path with a group of nodes and create logic for the exception path
that defines the flow of execution in case of an exception.

Exception handler for an individual node•

You can associate an exception path with an individual node and create logic for the exception path
that defines the flow of execution in case of an exception.

In general, exceptions propagate upwards from a node exception path, to a group exception path, to a global
exception path until they are handled. In other words, the exception path associated with a node executes first,
then the path associated with a group executes, and then the path associated with a start node (global path)
executes. The exception is only handled once, unless the exception path throws an exception, then the
exception propagates upward again in the same order. You can take advantage of this behavior and create
exception path logic that satisfies the particular exception handling necessary for your business process. For
more information, see Order of Execution of Exception Handlers.

Note: The graphical design environment does not support or represent the design of exception paths on the
following nodes in the process language: <if> and <default> blocks inside Decision nodes, <branch> blocks
inside Parallel nodes, <finish> nodes, <messageEvent>, <timeoutEvent>, and the <onException> path itself.

Handling Exceptions 105

Creating Exception Handler Paths

You can associate an exception handler path with individual nodes in your business process and with groups
of nodes. An exception path that you associate with a Start node is a special case. That is, the exception path
associated with a Start node is the global exception handler for the business process. To learn more about
Start nodes, see Starting Your Business Process. This section contains the following steps and procedures:

To Create an Exception Path•
To Configure an Exception Path•

To Create an Exception Path

Select the node or groups of nodes for which you want to great an exception path. (For information
on how to group nodes, see Grouping Nodes in Your Business Process)

1.

Right−click the node or group of nodes and select Add Exception Path from the drop−down menu.2.

An exception path is added to your node or group of nodes and is displayed as follows.

You can rename the exception path to anything you like by double−clicking OnException and
entering the new name. You can also change the name in the name field of the Property Editor.

To Configure an Exception Path

Select the exception path which you want to configure.1.

The related properties are displayed in the Property Editor. If the Property Editor is not visible in
WebLogic Workshop, choose View �> Property Editor from the menu bar.

In the Property Editor, configure the following properties:2.
name�Enter the name you want displayed in the graphical design environment for this
exception path.

♦

notes�Enter any notes you want associated with this exception path. These notes can then be
accessed through the WebLogic Integration Administration Console.

♦

after execute�Select the action you want to take place after an exception path is executed
and all retries have been exhausted. Choose from:

♦

skip�Skip the node or group with which the exception path is associated. That is, resume
execution of the process at the node following the node or group for which the exception path
is defined.

resume�Execution resumes after the closest transaction block, exception block, or failing
node on the stack. In other words, the execution of the process resumes at the node following
the one that threw the exception (this could be within a group, or if the node that threw the
exception is the last in a group, the node following a group of nodes).

Guide to Building Business Processes

Handling Exceptions 106

rethrow�Nodes on the exception path are executed and then the same exception is rethrown
and handled by the exception handler at the next level up.

retry count�Specify how many times, after the first attempt, the process engine tries to
execute the node or group of nodes contained in the path, before the afterExecute path is
taken. The counter is evaluated and incremented at the end of handler execution.

♦

execute on rollback�Set this to true if you want this exception path executed when the
associated transaction is rolled back.

♦

The execute on rollback parameter enables exception handlers to be used for compensation.
By grouping nodes and adding an exception path to that group with the execute on rollback
property set to true, you can specify that the exception handler should be run before
transaction rollback, thereby providing an opportunity to clean−up non−transactional
resources that would otherwise not be effected by the rollback. For more information, see
Using Exception Handlers for Compensation.

Note: Be aware of the following behavior when you specify a retry count in combination
with setting the after execute parameter to resume: Specifying a retry count on an exception
handler that is attached to a group causes the retry to start at the beginning of the group�not at
the offending node. However, if you also specify the resume option for the after execute
property, after all the retries are exhausted, the execution can continue from a point within the
group, following the offending node.

Add any business process nodes to the exception path, as required to define the exception handling
logic. If you want your process to stop after catching an exception, place a Finish node on the
exception path. For information about how to create a Finish node, see To Create a Finish Node in
Your Business Process.

3.

Viewing Exception Handlers in the Design View

When you create an exception handler path, the following icon appears beside a node (or group of nodes) in
the Design View, which indicates that an exception path is activated for the specified node:

This icon represents the exception path in your business process. In this case, the
path appears empty, indicating that the logic to handle an exception is not defined
yet.

To define the exception handling logic, add business process nodes by dragging the
nodes from the Business Process Palette and dropping them on the exception path.

To collapse the view of any exception handler (or message or timeout path), click the grey arrow of the
exception path icon. The following figure shows the icon associated with your node to indicate a collapsed
path.

You can toggle between collapsed and expanded views of paths in the Design View by clicking the
exception path icon.

Guide to Building Business Processes

Handling Exceptions 107

Deleting Exception Handler Paths

To Delete an Exception Path:

If the exception path that you want to delete is collapsed, expand it.1.
Right−click the exception path, then select Delete from the drop−down menu.2.

The exception path is deleted and removed from the Design View.

Warning: Deleting an exception path deletes any business process nodes you defined on that path. When you
attempt to delete an exception path, a dialog box displays a warning message that you must acknowledge
before proceeding with the deletion.

Order of Execution of Exception Handlers

If an exception occurs, the normal flow of execution stops. The business process executes the activities inside
the exception handler path defined closest to the point of the exception.

You typically define a number of exception handlers in your business process. The following sequence
defines the order of their execution when an exception is thrown:

The business process engine first executes the exception handler at the node on which the exception
occurs.

1.

If the exception handler path completes execution normally, the business process resumes execution
at the node following the node associated with the executed exception handler, based on the
post−execute parameter setting.

2.

If the exception handler throws an exception while it is executing, the exception is propagated
upwards to be handled either by an exception handler on the group of nodes in which the node is
contained, or by the global exception handler defined on the Start node.

3.

Note: If you have the after execute property set to rethrow, the exception itself will also propagate
upwards.

When a business process fails and there is no exception handler configured to handle the exception
thrown, the business process is placed into an aborted state and no recovery is possible. However, if
the business process is configured to freeze on failure, the business process rolls−back to the last
commit point and the state is persisted if it fails. The process can then be restarted from the WebLogic
Integration Administration Console. To learn more about the freeze on failure property see, Setting
the Business Process Properties.

4.

Handling Exceptions in Transaction Blocks

If a node or group within a transaction throws an exception, the transaction will only see the exception if the
exception is not handled or if an exception handler throws an exception. The following algorithm is used to
handle the exception:

If the transaction is not marked for rollback only, the exception is dispatched to the exception
handlers defined within the transaction block, if any.

•

If an exception handler within the transaction block does not throw or rethrow an exception, the•

Guide to Building Business Processes

Handling Exceptions 108

transaction is not rolled back, and execution resumes after the block that enclosed the exception
handler.
If the transaction is marked for rollback only, or if there is no exception handler within the
transaction block, or if all the exception handlers throw exceptions, the transaction is rolled back.
After exhausting a specified number of retries, a business process exception is thrown from the
transaction block in a new transaction. The business process exception is a generic exception, because
there is no way to retain the root cause exception on a rollback.

•

Note: Whether a transaction is marked for rollback only depends on the types of transactional resources you
use in your business process.

For transactional resources that force a transaction to roll back immediately in the case of an error, an
exception handler on a node or group of nodes does not run before the transaction rolls back. However, you
can use exception handlers with the execute on rollback property for compensation and to clean up the
non−transactional resources. For more information, see Using Exception Handlers for Compensation.

Using Exception Handlers for Compensation

Transactional resources are any resources that communicate with your business process through a Control
Request node or any of the transactional controls: Database, JMS, Application View (if JCA adapter is
transactional), Worklist, Timer, EJB, Message Broker, and Transformation.

For transactional resources that force a transaction to roll back immediately in the case of an error, an
exception handler on a node or group of nodes does not run by default. However, you can force the exception
handler to run before the rollback occurs by placing an exception path inside an explicit transaction block in
your business process, and setting the execute on rollback property of that path to true. In this way, the
exception path has access to the current state (the process variables, and so on) and the logic added to the
exception path can be used for compensation and to clean up the non−transactional resources, as described in
the Compensation Example.

To learn about the Control Request node, and about controls and transactions see Create a Client Request
Node in Your Business Process and Controls and Transactions.

Compensation Example

The following figure shows an example of how to use an exception path for compensation.

Guide to Building Business Processes

Handling Exceptions 109

In the example, two nodes are running in the same transaction. The first node writes to a file
(non−transactional) and the second node updates a database (transactional). Both nodes are within a group
that has an associated exception handler. The exception handler execute on rollback property is set to true to
force the exception handler to run before any rollback occurs.

In this example, if the database operation fails and marks the transaction for rollback only, the following
sequence of events occurs:

The exception handler runs before the rollback occurs.1.
The transaction handler path is executed and the node on the path deletes the file that was written
earlier.

2.

The transaction rolls back.3.

Note: The above example is for an implicit transaction. You can use the same technique for compensation
with explicit transactions. However, be sure that you put the exception handler path inside the explicit
transaction. Putting it on the explicit transaction itself does not result in the desired behavior. The following
figure shows an example of an explicit transaction with an exception handler path with compensation logic.

Guide to Building Business Processes

Handling Exceptions 110

Related Topics

Grouping Nodes in Your Business Process

Writing Custom Java Code in Perform Nodes

Adding Message Paths

Adding Timeout Paths

Transaction Boundaries

Guide to Building Business Processes

Handling Exceptions 111

Adding Message Paths
A Message Path is used to interrupt an executing process on delivery of a message from either a client or a
control. This allows the process to halt the current stream of execution and take alternate actions. You can
have as many message paths as you like in your business process.

Message paths can be associated with individual nodes, a group of nodes, or with the process (global).

Note: Message paths are not supported on the following individual nodes: Perform, Client Response, Control
Send, and Control Send with Return.

A Message Path can contain a Client Request or Control Receive node at which it receives the message. For
the case in which an On Message path is specified for the process (that is, specified at the Start node) the first
node on the path can be a Client Request with Return node.

This section contains the following topics:

Creating a Message Path•
Deleting Message Paths•

Creating a Message Path

You can associate a message path with individual nodes in your business process, with groups of nodes, or
with the whole process (global). You create a global message path by adding a message path to the start node
of your process.

This section contains the following topics:

To Create a Message Path•
To Configure a Message Path•
To Delete a Message Path•

To Create a Message Path

Select the node or groups of nodes for which you want to create a message path. (To learn about
grouping nodes, see Grouping Nodes in Your Business Process)

1.

Right−click the node or group of nodes and select Add Message Path from the drop−down menu.2.

A message path is added to your node or group of nodes and is displayed as follows.

Adding Message Paths 112

You can rename the path anything you like by double−clicking OnMessage and entering the new
name. You can also change the name in the name field of the Property Editor.

To Configure a Message Path

Double−click Starting Event to invoke the starting event node builder.1.
Select the event which you want your message branch to wait for. Choose one of the following
options:

2.

A Client Request�Select this option if you want your message path to wait for a message
from a client.

♦

A Client Request with Return�Select this option if you want your message path to wait for
a message from a client and then send a synchronous response back to the client. You can add
optional nodes between the receive and send nodes inside the Client Request with Return
node.

♦

Note: This option is only available when a Message Path is added to a Start node of a
business process.

A Control Receive�Select this option if you want your message path to wait for a message
from a specified control.

♦

Click the X in the top−right corner to close the node builder.3.

The node you selected is added as the starting event to your message path. To configure your starting
node see, step 6.

Select the message path which you want to configure.4.

The related properties are displayed in the Property Editor. If the Property Editor is not visible in
WebLogic Workshop, choose View �> Property Editor from the menu bar.

In the Property Editor, configure the following properties:5.
name�Enter the name you want displayed in the WebLogic Workshop for this path.♦
notes�Enter any notes you want associated with this message path. These notes can then be
accessed through the WebLogic Integration Administration Console.

♦

after execute�Select the action you want to take place after a message path is executed.
Choose from:

♦

skip�Skip the node or group with which the message path is associated. That is, resume
execution of the process at the node following the node or group for which the path is
defined.

resume�Resume execution of the process at the node that was executing when the message
was received. The process state returns to what it was before the message path executed and
the message port is still active.

retry count�Specify how many times, after the first attempt, the process engine tries to
execute the node or group of nodes contained in the path, before the afterExecute path is
taken.

♦

Configure your starting event by double−clicking the node you chose as the starting event. The node
builder is invoked. For information on how to configure:

6.

Guide to Building Business Processes

Adding Message Paths 113

Client Request with Return nodes, see To Complete the Design of Your Client Request
Node.

♦

Client Request nodes, see Design Your Client Request Node.♦
Control Receive nodes, see Designing Your Control Nodes.♦

Add any business process nodes to the exception path, as required to define the message path logic.7.

