Building Custom Java Controls

Developing Custom Controls

BEA Workshop for WebLogic Platform allows you to create custom controls tailored to your project
or application. This section explains how to create these controls.

For a complete overview of controls in Workshop for WebLogic, including how to create them, see
Getting Started with Beehive Controls.

Topics Included in This Section

Creating Custom Controls
Describes the basics of creating and using custom controls.

Source Files for Custom Controls
Describes the files that are necessary in any custom control.

Testing Controls
Discusses how to test custom controls.

Exporting Controls into JARsS
Describes how to export controls into a JAR file that can be shared .

Related Topics

Using System Controls

file:///D|/depot/dev/src920_ffo/hel p/pluging/en/com.bea.wlw.doc/html/control §/custom/navCustomControl s.html 12/7/2006 12:03:57 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/conGettingStartedWithControls.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/system/navSystemControlsOverview.html

Working with Custom Controls

Creating Custom Controls
This topic describes how to use a custom custom control. It explains how to:

. Create a custom control

. Use a custom control in your application
Custom control files can be located:

. In your web project.

. In a utility project. To access such controls in a web application, both the web project and the
utility project must be linked to the same EAR project.

To Create a Custom Control

The following instruction assume you are in the Workshop perspective (Window = Open
Perspective = Workshop).

1.
You cannot create a control in the default package. So the first step is to create a package
for the control. For example:
<ProjectRoot>/src/controls/myControl/
2.
Right-click the package and select New > Custom Control.
3.
In the Control name field, enter the class name for the control.
The Java interface and implementation classes will be based on the name entered here. For
example, if you enter Hello, two classes will be created:
Hello.java (=the interface class)
and
Hellolmpl.java (=the implementation class)
4.

Click Finish.

Default control interface and implementation classes are produced. Assuming that your control is
named Hello, the following class files are produced:

Hello.java Interface Class File

package controls. nyControl;

file:///D|/depot/dev/src920_ffo/hel p/pluging/en/com.bea....c/html/control s/custom/conWorkingWithCustomControls.html (1 of 3)12/7/2006 12:03:57 PM

Working with Custom Controls

i nport org. apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface
public interface Hello {

}
Hellolmpl.java Implementation Class File

package controls. nyControl;

i mport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on;
i mport java.io.Serializable;

@ontrol | mpl enent ati on
public class Hellolnpl inplenents Hello, Serializable {
private static final long serial VersionUD = 1L;

Continue the composition of the custom control by adding methods to these class files.

To Use a Custom Control in an Application

If you have an existing custom control in your project or in a utility project in the current
workspace, you can add a reference to that control to a control client by right-clicking anywhere
within the client's Java source file and selecting Insert > Control.

A list of available controls appears. The heading Existing Project Controls lists the controls in
the same project as the client. The heading Existing Application Controls lists the controls in
the utility projects in the same workspace.

When you add a control reference to a client, Workshop for WebLogic Platform modifies your
client’s source code to include an annotation and variable declaration for the control. The
annotation ensures that the control is recognized by Workshop for WebLogic Platform, and the
variable declaration gives you a way to work with the control from your client code. For example,
if you add a new custom control named Hel | o, the following code will be added to your client:

i mport org. apache. beehi ve. control s. api . bean. Control ;
i mport controls. myControl. Hell o;

@ont r ol

private Hello hello;

Once you have a reference to a control, your client can call methods on that control. For more
detail on calling a control method, see Invoking a Control Method.

Related Topics

file:///D|/depot/dev/src920_ffo/hel p/pluging/en/com.bea....c/html/control s/custom/conWorkingWithCustomControl s.html (2 of 3)12/7/2006 12:03:57 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/conInvokingControlMethod.html

Working with Custom Controls

Invoking a Control Method

Source Files for Custom Controls

file:///D|/depot/dev/src920_ffo/hel p/pluging/en/com.bea....c/html/control s/custom/conWorkingWithCustomControl s.html (3 of 3)12/7/2006 12:03:57 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/conInvokingControlMethod.html

Source Files for custom controls

Source Files for Custom Controls

Custom controls consist of two Java source files: an interface class file and an implementation
class file.

The interface class contains the control's publicly accessible methods. Clients of the control call
the methods in the implementation class.

The implementation class contains the control’'s behind the scenes implementation code.

There is also a third class associated with each custom control: the generated JavaBean class.
This is a build artifact created from the interface and implementation source files. The generated
JavaBean class provides supplemental programmatic access to the control, especially the ability to
override default annotation values in the control. For more information about this class see
Overriding Control Annotation Values Through the Control JavaBean

Custom Control Interface Classes
A custom control interface class must be decorated with the @ontr ol | nt er f ace annotation.

package controls. hell o;
i mport org. apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface
public interface Hello {

The @ont rol | nt er f ace annotation informs the compiler to treat this class as a part of the
Beehive Control framework.

