
Getting Started with Web Services

Getting Started with Web Services
A web service is a set of functions packaged into a single entity that is available to other systems
on a network. The network can be a corporate intranet or the Internet. Other systems can call
these functions to request data or perform an operation. Because they rely on basic, standard
technologies which most systems provide, they are an excellent means for connecting distributed
systems together. The standard technologies underlying web services are defined by the World
Wide Web Consortium.

Web services are a useful way to provide data to an array of consumers over the Internet, like
stock quotes and weather reports. But they take on a new power in the enterprise, where they
offer a flexible solution for integrating distributed systems, whether legacy systems or new
technology. Workshop for WebLogic makes it easy for you to build and deploy applications that
provide or access web services.

 Current Release Information:

● What's New in 9.2

● Upgrading from 8.1

Useful Links:

● Tutorials

● Tips and Tricks

Other Resources:

● Online Docs

● Dev2Dev

● Discussion Forums

● Development Blogs

Topics Included in This
Section

Tutorial: Web Service
Describes the basic steps for creating a
simple web service and testing it.

Tutorial: Advanced Web Services
Demonstrates additional techniques for
working with web services.

Introduction to Web Service
Technologies
Discusses the standard technologies
underlying web services.

Building Web Services with
Workshop for WebLogic
Describes the basic components of a web
service built with Workshop for WebLogic.

Using Design View to Create Web
Services
Describes how to use the web service
Design View.

Web Service Development Starting
Points
Provides an overview of the different
design scenarios: (1) starting from a
WSDL, (2) starting from an XML Schema,
and (3) starting from Java.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/navGettingStartedWebService.html (1 of 2)12/7/2006 11:40:17 AM

http://www.w3.org/
http://www.w3.org/
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/introduction/conWhatsNew.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/navUpgradingFrom81.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/introduction/conWorkshopTutorials.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conTipsAndTricks.html
http://edocs.bea.com/more_wlworkshop.html
http://dev2dev.bea.com/workshop/
http://forums.bea.com/bea/index.jspa
http://dev2dev.bea.com/community/blogs/product.html

Getting Started with Web Services

Testing Web Services with the Test
Client
Provides an overview of testing,
debugging, and deploying a web service.

WSDL Files: Web Service
Descriptions
Discusses how WSDL files are used to
describe web service interfaces.

Web Service Dialogs
These topics explain the web service
related UI dialogs and wizards.

Related Topics

Designing Asynchronous Interfaces

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/navGettingStartedWebService.html (2 of 2)12/7/2006 11:40:17 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/ui/navWebServiceUI.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/async/navAsynchronousInterfaces.html

Tutorial: Web Service

Tutorial: Web Service

This tutorial is subdivided into two parts. The first part shows you how to build a web service
project containing a simple web service. The second part builds on the project and web service
created in the first part by adding a simple custom control that calls methods on existing controls.

You will also learn how to use the Web Service Design View, a graphical editor for creating web
services.

Note: This tutorial requests that you create a new workspace; if you already have a
workspace open, this will restart the IDE. Before beginning, you might want to launch
help in standalone mode to avoid an interruption the restart could cause, then locate
this topic in the new browser. See Using Help in a Standalone Mode for more
information.

Part I : Simple Web Service

In the first part of the tutorial, you will use the IDE to build a web project and a simple web
service.

These are the steps you will follow for Part I of the tutorial:

1. Create a web service project.

2. Add a web service to the project.

3. Add an operation (web method) to the web service.

4. Test the web service.

Part II : Web Service That Calls Methods on Provided Controls

In the second part of the tutorial, you will create a custom control that calls methods on pre-
existing controls that are provided to you. You will then add a method to your web service that
calls a method on this custom control. The result is to return data from a sample database.

These are the steps you will follow for Part II of the tutorial:

5. Copy existing controls into the web project created in Part I.

6. Create a new custom control called MailingListControl that calls methods on the imported
controls.

7. Add MailingListControl to the web service created in Part I and add an operation
(method) to the web service that calls a method on MailingListControl.

8. Test the web service.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcIntro.html (1 of 2)12/7/2006 11:40:17 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/introduction/conDocRoadmap.html#standalone_help

Tutorial: Web Service

Start Workshop for WebLogic

If you haven't started Workshop for WebLogic yet, use these steps to do so.

●

On Microsoft Windows:

 On the Start Menu, click All Programs > BEA Products > Workshop for
WebLogic Platform 9.2

On Linux:

 Run BEA_HOME/workshop92/workshop4WP/workshop4WP.sh

Create a New Workspace

1. In the Workspace Launcher dialog, click the Browse button.

2. In the Select Workspace Directory dialog, navigate to a directory of your choice
and click Make New Folder.

3. Name the new folder webSvcTutorial, press the Enter key and Click OK.

4. In the Workspace Launcher dialog, click OK.

Click the arrow to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcIntro.html (2 of 2)12/7/2006 11:40:17 AM

Web Service Tutorial: Step 1: Create a New WebLogic Web Service Project

Part I : Simple Web Service

Step 1: Create a New WebLogic Web Service Project

In this section, you will create the project that will contain your web service. You will also create a related Enterprise
Application (EAR) project. The EAR project contains various resources required to run the web service.

1. Click File > New > Project.

2. The New Project - Select a wizard dialog box appears. Expand Web Services and select Web Service
Project.

3. Click Next.

4. The New Web Project dialog box appears. Enter ServicesWeb in the Project name box.

5. Click Add project to an EAR. Click Finish.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep1.html (1 of 2)12/7/2006 11:40:18 AM

Web Service Tutorial: Step 1: Create a New WebLogic Web Service Project

The Package Explorer pane in the IDE now displays the two projects you just created - ServicesWebEAR, the EAR
project, and ServicesWeb, the web service project.

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep1.html (2 of 2)12/7/2006 11:40:18 AM

Web Service Tutorial: Step 2: Add a Web Service to the Project

Step 2: Add a Web Service to the Project

In this section, you will add a simple web service to the project you created in Step 1 by first
creating a Java package and then inserting the web service into the package.

1. In the Package Explorer, expand ServicesWeb and right-click the src folder.

2. Click New > Package.

3. The New Java Package dialog box appears.

The Source Folder text box should be prepopulated with the string ServicesWeb/
src. If it is not, enter that string.

Enter services in the Name text box and click Finish.

Notice that a package named services is now displayed under the src directory (that
is, ServicesWeb/src) in the ServicesWeb project in the Package Explorer view.
Physically, services is a directory. In the following steps, you will create a web service
within that services package.

4. Right-click the services package.

5. Click New > WebLogic Web Service.

6. The New Web Service dialog box appears.

Enter MailingListService.java in the File name text box and click Finish.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep2.html (1 of 4)12/7/2006 11:40:18 AM

Web Service Tutorial: Step 2: Add a Web Service to the Project

The preceding steps created the new Java file MailingListService.java in the services folder.

You should now see MailingListService.java in Design View.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep2.html (2 of 4)12/7/2006 11:40:18 AM

Web Service Tutorial: Step 2: Add a Web Service to the Project

Design View gives a graphical representation of your web service, its methods, and any controls it
contains. The web service MailingListService.java has one method, named hello, and no controls.
The hello method is created by default with each new web service.

To see the underlying source code for the web service, click the link text Source View at the
bottom of Design View. The source code for the web service appears as follows:

package services;

import javax.jws.*;

@WebService
public class MailingListServices {

 @WebMethod
 public void hello() {
 }

}

Note the use Java5 annotations in the source code, for example, the @WebService annotation,
which specifies that the class implements a web service. Java5 annotations are used to set
properties on the web service class and its methods.

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep2.html (3 of 4)12/7/2006 11:40:18 AM

Web Service Tutorial: Step 2: Add a Web Service to the Project

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep2.html (4 of 4)12/7/2006 11:40:18 AM

Web Service Tutorial: Step 3: Add a Web Method to the Web Service

Step 3: Add a Web Method to the Web Service

In this section, you will create a simple web method (a method that can be invoked over the web) in
the web service. This operation is designed to return customer data. In a "real world" application, this
method would probably perform some database lookups, but in this simple example, we will simply
return the name "John Smith" to all customer enquiries.

Before you start, be sure that Workshop for WebLogic has MailingListService.java open for
editing in the Design View. To ensure that the file is open for editing, double-click on
MailingListService.java in the Package Explorer view.

1. In Design View, right-click the hello method icon (either the arrows or the link text will
work) and select Edit Signature.

2. In the editing area that appears, change the text from void hello() to String
getCustomers() and press Enter.

At this point, the method will be marked with red-underlining, indicating a compile error.
In the next step, you will correct that error.