Viewing Message Paths in the Design View

When you create message path, the following icon appears beside a node (or group of nodes) in the Design
View to indicate that an exception path is activated for the specified node:

This icon represents the message path in your business process. In this case, the
path appears empty, indicating that the logic to execute when a message is
received is not defined yet.

To define the exception handling logic, add business process nodes by dragging
the nodes from the Business Process Palette and dropping them on the message
path.

You can collapse the view of any message path (or exception handler or timeout path) by clicking the grey
arrow of the message path icon. The following figure shows the icon associated with your node to indicate a
collapsed path.

You can toggle between collapsed and expanded views of paths in the Design View by clicking the
message path icon.

Deleting Message Paths

To Delete a Message Path

Right−click the path which you want to delete.1.
Select Delete from the drop−down menu.2.

The path is deleted and removed from the Design View.

Warning: Deleting a path deletes any business process nodes you defined on that path. When you attempt to
delete a path, a dialog box displays a warning message that you must acknowledge before proceeding with the
deletion.

Related Topics

Grouping Nodes in Your Business Process

Writing Custom Java Code in Perform Nodes

Handling Exceptions

Guide to Building Business Processes

Adding Message Paths 114

Adding Timeout Paths

Transaction Boundaries

Guide to Building Business Processes

Adding Message Paths 115

Adding Timeout Paths
A timeout path is used to interrupt an executing process after a certain amount of time has lapsed. Timeout
paths can be associated with individual nodes, a group of nodes, or with the process (global). If you add a
Timeout path to a start node, the timer starts when the process begins. If you add a Timeout path to any other
node, or group of nodes, the timer starts when the process reaches that point of execution.

Note: Perform, Client Response, and any of the Control nodes do not support timeout paths on individual
nodes.

This section contains the following topics:

Creating a Timeout Path•
Deleting Timeout Paths•

Creating a Timeout Path

You can associate a timeout path with individual nodes in your business process, with groups of nodes, or
with the whole process (global). You create a global timeout path by adding a timeout path to the start node of
your process. If you add a Timeout path to a start node, the timer starts when the process begins. If you add a
Timeout path to any other node, or group of nodes, the timer starts when the process reaches that point of
execution. This section contains the following topics:

To Create a Timeout Path•
To Configure a Timeout Path•
To Delete a Timeout Path•

To Create a Timeout Path

Select the node or groups of nodes for which you want to create a timeout path. (For information on
how to group nodes, see Grouping Nodes in Your Business Process)

1.

Right−click on the node or group of nodes and select Add Timeout Path from the drop−down menu.2.

A timeout path is added to your node or group of nodes and is displayed as follows.

You can rename the path anything you like by double−clicking OnTimeout and entering the new
name. You can also change the name in the name field of the Property Editor.

To Configure a Timeout Path

Select the Timeout path which you want to configure.1.

The related properties are displayed in the Property Editor. If the Property Editor is not visible in

Adding Timeout Paths 116

WebLogic Workshop, choose View �> Property Editor from the menu bar.

In the Property Editor, configure the following properties:2.
name�Enter the name you want displayed in the WebLogic Workshop for this path.♦
notes�Enter any notes you want associated with this timeout path. These notes can then be
accessed through the WebLogic Integration Administration Console.

♦

duration�Specify the number of seconds that should laps before the path is triggered.
(Expected format is Xs, for example 5s.)

♦

after execute�Select the action you want to take place after a timeout path is executed.
Choose from:

♦

skip�Skip the node or group with which the Timeout path is associated. That is, resume
execution of the process at the node following the node or group for which the Timeout path
is defined.

resume�Resume execution of the process at the node that was executing when the timeout
was triggered. The process state returns to that before the On Timeout path executed, and the
On Timeout path resets (that is, timeout begins again).

retry count�Specify how many times, after the first attempt, the process engine tries to
execute the node or group of nodes contained in the path, before the afterExecute path is
taken.

♦

Add any business process nodes to the exception path, as required to define the timeout path logic.3.

Viewing Timeout Paths in the Design View

When you create a timeout path, the following icon appears beside a node (or group of nodes) in the Design
View to indicate that an exception path is activated for the specified node:

This icon represents the timeout path in your business process. In this case, the path
appears empty, indicating that the logic to execute when a timeout is received is not
defined yet.

To define the exception handling logic, add business process nodes by dragging the
nodes from the Business Process Palette and dropping them on the timeout path.

You can collapse the view of any timeout pate (or exception handler or message path) by clicking the grey
arrow of the exception path icon. The following figure shows the icon associated with your node to indicate a
collapsed path.

You can toggle between collapsed and expanded views of paths in the Design View by clicking the
path icon.

Deleting Timeout Paths

To Delete a Timeout Path

Right−click the path that you want to delete.1.

Guide to Building Business Processes

Adding Timeout Paths 117

Select Delete from the drop−down menu.2.

The path is deleted and removed from the Design View.

Warning: Deleting a timeout path deletes any business process nodes you defined on that path. When you
attempt to delete a timeout path, a dialog box displays a warning message that you must acknowledge before
proceeding with the deletion.

Related Topics

Grouping Nodes in Your Business Process

Writing Custom Java Code in Perform Nodes

Handling Exceptions

Adding Message Paths

Transaction Boundaries

Guide to Building Business Processes

Adding Timeout Paths 118

Running and Testing Your Business Process
WebLogic Workshop provides a browser−based interface with which you can test the functionality of your
business process. Using this Test View interface, you play the role of the client, invoking the business
process's methods and viewing the responses.

This step describes how to test a business process you have created in WebLogic Workshop using the Test
Browser tool. It includes the following topics:

Using the Test Browser•
Understanding the Service URL•

Using the Test Browser

To Launch the Test Browser

On the Application tab, click the business process (JPD file) you want to test.1.
If it not already selected, select the Design View tab.2.

The business process you selected in the Application is displayed in the Design View.

If WebLogic Server is not already running, from the WebLogic Workshop menu, choose Tools �>
WebLogic Server �> Start WebLogic Server.

3.

If WebLogic Server is running, the following indicator is visible in the status bar at the bottom of the
WebLogic Workshop visual development environment:

After the Server is running, from the WebLogic Workshop menu, click Build �> Build Application.
WebLogic Workshop builds your project.

4.

If necessary, correct any errors in the project.5.
Click on the WebLogic Workshop menu bar.6.

A Web browser is launched to display the Workshop Test Browser, through which you can test your
business process using sample input values.

The Workshop Test Browser contains the following tabs:

Overview�This tab displays public information about your business process. Code in this
area is generated automatically and 2−way editing is fully supported in the Process Language.
Changes you make here will appear in the Design View.

♦

Console�This tab displays private information about your business process, such as how
services are implemented on the back end, and with what version of WebLogic Workshop it
was created. It also displays information about log settings, such as how many log messages
to keep and the number of characters after which log entries are truncated.

♦

Test Form�This tab provides a simple test environment for the public methods of your
business process. You can provide parameters for a method and examine its return value. You
can also track and test the different parts of a conversation.

♦

Running and Testing Your Business Process 119

Test SOAP�This tab shows the XML data that is being sent to your business process when
you test its XML methods. You can use this page to examine and modify the XML data that
is passed to a method of your business process.

♦

Message Broker�This tab provide a space for you to publish messages to channels available
in channel files in your application. It allows you to test your process interactions with
asynchronous events and simulate Timer, Email, File, JMS, and other event generators.

♦

Process Graph�This tab allows you to view an interactive or printable graph of the
deployed process type. The graphical view represents your business process and its
interactions with clients and resources, such as databases, JMS queues, file systems. It shows
the path taken thus far by the business process and provides additional information about the
state of each node in the process. If your browser is not already configured with the SVG
plug−in when you click this tab, WebLogic Workshop will offer to download and install it for
you.

♦

For more information about the different tabs in the Workshop Test Browser, see Workshop Test Browser.
For specific information about how to use the Test Form, Message Broker, and Process Graph tabs, see To
Test the Public Methods of Your Business Process, To Test a Message Broker Channel, and To View a
Process Graph.

To stop the Test Browser, return to WebLogic Workshop and click on the tool bar.

Warning: As you use the Test Browser, take care to not run very large or data intensive business processes.
Doing so may cause the Test Browser to fail.

Testing the Public Methods of Your Business Process

To Test the Public Methods of Your Business Process

Launch the Workshop Test Browser. (To learn more, see To Launch the Test Browser.)1.
If necessary, click Test Form.2.

You can enter data that your business process can receive as part of a client request directly on the
Test Form page. Alternatively, you can browse your file system and upload a file which contains your
test data.

If your client operation accepts input, enter the required information in to the field or fields.3.

Note: To upload a file to test data, click Browse beside the xml myfile: (file value) field to open the
file browser, then select the file that contains the test data you want to use.You can also enter the test
data by entering (copy/paste) the content of a file into the field.

Click the button labeled with your business process's method name to invoke the method with the
values you entered. The Test Form page refreshes to display a summary of your request parameters
and your business process's response:

4.

Under Service Request, a summary of the data that was sent by the client (you) when the
method was called, including the values of method parameters, is displayed.

♦

For business processes that involve multiple communications with clients, or
communications with resources such as other Web services, the Message Log on the left side
of the Test Form page displays an entry for each call to a method or callback so that you can
view the data for each. Click any log entry to see the details of that interaction.

♦

Guide to Building Business Processes

Running and Testing Your Business Process 120

Business Processes participate in conversations with clients. The Test Browser displays the
instance ID in the Message Log. Select the instance ID or to access continue and
finish methods in that conversation.

♦

When the business process finishes, a message similar to the following is displayed in the Message
Log:

5.

Instance instanceID is Completed.

In the preceding line, instanceID represents the ID generated when the first method in your business
process was called.

Click the Test SOAP tab.6.

The Test SOAP tab displays the XML data that is being sent to your business process when you test
its methods in the soap body field. You can use this page to examine and modify the XML data that is
passed to a method of your business process.

Click the button with the name of your method to start a new conversation.The Test Form page
refreshes to display a summary of your request parameters and your business process's response.

7.

When the business process finishes, a message similar to the following is displayed in the Message
Log:

Instance instanceID is Completed.

In the preceding line, instanceID represents the ID generated when the first method in your business
process was called

To stop Test View, return to WebLogic Workshop and click on the tool bar.

Testing a Message Broker Channel

To Test a Message Broker Channel

Launch the Workshop Test Browser. (To learn more, see To Launch the Test Browser.)1.
Click Test Form and enter test data that can be used for to test the public methods that are published
on your channel. To learn more, see To Test the Public Methods of Your Business Process.

2.

Click the Message Broker tab.3.

The Message Broker test tab is displayed with details of the conversation routed through your
channel. The conversation id is displayed in the message log. Click any of the methods displayed in
your message log to view details on the right side of the window about the external services
communications (callbacks and responses).

Viewing the Process Graph

The Process Graph tab of the Workshop Test Browser provides a SVG graph of your process as it is running.
The graph represents your business process and its interactions with clients and resources, such as databases,
JMS queues, and file systems.

Guide to Building Business Processes

Running and Testing Your Business Process 121

The interactive instance graph is a fully expanded version of the view provided in the Design View. The
interactive process graph requires Adobe SVG Viewer Version 3.0. The first time you open the Process
Graph tab, you will be asked if you would like to download the Viewer from the Adobe Web site. You can
also download the viewer directly from the Adobe Web site at the following URL:

http://www.adobe.com/svg/viewer/install/main.html

This viewer is not available for some configurations that the WebLogic Platform 8.1 supports. For details,
please see "Browser Requirements for the Interactive Graph" in Process Monitoring in Managing WebLogic
Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/manage/processmonitoring.html

For detailed information about the operating systems and browsers WebLogic Platform supports, see BEA
WebLogic Platform Supported Configurations at the following URL:

http://edocs.bea.com/platform/docs81/support/supp_plat.html

To View a Process Graph

Launch the Workshop Test Browser. (To learn more, see To Launch the Test Browser.)1.
Click the Process Graph tab.2.

The Adobe SVG Viewer displays the interactive view. The Process Graph Visual cues are provided
to indicate node status as described in the following table:

If the node . . . And the tracking level is . . . The node appears . . .

Has been visited
Full or Node Normal

Minimum Normal

Is currently executing
Full or Node Highlighted

Minimum Highlighted

Has not been visited
Full or Node Dimmed

Minimum Normal

To learn about business process tracking levels, see "Viewing and Changing Process Details" in
Process Configuration in Managing WebLogic Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/manage/processconfig.html

The top panel of the Process Graph tab displays selected process properties. To learn more about the
properties displayed, see "Viewing Process Instance Details" in Process Instance Monitoring in
Managing WebLogic Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/manage/processmonitoring.html

Do any of the following:3.
To display node status, click the node. The node name, type, and description are displayed in
the Node Info panel. If the tracking level is set to Full, the start time, elapsed time, finish
time, and completed visits are also displayed. If the tracking level is set to Node or Minimum,

♦

Guide to Building Business Processes

Running and Testing Your Business Process 122

this additional information is not available.
To scroll the view, press and hold down the Alt key. The cursor changes to a hand tool.
Click and drag to scroll the process graph vertically or horizontally.

