
Upgrading WebLogic Workshop 8.1 Applications

Upgrading WebLogic Workshop 8.1 Applications
Using tools provided with Workshop for WebLogic 9.2, you can upgrade applications created with
WebLogic Workshop 8.1 (SP4, SP5, or SP6). This section describes how to upgrade applications
built with WebLogic Workshop. It describes the tools provided as well as tips and workarounds
for issues you might encounter in your upgraded coded.

 Current Release Information:

● What's New in 9.2

● Upgrading from 8.1

Useful Links:

● Tutorials

● Tips and Tricks

Other Resources:

● Online Docs

● Dev2Dev

● Discussion Forums

● Development Blogs

Topics Included in This
Section

Overview: Upgrading from
WebLogic Workshop 8.1
An overview of the upgrade process.

How To: Use the Import Wizard to
Upgrade Version 8.1 Applications
Step-by-step guidance on using the wizard
for upgrading.

Changes During Upgrade from
WebLogic Workshop 8.1 to Version
9.2
A list of changes that will affect application
during upgrade.

Upgrading Controls
Upgrade details and workarounds specific
to controls.

Upgrading Web Services
Upgrade details and workarounds specific
to web services.

Upgrading Page Flows
Upgrade details and workarounds specific
to page flows.

Upgrading Enterprise JavaBeans
Upgrade details and workarounds specific
to Enteprise JavaBeans.

Upgrading Annotations
Upgrade details and workarounds specific
to annotations.

upgradeStarter Command

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/navUpgradingFrom81.html (1 of 2)12/7/2006 11:19:01 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/introduction/conWhatsNew.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/introduction/conWorkshopTutorials.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conTipsAndTricks.html
http://edocs.bea.com/more_wlworkshop.html
http://dev2dev.bea.com/workshop/
http://forums.bea.com/bea/index.jspa
http://dev2dev.bea.com/community/blogs/product.html

Upgrading WebLogic Workshop 8.1 Applications

A command to perform the import
wizard's upgrade work from the command
line.

upgrade Ant Task
A task to perform the import wizard's
upgrade work from Ant.

Related Topics

None

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/navUpgradingFrom81.html (2 of 2)12/7/2006 11:19:01 AM

Overview: Upgrading from WebLogic Workshop 8.1

Overview: Upgrading from WebLogic Workshop 8.1

Workshop for WebLogic provides tools to help ease the process of upgrading applications built with version 8.1. These
tools are designed to read your version 8.1 code and generate a new corresponding version 9.2 workspace. The newly
generated code is a migrated, upgraded version of the 8.1 code in which all of the clearly predictable changes have been
made (note that your application logic is not altered by upgrade tools). The new code supports a new annotation model, a
different project model, and other component-oriented changes.

Note: The Workshop for WebLogic upgrade documentation assumes that your application was developed using
WebLogic Workshop version 8.1. If it wasn't, you must migrate your code so that it builds and runs in the
WebLogic Workshop IDE version 8.1 SP4, SP5, or SP6 before using the tools described here to upgrade to
Workshop for WebLogic version 9.2.

This topic provides an overview of the changes from version 8.1 to version 9.2, as well as suggested high-level steps for
approaching upgrade.

Differences Between the Version 8.1 and 9.2 IDEs, and the Applications Built with Them

Upgrade Process: High Level Steps

Preparing a Version 8.1 Application for Upgrade

Actions Performed By Upgrade Tools

Viewing the Upgrade Log

Notes About General Issues

Differences Between the Version 8.1 and 9.2 IDEs and the Applications Built with
Them

If you've been developing on WebLogic Workshop version 8.1, the most significant differences you'll notice in version 9.2
(and applications built with it) are likely to be:

● A different IDE codebase (it is now built on the Eclipse Platform).

● Changes in the project model (differences in the locations for project artifacts, file extensions, and so on).

● A different annotation model that uses the Java 5 standard (as opposed to the Javadoc-style annotations in previous
releases).

● Component-specific changes, such as updated, altered or omitted support for certain areas of functionality.

You might also be interested in the reading Key Differences for WebLogic Workshop 8.1 Users.

Key IDE Differences

Unlike version 8.1, in version 9.2 the IDE is built on the Eclipse Platform. This is a change that offers many benefits,
including: the transparency of an open-source architecture; commonly used features that are familiar because they're
available with other widely used Eclipse-based IDEs; and a widely used extensibility model via the Eclipse plug-in
framework. To this open framework, Workshop for WebLogic adds many features to support iterative development of the
kinds of components you built with version 8.1.

Needless to say, moving from the version 8.1 IDE to the Eclipse-based version 9.2 means that there are significant user
interface changes. The following list describes how familiar version 8.1 features are (or are not) rendered in version 9.2.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/ovwGuidelinesForUpgrade.html (1 of 6)12/7/2006 11:19:02 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/con8to9IdeDifferences.html

Overview: Upgrading from WebLogic Workshop 8.1

● Source types aren't rendered in a Design View. The version 8.1 IDE featured graphical Design View alternatives for
most source artifacts, including web services, EJBs, controls, and JSPs. Only the version 8.1 Flow View has a
corresponding graphical feature in version 9.2: the Page Flow Editor.

● Extensions to the version 9.2 IDE are based on the Eclipse plug-in framework. In other words, extensions to the
version 8.1 IDE must be rewritten to work with version 9.2. Note that version 9.2 does not provide tooling for
upgrading version 8.1 extensions.

● Some similar features are labeled differently.

Project Model Differences

Many of the changes from the version 8.1 to the version 9.2 project model are intended to align the model with broadly
used Eclipse and Java conventions. If you've used other Eclipse-based IDEs, version 9.2 of Workshop for WebLogic should
feel familiar. For a list of significant changes, see Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2.

Annotation Differences

Workshop for WebLogic version 9.2 supports the Java 5 annotation model. Whereas in version 8.1 the annotations in your
source code were embedded in Javadoc-style comments, their version 9.2 counterparts are outside the comment block. In
the abstract, however, there are more similarities than differences between the annotation model in versions 8.1 and 9.2.
In other words, for most version 8.1 annotations there are version 9.2 counterparts that use the new syntax. Note that as
with version 8.1, the version 9.2 IDE provides an editor (the Annotations view) through which you can view and edit
annotation attribute values. For more information on the changes, see Upgrading Annotations.

Component-Specific Changes

These are changes that are specific to component types, such as web services, EJBs, controls, and so on. They primarily
affect source code. You can read Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2 for a summary list,
or see the individual technology-oriented topics listed at the bottom of this topic under Related Topics.

Upgrade Process: High Level Steps

These steps assume that your application was developed with WebLogic Workshop. If you wrote your code without using
that IDE and you want to upgrade it using Workshop for WebLogic upgrade tools, you must first migrate your code so that
it builds and runs in the WebLogic Workshop IDE.

1. Ensure that your WebLogic Workshop version 8.1 applications have been upgraded to SP4, SP5, or SP6. The upgrade
tools included in this release are designed to upgrade from those versions only.

2. Undeploy WebLogic Workshop version 8.1 applications from your version 8.1 domain before you upgrade the server.

Upgrading domains and upgrading WebLogic Workshop applications are separate processes, but they're interrelated.
For information about upgrading version 8.1 WebLogic Workshop domains, see WebLogic Workshop Version 8.1
Domains Can Be Upgraded from Within Version 9.2.

3. Use the topics in this documentation to determine whether it would be useful for you to do preparatory work on your
version 8.1 application before using the upgrade tools to upgrade.

For a list of suggested pre-upgraded changes, see Preparing a Version 8.1 Application for Upgrade.

Also, see Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2. That topic lists upgrade-related
issues, providing links to more information.

4. Use upgrade tools to upgrade the version 8.1 application.

How To: Use the Import Wizard to Upgrade Version 8.1 Applications describes how to use the tool.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/ovwGuidelinesForUpgrade.html (2 of 6)12/7/2006 11:19:02 AM

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

Overview: Upgrading from WebLogic Workshop 8.1

You can also perform the wizard's work through the upgradeStarter Command or upgrade Ant Task.

5. Use the upgrade log and these topics to determine how to start fixing any post-upgrade problems that might keep
your upgraded application from running.

Preparing a Version 8.1 Application for Upgrade

If your applications are complex, upgrading them from version 8.1 to version 9.2 is likely to be a multi-step process. A
key part of that process will be the upgrade support the IDE provides via upgrade tools. But you'll also find that some
preparatory work on your version 8.1 application makes the wizard's end result much easier to work with and get running.

Take a look through the upgrade documentation provided here. Many of the notes recommend ways to edit your version
8.1 application to make your upgraded code easier to get running.

Actions Performed By Upgrade Tools

Workshop for WebLogic includes three tools that automate most parts of the upgrade process. Each tool does essentially
the same thing, allowing you to specify applications and parameters for upgrade: the import wizard is available as user
interface in the IDE; upgradeStarter Command exposes options from the command line; and the upgrade Ant task
exposes options for use from Ant.

Note: You can also upgrade individual files once they're in the version 9.2 IDE. To do this, right-click the file,
then click Upgrade Source Files. For information about the error logging and message verbosity options, see To
Import and Upgrade a Version 8.1 Application.

The following briefly describes actions performed (and not performed) by the upgrader.

● The upgrader does not change version 8.1 code. Instead it writes upgraded versions of the code into a new version
9.2 workspace that you define.

● No source control actions are performed. In other words, your version 8.1 code is not checked out, nor is your
upgraded code checked in to a source control repository. Before upgrade, you should check out your version 8.1
application sources. You should also choose a location for the new workspace that is a convenient place from which to
check in the upgraded app.

● Wherever possible, version 8.1 annotations will be upgraded to their version 9.2 counterparts. For a list of version 8.1
annotations and corresponding 9.2 annotations, see Upgrading Annotations.

● Version 8.1 annotations will be preserved in upgraded code. Version 9.2 of the IDE (including the runtime and
compiler) does not see the version 8.1 annotation block as anything more than a Javadoc comment. In fact, you might
find it helpful to have the older annotations present as you finish upgrading your application. You can delete the
version 8.1 annotations at any time.

● The upgrader will migrate your version 8.1 source artifacts into a version 9.2 project model. This includes the
following:

❍ Converting version 8.1 project types to version 9.2 project types.

❍ Optionally moving libraries from the version 8.1 application's Libraries folder to a new EAR project in the upgraded
application. An EAR project is the preferred location for libraries used by multiple projects in version 9.2.

❍ Moving JSP files into a WebContent directory.

❍ Upgrading NetUI JSP tags to versions that are compatible with version 9.2 of the runtime.

❍ Optionally migrating NetUI JSP tags to Apache Beehive JSP tags. See Changes When Upgrading from Version 8.1
NetUI JSP Tags to Beehive NetUI JSP Tags for more information.

❍ Moving XSD files that are in a schema project into a version 9.2 utility project.

❍ Moving Java packages and sources into a src directory if they are not in one already.

Viewing the Upgrade Log

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/ovwGuidelinesForUpgrade.html (3 of 6)12/7/2006 11:19:02 AM

Overview: Upgrading from WebLogic Workshop 8.1

Whether you use the import wizard, command-line, or Ant task to upgrade, Workshop for WebLogic will generate a log of
the upgrade changes, errors, and warnings. If you use the import wizard, this log will also be displayed in a dialog you can
review before completing the process.

Upgrade Preview Dialog

You can expand the node for each file to view the upgrade messages associated with that file. The following key describes
the symbols displayed next to file names:

 Informational message.

 Warning message.

 Error message.

Text Log File

Upgrade tools generate a log file containing upgrade messages. This file is available at the following location after upgrade
has completed:

UPGRADE_WORKSPACE_HOME\.metadata\upgrade.log

A log message in the file will take the following form:

!SUBENTRY 1 com.bea.wlw.upgrade severity_level date time
!MESSAGE Upgrade-related message.

The severity_level will be two numbers, but they have the same meaning. The date and time entries refer to when the
upgrade was attempted. The upgrade-related message describes what was done, warned about, or the error that
occurred. The following is a snippet that shows two log entry examples:

!SUBENTRY 1 com.bea.wlw.upgrade 2 2 2006-02-27 17:17:53.687
!MESSAGE The 9.2 control context only supports a subset of the 8.1 control context APIs. Please see the
Workshop for WebLogic upgrade documentation for more information.

!SUBENTRY 1 com.bea.wlw.upgrade 1 1 2006-02-27 17:17:53.687
!MESSAGE The import "com.bea.control.JwsContext" needs to be updated.

Notes About General Issues

The following describes problems you might see after upgrade, but which aren't tied to particular component types or
technologies. For upgrade-related issues associated with specific technologies, see the topics listed under Related Topics.

Version 8.1 Applications with Dependencies on Third-Party Library JARs Might Result in
Version 9.2 Compile Errors

Generally speaking, the upgrade process will present a warning message when a precompiled library must be recompiled
to be used in the version 9.2 environment. However, there might be cases when the library should be recompiled but no
message is presented. In other words, consider recompiling these libraries when you see compile errors in a project that
you can't otherwise account for.

Application Library JAR Files Whose Manifest Has Line Lengths Exceeding 72 Bytes Will
Cause Build Errors

Unlike version 8.1, version 9.2 enforces the line length size limit in JAR file manifests when the JAR is used as an

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/ovwGuidelinesForUpgrade.html (4 of 6)12/7/2006 11:19:02 AM

Overview: Upgrading from WebLogic Workshop 8.1

application library. Upgraded applications containing JARs with lines exceeding the limit will generate errors at build time.
To work around this change, either reduce the size of the lines or remove the manifest from the JAR.

Upgraded Code That Uses Internal APIs from weblogic.jar Will Break in Version 9.2

The use of internal APIs is not supported and the version 9.2 classpath does not (and should not) include weblogic.jar.
Public APIs that used to be in weblogic.jar have been moved into wls-api.jar. The workaround for breakage due to the
absence of weblogic.jar from the classpath is to rewrite code to use public APIs.

In addition, code that uses third-party APIs is not supported for upgrade to version 9.2.

Upgraded Code May Conflict with New Java 5 and JSP 2.0 Language Features

New language features in Java 5 and the JSP 2.0 expression language (which is used by the Beehive tag libraries) might
make it necessary to rewrite portions of upgraded code.

For example, new features reserve words that were not reserved for code written in version 8.1. Workshop for WebLogic
upgrade tools do not upgrade the use of these words, so code that uses them will not compile until you rewrite it so that it
accounts for the new language features.

In particular, Java 5 adds the enum keyword. For more information, see Enums at the Sun web site.

JSP 2.0 reserved word are listed in Reserved Words Can Not Be Used as Identifiers.

In addition, upgraded code might encounter many changes in the Java APIs. With the addition of generics to the Java
language, method signatures that took Object parameters in Java 1.4 have become more strongly typed. This enables
Workshop for WebLogic version 9.2 to detect many errors at compile time that would only appear at run time in version
8.1. For example, if you wrote:

String s;
Thing t;
s.compareTo(t);

you would see no compilation error in version 8.1, but a ClassCastException would occur at run time. In version 9.2,
compareTo(t) will be flagged as an compile time error because String.compareTo() actually expects a String parameter in
9.2, but only requires an Object in 8.1.

As a general rule, debugged code will not contain these types of errors. But when they appear during post-upgrade
compilation, the code must be fixed by the developer before the project will build successfully.

Upgraded Wildcard Import Statements Might Leave Some Types Stranded Without an
Import

During the upgrade process, Workshop for WebLogic upgrade tools update package import statements to support the
movement of key libraries. In some cases, this might break code that uses a class from the version 8.1 package that is
still in that package. For example, upgrade tools will make the following changes:

import com.bea.wlw.netui.util.*;

... would be changed to...

import org.apache.beehive.netui.util.*

This leaves com.bea.wlw.netui.util.TemplateHelper stranded without an import because it is still in the older package.
You can easily repair the code by using the Workshop for WebLogic quick fix feature to import required packages.
Another, more thorough fix would be to remove wildcards and explicitly import classes in the version 8.1 code before
upgrading it.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/ovwGuidelinesForUpgrade.html (5 of 6)12/7/2006 11:19:02 AM

http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

Overview: Upgrading from WebLogic Workshop 8.1

Version 8.1 Pointbase APIs are Not Supported in Upgraded Code

Version 8.1 includes APIs provided with the Pointbase database. These are not supported in version 9.2.

XML Schemas That Were Valid in Version 8.1 May Not be Valid in Version 9.2

Version 8.1 of the IDE allowed the use of schemas that were not standards-compliant; version 9.2 does not. As a result,
invalid schemas will generate errors during upgrade. Note, however, that while errors will appear in the IDE, the errors
should not effect runtime behavior.

If you want to continue using the schemas in their invalid state but don't want errors displayed in the IDE, you can turn
off schema validation. If you turn off validation, it will be off for all schemas, even though you may want to have
validated. To turn off schema validation:

1. Click Window > Preferences.

2. In the Preferences dialog, in the left pane, click Validation.

3. In the right pane, under Validation, clear the XML Schema Validator check box.

4. Click OK.

WebLogic Workshop Version 8.1 Domains Can Be Upgraded from Within Version 9.2

When you create a new server as described in Creating a Server Definition for Use Within the IDE, you can upgrade a
WebLogic Workshop version 8.1 domain.

1. In Workshop for WebLogic, click File > New > Server.

2. In the New Server dialog, under Select the Server Type, choose a new WebLogic Server type. For example, you
can choose BEA WebLogic v9.2 Server.

3. Make other settings as needed, then click Next.

4. In the Domain home box, enter or browse for the WebLogic Workshop domain you want to upgrade.

5. With the path to a domain in the Domain home box, the dialog will display the following as a link:

An older version domain is detected. Click here to upgrade it with the Upgrade Wizard.

6. Click the "older version" link to launch the BEA WebLogic Upgrade Wizard.

7. Follow the steps in the domain upgrade wizard as described in Procedure for Upgrading a WebLogic Domain.

Related Topics

Upgrading Web Services

Upgrading Page Flows

Upgrading Controls

Upgrading Annotations

Upgrading Enterprise JavaBeans

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/ovwGuidelinesForUpgrade.html (6 of 6)12/7/2006 11:19:02 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html#CreateServer
http://docs-stage/common/docs92/upgrade/upgrade_dom.html#wp1082066

Workshop How To: Use the Import Wizard to Upgrade Version 8.1 Applications

How To: Use the Import Wizard to Upgrade Version 8.1
Applications

Workshop for WebLogic version 9.2 provides functionality through which you can use the import
wizard to upgrade version 8.1 applications. This wizard makes nearly all of the changes that
upgrade a working version 8.1 application to a working version 9.2 application. Because the
differences between version 8.1 and version 9.2 are many, there can be a lot of changes to make.
The list of changes made, of course, omits those that would involve rewriting your code or making
non-obvious assumptions about what you intend your application to do.

Note: Your version 8.1 application must have been upgraded to SP4, SP5, or SP6
before using the wizard.

Keep in mind that using the import wizard is usually only one part of the upgrade process.
Depending on the technologies your application uses, you might find that some preparatory work
makes an upgrade process that incorporates the wizard more efficient. Likewise, some work after
using the wizard is likely to be needed to get your upgraded application compiling and running.
For more at a high level on the upgrade process, see Overview: Upgrading from WebLogic
Workshop 8.1.

Note: Due to a known issue with the Sun JVM in which JAR files become locked, when
upgrading applications on the Windows operating system there might be intermittent
cases when files are left behind in the temp directory after upgrade. If this occurs you
should be able to delete the files by first closing the IDE.

Setting Wizard Defaults for Upgrade

You can set defaults for some of the wizard's prompts. This is useful if you intend to upgrade
multiple applications with the same settings. Use the following steps to set upgrade defaults:

1. In Workshop for WebLogic version 9.2, click Window > Preferences.

2. In the Preferences dialog, in the left pane, expand WebLogic, then click Upgrade.

3. Set defaults as needed, then click OK.

Note that the settings themselves are described in the import and upgrade procedure below.

Ensuring That the Wizard Has Enough Memory

Before using the import wizard to upgrade applications, consider temporarily increasing the
maximum amount of memory that the Java Virtual Machine allows to Workshop for WebLogic. The
upgrade process requires a compilation step that potentially includes a large number of files. The
recommended maximum memory is 1 gigabyte.

You can increase maximum memory in the following way:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/howUseUpgradeWizard.html (1 of 4)12/7/2006 11:19:02 AM

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=5041014

Workshop How To: Use the Import Wizard to Upgrade Version 8.1 Applications

● Before starting the IDE, edit the workshop4WP.ini file to replace the -Xmx value with a
sufficiently high memory maximum. By default, the workshop4WP.ini file is located here:

BEA_HOME\workshop92\workshop4WP\workshop4WP.ini

For example, you might change the setting from -Xmx768m (the default) to -Xmx1G (to set it to
1 gigabyte).

After you've finished using the upgrade tools, set the memory maximum back to a level that's
appropriate for development.