3. In Design View, right-click the hello method icon and select Edit Source.

4. In the method body enter the following return statement:

return "John Smith";

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep3.html (1 of 2)12/7/2006 11:40:18 AM

Web Service Tutorial: Step 3: Add a Web Method to the Web Service

The final method should appears as follows:

 @WebMethod
 public String getCustomers() {
 return "John Smith";
 }

5. Save the file with the File > Save command or by pressing Ctrl+S.

In Source View, the class should now look like this:

package services;

import javax.jws.*;

@WebService
public class MailingListService {

 @WebMethod()
 public String getCustomers() {
 return "John Smith";
 }
}

In Design View, the class should look like this:

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep3.html (2 of 2)12/7/2006 11:40:18 AM

Web Service Tutorial: Step 4: Test the Web Service

Step 4: Test the Web Service

In this section, you will define and start a server and then use the server's built-in test functionality to test the web service you
created in the preceding sections.

Workshop for WebLogic creates a WebLogic Server as part of installation and we will use this local server for testing the
application we will create in this tutorial. You must set up the server before you can test any applications.

To Set Up a Test Server

If you are working through this tutorial for the first time, you must create a server definition for use within the IDE
and add the ServicesWebEAR to that server. To set up a server definition, follow the instructions at Setting up
Servers for Use Within the IDE. Make sure to add the ServicesWebEAR project to the server once the server definition
has been created.

If you are working through this tutorial for a second time, you must remove previous, duplicate projects (modules)
from the server

To Test a Web Service

Unlike a page flow or application, a web service does not do anything unless a request is received from a client. For testing your
web service, Workshop for WebLogic provides a test client that allows you to send messages to the service and review the
response message. The test client runs in the workbench, as an editor window.

To test the web service:

1. In the Package Explorer view, if the services package is not expanded, expand it now.

2. Right-click MailingListService.java and select Run As > Run On Server.

3. We recommend that you check the box marked Set server as project default. This will reduce the number of steps
in the next part of this tutorial, as the IDE will remember your server choice. Click Finish.

4. Wait for the server to startup and the application to deploy.
You will see the test client display:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep4.html (1 of 3)12/7/2006 11:40:18 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash

Web Service Tutorial: Step 4: Test the Web Service

This web service has only one operation (getCustomers). If there were input values required by getCustomers,
there would be input fields that would allow you to specify values. Clicking on the getCustomers button sends a
request message to the web service.

5. Click the getCustomers button now to invoke the getCustomers method.

The test client displays the results of invoking the web service operation (including the returned value) and also the
detail of the SOAP-encoded request that was sent to the web service and the response that was received, including
the string returned by the getCustomers operation/method: "John Smith".

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep4.html (2 of 3)12/7/2006 11:40:18 AM

Web Service Tutorial: Step 4: Test the Web Service

6. You can return to testing your web service operation by clicking on Show Operations at the top left corner. You may
also examine the automatically generated WSDL (Web Service Description Language) file by clicking on the link to the
right of the Show Operations link.

Click the arrow to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep4.html (3 of 3)12/7/2006 11:40:18 AM

Web Service Tutorial: Step 5: Import Controls into your Web Services Project

Part II : Web Service That Calls Methods on Provided Controls

Step 5: Import Controls into Your Web Services Project

In this section, you will import into your web services project a group of complex control classes
that have been created ahead of time.

1. Open Windows Explorer (or your operating system's equivalent) and navigate to the
directory BEA_HOME/workshop92/workshop4WP/eclipse/plugins/com.bea.
wlw.samples_9.2.1/tutorials/resources/webService/

2. Drag the folders controls and model (located at BEA_HOME/workshop92/
workshop4WP/eclipse/plugins/com.bea.wlw.samples_9.2.1/tutorials/
resources/webService/) into the Package Explorer pane directly onto the folder
ServicesWeb/src.

3. The src folder under ServicesWeb should now have the controls and model
packages underneath it. If you expand those two packages, you should see a directory
tree like this:

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep5.html12/7/2006 11:40:19 AM

Web Service Tutorial: Step 6: Create a Custom Control

Step 6: Create a Custom Control

In this step, you will create a new custom control. You will also insert a method into the control
that calls a method on one of the controls you imported earlier.

1. In the Package Explorer view, right-click the ServicesWeb/src/controls folder.

2. Click New > Custom Control.

3. The New Control dialog box appears.

Enter MailingListControl.java in the Control name text box and click Finish.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep6.html (1 of 3)12/7/2006 11:40:19 AM

Web Service Tutorial: Step 6: Create a Custom Control

4. The preceding steps instructed Workshop to create two new Java files in the controls
folder:

❍ MailingListControl.java - the control interface file

❍ MailingListControlImpl.java - the control implementation file that implements
MailingListControl.java.

These files contain only a default framework at this point. You will add a method in the
following steps.

5. in the Package Explorer view, double-click on MailingListControlImpl.java.

6. In the source editor, right-click anywhere within the source code for
MailingListControlImpl.java and click Insert > Control.

7. In the Select Control dialog, select CustomerControl - controls and click OK.

8. Now you are ready to add the new method.

After the variable declaration for customerControl, add the method:

 public Customer[] getLocalCustomers()
 {
 return customerControl.getCustomersByState("CA");
 }

9. You will see an error because of the undefined type Customer. Add this line of code to
the imports section of the class:

 import model.Customer;

10. Although you have created a new method in this class, the corresponding abstract
method definition does not yet exist in MailingListControl.java, the interface class
that this class implements.

To correct this situation place the editor's cursor anywhere in the name of the method
(getLocalCustomers) and press Ctrl+1. Select Create in super type
'MailingListControl' and press Enter.

MailingListControl.java opens in the editor, with the new abstract method
definition in place.

11. Press Ctrl+Shift+S to save your work.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep6.html (2 of 3)12/7/2006 11:40:19 AM

Web Service Tutorial: Step 6: Create a Custom Control

The getLocalCustomers method on this control uses the imported controls to query a sample
database for all customers in a given state. In this example, we have hard-coded the state to be
California. The data returned from the database is returned to the calling method as an array of
Customer objects.

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep6.html (3 of 3)12/7/2006 11:40:19 AM

Web Service Tutorial: Step 7: Use the Control from the Web Service

Step 7: Use the Control from the Web Service

In this section, you will insert a method in the web service to call a method on the custom control.

Insert a Control

1. In the Package Explorer, double-click the web service file MailingListService.java.

2. Right-click in the Design View editor and select New Control Reference.

3. The Select Control dialog box appears.

Note that this dialog lets you choose from various existing controls, including
MailingListControl, the one you created earlier in the controls package.

Select MailingListControl - controls, and click OK.

4. Press Ctrl+Shift+S to save your work.

In Design View, the web service should look like this:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep7.html (1 of 4)12/7/2006 11:40:19 AM

Web Service Tutorial: Step 7: Use the Control from the Web Service

In Source View, the web service should now look like this:

package services;

import javax.jws.*;
import org.apache.beehive.controls.api.bean.Control;
import controls.MailingListControl;

@WebService
public class MailingListService {

 @Control
 private MailingListControl mailingListControl;

 @WebMethod
 public String getCustomers() {
 return "John Smith";
 }
}

Note that Workshop for WebLogic added the required imports for MailingListControl, the control
you told it to insert. It also added a variable declaration for a control of type MailingListControl
named mailingListControl. Workshop for Weblogic declared mailingListControl to be a control
by adding the @Control annotation.

Call a Method on the Control

You will now add a method to the service that will call a method on mailingListControl, the
instance of MailingListControl you just created.

1. In Design View, right-click the control method getLocalList and select Generate
Delegate Method.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep7.html (2 of 4)12/7/2006 11:40:19 AM

Web Service Tutorial: Step 7: Use the Control from the Web Service

A corresponding method is added to the web service client interface.

The web service class should now look like this:

package services;

import javax.jws.*;
import org.apache.beehive.controls.api.bean.Control;
import controls.MailingListControl;

import model.Customer;

@WebService
public class MailingListService {
 @Control
 private MailingListControl mailingListControl;

 @WebMethod()
 public String getCustomers() {
 return "John Smith";
 }

 @WebMethod()
 public Customer[] getLocalList() {
 return mailingListControl.getLocalCustomers();
 }
}

In Design View the web service looks like this:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep7.html (3 of 4)12/7/2006 11:40:19 AM

Web Service Tutorial: Step 7: Use the Control from the Web Service

The new method calls the control method getLocalCustomers, which will return an array of
Customer objects for all customers in California in the sample database.

In the next step, we will test the new method.

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep7.html (4 of 4)12/7/2006 11:40:19 AM

Web Service Tutorial: Step 8: Test the Web Service

Step 8: Test the Web Service

In this section, you will start a server (or use one you already have running) and then use the server's built-in test functionality to test
the method you added to the web service you created in the preceding section.

Test the Web Service Methods

Now you are ready to use the test client built into WebLogic Server to test the web service.

1. In the Package Explorer view, right-click MailingListService.java and select Run As > Run On Server.

2. Note: This step applies only If you did not check the Set server as project default box when you defined the server.

The Run on Server - Define a New Server dialog box will appear. Click Finish.

3. The test client will be displayed, this time showing two operations:

4. Note that this form includes test buttons for each of the two methods you created in MailingListService.java.

If you click the first one, getCustomers, you will see the string "John Smith" that the method returns.

