
Web Applications

Web Applications
Workshop for WebLogic provides support for building web applications using the Beehive NetUI
framework.

These topics introduce you to the basic concepts behind Beehive NetUI-based web applications.

 Current Release Information:

● What's New in 9.2

● Upgrading from 8.1

Useful Links:

● Tutorials

● Tips and Tricks

Other Resources:

● Online Docs

● Dev2Dev

● Discussion Forums

● Development Blogs

Topics Included in This
Section

Tutorial: Accessing a Database from
a Web Application
This tutorial shows you how to build a web
application that communicates with a
backend database.

Tutorial: Beehive NetUI / Java
Server Faces Integration
This tutorial shows you how to add Java
Server Faces pages to your web
application and how to integrate Java
Server Faces and Beehive NetUI
technologies in one application.

Introduction to Beehive NetUI
This topic introduces you to the basic
concepts behind Beehive NetUI, the web
application framework used by Workshop
for WebLogic.

The Page Flow Perspective
This topic sets out the tooling provided by
Workshop for WebLogic for building web
applications.

Integrating Java Server Faces into a
Beehive NetUI Web Application
This topic explains how to integrate JSF
and Beehive NetUI technologies in one
application.

Beehive Implementation Details
This topic lists the different web
applications used by Workshop for
WebLogic.

Authoring Beehive NetUI JSPs

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/navWebApp.html (1 of 2)12/7/2006 12:37:48 PM

http://beehive.apache.org/docs/1.0.1/netui/index.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/introduction/conWhatsNew.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/upgrading/navUpgradingFrom81.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/introduction/conWorkshopTutorials.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conTipsAndTricks.html
http://edocs.bea.com/more_wlworkshop.html
http://dev2dev.bea.com/workshop/
http://forums.bea.com/bea/index.jspa
http://dev2dev.bea.com/community/blogs/product.html

Web Applications

These topics introduce you to the basic
techniques for creating JSP pages with
Workshop for WebLogic.

Web Application Dialogs
These topics explain the web application
related UI dialogs and wizards.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/navWebApp.html (2 of 2)12/7/2006 12:37:48 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/navWebAppUI.html

Tutorial: Accessing Controls from a Web Application

Tutorial: Accessing a Database from a Web Application

What This Tutorial Teaches

This tutorial teaches you how to build a web application capable of accessing a database using
BEA Workshop for WebLogic Platform. It also forms a general introduction to the web application
and control technologies used by Workshop for WebLogic.

Note: This tutorial requests that you create a new workspace; if you already have a
workspace open, this will restart the IDE. Before beginning, you might want to launch
help in standalone mode to avoid an interruption the restart could cause, then locate
this topic in the new browser. See Using Help in a Standalone Mode for more
information.

The tutorial contains step-by-step instructions for building a simple web application for managing
a customer database. As you progress through the tutorial you will learn:

● how Workshop for WebLogic leverages Beehive technologies to simplify web application
development

● how to use Java Controls to encapsulate access to data resources

● how to make web applications and controls work together

● how controls can be used to access data stored in a database

● how to display complex Java objects as simple HTML tables

Tutorial Synopsis

Step 1: Create an EAR Project and a Web Application Project

The first step of this tutorial you will create two projects: an EAR project and a Web Application
Project which contains a default minimal page flow. You will define a server which is running a
sample database and library modules.

By the end of the first step, your application consists of the following components:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppIntro.html (1 of 5)12/7/2006 12:37:49 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/introduction/conDocRoadmap.html#standalone_help

Tutorial: Accessing Controls from a Web Application

Step 2: Add a Page Flow and a Control

In the second step, you will add a Page Flow, and two controls to the web application project.

Page Flows are user-facing components of a web application. A Page Flow consists of any number
of JSP pages and a single Java class, called a Controller class, that handles user actions and
events inside the application.

The two controls used in this tutorial allow your application to interact with a database. The first
control (CustomerControl.java) is a custom Java control. The second control (CustomerDB.java) is
a database control that queries the database directly. Strictly speaking, a web application needs
only one control, a database control, to access a database; but two controls are used here (a
database control with a wrapper custom control) to increase the modularity of the application.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppIntro.html (2 of 5)12/7/2006 12:37:49 PM

Tutorial: Accessing Controls from a Web Application

Details about this modularity are provided in step 2 of this tutorial.

At the end of step 2, your application will consists of the following components:

Step 3: Create a Data Grid

In the third step you add a data grid to a JSP page that will display the data in the database.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppIntro.html (3 of 5)12/7/2006 12:37:49 PM

Tutorial: Accessing Controls from a Web Application

The components work together as follows: a method in the Page Flow Controller class will call the
custom control, which will call the database control, which finally will query the database. The
results returned by the query will then be displayed by the data grid on the JSP page.

Step 4: Create a Page to Edit Customer Data

In the last step you add an edit page to the Page Flow allowing you to edit the data in the
database.

When the application is complete, it appears as follows:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppIntro.html (4 of 5)12/7/2006 12:37:49 PM

Tutorial: Accessing Controls from a Web Application

Click the arrow below to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppIntro.html (5 of 5)12/7/2006 12:37:49 PM

Tutorial: Accessing Controls from a Web Application: Step 1: Create an EAR Project and a Web Application Project

Step 1: Create an EAR Project and a Web Application Project

In this step you will create two projects: an EAR project and a Web Application project. These are
the basic building blocks required for designing and testing a new Workshop for WebLogic web
application.

An EAR project configures and stores resources for other components that belong to it,
components such as web applications, EJBs, databases, etc. An EAR project has two main roles:
(1) It is a composite project made up of other projects, such as web projects, EJB projects, and
others. (2) Is it a resource project containing library modules and JARs which other projects
utilize.

The web application project you create belongs to the EAR project.

The tasks in this step are:

● To Start Workshop for WebLogic Platform

● To Create a New Web Project and a New EAR Project

● To Import Files into the Web Project

● To Add a WebLogic Server Domain

To Start Workshop for WebLogic and Create a New Workspace

If you haven't started Workshop for WebLogic yet, use these steps to do so.

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

● From the Start menu, click All Programs > BEA Products > Workshop for
WebLogic Platform 9.2

...on Linux

If you are using a Linux operating system, follow these instructions.

● Run BEA_HOME/workshop92/workshop4WP/workshop4WP.sh

(If you have already started Workshop for WebLogic, select File > Switch Workspace.)

1. In the Workspace Launcher dialog, click the Browse button.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep1.html (1 of 5)12/7/2006 12:37:49 PM

Tutorial: Accessing Controls from a Web Application: Step 1: Create an EAR Project and a Web Application Project

2. In the Select Workspace Directory dialog, navigate to a directory of your choice
and click Make New Folder.

3. Name the new folder WebAppTutorial, press the Enter key and Click OK.

4. In the Workspace Launcher dialog, click OK.

To Create a New Web Project and a New EAR Project

1. From the File menu, select New > Project.

2. In the New Project dialog, on the Select a wizard page, select the node Web>
Dynamic Web Project.
Click Next.

3. In the Project Name field, enter CustomerCare
Place a check mark next to Add project to an EAR.
Confirm that the EAR Project Name is CustomerCareEAR.

4. Click Finish.

When you web project is first created, it is displayed
in the Package Explorer view by default. The
Package Explorer view shows a logical view of your
workspace and its JAR resources.

The image to the right shows your workspace in the
Navigator view. To switch to the Navigator view
select Window > Show View > Navigator. The
Navigator view shows your workspace as it is saved
on disk.

There are now two projects in your workspace: the
web project CustomerCare and the EAR project
CustomerCareEAR. The two projects appear as
sibling projects, since they are on the same level of
the directory tree. But when the projects are
compiled and deployed, the EAR project
CustomerCareEAR is really a container project for the
web project customerCare.

The CustomerCare Web Project

● The .settings folder: Any directory that begins
with a "." contains code generated by Workshop
for WebLogic. You should not edit the files in this
directory.

● The build folder contains .class files and other

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep1.html (2 of 5)12/7/2006 12:37:49 PM

Tutorial: Accessing Controls from a Web Application: Step 1: Create an EAR Project and a Web Application Project

compiled code. You should not edit the files in
this directory.

● The src folder contains the web project's JAVA
files. These files are user editable.

● The WebContent folder contains the web
project's JSP files and other web-related
resources, such as configuration files (in the WEB-INF folder).

The CustomerCareEAR EAR Project

● The .settings and build folders are described above.

● The EarContent folder contains configuration files for the EAR project.

EarContent/APP-INF/lib: Any JARs in this directory are available to any project referenced
by the EAR project.

EarContent/META-INF/application.xml: Lists the modules referenced by the EAR, for
example, the web application customerCare.

EarContent/META-INF/weblogic-application.xml: List the library modules referenced by
the EAR project. These resources can be used by any module referenced by the EAR.

To Import Files into Your Web Project

In this step you will import control files into your web project--control files that provide access to
a customer database. An alternative design would locate these controls in a utility project (File >
New > Project > J2EE > Utilty Project), which would make the controls available to all projects in
the workspace. But for the sake of simplicity and expediency we have placed the controls directly
in the web project.

1. On the Navigator tab, open the CustomerCare folder.

2. Open Windows Explorer (or your operating system's equivalent) and navigate to the
directory BEA_HOME/workshop92/workshop4WP/eclipse/plugins/com.bea.
wlw.samples_9.2.1/tutorials/resources/webApp/

Watch Out! Don't open the webService folder!

3. Drag the folders controls and model (located at BEA_HOME/workshop92/
workshop4WP/eclipse/plugins/com.bea.wlw.samples_9.2.1/tutorials/
resources/webApp/) into the Navigator tab directly onto the folder
customerCare/src.

4. Confirm that the following directory and file structure exists before proceeding.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep1.html (3 of 5)12/7/2006 12:37:49 PM

Tutorial: Accessing Controls from a Web Application: Step 1: Create an EAR Project and a Web Application Project

To Add a WebLogic Server Domain

In this step you will point to a server where you can deploy your application.

Note: if you have executed this tutorial before your server may already contain previous
deployments of the tutorial-related projects. Before proceeding, it is recommended that you either
(1) remove previous tutorial code from your server or (2) create a new server domain.

1. Confirm that you are in the Workshop perspective (Window > Show Perspective >
Workshop).

2. Click the Servers tab.

3. Right-click anywhere within the Servers tab, and select New > Server.

4. In the New Server dialog, select BEA Systems Inc.> BEA WebLogic v9.2 Server.
Click Next.

5. In the Domain home dropdown, select the location BEA_HOME/weblogic92/
samples/domains/workshop. (Note: if you are using a newly created server
domain for this tutorial, then use the Browse button to navigate to that server
domain, for example, BEA_HOME/user_projects/domains/base_domain.)
Click Next.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep1.html (4 of 5)12/7/2006 12:37:49 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html

Tutorial: Accessing Controls from a Web Application: Step 1: Create an EAR Project and a Web Application Project

6. In the Available projects column, select CustomerCareEAR. Click the Add button
to move the select project to the Configured projects column.

7. Click Finish.

A new server is added to the Servers tab.

You can use the Servers tab to manage your servers and project deployments as you develop you
applications.

To deploy or undeploy a project from a server, right-click the server and select Add and Remove
Projects.

For a more properties, double-click a server.

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep1.html (5 of 5)12/7/2006 12:37:49 PM

Tutorial: Accessing Controls from a Web Application: Step 2: Add a Page Flow and an Action

Step 2: Add a Page Flow and a Control

The tasks in this step are:

● Create a New Page Flow

● To Add a Control to the Page Flow

● To Create an Action to Forward Data to a JSP Page

Create a New Page Flow

1. Right-click on the CustomerCare project and select New > Page Flow.

2. In the New Page Flow dialog, in the field Page Flow folder name enter customerManagement and click Finish.

3. When asked to open the Page Flow perspective, click Yes.
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep2.html (1 of 9)12/7/2006 12:37:50 PM

Tutorial: Accessing Controls from a Web Application: Step 2: Add a Page Flow and an Action

When you add a new Page Flow, it is displayed in the Page Flow Perspective by default. The Page Flow Perspective gives you three different views on a particular Page Flow:

1. Page Flow Explorer

2. Page Flow Editor

3. Source Editor

Page Flow Explorer

The Page Flow Explorer shows a logical view of the current Page Flow, listing all of the Actions, JSP Pages, Form Beans, etc. contained in the Page Flow. The Page Flow
Explorer depicts the properties in a way similar to a file tree. But it is important to note that this tree is not the way that the Page Flow is written to disk. (To see the actual file
tree of a Page Flow as it is written to disk, switch to the Navigator view.)