To Import and Upgrade a Version 8.1 Application

1. If the files you're upgrading are in a source control system, check them out before running
the wizard.

2. Start Workshop for WebLogic version 9.2.

3. Open or create the workspace that will be the destination for your upgraded files.

4. Click File > Import.

5. In the Import dialog, under Select an import source, select Workshop 8.1 Application,
then click Next.

6. In the Workshop 8.1 Application Upgrade dialog, click the Browse button to locate the
WORK file for the Workshop 8.1 application you want to upgrade.

7. After you have selected the WORK file, note that the application's projects are listed with
check boxes.

8. In the project list, clear check boxes for projects you do not want to upgrade and import;
ensure that check boxes are selected for desired projects.

While it is possible to deselect projects and so omit them from the upgrade, note that build
and visibility dependencies between deselected projects and selected projects will be lost.
You will need to manually reset these dependencies if you choose to upgrade the deselected
projects at a later time.

9. Under Source Upgrade, expand General, NetUI Project Upgrader Options, Properties
file upgrade options, and JSP File Upgrader options to consider the following options for
upgrade:

❍ Under General, select your preference for error handling and message verbosity. The
following table lists the options:

Error handling options:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/howUseUpgradeWizard.html (2 of 4)12/7/2006 11:19:02 AM

Workshop How To: Use the Import Wizard to Upgrade Version 8.1 Applications

Setting Description
Log errors but continue
upgrade (default)

Upgrade will proceed regardless of whether there are
errors; errors will be logged.

Log errors but abort
upgrade

Upgrade will be aborted if there are errors; errors
will be logged.

Display dialog on error The IDE will display a dialog on each upgrade error.
Note that errors will still be written to the upgrade
log.

Message verbosity options:

Setting Description
Include informational
comments (default)

Upgrade messages will include all three levels of
comment severity: information, warnings, and errors.

Include warning comments Upgrade messages will include the top two levels of
comment severity: warnings and errors.

Include error comments Upgrade messages will include only the most severe
comments: errors.

❍ Under NetUI Project Upgrader Options, select the Use WebLogic J2EE Shared
Libraries check box to request that all upgraded projects in the application share a
common set of runtime libraries.

❍ Under Properties file upgrader options, select the Delete copied resource bundle
files... check box to have the upgrader remove unneeded resource bundle files from your
upgraded project.

❍ Under JSP File Migrator Options, select the Replace BEA NetUI tags... check box to
upgrade these version 8.1 JSP tags to Beehive versions.

For important information about upgrade and JSP tags, be sure to read about upgrading
JSP tags in Upgrading Page Flows before upgrading JSP tags. Many of the NetUI custom
JSP tags that were part of WebLogic Workshop 8.1 were donated to the Apache Beehive
open source project. The latest versions of these tags are now in the Beehive project.
Select this check box to have the version 8.1 tags in your upgraded projects replaced
with Beehive tags.

10. Click Next. Workshop for WebLogic will import and compile the application in order to display
file-by-file upgrade status messages.

11. If you are prompted with the Java license agreement, click I Agree or I Disagree. Note that
clicking I Disagree aborts application upgrade.

12. Under Upgrade Preview, note the list of included files and related upgrade messages. As
noted in Viewing the Upgrade Log, you can expand the nodes in the dialog to view messages
for each file. The messages here are also available in a log file after the wizard has done its
work.

13. After reviewing the messages, click Finish.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/howUseUpgradeWizard.html (3 of 4)12/7/2006 11:19:02 AM

Workshop How To: Use the Import Wizard to Upgrade Version 8.1 Applications

Related Topics

Overview: Upgrading from WebLogic Workshop 8.1

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/howUseUpgradeWizard.html (4 of 4)12/7/2006 11:19:02 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

Changes During Upgrade from WebLogic Workshop 8.1 to
Version 9.2

This topic provides a list of the changes you're likely to see as you upgrade version 8.1
applications.

Project Model Changes Include Folder Hierarchies, File Extensions, Project Types

Javadoc-Style Annotations Have Been Replaced with Java 5 Annotations

Version 8.1 Features Updated in Version 9.2

Version 8.1 Features Not Supported in Version 9.2

Scenarios Not Supported by Upgrade

Project Model Changes Include Folder Hierarchies, File
Extensions, Project Types

Many of the changes from the version 8.1 to the version 9.2 project model are intended to align
the model with broadly used Eclipse and Java conventions. If you've used other Eclipse-based
IDEs, version 9.2 of Workshop for WebLogic should feel familiar.

Note: You might also be interested in the reading Key Differences for WebLogic
Workshop 8.1 Users.

The following list summarizes the most significant differences between version 8.1 and version 9.2
project models.

● Semantically speaking, version 8.1 applications are replaced with version 9.2 workspaces; you
build applications in version 9.2 workspaces as you did in version 8.1 applications. Note that
version 9.2 workspaces are not represented by a single file you open in the IDE (such as the
version 8.1 .work file). In version 9.2 a workspace is represented by a file system folder, and
you select this folder when opening the workspace.

● Version 9.2 adds the EAR project type to contain application configuration information and
libraries shared across projects.

● Version 9.2 adds the utility project type for developing shared code.

● The is no version 9.2 counterpart for the version 8.1 control project type.

● Version 9.2 does not feature a "schema project" type — a type of project specifically designed
for compiling XML schemas (in XSD files) and WSDL files into XMLBeans. In version 9.2 a
similar feature is provided by way of a project's XMLBeans Builder facet. For example, to
generate XMLBeans types for use in multiple projects, create a Utility project and be sure to

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (1 of 19)12/7/2006 11:19:03 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/con8to9IdeDifferences.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/con8to9IdeDifferences.html

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

select the XMLBeans check box when choosing project facets.

● Java source files all have .java file extensions. In version 8.1, while EJB, web service, and
control sources were all either Java classes or interfaces, their file extensions were specific to
file type: .ejb, .jws, .jcs, .jcx, and so on. In version 9.2 all such files use the .java extension.

● Version 9.2 provides support for library modules to enable sharing libraries across projects.
Contrast this with version 8.1, in which library JAR files were required in the WEB-INF/lib
directory of each project that used them regardless of whether the JAR files were used by
multiple projects.

● Java source files can't be kept in a project's root directory (effectively putting them into the
default package). Version 9.2 projects must specify a sub-directory for source files and Java
sources must reside in package sub-directories of the source directory.

● In version 9.2 web applications, page flow controller files and JSP files reside in separate
project folders. In version 8.1 they could be in the same folder (or co-located). JAVA files and
JSP files are separated into version 9.2 web application src and web (or WebContent) folders,
respectively.

Javadoc-Style Annotations Have Been Replaced with Java 5
Annotations

One of the largest aspects of this upgrade is the change from the Javadoc-comment style
annotations used in version 8.1 to the Java 5 annotations supported for the current version. For
more information, see Upgrading Annotations. Most of the version 8.1 annotations have
counterparts in version 9.2; for more information, see Relationship Between Version 8.1 and
Version 9.2 Annotations.

Version 8.1 Features Updated in Version 9.2

These features have updated counterparts in version 9.2 and may be deprecated.

WS-Security Should Be Upgraded to WS-Policy

Impacts: Web services

Upgrade strongly recommended. In version 8.1, web service message-level security is managed
using WS-Security (WSSE) policy files. In version 9.2 you should use Web Services Policy
Framework (WS-Policy).

For information on manually updating to WS-Policy security policies, see Upgrading Security from
from WS-Security to WS-Policy.

Security Settings for Service Control Specified in Multiple Locations

Due to changes in the web services security model, the means for specifying security
characteristics through the version 9.2 service control differs from version 8.1. In version 8.1, you
specified both security policies and values in a WebLogic Workshop WSSE policy file. In version

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (2 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

9.2, the means for specifying characteristics for these two aspects of security has been split into
multiple locations.

For information on where security characteristics are now set, see Configuring Run-Time Message-
Level Security Via the Service Control.

Roles Defined in web.xml No Longer Assumed to be the Principal Name in
Upgraded Projects

In the course of upgrading your version 8.1 applications, you might find that some of your
application's security-related characteristics differ between its behavior on the domain shipped
with Workshop for WebLogic and the upgraded domain to which you redeploy it. This is because
the "new" 9.x domain included with Workshop for WebLogic is not backward compatible, whereas
the upgraded domain to which you deploy your upgraded application is (because it has been
upgraded).

For more information and workarounds, see Resolving Issue of Unmapped Entries in web.xml.

Handling SOAP Faults with Wrapper Classes is Deprecated

Impacts: Web services

Supported but deprecated. Version 8.1 provided wrapper classes through which you could control
the content of an outgoing SOAP fault, as well as APIs for retrieving content from an incoming
SOAP fault. You can replace this functionality by using JAX-RPC to map SOAP faults to exceptions.

For more infomation, see Alternative to Wrapper Classes for Handling SOAP Faults.

Automatic Transaction Rollback for a Checked Exception is Deprecated

Impacts: Web services

Supported but deprecated. In version 8.1, the runtime would roll back a container-managed
transaction if a checked exception was thrown from the application or runtime. In version 9.2, this
behavior is supported with an annotation added (by upgrade tools during upgrade) to the web
service source code.

For more information about this change and the workaround, see Upgrade Changes for Automatic
Transaction Rollback.

Conversational Web Services Without START and FINISH Methods are
Not Supported

Impacts: Web services

In version 8.1 it was possible to compile a "conversational" web service that did not have START

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (3 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

or FINISH operations. In other words, you could annotate the web service class as conversational
but not annotate any of its operations with conversation phase attributes. In version 9.2 a
conversational web service must have both a START and FINISH operation in order to compile.

For more information, see Ensuring START and FINISH Methods for Conversations.

Combining Stateful and Stateless Operations in Web Services is
Deprecated

Impacts: Web services

Version 9.2 supports web services that include both stateless and stateful operations, but the
support is deprecated. In other words, in an upgraded conversational web service, stateless
operations will be annotated with the deprecated annotation @Conversation(value =
Conversation.Phase.NONE).

For more information, see Upgrade Changes for Web Services That Combine Stateful and
Stateless Operations.

Same-Named Web Services Can Cause Deployment Error

Impacts: Web services

Due to a difference in the way versions 8.1 and 9.2 generate the default targetNamespace value
for web services, you may enounter a deployment error if you have two or more web services
with the same class name in an application. For web services in version 9.2, WebLogic Server
uses the fully-qualified port name — which includes the web service's targetNamespace value —
to bind resources it uses internally. As a result, the port name must be unique within an
application.

For information on resolving the error, see Resolving Deployment Error for Same-Named Web
Services.

Mismatch Between Operation Parameter Names and Names in WSDL Can
Cause Web Service Failure

Impacts: Web services

After upgrading a web service in which one or more method parameter names do not match their
corresponding names in the WSDL from which the web service was created, you will need to add a
@WebParam annotation to each parameter.

For details, see Supporting Mismatch Between Operation Parameter Names and Names in WSDL.

Reliable Messaging Support Not Upgraded by Tools

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (4 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

Impacts: Web services

Workshop for WebLogic upgrade tools do not upgrade reliable messaging support (such as the
@jws:reliable annotation) from version 8.1 to version 9.2. As noted in the version 8.1
documentation, that version's reliable messaging (RM) support was very limited and was not
based on a specification that would be supported in future versions. You can manually upgrade
reliable messaging support.

See Upgrading Reliable Messaging Support — Basic Instructions for high-level upgrade steps.

Version 9.0 and 9.1 WebLogic Server Web Services Might Need to Be
Recompiled for Deployment in Version 9.2

Version 9.x doesn't support using the form-get and form-post message formats to receive
messages sent from an HTML form. When upgrading web services that use these formats, you'll
need to use another method for receiving data sent from a form in a web browser.

In other words, version 9.2 web services do not support message formats that do not include
SOAP headers.

In version 8.1, the @jws:protocol annotation supported the following attributes and values:

● @jws:protocol form-get="true" — Indicated that the operation or web service supported
receiving HTTP GET requests.

● @jws:protocol form-post="true" — Indicated that the operation or web service supported
receiving HTTP POST requests.

These attributes have no counterparts in version 9.2 and there are no suggested workarounds. If
you upgrade to version 9.2, upgrade tools will simply ignore a protocol setting that isn't supported.

Web Service from WSDL with xs:anyType Will Expect and Send Incorrect
Message Payloads

Impacts: Web services

If you created a version 8.1 web service by generating it from a WSDL that specified xs:anyType
instead of xs:any, the web service will expect and send incorrect XML payloads after upgrade to
version 9.2.

You can ensure correct handling of xs:anyType by applying the @WildcardBindings annotation to
the web service at the class level. For more information, see Ensuring Correct Handling of xs:
anyType in Messages.

Service Controls Must Be Associated with a WSDL

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (5 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

Impacts: Web services, control use

While version 8.1 allowed a Service control to not be associated with a WSDL, the control must be
associated with a WSDL in order for it to upgrade successfully.

For more information on associating a WSDL with the service control, see Associating a Service
Control with a WSDL.

Service Controls Based on Abstract WSDLs are Not Fully Upgraded

Impacts: Web services

In version 8.1 it was possible to generate a service control from an abstract WSDL — that is, from
a WSDL with no service definition. You could then configure the endpoint to call or listen on
programmatically or by using annotations. However, WebLogic Server version 9.2 does not
support abstract WSDLs. As a result, Workshop for WebLogic's upgrade tools are unable to
upgrade a service control with the necessary annotations, leaving compiler errors in upgraded
code. Likewise, if you try to generate a service control from an abstract WSDL in 9.x, you will
receive an error stating that a service is required.

For more information and a suggested workaround, see Upgrading Service Controls that are
Based on an Abstract WSDL.

Service Control Methods getEndPoint and setEndPoint are Deprecated

The ServiceControl.getEndPoint() and ServiceControl.setEndPoint(URL) methods are
deprecated in version 9.2 and may be removed in a future version. New code requiring this kind
of API should use ServiceControl.getEndpointAddress() and ServiceControl.
setEndpointAddress(String), respectively.

For more detail, see Replacing Service Control Methods getEndPoint and setEndPoint.

JMS Control Properties Not Automatically Bound to Method Parameters
by Upgrade

Upgrade tools do not fully upgrade JMS control support for binding control method parameters to
JMS properties. In particular, the method parameters themselves must be annotated but aren't.
You can ensure support for these bindings by manually adding the required annotations after
upgrading your version 8.1 code.

For more information and an example, see Supporting Parameter Bindings for JMS Properties with
the JMS Control.

Controls are Not Automatically Run Within the Scope of a Transaction

Impacts: Control use

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (6 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

In version 8.1, controls are automatically run within the scope of a transaction because they're
run in the context of an Enterprise JavaBean. As Plain Old Java Objects (POJOs) in version 9.2,
controls must be annotated with the @TransactionAttribute annotation for transaction support.
During upgrade, upgrade tools will add this annotation.

For information on adding transaction support, see Enabling Automatic Transaction Support in
Controls.

Row Set Functionality is Supported Through a Backward Compatible
JdbcControl

Impacts: Control use

The standard Beehive JdbcControl (org.apache.beehive.controls.JdbcControl) in version 9.2, which
corresponds to the version 8.1 Database control, does not support the version 8.1 "RowSet
control" feature. To ensure that row set functionality is preserved during upgrade, the Database
control is upgraded to the backward compatible JdbcControl (com.bea.control.JdbcControl)
provided by BEA.

For more information, see Changes to Support Database Control Row Set Functionality.

Control Event Handler Exception Handling More Restrictive

Impacts: Control use

In version 8.1, control event handlers (known in that version as "callback handlers") could throw
exceptions caught from the control by throwing the caught exception or a superclass such as java.
lang.Exception. In version 9.2, if the event handler throws the caught exception, it must instead
throw a proper subset of the throws clause declared for the control EventSet method.

See Upgrading Exception Handling in Control Event Handlers for information on working around
the new requirement.

Upgrading Message Buffering in Custom Controls

In version 8.1 you could apply the common:message-buffer tag to a custom control's interface or
implementation code. In version 9.2 this annotation's counterpart, com.bea.control.annotations.
MessageBuffer, is supported only in the control interface code. To work around this change, you
should remove the annotation from implementation code before upgrading the application.

Control and Web Services Context APIs Have Changed

Version 8.1 provided context APIs through which components such as web services (in version 8.1
JWS files) and custom controls could interact with their runtime environment. For web services,
the location of JwsContext has changed, while some methods are no longer available. For

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (7 of 19)12/7/2006 11:19:03 AM

http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/apidocs/javadoc/index.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/navDatabaseControl.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/conRowSetControl.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/conRowSetControl.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/JdbcControl.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/message-buffer.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/annotations/MessageBuffer.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/annotations/MessageBuffer.html

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

controls, changes brought by the Apache Beehive control model to version 9.2 have meant that
several APIs exposed by the version 8.1 control context classes are either exposed in different
ways or are no longer relevant and so not available.

For a list of the affected APIs, see Handling Context API Changes.

Entity Beans are Not Automatically Run Within the Scope of a
Transaction When the Transaction Isn't Specified

Impacts: Entity beans

In version 8.1, the EJB container would create a transaction for an entity bean if it ran in an
unspecified transaction. In version 9.2, the default is not to create the transaction.

For information on ensuring the old default behavior, see Enabling Automatic Transaction Support
in Entity Beans.

Ambiguity May Occur When Annotation Type References are Added to
Upgraded Code

Impacts: Potentially any code that uses annotations

Unlike version 8.1, in version 9.2 annotations are Java types that must either be imported or fully-
qualified in code. Because code using these types is being added to your code in order to upgrade
from annotations in your version 8.1 code, there can sometimes be ambiguity when the added
annotations have the same names as types your code may already have been using.

For information on how to remedy this ambiguity, see Resolving Amibiguity Related to Annotation
Types.

Upgrading NetUI Tags to Beehive Tags Results in Changes to Some Tags
and Attributes

Impacts: JSP files

Due to the differences between the version 8.1 NetUI tags and the Beehive NetUI tags, some
changes might be made to JSP tags if you choose to upgrade them. For more information, see
Changes When Upgrading from Version 8.1 NetUI JSP Tags to Beehive NetUI JSP Tags.

Packages for Fully-Qualified Type Names are Not Upgraded in JPF File
Method and JSP Code

When a type name is fully-qualified outside a type import (Java or JSP), the type's package is not
upgraded to the package used in version 9.2. For more information, including a workaround, see
Fixing Package Names That are Not Upgraded in JPF File Method and JSP Code.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (8 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

Upgrading NetUI Tags to Beehive Tags Sets the Default Expression
Language to a Backward-Compatible Version

Impacts: JSP files

A backward-compatible version is set as the default for the upgraded application because it is
more permissive than the current version, giving you an opportunity to migrate your version 8.1
code. For information on changing the default expression language, see Changing the Default
Expression Language Used by JSP Tags.

Impacts: JSP files

Upgrading NetUI Tags to Beehive Tags Does Not Fully Account for
Expression Language Requirements

Impacts: JSP files

If you request it, upgrade tools will migrate your NetUI JSP tags to Beehive JSP tags. This
includes migrating from the NetUI expression language syntax to the syntax of the Beehive JSP
expression language. However, note that expressions in the Beehive JSP expression language are
unable to bind to public fields, as was the case with NetUI expressions. For a full upgrade to
Beehive JSP tags, in other words, you must manually add get* and set* accessors where public
fields were used.

For more information on these differences, see Changing Code to Support the Expression
Language in Beehive NetUI JSP Tags.

Some PageFlowController and FlowController Methods Made Protected
Instead of Public

To enhance application security, some public methods in org.apache.beehive.netui.pageflow.
PageFlowController and org.apache.beehive.netui.pageflow.FlowController have been changed so
that they're protected. This change means that these methods can no longer be invoked as bean
properties from within JSP pages.

For more information, see Details: Some PageFlowController and FlowController Methods Made
Protected Instead of Public.

FlowController.getRequest Method Can No Longer Return a
ScopedRequest Instance

In version 8.1, the return value of the FlowController.getRequest method could be cast to a
ScopedRequest when running in the WebLogic Portal environment. In version 9.2, to improve
performance the Beehive page flow APIs retrieve a ScopedRequest instance differently. If your
portal code makes a call to this method, you will need to manually upgrade the code to avoid a

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (9 of 19)12/7/2006 11:19:03 AM

http://beehive.apache.org/docs/1.0m1/apidocs/classref_pageflows/org/apache/beehive/netui/pageflow/PageFlowController.html
http://beehive.apache.org/docs/1.0m1/apidocs/classref_pageflows/org/apache/beehive/netui/pageflow/PageFlowController.html
http://beehive.apache.org/docs/1.0m1/apidocs/classref_pageflows/org/apache/beehive/netui/pageflow/FlowController.html

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

ClassCastException.

For more information and a suggested fix, see Upgrading from getRequest Method Calls to
Retrieve a ScopedRequest Instance.

XMLBeans Package is Changed; Schemas Must be Recompiled to
Regenerate Types

Impacts: Code that uses XMLBeans, including web services, controls, JSP files, Enterprise
JavaBeans

During upgrade, the package for types in the XMLBeans API will be changed from com.bea.xml to
org.apache.xmlbeans. In addition, if your version 8.1 application included a schemas project (a
project that supported automatic compilation of schemas into XMLBeans types), that project will
be migrated to a version 9.2 project through which the schemas continue to be compiled into
XMLBeans types.

