
Siebel eScript Language
Reference
Siebel Innovation Pack 2013
Version 8.1/8.2
September 2013

Copyright © 2005, 2013 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due
to your access to or use of third-party content, products, or services.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information,
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Siebel eScript Language Reference Version 8.1/8.2 3

Contents

Siebel eScript Language Reference 1

Chapter 1: What’s New in This Release

Chapter 2: About Siebel eScript
Overview of Siebel eScript 15

About Siebel eScript Code 15
About the Script Assist Utility 18

About Data Types and Numbers 19
About Primitive Data Types 20
About Composite Data Types 20
Properties and Methods of Common Data Types 23
How Siebel eScript Converts Data Types 24
About Numbers 26

About Functions and Methods 29

Chapter 3: Using Siebel eScript
Using Operators in Siebel eScript 33

Overview of Mathematical Operators 33
Using a Shortcut Operation to Do an Arithmetic Operation 34
Modifying the Sequence That Siebel eScript Uses to Evaluate an Expression 35
Using Logical Operators and Conditional Expressions 35
Increasing or Decreasing the Value of a Variable 39
Using Less Code to Write an Else Statement 39
Concatenating Strings 40
Using a Bit Operator 41

Coding with Siebel eScript 41
Using Script Libraries 42
Using Strongly Typed and Typeless Variables 43
Declaring and Using Variables 44
Determining the Data Type of a Variable 47
Passing a Value to a Function 48
Preventing a Floating-Point Error 49
Using the Literal Value of a Special Character 49
Running Browser Script When Siebel CRM Starts a Siebel Application 50
Releasing an Object from Memory 50

Siebel eScript Language Reference Version 8.1/8.2

Contents ■

4

Monitoring the Performance of Your Script 51

Guidelines for Using Siebel eScript 51
Make Sure You Use the Correct Format for Names 51
Make Sure You Use the Correct Case 54
Use Expressions, Statements, and Statement Blocks 54
Use a Primitive Data Type Instead of an Object Data Type 55
Use White Space to Improve Readability 56
Use Comments to Document Your Code 57
Make Sure the JavaScript Interpreter Can Run a Function 57

Chapter 4: Statements Reference
Break Statement 59
Continue Statement 60
Do While Statement 61
For Statement 62
For In Statement 63
Goto Statement 64
If Statement 65
Switch Statement 67
Throw Statement 69
Try Statement 70
While Statement 72
With Statement 73

Chapter 5: Methods Reference
Overview of Methods Reference 75

Array Methods 76
Overview of Array Methods 76
About Array Functions 77
About Associative Arrays 78
Add Array Elements Method 79
Concatenate Array Method 80
Create Array Elements Method 80
Delete Last Array Element Method 81
Get Largest Array Index Method 82
Get Subarray Method 82
Insert Array Elements Method 83
Reverse Array Order Method 84
Shift Array Left Method 85
Shift Array Right Method 85
Sort Array Method 86

Contents ■

Siebel eScript Language Reference Version 8.1/8.2 5

String Methods 87
Overview of String Methods 87
Change String to Lowercase Method 89
Change String to Uppercase Method 89
Create String From Substring Method 90
Create String From Unicode Values Method 90
Get Character From String Method 91
Get Unicode Character From String Method 92
Get Regular Expression From StringVar Method 93
Get String Length Method 95
Parse String Method 96
Replace String Method 97
Search String for Substring Method 98
Search String for Last Substring Method 100
Search StringVar for Regular Expression Method 101

BLOB Methods 101
About the BLOB Descriptor 102
Get BLOB Data Method 103
Get BLOB Size Method 105
Write BLOB Data Method 106

Buffer Methods 108
Overview of Buffer Methods 109
About Buffer Constructors 109
Create Buffer Method 112
Get Buffer Data Method 113
Get Cursor Position Value From Buffer Method 114
Get String From Buffer Method 115
Put String in Buffer Method 116
Put Value in Buffer Method 117
Write Byte to Buffer Method 118
Buffer Size Property 119
Cursor Position in Buffer Property 119
Data in Buffer Property 120
Use Big Endian in Buffer Property 120
Use Unicode in Buffer Property 120

Date and Time Methods 121
Overview of Date Methods 122
About the Date Constructor 123
Convert Date and Time to String Method 125
Convert Date to Integer Method 126
Convert Date String to Date Object Method 126

Siebel eScript Language Reference Version 8.1/8.2

Contents ■

6

Convert Date to GMT String Method 127
Convert Integer Date to JavaScript Date Method 128
Get Day of Month Method 129
Get Day of Week Method 129
Get Full Year Method 130
Get Hours Method 130
Get Milliseconds Method 130
Get Minutes Method 131
Get Month Method 131
Get Seconds Method 131
Get Time Method 132
Get Time Zone Offset Method 132
Get Year Method 133
Set Date Method 133
Set Full Year Method 134
Set Hours Method 134
Set Milliseconds Method 135
Set Minutes Method 136
Set Month Method 136
Set Seconds Method 137
Set Time Method 137
Set Year Method 138

UTC Methods 139
Convert UTC Date to Readable Date Method 140
Get UTC Date Method 140
Get UTC Day of Month Method 141
Get UTC Day of Week Method 142
Get UTC Full Year Method 142
Get UTC Hours Method 143
Get UTC Milliseconds Method 143
Get UTC Minutes Method 143
Get UTC Month Method 144
Get UTC Seconds Method 144
Set UTC Date Method 144
Set UTC Full Year Method 145
Set UTC Hours Method 146
Set UTC Milliseconds Method 146
Set UTC Minutes Method 147
Set UTC Month Method 148
Set UTC Seconds Method 148

Global Methods 149
Overview of Global Methods 149

Contents ■

Siebel eScript Language Reference Version 8.1/8.2 7

Create COM Object Method 150
Get Array Length Method 152
Set Array Length Method 153
Undefine Method 154

Conversion Methods 154
Overview of Conversion Methods 155
Convert String to Floating-Point Number Method 156
Convert String to Integer Method 157
Convert Number to Exponential Notation Method 158
Convert Number to Fixed Decimal Method 159
Convert Number to Precision Method 159
Convert Special Characters to URL Method 160
Convert Unicode to ASCII Method 161
Convert Value to Boolean Method 162
Convert Value to Buffer Method 163
Convert Value to Bytes Method 165
Convert Value to Integer Method 165
Convert Value to Integer 32 Method 166
Convert Value to Unsigned Integer 16 Method 167
Convert Value to Unsigned Integer 32 Method 168
Convert Value to Number Method 169
Convert Value to Object Method 170
Convert Value to String Method 171
Evaluate Expression Method 173

Data Querying Methods 174
Is Defined Method 174
Is Finite Method 175
Is NaN Method 176
Exception Object 176
Function Object 177

Mathematical Methods 179
Overview of Mathematical Methods 180
Properties of the Math Object 180
Get Absolute Value Method 182
Get Arc Cosine Method 182
Get Arcsine Method 183
Get Arctangent Method 183
Get Arctangent 2 Method 184
Get Ceiling Method 185
Get Cosine Method 185
Get Exponential Method 186

Siebel eScript Language Reference Version 8.1/8.2

Contents ■

8

Get Floor Method 187
Get Logarithm Method 187
Get Maximum Method 188
Get Minimum Method 188
Get Quotient Method 189
Get Random Number Method 189
Get Remainder Method 190
Get Sine Method 191
Get Square Root Method 191
Get Tangent Method 191
Raise Power Method 192
Round Number Method 192

Regular Expression Methods 193
Overview of Regular Expression Methods 194
Properties of Regular Expressions 194
Compile Regular Expressions Method 196
Get Regular Expression from String Method 197
Is Regular Expression in String Method 200

Siebel Library Methods 201
Siebel Library Call DLL Method 201
Siebel Library Get Pointer Address Method 206
Siebel Library Peek Method 207
Siebel Library Write Data Method 208

Custom Methods 209
Overview of Custom Methods 210
How the Constructor Function Creates an Object 210
How a Function Is Assigned to an Object 211
About Object Prototypes 212

Chapter 6: C Language Library Reference
Overview of the Clib Object 215

Using Siebel eScript Methods Instead of Clib Methods 216

Clib File and Directory Methods 217
Overview of Clib File and Directory Methods 218
Clib Close File Method 218
Clib Create Temporary File Method 219
Clib Create Temporary File Name Method 219
Clib Delete File Method 220
Clib Lock File Method 220
Clib Open File Method 222

Contents ■

Siebel eScript Language Reference Version 8.1/8.2 9

Clib Rename File Method 224
Clib Reopen File Method 225
Clib Change Directory Method 226
Clib Create Directory Method 227
Clib Get Current Working Directory Method 228
Clib Remove Directory Method 229

Clib File Input and Output Methods 229
Overview of Clib File Input and Output Methods 230
Format Characters for Methods That Print and Scan 230
Clib Clear Buffer Method 236
Clib End of File Method 236
Clib Get Character Method 237
Clib Get Characters to Next Line Method 237
Clib Get Cursor Position Method 239
Clib Get Relative Cursor Position Method 239
Clib Move Cursor to Beginning of File Method 240
Clib Read From File Method 240
Clib Restore Cursor Position Method 243
Clib Set Cursor Position Method 243
Clib Scan and Convert File Method 244
Clib Scan and Convert from Input Device Method 246
Clib Unget Method 246
Clib Write Character Method 247
Clib Write Formatted String Method 248
Clib Write String to File Method 250
Clib Write to File Method 250

Clib String Methods 251
Clib Append String Method 252
Clib Compare Strings Method 253
Clib Convert String to Lowercase Method 254
Clib Copy String Method 254
Clib Get Formatted String Method 255
Clib Get Last Substring Method 256
Clib Get Substring Method 257
Clib Search String for Character Method 258
Clib Search String for Character Set Method 259
Clib Search String for Not Character Set Method 260
Clib Write Formatted String Method 261

Clib Buffer Methods 262
Clib Get Memory Method 262
Clib Compare Memory Method 263

Siebel eScript Language Reference Version 8.1/8.2

Contents ■

10

Clib Copy Memory Method 264
Clib Set Memory Method 264

Clib Mathematical Methods 265
Clib Create Random Number Method 265
Clib Divide Method 266
Clib Get Floating Point Number Method 267
Clib Get Hyperbolic Cosine Method 267
Clib Get Hyperbolic Sine Method 268
Clib Get Hyperbolic Tangent Method 268
Clib Get Integer Method 268
Clib Get Normalized Mantissa Method 269
Clib Initialize Random Number Generator Method 270

Clib Date and Time Methods 270
Overview of Clib Date and Time Methods 271
About the Objects That Each Clib Time Method Returns 272
Clib Convert Integer to GMT Method 272
Clib Convert Integer to Local Time Method 273
Clib Convert Time to Integer Method 274
Clib Convert Time Object to Integer Method 274
Clib Get Date and Time Method 276
Clib Get Formatted Date and Time Method 277
Clib Get Local Date and Time Method 279
Clib Get Difference in Seconds Method 279
Clib Get Tick Count Method 280

Clib Character Classification Methods 280
Overview of Clib Character Classification Methods 281
Clib Is Alphabetic Method 281
Clib Is Alphanumeric Method 282
Clib Is ASCII Method 282
Clib Is Control Method 282
Clib Is Digit Method 283
Clib Is Lowercase Method 283
Clib Is Printable Method 283
Clib Is Printable Not Space Method 284
Clib Is Punctuation Mark Method 284
Clib Is Space Method 284
Clib Is Uppercase Method 285
Clib Is Hexadecimal Method 285

Clib Error Methods 286
Clib Clear Error Method 286
Clib Get Error Number Method 286

Contents ■

Siebel eScript Language Reference Version 8.1/8.2 11

Clib Get Error Message Method 287
Clib Save Error Message In String Method 287
Clib Error Number Property 288

Other Clib Methods 288
Clib Convert Character to ASCII Method 288
Clib Modify Environment Variable Method 289
Clib Get Environment Variable Method 290
Clib Send Command Method 291
Clib Search Array Method 291
Clib Sort Array Method 293

Chapter 7: Siebel eScript Quick Reference
File and Directory Methods 295
String Methods 297
Array Methods and Properties 298
Mathematical Methods and Properties 299
BLOB Methods 301
Date and Time Methods 301
Buffer Methods and Properties 303
Siebel Library Methods 304
Conversion Methods 304
Character Classification Methods 305
Error Handling Methods 306
Other Methods 306

Appendix A: Compilation Error Messages
Format Error Messages 308
Semantic Error Messages 312
Semantic Warnings 316
Preprocessing Error Messages 320

Index

Siebel eScript Language Reference Version 8.1/8.2

Contents ■

12

Siebel eScript Language Reference Version 8.1/8.2 13

1 What’s New in This Release

No new features have been added to this guide for this release. This guide has been updated to
reflect only product name changes.

What’s New in Siebel eScript Language Reference, Version 8.1, Rev A
and Version 8.2
Table 1 lists changes in this version of the documentation to support this release of the software.

Table 1. What’s New in Siebel eScript Language Reference, Version 8.1, Rev A and Version 8.2

Topic Description

“About Local and Global Variables”
on page 44

New topic. Siebel eScript includes local and global variables.
You declare these variables differently. Access to these
variables also varies.

“Using a Local Variable Is Preferable
to Using a Global Variable” on
page 45

New topic. It is recommended that you use a local variable
where possible instead of a global variable.

“Declaring a Variable In a Statement
Block” on page 47

New topic. If you declare a variable in a statement block in a
method, then you can reference that variable anywhere in the
method.

“Running Browser Script When
Siebel CRM Starts a Siebel
Application” on page 50

New topic. You can configure Siebel CRM to run Browser
Script when it starts a Siebel application.

“For In Statement” on page 63 Modified topic. The DONT_ENUM attribute is a predefined
attribute that you cannot modify.

“Using the Throw Statement with
Nested Try Catch Blocks” on
page 69

New topic. To handle an exception, you can use the Throw
statement with nested Try catch blocks.

“Array Methods” on page 76 Modified topic. The following methods were added: Concatenate
Array, Get Subarray, Shift Array Left, and Shift Array Right.

“Example” on page 113 New topic. To avoid receiving an unhandled exception error,
you can use the RaiseErrorText method or the RaiseError
method instead of the Throw statement.

“Setting the Day to a Value That
Exceeds 31” on page 133

New topic. You can write code that adds any number of days
to a date. Siebel eScript automatically converts the number
of days to the correct month and year.

Siebel eScript Language Reference Version 8.1/8.2

What’s New in This Release ■

14

Additional Changes
This version of this book includes revised code that fixes a problem in the old code that caused an
Undefined Object error. For more information, see “The Arguments Property of a Function” on page 31.

This version of Siebel eScript Language Reference also includes structural changes to the content,
such as topic organization and heading arrangement.

“Using the Dispatch Identifier to Call
a COM Method” on page 151

New topic. To use the DISPID (Dispatch Identifier) of a COM
method to call that COM method, you make an
IDispatch::Invoke call.

“Using a Multivalue List to Avoid
Unexpected Rounding” on page 158

New topic. If you must use a value that exceeds 253, then it
is recommended that you use a calculated field that uses the
sum of a multivalue list instead of using Siebel eScript.

“Preprocessing Error Messages” on
page 320

Modified topic. You can organize constants and other
definitions in include files, and then use #include directives
to add these definitions to any source file.

Table 1. What’s New in Siebel eScript Language Reference, Version 8.1, Rev A and Version 8.2

Topic Description

Siebel eScript Language Reference Version 8.1/8.2 15

2 About Siebel eScript

This chapter describes Oracle’s Siebel eScript. It includes the following topics:

■ Overview of Siebel eScript on page 15

■ About Data Types and Numbers on page 19

■ About Functions and Methods on page 29

Overview of Siebel eScript
Siebel eScript is a programming language that is syntactically and semantically compatible with
JavaScript. It includes an editor, debugger, interpreter, and compiler. It runs on the Windows and
UNIX operating systems.

JavaScript is typically part of a Web browser and can run while the user is connected to the Internet.
Siebel eScript is part of Siebel CRM. The Siebel Application Object Manager interprets it at run time.
You do not require a Web browser to run it. It provides access to the hard disk and other parts of
the Siebel client or Siebel Server. ECMAScript does not provide this access.

Siebel Tools allows you to configure Siebel CRM without scripting. It is recommended that you use
Siebel eScript only after you determine that you cannot use any other tool. For more information,
see the chapter about using Siebel eScript in Siebel Object Interfaces Reference on Siebel Bookshelf.

About Siebel eScript Code
Siebel CRM uses two versions of Siebel eScript code:

■ T eScript code. Compiled by the original T eScript engine.

■ ST eScript code. Compiled by the ST eScript engine beginning with Siebel CRM version 8.0.
Siebel CRM introduced this code in Siebel CRM version 7.8. ST eScript code is the default code
beginning with Siebel CRM version 8.0.

This book mentions these code versions only if differences exist between how the code functions.

Features of ST eScript Code
ST eScript code includes the following features. T eScript code does not include these features:

■ Strong typing of variables. Sets the data type of a variable when you declare the variable. For
more information, see “Using Strongly Typed and Typeless Variables” on page 43.

■ Script Assist utility. For more information, see “About the Script Assist Utility” on page 18.

■ Fix and Go feature. Allows you to edit and debug a script without recompiling it.

Siebel eScript Language Reference Version 8.1/8.2

About Siebel eScript ■ Overview of Siebel eScript

16

■ ToolTip feature. Displays method signature data after you enter a method name in the Script
Editor.

■ Script profiling. For more information, see “Monitoring the Performance of Your Script” on
page 51.

For more information about these features, see Using Siebel Tools.

Compatibility Between ST eScript Code and T eScript Code
ST eScript code is mostly backward compatible with T eScript code. Table 2 describes features that
are not backward compatible.

Table 2. Incompatibilities Between ST eScript Code and T eScript Code

Feature Description

Strong typing For more information, see “Using Strongly Typed and Typeless Variables” on
page 43.

Comparison
operations

ST eScript code does the following:

■ If it compares typeless variables, then it compares object values.

■ If it compares strongly typed variables, then it compares object identities.

If you are not aware of these differences, then the results of a comparison
operation that involves strongly typed variables might be misleading. For more
information, see “Using Logical Operators and Conditional Expressions” on
page 35.

Implicit variable
type conversion

Siebel eScript does an implicit conversion differently depending on if a variable
is strongly typed or if it is typeless. For more information, see “How Siebel
eScript Converts Data Types” on page 24.

Methods Siebel eScript restricts the parameters in some methods differently depending
on if you use ST eScript code or T eScript code. If it restricts these parameters
differently, then this book describes those differences. For an example, see “Set
Array Length Method” on page 153.

Properties For more information, see “Overview of Regular Expression Methods” on
page 194.

Commands ST eScript code does not support the #Define statement or the #If statement.
As an alternative, you can use a Var statement. For example, consider the
following code:

#define MY_DEFINE "abc"

The following code replaces the #Define statement with the Var statement:

var MY_DEFINE = "abc";

Objects and
arrays

For more information, see “Referencing Objects and Arrays” on page 17.

About Siebel eScript ■ Overview of Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 17

Referencing Objects and Arrays
If you write code that references an array item, an object function, or object data, and:

■ You use T eScript code. Siebel eScript automatically creates a new object.

■ You use ST eScript code. Siebel eScript does not automatically create a new object. If you use
ST eScript code, then you must configure Siebel eScript to explicitly initialize the object.

Referencing Object Functions or Data
The following script runs correctly using T eScript code but fails at runtime using ST eScript code:

var oArr = new Array ();
oArr[0].m_Data =1;

You must configure Siebel eScript to initialize the data object that it references so that the script runs
correctly with ST eScript code. For example:

var oArr = new Array ();
oArr[0] = new Object ();
oArr[0].m_Data =1;

Using Arrays
The following script runs correctly using T eScript code but fails at runtime using ST eScript code:

var oArr = new Array ();
oArr[2][3].m_Data = 2;

You must configure Siebel eScript to initialize the data object that it references so that the script runs
correctly with ST eScript code. For example:

var oArr = new Array ();
oArr[2] = new Array ();
oArr[2][3] = new Object ();
oArr[2][3].m_Data = 2;

Reverting ST eScript Code to T eScript Code
If you use ST eScript code, then you can revert this code back to T eScript code. This technique is
not recommended.

To revert ST eScript code to T eScript code
1 Create a service request or call Oracle Global Customer Support.

For help with reverting ST eScript code to T eScript code, create a service request (SR) on My
Oracle Support. Alternatively, you can phone Oracle Global Customer Support directly to create
a service request or get a status update on your current SR. Support phone numbers are listed
on My Oracle Support.

2 In Siebel Tools, turn off the ST eScript engine.

For more information, see Using Siebel Tools.

Siebel eScript Language Reference Version 8.1/8.2

About Siebel eScript ■ Overview of Siebel eScript

18

3 Remove any script that you typed prior to compiling with the ST eScript engine.

4 Do a full compile of all objects in the repository.

About the Script Assist Utility
The Script Assist utility is a feature in Siebel Tools that helps you write ST eScript code. Starting with
Siebel CRM version 8.0, Script Assist can access information about object definitions in the Siebel
Repository File (SRF) that your script references, and then display this information in the Script
Assist window.

Script Assist limits the choices you can make according to the information that the SRF contains. This
feature helps prevent scripting errors and simplifies the scripting process. For example, it prevents
you from writing code that causes Siebel CRM to write to a read-only field, or to get a value from a
field that does not exist in the object. It displays the required and optional parameters for the
following items:

■ Siebel methods

■ Global methods

■ Global functions

■ Custom functions

■ Methods available for InvokeMethod calls

To identify the object that your script references, Script Assist can use the following object reference
key word in a script and display the appropriate fields for this object:

this

For more information about Script Assist, see Using Siebel Tools.

Table 3 lists the objects and methods that Script Assist can access in the SRF.

Table 3. Objects and Methods That Script Assist Can Access in the SRF

Object Method

Applet Script Assist can access the following methods:

■ BusComp

■ BusObject

Application Script Assist can access the following methods:

■ ActiveBusObject

■ ActiveViewName

■ GetBusObject

■ GetService

About Siebel eScript ■ About Data Types and Numbers

Siebel eScript Language Reference Version 8.1/8.2 19

About Data Types and Numbers
This topic describes data types in Siebel eScript. It includes the following topics:

■ “About Primitive Data Types” on page 20

■ “About Composite Data Types” on page 20

■ “Properties and Methods of Common Data Types” on page 23

■ “How Siebel eScript Converts Data Types” on page 24

■ “About Numbers” on page 26

For more information, see “Determining the Data Type of a Variable” on page 47.

Business Component Script Assist can access the following methods:

■ ActivateField

■ ActivateMultipleFields

■ Associate

■ BusObject

■ DeActivateFields

■ GetAssocBusComp

■ GetFieldValue

■ GetFormattedFieldValue

■ GetMultipleFieldValues

■ GetMvgBusComp

■ GetPickListBusComp

■ GetViewMode

■ ParentBusComp

■ SetFieldValue

■ SetFormattedFieldValue

■ SetMultipleFieldValues

Business Object GetBusComp

Business Service InvokeMethod

Table 3. Objects and Methods That Script Assist Can Access in the SRF

Object Method

Siebel eScript Language Reference Version 8.1/8.2

About Siebel eScript ■ About Data Types and Numbers

20

About Primitive Data Types
A primitive data type is a type of data that Siebel eScript provides as a fundamental part of the code.
It does not possess other properties or functions.

The bool, chars, and float data types must use lowercase.

Bool Data Type
The bool data type defines and manipulates a Boolean object. A Boolean value is true or false.

Chars Data Type
The chars data type defines and manipulates a string. A chars value is a sequence of alphanumeric
characters. It can include any sequence of 16-bit, unsigned integers.

Float Data Type
The float data type defines and manipulates a floating point number.

Integer is not a Siebel eScript data type. You can write code that uses a float variable. Some code
that expects an integer variable converts a float variable to an integer.

Undefined Data Type
If Siebel CRM saves nothing in a variable, then it is undefined. An undefined variable occupies space
until Siebel CRM saves a value in it. When Siebel CRM saves a value in a variable, it modifies the type
of the variable according to the value.

The following example determines if a variable is undefined:

var test;
if (typeof test == "undefined")
TheApplication().RaiseErrorText("test is undefined");

About Composite Data Types
This topic describes the composite data types that Siebel eScript uses. A composite data type is a
complex type of data that can include properties and functions.

Overview of the Object Data Type
The ECMAScript standard uses the following description for an object:

A member of the type Object. It is an unordered collection of properties, each of which includes
a primitive value, object, or function. A function stored in a property of an object is referred to
as a method.

About Siebel eScript ■ About Data Types and Numbers

Siebel eScript Language Reference Version 8.1/8.2 21

Siebel eScript does not use a class hierarchy that conforms to this ECMAScript standard. Instead, it
instantiates an object in the following ways:

■ As an Object type

■ From an object that it instantiates as an Object type

These objects are new object types that Siebel eScript can use to instantiate other objects. Each
object includes an implicit constructor function that it implements through the following command:

new

You can configure Siebel eScript to add properties dynamically to an object. An object inherits all the
properties of the objects that reside in the ancestral chain of the object.

The object type known as Object is a generic object type. If you declare an object as an Object type,
then it does not inherit properties from any object.

For more information, see “Use a Primitive Data Type Instead of an Object Data Type” on page 55.

Boolean Data Type
The value of a Boolean object is a bool value, which is true or false. It is a property of the Boolean
object. If you use a Boolean variable in a numeric context, then Siebel eScript does the following
conversion:

■ If the value of a bool variable is true, then it converts this value to 1.

■ If the value of a bool variable is false, then it converts this value to 0.

