Testing Siebel Business
Applications

Siebel Innovation Pack 2013
Version 8.1/8.2
September 2013

ORACLE

Copyright © 2005, 2013 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due
to your access to or use of third-party content, products, or services.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information,
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Chapter 1: What’s New in This Release

Chapter 2: Overview of Testing Siebel Applications
About Testing Siebel Business Applications 13
Introduction to Application Software Testing 16

Application Software Testing Methodology 16
Common Test Definitions 17

Modular and lIterative Methodology 18
Continuous Application Lifecycle 18

Testing and Deployment Readiness 19

Overview of the Siebel Testing Process 20
Plan Testing Strategy 20
Design and Develop Tests 21
Execute Siebel Functional Tests 21
Execute System Integration Tests 21
Execute Acceptance Tests 21
Execute Performance Tests 22
Improve and Continue Testing 22

Chapter 3: Plan Testing Strategy
Overview of Test Planning 23
Test Objectives 24

Test Plans 25
Test Cases 26
Component Inventory 29
Test Plan Schedule 30

Test Environments 30
Performance Test Environment 31

Chapter 4: Design and Develop Tests
Overview of Test Development 33

Testing Siebel Business Applications Version 8.1/8.2

Contents ®

Design Evaluation 34
Reviewing Design and Usability 34

Test Case Authoring 35
Functional Test Cases 36
System Test Cases 38
Performance Test Cases 38

Test Case Automation 40
Functional Automation 41
Performance Automation 41

Chapter 5: Execute Siebel Functional Tests

Overview of Executing Siebel Functional Tests 43
Reviews 44

Track Defects Subprocess 45

Chapter 6: Execute System Integration and Acceptance
Tests

Overview of Executing Integration and Acceptance Tests 47
Execute Integration Tests 48

Execute Acceptance Tests 49

Chapter 7: Execute Performance Tests
Overview of Executing Performance Tests 51
Executing Tests 52

Performing an SQL Trace 52

Measuring System Metrics 53

Monitoring Failed Transactions 53

Chapter 8: Improve and Continue the Testing Process
Improve and Continue Testing 55

Chapter 9: Automating Functional Tests

Benefits of Functional Test Automation 57
Key Features of Functional Test Tools 57

Architectural Overview of Functional Testing 58

Setting Up Your Functional Testing Environment 60

4 Testing Siebel Business Applications Version 8.1/8.2

Using Siebel Test Automation for Functional Testing 61
Hand-Scripting Functional Tests 61

Best Practices for Functional Test Automation 62
Best Practices for Functional Test Design 63
Best Practices for Functional Test Script Development 65
Best Practices for Functional Test Environment and Execution 69

Chapter 10: Automating Load Tests

Benefits of Load Test Automation 71
Key features of Load Test Tools 71

Architectural Overview of Load Testing 72
Parameterizing Transaction Data 72

Setting Up Your Load Testing Environment 73
Best Practices for Load Testing 73

Troubleshooting Load Testing Issues 75

Appendix A: Functional Test Object Reference
Functional Test Automation Objects for High Interactivity Siebel Applications
SiebApplet Object 81

SiebApplet Methods 82
GetActiveControlName Method 82
GetClassCount Method 83
GetRepositoryName Method 83
GetRepositoryNameBylndex Method 83
IsControlExists Method 83
SetActiveControl Method 84

SiebApplication Object 84

SiebApplication Methods 85
GetBusyTime Method 85
GetClassCount Method 86
GetLastErrorCode Method 86
GetLastErrorMessage Method 86
GetLastOpld Method 87
GetlLastOpTime Method 87
GetSessionld Method 88
GetRepositoryName Method 88
GetRepositoryNameBylndex Method 89
SetTimeOut Method 89

Testing Siebel Business Applications Version 8.1/8.2

79

Contents B

5

Contents ®

SiebButton Object 89
SiebCalculator Object 90

SiebCalculator Methods 92
Clickkeys Method 92

SiebCalendar Object 92
SiebCheckbox Object 94
SiebCommunicationsToolbar Object 96

SiebCommunicationsToolbar Methods 97
GetButtonState Method 97
GetButtonTooltip Method 98

SiebCurrency Object 98

SiebCurrency Methods 100
GetClassCount Method 100
GetRepositoryName Method 100
GetRepositoryNameBylndex Method 100

SieblnkData Object 100
SiebList Object 101

SiebList Methods 104
GetActiveControl Method 104
GetCellText Method 105
GetColumnRepositoryName Method 105
GetColumnRepositoryNameBylndex Method 105
GetColumnSort Method 106
GetColumnType Method 106
GetColumnUIName Method 107
GetTotalsValue Method 107
IsColumnDrilldown Method 108
IsColumnExists Method 108
IsRowExpanded Method 109
SetActiveControl Method 109

SiebMenu Object 110

SiebMenu Methods 111
GetRepositoryName Method 111
GetRepositoryNameBylndex Method 111
GetUIName Method 111
IsEnabled Method 111
IsExists Method 112

6 Testing Siebel Business Applications Version 8.1/8.2

SiebPageTabs Object 112

SiebPageTabs Methods 113
GetRepositoryName Method 113
GetRepositoryNameBylndex Method 113
GetUIName Method 114
IsExists Method 114

SiebPDQ Object 114

SiebPDQ Methods 115
GetPDQBylIndex Method 115
IsExists Method 115

SiebPicklist Object 116

SiebPicklist Methods 117
GetltemBylndex Method 117
IsExists Method 117

SiebRichText Object 118
SiebScreen Object 119

SiebScreen Methods 119
GetClassCount Method 120
GetRepositoryName Method 120
GetRepositoryNameBylndex Method 120

SiebScreenViews Object 120

SiebScreenViews Methods 121
GetRepositoryName Method 121
GetRepositoryNameBylndex Method 121
GetUIName Method 121

SiebTask Object 122

SiebTask Methods 122
GetClassCount Method 123
GetRepositoryName Method 123
GetRepositoryNameBylndex Method 123

SiebTaskAssistant Object 123
SiebTaskLink Object 124
SiebTaskStep Object 125

SiebTaskStep Methods 126
GetClassCount Method 126
GetRepositoryName Method 126

Contents B

Testing Siebel Business Applications Version 8.1/8.2 7

Contents ®

GetRepositoryNameBylndex Method 126
SiebTaskUIPane Object 126

SiebTaskUIPane Methods 128
GetClassCount Method 128
GetRepositoryNameBylndex Method 128
GetStepBylndex Method 128
GetTaskBylndex Method 128
Start Method 129

SiebText Object 129
SiebTextArea Object 130
SiebThreadbar Object 131

SiebThreadbar Methods 133
GetThreadltemBylIndex Method 133
IsExists Method 133

SiebToolbar Object 133

SiebToolbar Methods 134
IsControlEnabled Method 134
IsControlExists Method 135
GetRepositoryName Method 135
GetRepositoryNameBylndex Method 135
GetUIName Method 135

SiebTree Object 136

SiebTree Methods 137
GetChildCount Method 137
GetTreeltemName Method 137
IsExpanded Method 138
IsExists Method 138

SiebView Object 138

SiebView Methods 139
GetClassCount Method 139
GetRepositoryName Method 140
GetRepositoryNameBylIndex Method 140

SiebViewApplets Object 140

SiebViewApplets Methods 141
GetRepositoryName Method 141
GetRepositoryNameBylndex Method 141
GetUIName Method 141

8 Testing Siebel Business Applications Version 8.1/8.2

Contents B

IsExists Method 141

Common Test Automation Object Properties 142

Common Test Automation Object Methods 142
GetClassCount Method 143
GetRepositoryName Method 143
GetRepositoryNameBylIndex Method 144
GetUIName Method 146
IsExists Method 147

Standard Interactivity Functional Test Objects 148

Index

Testing Siebel Business Applications Version 8.1/8.2 9

Contents B

Testing Siebel Business Applications Version 8.1/8.2

1 Release

What’s New in Testing Siebel Business Applications, Version 8.1/8.2
No new features have been added to this guide for this release. This guide has been updated to
reflect only product name changes.

Testing Siebel Business Applications Version 8.1/8.2

What’s New in This Rel

Testing Siebel Business Applications Version 8.1/8.2

2 2sting Siebel

This chapter provides an overview of the reasons for implementing testing in software development
projects, and introduces a methodology for testing Oracle’s Siebel Business Applications with
descriptions of the processes and types of testing that are used in this methodology. This chapter
includes the following topics:

“About Testing Siebel Business Applications” on page 13
“Introduction to Application Software Testing” on page 16
“Application Software Testing Methodology” on page 16
“Modular and Iterative Methodology” on page 18

“Testing and Deployment Readiness” on page 19

“Overview of the Siebel Testing Process” on page 20

About Testing Siebel Business
Applications

This guide introduces and describes the processes and concepts of testing Siebel Business
Applications. It is intended to be a guide for best practices for Oracle customers currently deploying
or planning to deploy Siebel Business Applications, version 7.7 or later. It does not describe specific
features of the Siebel Business Applications product suite.

Testing Siebel Business Applications Version 8.1/8.2 13

Overview of Testing Siebel Applications I About Testing Siebel Busi

Although job titles and duties at your company may differ from those listed in the following table,
the audience for this guide consists primarily of employees in these categories:

Application Testers

Business Analysts

Business Users

Database
Administrators

Functional Test
Engineers

Performance Test
Engineers

Project Managers

Siebel Application
Developers

Siebel System
Administrators

Test Architect

Test Manager

Testers responsible for developing and executing tests. Functional testers
focus on testing application functionality, while performance testers focus on
system performance.

Analysts responsible for defining business requirements and delivering
relevant business functionality. Business analysts serve as the advocate for
the business user community during application deployment.

Actual users of the application. Business users are the customers of the
application development team.

Administrators who administer the database system, including data loading,
system monitoring, backup and recovery, space allocation and sizing, and
user account management.

Testers with the responsibility of developing and executing manual and
automated testing. Functional test engineers create test cases and automate
test scripts, maintain regression test library and report issues and defects.

Testers with the responsibility of developing and executing automated
performance testing. Performance test engineers create automated test
scripts, maintain regression test scripts and report issues and defects.

Manager or management team responsible for planning, executing, and
delivering application functionality. Project managers are responsible for
project scope, schedule, and resource allocation.

Developers who plan, implement, and configure Siebel business applications,
possibly adding new functionality.

Administrators responsible for the whole system, including installing,
maintaining, and upgrading Siebel business applications.

Working with the Test Manager, an architect designs and builds the test
strategy and test plan.

Manages the day-to-day activities, testing resources, and test execution.
Manages the reporting of test results and the defect management process.
The Test Manager is the single point of contact (POC) for all testing activities.

NOTE: On simple projects, the Test Architect and Test Manager are normally combined into a single

role.

How This Guide Is Organized

This book describes the processes for planning and executing testing activities for Siebel business
applications. These processes are based on best practices and proven test methodologies. You use
this book as a guide to identify what tests to run, when to run tests, and who to involve in the quality

assurance process.

14

Testing Siebel Business Applications Version 8.1/8.2

Siebel Applications = About Testing Siebel Business Applications

The first two chapters of this book provide an introduction to testing and the test processes. You are
encouraged to read the remainder of this chapter “Overview of Testing Siebel Applications,” which
describes the relationships between the seven high-level processes. The chapters that follow
describe a specific process in detail. In each of these chapters, a process diagram is presented to
help you to understand the important high-level steps. You are encouraged to modify the processes
to suit your specific situation.

Depending on your role, experience, and current project phases you will use the information in this
book differently. Here are some suggestions about where you might want to focus your reading:

B Test manager. At the beginning of the project, review Chapters 2 through 8 to understand
testing processes.

B Functional testing. If you are a functional tester focus on Chapters 3 through 7 and 9. These
chapters discuss the process of defining, developing, and executing functional test cases.

B Performance testing. If you are a performance tester focus on Chapters 3, 4, 7, and 10. These
chapters describe the planning, development, and execution of performance tests.

At certain points in this book, you will see information presented as a best practice. These tips are
intended to highlight practices proven to improve the testing process.

Additional Resources
B American Society of Quality
http://www.asq.org/pub/sqp

B Bitpipe
http://www.bitpipe.com/rlist/term/Testing.html

B Economic Impact of Inadequate Infrastructure for Software Testing
http://www.nist.gov/director/prog-ofc/report02-3.pdf

B Empirix
http://www.empirix.com/Empirix/Corporate/Resources/

B International Federation for Information Processing

http://www.ifip.or.at/
(click on the “Search IFIP” link)

B Making Software Development High Performance
http://www.swforum.com/
(click on the “Search” hyperlink)

B Internet/Software Quality Hotlist
http://www.soft.com/Institute/HotList/index.html

B Mercury Interactive
http://download.mercury.com/cgi-bin/portal/download/index.jsp

B Software Testing Institute
http://www.softwaretestinginstitute.com/index.html

B StickyMinds
http://www.stickyminds.com/testing.asp

Testing Siebel Business Applications Version 8.1/8.2 15

Overview of Testing Siebel Applications I Introduction to Application S

Introduction to Application Software
Testing

Testing is a key component of any application deployment project. The testing process determines
the readiness of the application. Therefore, it must be designed to adequately inform deployment
decisions. Without well-planned testing, project teams may be forced to make under-informed
decisions and expose the business to undue risk. Conversely, well-planned and executed testing can
deliver significant benefit to a project including:

B Reduced deployment cost. Identifying defects early in the project is a critical factor in reducing
the total cost of ownership. Research shows that the cost of resolving a defect increases
dramatically in later deployment phases. A defect discovered in the requirements definition
phase as a requirement gap can be a hundred times less expensive to address than if it is
discovered after the application has been deployed. Once in production, a serious defect can
result in lost business and undermine the success of the project.

B Higher user acceptance. User perception of quality is extremely important to the success of a
deployment. Functional testing, usability testing, system testing, and performance testing can
provide insights into deficiencies from the users’ perspective early enough so that these
deficiencies can be corrected before releasing the application to the larger user community.

B Improved deployment quality. Hardware and software components of the system must also
meet a high level of quality. The ability of the system to perform reliably is critical in delivering
consistent service to the users or customers. A system outage caused by inadequate system
resources can result in lost business. Performance, reliability, and stress testing can provide an
early assessment of the system to handle the production load and allow IT organizations to plan
accordingly.

Inserting testing early and often is a key component to lowering the total cost of ownership. Software
projects that attempt to save time and money by lowering their initial investment in testing find that
the cost of not testing is much greater. Insufficient investment in testing may result in higher
deployment costs, lower user adoption, and failure to achieve business returns.

Best Practice

Test early and often. The cost of resolving a defect when detected early is much less then resolving
the same defect in later project stages. Testing early and often is the key to identifying defects as
early as possible and reducing the total cost of ownership.

Application Software Testing
Methodology

The processes described in this book are based on common test definitions for application software.
These definitions and methodologies have been proven in customer engagement, and demonstrate
that testing must occur throughout the project lifecycle.

16 Testing Siebel Business Applications Version 8.1/8.2

Testing Siebel Applications = Application Software Testing Methodology

Common Test Definitions

There are several common terms used to describe specific aspects of software testing. These testing
classifications are used to break down the problem of testing into manageable pieces. Here are some
of the common terms that are used throughout this book:

Business process testing. Validates the functionality of two or more components that are
strung together to create a valid business process.

Data conversion testing. The testing of converted data used within the Siebel application. This
is normally performed before system integration testing.

Functional testing. Testing that focuses on the functionality of an application that validates the
output based on selected input that consists of Unit, Module and Business Process testing.

Interoperability testing. Applications that support multiple platforms or devices need to be
tested to verify that every combination of device and platform works properly.

Negative testing. Validates that the software fails appropriately by inputting a value known to
be incorrect to verify that the action fails as expected. This allows you to understand and identify
failures. By displaying the appropriate warning messages, you verify that the unit is operating
correctly.

Performance testing. This test is usually performed using an automation tool to simulate user
load while measuring the system resources used. Client and server response times are both
measured.

Positive testing. Verifies that the software functions correctly by inputting a value known to be
correct to verify that the expected data or view is returned appropriately.

Regression testing. Code additions or changes may unintentionally introduce unexpected
errors or regressions that did not exist previously. Regression tests are executed when a new
build or release is available to make sure existing and new features function correctly.

Reliability testing. Reliability tests are performed over an extended period of time to determine
the durability of an application as well as to capture any defects that become visible over time.

Scalability testing. Validates that the application meets the key performance indicators with a
predefined number of concurrent users.

Stress testing. This test identifies the maximum load a given hardware configuration can
handle. Test scenarios usually simulate expected peak loads.

System integration testing. This is a complete system test in a controlled environment to
validate the end-to-end functionality of the application and all other interface systems (for
example, databases and third-party systems). Sometimes adding a new module, application, or
interface may negatively affect the functionality of another module.

Test case. A test case contains the detailed steps and criteria (such as roles and data) for
completing a test.

Test script. A test script is an automated test case.

Unit testing. Developers test their code against predefined design specifications. A unit test is
an isolated test that is often the first feature test that developers perform in their own
environment before checking changes into the configuration repository. Unit testing prevents
introducing unstable components (or units) into the test environment.

Testing Siebel Business Applications Version 8.1/8.2 17

Overview of Testing Siebel Applications I Modular and lterative Methodo

B Usability testing. User interaction with the graphical user interface (GUI) is tested to observe
the effectiveness of the GUI when test users attempt to complete common tasks.

B User acceptance test (UAT). Users test the complete, end-to-end business processes,
verifying functional requirements (business requirements).

Modular and lterative Methodology

An IT project best practice that applies to both testing and development is to use a modular and
incremental approach to develop and test applications to detect potential defects earlier rather than
later. This approach provides component-based test design, test script construction (automation),
execution and analysis. It brings the defect management stage to the forefront, promoting
communication between the test team and the development team. Beginning the testing process
early in the development cycle helps reduce the cost to fix defects.

This process begins with the test team working closely with the development team to develop a
schedule for the delivery of functionality (a drop schedule). The test team uses this schedule to plan
resources and tests. In the earlier stages, testing is commonly confined to unit and module testing.
After one or more drops, there is enough functionality to begin to string the modules together to test
a business process.

After the development team completes the defined functionality, they compile and transfer the Siebel
application into the test environment. The immediate functional testing by the test team allows for
early feedback to the development team regarding possible defects. The development team can then
schedule and repair the defects, drop a new build of the Siebel application, and provide the
opportunity for another functional test session after the test team updates the test scripts as
necessary.

Best Practice

Iterative development introduces functionality to a release in incremental builds. This approach
reduces risk by prompting early communication and allowing testing to occur more frequently and
with fewer changes to all parts of the application.

Continuous Application Lifecycle

One deployment best practice is the continuous application lifecycle. In this approach, application
features and enhancements are delivered in small packages on a continuous delivery schedule. New
features are considered and scheduled according to a fixed release schedule (for example, once
every quarter). This model of phased delivery provides an opportunity to evaluate the effectiveness
of prebuilt application functionality, minimizes risk, and allows you to adapt the application to
changing business requirements.

Continuous application lifecycle incorporates changing business requirements into the application on
a regular timeline, so the business customers do not have a situation where they become locked into
functionality that does not quite meet their needs. Because there is always another delivery date on
the horizon, features do not have to be rushed into production. This approach also allows an
organization to separate multiple, possibly conflicting change activities. For example, the upgrade
(repository merge) of an application can be separated from the addition of nhew configuration.

18 Testing Siebel Business Applications Version 8.1/8.2

ting Siebel Applications & Testing and Deployment Readiness

Best Practice

The continuous application lifecycle approach to deployment allows organizations to reduce the
complexity and risk on any single release and provides regular opportunities to enhance application
functionality.

Testing and Deployment Readiness

The testing processes provide crucial inputs for determining deployment readiness. Determining
whether or not an application is ready to deploy is an important decision that requires clear input
from testing.

Part of the challenge in making a good decision is the lack of well-planned testing and the availability
of testing data to gauge release readiness. To address this, it is important to plan and track testing
activity for the purpose of informing the deployment decision. In general, you can measure testing
coverage and defect trends, which provide a good indicator of quality. The following are some
suggested analyses to compile:

B For each test plan, the number and percentage of test cases passed, in progress, failed, and
blocked. This data illustrates the test objectives that have been met, versus those that are in
progress or at risk.

Trend analysis of open defects targeted at the current release for each priority level.

Trend analysis of defects discovered, defects fixed, and test cases executed. Application
convergence (point A in Figure 1) is demonstrated by a slowing of defect discovery and fix rates,
while maintaining even levels of test case activity.

oo + Unit & Integration Test System & Acceptance Test
oun

v

Time

Legend:

Defects Found Defects Fixed Test Cases Run

Figure 1. Trend Analysis of Testing and Defect Resolution

Testing is a key input to the deployment readiness decision. However it is not the only input to be
considered. You must consider testing metrics with business conditions and organizational readiness.

Testing Siebel Business Applications Version 8.1/8.2 19

Overview of Testing Siebel Applications I Overview of th

Overview of the Siebel Testing Process

Testing processes occur throughout the implementation lifecycle, and are closely linked to other
configuration, deployment, and operations processes. Figure 2 presents a high-level map of testing
processes.

Discover Design Configure Validate Deploy Sustain|

Test Management

Document TestPlan /
Requirements Strategy By Test Design

. Improve
Test Design Testing

F-u nctional Testing

Testing

Functional Data & Vser
Unit Testing He Testing —® System He Acceptance Ongoing Testing
Testing Testing

Update Test
I Regression Testing Cases/Scripts

i

Regression
Testing

Performance Testing

Performance Salability Reliability
Testing Testing Testing

Figure 2. High-Level Testing Process Map

Each of the seven testing processes described in this book are highlighted in bold in the diagram and
are outlined briefly in the following topics:

Plan Testing Strategy on page 20

Design and Develop Tests on page 21
Execute Siebel Functional Tests on page 21
Execute System Integration Tests on page 21
Execute Acceptance Tests on page 21

Execute Performance Tests on page 22

Improve and Continue Testing on page 22

Plan Testing Strategy

The test planning process makes sure that the testing performed is able to inform the deployment
decision process, minimize risk, and provide a structure for tracking progress. Without proper
planning many customers may perform either too much or too little testing. The process is designed
to identify key project objectives and develop plans based on those objectives.

20 Testing Siebel Business Applications Version 8.1/8.2

esting Siebel Applications ™ Overview of the Siebel Testing Process

It is important to develop a testing strategy early, and to use effective communications to coordinate
among all stakeholders of the project.

Design and Develop Tests

In the test design process, the high-level test cases identified during the planning process are
developed in detail (step-by-step). Developers and testers finalize the test cases based on approved
technical designs. The written test cases can also serve as blueprints for developing automated test
scripts. Test cases should be developed with strong participation from the business analyst to
understand the details of usage, and less-common use cases.

Design evaluation is the first form of testing, and often the most effective. Unfortunately, this process
is often neglected. In this process, business analysts and developers verify that the design meets
the business unit requirements. Development work should not start in earnest until there is
agreement that the designed solution meets requirements. The business analyst who defines the
requirements should approve the design.

Preventing design defects or omissions at this stage is more cost effective than addressing them later
in the project. If a design is flawed from the beginning, the cost to redesign after implementation
can be high.

Execute Siebel Functional Tests

Functional testing is focused on validating the Siebel business application components of the system.
Functional tests are performed progressively on components (units), modules, and business
processes in order to verify that the Siebel application functions correctly. Test execution and defect
resolution are the focus of this process. The development team is fully engaged in implementing
features, and the defect-tracking process is used to manage quality.

Execute System Integration Tests

System integration testing verifies that the Siebel application validated earlier, integrates with other
applications and infrastructure in your system. Integration with various back-end, middleware, and
third-party systems are verified. Integration testing occurs on the system as a whole to make sure
that the Siebel application functions properly when connected to related systems, and when running
along side system-infrastructure components.

Execute Acceptance Tests

Acceptance testing is performed on the complete system and is focused on validating support for
business processes, as well as verifying acceptability to the user community from both the lines of
business and the IT organization. This is typically a very busy time in the project, when people,
process, and technology are all preparing for the rollout.

Testing Siebel Business Applications Version 8.1/8.2 21

Overview of Testing Siebel Applications I Overview

Execute Performance Tests

Performance testing validates that the system can meet specified key performance indicators (KPIs)
and service levels for performance, scalability, and reliability. In this process, tests are run on the
complete system simulating expected loads and verifying system performance.

Improve and Continue Testing

Testing is not complete when the application is rolled out. After the initial deployment, regular
configuration changes are delivered in new releases. In addition, Oracle delivers regular maintenance
and major software releases that may need to be applied. Both configuration changes and new
software releases require regression testing to verify that the quality of the system is sustained.

The testing process should be evaluated after deployment to identify opportunities for improvement.
The testing strategy and its objectives should be reviewed to identify any inadequacies in planning.
Test plans and test cases should be reviewed to determine their effectiveness. Test cases should be
updated to include testing scenarios that were discovered during testing and were not previously
identified, to reflect all change requests, and to support software releases.

22 Testing Siebel Business Applications Version 8.1/8.2

3 Strategy

This chapter describes the process of planning your tests. It includes the following topics:
B “Overview of Test Planning” on page 23

B “Test Objectives” on page 24

B “Test Plans” on page 25
|

“Test Environments” on page 30

Overview of Test Planning

The objective of the test planning process is to create the strategy and tactics that provide the proper
level of test coverage for your project. The test planning process is illustrated in Figure 3 on page 24.

The inputs to this process are the business requirements and the project scope. The outputs, or
deliverables, of this process include:

B Test objectives. The high-level objectives for a quality release. The test objectives are used to
measure project progress and deployment readiness. Each test objective has a corresponding
business or design requirement.

Il Test plans. The test plan is an end-to-end test strategy and approach for testing the Siebel
application. A typical test plan contains the following sections:

B Strategy, milestones, and responsibilities. Set the expectation for how to perform
testing, how to measure success, and who is responsible for each task

B Test objectives. Define and validate the test goals, objectives, and scope
m Approach. Outlines how and when to perform testing

B Entrance and exit criteria. Define inputs required to perform a test and success criteria for
passing a test

B Results reporting. Outlines the type and schedule of reporting

[l Test cases. A test plan contains a set of test cases. Test cases are detailed, step-by-step
instructions about how to perform a test. The instructions should be specific and repeatable by
anyone who typically performs the tasks being tested. In the planning process, you identify the
number and type of test cases to be performed.