XML Schemas are Validated More Strictly

Impacts: XML schemas

Version 9.2 uses a more strict schema validator than was used in version 8.1. The upgrade
process does not repair invalid schemas that might have been considered valid in version 8.1.
Because of this, you should ensure that schema validation is on when working with schemas
whose validity is important.

XQuery Implementation Used by XMLBeans Updated from Working Draft
16 to Working Draft 23

Impacts: Code that uses XMLBeans and XQuery, including web services, controls, page flows,
Enterprise JavaBeans

The older XQuery implementation is deprecated, but supported in this version for backward
compatibility. Queries based on the older implementation will be kept, but a special XmlOptions
parameter will be added to specify that the old implementation should be used.

One exception is XQuery use in JSP files, which is not updated by upgrade tools. You will need to
make changes manually. For more information see Updating XQuery Use to Support Upgraded
XQuery Implementation.

Custom Ant Build Scripts are Not Upgraded by the Upgrade Tools

Impacts: Build processes

If you created custom Ant build scripts in version 8.1, you must manually upgrade them for use
with version 9.2. You can migrate your modifications after upgrading your application by re-

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (10 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

exporting your Ant build file, then merging in your modifications.

Note: Unlike version 8.1, version 9.2 does not support building your application with
Ant from within the IDE. You must export the build file and execute targets from the
command line.

In version 9.2 use the following steps to export an Ant build file:

1. Right-click any file in your application, then click Export.

2. In the Export dialog, click Workshop Ant Script, then click Next.

3. In the Ant Script Generation dialog, under Project, select the workspace project for which
you want to export an Ant script.

4. Under Ant Script Generators, select the WebLogic Server script you want to generate.

Note that to generate a script designed to build projects for use on WebLogic Server, you
should choose a generator that has "(WebLogic Server)" in its name. Do not select "Java
Project Build Script," which compiles JAVA files but is not designed to build projects for
WebLogic Server.

5. Under File Name, enter (or browse for) the location for the Ant script file you are about to
generate.

6. Click Finish.

You can edit the generated script file to support the customizations you want.

When running targets in the generated Ant script file, you will need to pass to the script a
parameter value indicating the workspace's location. You can do this in one of two ways using the
-Dworkspace command-line option. You can also specify the location of a workspace metadata file:

ant -buildfile build.xml -Dworkspace=c:\workspaces\MyWebServices\workspace.xml

To generate the metadata file, you export it as described above for the Ant script file. In the
Export dialog, select Workspace Metadata for Workshop Ant Scripts. In subsequent dialogs, select
the projects whose metadata you want the file to include, along with specific variable values you
want. Note that as you change workspace settings — such as by adding a new project to an EAR
— you will need to re-export the metadata file.

You can also give the workspace directory as the argument:

ant -buildfile build.xml -Dworkspace=c:\workspaces\MyWebServices

IDE Extensions Based on the Version 8.1 API are Not Supported

Impacts: IDE extensions

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (11 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

Version 9.2 of Workshop for WebLogic is based on Eclipse, which has its own model and API for
developing extensions — known to Eclipse users as plug-ins. Version 8.1 extensions are not
upgraded. If you wrote extensions based on the version 8.1 model, you need to rewrite them if
you want to keep that functionality. If you used extensions based on the version 8.1 model, you
need to find parallels in the Eclipse extension set.

For more information on Eclipse plug-ins, see Eclipse help in this documentation or online.

Configuration Settings are Now Exposed Through WebLogic
Administration Console or WLST

Impacts: Configuration

WebLogic Workshop version 8.1 provided several files you could use to configure the run-time
environment for applications you built with WebLogic Workshop. These files are not included in
version 9.2. Many of the properties set through them are now configurable using the WebLogic
Administration Console, or are scriptable with the WebLogic Server Scripting Tool (WLST).

● jws-config.properties — Provided domain-wide configuration parameters for run-time
components. This included information about conversations and JMS.

● wlw-config.xml — Primarily provided build-time directives to parameterize the code generation
of EJBs that hosted 8.1 Web Services.

● wlw-runtime-config.xml — Provided run-time parameters of web resources.

● wlw-manifest.xml — Provided information about the server resources referenced in an EAR;
useful to administrators determining the resources needed for successful deployment.

For more information about the administration console, see Overview of the Adminstration
Console in the WebLogic Server documentation. For more about WLST, see WebLogic Scripting
Tool.

Some Version 8.1 Wildcard Import Statements Will Break Compilation on
Version 9.2

Because the Workshop for WebLogic upgrade tools don't upgrade wildcard import statements,
some of these statements will generate errors on version 9.2 because their libraries are not
present there. In some cases, you can fix these by replacing them with their version 9.2
counterparts. For example, if

After upgrade, you might find that some import statements with wildcards have been changed to
reflect their nearest parallel in version 9.2.

Version 8.1 Features Not Supported in Version 9.2

These features are no longer supported. The following describes functionality that version 8.1

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (12 of 19)12/7/2006 11:19:03 AM

http://help.eclipse.org/help31/index.jsp
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/reference/configfiles/con_jws-config_properties_ConfigurationFile.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/reference/configfiles/con_wlw-config_xml_ConfigurationFile.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/reference/configfiles/con_wlw-runtime-config_xml_ConfigurationFile.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/reference/configfiles/con_wlw-manifest_xml.html
http://bernal.bea.com/stage/wls/docs92/intro/console.html
http://bernal.bea.com/stage/wls/docs92/intro/console.html
http://bernal.bea.com/stage/wls/docs92/config_scripting/index.html
http://bernal.bea.com/stage/wls/docs92/config_scripting/index.html

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

supported, but which must be rewritten in order for upgraded code to work in version 9.2.

XQuery Maps Are Not Supported

Impacts: Web services, Service controls

Version 9.2 doesn't support XQuery maps, a version 8.1 feature through which you could use
XQuery to reshape XML messages entering and leaving a web service operation. This change
impacts not only the XML shapes supported by the web service itself, but creates a mismatch
between the web service and service controls generated from it or its WSDL file. One workaround
is to rewrite your code so that its WSDL matches the existing WSDL shape without the use of
maps.

Note: The lack of support for XQuery maps does not mean that XQuery itself is not
supported. You can still execute XQuery expressions using the XMLBeans API. For more
information on upgrade changes impacting this API, see Updating XQuery Use to
Support Upgraded XQuery Implementation.

For more information, see General Steps for Replacing XQuery Maps.

java.util.Map Can Not Be Returned from Web Service Operations

Impacts: Web services

Version 8.1 supported returning instances of java.util.Map from web service operations. The
runtime provided a WebLogic Workshop-specific serialization of the Map to and from XML. The
schema for that serialization was included in the WSDL for the Web Service. In version 9.2, java.
util.Map instances can no longer be returned from web service operations.

For a suggested workaround, see Replacing the Use of java.util.Map as a Web Service Operation
Return Type.

Multiple SOAP Versions are Not Supported for Bindings Defined in a Web
Service

Impacts: Web services

Unlike version 8.1, version 9.2 doesn't support using multiple SOAP versions for bindings defined
in a web service. When upgrading, you'll need to manually edit any web services that use more
than one SOAP version so that they use only one.

Version 8.1 Implementation of SOAP 1.2 is Not Supported

Impacts: Web services

Version 8.1 included a SOAP 1.2 implementation that was based on a working draft of the SOAP

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (13 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

1.2 specification. The version 9.2 implementation is based on the final version of the specification,
and so differs from the older implementation. To ensure compatibility for clients of a SOAP 1.2
web service you created with version 8.1, you should rebuild the client using a WSDL generated
from an upgraded (version 9.2) version of the web service.

For more information on generating a WSDL, see Upgrading from Version 8.1 Implementation of
SOAP 1.2.

Non-SOAP XML Message Format Over HTTP or JMS is Not Supported

Impacts: Web services

If you have version 8.1 web services that use the non-SOAP XML format over HTTP or JMS, you
must change your web service on version 9.2 so that it either uses the SOAP protocol or some
alternative.

For information on changing the message format in web services, see Details: Non-SOAP XML
Message Format Over HTTP or JMS is Not Supported.

Handlers Not Supported for Callbacks

Impacts: Web services

In version 8.1 the @jc:handler and @jws:handler annotations included a callback attribute that
specified handlers to process SOAP messages associated with callbacks; version 9.2 does not
include callback-specific handler support. For the counterparts of these annotations in version 9.2,
see Upgrading Annotations.

form-get and form-post Message Formats are Not Supported to Receive
Data

Impacts: Web services

Version 9.2 doesn't support using the form-get and form-post message formats to receive
messages sent from an HTML form. When upgrading web services that use these formats, you'll
need to use another method for receiving data sent from a form in a web browser.

For more information, see Details: form-get and form-post Message Formats are Not Supported to
Receive Data.

Multiple Protocols for Web Service Operations is Not Supported

Impacts: Web services

While version 9.2 supports multiple protocols at the web service level, it does not continue the
version 8.1 support for multiple protocols at the operation level. When upgrading, if a single web

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (14 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

service has operations that use different protocols, you'll need to create separate web services
and divide the operations among them so that a single protocol is used in each service.

For information on making this change, see Upgrade Changes for Multiple Protocols in a Web
Service.

Mixed Operations with Document and RPC SOAP Bindings Will Result in
Namespace Differences

Impacts: Web services

If a version 8.1 web service includes one or more operations that use the RPC SOAP binding and
one or more operations that use the document SOAP binding, then after upgrade types generated
for those operations will be placed into different namespaces. This will be different from the
version 8.1 web service itself, in which the types were in the same namespace. A WSDL
generated from the upgraded web service will differ from the version 8.1-generated WSDL.

For more information, including a workaround, see Resolving Namespace Differences from Mixed
Operations with Document and RPC SOAP Bindings.

Deprecated UseWLW81BindingTypes and
WLWRollbackOnCheckedException Annotations are Added to Upgraded
Code

Supported but deprecated. Upgraded web service and Service control code will include the
@UseWLW81BindingTypes and/or @WLWRollbackOnCheckedException annotations applied at the
class level. Even though these annotations are deprecated, they are required in order to support
clients that used the version 8.1 code.

Web Services or Service Controls Whose WSDLs Define Multiple Services
is Not Supported

Impacts: Web services

In version 8.1 it was possible to have a web service (JWS) or Service control whose WSDL defined
multiple services. The web service or control would represent only one of these services. When
upgrading such code to version 9.2 upgrade will fail. To ensure that upgrade succeeds for this
code, you should edit the WSDL so that it defines only the service that is represented by the JWS
or Service control.

Multiple <wsdl:import> Elements are Not Supported

Even though it was supported for WSDLs associated with version 8.1 service controls, in version
9.2 multiple occurrences of the <wsdl:import> element is not supported in the same WSDL. For
example, you might have used one import to get WSDL portions of the WSDL and another import
to get XSD portions for needed types.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (15 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

More information and a workaround is available at Upgrading WSDLs with Multiple <wsdl:import>
Statements.

Types in 1999 Schema Namespace Not Supported

Version 8.1 supported using types in the 1999 schema namespace for service controls and web
services generated from WSDLs that used the types. Because version 9.2 does not support types
in this namespace, you will need to manually migrate the WSDL to the 2001 namespace.

For more information, see Updating WSDLs from 1999 Namespace to 2001.

EJB Control Security Annotations Not Upgraded by Upgrade Tools

Due to the how the EJB control works (which differs from other kinds of controls), the upgrade
tools do not automatically upgrade security annotations used in an EJB control. You can work
around this difference by manually editing the EJB control extension file to include the needed
methods and annotations.

For more information and an example, see Upgrading Security in EJB Controls.

EJB Control getJNDIName and setJNDIName Methods Invoked Differently

Impacts: Control use

Differences from the getJNDIName and setJNDIName methods exposed from the version 8.1 EJB
control will cause errors in upgraded code. In version 8.1, these methods were exposed as
EJBControl.getJNDIName and EJBControl.setJNDIName; in version 9.2, they are exposed from a
build-time-generated control bean class as getJndiName and setJndiName (note the case
difference also).

For information on fixing method invocation code, see Upgrading EJB Control getJNDIName and
setJNDIName Method Invocations.

JDBC Control Does Not Support "All" array-max-length Value for Query
Results

The version 8.1 database control supported getting all rows for a query by specifying "all" as a
value for the @jc:sql array-max-length attribute. The version 9.2 JDBC control does not support
this value; instead, specify a numerical value. This change is not automatically made by upgrade
tools.

For more information, see Replacing "All" Requests for Database Control Results.

Control Factories are Not Supported

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (16 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

Impacts: Control use

Version 9.2 does not support control factories, a version 8.1 feature in which multiple control
instances could be created at run time from a single control. If your code uses control factories,
you'll need to replace the functionality with an alternate solution.

For a suggested alternative, see Replacing Control Factory Functionality.

JMS Controls Can't Be Used to Receive Messages

Impacts: JMS controls

In version 9.2, a JMS control can't be used to receive messages. In upgraded code, you can work
around this by developing a message-driven bean (MDB) to receive the messages or by invoking
a web service using asynchronous request-response.

JMS Control sendJMSMessage Method Takes a Different Message
Parameter Type

Version 8.1 of the JMS control took a JMSControl.Message type as a parameter for its
sendJMSMessage method; in version 9.2 the method takes an instance of javax.jms.Message. For
a full upgrade, you must change your code accordingly.

For more information, see Upgrading JMS Control sendJMSMessage Method Invocations.

Multiple Calls to TimerControl.start Method Have No Effect

Impacts: Control use

In version 8.1 it was possible to call the timer control's start method multiple times, without error,
to start the timer; however, the onTimeout callbacks did not necessarily correspond to the
separate calls to the start method. The version 9.2 timer control simplifies the API by disallowing
multiple calls to the start method. Calls to the start method when the timer control is still running
will have no effect.

Controls Used in a Page Flow Can't Receive External Callbacks

Impacts: Control use, page flows

In version 9.x custom controls used from a page flow can't receive external callbacks. In version
8.1, you could write a custom control that received callbacks from controls nested within it, such
as service controls. By exposing a polling interface from your custom control, your page flow code
could then retrieve responses received from the callbacks. This functionality is not supported in
version 9.2.

In upgraded code, you can substitute for this functionality by replacing your custom control with a

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (17 of 19)12/7/2006 11:19:03 AM

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

web service. For more information on the version 8.1 feature and suggested version 9.2
workarounds, see Providing Support for Callbacks from a Page Flow.

Some Version 8.1 Context and Control Context Events and APIs are Not
Available in Version 9.2

Impacts: Web services, control creation

These are events and APIs that were either considered low usage or were not general enough in
nature to be included in the Beehive controls runtime.

In situations such as with the the logging API, you can modify your applications to make direct
use of standalone APIs or WebLogic Server-provided APIs (such as the logging API from Apache
Commons). However, there is currently no workaround for situations where the APIs were closely
associated with the runtime container.

ControlException.getNestedException Method is No Longer Available

Impacts: Control use.

The version 8.1 com.bea.control.ControlException featured a getNestedException method that is
not included on its Beehive counterpart, org.apache.beehive.controls.api.ControlException. Code
that calls this method will represent a compilation error after upgrade. Because this method
merely delegated to the getCause method of the Throwable class — which the Beehive
ControlException class extends — working around this change is as simple as changing the
getNestedException call to getCause.

Version 8.1 Control Annotation Definitions are Not Upgraded

Impacts: Control creation

Version 8.1 custom control annotation definitions are not upgraded to version 9.2. The means for
defining annotations is based on the Java 5 annotations model. To upgrade controls written for
version 8.1, you must rewrite the annotations definition in keeping with the new model.

See Upgrading Custom Controls Featuring Custom Properties for more information.

Co-Location of Controller File and JSP Files is Not Supported

Impacts: Page flows

Version 8.1 supported a project hierarchy in which the Controller file (Controller.jpf) and JSP files
could be put into the same directory. This is not supported in version 9.2. During upgrade your
project hierarchy will be changed so that the Controller file is no longer co-located with JSP files.

For more information, see Upgrade Changes for Co-Location in Page Flows.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (18 of 19)12/7/2006 11:19:03 AM

http://edocs.bea.com/workshop/docs92/ws_platform/upgrading/conPageFlowCallbacks.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/java-class/com/bea/control/ControlException.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/ControlException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Throwable.html#getCause()

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

IDE Sync Features Not Included in this Version

The version 8.1 IDE included a set of features through which the IDE kept related files in sync. For
example, after generating a ServiceControl from a WSDL, changes to the WSDL would cause the
IDE to automatically re-generate the ServiceControl to match. This functionality is not supported
in the version 9.2 IDE.

For suggested workarounds, see Keeping Files in Sync in the Absence of IDE Support.

Scenarios Not Supported by Upgrade

Custom Tags That Extend NetUI Tags are Not Supported

If you created custom JSP tags in version 8.1 by extending NetUI tags, your tags will not be
upgraded by Workshop for WebLogic tools. Extending NetUI tags was not supported. Note that if
you elected not to migrate NetUI tags to Beehive tags, your tags may build within the application,
but may not work as expected.

Likewise, extending Beehive JSP tags in version 9.2 is not supported.

IDE Erroneously Shows an Error When Variable Declarations are Made in
an HTML Start Tag

The version 9. 2 IDE incorrectly displays an error for code in which a variable declaration is made
in an HTML start tag; the code is actually valid at run time. For example, in the following anchor
tag the <%=s%> code using the String variable is flagged by the IDE as unresolved, but is
actually valid.

Fixing Erroneous IDE Error for Variable in an HTML Start Tag

Related Topics

Overview: Upgrading from WebLogic Workshop 8.1

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conChangesDuringUpgrade.html (19 of 19)12/7/2006 11:19:03 AM

Upgrading Controls

Upgrading Controls

This topic gives more detail about upgrade changes noted for controls.

For other upgrade issues related to controls, see the following topics:

Replacing Callback-Enabled Controls Used in a Page Flow

For a more complete list of changes affecting applications upgraded from version 8.1, see Changes During Upgrade from WebLogic Workshop
8.1 to Version 9.2.

Enabling Automatic Transaction Support in Controls

In version 8.1, controls are automatically run within the scope of a transaction because they're run in the context of an Enterprise JavaBean.
In version 9.2 controls are Plain Old Java Objects (POJOs). As a result, if you want transaction support, your control interfaces must be
annotated with the @TransactionAttribute annotation for transaction support.

During upgrade, upgrade tools will add an annotation for transaction support. The following version 8.1 and version 9.2 examples show a
very simple control interface before and after upgrade.

In version 8.1, no annotation was required:

package localControls.nestedControls;

import com.bea.control.Control;

/**
 * This is the public interface for the VerifyFunds control.
 * The control is implemented in VerifyFundsImpl.jcs.
 */
public interface VerifyFunds extends Control
{
 interface Callback
 {
 void onTransactionComplete(String message, boolean isBalanceAvailable,
 boolean isInventoryAvailable);
 }

 /**
 * @common:operation
 */
 void submitPO(java.lang.String poNumberString,
 java.lang.String customerIDString, int itemNumber,
 int quantityRequested, double startingBalance);
}

In version 9.2, the @TransactionAttribute annotation signifies that transaction support is requested:

package localControls.nestedControls;

import com.bea.control.annotations.TransactionAttribute;
import com.bea.control.annotations.TransactionAttributeType;
import org.apache.beehive.controls.api.bean.ControlInterface;
import org.apache.beehive.controls.api.events.EventSet;

/**
 * Public interface for the VerifyFunds control.
 */
@ControlInterface()
@TransactionAttribute(TransactionAttributeType.REQUIRED)
public interface VerifyFunds
{
 @EventSet(unicast = true)
 interface Callback
 {
 void onTransactionComplete(String message, boolean isBalanceAvailable,
 boolean isInventoryAvailable);
 }

 void submitPO(java.lang.String poNumberString,

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingJavaControls.html (1 of 10)12/7/2006 11:19:04 AM

Upgrading Controls

 java.lang.String customerIDString, int itemNumber,
 int quantityRequested, double startingBalance);
}

Replacing Control Factory Functionality

Version 9.x does not support control factories, a version 8.1 feature in which multiple control instances could be created at run time from a
single control. If your code uses control factories, you'll need to replace the functionality with an alternate solution.