To create a Boolean object, you use the Boolean constructor in the type of expression:

new

String Data Type
The string value is a chars value. Siebel eScript adds it as a property of the String object. A pair of
double or single quotation marks brackets a string. For example:

"I am a string"
'so am I'
"344"

In this example, the 344 string is an array of characters. The number 344 is a value that Siebel
eScript can use in a numeric calculation.

To create a string data type, you use the String constructor in the following type of expression:

new

Siebel eScript does one of the following, depending on the context:

■ Converts a string to a number

■ Converts a number to a string

For more information, see “How Siebel eScript Converts Data Types” on page 24.

Siebel eScript Language Reference Version 8.1/8.2

About Siebel eScript ■ About Data Types and Numbers

22

Number Data Type
The value of a number is a float value. It is a property of the Number object.

To create a number object, you use the Number constructor in the following type of expression:

new

For more information, see “About Numbers” on page 26.

Array Data Type
An array is a series of data that Siebel eScript stores in a variable. Each datum is associated with an
index number or string. The following example illustrates how Siebel eScript stores data in an array:

var Test = new Array;
Test[0] = "one";
Test[1] = "two";
Test[2] = "three";

In this example, the Test variable is an array that includes three strings. You can write code that uses
an array variable as one unit. To reference a string individually, you can append the bracketed index
of the element after the array name.

To reference a property:

■ An array uses an index.

■ An object uses a property name or a method name.

For more information, see “Array Methods” on page 76.

Null Data Type
The null object indicates that a variable is empty. It does not contain a value, although it might have
previously contained a value. The following term identifies a null data type:

null

The following keyword allows you to compare a value to a null object:

null

Null includes a literal representation. The following example is valid:

var test = null;

Siebel eScript can compare any variable that contains a null value to a null literal.

About Siebel eScript ■ About Data Types and Numbers

Siebel eScript Language Reference Version 8.1/8.2 23

Other Object Types That Siebel eScript Supports
Table 4 lists other object types that Siebel eScript supports.

Properties and Methods of Common Data Types
Common data types include properties and methods that you can use with any variable of this type.
Any string variable can use any string method. Examples of common data types include a number or
string. For example, assume you use a numeric variable named VariableA and you must convert it
to a string. The following example illustrates how you can use the toString method to convert a
numeric variable to a string:

Table 4. Other Object Types That Siebel eScript Supports

Object Description

Application For more information, see Siebel Object Interfaces Reference.

BLOB For more information, see “BLOB Methods” on page 101.

BLOB
Descriptor

For more information, see “About the BLOB Descriptor” on page 102.

Buffer For more information, see “Buffer Methods” on page 108.

Business
Component

For more information, see “Overview of Date Methods” on page 122.

Business
Object

For more information, see Siebel Object Interfaces Reference.

CfgItem The CfgItem object is a Siebel Product Configuration object.

Clib For more information, see “Overview of the Clib Object” on page 215.

CTIData For more information, see Siebel Communications Server Administration Guide.

CTIService For more information, see Siebel Communications Server Administration Guide.

Date For more information, see “Overview of Date Methods” on page 122.

Exception For more information, see “Function Object” on page 177.

File For more information, see “Clib Open File Method” on page 222.

Math For more information, see “Mathematical Methods” on page 179.

Property Set For more information, see Siebel Object Interfaces Reference.

Regular
Expression

For more information, see “Regular Expression Methods” on page 193.

SELib For more information, see “Siebel Library Methods” on page 201.

Service For more information, see Siebel Object Interfaces Reference.

Web Applet For more information, see Siebel Object Interfaces Reference.

Siebel eScript Language Reference Version 8.1/8.2

About Siebel eScript ■ About Data Types and Numbers

24

var VariableA = 5;
var VariableB = num.toString();

After this code finishes, VariableA contains the number 5 and VariableB contains the string 5.

The following methods are common to variables:

■ ValueOf method. Returns the value of a variable. Value is an implicit property of some objects,
including number, string, and Boolean objects.

■ ToString method. Returns the value of a variable that is expressed as a string. Value is an
implicit property of number and Boolean objects.

How Siebel eScript Converts Data Types
Siebel eScript implicitly converts data types in many mixed-type contexts. You must use conversion
methods to make sure your code does the required conversions. For more information, see
“Conversion Methods” on page 154.

Concatenation Can Cause a Conversion
Siebel eScript converts the data type of a typeless variable in the following situations:

■ If you write Siebel eScript code that subtracts a string from a number, or that subtracts a number
from a string, then it converts this string to a number and subtracts the two values.

■ If you write Siebel eScript code that adds a string to a number, or that adds a number to a string,
then it converts this number to a string and concatenates the two strings.

Siebel eScript must always convert a string to a base 10 number. This string must contain only digits.
For example, the following string does not convert to a number because Text is meaningless as part
of a number in Siebel eScript:

110Text

The following examples result in Siebel eScript doing a conversion:

s = "dog" + "house" // s = "doghouse", two strings are concatenated.
t = "dog" + 4 // t= "dog4", a number is converted to a string
u = 4 + "4" // u = "44", a number is converted to a string
v = 4 + 4 // v = 8, two numbers are added
w = 23 - "17" // w = 6, a string is converted to a number

Using a Conversion Method
You must use a conversion method to make sure Siebel eScript does conversions when it adds,
subtracts, or does other arithmetic operations. The following example uses a conversion method to
convert a string input to a numeric value:

var n = "55";
var d = "11";
var division = Clib.div(ToNumber(n), ToNumber(d));

About Siebel eScript ■ About Data Types and Numbers

Siebel eScript Language Reference Version 8.1/8.2 25

Use can use the parseFloat method of the global object to specify a more stringent conversion. For
more information, see “Convert String to Floating-Point Number Method” on page 156.

You must use a conversion method in situations where Siebel eScript does not do a conversion. Siebel
eScript includes many global methods that convert data types. For more information, see “Conversion
Methods” on page 154.

Setting the Data Type Can Cause a Conversion
Siebel eScript does conversions differently depending on if the variable is typeless or strongly typed.
For more information, see “Using Strongly Typed and Typeless Variables” on page 43.

How Siebel eScript Converts a Typeless Variable
If Siebel eScript sets the data type for a typeless variable, then it converts this variable only to
another typeless variable. For example, the following examples result in Siebel eScript converting
VariableA to a string:

var VariableA = 7.2;
var VariableB = “seven point 2”
VariableA = VariableB;

How Siebel eScript Converts a Strongly Typed Variable

Table 5 describes how Siebel eScript converts a strongly typed variable. In this table, assume that
Siebel eScript must convert VariableA to VariableB.

Table 5 on page 25 uses the following abbreviations:

■ Yes. Siebel eScript converts the variable.

Table 5. How Siebel eScript Converts a Strongly Typed Variable

VariableA
Type VariableB Type

Value Chars Bool Float Object String Number Boolean Other

Value Same Yes Yes Yes Yes Yes Yes Yes Yes

Chars Yes Same Yes Yes Yes Yes Yes Yes Yes W

Bool Yes Yes Same Yes Yes Yes Yes Yes Yes

Float Yes Yes, W Yes Same Yes, W Yes, W Yes Yes Yes, W

Object Yes Err Err Err Same None None None None

String Yes Yes Err Err Err Same Err Err Err

Number Yes Err Err Yes Err Err Same Err Err

Boolean Yes Err Yes Err Err Err Err Same Err

Other Yes Err Err Err Err Err Err Err Same

Siebel eScript Language Reference Version 8.1/8.2

About Siebel eScript ■ About Data Types and Numbers

26

■ W. Siebel Tools might display a message when it compiles the script. This message warns that
the conversion might not occur. The warning and conversion depend on the properties of the
variables that are involved when Siebel eScript sets the data type.

■ Err. A compilation error occurs.

■ None. No conversion is required. A conversion is not typically required to modify an Object
variable to a specialized object type.

■ Same. VariableA and VariableB are of the same type.

■ Value. Indicates a typeless variable. It describes the conversion that Siebel eScript does in the
following situations:

■ Convert a strongly typed variable to a typeless variable.

■ Convert a typeless variable to a strongly typed variable.

■ Other. Indicates predefined types and custom types that are not the following types:

■ Object

■ String

■ Number

■ Boolean

About Numbers
This topic describes the types of numbers that you can use with Siebel eScript. Siebel eScript treats
a number that contains a character other than a decimal point as a string. For example, the number
100,000 is a string, including the comma. The exception is hexadecimal numbers and scientific
notation.

The number types that this topic describes are not data types. You cannot write code that uses one
of these number types as a data type in the declaration of a strongly typed variable. For more
information, see “Using Strongly Typed and Typeless Variables” on page 43.

Integer Numbers
An integer number is a positive whole number, a negative whole number, or zero. Siebel eScript
recognizes the following:

■ An integer constant or an integer literal in decimal, hexadecimal, or octal notation.

■ A decimal constant or a decimal literal in decimal representation.

You cannot write code that strongly types a variable as an integer. You can write code that uses the
float primitive or the value of the float primitive as an integer. For more information, see “Using
Strongly Typed and Typeless Variables” on page 43.

Hexadecimal Numbers
A hexadecimal number is a number that uses base 16 digits. It uses digits from the following sets:

About Siebel eScript ■ About Data Types and Numbers

Siebel eScript Language Reference Version 8.1/8.2 27

■ 0 through 9

■ A through F

■ a through f

The following format precedes a hexadecimal number:

0x

A hexadecimal number is not case-sensitive in Siebel eScript.

Table 6 lists example hexadecimal numbers and their decimal equivalents.

Octal Numbers
An octal number is a number that uses base 8 digits. It includes digits from the following set:

0 through 7

A zero precedes an octal number.

Table 7 lists example octal numbers and their decimal equivalents.

Table 6. Example Hexadecimal Numbers and Their Decimal Equivalents

Hexadecimal Number Decimal Number

0x1 1

0x01 1

0x100 256

0x1F 31

0x1f 31

0xABCD 43981

var a = 0x1b2E var a = 6958

Table 7. Example Octal Numbers and Their Decimal Equivalents

Octal Number Decimal Number

00 0

05 5

077 63

var a = 0143 var a = 99

Siebel eScript Language Reference Version 8.1/8.2

About Siebel eScript ■ About Data Types and Numbers

28

Floating Point Numbers
A floating-point number is a number that includes a whole part and a fractional part. A decimal
separates these parts. For example, 10.33. Some developers refer to a floating-point number as a
float. The float data type is not a floating-point number. For more information, see “Float Data Type”
on page 20.

For more information, see “Preventing a Floating-Point Error” on page 49.

Floating Decimal Numbers
A floating decimal number is a number that uses the same digits as a decimal integer but uses a
period to indicate the fractional part of the number. For example:

0.32, 1.44, 99.44
var a = 100.55 + .45;

Scientific Numbers
A scientific number is a number that uses decimal digits and exponential notation. The following
items represent exponential notation:

■ e

■ E

A scientific number is useful if you must use very large or very small numbers. Scientific notation is
also known as exponential notation.

Table 8 lists example scientific numbers and their decimal equivalents.

NaN Numbers
NaN is a value that is an abbreviation for the following phrase:

not a number

NaN is not a data type. NaN does include a literal representation. To test for NaN, you must use the
isNaN function. The following example illustrates this usage:

Table 8. Example Scientific Numbers and Their Decimal Equivalents

Scientific Number Decimal Number

4.087e2 408.7

4.087E2 408.7

4.087e+2 408.7

4.087E-2 0.04087

var a = 5.321e31 + 9.333e-2 var a = 53210000000000000000000000000000 + 0.09333

About Siebel eScript ■ About Functions and Methods

Siebel eScript Language Reference Version 8.1/8.2 29

var Test = "Test String";
if (isNaN(parseInt(Test)))
TheApplication().RaiseErrorText("Test is Not a Number");

If the parseInt function attempts to parse Test String into an integer, then it returns NaN because
Test String does not represent a number.

Numeric Constants
You can write code that references a numeric constant as a property of the Number object. A numeric
constant does not include a literal representation.

Table 9 describes some numeric constants.

About Functions and Methods
A function is an independent section of code that does the following:

1 Receives information

2 Performs some action on this information

3 Returns a value to the item that called it

It begins with the following statement:

Function functionname

It ends with the following statement:

End Function

You use the same format as you use with a variable to name a custom function. You can write code
that uses any valid variable name as a function name. It is recommended that you use a name that
describes the work that the function performs.

You can write code that calls a function repeatedly from various objects or script. It is similar to a
subroutine. To call a function, you must know what information the function requires as input and
what information it provides as output. This book describes the predefined functions that come with
Siebel eScript. You can write code that uses these functions any time you use the Siebel eScript
interpreter.

Table 9. Numeric Constants in Siebel eScript

Numeric Constant Value Description

Number.MAX_VALUE 1.7976931348623157e+308 Largest positive number.

Number.MIN_VALUE 2.2250738585072014e-308 Smallest positive nonzero value.

Number.NaN NaN Not a number.

Number.POSITIVE_INFINITY Infinity Number greater than MAX_VALUE.

Number.NEGATIVE_INFINITY -Infinity Number less than MIN_VALUE.

Siebel eScript Language Reference Version 8.1/8.2

About Siebel eScript ■ About Functions and Methods

30

You can write code that uses a function anywhere that you can use a variable. To use a function, you
do the following:

■ To declare it, you use the function keyword.

■ To determine the data that Siebel eScript must pass to the function, you include the function
operator. To include this operator, you use a pair of parentheses immediately after the function
name. For example:

TheApplication.RaiseErrorText()

A Siebel VB method is a function that is part of an object or class. It can include a predefined
procedure that you can use to call a function that does an action or a service for an object.

A Siebel VB statement is a complete instruction.

For more information, see Passing a Value to a Function on page 48.

Example of a Function
The TheApplication.RaiseErrorText function is an example of a function that allows you to display
formatted text if an error occurs. It does the following work:

■ Receives a string from the function that calls it

■ Displays this string in an alert box in the Siebel client

■ Stops the script

About Function Scope
A function is global. Siebel eScript can call it from anywhere in a script in the object where you
declare it. The examples in this topic achieve the following results:

■ The code passes the 3 and 4 literals as parameters to the SumTwo function.

■ The SumTwo function includes corresponding a and b variables. These variables contain the
literal values that Siebel eScript passes to the function.

Example of Calling a Function as a Function
The following example calls the SumTwo function:

function SumTwo(a, b)
{

return (a + b)
}

TheApplication().RaiseErrorText(SumTwo(3, 4));

Example of Using a Method to Call a Function
The following example uses a method of the global object to call the SumTwo function:

About Siebel eScript ■ About Functions and Methods

Siebel eScript Language Reference Version 8.1/8.2 31

function SumTwo(a, b)
{

return (a + b)
}

TheApplication().RaiseErrorText(global.SumTwo(3, 4));

The Arguments Property of a Function
The arguments property of a function is a list of the arguments that Siebel eScript passes to the
function. The first argument is arguments[0], the second argument is arguments[1], and so on. You
can write code that references the arguments property for a function only in that same function.

You can configure a function that includes an indefinite number of arguments. The following example
uses a variable number of arguments, and then returns the sum:

function SumAll()
{

var total = 0;
for (var ssk = 0; ssk < arguments.length; ssk++)

{
total += arguments[ssk];

}
return total;

}

About Recursive Functions
A recursive function is a type of function that calls itself or that calls another function that calls the
first function. Siebel eScript allows recursion. Each call to a function is independent of any other call
to this function. If a function calls itself too many times, then the script runs out of memory and
aborts.

In the following example, the factor function calls itself so that it can factor a number. Factoring is
an appropriate use of recursion because it is a repetitive process where the result of one factor uses
the same rules to factor the next result:

function factor(i) //recursive function to print factors of i,
{// and return the number of factors in i

if (2 <= i)
{

for (var test = 2; test <= i; test++)
{

if (0 == (i % test))
{
// found a factor, so print this factor then call
// factor() recursively to find the next factor

return(1 + factor(i/test));
}
}
}

Siebel eScript Language Reference Version 8.1/8.2

About Siebel eScript ■ About Functions and Methods

32

// if this point was reached, then factor not found
return(0);

}

Error Checking with Functions
If a function fails, then some functions return a special value. Consider the following example:

■ To allow a script to read from or write to a file, the Clib.fopen method opens or creates this file.

■ If the script calls the Clib.fopen method but this method cannot open a file, then the method
returns null.

■ If the script then attempts to read from or write to this file, then Siebel CRM creates an error.

To prevent this error, you can use the following code to determine if Clib.fopen returns null when it
attempts to open a file. If it does return null, then you can write code that aborts the script and
displays an error message:

var fp = Clib.fopen("myfile.txt", "r");
var fp = Clib.fopen("myfile.txt", "r");
if (null == fp)//make sure null is not returned
{

TheApplication().RaiseErrorText("Error with fopen as returned null " +
"in the following object: " + this.Name() + " " + e.toString() + e.errText());

}

For more information, see “Overview of the Clib Object” on page 215.

Where Data Resides
Data in a script resides in a literal or in a variable. The following example includes variables and
literals:

var TestVar = 14;
var aString = "test string";

This code does the following:

■ Saves the following literal value to the TestVar variable:

14

■ Saves the following literal value to the aString variable:

test string

After you save a literal value in a variable, you can reference this variable anywhere in the script
where you declare the variable.

Siebel eScript Language Reference Version 8.1/8.2 33

3 Using Siebel eScript

This chapter describes how to use Siebel eScript. It includes the following topics:

■ Using Operators in Siebel eScript on page 33

■ Coding with Siebel eScript on page 41

■ Guidelines for Using Siebel eScript on page 51

Using Operators in Siebel eScript
This topic describes operators you can use in Siebel eScript. It includes the following topics:

■ “Overview of Mathematical Operators”

■ “Using a Shortcut Operation to Do an Arithmetic Operation”

■ “Modifying the Sequence That Siebel eScript Uses to Evaluate an Expression”

■ “Using Logical Operators and Conditional Expressions” on page 35

■ “Increasing or Decreasing the Value of a Variable” on page 39

■ “Using Less Code to Write an Else Statement” on page 39

■ “Concatenating Strings” on page 40

■ “Using a Bit Operator” on page 41

Overview of Mathematical Operators
Table 10 describes the basic arithmetic operators you can use in Siebel eScript.

Table 10. Basic Arithmetic Operators in Siebel eScript

Operator Description

= Make one number equal to another number.

+ Add two numbers.

- Subtract one number from another number.

* Multiply two numbers.

/ Divide one number by another number.

% Return a remainder after a division operation. It is a modulo.

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Using Operators in Siebel eScript

34

The following examples use variables and arithmetic operators:

var i;
i = 2; //i is now 2
i = i + 3; //i is now 5, (2 + 3)
i = i - 3; //i is now 2, (5 - 3)
i = i * 5; //i is now 10, (2 * 5)
i = i / 3; //i is now 3.333..., (10 / 3)
i = 10; //i is now 10
i = i % 3; //i is now 1, (10 mod 3)

If uncertainty exists about how Siebel eScript might evaluate an expression, then it is recommended
that you use parentheses. This recommendation is true even if you do not require parentheses to
modify the sequence that Siebel eScript uses to evaluate expressions.

Using a Shortcut Operation to Do an Arithmetic
Operation
A shortcut operation is a combination of the equal operator (=) with another operator. You can use
a shortcut operation to reduce the amount of code you write. This technique does the following:

■ To do an operation on the value that occurs to the left of the equal operator, it uses the value
that occurs to the right of the equal operator.

■ Saves the result in the value that occurs to the left of the equal operator.

To use a shortcut operation to do an arithmetic operation
■ Add an operator immediately before the equal operator.

For example, instead of writing i = i + 3, you can write i += 3.

Table 11 describes the shortcut operators that you can use in Siebel eScript.

The following example uses shortcut operators:

Table 11. Shortcut Operators You Can Use in Siebel eScript

Shortcut Operation Description

+= Add a value to a variable.

-= Subtract a value from a variable.

*= Multiply a variable by a value.

/= Divide a variable by a value.

%= Return a remainder after a division operation.

Using Siebel eScript ■ Using Operators in Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 35

var i;
i += 3; //i is now 5 (2 + 3). Same as i = i + 3.
i -= 3; //i is now 2 (5 - 3). Same as i = i - 3.
i *= 5; //i is now 10 (2 * 5). Same as i = i * 5.
i /= 3; //i is now 3.333...(10 / 3). Same as i = i / 3.
i = 10; //i is now 10
i %= 3; //i is now 1, (10 mod 3). Same as i = i % 3.

Modifying the Sequence That Siebel eScript Uses to
Evaluate an Expression
Siebel eScript evaluates the operators in an expression in the following order:

1 Arithmetic operators

2 Comparison operators

3 Logical operators

You can write code that modifies this order.

To modify the sequence that Siebel eScript uses to evaluate an expression
■ Use parentheses to group operations.

Siebel eScript performs operations in parentheses before it performs operations that occur outside
of parentheses. It performs multiplication operations and division operations in an expression before
it performs addition operations and subtraction operations. You can use parentheses to modify this
sequence.

Table 12 includes an example of how Siebel eScript calculates a grouped expression.

Using Logical Operators and Conditional Expressions
Note the following:

■ A logical operator is a type of operator that compares two values, and then determines if the
result is true or false. A variable or any other expression can include true or false.

■ A conditional expression is an expression that does a comparison.

Table 12. Example of Calculating a Grouped Expression

No Grouping Equivalent Not Equivalent

4 * 7 - 5 * 3 = 13

Siebel eScript calculates this
expression as 28 - 15 = 13.

(4 * 7) - (5 * 3) = 13

Siebel eScript calculates this
expression as 28 - 15 = 13.

4 * (7 - 5) * 3 = 24

Siebel eScript calculates this
expression as 4 * 2 * 3 = 24.

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Using Operators in Siebel eScript

36

You can use a logical operator to make a decision about the statements that reside in a script to run
according to how Siebel eScript evaluates a conditional expression.

Table 13 describes the logical operators that you can use in Siebel eScript.

Table 13. Logical Operators That You Can Use in Siebel eScript

Logical Operator Description

! Not. Reverse of an expression. If (a+b) is true, then !(a+b) is false.

&& And. If the value of every expression in the statement is true, then the entire
statement is true. For example, if the first expression is false, then Siebel
eScript does not evaluate the second expression because the entire
expression is false.

|| Or. If the value of one expression in the statement is true, then the entire
statement is true. For example, if the first expression is true, then Siebel
eScript does not evaluate the second expression because the entire
expression is true.

== Equality. If the values of all expressions in the statement are equal to each
other, then the entire statement is true. If the value of one expression is not
equal to the value of any other expression, then the entire statement is false.

CAUTION: The equality operator (==) is different from the assignment
operator (=). If you use the assignment operator to test for equality, then
your script fails because Siebel eScript assigns the right hand side of the
expression to a variable that resides on the left hand side of this expression.

For more information, see “Using the Equality Operator with a Strongly Typed
Variable” on page 37.

!= Inequality. If the value of one expression is different from the value of any
other expression, then the entire statement is true. If the value of all
expressions in the statement are equal, then the entire statement is false.

< Less than. If the expression is a < b, and if a is less than b, then the
statement is true.

> Greater than. If the expression is a > b, and if a is greater than b, then the
statement is true.

<= Less than or equal to. If the expression is a <= b, and if a is less than or
equal to b, then the statement is true.

>= Greater than or equal to. If the expression is a >= b, and if a is greater
than or equal to b, then the statement is true.

Using Siebel eScript ■ Using Operators in Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 37

Example of Using Logical Operators and Conditional Expressions
Assume you design a simple guessing game where you configure Siebel CRM to choose a number
between 1 and 100, and the user attempts to guess the value of this number. The game provides
feedback if the user is correct or if the user answer is higher or lower than the number that the game
chooses. The following Siebel eScript code implements this guessing game. Assume that the
GetTheGuess function is a custom function that gets the guess:

var guess = GetTheGuess(); //get the user input, which is 1, 2, or 3
target_number = 2;
if (guess > target_number)
{

TheApplication().RaiseErrorText(“Guess is too high.”);
}
if (guess < target_number)
{

TheApplication().RaiseErrorText(“Guess is too low.”);
}
if (guess == target_number);
{

TheApplication().RaiseErrorText(“You guessed the number!”);
}

In this example, the action that Siebel eScript performs depends on if the value in the parenthesis
in an If statement is true or false:

■ True. It runs the statement block that follows this If statement.

■ False. It ignores the statement block that follows this If statement and runs the script that
occurs immediately after the statement block.

Using the Equality Operator with a Strongly Typed Variable
If ST eScript code does an equality operation, then it compares different objects depending on the
following types of variables that are involved in the comparison:

■ Typeless variable. It compares object values.

■ Strongly typed variable. It compares object identities.

For more information, see “Using Strongly Typed and Typeless Variables” on page 43.

Example of Using the Equality Operator with Strongly Typed Variables
The comparison in the following example involves strongly typed variables. The result is always not
equal because Siebel eScript compares object identities in this example. It does not compare object
values:

function foo ()
{
var oStr1 : String = new String ("aa");
var oStr2 : String = new String ("aa");
if (oStr1 == oStr2)

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Using Operators in Siebel eScript

38

TheApplication ().RaiseErrorText ("equal");
else

TheApplication ().RaiseErrorText ("not equal");

}

Example of Using the Equality Operator with Typeless Variables
The result of the comparison in the following example is always not equal. The variables are typeless.
The String is an object and Siebel eScript does object comparisons in the If statement:

function foo ()
{
var oStr1 = new String ("aa");
var oStr2 = new String ("aa");
if (oStr1 == oStr2)

TheApplication ().RaiseErrorText ("equal");
else

TheApplication ().RaiseErrorText ("no equal");
}

Making Sure Siebel eScript Compares Variable Values in an Equality Operation
This topic describes how to make sure Siebel eScript compares the values of variables that reside in
an equality operation.