Testing Siebel Business Applications Version 8.1/8.2 23

Plan Testing Strategy ™ Test Objectives

B Definition of test environments. The number, type, and configuration for test environments
should also be defined. Clear entry and exit criteria for each environment should be defined.

Project
Manager

Business
Analyst

Inputs: Business requirements
R " Use Cases, Design Documents
EQUIEMENLS B 5ng Project Scope

Approve Test
Plan
(Objectives,
Test Cases,

k] Define Test
T = Define Test Define High- Data MEP Schedules and
= Define Test R it
2 5| Start Obiecti I« Requirements Level Test [Requirements [o Test equirements Resources) End
z jectives & KPls Case Define Tast Schedule /| | & KPIs to Test
eune | es Project Plan Cases

Environment,
|| Software and
Hardware
Requirements

Developer

System
Administrator

Figure 3. Plan Testing Strategy Process

Test Objectives

The first step in the test planning process is to document the high-level test objectives. The test
objectives provide a prioritized list of verification or validation objectives for the project. You use this
list of objectives to measure testing progress, and verify that testing activity is consistent with
project objectives.

Test objectives can typically be grouped into the following categories:

B Functional correctness. Validation that the application correctly supports required business
processes and transactions. List all of the business processes that the application is required to
support. Also list any standards for which there is required compliance.

B Authorization. Verification that actions and data are available only to those users with correct
authorization. List any key authorization requirements that must be satisfied, including access
to functionality and data.

B Service level. Verification that the system will support the required service levels of the
business. This includes system availability, load, and responsiveness. List any key performance
indicators (KPIs) for service level, and the level of operational effort required to meet KPIs.

B Usability. Validation that the application meets required levels of usability. List the required
training level and user KPIs required.

The testing team, development team, and the business unit agree upon the list of test objectives and
their priority. Figure 4 shows a sample Test Objectives document.

24 Testing Siebel Business Applications Version 8.1/8.2

Plan Testing Strategy ™ Test Plans

A test case covers one or more test objective, and has the specific steps that testers follow to verify
or validate the stated objectives. The details of the test plan are described in “Test Plans” on page 25.

D Type Objective Name Author Reviewed Priority
1|Functional Correctness | Ability to identify a duplicate pending contract holder in the FC1 Jane Smith | Mot 3-Medium
=yatem Reviewed
2 Functional Correctness | Ability to keep historic pending contract holder in the system FC2 Jane Smith | Mot 4-High
Reviewed
3 Functional Correctness | Ability to keep histeric pending contract holder rejection reason’ FC3 John Smith | Mot S5-Very High
in the =y=stem Reviewed
4 Functional Correctness | Ability to track status of pending centract holder FC4 John Smith | Mot 1-Low
Reviewed
5 Functional Correctness Validate suppert for Manage Quotes Business Process FC4 Jane Smith | Mot 3-Medium
Reviewed
8 Service Level Verify system support for 3050 concurrent sales call center SLa Jane Smith | Mot 3-Medium
users Reviewed
7 Functional Correctness | Werify proper restrictions to Account functienality and data FC5 John Smith | Mot 3-Medium
kazed on role Reviewed
& Service Level Verify view paint responze time <2 secends for commonly used |SLAZ John Smith | Mot 4-High
views Reviewed
9 Usability “erfiy a novice user can create a quote with 1 hour of training |U1 Jane Smith | Mot 4-High
Reviewed

Figure 4. Sample Test Objectives

Test Plans

The purpose of the test plan is to define a comprehensive approach to testing. This includes a
detailed plan for verifying the stated objectives, identifying any issues, and communicating
schedules towards the stated objectives. The test plan has the following components:

B Project scope. Outlines the goals and what is included in the testing project.

B Test cases. Detail level test scenarios. Each test plan is made up of a list of test cases, their
relevant test phases (schedule), and relationship to requirements (traceability matrix).

B Business process script inventory and risk assessment. A list of components (business
process scripts) that require testing. Also describes related components and identifies high-risk
components or scenarios that may require additional test coverage.

Test schedule. A schedule that describes when test cases will be executed.

Test environment. Outlines the recommendations for the various test environments (for
example, Functional, System Integration, and Performance). This includes both software and
hardware.

B Test data. ldentifies the data required to support testing.

Business process testing is an important best practice. Business process testing drives the test case
definition from the definition of the business process. In business process testing, coverage is
measured based on the percentage of validated process steps.

Best Practice
Functional testing based on a required business process definition provides a structured way to
design test cases, and a meaningful way to measure test coverage based on business process steps.

Testing Siebel Business Applications Version 8.1/8.2 25

Plan Testing Strategy M Test Plans

Business process testing is described in more detail in the topics that follow.

Test Cases

A test case represents an application behavior that needs to be verified. For each component,
application, and business process you can identify one or more test cases that need verification.
Figure 5 shows a sample test case list. Each test plan contains multiple test cases.

Tast Case Description

Review

Create naw contacts: Login < Contacts Approved 34 112 212,
Wew >New Contacts > Verjfy Data Elsments 243, 244
Contact
TC20- Validates the creation of a new contract and TC1.0,| Approved X K| 24,2538, 37,
Wew the approval process: Login < Contract TC1.1, 40, 44 50 04
Contract Holder > New Comtract Hzldsr - Contracts Uszrname, 107, 184, 156,
Standard > New Contrast < Commissions 3 Password, 226,233, 235,

Commiszions > Lozout Appropriate 244 254 258
TC23- Testing a Campaizn: Login -» Lagin -> TC1.0,| Not Reviewsd X X 128, 150,
Tasta Program Plans -> Query Program Plan -> TC1.1, 153,154, 159,
TC2.0- Validates the ersation of a new contract and TCl.x, LOVs| Not Baviswad HIE 24 44 38 77,
Wew the approval process: Login > Contract and 3tate 78, 83, 88, 59,
Contraet Holder = New Contract Holder < Contracts modal 100, 112, 133,
Standard > New Contract - Commissions > 135, 138, 1583

Commissions < Approval process 2 Logout

TC3.0- Validates that this proeess will fail correetly TC1l.x, LOVs| Not Reviswad XX 24 44 39 77,

Contracts |{n=sgative test): Login > New Contract Holder and 3tate 78, 83, 88, 59,
= New Contrast Holder < Contracts < New maodel 100, 107, 112,
Contrast - Commizsions 2 Commizzicns 133,133, 138,
Approval Process 2 Rgjection < Resubmit 183,
< Logout

TC4.3 - Validat= the eonvertad data in the Contracts TC1.x,|Not Reviewsd X 51,112, 143

Contracts |fields ars correct bassd on test inputs (using TC2.x, 168§, 200, 201,
fizld names from the Desien docsment). Contracts data 204, 265

Figure 5. Sample Test Plan: Test Case List

This example uses the following numbering schema for the Test Case ID:
TC1.x — New records and seed data required to support other test cases
TC2.x — Positive test cases

TC3.x — Negative test cases

TC4.x — Data Conversion testing

TC5.x — System integration testing

Note how the test schedule is included in Figure 5. For example, TC1.0 — New Contact is performed
during Functional Cycle 1 (Functional C1) of the functional testing. Whereas, TC3.0 — Contracts
occurs during Functional Cycle 2 (Functional C2) and during system integration testing.

26 Testing Siebel Business Applications Version 8.1/8.2

Plan Testing Strategy ™ Test Plans

During the Design phase of the test plan, there are a number of test types that you must define:

B Functional test cases. Functional test cases are designed to validate that the application
performs a specified business function. The majority of these test cases take the form of user or
business scenarios that resemble common transactions. Testers and business users should work
together to compile a list of scenarios. Following the business process testing practice, functional
test cases should be derived directly from the business process, where each step of the business
process is clearly represented in the test case.

For example, if the test plan objective is to validate support for the Manage Quotes Business
Process, then there should be test cases specified based on the process definition. Typically, this
means that each process or subprocess has one or more defined test cases, and each step in the
process is specified within the test case definition. Figure 6 illustrates the concept of a process-
driven test case. Considerations must also be given for negative test cases that test behaviors
when unexpected actions are taken (for example, creation of a quote with a create date before
the current date).

Initiate
Quote

Choose
Products

— |

Selectand
Configure

Create from Yes Locate 1 UC;Z?;E; nod} e
Reference? Reference i u
Header

Products
No :

Test Case: 12-ABCDEF

Test Case Name: Create Quote

Test Case Description: Thistest ca ates a new quote header and tests defaulting behavior.

Application: Siebel 5

Components under test: Vi uote List View

Date Created: /22003

Created By: Joe Tester

ep ID o5 p 15 € ep p d Res
1 G a high-tech quote Login to Siebel Call Center - as sadmin/sadmin
Clickthe QK buttopn to login Wmﬂjq

3 Create Quote Header Click the Quotes tab. Navigate to Quote environment.
4 Click the New button in Quote List applet MNew Quote Line created.

Complete key fields (Account or Cantact Mame and Bill Fields saved appropriately.

5 To /Ship To addresses).

6 Valid ate defaulted fields (Price List and Status). Defaulting behaviaor consistent

7 |Select and Configure Products Click the Add ltems button. "Pick Products” popup applet appears

8 Locate desired product Product Located by scrolling or querying.

9 Add desired number to quantity field. Data saved.
10 Click Add. Line tem details added to "Pick Products” applet.
1 Click OK. Popup applet closes. Quote Line Item added.

Figure 6. Business Process-Driven Test Case with its Corresponding Process Diagram

B Structural test cases. Structural test cases are designed to verify that the application structure
is correct. They differ from functional cases in that structural test cases are based on the
structure of the application, not on a scenario. Typically, each component has an associated
structural test case that verifies that the component has the correct layout and definition (for
example, verify that a view contains all the specified applets and controls).

Testing Siebel Business Applications Version 8.1/8.2 27

Plan Testing Strategy ™ Test Plans

B Performance test cases. Performance test cases are designed to verify the performance of the
system or a transaction. There are three categories of performance test cases commonly used:

B Response time or throughput. Verifies the time for a set of specified actions. For example,
tests the time for a view to paint or a process to run. Response time tests are often called
performance tests.

m Scalability. Verifies the capacity of a specified system or component. For example, test the
number of users that the system can support. Scalability tests are often called load or stress
tests.

m Reliability. Verifies the duration for which a system or component can be run without the
need for restarting. For example, test the number of days that a particular process can run
without failing.

Test Phase

Each test case should have a primary testing phase identified. You can run a given test case several
times in multiple testing phases, but typically the first phase in which you run it is considered the
primary phase. The following describes how standard testing phases typically apply to Siebel
business application deployments:

B Unit test. The objective of the unit test is to verify that a unit (also called a component)
functions as designed. The definition of a unit is discussed in “Component Inventory” on page 29.
In this phase of testing, in-depth verification of a single component is functionally and
structurally tested.

For example, during the unit test the developer of a newly configured view verifies that the view
structure meets specification and validates that common user scenarios, within the view, are
supported.

B Module test. The objective of the module test is to validate that related components fit together
to meet specified application design criteria. In this phase of testing, functional scenarios are
primarily used. For example, testers will test common navigation paths through a set of related
views. The objective of this phase of testing is to verify that related Siebel components function
correctly as a module.

B Process test. The objective of the process test is to validate that business process are supported
by the Siebel application. During the process test, the previously-tested modules are strung
together to validate an end-to-end business process. Functional test cases, based on the defined
business processes are used in this phase.

B Data conversion test. The objective of the data conversion test is to validate that the data is
properly configured and meets all requirements. This should be performed before the integration
test phase.

B Integration test. In the integration test phase, the integration of the Siebel business
application with other back-end, middleware, or third-party components are tested. This phase
includes functional test cases and system test cases specific to integration logic. For example, in
this phase the integration of Siebel Orders with an ERP Order Processing system is tested.

B Acceptance test. The objective of the acceptance test is to validate that the system is able to
meet user requirements. This phase consists primarily of formal and ad-hoc functional tests.

28 Testing Siebel Business Applications Version 8.1/8.2

Plan Testing Strategy ™ Test Plans

B Performance test. The objective of the performance test is to validate that the system will
support specified performance KPIs, maintenance, and reliability requirements. This phase
consists of performance test cases.

Component Inventory

The Component Inventory is a comprehensive list of the applications, modules, and components in
the current project. Typically, the component inventory is done at the project level, and is not a
testing-specific activity. There are two ways projects typically identify components. The first is to
base component definition on the work that needs to be done (for example, specific configuration
activities). The second method is to base the components on the functionality to be supported. In
many cases, these two approaches produce similar results. A combination of the two methods is most
effective in making sure that the test plan is complete and straightforward to execute. The worksheet
shown in Figure 7 is an example of a component inventory.

CID Component Parent Module Parent Application Description Risk Score
C1 | Product Catalog Content Catalog Sales All adminiztered product data 2
C2 | Configuration Rules |Rules Catalog Sales Configuration rules 3
C3 Cuote View View Cuotes Sales Cuote View 1
C4 | Order View WView QOrders Sales Order View 1
CS | Pricing Rules Rules Pricer Sales Price lizgtz and pricing rules 4
CS | Order to SAP Integration | SAP Integration Integration Integration to SAP for Orders 4

Figure 7. Sample Component Inventory Document

Risk Assessment
A risk assessment is used to identify those components that carry higher risk and may require
enhanced levels of testing. The following characteristics increase component risk:

B High business impact. The component supports high business-impact business logic (for
example, complex financial calculation).

B Integration. This component integrates the Siebel application to an external or third-party
system.

Scripting. This component includes the coding of browser script, eScript, or VB script.

Ambiguous or incomplete design. This component design is either ambiguous (for example,
multiple implementation options described) or the design is not fully specified.

B Availability of data. Performance testing requires production-like data (a data set that has the
same shape and size as that of the production environment). This task requires planning, and
the appropriate resources to stage the testing environment.

B Downstream dependencies. This component is required by several downstream components.

As shown in Figure 7 on page 29, one column of the component inventory provides a risk score to
each component based on the guidelines above. In this example one risk point is given to a
component for each of the criteria met. The scoring system should be defined to correctly represent
the relative risk between components. Performing a risk assessment is important for completing a
test plan, because the risk assessment provides guidance on the sequence and amount of testing
required.

Testing Siebel Business Applications Version 8.1/8.2 29

Plan Testing Strategy ¥ Test Environments

Best Practice
Performing a risk assessment during the planning process allows you to design your test plan in a
way that minimizes overall project risk.

Test Plan Schedule

For each test plan, a schedule of test case execution should be specified. The schedule is built using
four different inputs:

B Overall project schedule. The execution of all test plans must be consistent with the overall
project schedule.

B Component development schedule. The completion of component configuration is a key input
to the testing schedule.

B Environment availability. The availability of the required test environment needs to be
considered in constructing schedules.

B Test case risk. The risk associated with components under test is another important
consideration in the overall schedule. Components with higher risk should be tested as early as
possible.

Test Environments

The specified test objectives influence the test environment requirements. For example, service level
test objectives (such as system availability, load, and responsiveness) often require an isolated
environment to verify. In addition, controlled test environments can help:

B Provide integrity of the application under test. During a project, at any given time there are
multiple versions of a module or system configuration. Maintaining controlled environments can
make sure that tests are being executed on the appropriate versions. Significant time can be
wasted executing tests on incorrect versions of a module or debugging environment
configuration without these controls.

B Control and mange risk as a project nears rollout. There is always a risk associated with
introducing configuration changes during the lifecycle of the project. For example, changing the
configuration just before the rollout carries a significant amount of risk. Using controlled
environments allows a team to isolate late-stage and risky changes.

It is typical to have established Development, Functional Testing, System Testing, User Acceptance
Testing, Performance Testing, and Production environments to support testing. More complex
projects often include more environments, or parallel environments to support parallel development.
Many customers use standard code control systems to facilitate the management of code across
environments.

The environment management approach includes the following components:

30 Testing Siebel Business Applications Version 8.1/8.2

Plan Testing Strategy ™ Test Environments

Named environments and migration process. A set of named test environments, a specific
purpose (for example, integration test environment), and a clear set of environment entry and
exit criteria. Typically, the movement of components from one environment to the next requires
that each component pass a predefined set of test cases, and is done with the appropriate level
of controls (for example, code control and approvals).

Environment audit. A checklist of system components and configuration for each environment.
Audits are performed prior to any significant test activity. The Environment Verification Tool can
be used to facilitate the audit of test environments. For help with the Environment Verification
Tool, see 477105.1 (Doc ID) on My Oracle Support. This document was previously published as
Siebel Technical Note 467.

Environment schedule. A schedule that outlines the dates when test cases will be executed in
a given environment.

Performance Test Environment

In general, the more closely the performance test environment reflects the production environment,
the more applicable the test results will be. It is important that the performance test environment
includes all of the relevant components to test all aspects of the system, including integration and
third-party components. Often it is not feasible to build a full duplicate of the production
configuration for testing purposes. In that case, the following scaled-down strategy should be
employed for each tier:

Web Servers and Siebel Servers. To scale down the Web and application server tiers, the
individual servers should be maintained in the production configuration and the number of
servers scaled down proportionately. The overall performance of a server depends on a number
of factors besides the number of CPUs, CPU speed, and memory size. So, it is generally not
accurate to try to map the capacity of one server to another even within a single vendor’s product
line.

The primary tier of interest from an application scalability perspective is the application server
tier. Scalability issues are very rarely found on the Web server tier. If further scale-down is
required it is reasonable to maintain a single Web server and continue to scale the application
server tier down to a single server. The application server should still be of the same
configuration as those used in the production environment, so that the tuning activity can be
accurately reflected in the system test and production environments.

Database server. If you want to scale down a database server, there is generally little
alternative but to use a system as close as possible to the production architecture, but with CPU,
memory, and 1/0 resources scaled down as appropriate.

Network. The network configuration is one area in which it is particularly difficult to replicate
the same topology and performance characteristics that exist in the production environment. It
is important that the system test includes any active network devices such as proxy servers and
firewalls. The nature of these devices can impact not only the performance of the system, but
also the functionality, because in some cases these devices manipulate the content that passes
through them. The performance of the network can often be simulated using bandwidth and
latency simulation tools, which are generally available from third-party vendors.

Testing Siebel Business Applications Version 8.1/8.2 31

Plan Testing Strategy B T

Testing Siebel Business Applications Version 8.1/8.2

4 2velop Tests

This chapter describes the process of developing the tests that you should perform during the
development of your project. It includes the following topics:

B “Overview of Test Development” on page 33
B “Design Evaluation” on page 34

B “Test Case Authoring” on page 35
|

“Test Case Automation” on page 40

Overview of Test Development

It is important that you develop test cases in close cooperation between the tester, the business
analyst, and the business user. The process illustrated in Figure 8 illustrates some of the activities
that should take place in the test development process.

Business User

Create Usage Signoff Test f—
Scenarios Case

Evaluate
Design

Review Q7 4 Author Test
Regquirements Case
I

nput: Test Cases,
Requirements Documents,
Design

Business Analyst

Automate

il Test Case

Application Tester

Figure 8. Develop Tests Process

To generate valid and complete test cases, they must be written with full understanding of the
requirements, specifications, and usage scenarios.

The deliverables of the test development process include:

B Requirement gaps. As a part of the design review process, the business analyst should identify
business requirements that have incomplete or missing designs. This can be a simple list of gaps
tracked in a spreadsheet. Gaps must be prioritized and critical issues scoped and reflected in the
updated design. Lower priority gaps enter the change management process.

Testing Siebel Business Applications Version 8.1/8.2 38

Design and Develop Tests i Design Evaluation

B Approved technical design. This is an important document that the development team
produces (not a testing-specific activity) that outlines the approach to solving a business
problem. It should provide detailed process-flow diagrams, Ul mock-ups, pseudo-code, and
integration dependencies. The technical design should be reviewed by both business analysts and
the testing team, and approved by business analysts.

Detailed test cases. Step-by-step instructions for how testers execute a test.

Test automation scripts. If test automation is a part of the testing strategy, the test cases need
to be recorded as actions in the automation tool. The testing team develops the functional test
automation scripts, while the IT team typically develops the performance test scripts.

Design Evaluation

The earliest form of testing is design evaluation. Testing during this stage of the implementation is
often neglected. Development work should not start until requirements are well understood, and the
design can fully address the requirements. All stakeholders should be involved in reviewing the
design. Both the business analyst and business user, who defined the requirements, should approve
the design. The design evaluation process is illustrated in Figure 9.

:9. Input: Business Requirements,
i Technical Design
<<
2 B Prioritize Critical Mo | Log Defects for
c Start bility review [requirement/ Gap? remaining
§ b R usability Gaps gaps

~ FE

Yes Sign off
Review Design . Technical
for accuracy & Design & Gaps

s completeness Scope Design
o Gaps
o
=
[
o
s
= Change
% Revise Design Management
Z Process

Figure 9. Evaluate Design Process

Reviewing Design and Usability

Two tools for identifying issues or defects are the Design Review and Usability Review. These early
stage reviews serve two purposes. First, they provide a way for development to describe the
components to the requirement solution. Second, they allow the team to identify missing or
incomplete requirements early in the project. Many critical issues are often introduced by incomplete
or incorrect design. These reviews can be as formal or informal as deemed appropriate. Many
customers have used design documents, white board sessions, and paper-based user interface
mock-ups for these reviews.

34 Testing Siebel Business Applications Version 8.1/8.2

Design and Develop Tests B Test Case Authoring

Once the design is available, the business analyst should review it to make sure that the business
objectives can be achieved with the system design. This review identifies functional gaps or
inaccuracies. Usability reviews determine design effectiveness with the Ul mock-ups, and help
identify design inadequacies.

Task-based usability tests are the most effective. In this type of usability testing, the tester gives a
user a task to complete (for example, create an activity), and using the user interface prototype or
mock-up, the user describes the steps that he or she would perform to complete the task. Let the
user continue without any prompting, and then measure the task completion rate. This Ul testing
approach allows you to quantify the usability of specific Ul designs.

The development team is responsible for completing the designs for all business requirements.
Having a rigorous design and review process can help avoid costly oversights.

Test Case Authoring

Based on the test case objective, requirements, design, and usage scenarios, the process of
authoring test cases can begin. Typically this activity is performed with close cooperation between
the testing team and business analysts. Figure 10 illustrates the process for authoring a test case.

Inputs: High-level Test Cases,
Requirements, Specifications
Usage Scenarios, Design Documents

Business
Analyst

Develop
Detailed Test Develop Data Develop
Cases Module Conversion System
& Business [, Create Create Test Casas Integration Test
Process Postitive Data MNegative Data Cases
—
——
48- End
=
=
< Define Mon
Define End Eline
Define Test sine © End User Define System Define Client
Performance User Driven - Resources
™ Profiles & End Busi Driven Utilizati Ul Response
Users Types usiness Business tilization Requirements
Scenarios s ; Requirements 4
cenarios

Define KPIs

Business
Analyst

System
Administrator

Figure 10. Test Authoring Process

As you can see from the process, functional and performance test cases have different structures
based on their nature.

Testing Siebel Business Applications Version 8.1/8.2 35

Design and Develop Tests & Test Case Authoring

Functional Test Cases

Functional test cases test a common business operation or scenario. Table 1 shows some examples
of functional test cases.

Table 1. Common Functional Test Cases

Test Phase Example

Unit test B Test common control-level navigation through a view. Test any field
validation or default logic.

B Invoke methods on an applet.

Module test B Test common module-level user scenarios (for example, create an account
and add an activity).

I Verify correct interaction between two related Siebel components (for
example, Workflow Process and Business Service).

Process test I Test proper support for a business process.

User interface B Verify that a view has all specified applets, and each applet has specified
controls with correct type and layout.

Data entity B Verify that a data object or control has the specified data fields with correct
data types.

A functional test case may verify common control navigation paths through a view. Functional test
cases typically have two components, test paths and test data.

36 Testing Siebel Business Applications Version 8.1/8.2

ign and Develop Tests W Test Case Authoring

Test Case

A test case describes the actions and objects that you want to test. A case is presented as a list of
steps and the expected behavior at the completion of a step. Figure 11 shows an example of a test
case. Notice that in the Detailed Step column, there are no data values in the step. Instead you see
a parameter name in brackets as a place holder. This parameterization approach is a common
technique used with automation tools, and is helpful for creating reusable test cases.

TCA1.0 - Create Contact
Project ABC Date

3132004

The purpose of thiz Test Case iz to test the creation of a new contact. Login —= Contacts —= Requirements 3,54,123, 45
New Contact —= Logout
Contact Test Type Manual

To create a contact in CMS as a basis for building relationship, epportunity, and account information in the system
NiA
Appropriate ugername, password and role

Process Detailed Step Expected Results User Siebel Reference

Pass/Fail (Criteria) Data Input

Type User ID into |Field is populated User Name Login
the User Name
1 field
Type Pazsword |Field is populated Pazzword
into the
2 Pazsword field
Click the Login Siebel Launches
3 Button
Navigate_Contact | Click on Contacts |Contacts - Rolodex What type of | View opens without Contacts
tab View opens user or Error.
username goes
4 here
Search_Contact_ | Click on Search | Contactz-Search
5 By_Name view tab view opens

Select "Nams” Figld iz populated,
=earch methed in |appropriate form
Search By field | controlz dizplay on

6 applet
Type [First Name] |Field is populated First Name
7 in First field
Type [Last Name] |Field is populated Last Name
8 in Last field
Create_Contact | Click the New New record
button dizplays in Contacts
9 list applet

Figure 11. Sample Test Case

Test Data

Frequently, you can use a single path to test many scenarios by simply changing the data that is
used. For example, you can test the processing of both high-value and low-value opportunities by
changing the opportunity data entered, or you can test the same path on two different language
versions of the application. For this reason, it can be helpful to define the test path separately from
the test data.

Testing Siebel Business Applications Version 8.1/8.2 37

Design and Develop Tests W Test Case Authoring

System Test Cases

System test cases are typically used in the system integration test phase to make sure that a
component or module is built to specification. Where functional tests focus on validating support for
a scenario, system tests make sure that the structure of the application is correct. Table 2 shows
some examples of typical system tests.

Table 2. Common System Test Cases

Object Type Example

Interface Verify that an interface data structure has the correct data elements and
correct data types.

Business Rule Verify that a business rule (for example, assignment rule) handles all
inputs and outputs correctly.

Performance Test Cases

You accomplish performance testing by simulating system activity using automated testing tools.
Oracle has several software partners who provide load testing tools that have been validated to
integrate with Siebel business applications. Automated load-testing tools are important because they
allow you to accurately control the load level, and correlate observed behavior with system tuning.
This topic describes the process of authoring test cases using an automation framework.