You can support control factory-like functionality by using control-related APIs through which you explicitly instantiate multiple control
instances. The following example illustrates by using a simplified version of the control factory example that was included with the version 8.1
samples application.

package controlfactory;

import java.util.HashMap;
import java.util.Map;
import java.io.Serializable;
import javax.jws.WebMethod;
import javax.jws.WebService;
import org.apache.beehive.controls.api.bean.ControlReferences;
import org.apache.beehive.controls.api.bean.Controls;
import weblogic.jws.Conversation;
import weblogic.jws.WLHttpTransport;
import javax.jws.soap.SOAPBinding;
import controlfactory.SlowServiceControlBean;
import controlfactory.SlowServiceControl;

/**
 * The following code demonstrates how you can achieve version 8.1 control
 * factory functionality by using APIs associated with controls.
 *
 * The code in this example is a somewhat simplified version of the control
 * factory example included in the version 8.1 SamplesApp application.
 */
@WLHttpTransport(serviceUri = "controlfactory/ServiceFactoryClient.jws")
@WebService(serviceName = "ServiceFactoryClient",
 targetNamespace = "http://workshop.bea.com/ServiceFactoryClient")
@javax.jws.soap.SOAPBinding(style = javax.jws.soap.SOAPBinding.Style.DOCUMENT,
 use = javax.jws.soap.SOAPBinding.Use.LITERAL,
 parameterStyle = javax.jws.soap.SOAPBinding.ParameterStyle.WRAPPED)
@ControlReferences(SlowServiceControl.class)
public class ServiceFactoryClient implements java.io.Serializable {
 static final long serialVersionUID = 3553L;

 static Map<String, Long> serviceControlsMap = new HashMap<String, Long>();

 int m_numServices;

 /**
 * This method does the work of creating a quantity of control instances
 * based on a number received in the numServices param.
 */
 @Conversation(Conversation.Phase.START)
 @SOAPBinding(style = javax.jws.soap.SOAPBinding.Style.DOCUMENT,
 use = javax.jws.soap.SOAPBinding.Use.LITERAL,
 parameterStyle = javax.jws.soap.SOAPBinding.ParameterStyle.WRAPPED)
 @WebMethod()
 public void startServices(int numServices) {
 int i;

 if (numServices > 0) {
 try {
 for (i = 0; i < numServices; i++) {
 m_numServices = numServices;

 // Instead of using a control factory, instantiate separate
 // instances of the control using the Controls.instantiate
 // method.
 SlowServiceControlBean bean;
 bean = (SlowServiceControlBean) Controls.instantiate(Thread
 .currentThread().getContextClassLoader(),
 "controlfactory.SlowServiceControlBean", null);

 // Also pair an instance of the callback handler

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingJavaControls.html (2 of 10)12/7/2006 11:19:04 AM

Upgrading Controls

 // for each new control instance. This handler will listen
 // for the service's infoReady callback.
 SlowServiceCallbackHandler handler = new SlowServiceCallbackHandler(
 bean);
 bean.addCallbackListener(handler);

 // Call the Service control, passing a unique value to label
 // it for identifying later.
 String serviceName = "Service" + i;
 bean.requestInfo(serviceName);

 // Stash the time each control is launched, indexed by
 // instance name
 serviceControlsMap.put(serviceName, new Long(
 (new java.util.Date().getTime())));
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 /**
 * Callback handler for the control's infoReady callback.
 */
 public class SlowServiceCallbackHandler implements
 SlowServiceControl.Callback, Serializable {
 static final long serialVersionUID = 1L;

 private SlowServiceControlBean serviceControl;

 public SlowServiceCallbackHandler(SlowServiceControlBean control) {
 serviceControl = control;
 }

 public void infoReady(String name) {
 // Compute how many seconds since this control was launched.
 long timeTaken =
 (new java.util.Date().getTime() - ((Long) serviceControlsMap
 .get(name)).longValue()) / 1000;

 // A ControlBean instance provides many methods useful for
 // getting information about the instance.
 String controlId = serviceControl.getControlID();

 // Print the information discovered.
 printControlInfo(name, controlId, timeTaken);
 }

 public void onAsyncFailure(String arg0, Object[] arg1) {
 // TODO Auto-generated method stub

 }
 }

 @WebMethod
 @Conversation(Conversation.Phase.FINISH)
 public String finishServices() {
 return "Finished. " + m_numServices + " services invoked.";
 }

 public void printControlInfo(String serviceName, String controlId, long time) {
 System.out.println("Control callback received from " + serviceName
 + ":" + controlId + " after " + time + " seconds.");
 }
}

This example includes the following APIs:

org.apache.beehive.controls.api.bean.ControlReferences

org.apache.beehive.controls.api.bean.Controls

weblogic.jws.Conversation

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingJavaControls.html (3 of 10)12/7/2006 11:19:04 AM

http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/bean/ControlReferences.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/bean/Controls.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#Conversation

Upgrading Controls

weblogic.jws.WLHttpTransport

javax.jws.soap.SOAPBinding

Associating a Service Control with a WSDL

While version 8.1 allowed a service control to not be associated with a WSDL, the control must be associated with a WSDL in order for it to
upgrade successfully.

You can associate the WSDL with the service control in WebLogic Workshop 8.1 before you upgrade your application. The easiest way to do
this is by regenerating the Service control from the WSDL. In the Application tab, right-click the WSDL, then click Generate Service Control.

You can also associate the WSDL manually by pasting it into the Service control. Open the Service control in Source View, scroll to the end of
the file and paste the WSDL's contents as the value of a @common:define annotation after all other code. Note in the following example that
the value attribute encloses its value in double colons, and that the Javadoc comment continues after it.

/** @common:define name="MyServiceWsdl" value::
 ... WSDL contents ...
* ::
*/

After adding the WSDL, add a @jc:wsdl annotation to the control declaration as follows:

/**
 * <other annotations>
 * @jc:wsdl file="#MyServiceWsdl"
 */
public interface MyServiceControl extends ControlExtension, ServiceControl

Note that the value of the file attribute is the same as the value of the @common:define name attribute, but with a # sign prepended.

Upgrading Service Controls that are Based on an Abstract WSDL

In version 8.1 it was possible to generate a service control from an abstract WSDL — that is, from a WSDL with no service definition. You
could then configure the endpoint to call or listen on programmatically or by using annotations. However, WebLogic Server version 9.2 does
not support abstract WSDLs. As a result, Workshop for WebLogic's upgrade tools are unable to upgrade a service control with the necessary
annotations, leaving compiler errors in upgraded code. Likewise, if you try to generate a service control from an abstract WSDL in 9.x, you
will receive an error stating that a service is required.

One workaround is to add a <service> definition into the WSDL before using upgrade tools. That added entry will not be used in upgraded
code because the endpoints will be taken from the annotations instead.

Replacing Service Control Methods getEndPoint and setEndPoint

The ServiceControl.getEndPoint() and ServiceControl.setEndPoint(URL) methods are deprecated in version 9.2 and may be removed
in a future version. New code requiring this kind of API should use ServiceControl.getEndpointAddress() and ServiceControl.
setEndpointAddress(String), respectively.

Note that a URL instance (as used in the version 8.1 methods) isn’t required in order to support the most common usage for these methods;
a String instance suffices. The get* method is useful in debugging, providing a way to retrieve and log the endpoint location. The set*
method is useful for dynamically configuring the endpoint location at run time, such as when the destination is on another server/cluster.

Configuring Run-Time Message-Level Security Via the Service Control

Due to changes in the web services security model, the means for specifying security characteristics through the version 9.2 service control
differs from version 8.1. In version 8.1, you specified both security policies and values in a WebLogic Workshop WSSE policy file. In version
9.2, the means for specifying characteristics for these two aspects of security has been split into multiple locations.

Briefly, the model for specifying aspects of security in the version 9.2 service control is as follows:

● Security policies -- that is, the descriptions of what can be allowed -- are specified in either of the following ways:

❍ By associating a WS-Policy file with the service control via the @weblogic.jws.Policy annotation.

❍ By generating the service control from a WSDL that is aware of the policy.

● Security values -- that is, the descriptions of how security should be handled based on policies -- are specified in one of the following

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingJavaControls.html (4 of 10)12/7/2006 11:19:04 AM

http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WLHttpTransport
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#javax_SOAPBinding

Upgrading Controls

ways:

❍ By using a credential mapper. (Note that when using usertoken in the credential mapper, each user must be explicitly mapped to a
remote user; you can't specify group-level mappings.)

❍ By using the following methods exposed by the service control itself, as described in the ServiceControl reference:

■ setUsername(String username)

■ setPassword(String password)

■ setMessageUsername(String username)

■ setMessagePassword(String password)

■ setClientMessageCert(String alias, String password)

■ setServerMessageCert(X509Certificate cert)

Repairing Service Control JMS URL After Upgrade

When upgrading a service control, upgrade tools do not correctly upgrade a JMS URL specified in a @jc:location annotation. You will need to
manually edit the URL. For example, compare the following URLs from version 8.1 and its upgraded counterpart:

Version 8.1

@jc:location jms-url="jms://localhost:7001/weblogic.jws.jms.QueueConnectionFactory/jws.queue?URI=/services/MyService.jws&java.
naming.factory.initial=com.myco.jndi.factory"

Version 9.2

@ServiceControl.Location(urls = {
 "jms://localhost:7001/services/MyService.jws&java.naming.factory.initial=com.myco.jndi.factory?URI=jws.queue,FACTORY=weblogic.jws.
jms.QueueConnectionFactory"
})

To fully upgrade the URL, make the following edits:

● If the JMS URL in your version 8.1 service control did not specify a connection factory, remove the FACTORY parameter from the
upgraded URL. (In version 8.1, the factory was typically specified in the jws-config.properties file.) This will prompt the control to use the
default factory or the factory specified for the domain. If your version 8.1 service control specified a connection factory, leave the
parameter in the upgraded URL, but be make the change described below.

● If your upgraded URL will specify a connection factory, be sure to separate the FACTORY query string parameter from the rest of the URL
with an ampersand (replacing the comma in the URL generated by upgrade tools).

After edits, your JMS URL might look like the following (if you elect to specify the connection factory):

@ServiceControl.Location(urls = {
 "jms://localhost:7001/services/MyService.jws&java.naming.factory.initial=com.myco.jndi.factory?URI=jws.queue&FACTORY=weblogic.jws.
jms.QueueConnectionFactory"
})

Upgrading EJB Control getJNDIName and setJNDIName Method Invocations

Differences from the getJNDIName and setJNDIName methods exposed from the version 8.1 EJB control will cause errors in upgraded code.
In version 8.1, these methods were exposed as EJBControl.getJNDIName and EJBControl.setJNDIName; in version 9.2, they are exposed
from a build-time-generated control bean class as getJndiName and setJndiName (note the case difference also).

You should be able to correct upgraded code by replacing the method invocations. For example, in version 8.1 you would have call these
methods from an instance of the control, as follows:

import mypackage.MyEJBControl;
...
private MyEJBControl ejbControl;

public String getEJBJNDIName()
{
 String jndiName = ejbControl.getJNDIName();
}

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingJavaControls.html (5 of 10)12/7/2006 11:19:04 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/ServiceControl.html

Upgrading Controls

In version 9.2 you will call the method from an instance of a control bean class for your EJB control. (Note that the control bean isn't
generated until you are able to successfully build the project.)

import mypackage.MyEJBControlBean;
...
private MyEJBControlBean ejbControlBean;

public String getEJBJNDIName()
{
 String jndiName = ejbControlBean.getJndiName()
}

Upgrading Security in EJB Controls

Due to the how the EJB control works (which differs from other kinds of controls), the upgrade tools do not automatically upgrade security
annotations used in an EJB control. You can work around this difference by manually editing the EJB control extension file to include the
needed methods and annotations.

Security annotations on controls are no longer supported at the class level. For controls that had security annotations at the class level, the
upgrader will copy the security annotation to each method defined in the control. However, in the case of the EJB control, there are no
methods defined directly in the control extension (the JCX file in version 8.1). Instead, the methods are inherited from the EJB home and
interface definitions. Because omitting these annotations creates a security gap, upgrade tools will generate an error for any EJB control with
security annotations.

To work around this difference, you can manually copy the EJB's methods into the control extension file and add the com.bea.control.
annotations.Security annotation to each method. It is important to remember that any subsequent change to the EJB itself (such as adding
new methods) may require updating the control extension to ensure that the security constraint formerly defined at the class level remains in
force.

The following template-style example shows the kind of changes to make:

/**
 * @common:security [attributes here]
 */
public class MyEjb extends EJBControl, MyHome, MyLocal [other types] {
 // Nothing; methods were derived from the home and interface definitions.
}

After upgrade, you should edit the upgraded control extension so that the methods are declared along with the corresponding version 9.2
annotation on them:

public class MyEjb extends EJBControl, MyHome, MyLocal [other types] {

 @Security [attributes here]
 void methodFromHome()
 @Security [attributes here]
 void methodFromBean()
}

Replacing JMS Control Receive Functionality

In version 9.x, a JMS control can't be used to receive messages. During upgrade, if version 8.1 @jc:jms annotations include attributes that
specify message receiving behavior, these attributes will be ignored. For example, the following version 8.1 annotation will be migrated to the
version 9.2 annotation that follows it.

Version 8.1

@jc:jms receive-type="topic" receive-jndi-name="jms.AccountUpdate"
 connection-factory-jndi-name="weblogic.jws.jms.QueueConnectionFactory"

Upgrade to version 9.2

@JMSControl.Destination(jndiConnectionFactory = "weblogic.jws.jms.QueueConnectionFactory")

Here are two suggestions for working around this in upgraded code:

If it’s possible to update the receiving application, then replacing the receiving application with a JWS that has a callback would make it
possible to replace the JMS control with a Service Control. If the API (between systems) included the use of JMS or user properties, then
those properties would have to be added to the definition of the message(s) or added as custom SOAP headers.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingJavaControls.html (6 of 10)12/7/2006 11:19:04 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/annotations/Security.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/annotations/Security.html

Upgrading Controls

If it’s not possible to update the receiving application, then an alternative approach is to add a Timer Control to the calling application and
use the Timer events to trigger polling for response messages. When a response message is present, the JMS message (and any relevant
properties) would be manipulated (as needed) to match the signature of the event method. This functionality could be encapsulated in a
custom control to minimize the impact on the calling application.

Upgrading JMS Control sendJMSMessage Method Invocations

Version 8.1 of the JMS control took a JMSControl.Message type as a parameter for its sendJMSMessage method; in version 9.2 the method
takes an instance of javax.jms.Message. For a full upgrade, you must change your code accordingly.

Note that in upgrading this code, which uses the @org.apache.beehive.controls.system.jms.JMSControl.Message annotation, you may see the
type ambiguity issue described in Resolving Ambiguity Related to Annotation Types. See that section for information on resolving the issue
with a fully-qualified type name.

Supporting Parameter Bindings for JMS Properties with the JMS Control

Upgrade tools do not fully upgrade JMS control support for binding control method parameters to JMS properties. In particular, the method
parameters themselves must be annotated but aren't. You can ensure support for these bindings by manually adding the required
annotations after upgrading your version 8.1 code.

In the following example, note that the accountID parameter is annotated with @JMSControl.Property to indicate which JMS property the
parameter should be bound to.

@JMSControl.Properties({
 @JMSControl.PropertyValue(name = "transactionType",
 value = "DEPOSIT")
})
public void deposit(
 AccountTransaction transaction,
 @JMSControl.Property(name="accountIdentifier") String accountID);

Changes to Support Database Control Row Set Functionality

The standard Beehive JdbcControl (org.apache.beehive.controls.JdbcControl) in version 9.2, which corresponds to the version 8.1 Database
control, does not support the version 8.1 "RowSet control" feature. To ensure that row set functionality is preserved during upgrade, the
Database control is upgraded to the backward compatible JdbcControl (com.bea.control.JdbcControl) provided by BEA.

If your upgraded application does not use the row set functionality, it is recommended that you update, after upgrading, from the backward
compatible control to the Beehive control. If your upgraded application does use the row set functionality, note that this functionality is now
represented by the JbcControl.SQLRowSet annotation's rowsetSchema attribute.

Note that when you insert a new JdbcControl, you'll get the Beehive control.

Replacing "All" Requests for Database Control Results

The version 8.1 database control supported getting all rows for a query by specifying "all" as a value for the @jc:sql array-max-length
attribute. The version 9.2 JDBC control does not support this value; instead, specify a numerical value. This change is not automatically made
by upgrade tools.

For example, you might make the following change:

Version 8.1: @jc:sql array-max-length="all" statement="SELECT * FROM Customers"

Version 9.2: @JdbcControl.SQL(arrayMaxLength = 1024, statement = "SELECT * FROM Customers")

Multiple Calls to TimerControl.start Method Have No Effect

In version 8.1 it was possible to call the timer control's start method multiple times, without error, to start the timer; however, the onTimeout
callbacks did not necessarily correspond to the separate calls to the start method. The version 9.2 timer control simplifies the API by
disallowing multiple calls to the start method. Calls to the start method when the timer control is still running will have no effect.

Upgrading Exception Handling in Control Event Handlers

In version 8.1, control event handlers (known in that version as "callback handlers") could throw exceptions of any type. In version 9.2, if the
event handler throws the caught exception, it must now throw a proper subset of the throws clause declared for the control EventSet method.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingJavaControls.html (7 of 10)12/7/2006 11:19:04 AM

http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/apidocs/javadoc/index.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/navDatabaseControl.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/navDatabaseControl.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/conRowSetControl.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/JdbcControl.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/JdbcControl.SQLRowSet.html#rowsetSchema()

Upgrading Controls

Your event handler code can work around the version 9.2 requirement by modifying event handler exception handling after you have
upgraded your application. Here are two suggestions:

● Add the throws clause your event handler is throwing to the EventSet event method. You will also need to add a corresponding try/catch
block to code that invokes the event method.

● Remove the throws clause from the event handler code and implement another way to handle exceptions generated from the event.

Replacing Calls to Unsupported ControlException.getNestedException Method

The version 8.1 com.bea.control.ControlException featured a getNestedException method that is not included on its Beehive counterpart, org.
apache.beehive.controls.api.ControlException. Code that calls this method will represent a compilation error after upgrade. Because this
method merely delegated to the getCause method of the Throwable class — which the Beehive ControlException class extends — working
around this change is as simple as changing the getNestedException call to getCause.

Upgrading Custom Controls Featuring Custom Properties

Version 8.1 custom control annotation definitions are not upgraded to version 9.2. The means for defining annotations is based on the Java 5
annotations model. To upgrade controls written for version 8.1, you must rewrite the annotations definition in keeping with the new model.

For more information on upgrading your custom annotations, take a look at the Apache Beehive source code for its system controls. These
provide annotations that use the new model.

For information on how the control context APIs have changed from version 8.1, see Handling Context API Changes.

Upgrading Message Buffering in Custom Controls

In version 8.1 you could apply the common:message-buffer tag to a custom control's interface or implementation code. In version 9.2 this
annotation's counterpart, com.bea.control.annotations.MessageBuffer, is supported only in the control interface code. To work around this
change, you should remove the annotation from implementation code before upgrading the application.

Handling Context API Changes

Version 8.1 provided context APIs through which components such as web services (in version 8.1 JWS files) and custom controls could
interact with their runtime environment. The following provides an overview of how support for these APIs has (or hasn't) been migrated to
version 9.2.

Web Service Context Changes

In general, the role played by the com.bea.control.JwsContext interface now belongs to weblogic.wsee.jws.JwsContext, used in conjunction
with the weblogic.jws.Context annotation (both are described on the edocs web site).

However, some of the version 8.1 APIs were deprecated and are unavailable in version 9.2. Examples include callback-oriented methods on
com.bea.control.JwsContext such as getCallbackLocation, getCallbackPassword, and others. For counterparts to these methods useful in
version 9.2, see weblogic.wsee.jws.CallbackInterface. For example, you can replace the getCallbackLocation method with the
CallbackInterface.getEndpointAddress method.

Control Context Changes

Changes brought by the Apache Beehive control model to version 9.2 have meant that several APIs exposed by the version 8.1 control
context classes are either exposed in different ways or are no longer relevant and so not available. Note that in many cases the lack of a
workaround is due to the fact the Beehive model streamlines a control's role for interacting with aspects of its container's environment. In
particular, conversation-related methods are no longer supported within a control.

The following table lists the version 8.1 control context-related classes and methods along with their version 9.2 counterparts, if any.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingJavaControls.html (8 of 10)12/7/2006 11:19:04 AM

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/java-class/com/bea/control/ControlException.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/ControlException.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/ControlException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Throwable.html#getCause()
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/message-buffer.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/annotations/MessageBuffer.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/wsee/jws/JwsContext.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html
http://edocs.bea.com/wls/docs92/javadocs/weblogic/wsee/jws/CallbackInterface.html

Upgrading Controls

Version 8.1 Method Version 9.2 Counterpart
Context
finishConversation() : void No workaround.
getCallerPrincipal() : Principal See com.bea.control.util.SecurityHelper.getCallerPrincipal().
getCurrentAge() : long No workaround.
getCurrentIdleTime() : long No workaround.
getLogger(String name) :
Logger

Use logging services provided with WebLogic Server. For more information, see Understanding WebLogic
Logging Services and Configuring WebLogic Logging Services.

getMaxAge() : long No workaround.
getMaxIdleTime() : long No workaround.
getService() : ServiceHandle No workaround.
isCallerInRole(String role) :
boolean

See com.bea.control.util.SecurityHelper.isCallerInRole().

isFinished() : boolean No workaround.
resetIdleTime() : void No workaround.
setMaxAge(Date date) : void No workaround.
setMaxAge(String duration) :
void

No workaround.

setMaxIdleTime(long) : void No workaround.
setMaxIdleTime(String
duraction) : void

No workaround.

Context.Callback
onAgeTimeout(long age) : void No workaround.
onAsyncFailure(String
methodName, Object[] args) :
void

No workaround.

onCreate() : void See ControlBeanContext.LifeCycle.onCreate()
onException(Exception e,
String methodName, Object[]
args) : void

No workaround.

onFinish(boolean expired) :
void

No workaround.

onIdleTimeout(long time) :
void

No workaround.