♦

To zoom in, press and hold down the Ctrl key. The cursor changes to a zoom in tool.
Click to zoom in.

♦

To zoom out, press and hold down the Ctrl+Shift keys. The cursor changes to a zoom out
 tool. Click to zoom out.

♦

To change to a printable view, click Print View. The process graph is displayed as a PDF.♦

To stop the Test Browser, return to WebLogic Workshop and click on the tool bar.

Understanding the Service URL

In the Test browser, a URL is displayed in the upper−right corner of the Test Form tab. The URL you see
when you launch Test View for your business process should be similar to the following URL:

http://localhost:7001/samples/myBusinessProcess.jpd

In the preceding line:

http://locahost:7001/�Represents the machine name and its default listening port (7001).
Specifically, this means that the request (the call to the business process) from your Test browser is
intercepted by WebLogic Server on port number 7001 of your local machine.

•

samplesWeb/� This refers to the Web application of which the service is a part. When you create a
project in WebLogic Workshop, you are also creating a WebLogic Server Web application. The
project name becomes part of the URL for all Web services in that project. Keep that in mind when
naming new projects so that the resulting Web service URLs are meaningful and appropriate.

•

myBusinessProcess.jpd�The filename of the business process JPD file. WebLogic Server is
configured to recognize the JPD extension and respond appropriately by serving the request as a Web
service�rather than, say, an HTML page or a JSP.

•

Related Topics

How Do I: Test A Web Service Using WebLogic Workshop's Test View?

Guide to Building Business Processes

Running and Testing Your Business Process 123

Business Process Variables and Data Types
In the Design View, the Variables tab displays the variables associated with the Java class that constitutes
your business process. All business process variables are global to the business process instance.

This section describes business process variables and their data types. It includes the following topics:

Creating Variables•
Deleting Variables•
Working with Data Types•
Assigning MFL Data to XML Variables and XML Data to MFL Variables•

Business Process Variables and Data Types 124

Creating Variables
There are two ways of creating variables for your business process. Variables can be created in the Data
Palette by selecting Add �> Variable or they can be created in the node builder when you are configuring
the Send Data or Receive Data section of a Client Request, Client Request with Return (Start Node only),
Client Response, Subscription (Start Node only), Control Send, Control Send with Return, or Control
Receive node for your business process nodes. Whichever method you choose, you can always access your
variables from the Data Palette after they are created. When you select a variable in the list on the Data
Palette, its properties are displayed in the Property Editor.

Before you can create an XML variable of a particular XML Schema type, you must first import the XSD file
that contains the XML Schema into the WebLogic Integration schemas project. For instructions on importing
an XSD files, see Importing Files into the Schemas Project.

Before you can create a non−XML variable of a particular non−XML type, you must first import the MFL
file that contains the schema for the non−XML type into the WebLogic Integration schemas project. For
instructions on importing an MFL files, see Importing Files into the Schemas Project.

Before you can create a variable of a Java class type, the Java class file must first be available in the
WebLogic Workshop project. To learn more about including a Java class in your project, see Using Existing
Applications.

To Create a New Variable in the Data Palette

You can create variables using the Add menu on the Variables tab. To learn how to create variables in the
node builder, see To Create a New Variable in the Node Builder.

If the Variables tab is not visible in WebLogic Workshop, choose View �> Windows �> Data
Palette from the menu bar.

1.

The Data Palette, which contains a Variables and a Controls tab, is displayed in the Design View.

In the Variables tab, click Add to display the Select Variable Type menu.2.

A description of the possible variable types options are as follows:

XML Types♦

Lists the XML Schemas that are available in your business process project and the untyped
XMLObject and XMLObjectList data types.

Non−XML Types♦

Lists the Message Format Language (MFL) files available in your business process project
and the untyped RawData data type. WebLogic Integration uses a metadata language called

Creating Variables 125

Message Format Language (MFL), based on XML, to describe the structure of non−XML
data. Every MFL file available in your project is listed in Non−XML Types. Note that an
XML Schema representation of each MFL file is built by WebLogic Workshop and is also
available in the XML Types listing.

Java Types♦

Lists Java primitive data types.

Variables can be created from the Java classes in the current project but the list of available
Java classes are not however, listed in the Select Variable pane. To create variables from
Java classes, you must explicitly specify the Java class in the Variable type field as described
below.

For more detailed descriptions of the data types, see Working with Data Types.

From the drop−down menu, select the appropriate variable types from the selected option: XML,
NonXML, or Java.

3.

The Create Variable dialog box is displayed with the selected variable type.

In the Variable Name field, enter a name for your variable.4.
In the Select Variable Type field, select or in the Variable type field, enter a variable type:5.

For a Java class type variable, enter the full package name of the class in the Variable type
field. For example, for a class named Book in the package named library, enter: library.Book.
(For Java simple types, see step 7.)

♦

For all other all variable types, select a variable type from the available list.♦
The Variable type field is populated with the variable type you selected.

If you want to assign a default value to your variable, enter it in the Default value field.6.
If your variable is a Java simple type and you want it to be a constant that cannot be updated, select
Declare as constant, then enter the constant value in the Default value field. This will create the
variable as static and final.

7.

Note: If you select the Declare as constant and leave the Default value field blank, the run time
default value used is:
−non−primitive: null
−numbers: 0
−boolean: false
−char: '\0'

Click OK to create the new variable.8.

The Variables tab in the Data Palette is populated with the variable you created; the name and type
of the variable is displayed. When you select a variable in the list, the variable properties are
displayed in the Property Editor.

To Create a New Variable in the Node Builder

You can create variables directly in the node builder while you are configuring a node's Receive or Send
Data tab. To learn how to create variables outside of the node builder, see To Create a New Variable in the

Guide to Building Business Processes

Creating Variables 126

Data Palette.

In the Receive or Send Data tab, select the Variables Assignment option if necessary.1.
From the Select variables to assign: drop−down menu, select Create new variable.... The Create
Variable dialog box is displayed.

2.

Note: The other fields in the dialog box are already populated with the variable types expected by the
method you specified on the General Settings tab.

In the Variable Name field, enter a name for your variable.3.
If you would like to use a variable of a type other than what is expected by the method you specified
on the General Setting tab:

4.

Select a variable type option for your variable:a.
XML Typesb.

Lists the XML Schemas that are available in your business process project and the untyped
XMLObject and XMLObjectList data types.

Non−XML Typesc.

Lists the Message Format Language (MFL) files available in your business process project
and the untyped RawData data type. WebLogic Integration uses a metadata language called
Message Format Language (MFL), based on XML, to describe the structure of non−XML
data. Every MFL file available in your project is listed in Non−XML Types. Note that an
XML Schema representation of each MFL file is built by WebLogic Workshop and is also
available in the XML Types listing.

Java Typesd.

Lists Java primitive data types.

For more detailed descriptions of the data types, see Working with Data Types.

The Select Variable Type field is populated with the variable type you selected.

Select or enter a variable type:5.
For a Java class type variable in the Variable type field enter the full package name of the
class in the Variable type field. For example, for a class named Book in the package named
library, enter: library.Book. (For Java simple types, see step 6.)

♦

For all other all variable types, select a variable type from the available list.♦
The Variable type field is populated with the variable type you selected.

If your variable is a Java simple type and you want it to be a constant that cannot be updated, select
Declare as constant, then enter the constant value in the Default value field. This will create the
variable as static and final.

6.

Note: If you select the Declare as constant and leave the Default value field blank, the run time
default value used is:
−non−primitive: null
−numbers: 0
−boolean: false

Guide to Building Business Processes

Creating Variables 127

−char: '\0'

If you want to assign a default value to your variable, enter it in the Default value field.7.
Click OK to create the new variable.8.

The new variable you created is displayed in the Select variables to assign: drop−down menu in the
node builder and is added to the Variables tab in the Data Palette; the name and type of the variable
is displayed. When you select a variable in the list, the variable properties are displayed in the
Property Editor.

To Convert Application Variable Data Types

The node builders support assigning typed data to untyped process variables, and untyped data to typed
process variables in the following ways:

Typed to Untyped•
You can assign strongly typed XML data (XML Bean) to untyped XML variables
(XMLObject).

♦

You can assign typed non−XML data (MFLObject) to untyped non−XML variables
(RawData).

♦

Untyped to Typed•
You can assign untyped XML data (XMLObject) to strongly typed XML variables (XML
Bean).

♦

You can assign untyped non−XML data (RawData) to typed non−XML variables
(MFLObject).

♦

Related Topics

Deleting Variables

Working with Data Types

Assigning MFL Data to XML Variables and XML Data to MFL Variables

Guide to Building Business Processes

Creating Variables 128

Deleting Variables
To Delete a Variable

On the Data Palette, in the Variables tab, right−click the name of a variable and choose Delete from the
drop−down menu. The variable is deleted from the Variables tab and from the source code for your
application. To learn about variables in your source code, see Variables in Business Process Source Code.

Deleting Variables 129

Working with Data Types
The data types supported for your business process applications include:

XML Types•
Non−XML Types•
Java Types•

XML Types

XML Schemas are an XML vocabulary that describe the rules that your business data must follow. XML
Schemas specify the structure of documents, and the data type of each element and attribute contained in the
document. XML Schema files have an XSD file suffix. You can create new schemas or import schemas into
your schemas folder, see Importing Files into the Schemas Project.

Note: To make the Schemas in your project available in your business process, you must place them in the
Schemas folder. The Schemas folder is a child folder of your business process application folder in WebLogic
Workshop. To learn about the Application and project folders in the Design View, see Components of Your
Application and How Do I: Create a New Application.

When you add XML Schemas to the Schemas folder in your business process project, they are compiled to
generate XML Beans. In this way, WebLogic Workshop generates a set of interfaces that represent aspects of
your Schema. XML Bean types correspond to types in the XML Schema itself. XML Beans provides Java
counterparts for all built−in Schema types, and generates Java counterparts for any derived types in your
Schema.

When you load an XML file that conforms to a particular XML Schema into an XML Bean generated from
the Schema, you can access the XML as instances of the XML Bean types. To learn more about XML Beans,
see Getting Started with XML Beans.

The XML typed data also includes:

XMLObject�This XML data type specifies untyped XML format data. In other words, this data type
represents XML data that is not valid against an XML Schema.

XMLObjectList�This XML data type specifies a sequence of untyped XML format data. In other words,
this data type represents a set of repeating elements of XML elements that are not valid against an XML
Schema.

Tip for XML Object

When you assign an XMLObject variable or typed XML variable to an XMLObjectList, the XML document
is added to the list (instead of directly assigning the variable).

Tip for Creating XML Schemas

When you create XML Schema definitions, which contain declarations for attributes, we recommend that you
make these declarations inside, or local to, the element declarations. If you declare attributes at the top level of
the XML Schema document (that is, immediately under the xsd:schema root), they must be qualified by a
target namespace, if one exists. Consequently, for an XML instance document to be valid against such a

Working with Data Types 130

Schema, the attributes within the XML document must be qualified with a namespace prefix associated with
the target namespace. If you do not specify this prefix in an XML instance document, transformations or
validations against the Schema fails.

Non−XML Types

WebLogic Integration uses a metadata language called Message Format Language (MFL), based on XML, to
describe the structure of (typed) non−XML data. The Format Builder tool creates and maintains metadata as a
data file, called an MFL document.

Note: When you create MFL files for use in your business process project, to make them available in your
application, you must add the files to your Schema folder. The Schema folder is a child folder of your
business process application folder in WebLogic Workshop. To learn about the Application and project
folders in the Design View, see Components of Your Application.

Every MFL file available in your project is listed in Non−XML Types in the Create Variable dialog box.
However, an XML Schema representation of each MFL file is built by WebLogic Workshop. This XML
Schema representation of your MFL data is available in the XML Types listing. In other words, you can work
with every MFL file in your project in its non−XML data representation (in non−XML MFL format) and in its
XML Schema representation (XML typed data). For example if you add an MFL file named mydata.mfl to
your business process project, mydata.mfl is listed in Non XML Types, and the corresponding XML Schema
representation, mydata.mfl.xsd, is listed in XML Types. Although you are provided with a typed XML
version of your typed non−XML format, both types are not automatically populated. That is, if you receive
data in a typed non−XML format and then assign it to a typed non−XML variable and you create a variable
for the corresponding typed XML version, it will not automatically contain the data that is in the typed
non−XML variable. You must use a transformation map to accomplish this. For more information about MFL
files and Non−XML data, see Transforming Non−XML Data.

Note: Non−XML variables are equivalent to Binary variables in prior versions of WebLogic Integration.

The non−XML type data also includes the RawData type that specifies non−XML data for which no MFL
file exists and therefore no known schema.

Note: Although both XMLObject and RawData are both untyped data types in WebLogic Integration, the
XMLObject data type is still XML and therefore has a structure that can be parsed. RawData is just a stream
of data that has no known structure. Therefore, you cannot do things like use a RawData parameter in a
XQuery expression or in a transformation method.