To make sure Siebel eScript compares variable values in an equality operation
■ Use the valueOf method.

For example:

function foo ()
{
var oStr1 = new String ("aa");
var oStr2 = new String ("aa");
if (oStr1.valueOf () == oStr2.valueOf ())

TheApplication ().RaiseErrorText ("equal");
else

TheApplication ().RaiseErrorText ("no equal");
}

■ Use primitive data types.

For example:

function foo ()
{
var oStr1 : chars = "aa"
var oStr2 : chars = "aa";
if (oStr1 == oStr2)

TheApplication ().RaiseErrorText ("equal");
else

TheApplication ().RaiseErrorText ("no equal");
}

Using Siebel eScript ■ Using Operators in Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 39

Increasing or Decreasing the Value of a Variable
You can use the increment or decrement operator in the following ways:

■ Before a variable. Siebel eScript modifies the variable before it uses it in a statement.

■ After a variable. Siebel eScript modifies the variable after it uses it in a statement.

These operators add or subtract 1 from a value. For example, i++ is shorthand for i = i + 1.

To increment or decrement a variable
■ To add 1 to a variable, you use the following operator:

++

■ To subtract 1 from a variable, you use the following operator:

--

The following example uses increment and decrement operators:

var i;
var j;
i = 4; //i is 4
j = ++i; //j is 5 and i is 5. Siebel eScript incremented i first.
j = i++; //j is 5, i is 6. Siebel eScript incremented i last.
j = --i; //j is 5, i is 5. Siebel eScript incremented i first.
j = i--; //j is 5, i is 4 Siebel eScript incremented i last.
i++; //i is 5. Siebel eScript incremented i.

Using Less Code to Write an Else Statement
The conditional operator is a type of operator that allows you to use less code when you write an
Else statement. A statement that includes a conditional operator is more difficult to read than an If
statement. It is recommended that you use a conditional operator only if the expressions in the If
statements are brief.

The following format illustrates how the question mark (?) represents the conditional operator:

variable = expressionA ? expressionC : expressionC

where:

■ expressionA is the expression that Siebel eScript evaluates first.

■ expressionB is the expression that Siebel eScript evaluates if expressionA is true. If expressionA
is true, then Siebel eScript replaces the value of the entire expression with the value of
expressionB.

■ expressionC is the expression that Siebel eScript evaluates if expressionA is true. If expressionA
is false, then Siebel eScript replaces the value of the entire expression with the value of
expressionC.

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Using Operators in Siebel eScript

40

To use less code to write an Else statement
■ Use a conditional operator instead of an Else statement.

Examples of Using the Conditional Operator
In the following example, the expression is true and Siebel eScript sets the value of variableA to 100:

variableA = (5 < 6) ? 100 : 200;

Consider the following example:

TheApplication().RaiseErrorText("Name is " + ((null==name) ? "unknown" : name));

If the name variable contains:

■ A null value, then Siebel CRM displays the following text:

Name is unknown

■ A value that is not null, such as Pat, then Siebel CRM displays the following text:

Name is Pat

Concatenating Strings
Concatenating is the act of stringing two items together in consecutive order. You can write code that
concatenates two or more strings in Siebel eScript.

To concatenate strings
■ Use the plus (+) operator between two strings.

Examples of Concatenating Strings
The following example uses the addition (+) operator between two strings:

var proverb = "A rolling stone " + "gathers no moss.";

This example sets the value of the proverb variable to the following text:

A rolling stone gathers no moss.

The following example concatenates a string and a number:

var newstring = 4 + "get it";

This example sets the value of the new string variable to the following text:

4get it

Using Siebel eScript ■ Coding with Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 41

Using a Bit Operator
Siebel eScript includes operators that you can use to work directly on the bits that reside in a byte
or in an integer. To use a bit operator, you must possess knowledge about bits, bytes, integers, binary
numbers, and hexadecimal numbers. In most situations you do not need to use a bit operator.

Table 14 describes the bit operators you can use in Siebel eScript.

Coding with Siebel eScript
This topic describes how to do some basic tasks that include Siebel eScript. It includes the following
topics:

■ “Using Script Libraries” on page 42

■ “Using Strongly Typed and Typeless Variables” on page 43

■ “Declaring and Using Variables” on page 44

■ “Determining the Data Type of a Variable” on page 47

■ “Passing a Value to a Function” on page 48

■ “Preventing a Floating-Point Error” on page 49

■ “Using the Literal Value of a Special Character” on page 49

■ “Running Browser Script When Siebel CRM Starts a Siebel Application” on page 50

Table 14. Bit Operators You Can Use in Siebel eScript

Operator Description Example

<< Shift left. i = i << 2

<<= Equal shift left. i <<= 2

>> Signed shift right. i = i >> 2

>>= Equal signed shift right. i >>= 2

>>> Unsigned shift right. i = i >>> 2

>>>= Equal unsigned shift right. i >>>= 2

& Bitwise and. i = i & 1

&= Equal bitwise and. i &= 1

| Bitwise or. i = i | 1

|= Equal bitwise or. i |= 1

^ Bitwise xor, exclusive or. i = i ^ 1

^= Equal bitwise xor, exclusive or. i ^= 1

~ Bitwise not, complement. i = ~i

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Coding with Siebel eScript

42

■ “Releasing an Object from Memory” on page 50

■ “Monitoring the Performance of Your Script” on page 51

Using Script Libraries
The ST eScript engine provides business service script libraries that assist you with developing
components that are reusable and modular, which simplifies upgrades and maintenances. You can
use script libraries to call global scripts. Script libraries provide the following capabilities:

■ Allows you to write code that calls a business service function directly from anywhere in the
scripting interface after you declare the business service. You are not required to write code that
declares property sets or issue InvokeMethod calls.

■ Allows you to write strongly typed methods for predefined business services. You can then use
the Script Assist utility to write code that calls these business services. For more information,
see “Using Strongly Typed and Typeless Variables” on page 43.

Using script libraries is optional. Siebel CRM supports all code written prior to Siebel 8.0.

Example of Calling a Business Service Function
The following example calls a method directly on the Data Transfer Service without declaring a
property set. Calling a business service method directly results in scripts that are shorter and more
readable:

var oBS : Service = TheApplication ().GetService ("Data Transfer Service");
oBS.SendData ("Name", "John Doe");

Example of a Creating Custom Method for a Business Service
You can write a custom method for a business service and make it available in Script Assist. The
following example creates SendData, which is a custom wrapper method that resides on the Data
Transfer Service:

function SendData (sTag : String, sValue : String)
{
var oPS1 = TheApplication ().NewPropertySet ();
var oPS2 = TheApplication ().NewPropertySet ();

oPS1.SetProperty ("Tag", sTag);
oPS1.SetProperty ("Value", sValue);

this.InvokeMethod ("SendData", oPS1, oPS2)
}

You can write code that intercepts and modifies the calls to the Data Transfer Service in a central
location in the SendData method.

Using Siebel eScript ■ Coding with Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 43

Displaying a Custom Method in Script Assist
This topic describes how to display a custom method in Script Assist. For more information, see
“About the Script Assist Utility” on page 18. For more information about setting an object property or
about using the Server Script Editor to create, save, or compile a script, see Using Siebel Tools.

To display a custom method in Script Assist
1 Make a custom method available to the script libraries so that you can call it from Script Assist:

a Save the business service method script.

b Make sure the script does not contain compile errors.

If a script library calls a function, then the compiler determines if argument types are valid
and do not contain incompatibilities.

c In Siebel Tools, make sure the External Use property contains a check mark for the business
service object.

2 To access Script Assist from the script editor, press CTRL + SPACE.

3 In your script, enter the name of a business service object followed by a period (.).

Script Assist displays the default and custom scripted methods that are available for the business
service object.

4 Choose the method you must add to your script.

Using Strongly Typed and Typeless Variables
A variable can include one of the following:

■ Strongly typed. You specify the data type when you declare the variable. ST eScript code
supports strong typing. Siebel CRM binds strong typing when you compile the code.

■ Typeless. Siebel CRM determines the data type at run time. ST eScript code and T eScript code
supports typeless variables.

A strongly typed variable typically improves performance over a typeless variable.

You can write code that strongly types all of the primitive data types and object data types. For more
information, see “About Primitive Data Types” on page 20 and “About Composite Data Types” on
page 20.

Creating a Strongly Typed Variable
This topic describes how to create a strongly typed variable.

To create a strongly typed variable
1 Make sure Siebel Tools uses the ST eScript engine.

For more information, see Using Siebel Tools.

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Coding with Siebel eScript

44

2 When you declare the variable, make sure you add a colon (:) at the end of the variable name.

For example:

var VariableA:Date = new Date ();
var VariableB:BusObject;
var VariableC:BusComp;

Creating a Typeless Variable
This topic describes how to create a typeless variable.

To create a typeless variable
■ Do not specify the data type when you declare the variable.

For example:

var VariableA = 0;
var VariableB = new Date ();
var VariableC = new BusObject;

In this example, Siebel eScript sets the following types:

■ Sets VariableA as an integer

■ Sets VariableB as a date

■ Types VariableC as a business object

The data type that Siebel CRM sets at run time persists until a subsequent operation causes the
interpreter to modify the type again.

Declaring and Using Variables
A variable is an object that stores and represents information in a script. Siebel eScript can modify
the value of a variable but it cannot modify the value of a literal. For example, to display a name
literally, you must use the following code multiple times:

TheApplication().RaiseErrorText("Aloysius Gloucestershire Merkowitzky");

To simplify this code, the following code uses a variable:

var Name = "Aloysius Gloucestershire Merkowitzy";
TheApplication().RaiseErrorText(Name);

The value of the Name variable changes, which allows you to use shorter lines of code and to reuse
the same lines of code.

About Local and Global Variables
Siebel eScript includes the following types of variables:

Using Siebel eScript ■ Coding with Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 45

■ Local. A variable that you declare in a function. You can write code that references a local
variable only in the function where you declare the variable.

■ Global. A variable that you declare in one of the following ways:

■ Declare the variable outside of a function.

■ Declare the variable in the general declarations section of the application object.

You can write code that references or modify a global variable from the following items:

■ Any function that is associated with the Siebel object for which you declare the variable.

■ Any object in a Siebel application where you declare the variable.

■ Another Siebel application.

■ If you declare a global variable outside of a function, then you can reference it from any
object that resides in the Siebel application where you declare this variable. For more
information, see “Declaring a Global Variable Outside of a Function” on page 45.

If you declare a local variable that uses the same name as a global variable, then you cannot
reference this global variable from the function where you declare this local variable.

Siebel VB includes a Global statement. You cannot use this statement in Siebel eScript.

Declaring a Global Variable Outside of a Function
You can write code that declares a variable in a location other than in the declaration section. For
example:

var global1 = 6;

function ABC()

{

 global1 = 8;

 global2 = 6;

}

var global2 = 8;

Using a Local Variable Is Preferable to Using a Global Variable
It is recommended that you use a local variable where possible instead of a global variable for the
following reasons:

■ A local variable helps you create modular code that is easier to debug and modify.

■ A local variable requires fewer resources.

■ It is easier for other developers to understand how you use a local variable in a single function
than it is to understand how you use a global variable across an entire Siebel application.

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Coding with Siebel eScript

46

■ If a subsequent development team encounters an object that you script with a global variable,
then this team might not understand the use of the global variable. If the team uses this variable,
then the team might introduce defects.

■ The scope of a global variable is too large to meet the business requirement and often results in
a variable whose lifecycle is not clear.

Instead of using a global variable, it is recommended that you configure Siebel CRM to pass an object
as a parameter to a function so that you can control the scope of the parameter. If you are
considering using a global variable, then you must consider this usage carefully. If you use a global
variable, then do so only rarely and document it thoroughly.

Example of Declaring Local and Global Variables
The following example includes local and global variables:

var globalVariable = 1;
function Function1()
{

var localVariable1 = 1;
var localVariable2 = 3;
Function2(d);

}

function Function2(e)
{

var localVariable3 = 2
...

}

This example illustrates the following concepts:

■ The globalVariable variable is global to the object where you declare it because it is declared
outside of a function. Typically you declare all global variables in a general declarations section.

■ To create a local variable, you declare it in a function. The following variables are local because
this example declares them in a function:

■ localVariable1

■ localVariable2

■ localVariable3

■ This example cannot use localVariable3 in Function1 because it is not defined in this function.

■ This example uses the d variable in Function1. It uses the e parameter to pass the d variable to
Function2.

The following code includes variables that are available to Function1 and Function2:

Function1(): globalVariable, localVariable1, localVariable2
Function2(): globalVariable, localVariable3, e

Using Siebel eScript ■ Coding with Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 47

Declaring a Variable
This topic describes how to declare a variable.

To declare a variable
■ Use the var keyword.

For example:

var perfectNumber;

You can write code that saves a value in a variable when you declare it. For example:

var perfectNumber = 28;

Declaring a Variable In a Statement Block
If you declare a variable in a statement block in a method, then you can reference this variable
anywhere in the method, including from a statement block that resides in the method where you did
not declare the variable.

Determining the Data Type of a Variable
You can use the typeof operator to determine and set the data type of a variable.

To determine the data type of a variable
■ Use one of the following formats:

■ var result = typeof variable

■ var result = typeof(variable)

To improve readability, you can place parentheses around the variable operand, which makes
typeof look like the name of a function rather than an operator keyword. Using these parentheses
is functionally the same as not using them. They have no impact on program execution.

Immediately after Siebel CRM encounters one of these code lines, it sets the contents of the variable
to one of the following string values:

■ boolean

■ buffer

■ function

■ object

■ number

■ string

■ undefined

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Coding with Siebel eScript

48

Passing a Value to a Function
This topic describes how to write code that passes a value to a subroutine or a function through a
variable or through a reference.

Passing a Value Through a Variable
Siebel eScript can pass a value to a function through a variable. This variable retains the value that
it contained before Siebel eScript passes it even though the subroutine or function might modify the
passed value. The following example includes this configuration:

var VariableA = 5;
var VariableB = ReturnValue(VariableA);

function ReturnValue(VariableC)
{

VariableC = 2 * VariableC;
return VariableC ;

}

The following occurs in this example:

■ VariableA equals 5 and VariableB equals 10.

■ VariableC contains a value only while the ReturnValue function runs.

■ VariableC does not contain a value after the ReturnValue function finishes.

■ Siebel eScript passes VariableA as a parameter to the ReturnValue function and it manipulates
this value as VariableC.

■ VariableA retains the value that it contained before Siebel eScript passed it.

Passing a Value Through a Reference
Siebel eScript can pass a variable to a subroutine or a function through a reference. However, you
use a variable to pass a value for most methods. Each method determines if it can receive a value
from a variable or a reference.

A subroutine or function can modify the value. The following example includes this configuration:

var VariableA = new Object;
VariableA.name = "Joe";
VariableA.old = ReturnName(VariableA)

function ReturnName(VariableB)
{

var VariableC = VariableB.name;
VariableB.name = “Vijay”;
return VariableC

}

The following occurs in this example:

■ Siebel eScript passes VariableA to the ReturnName function through a reference.

Using Siebel eScript ■ Coding with Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 49

■ VariableB receives a reference to the object, but it does not receive a copy of this object.

■ VariableB can reference every property and method of VariableA.

■ The ReturnName function modifies the value in VariableB.name to Vijay. The value in
VariableA.name also becomes Vijay.

■ The Return statement passes a value back to the function that calls it. Siebel CRM does not run
any code in a function that follows the Return statement. For more information, see “Return
Statement of a Function Object” on page 178.

Preventing a Floating-Point Error
CAUTION: Saving a floating-point number in a variable might cause a loss in precision due to a
memory limitation for decimal-to-binary conversion.

Siebel CRM can store a decimal number that does not convert to a finite binary representation with
only a small precision error. For example, the following statement might result in Siebel CRM storing
VariableA as 142871.450000000001:

var VariableA = 142871.45

A small precision error will likely have little effect on the precision of a subsequent calculation,
depending on the context where you use the number.

A number might be too large for the field that Siebel CRM uses to display it, resulting in an error
message that is similar to the following:

Value too long for field %1 (maximum size %2)

To prevent a floating-point error
■ Use the Convert Number to Fixed Decimal Method method at an appropriate location in the

calculation or when you save the value in a variable.

For example, use x.toFixed(2) in a calculation instead of using VariableA. For more information,
see “Convert Number to Fixed Decimal Method” on page 159.

Using the Literal Value of a Special Character
Each of the following characters possesses a special programmatic meaning in Siebel eScript:

■ Double quotes (")

■ Single quote (')

■ Semi-colon (;)

■ Ampersand (&)

■ Hard return

In some situations, you might need to use the literal value of one of these characters. For example:

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Coding with Siebel eScript

50

■ Display quotation marks around a phrase in the Siebel client.

■ Add a carriage return in a text file.

■ Specify a file system path.

To use the literal value of a special character
■ Precede the special character with two backslashes (\\).

You must use two backslashes in Siebel eScript. It recognizes a single backslash as indicating
that the next character identifies a character combination. For more information, see “How Siebel
eScript Handles Special Characters In a String” on page 88.

Running Browser Script When Siebel CRM Starts a
Siebel Application
You can configure Siebel CRM to run Browser Script when it starts a Siebel application. Siebel CRM
normally runs code in the declaration section of the Browser Script for a business service when it
starts this application. It interprets any code that exists in the general declaration section as HTML.
When it loads this application in the Browser, it attaches each Browser script as a Script tag in an
HTML page. This configuration allows you to use the general declaration section as the Browser
counterpart of the Application Start Server event.

To run Browser script when Siebel CRM starts a Siebel application
■ Use code in the general declaration section of the Browser script.

Releasing an Object from Memory
You must explicitly release from memory the following object types when your code no longer
requires them:

■ Application

■ Business component

■ Business object

■ Configuration item

■ CTI data

■ CTI service

■ Property set

■ Web applet

■ Web service

This situation is true for T eScript and ST eScript for Browser script and for Siebel VB.

Using Siebel eScript ■ Guidelines for Using Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 51

To release an object from memory
■ Set the object as a Null object.

For more information, see “Null Data Type” on page 22.

Monitoring the Performance of Your Script
Starting with Siebel CRM version 8.1, the ST eScript engine allows you to monitor the performance
of your script in Siebel CRM. You can identify parts of a script that consumes the most time to
process, and then modify it to make it more efficient. Siebel Tools displays profile information in the
Tools Script Performance Profiler window. You can export this information to a text file. For more
information, see Using Siebel Tools.

Guidelines for Using Siebel eScript
This topic describes guidelines for using Siebel eScript. It includes the following topics:

■ “Make Sure You Use the Correct Format for Names” on page 51

■ “Make Sure You Use the Correct Case” on page 54

■ “Use Expressions, Statements, and Statement Blocks” on page 54

■ “Use a Primitive Data Type Instead of an Object Data Type” on page 55

■ “Use White Space to Improve Readability” on page 56

■ “Use Comments to Document Your Code” on page 57

■ “Make Sure the JavaScript Interpreter Can Run a Function” on page 57

This topic describes only some of the guidelines for using Siebel eScript. For more guidelines, see
the topic about guidelines for using Siebel VB and Siebel eScript in Siebel Object Interfaces
Reference.

Make Sure You Use the Correct Format for Names
A variable name or a function name must include only the following characters:

■ Uppercase ASCII letters. For example, ABCDEFGHIJKLMNOPQRSTUVWXYZ.

■ Lowercase ASCII letters. For example, abcdefghijklmnopqrstuvwxyz.

■ Digits. For example, 0123456789.

■ Underscore (_).

■ Dollar sign ($).

A variable name or a function name must use the following format:

■ Must begin with a letter, an underscore (_), or a dollar sign ($).

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Guidelines for Using Siebel eScript

52

■ Cannot include any special characters. For more information, see “Special Characters” on page 52.

■ Cannot include white space. Siebel eScript uses white space to separate names. For more
information, see “Use White Space to Improve Readability” on page 56.

■ Cannot include a reserved word. For more information, see “Reserved Words” on page 53.

■ Can include any length.

The following example names are valid:

George
Martha7436
annualReport
George_and_Martha_prepared_the_annualReport
$alice
CalculateTotal()
$SubtractLess()
_Divide$All()

The following example names are not valid:

1george
2nancy
this&that
Martha and Nancy
What?
=Total()
(Minus)()
Add Both Figures()

Special Characters
Table 15 lists the characters that Siebel eScript recognizes as special characters.

Table 15. Special Characters

Special Character Description

< Less than symbol.

> Greater than symbol.

& Ampersand symbol.

| Pipe symbol.

= Equal to sign.

! Exclamation point.

* Asterisk.

/ Forward slash.

% Percentage symbol.

^ Caret symbol.

Using Siebel eScript ■ Guidelines for Using Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 53

Reserved Words
The following words have special meaning in Siebel eScript. You cannot write code that uses any of
them as a variable name or a function name:

~ Tilde symbol.

? Question mark.

: Colon.

{ Open curly bracket.

} Close curly bracket.

; Semi-colon.

(Open parenthesis.

) Close parenthesis.

[Open square bracket.

] Close square bracket.

. Period.

‘ Single quote.

" Double quote.

' Apostrophe.

Pound symbol.

break export super
case extends switch
catch false this
class finally throw
const for true
continue function try
debugger if typeof
default import while
delete in with
do new var
else null void
enum return

Table 15. Special Characters

Special Character Description

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Guidelines for Using Siebel eScript

54

Make Sure You Use the Correct Case
Siebel eScript is case-sensitive. For example, the testvar variable is different from the TestVar
variable. Each of these variables can exist in a script at the same time. The following example defines
two different variables:

var testvar = 5;
var TestVar = "five";

The name of a method or function in Siebel eScript is case-sensitive. For example, the following code
creates an error on the Siebel Server:

TheApplication().RaiseErrorText("an error has occurred");

The following example creates an error in a Siebel application:

TheApplication().raiseerrortext("an error has occurred");

A control statement is case-sensitive. For example, the following statement is valid:

while

The following statement is not valid:

While

Use Expressions, Statements, and Statement Blocks
An expression includes two or more terms that perform a mathematical or logical operation. These
terms are typically variables or functions that you can use with an operator to produce a string or
numeric result. You can write code that uses an expression to configure Siebel eScript to do the
following work:

■ Perform a calculation.

■ Manipulate a variable.

■ Concatenate a string.

The following example statement includes an expression. It computes a sum and saves it in a
variable:

var TestSum = 4 + 3

Note the following:

■ Siebel CRM runs Siebel eScript code one statement at a time from the beginning of the code to
end of the code.

■ You can use a semicolon at the end of a statement, although Siebel eScript does not require this
format.

■ To make your script easier to read and edit, it is recommended that you write each statement on
a separate line, with or without a semicolon.

Using Siebel eScript ■ Guidelines for Using Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 55

■ A statement block is a group of statements that Siebel eScript treats as one statement. You use
curly brackets ({}) to enclose a statement block. To simplify reading, it is recommended that you
indent the statements in a statement block.

Running Statements In a Loop
A While statement is a type of statement that causes Siebel eScript to run the statement that occurs
immediately after the While statement in a loop. If you enclose multiple statements in curly brackets,
then Siebel eScript treats them as one statement and runs them in the loop. The following example
includes this usage:

while(ThereAreUncalledNamesOnTheList() == true)
{

var name = GetNameFromTheList();
CallthePerson(name);
LeaveTheMessage();

}

Siebel eScript treats the three lines that occur after the While statement as one unit. The brackets
cause Siebel eScript to run the script through each line until it calls every name that resides in the
list. If you remove these brackets, then it does the following:

■ Runs the loop only for the first line.

■ Processes the names on the list but only calls the last name.

Use a Primitive Data Type Instead of an Object Data
Type
It is recommended that you use an object only if you must use a property that is specific to this
object type. If an equivalent primitive data type exists, then use the primitive. A primitive data type
provides superior performance. An object data type consumes more resources than a primitive data
type.

Table 16 lists primitive data types that are equivalent to object data types. For example, if you do
not need to use a string-specific object or conversion method, then use the chars primitive instead
of a String object.

Table 16. Primitive Data Types That Are Equivalent to Object Data Types

Primitive Data Type Object Data Type

Chars String

Float Number

Bool Boolean

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Guidelines for Using Siebel eScript

56

Use White Space to Improve Readability
A white-space character is a type of character that determines the spacing and placement of text in
your code. Each of the following items is an example of a white-space character:

■ Space

■ Tab

■ Carriage-return

■ New line

White space makes your code easier to read. Siebel eScript ignores white space characters.

A line of script ends with a carriage-return character. Each line is typically a separate statement. In
some editors a line ends with a carriage-return and the following linefeed pair:

\r\n

Siebel eScript typically interprets as white space one or more white-space characters that exist
between names of methods and functions. Each of the following Siebel eScript statements are
equivalent to one another:

var x=a+b
var x = a + b
var x = a + b
var x = a+

b

White space separates the names, methods, functions, and variables. For example, ab is one variable
name, and a b are two variable names. The following example is valid:

var ab = 2

The following example is not valid:

var a b = 2

Some developers use spaces and not tabs because tab size settings vary from editor to editor. If a
developer uses only spaces, then the script format is consistent across editors.

Using White Space in a String Literal Can Cause Errors
CAUTION: Siebel eScript treats white space in a string literal differently from how it treats white
space that occurs elsewhere. Placing a line break in a string causes Siebel eScript to treat each line
as a separate statement. Each of these statements contains an error because they are not complete.
To avoid this situation, you must keep string literals on a single line or create separate strings, and
then use the string concatenation operator to concatenate them.