ControlContext
cancelEvents(String
eventName) : void

No workaround.

getCallbackInterface() : Class You can use the Java reflection API (java.lang.reflect) to retrieve the callback interface. Here's a brief
example:

Class controlInterface = context.getControlInterface();
Class callbackInterface = null;
for(Class c : controlInterface.getDeclaredClasses())
{
 if("Callback".equals(c.getSimpleName()) && c.getAnnotation(EventSet.class) != null)
 {
 callbackInterface = c;
 System.out.println("Callback Interface: " + c.getName());
 }
}

getControlAttribute(String
tagName, String attrName) :
String

See ControlBeanContext.getControlPropertySet(Class<T> propSet)

getControlAttributes(String
tagName) : List

No counterpart. The version 9.2 annotation model is based on JSR175, which doesn't support mulitiple
attributes of the same name on an annotation. To work around this change, redesign your annotation so
that it is a single annotation that can contain an array of annotations with the attribute that used to be
repeated. For example, with the Beehive JMS control you can specify multiple property values by using
multiple @JMSControl.PropertyValue annotations within a @JMSControl.Properties annotation:

@JMSControl.Properties({
 @JMSControl.PropertyValue(name="Property1", value="SomeValue")
 @JMSControl.PropertyValue(name="Property2", value="{arg2}")
})
public void sendAMessage(String arg1, String arg2)

Access to the property values would be through the JMSControl.Properties annotation rather than a
context API.

getControlInterface() : Class See ControlBeanContext.getControlInterface()
getMethodArgument(String
argName) : Object

Use Java reflection (see java.lang.reflect at the Sun web site).

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingJavaControls.html (9 of 10)12/7/2006 11:19:04 AM

http://e-docs.bea.com/wls/docs92/logging/logging_services.html
http://e-docs.bea.com/wls/docs92/logging/logging_services.html
http://e-docs.bea.com/wls/docs92/logging/config_logs.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/context/ControlBeanContext.LifeCycle.html#onCreate()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/package-summary.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/context/ControlBeanContext.html#getControlPropertySet(java.lang.Class)
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/context/ControlBeanContext.html#getControlInterface()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/package-summary.html

Upgrading Controls

getMethodArgumentNames() :
String[]

See the Beehive method ControlBean.getParameterNames(Method method).

getMethodAttribute(String
tagName, String attrName) :
String

See ControlBeanContext.getMethodPropertySet(Method m, Class<Annotation> propSet)

getMethodAttributes(String
tagName) : List

No counterpart. The version 9.2 annotation model is based on JSR175, which doesn't support mulitiple
attributes of the same name on an annotation. To work around this change, redesign your annotation so
that it is a single annotation that can contain an array of annotations with the attribute that used to be
repeated. For example, with the Beehive JMS control you can specify multiple property values by using
multiple @JMSControl.PropertyValue annotations within a @JMSControl.Properties annotation:

@JMSControl.Properties({
 @JMSControl.PropertyValue(name="Property1", value="SomeValue")
 @JMSControl.PropertyValue(name="Property2", value="{arg2}")
})
public void sendAMessage(String arg1, String arg2)

Access to the property values would be through the JMSControl.Properties annotation rather than a
context API.

raiseEvent() : Object See the workaround for the sendEvent method below. A workaround for raiseEvent would involve
executing similar code in the event handler for the event that should be raised (forwarded to the client).
The code would find the current event name and arguments and forward it to the client by invoking the
method through reflection.

scheduleEvent(String
eventName, Object[]
eventArgs, long time, boolean
ignoreIfFinished) : void

See the workaround for the sendEvent method below. A workaround for scheduleEvent would involve
executing similar code in the onTimeout event handler for a timer control.

sendEvent(String eventName,
Object args[]) : Object

You can work around the absence of sendEvent with the code below. Compare the following two code
snippets.

Version 8.1

context.sendEvent("mycallback", new String[]{"Hi from the callback (sendEvent)"});

Version 9.2

try {
 Method eventMethod =
 callback.getClass().getMethod("mycallback", new Class[] { String.class });
 if (eventMethod != null) {
 eventMethod.invoke(callback, new Object[]{"Hi from the callback (invoke)"});
 }
}
} catch (Exception e) {
 System.err.println("Exception trying to 'sendEvent': " + e.getMessage());
}

ControlContext.Callback
onAcquire() : void See ResourceContext.ResourceEvents.onAcquire()
onRelease() : void See ResourceContext.ResourceEvents.onRelease()
onReset() : void No workaround.

Related Topics

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingJavaControls.html (10 of 10)12/7/2006 11:19:04 AM

http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/runtime/bean/ControlBean.html#onCreate()
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/context/ControlBeanContext.html#getMethodPropertySet(java.lang.reflect.Method,%20java.lang.Class)
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/context/ResourceContext.ResourceEvents.html#onAcquire()
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/context/ResourceContext.ResourceEvents.html#onRelease()

Upgrading 8.1 Web Services

Upgrading Web Services

This topic gives more detail about upgrade changes noted for web services.

For a more complete list of changes affecting applications upgraded from version 8.1, see Changes During Upgrade from
WebLogic Workshop 8.1 to Version 9.2.

Deprecated UseWLW81BindingTypes and WLWRollbackOnCheckedException
Annotations are Added to Upgraded Code

Supported but deprecated. Upgraded web service and Service control code will include the @UseWLW81BindingTypes and/
or @WLWRollbackOnCheckedException annotations applied at the class level. Even though these annotations are
deprecated, they are required in order to support clients that used the version 8.1 code.

Upgrade Changes for Web Services That Combine Stateful and Stateless
Operations

Supported but deprecated. In version 9.x stateless operations must be marked with the NONE phase constant. During
upgrade, upgrade tools will ensure that all operations are legal by adding an annotation to the version 8.1 stateless
operations so that they are marked with @Conversation(value = Conversation.Phase.NONE).

Note: The NONE phase constant is deprecated, included for backward compatibility only. To ensure that your
web services functionality is supported in future releases, you should plan to rewrite the service so that
stateless and stateful functionality is placed into separate web services.

Version 8.1. For example, the following version 8.1 snippet shows a stateful operation preceding a stateless operation.

/**
 * @common:operation
 * @jws:conversation phase="start"
 */
public void startShopping(int customerId)
{
 ... stateful ...
}

// Other stateful operations, including a FINISH operation.

/**
 * @common:operation
 */
public String buyWithOneClick(int customerId)
{
 ... stateless ...
}

Version 9.2. When upgraded, this would result in something like the following:

@Conversation(value = Conversation.Phase.START)
@WebMethod()
@WebResult(name = "startShoppingResult")
public void startShopping(int customerId)
{
 ...
}

// Other stateful operations, including a FINISH operation.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (1 of 11)12/7/2006 11:19:05 AM

Upgrading 8.1 Web Services

@Conversation(value = Conversation.Phase.NONE)
@WebMethod()
@WebResult(name = "noPhaseResult")
public String butWithOneClick(int customerId)
{
 ...
}

Ensuring START and FINISH Methods for Conversations

In version 8.1 it was possible to compile a "conversational" web service that did not have START or FINISH operations. In
other words, you could annotate the web service class as conversational (setting, for example, the annotation's maxAge
attribute) but not annotate any of the web service's operations with conversation phase attributes. In version 9.2 a
conversational web service must have both a START and FINISH operation in order to compile.

Setting Conversation Phase

In version 8.1, you can set conversation phase by opening the web service in Design view, then selecting operations and
setting their phase attribute each in turn. In version 9.2, open the web service source code and place a cursor at the
operation whose phase attribute you want to set, then locate and set the Conversation value in the Annotations view. You
can also apply the annotation in source, as shown here for a START method:

@WebMethod()
@Conversation(Conversation.Phase.START)
public void startConversation()
{

}

Multiple SOAP Versions are Not Supported for Bindings Defined in a Web Service

Unlike version 8.1, version 9.x doesn't support using multiple SOAP versions for bindings defined in a web service. When
upgrading, you'll need to manually edit any web services that use more than one SOAP version so that they use only one.

Upgrading from Version 8.1 Implementation of SOAP 1.2

Version 8.1 included a SOAP 1.2 implementation that was based on a working draft of the SOAP 1.2 specification. The
version 9.2 implementation is based on the final version of the specification, and so differs from the older
implementation. After you upgrade a web service that uses the version 8.1 SOAP 1.2 implementation, the service's
clients will no longer be able to use it.

To ensure compatibility for clients of a SOAP 1.2 web service you created with version 8.1, you should rebuild the client
using a WSDL generated from an upgraded (version 9.2) version of the web service. In version 9.2, you can generate a
WSDL by right-clicking the web service file in Package Explorer view, then clicking Generate WSDL.

Details: Non-SOAP XML Message Format Over HTTP or JMS is Not Supported

If you have version 8.1 web services that use a non-SOAP XML format over HTTP or JMS, you must change your web
service on version 9.x so that it either uses the SOAP protocol or some alternative. In other words, version 9.2 web
services do not support message formats that do not include SOAP headers.

In version 8.1, the @jws:protocol annotation supported the following attributes and values:

● @jws:protocol http-xml="true" — Indicated that the operation or web service supported receiving XML messages
over HTTP, without SOAP headers.

● @jws:protocol jms-xml="true" — Indicated that the operation or web service supported receiving XML messages
over the Java Message Service (JMS), without SOAP headers.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (2 of 11)12/7/2006 11:19:05 AM

Upgrading 8.1 Web Services

These attributes and values have no counterparts in version 9.2. If you upgrade to version 9.2, upgrade tools will simply
ignore a protocol setting that isn't supported.

Details: form-get and form-post Message Formats are Not Supported to Receive
Data

Version 9.x doesn't support using the form-get and form-post message formats to receive messages sent from an HTML
form. When upgrading web services that use these formats, you'll need to use another method for receiving data sent
from a form in a web browser.

In other words, version 9.2 web services do not support message formats that do not include SOAP headers.

In version 8.1, the @jws:protocol annotation supported the following attributes and values:

● @jws:protocol form-get="true" — Indicated that the operation or web service supported receiving HTTP GET
requests.

● @jws:protocol form-post="true" — Indicated that the operation or web service supported receiving HTTP POST
requests.

These attributes have no counterparts in version 9.2 and there are no suggested workarounds. If you upgrade to version
9.2, upgrade tools will simply ignore a protocol setting that isn't supported.

Upgrade Changes for Multiple Protocols in a Web Service

While version 9.x supports multiple protocols at the web service level, it does not continue the version 8.1 support for
protocols set at the operation level. For example, in version 8.1 the following annotation was supported on a web service
operation:

@jws:protocol jms-soap="true"
public void myOperation()

During upgrade, this annotation will be interpreted as a desire to support web service invocations over JMS. Your
upgraded code will feature an annotation at the web service level, but not at the operation level:

@SOAPBinding(style = SOAPBinding.Style.DOCUMENT,
 use = SOAPBinding.Use.LITERAL,
 parameterStyle = SOAPBinding.ParameterStyle.WRAPPED)
@WLJmsTransport(queue = "jws.queue",
 serviceUri = "myservices/MyWebService.jws")
@WebService(serviceName = "MyWebService",
 targetNamespace = "http://www.openuri.org/")
public class MyWebService
{
 ...
}

If supporting multiple protocols for different operations is a requirement, consider splitting your web services code into
multiple web services, each with its own protocol support. For example, operations requiring JMS support would go into a
web service designed for that purpose, while operations to be invoked over HTTP would go into another web service.

Resolving Namespace Differences from Mixed Operations with Document and
RPC SOAP Bindings

If a version 8.1 web service includes one or more operations that use the RPC SOAP binding and one or more operations
that use the document SOAP binding, then after upgrade types generated for those operations will be placed into
different namespaces. This will be different from the version 8.1 web service itself, in which the types were in the same
namespace. A WSDL generated from the upgraded web service will differ from the version 8.1-generated WSDL.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (3 of 11)12/7/2006 11:19:05 AM

Upgrading 8.1 Web Services

Note that this issue will probably only arise for web services that were written from scratch in Java, rather than
generated from an existing WSDL file. Also, this may not be an issue at all if it is not important that your web service
interface honor a WSDL.

If you need to honor a WSDL contract, you can work around this issue by generating a WSDL in version 8.1, then
creating a new web service in version 9 .2 from that WSDL. You can then copy and paste the implementation code from
the version 8.1 service to the version 9.2 service.

Upgrading Web Services or Service Controls Whose WSDLs Define Multiple
Services

In version 8.1 it was possible to have a web service (JWS) or Service control whose WSDL defined multiple services. The
web service or control would represent only one of these services. When upgrading such code to version 9.2 upgrade will
fail. To ensure that upgrade succeeds for this code, you should edit the WSDL so that it defines only the service that is
represented by the JWS or Service control.

Upgrading WSDLs with Multiple <wsdl:import> Statements

Even though it was supported for WSDLs associated with version 8.1 service controls, in version 9.2 multiple occurrences
of the <wsdl:import> element is not supported in the same WSDL. For example, you might have used one import to get
WSDL portions of the WSDL and another import to get XSD portions for needed types.

You can work around this change by, before upgrading, including only one <wsdl:import> statement whose namespace
attribute value is the namespace of the imported WSDL. The WSDL and XSD portions will both be imported with the
single statement.

Ensuring Correct Handling of xs:anyType in Messages

If you created a version 8.1 web service by generating it from a WSDL that specified xs:anyType instead of xs:any, the
web service will expect and send incorrect XML payloads after upgrade to version 9.2. You can ensure correct handling of
xs:anyType by applying the following annotation to the web service at the class level:

@WildcardBindings(
 @WildcardBinding(className="org.apache.xmlbeans.XmlObject",
 binding=WildcardParticle.ANYTYPE)
)

Updating WSDLs from 1999 Namespace to 2001

Version 8.1 supported using types in the 1999 schema namespace for Service controls and web services generated from
WSDLs that used the types. Because version 9.2 does not support types in this namespace, you will need to manually
migrate the WSDL to the 2001 namespace. In simple cases, this will mean changing the following URIs:

http://www.w3.org/1999/XMLSchema
http://www.w3.org/1999/XMLSchema-instance

... to these:

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

In more complex WSDLs, you will need to change parts of the WSDL to migrate the types themselves. Keep in mind that
these changes may break clients that communicate with your web service.

Supporting Mismatch Between Operation Parameter Names and Names in WSDL

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (4 of 11)12/7/2006 11:19:06 AM

Upgrading 8.1 Web Services

After upgrading a web service in which one or more method parameter names do not match their corresponding names
in the WSDL from which the web service was created, you will need to add a @WebParam annotation to each parameter.

You might have this situation if a parameter name was modified after generating the web service, or if the WSDL name is
not valid as a Java identifier. To work around this issue, add a @WebParam annotation with the matching WSDL name to
each parameter in the JWS operation.

Resolving Deployment Error for Same-Named Web Services

Due to a difference in the way versions 8.1 and 9.2 generate the default targetNamespace value for web services, you
may enounter a deployment error if you have two or more web services with the same class name in an application. For
web services in version 9.2, WebLogic Server uses the fully-qualified port name — which includes the web service's
targetNamespace value — to bind resources it uses internally. As a result, the port name must be unique within an
application.

In version 8.1, the targetNamespace value defaulted to "http://www.openuri.org/". Because it is the default, this
qualifying value could potentially be the same for multiple web services in the application. As a result, after upgrading to
version 9.2, if there are two or more web services with the same simple class name (name without package) and this
default value, a conflict can occur that results in a deployment error. The error will take the form "<web_service_name>
is already bound."

If you encounter this error you can work around it by setting the value of the @java.jws.WebService annotation's name
and serviceName attributes. This changes the name values within the WSDL portType and port elements. Even so, it
should not affect the web service's interaction with its version 8.1 clients.

Note that for web services created with version 9.2, the default targetNamespace value is based on the web service
package name rather than the same value for all. You can specify another value with the @WebService annotation's
targetNamespace attribute.

Upgrading Security from from WS-Security to WS-Policy

Upgrade required. In version 8.1, web service message-level security is managed using WS-Security (WSSE) policy files.
In version 9.2 you should use Web Services Policy Framework (WS-Policy). Workshop for WebLogic upgrade tools do not
perform this aspect of upgrade. This section describes the key differences between the version 8.1 and 9.2 models.

● The security information maintained in WSSE policy files has been separated into two places in the WS-Policy
framework. Whereas WSSE stored both the "what" (the kinds security policies in effect) and the "how" (how those
security policies are evaluated), these have been split for both the service control and the web service it
communicates with.

● This split of responsibilities is handled differently in the web service itself than it is in a service control that
communicates with the web service from client code.

❍ In the web service, use @weblogic.jws.Policy annotations to specify the policies that should be used. For specific
security configuration needs, use the weblogic.jws.security.WssConfiguration annotation to specify a named
configuration managed through the WebLogic Server console. For example, you might need to create a named
configuration that includes information needed to handle encryption and digital signatures. See Create a Web
Service security configuration for information on creating the named configuration.

❍ In the service control, there are two options.

■ A service control generated from a WSDL that contains the security configuration information should have the
information required to communicate successfully with the web service. For example, for an upgraded web
service whose security is fully configured on WebLogic Server, retrieving the WSDL with <servicepath>?WSDL
should produce a WSDL that has the required information.

■ A service control that has not been generated from a fully-configured web service's WSDL can be annotated to
support security configuration settings. This is a case in which you generate a service control in order to test
and debug your application's functionality (say, with a test version of the web service) before taking the step
of adding security constraints. To add security constraints, you annotate the service control with
@ServiceControl.Policy annotations that specify XML fragments containing security configuration information.
You specify run-time values in one of two ways, as described in Configuring Run-Time Message-Level Security

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (5 of 11)12/7/2006 11:19:06 AM

http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebService
http://edocs.bea.com/wls/docs91/webserv/annotations.html#1050414
http://edocs.bea.com/wls/docs91/webserv/annotations.html#1072758
http://edocs.bea.com/wls/docs91/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://edocs.bea.com/wls/docs91/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html

Upgrading 8.1 Web Services

Via the Service Control for more information.

❍ Values from a WSSE policy file map approximately into the WS-Policy framework.

8.1 WSSE File Element 9.2 Annotation Direction
wsSecurityIn/token @Policy(uri="policy:Auth.xml,

direction=Policy.Direction.inbound)
Inbound

wsSecurityIn/encryptionRequired @Policy(uri="policy:Encrypt.xml") Both
wsSecurityOut/encryption @Policy(uri="policy:Encrypt.xml")

wsSecurityIn/signatureRequired @Policy(uri="policy:Sign.xml") Both
wsSecurityOut/signatureKey @Policy(uri="policy:Sign.xml")

wsSecurityOut/additionalSignedElements Define a custom policy file and link to it

with the @Policy annotation.
Both

wsSecurityOut/additionalEncryptedElements Define a custom policy file and link to it
with the @Policy annotation.

Both

keystore Define a named configuration and link to

it with the @WssConfiguration annotation.
N/A

Resolving Issue of Unmapped Entries in web.xml

In the course of upgrading your version 8.1 applications, you might find that some of your application's security-related
characteristics differ between its behavior on the domain shipped with Workshop for WebLogic and the upgraded domain
to which you redeploy it. This is because the "new" 9.x domain included with Workshop for WebLogic is not backward
compatible, whereas the upgraded domain to which you deploy your upgraded application is (because it has been
upgraded).

Applications on new domains default to having Combined Role Mapping enabled. This causes roles with no matching entry
in weblogic.xml to have no (an empty) mapping.

If you had unmapped entries in web.xml, you will have to do one of the following:

● Add an explicit mapping(s) in weblogic.xml

● Disable the Combined Role Mapping feature (see the documentation referenced below).

You can disable combined role mapping by setting the <combined-role-mapping> property of the realm:

security-configuration>
 <name>workshop</name>
 <realm>
 ...
 <sec:combined-role-mapping-enabled>false</sec:combined-role-mapping-enabled>
 <sec:name>myrealm</sec:name>
 </realm>
 <default-realm>myrealm</default-realm>
</security-configuration>

For more information on the combined role mapping setting and how it impacts security, see Understanding the
Combined Role Mapping Enabled Setting.

Upgrading Reliable Messaging Support — Basic Instructions

Workshop for WebLogic upgrade tools do not upgrade reliable messaging support (such as the @jws:reliable annotation)
from version 8.1 to version 9.2. As noted in the version 8.1 documentation, that version's reliable messaging (RM)
support was very limited and was not based on a specification that would be supported in future versions. This section
provides high level suggestions for adding reliable messaging support to a web service in version 9.2.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (6 of 11)12/7/2006 11:19:06 AM

http://e-docs.bea.com/wls/docs92/secwlres/secejbwar.html#CombinedRoleMappingEnabled
http://e-docs.bea.com/wls/docs92/secwlres/secejbwar.html#CombinedRoleMappingEnabled

Upgrading 8.1 Web Services

In version 8.1, you added support for reliable messaging in part by using annotations such as @jws:reliable and @jc:
reliable. For example, at the web service class level you indicated the message time to live, while at the operation level
you indicated that the operation could be invoked reliably. Here's an example:

/**
 * @jws:reliable message-time-to-live="600 seconds"
 */
public class ReliableService implements com.bea.jws.WebService
{
 static final long serialVersionUID = 1L;

 /**
 * @common:operation
 * @jws:reliable enable="true"
 * @jws:protocol form-get="false" form-post="false"
 */
 public void doSomething()
 {
 ...method body...
 }
...
}

Version 9.2 annotations related to reliable messaging are not automatically added to upgraded code. Instead, you can
manually add version 9.2 reliable messaging support using the following high-level steps. Note that you should consider
these a minimum list of changes; for a more complete picture, see Using Web Service Reliable Messaging on the edocs
web site.