The top-level node gives the package of the current Page Flow. In this case the package is customerManagement.

The first child node gives the Page Flow Controller class being viewed, in this case, CustomerManagementController.java.

The next node lists the Actions. In this case there is only one action: begin. This action is created by default with each new Page Flow.

Next the JSP pages are listed. There is only one JSP page at this time: index.jsp.
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep2.html (2 of 9)12/7/2006 12:37:50 PM

Tutorial: Accessing Controls from a Web Application: Step 2: Add a Page Flow and an Action

At this time, all of the other nodes are empty, because our Page Flow is relatively undeveloped. As we proceed we'll add items to the nodes.

Page Flow Editor

The Page Flow Editor gives a graphical view of the current Page Flow.

The graphical view depicts the Page Flow's actions, JSP pages, and the connections between the actions and pages. In the picture below, the begin action is shown in the center
pane. An arrow extending from the begin action to the index.jsp page depicts the Forward that navigates users to index.jsp, whenever the begin action is called.

The left side of the pane is called the upstream pane and the right side is called the downstream pane. Note that the Page Flow Editor always depicts the direction of flow as
starting from the left and progressing to the right.

To change the current Page Flow depicted, click the dropdown list marked by the green triangle, as shown below.

As you can see from the dropdown list shown below, there are two Page Flows in the web application: (1) Controller (a default Page Flow created with each web application) and
(2) CustomerManagementController (which you will be developing for the remainder of this tutorial).

You can also access a list of available Page Flows by clicking the icon on the Page Flow Explorer tab. In the image below the icon is circled in red. (The icon directly to the
right will pop up the new Page Flow wizard.)

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep2.html (3 of 9)12/7/2006 12:37:50 PM

Tutorial: Accessing Controls from a Web Application: Step 2: Add a Page Flow and an Action

Page Flow Overview

The Page Flow Overview gives a graphical summary of a page flow. In shows all of the actions, pages, and the relationships between them.

Double-clicking on an icon in the Page Flow Overview shows the associated source code in Source View.

Source Editor

The source editor, appearing directly underneath the Page Flow Editor view, shows the Java source for the Page Flow Controller class.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep2.html (4 of 9)12/7/2006 12:37:50 PM

Tutorial: Accessing Controls from a Web Application: Step 2: Add a Page Flow and an Action

To Add a Control to the Page Flow

In this step, you will add a control, CustomerControl.java, to the Page Flow. The methods of this control (addCustomer, editCustomer, etc.) allow the Page Flow client to
interact with customer data in a database. The interaction between the Page Flow client and the database consists of three classes:

1. CustomerManagementController.java: the client Page Flow class

2. CustomerControl.java: a wrapper intermediary Control class

3. CustomerDB.java: the Database Control class, queries the database directly

The control CustomerControl.java acts as a wrapper intermediary class between the client, CustomerManagementController.java, and the Database Control CustomerDB.java.
This wrapper intermediary increases the modularity of the application, allowing the user (1) to switch to a different Database Control if necessary in the future and (2) to
execute any data type recasting within the wrapper class.

In this tutorial no actual recasting occurs, but it is easy imagine a case where recasting is necessary. For example, suppose your Page Flow expects a Customer[] object but
your Database Control returns an ArrayList of Customer objects. In such a situation you could use the intermediary wrapper class to load the ArrayList into a Customer[] before
passing the data to the Page Flow.

1. On the Page Flow Explorer tab, right-click on the Referenced Controls node and select Add Control.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep2.html (5 of 9)12/7/2006 12:37:50 PM

Tutorial: Accessing Controls from a Web Application: Step 2: Add a Page Flow and an Action

2. In the Select Control dialog, select Existing Project Controls > CustomerControl - controls.
Click OK.

You have just added four lines of code to the Page Flow Controller class CustomerManagementController.java:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep2.html (6 of 9)12/7/2006 12:37:50 PM

Tutorial: Accessing Controls from a Web Application: Step 2: Add a Page Flow and an Action

 import org.apache.beehive.controls.api.bean.Control;
 import controls.CustomerControl;

 ...

 @Control
 private CustomerControl customerControl;

These lines declare the Customer control on the Page Flow, allowing you to call control methods.

When you declare a control on a Page Flow class, it appears in the Referenced Controls node, along with a list of its available methods:

To Create an Action to Forward Data to a JSP Page

In this task you will edit the Page Flow class so that it retrieves customer data from the CustomerControl. In particular, you will add an Action (i.e., an annotated method called
getCustomers()) to the the Page Flow class that calls the CustomerControl method getCustomers(), a method which returns an array of Customer objects. (In the next step you
will create a JSP page that displays this array of Customer objects, rendering it as an HTML table.)

1. On the Page Flow Explorer tab, open the node Referenced Controls > customerControl and, within that node, locate the getCustomers method.

2. Drag the getCustomers method directly on top of the index.jsp page displayed on the right-hand side of the Page Flow Editor tab.

Note: Make sure that the Page Flow CustomerManagementController is displayed in the Page Flow Editor. If any other Page Flow is displayed, select

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep2.html (7 of 9)12/7/2006 12:37:50 PM

Tutorial: Accessing Controls from a Web Application: Step 2: Add a Page Flow and an Action

CustomerManagementController from the dropdown list (click the green triangle to show the dropdown list).

3. In the New Action dialog, accept the defaults and click Finish.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep2.html (8 of 9)12/7/2006 12:37:50 PM

Tutorial: Accessing Controls from a Web Application: Step 2: Add a Page Flow and an Action

When the dialog closes, the Page Flow Editor should appear as follows:

You have now created a new Page Flow Action getCustomers() that calls the Control method getCustomers(). The source code of the Action looks like this:

 @Jpf.Action(forwards = { @Jpf.Forward(name = "success", path = "", actionOutputs = { @Jpf.ActionOutput(name = "getCustomersResult",
type = model.Customer[].class) }) })
 public Forward getCustomers() {
 Forward forward = new Forward("success");
 model.Customer[] getCustomersResult = customerControl.getCustomers();
 forward.addActionOutput("getCustomersResult", getCustomersResult);
 return forward;
 }

4. On the Page Flow Explorer tab, open the Pages node, right-click index.jsp and select Delete.
In the Confirm Remove dialog, click Yes.

5. Press Ctrl+Shift+S to save your work.

Related Topics

None.

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep2.html (9 of 9)12/7/2006 12:37:50 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

Step 3: Create a Data Grid

In this step you will add a data grid to your application. A data grid is a set of JSP tags that are designed to render data as an HTML table. This is
especially useful for rendering database data: the data grid renders the database fields as columns of the table and it renders the database records
as rows of the table.

The tasks in this step are:

● Create a JSP Page to Display the Customer List

● To Create a Grid to Display the Customer List

● To Run the Page Flow

Create a JSP Page to Display the Customer List

In this step you will create a new JSP page and place it within the navigation scheme of your Page Flow: when the getCustomers() action is called,
the user is navigated to this JSP page.

1. On the Page Flow Editor tab, click on the getCustomers action icon to center the node.

2. Right-click on the unspecified node and select New JSP Page.

The unspecified node means that the action getCustomers does not forward to any specified JSP page or other action. Your page flow
will compile if it contains unspecified nodes, but, at runtime, if the getCustomers action is ever called, an exception will be thrown. (In
terms of the source code, an unspecified node depicts an empty string in the path attribute of a Forward object: @Jpf.Forward(name =
"success", path = "").

3. On the Add Page Input dialog, click OK.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (1 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

Note: Data is passed from an Action to a JSP page through the pageInput implicit object. A implicit object is a location within a Page
Flow where you can read and (oftentimes) write data for the purpose of passing the data around within the Page Flow.

The pageInput implicit object is the standard location for passing data from an Action to a JSP page.

An Action writes data to the pageInput implicit object by declaring an action output. The following action is declaring that it writes
Customer[] data to the pageInput.getCustomerResult implicit object.

 @Jpf.Action(
 ...
 actionOutputs = { @Jpf.ActionOutput(name="getCustomersResult", type = model.Customer[].class) }
 ...
)
 public Forward getCustomers() {

A page input declares the data type that a JSP page expects to receives. The following JSP page tag is declaring that it expects
Customer[] data from the pageInput.getCustomerResult implicit object.

 <netui-data:declarePageInput name="getCustomersResult" type="model.Customer[]" required="true" />

Note that if the Action passes something other than the expected data type, then a runtime exception will be thrown.

If you ever need to edit the properties of an action output/page input, right-click the arrow that passes between the Action and the JSP
page and select Edit Action Output.

4. Right-click on the new JSP and select Rename.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (2 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

5. Rename the JSP to customers.jsp and press the Enter key.

To Create a Grid to Display the Customer List

In this task, you will add a set of JSP tags (<netui-data:dataGrid>, <netui-data:rows>, etc.) that are specially designed to render Java objects as
an HTML table.

1. On the Page Flow Editor tab, right-click customers.jsp and select Open to open its source code.

2. On the JSP Data Palette, in the Page Inputs section, locate the getCustomersResult icon.
Drag the getCustomersResult icon onto the source code for customers.jsp, dropping it directly before the </netui:body> tag.

3. From the Choose a wizard dialog, select Data Grid and press OK.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (3 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

4. On the Data Grid dialog, click the Columns tab and reorder the columns listed to match the following sequence:

 Id
 First Name
 Last Name
 Company Name
 City
 State
 Zip
 Phone
 Email

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (4 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

5. Click the New button and position the new column (named Newcolumn0 by default) at the top of the list.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (5 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

The next few tasks define an "Edit" link for each row of the table. These links take you to a editing page, where you can update the
fields for a given row.

6. Change the Header Text of the new column from Newcolumn0 to Edit. (You can change the text by clicking inside the cell you wish to
edit.)

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (6 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

7. Set the Render As column to Text Anchor. (This makes the text into linking text instead of plain text.)

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (7 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

8. Set the Content Source column to Static.

By setting this dropdown to Static you are signaling your intent to display the same content in the column for each row, for example, a
static image. When you set it to Data you are signaling your intent to display dynamic content in the column, typically some display text
based on the data in the row, for example, the ID of the row.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (8 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

Notice that when you set the dropdown to Data, fields appear in the lower part of the wizard to help you format the dynamic display
text. If you set the dropdown to Static, those fields disappear.

9. In the Display Text field, enter Edit.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (9 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

10. Click the New button (next to the Anchor Action field).

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (10 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

11. On the New Action dialog, from the Action Template dropdown list, choose Get Item for Edit Via Control.

This New Action wizard helps construct different actions for typical scenarios. Note the different options available for creating new
actions. Choosing 'Simple' helps you set up a simple navigational action. Choosing 'Control Method Call' helps you set up a control-
calling action.

From the Control Method dropdown list, confirm that the method getCustomerById(Integer) is selected.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (11 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

Click Next.

12. On the New Action dialog, on the Input Mapping page, click the Finish button.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (12 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

A new action called getCustomerById is created in the Page Flow controller file.