For example:

var Gettysburg = "Fourscore and seven years ago, " +
"our fathers brought forth on this continent a " +
"new nation.";

For more information, see “Concatenating Strings” on page 40.

Using Siebel eScript ■ Guidelines for Using Siebel eScript

Siebel eScript Language Reference Version 8.1/8.2 57

Use Comments to Document Your Code
A comment is text in a script that you can use to document the script. It can describe the intent of
the code flow, which simplifies modifications and debugging. Siebel eScript skips comments. Siebel
eScript includes the following types of comments:

■ End-of-line comment. Begins with two forward slashes (//). It ignores any text that occurs
from after these slashes to the end of the current line. It begins interpreting the code that occurs
on the next line.

■ Statement block comment. Begins with a forward slash and an asterisk (/*). Ends with an
asterisk and a forward slash (*/). Text between these markers is a comment even if the comment
extends over multiple lines. You cannot write code that includes a statement block comment in
a statement block comment. You can include an end-of-line comment in a statement block
comment.

The following code includes valid comments:

// this is an end of line comment

/* this is a statement block comment.
This is one big comment block.
// this comment is okay in the statement block.
The interpreter ignores it.
*/

var FavoriteAnimal = "dog"; // except for poodles

//This line is a comment but
var TestStr = "This line is not a comment.";

Make Sure the JavaScript Interpreter Can Run a
Function
If a function is unique to Siebel eScript, then you must make sure that the JavaScript interpreter
that runs the script supports Siebel eScript functions. Avoid using a function that is unique to Siebel
eScript in a script that Siebel CRM might use with a JavaScript interpreter that does not support the
function.

Siebel eScript Language Reference Version 8.1/8.2

Using Siebel eScript ■ Guidelines for Using Siebel eScript

58

Siebel eScript Language Reference Version 8.1/8.2 59

4 Statements Reference

This chapter describes reference information for statements you can use in Siebel eScript. It includes
the following topics:

■ Break Statement on page 59

■ Continue Statement on page 60

■ Do While Statement on page 61

■ For Statement on page 62

■ For In Statement on page 63

■ Goto Statement on page 64

■ If Statement on page 65

■ Switch Statement on page 67

■ Throw Statement on page 69

■ Try Statement on page 70

■ While Statement on page 72

■ With Statement on page 73

Break Statement
The Break statement does the following:

■ Stops the innermost loop of the following statements:

■ For

■ While

■ Do

■ Controls the flow in a Switch statement.

Format A
break;

Format B
break label;

Siebel eScript Language Reference Version 8.1/8.2

Statements Reference ■

60

Table 17 describes the arguments you can use with the Break statement.

Usage
You can write code that uses the Break statement only in the following situations:

■ In a loop. Stops the loop if the code no longer requires the loop.

■ In a Switch statement. Stops Siebel eScript from running any code that occurs after the Label
statement. Causes Siebel eScript to exit the Switch statement.

If you use the Break statement in a nested loop, then it causes Siebel eScript to stop running the
script only in this nested loop. If the Break statement occurs in a nested loop, then you can use the
label argument to indicate the beginning of the loop that Siebel eScript must stop.

Example
For an example, see “Switch Statement” on page 67.

Continue Statement
The Continue statement starts a new iteration of a loop. It ends the current iteration of a loop, and
then begins the next loop. Siebel eScript evaluates any conditional expressions before the loop
reiterates.

Format A
continue;

Format B
continue label;

Table 18 describes the argument.

Table 17. Arguments for the Break Statement

Argument Description

label The name of the label that indicates where this statement must resume running
the script. This label includes the name of a method or a function followed by
a colon.

Table 18. Arguments for the Continue Statement

Argument Description

label The name of the label that indicates where to resume running the code. This
label includes the name of a method or a function followed by a colon.

Statements Reference ■

Siebel eScript Language Reference Version 8.1/8.2 61

Example
The following example writes the numbers 1 through 6 and 8 through 10, and then the following
string:

.Test

The use of the Continue statement after the if (i==7) statement prevents Siebel eScript from running
the loop on the seventh iteration, but keeps running the loop:

var i = 0;
while (i < 10)
{

i++;
if (i==7)

continue;
document.write(i + ".Test");

}

Do While Statement
The Do While statement processes the code that the statement_block argument identifies repeatedly
until the statement meets the value that the condition argument contains. The condition argument
occurs at the end of the loop. Siebel eScript tests the condition only after the loop runs. A Do While
loop always runs at least one time before Siebel eScript examines the condition.

Format
do
{

statement_block;
} while (condition)

Table 19 describes the arguments you can use with the Do While statement.

Example
The following example increments a value and prints the new value to the screen until the value
reaches 100:

var value = 0;
do
{

Table 19. Arguments for the Do While Statement

Argument Description

statement_block One or more statements that Siebel eScript runs in the loop.

condition An expression that describes the condition that Siebel eScript uses to repeat
the loop.

Siebel eScript Language Reference Version 8.1/8.2

Statements Reference ■

62

value++;
Clib.sprintf(value);

} while(value < 100);

For Statement
The For statement repeats a series of statements a fixed number of times. Siebel eScript does the
following when it runs the For statement:

1 Evaluates the following expression:

counter = start

2 Does one of the following:

■ Condition is true or no conditional expression exists. It does the following work:

❏ Runs the For statement.

❏ Increments the counter.

❏ Goes to Step 1.

■ Condition is false. It does the following work:

❏ Exits the For statement.

❏ Runs the code line that occurs immediately after the For statement.

Format
for ([var] counter = start; condition; increment)
{

statement_block;
}

Table 20 describes the arguments for the For statement.

Usage
If the counter argument is not declared, then you must use the Var statement to declare it. Although
it is declared in the For statement, the scope of the counter variable is local to the entire function
that includes the for loop.

If you use multiple counters, then you must use a comma to separate each counter. For example:

Table 20. Arguments for the For Statement

Argument Description

counter A numeric variable for the loop counter.

start The initial value of the counter.

Statements Reference ■

Siebel eScript Language Reference Version 8.1/8.2 63

for (var i = 1, var j = 3; i < 10; i++, j++)
var result = i * j;

If you configure Siebel CRM to modify the value in the counter argument other than through the
increment that occurs as a result of running the For statement, then your script might be difficult to
maintain or debug.

Example
For an example of the For statement, see “Evaluate Expression Method” on page 173.

For In Statement
The For In statement loops through the properties of an associative array or object. You cannot use
it with a nonassociative array. For more information, see “About Associative Arrays” on page 78.

You cannot write code that references a property that is marked with the DONT_ENUM attribute in a
For In statement. The DONT_ENUM attribute is a predefined attribute that you cannot modify.

Format
for (LoopVar in object)
{

statement_block;
}

Table 21 describes the arguments for the For In statement. The statement block runs one time for
every element in the associative array or property of the object.

Table 21. Arguments for the For In Statement

Argument Description

object An associative array or object:

■ The object must possess at least one defined property.

■ The associative array must possess at least one defined element.

LoopVar A variable that iterates over every element that resides in the associative array
or property of the object.

For each iteration of the loop, the LoopVar argument identifies the name of a
property of the object or an element of the array. You can write code that
references it with a statement that uses the following format:

■ object[LoopVar]

■ array_name[LoopVar]

Siebel eScript Language Reference Version 8.1/8.2

Statements Reference ■

64

Example
The following example creates an object named obj, and then uses the For In statement to read the
object properties:

function PropBtn_Click ()
{

var obj = new Object;
var propName;
var msgtext = "";

obj.number = 32767;
obj.string = "Welcome to my world";
obj.date = "April 25, 1945";

for (propName in obj)
{

msgtext = msgtext + "The value of obj." + propName +
" is " + obj[propName] + ".\n";

}
TheApplication().RaiseErrorText(msgtext);

}

Running this code produces the following results:

The value of obj.number is 32767.
The value of obj.string is Welcome to my world.
The value of obj.date is April 25, 1945.

For an example of the For In statement used with an associative array, see “About Associative Arrays”
on page 78.

Goto Statement
The Goto statement causes Siebel eScript to go to a specific point in a function. You can write code
that directs Siebel eScript to go to any location in a function. It is recommended that you use a Goto
statement only rarely because it makes it difficult to follow the code flow.

Format
goto label;

Table 22 describes the argument for the Goto statement.

Table 22. Argument for the Goto Statement

Argument Description

label Indicates the code line where Siebel eScript must resume running the code. You
must place a label argument at the point where Siebel eScript must resume
running the code.

Statements Reference ■

Siebel eScript Language Reference Version 8.1/8.2 65

Example
The following example uses a label argument to loop continuously until the number is greater than 0:

function clickme_Click ()
{
restart:

var number = 10;
if (number <= 0)

goto restart;
var factorial = 1;
for (var x = number; x >= 2; x--)

factorial = (factorial * x);
TheApplication().RaiseErrorText("The factorial of " +

number + " is " + factorial + ".");
}

If Statement
The If statement tests a condition and proceeds depending on the result.

Format A
if (condition)

statement;

Format B
if (condition)
{

statement_block;
}
[else if (condition)
{

statement_block;
}]
[else
{

statement_block;
}]

Siebel eScript Language Reference Version 8.1/8.2

Statements Reference ■

66

Table 23 describes the arguments for the If statement.

Usage
If you require multiple statements, then use Format B.

The following example includes an If statement:

if (i < 10)
{

TheApplication().RaiseErrorText("i is less than 10.");
}

If Siebel eScript runs only a single If statement, then the curly brackets are not required. You can
use them to clarify your code.

Else Clause
The else clause is an extension of the If statement. It allows you to run code if the condition in the
If statement is false. The following example includes the else clause:

if (i < 10)
TheApplication().RaiseErrorText("i is less than 10.");

else
TheApplication().RaiseErrorText("i is not less than 10.");

Using More Than One If Statement
If you require more than one If statement, then you must use curly brackets to group the
statements. For example:

if (i < 10)
{

i += 10;
TheApplication().RaiseErrorText ("Original i was less than 10, and has now been
incremented by 10.");

}
else
{

i -= 5;

Table 23. Arguments for the If Statement

Argument Description

condition An expression that evaluates to true or false.

statement_block If the expression is:

■ True. Siebel eScript runs the statement or statement_block.

■ False. Siebel eScript skips the statement or statement_block.

Statements Reference ■

Siebel eScript Language Reference Version 8.1/8.2 67

TheApplication().RaiseErrorText ("Original i was at least 10, and has now been
decremented by 5.");

}

This example includes an else clause in an If statement. This If statement tests for multiple
conditions.

Example
The following example includes an else clause:

if (i < 10)
{

TheApplication().RaiseErrorText("i is less than 10.")
}

else if (i > 10)
{

TheApplication().RaiseErrorText("i is greater than 10.");
}
else
{

TheApplication().RaiseErrorText("i is 10.");
}

For another example, see “Set Time Method” on page 137.

For more information, see “Switch Statement” on page 67.

Switch Statement
The Switch statement makes a decision according to the value of a variable or expression. It chooses
among alternatives when each choice depends on the value of a single variable. Siebel eScript does
the following:

1 Evaluates the switch_variable argument.

2 Compares the values in the Case statements, and then does one of the following depending on
if it finds a match:

■ Finds a match. Runs the statement block that follows the Case statement whose value
matches the value in the switch_variable argument. It runs until it reaches the end of the
statement block or until a Break statement causes it to exit the statement block.

■ Does not find a match. If a default statement exists, then it runs the default statement.

Usage
Make sure you end a Case statement with a Break statement.

Siebel eScript Language Reference Version 8.1/8.2

Statements Reference ■

68

Format
switch(switch_variable)
{

case value1:
statement_block
break;

case value2:
statement_block
break;

.

.

.
[default:

statement_block;]
}

Table 24 describes the arguments for the Switch statement.

Example
This example configures Siebel CRM to perform an action depending on an account type. In this
example, a letter indicates the type of account:

switch (key[0])
{
case 'A':

I=I+1;
break;

case 'B':;
I=I+2
break;

case 'C':
I=I+3;
break;

default:
I=I+4;
break;

}

Siebel eScript runs code in the statement block until it encounters a Break statement. In this
example, if you remove the Break statement that occurs after the I=I+2 statement, then Siebel
eScript runs the following code:

Table 24. Arguments for the Switch Statement

Argument Description

switch_variable The argument on whose value the course of action depends.

valuen Values of the switch_variable argument, which are followed by a colon.

statement_block One or more statements that Siebel eScript runs if the value of switch_variable
argument is the value in the Case statement.

Statements Reference ■

Siebel eScript Language Reference Version 8.1/8.2 69

■ I=I+2

■ I=I+3

For more information, see “If Statement” on page 65.

Throw Statement
The Throw statement causes Siebel eScript to stop running code if an error occurs.

Format
throw exception

Table 25 describes arguments for the Throw statement.

Usage
In the following example, the Throw statement stops the script after Siebel CRM displays an error
message:

try
{

do_something;
}
catch(e)
{

TheApplication().Trace (e.toString()));

throw e;
}

Using the Throw Statement with Nested Try Catch Blocks
If any error occurs while processing a statement in a try block, then Siebel eScript creates an
exception. An outer catch block can handle this exception. For example, assume a section of code
includes three levels of try catch blocks:

1 The innermost catch block includes a throw statement. An exception occurs.

2 The catch statement in the level two block catches this exception.

3 The catch statement in the level two block throws this exception to the level one block.

4 The catch block at level one handles this exception.

The following code illustrates this example:

Table 25. Arguments for the Throw Statement

Argument Description

exception An object in an error class.

Siebel eScript Language Reference Version 8.1/8.2

Statements Reference ■

70

try
{
do_something;
try

{
do_something;
}

catch(e)
{
TheApplication().Trace(e.toString());
throw e;
}

}
catch(e)

{
TheApplication().RaiseErrorText("Error Occurred "+e.toString());

}

Avoiding an Exception Error That Is Not Handled
You can write code that uses the RaiseErrorText method or the RaiseError method instead of the
Throw statement to avoid receiving an unhandled exception error in the text that the Get Buffer Data
method returns. If the Siebel Run-Time Engine creates an error message, or if the Throw statement
creates an error message, then Siebel CRM adds the following text to the error message:

Unhandled Exception

Siebel CRM does this to distinguish an error message that the RaiseErrorText method or that the
RaiseError method creates from an error that the Siebel Run-Time Engine creates or that the Throw
statement creates.

For more information, see “Get Buffer Data Method” on page 113 and “Try Statement” on page 70.

Try Statement
The Try statement processes an exception. It handles functions that can raise an exception, which is
an error condition that causes the script to branch to another routine. It can include the following
clauses:

■ Catch clause. Handles the exception. To raise an exception, you use the Throw statement. For
more information, see “Throw Statement” on page 69.

■ Finally clause. Performs cleanup work. For example, removing object references.

You can write code that does the following to trap errors that a statement block creates:

■ Place code that must trap errors in a Try statement.

■ Follow the Try statement with a catch clause. You can write code that uses the
exception_handling_block argument in this catch clause to process the exception.

Statements Reference ■

Siebel eScript Language Reference Version 8.1/8.2 71

Format
try
{

statement_block
}
catch
{

exception_handling_block
[throw exception]

}
finally
{

statement_block_2
}

Table 26 describes the arguments for the Try statement.

Example
The following example demonstrates the format of a Try statement that includes a catch clause. In
this example, Siebel eScript continues to run the script after it displays the error message:

try
{

do_something;
}
catch(e)
{

TheApplication().RaiseErrorText(Clib.rsprintf(
"Something bad happened: %s\n",e.toString()));

}

Example Usage of the Finally Clause
The finally clause includes code that Siebel eScript must run before it exits the Try statement,
regardless of if a catch clause stops running the script. You can write code that uses one of the
following statements to exit a finally clause:

■ Goto

■ Throw

Table 26. Arguments for the Try Statement

Argument Description

statement_block A statement block that can create an error.

exception_handling_block A statement block that processes the error.

exception An error of a named type.

statement_block_2 A statement block that Siebel eScript always runs unless the Try
statement transfers control to elsewhere in the script.

Siebel eScript Language Reference Version 8.1/8.2

Statements Reference ■

72

■ Return

CAUTION: A Return statement in the finally clause suppresses any exceptions that Siebel eScript
creates in the method or that it passes to the method. It skips statements in the finally clause only
if the finally clause redirects flow to another part of the script.

The following example includes a finally clause. Siebel eScript continues running this code after the
no_way statement. It ignores the Return statement:

try
{

return 10;
}
finally
{

goto no_way;
}

no_way: statement_block

While Statement
The While statement runs a section of code repeatedly until an expression evaluates to false. It does
the following:

1 Examines the expression.

2 If the expression is true, then it does the following:

a Runs the code in the statement block that occurs after the condition argument.

b Repeats Step 1.

3 If the expression is false, then Siebel eScript runs the code that occurs immediately after the
statement block.

A while loop repeats until the value in the condition argument is false.

Format
while (condition)
{

statement_block;
}

Statements Reference ■

Siebel eScript Language Reference Version 8.1/8.2 73

Table 27 describes the arguments for the While statement.

Example
The following example includes a While statement that includes two lines of code in a statement
block:

while(ThereAreUncalledNamesOnTheList() != false)
{

var name = GetNameFromTheList();
SendEmail(name);

}

With Statement
The With statement associates a default object with a statement block. It only applies to the code
that resides in the statement block where the With statement occurs, regardless of how Siebel
eScript enters or exits the statement block. If Siebel eScript exits a With statement, then the With
statement no longer applies.

You cannot write code that uses a Goto statement or a label to enter or exit the middle of a statement
block that resides in a With statement.

Format
with (object)
{

method1;
method2;
.
.
.
methodn;

}

Table 27. Arguments for the While Statement

Argument Description

condition Includes a value that determines when to stop running the loop. You must
enclose this argument in parentheses.

statement_block One or more statements that Siebel eScript runs while the condition argument
is true.

Siebel eScript Language Reference Version 8.1/8.2

Statements Reference ■

74

Table 28 describes the arguments of the With statement.

Example
The following example includes a With statement:

var bcOppty;
var boBusObj;
boBusObj = TheApplication().GetBusObject("Opportunity");
bcOppty = boBusObj.GetBusComp("Opportunity");
var srowid = bcOppty.GetFieldValue("Id");

try
{

with (bcOppty)
{

SetViewMode(SalesRepView);
ActivateField("Sales Stage");
SetSearchSpec("Id", srowid);
ExecuteQuery(ForwardOnly);

}
}
finally
{

boBusObj = null;
bcOppty = null;

}

The code in the With statement block is equivalent to the following code:

bcOppty.SetViewMode(SalesRepView);
bcOppty.ActivateField("Sales Stage");
bcOppty.SetSearchSpec("Id", srowid);
bcOppty.ExecuteQuery(ForwardOnly);

Table 28. Arguments of the With Statement

Argument Description

object An object where you must use multiple methods.

method1, method2, methodn Methods that Siebel eScript runs with the object. The With
statement prefixes each method with the object name and a
period.

Siebel eScript Language Reference Version 8.1/8.2 75

5 Methods Reference

This chapter describes reference information for methods that you can use in Siebel eScript. It
includes the following topics:

■ Overview of Methods Reference on page 75

■ Array Methods on page 76

■ String Methods on page 87

■ BLOB Methods on page 101

■ Buffer Methods on page 108

■ Date and Time Methods on page 121

■ UTC Methods on page 139

■ Global Methods on page 149

■ Conversion Methods on page 154

■ Data Querying Methods on page 174

■ Mathematical Methods on page 179

■ Regular Expression Methods on page 193

■ Siebel Library Methods on page 201

■ Custom Methods on page 209

Overview of Methods Reference
In addition to the methods that this chapter describes, you can also reference the following items in
Siebel eScript. For detailed information, see the Siebel eScript quick reference chapter in Siebel
Object Interfaces Reference:

■ Applet object

■ Application object

■ Business component object

■ Business service object

■ Property set

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Array Methods

76

Usage of the Term Put
The term put means to replace existing data. For example, if you put eight bytes of data to a BLOB
object starting at offset 0, then Siebel CRM replaces data that currently resides in bytes 0 through
7 of the BLOB object with the input data. This book uses this definition of put throughout this chapter.

Array Methods
This topic includes the following topics:

■ “Overview of Array Methods” on page 76

■ “About Array Functions” on page 77

■ “Add Array Elements Method” on page 79

■ “Concatenate Array Method” on page 80

■ “Create Array Elements Method” on page 80

■ “Delete Last Array Element Method” on page 81

■ “Get Largest Array Index Method” on page 82

■ “Get Subarray Method” on page 82

■ “Insert Array Elements Method” on page 83

■ “Reverse Array Order Method” on page 84

■ “Shift Array Left Method” on page 85

■ “Shift Array Right Method” on page 85

■ “Sort Array Method” on page 86

Overview of Array Methods
Note the following:

■ An array is a class of object that holds multiple values instead of one value. To reference a single
value in an array, you use an array index number or string that is associated with this value.

■ An array element is the value of an array object. It can include any data type. Siebel CRM does
not require that the elements in an array be the same type, and it does not limit the number of
elements that an array can include.

■ The index number is a number or a string that identifies the array element. This number follows
the array name and you place it in square brackets.

The following example statements store values in an array:

var array = new Array;
array[0] = "fish";
array[1] = "fowl";

Methods Reference ■ Array Methods

Siebel eScript Language Reference Version 8.1/8.2 77

array["joe"] = new Rectangle(3,4);
array[foo] = "creeping things"
array[goo + 1] = "and so on."

Array elements can be noncontiguous. For example, an array can include the following items:

■ An element at index 0

■ No element at index 1

■ An element at index 2

An array typically starts at index 0. It does not typically start at index 1.

Example of Using an Array
An array can use a number as an index, so it allows you to work with sequential data. For example,
to keep track of how many jelly beans you eat each day, you can graph your jelly bean consumption
at the end of the month. An array provides a solution for storing such data. For example:

var April = new Array;
April[1] = 233;
April[2] = 344;
April[3] = 155;
April[4] = 32;

In this example, one variable contains all the data. You can write code that examines the value of
April[x] to determine how many jelly beans you ate on day x. For example:

for(var x = 1; x < 32; x++)
TheApplication().Trace("On April " + x + " I ate " + April[x] +

" jellybeans.\n");

About Array Functions
You use the following operator and an array function to create an array:

new

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Array Methods

78

Table 29 describes different ways that you can use the array function.

You can write code that creates an array dynamically. If you write code that uses an index in brackets
to reference a variable, then the variable becomes an array. If you use this technique to create an
array, then you cannot use the methods and properties with an associative array.

About Associative Arrays
An associative array is a type of array that uses a string as an index element. This capability is useful
if you must associate a value with a specific name. For example, you can create a month array where
the elements are the names of the months and the values are the number of days in the month.

You use a string as an index to reference items in an associative array. For example:

array_name["color"] = "red";
array_name["size"] = 15;

The associative array is the only type of array that you can use with the following type of statement:

for in

This statement loops through every element in an associative array or object, regardless of how
many elements it contains. For more information, see “For In Statement” on page 63.

Table 29. Example Usage of the Array Function

Example Array Function Description

var a = new Array();an This code initializes the following variable as an array with no
elements:

a

The parentheses are optional.

var b = new Array(31); This code creates an array that includes 31 array elements. If you
must create an array that includes a predefined number of array
elements, then you can use the number of elements as a argument
of the Array function when you declare the array.

var c = new Array(5, 4,
3, 2, 1, "blast off");

This code creates an array that includes six elements:

■ c[0] is set to 5.

■ c[1] is set to 4.

■ And so on up to c[5], which is set to the string "blast off".

The first element of the array is c[0]. It is not c[1].

You can write code that passes elements to the Array function, which
creates an array that contains the arguments that your code passes.

Methods Reference ■ Array Methods

Siebel eScript Language Reference Version 8.1/8.2 79

Siebel CRM uses a hash table to implement the associative array, so the elements are not in an order
that an indexed array uses, and you cannot use array methods with an associative array, such as
split, join, or length.

Example of Using an Associative Array
The following example creates an associative array of months and days, and totals the number of
days:

// open file
var fp = Clib.fopen("c:\\months.log", "at");

// populate associative array
var months = new Array();
months["November"] = 30;
months["December"] = 31;
months["January"] = 31;
months["February"] = 28;

// iterate through array items
var x;
var total = 0;
for (x in months)

{
// write array items name and value to file
Clib.fputs(x + " = " + months[x] + "\n",fp);
// Add this month’s value to the total
total = total + months[x];

}
Clib.fputs ("Total = " + total + "\n",fp);

//close file
Clib.fclose(fp);

The following is the output from this example:

November = 30
December = 31
January = 31
February = 28
Total = 120

Add Array Elements Method
The Add Array Elements method adds the elements that you define in the element argument to the
end of the array. It adds these elements in the order that you define these arguments.

Format
arrayName.push([element1,element2, ..., elementn])

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Array Methods

80

Table 30 describes the arguments for the Add Array Elements method.

Example
The following example includes the Add Array Elements method:

var a = new Array(1,2);
TheApplication().RaiseErrorText(a.push(5,6) + " " + a);
// Displays 4 1,2,5,6, the length and the new array.

Concatenate Array Method
The Concatenate Array method concatenates all the elements of an array into a string. It returns a
concatenated string that includes individual array element values that are separated by commas. It
does not include any input arguments.

Format
concat()
toLocaleString()

Converting a Concatenated Array to Another Language
The toLocaleString statement works just like the concat statement but it converts the string to
another language according to the locale setting.

Example
The following example includes the Concatenate Array method:

var v = new Array;
v[0] = 7;
v[1] = 3;
v.concat(); // The result would be "7,3"

Create Array Elements Method
The Create Array Elements method creates a string of array elements. It returns a string that
contains the array elements. A comma or the separatorString argument separates each element.