When you are authoring a performance test case, first document the key performance indicators
(KPl1s) that you want to measure. The KPIs can drive the structure of the performance test and also
provide direction for tuning activities. Typical KPIs include resource utilization (CPU, memory) of any
server component, uptime, response time, and transaction throughput.

The performance test case describes the types of users and number of users of each type that will
be simulated in a performance test. Figure 12 presents a typical test profile for a performance test.

Test Case: T13

Test Case Name: 3050 User Callcenter Load

Test Case Description: Verifies peak callcenter load of 3050 users
Application: Siebel Call Center

KPls: CPU, Memory, Transaction response times
Date Created: 5/28/2003

Created By: Joe Tester

Incoming Call Creates Cpportunity, Quote and Crder 957

Campaign Call Creates Oppotunity 652

Call Creates a Service Request 534

Agent Follows Up On Service Request 907

Total Number of Users and Business Transactions 3,050

Figure 12. Performance Test Profile

Test cases should be created to mirror various states of your system usage, including:

38 Testing Siebel Business Applications Version 8.1/8.2

Design and Develop Tests B Test Case Authoring

B Response time or throughput. Simulate the expected typical usage level of the system to
measure system performance at a typical load. This allows evaluation against response time and
throughput KPIs.

B Scalability. Simulate loads at peak times (for example, end of quarter or early morning) to
verify system scalability. Scalability (stress test) scenarios allow evaluation of system sizing and
scalability KPls.

B Reliability. Determine the duration for which the application can be run without the need to
restart or recycle components. Run the system at the expected load level for a long period of
time and monitor system failures.

User Scenarios

The user scenario defines the type of user, as well as the actions that the user performs. The first
step to authoring performance test cases is to identify the user types that are involved. A user type
is a category of typical business user. You arrive at a list of user types by categorizing all users based
on the transactions they perform. For example, you may have call center users who respond to
service requests, and call center users who make outbound sales calls. For each user type, define a
typical scenario. It is important that scenarios accurately reflect the typical set of actions taken by
a typical user, because scenarios that are too simple, or too complex skew the test results. There is
a trade-off that must be balanced between the effort to create and maintain a complex scenario, and
accurately simulating a typical user. Complex scenarios require more time-consuming scripting, while
scenarios that are too simple may result in excessive database contention because all the simulated
users attempt simultaneous access to the small number of tables that support a few operations.

Most user types fall into one of two usage patterns:

B Multiple-iteration users tend to log in once, and then cycle through a business process multiple
times (for example, call center representatives). The Siebel application has a number of
optimizations that take advantage of persistent application state during a user session, and it is
important to accurately simulate this behavior to obtain representative scalability results. The
scenario should show the user logging in, iterating over a set of transactions, and then logging
out.

Testing Siebel Business Applications Version 8.1/8.2 39

Design and Develop Tests i Test Case Automation

B Single-iteration scenarios emulate the behavior of occasional users such as e-commerce buyers,
partners at a partner portal, or employees accessing ERM functions such as employee locator.
These users typically execute an operation once and then leave the Siebel environment, and so
do not take advantage of the persistent state optimizations for multiple-iteration users. The
scenario should show the user logging in, performing a single transaction, and then logging out.

User Type: Incoming Call Creates Opportunity and Quote
lteration: Mutiple Iteration

System

Think Time Response

Operation Name Operation

Go_New Cal Click on "Retrieve Call” icon on CTlbar 5
Find_Corp_Cont Click Find (Binocular) Button 2
Cuery for non-exsting “Corporate Contact’, 2 g. Kim' 10 15
New_Contact Enternew contact 60 1
Go_Cont_Cpty Mawgate to Contact - Cpportunities View 5
New_Cty Enternew opporunity 45
Go_Opty_Cont Drilldown on opportunityname to Opportunity - Contacis View 5 2
Go_Opty_Prod Mawgate to Cpportunity Products 2 1
Mew_Product(2) Entertwo new products 45
Go_Cpty_Cuote Nawgate to Cpportunities - Cuotes View
Chck_fuoQuote Click "AutoCuote” bution to generate quote 5 3
Enter_Cuote_Info Enter Quote Name, Price List and Discount 30 2
Go_Cuote_Line Drilldown on the quote name fo go to Quote -Line kems View 5 2
Cuote_Reoncs Click Repnce Al” buton 2 2
Communicate fe resulis of "Reprce Al to prospect (no navigation required) 30 0
Quote_Upd Opty Click "Update Coty” button 1 2
Go_Cucts_ Order Nawgate to Quotes - Orders View 2
Chck_AutoOrder Click on "Auto Order” bution to automatically generate order 2 3
Wrap up call o navigation required) 10 0
Go_Thread_Cpty Nawgate backto Cpty 3 1
Wrap up call o navigation required) 10 0
Go_Release_Cd Click on "Release Call” icon on CTlbar 2 1
Total Business Transaction Values 24 295 M5

Figure 13. Sample Test Case Excerpt with Wait Time

As shown in Figure 13, the user wait times are specified in the scenario. It is important that wait
times be distributed throughout the scenario, and reflect the times that an actual user takes to
perform the tasks.

Data Sets

The data in the database and used in the performance scenarios can impact test results, because
this data impacts the performance of the database. It is important to define the data shape to be
similar to what is expected in the production system. Many customers find it easiest to use a
snapshot of true production data sets to do this.

Test Case Automation

Oracle partners with the leading test automation tool vendors, who provide validated integrations
with Siebel business applications. Automation tools can be a very effective way to execute tests. In
the case of performance testing, automation tools are critical to provide controlled, accurate test
execution. When you have defined test cases, you can automate them using third-party tools.

40 Testing Siebel Business Applications Version 8.1/8.2

Design and Develop Tests W Test Case Automation

Functional Automation

Using automation tools for functional or system testing can cost less than performing manual test
execution. You should consider which tests to automate because there is a cost in creating and
maintaining functional test scripts. Acceptance regression tests benefit the most from functional test
automation technology.

For functional testing, automation provides the greatest benefit when testing relatively stable
functionality. Typically, automating a test case takes approximately five to seven times as long as
manually executing it once. Therefore, if a test case is not expected to be run more than seven times,
the cost of automating it may not be justified.

Performance Automation

Automation is necessary to conduct a successful performance test. Performance testing tools
virtualize real users, allowing you to simulate thousands of users. In addition, these virtual users are
less expensive, more precise, and more tolerant than actual users. The process of performance
testing and tuning is iterative, so it is expected that a test case will be run multiple times to first
identify performance issues, and then verify that any tuning changes have corrected observed
performance issues.

Performance testing tools virtualize real users by simulating the HTTP requests made by the client
for the given scenario. The Siebel Smart Web Client Architecture separates the client-to-server
communication into two channels, one for layout and one for data. The protocol for the data channel
communication is highly specialized; therefore Oracle has worked closely with leading test tool
vendors to provide their support for Siebel business applications. Because the communication
protocol is highly specialized and subject to change, it is strongly recommended that you use a
validated tool.

At a high level, the process of developing automated test scripts for performance testing has four
steps. Please refer to the instructions provided by your selected tool vendor for details:

B Record scripts for each of the defined user types. Use the automation tool’s recording
capability to record the scenario documented in the test case for each user. Keep in mind the
multiiteration versus single iteration distinction between user types. Many tools automatically
record user wait times. Modify these values, if necessary, to make sure that the recorded values
accurately reflect what was defined in the user type scenario.

B Insert parameterization. Typically, the recorded script must be modified for parameterization.
Parameterization allows you to pass in data values for each running instance of the script.
Because each virtual user runs in parallel, this is important for segmenting data and avoiding
uniqueness constraint violations.

B Insert dynamic variables. Dynamic variables are generated based on data returned in a prior
response. Dynamic variables allow your script to intelligently build requests that accurately
reflect the server state. For example, if you execute a query, your next request should be based
on a record returned in the query result set. Examples of dynamic variables in Siebel business
applications include session ids, row ids, and timestamps. All validated load test tool vendors
provide details on how dynamic variables can be used in their product.

Testing Siebel Business Applications Version 8.1/8.2 41

Design and Develop Tests & Test Cas

B Script verification. After you have recorded and enhanced your scripts, run each script with a
single user to verify that it functions as expected.

Oracle offers testing services that can help you design, build, and execute performance tests if you
need assistance.

Best Practice

Using test automation tools can reduce the effort required to execute tests, and allows a project team
to achieve greater test coverage. Test Automation is critical for Performance testing, because it
provides an accurate way to simulate large numbers of users.

42 Testing Siebel Business Applications Version 8.1/8.2

5 | Functional Tests

This chapter describes the process of executing Siebel functional tests. It includes the following
topics:

B “Overview of Executing Siebel Functional Tests” on page 43

B “Track Defects Subprocess” on page 45

Overview of Executing Siebel Functional
Tests

The process of executing Siebel functional tests is designed to provide for delivery of a functionally
validated Siebel application into the system environment. For many customers the Siebel application
is one component of the overall system, which may include other back-end applications, integration
infrastructure, and network infrastructure. Therefore, the objective of the Execute Siebel Functional
Tests process is to verify that the Siebel application functions properly before inserting it into the
larger system environment. This process is illustrated in Figure 14.

LhﬂTcn) er:hle'los!) Process Test

Track | Track
Deficts | LogDefect I‘ Defects

Execute
Business No
Processes

Apalieatien Tester

Input: Test Gase
Completed Components
Executeunt | | Perfom

wstcases onfl |
gnen | or Scriptng
| Review

COmponent

ot | | Migrateto
Mo Check in urit e

companent | | Emircament

LogDefect ol Track

Applicaticn Develeper

Figure 14. Execute Siebel Functional Tests Process

There are three phases in this process:

B Unit test. The unit test validates the functionality of a single component (for example, an applet
or a business service).

B Module test. The module test validates the functionality of a set of related components that
make up a module (for example, Contacts or Activities).

Testing Siebel Business Applications Version 8.1/8.2 43

Execute Siebel Functional Tests & Overview of Executing Siebel Fu

B Process test. The process test validates that multiple modules can work together to enable a
business process (for example, Opportunity Management or Quote to Order).

Application developers test their individual components for functional correctness and completeness
before checking component code into the repository. The unit test cases should have been designed
to test the low-level details of the component (for example, control behavior, layout, data handling).

Typical unit tests include structural tests of components, negative tests, boundary tests, and
component-level scenarios. The unit test phase allows developers to fast track fixes for obvious
defects before checking in. A developer must demonstrate successful completion of all unit test cases
before checking in their component. In some cases, unit testing identifies a defect that is not critical
for the given component; these defects are logged into the defect tracking system for prioritization.

Once unit testing has been completed on a component, that component is moved into a controlled
test environment, where the component can be tested along side others at the module and process
level.

Reviews

There are two types of reviews done in conjunction with functional testing, configuration review and
scripting code review:

B Configuration review. This is a review of the Siebel application configuration using Siebel
Tools. Configuration best practices should be followed. Some common recommendations include
using optimized, built-in functionalities rather than developing custom scripts, and using primary
joins to improve MVG performance.

B Scripting code review. Custom scripting is the source of many potential defects. These defects
are the result of poor design or inefficient code that can lead to severe performance problems.
A code review can identify design flaws and recommend code optimization to improve
performance.

Checking in a component allows the testing team to exercise that component along side related
components in an integration test environment. Once in this environment, the testing team executes
the integration test cases based on the available list of components. Integration tests are typically
modeled as actual usage scenarios, which allow testers to validate that a user can perform common
tasks. In contrast to unit test cases, these tests are not concerned with specific details of any one
component, but rather the way that logic is handled when working across multiple components.

44 Testing Siebel Business Applications Version 8.1/8.2

Execute Siebel Functional Tests m Track Defects Subprocess

Track Defects Subprocess

The Track Defects subprocess is designed to collect the data required to measure and monitor the
quality of the application, and also to control project risk and scope. The process, illustrated in
Figure 15, is designed so that those with the best understanding of the customer priorities are in
control of defect prioritization. The business analyst monitors a list of newly discovered issues using
a defect tracking system like the Siebel Quality module. These users monitor, prioritize, and target
defects with regular frequency. This is typically done daily in the early stages of a project, and
perhaps several times a day in later stages.

Change
Management
Process

Business
Analyst

Inputs: Any type of defect

Tester

Validates Test
Case / Script
)
£ Test Script Update Report Repairs / Update Report
= i E f s Lo P Updates Test P EE epo
w n rror? g Case / Script o9
n
L]
fid
b
Update Report Design Yes Regression Fix Verified?
Log Change? Test Defect)
Mo
)
-8 Schedules
L .
o % Repairs
]

b

Design Fix Fix Defect Unit Test Fix

Application
Developer

Figure 15. Track Defects Subprocess

The level of scrutiny is escalated for defects discovered after the project freeze date. A very careful
measurement of the impact to the business of a defect versus the risk associated with introducing a
late change must be made at the project level. Commonly, projects that do not have appropriate
levels of change management in place have difficulty reaching a level of system stability adequate
for deployment. Each change introduced carries with it some amount of regression risk. Late in a
project, it is the responsibility of the entire project team, including the business unit, to carefully
manage the amount of change introduced.

Testing Siebel Business Applications Version 8.1/8.2 45

Execute Siebel Functional Tests & Track Defects Subpr

Once a defect has been approved to be fixed, it is assigned to development and a fix is designed,
implemented, unit tested, and checked in. The testing team must then verify the fix by bringing the
affected components back to the same testing phase where the defect was discovered. This requires
regression testing (reexecution of test cases from earlier phases). The defect is finally closed and
verified when the component or module successfully passes the test cases in which it was discovered.
The process of validating a fix can often require the reexecution of past test cases, so this is one
activity where automated testing tools can provide significant savings. One best practice is to define
regression suites of test cases that allow the team to reexecute a relevant, comprehensive set of test
cases when a fix is checked in.

Tracking defects also collects the data required to measure and monitor system quality. Important
data inputs to the deployment readiness decision include the number of open defects and defect
discovery rate. Also, it is important for the business customer to understand and approve the known
open defects prior to system deployment.

Best Practice

The use of a defect tracking system allows a project team to understand the current quality of the
application, prioritize defect fixes based on business impact, schedule resources, and carefully
control risk associated with configuration changes late in the project.

46 Testing Siebel Business Applications Version 8.1/8.2

tem Integration
nce Tests

This chapter describes the process of executing integration and acceptance tests. It includes the
following topics:

B “Overview of Executing Integration and Acceptance Tests” on page 47
B “Execute Integration Tests” on page 48

B “Execute Acceptance Tests” on page 49

Overview of Executing Integration and
Acceptance Tests

The processes of executing integration and acceptance tests are designed to verify that the Siebel
application can properly communicate with other applications or components in the system, support
end-to-end business processes, and will be accepted by the user community. This is a very busy and
exciting phase of any project, because it marks a point where the system is nearing deployment.

The three major pieces involved in executing integration and acceptance tests processes are as
follows:

B Testing integrations with the Siebel application. In most customer deployments, the Siebel
application integrates with several other applications or components. Integration testing focuses
on these touch points with third-party applications, network infrastructure, and integration
middleware.

B Functional testing of business processes. Required business processes must be tested end-
to-end to verify that transactions are handled appropriately across component, application, and
integration logic. It is important to push a representative set of transaction data through the
system and follow all branches of required business processes.

B Testing system acceptance with users. User acceptance testing allows system users to use
the system to perform simulated work. This phase of testing makes sure that users will be able
to use the system effectively once it is live.

Testing Siebel Business Applications Version 8.1/8.2 47

Execute System Integration and Acceptance

Execute Integration Tests

Completion of the Siebel Functional Testing process verifies that the Siebel application functions
correctly as a unit. In Integration Testing you verify that this unit functions correctly when inserted
into the complete, larger system. In this process, your test cases should be defined to test the
integration points between the Siebel application and other applications or components. Typical
components include back office applications, integration middleware, network infrastructure
components, and security infrastructure. Tests in this process should focus on exercising integration
logic, and validating end-to-end business processes that span multiple systems. Figure 16 illustrates

this process.

Track

2 Lug e
E Input: Test Case , Completed Components,
c Modules, Processes
2
S
= Migrate to Execute
Z Start System Integration Defects?

Environment F test cases
<]
E
e Configure
E Integrations
57 (CTI, Middleware)
E
@
v
)

Figure 16. Execute Integration Tests Process

48 Testing Siebel Business Applications Version 8.1/8.2

nd Acceptance Tests I Execute Acceptance Tests

Execute Acceptance Tests

Once the system as a whole has been validated, you must make sure that the functionality provided
is acceptable to the business users. Hopefully, the business user has been engaged all along,
approving at each phase of the project to make sure that there are no surprises. In the User
Acceptance testing process, open the system up to a larger community of trained users and ask them
to simulate running their business on the system. User Acceptance testing should be designed to
simulate live business as closely as possible. Complete this process by having the user community
representative (business user) approve the acceptance test results. Figure 17 illustrates this process.

Track
- Log Defects Defects
w
i |
w
w
_E Yes
w
@ » Defects? e » Signoff User

Acceptance
Execute

* Acceptance
Tests

Input: Test Cases,
Functionally Tested System

Application Tester

Audit
"| Environment

System Administrator

Figure 17. Execute Acceptance Tests Process

Testing Siebel Business Applications Version 8.1/8.2 49

Execute System Integrati

Testing Siebel Business Applications Version 8.1/8.2

7 rmance Tests

This chapter describes the process of executing performance tests. It includes the following topics:
B “Overview of Executing Performance Tests” on page 51

“Executing Tests” on page 52

“Performing an SQL Trace” on page 52

“Measuring System Metrics” on page 53

“Monitoring Failed Transactions” on page 53

Overview of Executing Performance
Tests

As described earlier, there are three types of performance test cases that are typically executed:
response time, stress, and reliability testing. It is important to differentiate between the three
because they are intended to measure different KPIs (key performance indicators). Specialized
members of the testing and system administration organizations, who have ownership of the system
architecture and infrastructure, typically manage performance tests.

Figure 18 illustrates the process for performance test execution. The first step involves validating
recorded user-type scripts in the system test environment.

Resohve
: ‘ 7 e Script Issues
Input- Integration test ystem, Track
User Acceptance o Execute Test Defects
of Fi ionali
- Validate
i Script Defects? "‘Sey;mm
(' em
5 o Metrics
2
g
2 Slow ~, Mo Set up test Moritor Failed
<< a Query? praofile Transactions
Yes
No
Defects?
Audit Perform SQL - Signaff
Environment Trace .
1 Test Results

Track
Log Defects §of 7 r

Figure 18. Execute Performance Tests Process

Systern Administrator

Testing Siebel Business Applications Version 8.1/8.2 51

Execute Performance Tests i Executing Tests

Executing Tests

Execute each script for a single user to validate the health of the environment. A low user-load
baseline should be obtained before attempting the target user load. This baseline allows you to
measure system scalability by comparing results between the baseline and target loads.

Users must be started at a controlled rate to prevent excessive resource utilization due to large
numbers of simultaneous logins. This rate depends on the total configured capacity of the system.
For every 1000 users of configured system capacity, you add one user every three seconds. For
example, if the system is configured for 5000 users, you add five users every three seconds.

Excessive login rate causes the application server tier to consume 100% CPU, and logins begin to
fail. Wait times should be randomized during load testing to prevent inaccuracies due to simulated
users executing transactions simultaneously. Randomization ranges should be set based on
determining the relative wait times of expert and new users when compared to the average wait
times in the script.

Performing an SQL Trace

Because poorly formed SQL or suboptimal database-tuning causes many performance issues, the
first step to improve performance is to perform an SQL trace. An SQL trace creates a log file that
records the statements generated in the Siebel object manager and executed on the database. The
time required to execute and fetch on an SQL statement has a significant impact on both the
response time seen by end users of a system, and on the system’s resource utilization on the
database tier. It is important to discover slow SQL statements and root cause, and fix issues before
attempting scalability or load tests, as excessive resource utilization on the database server will
invalidate the results of the test or cause it to fail.

To obtain an SQL trace

1 Set a breakpoint in the script at the end of each action and execute the script for two iterations.

2 Enable EvtLogLvl (ObjMgrSqlLog=5) to obtain SQL traces for the component on the application
server that has this user session or task running.

3 Continue executing the script for the third iteration and wait for the breakpoint at the end of
action.

4 Turn off SQL tracing on the application server (reset it to its original value, or 1).
5 Complete the script execution.

The log file resulting from this procedure has current SQL traces for this business scenario. Typically,
any SQL statement longer than 0.1 seconds is considered suspect and must be investigated, either
by optimizing the execution of the query (typically by creating an index on the database) or by
altering the application to change the query.

52 Testing Siebel Business Applications Version 8.1/8.2

xecute Performance Tests B Measuring System Metrics

Measuring System Metrics

Results collection should occur during a measurement period while the system is at a steady state,
simulating ongoing operation in the course of a business day. Steady state is achieved once all users
are logged in and caches (including simulated client-side caches) are primed. The measurement
interval should commence after the last user has logged in and completed the first iteration of the
business scenario.

The measurement interval should last at least one hour, during which system statistics should be
collected across all server tiers. We recommend that you measure the following statistics:

CPU

Memory

System calls
Context switches
Paging rates

1/0 waits (on the database server)

Transaction response times as reported by the load testing tool

NOTE: Response times will be shorter than true end-user response times due to additional
processing on the client, which is not included in the measured time.

The analysis of the statistics starts by identifying transactions with unacceptable response times, and
then correlating them to observed numbers for CPU, memory, 1/0, and so on. This analysis provides
insight into the performance bottleneck.

Monitoring Failed Transactions

Less than 1% of transactions should fail during the measurement interval. A failure rate greater than
1% indicates a problem with the scripts or the environment.

Typically, transactions fail for one of the following three reasons:

Testing Siebel Business Applications Version 8.1/8.2 53

Execute Performance Tests & Monitoring Failed Transactions

54

Timeout. A transaction may fail after waiting for a response for a specified timeout interval. A
resource issue at a server tier, or a long-running query or script in the application can cause a
timeout.

If a long-running query or script is applicable to all users of a business scenario, it should be
caught in the SQL tracing step. If SQL tracing has been performed, and the problem is only seen
during loaded testing, it is often caused by data specific to a particular user or item in the test
database. For example, a calendar view might be slow for a particular user because prior load
testing might have created thousands of activities for that user on a specific day. This would only
show as a slow query and a failed transaction during load testing when that user picks that day
as part of their usage scenario.

Long-running transactions under load can also be caused by consumption of all available
resources on some server tier. In this case, transaction response times typically stay reasonable
until utilization of the critical resource closely approaches 100%. As utilization approaches 100%,
response times begin to increase sharply and transactions start to fail. Most often, this
consumption of resources is due to the CPU or memory on the Web server, application server, or
database server, 1/0 bandwidth on the database server, or network bandwidth. Resource
utilization across the server tiers should be closely monitored during testing, primarily for data
gathering purposes, but also for diagnosing the resource consumption problem.

Very often, a long-running query or script can cause consumption of all available resources at
the database server or application server tier, which then causes response times to increase and
transactions to time out. While a timeout problem may initially appear to be resource starvation,
it is possible that the root cause of the starvation is a long-running query or script.

Data issues. In the same way that an issue specific to a particular data item may cause a
timeout due to a long-running query or script, a data issue may also cause a transaction to fail.
For example, a script that randomly picks a quote associated with an opportunity will fail for
opportunities that do not have any associated quotes. You must fix data if error rates are
significant, but a small number of failures do not generally affect results significantly.

Script issues. Defects in scripts can cause transaction failures. Common pitfalls in script
recording include the following:

E Inability to parse Web server responses due to special characters (quotes, control characters,
and so on) embedded in data fields for specific records.

m Required fields not being parameterized or handled dynamically.

m Strings in data fields that are interpreted by script error-checking code as indicating a failed
transaction. For example, it is common for a technical support database to contain problem
descriptions that include the string, The server is down or experiencing problems.

Testing Siebel Business Applications Version 8.1/8.2

tinue the

This chapter describes the steps you can take to make iterative improvements to the testing process,
as illustrated in Figure 19 on page 56. It includes the following topic.

B “Improve and Continue Testing” on page 55.

Improve and Continue Testing

After the initial deployment, regular configuration changes are delivered in new releases. In addition,
Oracle delivers regular maintenance and major software releases. Configuration changes and new
software releases must be tested to verify that the quality of the system is sustained. This is a
continuous effort using a phased deployment approach, as discussed in “Modular and Iterative
Methodology” on page 18.

Testing Siebel Business Applications Version 8.1/8.2 55

Improve and Continue the Testing Process " Improve

This ongoing lifecycle of the application is an opportunity for continuous improvement in testing.
First, a strategy for testing functionality across the life of the application is built by identifying a
regression test suite. This test suite provides an abbreviated set of test cases that can be run with
each delivery to identify any regression defects that may be introduced. The use of automation is
particularly helpful for executing regression tests. By streamlining the regression test process,
organizations are able to incorporate change into their applications at a much lower cost.

b5
o
[v]
=
]
=
T
-
g
o
w
=
[u]
c
e
(]
w
[0}
£
w
-
@ Conduct
r Post-Mortem]
3
W
@
|_ -
é Start Regrlgzz:gly‘l Test ans & Case
[v]
% ssio _|-' Revise Risk Plans & Cases
5) Scoring on
o Review Defects Component
- N Inventory I
[
[~ %
o
@
@
[a
[=
k=
"
o
=
[=%
Ey

Figure 19. Improve Testing Process

The testing strategy and its objectives should be reviewed to identify any inadequacies in planning.
A full review of the logged defects (both open and closed) can help calibrate the risk assessment
performed earlier. This review provides an opportunity to measure the observed risk of specific
components (for example, which component introduced the largest number of defects). A project-
level final review meeting (also called a post-mortem) provides an opportunity to have a discussion
about what went well, and what could have gone better with respect to testing. Test plans and test
cases should be reviewed to determine their effectiveness. Update test cases to include testing
scenarios exposed during testing that were not previously identified.