13. On the Data Grid dialog, click the Parameters tab.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (13 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

14. Click the Select button (on the Parameters tab, not the Columns tab).

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (14 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

15. Select the id property and click OK.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (15 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

16. On the Data Grid dialog, click OK.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (16 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

17. Press Ctrl+Shift+S to save your work.

You have just added the following data grid to the customer.jsp page.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (17 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

 <netui-data:dataGrid name="getCustomersResultGrid"
 dataSource="pageInput.getCustomersResult">
 <netui-data:configurePager disableDefaultPager="true" />
 <netui-data:header>
 <netui-data:headerCell headerText="Edit" />
 <netui-data:headerCell headerText="Id" />
 <netui-data:headerCell headerText="First Name" />
 <netui-data:headerCell headerText="Last Name" />
 <netui-data:headerCell headerText="Company Name" />
 <netui-data:headerCell headerText="City" />
 <netui-data:headerCell headerText="State" />
 <netui-data:headerCell headerText="Zip" />
 <netui-data:headerCell headerText="Phone" />
 <netui-data:headerCell headerText="Email" />
 </netui-data:header>
 <netui-data:rows>
 <netui-data:anchorCell value="Edit" action="getCustomerById">
 <netui:parameter name="id" value="${container.item.id}" />
 </netui-data:anchorCell>
 <netui-data:spanCell value="${container.item.id}">
 </netui-data:spanCell>
 <netui-data:spanCell value="${container.item.firstName}">
 </netui-data:spanCell>
 <netui-data:spanCell value="${container.item.lastName}">
 </netui-data:spanCell>
 <netui-data:spanCell value="${container.item.companyName}">
 </netui-data:spanCell>
 <netui-data:spanCell value="${container.item.city}">
 </netui-data:spanCell>
 <netui-data:spanCell value="${container.item.state}">
 </netui-data:spanCell>
 <netui-data:spanCell value="${container.item.zip}">
 </netui-data:spanCell>
 <netui-data:spanCell value="${container.item.phone}">
 </netui-data:spanCell>
 <netui-data:spanCell value="${container.item.email}">
 </netui-data:spanCell>
 </netui-data:rows>
 </netui-data:dataGrid>

To Run the Page Flow

1. On the Page Flow Explorer tab, click the server icon to deploy and run the Page Flow.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (18 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

2. In the Run on Server dialog, confirm that BEA WebLogic v9.2 Server is selected, and click Finish.

Wait a minute for the server to start and the EAR to deploy.
You will see a browser tab appear, displaying a grid of customer data.

3. Close the browser tab for http://localhost:7001/customerCare/customerManagement/CustomerManagementController.jpf.

Related Topics

None.

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep3.html (19 of 19)12/7/2006 12:37:51 PM

Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

Step 4: Create a Page to Edit Customer Data

In this step you will add a JSP page for editing individual customer records.

The tasks in this step are:

● To Create a Record Editing Page

● To Make a Form for Updating the Customer Data

● To Set Up Navigation Back to the Customer List

● To Run the Page Flow

To Create a Record Editing Page

1. On the Page Flow Explorer tab, right-click on the Pages node and select New JSP Page.

2. Rename the page to editCustomer.jsp. Press Enter.

3. On the Page Flow Editor tab, place the cursor in the Quick Jump field, enter getCustomerById, and press the Enter key. This will display the getCustomerById
node in the center pane. (Alternatively, you can also place the cursor in the Quick Jump field and press Ctrl+Space Bar to view a list of available nodes.)

4. Drag editCustomer.jsp icon (located on the Page Flow Explorer tab), onto the unspecified node (located on the Page Flow Editor tab).

Note: make sure to drop directly on the unspecified node as shown below.

To Make a Form for Updating the Customer Data

1. On the Page Flow Explorer tab, double-click editCustomer.jsp to open its source code.

2. On the JSP Design Palette, in the NetUI Wizards section, drag the Update Form pattern onto the JSP source editor and drop it directly before the </body> tag.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep4.html (1 of 10)12/7/2006 12:37:52 PM

Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

3. On the Update Form dialog, next to the Action field, click the New button.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep4.html (2 of 10)12/7/2006 12:37:52 PM

Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

4. On the New Action dialog,
from the Control Method dropdown list, choose the updateCustomer(Customer) method,
from the Form Bean dropdown list, select customerManagement.CustomerManagementController.GetCustomerByIdFormBean.
Click the Next button.

5. In the New Action dialog, on the Input Mapping page, click Finish.

6. Click the Select button next to the Item Identifier field.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep4.html (3 of 10)12/7/2006 12:37:52 PM

Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

7. Select the id property and click OK.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep4.html (4 of 10)12/7/2006 12:37:52 PM

Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

8. On the Update Form dialog, on the Select Action page, click the Next button.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep4.html (5 of 10)12/7/2006 12:37:52 PM

Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

9. On the Update Form dialog, on the Select Properties page, click the Next button.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep4.html (6 of 10)12/7/2006 12:37:52 PM

Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

10. Arrange the fields so that they have the following order:

 Id
 First Name
 Last Name
 Company Name
 City
 State
 Zip
 Phone
 Email

Click the Finish button.

By clicking Finish, you have added the following form to editCustomer.jsp.

<netui:form action="updateCustomer">
 <netui:hidden dataSource="actionForm.customer.id"></netui:hidden>
 <table>
 <tr valign="top">
 <td>Customer:</td>
 <td>
 <table>
 <tr valign="top">
 <td>FirstName:</td>

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep4.html (7 of 10)12/7/2006 12:37:52 PM

Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

 <td><netui:textBox dataSource="actionForm.customer.firstName"></netui:textBox>
 </td>
 </tr>
 <tr valign="top">
 <td>LastName:</td>
 <td><netui:textBox dataSource="actionForm.customer.lastName"></netui:textBox>
 </td>
 </tr>
 <tr valign="top">
 <td>CompanyName:</td>
 <td><netui:textBox dataSource="actionForm.customer.companyName"></netui:textBox>
 </td>
 </tr>
 <tr valign="top">
 <td>City:</td>
 <td><netui:textBox dataSource="actionForm.customer.city"></netui:textBox>
 </td>
 </tr>
 <tr valign="top">
 <td>State:</td>
 <td><netui:textBox dataSource="actionForm.customer.state"></netui:textBox>
 </td>
 </tr>
 <tr valign="top">
 <td>Zip:</td>
 <td><netui:textBox dataSource="actionForm.customer.zip"></netui:textBox>
 </td>
 </tr>
 <tr valign="top">
 <td>Phone:</td>
 <td><netui:textBox dataSource="actionForm.customer.phone"></netui:textBox>
 </td>
 </tr>
 <tr valign="top">
 <td>Email:</td>
 <td><netui:textBox dataSource="actionForm.customer.email"></netui:textBox>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>

 <netui:button value="updateCustomer" type="submit" />
 </netui:form>

To Set Up Navigation Back to the Customer List

1. On the Page Flow Editor tab, place the cursor in the Quick Jump field, enter updateCustomer, and press the Enter key. This will display the updateCustomer node
in the center pane. (Alternatively, you can also place the cursor in the Quick Jump field and press Ctrl+Space Bar to view a list of available nodes.)

2. Drag the getCustomers action (located on the Page Flow Explorer tab) onto the right-hand side of the Page Flow Editor tab .

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep4.html (8 of 10)12/7/2006 12:37:52 PM

Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

3. Press Shift+Ctrl+S to save your work.

4. The Page Flow Overview should appear as follows:

5. Close the source file for editCustomer.jsp.

To Run the Page Flow

1. On the Page Flow Explorer tab, click the server icon to deploy and run the Page Flow.
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep4.html (9 of 10)12/7/2006 12:37:52 PM

Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

2. In the Run on Server dialog, confirm that BEA WebLogic v9.2 Server is selected, and click Finish.

Wait a minute for the EAR and web application project to deploy.
You will see a browser tab appear, displaying a grid of customer data

3. Click the Edit link for "David Owen".

4. Update the information for David Owen and click updateCustomer.

5. Note that the information is updated on the grid page.

Related Topics

none.

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppStep4.html (10 of 10)12/7/2006 12:37:52 PM

Tutorial Summary: Accessing a Database from a Web Application

Tutorial: Accessing a Database from a Web Application

In this tutorial you learned:

● how to provide user access to a database through a web application

● how Page Flows work

● how a database control queries a database

● how databinding is used to pass data around a Page Flow

● how a data grid renders complex data as an HTML table

Click the arrow below to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/tutorial/tutWebAppSummary.html12/7/2006 12:37:52 PM

JSF Tutorial: Introduction: Java Server Faces Integration

Tutorial: Java Server Faces Integration

What This Tutorial Teaches

This tutorial teaches you how to enable and use Java Server Faces in a Workshop for WebLogic
web application.

The application you build here is a hybrid application that uses both JSF and Beehive NetUI
technology. JSF supplies the user interface portion of the application, while Beehive NetUI
supplies centralized backend data processing.

Note: This tutorial requests that you create a new workspace; if you already have a
workspace open, this will restart the IDE. Before beginning, you might want to launch
help in standalone mode to avoid an interruption the restart could cause, then locate
this topic in the new browser. See Using Help in a Standalone Mode for more
information.

The tutorial contains step-by-step instructions for building a simple web application querying and
viewing customer data. As you progress through the tutorial you will learn:

● how Workshop for WebLogic uses JSF and Beehive NetUI technologies to simplify web
application development

● how to enable JSF in a Workshop for WebLogic web application

● how to use JSF tags to create user data submission forms

● how to use JSF tags to display complex Java objects as simple HTML tables

● how to call a Beehive NetUI action from a JSF page

Note: this JSF tutorial assumes that you have a basic knowledge of Beehive NetUI web
application technology, including the roles of controller classes, JSP pages, form beans and action
methods. If you are unfamiliar with these concepts you may want to complete Tutorial: Accessing
a Database from a Web Application before continuing.

Tutorial Synopsis

Step 1: Create a JSF-Enabled Web Project

In the first step of this tutorial you will create the foundation of your application by creating two
projects: an EAR project and a Web Application Project.

The EAR project has two main purposes: (1) it is a composite application that acts as a container
for other applications and (2) it contains resources, in the form of library modules and JARs, for
the applications contained in it.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFIntro.html (1 of 2)12/7/2006 12:37:52 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/introduction/conDocRoadmap.html#standalone_help

JSF Tutorial: Introduction: Java Server Faces Integration

For the purposes of this tutorial, the most important JARs contained in the EAR project are (1) the
Beehive NetUI JARs and (2) the JSF JARs.

The Web Application Project accesses these JAR resources in the EAR simply by referencing them,
not by copying the directly. This allows multiple web projects to point to the same resources in an
EAR, without unnecessary duplication of resources.

Step 2: Create a JSF Web Application

In step you will create a simple web application that uses JSF tags to define the user interface.

The web app contains one page where users can submit queries and another page for viewing the
results.

Related Topics

None.

Click the arrow below to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFIntro.html (2 of 2)12/7/2006 12:37:52 PM

JSF Tutorial: Step 1: Create a JSF-Enabled Web Project

Step 1: Create a JSF Enabled Web Project

In this step you will set up a JSF-enabled web project. The

The tasks in this step are:

● To Create a New Workspace

● To Create a New EAR Project and a New Web Project

● To Import Files into the Web Project

● To Add a WebLogic Server

To Create a New Workspace

If you haven't started Workshop for WebLogic yet, use these steps to do so.

... on Microsoft Windows

If you are using a Windows operating system, follow these instructions.

● From the Start menu, click All Products > BEA Products > Workshop for WebLogic
Platform 9.2

...on Linux

If you are using a Linux operating system, follow these instructions.

● Run BEA_HOME/workshop92/workshop4WP/workshop4WP.sh

1. In the Workspace Launcher dialog, click the Browse button.

2. In the Select Workspace Directory dialog, navigate to a directory of your choice and
click Make New Folder.

3. Name the new folder JSFTutorial, press the Enter key and click OK.

4. In the Workspace Launcher dialog, click OK.

To Create a New Web Project and a New EAR Project

1. From the File menu, select New > Project.

2. In the New Project dialog select the node Web> Dynamic Web Project.
Click Next.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep1.html (1 of 5)12/7/2006 12:37:52 PM

JSF Tutorial: Step 1: Create a JSF-Enabled Web Project

3. In the Project Name field, enter JSFWeb.
Place a checkmark next to Add project to an EAR.
Confirm that the field EAR Project Name shows the value: JSFWebEAR.
Click Next.

4. Place a check mark next to the facet JSF (circled in red in the image below).
Click Finish.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep1.html (2 of 5)12/7/2006 12:37:52 PM

JSF Tutorial: Step 1: Create a JSF-Enabled Web Project

To Import Files into the Web Project

In this step you will import control files into your web project, control files that provide access to
customer data.