Table 30. Arguments for the Add Array Elements Method

Argument Description

element1, element2, . . . elementn A list of elements to add to the array.

Methods Reference ■ Array Methods

Siebel eScript Language Reference Version 8.1/8.2 81

Format
arrayName.join([separatorString])

Table 31 describes the arguments for the Create Array Elements method.

Usage
Commas separate the array elements by default. The following example sets the value that the string
variable contains to 3,5,6,3:

var a = new Array(3, 5, 6, 3);
var string = a.join();

To separate the array elements, you can write code that passes another string as an optional
argument to the Create Array Elements method.

Example
The following example creates a string that contains a value of 3*/*5*/*6*/*3:

var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");

Delete Last Array Element Method
The Delete Last Array Element method does the following work:

1 Gets the length of the current Array object.

2 If the length is defined or is not 0, then it does the following:

a Returns the last element.

b Deletes the last element.

c Decreases the length of the current array object by one.

3 If the length is undefined or is 0, then it returns an undefined value.

The Delete Last Array Element method works on the end of an array. You must use the Array Shift
method to work on the beginning of an array.

Format
arrayName.pop()

Table 31. Arguments for the Create Array Elements Method

Argument Description

separatorString A string of characters that occur between consecutive elements of the
array. If you do not use a separatorString argument, then you can use a
comma.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Array Methods

82

Example
The following example includes the Delete Last Array Element method:

var a = new Array("four");
TheApplication().RaiseErrorText("First pop: " + a.pop() + ", Second pop: " +
a.pop());
// First displays the last (and only) element, the string "four".
// Then displays "undefined" because the array is empty after
// the first call removes the only element.

Get Largest Array Index Method
The Get Largest Array Index method returns the number of the highest index that the array contains,
plus 1. This return value does not necessarily include the actual number of elements in an array
because Siebel eScript does not require elements to be contiguous.

Format
arrayName.length

Example
The following example includes two arrays:

var ant = new Array; var bee = new Array;
ant[0] = 3 bee[0] = 88
ant[1] = 4 bee[3] = 99
ant[2] = 5
ant[3] = 6

The length property of ant and bee is equal to 4 even though ant includes twice as many array
elements as bee. To remove array elements, you can write code that modifies the value of the length
property. For example, if you write code that modifies ant.length to 2, then ant loses any elements
that occur after the first two elements, and Siebel CRM loses the values that it stored at the other
indices. If you set bee.length to 2, then bee includes the following elements:

■ bee[0], with a value of 88

■ bee[1], with an undefined value

Get Subarray Method
The Get Subarray method gets the array elements that exist in a range starting with the value that
the first element argument identifies and ending with the value that the last element argument
identifies. It returns a new array.

Format
slice (first element, last element)

Methods Reference ■ Array Methods

Siebel eScript Language Reference Version 8.1/8.2 83

Table 32 describes the arguments for the Get Subarray method.

Example
The following example includes the Get Subarray method:

var v = new Array;
var u;
v[0] = 7;
v[1] = 3;
v[2] = 4;
v[3] = 5;
u = v.slice (1, 3); // u creates new array containing v[1] and v[2] values. For
example, u[0] = 3, u[1] = 4.
v.shift(); // Now v[0] is 3, v[1] is 4

Insert Array Elements Method
The Insert Array Elements method inserts array elements into an array. It returns an array that
includes the elements that it removed from the original array. It does the following work:

1 Beginning at the value that the start argument specifies, it deletes the number of array elements
that the deleteCount argument specifies.

2 Inserts these deleted elements into the newly created return array in the same order that it uses
to delete them.

3 To make room for new elements, it adjusts the elements in the current array object.

4 Inserts the array elements that you specify in the element1, element2, . . . elementn argument.
It inserts these elements sequentially in the space that it creates in Step 3.

Format
arrayName.splice(start, deleteCount[, element1, element2, . . . elementn])

Table 32. Arguments for the Get Subarray Method

Argument Description

first element The first element that this method returns.

last element The last element minus one that this method returns.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Array Methods

84

Table 33 describes the arguments for the Insert Array Elements method.

Example
The following example includes the Insert Array Elements method:

var a = new Array(1, 2, 3, 4, 5);
TheApplication().RaiseErrorText(a.splice(1,3,6,7) + " " + a);
// Displays 2,3,4 1,6,7,5
// Beginning at element in position 1, three elements (a[1], a[2], a[3] = 2,3,4)
// are replaced with 6,7.

Reverse Array Order Method
The Reverse Array Order method reverses the order of the array elements so that the last element
becomes the first element. It returns the elements in reverse order. It returns this reverse order in
the arrayName argument. It reverses the existing array. It does not return a new array.

Format
arrayName.reverse()

Example
The following example includes the Reverse Array Order method:

Table 33. Arguments for the Insert Array Elements Method

Argument Description

start Identifies the index where this method inserts the new array elements.
This method does the following:

■ If start is negative, then it uses the value of the length of the array
plus start. It inserts at the position counting back from the end of the
array. For example, the following code inserts from the last element
in the array:

start = -1

■ If start is larger than the index of the last element, then it uses the
length of the array. It appends new elements to the end of the array.

deleteCount Identifies the number of array elements to remove from the array. If
deleteCount is larger than the number of elements that exist in the array,
then this method removes all of the elements.

element1, element2, . .
. elementn

A list of elements that this method inserts in the array.

Methods Reference ■ Array Methods

Siebel eScript Language Reference Version 8.1/8.2 85

var communalInsect = new Array;
communalInsect[0] = "ant";
communalInsect[1] = "bee";
communalInsect[2] = "wasp";
communalInsect.reverse();

This example produces the following array:

communalInsect[0] == "wasp"
communalInsect[1] == "bee"
communalInsect[2] == "ant"

Shift Array Left Method
The Shift Array Left method shifts all array elements by one position to the left. The first element is
lost. It returns the modified array. It does not include any input arguments.

Format
shift()

Example
The following example includes the Shift Array Left method:

var v = new Array;
v[0] = 7;
v[1] = 3;
v[2] = 4;
v[3] = 11;

v.shift(); // now v[0] becomes 3, v[1] becomes 4, v[2] becomes 11

Shift Array Right Method
The Shift Array Right method shifts array elements to the right. Siebel eScript assigns the argument
values sequentially starting from the first element in the array. It fills the remaining array elements
with values from the original array starting with the first value.

Format
unshift (integer)

You can include any number of arguments.

Example
The following example includes the Shift Array Right method:

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Array Methods

86

var v = new Array;
v[0] = 7;
v[1] = 3;
v[2] = 4;
v[3] = 5;
v.unshift (11, 12); // v[0] is 11 now, v[1] is 12, v[2] is 7 , v[3] is 3

Sort Array Method
The Sort Array method sorts array elements into an order that you specify. It returns the sorted array
elements.

Format
arrayName.sort([compareFunction])

Table 34 describes the arguments for the Sort Array method.

Example
The following example uses the Sort Array method with and without a compare function:

function compareNumbers(a, b)
{

return a - b;
}
var a = new Array(5, 3, 2, 512);
var fp = Clib.fopen("C:\\log\\Trace.log", "a");
Clib.fprintf(fp, "Before sort: " + a.join() + "\n");
a.sort(compareNumbers);
Clib.fprintf(fp, "After sort: " + a.join() + "\n");
Clib.fclose(fp);

This example does the following:

Table 34. Arguments for the Sort Array Method

Argument Description

compareFunction Specifies the sort order. This method does the sort differently
depending on if you include the compareFunction argument:

■ Include the compareFunction argument. It sorts array
elements according to the return value that the compare function
contains.

■ Do not include the compareFunction argument. It converts
array elements to strings before it sorts them. It sorts numbers
in ASCII order, comparing them from left to right. For example,
32 comes before 4. The compareFunction argument allows you to
modify this sort behavior.

Methods Reference ■ String Methods

Siebel eScript Language Reference Version 8.1/8.2 87

1 Displays the results of a sort without the function.

2 Uses the following function to sort the numbers:

compareNumbers(a, b)

In this function, if a and b are two array elements that Siebel eScript compares, then Siebel
eScript does the following:

■ If compareNumbers(a, b) is less than zero, then it gives b a lower index than a.

■ If compareNumbers(a, b) returns zero, then it does not modify the order of a and b.

■ If compareNumbers(a, b) is greater than zero, then it gives b a higher index than a.

String Methods
This topic describes string methods. It includes the following topics:

■ “Overview of String Methods” on page 87

■ “Change String to Lowercase Method” on page 89

■ “Change String to Uppercase Method” on page 89

■ “Create String From Substring Method” on page 90

■ “Create String From Unicode Values Method” on page 90

■ “Get Character From String Method” on page 91

■ “Get Unicode Character From String Method” on page 92

■ “Get Regular Expression From StringVar Method” on page 93

■ “Get String Length Method” on page 95

■ “Parse String Method” on page 96

■ “Replace String Method” on page 97

■ “Search String for Substring Method” on page 98

■ “Search String for Last Substring Method” on page 100

■ “Search StringVar for Regular Expression Method” on page 101

Overview of String Methods
The value property of a string object describes a sequence of text characters. In this topic, the term
string represents the value of an instance of the string object. Other properties of the string object
describe the string value and methods of the string object that manipulate the string value.

To indicate that a text literal is a string, you enclose it with quotation marks. In the following
example, the first statement places the hello string in the word variable. The second statement sets
the word variable to have the same value as the hello variable:

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ String Methods

88

var word = "hello";
word = hello;

To declare a string you can use single quotes instead of double quotes. No difference exists between
these quotes in Siebel eScript.

This topic uses the following formats:

■ stringVar. Indicates a string variable. To use a property or to call a method, a specific instance
of a variable must precede the period.

■ String name. Indicates a static method of the string object. It does not apply to a specific
instance of the string object.

How Siebel eScript Handles Special Characters In a String
A quotation mark is an example of a special character. To use a special character in a string, you
must use a specific combination of characters that represent the special character. This combination
allows Siebel CRM to understand how you intend it to use the character. For example, a quotation
mark that is part of a string or a quotation mark that marks the end of the string.

Table 35 lists the character combinations that represent special characters. You cannot write code
that uses these character combinations in a string that is enclosed by back quotes. For more
information, see “Back Quote Usage in a String” on page 89.

Table 35. Character Combinations That Represent Special Characters

Character Combination Special Character That the Character Combination Represents

\a Audible bell.

\b Backspace.

\f Form feed.

\n Newline.

\r Carriage return.

\t Tab.

\v Vertical tab.

\’ Single quote.

\” Double quote.

\\ Backslash character.

\0### Octal number. For example: '\033' is the octal number.

\x## Hex number. For example: '\x1B' is the hex number.

\0 Null character. For example: '\0' is the null character.

\u#### Unicode number. For example: '\u001B' is the Unicode number.

Methods Reference ■ String Methods

Siebel eScript Language Reference Version 8.1/8.2 89

Back Quote Usage in a String
To configure Siebel eScript to not translate a character combination that typically represents a special
character, you can use the following back quote:

`

If you use the back quote, then Siebel eScript interprets the character combination as a part of the
string. For example, the following code lines illustrate different ways to reference a file name:

"c:\\autoexec.bat" // traditional C method
'c:\\autoexec.bat' // traditional C method
`c:\autoexec.bat' // alternative Siebel eScript method

If a string includes a back quote, then you cannot include a special character that is represented by
a back slash followed by a letter in that string. For example, \n.

Most versions of JavaScript do not support a string that includes a back quote. If you plan to use
your script in some form of JavaScript other than Siebel eScript, then do not use back quotes.

Change String to Lowercase Method
The Change String to Lowercase method modifies every character that resides in the stringVar
variable that is in uppercase to the lowercase equivalent. It returns a copy of this string that includes
all lowercase characters.

Format
stringVar.toLowerCase()

Example
The following example assigns the value e. e. cummings to the variable poet:

var poet = "E. E. Cummings";
poet = poet.toLowerCase();

Change String to Uppercase Method
The Change String to Uppercase method modifies every character that resides in the stringVar
variable that is in lowercase to the uppercase equivalent. It returns a copy of this string that includes
all uppercase characters.

Format
stringVar.toUpperCase()

Example
The following example accepts a file name as input and displays it in uppercase:

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ String Methods

90

var filename = "c:\\temp\\trace.txt";;
TheApplication().RaiseErrorText("The filename in uppercase is "

+filename.toUpperCase());

Create String From Substring Method
The Create String From Substring method returns a new string. Note the following:

■ This string includes characters that the stringVar variable contains according to the start position
and the end position that you specify.

■ The length of this new string is equal to the value of the end argument minus the value of the
start argument.

■ It does not return the character that resides at the end position. If you do not specify the end
argument, then it returns the characters from the value you specify in the start argument to the
end of the string that resides in the stringVar variable.

Format
stringVar.substring(start[, end])

Table 36 describes the arguments for the Create String From Substring method.

Example
For an example, see “Replace String Method” on page 97.

Create String From Unicode Values Method
The Create String From Unicode Values method converts Unicode values to a string. It uses Unicode
values that you specify to determine the characters that are part of the string that it creates.

The String name is a property of the String constructor, so you use with this method instead of the
variable name that you use with an instance method. Siebel eScript assumes that the values in the
arguments that it passes to this method are Unicode values.

For more information, see “Clib Convert Character to ASCII Method” on page 288.

Table 36. Arguments for the Create String From Substring Method

Argument Description

start An integer that identifies the starting position of the string that this method
returns.

end An integer that identifies the ending position plus 1 of the last character of the
string that this method returns.

Methods Reference ■ String Methods

Siebel eScript Language Reference Version 8.1/8.2 91

Format
String.fromCharCode(code1, code2, ... coden)

Table 37 describes the arguments for the Create String From Unicode Values method.

Example 1
The following example sets the string1 variable to AB:

var string1 = String.fromCharCode(0x0041,0x0042);

Example 2
The following example uses the decimal Unicode values of the characters to create a string:

var seblStr = String.fromCharCode(83, 105, 101, 98, 101, 108);

This example provides a string that contains the following characters:

Siebel

For another example, see “Write Byte to Buffer Method” on page 118.

Get Character From String Method
The Get Character From String method returns the character that resides at a specific location in a
string. The length of this character is 1.

To get the first character in a string, you use position 0. For example:

var string1 = "a string";
var firstchar = string1.charAt(0);

To get the last character in a string, you use length minus 1. For example:

var lastchar = string1.charAt(string1.length - 1);

If the value in the position argument is not between 0 and the value of stringVar.length minus 1,
then this method returns an empty string.

Format
stringVar.charAt(position)

Table 37. Arguments for the Create String From Unicode Values Method

Argument Description

code1, code2, ... coden Each argument is an integer that identifies a Unicode code number.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ String Methods

92

Table 38 describes the arguments for the Get Character From String method.

Get Unicode Character From String Method
The Get Unicode Character From String method returns the Unicode value of the character that
resides at a specific position in a string. It returns a 16-bit integer between 0 and 65535. The value
of the position argument identifies this position. If no character exists at this position, then it returns
the following value:

NaN

This method uses the same arguments as the Get Regular Expression From String method. For more
information, see Table 38 on page 92. For more information, see the following topics:

■ “Clib Convert Character to ASCII Method” on page 288

■ “Change String to Lowercase Method” on page 89

■ “Create String From Unicode Values Method”

Format
stringVar.charCodeAt(position)

Usage
To get the first character in a string, you use position 0. For example:

var string1 = "a string";
string1.charCodeAt(0);

To get the last character in a string, you use length minus 1. For example:

string1.charCodeAt(string1.length - 1);

If the value in the position argument is not between 0 and the value of stringVar.length minus 1,
then the Get Unicode Character From String method returns an empty string.

Example
The following eScript code configures Siebel CRM to allow the user to only enter characters that are
part of the Latin character set. These characters must possess a Unicode value of less than 128. The
user enters these characters in the First Name field. You add this code to the Contact business
component. The Get Unicode Character From String method evaluates the Unicode value of each
character that the user enters in the field that the FieldValue argument specifies:

Table 38. Arguments for the Get Character From String Method

Argument Description

position An integer that describes the position in the string of the character that this
method returns. The position of the first character in the string is 0.

Methods Reference ■ String Methods

Siebel eScript Language Reference Version 8.1/8.2 93

function BusComp_PreSetFieldValue (FieldName, FieldValue)
{
// prevent non latin characters in First Name field
if (FieldName == "First Name")

{
for (var i=0;i<FieldValue.length;i++)

{
var co = FieldValue.charCodeAt(i);
if (co > 127)

{
TheApplication().RaiseErrorText("Only characters from latin character

set are allowed!");
}

}
}

return (ContinueOperation);
}

Get Regular Expression From StringVar Method
The Get Regular Expression From StringVar method searches stringVar for a regular expression. It
returns one of the following:

■ If it finds a match, then it returns an array of strings that includes information about each string
and the property sets for these strings.

■ If it does not find the regular expression, then it returns the following value:

Null

Format
stringVar.match(regexp)

Table 39 describes the arguments for the Get Regular Expression From StringVar method.

Usage without Setting the Global Attribute
If you use the Get Regular Expression From StringVar method with the g global attribute not set on
the regular expression, then this usage is the same as with the Get Regular Expression From String
method. For more information, see “Usage Without Setting the Global Attribute” on page 198 and “Get
Regular Expression from String Method” on page 197.

Table 39. Arguments for the Get Regular Expression From StringVar Method

Argument Description

regexp A regular expression that you describe as a literal or as a variable.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ String Methods

94

Usage with Setting the Global Attribute
If you use the Get Regular Expression From StringVar method, and if you set the g global attribute
on the regular expression, and if this method finds a match, then it does the following:

■ Returns element 0 of the return array as the first text in the string that matches the primary
pattern of the regular expression.

■ Returns each subsequent element of the return array as the next text in the string that matches
the primary pattern of the regular expression, and that starts after the last character of the
previous match. It does not return any matches that overlap other matches.

For example, assume the following is true:

■ The primary pattern of the regular expression is a.. (the letter a followed by any two characters).

■ The string is abacadda.

In this situation the return array includes the following:

■ aba

■ add

It does not include aca.

If you set the g global attribute on the regular expression, then usage for the Get Regular Expression
From StringVar method is very different than usage for the Get Regular Expression From String
method.

For more information, see “Get Regular Expression from String Method” on page 197.

Example 1
The following example uses the Get Regular Expression From StringVar method with a regular
expression whose global attribute is not set:

function fn ()
{

var myString = new String("Better internet");
var myRE = new RegExp(/(.).(.er)/i);
var results = myString.match(myRE);
var resultmsg = "";
for(var i =0; i < results.length; i++)
{

resultmsg = resultmsg + "return[" + i + "] = " + results[i] + "\n";
}
TheApplication().RaiseErrorText(resultmsg);

}
fn ();

This example provides the following output:

return[0] = etter \\First text that contains primary pattern ...er (any three
\\characters followed by "er")

return[1] = e \\First text that matches the first subpattern (.) (any single
\\character) in the first text that matches the primary pattern

Methods Reference ■ String Methods

Siebel eScript Language Reference Version 8.1/8.2 95

return[2] = ter \\First text that matches the second subpattern (.er) (any single
\\character followed by "er") in the first text that matches
\\the primary pattern

Example 2
The following example uses the Get Regular Expression From StringVar method with a regular
expression whose global attribute is set. The method returns matches of the primary pattern of the
regular expression that do not overlap:

function fn ()
{

var str = "ttttot tto";
var pat = new RegExp("t.t", "g");
var rtn = str.match(pat);
var resultmsg = "";
for(var i =0; i < rtn.length; i++)
{

resultmsg = resultmsg + "match [" + i + "] = " + rtn[i] + "\n";
TheApplication().RaiseErrorText(resultmsg);
}

}
fn ();

This code produces the following output. This output does not include the ttt instance that starts at
position 1 or the t t instance because these instances start in other strings that the Get Regular
Expression From StringVar method returns:

match [0] = ttt
match [1] = tot

Get String Length Method
The Get String Length method returns an integer that describes the length of the string.

Format
stringVar.length

Example 1
The following example displays the number 14, which is the number of characters in the string. The
position of the last character in the string is equivalent to the value in stringVar.length minus 1,
because the position begins at 0, not at 1:

var string1 = "No, thank you.";
TheApplication().RaiseErrorText(string1.length);

Example 2
The following example returns the length of a name that the user enters, including spaces:

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ String Methods

96

var userName = "Christopher J. Smith";
TheApplication().RaiseErrorText("Your name has " +

userName.length + " characters.");

Parse String Method
The Parse String method parses a string into an array of strings according to the delimiters that you
specify in the delimiter argument. Note the following:

■ It returns an array of strings, each of which begins at an instance of the delimiter character.

■ It does not include the delimiter in any of the strings.

■ If you do not specify the delimiter argument or if this argument contains an empty string (""),
then it returns an array of one element, which includes the original string.

■ It is the inverse of arrayVar.join.

For more information, see “Create Array Elements Method” on page 80.

Format
stringVar.split([delimiter])

Table 40 describes the arguments for the Parse String method.

Example
The following example splits a typical Siebel command line into separate elements. It creates a
separate array element at each space character. You must configure Siebel CRM to modify the string
with character combinations so that Siebel eScript can understand it. The cmdLine variable must
occur on a single line. In this book this variable wraps to a second line:

function Button3_Click ()
{

var msgText = "The following items occur in the array:\n\n";
var cmdLine = "C:\\Siebel\\bin\\siebel.exe /c

\'c:\\siebel\\bin\\siebel.cfg\' /u SADMIN /p SADMIN /d Sample"
var cmdArray = cmdLine.split(" ");
for (var i = 0; i < cmdArray.length; i++)

msgText = msgText + cmdArray[i] + "\n";
TheApplication().RaiseErrorText(msgText);

}

This example produces the following result:

Table 40. Arguments for the Parse String Method

Argument Description

delimiter The character where this method splits the value stored in stringVar.

Methods Reference ■ String Methods

Siebel eScript Language Reference Version 8.1/8.2 97

The following items occur in the array:
C:\Siebel\bin\siebel.exe
/c
'C:\siebel\bin\siebel.cfg'
/u
SADMIN
/p
SADMIN
/d
Sample

Replace String Method
The Replace String method uses the regular expression that you define in the pattern argument to
search a string. If it finds a match, then it replaces the string it finds with the string that you define
in the replexp argument.

If you use T eScript code, and if this method replaces a string, then it sets the appropriate static
properties for the regular expression object. These properties provide more information about the
replacements. For more information, see “Using the Get Regular Expression from String Method with
the T eScript Engine” on page 199.

Format
stringVar.replace(pattern, replexp)

Table 41 describes the arguments for the Replace String method.

Table 41. Arguments for the Replace String Method

Argument Description

pattern Regular expression that this method finds in a string.

replexp A replacement expression that can include one of the following items:

■ String

■ String that includes regular expression elements

■ Function

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ String Methods

98

Special Characters You Can Use in a Replacement Expression
Table 42 describes the special characters that you can use in a replacement expression.

Example
The following example includes the Replace String method:

var rtn;
var str = "one two three two one";
var pat = /(two)/g;

// rtn == "one zzz three zzz one"
rtn = str.replace(pat, "zzz");

// rtn == "one twozzz three twozzz one";
rtn = str.replace(pat, "$1zzz");

// rtn == "one 5 three 5 one"
rtn = str.replace(pat, five());

// rtn == "one twotwo three twotwo one";
rtn = str.replace(pat, "$&$&”);

function five() {
return 5;

}

Search String for Substring Method
The Search String for Substring method searches the stringVar variable for the entire string that you
specify in the substring argument. It returns the position of the first occurrence of this string.

Table 42. Special Characters You Can Use in a Replacement Expression

Character Description

$1, $2 … $9 The text that the regular expression matches. This text resides in a set of
parentheses in the string. For example, $1 replaces the text that the Replace
String method matches in the first regular expression it encounters that
resides in a set of parentheses.

$+ Same as the $1, $2 … $9 characters, except with the $+ character the
replacement occurs in the regular expression that resides in the last set of
parentheses.

$& The text that a regular expression matches.

$` The text to the left of the text that a regular expression matches.

$' The text to the right of the text that a regular expression matches.

\$ The dollar sign character.

Methods Reference ■ String Methods

Siebel eScript Language Reference Version 8.1/8.2 99

If any of the following situations is true, then it returns a value of negative 1:

■ It does not find the value that you specify in the substring argument.

■ The value you specify in the offset argument is outside the range of positions in the string.

Values you enter for arguments are case-sensitive.

Format
stringVar.indexOf(substring [, offset])

Table 43 describes the arguments for the Search String for Substring method.

Example 1
The following example returns the position of the first a character that occurs in the string. In this
example, the first a character occurs at position 2:

var string = "what a string";
var firsta = string.indexOf("a")

Example 2
The following example returns 3, which is the position of the first a character in the string when
starting from the second character of the string:

var magicWord = "abracadabra";
var secondA = magicWord.indexOf("a", 1);

Related Topics
For more information, see the following topics:

■ “Clib Search String for Character Method” on page 258

■ “Clib Search String for Character Set Method” on page 259

■ “Search String for Last Substring Method” on page 100

Table 43. Arguments for the Search String for Substring Method

Argument Description

substring One or more characters that this method searchs.The substring argument can
contain a single character.

offset The position in the string where this method starts searching. This method does
the following according to how you set the offset argument:

■ You specify the offset argument. Starts searching at the position that
you specify in the offset argument.

■ You do not specify the offset argument. Starts searching at position 0.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ String Methods

100

Search String for Last Substring Method
The Search String for Last Substring method searches the stringVar variable for the string that you
specify in the substring argument. It returns the position of the last occurrence of this string in a
string.