If you click the second button, getLocalList, you will see a SOAP-encoded message returned by the control and containing all
the customers the sample database has for the state of California.

Click the arrow to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/WSTutorial/tutWebSvcStep8.html12/7/2006 11:40:19 AM

Tutorial: Advanced Web Services

Tutorial: Advanced Web Services

This tutorial demonstrates how to create a web service and insert code to access an existing
control. The tutorial then demonstrates how to generate a new web service control from a WSDL
and how to access that control from another control.

Note: This tutorial requests that you create a new workspace; if you already have a
workspace open, this will restart the IDE. Before beginning, you might want to launch
help in standalone mode to avoid an interruption the restart could cause, then locate
this topic in the new browser. See Using Help in a Standalone Mode for more
information.

The steps in the tutorial are:

1. Create a LoanApplication web service that calls the existing loan approval control.

2. Create a new credit scoring web service control that accesses the CreditScore web service;
then modify the loan approval control to use the new credit scoring control.

Control Basics

A control is simply a Java Bean that provides standardized access to a resource or to encapsulated
business logic. Controls use Java 5 metadata annotations for more convenient configuration.
Workshop for WebLogic automatically generates code and annotations to create controls and
access them. Workshop for WebLogic implements many types of controls. The easiest way to
access a web service is to create a web service control, as this tutorial will demonstrate.

A control is implemented as an annotated class definition that looks something like this: (note
that the annotation line precedes the class declaration line)

In the interface file:

 @ControlInterface
 public interface LoanApprovalControl
 {
 // method declarations
 }

In the implementation file:

 @ControlImplementation
 public class LoanApprovalControlImpl implements LoanApprovalControl
 {
 // object body (methods, etc.)
 }

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSIntro.html (1 of 2)12/7/2006 11:40:19 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/introduction/conDocRoadmap.html#standalone_help

Tutorial: Advanced Web Services

To access a control, Workshop for WebLogic declares the control like this:

 @Control
 private LoanApprovalControl loanApprovalControl;

The declaration causes an object to be instantiated before your code runs and the control's
methods can then be called like regular object methods:

 abc = loanApprovalControl.getLoanApproval(ssn, amount);

For more detailed information on controls, consult the Beehive documentation at Working with
Beehive Controls. For more information on Java 5 annotation consult http://sun.com.

Related Topics

For a discussion of how to build a custom control that accesses other controls and then access
that custom control through a web service refer to Tutorial: Web Service.

Click the arrow to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSIntro.html (2 of 2)12/7/2006 11:40:19 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/navBeehiveControls.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/navBeehiveControls.html
http://sun.com/

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

In this step, you will import an existing set of projects that contains the initial components of your application.

The tasks in this step are:

● Start Workshop for WebLogic and create the tutorial workspace

● Import projects into the workspace from an archive

● Review the existing projects and their contents

● Test the Web Service

To Start Workshop and Create the Tutorial Workspace

If you haven't started Workshop for WebLogic yet, use these steps to do so

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

● From the Start menu, click All Programs > BEA Products > Workshop for WebLogic Platform 9.2

When prompted for the name of your workspace, click the Browse button and create a new (empty) workspace for this tutorial.

● When the Workshop for WebLogic window opens, check that you are in the Workshop perspective (indicated just below the toolbar at the top of
the window. If you are not in Workshop perspective, set that perspective by clicking Window > Open Perspective > Workshop.

...on Linux

If you are using a Linux operating system, follow these instructions.

● Run BEA_HOME/workshop92/workshop4WP/workshop4WP.sh

When prompted for the name of your workspace, click the Browse button and create a new (empty) workspace for this tutorial.

● When the Workshop for WebLogic window opens, check that you are in the Workshop perspective (indicated just below the toolbar at the top of
the window. If you are not in Workshop perspective, set that perspective by clicking Window > Open Perspective > Workshop.

To Import the Tutorial Projects into Your Workspace
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep1.html (1 of 9)12/7/2006 11:40:20 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

Workshop for WebLogic keeps track internally of the project structure within a workspace. Simply copying folders into the workspace directory does not cause
them to appear as projects inside Workshop for WebLogic. The tutorial projects are stored in a .ZIP archive file. There is no need to unzip the files, Workshop
for WebLogic will import the .ZIP file directly.

To import these projects and their files:

Click File > Import

Choose Existing Projects into Workspace from the dialog. Click Next.

Click the radio button for Select archive file.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep1.html (2 of 9)12/7/2006 11:40:20 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

Click Browse.

Navigate to the location of the tutorial sample files, packaged as a ZIP file. This should be

BEA_HOME/workshop92/workshop4WP/eclipse/plugins/com.bea.wlw.samples_9.2.1/tutorials/resources/AdvancedWSTutorial/AdvancedWSTutorial.zip

Click Open.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep1.html (3 of 9)12/7/2006 11:40:20 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

Click Finish to continue. The import process will take few moments, because several projects and their contents must be imported.

To Review the Contents of Your Workspace

The import process brought two applications into your workspace:

The LoanApprovalEAR application contains the project LoanApp which contains controls to provide loan approvals. Inside of the LoanApp project, there
are two controls (inside LoanApp/src/controls/):

● LoansDB.java is a control that tracks loan requests. Since this is a demo application, the control creates a database the first time that it is called for
easier setup. Request information is then stored in the database.

● LoanApprovalControl.java defines the method boolean getLoanApproval(int ssn, float amount) which returns true if the loan is approved. Note
that LoanApprovalControl has two files: an interface file that defines the class methods and an implementation file for the actual code.

Inspect the code for these controls by double clicking on their names in the src folder of the LoanApp project. The source will appear in the editor

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep1.html (4 of 9)12/7/2006 11:40:20 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

window.

Note the simple logic used for loan approval: if the person (identified by SSN) does not have a loan in the database, return true (approval) and store the
SSN and loan amount. If the person already has a loan, return false (decline).

You cannot test the code for the control yet because there is no web service or page flow that instantiates and invokes the control.

The CreditScoreEAR application contains the single project CreditScoreWS. Open the web service at CreditScoreWS/src/services/CreditScoreService.java
by double-clicking on the Java file.

When you open a web service in Workshop for WebLogic, it is displayed in Design View by default. Design View gives a graphical view of a web service. The
Design View for the web service CreditScoreService.java shows that it has a single method called getCreditScore.

Click the link text Source View at the bottom of Design View to view the source code for the web service.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep1.html (5 of 9)12/7/2006 11:40:20 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

The getCreditScore method checks credit ratings for the individual, based on their Social Security Number (SSN), the most common identification number
used in the United States. The SSN is a 9-digit number. The credit scoring system used in this example assigns a 3-digit valuation to individuals where higher
values are better (e.g., 700 is a good credit rating and 500 is not as good).

Test the Web Service

1. Note if this is you second time through the tutorial, you should remove previous versions of the CreditScoreEAR and LoanApprovalEAR projects
from the server before deploying the current versions. For instructions on removing previous deployed projects see Adding and Removing Projects
from the Server.

2. Test the web service by right clicking on the file name CreditScoreService.java in the Package Explorer view and clicking Run As > Run on
Server.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep1.html (6 of 9)12/7/2006 11:40:20 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

3. Click Next to proceed. From the next screen, use the pulldown to choose the default samples domain (BEA_HOME/weblogic92/samples/domains/
workshop). Click Finish.

Wait for the server to start and the application to deploy.

A window will open displaying the Test Client, a special application that allows you to interact with your web service.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep1.html (7 of 9)12/7/2006 11:40:20 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

4. You can enter values into the ssn parameter field and click on the getCreditScore button to send a value to the web service and get a response.
For example, entering the value 123456789 returns a credit score of 500 as shown below.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep1.html (8 of 9)12/7/2006 11:40:20 AM

Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep1.html (9 of 9)12/7/2006 11:40:20 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

Advanced Web Services Tutorial: Step 2: Create a New Web Service to Access the
LoanApproval Control

You could test the loan application control through a page flow or a web service. In this step, you will create a web service that accesses
the control.

The tasks in this step are:

● Create the new web service

● Access the control from the web service

● Test the web service (and the control)

To Create a New Web Service

To create a new web service:

1. Create a new package for the web service by right clicking on the LoanApp project's src folder and choosing New >
Package. Set the package name to be services and click Finish.

2. Create a new web service by right clicking on the new package and choosing New > WebLogic Web Service. Set the name
of the web service to be LoanApplicationService and click Finish.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep2.html (1 of 4)12/7/2006 11:40:20 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

To Access an Existing Control from a Web Service

After creating the web service, it is automatically displayed in Design View. To modify the web service to access the existing loan
approval control, do the following steps:

1. Insert the code to instantiate the current loan application control by right-clicking on the Design View editor and choosing
New Control Reference.

2. On the Select Control dialog, select LoanApprovalControl - controls and click OK.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep2.html (2 of 4)12/7/2006 11:40:20 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

The new control is added to the right-hand side of Design View.