1. On the Package Explorer tab, open the JSFWeb folder.

2. Open Windows Explorer (or your operating system's equivalent) and navigate to the
directory BEA_HOME/workshop92/workshop4WP/eclipse/plugins/com.bea.wlw.
samples_9.2.1/tutorials/resources/jsf/

3. Drag the folders businessObjects and controls (located at BEA_HOME/workshop92/
workshop4WP/eclipse/plugins/com.bea.wlw.samples_9.2.1/tutorials/
resources/jsf/) into the Package Explorer tab directly onto the folder JSFWeb/src.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep1.html (3 of 5)12/7/2006 12:37:52 PM

JSF Tutorial: Step 1: Create a JSF-Enabled Web Project

4. Confirm that the following directory and file structure exists before proceeding.

To Add a WebLogic Server

In this step you will point to a server where you can deploy your application.

Note: If you have executed the JSF tutorial before, it is recommended that you either (1) remove
previous JSF tutorial code from your server or (2) create a new server domain.

1. Confirm that you are in the Workshop perspective (Window > Show Perspective >
Workshop).

2. Click the Servers tab.

3. Right-click anywhere within the Servers tab, and select New > Server.

4. In the New Server dialog, select BEA Systems Inc.> BEA WebLogic v9.2 Server.
Click Next.

5. In the Domain home field, use the pulldown to set the domain to BEA_HOME/
weblogic92/samples/domains/workshop. (Note: if you are using a newly created
server domain for the JSF tutorial, then use the Browse button to navigate to that new
server domain, e.g., BEA_HOME/user_projects/domains/base_domain.)
Click Next.

6. In the Available projects column, select JSFWebEAR. Click the Add button to move the
select project to the Configured projects column.

7. Click Finish.

A new server is added to the Servers tab.

You can use the Servers tab to manage your servers and project deployments as you develop you
applications.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep1.html (4 of 5)12/7/2006 12:37:52 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html#TakeOutTrash
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conSettingUpServers.html

JSF Tutorial: Step 1: Create a JSF-Enabled Web Project

To deploy or undeploy a project from a server, right-click the server and select Add and Remove
Projects.

For more properties, double-click a server.

Related Topics

Integrating Java Server Faces into a Web Application

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep1.html (5 of 5)12/7/2006 12:37:52 PM

JSF Tutorial: Step 2: Create a JSF Web Application

Step 2: Create a JSF Web Application

The tasks in this step are:

● To Add a Control to the Page Flow

● Add A JSF Form for Submitting Search Queries

● Add a JSF Page that Displays Query Results

● Add a Link Back to the Search Form Page

● Run the Web Application

To Add a Control to the Page Flow

In this step you will add a control to the web application. The control is designed to return customer data in the form of an ArrayList of
Customer objects. In a more real world scenario this control might call out to a database or a web service to retrieve the customer data.
But for the sake of testing the JSF components, the control in this scenario simply returns a fixed ArrayList of Customer objects.

1. Select Window > Open Perspective > Page Flow. (For a description of the Page Flow perspective, see Page Flow
Perspective.)

2. On the Page Flow Explorer tab, right-click on the Referenced Controls node and select Add Control.

3. In the Select Control dialog, select Existing Project Controls > CustomerControl - controls and click OK.

4. Click Ctrl+S to save your work.

You have just added four lines of code to the Page Flow controller class:

 import org.apache.beehive.controls.api.bean.Control;
 import controls.CustomerControl;

 ...

 @Control
 private CustomerControl customerControl;

These lines declare the Customer control on the Page Flow, allowing you to call control methods.

Add a JSF Form and a NetUI Action for Submitting Search Queries

In this step you will add a JSF form (<h:form>) for submitting search queries on the customer data.

You will also add a new NetUI action (getCustomers) to the controller class. The JSF form will call this action through the form's attribute
action. This action has a form bean parameter of type Customer: form beans are Java representations of HTML form data.

When a user submits data though the form, the following events occur:

● A Customer object (= a form bean) is created based on the submitted data. (This is the responsibility of the JSF backing class.)

● The Customer object form bean is passed to the action getCustomers action. (The <h:form> tag passes the Customer object.)

● The getCustomers action performs a search based on the properties of the Customer object.

1. On the Page Flow Explorer tab, double-click the node Pages > index.jsp to open the JSP's source code.

2. From the JSP Design Palette, drag Create Form into index.jsp's source code. Drop it directly before the </f:view> element .

Note: You can accomplish the same thing (creating a new form) by dragging the getCustomers method (on the Page Flow
Explorer view and dropping it directly on top of the index.jsp page (in the Page Flow Editor).

3. In the Create Form wizard, to create a new action, click New.

4. In the New Action wizard, in the Action Template dropdown field, select Update Item Via Control.
Next to the Form Bean field, click Add.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep2.html (1 of 8)12/7/2006 12:37:53 PM

JSF Tutorial: Step 2: Create a JSF Web Application

5. In the Select a FormBean dialog, type Customer.
Under Matching Types, select Customer - businessObjects.
Click OK.

6. In the New Action dialog, click Next and then click Finish.

7. In the Create Form dialog click Next.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep2.html (2 of 8)12/7/2006 12:37:53 PM

JSF Tutorial: Step 2: Create a JSF Web Application

8. Confirm that all fields are checked.
Click Next.

9. In the Create Form dialog, order the fields in the following sequence:

id
first
last
address
 city
 state
 zip

Click Finish.

10. Press Ctrl+Shift+S to save your work.

You have just added the following form to the page index.jsp.

The form works by constructing a Customer object from the search data entered by the user. The Customer object is constructed by
loading the entered data into the the backing bean's from bean: <h:inputText value="#{backing.formBean1.last}" id="field1" />.
Note that backing.formBean1 refers is a Customer object field on the backing bean.

The form, with the Customer object attached as an attribute, is then submitted to the NetUI action getCustomers.

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@ taglib prefix="h" uri="http://java.sun.com/jsf/html"%>

 <h:form>

 <h:outputLabel value="Last:" for="field1" />
 <h:inputText value="#{backing.formBean1.last}" id="field1" />

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep2.html (3 of 8)12/7/2006 12:37:53 PM

JSF Tutorial: Step 2: Create a JSF Web Application

 ...
 <h:commandButton action="getCustomers" value="getCustomers">
 <f:attribute name="submitFormBean" value="backing.formBean1" />
 </h:commandButton>
 </h:form>

The attached form bean is submitted as the action's method parameter:

 getCustomers(businessObjects.Customer form)

You have also added the following action to the controller file Controller.java.

Notice that the action takes a Customer object parameter--this is the form bean submitted with the form.

 @Jpf.Action(forwards = { @Jpf.Forward(name = "success", path = "", actionOutputs = { @Jpf.ActionOutput(name
= "getCustomersResult", type = java.util.ArrayList.class, typeHint = "java.util.ArrayList<businessObjects.
Customer>") }) })
 public Forward getCustomers(businessObjects.Customer form) {
 Forward forward = new Forward("success");
 businessObjects.Customer criteria = form;
 java.util.ArrayList<businessObjects.Customer> getCustomersResult = customerControl
 .getCustomers(criteria);
 forward.addActionOutput("getCustomersResult", getCustomersResult);
 return forward;
 }

Add a JSF Page that Displays Query Results

In this step you will create a new JSF page and add a JSF tags for displaying query results.

You will add a <h:dataTable> tag that renders an HTML table when appropriate data is passed to it. In this case, a java.util.ArrayList of
Customer objects is passed to the <h:dataTable> tag. The tag iterates over the Customer objects rendering each object as a row in a
standard HTML table.

Note that when you create a new JSF page, Workshop for WebLogic automatically creates the page's backing Java bean.

1. On the Page Flow Editor view, place the cursor in the field labeled Quick Jump.

Press Ctrl+Space to bring up the content assistant dropdown.

Double-click getCustomers.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep2.html (4 of 8)12/7/2006 12:37:53 PM

JSF Tutorial: Step 2: Create a JSF Web Application

The getCustomers action will be given focus in the Page Flow Editor.

2. In the Page Flow Explorer tab, right-click the Pages node and select New JSF Page.

3. Name the page customers.jsp and press Enter.

4. In the Rename 'newPage1.java to 'customers' dialog, click Continue.

At this point Workshop for WebLogic creates both (1) the page customers.jsp and (2) the backing Java class customer.java.
(To examine the backing class, right-click the page and select Open Backing File.)

5. Drag customers.jsp from the Page Flow Explorer viewto the Page Flow Editor tab. Drop it directly on the unspecified
node.

6. In the Add Page Inputs dialog, click OK. (To learn more about page inputs, see Tutorial: Accessing Controls from a Web
Application: Step 3: Create a Data Grid.)

7. On the Page Flow Explorer view(don't confuse this with the Page Flow Editor), double-click customers.jsp to open its
source code.

8. From the JSP Data Palette drag getCustomersReport into the source view for customer.jsp. Drop it directly before the </
f:view> tag.

9. In the Data Display Wizard, confirm that all fields are checked and click Finish.

10. Click Ctrl+Shift+S to save your work.

You have just added the following code to the customers.jsp file.

Notice that the data table gets it's input data through the NetUI implicit object pageInput. This is one of the most common ways to
integrate Beehive NetUI and JSF technologies. For information about integrating these technologies, see Integrating Java Server Faces
into a Web Application.

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@ taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<%@taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
 prefix="netui-data"%>
<netui-data:declarePageInput required="true"
 type="java.util.ArrayList<businessObjects.Customer>"
 name="getCustomersResult" />

<html>
<head>
</head>
<body>
<f:view>
 <f:verbatim>
 <p>Beehive NetUI-JavaServer Faces Page -
 ${pageContext.request.requestURI}</p>
 </f:verbatim>

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep2.html (5 of 8)12/7/2006 12:37:53 PM

JSF Tutorial: Step 2: Create a JSF Web Application

 <h:dataTable value="#{pageInput.getCustomersResult}" var="item0"
 border="1">
 <h:column>
 <f:facet name="header">
 <h:outputLabel value="Last" />
 </f:facet>
 <h:outputText value="#{item0.last}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputLabel value="Address" />
 </f:facet>
 <h:panelGrid columns="2">
 <h:outputLabel value="State: " />
 <h:outputText value="#{item0.address.state}" />
 <h:outputLabel value="Zip: " />
 <h:outputText value="#{item0.address.zip}" />
 <h:outputLabel value="City: " />
 <h:outputText value="#{item0.address.city}" />
 </h:panelGrid>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputLabel value="First" />
 </f:facet>
 <h:outputText value="#{item0.first}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputLabel value="Id" />
 </f:facet>
 <h:outputText value="#{item0.id}" />
 </h:column>
 </h:dataTable>
</f:view>
</body>
</html>

You have also specified the navigational target of the getCustomers action:

 @Jpf.Action(forwards = { @Jpf.Forward(name = "success", path = "customers.faces", actionOutputs = { @Jpf.
ActionOutput(name = "getCustomersResult", type = java.util.ArrayList.class, typeHint = "java.util.ArrayList") }) })
 public Forward getCustomers(businessObjects.Customer form) {
 Forward forward = new Forward("success");
 businessObjects.Customer criteria = form;
 java.util.ArrayList<businessObjects.Customer> getCustomersResult = customerControl
 .getCustomers(criteria);
 forward.addActionOutput("getCustomersResult", getCustomersResult);
 return forward;
 }

Notice that the action forwards to the customers.jsp page using the .faces file extension: path = "customers.faces".

Add a Link Back to the Search Form Page

In this step you will add a link on the results page that will navigate the user back to the search form page. The link you add will be a JSF
link that directly raises a NetUI action.

1. On the Page Flow Editor view, click the customer.jsp node so that customer.jsp is displayed in the center pane of the view.

2. On the Page Flow Editor view, right-click in the right-hand side of the view (also called the "downstream" pane) and select
New Action.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep2.html (6 of 8)12/7/2006 12:37:53 PM

JSF Tutorial: Step 2: Create a JSF Web Application

3. In the New Action dialog, in the Action Name field, enter showIndex.
In the Form Bean field, confirm that <none> is selected.
In the Forward To field, select index.jsp.
Click Finish.