If any of the following situations is true, then it returns a value of negative 1:

■ It does not find the value that you specify in the substring argument.

■ The value you specify in the offset argument is outside the range of positions in the string.

Note the following:

■ To limit the search to a string of leftmost characters of the string, you can use the offset
argument.

■ The first character of the substring must occur at a position that is no greater than the offset.

■ If the value you specify in the substring argument does not occur entirely before or at the offset,
then the Search String for Last Substring method still returns the position of the substring that
it finds.

This method uses the same arguments as the Search String for Substring method. For more
information, see Table 43 on page 99.

Format
stringVar.lastIndexOf(substring [, offset])

This method does the following according to how you specify the offset argument:

■ You do specify the offset argument. It searches the string up to the position that you specify
in the offset argument, and then returns the rightmost position where the substring begins. It
does not consider any substring that occurs after the position that you specify in the offset
argument.

■ You do not specify the offset argument. It returns the rightmost position in the entire string
where the substring begins.

Example 1
The following example returns the position of the last occurrence of the a character in the string. It
returns a value of 5:

var string = "what a string";
string.lastIndexOf("a")

Example 2
The following example returns the position of the last occurrence of the abr string, beginning at a
position that is not greater than 8. It returns a value of 7:

var magicWord = "abracadabra";
var lastabr = magicWord.lastIndexOf("abr", 8);

Methods Reference ■ BLOB Methods

Siebel eScript Language Reference Version 8.1/8.2 101

Search StringVar for Regular Expression Method
The Search StringVar for Regular Expression method searches a string for a regular expression. It
returns one of the following:

■ If it finds the regular expression, then it returns the position of this regular expression.

■ If it does not find the regular expression, then it returns negative 1.

You can write code that runs this method in server script or browser script.

This method uses the same argument as the Get Regular Expression From StringVar method. For
more information, see Table 39 on page 93.

Format
stringVar.search(regexp)

Example
The following example uses the Search StringVar for Regular Expression method:

function Test(sValue)
{
 //Validate for 5 digit numbers

var sCheck = /^\d{5}$/; //regular expression defining a 5 digit number
if(sValue.search(sCheck)==0)

{
return("Valid");

}
else
{

return("Invalid");
}

}

BLOB Methods
This topic includes the following topics:

■ “About the BLOB Descriptor” on page 102

■ “Get BLOB Data Method” on page 103

■ “Get BLOB Size Method” on page 105

■ “Write BLOB Data Method” on page 106

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ BLOB Methods

102

About the BLOB Descriptor
The blobDescriptor object describes the structure of a BLOB (binary large object). If you must
configure Siebel CRM to send an object to a process other than the Siebel eScript interpreter, such
as to a Windows API function, then you must configure it to create a blobDescriptor object that
describes the order and type of data of this object. This description describes how to store the
properties of the object in memory. You use it with methods such as the Siebel Library Call DLL
method or the Clib Read From File method. For more information, see “Siebel Library Call DLL Method”
on page 201 and “Clib Read From File Method” on page 240.

A BLOB descriptor includes the same data properties as the object it describes. You must set a value
for each property that specifies how much memory is required to store the data that the property
holds. To refer to the arguments passed to the constructor function, you use the following keyword:

this

You can think of this keyword conceptually as this object. Consider the following object:

Rectangle(width, height)
{

this.width = width;
this.height = height;

}

To configure Siebel eScript to pass data to the following items, you typically use a BLOB descriptor:

■ Siebel eScript data structure, which is similar to JavaScript

■ C program or a C++ program

■ Clib method

These items expect a rigid and precise description of the values that Siebel eScript passes.

Example of Using a BLOB Descriptor
The following example creates a blobDescriptor object that describes the Rectangle object:

var bd = new blobDescriptor();

bd.width = UWORD32;
bd.height = UWORD32;

In this example, you can use Siebel eScript to pass the bd variable as a blobDescriptor argument to
a function that requires a blob descriptor. The values set for the properties depend on what the
receiving function expects. In this example the function that Siebel CRM calls expects to receive an
object that includes two 32-bit words or data values. If you write a BLOB descriptor for a function
that expects to receive an object that contains two 16-bit words, then set the value for the two
properties to UWORD16.

Methods Reference ■ BLOB Methods

Siebel eScript Language Reference Version 8.1/8.2 103

Values You Must Use with a BLOB Descriptor
Table 44 describes the values that you must use with blobDescriptor object properties. To indicate
the number of bytes that are required to store the property, you use one of these values. If the BLOB
descriptor describes an object property that is a string, then you must set the corresponding property
to a numeric value that is larger than the length of the longest string that the property can hold. You
can write code that omits an object method from a BLOB descriptor.

Get BLOB Data Method
This Get BLOB Data method reads data from a binary large object. It returns the data from the BLOB.

Format A
Blob.get(blobVar, offset, dataType)

You use format A for byte, integer, or float data.

Table 44. Values You Can use With the blobDescriptor

Value Description

WCHAR Handled as a native Unicode string.

UWORD8 Stored as an unsigned byte.

SWORD8 Stored as an integer.

UWORD16 Stored as an unsigned 16-bit integer.

SWORD16 Stored as a signed 16-bit integer.

UWORD24 Stored as an unsigned 24-bit integer.

SWORD24 Stored as a signed 24-bit integer.

UWORD32 Stored as an unsigned 32-bit integer.

SWORD32 Stored as a signed 32-bit integer.

FLOAT32 Stored as a floating-point number.

FLOAT64 Stored as a double-precision floating-point number.

STRINGHOLDER Indicates a value that Siebel eScript saves in a string. Siebel
eScript passes this value to a function. This function saves this
string. Siebel eScript does the following work:

1 Allocates 10,000 bytes to contain the string.

2 Truncates this length to the appropriate size.

3 Removes any terminating null characters.

4 Initializes the properties of the string.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ BLOB Methods

104

Format B
Blob.get(blobVar, offset, bufferLen)

You use format B for byte data.

Format C
Blob.get(blobVar, offset, blobDescriptor dataDefinition)

You use format C for object data.

Arguments
Table 45 describes the arguments for the Get BLOB Data method.

Example
The following example describes how to get values from a BLOB object:

function GetBlobVal()
{

var a, b, c;
a = "";
b = 1234;
c = 12345678;
// Call a function to build the Blob
var blob = BuildBlob(a, b, c);
TheApplication().TraceOn("c:\\temp\\blob.txt","Allocation","All");
// Get the values from the blob object
// The first variable is string
var resultA = Blob.get(blob,0,1000);
// The second variable is an integer
var resultB = Blob.get(blob,1000,UWORD16);
// The third variable has a type of float
var resultC = Blob.get(blob,1002,FLOAT64);

Table 45. Arguments for the Get BLOB Data Method

Argument Description

blobVar The name of the binary large object that this method
manipulates.

offset The position in the BLOB that Siebel CRM uses to read the data.

dataType An integer value that identifies the data format in the BLOB. The
dataType argument must include one of the values you must use
with a BLOB descriptor. For more information, see “Values You
Must Use with a BLOB Descriptor” on page 103.

bufferLen An integer that specifies the size of the buffer in bytes.

blobDescriptor dataDefinition A blobDescriptor object that identifies the data format in the
BLOB.

Methods Reference ■ BLOB Methods

Siebel eScript Language Reference Version 8.1/8.2 105

TheApplication().Trace(resultA);
TheApplication().Trace(resultB);
TheApplication().Trace(resultC);

}

function BuildBlob(a, b, c)
{

var blob;
a = "Blob Test Value From Function";
var offset = Blob.put(blob, 0, a, 1000);
offset = Blob.put(blob, offset, b*2, UWORD16);
Blob.put(blob, offset, c*2, FLOAT64);
return blob;

}

Get BLOB Size Method
The Get BLOB Size method determines the size of a BLOB object. It returns the number of bytes that
this BLOB object contains. It returns this value in the blobVar argument.

Format A
Blob.size(blobVar[, SetSize])

Format B
Blob.size(dataType)

Format C
Blob.size(bufferLen)

Format D
Blob.size(blobDescriptor dataDefinition)

Arguments
Table 46 describes the arguments for the Get BLOB Size method. If you specify any of the following
arguments, then Siebel CRM uses the values you specify to convert Siebel eScript data to a BLOB,
and to covert BLOB data to Siebel eScript data:

■ dataType

■ bufferLen

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ BLOB Methods

106

■ dataDefinition

Write BLOB Data Method
The Write BLOB Data method writes data to a binary large object. It returns an integer that identifies
the byte offset of the byte that occurs after the end of the data that this method writes. If it writes
data at the end of the BLOB, then this integer identifies the size of the BLOB.

You can write code that adds data at any position in a BLOB. The data length is variable. This method
does not pad each data element with null values as a way to make every data element a uniform
length. The exact length depends on the CPU. Thirty two bytes is a common length.

For more information, see “Usage of the Term Put” on page 76.

Format A
Blob.put(blobVar[, offset], data, dataType)

Format B
Blob.put(blobVar[, offset], buffer, bufferLen)

Format C
Blob.put(blobVar[, offset], srcStruct, blobDescriptor dataDefinition)

Table 46. Arguments for the Get BLOB Size Method

Argument Description

blobVar The name of the binary large object that this method examines.

setSize An integer that determines the size of the BLOB. If you specify
the SetSize argument, then this method does the following
work:

■ Modifies the size of the BLOB that you identify in the blobVar
argument to the value you specify in the SetSize argument

■ Returns a value in the setSize argument

dataType An integer value that describes the format of the data in the
BLOB. The dataType argument must include one of the values
that you use with a BLOB descriptor. For more information, see
“Values You Must Use with a BLOB Descriptor” on page 103.

bufferLen An integer that describes the number of bytes in the buffer.

blobDescriptor dataDefinition A blobDescriptor object that describes the format of the data in
the BLOB.

Methods Reference ■ BLOB Methods

Siebel eScript Language Reference Version 8.1/8.2 107

To pass the contents of an existing BLOB that resides in the srcStruct argument to the blobVar
argument, you can use format C.

Arguments
Table 47 describes the arguments for the Write BLOB Data method.

Example
Assume you send a data pointer to an external C library. Assume the library expects data in the
following packed C structure:

struct foo
{

signed char a;
unsigned int b;
double c;

};

Table 47. Arguments for the Write BLOB Data Method

Argument Description

blobVar The name of the binary large object that this method
manipulates.

offset The position in the BLOB where this method adds data. If you
do not provide a value for the offset argument, then this method
does one of the following depending on if the BLOB is defined:

■ BLOB is defined. Adds data at the end of the BLOB.

■ BLOB is not defined. Adds data at offset 0.

data The data that this method writes.

dataType The format of the data in the BLOB. This method converts the
data to the format that you specify in the dataType argument,
and then copies this data to the position that you specify in the
offset argument.

If the value that you specify in the dataType argument is not the
length of a byte buffer, then the dataType argument must
include one of the values you use with a BLOB descriptor. For
more information, see “Values You Must Use with a BLOB
Descriptor” on page 103.

buffer A variable that contains a buffer.

bufferLen An integer that specifies the buffer length.

srcStruct A BLOB that contains the data that this method writes.

blobDescriptor dataDefinition A blobDescriptor object that describes the format of the data in
the BLOB.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Buffer Methods

108

The following example creates a structure from three corresponding variables and returns the offset
of the next available byte:

function BuildFooBlob(a, b, c)
{

var offset = Blob.put(foo, 0, a, SWORD8);
offset = Blob.put(foo, offset, b, UWORD16);
Blob.put(foo, offset, c, FLOAT64);
return foo;

}

The following example creates a structure from three corresponding variables but does not include
an offset:

functionBuildFooBlob(a, b, c)
{

Blob.put(foo, a, SWORD8);
Blob.put(foo, b, UWORD16);
Blob.put(foo, c, FLOAT64);
return foo;

}

Buffer Methods
This topic describes buffer methods. It includes the following topics:

■ “Overview of Buffer Methods” on page 109

■ “About Buffer Constructors” on page 109

■ “Create Buffer Method” on page 112

■ “Get Buffer Data Method” on page 113

■ “Get Cursor Position Value From Buffer Method” on page 114

■ “Get String From Buffer Method” on page 115

■ “Put String in Buffer Method” on page 116

■ “Put Value in Buffer Method” on page 117

■ “Write Byte to Buffer Method” on page 118

■ “Buffer Size Property” on page 119

■ “Cursor Position in Buffer Property” on page 119

■ “Data in Buffer Property” on page 120

■ “Use Big Endian in Buffer Property” on page 120

■ “Use Unicode in Buffer Property” on page 120

Methods Reference ■ Buffer Methods

Siebel eScript Language Reference Version 8.1/8.2 109

Overview of Buffer Methods
A buffer method allows you to manipulate data at a very basic level. It is required if the relative
position of data in memory is important. You can configure Siebel CRM to store any type of data in
a buffer object.

You can configure Siebel CRM to create a new buffer object from the following items:

■ Nothing.

■ A string, a buffer, or a buffer object. Siebel CRM copies the contents of the string, buffer, or
buffer object to the new buffer object.

The examples for buffer methods in this chapter use the bufferVar argument as a generic argument
name. Siebel CRM assigns a buffer object to this generic argument.

About Buffer Constructors
This topic describes the formats you can use to create a buffer object.

Table 48 describes the buffer constructor arguments that are common to formats A, B, C, and D.

Format A
new Buffer([size] [, unicode] [, bigEndian]);

Table 48. Arguments for the Buffer Constructor that Are Common to Formats A, B, C, and D

Argument Description

unicode You can use one of the following values:

■ True. Siebel eScript creates the new buffer as a Unicode string
regardless of whether the input string is Unicode or not.

■ False. Siebel eScript creates the new buffer as an ASCII string
regardless of whether the input string is Unicode or not. False is the
default value.

bigEndian You can use one of the following values:

■ True. Siebel eScript stores the largest data values in the most
significant byte.

■ False. Siebel eScript stores the largest data values in the least
significant byte. False is the default value.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Buffer Methods

110

Table 49 describes the buffer constructor arguments that are specific to format A.

Format B
new Buffer(string [, unicode] [, bigEndian]);

Format B creates a new buffer object from a string that you provide. A line of code that uses format
B creates a new buffer object from the buffer provided. Siebel CRM copies the contents of the buffer
into the new buffer object. The unicode argument and the bigEndian argument do not affect this
conversion, although they do set the relevant flags for future use.

Table 50 describes the buffer constructor arguments that are specific to format B.

Format C
new Buffer(buffer [, unicode] [, bigEndian]);

Table 49. Arguments for the Buffer Constructor for Format A

Argument Description

size The size of the new buffer that Siebel eScript creates. You can do one of
the following:

■ Specify the size argument. Siebel eScript creates the new buffer
with the size you specify and fills it with null bytes.

■ Do not specify the size argument. Siebel eScript creates the new
buffer with a size of 0. You can configure it to dynamically extend the
new buffer later.

Table 50. Arguments for the Buffer Constructor for Format B

Argument Description

string The string that Siebel eScript uses as input to create the buffer.

If the string argument contains a Unicode string, then Siebel eScript
creates the buffer as a Unicode string. To use a Unicode string, you must
enable Unicode in the Siebel application. To override this behavior, you can
specify false in the optional unicode argument.

The size of the buffer depends on if the string is a Unicode string:

■ The string is a Unicode string. The size of the buffer is twice the
length of the input string.

■ The string is not a Unicode string. The size of the buffer is the
length of the input string.

A buffer constructor does not add a terminating null byte at the end of the
string.

Methods Reference ■ Buffer Methods

Siebel eScript Language Reference Version 8.1/8.2 111

Table 51 describes the buffer constructor arguments that are specific to format C.

Format D
new Buffer(bufferobject);

A line of code that uses format D creates a new buffer object from another buffer object. Siebel CRM
copies the contents of the buffer object to the new buffer verbatim, including the cursor position,
size, and data.

Table 52 describes the buffer constructor arguments that are specific to format D.

Example
The following example creates new buffer objects:

function BufferConstruct()
{

TheApplication().TraceOn("c:\\temp\\BufferTrace.doc","Allocation","All");
// Create empty buffer with size 100
var buff1 = new Buffer(100 , true , true);
// Create a buffer from string
var buff2 = new Buffer("This is a buffer String constructor example", true);
// Create buffer from buffer
var buff3 = new Buffer(buff2,false);
try
{

with(buff1)
{

// Add values from 0-99 to the buffer
for(var i=0;i<size;i++)
{

putValue(i);
}
var val = "";
cursor=0;
// Read the buffer values into variable
for(var i=0;i<size;i++)
{

val += getValue(1)+" ";
}

Table 51. Arguments for the Buffer Constructor for Format C

Argument Description

buffer The buffer that Siebel eScript uses as input to create the new buffer.

Table 52. Arguments for the Buffer Constructor for Format D

Argument Description

bufferobject The buffer object that Siebel eScript uses as input to create the new buffer.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Buffer Methods

112

// Trace the buffer value
TheApplication().Trace("Buffer 1 value: "+val);

}
with(buff2)
{

// Trace buffer 2
TheApplication().Trace("Buffer 2 value: "+getString());

}
// Trace buffer 3
with(buff3)
{

TheApplication().Trace("Buffer 3 value: "+getString());
}

}
catch(e)
{

TheApplication().Trace(e.toString());
}

}

Create Buffer Method
The Create Buffer method extracts the data that exists between two positions in a buffer. It returns
this data in a new buffer object. This method does the following:

■ If the value that the beginning argument contains is less than 0, then it treats this value as 0,
which is the beginning of the buffer.

■ If the value that the end argument contains is beyond the end of the buffer, then it uses null
bytes to increase the size of the new buffer. It does not modify the source buffer. It duplicates
the values of the unicode argument and the bigEndian argument in the new buffer.

■ Sets the length of the new buffer to the value that the end argument contains minus the value
that the beginning argument contains.

Format
bufferVar.subBuffer(beginning, end)

Table 53 describes the arguments for the Create Buffer method.

Table 53. Arguments for the Create Buffer Method

Argument Description

beginning The position in the source buffer where this method begins to extract data.

end The position in the source buffer where this method stops extracting data.

Methods Reference ■ Buffer Methods

Siebel eScript Language Reference Version 8.1/8.2 113

How the Create Buffer Method Sets the Cursor
Table 54 describes how the Create Buffer method sets the cursor.

Example
The following example creates a new buffer named language and displays the contents of this buffer
in a string named Siebel eScript. The Siebel eScript text begins in the nineteenth position:

var loveIt= new Buffer("I love coding with Siebel eScript!");
var language = loveIt.subBuffer(19, (loveIt.size - 1))
TheApplication().RaiseErrorText(language);

Related Topics
For more information, see “Get String From Buffer Method” on page 115.

Get Buffer Data Method
The Get Buffer Data method returns a string that contains the same data that the buffer contains. If
necessary, it does a Unicode conversion according to the value of the Use Unicode in Buffer property.
For more information, see “Avoiding an Exception Error That Is Not Handled” on page 70.

Format
bufferVar.toString()

Example
The following example uses the Get Buffer Data method:

try
{

do_something;
}
catch(e)
{

Table 54. How the Create Buffer Method Sets the Cursor

Original Cursor Position How the Create Buffer Method Sets the Cursor

Between the value that the beginning
argument contains and the value that the end
argument contains.

Sets the cursor position to a new relative position
in the new buffer.

Before the value that the beginning argument
contains.

Sets the cursor position to 0 in the new buffer.

After the value that the end argument
contains.

Sets the cursor position to the end of the new
buffer.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Buffer Methods

114

TheApplication().RaiseErrorText(Clib.rsprintf(
"Something bad happened: %s\n",e.toString()));

}

Get Cursor Position Value From Buffer Method
The Get Cursor Position Value From Buffer method returns the value that a position contains from a
buffer. This position is the position where the cursor currently resides. To determine where to read
from the buffer, you can use the Cursor property. For more information, see “Cursor Position in Buffer
Property” on page 119.

Format
bufferVar.getValue([valueSize][, valueType])

Table 55 describes the arguments for the Get Cursor Position Value From Buffer method.

Table 55. Arguments for the Get Cursor Position Value From Buffer Method

Argument Description

valueSize A positive number that describes the number of bytes that the this method
reads. You can use any of the following values:

■ 1

■ 2

■ 3

■ 4

■ 8

■ 10

The default value is 1.

These values must not conflict with any values you use with the valueType
argument. For more information, see “Values You Can Use with the ValueSize
and ValueType Arguments” on page 115.

valueType The type of data that the this method reads. You can use one of the following
values:

■ Signed

■ Unsigned

■ Float

Signed is the default value.

Methods Reference ■ Buffer Methods

Siebel eScript Language Reference Version 8.1/8.2 115

Values You Can Use with the ValueSize and ValueType Arguments
Table 56 describes the value combinations you can use with the valueSize argument and the
valueType argument. The values of the valueSize argument and the valueType argument must match
the structure of the data that the Get Cursor Position Value From Buffer method reads. Any other
combination causes an error.

Get String From Buffer Method
The Get String From Buffer method returns a string that starts at the current cursor position in a
buffer and continues for the number of bytes that you specify in the length argument. It reads the
string according to the value of the unicode flag of the buffer. It does not add a terminating null byte
even if you do not provide a length argument.

Format
bufferVar.getString([length])

Table 57 describes the arguments for the Get String From Buffer method.

Table 56. Value Combinations You Can Use with Arguments of the Get Cursor Position Value From
Buffer Method

Value in the valueSize Argument Value in the valueType Argument

1 signed, unsigned

2 signed, unsigned

3 signed, unsigned

4 signed, unsigned, float

8 float

Table 57. Arguments for the Get String From Buffer Method

Argument Description

length The length of the string to return, in bytes. If you do not specify the length
argument, then this method reads the data until it encounters one of the
following items:

■ A null byte

■ The end of the buffer

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Buffer Methods

116

Put String in Buffer Method
The Put String in Buffer method replaces existing data in a buffer with a string that you specify. It
replaces data starting at the current position of the cursor. This method does one of the following
depending on if the Unicode flag in the buffer object is set:

■ Set. It puts the string in the buffer object as a Unicode string. It increments the cursor by twice
the length of the string.

■ Not set. It puts the string in the buffer object as an ASCII string. It increments the cursor by
the length of the string.

This method does not add a terminating null byte at end of the string.

To put a null string in the buffer object, you can use the following code:

buf1.putString("Hello"); // Put the string into the buffer
buf1.putValue(0); // Add terminating null byte

Format
bufferVar.putString(string)

Table 58 describes the arguments for the Put String in Buffer method.

Example
The following example places the language string in the exclamation buffer and displays the modified
contents of the explanation buffer:

function eScript_Click ()
{

var exclamation = new Buffer("I enjoy coding with . . .");
var language = "Siebel eScript.";
exclamation.cursor = 20;
exclamation.putString(language);
TheApplication().RaiseErrorText(exclamation);

}

This modification is a string that contains the following value:

I enjoy coding with Siebel eScript.

Related Topics
For more information, see the following topics:

■ “Usage of the Term Put” on page 76.

Table 58. Arguments for the Put String in Buffer Method

Argument Description

string The string literal that this method puts in the buffer object, or the string
variable whose value it puts in the buffer object.

Methods Reference ■ Buffer Methods

Siebel eScript Language Reference Version 8.1/8.2 117

■ “Get String From Buffer Method” on page 115.

Put Value in Buffer Method
The Put Value in Buffer method replaces existing data in a buffer with a value that you specify. It
replaces data starting at the current position of the cursor. It puts the value that the buffer contains
at the current cursor position, and then automatically increments the cursor value by the value that
the value argument contains.

To put a value at a specific position and preserve the cursor position, you can add code that is similar
to the following:

var oldCursor = bufferItem.cursor; // Save the cursor position
bufferItem.cursor = 20; // Set to new position
bufferItem.putValue(foo); // Put bufferItem at offset 20
bufferItem.cursor = oldCursor // Restore cursor position

For more information, see “Usage of the Term Put” on page 76.

Format
bufferVar.putValue(value[, valueSize][, valueType])

Table 59 describes the arguments for the Put Value in Buffer method.

Avoiding Digit Loss
To put the value in the buffer, the Put Value in Buffer method uses byte ordering according to the
current value that the bigEndian argument contains. If it puts a smaller float value, such as 4, then
digits are lost. It converts a value such as 1.4 to a value that is approximately 1.39999974. This
conversion is insignificant and you can ignore it.

Note the following example:

bufferItem.putValue(1.4,8,"float");
bufferItem.cursor -= 4;
if(bufferItem.getValue(4,"float") != 1.4)
// This is not necessarily true due to significant digit loss.

Table 59. Arguments for the Put Value in Buffer Method

Argument Description

value A number.

valueSize The description for the valueSize argument and the valueType argument
for the Put Value in Buffer method is the same as the description for these
arguments for the Get Cursor Position Value From Buffer method. For more
information, see “Get Cursor Position Value From Buffer Method” on
page 114.

valueType

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Buffer Methods

118

To prevent this situation, you can set the valueSize argument to 8 instead of 4. You can use a
valueSize of 4 for a floating-point value, but be aware that some digit loss might occur. This loss
might not be significant enough to affect most calculations.

Write Byte to Buffer Method
The Write Byte to Buffer method writes a byte to a buffer at a position that you specify.

Format
bufferVar[offset]

Table 60 describes the arguments for the Write Byte to Buffer method.

Usage
The Write Byte to Buffer method is an array-like version of the Get Cursor Position Value From Buffer
method and the Put Value in Buffer method except that the Write Byte to Buffer method works only
with bytes. You can write code that gets or sets these values. For example, the following code sets
the goo variable to the value of a byte. This byte resides in the buffer at offset position 5:

goo = foo[5]

The following code sets the value of position 5 in the foo buffer to the value that the goo variable
contains:

foo[5] = goo

This code assumes the value that the goo variable contains is a single byte value.