3. Right-click the control method getLoanApproval and select Generate Delegate Method.

A corresponding web method is added to the web service client interface.

4. We now have a web service that

❍ instantiates a LoanApproval control object (with the @Control annotation line and the declaration following the @Control
annotation line) and

❍ defines a single web method (through the @WebMethod annotation) that uses the LoanApproval control to determine
loan approvals.

5. Save the new web service with File > Save or by pressing Ctrl S.

To Test the Web Service

Now that the web service contains an operation, you can test it. To test the web service:

1. Switch to Design View, right-click anywhere within Design View and select Run As > Run on Server.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep2.html (3 of 4)12/7/2006 11:40:20 AM

Step 2: Create a New Web Service to Access the LoanApproval Control

2. In the Run on Server dialog click Next.

3. On the field Domain home, click the dropdown and select the default sample domain BEA_HOME/weblogic92/samples/
domains/workshop.
Click Finish.

4. The test client window appears in the editors pane, showing the getLoanApproval web method.

Enter a 9-digit ssn and a loan amount and click getLoanApproval. When you have reviewed the result of running the
operation, click Show Operations to return to the main test client page so that you can run another test.

5. Enter the same ssn value and a loan amount and click getLoanApproval again. This time, the operation should return false
since the person with this ssn already has a loan.

6. Click Show Operations to return to the operations page.

7. Note that the Message Log at the left now has two entries, one for each test. You can click on an entry in the message log
and the results of that test will be displayed again.

8. You can also click on the link to the right of the Show Operations link to display the WSDL file that was generated
automatically for your web service.

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep2.html (4 of 4)12/7/2006 11:40:20 AM

Step 3: Create a Service Control to Access the CreditScore Web Service

Advanced Web Services Tutorial: Step 3: Create a Service Control to Access the
CreditScore Web Service

In this step, you will enhance the logic of the LoanApproval control to access the CreditScore web service. The existing logic of
the LoanApproval control is:

If a loan exists for this SSN then turn down the application (return false to caller)
 otherwise accept the application (return true to the caller).

We are going to expand that logic to:

If the person with this ssn already has a loan then turn down their application (return false)
 otherwise check the credit score. If the credit score is < 700, turn down the application (return
false).
If the credit score is 700 or higher, accept the application (return true).

To access the external web service, we will create a new web service control ("service control") to access the CreditScore web
service. We will then modify the LoanApproval control to use the new web service control.

To Create a Control to Access a Web Service

To create a new control we will first generate a WSDL file from a web service and then generate a service control from the WSDL.

1. On the Package Explorer view, open the nodes CreditScoreWS > src > services, right-click the web service
CreditScoreService.java, and select Web Services > Generate WSDL.

We will use this WSDL to automatically generate our new control.

2. To copy the WSDL file, right-click on the file CreditScoreWS/src/services/CreditScoreService.wsdl and select
Copy.

3. Right-click on the LoanApp/src/controls package and select Paste.

4. Generate a web service control by right-clicking on LoanApp/src/services/CreditScoreService.wsdl and selecting
Web Services > Generate Service Control.

Confirm that the name for the service control is CreditScoreServiceControl.java. Click Finish.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep3.html (1 of 3)12/7/2006 11:40:21 AM

Step 3: Create a Service Control to Access the CreditScore Web Service

5. In the Package Explorer view, double click the file LoanApprovalControlImpl.java to open it in the editor.

Right click on the editor window and choose Insert > Control. Choose the new CreditScoreServiceControl and click
OK.

Code will appear that declares and instantiates the control

@Control
private CreditScoreServiceControl creditScoreServiceControl;

6. Now replace the current code for getLoanApproval method of the LoanApproval control to expand its logic and use
the new web service control.

public boolean getLoanApproval(int ssn, float amount) throws SQLException
{
 init();

 // if they are already borrowing, don't allow another loan
 if (loansDB.getLoanValue(ssn) > 0)
 return false;

 if(creditScoreServiceControl.getCreditScore(ssn) < 700)
 return false;

 // otherwise, allow the loan.
 loansDB.insertLoan(ssn, amount);
 return true;

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep3.html (2 of 3)12/7/2006 11:40:21 AM

Step 3: Create a Service Control to Access the CreditScore Web Service

}

Save your changes with File > Save.

7. Test the updated web service by right clicking on LoanApplicationService.java in the services package of the
LoanApp project and choosing Run As > Run on Server.

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSStep3.html (3 of 3)12/7/2006 11:40:21 AM

Summary: Advanced Web Services Tutorial

Summary: Advanced Web Services Tutorial

This topic lists the ideas this tutorial introduced, along with links to topics for more information.
You may also find it useful to look at the following:

● Tutorial: Getting Started describes the Workshop for WebLogic interface and discusses
navigation, common tasks and documentation resources.

● Tutorial: Web Service contains a simple example of creating a web service and a simple
custom control.

● Tutorial: Accessing a Database from a Web Application describes how to integrate database
operations into web applications using controls.

Concepts and Tasks Introduced in This Tutorial

● A control is a Java object that provides standardized access to resources or encapsulated
business logic. Controls use Java 5 metadata annotations for more convenient configuration.
Controls in Workshop for WebLogic are based on the Beehive open souce framework,
described in detail at Working with Beehive Controls.

● The easiest way to access a web service from an application is to create a control for the web
service. Workshop for WebLogic can use the WSDL file for a web service to automatically
create a control.

● Once a control has been created, you can access a web service's operations through simple
method calls. The methods exchange SOAP messages with the web service to perform the
requested operations.

Click the arrow to navigate back through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/AdvWSTutorial/tutAdvWSSummary.html12/7/2006 11:40:21 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/TutorialGettingStarted/tutGS_Intro.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppIntro.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/navBeehiveControls.html

Introduction to Web Service Technologies

Introduction to Web Service Technologies

A web service makes software application resources available over networks using standard technologies. Because
web services are based on standard interfaces, they can communicate even if they are running on different operating
systems and are written in different languages. For this reason they are an excellent approach for building distributed
applications that must incorporate diverse systems over a network.

The following topic outlines the standard technologies that you use to build web services and the advanced
functionality available through asynchronous web services.

Standard Technologies

Web services are able to expose their resources in this generally accessible way because they adhere to recognized
standards. A web service:

●

Publicly describes its own functionality through a WSDL file

●

Communicates with other applications via XML messages, often formatted with SOAP

●

Employs a standard network protocol such as HTTP

WSDL Files

The Web Service Description Language (WSDL) is a standard XML format for describing web services. A WSDL file
describes a particular web service so that other software applications can interface with it.

WSDLs are generally publicly accessible and provide enough detail so that potential clients can figure out how to
operate the service solely from reading the WSDL file. If a web service translates English sentences into French, the
WSDL file will explain how the English sentences should be sent to the web service, and how the French translation
will be returned to the requesting client. For more information on WSDL files see WSDL Files: Web Service
Descriptions.

XML and SOAP

Extensible Markup Language (XML) messages provide a common language by which different applications can talk to
one another over a network. Most web services communicate via XML. A client sends an XML message containing a
request to the web service, and the web service responds with an XML message containing the results of the
operation. In most cases these XML messages are formatted according to SOAP syntax.

Simple Object Access Protocol (SOAP) specifies a standard format for applications to call each other's methods and
pass data to one another. The types of messages supported by a particular web service are delineated in the service's
WSDL file.

Network Protocols

Web services receive requests and send responses using widely used protocols such as HyperText Transfer Protocol
(HTTP) and Java Message Service (JMS). A web service may support more than one protocol. The protocols that a
web service supports are published in the WSDL file.

Web Service Architecture

The following illustration shows the relationship between a web service (in the center), its client software applications
(on the left), and the resources it uses, including databases, other web services, and so on (on the right). A web

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.w....doc/html/webservices/conBasicWebServiceTechnologies.html (1 of 3)12/7/2006 11:40:21 AM

Introduction to Web Service Technologies

service communicates with clients and resources over standard protocols such as HTTP by exchanging XML
messages. The WebLogic Server on which the web service is deployed is responsible for routing incoming XML
messages to the web service code that you write. The web service exports a WSDL file to describe its interface, which
other developers may use to write components to access the service.

Asynchronous Web Services

Many business processes take more than a few moments to complete, but traditional architectures make it hard to
handle long-running tasks efficiently. Workshop for WebLogic helps you architect asynchronous web services easily
using conversations and callbacks. Conversations help manage the typical problems in asynchronous messaging,
namely correlating messages and managing some information or state between message exchanges. In an ongoing
conversation, a web service can notify a client when the results of an operation are ready using a callback.

In addition, WebLogic Sever supports the use of Java Message Service (JMS) queues as message buffers to ensure
that web service messages are not lost regardless of server load. JMS can also be used to communicate with back
end resources. For more information on using buffers see Creating Buffered Web Services in the WebLogic Server
documentation.