4. On the Page Flow Explorer view, double click the customers.jsp node to open its source code.

5. Add the following code to customer.jsp directly after the </h:dataTable> tag.

 <h:form>
 <h:commandButton action="showIndex" value="Back to Search Page"/>
 </h:form>

6. Press Ctrl+Shift+S to save your work.

Run the Web Application

1. On the Page Flow Explorer view, click the server icon to deploy and run the Page Flow.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep2.html (7 of 8)12/7/2006 12:37:53 PM

JSF Tutorial: Step 2: Create a JSF Web Application

2. In the Run On Server view, click Finish.

Wait while the application compiles, the server starts, and the application is deployed.

3. Enter search criteria in the fields provided and click the getCustomers button.

Note: you can use partial First or Last names only as search criteria on the input form. Submit a blank form to retrieve all
customers.

Related Topics

Integrating Java Server Faces into a Web Application

Click one of the following arrows to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFStep2.html (8 of 8)12/7/2006 12:37:53 PM

JSF Tutorial: Summary: Java Server Faces Integration

Summary: Java Server Faces Integration

In this tutorial you learned:

● how JSF creates user interfaces for web applications

● how Beehive NetUI provides backend event handling for a web application

● how JSF and Beehive NetUI can work together in a web application

Further Information

Sun Site: JavaServer Faces Technology

Beehive Documentation: Java Server Faces

dev2dev Site: Integrating JavaServer Faces with Beehive Page Flow

Related Topics

None.

Click the arrow below to navigate through the tutorial:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/jsfTutorial/tutJSFSummary.html12/7/2006 12:37:53 PM

http://java.sun.com/javaee/javaserverfaces/
http://beehive.apache.org/docs/1.0.1/netui/jsf.html
http://beehive.apache.org/docs/1.0.1/netui/jsf.html
http://dev2dev.bea.com/pub/a/2005/12/integrating-jsf-beehive.html?page=1

Building Web Applications: Introduction

Building Web Applications: Introduction

BEA Workshop for WebLogic Platform provides tooling support for NetUI: the Apache Beehive
framework for web applications. This topic explains the basic concepts behind Beehive NetUI.

Why Use Beehive NetUI?

By using Beehive NetUI, you can avoid making the typical mistakes that often happen during web
application development, by separating presentation, business logic implementation, and
navigational control. In many web applications, web developers using JSP (or any of the other
dynamic web languages such as ASP or CFM) combine presentation and business logic in their
web pages.

As these applications grow in complexity and are subject to continual change, this practice leads
to expensive, time-consuming maintenance problems, caused by:

●

Limited reuse of business logic

●

Cluttered JSP source code

● Unintended exposure of business-logic code to team members who focus on other aspects of
web development, such as content writers and visual designers

NetUI allows you to separate the user interface code from navigational control and other business
logic. User interface code can be placed where it belongs, in the JSP files. Navigational control,
business logic, and the core functionality of the web application can be implemented in Java
controller classes, which form the nerve center of your web application.

The basic division of labor between JSP files and controller classes can be summarized as follows:
Java controller classes implement the functionality of the web application; JSP files surface that
functionality to the user.

The presentation and processing aspects of a Beehive NetUI web app are highly modular: it's easy
to change one without impacting the other. For example, its easy to change the look and feel of
the web app by updating the JSP pages with little or no changes required to the underlying
controller classes. Similarly, you can re-implement the controller classes without changing the JSP
pages, because the core functionality of the web app is encapsulated in the controller classes
instead of spread throughout the JSP pages.

The separation of presentation and business logic offers a big advantage to development teams.
For example, you can make site navigation updates in a single Java class, instead of having to
search through many JSP files and make multiple updates. You can also encapsulate similar web
application functions in single Java classes, creating functionally modular web components. This
approach to organizing the entities that comprise web applications makes it much easier to
maintain and enhance web applications by minimizing the number of files that have to be updated
to implement changes, and lowers the cost of maintaining and enhancing applications.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conIntro.html (1 of 3)12/7/2006 12:37:53 PM

Building Web Applications: Introduction

Components of the Beehive NetUI Programming Model

This section gives an overview of the basic parts of the Beehive NetUI implementation.

JSP Files

JSPs form the user interface of a NetUI web application, without the need to include Java code
snippets on those pages. In a Beehive NetUI web app, the JSP pages contain JSP tags and
references to JSP implicit objects, but no Java code. This makes the application behavior more
predictable, testable, and it allows for stricter separation of labor between Java code developers
and JSP developers.

Beehive NetUI provides the JSP developer special libraries of JSP tags, the <netui> tag libraries,
that supplement the functionality of the standard JSP tag libraries.

The <netui> tag library contains JSP tags specifically designed to work with controller classes (see
below). Tags in the library all begin with the prefixes "netui", "netui-databinding", and "netui-
template". Some of these tags perform much like familiar HTML tags, while others perform
function particular to page flow web applications. The most important feature of the tag library is
its ability to refer to data in the controller class. The <netui> tags allow the JSP pages to both
read from and write to Java code in the controller class. This is accomplished without placing any
Java code on the JSP pages, greatly enhancing the separation of data presentation and data
processing.

Java Server Faces (JSF) files can also be added to your web application, either as a replacement
or complement to the JSPs.

Controller Classes

Data processing code is contained in Java classes called controller classes. Controller classes
handle use navigation through the JSPs in the web application, handle user data submissions, call
external resources such as web services and backend databases, and generally implement the
core functionality of the web application.

For more infomation on the syntax of Controller classes, see the Apache Beehive documentation:
Page Flow Controllers

Actions

Actions are methods in the Controller class that has been decorated with specially designed set
of metadata annotations, or "annotations" for short. Annotations, a new feature in Java 5, are
property setters for methods or classes. Beehive NetUI defines its own set of annotations that
allow the controller class to easily communicate with the JSP pages, control navigation with the
web application and manage application state.

For more infomation about actions, see the Apache Beehive documentation: Fleshing out the
Controller and Actions in NetUI.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conIntro.html (2 of 3)12/7/2006 12:37:53 PM

http://beehive.apache.org/docs/1.0.1/netui/pageFlowControllers.html
http://beehive.apache.org/docs/1.0.1/netui/pageFlowControllers.html#fleshing_out_the_controller
http://beehive.apache.org/docs/1.0.1/netui/pageFlowControllers.html#fleshing_out_the_controller
http://beehive.apache.org/docs/1.0.1/netui/actions.html

Building Web Applications: Introduction

Page Flows

JSPs and Controller classes are arranged in modular units called page flows. A page flow consists
of a single controller class and any number of JSP files. Typically, a single page flow reflects some
unit of functionality within a web application. For example, a company's web application might
contain many different page flows, one for browsing the company's catalogue of products, another
for collecting the products in a shopping cart, and another for managing customer accounts.

For more information on Page Flow modules, see the Apache Beehive documentation: Nested
Page Flows, Page Flow Inheritance, and Shared Flow.

Implicit Objects

Beehive NetUI provides two types of implicit objects that can be used to move data around the
application and save application state.

1.
JSP implicit objects: these are the standard set of JSP objects provided by the JSP
implementation, such as session, pageContext, etc.

2.
NetUI implicit objects: these objects are provided by the Beehive NetUI framework allowing
access to objects in the Controller class, etc.

For a list of the available objects see: Data binding to NetUI Implicit Objects in the Apache
Beehive documentation.

Form Beans

Form Beans are a Java representation of a HTML form. When a user submits an HTML form, the
submitted data is captured as a Form Bean and (typically) is passed to an action for further
processing.

For more information on Form Beans and their role in a NetUI web application, see NetUI Form
Control Tags in the Apache Beehive documentation.

Validation and Exception Handling

Validation and exception handling are defined using a declarative programming model using
annotations. For more information see Validation and Exception Handling in the Apache Beehive
documentation.

Related Topics

NetUI: Getting Started

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conIntro.html (3 of 3)12/7/2006 12:37:53 PM

http://beehive.apache.org/docs/1.0.1/netui/nestedPageFlow.html
http://beehive.apache.org/docs/1.0.1/netui/nestedPageFlow.html
http://beehive.apache.org/docs/1.0.1/netui/pageFlowInheritance.html
http://beehive.apache.org/docs/1.0.1/netui/sharedFlow.html
http://beehive.apache.org/docs/1.0.1/netui/databinding.html
http://beehive.apache.org/docs/1.0.1/netui/tags/formControls.html
http://beehive.apache.org/docs/1.0.1/netui/tags/formControls.html
http://beehive.apache.org/docs/1.0.1/netui/validation.html
http://beehive.apache.org/docs/1.0.1/netui/exceptionHandling.html
http://beehive.apache.org/docs/1.0.1/netui/index.html

The Page Flow Perspective

The Page Flow Perspective

This topic describes Workshop for WebLogic's tooling features for building Beehive NetUI web applications.

Workshop for WebLogic provides a variety of views and graphical user interface tools to help you design, conceptualize and implement NetUI web applications.

Individual icons used in the Page Flow Perspective are described in the Page Flow Perspective Visual Glossary.

Page Flow Perspective

The Page Flow Perspective gives a graphical summary of an individual page flow.

Open the Page Flow Perspective by selecting Window > Open Perspective > Page Flow.

Note: If you already have a page flow-related file open, the Page Flow Perspective will display that file's page flow. If you don’t have a page flow-related file open, the Page Flow Perspective
opens to the first page flow in the first page flow-enabled project that it finds. To switch the page flow displayed, you must explicitly switch to another page flow through one of the views, or
make a page flow-related file from a different page flow the active document in the Source Editor View.

The Page Flow Perspective consists of these views:

●

Page Flow Explorer View: shows a view of the functional parts of the current page flow

●

Page Flow Editor View: shows a graphical view of a specific page flow node (action or page) and its neighboring nodes

● Page Flow Overview: shows a diagram of the navigational structure between actions and pages

●

Source Editor View: shows the Java source of a page flow artifact

●

Annotations View: shows the annotation currently selected in one of the above views

● JSP Design Palette: shows available design elements that can be added to the current JSP page

● JSP Data Palette: shows available data elements that can be added to the current JSP page

The following diagram shows the default locations for these views when the Page Flow Perspective is first opened. Only those views that are page flow-specific are described below. Other views, such as the
Servers and Problems views are displayed by default, but they are not specifically designed to show page flow-related information.

Each of these views is described in detail below.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conPageFlowPerspective.html (1 of 3)12/7/2006 12:37:54 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiPageFlowGlossary.html

The Page Flow Perspective

Page Flow Explorer View

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conPageFlowPerspective.html (2 of 3)12/7/2006 12:37:54 PM

The Page Flow Perspective

For more information see Page Flow Explorer View.

Page Flow Editor View

For more information see Page Flow Editor View.

Page Flow Overview

For more information see Page Flow Overview.

Source Editor View

For more information see Source Editor View.

Annotations View

For more information see Annotations View.

JSP Design Palette

For more information see JSP Design Palette.

JSP Data Palette

For more information see JSP Data Palette View.

Related Topics

The following tutorials use many of the views and wizards described above:

Tutorial: Accessing a Database from a Web Application

Tutorial: Java Server Faces Integration

Also see the following topic:

Page Flow Perspective Visual Glossary

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conPageFlowPerspective.html (3 of 3)12/7/2006 12:37:54 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiPageFlowExplorerView.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiPageFlowEditor.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiPageFlowOverviewView.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiPageFlowSourceEditor.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/ui/uiAnnotationsView.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiJSPDesignPaletteView.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiJSPDataPaletteView.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiPageFlowGlossary.html

Integrating Java Server Faces into a Web Application

Integrating Java Server Faces into a Web Application

Java Server Faces (JSF) is a web user interface technology that can be used to supplement the user interface
technology native to Beehive NetUI (the <netui> tag library).

Enabling JSF in a Web Project

To install the default JSF implementation, add the JSF facet to your web project. (Project > Properties > Project
Facets > Add/Remove Project Facets > place check next to JSF).

Adding the JSF facet will install JSF Reference Implementation 1.1.

Integrating JSF and Beehive NetUI

Beehive NetUI and JSF can be fully integrated in a web application. Below are described the most typical ways to
make the two frameworks communicate.