Java Types

Contains the following Java data types:

Java Primitive Data Types�boolean, byte, double, float, int, long, short, and String.

Java Classes�Variables can be created from the Java classes in the current project. However, the Java
classes available in the project are not listed in the Select Variable pane in the node builders. You must
explicitly specify the Java class in the Variable type field as described in the following sections: To Create a
New Variable in the Data Palette and To Create a New Variable in the Node Builder. To learn more about
including Java classes in your project, see Using Existing Applications.

Guide to Building Business Processes

Working with Data Types 131

Java class variables can be used in business processes without any conversion. When you use Java classes in
data transformations, WebLogic Integration converts the Java class into an internal XML Schema
representation of the Java class file. The fields of Java class that cannot be converted to an XML Schema type
are ignored. To learn more about the conversion of Java classes into this internal XML Schema representation,
see Java Class Conversion. To learn about the Java classes that are created when you import schemas into
your application, see Java Classes Created From Importing Schemas.

Tip for Java Collection

When you assign a variable to a collection, it is added to the collection (instead of directly assigning the
variable).

Related Topics

Validating Schemas

Variables in Business Process Source Code

Assigning MFL Data to XML Variables and XML Data to MFL Variables

Guide to Building Business Processes

Working with Data Types 132

Assigning MFL Data to XML Variables and XML Data
to MFL Variables
As described in Non−XML Types, an XML Schema representation of each MFL file in your application is
built by WebLogic Workshop. You can work with every MFL file in your project in its non−XML data
representation (in non−XML MFL format) and in its XML Schema representation (XML typed data).

The variable assignment panes in the WebLogic Integration node builders treat MFL and their corresponding
XML variables interchangeably, such that you can assign MFL data directly to the corresponding variables of
type XML and XML data directly to the corresponding variables of type MFL; no data transformation is
required.

In other words, the WebLogic Workshop graphical design environment allows you to assign MFL data (that
is passed into a business process from a client or a control) to strongly typed−XML variables directly, and to
assign typed−XML data (sent from a business process to a client or a control) directly to MFL variables.

The node builders for the following nodes support the direct assignment of MFL data to XML variables and
XML data to MFL variables: Client Request, Client Response, Control Send, Control Return, Control
Send with Return. The example described in the following section describes a Client Request and a Client
Response node; the steps are similar for any node.

Example Scenario�Requires Assignment of MFL Data to an XML Variable and Assignment of XML Data to
an MFL Variable

Consider the following example:

Your business process is started by a request from a client. The request contains a purchase order document
in MFL format, which is represented by an MFL file in a Schemas folder in your application. To learn about
importing XSD and MFL schemas into your application, see Importing Files into the Schemas Project.

To process the purchase order, your business process must first assign the MFL data to an XML variable (at a
Client Request node). This XML variable is used in the processing of the purchase order at subsequent
nodes. When the processing is complete, the business process sends a response document (from a Client
Response node) to the client. The processed data (a price quote) is in XML format in your business process;
because the client expects MFL data, a Client Response node assigns the XML data to a variable of type
MFL before sending the response.

The business process in this scenario includes a Client Request node, a Client Response node, and the nodes
between them (not described in this example) at which the processing logic is designed:

Assigning MFL Data to XML Variables and XML Data to MFL Variables 133

The following steps describe how to design the Client Request and Client Response nodes to do the
MFL−to−XML and XML−to−MFL assignments required for the scenario described in this example.

To Design the Client Request Node

In the Design View, double−click the Client Request node to invoke its node builder.1.
In the General Settings tab, enter a name in the Method Name field to specify the name of the
method on this Client Receive node (by default, the method is named clientRequest).

2.

In the General Settings tab, click Add to select the type and format of the data your Client Request
node expects to receive from clients (that is, the data type for the method parameter). As shown in the
following figure, the XML option is selected by default and XML Types are displayed. However,
Non−XML Types and Java Types are also available. To display the Non−XML and Java data types,
select the NonXML or Java options on the panel.

3.

Guide to Building Business Processes

Assigning MFL Data to XML Variables and XML Data to MFL Variables 134

Note: Every MFL file type in your project is listed in the Non−XML Types pane and every XML file
type in your project is listed in the XML Types pane. In addition, because an XML Schema
representation of each MFL file is built by WebLogic Workshop, an XML Schema representation of
your MFL data is also available in the XML Types list.

The following figure shows an example of the XML Types listing and the NonXML Types listing
for an application which includes an MFL file named MyMFLFile.mfl:

Select NonXML to display the Non−XML Types (Typed and Untyped) in your application:4.

Click the + associated with the name of the MFL file that represents the type of the request the client
makes to the business process. In this example, we click the + beside myMFLFile.mfl to display the

5.

Guide to Building Business Processes

Assigning MFL Data to XML Variables and XML Data to MFL Variables 135

root element MyMessageFormatMflObject.
Click the root element�in this case, MyMessageFormatMflObject. The data type is displayed in the
Type field.

6.

Enter a name for the method parameter in the Name field (in this example, we entered
requestMFL), and click OK. The parameter type is displayed in the node builder:

7.

Click the Receive Data tab.8.

The Receive Data tab allows you to define the variable to hold the data your business process
receives from clients.

The Client Sends field is populated with the parameter (or parameters) you specified on the General
Settings tab. In this example, the data is of type MyMessageFormatMflObject:

Create a new variable to which the data supplied in the method parameter will be assigned.9.

To create a new variable, from the Select variables to assign drop−list, select Create new
variable...

The Create Variable dialog box is displayed with the fields already populated with the variable
types expected by the method you specified on the General Settings tab.

Guide to Building Business Processes

Assigning MFL Data to XML Variables and XML Data to MFL Variables 136

In the Select Variable Type pane, select the XML option to switch the display to the XML types in
your application.

10.

Click the XML Schema that corresponds to the MFL data your business process expects to receive at
this node. In this example, click the + beside myMFLFile.mfl.xsd to expand its structure.

11.

Click the root node of the schema. In this case, click MyMessageFormat. The Variable Type field
is populated with the data type: mymflfile.MyMessageFormatDocument, as shown in the following
figure:

12.

Guide to Building Business Processes

Assigning MFL Data to XML Variables and XML Data to MFL Variables 137

In the Variable Name field, enter a name. In this example, we entered requestXML.13.
Click OK. The node builder displays the assignment.14.

Click the X in the top right−hand corner to close the node builder.15.
To save your work, select File �> Save.16.

The preceding steps described how to design a Client Request node to do a direct assignment of MFL data to
an XML variable using the graphical design environment; no data transformation is required.

To Design the Client Response Node

For this example scenario, assume that some processing is done by the business process to process the
purchase order request. As a result of the processing, the business process creates a typed−XML price quote
document. The client expects a quote in MFL format (the quote message must be valid against an MFL
schema named POquote.mfl). Therefore, the business process stores the price quote data in an XML variable
that is valid against the XML schema associated with this MFL file (in this case named POquote.mfl.xsd)

Before sending the response to the client, the typed−XML price quote must be assigned to a typed non−XML
(MFL) variable at the Client Response node. The following steps describe how to design the Client Response
node for this XML−to−MFL scenario:

Guide to Building Business Processes

Assigning MFL Data to XML Variables and XML Data to MFL Variables 138

In the Design View, double−click the Client Response node to invoke its node builder.1.
In the General Settings tab, enter a name in the Method Name field to specify the name of the
method (by default, the method is named clientResponse).

2.

In the General Settings tab, click Add to select the data type for the method parameter for your
Client Request node.

3.

Click the + associated with the name of the XSD file that represents the type of the price quote
created by the business process. In the example scenario, we click the + beside POquote.mfl.xsd to
display the root element POQuote.

4.

Click the root element: in this case, POQuote. The data type is displayed in the Type field
(poquote.POquoteDocument):

5.

In the Name field, enter a name for the parameter (in this example, we entered quoteXML), and then
click OK. The parameter type is displayed in the node builder:

6.

Click the Send Data tab. The Client Expects field is populated with the parameter you specified on
the General Settings tab. In the example, the method expects data of type
poquote.POquoteDocument.

7.

Create a new variable to which the data supplied in the method parameter will be assigned.8.

Guide to Building Business Processes

Assigning MFL Data to XML Variables and XML Data to MFL Variables 139

To create a new variable, from the Select variables to assign drop−list, select Create new
variable.... The Create Variable dialog box is displayed and the fields are populated with the
variable types expected by the method you specified on the General Settings tab.

Select NonXML in the Select Variable Type pane to display the Non−XML types in your
application.

9.

Click the MFL Schema that specifies to the MFL data your client expects to receive from the
business process. In this example, click the + beside POQuote.mfl to expand its structure.

10.

Click the root node of the schema. In this case, click POquote. The Variable type field is populated
with the data type: poquote.POquoteMflObject, as shown in the preceding figure.

11.

Enter a name in the Variable Name field. In this example, enter responseMFL.12.
Click OK. The node builder displays the assignment.13.

Click the X in the top right−hand corner to close the node builder.14.
To save your work, click File �> Save.15.

The preceding steps described how to design a Client Response node to do a direct assignment of XML data
to its corresponding MFL variable using the graphical design environment; no data transformation is required.

Guide to Building Business Processes

Assigning MFL Data to XML Variables and XML Data to MFL Variables 140

Versioning Business Processes
By using the WebLogic Integration versioning feature in the WebLogic Workshop graphical design
environment, you can make changes to your business process without interrupting any instances of the process
that are currently running. Versioning provides the ability for any new process instances to use the
newly−activated version, while process instances that are already in progress run to completion using the
version that was active when they started.

Note: Before using versioning with long−running business processes, please read Using Versioning with
Long−Running Business Processes.

When you version a business process, you create a child version of a business process that shares the same
public URI (interface) as its parent. At run time, the version of the process that is marked as active is the
process that will be accessed by external clients through the public URI.

Caution: You can version business processes, but not the individual controls associated with that process or
other business process related components, such as schemas and transformations. When you version a
business process, you must also version the subprocesses of that process; they are not versioned automatically
when their parent process is versioned. This means that any changes to you make to these components also
impact any instances of prior process versions that are currently running. To avoid this problem, as you make
the necessary changes, create duplicates of these components and utilize the duplicates instead of the
originals.

This section contains the following topics:

Creating a New Version of a Business Process•
Configuring the New Versions of Your Business Process•
Editing Versions of Business Processes•
Deleting Versions of a Business Process•
Using Versioning with Long−Running Business Processes•
Importing Versioned Business Processes•

Creating a New Version of a Business Process

The first time you create a new version of a business process, the content of your original process is copied
into the new version and the old process is no longer editable. If you ever want to return to the original state of
your business process, it is recommended that you leave the first version of the process intact and only make
any edits or updates to the second version of your process. To create a new version of your business process,
complete the procedures in the following sections:

To Create the First Version of a Business Process•
To Create a New Version of Your Process•

To Create the First Version of a Business Process

On the Application tab, right−click the business process (JPD file) for which you want to create a
new version and select Version Process....

1.

The Create Version window opens.

Versioning Business Processes 141

Note: If your Application pane is not visible in the WebLogic Workshop, select View �>
Application.

In the Create Version window, enter the following properties:2.
Public URI�This is the URI (instance) by which external clients access the most active
version of your business process. The default value is the public instance by which clients
accessed the original version of the business process.

♦

Version URI�This is the name of the versioned file and also the URI by which this version
of the business process can be accessed in the WebLogic Workshop.

♦

Click OK.3.

The Create Version window closes and the new version of your business process is added to the
Application pane.

The indicates that this version of the business process is the active version of the process. By
default, the first version of a process becomes the new version since and the original version becomes
a virtual URI which points to the active version of the process. All currently running instances of the
process will run to completion using the original process, but the next time an instance of the business
process is invoked through the public URI, the version you just created will be used for processing.

Note: When you are creating process or service broker controls by right−clicking the virtual URI, the control
will be created based on the active version of the business process with that URI. If you create the control by
right−clicking the public URI of a version of a process, the control will be created based on the version of the
business process that you selected.

To Create a New Version of Your Process

On the Application tab, right−click the business process (JPD file) which you want to create a new
version for and select Create New Version...

1.

The Create New Version File window opens.

Note: If your Application pane is not visible in the WebLogic Workshop, select View �>
Application.

In the Create Version window, enter a value for the Version URI, that is the URI by which this
version of the business process can be accessed in the WebLogic Workshop.

2.

If you want this version of the business process to be the active version of the process, select the
Active Version check box. You can change a version of a business process to be active at any time,
see To Make a Version of a Business Process the Active Version.

3.

Click OK.4.

The Create Version window closes and the new version of your business process is added to the
Application pane.

Guide to Building Business Processes

Versioning Business Processes 142

The indicates that this version of the business process is the active version of the process. All
currently running instances of the process will finish processing, but the next time an instance of the
business process is invoked through the public URI, the version you just created will be used for
processing.