Every get or put operation uses eight-bit signed words (SWORD8). If you must work with character
values, then you must convert these values to their ANSI equivalent or Unicode equivalent.

Table 60. Arguments for the Write Byte to Buffer Method

Argument Description

offset A number that describes a position in the buffer that the bufferVar method
identifies. This method does one of the following:

■ Places a byte at the offset position.

■ Reads data from the offset position.

Note the following:

■ If the value that the offset argument contains is less than 0, then this
method uses 0.

■ If the value that the offset argument contains is greater than the
length of the buffer, then this method uses null bytes to increase the
size of the buffer.

Methods Reference ■ Buffer Methods

Siebel eScript Language Reference Version 8.1/8.2 119

Related Topics
For more information, see the following topics:

■ “Usage of the Term Put” on page 76.

■ “Get Cursor Position Value From Buffer Method” on page 114

■ “Put Value in Buffer Method” on page 117

Buffer Size Property
The Buffer Size property is the size of the buffer object. You can write code that sets a value for the
Buffer Size property. For example:

inBuffer.size = 5

Siebel CRM does the following:

■ If the buffer size increases beyond the current maximum size of the buffer, then it uses null bytes
to fill the additional positions.

■ If the buffer size decreases so that the cursor position is beyond the end of the buffer, then it
moves the cursor position to the end of the modified buffer.

For more information, see “Cursor Position in Buffer Property” on page 119.

Format
bufferVar.size

Cursor Position in Buffer Property
The Cursor Position in Buffer property stores the current position of the buffer cursor. Note the
following:

■ The value of the cursor position is always between 0 and the value that the Buffer Size property
contains.

■ If you use Siebel eScript to set the cursor beyond the end of a buffer, then it increases the buffer
to accommodate the new position. It fills the new positions with null bytes.

■ If you use Siebel eScript to set the cursor to a value that is less than 0, then it places the cursor
at position 0 of the buffer.

Format
bufferVar.cursor

Example
For examples, see “Get String From Buffer Method” on page 115 and “Create Buffer Method” on
page 112.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Buffer Methods

120

Data in Buffer Property
The Data in Buffer property is a reference to the internal data of a buffer. You can write code that
uses it as a temporary value to pass buffer data to a function that does not recognize a buffer object.

Format
bufferVar.data

Use Big Endian in Buffer Property
The Use Big Endian in Buffer property is a Boolean flag that specifies to use big endian byte ordering
if Siebel CRM calls the Get Cursor Position Value From Buffer method or the Put Value in Buffer
method. Siebel CRM stores bytes according to the following settings:

■ Use Big Endian in Buffer property is true. Stores the bytes in descending order of
significance.

■ Use Big Endian in Buffer property is false. Stores the bytes in ascending order of
significance.

Siebel CRM sets this value when it creates a buffer. You can configure it to modify this value at any
time.

The Use Big Endian in Buffer property defaults to the state of the operating system and processor.

If a data value includes more than one byte, then the following occurs:

■ The byte that contains the smallest units of the value is the least significant byte.

■ The byte that contains the largest units of the value is the most significant byte.

Format
bufferVar.bigEndian

Use Unicode in Buffer Property
The Use Unicode in Buffer property is a Boolean flag that specifies whether to use a Unicode string
when calling the Get String From Buffer method or the Put String in Buffer method. Siebel CRM sets
the value for the Use Unicode property when it creates a buffer. You can configure it to modify this
value. This property defaults to false.

Format
bufferVar.unicode

Example
The following example sets the Use Unicode in Buffer property of a new buffer to true:

Methods Reference ■ Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 121

var aBuffer = new Buffer();
aBuffer.unicode = true;

Date and Time Methods
This topic describes date and time methods. It includes the following topics:

■ “Overview of Date Methods” on page 122

■ “About the Date Constructor” on page 123

■ “Convert Date and Time to String Method” on page 125

■ “Convert Date to Integer Method” on page 126

■ “Convert Date String to Date Object Method” on page 126

■ “Convert Integer Date to JavaScript Date Method” on page 128

■ “Convert Date to GMT String Method” on page 127

■ “Get Day of Month Method” on page 129

■ “Get Day of Week Method” on page 129

■ “Get Full Year Method” on page 130

■ “Get Hours Method” on page 130

■ “Get Milliseconds Method” on page 130

■ “Get Minutes Method” on page 131

■ “Get Month Method” on page 131

■ “Get Seconds Method” on page 131

■ “Get Time Method” on page 132

■ “Get Time Zone Offset Method” on page 132

■ “Get Year Method” on page 133

■ “Set Date Method” on page 133

■ “Set Full Year Method” on page 134

■ “Set Hours Method” on page 134

■ “Set Milliseconds Method” on page 135

■ “Set Minutes Method” on page 136

■ “Set Month Method” on page 136

■ “Set Seconds Method” on page 137

■ “Set Time Method” on page 137

■ “Set Year Method” on page 138

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Date and Time Methods

122

Overview of Date Methods
Siebel eScript provides the following ways to work with dates:

■ The standard date object in JavaScript.

■ The Clib object that implements routines from the C programming language. For more
information, see Chapter 6, “C Language Library Reference.”

The following methods convert dates in the format of one date system to the format of the other date
system:

■ Date.fromSystem

■ Date.toSystem

This chapter describes the JavaScript Date object.

To indicate the name of a variable that you create to hold a date value, this chapter uses dateVar.

Format for Calling a Date Method
To call a date method, you must precede the method name with a specific instance of a variable
followed by a period. For example, assume you create a date object named aDate. To call the getDate
method, you use the following format:

aDate.getDate

Siebel CRM uses a literal value to call a static method, such as Date.parse. The beginning of a static
method includes the following format:

Date.

These methods are part of the date object instead of an instance of the Date object.

Caution About Using Two Digit Dates
Siebel eScript uses the ECMAScript standard for two digit dates, which might be different from the
formats that other applications use, including Siebel CRM.

CAUTION: To prevent a year 2000 (Y2K) problem, avoid using a two digit date in your Siebel eScript
code.

Methods Reference ■ Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 123

Values for Dates and Times
Table 61 describes values for months, days, hours, minutes, and seconds. Many Siebel eScript
objects use these same values.

About the Date Constructor
The Date constructor instantiates a new date object. If you include an argument, then it returns a
date object that includes the date according to the argument. To create a date object that Siebel CRM
sets to the current date and time, you can use the new operator as you would with any object.

Format A
var dateVar = new Date;

Format B
var dateVar = new Date(milliseconds);

Format C
var dateVar = new Date(dateString);

Format D
var dateVar = new Date(year, month, day);

Format E
var dateVar = new Date(year, month, day, hours, minutes, seconds);

Table 61. Values for Months, Days, Hours, Minutes, and Seconds

Time Period Description

month A month, specified as an integer from 0 to 11. January is 0 and December is 11.

day A day of the month, specified as an integer from 1 to 31. The first day of the
month is 1. The last day of the month is 28, 29, 30, or 31.

hours An hour, specified as an integer from 0 to 23. Midnight is 0 and 11 PM is 23.

minutes A minute, specified as an integer from 0 to 59. The first minute of an hour is 0
and the last minute of an hour is 59.

seconds A second, specified as an integer from 0 to 59. The first second of a minute is 0
and the last second of a minute is 59.

millisecond A millisecond, specified as an integer from 0 through 999. The first millisecond
is 0 and the last millisecond is 999.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Date and Time Methods

124

Arguments
Table 62 describes arguments for the date constructor.

Usage for Format B
Format B returns a date and time that includes the number of milliseconds since midnight, January
1, 1970. Using milliseconds is a standard way of including dates and times. It simplifies calculating
the amount of time between one date and another. It is recommended that you configure Siebel CRM
to convert a date to milliseconds before it performs a calculation on the date.

Usage for Format C
Format C accepts a string that includes a date and an optional time. The format for this string
includes one or more of the following fields, in any order:

month day, year hours:minutes:seconds

For example:

"October 13, 1995 13:13:15"

This string specifies a date of October 13, 1995 and a time of one thirteen and 15 seconds PM. In a
24 hour format, this value is 13:13 hours and 15 seconds. The time specification is optional. If you
include it, then the seconds specification is optional.

Siebel CRM can pass the result of the BusComp.GetFieldValue(datetime field) method to the date
constructor. The GetFieldValue method always returns date fields using the following format:

MM/DD/YYYY hh:mm:ss

Siebel CRM interprets the time in a date string as local time, according to the time zone setting of
the operating system. If you require Siebel CRM to interpret the time as UTC time, then you can
append GMT to the date string. For example:

Table 62. Arguments for the Date Constructor

Argument Description

dateString A string that includes a date and optional time.

year A year. If the year is between 1950 and 2050, then you can include only the final
two digits. Otherwise, you must include four digits. For more information, see
“Caution About Using Two Digit Dates” on page 122.

month For more information, see “Values for Dates and Times” on page 123.

day

hours

minutes

seconds

milliseconds The number of milliseconds since January 1, 1970.

Methods Reference ■ Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 125

"07/09/2004 14:22:00 GMT"

If a business component field includes a UTC time rather than a local time, then you can append GMT
to the code to configure Siebel CRM to pass is to the date constructor. For example:

var utctime = new Date(GetFieldValue("UTC Time") + " GMT");

Usage for Format D and E
Format for formats D and E are self-explanatory. You configure Siebel CRM to pass arguments to
them as integers.

Example
The following example includes a date constructor:

var aDate = new Date(1802, 6, 23)

This example creates a date object that contains a date of July 23, 1802.

Convert Date and Time to String Method
The Convert Date and Time to String method returns a string that includes the date and time of a
date object according to the time zone of the computer that runs the script. It returns this date in
the following format:

Day Mon dd hh:mm:ss yyyy

If you use this code in Siebel eScript, then the code runs on the Siebel Server. The Siebel Server
might or might not reside in the same time zone where the user resides. If you use this code in
JavaScript, then the code runs on the user computer and uses the time zone of the user computer.

Format
dateVar.toLocaleString()
dateVar.toString()

Example
The following example displays the local time from the computer clock, the UTC time, and the
Greenwich mean time (GMT):

var aDate = new Date();
var local = aDate.toLocaleString();
var universal = aDate.toUTCString();
var greenwich = aDate.toGMTString();
TheApplication().RaiseErrorText("Local date is " + local +

"\nUTC date is " + universal +
"\nGMT date is " + greenwich);

This example provides the following results:

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Date and Time Methods

126

Local date is Fri Aug 12 15:45:52 2005
UTC date is Fri Aug 12 23:45:52 2005 GMT
GMT date is Fri Aug 12 23:45:52 2005 GMT

Related Topics
For more information, see the following topics:

■ “Clib Get Date and Time Method” on page 276

■ “Clib Convert Integer to GMT Method” on page 272

■ “Clib Convert Integer to Local Time Method” on page 273

Convert Date to Integer Method
The Convert Date to Integer method converts a date object to a system time format that is in the
same format as the format that the Clib Convert Time to Integer method returns. To create a date
object from a variable in system time format, see “Get Day of Week Method” on page 129.

Format
Date.toSystem()

Example
The following example converts a date object to a system format that methods of the Clib object can
use:

var SysDate = objDate.toSystem();

Convert Date String to Date Object Method
The Convert Date String to Date Object method converts a date string to a date object. It returns a
date object that includes the date in the dateString argument.

Format
Date.parse(dateString)

Table 63 describes the arguments for the Convert Date String to Date Object method.

Table 63. Arguments for the Convert Date String to Date Object Method

Argument Description

dateString A string that uses the following format:

weekday, Month dd, yyyy hh:mm:ss

Methods Reference ■ Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 127

Usage
To call the Convert Date String to Date Object method, you use the date constructor rather than a
variable. You must use the following format:

Friday, October 31, 1998 15:30:00 -0800

where:

The last number in the string is the offset from Greenwich mean time.

The following items use this format:

■ The dateVar.toGMTString method

■ Email applications

■ Internet applications

You can omit the day of the week, time zone, time specification, and seconds field. For example,
consider the following code:

var aDate = Date.parse(dateString);

This code is equivalent to the following code:

var aDate = new Date(dateString);

Example
The following example results in a value of 9098766000:

var aDate = Date.parse("Friday, October 31, 1998 15:30:00 -0220");
TheApplication().RaiseErrorText(aDate);

Convert Date to GMT String Method
The Convert Date to GMT String method converts a date object to a string according to Greenwich
mean time. It returns the date that Siebel CRM sets in dateVar. It returns this date as a string in the
following format:

Day Mon dd hh:mm:ss yyyy GMT.

Format
dateVar.toGMTString()

Example
The following example accepts a number of milliseconds as input and converts it to GMT time as the
number of milliseconds before or after the time on the computer clock:

function clickme_Click ()
{

var aDate = new Date;
var milli = 200000;

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Date and Time Methods

128

aDate.setUTCMilliseconds(milli);
TheApplication().RaiseErrorText(aDate.toGMTString());

}

Related Topics
For more information, see the following topics:

■ “Clib Get Date and Time Method” on page 276

■ “Convert UTC Date to Readable Date Method” on page 140

Convert Integer Date to JavaScript Date Method
The Convert Integer Date to JavaScript Date method converts a time from the format that the Clib
Convert Time to Integer method returns to a standard JavaScript date object. To call the Convert
Integer Date to JavaScript Date method, you use the date constructor rather than a variable.

Format
Date.fromSystem(time)

Table 64 describes the arguments for the Convert Integer Date to JavaScript Date method.

Example
The following example creates a date object from date information obtained through Clib:

var SysDate = Clib.time();
var ObjDate = Date.fromSystem(SysDate);

Related Topics
For more information, see the following topics:

■ “Clib Create Temporary File Name Method” on page 219

■ “About the Date Constructor” on page 123

■ “Convert Date to Integer Method” on page 126

Table 64. Arguments for the Convert Integer Date to JavaScript Date Method

Argument Description

time A variable that holds a system date.

Methods Reference ■ Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 129

Get Day of Month Method
The Get Day of Month method returns the day of the month of a date object. For more information,
see “Values for Dates and Times” on page 123.

Format
dateVar.getDate()

Example
The following example returns a value of 7, the day part of the date object:

function Button2_Click ()
{

var MyBirthdayDay = new Date("1958", "11", "7");
TheApplication().RaiseErrorText("My birthday is on day " +

MyBirthdayDay.getDate() + ".");
}

Get Day of Week Method
The Get Day of Week method returns the day of the week of a date object as a number from 0
through 6. Sunday is 0 and Saturday is 6.

Format
dateVar.getDay()

Example
To get the name of the corresponding weekday, you can create an array that contains the names of
the days of the week, and then compare the return value to the array index. The following example
gets the day of the week when New Year’s Day occurs:

function Button1_Click ()
{

var weekDay = new Array("Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday");

var NewYearsDay = new Date("2004", "1", "1");
var theYear = NewYearsDay.getFullYear()
var i = 0;
while (i < NewYearsDay.getDay())
{

i++;
var result = weekDay[i];

}
TheApplication().RaiseErrorText("New Year’s Day falls on " + result + " in " +

theYear + ".");
}

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Date and Time Methods

130

This example displays the following text:

New Year’s Day falls on Thursday in 2004.

Get Full Year Method
The Get Full Year method returns the year of a date object as a number with four digits.

Format
dateVar.getFullYear()

Example
For examples, see the following topics:

■ “Get Day of Week Method” on page 129

■ “Set Milliseconds Method” on page 135

■ “Set Time Method” on page 137

Get Hours Method
The Get Hours method returns the hour of a date object. For more information, see “Values for Dates
and Times” on page 123.

Format
dateVar.getHours()

Example
The following example returns the number 12, which is the hours portion of the specified time:

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getHours());

Get Milliseconds Method
The Get Milliseconds method returns the milliseconds part of a date object as a number from 0
through 999. When given a date in milliseconds, it returns the last three digits of the millisecond
date. If this value is negative, then it returns the result of the last three digits subtracted from 1000.
For more information, see “Values for Dates and Times” on page 123.

Format
dateVar.getMilliseconds()

Methods Reference ■ Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 131

Example
The following example gets the time from the system clock. The number of milliseconds past the
beginning of the second occurs at the end of the message:

var aDate = new Date;
TheApplication().RaiseErrorText(aDate.toString() + " " +

aDate.getMilliseconds());

Get Minutes Method
The Get Minutes method returns the minutes portion of a date object. For more information, see
“Values for Dates and Times” on page 123.

Format
dateVar.getMinutes()

Example
The following example returns the number 13, which is the minutes portion of the specified time:

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getMinutes());

Get Month Method
The Get Month method returns the month of a date object. For more information, see “Values for
Dates and Times” on page 123.

Format
dateVar.getMonth()

Example
The following example returns the number 10, with the result of adding 1 to the month portion of
the specified date:

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getMonth() + 1);

Get Seconds Method
The Get Seconds method returns the seconds portion of a date object as a number from 0 through
59. For more information, see “Values for Dates and Times” on page 123.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Date and Time Methods

132

Format
dateVar.getSeconds()

Example
The following code returns the number 14, which is the seconds portion of the specified date:

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getSeconds());

Get Time Method
The Get Time method returns the number of milliseconds for a date object. It returns this value as
an integer. This integer includes the number of seconds between midnight on January 1, 1970, GMT,
and the date and time that the date object specifies.

Format
dateVar.getTime()

Example
The following example returns a value of 245594000. To convert this value to a value that a person
can interpret, you can use the Convert Date and Time to String method or the Convert Date to GMT
String Method method:

var aDate = new Date("January 3, 1970 12:13:14");
TheApplication().RaiseErrorText(aDate.getTime());

Related Topics
For more information, see the following topics:

■ “Convert Date and Time to String Method” on page 125

■ “Convert Date to GMT String Method” on page 127

■ “Clib Get Date and Time Method” on page 276

■ “Clib Convert Integer to GMT Method” on page 272

■ “Clib Convert Integer to Local Time Method” on page 273

■ “Clib Convert Time to Integer Method” on page 274

Get Time Zone Offset Method
The Get Time Zone Offset method returns the difference, in minutes, between UTC time and local
time that it calculates as the UTC time minus the local time. For example, Central European Time
(CET) is UTC plus 60. On a computer that is set to the CET time zone, the Get Time Zone Offset
method returns a value of negative 60.

Methods Reference ■ Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 133

Format
dateVar.getTimezoneOffset()

Example
The following example calculates the difference from UTC, in hours, of your location, according to
the setting in the Windows Control Panel:

var aDate = new Date();
var hourDifference = Math.round(aDate.getTimezoneOffset() / 60);
TheApplication().RaiseErrorText("Your time zone is " +

hourDifference + " hours from GMT.");

Get Year Method
The Get Year method returns the year portion of a date object as the offset from a base year of 1900.
The offset is positive for any year that occurs after 1900 and is negative for any year that occurs
before 1900. For example, if the value of dateVar is a date in the year 2004, then dateVar.getYear
equals 104.

Format
dateVar.getYear()

Set Date Method
The Set Date method sets the day of dateVar to the value you specify in the dayOfMonth argument.

Format
dateVar.setDate(dayOfMonth)

Table 65 describes the arguments for the Set Date method.

Setting the Day to a Value That Exceeds 31
You can add any number of days to a date. Siebel eScript automatically converts the number of days
to the correct month and year. For example, to add the number of days to a date, you can use the
following script:

//script to add 7 days to a date

Table 65. Arguments for the Set Date Method

Argument Description

dayOfMonth The day of the month to set in dateVar as an integer from 1 through 31. For
more information, see “Values for Dates and Times” on page 123.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Date and Time Methods

134

var dtNextWeek = new Date();

dtNextWeek.setDate(dtNextWeek.getDate()+7);

//script to add 76 days to a date

var dtNextWeek = new Date();

dtNextWeek.setDate(dtNextWeek.getDate()+76);

Set Full Year Method
The Set Full Year method sets the year of a date object to a four digit year. Optionally, you can use
Siebel eScript to set the month of the year argument to the month argument, and the date of the
month argument to the date argument. You must express the year in four digits.

Format
dateVar.setFullYear(year[, month[, date]])

Table 66 describes the arguments for the Set Full Year method.

Set Hours Method
The Set Hours method sets the hour of a date object to an hour of a 24-hour clock. You can optionally
set the UTC minute, second, and millisecond. For more information, see “Values for Dates and Times”
on page 123.

Format
dateVar.setHours(hour[, minute[, second[, millisecond]]])

Table 66. Arguments for the Set Full Year Method

Argument Description

year The year to set in dateVar as a four digit integer.

month The month to set in dateVar as an integer from 0 through 11. For more information,
see “Values for Dates and Times” on page 123.

date The date to set in dateVar as an integer from 1 through 31.

Methods Reference ■ Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 135

Table 67 describes the arguments for the Set Hours method.

Set Milliseconds Method
The Set Milliseconds method sets the millisecond of a date object to a date expressed in milliseconds
relative to the system time. The value of dateVar becomes equivalent to the number of milliseconds
from the time on the system clock. You can use a positive number for a later time and a negative
number for an earlier time.

Format
dateVar.setMilliseconds(millisecond)

Table 68 describes the arguments for the Set Milliseconds method.

Example
The following example accepts a number of milliseconds as input and converts it to the date relative
to the date and time in the computer clock:

function test2_Click ()
{

var aDate = new Date;
var milli = 7200000;
aDate.setMilliseconds(milli);
var aYear = aDate.getFullYear();
var aMonth = aDate.getMonth() + 1;
var aDay = aDate.getDate();
var anHour = aDate.getHours();

switch(anHour)
{

case 0:
anHour = " 12 midnight.";

Table 67. Arguments for the Set Hours Method

Argument Description

hour For more information, see “Values for Dates and Times” on page 123.

minute

second

millisecond

Table 68. Arguments of the Set Milliseconds Method

Argument Description

millisecond For more information, see “Values for Dates and Times” on page 123.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Date and Time Methods

136

break;
case 12:

anHour = " 12 noon.";
break;

default:
if (anHour > 11)

anHour = (anHour - 12) + " P.M.";
else

anHour = anHour + " A.M.";
}

TheApplication().RaiseErrorText("The specified date is " + aMonth + "/" + aDay +
"/" + aYear + " at " + anHour);
}

The number 7200000 milliseconds is two hours. If you run this code on November 22, 2005 between
3 P.M. and 4 P.M., then it provides the following result:

The specified date is 11/22/2005 at 5 P.M.

Set Minutes Method
The Set Minutes method sets the minute of dateVar to the value you specify in the minute argument.
You can optionally set the minute argument to a specific second and millisecond. For more
information, see “Values for Dates and Times” on page 123.

Format
dateVar.setMinutes(minute[, second[, millisecond]])

Table 69 describes the arguments for the Set Minutes method.

Set Month Method
The Set Month method sets the month of dateVar to the value you specify in the month argument.
You can optionally set the day of month to the date argument. For more information, see “Values for
Dates and Times” on page 123.

Table 69. Arguments for the Set Minutes Method

Argument Description

minute For more information, see “Values for Dates and Times” on page 123.

second

millisecond

Methods Reference ■ Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 137

Format
dateVar.setMonth(month[, date])

Table 70 describes the arguments for the Set Month method.

Set Seconds Method
The Set Seconds method sets the second of dateVar to the value you specify in the second argument.
You can optionally use this method to set the second argument to the value that you specify in the
millisecond argument.

Format
dateVar.setSeconds(second[, millisecond])

Table 71 describes the arguments for the Set Seconds method.

Set Time Method
The Set Time method sets dateVar to a date that Siebel CRM determines from the value you specify
in the milliseconds argument, calculated from January 1, 1970, GMT. To set a date earlier than this
date, you can use a negative number.

Format
dateVar.setTime(milliseconds)

For more information about the milliseconds argument, see “Values for Dates and Times” on page 123.

Example
The following example uses a number of milliseconds as input and converts it to a date and hour:

Table 70. Arguments of the Set Month Method

Argument Description

month The month to set in dateVar as an integer from 0 through 11.

date The date of the month argument to set in dateVar as an integer from 1 through 31.

Table 71. Arguments for the Set Seconds Method

Argument Description

second For more information, see “Values for Dates and Times” on page 123.

millisecond

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Date and Time Methods

138

function dateBtn_Click ()
{

var aDate = new Date;
var milli = -4000;
aDate.setTime(milli);
var aYear = aDate.getFullYear();
var aMonth = aDate.getMonth() + 1;
var aDay = aDate.getDate();
var anHour = aDate.getHours();

switch(anHour)
{

case 0:
anHour = " 12 midnight.";
break;

case 12:
anHour = " 12 noon.";
break;

default:
if (anHour > 11)

anHour = (anHour - 12) + " P.M.";
else

anHour = anHour + " A.M.";
}

TheApplication().RaiseErrorText("The specified date is " +
aMonth + "/" + aDay + "/" + aYear + " at " + anHour);

}

For example, if you enter a value of -345650, then this code provides the following result:

The specified date is 12/31/1969 at 3 P.M.

Set Year Method
The Set Year method sets the year of a date object as a two digit or four digit year that you specify.

Format
dateVar.setYear(year)

Methods Reference ■ UTC Methods

Siebel eScript Language Reference Version 8.1/8.2 139

Table 72 describes the arguments for the Set Year method.