56 Testing Siebel Business Applications Version 8.1/8.2

Functional Tests

The topics in this chapter discuss the concepts and benefits of automating functional testing, and
provide a brief explanation of how it works with Siebel Test Automation:

B “Benefits of Functional Test Automation” on page 57

“Architectural Overview of Functional Testing” on page 58

B “Setting Up Your Functional Testing Environment” on page 60
B “Using Siebel Test Automation for Functional Testing” on page 61
B “Best Practices for Functional Test Automation” on page 62

Benefits of Functional Test Automation

Functional testing provides validation of the functional processes of your Siebel application. Without
test automation, this can be accomplished by having users log on and manually perform the tasks
in a business process. Although this can be effective, it can become quite costly.

By using a test automation tool, you can prepare a test script that exercises the functionality of a

particular module or performs the tasks in a comprehensive business process. Then you can share
and use this script repeatedly. This approach leads to better application configurations and increased
user acceptance, because it allows you to perform additional software testing with little additional

cost. Test automation eliminates the need for multiple human test passes, and reduces the risk of

human errors in the testing process.

Key Features of Functional Test Tools

Tools for functional test automation (such as QuickTest Pro from Mercury Interactive or e-Tester from
Empirix) provide features that allow you create and run functional test scripts. These features
include:

B Test script recording. Rather than composing a script in a text editor, you start a recorder and
perform a series of steps in the application. The test tool records the session in a script, which
you can replay later to execute the test.

B Automated test execution. Rather than manually performing the tasks in the test script each
time, you start the test using a test tool and let it run on its own.

B Data value parameterization. You can use variables in your test script that pull in data values
from an external table during test execution. This allows you to avoid hard-coding data values
into a test script.

B Reusable tests. Multiple testers can share tests across multiple cycles of application testing.

Testing Siebel Business Applications Version 8.1/8.2 57

Automating Functional Tests & Architectural Overview of Functio

B Result tracking. The test tool records important statistics that allow you to identify functional
errors.

Not all functional test automation tools have all of these features, and some have more. For more
information on available features, refer to the documentation for your testing tool.

Architectural Overview of Functional
Testing

A Siebel application consists of a set of Web pages accessed through a Web browser, and generated
dynamically by the Siebel Web Engine (SWE) on the Siebel server. Each Web page in a Siebel
application is constructed with components such as applets, views, and controls. Siebel Test
Automation provides objects that run on the client to access corresponding user interface
components in the Siebel application. (For more information on the infrastructure of the Siebel Web
Engine, see Configuring Siebel Business Applications.)

When test automation is activated on the Siebel server and requested in the URL, the SWE generates
additional information about each user interface component in the application when constructing the
Web page. The test tool uses this information when recording and running test scripts against the
application. Figure 20 shows the relationships between the components of the functional test
automation architecture during the recording of a test.

Client Machine Server Machine

Browser

Siebel Web Engine

Siebel Application

r

| £utomation Objects

!

Test
Automation & TE_
Taal Script

Figure 20. Functional Test Components During Test Recording

58 Testing Siebel Business Applications Version 8.1/8.2

ng Functional Tests ! Architectural Overview of Functional Testing

Figure 21 shows the relationships between the components of the functional test automation
architecture during the replay of a recorded test. For more information on activating test automation,
see “Setting Up Your Functional Testing Environment” on page 60.

Client Machine Server Machine

Browser

Siebel Web Engine

Siebel Application

| Automation Objects

1

Test
Automation | TE_
Taal Seript

Figure 21. Functional Test Components During Test Replay

Test Object Information in High-Interactivity Applications
High-interactivity Siebel applications use specialized user interface components that run in the Web
browser on the client machine. Each component has a specific set of properties, events, and methods
that provide functionality for the application. The functional test automation objects for high-
interactivity Siebel applications map to these user interface components, and allow you to
manipulate the Siebel application from a test script. See “Functional Test Automation Objects for High
Interactivity Siebel Applications” on page 79 for a description of each of these test automation objects.

Test Object Information in Standard-Interactivity Applications
Standard-interactivity Siebel applications are rendered in standard HTML that does not provide the
rich set of usability features available with the high-interactivity components. Therefore, the test
automation information generated by the SWE is quite different.

Each user interface component in a standard-interactivity Siebel application is identified in the Web
page by three special attributes that support creating automated test scripts:

B RN (Repository Name) indicates the name of the object as it is stored in the repository.
B UN (Ul Name) indicates the name of the object as it appears in the user interface.

B OT (Object Type) indicates the type of object that the HTML element represents (for example,
SiebWebTextArea). For a complete list of the object types for standard-interactivity applications,
see “Standard Interactivity Functional Test Objects” on page 148.

Testing Siebel Business Applications Version 8.1/8.2 59

Automating Functional Tests & Setting Up Your Functional Tes

Setting Up Your Functional Testing
Environment

You must perform the following steps to set up your Siebel Test Automation environment:

B Install your functional test tool and any necessary add-ins.

For more information, see the documentation that accompanies your test tool.

B Activate test automation on your Siebel Server.

To activate test automation on the server, set the EnableAutomation and AllowAnonUsers
configuration parameters to TRUE. For information about setting configuration parameters, see
the Siebel System Administration Guide.

NOTE: For the Mobile Web Client, these configuration parameters are in the [InfraUlFramework]
section of the application’s .CFG file.

After you have updated the configuration parameters, you must restart the Siebel Server. This
prepares the server for test automation.

B Request test automation information in the URL.

To perform functional test automation on your Siebel application, you must tell the SWE to
generate test automation information using an SWE command. To do so, append the
SWECmMd=AutoOn token to the URL. For example:

http://hostname/callcenter/start.swe?SWECmd=AutoOn

This tells the Siebel Web Engine (SWE) to generate test automation information for Siebel
applications.

NOTE: Siebel Test Automation is controlled by a license key. You must obtain and enter a license key
before using Siebel Test Automation.

Secure Access to the Siebel Test Automation Framework

The Siebel Test Automation framework allows you to implement secure access to test automation, in
which the SWE requires a password to generate test automation information. This is useful for real-
time testing in a production environment, and can be integrated with system monitoring tools, such
as Topaz from Mercury Interactive.

In addition to the steps described above, you must also perform the following steps to activate secure
access to Siebel Test Automation:

60 Testing Siebel Business Applications Version 8.1/8.2

ional Tests = Using Siebel Test Automation for Functional Testing

1 Define a password on your Siebel Server.

To define a password for test automation on the server, set the AutoToken configuration
parameter to the test automation password. For information about setting configuration
parameters, see the Siebel System Administration Guide.

NOTE: For the Mobile Web Client, these configuration parameters are in the [InfraUlFramework]
section of the application’s .CFG file.

The password is case-sensitive and can contain only alphanumeric characters. After you have
updated the configuration parameters, you must restart the Siebel Server. This prepares the
server for secure access to test automation.

2 Send the password in the URL.

When you have defined a password on your Siebel Server for secure access to test automation,
you must indicate that password in the URL. The URL token is in the format
AutoToken=password. For example:

http://hostname/callcenter/start.swe?SWECmd=AutoOn&AutoToken=mYtestPassword

If the AutoToken configuration parameter is defined for the application, and you do not indicate
the password in the URL, the SWE does not generate test automation information.

Using Siebel Test Automation for
Functional Testing

Siebel Test Automation objects support the automation of functional tests on the following types of
Siebel applications:

B Standard Web Client
B Mobile Web Client
B Siebel Developer Web Client

You can use a third-party test automation tool to write, record, and run test scripts on these types
of applications. When using a third-party tool, refer to the documentation that accompanies the test
tool for information about the specific features and functionality that it provides.

NOTE: The Siebel Test Automation framework does not provide generalized automation services; it
is only supported for test automation.

Before attempting to use Siebel Test Automation to automate functional tests, make sure your
environment is set up as described in “Setting Up Your Functional Testing Environment” on page 60.

Hand-Scripting Functional Tests

One method of test script development involves using a third-party test automation tool to record
the actions that you perform in the Siebel application. However, you can also write scripts by hand
(without the use of a recorder).

Testing Siebel Business Applications Version 8.1/8.2 61

Automating Functional Tests i Best Practices for Functional Test A

There are two approaches you can use to do this:

B Add the test automation objects to the object repository. See “Using the Test Optimizer to Populate
the Object Repository” on page 62 for more information.

B Add special arguments in the script to call the test automation object directly. See “Hand-
Scripting Components That Are Not in the Test Object Repository” on page 62 for more information.

See Appendix A, “Functional Test Object Reference” for more information on object types and
repository names. For more tips on preparing test scripts, see “Best Practices for Functional Test Script
Development” on page 65.

Using the Test Optimizer to Populate the Object Repository

The Test Optimizer is an API that helps you to use third-party test automation tools to do functional
and Ul testing. The Test Optimizer APl allows automation tools (such as Mercury QuickTest
Professional) to query for metadata directly from the Siebel repository. This approach allows you to
create scripts offline, without recording against a live client application.

For help with the Test Optimizer and how to install it and use it to populate the test object repository,
see 475221.1 (Doc ID) on My Oracle Support. This document was previously published as Siebel
Technical Note 662.

Hand-Scripting Components That Are Not in the Test Object
Repository

If you write your test scripts manually and the necessary test automation objects do not exist in the
test tool's object repository, you must insert special arguments to call the test automation object
directly. For example:

SiebText("micclass:=SiebText", "repositoryname:=lastname')

The value for micclass is the object type from the automation object model (in this case, “SiebText”),
and the value for repositoryname is the name of the object in the Siebel repository. For automation
objects that do not have a matching representation in the Siebel repository, use the automation
object type for both micclass and repositoryname. For example:

SiebPDQ("micclass:=SiebPDQ", "repositoryname:=SiebPDQ'"")

Using these special arguments, you can reference container objects and objects that execute test
actions. This allows you to author test scripts without having to record test steps manually.

Best Practices for Functional Test
Automation

This topic presents best practices that help you prepare and execute automated functional tests. The
best practices are organized into the following categories:

B Best Practices for Functional Test Design on page 63

B Best Practices for Functional Test Script Development on page 65

62 Testing Siebel Business Applications Version 8.1/8.2

nctional Tests I Best Practices for Functional Test Automation

B Best Practices for Functional Test Environment and Execution on page 69

Best Practices for Functional Test Design

The following best practices are provided to assist in your design of functional tests:
Review Test Plans to Identify Candidates for Automation on page 63

Define a Common Structure and Templates for Creating Tests on page 63

Define Test Script Naming Conventions on page 63

Design Flexible Scripts with Defined Purpose on page 64

Design Modular Scripts on page 64

Design Reusable Scripts on page 65

Design Multilingual Tests for Internationalized Applications on page 65

Make Test Scripts Independent of the Operating Environment on page 65

Make Test Scripts Independent of Test Data on page 65

Review Test Plans to Identify Candidates for Automation
Use predefined criteria (like the following list) to identify test plans that are candidates for
automation:

B Can you automate the entire test plan using preconfigured automation functionality?
B Do you need to rearrange the test plan to better suit automation?

B Can you reuse existing scripts, or modify scripts from sample libraries?

Define a Common Structure and Templates for Creating Tests
Before testing begins, define templates, standards, and naming conventions for test plan documents
and automation scripts. This will make it easier in the long-run to correlate test plans to test scripts,
to follow the logic of test steps, and to maintain test instructions.

Define Test Script Naming Conventions

When creating a standard template for test plan documents and test scripts, define naming
conventions that reflect the test procedures. Make sure that the names are meaningful and illustrate
the logical operations being performed. The use of nhaming conventions makes it easier to identify
scripts, read the script logic, and understand how scripts are organized during the maintenance
phase.

For script modules, names should be logically expressive of the purpose of the module and test steps.
Additionally, the name can be correlated to the title of the corresponding test plan document. For
script variables, follow standard naming guidelines. For example, use the g_ prefix for global
variables and the str_ prefix for strings.

Testing Siebel Business Applications Version 8.1/8.2 63

Automating Functional Tests & Best Practices for Functional Test Automati

Design Flexible Scripts with Defined Purpose

Define the purpose and summarize the validation conditions for each test script in advance. The
intent of the test is a key input into script design that determines how much flexibility you need to
write into the script.

For a test that is intended to validate a business process, create a script that maps closely to the
process, and divide the script into modules that correspond to process steps. This allows you to test
each pass through the business process with minimal branching logic, and to modify the order of the
script if the business process changes.

Additionally, you might need to add fail-safe logic to the script that ignores minor discrepancies in
the Ul configuration and proceeds with executing the business process. Consider, for example, a
script that sets a value in a particular control as part of a business process. Your test should validate
that the control is present and that it functions as expected; but it need not validate the font size
and color of the control’s text. You might also need to add logic so that the script proceeds even
when the control is not present in the Ul.

For a test that is intended to validate specific attributes of a Ul component (rather than a business
process), create a script that checks Ul properties explicitly. Avoid adding fail-safe logic to this type
of test, because the script should detect when the Ul has changed and fail accordingly.

Design Modular Scripts

A module is an independent reusable test component comprised of inter-related entities. Conceptual
script modules may be defined by native functionality of a particular test tool, or by a script developer
who writes reusable test routines. Examples of modules include a login or query, or the creation of
a new Contact or Service Request.

Each automation script should consist of small logical modules rather than having one continuous
unstructured sequence of test steps. This approach makes scripts easier to maintain in the long-run,
and allows rapid creation of new scripts from a library of proven modules. Other script developers
can use well-designed modules with minimal or no adaptations. Modules also can increase the
independence of a script from the test environment.

You can categorize modules broadly as RequiredToPass, Critical, and Test Case. Typical
RequiredToPass modules are setup scripts and scripts that launch the application. Failure of
RequiredToPass modules should result in the entire script being aborted. Critical modules include
navigating to the client area, inserting test data, and so on. Failure of Critical modules may affect
certain test cases. Test Case modules are where you perform the test cases. The test cases should
be able to fail without affecting the execution of the whole script. You should be able to rerecord or
insert a test case without changing other modules in the script. In addition, Test Case modules can
have a specified number of iterations. For example, a test case module to add a new account can be
constructed to execute an indefinite number of times without changing any script.

Module interdependency should be clearly established. Execution status for RequiredToPass and
Critical modules should be stored in global variables or environment variables so that other modules
can use this information for purposes such as error handling. Some test tools will skip an entire
module when a failure occurs.

64 Testing Siebel Business Applications Version 8.1/8.2

ing Functional Tests I Best Practices for Functional Test Automation

Design Reusable Scripts

Reusability is necessary for building a library of test cases that can be shared between developers
and reused for subsequent test cycles. You can improve reusability using a variety of strategies
including script modularization, parameterization, and external definition of global functions and
constants.

Design Multilingual Tests for Internationalized Applications

Parameterize all hard-coded data contained in internationalized test scripts, and then create script
logic to switch the data table at runtime based on the current language setting. You can obtain the
language setting for the Siebel application from a suffix on the URL (for example, callcenter_enu).

Parameterization is especially important for picklist values, dates, currencies, and numbers because
their formats differ across languages. As a general rule, parameterize all test data and references to
configurable Ul components.

NOTE: The column names and structure of the external data table must be consistent across all
languages for the script to access the data successfully.

Use regular expressions to perform basic pattern matching and greater than and less than
comparisons. This is especially important for inserting data validation conditions into the script. Do
not directly compare string representations of picklist values, dates, currencies, and numbers.

Scripts that perform only navigation without getting or setting data do not need to be modified to
run on multiple languages.

Make Test Scripts Independent of the Operating Environment

Develop and use strategies to create environment-independent test scripts. Design your test scripts
so that they are capable of running on disparate hardware configurations, operating systems,
language locales, database platforms, and browser versions.

Make Test Scripts Independent of Test Data

When authoring a test script, do not leave any hard-coded data values in the script. Instead, replace
the hard-coded data with variables that reference an external data source. This procedure is
generally called parameterization. Parameterizing your test scripts makes them independent of the
data structure of the application being tested. Without parameterization, scripts can stop running
due to database conflicts and dependencies.

Parameterization also allows you to switch data tables dynamically, if necessary. Store the data used
by test scripts in external data tables. Then use the data table import function within the test script
to import data. This feature can be useful for multilingual testing, allowing you to switch the data
table based on the current language environment.

NOTE: The column names and structure of the external data table must match the variable names
used in the script.

Best Practices for Functional Test Script Development

The following best practices are provided to assist in your development of functional test scripts:

Testing Siebel Business Applications Version 8.1/8.2 65

Automating Functional Tests & Best Practices for Functional T

Comment Your Test Scripts on page 66

Scope Variables and Data Tables for Script Modules on page 66

Include Multiple Validation Conditions in the Script on page 66

Handle Error Conditions on page 67

Define Data Values with Structured Format on page 67

Use Variables and Expressions When Working with Calculated Fields on page 67
Import Generalized Functions and Subroutines on page 68

Run a Query Before Adding a Record or Accessing Data on page 68

Run a Query Before Accessing Application Data on page 68

Manage Test Data from Within the Test Script on page 68

Remove New Records Created During a Test on page 68

Exercise Ul Components with Basic Mouse Clicks on page 68

Comment Your Test Scripts

Use commented text in your scripts to describe the test steps. A test script that is thoroughly
annotated is much easier to maintain. When sharing test scripts among a large team of testers and
developers, it is often helpful to document conventions and guidelines for providing comments in test
scripts.

Scope Variables and Data Tables for Script Modules

Make sure to scope script variables and data tables appropriately. The scope, either modular or
global, determines when a variable or data table is available. By scoping them appropriately, you can
be sure that the global variables are available across multiple scripts, and modular variables maintain
their state within a specific script module.

The test tool typically allows you to store data values in tables and variables, but often these tables
and variables have a scope that is defined by the test tool. You might need to override the scoping
that is predefined by the test tool. Identify when variables are used within the script, and construct
your test so that variables and data values are available when needed.

Include Multiple Validation Conditions in the Script
Use verification procedures to perform the function of the visual monitoring that the tester does
during manual testing:

B Checkpoints. Include object checkpoints to verify that properties of an object are correct.
Properties that can be included in checkpoints are described in Appendix A, “Functional Test Object
Reference.”

B Verification routines. Include routines that verify that the actions requested were performed,
expected values were displayed, and known states were reached. Make sure that these routines
have appropriate comments and log tracing.

66 Testing Siebel Business Applications Version 8.1/8.2

ating Functional Tests = Best Practices for Functional Test Automation

B Negative and boundary testing. Include routines that perform negative tests. For example,
attempt to insert and commit invalid characters and numbers into a date field that should only
accept date values. Also include routines that perform boundary testing in fields that should
accept only a specific range of values. Test values above, below, and within the specified limits.
For example, attempt to insert and commit the values of 0, 11, and 999 in a field that should
accept values only between 1 and 31. Boundary tests also include field length testing. For
example a field that accepts 10 characters should be tested with string lengths that are greater
than, less than, and equal to 10.

Handle Error Conditions

For critical scripts that validate key application functionality, insert validation conditions and error
event handling to decide whether to proceed with the script or abort the script. If error events are
not available in the test tool, you can write script logic to address error conditions. Set a global or
environment variable on or off at the end of the script module, and then use a separate script module
to check the variable before proceeding. Construct your test scripts so that for every significant
defect in the product, only one test will fail. This is commonly called the one bug, one fail approach.

When an error condition is encountered, the script should report errors to the test tool's error logging
system. When a script aborts, the error routine should clean up test data in the application before
exiting.

Construct your test scripts so that individual test modules use global setup modules to initialize the
testing environment. This allows you to design tests that can restart the application being tested and
continue with script execution (for example, in the event of a crash).

Define Data Values with Structured Format

Some fields in Siebel applications require data values that have a defined format. Therefore, you
must use data values that are formatted as the fields are configured in the Siebel application. For
example, a date field that requires a value in the format 4/28/2003 02:00:00 PM causes an error if
the data value supplied by the test script is 28 Apr 2003 2:00 PM. Test automation checkpoints should
also use data that has been formatted correctly, or use regular expressions to do pattern matching.

Use Variables and Expressions When Working with Calculated Fields

Some fields in Siebel applications are calculated automatically and are not directly modifiable by the
user (for example, Today's Date). Construct your test scripts so that they remember calculated
values in a local variable, or in an output value if the calculated value needs to be used later in the
script. For example, you might need to use a calculated value to run a Siebel query.

When you set a checkpoint for a calculated value, you might not know the value ahead of time. Use
a regular expression in your checkpoint such as an asterisk (*) to verify that the field is not blank.
When you are using a tabular checkpoint, you might want to omit the calculated field from the
checkpoint.

Testing Siebel Business Applications Version 8.1/8.2 67

Automating Functional Tests & Best Practices for Functional Test

Import Generalized Functions and Subroutines

Store generalized script functions and routines in a separate file. This allows you to maintain these
pieces of script separately from specialized test code. In your test tool, use the import functionality
(if available) to access the generalized scripts stored in the external file.

NOTE: When developing and debugging generalized functions, keep them in the specialized test
script until they are ready to be extracted. This is because you might not be able to debug external
files due to test tool limitations.

Run a Query Before Adding a Record or Accessing Data

Before creating data that could potentially cause a conflict, run a query to verify that no record with
the same information already exists. If a matching record is found, the script should delete it,
rename it, or otherwise modify the record to mitigate the conflict condition.

Run a Query Before Accessing Application Data

Before accessing an existing record or record set, run a query to narrow the records that are
available. Do not assume that the desired record is in the same place in a list applet because the test
database can change over time.

You also should query for data ahead of time when you are in the process of developing test scripts.
Check for data that should not be in the database, or that was left in the database by a previous test
pass, and delete it before proceeding.

Manage Test Data from Within the Test Script

Create all test data necessary for running a script within the script itself. Avoid creating scripts that
are dependent on preexisting data in a shared test database. Manage test data using setup scripts
and script data tables, rather than database snapshots.

Remove New Records Created During a Test
Remove all records created by the test at the end of the script. This should be done at the beginning
also, in case a previous test failed to complete the clean-up process.

You can implement the clean-up process as a reusable script module. For each module in the test,
you can create a corresponding clean-up module and run it before and after the test module.

The general approach is to have the clean-up script perform a query for the records in a list applet
and iterate through them until all of the associated test records are deleted or renamed. When the
records need to be renamed, the initial query should be repeated after each record is renamed, until
the row count is 0.

Exercise Ul Components with Basic Mouse Clicks

When recording a test script, perform all actions using the visual components as if you were a
beginning user. This requires clicking on the Ul components rather than using keyboard accelerators
and other shortcuts.

68 Testing Siebel Business Applications Version 8.1/8.2

nctional Tests I Best Practices for Functional Test Automation

Most shortcuts in Siebel applications are supported for test automation. However, the Tab key
shortcut is not supported—pressing the Tab key typically moves the focus from one control to another
based on a preconfigured tab order. Click the mouse to move focus rather than using the Tab key.

Best Practices for Functional Test Environment and
Execution

The following best practices are provided to assist you executing functional test scripts:

B Test with One Browser Window and One Siebel Application at a Time on page 69

B Avoid Navigating Between Web Applications During a Test on page 69

B Use Test Tool APIs to Aggregate Result Reports on page 69
|

Launch Siebel Developer and Mobile Web Client Applications for Testing from the Command Line on
page 70

Test with One Browser Window and One Siebel Application at a Time
When developing and executing tests, make sure there is only a single browser window open (the
one that contains the Siebel application).

A test script may click on a link within the Siebel application to open a separate browser under certain
circumstances, but that additional browser must be a pure standard-interactivity Siebel application
or a nonSiebel application.

NOTE: Some test management tools require you to have two browsers open at a time. The first
browser runs the test management tool, and the second is for developing and executing tests.

Avoid Navigating Between Web Applications During a Test

Avoid switching to another Siebel application or to any other application from the browser address
bar during a test. Switching between applications in the same browser window can work in some
instances, but it is not the recommended approach.

When testing high-interactivity applications, you can test only one Siebel application instance at a
time. Do not use the browser address bar to select another page from the history list during a test.
Navigating using the browser history list is not supported.

Use Test Tool APIs to Aggregate Result Reports

Some test tools provide a programming interface that allows you to aggregate the results of multiple
test passes. If such an API exists for your test tool, use it to aggregate the results of several test
passes into a single file. Otherwise, you must analyze individual test results manually, which can be
a cumbersome process for large sets of tests that run in unattended mode.

Testing Siebel Business Applications Version 8.1/8.2 69

Automating Functional Tests & Best Practices for Fu

Launch Siebel Developer and Mobile Web Client Applications for Testing from the Command
Line

When recording test scripts on Mobile Web Client and Siebel Developer Web Client applications, you
can launch the Siebel application using the following methods:

B Start recording and enter the full command line in the Windows Run dialog box (available from
the Windows Start menu). The test tool records this operation as a native line of script.

B Start recording and launch the Mobile Web Client from an existing Start menu shortcut. This
operation is recorded by the test tool as a native line of script.

B Configure the test tool to launch the Mobile Web Client when you begin recording a script. You
must save the full command line in a persistent setting in the test tool to launch the Mobile Web
Client.

NOTE: Make sure the command line contains the /u and /p switches to log in with a username and
password when the application launches. You cannot record or replay the login page using the Mobile
Web Client or the Siebel Developer Web Client.

For the Mobile Web Client and Siebel Developer Web Client, you do not need to include any special
switches (such as, SWECmd=AutoOn and AutoToken=password) in the URL, because you are
launching the application from a command line rather than a URL. However, you must update the
.cfg file for the application that you plan to test.

70 Testing Siebel Business Applications Version 8.1/8.2

1 O g Load Tests

The topics in this chapter discuss the concepts and benefits of automating load testing, and provides
a brief explanation of how it works with Siebel Test Automation:

B “Benefits of Load Test Automation” on page 71

“Architectural Overview of Load Testing” on page 72

B “Setting Up Your Load Testing Environment” on page 73
B “Best Practices for Load Testing” on page 73
B “Troubleshooting Load Testing Issues” on page 75

Benefits of Load Test Automation

Load testing measures key performance indicators (KPIs), such as response time and reliability, of
your Siebel application while it is under a load of multiple users. Without load test automation, you
can accomplish this by having many users log on, and run through a business process during a
specified period of time. Although this can be effective, it can become quite costly.

By using a test automation tool, you can simulate the load and achieve more comprehensive and
precise results without the cost associated with multiple human testers. In addition, a load testing
automation tool reduces the risk associated with user errors.

Key features of Load Test Tools

Tools for load test automation (such as LoadRunner from Mercury Interactive or e-Load from Empirix)
provide features that allow you to simulate a multiple-user environment. These features include:

B Test script recording. Rather than composing a script in a text editor, you start a recorder and
perform a series of steps in the application. The test tool records the session, which you can use
to perform the test.