Two Models for Asynchronous Computing with Web Services

BEA WebLogic Platform supports two models for asynchronous web services. One model uses "callbacks"; the other
uses "asynchronous request-response". The two models differ in the way that the web service and the client divide up
the work of coordinating the asynchronous communication.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.w....doc/html/webservices/conBasicWebServiceTechnologies.html (2 of 3)12/7/2006 11:40:21 AM

http://edocs.bea.com/wls/docs92/webserv/advanced.html#buffering

Introduction to Web Service Technologies

Callbacks

On the callback model of asynchronous web services, both the web service and its client (a web service control) are
specially designed for asynchronous communication with one another. On this model, the web service is explicitly
designed to be called asynchronously, including specially annotated callback methods that send data back to the
client. Similarly the web service control is explicitly designed to listen for and receive callbacks from the web service
using specially annotated event set methods.

For more information on the callback model see Web Service Callbacks.

Asynchronous Request-Response

The asynchronous request-response model places all of the burden of asynchronous coordination on the client. On
this model the target web service does not need to be explicitly designed to be asynchronously called. The only
requirement of the target web service is that it comply with the WS-Addressing standard. The client takes on all of
the burden of coordinating the asynchronous response or failures that are later returned by the web service.

For more information on the asynchronous request-response model, see Invoking a Web Service Using Asynchronous
Request-Response.

Related Topics

Building Web Services with Workshop for WebLogic

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.w....doc/html/webservices/conBasicWebServiceTechnologies.html (3 of 3)12/7/2006 11:40:21 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/async/callback/ovwAsynchronousWebServices.html
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://edocs.bea.com/wls/docs92/webserv/advanced.html#async_req_res
http://edocs.bea.com/wls/docs92/webserv/advanced.html#async_req_res

Building Web Services with Workshop for WebLogic

Building Web Services with Workshop for WebLogic

You can build enterprise-class web services with Workshop for WebLogic. Web services built with
Workshop for WebLogic employ standard web service technologies: XML, SOAP, and WSDL.
Workshop for WebLogic simplifies web service development by allowing you to focus on
application logic, rather than the complex implementation details traditionally required by these
technologies.

Workshop for WebLogic also offers the web service Design View, a graphical tool for designing,
creating, and edit web services.

The following sections explain the basic concepts that you need to know about to begin building
web services with Workshop for WebLogic, and point you to more in-depth information about each.

Web Service Design View

The web service Design View gives a graphical, intuitive view of a web service and its operations.
It also makes it easy to perform complex coding and design tasks. For more information on the
Design View see Using Design View to Create Web Services.

Web Service Projects

You build web services within a web service project. A web service project corresponds to a J2EE
web application with the addition of facets to support web services. You may build multiple web
services within a single project.

For more information on applications and projects, see Applications and Projects.

The Web Service Class

The web service class is the core of your web service. It is an ordinary Java class (decorated with
the @WebService annotation) that determines how your web service behaves, often through the
use of one or more controls that contain the web service's application logic. You can think of a
web service built on Workshop for WebLogic as a Java class which communicates with the outside
world through XML messages. This documentation assumes you are familiar with Java
programming.

You design a web service in the Workshop for WebLogic integrated development environment.

Methods and Callbacks

Your web service has a public interface that clients may call over the internet. This interface is
made up of methods and callbacks. The methods that your web service exposes are called by
clients; the callbacks are methods on the client that your web service calls to send information
back to the client. These methods and callbacks are available over the internet because they are

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea....services/conBuildingWebServiceswithWebLogicWorkshop.html (1 of 4)12/7/2006 11:40:21 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conApplicationsProjects.html#webservice
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conApplicationsProjects.html
http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebService

Building Web Services with Workshop for WebLogic

decorated with the @WebMethod annotation.

Within your web service code, you may also have non-public methods that are not exposed to
clients. These methods perform internal functions in your web service. These methods are not
decorated with @WebMethod.

The controls that your web service uses also expose methods and events. Your web service
functions as a client of the control, calling its methods and implementing its event handlers.

Custom Controls

You can use custom controls in your web service to implement the application logic of your web
service. Custom controls in turn use system controls to access enterprise resources such as
databases, legacy applications, and other web services. In other words, your web service interacts
with a custom control by calling its control methods and implementing event handlers for its
control events, and the custom control calls control methods and implements event handlers for
any system controls it uses.

Workshop for WebLogic provides system controls for connecting to common resources. The
system controls provided with Workshop for WebLogic are:

●

The service control, for calling another web service

●

The timer control, which notifies your web service when a specified period of time has elapsed
or when a specified absolute time has been reached

●

The EJB control, which provides simplified access to Enterprise Java Beans (EJBs).

●

The JDBC control, which provides simplified access to a relational database

●

The JMS control, which makes it easy to send and receive messages via a Java Message
Service (JMS) topic or queue.

For more information about system controls, see Using System Controls. For information on
building custom controls, see Custom Controls.

Properties

Most of the elements that make up your web service-methods, callbacks, controls, and the web
service itself-have properties that you can set to specify their characteristics. You can set
properties in the Annotations view in the Workshop for WebLogic IDE. Each element of your web
service has one or more annotations, each with a set of attributes, corresponding to the element's
properties in the Annotations view. Properties are stored in your code as Java 5 annotations
(beginning with @). You can also edit annotations them directly in the code editor if you wish.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea....services/conBuildingWebServiceswithWebLogicWorkshop.html (2 of 4)12/7/2006 11:40:21 AM

http://e-docs.bea.com/wls/docs92/webserv/annotations.html#WebMethod
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/system/navSystemControlsOverview.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/custom/navCustomControls.html

Building Web Services with Workshop for WebLogic

Conversations and Asynchronous Communication

Many processes take time to complete. When a client makes a request from a web service, if the
web service doesn't return a response right away, the client may be left waiting for it, unable to
continue other operations. Web services that you build with Workshop for WebLogic can address
this problem by relying on asynchronous communication.

When a client and web service communicate asynchronously, the web service immediately
acknowledges the client's request, then continues processing the request. The client is free to
continue performing other work. For more information on building asynchronous web services, see
Designing Asynchronous Interfaces.

A web service and its client may also participate in a conversation. The conversation keeps track
of state-related data for this exchange between client and service.The conversation correlates the
client's requests and the service's response by means of a conversation ID, a unique identifier
that is generated when the client initiates a conversation with the service.

For more information on conversations, see Creating Conversational Web Services in the
WebLogic Sever documentation and Tutorial: Creating a Web Service with Timer Control.

Starting Points for Designing a Web Service

Developers often design web services around preexisting data structures and contracts. Two
common starting points are WSDL files and XSD files.

Starting from a WSDL

When building a web service, it is often easier to build the web service implementation around an
already existing web service contract (a WSDL file). This method for creating a web service is
sometimes called "WSDL first", "contract first" or "top down" web service design.

Starting from a Schema File

Another common approach to design web services is to start with an XML schema file (an XSD
file), compile XMLBeans from the schema, and then build a web service implementation centered
on those XMLBean classes.

For more information on how Workshop for WebLogic supports both these approaches to web
service design, see Web Service Development Starting Points.

Related Topics

Designing Asynchronous Interfaces

Working with Controls

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea....services/conBuildingWebServiceswithWebLogicWorkshop.html (3 of 4)12/7/2006 11:40:21 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/async/navAsynchronousInterfaces.html
http://edocs.bea.com/wls/docs92/webserv/advanced.html#conversations
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/system/timer/tutCreateSimpleTimer.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/async/navAsynchronousInterfaces.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/navBeehiveControls.html

Building Web Services with Workshop for WebLogic

Creating Conversational Web Services

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea....services/conBuildingWebServiceswithWebLogicWorkshop.html (4 of 4)12/7/2006 11:40:21 AM

http://edocs.bea.com/wls/docs92/webserv/advanced.html#conversations

Using Design View to Create Web Services

Using Design View to Create Web Services

The web service Design View gives you a graphical overview and editing environment for web services.

Design View is synchronized with the web service Source View, Annotations View, and all other views of the web service: when you make
changes in one view, the changes are reflected in all the others.

This topic describes how to use the graphical elements in Design View to create web services.

Design View Basics

The main areas of Design View are:

●

The Header gives the class name of the web service being shown.

●

The Client Interface (left side) represents the web service's methods and callbacks.

●

The Referenced Controls area (right side) represents the controls used by the web service.

●

The bottom of the view gives links for switching between Source View and Design View.

Client Interface

The Client Interface only shows those methods that are publicly accessible over the internet. These include the web service's "web
methods" (those methods that are annotated with @WebMethod). Other methods are visible only in Source View. (An exception to this rule
is when no methods are annotated with @WebMethod. In that case, all of the methods are displayed in Design View, because in this case all
are assumed to be web methods.)

Methods and Callbacks

Each web method is represented by one or two arrows and a label.

Hovering over the arrows or label displays the method's return type, package, and class.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conWebServiceDesignView.html (1 of 7)12/7/2006 11:40:22 AM

Using Design View to Create Web Services

Holding down the Ctrl key and hovering over an element shows the corresponding source code.