Forwarding from a NetUI Action to a JSF Page

To forward from a NetUI action to a JSF page, refer to the JSF page with the .faces file extension, even though
Workshop for WebLogic creates JSF pages on disk with the .jsp file extension.

Suppose you have a JSF page named myJSFPage.jsp. To forward to this page from an action, use the following
syntax:

 @Jpf.Action(forwards = { @Jpf.Forward(name = "success", path = "myJSFPage.faces") })
 public Forward navigate() {
 return new Forward("success");
 }

Raising NetUI Actions from JSF Pages

JSF pages can raise NetUI actions through the action attribute.

For example, assume you have the following action in a NetUI controller file.

 @Jpf.Action(forwards = { @Jpf.Forward(name = "success", path = "myJSFPage.faces") })
 public Forward navigate() {
 return new Forward("success");
 }

You can invoke this action from a JSF by referencing navigate in an action attribute:

 <h:form>
 ...
 <h:commandButton action="navigate" value="Go"/>
 </h:form>

Raising NetUI Actions from JSF Backing Beans

Suppose you have an action navigate in a Controller class. To invoke navigate from within a JSF backing bean,
use a command handler decorated with the annotation set @Jpf.CommandHandler/@Jpf.RaiseAction:

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJsfIntegration.html (1 of 8)12/7/2006 12:37:55 PM

http://java.sun.com/j2ee/javaserverfaces/download.html

Integrating Java Server Faces into a Web Application

 @Jpf.CommandHandler(
 raiseActions={
 @Jpf.RaiseAction(action="navigate")
 }
)
 public String invokeNavigate()
 {
 return "navigate";
 }

You bind to the command handler from the JSF page in the usual way:

 <h:commandButton action="#{backing.invokeNavigate}" value="Go"/>

Calling Controls from JSF Backing Beans

You call a control from a backing bean just as you would call a control from any Java class.

First you declare the control on the client Java class.

 import org.apache.beehive.controls.api.bean.Control;

 ...

 @Control
 private CustomerControl customerControl;

Then you invoke methods on that control.

 public Customer[] getCustomers() {
 return customerControl.someMethod();
 }

Passing Data Between JSF Pages and NetUI Actions

JSF pages can reference NetUI implicit objects using JSF expressions. For example, the following JSF page receives
a page input from the NetUI controller class:

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<%@taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0" prefix="netui-data"%>

<netui-data:declarePageInput required="true" type="java.util.ArrayList<businessObjects.Customer>"
name="getCustomersResult" />

...

 <h:dataTable value="#{pageInput.getCustomersResult}" var="item0" border="1">

 ...

 </h:dataTable>

References are not limited to the pageInput implicit object; you can reference any implicit object using JSF-style
expressions. For example, the following expression references the foo field on the controller class:

 <h:outputText value="#{pageInput.foo}"/>

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJsfIntegration.html (2 of 8)12/7/2006 12:37:55 PM

Integrating Java Server Faces into a Web Application

You can also submit data (as a form bean) from a JSF page to a NetUI Controller class.

Suppose you have an action that has a form bean parameter:

 @Jpf.Action(forwards = { @Jpf.Forward(name = "success", path = "confirm.faces") })
 public Forward getCustomers(Customer form) {

 // do something with the submitted form data...

 return new Forward("success");
 }

A form bean a Java representation of an HTML form, where the bean properties correspond to the fields in the
HTML form.

public class Customer implements Serializable
{
 private String first = "";
 private String last = "";

 public Customer()
 {
 }

 public Customer(String first, String last)
 {
 this.first = first;
 this.last = last;
 }

 public void setFirst(String value)
 {
 first = value;
 }

 public String getFirst()
 {
 return first;
 }

 public String getLast()
 {
 return last;
 }

 public void setLast(String value)
 {
 last = value;
 }
}

To submit this form bean to the action from a JSF page, reference the bean with a JSF style expression:

 <h:form>
 <h:outputLabel value="First:" for="field1" />
 <h:inputText value="#{backing.custFormBean.first}" id="field1" />
 <h:outputLabel value="Last:" for="field2" />
 <h:inputText value="#{backing.custFormBean.last}" id="field2" />
 <h:commandButton action="getCustomers" value="Submit">

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJsfIntegration.html (3 of 8)12/7/2006 12:37:55 PM

Integrating Java Server Faces into a Web Application

 <f:attribute name="submitFormBean" value="backing.custFormBean" />
 </h:commandButton>
 </h:form>

Note that the form bean is reference via the backing bean. See the italic expressions above: #{backing.
custFormBean.first}, #{backing.custFormBean.last}, and backing.custFormBean.

For these expressions to work, the backing bean must include the form bean as a field, with appropriate setters
and getters on that field:

@Jpf.FacesBacking()
public class index extends FacesBackingBean {

 private Customer custFormBean = new Customer();

 public Customer getCustFormBean() {
 return custFormBean;
 }

 public void setCustFormBean(Customer bean) {
 this.custFormBean = bean;
 }
}

Other Integration Scenarios

Other integration scenarios are described in the document Integrating JavaServer Faces with Beehive Page Flow.

Mixing JSF and NetUI Tags

Mixing Beehive NetUI tags, or any JSP tags, with JSF tags can lead to surprising results. You should have a good
understanding of the particular tags you are using before you mix the different tag libraries.

An exception you do not need to worry about is the use of the Beehive NetUI <netui:declarePageInput> tag. This
tag can be used freely with JSF tags because it only sets up a contract with the NetUI controller class but not affect
the view in any other way.

Workshop for WebLogic JSF Tooling Features

Workshop for WebLogic offers development support for may common JSF coding tasks, including:

1. automatic generation of backing beans

2. JSF-specific code generation for forms and data grids

3. support for authoring command handlers

To activate JSF development support you must be in the Page Flow perspective (Window > Open Perspective >
Page Flow).

JSF-Specific Code Generation Through the JSP Data Palette

In the Page Flow perspective, the Data Palette supports JSF tags and JSF style expressions when composing JSF
pages.

Note: the Data Palette recognizes JSF pages by the presence of the JSF tag <f:view> on the page. If the following

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJsfIntegration.html (4 of 8)12/7/2006 12:37:55 PM

http://dev2dev.bea.com/pub/a/2005/12/integrating-jsf-beehive.html

Integrating Java Server Faces into a Web Application

tag (and its associated library declaration) is present on the page, then the Data Palette will generate code in JSF
mode:

 <%@ taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
 ...
 <f:view>

Note that any prefix value is acceptable; the prefix value 'f' is shown only because it is the default value.

For example, suppose you have a JSF page with a page input declaration:

<netui-data:declarePageInput
 type="java.util.ArrayList<businessObjects.Customer>"
 name="getCustomersResult" />

The presence of a page input declaration will activate the Data Palette with a corresponding node:

When this node is dragged and dropped onto the JSF page, JSF tags are JSF style expressions are used to
construct the data display structures. For example:

<h:dataTable value="#{pageInput.getCustomersResult}" var="item0"
 border="1">
 <h:column>
 <f:facet name="header">
 <h:outputLabel value="Name" />
 </f:facet>
 <h:outputText value="#{item0.name}" />
 </h:column>
 </h:dataTable>

Workshop for WebLogic will create outputText fields for simple properties and launch the Data Display Wiz for
complex and/or repeating type properties.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJsfIntegration.html (5 of 8)12/7/2006 12:37:55 PM

Integrating Java Server Faces into a Web Application

JSF-Specific Code Generation Through the JSP Design Palette

Similar support is provided for composing JSF forms through the Design Palette.

When a page contains a declaration for the core JSF core library (<%@ taglib prefix="f" uri="http://java.
sun.com/jsf/core"%>), the the Design Palette will be in 'JSF mode'. Forms and data grids created from the Design
Palette will use JSF tags and JSF expressions.

JSF Command Handler Support

You can easily add command handlers to a JSF backing bean by right-clicking the Command Handler node and
selecting New Command Handler. (You must be in the Page Flow perspective to see the Command Handler
node.)

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJsfIntegration.html (6 of 8)12/7/2006 12:37:55 PM

Integrating Java Server Faces into a Web Application

The wizard allows you to setup command handler method that can raise actions in the controller class. The wizard
also lets you specify a form bean that can be passed along to the raised action. For details on passing form bean
data from a JSF page to a controller action, see Passing Data Between JSF Pages and NetUI Actions above.

You can also add control references to a backing bean in a similar manner:

Related Topics

dev2dev documentation: Integrating JavaServer Faces with Beehive Page Flow

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJsfIntegration.html (7 of 8)12/7/2006 12:37:55 PM

http://dev2dev.bea.com/pub/a/2005/12/integrating-jsf-beehive.html

Integrating Java Server Faces into a Web Application

Tutorial: Java Server Faces Integration

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJsfIntegration.html (8 of 8)12/7/2006 12:37:55 PM

Web Application Technologies

Web Application Technologies

This topic lists the versions and locations of the web application technologies used by BEA
Workshop for WebLogic Platform.

Web Application Technologies Versions

The following table lists the versions of standard web technologies used by Workshop for
WebLogic.

The JAR resources listed below are made available to a web application through library modules,
essentially JARs packaged as WARs and EARs. You add these library modules to your web
application by adding the corresponding facet to your web application. For instance to add the JSF
library module, right-click your project and select Properties > Project Facets > Add/Remove
Project Facets > [Place a check next to JSF].

Technology Version
Library Module
Location JARs

Struts 1.2 BEA_HOME/
weblogic92/
common/
deployable-
libraries/struts-1.2.
war

struts.jar

Beehive NetUI 1.0.1
(see Beehive
Version note below)

BEA_HOME/
weblogic92/
common/
deployable-
libraries/beehive-
netui-1.0.war

beehive-netui-core.jar,
beehive-netui-tags.jar

Beehive Controls 1.0.1
(see Beehive
Version note below)

BEA_HOME/
weblogic92/
common/
deployable-
libraries/beehive-
controls-1.0.war

beehive-controls.jar, beehive-
ejb-controls.jar, beehive-jdbc-
controls.jar, beehive-jms-
controls.jar

JSTL (JSP
Standard Tag
Library)

1.1 BEA_HOME/
weblogic92/
common/
deployable-
libraries/beehive-
jstl-1.1.war

jstl.jar, standard.jar

JSF (Java
Server Faces)

1.1.01
(see JSF
Implementations
note below)

BEA_HOME/
weblogic92/
common/
deployable-
libraries/jsf-1.1.
war

jsf-api.jar, jsf-impl.jar

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conWebAppVersionInfo.html (1 of 2)12/7/2006 12:37:55 PM

Web Application Technologies

JSF Implementations

WebLogic Platform ships two JSF implementations: (1) Sun's reference implementation 1.1.01 and
(2) MyFaces 1.1.1. Workshop for WebLogic uses Sun's reference implementation 1.1.01 by default
when the JSF facet is added to a web project.

Beehive Version

The version of Beehive is 1.0.1 with some minor local fixes made by BEA. These fixes will be
rolled back into the Apache Beehive code base at a later date.

Related Topics

none

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conWebAppVersionInfo.html (2 of 2)12/7/2006 12:37:55 PM

Authoring Beehive Java Server Pages

Authoring Web-based User Interfaces

The following topics explain how to author web-based user interfaces using Workshop for
WebLogic.

Workshop for WebLogic provides support for the following user interface technologies: (1) the
JavaServer Pages Standard Tag Library and (2) the Beehive NetUI tag libraries (3) Java Server
Faces and (4) Tiles.

Overview: NetUI Tag Libraries
Explains the contents of the three NetUI tag libraries.

Creating Forms for Collecting User Data
Explains how to create forms for user input.

Displaying Data with NetUI Data Grids
Explains how to display tabular data using data grids.

Validating User Input Data
Explains how to use Workshop for WebLogic's validation tools.

Using Tiles
Explains how to use Tiles technology in a Beehive NetUI web application.

Rendering Trees
Explains how to render HTML trees.

Controlling Web Application Look and Feel with JSP Templates
Explains how to use JSP templates in a web application.

Authoring JSP Template Projects and Populating the Default Template List
Explains how to author JSP template projects.