B Virtual users. A single test script can be executed simultaneously by many virtual users from a
single machine.

B Controlled test execution. The test tool allows you to specify parameters that indicate how the
load test is run, such as how quickly to add users, how many users to add, and which scripts to
run.

B Result tracking. The test tool records important statistics, such as memory usage and response
times, that allow you to track KPIs and isolate bottlenecks.

Not all load testing tools have all of these features, and some have more. For more information, refer
to the documentation for your load testing tool.

Testing Siebel Business Applications Version 8.1/8.2 71

Automating Load Tests B Architectural Overview of Load Testing

Architectural Overview of Load Testing

The Siebel Correlation Library allows you to use a third-party tool to automate load testing on Siebel
applications. This is a dynamically linked library (DLL) that provides services necessary that help the
testing tool generate and execute test scripts against your Siebel application.

When the Correlation Library is installed and your test environment is properly set up, the Correlation
Library helps the test tool translate the recorded test session into a script that can be executed to
test your Siebel application. Then during test execution, the Correlation Library provides similar
services as described below. (For more information on the environment set up, see “Setting Up Your
Load Testing Environment” on page 73.)

The Correlation Library essentially acts as an interpreter for the test tool. The test tool records the
HTTP traffic from the Siebel application. (This HTTP traffic equates to a Web page.) Then the test tool
sends the Web page to the Correlation Library. The Correlation Library parses the Web page and
returns to the test tool the appropriate correlation information for the Web page. The correlation
information provides for parameterization of data values.

During recording, the correlation information consists of the following and is sent for each record
value:

B The data value of the field
B The associated row ID

B A unique name
|

The data type of the field (which can be bool, currency, datetime, date, id, integer, mltext,
number, note, phone, text, time, and utcdatetime)

B The input name of the associated control (spanning prefix)
B The display name of the associated control (as displayed in the user interface)

During playback, the test tool needs only enough information to execute the test. Therefore, the
Correlation Library sends only a subset of the correlation information to save memory and CPU on
the load test machine. The information sent by the Correlation Library during playback consists of
the following:

B The data value of the field

B The associated row ID

Parameterizing Transaction Data

In addition to the application data entities that are parameterized by the Correlation Library, you
must also parameterize the transaction data entities. Application data entities are those that are
associated with the function of the application, such as Row ID, SWE Timestamp, and SWE Count.
Transaction data entities are those that contain record data entered into the application by users,
such as Contact Name and Account Name. Transaction data entities must be parameterized manually,
because they are not handled by the Correlation Library.

72 Testing Siebel Business Applications Version 8.1/8.2

ing Load Tests ' Setting Up Your Load Testing Environment

Setting Up Your Load Testing
Environment

To set up your environment for automated load testing using Siebel Test Automation, you must
perform the following steps:

B Install your load testing tool.

B Copy the Correlation Library (ssdtcorr.dll) to a location that is accessible to the load testing tool
(for example, the BIN directory of the load testing tool). You can find the ssdtcorr.dll file in your
Siebel Server installation (siebsrvr\bin on Windows, siebsrvr/lib on UNIX).

In addition, there are steps that you must perform to set up your test tool so that it will communicate
properly with the Correlation Library. For more information, refer to the documentation from your
test tool vendor.

Best Practices for Load Testing

This topic outlines some best practices that you should consider when developing and executing load
tests on your Siebel applications. The following best practices are provided:

Preserve Environment During Recording and Running Load Tests on page 73
Preserve List States During Recording and Running Load Tests on page 74
Make Scenarios and Transaction Definitions Granular on page 74

Eliminate Message Bar Traffic from Transactions on page 74

Preserve a Base State for Iterative Actions on page 74

Make Iterative Actions Self-Sufficient on page 74

Reset the SWE Count for Iterative Actions on page 74

Avoid Concurrency Errors in Update Operations on page 74

Stabilize Response Time Before Terminating Test on page 74

Parameterize User Key Fields, Dates, and Time Zones on page 75

Make Data Value Parameters User-Specific on page 75
B Make Sure User Role and Position Are Compatible on page 75

In addition to these tips, you should also read and understand Chapter 7, “Execute Performance
Tests.”

Preserve Environment During Recording and Running Load Tests
Make sure that the environment when running a load test is in the same state as it was when the
test was recorded. Changes to the operating environment might require tests to be rerecorded.

Testing Siebel Business Applications Version 8.1/8.2 73

Automating Load Tests i Best Practices for Load Testing

Preserve List States During Recording and Running Load Tests

A Siebel application that contains a list applet can return one or more records in response to a query.
It can also return zero records. Both of these can be expected outcomes. When conducting load tests
on a Siebel application that contains a list applet, make sure that the expected state of the list (either
with records or without records) is the same during the recording session as it will be during the
execution of the test. Failure to do so will result in a test error. If necessary, you can add a record
before recording the test.

Make Scenarios and Transaction Definitions Granular

Where possible, break scenarios into several smaller scenarios to focus the tests. Make sure
transaction definitions are granular enough to be able to pinpoint performance issues to specific GUI
actions.

Eliminate Message Bar Traffic from Transactions

Eliminate HTTP traffic related to the message bar from transactions. Put message bar requests into
your script outside of transaction blocks. Put one message bar request into your test script after
every 120 seconds of wait time.

Preserve a Base State for Iterative Actions

When setting up repeatable or iterative actions, make sure to leave the application in a base state
from where the next iteration can pick up and complete successfully. Home page is a good example
of such a base state.

It is also important to maintain the number of rows displayed in a list applet, or the number of
controls displayed in a form applet. If Show More is clicked during the test, then Show Less must
also be clicked before the end of the test.

Make Iterative Actions Self-Sufficient

An iterative action has to be self-sufficient in that all the correlations have to originate and end within
the action. Values for correlated variables should not come from a previous action (which may or
may not be iterative).

Reset the SWE Count for Iterative Actions
At the beginning of each iterative action, make sure that you reset the SWE Count to the SWEC value
of the first request in the iteration.

Avoid Concurrency Errors in Update Operations
In tests that involve update operations, make sure you are using different virtual users or make sure
the same virtual user accesses different records to avoid concurrency errors.

Stabilize Response Time Before Terminating Test
When running a load test, wait for the response time to stabilize before stopping the load test.

74 Testing Siebel Business Applications Version 8.1/8.2

utomating Load Tests I Troubleshooting Load Testing Issues

Parameterize User Key Fields, Dates, and Time Zones

Make sure that user key fields are parameterized. Parameterize dates, especially variable dates (such
as today’s date or tomorrow’s date). Parameterize time zones. If you do not parameterize time zone
values, your script will fail for virtual users who are not set up to use the time zone in which the test
was recorded.

Make Data Value Parameters User-Specific

Set up your data value parameters to be specific for each virtual user (for example, Userl logs in
and searches for Contactl while User2 logs in and searches for Contact2). Each virtual user should
have its own subset of the data in the database.

Make Sure User Role and Position Are Compatible

Siebel applications restrict a user’s ability to perform actions based on the roles and positions
associated with the user. Make sure that the roles and positions of the users are compatible and allow
the user to perform the required actions.

Troubleshooting Load Testing Issues

This topic provides tips for resolving common issues associated with recording and running
automated load test scripts.

NOTE: The causes and fixes described for these common issues are those that are most often
encountered. However, they might not be the only such causes or fixes.

The following issues are addressed:

Back or Refresh Error

No Content HTTP Response on page 76
Same Values Error on page 76
Restoring the Context Error on page 77

Cannot Locate Record Error on page 77

End of File Error on page 77

Back or Refresh Error
The Siebel application displays an error applet indicating the following:

We detected an Error which may have occurred for on or more of the following reasons:
We are unable to process your request. This is most likely because you used the
browser BACK or REFRESH button to get to this point.

Cause

This issue can be caused by the following conditions:

B The SWETS was not parameterized for the current request.

Testing Siebel Business Applications Version 8.1/8.2 75

Automating Load Tests B Troubleshooting Load Testing |

The SWEC was not correlated correctly for the current request.
The request was submitted twice to the Siebel server without the SWEC being updated.

The frame was not created on the server, possibly because the SWEMethod has changed since
the script was recorded. A previous request should have set up a frame for the browser to
download.

Fix
To resolve this issue, try the following fixes:

B Make sure that SWETS is parameterized.

B Make sure that you reset the SWE Count to the SWEC value of the first request in the iteration
at the beginning of the iteration.

If these fixes do not resolve the issue, rerecord the script.

No Content HTTP Response

The server returns an error like the following:

HTTP/1.1 204 No Content

Server: Microsoft-11S/5.0

Date: Fri, 31 Jan 2003 21:52:30 GMT
Content-Language: en

Cache-Control: no-cache

Cause
The row ID is not properly correlated.

Fix
Manually correlate the row ID.

Same Values Error

The server returns an error like the following:
@0°0°3°37"0°UC 1 Status Error SWEC 100 1 Errors 0°2 0 Level0 0 ErrMsg The same
values for "Name®" already exist. If you would like to enter a new record, please
ensure that the field values are unique. ErrCode 28591~

Cause
One of the values in this request (in the previous code example, it is the value for the Name field)
is the same as a value in another row in the database table.

76 Testing Siebel Business Applications Version 8.1/8.2

omating Load Tests & Troubleshooting Load Testing Issues

Fix
You must replace this value with a unique value for each iteration for each user. The recommended
solution is to use the row ID parameter for the value; this causes the value to be unique.

Restoring the Context Error

The server returns an error like the following:
@0°0"373""0°UC 1 Status Error " SWEC™9 0 1 Errors 0270 Level0O 0 ErrMsg~An error
happened during restoring the context for requested location ErrCode 27631~

Cause
The row ID is not properly correlated.

Fix
Manually correlate the row ID.

Cannot Locate Record Error

The server returns an error like the following:
@0°073°3"0"UC 1 Status Error SWEC 23 0 2 Errors 020 Level0 0 ErrMsg~Cannot
locate record within view: Contact Detail - Opportunities View applet: Opportunity
List Applet. ErrCode~27573"

Cause
The input name SWERowld does not contain a row ID for a record on the Web page. This input name
should have been parameterized. The parameter's source value may have changed its location.

Fix
Manually correlate the row ID.

End of File Error

The server returns an error like the following:
@0°0"3°37"0°UC 1 Status Error SWEC 28 0 1 Errors 0270 LevelO 0 ErrMsg An end of
file error has occurred. Please continue or ask your systems administrator to check
your application configuration if the problem persists. ErrCode 28601~

Cause
The input name SWERowlIld does not contain a row ID for a record on the Web page. This input name
should have been parameterized. The parameter's source value may have changed its location.

Testing Siebel Business Applications Version 8.1/8.2 77

Automating Load Tests &

Fix
Manually correlate the row ID.

Testing Siebel Business Applications Version 8.1/8.2

A Test Object

The test objects described in this chapter represent the API for Oracle’s Siebel Test Automation. You
can use these objects to compose functional test scripts that you execute using your automated
testing tool. For more information on functional testing in Siebel applications, see Chapter 5, “Execute
Siebel Functional Tests” and Chapter 9, “Automating Functional Tests.” For information about writing
and running test scripts, see the documentation that accompanies your test tool.

The following topics are included in this chapter:

B “Functional Test Automation Objects for High Interactivity Siebel Applications” on page 79

“SiebApplet Object” on page 81

“SiebApplet Methods” on page 82

“SiebApplication Object” on page 84

“SiebApplication Methods” on page 85

“SiebButton Object” on page 89

“SiebCalculator Object” on page 90

“SiebCalculator Methods” on page 92

Common Test Automation Object Properties on page 142

Common Test Automation Object Methods on page 142

Standard Interactivity Functional Test Objects on page 148

Functional Test Automation Objects for
High Interactivity Siebel Applications

You can use the functional test automation objects described in this topic to write test scripts in your
test tool that test Siebel high-interactivity applications. Each of these objects corresponds to a
functional component in the user interface of a Siebel application.

The following objects are categorized by the logical type of object they represent, and the topics that
describe the objects are organized alphabetically in this reference. Additionally, each object is one
of the following functional types:

B Container objects. Container objects such as SiebApplication are objects that contain child
objects or controls.

B Collection objects. Collection objects such as SiebMenu are objects that represent a collection
of repository objects.

B Multivalue objects. Multivalue objects such as SiebPickList are objects that contain a group of
data values.

Testing Siebel Business Applications Version 8.1/8.2 79

Functional Test Object Reference I Functional Test Aut
Interactivity Siebel Applications

B Singleton objects. Singleton objects such as SiebThreadbar are objects for which only one
instance can be represented in a given context.

The description for each object in this reference indicates the functional type of the object. Some
objects can be more than one type. For example, SiebThreadbar is both a multivalue object and a
singleton object, because it contains a group of data values and can have only one instance in a given
context.

Each object provides events, properties, and methods that allow you to manipulate the object in a
test automation environment. Events represent user actions that can be recorded with a functional
test automation tool. Properties are object-specific settings that indicate the state of the object.
Methods are object behaviors that can be used in test scripts, but cannot be recorded using a test
tool.

Application Hierarchy Objects
These objects represent the layers of the application hierarchy in Siebel applications:

B SiebApplet Object on page 81

B SiebApplication Object on page 84
B SiebScreen Object on page 119

B SiebView Object on page 138

System Objects

These objects represent system-level controls that appear in Siebel applications:
B SiebMenu Object on page 110

B SiebPDQ Object on page 114

B SiebToolbar Object on page 133

Navigation Objects
These objects represent navigational elements that appear in Siebel applications:

SiebPageTabs Object on page 112
SiebScreenViews Object on page 120
SiebTask Object on page 122

SiebTaskUIPane Object on page 126

|

|

|

B SiebTaskStep Object on page 125
|

B SiebThreadbar Object on page 131
|

SiebViewApplets Object on page 140

80 Testing Siebel Business Applications Version 8.1/8.2

nal Test Object Reference ® SiebApplet Object

Core Control Objects
These objects represent simple controls that appear in Siebel applications:

SiebButton Object on page 89
SiebCheckbox Object on page 94
SiebPicklist Object on page 116
SiebTaskLink Object on page 124
SiebText Object on page 129

SiebTextArea Object on page 130

Complex Control Objects
These objects represent complex controls that appear in Siebel applications:

SiebCalculator Object on page 90
SiebCalendar Object on page 92
SiebCurrency Object on page 98
SieblnkData Object on page 100
SiebList Object on page 101
SiebRichText Object on page 118

SiebTree Object on page 136

Custom Control Objects
These objects represent custom controls that appear in Siebel applications:

B SiebCommunicationsToolbar Object on page 96

B SiebTaskAssistant Object on page 123

SiebApplet Object

The SiebApplet object provides methods and properties that allow you to manipulate an applet in a
test automation environment.

Parent
The SiebApplet object is a child of the SiebView Object.

Type
The SiebApplet object is a container object that is one of the Application Hierarchy Objects.

Testing Siebel Business Applications Version 8.1/8.2 81

Functional Test Object Reference i SiebApplet Method

Events
There are no events associated with the SiebApplet object.

Methods
The following methods are available from the SiebApplet object:

B GetActiveControlIName Method
GetClassCount Method
GetRepositoryName Method

GetRepositoryNameBylndex Method

IsControlExists Method
SetActiveControl Method

For a description of these methods, see “SiebApplet Methods” on page 82.

Properties
The SiebApplet object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebApplet" page 142 for a description of this property.
IsPopupApplet Boolean A Boolean value indicating whether or not the current

applet represents a popup applet.

RecordCounter String Indicates the visible text of the record counter string (for
example, "1 - 7 of 7+").

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebApplet Methods

This topic provides descriptions of the methods available from the SiebApplet Object.

GetActiveControlName Method

The GetActiveControlName method can be called from the applet to get the name of the control that
is currently active.

82 Testing Siebel Business Applications Version 8.1/8.2

nal Test Object Reference m SiebApplet Methods

Available from
SiebApplet Object

Syntax
GetActiveControlName ()

Returns
A String containing the RepositoryName of the active control.

GetClassCount Method

For a description of the GetClassCount Method, see “Common Test Automation Object Methods” on
page 142.

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”
on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylIndex Method, see “Common Test Automation
Object Methods” on page 142.

IsControlExists Method

The IsControlExists method returns a Boolean value indicating whether or not the specified control
exists.

Available from
SiebApplet Object

Syntax
IsControlExists (RepName)

Argument Description

RepName A String indicating the RepositoryName of the control.

Testing Siebel Business Applications Version 8.1/8.2 83

Functional Test Object Reference 1 SiebApplication O

Returns
A Boolean value indicating whether or not the specified control exists.

SetActiveControl Method

The SetActiveControl method can be called from the applet to set the focus to the specified control.

Available from
SiebApplet Object

Syntax
SetActiveControl (ControlRepName)

Argument Description

ControlRepName A String indicating the RepositoryName of the control.

Returns
Void

SiebApplication Object

The SiebApplication object provides methods and properties that allow you to manipulate an
application in a test automation environment.

Parent
Not applicable. The SiebApplication object is the top-level object in the Siebel Test Automation
hierarchy.

Type
The SiebApplication object is a container object that is one of the Application Hierarchy Objects.

Events
The SiebApplication object has the following events.

Event Name Description

ProcessKeyboardAccelerator Executes keyboard accelerators. AccelKeys is a String that specifies
(AccelKeys) the accelerator keys to execute (for example, F9 or Ctrl-Shift-K).

84 Testing Siebel Business Applications Version 8.1/8.2

| Test Object Reference ® SiebApplication Methods

Methods
The following methods are available from the SiebApplication object:

GetBusyTime Method
GetClassCount Method
GetLastErrorCode Method

GetLastErrorMessage Method

|

|

|

|

B GetLastOpld Method
B GetLastOpTime Method

B GetRepositoryName Method

B GetRepositoryNameBylIndex Method
B GetSessionld Method

SetTimeOut Method

For a description of these methods, see “SiebApplication Methods” on page 85.

Properties
The SiebApplication object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebApplication” page 142 for a description of this property.
RepositoryName String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebApplication Methods

This topic provides descriptions of the methods available from the SiebApplication Object.

GetBusyTime Method

The GetBusyTime method returns the time (in milliseconds) it took to execute the previous
operation.

Available from
SiebApplication Object

Testing Siebel Business Applications Version 8.1/8.2 85

Functional Test Object Reference I SiebApplication M

Syntax
GetBusyTime()

Returns
An Integer indicating the number of milliseconds required to execute the previous operation.

Usage

The GetBusyState method is executed asynchronously; that is, it is executed immediately after the
previous statement, without waiting for the previous statement to complete. Therefore, an accurate
response time is not returned by the GetBusyState method until the previous operation and the
GetBusyState method have completed execution. (See also, the description of the GetLastOpTime
Method on page 87.)

The GetBusyState method is useful for measuring operations performed against standard-
interactivity components within high-interactivity applications, such as Dashboard, SearchCenter,
and Sitemap navigation.

GetClassCount Method

For a description of the GetClassCount Method, see “Common Test Automation Object Methods” on
page 142.

GetLastErrorCode Method

The GetLastErrorCode method returns the last error code that was issued.

Available from
SiebApplication Object

Syntax
GetlLastErrorCode()

Returns
An Integer indicating the last error code that was issued.

GetLastErrorMessage Method

The GetLastErrorMessage method returns the last error message that was issued.

86 Testing Siebel Business Applications Version 8.1/8.2

Test Object Reference ® SiebApplication Methods

Available from
SiebApplication Object

Syntax
GetLastErrorMessage()

Returns
A String containing the text of the last error message that was issued.

GetLastOpld Method

The GetLastOpld method returns the identification number of the previous operation.

Available from
SiebApplication Object

Syntax
GetLastOpld()

Returns
An Integer indicating the identification number of the previous operation.

Usage

This method returns the operation id from the Siebel ARM (Siebel Application Response
Measurement) log file. You can use the operation id to examine timing and performance indicators
contained in the log, and then map them to the lines of automation script that executed the
corresponding operations. This is a manual process in which you must write a GetLastOpld method
call into the automation script, and then use the returned operation id to find the corresponding
entries in the Siebel ARM log file.

NOTE: The Siebel ARM feature captures timing data useful for monitoring the performance of the
Siebel application. For more information on Siebel ARM, see the Siebel Performance Tuning Guide.

GetLastOpTime Method

The GetLastOpTime method returns the time (in milliseconds) it took to execute the previous
operation.

Available from
SiebApplication Object

Testing Siebel Business Applications Version 8.1/8.2 87

Functional Test Object Reference 1 SiebApplicatio

Syntax
GetLastOpTime()

Returns
An Integer indicating the number of milliseconds required to execute the previous operation.

Usage

The GetLastOpTime method is executed synchronously. That is, it is executed after the previous
statement has completed execution. (See also, the description of the GetBusyTime Method on
page 85.)

The GetLastOpTime method is useful for measuring operations such as navigating to a screen, raising
a popup applet, and selecting a menu item.

GetSessionld Method

The GetSessionld method returns the Session id of the current Siebel client.

Available from
SiebApplication Object

Syntax
GetSessionld()

Returns
A String that indicates the id of the current Siebel client session.

Usage
The returned string can be used to correlate the server-side Siebel ARM (Siebel Application Response
Measurement) log files with the client operation id.

NOTE: The Siebel ARM feature captures timing data useful for monitoring the performance of the
Siebel application. For more information on Siebel ARM, see the Siebel Performance Tuning Guide.

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”
on page 142.

88 Testing Siebel Business Applications Version 8.1/8.2

nctional Test Object Reference m SiebButton Object

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylndex Method, see “Common Test Automation
Object Methods” on page 142.

SetTimeOut Method

The SetTimeOut method specifies the length of time to wait for the application to return from an
operation before timing out.

Available from
SiebApplication Object

Syntax
SetTimeOut (TimeOutSeconds)

Argument Description

TimeOutSeconds An Integer that indicates the number of seconds to wait before timing
out.

Returns
An Integer indicating the previous timeout value (in seconds).

Usage

When the timeout is exceeded, the test tool stops execution of the script, and displays an error dialog
box. The new timeout value is valid in the current test script until the next SetTimeOut is executed
or the application restarts. When the SetTimeOut method is not used or it goes out of scope, the
default value of 60 seconds is used.

SiebButton Object

The SiebButton object provides events and properties that allow you to manipulate a button control
in a test automation environment.

Parent
The SiebButton object is a child of the SiebApplet Object.

Type
The SiebButton object is one of the Core Control Objects.

Testing Siebel Business Applications Version 8.1/8.2 89

Functional Test Object Reference = SiebCalculator O

Events
The SiebButton object has the following event.

Event Name Description

Click Clicks the button.

Methods
There are no methods available from the SiebButton object.

Properties
The SiebButton object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebButton" page 142 for a description of this property.

IsEnabled Boolean Indicates whether or not the button object is enabled.
RepositoryName String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebCalculator Object

The SiebCalculator object provides methods and properties that allow you to manipulate a calculator
control in a test automation environment.

Parent
The SiebCalculator object is a child of the SiebApplet Object, SiebList Object, and SiebCurrency Object.

Type
The SiebCalculator object is one of the Complex Control Objects.

90 Testing Siebel Business Applications Version 8.1/8.2

Functional Test Object Reference M SiebCalculator Object

Events
The SiebCalculator object has the following events.

Event Name Description

CancelPopup Closes the calculator popup applet without saving changes (for
example, by clicking the Cancel button).

Clickkey (KeyValue) Clicks a key in the calculator popup applet. KeyValue specifies the key
to click. This event is only valid when the calculator popup applet is
open.

OpenPopup Opens the calculator popup applet.

ProcessKey (KeyName) Invokes the specified key inside the control. KeyName is a String that

specifies the key to invoke. The only KeyName accepted by the
ProcessKey event is “Enter”.

SetText (TextValue) Enters text in the text box. TextValue specifies the text to enter.

Methods
The following method is available from the SiebCalculator object:

B Clickkeys Method

For a description of this method, see “SiebCalculator Methods” on page 92.

Properties
The SiebCalculator object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebCalculator" page 142 for a description of this property.
IsEnabled Boolean See “Common Test Automation Object Properties” on

page 142 for a description of this property.

IsOpen Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

IsRequired Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Text String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Testing Siebel Business Applications Version 8.1/8.2 91

Functional Test Object Reference = SiebCalcul

SiebCalculator Methods

This topic provides descriptions of the methods available from the SiebCalculator Object.

ClickKeys Method

The ClickKeys method clicks keys in the open calculator popup applet.

Available from
SiebCalculator Object

Syntax
ClickKeys (KeysValue)

Argument Description

KeysValue A String that indicates the keys to be clicked

Returns
Void

Usage
This method is only valid when the calculator popup applet is open.

SiebCalendar Object

The SiebCalendar object provides events and properties that allow you to manipulate a calendar
control in a test automation environment.

Parent
The SiebCalendar object is a child of the SiebApplet Object, SiebList Object, and SiebCurrency Object.

Type
The SiebCalendar object is one of the Complex Control Objects.

92 Testing Siebel Business Applications Version 8.1/8.2

Functional Test Object Reference M SiebCalendar Object

Events
The SiebCalendar object has the following events.

Event Name Description

CancelPopup Closes the calendar popup applet without saving changes (for
example, by clicking the Cancel button).

ClosePopup Closes the calendar popup applet after saving changes (for
example, by clicking the Save button).

NextMonth Changes the displayed month in the calendar popup applet to the
next month (for example, from February to March).

OpenPopup Opens the calendar popup applet.

PrevMonth Changes the displayed month in the calendar popup applet to the
previous month (for example, from April to March).

ProcessKey (KeyName) Invokes the specified key inside the control. KeyName is a String
that specifies the key to invoke. The following values are valid for
KeyName:

“Enter”

B “LeftArrow”
B “RightArrow”
B “UpArrow”

B “DownArrow”

SelectTimeZone (TimeZone) Sets the Time Zone in the open calendar popup applet. TimeZone is
a String that specifies the Time Zone value in the format "(GMT-
09:00) Alaska".

SetDay (Day) Sets the Day in the open calendar popup applet. Day is an Integer
that specifies the new day value.

SetMonth (Month) Sets the Month in the open calendar popup applet. Month is an
Integer that specifies the new month value.

SetText (TextValue) Enters text in the parent control for the calendar. TextValue
specifies the text to enter.

SetTime (TimeText) Sets the Time in the open calendar popup applet. TimeText is a
String that specifies the new time value.

SetYear (Year) Sets the Year in the open calendar popup applet. Year is an Integer
that specifies the new year value.