Configuring the New Versions of Your Business Process

To Make a Version of a Business Process the Active Version

You can change which version of your business process you want to be the active version at any time. To do
so:

On the Application tab, right−click the business process (JPD file) that you want to set to active and
select Make Active Version.

1.

Note: If your Application pane is not visible in WebLogic Workshop, select View �> Application.

The version of the business process that you selected is updated in the Application pane to be the new
active version, by changing its icon to . All currently running instances of the process will finish
processing, but the next time an instance of the business process is invoked through the public URI,
the version you just marked as active will be used for processing.

Editing Versions of Business Processes

You edit any version of a process the same way that you edit any original business process. However, there
are a some things you should keep in mind:

If you add or change a client operation in a version of a business process, all other versions of that
business process will be out of synchronization with the public URI. This is indicated on the
Application tab by changing the icon of the JPD file(s) to .

•

If you edit or add any internal resources, such as variables, they will only be available in the process
in which they were edited or created. Other versions of the process will not be able to access them.

•

If you edit any external resources, such as transformations (DTF files) in a process, these changes
will affect older versions of the business process, possibly breaking them. Additionally, any calls to
that external resource from older version of the process may no longer be valid. Therefore, it is
recommended that rather than editing an external resource, you create a copy of that resource and give
it a new name and edit any calls to that resource within your version of the process to reflect the new
name. The easiest way to do this is to use the search and replace function in the Source View.

•

Deleting Versions of a Business Process

To Delete a Version of a Business Process

On the Application tab, right−click the business process (JPD file) that you want to delete and select
Delete Version.

1.

Note: If your Application pane is not visible in the WebLogic Workshop, select View �>
Application.

Guide to Building Business Processes

Versioning Business Processes 143

The version of the business process you selected is deleted and removed from the Application pane.

Notes: If you delete the active version of a business process, the newest version of that business process
automatically become the active version. If you delete the last remaining version of a business process, the
content of that process is copied into the original JPD file and the Application tab is updated accordingly.

Using Versioning with Long−Running Business Processes

Some business processes are by nature long−running�meaning that they have a prolonged life span during
which an ongoing business task is being automated or managed. By default, WebLogic Integration's
versioning capability allows only process modifications to be applied to new process instances, not to those
already in progress at the time of the change. However, in the case of long−running processes, it is sometimes
desirable to make changes to the process definition to reflect changing business conditions and to have these
changes applied to process instances already in progress. To accomplish this goal, BEA recommends the
following design practices:

Split long−running business processes into multiple subprocesses.•
Specify the version strategy as loose−coupling (between business processes and sub processes). This
allows uptake of new subprocess versions when appropriate. See To Specify the Version Strategy of a
Business Process.

•

Whenever possible, use generalized or untyped interfaces between processes and subprocesses. This
further reduces the impact of changes made to subprocesses. For example, Client Requests should
take XmlObjects, not a specific schema type. This ensures that when the schema is changed, the
control method signature does not also have to change.

•

To Specify the Version Strategy of a Business Process

Select the Start node of the business process which version strategy parameter you want to change.1.
In the Property Editor, select the version strategy method that you want to use for the sub
processes process logic. From the list box, select one of the following:

2.

loosely−coupled�select this option if you want the subprocess version to be set at the time
that the subprocess is invoked. In other words, if an instance of your business process is
currently running but has not yet reached the state of invoking the subprocess that you have
created a new version for, the new version of your subprocess will be used when the process
invokes the subprocess.

♦

tightly−coupled�select this method if you want the subprocess version to be set at the time
the parent process is invoked. In other words, if an instance of your business process is
currently running but has not yet reached the state of invoking the subprocess that you have
created a new version for, the old version of your subprocess will be used when the process
invokes the sub process. The next time the main process is invoked, it will use the new
version of the sub process when it invokes the subprocess.

♦

Importing Versioned Business Processes

When you import multiple versions of a business process (JPDs) from another application, the the versioning
relationship is not preserved in the imported JPD. For example, if the original versions looks like the
following:

JPD.jpd
 JPD_v1.jpd

Guide to Building Business Processes

Versioning Business Processes 144

 JPD_v2.jpd

the imported business processes will look like:

JPD_v1.jpd
JPD_v2.jpd

This means that you need to manually edit the wlw−config.xmlconfiguration file, which is located in the
\Web\WEB−INF folder of your application. To learn about this configuration file, see wlw−config.xml
Configuration File.

Related Topics

For more information about versioning, see the information published regarding the VersionException class
in the com.bea.wli.bpm.runtime.versioning package and the VersioningConfigurationMBean interface in
the com.bea.wli.management.configuration package in the WLI Javadoc at the following URL:

http://edocs.bea.com/wli/docs81/javadoc/index.html

wlw−config.xml Configuration File

Guide to Building Business Processes

Versioning Business Processes 145

Validating Schemas
In addition to the validation check box on the node builders, you can validate XML Schemas in the source
code by using the code examples illustrated in this section.

If you check the Validate check box in the business process nodes, and at run time a validation error occurs,
a SOAP fault is thrown and your request is stopped before it gets to the business process or any exception
handler defined for your business process. To design the validation of schemas and handling of their related
exceptions within a business process, you can use the validate() method as described in the examples in the
following section.

The examples in this section describe only validation procedures to validate against XML Schemas. You can
accomplish similar tasks for MFL data by using the WebLogic Integration MflObject interface (see Using the
MflObject Interface to Transform Non−XML Data Programmatically).

The following validation scenarios are described:

Validating a Typed XML Variable•
Typing and Validating an Untyped XML Type•

Validating a Typed XML Variable

In this example, we assume that the type of XML received by the business process is known at design time.
That is, a document received by the business process is known to be strongly−typed XML. The following
code describes how to deliver the XML to the business process and validate the XML data against the
corresponding XML schema:

 public void receiveTypedXML(POORDERDocument lineItem) {
 if (lineItem.validate()) {
 //
 } else {
 // Handle error
 }
 }

In the preceding example, POORDERDocument is the name of the XML schema against which you want to
validate the XML data received by your business process.

Typing and Validating an Untyped XML Type

In this example, we take an untyped XML data received by your business process, convert it to a strongly
typed XML data, and subsequently validate it against an XML schema associated with the type.

This can be accomplished by writing the following code:

 public void receiveUntypedXML(XmlObject xml) {
 if (xml instance of POSUBLINEDocument) {
 POSUBLINEDocument sublineItem = (POSUBLINEDocument) xml;
 if (sublineItem.validate()) {
 // item is valid

Validating Schemas 146

 } else {
 // item is not valid
 }
 } else {
 // Handle error − the XmlObject is not a POSUBLINEDocument
 }
 }

In the preceding example, POSUBLINEDocument is the name of the XML schema against which you want
to validate the XML data.

Related Topics

Using the MflObject Interface to Transform Non−XML Data Programmatically

Working with Data Types

Class XmlUtils at http://edocs.bea.com/wli/docs81/javadoc/com/bea/xml/XmlUtils.html

Importing Schemas

Schemas Project Folder

How do I: Import Files into the Schemas Project Folder

Guide to Building Business Processes

Validating Schemas 147

Building Stateless and Stateful Business Processes
Business Processes are either Stateless or Stateful, depending on how many transactions are contained in the
process.

Stateless�A business process which is compiled into a stateless session bean and runs within one
JTA transaction.

•

Stateful�A business process which is compiled into an entity bean and runs within the scope of one
or more JTA transactions.

•

To learn more about stateless session and entity beans, see Overview: Enterprise Java Beans (EJBs). To learn
more about JTA transactions, see Programming WebLogic JTA at the following URL:

http://e−docs.bea.com/wls/docs81/jta/index.html

Stateless processes are intended to support business scenarios that involve short−running logic and have
high−performance requirements. Because a stateless process does not persist its state to a database, it is
optimized for lower−latency, higher−performance execution. An example of a stateless process is one that
receives a message asynchronously from a client, transforms the message, and then sends it asynchronously to
a resource using a control. Another example is a process that starts with a message broker subscription,
transforms a message, and publishes it to another message broker channel. Such a process is analogous to the
kinds of routing rules used by traditional message brokering or message routing system.

Stateful processes are intended to support business scenarios that involve complex, long−running logic and
therefore have specific reliability and recovery requirements. A process is made stateful by the addition of
stateful nodes or logic that forces transaction boundaries (see, Transaction Boundaries). For example, a
process that receives a message, transforms it, sends it to a business partner, and then waits for an
asynchronous response is stateful because the act of waiting forces a transaction boundary. This is necessary
to ensure that:

The process can recover and continue execution without loss of data in the event of a system outage
during this waiting period.

•

System resources are used efficiently during this waiting period.•

By default, a business process is Stateless until you add any blocking construct to the data flow, that is, add
any process that affects a transaction boundary. For more information about transaction boundaries, see
Transaction Boundaries.

To View Whether Your Business Process is Stateless or Stateful

The Start node Property Editor indicates whether a business process is Stateless or Stateful in two different
ways:

The Stateless property in the Property Editor of your Start node.•
The icon of the Start node in the Design View.•

The following table summarizes the ways in which WebLogic Workshop indicates if your Business Process
is Stateless or Stateful.

Building Stateless and Stateful Business Processes 148

Stateless Stateful

Property Editor stateless = true
stateless =
false

Start Node Icon

You can use the persistence property in the Property Editor to set how a stateful business process is
persisted. For more information about the Start node Property Editor, see Setting the Business Process
Properties.

Working with Variables in Stateless Processes

Because stateless processes are compiled into stateless session beans and because these stateless session
beans are reused at run−time to provide the performance advantage enjoyed by stateless processes, some care
is required when working with variables. If a default value is specified for a variable in a stateless process,
that variable will only be initialized the first time the process is run. Subsequent process instances will reuse
the same stateless session bean instance, and therefore will inherit the last known value of the variable in
question.

When building stateless processes that require variables with default values, you should place a Perform
node at the start of the process (immediately following the Start node) and manually initialize the variables at
that location. This way, you can be assured that the variables will be initialized with each run of the process,
because the Perform node will be explicitly executed each time. For more information about how to create
Perform nodes, see Writing Custom Java Code in Perform Nodes.

If your goal is merely to have a variable with a constant value, this does not pose an issue in the case of
stateless processes. When creating the variable, select the Declare as Constant check box in the Create
Variable dialog box. This creates the variable as static and final and ensures that the constant behaves as
expected during each run of the stateless process. For more information about how to create variables, see
Creating Variables.

Related Topics

Transaction Boundaries

Starting Your Business Process

Writing Custom Java Code in Perform Nodes

Creating Variables

Overview: Enterprise Java Beans (EJBs)

Programming WebLogic JTA at http://edocs.bea.com/wls/docs81/jta/index.html

Setting the Business Process Properties

Guide to Building Business Processes

Building Stateless and Stateful Business Processes 149

Building Synchronous and Asynchronous Business
Processes
Business Processes are either synchronous or asynchronous, depending on which method you choose to
invoke your business process:

Synchronous�A business process that is invoked by a synchronous method. In other words, the
Starting Event is represented by a Client Request with Return node or a Synchronous Subscription
node.

•

A synchronous business process can contain asynchronous operations, but they must be added after
the starting event in the process flow. That is, at run time, the processes are executed after the
synchronous starting event is complete. You cannot put stateful logic inside a synchronous operation.
To learn more about stateful and stateless business processes, see Building Stateless and Stateful
Business Processes.

Asynchronous�A business process that is invoked by an asynchronous method. In other words, the
Starting Event is represented by an asynchronous node. This includes business processes that are
invoked via a Client Request node, an Asynchronous Subscription node, or one of several Client
Request or Subscription nodes (that is, an Event Choice node).

•

Working with Subprocesses

A subprocess is any process that is called to from your business process through a process control or a service
broker control. They can be called synchronously or asynchronously.

Synchronous Subprocesses

The Process control allows a business process (also a WebLogic Workshop Web service or pageflow) to send
requests to (and receive callbacks from) another business process. Process control invocations are Java
Remote Method Invocation (RMI) calls. The target business process must be hosted on the same WebLogic
Server domain as the caller. Transaction contexts are propagated from the parent processes to the
subprocesses over the Process control calls.

The Service Broker control allows a business process (or a Web service) to invoke and receive callbacks from
another service using one of several protocols; the most commonly used protocol is SOAP over HTTP. (To
learn about the protocols, see Using Dynamic Binding.) The target service must expose a WSDL interface.
Because the transport used is HTTP or JMS, the transaction contexts are not propagated over the Service
Broker control calls.

A synchronous subprocess called through a Process control runs in the same transaction as its caller (parent)
process. Synchronous subprocesses behave differently than asynchronous subprocesses, particularly when it
comes to un−handled exceptions.

An un−handled exception in a subprocess causes the shared transaction to be marked as rollback only, which
causes both the subprocess and the caller (parent) process to roll back. This behavior is the default because it
prevents a scenario in which one of the processes is rolled back, leaving the other process in an inconsistent or
uncompensated state.

Building Synchronous and Asynchronous Business Processes 150

You can override the default behavior by setting the on sync failure property for the subprocess to rethrow.
You do so in the Property Editor in the WebLogic Workshop graphical design environment.