Related Topics

NetUI Tag Library Overview

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conIntroJSP.html12/7/2006 12:37:55 PM

http://java.sun.com/products/jsp/jstl/
http://beehive.apache.org/docs/1.0.1/netui/tags/index.html
http://beehive.apache.org/docs/1.0.1/netui/tilesSupport.html
http://beehive.apache.org/docs/1.0.1/netui/tags/index.html

Overview: Beehive NetUI Tag Library

Overview: Beehive NetUI Tag Library

Beehive NetUI provides three tag libraries:

1.
core HTML library: renders basic HTML elements

2.
data grid library: renders tables and filterable/sortable data grids

3.
JSP template library: renders reusable page elements such as headers, footers, etc.

These three libraries are described in more detail below.

The Core HTML Tag Library

To use the core HTML library, enter the following declaration on your JSP page:

 <%@taglib uri="http://beehive.apache.org/netui/tags-html-1.0" prefix="netui"%>

For a list of the tags available see:

netui Library

The Data Grid Tag Library

To use the data grid library, enter the following declaration on your JSP page:

 <%@taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0" prefix="netui-data"%>

For a list of the tags available see:

netui-data Library

The Template Tag Library

To use the template library, enter the following declaration on your JSP page:

 <%@taglib uri="http://beehive.apache.org/netui/tags-template-1.0" prefix="netui-template"%>

For a list of the tags available see:

netui-template Library

Related Topics

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conNetuiTagsOverview.html (1 of 2)12/7/2006 12:37:55 PM

http://beehive.apache.org/docs/1.0.1/netui/apidocs/taglib/beehive.apache.org/netui/tags-html-1.0/taglib-summary.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/taglib/beehive.apache.org/netui/tags-databinding-1.0/taglib-summary.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/taglib/beehive.apache.org/netui/tags-template-1.0/taglib-summary.html

Overview: Beehive NetUI Tag Library

NetUI Tag Library Overview

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conNetuiTagsOverview.html (2 of 2)12/7/2006 12:37:55 PM

http://beehive.apache.org/docs/1.0.1/netui/tags/index.html

Creating Forms for Collecting User Data

Creating Forms for Collecting User Data

The following topic describes how Beehive NetUI supports the submission of user data.

HTML Forms and Form Beans

Suppose you want you web application to collect data from users, such as the user's name, email, etc. Beehive NetUI
supports user data submission through a three step process: (1) First the user enters data into an ordinary HTML form.
(2) Upon submission that data is loaded into a Java object called a form bean. (3) Once the submitted data has been
packaged as a form bean, the Controller class is free to operate on the data: typically the form bean is passed to one of
the Controller class's action methods for further processing.

Form beans are Java representations of the of user-facing HTML form. In particular they are standard JavaBean
representations of HTML forms: for each data field in the HTML form, the form bean has a corresponding member field
and getter/setter methods. For example, the following HTML form has two data fields: firstname and lastname.

 <netui:form action="updateCustomer">
 <netui:textBox dataSource="actionForm.customer.firstName" id="field2"></netui:textBox>
 <netui:textBox dataSource="actionForm.customer.lastName" id="field3"></netui:textBox>
 </netui:form>

Its corresponding form bean has two member fields, the Strings firstname and lastname, each with setter/getter fields:

public class Customer implements Serializable {

 private String firstName = "";

 private String lastName = "";

 public Customer(String firstName, String lastName) {
 super();
 this.firstName = firstName == null ? "" : firstName;
 this.lastName = lastName == null ? "" : lastName;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
}

An instance of this form bean gets passed to the action method for further processing by the Controller class.

public Forward updateCustomer(Customer form)
{
 ...
}

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJspForms.html (1 of 2)12/7/2006 12:37:55 PM

Creating Forms for Collecting User Data

For more infomation about form beans, HTML forms and action methods see the Apache Beehive documentation
Handling Forms.

Repeating Form Elements

The Beehive NetUI tag libraries supports advanced form element repeater tags. These tags allow you to render forms
dynamically. For more information on dynamically rendered repeating forms, see the Apache Beehive documentation
NetUI Repeating Form Control Tags.

Using the Create Form Wizard

Workshop for Weblogic Platform provides powerful tools for building Beehive NetUI forms. For more information see
Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data.

Related Topics

NetUI Form Control Tags

NetUI Repeating Form Control Tags

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJspForms.html (2 of 2)12/7/2006 12:37:55 PM

http://beehive.apache.org/docs/1.0.1/netui/pageFlowControllers.html#handling_forms
http://beehive.apache.org/docs/1.0.1/netui/tags/formRepeating.html
http://beehive.apache.org/docs/1.0.1/netui/tags/formControls.html
http://beehive.apache.org/docs/1.0.1/netui/tags/formRepeating.html

Displaying Data with NetUI Data Grids

Displaying Data with NetUI Data Grids

BEA Workshop for WebLogic Platform provides tools for creating Beehive NetUI data grids. Data
grids provide a powerful way for users to interact with tabular data, such as a record set from a
database. For example, a data grid can render a record set as a sortable and filterable HTML table.

Data grids are rendered using the Beehive NetUI tag <netui-data:dataGrid> and its associated
children tags. To render a record set as an HTML table, pass a data set (for example, an Array of
objects) to the <netui-data:dataGrid> tag's dataSource attribute:

<netui-data:dataGrid dataSource="pageInput.employeeArray" name="employeeGrid">

For more information about the <netui-data:dataGrid> syntax see Beehive NetUI Data Grids and
netui-data:dataGrid Tag

Using the Data Display Wizard

Workshop for WebLogic provides a wizard that can define data grid properties. For more
information using the data grid wizard see Tutorial: Accessing Controls from a Web Application:
Step 3: Create a Data Grid

Using the <netui-data:repeater> and Related Tags

Related Topics

Beehive NetUI Data Grids

Sorting and Filtering in a Data Grid

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJspGrid.html12/7/2006 12:37:56 PM

http://beehive.apache.org/docs/1.0.1/netui/tags/datagrid.html
http://beehive.apache.org/docs/1.0.1/netui/apidocs/taglib/index.html
http://beehive.apache.org/docs/1.0.1/netui/tags/datagrid.html
http://beehive.apache.org/docs/1.0.1/netui/tags/datagridSortAndFilter.html

Rendering Trees

Validating User Input Data

The Beehive NetUI tag libraries provide annotations for validating form data submitted by users.

You can develop validation processes by working with the validation annotations directly in source
code or you can use Workshop for WebLogic's validation tools. Workshop for WebLogic's validation
tools provide a graphical user interface for developing validation processes.

Related Topics

Validation Rules Dialog

Set Message Bundle Dialog

Apache Beehive documentation: Validation

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conValidation.html12/7/2006 12:37:56 PM

http://beehive.apache.org/docs/1.0.1/netui/validation.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiValidationRuleEditorDialog.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiValidationRuleEditorDialog.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiValidationRuleEditorDialog.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiValidationMessageBundleDialog.html
http://beehive.apache.org/docs/1.0.1/netui/validation.html

Using Tiles

Using Tiles

Apache Beehive supports Struts Tiles technology. Struts Tiles allows to you reuse common web
application components such as menu bars, headers, and footers.

For more information about support for Struts Tiles see Tiles Support.

Related Topics

Tiles Support

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJspTiles.html12/7/2006 12:37:56 PM

http://beehive.apache.org/docs/1.0.1/netui/tilesSupport.html
http://beehive.apache.org/docs/1.0.1/netui/tilesSupport.html

Rendering Trees

Rendering Trees

The Beehive NetUI tag libraries provide tags for rendering tree structures, allowing you to display
a list of links arranged as expandable/collapsible tree nodes.

For more infomation on rendering trees, see the Apache Beehive documentation Tree Tags.

Related Topics

Tree Tags

netui:tree Tag

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJspTree.html12/7/2006 12:37:56 PM

http://beehive.apache.org/docs/1.0.1/netui/tags/tree.html
http://beehive.apache.org/docs/1.0.1/netui/tags/tree.html

Controlling Web Application Look and Feel with JSP Templates

Controlling Web Application Look and Feel with JSP/JSF Templates

BEA Workshop for WebLogic Platform allows you to set a default JSP template to use for all new JSP pages created
with a given project or workspace.

Setting the Default Template for a Workspace

To set the default JSP template for all of the projects with a given workspace, select Windows > Preferences > File
Templates > Default JSP/JSF Template:

The list of available templates is populated from any template projects in the workspace or any installed template plug-
ins.

Clicking the checkbox next to a template designates it as the default template. But selecting a template label (not the
checkbox) will show the template description and a preview of which files will be created. Note that the locations and
names are shown in the abstract here since the actual location and file names are not known until the time of creation.

Setting the Default Template for a Project

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJspTemplates.html (1 of 3)12/7/2006 12:37:56 PM

Controlling Web Application Look and Feel with JSP Templates

To override the workspace default template setting for a given individual project, right-click the project folder (in the
Workshop perspective) and select Properties > File Templates > Default JSP Template.

If the checkbox Use Project Settings is unchecked the workspace default settings are used. If checked then the
project settings will override the workspace settings.

Note: In the Page Flow perspective, if you right-click the Pages node, and select Set Default Page Template the
same project-level dialog will open.

Specifying a Template for a New JSP

In the Page Flow perspective, JSP template selection is part of the new JSP wizard.

To enter the new JSP wizard, select File > New > JSP.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJspTemplates.html (2 of 3)12/7/2006 12:37:56 PM

Controlling Web Application Look and Feel with JSP Templates

Related Topics

Authoring JSP Template Projects

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/conJspTemplates.html (3 of 3)12/7/2006 12:37:56 PM

Authoring JSP Template Projects and Populating the Default Template List

Authoring JSP Template Projects

This topic explains how to create a JSP template project. A JSP template project contains one or more JSP templates and
adds those templates to the list of possible default JSP templates. For more information on setting the default JSP template
see Controlling Web Application Look and Feel with JSP Templates.

Creating a JSP Template Project

Any project can be converted into a JSP template project, provided it has the appropriate the project nature. To define a
project as a JSP template project, add the template project nature to the project's .project file:

 <natures>
 ...
 <nature>com.bea.wlw.filetemplate.core.templateProjectNature</nature>
 ...
 </natures>

The .project file resides in the root of a project directory. To view the .project file, switch to the Navigator view: Window >
Show View > Navigator.

The template project nature will cause Workshop for WebLogic to recognize the project as a template project.

JSP Template Project Structure

A JSP template project consists of the following elements:

●

the .project file is configured appropriately (see Creating a JSP Template Project above)

●

a templateProject.xml file at the root of the template project directory

●

any number of template resource files: JSP page templates, CSS files, image files, etc.

The set of files contained in a give template is defined by the templateProject.xml file. The following sample
templateProject.xml file defines one template called "BEA Branded NetUI JSP". Multiple templates can be defined in a given
templateProject.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<template-project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <template id="com.bea.demo.filetemplate.NetUIJSP"
 name="BEA Branded NetUI JSP"
 typeClass="com.bea.wlw.jsp.core.beans.JSPBaseBean">
 <description>A NetUI-enabled JSP with BEA Branding</description>
 <source-ref context="JSPBaseBean" source="com.bea.demo.filetemplate.NetUIJSP.source" />
 <source-ref context="FileTemplateBean" source="com.bea.demo.filetemplate.dataGrid.css.source" />
 <resource-ref resource="com.bea.demo.filetemplate.logo_bea_tl.gif.source" outputpath="WebContent/
resources/images/logo_bea_tl.gif" />
 <resource-ref resource="com.bea.demo.filetemplate.rt_blue_bkgnd.jpg.source" outputpath="WebContent/
resources/images/rt_blue_bkgnd.jpg" />
 <resource-ref resource="com.bea.demo.filetemplate.sp.gif.source" outputpath="WebContent/resources/
images/sp.gif" />
 </template>
 <source id="com.bea.demo.filetemplate.NetUIJSP.source" file="WebContent/index.jsp" type="jsp"></source>
 <source id="com.bea.demo.filetemplate.dataGrid.css.source" file="WebContent/resources/datagrid.css"
type="css"></source>
 <resource id="com.bea.demo.filetemplate.logo_bea_tl.gif.source" path="images/logo_bea_tl.gif" />
 <resource id="com.bea.demo.filetemplate.rt_blue_bkgnd.jpg.source" path="images/rt_blue_bkgnd.jpg" />
 <resource id="com.bea.demo.filetemplate.sp.gif.source" path="images/sp.gif" />
</template-project>

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wl.../html/webapplications/conAuthoringJSPTemplateProjects.html (1 of 2)12/7/2006 12:37:56 PM

Authoring JSP Template Projects and Populating the Default Template List

For information on creating a templateProject.xml file, see templateProject.xml Configuration File.