Clicking the label brings you to the method's source code.

Edit the method signature by right-clicking and selecting Edit Signature.

Method and Callback Icons

Method and callback icons are constructed according to the following rules:

●

Two arrows indicates that the client expects a return value (even if that value is void).

●

One arrow indicates the @Oneway annotation, which means that the client should not expect a return value.

●

Methods are depicted by two arrows where the top arrow points to the right and link text that appears to the right of the arrows.

●

Callbacks are depicted by two arrows where the top arrow points to the left link text that appears to the left of the arrows.

●

A blue-colored top arrow represents a parameter set; a blue-colored bottom arrow represents a return value.

The table below shows some of the methods and callbacks represented on the client interface.

Client Interface Method Representations
Method Type Expects Data

Parameters
Returns
Data

Appearance Source Code Example

Inbound
(client
invokable)

no no @WebMethod
public void hello() {
}

Inbound
(client
invokable)

yes no @WebMethod
public void hello(String str) {
}

Inbound
(client
invokable)

no yes @WebMethod
public String hello() {
 return "Hello, World";
}

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conWebServiceDesignView.html (2 of 7)12/7/2006 11:40:22 AM

Using Design View to Create Web Services

Inbound
(client
invokable)

yes yes @WebMethod
public String helloName(String str){
 return "Hello, " + str + "!";
}

Inbound (One
Way, client
expects no
return value)

no no @Oneway()
@WebMethod
public void hello() {
}

Inbound (One
Way, client
expects no
return value)

yes no @Oneway()
@WebMethod
public void hello(String str) {
}

Callback no no @CallbackService
public interface CallbackSvc extends CallbackInterface {
 @WebMethod
 public void callback();
}

Callback yes no @CallbackService
public interface CallbackSvc extends CallbackInterface {
 @WebMethod
 public void callback(String str);
}

Callback no yes @CallbackService

public interface CallbackSvc extends CallbackInterface {
 @WebMethod
 public String callback();
}

Callback yes yes @CallbackService

public interface CallbackSvc extends CallbackInterface {
 @WebMethod
 public String callback(String str);
}

Conversation Decorators

Conversation-related annotations are represented by decorator icons.

Conversation starting, continuing, and ending methods are represented by green, yellow, and red decorators, respectively.

The following table summarizes the conversation-related decorator icons.

Conversation Decorator Icons
Decorator Description Source Code

Indicates the method starts a
conversation.

@Conversation(Conversation.Phase.START)

Indicates the method continues a
conversation.

@Conversation(Conversation.Phase.CONTINUE)

Indicates the method finishes a
conversation

@Conversation(Conversation.Phase.FINISH)

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conWebServiceDesignView.html (3 of 7)12/7/2006 11:40:22 AM

Using Design View to Create Web Services

You can set conversation properties on a method by right-clicking on the method and choosing Conversation Start, Conversation
Continue, or Conversation Finish.

For more information on conversations see Creating Conversational Web Services in the WebLogic Server documentation.

Method Buffer Decorators

Method buffers are represented by the following icon:

You can place message buffer on a method by right-clicking on the method and choosing Message Buffer or Message Buffer and
Oneway.

The following table summarizes the buffer-related decorator icons.

Buffer Decorator Icons
Decorator Description Source Code

Indicates a buffer is enabled on a
method.

@MessageBuffer() is present on the method
declaration.

Indicates a buffer is enabled at the
class level.

@MessageBuffer() is present on the class declaration

For more information on message buffers see Creating Buffered Web Services in the WebLogic Server documentation.

Referenced Controls

Controls referenced by the web service are represented on the right side of Design View.

You can also add controls to the referenced controls area by dragging and dropping from the Package Explorer view.

The follow example depicts a control declaration

The following control declaration...

 @Control
 private HelloMessage helloMessage;

...is depicted in Design View as shown below.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conWebServiceDesignView.html (4 of 7)12/7/2006 11:40:22 AM

http://edocs.bea.com/wls/docs92/webserv/advanced.html#conversations
http://edocs.bea.com/wls/docs92/webserv/advanced.html#buffering

Using Design View to Create Web Services

Note that the variable name helloMessage is shown in the Design View, not the Control class name.

All methods in the controls interface file are shown in Design View.

Generating Client Interface Methods

To generate a client interface method that calls a referenced control method, right-click the control method and select Generate Delegate
Method.

The corresponding method is created in the client interface.

Event Handlers

Event handler methods in the web service are shown in Referenced Controls area. Event handlers are displayed with clickable link text.
Clicking on the link text will take you to the event handler source code in the web service.

Unhandled events in controls are shown in plain text.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conWebServiceDesignView.html (5 of 7)12/7/2006 11:40:22 AM

Using Design View to Create Web Services

To add an event handler to the web service, right-click on the unhandled event, and select Create Event Handler.

An event handler signature is added to the web service, for example:

 @EventHandler(field = "helloMessage", eventSet = HelloMessage.NewEventSet.class, eventName = "onEvent")
 protected void helloMessage_NewEventSet_onEvent(String msg) {

 }

Design View Palette

When the Design View is active it is accompanied by the Design View Palette.

You can add items to the Design View by dragging and dropping items from the Design View Palette (or by double-clicking on those
same items).

You can add new control references, methods, and callbacks.

Common Tasks

Keyboard Shortcuts

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conWebServiceDesignView.html (6 of 7)12/7/2006 11:40:22 AM

Using Design View to Create Web Services

Keyboard Shortcuts
Key Stroke Event
Shift-F10 Shows context menu on selected item
Tab / Shift-Tab Moves forwards/backwards through referenced controls and the web service class. (Note

that pressing Tab will also move focus to the Eclipse toolbar, but focus will eventually return
to the Design View elements, provided that the Tab key is pressed a sufficient number of
times.)

Up and down arrow keys Cycles through the selectable elements including: individual methods, callbacks, event
handlers, referenced controls, and the entire Design View canvas.

Left and right arrow keys When a referenced control is selected, the left and right arrows expand and collapse the
referenced control.

Setting Preferences

You can set Design View preferences using the Service Design Views dialog available at Windows > Prefs > Workshop > Service
Design Views.

For more information on this dialog see Service Design Views Preferences.

Related Topics

Designing Asynchronous Interfaces

Working with Controls

Creating Conversational Web Services

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conWebServiceDesignView.html (7 of 7)12/7/2006 11:40:22 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/ui/uiWSDesignViewPreferences.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/async/navAsynchronousInterfaces.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/navBeehiveControls.html
http://edocs.bea.com/wls/docs92/webserv/advanced.html#conversations

Web Service Development Starting Points

Web Service Development Starting Points

This topic describes three different starting points for developing web services:

●

Starting from a WSDL

●

Starting from an XML Schema

●

Starting from a Java Class

Starting from a WSDL

In this approach to developing a web service, you begin by defining the WSDL file (or getting a pre-existing one). This is the
web service contract that defines how the web service communicates with clients, including the data types conveyed, the
available methods, and the protocols and message formats used. Hence, this approach to web service development is
sometimes called "contract first" or "top down" development. Note that you can only use JAX-RPC types when using this
development approach, XMLBean types are not available.

To generate a web service from a WSDL:

1.
Import the WSDL into a web service project.

2.
In the Package Explorer or Navigator view, right-click the WSDL and select Web Services > Generate Web Service.

Two artifacts will be created: a web service implementation class and a JAR file. The web service class will contain the web
methods described by the WSDL (the publicly accessible methods and callbacks) without any method bodies. The developer
must fill in the web service's implementation details. The JAR file contains a web service interface class and types referenced
in the original WSDL and is located in the project's WEB-INF/lib directory.

For example the generated web service implementation class will resemble the following:

@WebService(
 serviceName="MailingListServiceService",
 targetNamespace="http://services",
 endpointInterface="model.MailingListService")
@WLHttpTransport(contextPath="ServicesWeb",serviceUri="MailingListService",
portName="MailingListServiceSoapPort")
public class MailingListServiceImpl implements MailingListService {

 public MailingListServiceImpl() {

 }

 public java.lang.String getCustomers() {
 //replace with your impl here
 return null;
 }

Notice that this class implements MailingListService, the interface file found in the generated JAR file.

The developer must fill in the method body for the method getCustomers().

Starting from an XML Schema

In this approach to developing a web service, you begin with an XML schema (XSD file) that defines XML data structures to

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.....doc/html/webservices/conWebServiceDevelopmentCycle.html (1 of 3)12/7/2006 11:40:22 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conApplicationsProjects.html#WebService

Web Service Development Starting Points

be used as parameters and return types in the web service operations. XMLBean Java types are then automatically
generated from the schema for use in your web service. This approach gives you the following benefit of a common set of
data structures for all of the web services in a project or set of projects.

Once the XMLBean types are available, web service development proceeds according to the "Start with a Java Class" method
described below.