Methods
There are no methods available from the SiebCalendar object.

Testing Siebel Business Applications Version 8.1/8.2 93

Functional Test Object Reference i SiebCheckbox Object

Properties
The SiebCalendar object has the following properties.

Property Name Type Description

CalendarType String Specifies the type of calendar. The value of this property
must be either Date, DateTime, or DateTimeZone.

ClassName = Const String See “Common Test Automation Object Properties” on

"SiebCalendar" page 142 for a description of this property.

Day String Specifies the current day in the open calendar control.

IsEnabled Boolean See “Common Test Automation Object Properties” on

page 142 for a description of this property.

IsOpen Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

IsRequired Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Month String Specifies the current month in the open calendar control.

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Text String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Time String Specifies the current time in the open calendar control.

TimeZone String Specifies the current time zone in the open calendar
control.

TimeZoneCount Integer Specifies the number of time zones in the time zone

picklist for the open calendar control.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Year String Specifies the current year in the open calendar control.

SiebCheckbox Object

The SiebCheckbox object provides events and properties that allow you to manipulate a checkbox in
a test automation environment.

Parent
The SiebCheckbox object is a child of the SiebApplet Object and the SiebList Object.

Type
The SiebCheckbox object is one of the Core Control Objects.

94 Testing Siebel Business Applications Version 8.1/8.2

Functional Test Object Reference m SiebCheckbox Object

Events
The SiebCheckbox object has the following events.

Event Name Description

ProcessKey (KeyName) Invokes the specified key inside the control. KeyName is a String that
specifies the key to invoke. The only KeyName accepted by the
ProcessKey event is “Enter”.

Setindeterminate Sets the state of the checkbox to intermediate. The indeterminate
state is available only in query mode.

SetOff Sets the state of the checkbox to not checked.
SetOn Sets the state of the checkbox to checked.
Methods

There are no methods available from the SiebCheckbox object.

Properties
The SiebCheckbox object has the following properties.

Property Name Type Description

CheckState String Indicates the state of the SiebCheckbox object. The
following values are valid for CheckState:

B “Checked”
B “Unchecked”

B “Indeterminate”

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebCheckbox" page 142 for a description of this property.
IsChecked Boolean Indicates whether or not the checkbox is checked. The

value is TRUE for the indeterminate state.

IsEnabled Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

IsRequired Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Testing Siebel Business Applications Version 8.1/8.2 95

Functional Test Object Reference I SiebCommunication

SiebCommunicationsToolbar Object

The SiebCommunicationsToolbar object provides methods and properties that allow you to
manipulate the communications toolbar in a test automation environment.

Parent
The SiebCommunicationsToolbar object is a child of the SiebApplication Object.

Type
The SiebCommunicationsToolbar object is one of the Custom Control Objects.

Events
The SiebCommunicationsToolbar object has the following events.

Event Name Description

Click (ButtonName) Clicks a button. ButtonName is a String that specifies the
RepositoryName of the button.

SelectWorkltem (ItemName) Selects a Workltem. ItemName is a String that specifies the
Workltem to select.

SetText (Text) Enters text in the text box. Text is a String that specifies the text
to enter.

ShowButtonToolTip Displays the tooltip for the button. ButtonName is a String that

(ButtonName) specifies the RepositoryName of the button.

This event is significant because the CommunicationsToolbar tooltip
is dynamic, causing a round-trip to the server.

Methods
The following methods are available from the SiebCommunicationsToolbar object:

B GetButtonState Method
B GetButtonTooltip Method

For a description of these methods, see “SiebCommunicationsToolbar Methods” on page 97.

96 Testing Siebel Business Applications Version 8.1/8.2

Test Object Reference & SiebCommunicationsToolbar Methods

Properties
The SiebCommunicationsToolbar object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties”
"SiebCommunicationsToolbar" on page 142 for a description of this property.
CurrentWorkltem String Indicates the currently selected work item.
IsEnabled Boolean See “Common Test Automation Object Properties”

on page 142 for a description of this property.

IsVisible Boolean Indicates whether or not the object is enabled.

You can not checkpoint this property because the
control is not rendered by the browser when it is
not visible. However, you can manually write script
code to check the property.

MediaType String Indicates the type of media.

Message String The communication channel information displayed
next to the Siebel menu that indicates where the
message comes from (for example, Call Display).

RepositoryName = Const String See “Common Test Automation Object Properties”
"SiebCommunicationsToolbar" on page 142 for a description of this property.
Text String See “Common Test Automation Object Properties”

on page 142 for a description of this property.

UIName = Const String See “Common Test Automation Object Properties”

"CommunicationsToolbar" on page 142 for a description of this property.

WorkltemDuration String Indicates the duration of the currently selected
work item.

SiebCommunicationsToolbar Methods

This topic provides descriptions of the methods available from the SiebCommunicationsToolbar Object.

GetButtonState Method

The GetButtonState method returns the state of the specified button.

Available from
SiebCommunicationsToolbar Object

Testing Siebel Business Applications Version 8.1/8.2 97

Functional Test Object Reference I SiebCurrency

Syntax
GetButtonState (ButtonName)

Argument Description

ButtonName A String that specifies the RepositoryName of the button

Returns
A String that indicates the logical state of the button (for example, blinking).

GetButtonTooltip Method

The GetButtonTooltip method returns the tooltip for the specified button.

Available from
SiebCommunicationsToolbar Object

Syntax
GetButtonTooltip (ButtonName)

Argument Description

ButtonName A String that specifies the RepositoryName of the button

Returns
A String containing the text of the tooltip.

SiebCurrency Object

The SiebCurrency object provides methods and properties that allow you to manipulate a currency
calculator in a test automation environment.

Parent
The SiebCurrency object is a child of the SiebApplet Object and the SiebList Object.

Type
The SiebCurrency object is a container object that is one of the Complex Control Objects.

98 Testing Siebel Business Applications Version 8.1/8.2

Functional Test Object Reference m SiebCurrency Object

Events
The SiebCurrency object has the following events.

Event Name Description

CancelPopup Closes the currency calculator popup applet without saving changes
(for example, by clicking the Cancel button).

ClosePopup Saves changes and closes the currency calculator popup applet.
OpenPopup Opens the currency calculator popup applet.
ProcessKey (KeyName) Invokes the specified key inside the control. KeyName is a String that

specifies the key to invoke. The only KeyName accepted by the
ProcessKey event is “Enter”.

SetText (TextValue) Enters text in the currency calculator popup applet. TextValue
specifies the text to enter.

Methods
The following methods are available from the SiebCurrency object:

B GetClassCount Method
B GetRepositoryName Method
B GetRepositoryNameBylndex Method

For a description of these methods, see “SiebCurrency Methods” on page 100.

Properties
The SiebCurrency object has the following properties.

Property Name Type Description

Amount String A data value representing the value of the Amount field in
the popup applet.

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebCurrency"” page 142 for a description of this property.
CurrencyCode String A data value representing the value of the Currency Code

field in the popup applet.

ExchangeDate String A data value representing the value of the Exchange Date
field in the popup applet.

IsEnabled Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

IsOpen Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Testing Siebel Business Applications Version 8.1/8.2 99

Functional Test Object Reference = SiebCurrency Meth

Property Name Type Description

IsRequired Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Text String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebCurrency Methods

This topic provides descriptions of the methods available from the SiebCurrency Object.

GetClassCount Method

For a description of the GetClassCount Method, see “Common Test Automation Object Methods” on
page 142.

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”
on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylndex Method, see “Common Test Automation
Object Methods” on page 142.

SieblnkData Object

The SieblnkData object provides properties that allow you to manipulate an InkData object in a test
automation environment.

Parent
The SieblnkData object is a child of the SiebApplet Object.

100 Testing Siebel Business Applications Version 8.1/8.2

Functional Test Object Reference M SiebList Object

Type
The SieblnkData object is one of the Complex Control Objects.

Events
There are no events associated with the SieblnkData object.

Methods
There are no methods available from the SieblnkData object.

Properties
The SieblnkData object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SieblnkData" page 142 for a description of this property.
IsEnabled Boolean See “Common Test Automation Object Properties” on

page 142 for a description of this property.

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebList Object

The SiebList object provides methods and properties that allow you to manipulate a list object in a
test automation environment.

Parent
The SiebList object is a child of the SiebApplet Object.

Type
The SiebList object is a singleton container object that is one of the Complex Control Objects. Due to
the complex nature of this object, it is also a collection object.

Testing Siebel Business Applications Version 8.1/8.2 101

Functional Test Object Reference ™ SiebList Object

Events
The SiebList object has the following events.

Event Name Description

ActivateRow Activates a row in the list. RowNumber is an Integer that indicates

(RowNumber) which row to activate, based on the number of currently visible rows.
(The show more or show less button determines the number of
currently visible rows.)

AscendSort Sorts the list on the column in ascending order. ColumnRepName is a
(ColumnRepName) String that indicates the RepositoryName of the column to sort on.
ClickHier Toggles the active row between expanded and collapsed (for

hierarchical lists).

DescendSort Sorts the list on the column in descending order. ColumnRepName is
(ColumnRepName) a String that indicates the RepositoryName of the column to sort on.

DoubleClick (RowNumber, Double-clicks a row. RowNumber is an Integer that specifies the row
ColumnRepName) to double-click. ColumnRepName is a String that specifies the
RepositoryName of the column to double-click.

The ColumnRepName argument is optional. When recording a script,
ColumnRepName is recorded only when the double-click occurs on a
control in the row.

DrillDownColumn Clicks a drilldown link. ColumnRepName is a String that specifies the
(ColumnRepName, RepositoryName of the column that contains the drilldown link.
RowNumber) RowNumber is an Integer that specifies the row that contains the

drilldown link, based on the number of currently visible rows
(determined by show more/less).

FirstRowSet Navigates to the first set of records in the list.
LastRowSet Navigates to the last set of records in the list.
NextRow Navigates to the next row in the list.

NextRowSet Navigates to the next set of records in the list.
PreviousRow Navigates to the previous row in the list.
PrevRowSet Navigates to the previous set of records in the list.

102 Testing Siebel Business Applications Version 8.1/8.2

Functional Test Object Reference M SiebList Object

Event Name Description

SelectRow (RowNumber, Activates a row in conjunction with a multiselect key. RowNumber is

SelectType) an Integer that specifies which row to activate, based on the number
of currently visible rows (determined by show more and show less).
SelectType is a String that specifies which multiselect key (either Shift
or Control) to use. If SelectType is not defined, no multiselect key is

used.
ToggleFreezeColumns Freezes or unfreezes the columns to horizontal scrolling.
(ColumnRepName) ColumnRepName is a String that specifies the RepositoryName of the

last column to toggle.

This event is generated by a double-click on a column header within a
list applet. The freeze begins with the first column and ends with the
double-clicked column.

Methods
The following methods are available from the SiebList object:

GetActiveControl Method

GetCellText Method
GetColumnRepositoryName Method
GetColumnRepositoryNameBylIndex Method
GetColumnSort Method

GetColumnType Method

GetColumnUIName Method

GetTotalsValue Method

IsColumnDrilldown Method

IsColumnExists Method

IsRowExpanded Method

SetActiveControl Method

For a description of these methods, see “SiebList Methods” on page 104.

Testing Siebel Business Applications Version 8.1/8.2 103

Functional Test Object Reference ™ SiebList Methods

Properties
The SiebList object has the following properties.

Property Name Type Description

ActiveRow Integer Specifies which row is currently active, based on the
number of currently visible rows (determined by show
more and show less).

ClassName = Const String See “Common Test Automation Object Properties” on

"SiebList" page 142 for a description of this property.

ColumnsCount Integer Specifies the number of currently visible columns in the
list.

RepositoryName = Const String See “Common Test Automation Object Properties” on

"SiebList" page 142 for a description of this property.

RowsCount Integer Specifies the number of currently visible rows (determined
by show more and show less).

SelectedRows String A pipe-delimited string of row numbers that are currently
selected.

UIName = "List" Const String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

SiebList Methods

This topic provides descriptions of the methods available from the SiebList Object.

GetActiveControl Method

The GetActiveControl method returns the name of the control that is currently active.

Available from
SiebList Object

Syntax
GetActiveControl ()

Returns
A String containing the RepositoryName of the active control.

104 Testing Siebel Business Applications Version 8.1/8.2

unctional Test Object Reference W SiebList Methods

GetCellText Method

The GetCellText method returns the text of the specified cell.

Available from
SiebList Object

Syntax
GetCellText (ColumnRepName, RowNumber)

Argument Description

ColumnRepName A String that indicates the RepositoryName of the column containing
the cell
RowNumber An Integer that indicates the number of the row containing the cell
Returns

A String containing the text of the specified cell.

GetColumnRepositoryName Method

The GetColumnRepositoryName method returns the RepositoryName of the column that has the
UIName specified in the argument.

Available from
SiebList Object

Syntax
GetColumnRepositoryName (ColumnUIName)

Argument Description

ColumnUIName A String that indicates the UIName of the column

Returns
A String containing the RepositoryName of the specified column.

GetColumnRepositoryNameBylndex Method

The GetColumnRepositoryNameBylndex method returns the RepositoryName of the column that has
the index number specified in the argument.

Testing Siebel Business Applications Version 8.1/8.2 105

Functional Test Object Reference ™ SiebList Meth

Available from
SiebList Object

Syntax
GetColumnRepositoryNameBylIndex (Columnindex)

Argument Description

Columnlindex An Integer that indicates the index number of the column

Returns
A String containing the RepositoryName of the specified column.

GetColumnSort Method

The GetColumnSort method returns a String (either Ascend or Descend) indicating how the specified
column is currently sorted.

Available from
SiebList Object

Syntax
GetColumnSort (ColumnRepName)

Argument Description

ColumnRepName A String that indicates the RepositoryName of the column

Returns
A String indicating how the specified column is currently sorted (either Ascend or Descend).

GetColumnType Method

The GetColumnType method returns the type of the underlying control (for example, SiebText) for
the column that has the RepositoryName specified in the argument.

Available from
SiebList Object

106 Testing Siebel Business Applications Version 8.1/8.2

tional Test Object Reference W SiebList Methods

Syntax
GetColumnType (ColumnRepName)

Argument Description

ColumnRepName A String that indicates the RepositoryName of the column

Returns
A String indicating the type of the underlying control for the specified column.

GetColumnUIName Method

The GetColumnUIName method returns the UIName of the column that has the RepositoryName
specified in the argument.

Available from
SiebList Object

Syntax
GetColumnUIName (ColumnRepName)

Argument Description

ColumnRepName A String that indicates the RepositoryName of the column

Returns
A String indicating the UIName of the specified column.

GetTotalsValue Method

The GetTotalsValue method returns the value in the totals row of a list control for the specified
column. If the specified control does not have a totals row, GetTotalsValue returns an empty string.

Available from
SiebList Object

Testing Siebel Business Applications Version 8.1/8.2 107

Functional Test Object Reference ™ SiebList Meth

Syntax
GetTotalsValue (ColumnRepName)

Argument Description

ColumnRepName A String that indicates the RepositoryName of the column

Returns
A String indicating the value in the totals row for the specified column, or an empty String if the
control does not have a totals row.

IsColumnDrilldown Method

The IsColumnDrilldown method returns a Boolean value indicating whether or not the specified
column is a drilldown column.

Available from
SiebList Object

Syntax
IsColumnDrilldown (ColumnRepName)

Argument Description

ColumnRepName A String that indicates the RepositoryName of the column

Returns
A Boolean value indicating whether or not the specified column is a drilldown column.

IsColumnExists Method

The IsColumnExists method returns a Boolean value indicating whether or not the specified column
exists.

Available from
SiebList Object

108 Testing Siebel Business Applications Version 8.1/8.2

tional Test Object Reference W SiebList Methods

Syntax
IsColumnExists (ColumnRepName)

Argument Description

ColumnRepName A String that indicates the RepositoryName of the column

Returns
A Boolean value indicating whether or not the specified column exists.

IsRowExpanded Method

The IsRowExpanded method returns a Boolean value indicating whether or not the specified row is
expanded (for hierarchical lists). For nonhierarchical lists, IsRowExpanded always returns TRUE
indicating that the row is expanded.

Available from
SiebList Object

Syntax
IsRowExpanded (RowNumber)

Argument Description

RowNumber An Integer that indicates the number of the row

Returns
A Boolean value indicating whether the row is expanded (TRUE) or collapsed (FALSE). Always returns
TRUE for nonhierarchical lists.

SetActiveControl Method

The SetActiveControl method sets the focus in the list to the specified control.

Available from
SiebList Object

Testing Siebel Business Applications Version 8.1/8.2 109

Functional Test Object Reference = SiebMenu Obj

Syntax
SetActiveControl (ControlRepName)

Argument Description

ControlRepName A String indicating the RepositoryName of the control.

Returns
Void

SiebMenu Object

The SiebMenu object provides methods and properties that allow you to manipulate menus and menu
items in a test automation environment.

Parent
The SiebMenu object is a child of the SiebApplet Object and the SiebApplication Object.

Type
The SiebMenu object is a collection object that is one of the System Objects.

Events
The SiebMenu object has the following event.

Event Name Description

Select (ItemName) Selects a menu item from the Siebel application menu. ItemName is
a String that specifies the RepositoryName of the Menu Item object.

Methods
The following methods are available from the SiebMenu object:

GetRepositoryName Method
GetRepositoryNameBylndex Method
GetUIName Method

IsEnabled Method

IsExists Method

For a description of these methods, see “SiebMenu Methods” on page 111.

110 Testing Siebel Business Applications Version 8.1/8.2

nctional Test Object Reference ® SiebMenu Methods

Properties
The SiebMenu object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on

"SiebMenu" page 142 for a description of this property.

Count Integer See “Common Test Automation Object Properties” on
page 142 for a description of this property.

RepositoryName = Const String See “Common Test Automation Object Properties” on

"SiebMenu" page 142 for a description of this property.

UIName = "Menu" Const String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

SiebMenu Methods

This topic provides descriptions of the methods available from the SiebMenu Object.

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”
on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylndex Method, see “Common Test Automation
Object Methods” on page 142.

GetUIName Method

For a description of the GetUIName Method, see “Common Test Automation Object Methods” on
page 142.

IsEnabled Method

The IsEnabled method returns a Boolean value indicating whether or not the specified menu item is
enabled.

Available from
SiebMenu Object

Testing Siebel Business Applications Version 8.1/8.2 111

Functional Test Object Reference i SiebPageTabs Obje

Syntax
IsEnabled (ItemName)

Argument Description

ItemName A String that indicates the RepositoryName of the Menu Item object

Returns
A Boolean value indicating whether the specified menu item is enabled (TRUE) or disabled (FALSE).

IsExists Method

For a description of the IsExists Method, see “Common Test Automation Object Methods” on page 142.

SiebPageTabs Object

The SiebPageTabs object provides methods and properties that allow you to navigate page tabs in a
test automation environment.

Parent
The SiebPageTabs object is a child of the SiebApplication Object.

Type
The SiebPageTabs object is a singleton collection object that is one of the Navigation Objects.

Events
The SiebPageTabs object has the following events.

Event Name Description

GotoScreen Navigates to a PageTab. ScreenName is a String that specifies the
(ScreenName) RepositoryName of the PageTab object.
GotoView (ViewName) Navigates to a View. ViewName is a String that specifies the

RepositoryName of the View object, represented by an Aggregate
Category link.

Methods
The following methods are available from the SiebPageTabs object:

B GetRepositoryName Method
B GetRepositoryNameBylndex Method

112 Testing Siebel Business Applications Version 8.1/8.2

B GetUIName Method

B IsExists Method

Functional Test Object Reference M SiebPageTabs Methods

For a description of these methods, see “SiebPageTabs Methods” on page 113.

Properties

The SiebPageTabs object has the following properties.

Property Name Type Description

ActiveScreen String Indicates the RepositoryName of the active PageTab
object.

ActiveView String Indicates the RepositoryName of the active View, as
represented by the active Aggregate Category link.

ClassName = Const String See “Common Test Automation Object Properties” on

"SiebPageTabs"

page 142 for a description of this property.

RepositoryName = Const String
"SiebPageTabs"

See “Common Test Automation Object Properties” on
page 142 for a description of this property.

ScreenCount Integer

The total count of PageTabs for Screen navigation.

UIName = "PageTabs™ Const String

See “Common Test Automation Object Properties” on
page 142 for a description of this property.

ViewCount Integer

The total count of available (using Aggregate Category
links) from the active PageTab object.

SiebPageTabs Methods

This topic provides descriptions of the methods available from the SiebPageTabs Object.

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods

on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylIndex Method, see “Common Test Automation

Object Methods” on page 142.

Testing Siebel Business Applications Version 8.1/8.2 113

Functional Test Object Reference i SiebPDQ Obj

GetUIName Method

For a description of the GetUIName Method, see “Common Test Automation Object Methods” on
page 142.

IsExists Method

For a description of the IsExists Method, see “Common Test Automation Object Methods” on page 142.

SiebPDQ Object

The SiebPDQ object provides methods and properties that allow you to manipulate a predefined
query (PDQ) in a test automation environment.

Parent
The SiebPDQ object is a child of the SiebScreen Object.

Type
The SiebPDQ object is a singleton multivalue object that is one of the System Objects.

Events
The SiebPDQ object has the following event.

Event Name Description

Select (ItemName) Selects a PDQ. ItemName is a String that specifies the visible title of
the PDQ.

Methods
The following methods are available from the SiebPDQ object:

B GetPDQBylIndex Method
B IsExists Method

For a description of these methods, see “SiebPDQ Methods” on page 115.

114 Testing Siebel Business Applications Version 8.1/8.2

unctional Test Object Reference ® SiebPDQ Methods

Properties
The SiebPDQ object has the following properties.

Property Name Type Description

ActivePDQ String Indicates the visible title of the active PDQ.
ClassName = Const String See “Common Test Automation Object Properties” on
"SiebPDQ" page 142 for a description of this property.

Count Integer See “Common Test Automation Object Properties” on

page 142 for a description of this property.

RepositoryName = Const String See “Common Test Automation Object Properties” on
"SiebPDQ" page 142 for a description of this property.
UIName = "PDQ" Const String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

SiebPDQ Methods

This topic provides descriptions of the methods available from the SiebPDQ Object.

GetPDQByIndex Method

The GetPDQBylIndex method returns the visible title of the specified PDQ.

Syntax
GetPDQBylIndex (Index)

Argument Description

Index An Integer that indicates the index of the PDQ object within the Count
property

Returns
A String indicating the visible title of the PDQ object.

IsExists Method

For a description of the IsExists Method, see “Common Test Automation Object Methods” on page 142.

Testing Siebel Business Applications Version 8.1/8.2 115

Functional Test Object Reference i SiebPicklist Object

SiebPicklist Object

The SiebPicklist object provides methods and properties that allow you to manipulate a picklist in a
test automation environment.

Parent
The SiebPicklist object is a child of the SiebApplet Object and the SiebList Object.

Type
The SiebPicklist object is a multivalue object that is one of the Core Control Objects.

Events
The SiebPicklist object has the following events.

Event Name Description

ProcessKey (KeyName) Invokes the specified key inside the control. KeyName is a String that
specifies the key to invoke. The only KeyName accepted by the
ProcessKey event is “Enter”.

Select (ItemName) Selects an item from the picklist. IltemName is a String that specifies
the visible text of the picklist item.

SetText (TextValue) Enters text in the picklist control (for example, when composing a
query). TextValue is a String that specifies the text to enter. The
SetText event fails on picklists that are used as applet toggle controls.

Methods
The following methods are available from the SiebPicklist object:

B GetltemBylndex Method
B IsExists Method

For a description of these methods, see “SiebPicklist Methods” on page 117.

Properties
The SiebPicklist object has the following properties.

Property Name Type Description

Activeltem String Indicates the visible title of the currently selected Picklist
item.

ClassName = Const String See “Common Test Automation Object Properties” on

"SiebPickList" page 142 for a description of this property.

116 Testing Siebel Business Applications Version 8.1/8.2

unctional Test Object Reference ® SiebPicklist Methods

Property Name Description

Type

Count Integer See “Common Test Automation Object Properties” on
page 142 for a description of this property.

IsEnabled Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

IsOpen Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

IsRequired Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebPicklist Methods

This topic provides descriptions of the methods available from the SiebPicklist Object.

GetltemBylndex Method

The GetltemBylndex method returns the visible title of the specified picklist item.

Syntax
GetltemBylIndex (Index)

Argument Description

Index An Integer that specifies the index of the item in the Count property.

Returns
A String indicating the visible text of the picklist item.

IsExists Method

For a description of the IsExists Method, see “Common Test Automation Object Methods” on page 142.

Testing Siebel Business Applications Version 8.1/8.2 117

Functional Test Object Reference I SiebRichText Objec

SiebRichText Object

The SiebRichText object provides methods and properties that allow you to manipulate a rich text
control in a test automation environment.

Parent
The SiebRichText object is a child of the SiebApplet Object.

Type
The SiebRichText object is one of the Complex Control Objects.

Events
The SiebRichText object has the following event.

Event Name Description

SetText (TextValue) Enters text in the text area. TextValue is a String that specifies the
text to enter.

Methods
There are no methods available from the SiebRichText object.

Properties
The SiebRichText object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebRichText" page 142 for a description of this property.
IsEnabled Boolean See “Common Test Automation Object Properties” on

page 142 for a description of this property.

IsRequired Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Text String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

118 Testing Siebel Business Applications Version 8.1/8.2

nctional Test Object Reference ® SiebScreen Object

SiebScreen Object

The SiebScreen object provides methods and properties that allow you to manipulate a screen object
in a test automation environment.

Parent
The SiebScreen object is a child of the SiebApplication Object.

Type
The SiebScreen object is a container object that is one of the Application Hierarchy Objects.

Events
The SiebScreen object has no events associated with it.

Methods
The following methods are available from the SiebScreen object:

B GetClassCount Method
B GetRepositoryName Method
B GetRepositoryNameBylIndex Method

For a description of these methods, see “SiebScreen Methods” on page 119.

Properties
The SiebScreen object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebScreen” page 142 for a description of this property.
RepositoryName String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebScreen Methods

This topic provides descriptions of the methods available from the SiebScreen Object.

Testing Siebel Business Applications Version 8.1/8.2 119

Functional Test Object Reference i SiebScreenViews

GetClassCount Method

For a description of the GetClassCount Method, see “Common Test Automation Object Methods” on
page 142.