To Configure the On Sync Failure Property

In the Design View, select the Start node of the subprocess for which you want to configure the on
sync failure property.

1.

Note: If the Property Editor is not visible, choose View �> Property Editor from the menu bar.

In the Property Editor, from the on sync failure drop−down menu, select rethrow.2.

Your subprocess is now configured to throw exceptions in the case of failure.

Note: Setting the on sync failure property does not force a rollback, it only causes the subprocess to
throw an exception.

Asynchronous Subprocesses

For asynchronous operations, the transaction is never propagated to the subprocess. In other words, a
subprocess runs in its own transaction. Messages sent to subprocesses are buffered on the process queue of the
subprocess. The caller process considers message delivery successful if the message is properly delivered to
the queue. Consequently, failure of the subprocess is not communicated to the caller. For example, an
unhandled exception causes the subprocess to fail, but the caller process is not notified.

Since asynchronous failure is not automatically visible to the caller business process, you should consider the
following design pattern for your process to subprocess communication:

Design your subprocess such that it contains multiple callbacks for communicating success or failure.
For example, use an exception handler path to catch any thrown exceptions and add a node on the
path that makes a callback to the caller process that communicates that there was a failure.

•

Use an Event Choice node in the caller business process to block and wait for either type of callback
(success or failure) and take action as appropriate, as illustrated in the following figure.

•

Guide to Building Business Processes

Building Synchronous and Asynchronous BusinessProcesses 151

Related Topics

Transaction Boundaries

Starting Your Business Process

Building Stateless and Stateful Business Processes

Handling Exceptions

Calling Business Processes

Guide to Building Business Processes

Building Synchronous and Asynchronous BusinessProcesses 152

Transaction Boundaries
Business processes in WebLogic Integration are transactional in nature. Every step of a process is executed
within the context of a JTA transaction. A transaction ensures that one or more operations execute as an
atomic unit of work. If one of the operations within a transaction fails, then all of them are rolled−back so that
the application is returned to its prior state. Depending on whether you design your business process logic
such that your process is stateful or stateless (see, Building Stateless and Stateful Business Processes), there
may be one or more transaction within the context of a given business process.

When you are building a business process, implicit transaction boundaries are formed based on where in the
process you place blocking elements. The transaction boundaries within a business process change as you add
process nodes to the business process. You can also create explicit transaction boundaries by selecting
contiguous nodes and declaring them to be in a transaction separate from those created implicitly by the
application. Resources accessed by a business process may also be part of the transaction, depending on the
nature of the resource and the control that provides the access.

Implicit transactions are implicit both because their behavior is automatically determined (or implied) by
your business process logic and because they are not visible in your process diagram. In the section, An
Implicit Transaction Boundary Example, the implicit transaction boundaries in the diagrams are added for
illustration; implicit transaction boundaries are not visible in the WebLogic Workshop graphical design
environment. Explicit transactions, on the other hand, are explicit because they are defined by you and they
are visible in the business process diagram in WebLogic Workshop.

This following sections deal specifically with transactions in the context of WebLogic Integration and
business processes:

Implicit Transaction Boundary Rules•
An Implicit Transaction Boundary Example•
Explicit Transaction Boundaries•
Handling Exceptions in Transaction Blocks•

Note: To learn about how WebLogic Workshop transactions work, see Default Transactional Behavior in
WebLogic Workshop.

Implicit Transaction Boundary Rules

The following rules apply to transaction boundaries when you are building a business process:

Adding any receive (blocking) nodes (Client Request or Control Receive nodes) to a business process
changes the transaction boundaries:

•

Unless the node is in the beginning of a business process, the new receive node marks the
beginning of a new transaction.

♦

The node immediately preceding the new receive node marks the end of the preceding
transaction.

♦

Adding a Parallel group node to a business process changes the transaction boundaries:•
The node immediately preceding the Parallel group node marks the end of the preceding
transaction.

♦

The beginning of each branch in a Parallel group node marks the beginning of a new
transaction.

♦

The end of each branch in a Parallel group node marks the end of the new transaction.♦

Transaction Boundaries 153

The node immediately following the Parallel group node marks the beginning of the next
transaction.

♦

Note: By default, the beginning and the end of a parallel group node mark the boundaries of
new transactions. However, you can specify that the active transaction is continued when
entering and exiting a parallel block. To use this functionality, in Design View, select the for
a parallel node in your business process, then, in the Property Editor, change the continue
transaction property to true.

Adding an Event Choice node to a business process changes the transaction boundaries:•
The node immediately preceding the Event Choice group marks the end of the preceding
transaction.

♦

The new group node marks the beginning of a new transaction.♦
Unlike the case of a Parallel node, in which each branch in the Parallel node has its own
transaction context, the end of the Event Choice group does not mark the end of the
transaction. Execution continues in the same transaction after the Event Choice group until a
node that forces an implicit transaction boundary or an explicit boundary is reached.

♦

Existing transaction boundaries are unaffected by adding one or more nodes (within those
boundaries) that do not themselves force a transaction boundary.

•

An Implicit Transaction Boundary Example

The following example illustrates the rules listed in the Implicit Transaction Boundary Rules section. In each
of the figures in this section, the transaction boundaries are added to illustrate where they are implied in
WebLogic Integration business processes.

Start with an empty business process, as illustrated in the following figure.1.

If we configure the Starting Event to be a Client Receive node, the following transaction boundaries
are implied.

2.

Guide to Building Business Processes

Transaction Boundaries 154

When we add a Control Send node, the implied transaction boundary extends to include the new
node.

3.

By adding a Control Receive node, we add a blocking element to the business process and therefore
create a new transaction.

4.

Guide to Building Business Processes

Transaction Boundaries 155

Since the business process now contains two transactions, the Start node icon changes to indicate that
the business has changed from Stateless to Stateful. For more information about Stateless and Stateful
business processes, see Building Stateless and Stateful Business Processes.

If we add a Client Response node to the business process, the second transaction's boundaries
expands to include the new node.

5.

Guide to Building Business Processes

Transaction Boundaries 156

This concludes the implicit boundaries example, you can also create transactions by adding explicit
transaction boundaries to your business process. For information about how to do this, see Explicit
Transaction Boundaries.

Explicit Transaction Boundaries

You can create explicit transaction boundaries in your business process by selecting contiguous nodes and
declaring them to be within their own transaction. The following rules apply for explicit transaction
boundaries:

The selected nodes must be contiguous.•
The selected nodes cannot include a Client Request or Control Receive node.•
The selected nodes cannot include a Parallel or Event Choice group node where including them in an
explicit transaction would nest the transaction for their branches.

•

The selected nodes cannot be inside an existing explicit transaction.•

If you violate any of these rules when you create your business process, the application displays the
transaction boundaries, but the offending nodes are marked with a . If you place your cursor over this
icon,WebLogic Workshop will display a message about the violation.

Guide to Building Business Processes

Transaction Boundaries 157

Creating Explicit Transaction Boundaries

To Create an Explicit Transaction�Alternative 1

Select the nodes that you want to include in your transaction by clicking and dragging your mouse
around them, or holding down your Ctrl key while clicking them.

1.

Right−click one of the selected nodes and select Create Transaction from the drop−down menu.2.

Explicit transaction boundaries are drawn around the nodes you selected.

You can rename your transaction block by right−clicking Transaction and selecting Rename from
the drop−down menu.

To Create an Explicit Transaction�Alternative 2

In the Design View, drag and drop Transaction from the Palette onto the business process,
placing it on the business process at the point at which you want to create explicit transaction
boundaries.

1.

Transaction boundaries are created in the business process.

Drag and drop nodes from the Palette onto the business process, placing them within the transaction
boundaries.

2.

Setting the Explicit Transaction Properties

After you create an explicit transaction, you can set the properties for the transaction in the Property Editor.

Guide to Building Business Processes

Transaction Boundaries 158

To Set the Transaction Properties

Select the transaction for which you want to set the properties.1.

The related properties are displayed in the Property Editor. If the Property Editor is not visible in
WebLogic Workshop, choose View �> Property Editor from the menu bar.

In the Property Editor, set the following properties:2.
name�Enter the name you want displayed in the WebLogic Workshop for this transaction.♦
notes�Enter any notes you want associated with this transaction.♦
retry count�Specify how many times, after the first attempt, the process engine should try to
execute the node or group of nodes contained in the transaction.

♦

retry delay�Enter the amount of time (in seconds) you want to pass before a retry is
attempted.

♦

Handling Exceptions in Transaction Blocks

To learn about exception handling in business processes, see Handling Exceptions. How exceptions are
handled in transaction blocks is described in Handling Exceptions in Transaction Blocks.

Related Topics

Implicit Transactions in WebLogic Workshop

Transaction Basics

Default Transactional Behavior in WebLogic Workshop

Building Stateless and Stateful Business Processes

Configuring and Managing Transactions at http://e−docs.bea.com/wls/docs81/jta/admtrx.html

Guide to Building Business Processes

Transaction Boundaries 159

Business Process Source Code
As you design business processes using the graphical tools in WebLogic Workshop, WebLogic Workshop
writes source code to a business process file (a JPD file), in keeping with your work in the Design View. A
JPD file is a Java file in that it contains code for a Java class. However, because a file with a JPD extension
contains the implementation code intended specifically for a business process class, the extension gives it
special meaning to the WebLogic Workshop compiler.

You can access the source code for business processes you are creating in the Design View, by clicking the
Source View tab.

This section describes the source code in a business process (JPD) file, and how it is related to the work you
do while creating your business process graphically in the Design View. It includes the following topics:

Overview•
Business Process Language•
Variables•
Control Declarations•
Client Operations and Control Communication Methods•
Perform Methods•
XQuery Statements•

Overview

To organize the source code in a JPD file, the code generated for you as you work in the Design View is
hidden in collapsible regions in the Source View. Methods that you write for conditions in Decision, For
Each, While nodes, and so on, are shown inside the Business Process Designer generated code
region�each inside their own collapsible regions in the JPD file in the Source View. Methods you create for
Perform nodes are created outside the Business Process Designer generated code region.

Specific regions in the Source View represent variable declarations, control declarations, XQuery
annotations, and methods associated with client operations and communication with controls. In the Source
View, you can expand these collapsed regions of code to add or edit the contained code. The WebLogic
Workshop environment supports two−way editing of your business process (Java) class�the extent to which
you can add code or change the code generated by WebLogic Workshop is indicated by comments in the
source code and described in the following sections.

Business Process Language

To view the business process annotation that describes the business process you created in the Design View,
expand the region of code indicated with .

This annotation contains the business process definition, created for you as you add nodes to your business
process in the Design View. The Java methods and variables defined in this JPD file can be referenced by the
flow logic described in annotation.

The <process> element is the top−level container for the business process logic. A business process is
composed of a set of activities with defined ordering. The business process element contains a name attribute,
which specifies the name of your business process. Lines of XML describe the nodes in your business

Business Process Source Code 160

process. A line of XML is written in this area of code for each node you add to your business process in the
Design View.

Two−way editing is supported for the process language. In other words, changes you make to the code in this
region of the JPD file appear in the Design View. For example, you can:

Create a new line of XML to describe a node in your business process. In the Design View, the
business process is updated with the new node, in keeping with your work in the Source View. If the
XML you add is not well formed, a new node is not added in the Design View. Instead, WebLogic
Workshop displays a compiler error.

•

Write a line of process language that references a method. However, the method is not created
automatically; you must create it in the JPD file.

•

Edit the process language that was already created for you. Your changes are reflected in the Design
View.

•

Delete lines that correspond to a business process node. The business process in the Design View is
updated accordingly.

•

If the line of process language you delete references a method, which is already written in the file, the
method is not deleted. You can leave the method in your file�if it is not referenced in the process
language at run time, it is ignored by the run−time engine. Delete only methods that you are sure are
not referenced in your process language. If you delete referenced methods, errors will be generated in
your application.

Note: WebLogic Workshop flags errors you make in the process language with red, wavy underlines
and error messages visible in mouseover text.

Warning: If you add any text within XML comment tags, or comment out sections of code, those lines of
comments will disappear from the Source View the next time you make changes in the Design View. This
only applies to comments, any other code changes remains.

Variables

Business process variables are defined within the region of code in the Source View shown in the following
figure.

Two−way editing is supported for variables. In other words, changes you make to the code in this region of
the JPD file appear in the Design View, specifically the Variables tab on the Data Palette.

You can create, edit, or delete a business process variable in the Source View. The Variables tab on the
Data Palette, is updated to reflect your changes. If the variable is not declared correctly, the error is identified
in the Source View with red, wavy, underlines, and the variable does not appear on the Variables tab.

Warning: Ensure that you update a given variable in all locations where it is used. If you do not, changes
you make to the business process variable generates errors in your application.

Control Declarations

Declarations for controls are defined in the region of code in the Source View shown in the following figure.