The interface class also lists the control's publicly available methods. The following example shows
a control with one publicly available method.

package controls. hell o;
i mport org.apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface
public interface Hello {

public String hello();

file:///D)/depot/dev/src920_ffo/hel p/pluging/en/com.bea.wlw.doc/html/control s/custom/conCustomControl SourceFiles.html (1 of 2)12/7/2006 12:03:58 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/conOverridingControlProperties.html
http://beehive.apache.org/docs/1.0.1/controls/index.html

Source Files for custom controls

Custom Control Implementation Classes

A custom control implementation class contains the control's logic - the code that defines what
the control does. In this file you define what each of the control's methods do.

The minimum requirements for a custom control implementation class are listed below.

1.
The class must be decorated with the @Cont r ol | npl enent ati on annotation.
i mport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on;
@ontrol | npl enent ati on
public class Hell ol npl
2.
The class must implement the corresponding custom control interface file.
i nport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on;
@ontrol | mpl emrent ati on
public class Hellolnpl inplenents Hello
3.

The classes must either:
(a) implement java.io.Serializable

i mport java.io.Serializable;

@ontrol | npl enent ati on
public class Hellolnpl inplenents Hello, Serializable

(b) or set @Controllmplementation(isTransient=true)

@Cont rol | npl ement ati on(i sTransi ent =true)
public class Hellolnpl inplenments Hello {

}
Related Topics

Controls: Getting Started

file:///D}/depot/dev/src920_ffo/hel p/pluging/en/com.bea.wlw.doc/html/control s/custom/conCustomControl SourceFiles.html (2 of 2)12/7/2006 12:03:58 PM

http://beehive.apache.org/docs/1.0.1/controls/index.html

Testing Controls

Testing Controls

Beehive controls can be tested either inside of an application container or outside in a standalone
Java environment. Testing in a standalone Java environment is especially useful when running
unit tests.

Beehive controls can be integrated into the JUnit test framework using the ControlTestCase base
class. This base class provides a control container and provides help in instantiating a control
declaratively via the

@Control annotation.

Note that not all controls can be tested within the test container because some controls have
requirements beyond what ControlTestCase provides. For example, a control that uses JNDI
lookups will not be testable with ControlTestCase. Likewise controls that take a dependency on a
J2EE container (like the Service Control) may not be testable out of that J2EE container.

For details on testing controls with ControlTestCase see Control Tutorial: Testing Controls with
Junit.

Related Topics

Testing Controls with JUnit

file:///D}/depot/dev/src920_ffo/hel p/pluging/en/com.bea.wlw.doc/html/control s/conTestingControl s.html12/7/2006 12:03:58 PM

http://www.junit.org/index.htm
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/test/junit/ControlTestCase.html
http://beehive.apache.org/docs/1.0.1/controls/apidocs/javadoc/org/apache/beehive/controls/api/bean/Control.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/system/service/navServiceControl.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/tutorial/tutTestControlIntro.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/tutorial/tutTestControlIntro.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/controls/tutorial/tutTestControlIntro.html

Exporting Beehive Controls

Exporting Controls into JARS

Workshop for Weblogic Platform lets you package your control classes as JAR files that can be
ported and reused in other Java projects. This is the simplest way to distribute controls.

To package a Beehive control as a JAR file, select File > Export > Beehive Control JAR File.

Only control files in utility projects are available for JAR file packaging; controls in other project
types are not available for export.

All Java class files in the utility project are included in the JAR file, including control interface,
control implementation classes, and all other Java classes. Note that by default, only class files
are included in the JAR file. To include the Java source files, place a checkmark next to Include
Java source files.

To use a control in another web application:

1. Copy the JAR file to the WEB-INF/lib folder.

2. Add a reference to that control to a control client by right-clicking anywhere within the
client's Java source file and selecting Insert = Control.

3. A list of available controls appears. The heading Existing Project Controls lists the
available controls, including controls in JAR files.

Alternately, you can:

1. Copy the JAR file to the APP-INF/lib folder of the associated EAR project.

2. Add a reference to that control to a control client by right-clicking anywhere within the
client's Java source file and selecting Insert > Control.

3. Allist of available controls appears. The heading Existing Application Controls lists the
available controls, including controls in JAR files.

As long as the JAR is inserted into the user's classpath as described above, the control will be
discovered automatically by Workshop for WebLogic and property set/event handler features will
be provided.

Related Topics

Apache Beehive Documentation

Building Controls

file://ID}/depot/dev/src920_ffo/hel p/pluging/en/com.bea.wlw.doc/html/control s'conExportingControl s.html 12/7/2006 12:03:58 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conApplicationsProjects.html#UtilityProject
http://beehive.apache.org/docs/1.0.1/controls/projects.html

	navCustomControls.html
	Local Disk
	Building Custom Java Controls

	conWorkingWithCustomControls.html
	Local Disk
	Working with Custom Controls

	conCustomControlSourceFiles.html
	Local Disk
	Source Files for custom controls

	conTestingControls.html
	Local Disk
	Testing Controls

	conExportingControls.html
	Local Disk
	Exporting Beehive Controls