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”
on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylndex Method, see “Common Test Automation
Object Methods” on page 142.

SiebScreenViews Object

The SiebScreenViews object provides methods and properties that allow you to manipulate a screen
view in a test automation environment.

Parent
The SiebScreenViews object is a child of the SiebScreen Object.

Type
The SiebScreenViews object is a singleton collection object that is one of the Navigation Objects.

Events
The SiebScreenViews object has the following event.

Event Name Description

Goto (ViewName, Level) Navigates to a screen view. ViewName is a String that specifies the
name of the screen view; Level is a String that specifies its level (L2,
L3, or L4).

Methods
The following methods are available from the SiebScreenViews object:

B GetRepositoryName Method
B GetRepositoryNameBylIndex Method
B GetUIName Method

120 Testing Siebel Business Applications Version 8.1/8.2

nctional Test Object Reference = SiebScreenViews Methods

For a description of these methods, see “SiebScreenViews Methods” on page 121.

Properties

The SiebScreenViews object has the following properties.

Property Name Type Description
ActiveView String Indicates the RepositoryName of the active Screen View.
ClassName = Const String See “Common Test Automation Object Properties” on

"SiebScreenViews"

page 142 for a description of this property.

L2Count Integer Indicates the number of second-level screen views on the
current screen.

L3Count Integer Indicates the number of third-level screen views on the
current screen.

L4Count Integer Indicates the number of fourth-level screen views on the

current screen.

RepositoryName =
"SiebScreenViews"

Const String

See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName =
"ScreenViews"

Const String

See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebScreenViews Methods

This topic provides descriptions of the methods available from the SiebScreenViews Object.

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”

on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylIndex Method, see “Common Test Automation

Object Methods” on page 142.

GetUIName Method

For a description of the GetUIName Method, see “Common Test Automation Object Methods” on

page 142.

Testing Siebel Business Applications Version 8.1/8.2

121

Functional Test Object Reference = SiebTask Object

SiebTask Object

The SiebTask object provides methods and properties that allow you to manipulate a task in a test
automation environment.

Parent
The SiebTask object is a child of the SiebApplication Object.

Type
The SiebTask object is a container object that is one of the Navigation Objects.

Events
There are no events associated with the SiebTask object.

Methods
The following methods are available from the SiebTask object:

B GetClassCount Method
B GetRepositoryName Method
B GetRepositoryNameBylIndex Method

For a description of these methods, see “SiebTask Methods” on page 122.

Properties
The SiebTask object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebTask" page 142 for a description of this property.
RepositoryName String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebTask Methods

This topic provides descriptions of the methods available from the SiebTask Object.

122 Testing Siebel Business Applications Version 8.1/8.2

ctional Test Object Reference W SiebTaskAssistant Object

GetClassCount Method

For a description of the GetClassCount Method, see “Common Test Automation Object Methods” on
page 142.

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”
on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylndex Method, see “Common Test Automation
Object Methods” on page 142.

SiebTaskAssistant Object

The SiebTaskAssistant object provides events and properties that allow you to manipulate the task
assistant in a test automation environment.

Parent
The SiebTaskAssistant object is a child of the SiebApplication Object.

Type
The SiebTaskAssistant object is one of the Custom Control Objects.

Events
The SiebTaskAssistant object has the following events.

Event Name Description

Close Closes the task list.

Done Clicks the Return To link.

Next Clicks the See additional steps link.

Start (Tasklid) Clicks the link of the specified task to start a task. Taskld is a String

that indicates the id of the task to start.

Step (StepNum) Clicks the specified step. StepNum is a String that indicates the
number of the step.

StepView (StepNum) Clicks the View link for the specified step. StepNum is a String that
indicates the number of the step.

Testing Siebel Business Applications Version 8.1/8.2 123

Functional Test Object Reference 1 SiebTaskLink Object

Methods
There are no methods available from the SiebTaskAssistant object.

Properties
The SiebTaskAssistant object has the following properties.

Property Name Type Description

ActiveStep String Indicates the number of the current step.
ActiveTask String Indicates the id of the current task.

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebTaskAssistant" page 142 for a description of this property.
RepositoryName = Const String See “Common Test Automation Object Properties” on
"SiebTaskAssistant" page 142 for a description of this property.
StepCount String Indicates the number of visible steps.

TaskCount String Indicates the number of tasks in the current list.
Taskld String Indicates the name of the current task.

UIName = Const String See “Common Test Automation Object Properties” on
"TaskAssistant” page 142 for a description of this property.

SiebTaskLink Object

The SiebTaskLink object provides an event and properties that allow you to start a task in a test
automation environment.

Parent
The SiebTaskLink object is a child of the SiebTaskUIPane Object.

Type
The SiebTaskLink object is one of the Core Control Objects.

Events
The SiebTaskLink object has the following event.

Event Name Description

Click Clicks the task link in the task pane to start the task.

Methods
There are no methods available from the SiebTaskLink object.

124 Testing Siebel Business Applications Version 8.1/8.2

nal Test Object Reference i SiebTaskStep Object

Properties
The SiebTaskLink object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebTaskLink" page 142 for a description of this property.
RepositoryName String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebTaskStep Object

The SiebTaskStep object provides methods and properties that allow you to manipulate a task step
in a test automation environment.

Parent
The SiebTaskStep object is a child of the SiebTask Object.

Type
The SiebTaskStep object is one of the Navigation Objects.

Events
There are no events associated with the SiebTaskStep object.

Methods
The following methods are available from the SiebTaskStep object:

B GetClassCount Method
B GetRepositoryName Method
B GetRepositoryNameBylndex Method

For a description of these methods, see “SiebTaskStep Methods” on page 126.

Testing Siebel Business Applications Version 8.1/8.2 125

Functional Test Object Reference " SiebTaskStep Methods

Properties
The SiebTaskStep object has the following properties.

Property Name Type Description

ActiveApplet String Indicates the RepositoryName of the active Applet object.

AppletCount Integer Indicates the number of applets present in the current
context.

ClassName = Const String See “Common Test Automation Object Properties” on

"SiebTaskStep" page 142 for a description of this property.

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

TaskStepTitle String Indicates the title of the current task step.

TaskViewTitle String Indicates the title of the active task view.

UIName String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

SiebTaskStep Methods

This topic provides descriptions of the methods available from the SiebTaskStep Object.

GetClassCount Method

For a description of the GetClassCount Method, see “Common Test Automation Object Methods” on
page 142.

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”
on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylndex Method, see “Common Test Automation
Object Methods” on page 142.

SiebTaskUIPane Object

The SiebTaskUIPane object provides methods and properties that allow you to manipulate the task
pane in a test automation environment.

126 Testing Siebel Business Applications Version 8.1/8.2

nctional Test Object Reference 1 SiebTaskUIPane Object

Parent
The SiebTaskUIPane object is a child of the SiebApplication Object.

Type
The SiebTaskUIPane object is a container object that is one of the Navigation Objects.

Events
The SiebTaskUIPane object has the following events.

Event Name Description

Close Closes the task pane.
GotolnBox Clicks the Go to Inbox link to navigate to the Inbox.
Methods

The following methods are available from the SiebTaskUIPane object:
GetClassCount Method

GetRepositoryNameBylndex Method

GetStepBylndex Method

GetTaskBylndex Method

Start Method

For a description of these methods, see “SiebTaskUIPane Methods” on page 128.

Properties
The SiebTaskUIPane object has the following properties.

Property Name Type Description

ActiveTask Integer Indicates the id of the current task.

ClassName = Const String See “Common Test Automation Object Properties” on

"SiebTaskUIPane" page 142 for a description of this property.

RepositoryName = Const String See “Common Test Automation Object Properties” on

"TaskUIPane" page 142 for a description of this property.

StepCount Integer Indicates the number of steps in the current task in the
task pane.

TaskCount Integer Indicates the number of tasks in the task pane.

UIName String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

Testing Siebel Business Applications Version 8.1/8.2 127

Functional Test Object Reference i SiebTaskUIPa

SiebTaskUIPane Methods

This topic provides descriptions of the methods available from the SiebTaskUIPane Object.

GetClassCount Method

For a description of the GetClassCount Method, see “Common Test Automation Object Methods” on
page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylndex Method, see “Common Test Automation
Object Methods” on page 142.

GetStepBylndex Method

The GetStepBylndex method returns the RepositoryName of the SiebTaskStep object specified by the
given index.

Available from
SiebTaskUIPane Object

Syntax
GetStepBylIndex (Steplndex)

Argument Description

Steplndex An integer indicating the index of the step in the StepCount property.

Returns
A String indicating the RepositoryName of the object.

GetTaskBylndex Method

The GetTaskBylndex method returns the RepositoryName of the SiebTask object specified by the
given index.

Available from
SiebTaskUIPane Object

128 Testing Siebel Business Applications Version 8.1/8.2

ctional Test Object Reference ® SiebText Object

Syntax
GetTaskBylndex (TaskIndex)

Argument Description

TasklIndex An integer indicating the index of the task in the TaskCount property.

Returns
A String indicating the RepositoryName of the object.

Start Method

The Start method starts the specified task by clicking its link in the task pane.

Available from
SiebTaskUIPane Object

Syntax
Start (TaskName, TaskGroup)

Argument Description

TaskName A String indicating the RepositoryName of the task.
TaskGroup A String indicating the group to which the task belongs.
Returns
Void

SiebText Object

The SiebText object provides methods and properties that allow you to manipulate a text box in a
test automation environment.

Parent
The SiebText object is a child of the SiebApplet Object, the SiebCurrency Object, and the SiebList
Object.

Type
The SiebText object is one of the Core Control Objects.

Testing Siebel Business Applications Version 8.1/8.2 129

Functional Test Object Reference ™ SiebTextArea Object

Events
The SiebText object has the following events.

Event Name Description

OpenPopup Opens the associated popup applet.

ProcessKey (KeyName) Invokes the specified key inside the control. KeyName is a String that
specifies the key to invoke. The only KeyName accepted by the
ProcessKey event is Enter.

SetText (TextValue) Enters text into the text box. TextValue is a String that specifies the
text to enter.

Methods
There are no methods available from the SiebText object.

Properties
The SiebText object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebText" page 142 for a description of this property.
IsEnabled Boolean See “Common Test Automation Object Properties” on

page 142 for a description of this property.

IsEncrypted Boolean A Boolean value indicating whether or not the text value
of the object is masked, such as in a password text box.

IsRequired Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

PopupType String Indicates the type of popup associated with the text box
(SVPick for a single-value picklist, MVPick for a multiple-
value picklist, or Text for no popup).

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Text String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebTextArea Object

The SiebTextArea object provides events and properties that allow you to manipulate a text area in
a test automation environment.

130 Testing Siebel Business Applications Version 8.1/8.2

unctional Test Object Reference M SiebThreadbar Object

Parent
The SiebTextArea object is a child of the SiebApplet Object and the SiebList Object.

Type
The SiebTextArea object is one of the Core Control Objects.

Events
The SiebTextArea object has the following event.

Event Name Description

SetText (TextValue) Enters text into the text area. TextValue is a String that specifies the
text to enter.

Methods
There are no methods available from the SiebTextArea object.

Properties
The SiebTextArea object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebTextArea" page 142 for a description of this property.
IsEnabled Boolean See “Common Test Automation Object Properties” on

page 142 for a description of this property.

IsRequired Boolean See “Common Test Automation Object Properties” on
page 142 for a description of this property.

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

Text String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebThreadbar Object

The SiebThreadbar object provides methods and properties that allow you to manipulate a threadbar
in a test automation environment.

Testing Siebel Business Applications Version 8.1/8.2 131

Functional Test Object Reference I SiebThreadbar Object

Parent
The SiebThreadbar object is a child of the SiebScreen Object.

Type
The SiebThreadbar object is a singleton multivalue object that is one of the Navigation Objects.

Events
The SiebThreadbar object has the following event.

Event Name Description

Goto (LinkName) Clicks a link in the threadbar object. LinkName is a String that
specifies the name of the link.

Methods
The following methods are available from the SiebThreadbar object:

B GetThreadltemBylndex Method
B IsExists Method

For a description of these methods, see “SiebThreadbar Methods” on page 133.

Properties
The SiebThreadbar object has the following properties.

Property Name Type Description

ActiveThreadltem String A data value representing the right-most thread link in the
threadbar (the link to the page immediately preceding the
page that is rendered on the screen).

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebThreadbar" page 142 for a description of this property.
Count Integer See “Common Test Automation Object Properties” on

page 142 for a description of this property.

RepositoryName = Const String See “Common Test Automation Object Properties” on

"SiebThreadbar" page 142 for a description of this property.

Threadltems String A data value representing the entire threadbar. Multiple
items on the threadbar are separated by a | (pipe)
character.

UIName = Const String See “Common Test Automation Object Properties” on

"Threadbar" page 142 for a description of this property.

132 Testing Siebel Business Applications Version 8.1/8.2

nal Test Object Reference W SiebThreadbar Methods

SiebThreadbar Methods

This topic provides descriptions of the methods available from the SiebThreadbar Object.

GetThreadltemBylndex Method

The GetThreadltemBylndex method returns the text of the thread item that has the specified index.

Syntax
GetThreadltemBylIndex (Index)

Argument Description

Index An Integer that indicates the index of the thread item in the Count
property.

Returns
A String indicating the visible text of the thread item.

IsExists Method

For a description of the IsExists Method, see “Common Test Automation Object Methods” on page 142.

SiebToolbar Object

The SiebToolbar object provides methods and properties that allow you to manipulate a toolbar in a
test automation environment.

Parent
The SiebToolbar object is a child of the SiebApplication Object.

Type
The SiebToolbar object is a collection object that is one of the System Objects.

Events
The SiebToolbar object has the following event.

Event Name Description

Click (CtrIName) Clicks a toolbar item. CtrIName is a String that specifies the
RepositoryName of the toolbar item.

Testing Siebel Business Applications Version 8.1/8.2 133

Functional Test Object Reference ™ SiebToolbar Metho

Methods
The following methods are available from the SiebToolbar object:

B IsControlEnabled Method
IsControlExists Method

GetRepositoryName Method

GetRepositoryNameBylIndex Method
GetUIName Method

For a description of these methods, see “SiebToolbar Methods” on page 134.

Properties
The SiebToolbar object has the following properties.

Property Name Type Description

ClassName = Const String See “Common Test Automation Object Properties” on
"SiebToolbar" page 142 for a description of this property.

Count Integer See “Common Test Automation Object Properties” on

page 142 for a description of this property.

RepositoryName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

UIName Const String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

For the SiebToolbar object, UIName is set to the same
value as RepositoryName, because there is no visible
display value for a toolbar object.

SiebToolbar Methods

This topic provides descriptions of the methods available from the SiebToolbar Object.

IsControlEnabled Method

The IsControlEnabled method returns a Boolean value indicating whether or not the specified control
is enabled on the toolbar.

134 Testing Siebel Business Applications Version 8.1/8.2

onal Test Object Reference W SiebToolbar Methods

Syntax
IsControlEnabled (RepName)

Argument Description

RepName A String that indicates the RepositoryName of the object

Returns

A Boolean value indicating whether the specified toolbar control is enabled (TRUE) or disabled
(FALSE).

IsControlExists Method

The IsControlExists method returns a Boolean value indicating whether or not the specified control
exists on the toolbar.

Syntax
IsControlExists (RepName)

Argument Description

RepName A String that indicates the RepositoryName of the object

Returns
A Boolean value indicating whether the specified toolbar control exists (TRUE) or does not exist
(FALSE).

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”
on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylndex Method, see “Common Test Automation
Object Methods” on page 142.

GetUIName Method

For a description of the GetUIName Method, see “Common Test Automation Object Methods” on
page 142.

Testing Siebel Business Applications Version 8.1/8.2 135

Functional Test Object Reference i SiebTree Object

SiebTree Object

The SiebTree object provides methods and properties that allow you to manipulate a tree view object
in a test automation environment.

Parent
The SiebTree object is a child of the SiebApplet Object.

Type
The SiebTree object is a singleton multivalue object that is one of the Complex Control Objects.

Events
The SiebTree object has the following events.

Event Name Description

Collapse (Position) Collapses a node in the tree view. Position is a String that specifies the
position of the node in the tree.

Expand (Position) Expands a node in the tree view. Position is a String that specifies the
position of the node in the tree.

NextPage Scrolls the tree view to the next page.

PreviousPage Scrolls the tree view to the previous page.

Select (Position) Selects a node in the tree view. Position is a String that specifies the

position of the node in the tree.

NOTE: The Position parameter of the Collapse, Expand, and Select events is a String that indicates

the position of the node in the tree. It is in the format
first-level-position.second-level-position.third-level-position

where each position is in relation to its current context within the preceding level. For example, 1.3.2

represents the second node within the third node of the first root node.

Methods
The following methods are available from the SiebTree object:

B GetChildCount Method

B GetTreeltemName Method
B IsExpanded Method

B IsExists Method

For a description of these methods, see “SiebTree Methods” on page 137.

136 Testing Siebel Business Applications Version 8.1/8.2

Functional Test Object Reference M SiebTree Methods

Properties
The SiebTree object has the following properties.

Property Name Type Description

ActiveTreeltem String A data value representing the current tree item.
ClassName = Const String See “Common Test Automation Object Properties” on
"SiebTree" page 142 for a description of this property.
RepositoryName = Const String See “Common Test Automation Object Properties” on
"SiebTree" page 142 for a description of this property.

UIName = "Tree" Const String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

SiebTree Methods

This topic provides descriptions of the methods available from the SiebTree Object.

GetChildCount Method

The GetChildCount method finds the tree item at the specified position and returns the number of
child nodes of the tree item that are displayed on the current page.

Syntax
GetChildCount (Position)

Argument Description

Position A String that indicates the position of the node in the tree. It is in the
format
first-level-position.second-level-position.third-level-position
where each position is in relation to its current context within the
preceding level. For example, 1.3.2 represents the second node within
the third node of the first root node.

Returns
An Integer indicating the number of child nodes of the specified tree item that are displayed on the
current page. For lists that span multiple pages, the parent node is displayed on each page.

GetTreeltemName Method

The GetTreeltemName method finds the tree item at the specified position and returns its name.

Testing Siebel Business Applications Version 8.1/8.2 137

Functional Test Object Reference 1 SiebView Object

Syntax
GetTreeltemName (Position)

Argument Description

Position A String that indicates the position of the node in the tree. It is in the
format
first-level-position.second-level-position.third-level-position
where each position is in relation to its current context within the
preceding level. For example, 1.3.2 represents the second node within
the third node of the first root node.

Returns
A String indicating the visible text of the specified tree item.

IsExpanded Method

The IsExpanded method returns a Boolean value indicating whether or not the specified tree node is
expanded.

Syntax
IseExpanded (Position)

Argument Description

Position A String that indicates the position of the node in the tree. It is in the
format
first-level-position.second-level-position.third-level-position
where each position is in relation to its current context within the
preceding level. For example, 1.3.2 represents the second node within
the third node of the first root node.

Returns
A Boolean value indicating whether the specified tree node is expanded (TRUE) or collapsed (FALSE).

IsExists Method

For a description of the IsExists Method, see “Common Test Automation Object Methods” on page 142.

SiebView Object

The SiebView object provides methods and properties that allow you to manipulate a view object in
a test automation environment.

138 Testing Siebel Business Applications Version 8.1/8.2

Functional Test Object Reference M SiebView Methods

Parent
The SiebView object is a child of the SiebScreen Object.

Type
The SiebView object is a container object that is one of the Application Hierarchy Objects.

Events
The SiebView object has no associated events.

Methods
The following methods are available from the SiebView object:

B GetClassCount Method
B GetRepositoryName Method
B GetRepositoryNameBylndex Method

For a description of these methods, see “SiebView Methods” on page 139.

Properties
The SiebView object has the following properties.

Property Name Type Description

ActiveApplet String Indicates the RepositoryName of the active Applet object.
AppletCount Integer Indicates the number of child applets of the view.
ClassName = Const String See “Common Test Automation Object Properties” on
"SiebView" page 142 for a description of this property.
RepositoryName String See “Common Test Automation Object Properties” on

page 142 for a description of this property.

UIName String See “Common Test Automation Object Properties” on
page 142 for a description of this property.

SiebView Methods

This topic provides descriptions of the methods available from the SiebView Object.

GetClassCount Method

For a description of the GetClassCount Method, see “Common Test Automation Object Methods” on
page 142.

Testing Siebel Business Applications Version 8.1/8.2 139

Functional Test Object Reference 1 SiebViewApplet

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”
on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylndex Method, see “Common Test Automation
Object Methods” on page 142.

SiebViewApplets Object

The SiebViewApplets object provides methods and properties that allow you to manipulate a view
applet in a test automation environment.

Parent
The SiebViewApplets object is a child of the SiebView Object.

Type
The SiebViewApplets object is a singleton collection object that is one of the Navigation Objects.

Events
The SiebViewApplets object has the following event.

Event Name Description

Select (AppletName) Selects an applet. AppletName is a String that specifies the
RepositoryName of the applet to select.

Methods
The following methods are available from the SiebViewApplets object:

B GetRepositoryName Method

B GetRepositoryNameBylndex Method
B GetUIName Method

B IsExists Method

For a description of these methods, see “SiebViewApplets Methods” on page 141.

140 Testing Siebel Business Applications Version 8.1/8.2

onal Test Object Reference W SiebViewApplets Methods

Properties
The SiebViewApplets object has the following properties.

Property Name Type Description

ActiveApplet String Indicates the RepositoryName of the active Applet object.
ClassName = Const String See “Common Test Automation Object Properties” on
"SiebViewApplets" page 142 for a description of this property.

Count Integer See “Common Test Automation Object Properties” on

page 142 for a description of this property.

RepositoryName = Const String See “Common Test Automation Object Properties” on
"SiebViewApplets" page 142 for a description of this property.
UIName = Const String See “Common Test Automation Object Properties” on
"ViewApplets" page 142 for a description of this property.

SiebViewApplets Methods

This topic provides descriptions of the methods available from the SiebViewApplets Object.

GetRepositoryName Method

For a description of the GetRepositoryName Method, see “Common Test Automation Object Methods”
on page 142.

GetRepositoryNameBylndex Method

For a description of the GetRepositoryNameBylndex Method, see “Common Test Automation
Object Methods” on page 142.

GetUIName Method

For a description of the GetUIName Method, see “Common Test Automation Object Methods” on
page 142.

IsExists Method

For a description of the IsExists Method, see “Common Test Automation Object Methods” on page 142.

Testing Siebel Business Applications Version 8.1/8.2 141

Functional Test Object Reference = Common Test Automatio

Common Test Automation
Object Properties

The following table provides descriptions of common properties available from multiple test
automation objects.

Property Name Type Description

ClassName String, The name of the class of the test automation object.
Const String

Count Integer The number of objects of a given type that are present in
the current context.

IsEnabled Boolean A Boolean value that indicates whether or not the object
is enabled.

IsOpen Boolean A Boolean value that indicates whether or not the object
is open. This property is used in objects that have a popup
applet.

IsRequired Boolean A Boolean value that indicates whether or not the object
is required.

RepositoryName String, The name of the object as it is stored in the repository of

Const String the test automation tool.

Text String The text value of the object.

UIName String, The name of the object as it is displayed in the user
Const String interface.

Common Test Automation
Object Methods

This topic provides descriptions of common methods available from multiple test automation objects.
The methods described in this topic include:

B GetClassCount Method

GetRepositoryName Method

B GetRepositoryNameBylndex Method
B GetUIName Method
B IsExists Method

142 Testing Siebel Business Applications Version 8.1/8.2

Reference " Common Test Automation Object Methods

GetClassCount Method

The GetClassCount method searches the repository for objects of the specified type and returns an
Integer indicating the number of such objects.

Available from

SiebApplet Object, SiebApplication Object, SiebCurrency Object, SiebScreen Object, SiebTask Object,
SiebTaskStep Object, SiebTaskUIPane Object, SiebView Object

Syntax
GetClassCount (ClassName)

Argument Description

ClassName A String that specifies the type of object to be counted

Returns
Integer indicating the number of objects of the specified type.

GetRepositoryName Method

The GetRepositoryName method finds the object with the specified parameters, and returns the
object’s RepositoryName.

Available from

SiebApplet Object, SiebApplication Object, SiebCurrency Object, SiebMenu Object, SiebPageTabs
Object, SiebScreen Object, SiebScreenViews Object, SiebTask Object, SiebTaskStep Object, SiebToolbar
Object, SiebView Object, SiebViewApplets Object

Syntax A (SiebApplet Object, SiebApplication Object, SiebCurrency Object, SiebScreen Object,
SiebTask Object, SiebTaskStep Object, SiebView Object)

GetRepositoryName (ClassName, UIName)

Argument Description

ClassName A String that indicates the ClassName of the object

UIName A String that indicates the UIName of the object

Testing Siebel Business Applications Version 8.1/8.2 143

Functional Test Object Reference ' Common Test Autom

Syntax B (SiebMenu Object, SiebToolbar Object, SiebViewApplets Object)
GetRepositoryName (UIName)

Argument Description
UIName A String that indicates the UIName of the object.

For the SiebMenu object, submenu items are delimited by // (two
slashes).

Syntax C (SiebPageTabs Object)
GetRepositoryName (UIName, [NavType])

Argument Description
UIName A String that indicates the UIName of the PageTab or View object.
NavType (Optional) A String that indicates the type (Screen or View) of

navigation object.

When NavType is defined as Screen, then UIName should be specified
as the display name for a PageTab object.

When NavType is defined as View, then UIName should be specified
as the display name for a View as represented by an Aggregate
Category link.

If the NavType argument is not defined the default value of Screen is
used.

Syntax D (SiebScreenViews Object)
GetRepositoryName (UIName, Level)

Argument Description

UIName A String that indicates the UIName of the object.

Level A String that indicates the level (L2, L3, or L4) of the object.
Returns

A String indicating the RepositoryName of the object.

GetRepositoryNameBylndex Method

The GetRepositoryNameBylIndex method returns the RepositoryName of the specified object.