1. Use Workshop for WebLogic tools to upgrade your projects from WebLogic Workshop version 8.1.

2. Create a WS-Policy XML file that describes the web services reliable messaging support. There are also default policy
files provided with WebLogic Server. For more information, see Use of WS-Policy Files for Web Service Reliable
Messaging Configuration on the edocs web site. Note that you can use the policy file to specify an "expiration" value
that corresponds to the "message-time-to-live" attribute of the @jws:reliable annotation.

3. Annotate the web service class with a @weblogic.jws.Policy annotation that references the policy file. For
information on this annotation, see Using the @Policy Annotation on the edocs web site.

4. Annotate the reliable method with the @javax.jws.Oneway annotation. All "reliable" operations must be "Oneway"
when not using the WebLogic Server asynchronous request-response feature. For more information, see Using the
@Oneway Annotation and Invoking a Web Service Using Asynchronous Request-Response on the edocs web site.

Note: For an overview of options related to asynchrony in web services, see Using Events and Callbacks to
Enable Long-Running Operations.

Here's a very simple example of how the upgraded web service might look:

@Transactional(true)
@UseWLW81BindingTypes()
@WLHttpTransport(serviceUri = "reliable/ReliableService.jws")
@WLWRollbackOnCheckedException()
@WebService(serviceName = "ReliableService",
 targetNamespace = "http://www.openuri.org/")
@javax.jws.soap.SOAPBinding(style = javax.jws.soap.SOAPBinding.Style.DOCUMENT,
 use = javax.jws.soap.SOAPBinding.Use.LITERAL,
 parameterStyle = javax.jws.soap.SOAPBinding.ParameterStyle.WRAPPED)
@Policy(uri="ReliableServicePolicy.xml", direction=Policy.Direction.both, attachToWsdl=true)
public class ReliableService implements java.io.Serializable
{
 static final long serialVersionUID = 1L;

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (7 of 11)12/7/2006 11:19:06 AM

http://edocs.bea.com/wls/docs92/webserv/advanced.html#reliable_messaging
http://edocs.bea.com/wls/docs92/webserv/advanced.html#ws_policy
http://edocs.bea.com/wls/docs92/webserv/advanced.html#ws_policy
http://edocs.bea.com/wls/docs92/webserv/advanced.html#using_policy_annotation
http://edocs.bea.com/wls/docs92/webserv/advanced.html#using_oneway_annotation
http://edocs.bea.com/wls/docs92/webserv/advanced.html#using_oneway_annotation
http://edocs.bea.com/wls/docs92/webserv/advanced.html#async_req_res
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/async/callback/navUsingAsynchronyToEnableLongRunningOperations.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/async/callback/navUsingAsynchronyToEnableLongRunningOperations.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/async/callback/navUsingAsynchronyToEnableLongRunningOperations.html

Upgrading 8.1 Web Services

 @SOAPBinding(style = javax.jws.soap.SOAPBinding.Style.DOCUMENT,
 use = javax.jws.soap.SOAPBinding.Use.LITERAL,
 parameterStyle = javax.jws.soap.SOAPBinding.ParameterStyle.WRAPPED)
 @WebMethod()
 @Oneway()
 @WebResult(name = "doSomethingResult")
 public void doSomething()
 {
 ...
 }
 ...
}

5. Account for the fact that the version 9.2 service control does not provide the version 8.1 onDeliveryFailure callback
method. The onDeliveryFailure method was designed to provide notification that a reliable message could not be
delivered. To support this functionality in a web service upgraded to version 9.2, you can use the @weblogic.jws.
AsyncFailure annotation in conjunction with WebLogic Server’s asynchronous request-response feature.

Note: To support failure notification, you must migrate your code to the WebLogic Server asynchronous
request-response technology. For more information, see Invoking a Web Service Using Asynchronous Request-
Response on the edocs web site.

The basic outline of the client code would look something like the following.

@WebService
public class ClientService
{
 @Control()
 private ReliableServiceControl reliableServiceControl;

 @WebMethod()
 public void someMethod(String parm)
 {
 // Invoke the service control method.
 reliableServiceControl.doSomething(parm);
 }

 @AsyncFailure(target="reliableServiceControl", operation="doSomething")
 public void onDoSomethingFailure(AsyncPostCallContext apc, Throwable e)
 {
 // Error handling here
 }
}

6. Finally, you'll want to upgrade client service controls. To do so, you'll need a WSDL file representing the fully
upgraded web service. The WSDL must contain the policy information needed for reliable messaging. To get a WSDL
useful for this purpose, you can use a web browser to display the web service's WSDL using a URL of the following
form: <URL_of_deployed_web_service>?WSDL

With the WSDL in hand, you can do one of the following:

❍ Regenerate the service control from the new WSDL file.

❍ Add the @com.bea.control.ServiceControl.Policy annotation to the existing service control (at the class level) in
order to specify the policy file you created for the web service. Here's an example of policy information you
might get from the WSDL:

<s0:Policy s1:Id="ReliableServicePolicy.xml">
 <wsrm:RMAssertion xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm">
 <wsrm:InactivityTimeout Milliseconds="600000"/>
 <wsrm:AcknowledgementInterval Milliseconds="200"/>
 <wsrm:BaseRetransmissionInterval Milliseconds="3000"/>

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (8 of 11)12/7/2006 11:19:06 AM

http://e-docs.bea.com/wls/docs92/webserv/annotations.html#AsyncFailure
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#AsyncFailure
http://edocs.bea.com/wls/docs92/webserv/advanced.html#async_req_res
http://edocs.bea.com/wls/docs92/webserv/advanced.html#async_req_res
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/ServiceControl.Policy.html

Upgrading 8.1 Web Services

 <wsrm:ExponentialBackoff/>
 <beapolicy:Expires Expires="P1D" xmlns:beapolicy="http://www.bea.com/wsrm/policy"/>
 </wsrm:RMAssertion>
</s0:Policy>
<wsp:UsingPolicy n1:Required="true" xmlns:n1="http://schemas.xmlsoap.org/wsdl/"/>

For the annotation's uri attribute, specify the value in the <Policy> element's Id attribute. For the annotation's
direction attribute value, specify ServiceControl.Direction.both. Here's an example:

@ServiceControl.Policy(uri="ReliableServicePolicy.xml", direction=ServiceControl.Direction.both)
public interface ReliableServiceControl extends com.bea.control.ServiceControl

Alternative to Wrapper Classes for Handling SOAP Faults

Supported but deprecated. Version 8.1 provided wrapper classes through which you could control the content of an
outgoing SOAP fault, as well as APIs for retrieving content from an incoming SOAP fault. Code using this feature is
supported in code upgraded to version 9.2, but the feature is deprecated.

Note that since this feature is deprecated in this release, you should plan to find another solution for future releases, and
should not use this feature for new code. For example, consider using the javax.xml.rpc.soap.SOAPFaultException class
provided by JAX-RPC. For more information, see Throwing Exceptions in the WebLogic Server documentation on
developing web services.

Handlers Not Supported for Callbacks

In version 8.1 the @jc:handler and @jws:handler annotations included a callback attribute that specified handlers to
process SOAP messages associated with callbacks; version 9.2 does not include callback-specific handler support. For the
counterparts of these annotations in version 9.2, see Upgrading Annotations.

Upgrade Changes for Automatic Transaction Rollback

Supported but deprecated. In version 8.1, the runtime would roll back a container-managed transaction if a checked
exception was thrown from the application or runtime. In version 9.2, this behavior is supported with the @Transactional
and @WLWRollbackOnCheckedException() annotations added (by upgrade tools) to the web service source code.

General Steps for Replacing XQuery Maps

Version 9.x doesn't support XQuery maps, a version 8.1 feature through which you could use XQuery to reshape XML
messages entering and leaving a web service operation. As you might imagine, the shape of the WSDL on which the web
service's clients were built is defined in part by XQuery maps because the maps specify the types that map-annotated
operations expect to receive or send. With the map removed, expected types are almost certainly different, changing the
web service's interface, and causing client calls to fail. Note that this would also change the shape of a WSDL generated
from the web service; any other files, such as service controls, generated from a version 8.1 copy of that WSDL will no
longer match the web service itself.

Note: The lack of support for XQuery maps does not mean that XQuery itself is not supported. You can still
execute XQuery expressions using the XMLBeans API. For more information on upgrade changes impacting this
API, see Updating XQuery Use to Support Upgraded XQuery Implementation.

One workaround is to rewrite your web service's operations so that its post-upgrade WSDL matches the version 8.1
WSDL shape, but without XQuery maps. That way, clients calling your web service can rely on the interface contract
already established by the version 8.1 web service.

Here are the high-level steps to accomplish this.

1. In version 8.1 , generate a WSDL file from the version 8.1 web service.

❍ In WebLogic Workshop version 8.1, in the Application tab, right-click the JWS file, then click Generate WSDL File.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (9 of 11)12/7/2006 11:19:06 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/ServiceControl.Direction.html#both
http://e-docs.bea.com/wls/docs92/webserv/jws.html#exceptions

Upgrading 8.1 Web Services

2. In version 8.1, use the generated WSDL file to generate source code for a new web service that you will import into
your version 9.2 application. This should give you a web service whose operations send and receive XML messages
in the same shapes as the mapped operations, but without the maps.

1. In version 8.1, right-click the WSDL file you generated, then click Duplicate; this will prevent you from
overwriting the existing JWS file.

2. Right-click the duplicate WSDL file, then click Generate Web Service.

You'll receive a prompt asking whether you'd like to use XMLBeans types for methods of the web service. If you
select Yes, the IDE will create methods whose parameters are XMLBeans types to which parts of the incoming
message can be bound (this is essentially what the XQuery map was doing). If you select No, the IDE will
generate code for inner classes that can be used as parameter types.

You might find that keeping the XMLBeans types is a more reliable way to ensure that the XML shape required
by the operation remains valid after you upgrade the web service.

3. Using code from the original mapped-operation web service, implement the original service's logic in the newly-
generated mapless web service. As part of this process, test the new mapless web service with existing clients to
ensure that the old functionality is still present despite the absence of maps.

4. Use the upgrade tools to upgrade the version 8.1 application (including the mapless web service) to version 9.2.
This will do nearly all of the work to update the application (update types, annotations, project structure, and so
on).

5. Test the upgraded web service with existing clients.

Replacing the Use of java.util.Map as a Web Service Operation Return Type

Version 8.1 supported returning instances of java.util.Map from web service operations. The runtime provided a WebLogic
Workshop-specific serialization of the Map to and from XML. The schema for that serialization was included in the WSDL
for the Web Service. In version 9.2, java.util.Map instances can no longer be returned from web service operations.

Provide an application-defined type that supports the key/value features provided by java.util.Map. That type must
conform to JAX/RPC Java <-> XML serialization rules. If the application-defined type will contain subclasses of the type's
key or value type, then you must use the weblogic.jws.Types annotation to specify the types that could be contained at
run time. Web services (and their clients) that previously returned a java.util.Map will have to be manually updated to
use this new application-defined type.

Updating XQuery Use to Support Upgraded XQuery Implementation

Impacts: Code that uses XMLBeans and XQuery, including web services, controls, page flows, Enterprise JavaBeans

The older XQuery implementation is deprecated, but supported in this version for backward compatibility. Queries based
on the older implementation will be kept, but a special XmlOptions parameter will be added to specify that the old
implementation should be used.

Note: The older implementation is not automatically updated in JSP files. You must manually add the Path.
_forceXqrl2002ForXpathXQuery option to XQuery code in these files.

The following example shows how upgraded code would look with the XmlOptions parameter specifying the older XQuery
engine.

import org.apache.xmlbeans.impl.store.Path;
import org.apache.xmlbeans.XmlOptions;

String queryExpression =
 "for $e in $this/xq:employees/xq:employee " +
 "let $s := $e/xq:address/xq:state " +
 "where $s = 'WA' " +
 "return $e";

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (10 of 11)12/7/2006 11:19:06 AM

Upgrading 8.1 Web Services

try{
 XmlCursor resultCursor = empCursor.execQuery(m_namespaceDeclaration + queryExpression,
 (new XmlOptions()).put(Path._forceXqrl2002ForXpathXQuery));
 resultXML = resultCursor.getObject();
 resultCursor.dispose();
}catch(Exception e){
 System.out.println(e.getLocalizedMessage());
}

Also, you should begin to upgrade XQuery strings so that they conform with the standard supported in version 9.2. For
more information on both the old and the new standards, see the links in the following table:

Specification Used by Version 8.1 Specifications Used by Version 9.2
XQuery 1.0 and XPath 2.0 Functions and Operators XQuery 1.0 and XPath 2.0 Data Model
 XQuery 1.0: An XML Query Language

Version 9.0 and 9.1 WebLogic Server Web Services Might Need to Be Recompiled
for Deployment in Version 9.2

If you intend to deploy WebLogic Server web services compiled on version 9.0 or 9.1, you might need to be recompile
them before deploying on version 9.2. Recompilation is necessary if the web service code contains any of the following
annotations.

weblogic.jws.Conversation
weblogic.jws.Context
weblogic.jws.Callback
weblogic.jws.ServiceClient
org.apache.beehive.controls.api.bean.Control

Keeping Files in Sync in the Absence of IDE Support

The version 8.1 IDE included a set of features through which the IDE kept related files in sync. For example, after
generating a ServiceControl from a WSDL, changes to the WSDL would cause the IDE to automatically re-generate the
ServiceControl to match. This functionality is not supported in the version 9.2 IDE.

For the following cases, after changes to the "source" WSDL file, the generated file must be manually re-generated using
the context menu and the appropriate "Generate..." action:

● A ServiceControl is generated from a WSDL

● A Web Service is generated from a WSDL

Version 8.1 Clients are Generally Supported for Interop with Version 9.2 Web
Services

However, there will be cases in which version 8.1 clients are only supported for communication with version 9.2 that
were upgraded from version 8.1. For example, a version 9.2 web service that has operations annotated with @Oneway
results in a WSDL that is not supported in version 8.1.

Related Topics

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingWebServices.html (11 of 11)12/7/2006 11:19:06 AM

http://www.w3.org/TR/2002/WD-xquery-operators-20020816/
http://www.w3.org/TR/2004/WD-xpath-datamodel-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/

Upgrading Page Flows

Upgrading Page Flows

This topic gives more detail about upgrade changes noted for page flows.

For a more complete list of changes affecting applications upgraded from version 8.1, see Changes During Upgrade
from WebLogic Workshop 8.1 to Version 9.2.

Changes When Upgrading from Version 8.1 NetUI JSP Tags to Beehive NetUI
JSP Tags

When upgrading using upgrade tools, you'll have the option to choose to replace your version 8.1 NetUI JSP tags with
the Beehive NetUI JSP tags, which provide enhanced functionality over the version 8.1 tags. (The Beehive tags are the
default for new web projects in Workshop for WebLogic version 9.2.) The default behavior is not to replace version 8.1
tags with Beehive tags. Instead, by default version 8.1 tags are upgraded to a version of the 8.1 tags that is
compatible with a version 9.x server.

Note: A JSP page can use a combination of compatible 8.1 tags and Beehive tags. However, this is only
supported when the combination is due to an upgrade outcome in which some version 8.1 tags have no
Beehive counterparts.

As you might imagine, the decision you make about the tags will have a broad impact on the JSP portion of your
application. Before choosing, consider the following:

● In general, if you want to use the Beehive tags, you're likely to find that migrating to Beehive is best done as a
two-step process: upgrading to the compatible 8.1 tags, then migrating to the Beehive tags. This gives you an
opportunity to ensure that your upgraded application runs on a version 9.x server before migrating to Beehive
technology. Note, too, that you can later migrate portions of your application to Beehive as you revise your
application, creating new JSP pages or upgrading existing ones.

● If your application is in maintenance mode, consider not replacing version 8.1 tag with Beehive tags. Upgrading to
the compatible 8.1 tags (the default behavior) is likely to get your version 9.2 application up and running more
quickly.

● If your application is still in development, consider replacing version 8.1 tags with Beehive tags. You're likely to
find that the advantages of the enhanced Beehive tags are worth the effort of migrating fully to Beehive.

Tag Changes

If you choose to replace version 8.1 tags with Beehive tags during application upgrade, many of the version 8.1 tags
will be replaced with easily identifiable Beehive counterparts. There will be exceptions to this predictability, as the
following table describes.

Version 8.1 Tag Version 9.2 Tag
tree None; deprecated
grid None; deprecated
label span
choice None; deprecated
choiceMethod None; deprecated
repeater repeater
content None; deprecated
callControl None; deprecated
declareControl None; deprecated
visible None; deprecated
getNetuiTagName None; deprecated
anchor anchor

(Not migrated if the forward attribute is set.)

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingPageFlows.html (1 of 9)12/7/2006 11:19:07 AM

Upgrading Page Flows

imageAnchor imageAnchor
(Not migrated if the forward attribute is set.)

Attribute Changes

During upgrade some JSP tag attributes may be migrated to new attributes, or simply removed. The following table
describes possible changes.

Version 8.1 Tag Attribute Action
anchor id Removed if a tagId attribute is present; otherwise migrated to tagId.
anchor forward Tag is not migrated if this attribute is present.
anchor page Removed if an href attribute is present; otherwise migrated to href by

removing the initial '/'
bindingUpdateErrors id Removed
checkBoxGroup tagId Removed
form id Removed if a tagId attribute is present; otherwise migrated to tagId
form tabindex Removed
form name Change to beanName
form type Change to beanType
form scope Change to beanScope
image lowsrc Removed; netui:attribute tag added as a child of the image tag, for

example:

</netui:image>
 <netui:attribute name="lowsrc" value="blurryFoo.gif"/>
</netui:image>

image page Removed if a src attribute is present, otherwise migrate to src by
removing the initial '/'

image id Removed if a tagId attribute is present, otherwise migrate to tagId
imageAnchor lowsrc lowsrc attribute and netui:attribute tag added as a child of the image

tag, for example:

</netui:imageAnchor>
 <netui:attribute name="lowsrc" value="blurryFoo.gif"/>
</netui:imageAnchor>

imageAnchor scope Removed
imageAnchor forward Tag not migrated if this attribute is present.
imageAnchor page Removed if an href attribute is present; otherwise migrated to href by

removing the initial '/'
imageButton align Removed
imageButton height Removed
imageButton width Removed
imageButton hspace Removed
imageButton vspace Removed
imageButton id Removed if a tagId attribute is present; otherwise migrated to tagId
imageButton page Removed if a src attribute is present; otherwise migrated to src
label dataFormatas Removed
label id Removed if a tagId attribute is present; otherwise migrated to tagId
label tabIndex Removed
radioButtonGroup tagId
select onSelect Removed
select nullableTop Removed
selectOption id Removed if a tagId attribute is present; otherwise migrated to tagId
selectOption tabIndex Removed
scriptContainer scopeId Changed to idScope

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingPageFlows.html (2 of 9)12/7/2006 11:19:07 AM

Upgrading Page Flows

html scopeId Changed to idScope
error value Changed to key
error bundle Name migrated to "bundleName"
errors bundle Name migrated to "bundleName"
template:section visibility If the visibility attribute is present and it has a value, the value is

migrated to the visible attribute; otherwise if the visibility attribute is
not present, the visible attribute is migrated.

Upgrade Sets the Default Expression Language to a Backward-Compatible
Version

When upgrading an application, you'll be prompted to upgrade version 8.1 NetUI JSP tags to Beehive NetUI JSP tags.
Whether or not you choose to upgrade to Beehive, the default expression language in your upgraded application will
be a backward-compatible version, rather than the version used for new applications. This is because the backward-
compatible version is more permissive, allowing you to continue with your existing code until you are ready to upgrade
fully. If and when you choose to upgrade fully to the Beehive JSP tag technologies, you should change the default
expression language to the version that supports Beehive tags.

If you add Beehive JSP tags to your pages, they will use the Beehive version of the expression language. Until that
time, you should continue to use the backward-compatible expression language as the default. See Changing the
Default Expression Language Used by JSP Tags for more information.

Note: In general, you should regard the version 8.1 NetUI tags as deprecated; new code should use the
Beehive NetUI JSP tags.

Changing the Default Expression Language Used by JSP Tags

When you have fully upgraded your JSP pages so that they use the Beehive JSP tags, you should change the default
expression language from the backward-compatible version to the current version.

Note: Before making this change, you should be aware of code changes that might be required.