For an example JSP template project open the SamplesWorkspace. Instructions on opening the SamplesWorkspace are
available at Opening a Sample Workspace.

Supported Character Encodings

Because of the way templates are processed, the files included in a template must to be encoded in UTF-8. Any other
character encoding will result in an error.

JSP Template Plugins

A JSP template project can also be packaged as a plugin. Template plugins are nothing more than template projects that
have the templateProject plugin point defined.

For an example of a template plugin see BEA_HOME/weblogic92/workshop/eclipse/plugins/com.bea.wlw.netui.core_9.2.0

Related Topics

Controlling Web Application Look and Feel with JSP Templates

templateProject.xml Configuration File

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wl.../html/webapplications/conAuthoringJSPTemplateProjects.html (2 of 2)12/7/2006 12:37:56 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/configfiles/conTemplateProject.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/samples/conOpeningSampleWorkspace.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/reference/configfiles/conTemplateProject.html

Tasks: Web Applications

Tasks: Web Applications

This section contains instructions for common web application development tasks.

Topics included in this section:

How To Define an Action that Forwards Users to Another Page

This topic explains how to setup navigation between two JSP pages using an action method.

How to Submit User Data from a JSP

This topic explains how to setup user data submission from a JSP page to an action.

How to Change the Default Encoding for a New HTML Page

This topic explains how to change the default encoding for a new HTML page to UTF-8.

Related Topics

Tutorial: Accessing a Database from a Web Application

Tutorial: Java Server Faces Integration

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/navHowToWebApps.html12/7/2006 12:37:57 PM

How To Define an Action that Forwards Users to Another Page

How to Define an Action that Forwards Users to Another Page

This topic explains how to setup navigation between two JSP pages using a navigational action in a page flow
Controller class.

These instructions assume that you have a dynamic web project (New > Project > Other > Web > Dynamic
Web Project) that contains a page flow with at least two JSP pages.

To Create the Navigational Action

1.
Open the Page Flow perspective (Window > Open Perspective > Page Flow).

2.
Right-click within the Page Flow Editor tab.

3.
In the New Action dialog, in the Action Template field, confirm that Basic Method Action is selected.
In the Action Name field, enter an appropriate name for the action. This will be the name of the action
method.
In the Forward To field, select the destination JSP page. (This is the page that users will navigate to.)
Click Finish.
In the New Conditional Forward dialog, do not enter any value and click Cancel. (This dialog lets you
conditionalize the navigation action, if you wish.)

To Create a Link that Invokes the Navigational Action

1.
Open the JSP page that will invoke the action. This is the starting page that users will navigate from.

2.
On the JSP Design Palette, double-click the heading labeled NetUI. Under the NetUI heading, drag and
drop the anchor icon onto the starting JSP page.

3.
In the New Anchor dialog, in the Anchor Type dropdown, confirm that Action is selected.
In the Text field, enter some appropriate text. This is the display text for the hyperlink.
In the Action dropdown, select the action method you created above.
Click Ok.

In the Page Flow Editor tab there should be two arrows: (1) an arrow pointing from the starting JSP page to the
action method and (2) another arrow pointing from the action method to the destination JSP page.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/howForwardAction.html (1 of 2)12/7/2006 12:37:57 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conApplicationsProjects.html#WebProject
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/howNewPageFlow.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/howNewJSP.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiNewActionWizard.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiJSPDesignPaletteView.html

How To Define an Action that Forwards Users to Another Page

The source code you have created should look something like the following:

index.jsp

 <netui:anchor action="navAction">Navigate to destination.jsp!</netui:anchor>

Controller.java

 @Jpf.Action(forwards = { @Jpf.Forward(name = "success", path = "destination.jsp") })
 public Forward navAction() {
 Forward forward = new Forward("success");
 return forward;
 }

Related Topics

Page Flow Editor

New Action

JSP Design Palette

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/howForwardAction.html (2 of 2)12/7/2006 12:37:57 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiNewActionWizard.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiJSPDesignPaletteView.html

How to Submit User Data from a JSP

How to Submit User Data from a JSP

This topic explains how to set up user data submission using an HTML form, a form bean (a Java representation of the
HTML form), and an action.

The purpose of these instructions is to make you familiar with some of the main dialogs and wizards to help you
accomplish this coding goal. These instructions are not intended to apply to every case where a form is required for
user submitted data. For example, these instruction may not apply directly if you already have a pre-existing form
beans. In that case, the instruction below can modified to utilize your pre-existing resources: where the instructions tell
you to create a form bean, simply select the pre-existing item from the dropdown list.

These instructions assume that you have a dynamic web project (New > Project > Other > Web > Dynamic Web
Project) that contains a page flow.

To Create a Form Bean to Model Submitted Data

(If you already have a form bean, you can skip this step.)

1.
Open the Page Flow perspective (Window > Open Perspective > Page Flow).

2.
On the Page Flow Explorer tab, right-click the Form Bean node and select New Inner Class Form Bean.

3.
On the Page Flow Explorer tab, right-click the new form bean (named NewFormBean by default) and select
Rename. Rename the form bean appropriately (e.g., Customer, Order, etc.).

4.
On the Page Flow Explorer tab, double-click the form bean to view its source. Add private fields to the form bean
class, for example:

 @Jpf.FormBean
 public static class Customer implements java.io.Serializable {

 private String firstName;
 private String lastName;

 }

5.
Right-click within the body of the Controller class and select Source > Generate Getters and Setters. This will
create public getter and setter methods for the form bean's private fields.

To Create an Action and a User Input Form Based on a Form Bean

1. Open the JSP page where you want the form to appear.

2.
From the JSP Design Palette drag and drop the node Create Form onto the JSP page.

3.
In the Create Form wizard, in the Action section, click New. (If you already have an action you want to use, do
not click New. Instead select that action from the dropdown list and skip the next step.)

4.
In the New Action wizard, in the Action Template field, select Basic Method Action.
In the Action Name field, enter an appropriate name.
In the Form Bean field, select the form bean created above.
In the Forward To field, select an appropriate destination to forward the user to after data has been submitted.
Click Finish.

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/howSubmitData.html (1 of 3)12/7/2006 12:37:57 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/ideuserguide/conApplicationsProjects.html#WebProject

How to Submit User Data from a JSP

5.
In the Create Form wizard, click Next.
On the Select Properties page, select the form bean fields that will appear in the user input form.
Click Next.
On the Arrange Fields page, select the order that the fields should appear on the JSP page.
Click Finish.

The code created should look like something like the following:

form.jsp page

<netui:form action="nameAction">
 <table>
 <tr valign="top">
 <td><label for="field1"> FirstName: </label></td>
 <td><netui:textBox dataSource="actionForm.firstName" tagId="field1"></netui:textBox></td>
 </tr>
 <tr valign="top">
 <td><label for="field2"> LastName: </label></td>
 <td><netui:textBox dataSource="actionForm.lastName" tagId="field2"></netui:textBox></td>
 </tr>
 </table>
 <netui:button value="nameAction" type="submit" />
</netui:form>

Controller.java

 @Jpf.Action(forwards = { @Jpf.Forward(name = "success", path = "confirm.jsp") })
 public Forward nameAction(Controller.NameForm form) {
 Forward forward = new Forward("success");
 return forward;
 }

 ...

 @Jpf.FormBean
 public static class NameForm implements java.io.Serializable {
 private static final long serialVersionUID = 1815159769L;

 private String firstName;
 private String lastName;

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 }

Related Topics

Create Form Wizard

JSP Design Palette View

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/howSubmitData.html (2 of 3)12/7/2006 12:37:57 PM

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiCreateFormWizard.html
file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/ui/uiJSPDesignPaletteView.html

How to Submit User Data from a JSP

JSF Tutorial: Step 2: Create a JSF Web Application

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/howSubmitData.html (3 of 3)12/7/2006 12:37:57 PM

How to Change the Default Encoding for a New HTML Page

How to Change the Default Encoding for a New HTML Page

Upon installation of Workshop for WebLogic, the default encoding for a new HTML page (File >
New > Other > Web > HTML) is the same as the Java VM encoding. The Java VM encoding
value will differ depending on the operating system configuration.

To change the default value to charset=UTF-8 open the HTML Files dialog (Window >
Preferences > Web and XML > HTML Files). In the section labeled Creating files, in the
Encoding dropdown, select the value ISO 10646/Unicode(UTF-8).

The default HTML encoding is a workspace level setting. This means that each new workspace will
be initiated with a default encoding of ISO-8859-1. If another default encoding is desired, it must
be reset upon the creation of each new workspace.

Note: the preferences dialog Window > Preferences > Web and XML > JSP Files >
Encoding has no effect on the default encoding for JSP files. To change the default
encoding for new JSP pages, create a JSP template project and reset the default JSP
template.

Related Topics

Controlling Web Application Look and Feel with JSP/JSF Templates

Authoring JSP Template Projects

file:///D|/depot/dev/src920_ffo/help/plugins/en/com.bea.wlw.doc/html/webapplications/howChangeHTMLEncoding.html12/7/2006 12:37:57 PM

	navWebApp.html
	Local Disk
	Web Applications

	tutWebAppIntro.html
	Local Disk
	Tutorial: Accessing Controls from a Web Application

	tutWebAppStep1.html
	Local Disk
	Tutorial: Accessing Controls from a Web Application: Step 1: Create an EAR Project and a Web Application Project

	tutWebAppStep2.html
	Local Disk
	Tutorial: Accessing Controls from a Web Application: Step 2: Add a Page Flow and an Action

	tutWebAppStep3.html
	Local Disk
	Tutorial: Accessing Controls from a Web Application: Step 3: Create a Data Grid

	tutWebAppStep4.html
	Local Disk
	Tutorial: Accessing Controls from a Web Application: Step 4: Create a Page to Edit Customer Data

	tutWebAppSummary.html
	Local Disk
	Tutorial Summary: Accessing a Database from a Web Application

	tutJSFIntro.html
	Local Disk
	JSF Tutorial: Introduction: Java Server Faces Integration

	tutJSFStep1.html
	Local Disk
	JSF Tutorial: Step 1: Create a JSF-Enabled Web Project

	tutJSFStep2.html
	Local Disk
	JSF Tutorial: Step 2: Create a JSF Web Application

	tutJSFSummary.html
	Local Disk
	JSF Tutorial: Summary: Java Server Faces Integration

	conIntro.html
	Local Disk
	Building Web Applications: Introduction

	conPageFlowPerspective.html
	Local Disk
	The Page Flow Perspective

	conJsfIntegration.html
	Local Disk
	Integrating Java Server Faces into a Web Application

	conWebAppVersionInfo.html
	Local Disk
	Web Application Technologies

	conIntroJSP.html
	Local Disk
	Authoring Beehive Java Server Pages

	conNetuiTagsOverview.html
	Local Disk
	Overview: Beehive NetUI Tag Library

	conJspForms.html
	Local Disk
	Creating Forms for Collecting User Data

	conJspGrid.html
	Local Disk
	Displaying Data with NetUI Data Grids

	conValidation.html
	Local Disk
	Rendering Trees

	conJspTiles.html
	Local Disk
	Using Tiles

	conJspTree.html
	Local Disk
	Rendering Trees

	conJspTemplates.html
	Local Disk
	Controlling Web Application Look and Feel with JSP Templates

	conAuthoringJSPTemplateProjects.html
	Local Disk
	Authoring JSP Template Projects and Populating the Default Template List

	navHowToWebApps.html
	Local Disk
	Tasks: Web Applications

	howForwardAction.html
	Local Disk
	How To Define an Action that Forwards Users to Another Page

	howSubmitData.html
	Local Disk
	How to Submit User Data from a JSP

	howChangeHTMLEncoding.html
	Local Disk
	How to Change the Default Encoding for a New HTML Page