Guide to Building Business Processes

Business Process Source Code 161

Two−way editing is supported for control declarations. In other words, changes you make to the code in this
region of the JPD file appear in the Design View.

You can create, edit, or delete a control declaration in the Source View. The Design View, specifically the
Controls tab on the Data Palette, is updated to reflect your changes. If the control is not declared correctly,
the error is identified in the Source View with red, wavy, underlines, and the control does not appear on the
Controls tab.

Warning: Changing declarations for controls already in use by your application generates errors in your
application if you do not remove or update references to the control.

To learn about working with controls in the Design View, see Interacting With Resources Using Controls.

Client Operations and Control Communication Methods

Every client operation and communication method associated with a control is defined in its own collapsed
region of code in the Source View. Code in these regions is generated automatically. Comments in the code,
within these methods, identify the protected sections of code.

Can You Edit Code in Protected Sections?

In the Source View, you can add and edit the code before and after the protected sections within the blocks of
code that specify client operations and control methods.

After you add or edit the code before or after the protected sections, the following icon is associated with the
appropriate node (Client Request, Client Response, Control Send, Control Receive, Control Send with
Return) in the Design View: . Two−way editing is still supported. In other words, you can continue to
design the node in either the Source View or the Design View. The icon () in the Design View is a visual
reminder that you edited the code in the Source View.

If you try to edit the code within the protected sections, you are prompted with a warning message and a
question whether you want to continue with your edit, which in effect removes the protected sections. If you
edit the code in the protected sections, the node builders in the Design View can no longer interpret the code.
Consequently, the node appears unconfigured in the Design View.

For example your business process can include a Client Receive node that you configured using the Client
Receive node builder. In the Design View, the node is displayed as shown in the following figure:

Guide to Building Business Processes

Business Process Source Code 162

If you right−click the node and select View Code from the drop−down menu, your view is switched to the
Source View at the appropriate method. In this case, your source code resembles that in the following figure:

The protected sections of code are clearly marked. You can add any valid code you want. For example, say
you add a validate() method to validate the incoming XML document against an XML schema, as shown in
the following figure:

After you add your custom code, you can open the Design View by clicking the Design View tab. Note that
the representation of the node associated with this code changed from:

You can make subsequent changes to the design of the node using either the Design View or the Source
View. To learn about designing client and control operations in the Design View, see Interacting With Clients
and Interacting With Resources Using Controls.

Perform Methods

Methods you create for Perform nodes and methods you write for conditions in Decision, For Each, or
While nodes are shown outside (and below) the collapsed regions of code in the JPD file in the Source View.

public void perform() throws Exception {

Guide to Building Business Processes

Business Process Source Code 163

}

You can write code (perform methods) in the Source View to perform any logic you want. The Design View
for your business process is not updated in keeping with your work on such perform methods until you create
a reference to the methods in the Business Process Language.

To learn about creating Perform nodes in the Design View, see To Create a Perform Node in Your Business
Process.

XQuery Statements

XQuery statements are written to the JPD file in the region of code in the Source View shown in the
following figure.

The XQuery statements are preceded by the following annotation:

@jpd:xquery prologue::

For example, when you select a repeating XML node using the For Each node builder, as described in
Designing For Each Nodes, an XQuery expression is created in your JPD file. The expression returns the set
of XML elements over which the For Each node iterates. XQuery expressions are also written in your JPD
file when you create conditions on Decision nodes. XQuery expressions also define the transformations you
create between disparate data types using the mapping tool.

For more information about XQuery, see XQuery Reference.

To learn more about For Each nodes, Decision nodes, and data transformations, see the following topics:

Looping Through Items in a List•
Defining Conditions For Branching•
Guide to Data Transformations•
Tutorial: Building Your First Data Transformation•

Related Topics

Jpd Context Interface

ControlContext Interface

Guide to Building Business Processes

Business Process Source Code 164

Building ebXML Participant Business Processes
The ebXML protocol (Electronic Business using eXtensible Markup Language) is a modular suite of
specifications that enables enterprises of any size and in any geographical location to conduct business over
the Internet. It is sponsored by UN/CEFACT and OASIS. To learn about ebXML, see the following URL:

http://www.ebXML.org

This topic focuses on participant business processes for ebXML. For initiator business processes, you use the
ebXML control, which provides methods for sending and receiving ebXML messages in a conversation. To
learn about designing initiator business processes for ebXML conversations, see Introducing Trading Partner
Integration at the following URL:

http://edocs.bea.com/wli/docs81/tpintro/index.html

This topic describes the template that you can use to build an ebXML participant business process in
WebLogic Workshop. It contains the following sections:

About the ebXML Participant Business Process File•
Creating an ebXML Participant Business Process•
Customizing an ebXML Participant Business Process•

Related Topics

@jpd:ebxml Annotation

@jpd:ebxml−method Annotation

ebXML Control

ebXML Control Interface

Introducing Trading Partner Integration at http://edocs.bea.com/wli/docs81/tpintro/index.html

Interacting With Resources Using Controls

Building ebXML Participant Business Processes 165

About the ebXML Participant Business Process File
The generated ebXML participant business process file provides a head start for building public participant
business processes for ebXML conversations. Although this file is not required to build ebXML participant
business processes, it includes the nodes and business process annotations needed to integrate easily with
ebXML initiator business processes.

The generated ebXML participant business process file consists of the following nodes, which are linked in
the following sequence:

Node Name Node Type
Method
Name

Description

Start Start To learn about Start nodes, see Starting Your Business Process.

Receive
Request

Client
Request

request
Starts the ebXML participant business process upon receiving an
ebXML message from the initiator. To learn about Client Request
nodes, see Receiving Messages From Clients.

Respond to
Request

Client
Response

response
Sends the response document back to the initiator. To learn about
Client Response nodes, see Sending Messages to Clients.

Finish Finish
Ends the ebXML participant business process. To learn about Finish
nodes, see Specifying Endpoints in Your Business Process.

Related Topics

Creating an ebXML Participant Business Process

Customizing an ebXML Participant Business Process

About the ebXML Participant Business Process File 166

Creating an ebXML Participant Business Process
To create an ebXML participant business process

If you have not already done so, create a new application or a new project within an existing
application. To learn more about projects and applications, see Getting Started.

1.

From the WebLogic Workshop menu, choose File �> New �> Process File.2.
In the New File dialog, select Processes, and then select ebXml Participant Process File.3.
In the File name field, enter the name of the JPD file.4.
If you want to create the JPD file in a directory other than the one displayed in the Create in field,
click the Browse button and select the target directory.

5.

Click the Create button.6.

WebLogic Workshop creates a new ebXML participant process JPD file and displays it in the Design
View pane.

To save your work, select File �> Save.7.

After you create the JPD file, the name of the JPD file becomes available as a service on the Services
tab in the WebLogic Integration Administration Console.

Related Topics

About the ebXML Participant Business Process File

Customizing an ebXML Participant Business Process

Creating an ebXML Participant Business Process 167

Customizing an ebXML Participant Business Process
After you create an ebXML participant business process, you must customize it for the associated ebXML
conversation. Common customization tasks include:

Configuring Business Process Properties (Required)•
Customizing Names and Argument Types (Optional)•
Retrieving the ebXML Message Envelope (Optional)•

Depending on your implementation requirements, you might make additional customizations to the
participant business process as needed. For example, participant business processes typically invoke other
controls (such as the File, JMS, or Application View controls), or a subprocess, to accomplish the necessary
backend integration.

Configuring Business Process Properties (Required)

The generated ebXML participant business process file specifies the following default annotations:

@jpd:ebxml protocol−name="ebxml" ebxml−service−name="serviceName" ebxml−action−mode="non−default"

These properties are set in the Property Editor that is visible when you have the Start node of your business
process selected. Review and edit (if needed) the following properties:

Property Default Description

protocol−nameebxml Do not change.

service−name serviceName

Name of the ebXML service associated with this business process. The name
specified here must match the service name specified on the initiator side (for
example, in the ebxml−service−name annotation on the ebXML control in the
initiator business process). You provide this service name to your trading
partners.

action−mode non−default Action mode for this business process. Determines the value specified in the
eb:Action element in the message header of the ebXML message, which
becomes important in cases where multiple message exchanges occur within
the same conversation. Select one of the following values:

default�Sets the eb:Action element to SendMessage (default name).•
non−default�Sets the eb:Action element to the name of the method
(on the ebXML control) that sends the message in the initiator
business process. For sending a message from the initiator to the
participant, this name must match the method name of the Client
Request node in the corresponding participant business process. For
sending a message from the participant to the initiator, the method
name in the callback interface for the Client Callback node in the
participant business process must match the method name (on the
ebXML control) in the control callback interface in the initiator
business process. Using non−default is recommended to ensure
recovery and high availability.

•

Customizing an ebXML Participant Business Process 168

If unspecified, the ebxml−action−mode is set to non−default.

Note: If the Property Editor is not visible in the Design View, choose View �> Property Editor from the
WebLogic Workshop menu.

To learn more about ebXML annotations, see @jpd:ebxml Annotation. To learn about configuring business
process properties, see Business Process Language.

Customizing Names and Argument Types (Optional)

By default, the ebXML participant business process includes a Client Request node, named Receive request,
to handle an incoming ebXML request message from an initiator. For business processes that involve multiple
round−trips, you need to create additional Client Request nodes for any other operations that involve that
receive an ebXML message from the initiator. To add the node to a business process, drag Client Request
from the Data Palette onto the business process.

After creating a Client Request node, for the request method, specify the attachment and its Java data type
for the incoming message. The data type must match the contents of the incoming message and can be one of
the following values:

Data Type Description

XmlObject
Default. Represents data in untyped XML format. The XML data is not
specified at design time.

XmlObject[] An array containing one or more XmlObject elements.

RawData
Represents any non−XML structured or unstructured data for which no
MFL file (and therefore no known schema) exists.

RawData[] An array containing one or more RawData elements.

MessageAttachment[]

Array containing one or more parts of an ebXML business message.
Message parts can be untyped XML data (XmlObject data type) or
non−XML data (RawData data type). Used when sending different kinds of
payloads (XML and non−XML) in the same message. The actual number
of message parts might not be known until processed. To learn about
working with MessageAttachment objects, see Message Attachments.

Note: Attachments can also be typed XML or typed MFL data as long as you specify the corresponding
XML Bean or MFL class name in the parameter. To learn more about data types, see Working with Data
Types.

The following restrictions apply to payload specifications:

If an array of any type is used, an argument of the same type cannot follow that array in the argument
list. In other words, that array must be the last argument specified.

•

If a MessageAttachment[] type is one of your arguments, no other array (including a
MessageAttachment[]) is allowed immediately before or after it.

•

Guide to Building Business Processes

Customizing an ebXML Participant Business Process 169

Retrieving the ebXML Message Envelope (Optional)

You can retrieve the message envelope of an incoming ebXML message by using the message−envelope
annotation in the @jpd:ebxml−method tag, as shown in the following example:

/**
*@jpd:ebxml−method message−envelope="{env}"
*/
public void request(XmlObject payload, XmlObject env) {
}

Note: You can rename the default value (env) as long as it matches the name of the parameter specified in the
method.

To learn more about the message−envelope annotation, see @jpd:ebxml−method Annotation.

Related Topics

About the ebXML Participant Business Process File

Creating an ebXML Participant Business Process

Guide to Building Business Processes

Customizing an ebXML Participant Business Process 170

Building RosettaNet Participant Business Processes
This topic describes how to build public participant business processes for RosettaNet conversations using
the RosettaNet participant business process file in WebLogic Workshop.

The following sections are included:

About the RosettaNet Participant Business Process File•
Creating a RosettaNet Participant Business Process•
Customizing a RosettaNet Participant Business Process•

RosettaNet is a consortium of major companies working to create and implement industry−wide, open
e−business process standards. These standards form a common e−business language, aligning processes
between supply chain partners on a global basis. RosettaNet is a subsidiary of the Uniform Code Council, Inc.
(UCC). To learn about RosettaNet, see the following URL:

http://www.rosettanet.org

This topic focuses on public, participant two−action business processes based on the RosettaNet PIP3A4. For
initiator business processes, you use the RosettaNet control, which provides methods for sending and
receiving RosettaNet messages in a conversation. To learn about designing public initiator business processes
and private business processes for RosettaNet conversations, see Introducing Trading Partner Integration at
the following URL:

http://edocs.bea.com/wli/docs81/tpintro/index.html

Related Topics

Introducing Trading Partner Integration at http://edocs.bea.com/wli/docs81/tpintro/index.html

Trading Partner Management at http://edocs.bea.com/wli/docs81/manage/tpm.html

RosettaNet Control

RosettaNet Control Interface

Tutorial: Building RosettaNet Solutions at http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html

@jpd:rosettanet Annotation

Building RosettaNet Participant Business Processes 171

About the RosettaNet Participant Business Process
File
The RosettaNet participant business process file provides a head start for building public participant business
processes for RosettaNet conversations. Although this file is not required to build RosettaNet participant
business processes, it includes the nodes and business process annotations needed to integrate easily with
RosettaNet initiator business processes.