To develop starting from an XML schema:

1.
Enable the XML beans builder facet on your web service project.

2.
Import the schema into the project's schema directory. (The schema directory is automatically created when the builder
facet is added to the project.)

Schemas will be automatically compiled into XMLBeans, which you can use in your web service. The XMLBean types will be
automatically re-compiled whenever the schemas in the schema directory are updated.

Note: You do not have to use the XML beans builder facet to create XMLBean types. Alternatively, you can
generate a JAR by right-clicking any XSD or WSDL in the project and selecting Web Services > Generate Types
JAR File. This will open the Types JAR File Generation Wizard, from which you can generate a JAR containing
XMLBeans. Or, if you already have a JAR containing the XMLBean types, you can import it into the project and use
those types in a web service. Neither of these options provide automatic updating of the XMLBean JAR when the
original schema changes.

Available XMLBean types can be seen in the Navigator view (Window > Show View > Navigator) in the directory .
xbean_src. The .xbean_src and .xbean_bin directories contain generated files that should never be directly edited.

The following example shows one way to incorporate XMLBean types into a web service. Suppose you import the following
schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ws="http://openuri.org/bea/samples/workshop"
targetNamespace="http://openuri.org/bea/samples/workshop" elementFormDefault="qualified">
 <xs:element name="applicant">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element name="bankrupt" type="xs:boolean"/>
 <xs:element name="name_first" type="xs:string"/>
 <xs:element name="name_last" type="xs:string"/>
 <xs:element name="risk_estimate" type="xs:string"/>
 <xs:element name="score_info" type="ws:score_infoType"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="score_infoType" mixed="true">
 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element name="credit_score" type="xs:short"/>
 </xs:choice>
 </xs:complexType>
</xs:schema>

The corresponding generated XMLBean types are ApplicantDocument, ScoreInfoType, etc.

The following web service method uses the ApplicantDocument as an input parameter and performs a simple risk
assessment calculation.

 @WebMethod
 public String getRiskEstimate(ApplicantDocument appDoc) {

 boolean bankrupt = appDoc.getApplicant().getBankrupt();
 short balanceRemain = appDoc.getApplicant().getBalanceRemaining();

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.....doc/html/webservices/conWebServiceDevelopmentCycle.html (2 of 3)12/7/2006 11:40:22 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conUsingXMLBeans.html#automatic_generation
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conApplicationsProjects.html#WebService
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/ui/uiGenerateWSDLTypesJARWizard.html

Web Service Development Starting Points

 if (bankrupt == true && balanceRemain < 200)
 appDoc.getApplicant().setRiskEstimate("high");
 else
 appDoc.getApplicant().setRiskEstimate("low");

 return appDoc.getApplicant().getRiskEstimate();
}

For detailed information about using XMLBeans see Using XMLBeans in the IDE.

Starting from a Java Class

In this approach, you develop a web service as a Java class. Methods become web service operations and method
parameters and return types can be simple Java Beans. The Java class is annotated to indicate what methods should be
exposed and to set other properties for the service. The following guidelines will help you utilize all of Workshop for
WebLogic's web service features.

1.
Create a new web service class (File > New > Web Service) in an appropriate package within your web service
project. To learn about Workshop for WebLogic projects, see Applications and Projects.

2. All of the following steps can be accomplished using the web service Design View, a graphical editing environment for
creating web services. For more information see Using Design View to Create Web Services.

3.
Add the methods your web service will expose and configure each method's parameters.

4.
Add any callbacks your web service will expose and configure each callback's parameters. To learn more about
callbacks see Web Service Callbacks.

5.
Implement event handlers for relevant events from controls that the web service utilizes. To learn more about event
handlers see Handling Control Events and Handling Web Service Callback Messages.

6.
Determine and configure the conversation phase of each method and callback. To learn more about conversations, see
Designing Conversational Web Services.

7. Determine and configure any buffered methods. To learn more about message buffers see Creating Buffered Web
Services in the WebLogic Server documentation.

8. Once your web service is complete, you can generate a WSDL file by right-clicking on the web service in the Package
Explorer and selecting Web Services > Generate WSDL.

Related Topics

WSDL Files: Web Service Descriptions

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.....doc/html/webservices/conWebServiceDevelopmentCycle.html (3 of 3)12/7/2006 11:40:22 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conUsingXMLBeans.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conApplicationsProjects.html#webservice
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conApplicationsProjects.html#webservice
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conApplicationsProjects.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/async/callback/ovwAsynchronousWebServices.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/conHandlingControlCallbacks.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/system/service/conHandlingWebServiceCallbacks.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/async/converse/navMaintainingStatewithConversations.html
http://edocs.bea.com/wls/docs92/webserv/advanced.html#buffering
http://edocs.bea.com/wls/docs92/webserv/advanced.html#buffering

Testing Web Services with the Test Client

Testing Web Services with the Test Client

As you develop a web service, you can typically test it directly by using the Test Client. In some cases, you will need to test indirectly by creating a
separate web service that acts as a client for testing.

Installing the Test Client

The Test Client is included with Workshop for WebLogic Update (in a ZIP file), but not installed. Use the following instructions to install it.

1. Locate the Test Client ZIP file at:

BEA_HOME\workshop92\workshop4WP\eclipse\features\com.bea.wlw.workshop_9.2.1.0\archives\wlstestclient.zip

2. Extract the contents of the zip file to a temporary directory such as c:\temp\wlstestclient.

3. If the server is running, shut it down before proceeding to the next step.

4. Locate the existing Test Client EAR file at BEA_HOME\weblogic92\server\lib and back it up to another location.

5. Copy the new wlstestclient.ear file to the BEA_HOME\weblogic92\server\lib directory, replacing the old one.

6. Restart the server.

Testing Web Services with the Test Client

The Test Client provides a user interface through which you can test web service operations with parameter values you choose. With the Test Client you
can:

● Test a web service from the project tree.

● Choose which operation you want to test.

● Examine operation and callback results.

● View the WSDL for the web service you're currently testing.

● Choose another web service to test.

Note: You can also launch the Test Client without using the IDE.

For an example of using the Test Client, see Web Service Tutorial: Step 4: Test the Web Service.

Test Client User Interface

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (1 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

Basic Testing Steps

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (2 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

When you test web services with Workshop for WebLogic, you follow simple steps that launch the Test Client with a visual interface for invoking the web
service's operations. Briefly, these steps are:

1. Start WebLogic Server.

2. Expand the project tree to display the web service source file.

3. Right-click the source file, then click Run As -> Run on Server.

4. When the Test Client is displayed, choose the operation you want to test.

5. If the operation has parameters, enter test values in the boxes provided.

6. Click the button labeled with the operation's name.

7. Examine the result of the test.

8. Use the Message Log list to view the results of multiple tests.

9. If the web service is designed to receive a callback, click the callback's name in the Message Log list to view callback values. (You might need to
refresh the Test Client if the callback is not designed to execute right away.)

10. Click Show Operations to begin another test.

Choosing Operations to Test

When the Test Client is displayed, you choose an operation to test by clicking the button labeled with the operation's name. If the operation has
parameters, the Test Client provides boxes for you to enter the values to test with.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (3 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

Complex Types as Parameters

When an operation includes complex types as parameters, the Test Client will display an XML template with placeholders for your test values. For example,
the following illustration shows a template in which "Gladys Kravitz" has been entered for one String placeholder and the other placeholder is about to be
replaced with a test value.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (4 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

Navigating Conversational Web Service Tests

The Test Client provides special links through which you can test conversational web services.

When testing a conversational web service, the Test Client will only display the operations that are valid in the current phase of the conversation. In other
words, when you begin testing, only START methods show. You click the Continue this conversation (or the conversation's log heading — such as
"Conversation 3" in the following illustration) link to display the list of operations after you invoke a START method — then only CONTINUE and FINISH
methods are displayed.

Note that the message log groups the operations invoked according to the conversation in which they were tested with each message shown
chronologically within the conversation.

Click Start New Conversation to display the list of operations so that you can choose one and start a new conversation.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (5 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

Examining Message Contents

When you execute an operation, the Test Client refreshes to display information about the message exchanged by the operation. The user interface
provides a summary of message values as well as the message XML itself. This information is provided for both operation messages and callback
messages. When an exception occurs, a fault message is displayed.

Notice that in the message XML, all but the most important parts of the message payload are displayed in grey.

Operation Messages

After you have executed a web service operation, the Test Client displays information about messages related to the operation. The request summary
provides a shorthand version of the message's contents. It gives parameter and return values (if any), along with time stamp information.

Each test of a web service operation will have its own entry in the Message Log list. In this way you can compare tests that use different values.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (6 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

Beneath the request summary the message XML is displayed, as shown in the following image. Messages for both the operation's request and its return
value are displayed.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (7 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (8 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

Callback Messages

If your web service sends a callback, you can view the results of the callback's execution by clicking its name in the Message Log list. Note that because the
callback log entry won't show up until after the callback executes, you might need to refresh the Test Client after an interval to get the entry (you can click
the Test Client's Refresh link).