You can change the default expression language by editing the beehive-netui-config.xml file in your project. You'll find
that file at a path such as the following:

WORKSPACE_HOME\PROJECT_HOME\web\WEB-INF\beehive-netui-config.xml

Possible settings for default language include netuiel (for the JSP 2.0 expression language) and compat-netuiel (for
the version 8.1 NetUI expression language. In other words, to change to the default to the JSP 2.0 expression
language, change the file so that it includes the following:

<expression-languages>
 <default-language>netuiel</default-language>

</expression-languages>

Changing Code to Support the Expression Language in Beehive NetUI JSP Tags

If you choose to upgrade version 8.1 NetUI JSP tags to Beehive NetUI JSP tags, changes to your JSP code will include
expression changes to support the expression language used by the Beehive tags. The following describes changes
made by the tools during upgrade, as well as changes you might need to make to your own non-JSP code.

Expression Changes

The following changes are made to expressions during upgrade.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingPageFlows.html (3 of 9)12/7/2006 11:19:07 AM

Upgrading Page Flows

● Use of dataSource attributes is changed from dataSource="{actionForm.name}" to dataSource="actionForm.
name".

● Expressions of the form {expression} are changed to ${expression} (except for the dataSource attribute).

● Version 8.1 binding contexts are changed according to the following table:

8.1 Binding Context 9.2 Implicit Object Comment
url param Changed to the JSP 2.0 implicit object name
request requestScope Changed to the JSP 2.0 implicit object name
application applicationScope Changed to the JSP 2.0 implicit object name
session sessionScope Changed to the JSP 2.0 implicit object name
pageContext pageScope Changed to the JSP 2.0 implicit object name
actionForm actionForm
pageInput pageInput
container container
pageFlow pageFlow
globalApp globalApp
bundle bundle
 sharedFlow This is a new bindiing context.
 backing This is a new bindiing context used with JavaServer

Faces.

Changes Needed to Bind to Public Data Members

If you upgrade version 8.1 NetUI JSP tags to Beehive NetUI JSP tags, you may need to change how data held by
public members is exposed to tags for binding. Whereas version 8.1 supported binding expression code to public
fields, in Beehive expressions can only bind to public accessors.

In other words, although upgrade tools will upgrade the expression language syntax used in JSP tags, they will of
course not add accessors to classes where needed. For a full upgrade to Beehive JSP tags, you must manually add
get* and set* accessors where public fields were used.

Reserved Words Can Not Be Used as Identifiers

The JSP 2.0 expression language reserves the following words; your code should not use them as identifiers.

and eq gt true instanceof

or ne le false empty

not lt ge null div mod

Note that you can inadvertently use a reserved word by including that word in the name of an accessor designed to
expose a property to expression language code. For example, the following code would be designed to expose an
empty property:

public String empty;
public String getEmpty() {return empty;}

In the JSP page, of course, this would result in using "empty," which is a reserved word, as a property name:

<netui:content value=?${pageFlow.empty}? defaultValue=?NO VALUE?/>

Instead, trying using a naming scheme that results in a method name such as "getEmptyVal", then bind to them with
pageFlow.emptyVal.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingPageFlows.html (4 of 9)12/7/2006 11:19:07 AM

Upgrading Page Flows

For more information about the expression language, see Expression Language in the J2EE 1.4 tutorial.

Form Classes Must Include a Default Constructor

Unlike version 8.1, version 9.2 enforces a requirement that forms used in page flow (such as those which extended the
now-deprecated FormData class) must have a default constructor.

You can work around this change by adding a default constructor after upgrading your code.

Updating XQuery Use to Support Upgraded XQuery Implementation

In version 8.1, XMLBeans supported XQuery Working Draft 16; Working Draft 23 is used in version 9.2. Upgrade tools
will generally update XMLBeans code that executes XQuery expressions, but not code in JSP files. You will need to
make the required change manually for code based on the older implementation to work.

For more information, see Updating XQuery Use to Support Upgraded XQuery Implementation.

Fixing Package Names That are Not Upgraded in JPF File Method and JSP Code

When a type name is fully-qualified outside a type import (Java or JSP), the type's package is not upgraded to the
package used in version 9.2. For example, in the following after-upgrade code, note that the package for Forward has
not been upgraded from com.bea.wlw.netui.pageflow to org.apache.beehive.netui.pageflow.

/**
 * @jpf:action
 * @jpf:forward name="begin" path="Begin.jsp"
 */
@Jpf.Action(forwards = {
 @Jpf.Forward(name = "begin",
 path = "Begin.jsp")
})
public Forward begin()
{
 return new com.bea.wlw.netui.pageflow.Forward("begin");
}

The errors will be highlighted in source code. You can make fixes by using the Workshop for WebLogic quick fix feature
to replace the type with the correct type of the same name. You can also search and replace to fix.

Custom Tags That Extend NetUI Tags are Not Supported

If you created custom JSP tags in version 8.1 by extending NetUI tags, your tags will not be upgraded by Workshop
for WebLogic tools. Extending NetUI tags was not supported. Note that if you elected not to migrate NetUI tags to
Beehive tags, your tags may build within the application, but may not work as expected.

Likewise, extending Beehive JSP tags in version 9.2 is not supported.

Details: Some PageFlowController and FlowController Methods Made Protected
Instead of Public

To enhance application security, some public methods in org.apache.beehive.netui.pageflow.PageFlowController and
org.apache.beehive.netui.pageflow.FlowController have been changed so that they're protected. This change means
that these methods can no longer be invoked as bean properties from within JSP pages. In addition, new public
versions of the methods were created for access from outside page flow code, but given names that begin "the"
instead of "get" so that they're not accessible as bean properties.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingPageFlows.html (5 of 9)12/7/2006 11:19:07 AM

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html
http://beehive.apache.org/docs/1.0m1/apidocs/classref_pageflows/org/apache/beehive/netui/pageflow/PageFlowController.html
http://beehive.apache.org/docs/1.0m1/apidocs/classref_pageflows/org/apache/beehive/netui/pageflow/FlowController.html

Upgrading Page Flows

In summary, this change includes the following:

● The following PageFlowController methods were changed from public to protected: getSharedFlows,
getCurrentPageInfo, getPreviousPageInfo, and getPreviousActionInfo.

● The following public PageFlowController methods were added: theSharedFlows, theCurrentPageInfo,
thePreviousPageInfo, and thePreviousActionInfo.

● The following FlowController methods were changed from public to protected: getModuleConfig, getActions

● The following public FlowController method was added: theModuleConfig.

In general, fixing broken code after upgrade involves searching for the method name that begins with "get" and
replacing it with the corresponding method that begins with "the". For example, the following code would need to be
revised:

PageFlowController pageFlowController =
 PageFlowUtils.getCurrentPageFlow(this.Request());
if(pageFlowController != null){
 if(pageFlowController.getCurrentPageInfo().getForward().getRedirect() == true) {
 return new Forward("main_page");
 }
}

The following reflects changes that would be made (note that the getCurrentPageFlow method above, from version
8.1, is deprecated; use the two-parameter version below instead):

PageFlowController pageFlowController =
 PageFlowUtils.getCurrentPageFlow(this.getRequest(), this.getServletContext());
// Note "theCurrentPageInfo" here where "getCurrentPageInfo" is used above.
if(pageFlowController != null){
 if(pageFlowController.theCurrentPageInfo().getForward().getRedirect() == true) {
 return new Forward("main_page");
 }
}

Note that code written on versions of the Beehive APIs included in WebLogic Platform prior to version 9.2 might also
need to be changed. Workshop for WebLogic upgrade tools do not upgrade code written on 9.x versions of the
platform.

Upgrading from getRequest Method Calls to Retrieve a ScopedRequest
Instance

In version 8.1, the return value of the FlowController.getRequest method could be cast to a ScopedRequest when
running in the WebLogic Portal environment. In version 9.2, to improve performance the Beehive page flow APIs
retrieve a ScopedRequest instance differently. This change is not upgraded by Workshop for WebLogic upgrade tools.
If your portal code makes a call to this method, you will need to manually upgrade the code to avoid a
ClassCastException. Your code should instead use the ScopedServletUtils.unwrapRequest method to retrieve the
ScopedRequest instance.

For example, if your page flow code had the following:

ScopedRequest s = (ScopedRequest)getRequest();

you would change it to:

ScopedRequest s = ScopedServletUtils.unwrapRequest(getRequest());

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingPageFlows.html (6 of 9)12/7/2006 11:19:07 AM

Upgrading Page Flows

Updating Code to Reflect Changes in PageFlowStack Class

Differences between the version 8.1 com.bea.wlw.netui.pageflow.PageFlowStack class and its Beehive counterpart in
version 9.2, org.apache.beehive.netui.pageflow.PageFlowStack, may make it necessary for you to modify some of your
code after upgrade. In particular, the version 8.1 class extended java.util.Stack, but the 9.2 class extends Object
directly.

One scenario in which this could create a problem is if your code casts the return value of the static method
PageFlowUtils.getPageFlowStack (which is a Stack object) to PageFlowStack. This cast is of course not valid with the
Beehive PageFlowStack class. If you were casting to PageFlowStack, then using Stack methods, keep in mind that
several of these methods are implemented in the Beehive PageFlowStack class; however, you now get the
PageFlowStack instance using static PageFlowStack.get methods.

If you were directly calling the Stack instance returned from PageFlowUtils.getPageFlowStack, but you aren't casting to
PageFlowStack, you can still use the Stack. Keep in mind, however, that the getPageFlowStack method is deprecated.

Updating Code to Reflect Changes in State Tracking API

In version 9.2, several methods in the NetUI API have been changed so that, under certain circumstances, they return
IllegalStateException rather than null. This is an improvement over the version 8.1 API, in which null was returned
regardless of whether the requested return value was actually null or simply unknown because it wasn't being tracked.

You can avoid handling IllegalStateException by overriding the alwaysTrackPreviousAction method in your page flow
controller so that that method returns true. Note that this might negatively impact the performance of your
application. Here's how it would look:

protected boolean alwaysTrackPreviousAction()
{
 return true;
}

The following is a list of affected methods:

● getPreviousActionURI

● getPreviousActionInfo

● getCurrentPageInfo

● getPreviousPageInfo

● getPreviousFormBean

● getCurrentForwardPath

● getPreviousForwardPath

The following lists detailed circumstances surrounding the change:

● This change is only relevant if the current page flow does not use a @jpf:forward with a return-
to="previousAction" attribute.

● If alwaysTrackPreviousAction is not overridden to return true, the version 9.2 methods will return java.lang.
IllegalStateException.

● If alwaysTrackPreviousAction is overridden to return true, then the version 9.2 methods will either return the
requested value or null if the value is in fact null.

Replacing Callback-Enabled Controls Used in a Page Flow

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingPageFlows.html (7 of 9)12/7/2006 11:19:07 AM

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Stack.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/PageFlowStack.html

Upgrading Page Flows

In version 9.x custom controls used from a page flow can't receive external callbacks. In version 8.1, you could write a
custom control that received callbacks from controls nested within it, such as service controls. By exposing a polling
interface from your custom control, your page flow code could then retrieve responses received from the callbacks.
This functionality is not supported in version 9.2.

In upgraded code, you can substitute for this functionality by replacing your custom control with a web service. For
more information on the version 8.1 feature and suggested version 9.2 workarounds, see Providing Support for
Callbacks from a Page Flow.

Ensuring Assembly of Controls Used from a JSP Page

In version 9.2, some controls require a compile-time assembly process that generates artifacts needed by the runtime.
These controls include ServiceControl, EJBControl, and TimerControl.

This assembly process is only triggered for these controls when they're referenced within a Java file — effectively
excluding controls that are referenced only from JSP pages. In upgraded code, you can work around this change from
version 8.1 by referencing the control from a Java file.

The best place for this reference is the page flow controller file; if there's no controller in your application, you can add
the reference to another Java file that's compiled with the application. You do this by adding an org.apache.beehive.
controls.api.bean.ControlReferences annotation that names the control class used in the JSP page. Here's an example
that references a single control:

@ControlReferences(value={mycontrols.MyServiceControl.class})
public class Controller extends PageFlowController {
 ...
}

Resolving Name Conflicts Between Jpf.Forward and validationErrorForward

Version 8.1 allowed the jpf:validation-error-forward and jpf:forward annotations to have the same value for their
name attributes; this is not allowed in version 9.2. For example, you might have had version 8.1 code such as the
following, in which "failure" is used twice as a name attribute value:

/**
 * @jpf:action
 * @jpf:forward name="success" return-action="addProfileDone"
 * @jpf:forward name="failure" path="addClient.jsp"
 * @jpf:validation-error-forward name="failure" return-to="currentPage"
 */
protected Forward addClientProfile(MaintainIndividualProfileForm form)
{
 ...
}

The upgraded counterparts to this code (in the Jpf.Forward annotation and the Jpf.Action validationErrorForward
attribute) will generate a build error in version 9.2. You can work around this change by changing one or both of the
attribute values so they're not the same.

Upgrade Changes for Co-Location in Page Flows

Version 8.1 supported a project hierarchy in which the Controller file (Controller.jpf) and JSP files could be put into the
same directory. This is not supported in version 9.2.

For example, during upgrade the following hierarchy change will occur for upgraded page flows:

Version 8.1

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingPageFlows.html (8 of 9)12/7/2006 11:19:07 AM

http://edocs.bea.com/workshop/docs92/ws_platform/upgrading/conPageFlowCallbacks.html
http://edocs.bea.com/workshop/docs92/ws_platform/upgrading/conPageFlowCallbacks.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/bean/ControlReferences.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/bean/ControlReferences.html

Upgrading Page Flows

webapp/
 Controller.jpf
 index.jsp

Version 9.2 (after upgrade)

webapp
 src
 Controller.java
 web
 index.jsp

The version 8.1 style is referred to as co-location. In version 9.2 (including for upgraded applications), JAVA source
files and JSPs are kept in different directories. Note that if you create a new page flow called myPageFlow, it would
feature two parallel directories called myPageFlow — one for JAVA source code and one for the JSPs. Here's a
simplified example:

webapp
 src
 myPageFlow
 myPageFlowController.java
 Controller.java
 WebContent
 index.jsp
 myPageFlow
 index.jsp
 page1.jsp
 other JSPs

Fixing Erroneous IDE Error for Variable in an HTML Start Tag

The version 9. 2 IDE incorrectly displays an error for code in which a variable declaration is made in an HTML start
tag; the code is actually valid at run time. For example, in the following anchor tag the <%=s%> code using the
String variable is flagged by the IDE as unresolved, but is actually valid:

<a href="<%! String s="test"; %><%=s%>">Test

This also applies to WebLogic Portal tags that set Java variables, such as <render:getJspUri> and <render:
getSkinPath>.

You can work around this in code upgraded from version 8.1 by moving the variable declaration to a line outside a
start tag, as follows:

<%! String s="test"; %>
<a href="<%=s%>">Test

Import and Use of com.bea.wlw.netui.util.XMLString are Not Supported and
Will Not be Upgraded

This XMLString class (not to be confused with XMLBeans' org.apache.xmlbeans.XmlString) is not included in version
9.2. Upgraded code that imports the type will generate compilation errors. In version 8.1 this class was used in
conjunction with the XScript expression language, which has been removed from version 9.2.

Related Topics

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingPageFlows.html (9 of 9)12/7/2006 11:19:07 AM

Upgrading Enterprise JavaBeans

Upgrading Enterprise JavaBeans

This topic gives more detail about upgrade changes noted for Enterprise JavaBeans.

For a more complete list of changes affecting applications upgraded from version 8.1, see
Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2.

Enabling Automatic Transaction Support in Entity Beans

In version 8.1, the EJB container would create a transaction for an entity bean if it ran in an
unspecified transaction. In version 9.2, the default is not to create the transaction for the
transaction attribute values indicating "not supported," "supports," and "never."

To support the old behavior, ensure that the TransactionAttribute.REQUIRED constant is used
in the @RemoteMethod annotation applied to entity bean methods. Here's an example of the
annotation's syntax:

@RemoteMethod(transactionAttribute=Constants.TransactionAttribute.REQUIRED)
public void myMethod()
{
 ...
}

Related Topics

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingEJBs.html12/7/2006 11:19:07 AM

Upgrading Annotations

Upgrading Annotations

This release incorporates support for the standard for Java annotations released with Java 5; that
standard is defined in JSR 175. This topic describes how version 8.1 annotations are treated
during upgrade to version 9.2. An obvious change is the difference in syntax between the two
versions; version 8.1 annotations were embedded in a Javadoc-style comment, for example.
When you use upgrade tools to upgrade a version 8.1 application, the tools upgrade all of the
annotations that have counterparts in version 9.2. Upgrade tools generally leave the old-style
annotations, which are ignored by the version 9.2 runtime.

Note: For general information about Java 5 annotations, see the Annotations topic at
the Sun web site.

For a more complete list of changes affecting applications upgraded from version 8.1, see
Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2.

Relationship Between Version 8.1 and Version 9.2 Annotations

To take advantage of the Java 5 annotations feature, version 9.2 of Workshop for WebLogic uses
migrated versions of the annotations that version 8.1 supported. So, for example, the version 8.1
@common:operation annotation is replaced in version 9.2 with the @WebMethod annotation to
signify that a method should be used as a web service operation.

For the most part, version 8.1 annotations have counterparts in version 9.2. However, there are a
few exceptions. It's also worth noting that most of the migrated annotations are now part of the
Apache Beehive project.

Note: Upgrade tools will upgrade all annotations for which there is a version 9.2
counterpart.

Version 8.1 Annotation Version 9.x Annotation

Containing
Component
Type

common:context weblogic.jws.Context Web service
common:context org.apache.beehive.controls.api.context.

Context
Control

common:control org.apache.beehive.controls.api.bean.Control Multiple
common:define No version 9.x counterpart.
common:message-buffer weblogic.jws.MessageBuffer Web service
common:message-buffer com.bea.control.annotations.MessageBuffer.

Must be used in the control interface; no
longer supported on the control
implementation.

Control

common:operation javax.jws.WebMethod Web service
common:operation No version 9.x counterpart Control

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingAnnotations.html (1 of 5)12/7/2006 11:19:08 AM

http://www.jcp.org/aboutJava/communityprocess/review/jsr175/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://beehive.apache.org/
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/context.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#Context
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/context.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/context/Context.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/context/Context.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/control.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/bean/Control.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/define.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/message-buffer.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#MessageBuffer
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/message-buffer.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/annotations/MessageBuffer.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/operation.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebMethod
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/operation.html

Upgrading Annotations

common:schema No version 9.x counterpart. This was used in
conjunction with XQuery maps, which are no
longer supported.

common:security com.bea.control.annotations.Security Control
common:security
(callback-roles-allowed
attribute)

weblogic.jws.security.CallbackRolesAllowed Web service

common:security (run-
as attribute)

weblogic.jws.security.RunAs Web service

common:security (roles-
referenced attribute)

weblogic.jws.security.RolesReferenced Web service

common:target-
namespace

targetNamespace attribute in javax.jws.
WebService annotation.

Web service

common:xmlns No version 9.x counterpart. This was used in
conjunction with XQuery maps, which are no
longer supported.

Web service

editor-info:code-gen No version 9.x counterpart. Custom control
source

editor-info:link No version 9.x counterpart. See Keeping Files
in Sync in the Absence of IDE Support for a
suggested workaround.