144 Testing Siebel Business Applications Version 8.1/8.2

ject Reference " Common Test Automation Object Methods

Available from

SiebApplet Object, SiebApplication Object, SiebCurrency Object, SiebMenu Object, SiebPageTabs
Object, SiebScreen Object, SiebScreenViews Object, SiebTask Object, SiebTaskStep Object,
SiebTaskUIPane Object, SiebToolbar Object, SiebView Object, SiebViewApplets Object

Syntax A (SiebApplet Object, SiebApplication Object, SiebCurrency Object, SiebScreen Object,
SiebTask Object, SiebTaskStep Object, SiebTaskUIPane Object, SiebView Object)

GetRepositoryNameBylndex (ClassName, Classindex)

Argument Description
ClassName A String that indicates the ClassName of the object.
Classlndex An Integer that indicates the index of the object in the value returned

by the GetClassCount method.

Syntax B (SiebMenu Object, SiebToolbar Object, SiebViewApplets Object)
GetRepositoryNameBylIndex (Index)

Argument Description

Index An Integer that indicates the index in the Count property of the object.

Syntax C (SiebPageTabs Object)
GetRepositoryNameBylndex (Index, [NavType])

Argument Description

Index An Integer that indicates the index of the PageTab or View object in
the corresponding Count property (ScreenCount or ViewCount).

NavType (Optional) A String that indicates the type (Screen or View) of
navigation object.

When NavType is defined as Screen, then Index should be an index
into the ScreenCount property.

When NavType is defined as View, then Index should be an index into
the ViewCount property.

If the NavType argument is not defined the default value of Screen is
used.

Testing Siebel Business Applications Version 8.1/8.2 145

Functional Test Object Reference ¥ Common Test Auto

Syntax D (SiebScreenViews Object)
GetRepositoryNameBylIndex (Index, Level)

Argument Description
Index An Integer that indicates the index of the object in the appropriate
Count property (L2Count, L3Count, or L4Count).
Level A String that indicates the level (L2, L3, or L4) of the object.
Returns

A String indicating the RepositoryName of the object.

GetUIName Method

The GetUIName method returns the UIName of the object that has the specified RepositoryName.

Available from
SiebMenu Object, SiebPageTabs Object, SiebScreenViews Object, SiebToolbar Object, SiebViewApplets
Object

Syntax A (SiebMenu Object, SiebToolbar Object, SiebViewApplets Object)
GetUIName (RepName)

Argument Description

RepName A String that indicates the RepositoryName of the object.

Syntax B (SiebPageTabs Object)
GetUIName (RepName, [NavType])

Argument Description

RepName A String that indicates the RepositoryName of the PageTab or View
object.

NavType A String that indicates the type of navigation object (Screen for a

PageTab object, or View for a View object).

146 Testing Siebel Business Applications Version 8.1/8.2

Reference " Common Test Automation Object Methods

Syntax C (SiebScreenViews Object)
GetUIName (RepName, Level)

Argument Description

RepName A String that indicates the RepositoryName of the object

Level A String that indicates the level (L2, L3, or L4) of the object
Returns

A String indicating the UIName (display name in the user interface) of the object. For the SiebMenu
object, submenu items are delimited by // (two slashes).

IsExists Method

The IsExists method returns a Boolean value indicating whether or not the specified object exists.

Available from
SiebMenu Object, SiebPageTabs Object, SiebPDQ Object, SiebPicklist Object, SiebThreadbar Object,
SiebTree Object, SiebViewApplets Object

Syntax A (SiebMenu Object, SiebViewApplets Object)
IsExists (RepName)

Argument Description

RepName A String that indicates the RepositoryName of the object

Syntax B (SiebPageTabs Object)
IsExists (RepName, [NavType])

Argument Description

RepName A String that indicates the RepositoryName of the PageTab or View
object

NavType A String that indicates the type of navigation object (Screen for a

PageTab object, or View for a View object)

Testing Siebel Business Applications Version 8.1/8.2 147

Functional Test Object Reference It Standard Interacti

Syntax C (SiebPDQ Object, SiebPicklist Object)
IsExists (ItemName)

Argument Description

ItemName A String that indicates the visible title of the PDQ or Picklist object

Syntax D (SiebThreadbar Object)
Isexists (LinkName)

Argument Description

LinkName A String that indicates the visible title of the threadbar item

Syntax E (SiebTree Object)
IsExists (Position)

Argument Description
Position A String that indicates the position of the node in the tree. It is in the
format

first-level-position.second-level-position.third-level-position
where each position is in relation to its current context within the
preceding level. For example, 1.3.2 represents the second node within
the third node of the first root node.

Returns
A Boolean value indicating whether the specified object exists (TRUE) or does not exist (FALSE).

Standard Interactivity Functional Test
Objects

The following list identifies the object types for standard-interactivity Siebel Business Applications
from Oracle.

Object Types for Standard Interactivity Applications
SiebWebButton

SiebWebCalculator
SiebWebCalendar
SiebWebChartControl

SiebWebCheckBox

148 Testing Siebel Business Applications Version 8.1/8.2

SiebWebColumnSortAsc

SiebWebColumnSortDes
SiebWebComboBox

SiebWebFile
SiebWebHieralListExpandCollapse
SiebWebHistoryBack
SiebWebHistoryDropdown
SiebWebHistoryForward
SiebWebJavaApplet

SiebWebLink

SiebWebListBox

SiebWebMailto

SiebWebMenu

SiebWebMenu
SiebWebMultiSelect
SiebWebPageTab
SiebWebPageTabScroll
SiebWebPassword

SiebWebPdq
SiebWebPopupButton
SiebWebRadioButton
SiebWebReportDropdown
SiebWebRowSelect
SiebWebScreenSubViewDropdown
SiebWebScreenSubViewTab
SiebWebScreenSubViewTabScroll
SiebWebScreenViewDropdown
SiebWebScreenViewTab
SiebWebScreenViewTabScroll
SiebWebSitemapAnchor

SiebWebSitemapScreen

tandard Interactivity Functional Test Objects

Testing Siebel Business Applications Version 8.1/8.2 149

Functional Test Object Referenc

SiebWebSitemapView
SiebWebText
SiebWebTextArea
SiebWebThreadbar
SiebWebToggleDropdown
SiebWebToggleTab
SiebWebToolbarltem
SiebWebTreeExpandCollapse
SiebWebTreeNode
SiebWebTreeScroll

SiebWebURL

150 Testing Siebel Business Applications Version 8.1/8.2

A

acceptance tests
executing acceptance tests 49
executing, about 21
process of executing 47
test phase objective 28
application hierarchy objects 80
audience, job titles 13
automation
functional and performance 40
automation, load testing
architectural overview 72
benefits 71
best practices 73
load test tools 71
load testing environment, setting up 73
parameterizing transaction data 72
troubleshooting load testing issues 75

B

back or refresh error 75
best practices
functional test design 62
functional test environment and
execution 69
functional test script development 65
load testing 73
Business Process Testing, definition 17

C
cannot locate record error 77
ClickKeys method 92
common test automation object methods
GetClassCount method 143
GetRepositoryName method 143
GetRepositoryNameBylndex method 144
GetUIName method 146
IsExists method 147
common test automation object
properties 142
complex control objects 81
component inventory
about 29
risk assessment 29
Continuous Application Lifecycle 18
core control objects 81

Correlation Library
about and licensing 73
custom control objects 81

D
Data Conversion Test

definition 17

test phase objective 28
defects, tracking subprocess 45
definitions 17
design evaluation

design and usability, reviewing 34

process diagram 34
designing tests, about 21
developing test, about 21

E

end of file error 77
environment management
about and components 30
performance test environment 31
errors
back or refresh error 75
cannot locate record error 77
end of file error 77
no content HTTP response error 76
same values error 76

F

failed transactions, monitoring 53
function test tools 57
functional automation 40
functional test automation
architectural overview 58
benefits 57
functional test design, best practices 62
functional test environment and execution,
best practices 69
functional test script development, best
practices 65
functional test tools 57
functional testing environment, setting
up 60
hand-scripting components 62
Siebel Test Automation framework, secure
access to 60

Testing Siebel Business Applications Version 8.1/8.2 151

Index m G

Siebel Test Automation, using for 61
functional test cases, about 27
functional test object reference

application hierarchy objects 80

common test automation object

methods 142
common test automation object
properties 142

complex control objects 81

core control objects 81

custom control objects 81

high interactivity applications 79

navigation objects 80

SiebApplet methods 82

SiebApplet object 81

SiebApplication methods 85

SiebApplication object 84

SiebButton object 89

SiebCalculator methods 92

SiebCalculator object 90

SiebCalendar object 92

SiebCheckbox object 94

SiebCommunicationsToolbar methods 97

SiebCommunicationsToolbar object 96

SiebCurrency method 100

SiebCurrency object 98

SieblnkData object 100

SiebList methods 104

SiebList object 101

SiebMenu methods 111

SiebMenu object 110

SiebPageTabs methods 113

SiebPageTabs object 112

SiebPDQ object 114

SiebPicklist methods 117

SiebPicklist object 116

SiebRichText object 118

SiebScreen methods 119

SiebScreen object 119

SiebScreenViews methods 121

SiebScreenViews object 120

SiebTask methods 122

SiebTask object 122

SiebTaskAssistant object 123

SiebTaskLink object 124

SiebTaskStep methods 126

SiebTaskStep object 125

SiebTaskUIPane methods 128

SiebTaskUIPane object 126

SiebText object 129

SiebTextArea object 130

SiebThreadbar methods 133

SiebThreadbar object 131

SiebToolbar methods 134

SiebToolbar object 133

SiebTree methods 137

SiebTree object 136

SiebView methods 139

SiebView object 138

SiebViewApplets methods 141

SiebViewApplets object 140

standard interactivity functional test

objects 148

system objects 80
functional testing

definition 17

executing, about 21

G

GetActiveControl method
SiebList methods 104
GetActiveControlName method
SiebApplet methods 82
GetBusyTime method 85
GetButtonState method 97
GetButtonTooltip method 98
GetCellText method 105
GetChildCount method 137
GetClassCount method
common test automation object
methods 143
SiebApplet methods 83
SiebApplication methods 86
SiebCurrency methods 100
SiebScreen methods 120
SiebTask methods 123
SiebTaskStep methods 126
SiebTaskUIPane methods 128
SiebView methods 139
GetColumnRepositoryName method 105
GetColumnRepositoryNameBylndex
method 105
GetColumnSort method 106
GetColumnType method 106
GetColumnUIName method 107
GetltemBylndex method 117
GetLastErrorCode method 86
GetLastErrorMessage method 86
GetLastOpld method 87
GetLastOpTime method 87
GetPDQByIndex method 115
GetRepositoryName method
common test automation object
methods 143
SiebApplet methods 83
SiebApplication methods 88
SiebCurrency methods 100

152 Testing Siebel Business Applications Version 8.1/8.2

Index m H

SiebMenu methods 111 navigation objects 80
SiebPageTabs methods 113 system objects 80
SiebScreen methods 120 test objection information 59
SiebScreenViews methods 121

SiebTask methods 123 |

SiebTaskStep methods 126
SiebToolbar methods 135
SiebView methods 140
SiebViewApplets methods 141
GetRepositoryNameBylndex method

improving testing process 55
integration tests
process of executing 47
test phase objective 28
. h Interoperability Testing, definition 17
common test automation object IsColumnDrilldown method 108
methods 144 IsColumnExists method 108

SiebApplet methods 83 IsControlEnabled method 134
SiebApplication methods 89 IsControlExists method

SiebCurrency methods 100 SiebApplet methods 83

SiebMenu methods 111 SiebToolbar methods 135
SiebPageTabs methods 113 IsEnabled method 111

S!ebScreen methods 120 IsExists method

SiebScreenViews methods 121 common test automation object
SiebTask methods 123 methods 147
SiebTaskStep methods 126 SiebMenu methods 112
SiebTaskUIPane methods 128 SiebPageTabs methods 114
SiebToolbar methods 135 SiebPDQ methods 115

SiebView methods 140 SiebPicklist methods 117
SiebViewApplets methods 141 SiebThreadbar methods 133
GetSessionld method 88 SiebTree methods 138

GetS_tepBylndex method SiebViewApplets methods 141
SiebTaskUIPane methods 128 IsExpanded method 138

GetTgskBylndex method IsRowExpanded method 109
SiebTaskUIPane methods 128 iteration methodology

GetThreadltemBylndex method 133 about 18

GetTotalsValue method 107

GetTreeltemName 137

GetUIName method

Continuous Application Lifecycle 18

common test automation object J
methods 146 _]Ob titles 13
SiebMenu methods 111
SiebPageTabs methods 114 L
SiebScreenViews methods 121 load test automation
SiebToolbar methods 135 architectural overview 72
SiebViewApplets methods 141 benefits 71
guide best practices 73
organization 14 load test tools 71
resources, additional 15 load testing environment, setting up 73
parameterizing transaction data 72
H troubleshooting load testing issues 75
high interactivity applications
functional test automation objects 79 M
high-interactivity applications methodology
application hierarchy objects 80 Continuous Application Lifecycle 18
complex control objects 81 modular and iteration 18
core control objects 81 metrics
custom control objects 81 measuring system metrics 53

Testing Siebel Business Applications Version 8.1/8.2 153

Index m N

modular methodology

about 18

Continuous Application Lifecycle 18
Module Test

test phase objective 28

N

navigation objects 80
Negative Testing, definition 17
no content HTTP response error 76

O

object types

for high interactivity applications 79

for standard interactivity applications 148
organization of guide 14

P

performance automation 40
performance tests

definition 17

environment 31

executing tests 52

executing, about 22

failed transactions, monitoring 53

process overview 51

SQL trace, performing 52

system metrics, measuring 53

test cases, about 27

test phase objective 28
plan testing strategy 20
Positive Testing, definition 17
Process Test

test phase objective 28

R

refresh error 75
regression testing, definition 17
reliability testing, definition 17
resources, additional 15
reviews

and functional testing 44
risk assessment 29

S

same values error 76

scalability testing, definition 17

schedules, test plan 30

script transaction failures 54

SetActiveControl method
SiebApplet methods 84, 109

SetTimeOut method 89

SiebApplet methods
GetActiveControlName method 82
GetClassCount method 83
GetRepositoryName method 83
GetRepositoryNameBylIndex method 83
IsControlExists method 83
SetActiveControl method 84, 109

SiebApplet object 81

SiebApplication methods
GetBusyTime method 85
GetClassCount method 86
GetlLastErrorCode method 86
GetlLastErrorMessage method 86
GetLastOpld method 87
GetLastOpTime method 87
GetRepositoryName method 88
GetRepositoryNameBylIndex method 89
GetSessionld method 88
SetTimeOut method 89

SiebApplication object 84

SiebButton object 89

SiebCalculator methods 92
ClickKkeys method 92

SiebCalculator object 90

SiebCalendar object 92

SiebCheckbox object 94

SiebCommunicationsToolbar methods
GetButtonState method 97
GetButtonTooltip method 98

SiebCommunicationsToolbar object 96

SiebCurrency methods
GetClassCount method 100
GetRepositoryName method 100
GetRepositoryNameBylIndex method 100

SiebCurrency object 98

Siebel functional tests
process diagram 43
process phases 43
reviews 44
track defects subprocess 45

Siebel Test Automation
framework, secure access to 60
functional testing, using for 61

SiebInkData object 100

SiebList methods
GetActiveControl method 104
GetCellText method 105
GetColumnRepositoryName method 105
GetColumnRepositoryNameBylIndex

method 105
GetColumnSort method 106
GetColumnType method 106
GetColumnUIName method 107
GetTotalsValue method 107

154 Testing Siebel Business Applications Version 8.1/8.2

IsColumnDrilldown method 108
IsColumnExists method 108
IsRowExpanded method 109
SiebList object 101
SiebMenu methods
GetRepositoryName method 111
GetRepositoryNameBylIndex method
GetUIName method 111
IsEnabled method 111
IsExists method 112
SiebMenu object 110
SiebPageTabs methods
GetRepositoryName method 113
GetRepositoryNameBylndex method
GetUIName method 114
IsExists method 114
SiebPageTabs object 112
SiebPDQ methods
GetPDQByIndex method 115
IsExists method 115
SiebPDQ object 114
SiebPicklist methods
GetltemBylIndex method 117
IsExists method 117
SiebPicklist object 116
SiebRichText object 118
SiebScreen methods
GetClassCount method 120
GetRepositoryName method 120
GetRepositoryNameBylIndex method
SiebScreen object 119
SiebScreenViews methods
GetRepositoryName method 121
GetRepositoryNameBylIndex method
GetUIName method 121
SiebScreenViews object 120
SiebTask methods
GetClassCount method 123
GetRepositoryName method 123
GetRepositoryNameBylIndex method
SiebTask object 122
SiebTaskAssistant object 123
SiebTaskLink object 124
SiebTaskStep methods
GetClassCount method 126
GetRepositoryName method 126
GetRepositoryNameBylIndex method
SiebTaskStep object 125
SiebTaskUIPane methods
GetClassCount method 128
GetRepositoryNameBylndex method
GetStepBylndex method 128
GetTaskBylndex method 128
Start method 129

111

113

120

121

123

126

128

Index T

SiebTaskUIPane object 126
SiebText object 129
SiebTextArea object 130
SiebThreadbar methods
GetThreadltemBylIndex method 133
IsExists method 133
SiebThreadbar object 131
SiebToolbar methods
GetRepositoryName method 135
GetRepositoryNameBylIndex method
GetUIName method 135
IsControlEnabled method 134
IsControlExists method 135
SiebToolbar object 133
SiebTree methods
GetChildCount method 137
GetTreeltemName method 137
IsExists method 138
IsExpanded method 138
SiebTree object 136
SiebView methods
GetClassCount method 139
GetRepositoryName method 140
GetRepositoryNameBylIndex method
SiebView object 138
SiebViewApplets methods
GetRepositoryName method 141
GetRepositoryNameBylIndex method
GetUIName method 141
IsExists method 141
SiebViewApplets object 140
SQL trace, performing 52
standard interactivity
functional test objects 148
test object information 59
Start method
SiebTaskUIPane methods 129
stress testing, definition 17
structural test cases, about 27
system integration testing
definition 17
executing, about 21
system metrics, measuring 53
system objects 80

T

test cases
automation tools, about 40
definition 17
functional test cases 36
performance test cases 38
system test cases 38
test case authoring process 35

Testing Siebel Business Applications Version 8.1/8.2

135

140

141

155

Index m U

test planning, and 23
test development
deliverables 33
design and usability, reviewing 34
design evaluation 34
process diagram 33
test case authoring process 35
test environments
about and environment management
definition of 23
performance test environment 31
test object repository
hand-scripting components 62
test objectives
about 23
category groups 24
test plan schedule
about and inputs 30
test planning
overview 23
test plans
about 23
component inventory 29
purpose and components 25
test cases, about 26
test phase 28
test plan schedule 30
Test Script, definition 17
testing process
acceptance tests, about executing 21
design and develop tests 21
improving and continue testing, about

156

30

22

improving and continuing 55
overview 20
performance testing, about executing
plan testing strategy 20
Siebel functional tests, about executing
system integration tests, about
executing 21
timeout transaction failures 53
tools
functional test tools 57
load test tools 71
transaction data
parameterizing 72
transactions
monitoring failed transactions 53
troubleshooting
back or refresh error 75
cannot locate record error 77
end of file error 77
no content HTTP response error 76
same values error 76

U

UAT (User Acceptance Test), definition
unit tests

definition 17

test phase objective 28
Usability Testing, definition 17
usability, reviewing and design 34
User Acceptance Test, definition 18

Testing Siebel Business Applications Version 8.1/8.2

22

21

18

	Contents
	1 What’s New in This Release
	What’s New in Testing Siebel Business Applications, Version 8.1/8.2

	2 Overview of Testing Siebel Applications
	About Testing Siebel Business Applications
	How This Guide Is Organized
	Additional Resources

	Introduction to Application Software Testing
	Application Software Testing Methodology
	Common Test Definitions

	Modular and Iterative Methodology
	Continuous Application Lifecycle

	Testing and Deployment Readiness
	Overview of the Siebel Testing Process
	Plan Testing Strategy
	Design and Develop Tests
	Execute Siebel Functional Tests
	Execute System Integration Tests
	Execute Acceptance Tests
	Execute Performance Tests
	Improve and Continue Testing

	3 Plan Testing Strategy
	Overview of Test Planning
	Test Objectives
	Test Plans
	Test Cases
	Test Phase

	Component Inventory
	Risk Assessment

	Test Plan Schedule

	Test Environments
	Performance Test Environment

	4 Design and Develop Tests
	Overview of Test Development
	Design Evaluation
	Reviewing Design and Usability

	Test Case Authoring
	Functional Test Cases
	Test Case
	Test Data

	System Test Cases
	Performance Test Cases
	User Scenarios
	Data Sets

	Test Case Automation
	Functional Automation
	Performance Automation

	5 Execute Siebel Functional Tests
	Overview of Executing Siebel Functional Tests
	Reviews

	Track Defects Subprocess

	6 Execute System Integration and�Acceptance Tests
	Overview of Executing Integration and Acceptance Tests
	Execute Integration Tests
	Execute Acceptance Tests

	7 Execute Performance Tests
	Overview of Executing Performance Tests
	Executing Tests
	Performing an SQL Trace
	Measuring System Metrics
	Monitoring Failed Transactions

	8 Improve and Continue the Testing Process
	Improve and Continue Testing

	9 Automating Functional Tests
	Benefits of Functional Test Automation
	Key Features of Functional Test Tools

	Architectural Overview of Functional Testing
	Test Object Information in High-Interactivity Applications
	Test Object Information in Standard-Interactivity Applications

	Setting Up Your Functional Testing Environment
	Secure Access to the Siebel Test Automation Framework

	Using Siebel Test Automation for Functional Testing
	Hand-Scripting Functional Tests
	Using the Test Optimizer to Populate the Object Repository
	Hand-Scripting Components That Are Not in the Test Object Repository

	Best Practices for Functional Test Automation
	Best Practices for Functional Test Design
	Best Practices for Functional Test Script Development
	Best Practices for Functional Test Environment and Execution

	10 Automating Load Tests
	Benefits of Load Test Automation
	Key features of Load Test Tools

	Architectural Overview of Load Testing
	Parameterizing Transaction Data

	Setting Up Your Load Testing Environment
	Best Practices for Load Testing
	Troubleshooting Load Testing Issues
	Back or Refresh Error
	No Content HTTP Response
	Same Values Error
	Restoring the Context Error
	Cannot Locate Record Error
	End of File Error

	A Functional Test Object Reference
	Functional Test Automation Objects for High Interactivity Siebel Applications
	Application Hierarchy Objects
	System Objects
	Navigation Objects
	Core Control Objects
	Complex Control Objects
	Custom Control Objects

	SiebApplet Object
	SiebApplet Methods
	GetActiveControlName Method
	GetClassCount Method
	GetRepositoryName Method
	GetRepositoryNameByIndex Method
	IsControlExists Method
	SetActiveControl Method

	SiebApplication Object
	SiebApplication Methods
	GetBusyTime Method
	GetClassCount Method
	GetLastErrorCode Method
	GetLastErrorMessage Method
	GetLastOpId Method
	GetLastOpTime Method
	GetSessionId Method
	GetRepositoryName Method
	GetRepositoryNameByIndex Method
	SetTimeOut Method

	SiebButton Object
	SiebCalculator Object
	SiebCalculator Methods
	ClickKeys Method

	SiebCalendar Object
	SiebCheckbox Object
	SiebCommunicationsToolbar Object
	SiebCommunicationsToolbar Methods
	GetButtonState Method
	GetButtonTooltip Method

	SiebCurrency Object
	SiebCurrency Methods
	GetClassCount Method
	GetRepositoryName Method
	GetRepositoryNameByIndex Method

	SiebInkData Object
	SiebList Object
	SiebList Methods
	GetActiveControl Method
	GetCellText Method
	GetColumnRepositoryName Method
	GetColumnRepositoryNameByIndex Method
	GetColumnSort Method
	GetColumnType Method
	GetColumnUIName Method
	GetTotalsValue Method
	IsColumnDrilldown Method
	IsColumnExists Method
	IsRowExpanded Method
	SetActiveControl Method

	SiebMenu Object
	SiebMenu Methods
	GetRepositoryName Method
	GetRepositoryNameByIndex Method
	GetUIName Method
	IsEnabled Method
	IsExists Method

	SiebPageTabs Object
	SiebPageTabs Methods
	GetRepositoryName Method
	GetRepositoryNameByIndex Method
	GetUIName Method
	IsExists Method

	SiebPDQ Object
	SiebPDQ Methods
	GetPDQByIndex Method
	IsExists Method

	SiebPicklist Object
	SiebPicklist Methods
	GetItemByIndex Method
	IsExists Method

	SiebRichText Object
	SiebScreen Object
	SiebScreen Methods
	GetClassCount Method
	GetRepositoryName Method
	GetRepositoryNameByIndex Method

	SiebScreenViews Object
	SiebScreenViews Methods
	GetRepositoryName Method
	GetRepositoryNameByIndex Method
	GetUIName Method

	SiebTask Object
	SiebTask Methods
	GetClassCount Method
	GetRepositoryName Method
	GetRepositoryNameByIndex Method

	SiebTaskAssistant Object
	SiebTaskLink Object
	SiebTaskStep Object
	SiebTaskStep Methods
	GetClassCount Method
	GetRepositoryName Method
	GetRepositoryNameByIndex Method

	SiebTaskUIPane Object
	SiebTaskUIPane Methods
	GetClassCount Method
	GetRepositoryNameByIndex Method
	GetStepByIndex Method
	GetTaskByIndex Method
	Start Method

	SiebText Object
	SiebTextArea Object
	SiebThreadbar Object
	SiebThreadbar Methods
	GetThreadItemByIndex Method
	IsExists Method

	SiebToolbar Object
	SiebToolbar Methods
	IsControlEnabled Method
	IsControlExists Method
	GetRepositoryName Method
	GetRepositoryNameByIndex Method
	GetUIName Method

	SiebTree Object
	SiebTree Methods
	GetChildCount Method
	GetTreeItemName Method
	IsExpanded Method
	IsExists Method

	SiebView Object
	SiebView Methods
	GetClassCount Method
	GetRepositoryName Method
	GetRepositoryNameByIndex Method

	SiebViewApplets Object
	SiebViewApplets Methods
	GetRepositoryName Method
	GetRepositoryNameByIndex Method
	GetUIName Method
	IsExists Method

	Common Test Automation Object�Properties
	Common Test Automation Object�Methods
	GetClassCount Method
	GetRepositoryName Method
	GetRepositoryNameByIndex Method
	GetUIName Method
	IsExists Method

	Standard Interactivity Functional Test Objects
	Object Types for Standard Interactivity Applications

	Index