As with operation messages, the Test Client displays callback message data as a summary as well as the message XML. The callback request message will
describe the data sent to your web service by the callback.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (9 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

Exception Messages

When testing the web service generates a fault or exception, the Test Client displays the resulting message. Note in the following summary example that a
fault has been noted. Here, a string was provided for the operation's argument rather than an int.

The message XML below is also displayed.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (10 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

Viewing the WSDL File

You can view the WSDL file for the web service you're testing by clicking the WSDL URL provided at the top of the Test Client window.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (11 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

Choosing Another Web Service to Test

You can test another web service without closing the Test Client by clicking the Choose Another WSDL link at the top of the Test Client window. The Test
Client will display a page with a box where you enter the WSDL URL, then click Go to display the test form for that web service.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (12 of 14)12/7/2006 11:40:23 AM

Testing Web Services with the Test Client

Launching the Test Client Without the IDE

You can use the Test Client outside the IDE by launching the client through a web browser.

1. With the server running, open a browser window and navigate to the following URL to start the Test Client:

http://localhost:7001/wls_utc

2. In the Wsdl box, enter the URL for the WSDL of the web service you want to test and click Go.

Setting Up a Web Service Client for Indirect Testing

Some web services can not be tested standalone with the Test Client. In these cases, you will need to create a separate web service to act as a client of the
main web service for the purpose of testing. You will need to test in this "indirect" way if the web service you want to test:

● Contains reliable messaging.

● Contains message-level security.

You can test it by setting up a service control and a client web service for that control. The following gives the basic steps for setting up a service control
and control client. Note that you do not need to create a separate web service client for every testing scenario.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (13 of 14)12/7/2006 11:40:23 AM

http://localhost:7001/wls_utc

Testing Web Services with the Test Client

To create a new web service project, select File > New > Project > Web Services > Web Service Project. You should create all of your client-
related classes in a different project than the target web services.

2.
To generate a WSDL file, on the Package Explorer tab, right-click the target web service file and select Web Services > Generate WSDL. When
the WSDL file has been generated, drag and drop it into the new web service project. The WSDL should be dropped into an appropriate package under
the src directory.

3.
To generate a web service control, right-click the WSDL file and select Web Services > Generate Service Control.

4.
To generate a client web service, select File > New > WebLogic Web Service. Complete the New Web Service dialog to create a web service class.

Add the web service control to the client by right-clicking anywhere in the source view of the client class and selecting Insert > Control. Select the
service control generated above.

Add any event handler to the client by right-clicking anywhere in the source view of the client class and selecting Insert > Control Event Handler.
Select the desired event methods from the service control.

Finally add methods to the client that invoke methods on the service control.

Run the client by right-clicking it in the Package Explorer and selecting Run As > Run on Server. By default, web services are shown in Test Client.

Debugging Transactional and Conversational Web Services

When debugging a transactional web service, you should consider increasing the transaction timeout period in order to compensate for delays caused by
the debugger. The default timeout is 30 seconds, which may be too short in some debugging situations, especially when the web service is conversational.

To increase the timeout period, use the timeout attribute on the @weblogic.jws.Transactional annotation:

 @WebService
 @Transactional(value=true, timeout=600) // Increase the timeout period to 600 seconds/10 minutes.
 public class TransactionalService implements Serializable {
 ...
 }

Related Topics

Service Control

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conTestingWebServices.html (14 of 14)12/7/2006 11:40:23 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/system/service/navServiceControl.html

WSDL Files: Web Service Descriptions

WSDL Files: Web Service Descriptions

Files with the WSDL extension contain web service interfaces expressed in the Web Service
Description Language (WSDL). WSDL is a standard XML document type specified by the World
Wide Web Consortium (W3C, see www.w3.org for more information).

WSDL files are used to communicate interface information between web service producers and
consumers. A WSDL description allows a client to utilize a web service's capabilities without
knowledge of the implementation details of the web service.

Contents of a WSDL File

A WSDL file contains all of the information necessary for a client to invoke the methods of a web
service:

●

The data types used as method parameters or return values

●

The individual methods names and signatures (WSDL refers to methods as operations)

●

The protocols and message formats allowed for each method

●

The URLs used to access the web service

Imported WSDL Files

When you want to use an external web service from within Workshop for WebLogic, you should
first obtain the WSDL file for the service you want to use. For public web services, the WSDL file
will typically be available on the web site of the organization that publishes the web service. For
private web services, contact the organization that supports the web service to obtain the WSDL
file.

WSDL files can also be found through both public and private UDDI registries. To learn more
about UDDI, visit http://www.uddi.org.

Once you have the WSDL file, you may use Workshop for WebLogic to create a service control.
The service control may then be used from your application like any other Workshop for WebLogic
control.

Some web service tools produce WSDL files that do not contain an XML declaration. Workshop for
WebLogic requires that all XML files contain an XML declaration. The XML declaration is just the
first line of an XML file of the following form:

<?xml version="1.0" encoding="utf-8" ?>

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conWsdlFiles.html (1 of 3)12/7/2006 11:40:23 AM

http://www.w3.org/TR/wsdl
http://www.uddi.org/

WSDL Files: Web Service Descriptions

If you receive a WSDL file that does not contain an XML declaration, you must add a declaration
to the file using a text editor before you can use the WSDL file in Workshop for WebLogic.

Note that the encoding attribute is not required. If an encoding attribute is not present, the
default encoding is utf-8.

Generating a WSDL From a Web Service Class

When you want to make your web service available to others, you do so by producing a WSDL file
for your web service and making it available to your service's clients.

To generate the WSDL file for you web service:

1.
On the Package Explorer or Navigator tab, right-click the web service class and select Web
Services > Generate WSDL.

The generate WSDL can then copied to the client's machine.

Generating a Service control from a WSDL

If the client is a web service or some other Java component built with Workshop for WebLogic, it
can use a service control file generated directly from the WSDL file.

To generate a service control from a WSDL:

●

On the Package Explorer or Navigator tab, right-click the WSDL and select Web Services >
Generate Service Control.

Generating a Web Service from a WSDL

You can also generate a web service class from a WSDL. The resulting web service class will
contain the public endpoint interface described by the WSDL (the public methods and callbacks)
without the implementation. After the web service has been generated, the developer must fill in
the web service implementation details.

To generate a web service from a WSDL:

●

On the Package Explorer or Navigator tab, right-click the WSDL and select Web Services >
Generate Web Service.

Related Topics

Service Control

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conWsdlFiles.html (2 of 3)12/7/2006 11:40:23 AM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/system/service/navServiceControl.html

WSDL Files: Web Service Descriptions

W3C WSDL Specification

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webservices/conWsdlFiles.html (3 of 3)12/7/2006 11:40:23 AM

http://www.w3.org/TR/wsdl.html

	navGettingStartedWebService.html
	Local Disk
	Getting Started with Web Services

	tutWebSvcIntro.html
	Local Disk
	Tutorial: Web Service

	tutWebSvcStep1.html
	Local Disk
	Web Service Tutorial: Step 1: Create a New WebLogic Web Service Project

	tutWebSvcStep2.html
	Local Disk
	Web Service Tutorial: Step 2: Add a Web Service to the Project

	tutWebSvcStep3.html
	Local Disk
	Web Service Tutorial: Step 3: Add a Web Method to the Web Service

	tutWebSvcStep4.html
	Local Disk
	Web Service Tutorial: Step 4: Test the Web Service

	tutWebSvcStep5.html
	Local Disk
	Web Service Tutorial: Step 5: Import Controls into your Web Services Project

	tutWebSvcStep6.html
	Local Disk
	Web Service Tutorial: Step 6: Create a Custom Control

	tutWebSvcStep7.html
	Local Disk
	Web Service Tutorial: Step 7: Use the Control from the Web Service

	tutWebSvcStep8.html
	Local Disk
	Web Service Tutorial: Step 8: Test the Web Service

	tutAdvWSIntro.html
	Local Disk
	Tutorial: Advanced Web Services

	tutAdvWSStep1.html
	Local Disk
	Advanced Web Services Tutorial: Step 1: Import the Tutorial Workspace

	tutAdvWSStep2.html
	Local Disk
	Step 2: Create a New Web Service to Access the LoanApproval Control

	tutAdvWSStep3.html
	Local Disk
	Step 3: Create a Service Control to Access the CreditScore Web Service

	tutAdvWSSummary.html
	Local Disk
	Summary: Advanced Web Services Tutorial

	conBasicWebServiceTechnologies.html
	Local Disk
	Introduction to Web Service Technologies

	conBuildingWebServiceswithWebLogicWorkshop.html
	Local Disk
	Building Web Services with Workshop for WebLogic

	conWebServiceDesignView.html
	Local Disk
	Using Design View to Create Web Services

	conWebServiceDevelopmentCycle.html
	Local Disk
	Web Service Development Starting Points

	conTestingWebServices.html
	Local Disk
	Testing Web Services with the Test Client

	conWsdlFiles.html
	Local Disk
	WSDL Files: Web Service Descriptions