Web service

ejbgen:automatic-key-
generation

weblogic.ejbgen.AutomaticKeyGeneration EJBs

ejbgen:cmp-field weblogic.ejbgen.CmpField EJBs
ejbgen:cmr-field weblogic.ejbgen.CmrField EJBs
ejbgen:compatibility weblogic.ejbgen.Compatibility EJBs
ejbgen:create-default-
dbms-tables

weblogic.ejbgen.CreateDefaultDbmsTables EJBs

ejbgen:ejb-client-jar weblogic.ejbgen.EjbClientJar EJBs
ejbgen:ejb-interface weblogic.ejbgen.EjbInterface EJBs
ejbgen:ejb-local-ref weblogic.ejbgen.EjbLocalRef EJBs
ejbgen:ejb-ref weblogic.ejbgen.EjbRef EJBs
ejbgen:entity-cache-ref weblogic.ejbgen.EntityCacheRef EJBs
ejbgen:entity weblogic.ejbgen.Entity EJBs
ejbgen:env-entry weblogic.ejbgen.EnvEntry EJBs
ejbgen:file-generation weblogic.ejbgen.FileGeneration EJBs
ejbgen:finder weblogic.ejbgen.Finder EJBs
ejbgen:foreign-jms-
provider

weblogic.ejbgen.ForeignJmsProvider EJBs

ejbgen:jar-settings weblogic.ejbgen.JarSettings EJBs
ejbgen:jndi-name weblogic.ejbgen.JndiName EJBs
ejbgen:local-home-
method

weblogic.ejbgen.LocalHomeMethod EJBs

ejbgen:local-method weblogic.ejbgen.LocalMethod EJBs
ejbgen:message-driven weblogic.ejbgen.MessageDriven EJBs
ejbgen:method-isolation-
level-pattern

weblogic.ejbgen.MethodIsolationLevelPattern EJBs

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingAnnotations.html (2 of 5)12/7/2006 11:19:08 AM

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/schema.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/security.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/annotations/Security.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/security.html
http://edocs.beasys.com/wls/docs92/javadocs/weblogic/jws/security/CallbackRolesAllowed.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/security.html
http://edocs.bea.com/wls/docs92/webserv/annotations.html#RunAs
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/security.html
http://edocs.bea.com/wls/docs92/webserv/annotations.html#RolesReferenced
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/target-namespace.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/target-namespace.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebService
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebService
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/common/xmlns.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/editor-info/code-gen.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/editor-info/link.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/automatic-key-generation.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/automatic-key-generation.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#AutomaticKeyGeneration
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/cmp-field.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#CmpField
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/cmr-field.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#CmrField
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/compatibility.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#Compatibility
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/create-default-dbms-tables.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/create-default-dbms-tables.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#CreateDefaultDbmsTables
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/ejb-client-jar.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#EjbClientJar
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/ejb-interface.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#EjbInterface
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/ejb-local-ref.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#EjbLocalRef
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/ejb-ref.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#EjbRef
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/entity-cache-ref.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#EntityCacheRef
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/entity.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#Entity
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/env-entry.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#EnvEntry
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/file-generation.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#FileGeneration
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/finder.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#Finder
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/foreign-jms-provider.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/foreign-jms-provider.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#ForeignJmsProvider
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/jar-settings.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#JarSettings
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/jndi-name.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#JndiName
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/local-home-method.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/local-home-method.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#LocalHomeMethod
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/local-method.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#LocalMethod
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/message-driven.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#MessageDriven
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/method-isolation-level-pattern.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/method-isolation-level-pattern.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#MethodIsolationLevelPattern

Upgrading Annotations

ejbgen:method-
permission-pattern

weblogic.ejbgen.MethodPermissionPattern EJBs

ejbgen:relation weblogic.ejbgen.Relation EJBs
ejbgen:relationship-
caching-element

weblogic.ejbgen.RelationshipCachingElement EJBs

ejbgen:remote-home-
method

weblogic.ejbgen.RemoteHomeMethod EJBs

ejbgen:remote-method weblogic.ejbgen.RemoteMethod EJBs
ejbgen:resource-env-ref weblogic.ejbgen.ResourceEnvRef EJBs
ejbgen:resource-ref weblogic.ejbgen.ResourceRef EJBs
ejbgen:role-mapping weblogic.ejbgen.RoleMapping EJBs
ejbgen:security-role-ref weblogic.ejbgen.SecurityRoleRef EJBs
ejbgen:select weblogic.ejbgen.Select EJBs
ejbgen:session weblogic.ejbgen.Session EJBs
ejbgen:value-object weblogic.ejbgen.ValueObject EJBs
jc:connection com.bea.control.JdbcControl.

ConnectionDataSource
Database control

jc:conversation com.bea.control.ServiceControl.Conversation Service control
and others.

jc:ejb org.apache.beehive.controls.system.ejb.
EJBControl.EJBHome

EJB control

jc:handler com.bea.control.ServiceControl.Handler Service control
jc:jms org.apache.beehive.controls.system.jms.

JMSControl.Destination
JMS control

jc:jms-headers org.apache.beehive.controls.system.jms.
JMSControl.HeaderType, org.apache.beehive.
controls.system.jms.JMSControl.Priority, org.
apache.beehive.controls.system.jms.
JMSControl.Expiration, org.apache.beehive.
controls.system.jms.JMSControl.Type

JMS control

jc:jms-property org.apache.beehive.controls.system.jms.
JMSControl.PropertyValue

JMS control

jc:location com.bea.control.ServiceControl.Location Service control
jc:log No version 9.x counterpart. The Beehive

implementation of the Database control does
not currently support logging.

Database control

jc:parameter-xml No version 9.x counterpart. This was used in
conjunction with XQuery maps, which are no
longer supported.

Service control

jc:protocol com.bea.control.ServiceControl.SOAPBinding
and com.bea.control.ServiceControl.
JmsSoapProtocol.

Service control

jc:reliable No version 9.x counterpart. Service control
jc:return-xml No version 9.x counterpart. This was used in

conjunction with XQuery maps, which are no
longer supported.

Service control

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingAnnotations.html (3 of 5)12/7/2006 11:19:08 AM

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/method-permission-pattern.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/method-permission-pattern.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#MethodPermissionPattern
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/relation.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#Relation
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/relationship-caching-element.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/relationship-caching-element.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#RelationshipCachingElement
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/remote-home-method.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/remote-home-method.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#RemoteHomeMethod
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/remote-method.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#RemoteMethod
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/resource-env-ref.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#ResourceEnvRef
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/resource-ref.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#ResourceRef
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/role-mapping.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#RoleMapping
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/security-role-ref.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#SecurityRoleRef
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/select.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#Select
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/session.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#Session
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/ejbgen/value-object.html
http://edocs.bea.com/wls/docs92/ejb/EJBGen_reference.html#ValueObject
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/connection.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/apidocs/javadoc/org/apache/beehive/controls/system/jdbc/JdbcControl.ConnectionDataSource.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/apidocs/javadoc/org/apache/beehive/controls/system/jdbc/JdbcControl.ConnectionDataSource.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/conversation.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/ServiceControl.Conversation.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/ejb.html
http://beehive.apache.org/docs/1.0.1/system-controls/ejb/apidocs/javadoc/org/apache/beehive/controls/system/ejb/EJBControl.EJBHome.html
http://beehive.apache.org/docs/1.0.1/system-controls/ejb/apidocs/javadoc/org/apache/beehive/controls/system/ejb/EJBControl.EJBHome.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/handler.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/ServiceControl.Handler.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/jms.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.Destination.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.Destination.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/jms-headers.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.HeaderType.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.HeaderType.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.Priority.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.Priority.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.Expiration.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.Expiration.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.Expiration.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.Type.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.Type.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/jms-property.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.PropertyValue.html
http://beehive.apache.org/docs/1.0.1/system-controls/jms/apidocs/javadoc/org/apache/beehive/controls/system/jms/JMSControl.PropertyValue.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/location.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/ServiceControl.Location.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/log.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/parameter-xml.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/protocol.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/ServiceControl.SOAPBinding.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/ServiceControl.JmsSoapProtocol.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/ServiceControl.JmsSoapProtocol.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/reliable.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/return-xml.html

Upgrading Annotations

jc:selector No version 9.x counterpart. The JMS control in
version 9.2 does not support receiving
messages.

Service Broker
control

jc:sql com.bea.control.JdbcControl.SQL Database control
jc:timer com.bea.control.TimerControl.TimerSettings Timer control
jc:ws-security-callback No version 9.x counterpart. This was used to

support WS-Security in web services.
Upgraded code should use the Web Services
Policy Framework (WS-Policy) instead.

Service control

jc:ws-security-service No version 9.x counterpart. This was used to
support WS-Security in web services.
Upgraded code should use the Web Services
Policy Framework (WS-Policy) instead.

Service control

jcs:control-tags No version 9.x counterpart. Custom control
source

jcs:ide No version 9.x counterpart. Custom control
source

jcs:jc-jar No version 9.x counterpart. Custom control
source

jcs:suppress-common-
tags

No version 9.x counterpart. Custom control
source

jws:context weblogic.jws.Context Web service
jws:control org.apache.beehive.controls.api.bean.Control Web service
jws:conversation weblogic.jws.Conversation Web service
jws:conversation-lifetime weblogic.jws.Conversational Web service
jws:define No version 9.x counterpart. Web service
jws:handler javax.jws.HandlerChain (for files) and javax.

jws.soap.SOAPMessageHandlers (for individual
classes)

Web service

jws:location com.bea.control.ServiceControl.Location Web service
jws:message-buffer weblogic.jws.MessageBuffer Web service
jws:operation javax.jws.WebMethod Web service
jws:parameter-xml No version 9.x counterpart. This was used in

conjunction with XQuery maps, which are no
longer supported.

Web service

jws:protocol javax.jws.soap.SOAPBinding Web service
jws:reliable Use WS-Policy files and the weblogic.jws.

Policies annotation.
Web service

jws:return-xml No version 9.x counterpart. This was used in
conjunction with XQuery maps, which are no
longer supported.

Web service

jws:schema No version 9.x counterpart. This was used in
conjunction with XQuery maps, which are no
longer supported.

Web service

jws:target-namespace targetNamespace attribute in javax.jws.
WebService annotation.

Web service

jws:wsdl wsdlLocation attribute in javax.jws.
WebService annotation.

Web service

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingAnnotations.html (4 of 5)12/7/2006 11:19:08 AM

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/selector.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/sql.html
http://beehive.apache.org/docs/1.0.1/system-controls/jdbc/apidocs/javadoc/org/apache/beehive/controls/system/jdbc/JdbcControl.SQL.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/timer.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/TimerControl.TimerSettings.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/ws-security-callback.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jc/ws-security-service.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jcs/control-tags.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jcs/ide.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jcs/jc-jar.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jcs/suppress-common-tags.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jcs/suppress-common-tags.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/context.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#Context
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/control.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/bean/Control.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/conversation.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#Conversation
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/conversation-lifetime.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#Conversational
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/define.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/handler.html
http://edocs.bea.com/wls/docs92/webserv/advanced2.html#HandlerChain
http://edocs.bea.com/wls/docs92/webserv/advanced2.html#SOAPMessageHandlers
http://edocs.bea.com/wls/docs92/webserv/advanced2.html#SOAPMessageHandlers
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/location.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/api/com/bea/control/ServiceControl.Location.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/message-buffer.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#MessageBuffer
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/operation.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebMethod
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/parameter-xml.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/protocol.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#javax_SOAPBinding
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/reliable.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jws/Policies.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jws/Policies.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/return-xml.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/schema.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/target-namespace.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebService
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebService
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/wsdl.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebService
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebService

Upgrading Annotations

jws:ws-security-callback No version 9.x counterpart. This was used to
support WS-Security in web services.
Upgraded code should use the Web Services
Policy Framework (WS-Policy) instead.

Web service

jws:ws-security-service Use the weblogic.jws.Policy and weblogic.jws.
Policies annotations.

Web service

jws:xmlns No version 9.x counterpart. This was used in
conjunction with XQuery maps, which are no
longer supported.

Web service

jpf:controller org.apache.beehive.netui.pageflow.
annotations.Jpf.Controller

Page flow

jpf:action org.apache.beehive.netui.pageflow.
annotations.Jpf.Action

Page flow

jpf:forward org.apache.beehive.netui.pageflow.
annotations.Jpf.Forward

Page flow

jpf:catch org.apache.beehive.netui.pageflow.
annotations.Jpf.Catch

Page flow

jpf:validation-error-
forward

org.apache.beehive.netui.pageflow.
annotations.Jpf.Forward

Page flow

jpf:exception-handler org.apache.beehive.netui.pageflow.
annotations.Jpf.ExceptionHandler

Page flow

jpf:message-resources org.apache.beehive.netui.pageflow.
annotations.Jpf.MessageBundle

Page flow

Resolving Ambiguity Related to Annotation Types

Unlike version 8.1, in version 9.2 annotations are Java types that must either be imported or fully-
qualified in code. Because code using these types is being added to your code in order to upgrade
from annotations in your version 8.1 code, there can sometimes be ambiguity when the added
annotations have the same names as types your code may already have been using.

For example, imagine that your version 8.1 session bean happens to use the JMS Session
interface and imports javax.jms.*. Your upgraded session bean will be marked with the
@Session annotation (weblogic.ejbgen.Session). Your imports will include javax.jms.* and
weblogic.ejbgen.Session, but the compiler doesn't know which is intended with a simple
@Session annotation.

In general, be aware that compilation errors in your upgraded code may simply be due to this
ambiguity. The remedy for this issue is to fully qualify annotation type names where they're used.

Related Topics

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/conUpgradingAnnotations.html (5 of 5)12/7/2006 11:19:08 AM

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/ws-security-callback.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/ws-security-service.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jws/Policy.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jws/Policies.html
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/jws/Policies.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jws/xmlns.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jpf/controller.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jpf/action.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Action.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Action.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jpf/forward.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jpf/catch.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Catch.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Catch.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jpf/validation-error-forward.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jpf/validation-error-forward.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Action.html#validationErrorForward()
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Action.html#validationErrorForward()
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jpf/exception-handler.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.ExceptionHandler.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.ExceptionHandler.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/javadoc-tag/jpf/message-resources.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.MessageBundle.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.MessageBundle.html

upgradeStarter Command

upgradeStarter Command

Upgrades a WebLogic Workshop application version 8.1 (SP4, SP5, or SP6) to a Workshop for
WebLogic, version 9.2 workspace.

Note: This command is also available as an Ant task. For more information, see
upgrade Ant Task.

Note: Your version 8.1 application must have been upgraded to SP4, SP5, or SP6
before using this command.

This command exposes from the command line essentially the same functionality exposed by the
import wizard when upgrading an application. (See How To: Use the Import Wizard to Upgrade
Version 8.1 Applications for information on the wizard.) One exception to this support is that it is
not possible with this command to specify a subset of an application to upgrade. For example, this
command does not support specifying which projects to upgrade; all projects are upgraded.

As with the import wizard, this command does not delete or change the version 8.1 application.

Environment

You must use a version 1.5 implementation of the JRE. Also, the classpath must include startup.
jar (see the ECLIPSE_HOME argument description below).

Syntax

java -cp
 %ECLIPSE_HOME%/startup.jar
 -Dwlw.application=%WORK_FILE%
 -Dweblogic.home=%WL_HOME%
 org.eclipse.core.launcher.Main
 -application com.bea.wlw.upgrade.upgradeStarter
 -data %WORKSPACE%
 [-pluginCustomization %PREFS_FILE%]

Arguments

ECLIPSE_HOME
Required. The path to the directory that contains startup.jar. By default for Workshop for
WebLogic, this is:

BEA_HOME/workshop92/eclipse

-Dweblogic.home=WL_HOME
Required. The location of WebLogic Server root folder. By default, this is:

BEA_HOME/weblogic92

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/cmdUpgradeStarter.html (1 of 3)12/7/2006 11:19:08 AM

upgradeStarter Command

-Dwlw.application=WORK_FILE
Required. Specifies the application to upgrade. Replace WORK_FILE with the WORK file name
corresponding to the WebLogic Workshop 8.1 you want to upgrade.

-application com.bea.wlw.upgrade.upgradeStarter
Required. The Eclipse plugin extension point used to execute this command.

-data WORKSPACE
Required. The name of the target workspace where you want the upgraded application to go.
This can be any directory to which you want the version 9.2 application files generated.

[-pluginCustomization PREFS_FILE]
Optional. Specifies a properties file to set options for upgrade. Replace PREFS_FILE with the
name of a properties file containing a number of key-value pairs. See the remarks below for
a list of possible properties.

Remarks

The following lists the properties supported in a PREFS_FILE specified by the -
pluginCustomization argument.

● com.bea.wlw.upgrade/upgradeHarnessAbortOnError = true | false

Specify true to have the upgrade process fail on any error. By default upgrade will attempt to
continue after an error. Errors will always appear in the log file. The default is false.

● com.bea.wlw.upgrade/upgradeHarnessMessageLevel = INFO | WARNING | ERROR

Optional. Takes a message level setting. When not specified, upgrade will log all messages.
The following values can be specified:

INFO — Display all messages. This is the default.

WARNING — Display warning, error and fatal messages. Suppress informational messages.

ERROR — Display only error and fatal messages

● com.bea.wlw.upgrade/migrateJSPPreference = true | false

Specify true to have version 8.1 NetUI JSP tags replaced with their Beehive counterparts
(where counterparts exist) as part of the upgrade process. The default is false, in which case
the tags are instead upgraded to versions of the 8.1 tags that are compatible with the version
9.x server environment.

● com.bea.wlw.upgrade/useJ2EESharedLibraries = true | false

Specify false to have the web application libraries copied to WEB-INF/lib. The default is true

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/cmdUpgradeStarter.html (2 of 3)12/7/2006 11:19:08 AM

upgradeStarter Command

(use shared J2EE libraries).

● com.bea.wlw.upgrade/upgradeProjectImportOverwrite = true | false

Specify true to have an existing project overwritten in the event of a project name conflict.
The default is false.

● com.bea.wlw.upgrade/upgradeProjectImportPrefix = "PREFIX"

Specify an optional prefix prepended to all imported projects.

● com.bea.wlw.upgrade/upgraderPrefMoveResourceBundle = "true | false"

Specify true to have files with the .properties extension moved from the web content folder to
the source file folder. The default is false (make copies instead of moving the files).

● com.bea.wlw.upgrade/upgradeHarnessReportOnly = true | false

Specify true to generate an upgrade report, but not upgrade the application. The default is
false, meaning both report and upgrade will be performed.

● com.bea.wlw.upgrade/upgradeHarnessLogFile = LOG_FILE_LOCATION

Specify the location of the log file this command generates. The default value is WORKSPACE/.
metadata/upgrade.log

Related Topics

upgrade Ant Task

How To: Use the Import Wizard to Upgrade Version 8.1 Applications

Overview: Upgrading from WebLogic Workshop 8.1

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/cmdUpgradeStarter.html (3 of 3)12/7/2006 11:19:08 AM

upgrade Ant Task

upgrade Ant Task

Upgrades a WebLogic Workshop application version 8.1 (SP4, SP5, or SP6) to a Workshop for
WebLogic, version 9.2 workspace.

Note: This Ant task is also available as a command-line command. For more
information, see upgradeStarter command.

Note: Your version 8.1 application must have been upgraded to SP4, SP5, or SP6
before using this task.

This task exposes through Ant essentially the same functionality exposed by the import wizard
when upgrading an application. (See How To: Use the Import Wizard to Upgrade Version 8.1
Applications for information on the wizard.) One exception to this support is that it is not possible
with this task to specify a subset of an application to upgrade. For example, this task does not
support specifying which projects to upgrade; all projects are upgraded.

This task requires com.bea.wlw.upgrade.cmdline.UpgradeTask, which is available in the wlw-
upgrade.jar. This jar is installed by default to WORKSHOP_HOME/eclipse/plugins/com.bea.wlw.
upgrade_9.2.0.

Environment

The task classpath (as specified by the classpathref attribute in the example below) must
include startup.jar (see the eclipseHome attribute description below).

Attribute Description Required
data The Eclipse workspace to which the specified 8.1

application will be imported and upgraded.
Yes.

eclipseHome The Eclipse directory that contains startup.jar. By
default this is BEA_HOME/workshop92/eclipse.

Yes.

weblogicHome The location of the WebLogic Server root folder.
pluginCustomization The location of an optional preference file to use

during import and upgrade. For more on this file,
see the Remarks for the upgradeStarter
command.

No.

wlwApplication The location of the WORK file for the version 8.1
application that you are upgrading.

Yes.

Example

The following illustrates how to invoke this task.

<target name="workshopUpgrade">

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/cmdUpgradeAntTask.html (1 of 2)12/7/2006 11:19:08 AM

http://ant.apache.org/manual/index.html

upgrade Ant Task

 <echo message="${workshop.home}/eclipse"/>
 <path id="eclipse.classpath">
 <fileset dir="${workshop.home}/eclipse/plugins"
 includes="com.bea.wlw.**/wlw-upgrade.jar"/>
 </path>

 <taskdef name="upgradeTask"
 classname="com.bea.wlw.upgrade.cmdline.UpgradeTask"
 classpathref="eclipse.classpath"/>

 <upgradeTask
 data=%WORKSPACE%
 eclipseHome=%ECLIPSE_HOME%
 weblogicHome=%WL_HOME%
 pluginCustomization=%PREFS_FILE%
 wlwApplication=%WORK_FILE%/>

</target>

Related Topics

upgradeStarter Command

How To: Use the Import Wizard to Upgrade Version 8.1 Applications

Overview: Upgrading from WebLogic Workshop 8.1

Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/cmdUpgradeAntTask.html (2 of 2)12/7/2006 11:19:08 AM

	navUpgradingFrom81.html
	Local Disk
	Upgrading WebLogic Workshop 8.1 Applications

	ovwGuidelinesForUpgrade.html
	Local Disk
	Overview: Upgrading from WebLogic Workshop 8.1

	howUseUpgradeWizard.html
	Local Disk
	Workshop How To: Use the Import Wizard to Upgrade Version 8.1 Applications

	conChangesDuringUpgrade.html
	Local Disk
	Changes During Upgrade from WebLogic Workshop 8.1 to Version 9.2

	conUpgradingJavaControls.html
	Local Disk
	Upgrading Controls

	conUpgradingWebServices.html
	Local Disk
	Upgrading 8.1 Web Services

	conUpgradingPageFlows.html
	Local Disk
	Upgrading Page Flows

	conUpgradingEJBs.html
	Local Disk
	Upgrading Enterprise JavaBeans

	conUpgradingAnnotations.html
	Local Disk
	Upgrading Annotations

	cmdUpgradeStarter.html
	Local Disk
	upgradeStarter Command

	cmdUpgradeAntTask.html
	Local Disk
	upgrade Ant Task