The RosettaNet participant business process is intended to serve as an example of the type of processes you
can build for RosettaNet message exchange. The file consists of the following nodes:

Example Node Name
Example Node

Types
Description

Start Start

This marks the beginning of your business process. In the
Property Editor of the Start node, you can define the following
properties:

protocol−name•
protocol−version•
pip−name•
pip−version•
pip−role•

To learn more about these properties, see Configuring
Business Process Properties (Required).

To learn about Start nodes, see Starting Your Business
Process.

On Error Message

(global error handling)
Message Path

Use the Message Path to interrupt an executing process upon
delivery of a message from either a client or a control. This
allows the process to halt the current stream of execution and
take the specified alternate actions. To learn more about
Message Paths, see Adding Message Paths.

On Error

(Global message path)
Client Request

Use this node, or any other nodes in its place, to handle the
error processing you want to take place when an error
message is received. To learn about Client Request nodes, see
Receiving Messages From Clients

Alert local administrator

(Global message path)
Perform

Use this node, or any other nodes in its place, to send a failure
message to an administrator. To learn more about Perform
nodes, see Writing Custom Java Code in Perform Nodes

Receive Message Client Request

Starts the RosettaNet participant business process upon
receiving a RosettaNet message from the initiator. To learn
about Client Request nodes, see Receiving Messages From
Clients.

Send receipt
acknowledgment.

Client Response
Sends an acknowledgement to the initiator that the request
message was received. To learn about Client Response nodes,
see Interacting With Resources Using Controls.

About the RosettaNet Participant Business Process File 172

Send private message

(Invoke private process
group)

Perform
Use this node, or any other nodes in its place, to send a
request to the private process. To learn more about Perform
nodes, see Writing Custom Java Code in Perform Nodes.

Receive private message

(Invoke private process
group)

Perform

Use this node, or any other nodes in its place, to receive a
response from the private process. To learn more about
Perform nodes, see Writing Custom Java Code in Perform
Nodes.

Send reply

(Retry block)
Client Response

Use this node, or any other node in its place, to send the
response back to the initiator. To learn about Client Response
nodes, see Sending Messages to Clients.

Receive receipt
acknowledgment

(Retry block)

Client Request

Use this node, or any other node in its place, to listen for an
acknowledgment from the initiator process. To learn more
about Client Request nodes, see Receiving Messages From
Clients.

OnTimeout

(Timeout path on Retry
block)

Timeout Path

Use the Timeout Path to interrupt the execution of an
iteration of the nodes in the Retry block group after a certain
amount of time has lapsed. To learn more about grouping
nodes, see Grouping Nodes in Your Business Process. To
learn more about Timeout Paths, see Adding Timeout Paths.

Check retries

(Timeout path on Retry
block)

Condition

Use this node, or any other nodes in its place, to select a path
of execution based on the evaluation of one or more
conditions, in this case, the number of iterations of the Retry
block group. To learn more about Decision nodes, see
Defining Conditions For Branching.

Notification of Failure

(Timeout path on Retry
block)

Perform

Place this node, or any other node in its place, inside the
Decision node to handle failure notifications to the initiator if
an iteration of the Retry block group times out. This node is
where you would normally invoke a PIP0A1 notification of
failure. To learn more about Perform nodes, see Writing
Custom Java Code in Perform Nodes. To learn more about
customizing this node, see Setting Up the Notification of
Failure (Required).

Finish Finish
Ends the RosettaNet participant business process. To learn
about Finish nodes, see Specifying Endpoints in Your
Business Process.

To learn more about how to customize the nodes in the RosettaNet participant template, see Customizing a
RosettaNet Participant Business Process.

This business process is modeled on the Two−Action Activity (Asynchronous) choreography that is specified
in the RosettaNet Implementation Framework Core Specification (version V02.00.01). To learn about this
choreography, see the following URL:

http://www.rosettanet.org

Related Topics

Creating a RosettaNet Participant Business Process

Guide to Building Business Processes

About the RosettaNet Participant Business Process File 173

Customizing a RosettaNet Participant Business Process

Guide to Building Business Processes

About the RosettaNet Participant Business Process File 174

Creating a RosettaNet Participant Business Process
You can use the RosettaNet participant business process file to create a public participant business process.
The RosettaNet participant template is based PIP3A4, but you can use it for other PIPs as well with only
slight variations (such as the PIP schema and PIP identifying information in the annotations).

To create a RosettaNet participant business process

If you have not already done so, create a new application or a new project within an existing
application. To learn more about projects and applications, see Getting Started.

1.

From the WebLogic Workshop menu, choose File �> New �> Process File.2.
In the New File dialog, select Processes, and then select RosettaNet Participant Process File.3.
In the File name field, enter a valid java class name for the JPD file.4.

Note: This name is used as the default value for the pip−name attribute in the @jpd:rosettanet
annotation. Before you run your RosettaNet participant business process in production mode, you
must change the pip−name attribute to a valid PIP code. For more information see, Customizing a
RosettaNet Participant Business Process.

If you want to create the JPD file in a directory other than the one displayed in Create in, then click
the Browse button and select the target directory.

5.

Click the Create button.6.

WebLogic Workshop creates a new RosettaNet participant process JPD file and displays it in the
Design View pane.

To save your work, select File �> Save.7.

Related Topics

About the RosettaNet Participant Business Process File

Customizing a RosettaNet Participant Business Process

Creating a RosettaNet Participant Business Process 175

Customizing a RosettaNet Participant Business
Process
After you create a RosettaNet participant business process, you must customize it for the associated
RosettaNet conversation. Common customization tasks include:

Configuring Business Process Properties (Required)•
Customizing Argument Types (Optional)•
Configuring Data Transformation (Required)•
Integrating with the Private Participant Process (Required)•
Setting Up the Notification of Failure (Required)•

Depending on your implementation requirements, you might make additional customizations to the
participant business process as needed.

Configuring Business Process Properties (Required)

The RosettaNet participant business process file specifies the following default annotations:

@jpd:rosettanet protocol−name="rosettanet" protocol−version="2.0"
pip−name="processName" pip−version="1.0" pip−role="Seller"

These properties are set in the Property Editor that is visible when you have the Start node of your business
process selected. Review and edit (if needed) the following properties:

Property Default Description

protocol−name rosettanet Do not change.

protocol−version2.0
Change to 1.1 if you are using RNIF (RosettaNet Implementation
Framework) version 1.1 instead.

pip−name processName
Change to the RosettaNet PIP code, such as 3B2. Must be a valid PIP code
as defined in http://www.rosettanet.org.

pip−version 1.0
Change to your RosettaNet PIP version (example: v01.01 for PIP3B2).
Must be a valid version number associated with the PIP.

pip−role Seller
Change to the RosettaNet name of the participant's role as defined in the
PIP specification (example: Receiver for PIP3B2).

Note: If the Property Editor is not visible in Design View, choose View �> Property Editor from the
WebLogic Workshop menu.

To learn more about these annotations, see @jpd:rosettanet Annotation. To learn about configuring business
process properties, see Business Process Language.

Customizing Argument Types (Optional)

By default, the RosettaNet participant business process includes a Client Request node, named Receive
Message, to handle an incoming RosettaNet request message from an initiator. For the response and
callback.sendReply methods, you might need to specify the attachment and its Java data type. The data type

Customizing a RosettaNet Participant Business Process 176

must match the contents of the incoming message and can be one of the following values:

Data Type Description

XmlObject
Default. Represents data in untyped XML format. The XML data is not
specified at design time.

RawData
Represents any non−XML structured or unstructured data for which no
MFL file (and therefore no known schema) exists.

MessageAttachment[]

Array containing one or more parts of a RosettaNet business message.
Message parts can be untyped XML data (XmlObject data type) or
non−XML data (RawData data type). Used when sending different kinds of
payloads (XML and non−XML) in the same message. The actual number
of message parts might not be known until processed. To learn about
working with MessageAttachment objects, see Message Attachments.

Note: Attachments can also be typed XML or typed MFL data as long as you specify the corresponding
XML Bean or MFL class name in the parameter.

To learn more about data types, see Working with Data Types.

Configuring Data Transformation (Required)

Public and private business processes often use different document formats. Public business processes use the
associated PIP schema. Private processes use whatever format is required by the internal process (XML or
binary), such as a proprietary ERP format. If a private business process does not use the PIP format, then the
public business process needs to transform data between the PIP format to the format used in the private
business process.

To configure data transformation, you need to:

Import the schemas you need for data transformation into the project, including any schemas
associated with the PIP and the format used in the internal process. To learn about importing schemas,
see How Do I: Import Files into a Schemas Project Folder?

•

Add a Transformation to the project, add methods to perform the transformations, and then drag these
methods into the business process. To learn more about using transformations, see Creating a
Transformation Control and a Transformation Method.

•

Integrating with the Private Participant Process (Required)

After you create a RosettaNet public participant business process, you need to link it to the private participant
process that handles the initiator's request privately. WebLogic Workshop provides many ways for
communicating with other business processes, including:

Control Send and Control Receive nodes (for asynchronous communication) or a Control Send
with Return node (for synchronous communication). To learn more about control nodes, see
Interacting With Resources Using Controls.

•

JMS (Java Message Service) controls. To learn more about using JMS, see WLI JMS Control.•
Perform nodes for non−WebLogic Integration systems. To learn more about Perform nodes, see
Writing Custom Java Code in Perform Nodes.

•

Guide to Building Business Processes

Customizing a RosettaNet Participant BusinessProcess 177

Setting Up the Notification of Failure (Required)

In this participant business process, if a time−out occurs while awaiting a reply from the initiator to the
response document, the participant needs to send a Notification of Failure (PIP0A1) to the initiator. To learn
more about PIP0A1, see the following URL:

http://www.rosettanet.org

To notify the initiator of the failure, you need to create a separate initiator business process that implements
PIP0A1, and then start the initiator business process:

If the initiator business process is created in WebLogic Workshop, you can use a Control Send and
Control Receive nodes (for asynchronous communication) or a Control Send with Return node (for
synchronous communication). To learn more about control nodes, see Interacting With Resources
Using Controls.

•

If the initiator business process is not created in WebLogic Workshop, you can use a Perform node
instead. To learn more about Perform nodes, see Writing Custom Java Code in Perform Nodes.

•

To learn about initiator business processes, see Introducing Trading Partner Integration at the following
URL:

http://edocs.bea.com/wli/docs81/tpintro/index.html

Related Topics

About the RosettaNet Participant Business Process File

Creating a RosettaNet Participant Business Process

Guide to Building Business Processes

Customizing a RosettaNet Participant BusinessProcess 178

	Table of Contents
	Guide to Building Business Processes
	Creating a Business Process Application
	Components of Your Application
	Designing Your Application
	Starting Your Business Process
	Designing Start Nodes
	Client Request Start (Asynchronous)
	Client Request with Return Start (Synchronous)
	Subscription Start (Asynchronous)
	Subscription Start (Synchronous)
	Event Choice Start
	Exception Handlers on Start Nodes
	Interacting With Clients
	Receiving Messages From Clients
	Sending Messages to Clients
	Buffering Client Messages
	Interacting With Resources Using Controls
	Create Control Nodes in Your Business Process
	Designing Your Control Nodes
	Adding Instances of Controls to Your Business Process Project
	 Configuring Control Nodes
	Setting Control Properties
	Receiving Multiple Events
	Create an Event Choice Node in Your Business Process
	Design Your Event Choice Group
	Creating Parallel Paths of Execution
	Understanding Parallel Execution in Your Business Process
	Create a Parallel Node in Your Business Process
	Design Your Parallel Node
	Defining Conditions For Branching
	Creating a Decision Node in Your Business Process
	Designing Your Decision Node
	Creating Case Statements
	Creating a Switch Node
	Designing a Switch Node
	Writing Custom Java Code in Perform Nodes
	Creating Looping Logic
	Understanding While Node Groups
	Creating While Node Groups in Your Business Process
	Designing While Node Groups
	Looping Through Items in a List
	Creating For Each Nodes in Your Business Process
	Designing For Each Nodes
	Specifying Endpoints in Your Business Process
	Grouping Nodes in Your Business Process
	Handling Exceptions
	Adding Message Paths
	Adding Timeout Paths
	Running and Testing Your Business Process
	Business Process Variables and Data Types
	Creating Variables
	Deleting Variables
	Working with Data Types
	Assigning MFL Data to XML Variables and XML Data to MFL Variables
	Versioning Business Processes
	Validating Schemas
	Building Stateless and Stateful Business Processes
	Building Synchronous and Asynchronous Business Processes
	Transaction Boundaries
	Business Process Source Code
	Building ebXML Participant Business Processes
	About the ebXML Participant Business Process File
	Creating an ebXML Participant Business Process
	Customizing an ebXML Participant Business Process
	Building RosettaNet Participant Business Processes
	About the RosettaNet Participant Business Process File
	Creating a RosettaNet Participant Business Process
	Customizing a RosettaNet Participant Business Process