UTC Methods
This topic describes UTC methods. It includes the following topics:

■ “Convert UTC Date to Readable Date Method” on page 140

■ “Get UTC Date Method” on page 140

■ “Get UTC Day of Month Method” on page 141

■ “Get UTC Day of Week Method” on page 142

■ “Get UTC Full Year Method” on page 142

■ “Get UTC Hours Method” on page 143

■ “Get UTC Milliseconds Method” on page 143

■ “Get UTC Minutes Method” on page 143

■ “Get UTC Month Method” on page 144

■ “Get UTC Seconds Method” on page 144

■ “Set UTC Date Method” on page 144

■ “Set UTC Full Year Method” on page 145

■ “Set UTC Hours Method” on page 146

■ “Set UTC Milliseconds Method” on page 146

■ “Set UTC Minutes Method” on page 147

■ “Set UTC Month Method” on page 148

■ “Set UTC Seconds Method” on page 148

Table 72. Arguments for the Set Year Method

Argument Description

year The year to set in dateVar. You can write code that uses one of the following values
in the year argument:

■ A two digit integer for a year that occurs in the twentieth century

■ A four digit integer for a year that does not occur in the twentieth century

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ UTC Methods

140

Convert UTC Date to Readable Date Method
The Convert UTC Date to Readable Date returns a string that includes the UTC date of dateVar in a
format that a human can read. This string uses the following format:

Day Mon dd hh:mm:ss yyyy

Format
dateVar.toUTCString()

Example
For an example, see “Convert Date and Time to String Method” on page 125.

Related Topics
For more information, see the following topics:

■ “Clib Get Date and Time Method” on page 276

■ “Convert Date to GMT String Method” on page 127

■ “Convert Date and Time to String Method” on page 125

Get UTC Date Method
The Get UTC Date method returns an integer that includes the number of milliseconds before or after
midnight January 1, 1970 of the date and time that you specify. To call this method, you use the date
constructor rather than a variable. This method interprets the arguments as referring to GMT time.
For more information, see “Values for Dates and Times” on page 123.

Format
Date.UTC(year, month, day, [, hours[, minutes[, seconds]]])

Table 73 describes the arguments for the Get UTC Date method.

Table 73. Arguments for the Get UTC Date Method

Argument Description

year An integer that contains the year. To represent a year that occurs in the twentieth
century, you can use two digits. For more information, see “Caution About Using
Two Digit Dates” on page 122.

Methods Reference ■ UTC Methods

Siebel eScript Language Reference Version 8.1/8.2 141

Example
The following example uses the Get UTC Date method:

function clickme_Click ()
{

var aDate = new Date(Date.UTC(2005, 1, 22, 10, 11, 12));
TheApplication().RaiseErrorText("The specified date is " +

aDate.toUTCString());
}

This example provides the following result:

The specified date is Sat Jan 22 10:11:12 2005 GMT

Related Topics
For more information, see “About the Date Constructor” on page 123.

Get UTC Day of Month Method
The Get UTC Day of Month method returns the UTC day of the month of dateVar as a number from
1 to 31. For more information, see “Values for Dates and Times” on page 123.

Format
dateVar.getUTCDate()

Example
The following example displays 1, the hour portion of the date, followed by the GMT equivalent, which
can include the same value:

var aDate = new Date("May 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local day of the month is " +

aDate.getHours() +"\nGMT day of the month is " +
aDate.getUTCHours());

month For more information, see “Values for Dates and Times” on page 123.

day

hours

minutes

seconds

Table 73. Arguments for the Get UTC Date Method

Argument Description

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ UTC Methods

142

Get UTC Day of Week Method
The Get UTC Day of Week method returns the UTC day of the week of a date object as a number
from 0 through 6. For more information, see “Values for Dates and Times” on page 123.

Format
dateVar.getUTCDay()

Example
The following example displays the day of the week for May 1, 2005 in local time and in UTC time:

function Button2_Click ()
{

var localDay;
var UTCDay;
var MayDay = new Date("May 1, 2005 13:30:35");
var weekDay = new Array("Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday", "Friday", "Saturday");

for (var i = 0; i <= MayDay.getDay();i++)
localDay = weekDay[i];

var msgtext = "May 1, 2005, 1:30 PM falls on " + localDay;

for (var j = 0; j <= MayDay.getUTCDay(); j++)
UTCDay = weekDay[j];

msgtext = msgtext + " locally, \nand on " + UTCDay + " GMT.";

TheApplication().RaiseErrorText(msgtext);
}

Get UTC Full Year Method
The Get UTC Full Year year method returns the UTC year of a date object as a four digit number.

Format
dateVar.getUTCFullYear()

Example
The following example displays 2005, the year portion of the date, followed by the GMT equivalent,
which can include the same value:

var aDate = new Date("January 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local year is " + aDate.getYear() +

"\nGMT year is " + aDate.getUTCFullYear());

Methods Reference ■ UTC Methods

Siebel eScript Language Reference Version 8.1/8.2 143

Get UTC Hours Method
The Get UTC Hours Method returns the UTC hour of a date object as a number from 0 through 23.
For more information, see “Values for Dates and Times” on page 123.

Format
dateVar.getUTCHours()

Example
The following example displays a value of 13, which is the hour portion of the date, followed by the
GMT equivalent:

var aDate = new Date("May 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local hour is “ + aDate.getHours() +

"\nGMT hour is " + aDate.getUTCHours());

Get UTC Milliseconds Method
The Get UTC Milliseconds method returns the UTC millisecond of a date object as a number from 0
through 999. For more information, see “Values for Dates and Times” on page 123.

Format
dateVar.getUTCMilliseconds()

Get UTC Minutes Method
The Get UTC Minutes method returns the UTC minute of a date object as a number from 0 through
59. For more information, see “Values for Dates and Times” on page 123.

Format
dateVar.getUTCMinutes()

Example
The following example displays a value of 24, which is the minutes portion of the date, followed by
the GMT equivalent:

var aDate = new Date("May 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local minutes: " + aDate.getMinutes() +

"\nGMT minutes: " + aDate.getUTCMinutes());

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ UTC Methods

144

Get UTC Month Method
The Get UTC Month method returns the UTC month of a date object as a number from 0 through 11.
For more information, see “Values for Dates and Times” on page 123.

Format
dateVar.getUTCMonth()

Example
The following example displays a value of 5, which is the month portion of the date determined by
adding 1 to the value that the Get UTC Month method returns. This value is followed by the GMT
equivalent which is determined by adding 1 to the value that the Get UTC Month method returns:

var aDate = new Date("May 1, 2005 13:24:35");
var locMo = aDate.getMonth() + 1;
var GMTMo = aDate.getUTCMonth() + 1
TheApplication().RaiseErrorText("Local month: " + locMo +"\nGMT month: "

+ GMTMo);

Get UTC Seconds Method
The Get UTC Seconds method returns the UTC second of a date object as number from 0 through
59. For more information, see “Values for Dates and Times” on page 123.

Format
dateVar.getUTCSeconds()

Set UTC Date Method
The Set UTC Date method sets the UTC day of a date object to a number from 1 through 31 according
to the value you set in the dayOfMonth argument.

Format
dateVar.setUTCDate(dayOfMonth)

Table 74 describes the arguments for the Set UTC Date method.

Table 74. Arguments for the Set UTC Date Method

Argument Description

dayOfMonth The day of the UTC month to set in dateVar as an integer from 1 through 31.
For more information, see “Values for Dates and Times” on page 123.

Methods Reference ■ UTC Methods

Siebel eScript Language Reference Version 8.1/8.2 145

Set UTC Full Year Method
The Set UTC Full Year method sets the UTC year of a date object to a four digit year that you specify
in the year argument.

Format
dateVar.setUTCFullYear(year[, month[, date]])

Table 75 describes the arguments for the Set UTC Full Year method.

Example
The following example does the following work:

■ To assign the date of the 2000 summer solstice, it uses the Set UTC Full Year method

■ To assign time to a date object, it uses the Set UTC Hours method

■ Determines the local date and displays it

This example uses the following code:

function dateBtn_Click ()
{

var Mstring = " A.M., Standard Time.";
var solstice2K = new Date;
solstice2K.setUTCFullYear(2000, 5, 21);
solstice2K.setUTCHours(01, 48);
var localDate = solstice2K.toLocaleString();
var pos = localDate.indexOf("2000")
var localDay = localDate.substring(0, pos - 10);

var localHr = solstice2K.getHours();
if (localHr > 11)
{

localHr = (localHr - 12);
Mstring = " P.M., Standard Time.";

}
var localMin = solstice2K.getMinutes();

Table 75. Arguments for the Set UTC Full Year Method

Argument Description

year The UTC year to set in dateVar as a four digit integer. You must express the
year in four digits.

month As an option, you can use the month argument and the date argument to set
the month and date of the year. For more information, see “Values for Dates and
Times” on page 123.date

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ UTC Methods

146

var msg = "In your location, the solstice is on " + localDay +
", at " + localHr + ":" + localMin + Mstring;

TheApplication().RaiseErrorText(msg);
}

This example produces the following result:

In your location, the solstice is on Tue Jun 20, at 6:48 P.M., Standard Time.

Set UTC Hours Method
The Set UTC Hours method sets the UTC hour of a date object to a specific hour of a 24-hour clock
as a number from 0 through 23. As an option, you can also set the UTC minute, second, and
millisecond.

Format
dateVar.setUTCHours(hour[, minute[, second[, millisecond]]])

Table 76 describes the arguments for the Set UTC Hours method.

Example
For an example, see “Set UTC Full Year Method” on page 145.

Set UTC Milliseconds Method
The Set UTC Milliseconds method sets the UTC millisecond of a date object to a date expressed in
milliseconds relative to the UTC equivalent of the system time. The value of dateVar becomes
equivalent to the number of milliseconds from the UTC equivalent of the time on the system clock.
You can use a positive number for later times or a negative number for earlier times.

Format
dateVar.setUTCMilliseconds(millisecond)

Table 76. Arguments for the Set UTC Hours Method

Argument Description

hour For more information, see “Values for Dates and Times” on page 123.

minute

second

millisecond

Methods Reference ■ UTC Methods

Siebel eScript Language Reference Version 8.1/8.2 147

Table 77 describes the arguments for the Set UTC Milliseconds method.

Example
The following example gets a number of milliseconds as input and converts it to a UTC date and time:

function dateBtn_Click ()
{

var aDate = new Date;
var milli = 20000;
aDate.setUTCMilliseconds(milli);
var aYear = aDate.getUTCFullYear();
var aMonth = aDate.getMonth() + 1;
var aDay = aDate.getUTCDate();
var anHour = aDate.getUTCHours();
var aMinute = aDate.getUTCMinutes();
TheApplication().RaiseErrorText("The specified date is " +

aMonth +
"/" + aDay + "/" + aYear + " at " + anHour + ":" +
aMinute + ", UTC time.");

}

If run at 5:36 P.M., PST (Pacific Standard Time), on August 22, 2005, then this example produced
the following result:

The specified date is 8/23/2005 at 1:36 UTC time.

Set UTC Minutes Method
The Set UTC Minutes method sets the UTC minute of a date object to a minute that you specify in
the minute argument.

Format
dateVar.setUTCMinutes(minute[, second[, millisecond]])

Table 77. Arguments for the Set UTC Milliseconds Method

Argument Description

millisecond The UTC millisecond to set in dateVar as a positive or negative integer. For more
information, see “Values for Dates and Times” on page 123.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ UTC Methods

148

Table 78 describes the arguments for the Set UTC Minutes method.

Set UTC Month Method
The Set UTC Month method sets the UTC month of a date object to a specific month.

Format
dateVar.setUTCMonth(month[, date])

Table 79 describes the arguments for the Set UTC Month method.

Set UTC Seconds Method
The Set UTC Seconds method sets the UTC second of the minute of a date object to a second that
you specify.

Format
dateVar.setUTCSeconds(second[, millisecond])

Table 78. Arguments for the Set UTC Minutes Method

Argument Description

minute As an option, you can use the second argument to set the minute to a specific
UTC second and the millisecond argument to set the minute to a UTC
millisecond. For more information, see “Values for Dates and Times” on
page 123.

second

millisecond

Table 79. Arguments for the Set UTC Month Method

Argument Description

month The UTC month to set in dateVar as an integer from 0 through 11. As an option,
you can set this argument to the value that the date argument contains. For more
information, see “Values for Dates and Times” on page 123.

date The UTC date of the month argument to set in dateVar as an integer from 1
through 31.

Methods Reference ■ Global Methods

Siebel eScript Language Reference Version 8.1/8.2 149

Table 80 describes the arguments for the Set UTC Seconds method.

Global Methods
This topic describes global methods. It includes the following topics:

■ “Overview of Global Methods” on page 149

■ “Create COM Object Method” on page 150

■ “Get Array Length Method” on page 152

■ “Set Array Length Method” on page 153

■ “Undefine Method” on page 154

Overview of Global Methods
A global method is a method of the global object.

A global variable is a member of a global object. To reference a global property, you do not need to
use an object name. For example, to reference the Is NaN method that tests to determine if a value
is equal to the special value NaN, you can use the format that this topic describes. For more
information, see “Is NaN Method” on page 176.

The global methods that this book describes are unique to the Siebel eScript implementation of
JavaScript. These methods are not part of the ECMAScript standard. Avoid using them in a script that
you might use with a JavaScript interpreter that does not support them.

You can use format A or format B to call a global method.

Format A
globalMethod(value);

Format A treats the globalMethod argument as a function.

You cannot use format A in a function that includes a local variable that has the same name as a
global variable. To reference the global variable in this situation, you must use the global keyword.

Format B
global.globalMethod(value);

Table 80. Arguments for the Set UTC Seconds Method

Argument Description

second As an option, you can set the second argument to a value that you specify in the
millisecond argument. For more information, see “Values for Dates and Times” on
page 123.millisecond

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Global Methods

150

Format B treats the globalMethod argument as a method of the global object.

Arguments
Table 81 describes the arguments of a global object.

Related Topics
For more information, see the following topics:

■ “NaN Numbers” on page 28

■ “Conversion Methods” on page 154

Create COM Object Method
The Create COM Object method instantiates a COM object. It returns a successful COM object or an
undefined object.

Format
COMCreateObject(objectName)

Table 82 describes the arguments for the Create COM Object method.

Usage
You can configure Siebel CRM to pass any type of variable to the COM object that it calls. You must
make sure the variable type is valid for the COM object. The following variable types are valid:

■ String

■ Number

■ Object pointer

Table 81. Arguments of a Global Method

Argument Description

globalMethod The method that the global object applies.

value The value that the global object applies to the method that you specify in
the globalMethod argument.

Table 82. Arguments for the Create COM Object Method

Argument Description

objectName The name of the object that this method creates.

Methods Reference ■ Global Methods

Siebel eScript Language Reference Version 8.1/8.2 151

Siebel CRM can run the Create COM Object method only in server script. It cannot run this method
in browser script.

A DLL that the Create COM Object method instantiates must be thread-safe.

Using the Dispatch Identifier to Call a COM Method
Siebel CRM calls the method of a COM object in Siebel eScript in the same way that it calls this
method in Siebel VB. In this context, a COM object is an object that the Create COM Object method
instantiates.

To use the DISPID (Dispatch Identifier) of a COM method to call that COM method, you make an
IDispatch::Invoke call in the COM technology. To identify methods, properties, and arguments, you
use the Dispatch Identifier in the IDispatch::Invoke call.

You can write code that uses only the following arguments:

■ BSTR (basic string). An eScript string.

■ VARIANT. A universal data type.

■ SAFEARRAY. Similar to a typical C array, but also includes information about the number of
elements in the array.

You cannot use Siebel eScript to call the method of a COM object that includes the LPCSTR argument
for the string argument of that method. In this situation, you must use the BSTR argument.

Example
The following example instantiates Microsoft Excel as a COM object and makes it visible:

var ExcelApp = COMCreateObject("Excel.Application");

// Make Excel visible through the Application object.
ExcelApp.Visible = true;
ExcelApp.WorkBooks.Add();

// Place some text in the first cell of the sheet
ExcelApp.ActiveSheet.Cells(1,1).Value = "Column A, Row 1";

// Save the sheet
var fileName = "C:\\demo.xls";
ExcelApp.ActiveWorkbook.SaveAs (fileName);

// Close Excel with the Quit method on the Application object
ExcelApp.Application.Quit();

// Clear the object from memory
ExcelApp = null;
return (CancelOperation);

An application, such as Microsoft Excel, might change from version to version, so it might be
necessary for you to modify your code to address these modifications. This example code was tested
on Excel 2003.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Global Methods

152

Get Array Length Method
The Get Array Length method returns the length of a dynamically created array. This method is
unique to Siebel eScript. For more information, see “Make Sure the JavaScript Interpreter Can Run a
Function” on page 57.

Note the following:

■ You can write code that uses the Get Array Length method only with a dynamically created array.
You cannot use it with an array that is not created with the Array constructor and the new
operator.

■ The length property is not available for a dynamically created array. A dynamically created array
must use the Get Array Length method or the Set Array Length method when working with an
array length.

■ If you work with an array that the array constructor and the new operator creates, then you must
use the length property of the array.

For more information, see “Use Caution If You Define an Array That Includes a Negative Index” on
page 153.

Format
getArrayLength(array[, minIndex])

Table 83 describes the arguments for the Get Array Length method.

Related Topics
For more information, see the following topics:

■ “About Array Functions” on page 77

■ “Get Largest Array Index Method” on page 82

■ “Set Array Length Method” on page 153

Table 83. Arguments for the Get Array Length Method

Argument Description

array The name of the array whose length this method must get.

minIndex The index of the lowest element where this method starts counting.

The first element of an array is typically at index 0. If you specify the minIndex
argument, then Siebel CRM uses it to set to the minimum index, which is zero or
less.

Methods Reference ■ Global Methods

Siebel eScript Language Reference Version 8.1/8.2 153

Set Array Length Method
The Set Array Length method sets the first index and length of an array. It sets the length of the
array argument to a range that the minIndex argument and the length argument define.

If you specify all three arguments for this method, then the following occurs:

■ The minIndex argument is the minimum index of the resized array.

■ The length argument is the length of the resized array.

■ If an element resides outside the length of the resized array, then that element becomes
undefined.

If you only specify two arguments, then this method uses the second argument as the length
argument and sets the minimum index of the resized array to 0 by default.

This method is unique to Siebel eScript. For more information, see “Make Sure the JavaScript
Interpreter Can Run a Function” on page 57.

Format
setArrayLength(array[, minIndex], length])

Table 84 describes the arguments for the Set Array Length method.

Use Caution If You Define an Array That Includes a Negative Index
Use caution if you defined an array that includes a negative index.

CAUTION: ST eScript code does not support a negative array index. If you define an array that
includes a negative index, and if you use T eScript code to define this array in a Siebel application
prior to release 7.8, then you must redefine the index range for this array and any references
according to index values. As an alternative to using the Set Array Length method to set the array
length, you can use the length property of the array object.

Related Topics
For more information, see the following topics

Table 84. Arguments for the Set Array Length Method

Argument Description

array The name of the array whose length this method must set.

minIndex The index of the lowest element where this method starts counting. This value
must be 0 or less.

If you use ST eScript code, then it is not appropriate to use the minIndex
argument. If you use ST eScript code, then this code restricts the minimum index
to zero only and assigns it by default.

length The length of the array.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Conversion Methods

154

■ “Get Array Length Method” on page 152

■ “Get Largest Array Index Method” on page 82

Undefine Method
The Undefine method undefines a variable, object property, or value. Assume Siebel CRM defines a
value, and then a defined method returns true for this value. If you use the Undefine method with
this value, then the Is Defined method returns false. Undefining a value is not the same as setting
a value to null.

The following example sets the n variable to 2, and then undefines the n variable:

var n = 2;
undefine(n);

This method is unique to Siebel eScript. For more information, see “Make Sure the JavaScript
Interpreter Can Run a Function” on page 57.

Format
undefine(value)

Table 85 describes the arguments for the Undefine method.

Example
The following example creates an object named o, and then defines an o.one property. It then
undefines this property but the o object remains defined:

var o = new Object;
o.one = 1;
undefine(o.one);

Conversion Methods
This topic describes conversion methods. It includes the following topics:

■ “Overview of Conversion Methods” on page 155

■ “Convert String to Floating-Point Number Method” on page 156

■ “Convert String to Integer Method” on page 157

■ “Convert Number to Exponential Notation Method” on page 158

Table 85. Arguments for the Undefine Method

Argument Description

value The variable or object property that this method must undefine.

Methods Reference ■ Conversion Methods

Siebel eScript Language Reference Version 8.1/8.2 155

■ “Convert Number to Fixed Decimal Method” on page 159

■ “Convert Number to Precision Method” on page 159

■ “Convert Special Characters to URL Method” on page 160

■ “Convert Unicode to ASCII Method” on page 161

■ “Convert Value to Boolean Method” on page 162

■ “Convert Value to Buffer Method” on page 163

■ “Convert Value to Bytes Method” on page 165

■ “Convert Value to Integer Method” on page 165

■ “Convert Value to Integer 32 Method” on page 166

■ “Convert Value to Unsigned Integer 16 Method” on page 167

■ “Convert Value to Unsigned Integer 32 Method” on page 168

■ “Convert Value to Number Method” on page 169

■ “Convert Value to Object Method” on page 170

■ “Convert Value to String Method” on page 171

■ “Evaluate Expression Method” on page 173

Overview of Conversion Methods
You might encounter a situation where you must specify or control the types of variables or data.
Some conversion methods include one argument that is a variable or data item that Siebel eScript
converts to the data type that you specify in the name of the method. For example, the following
code creates two variables:

var aString = ToString(123);
var aNumber = ToNumber("123");

In this example, Siebel eScript does the following work:

■ To create the aString variable, it converts the number 123 to a string.

■ To create the aNumber variable, it converts the string value "123" to a number.

It already created the aString variable with a value of "123", so the second code line can use the
following format:

var aNumber = ToNumber(aString);

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Conversion Methods

156

Convert String to Floating-Point Number Method
The Convert String to Floating-Point Number method converts an alphanumeric string to a floating-
point decimal number. It returns a floating-point decimal number. If it cannot convert to a number
the value that the string argument contains, then it returns the following value:

NaN

For more information, see “NaN Numbers” on page 28.

Format
parseFloat(string)

Table 86 describes the arguments for the Convert String to Floating-Point Number method.

How the Convert String to Floating-Point Number Method Handles the String
The first character that is not a white space character must be a digit or a minus sign (-). For more
information, see “Use White Space to Improve Readability” on page 56.

The Convert String to Floating-Point Number method does the following:

■ Ignores white space characters that occur at the beginning of the string

■ Treats the first period (.) in the string as a decimal point

■ Treats any digits that follow the first period as the fractional part of the number

■ Stops reading the string at the first nonnumeric character that occurs after the decimal point

■ Ignores the first nonnumeric character it encounters

■ Ignores all characters that occur after the first nonnumeric character

■ Converts the result into a number

Example
The following example returns a result of negative 234.37:

var num = parseFloat(" -234.37 profit");

Table 86. Arguments for the Convert String to Floating-Point Number Method

Argument Description

string The string that this method must convert.

Methods Reference ■ Conversion Methods

Siebel eScript Language Reference Version 8.1/8.2 157

Convert String to Integer Method
The Convert String to Integer method converts an alphanumeric string to an integer. It returns an
integer. If it cannot convert the value that the string argument contains to a number, then it returns
the following value:

NaN

For more information, see “NaN Numbers” on page 28.

Format
parseInt(string [,radix])

Table 87 describes the arguments for the Convert String to Integer method.

Usage
If you do not specify the radix argument or if the value that the radix argument contains is zero, then
the Convert String to Integer method uses a value of 10 for the radix unless the value that the string
argument contains begins with one of the following values:

■ The character pairs 0x or 0X. It uses a value of 16 for the radix.

■ A zero and a valid octal digit. It uses a value of 8 for the radix. Any number zero through
seven is a valid octal digit.

CAUTION: If the passed string includes a leading zero, such as 05, then the Convert String to
Integer method interprets the number as on octal. An argument that it interprets as an invalid octal
creates a return value of zero. The values 08 and 09 are examples of invalid octal values.

This method handles the string in the same way as the Convert String to Floating-Point Number
method. For more information, see “How the Convert String to Floating-Point Number Method Handles
the String” on page 156.

Example
The following example returns a result of negative 234:

var num = parseInt(" -234.37 profit");

Table 87. Arguments for the Convert String to Integer Method

Argument Description

string The string that this method converts.

radix The base of the number system that this method uses in the return value. For
example, if you set the radix argument to 8, then it returns the value as an octal
number.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Conversion Methods

158

Convert Number to Exponential Notation Method
The Convert Number to Exponential Notation method converts a number to exponential notation. It
returns the number that the numberVar variable contains, expressed in exponential notation to the
number of decimal places that you specify in the len argument.

Format
numberVar.toExponential(len)

Table 88 describes the arguments for the Convert Number to Exponential Notation method.

How the Convert Number to Exponential Notation Method Handles the Len Argument
The Convert Number to Exponential Notation method does one of the following depending on one of
the following values that the len argument contains:

■ Less than the number of significant decimal places that the numberVar variable contains. It does
one of the following:

■ If the number is five or greater, then it rounds the result up.

■ If the number is less than five, then it rounds the result down.

■ Greater than the number of significant decimal places that the numberVar variable contains. It
pads the extra places with zeroes.

■ Negative. It creates an error.

Using a Multivalue List to Avoid Unexpected Rounding
If you must use a value that exceeds 253, then it is recommended that you use a calculated field that
uses the sum of a multivalue list instead of using Siebel eScript. If Siebel CRM performs an operation
that results in a value that exceeds 253, then it rounds this value to 253.

The largest number that the Siebel eScript engine can hold is 253. This number is equivalent to the
following values:

■ 9.00719925 x 1015, with rounding

■ 9,007,199,254,740,992, without rounding

Example
The following example uses the Convert Number to Exponential Notation method:

Table 88. Arguments for the Convert Number to Exponential Notation Method

Argument Description

len The number of decimal places in the significant digits portion of the number.

Methods Reference ■ Conversion Methods

Siebel eScript Language Reference Version 8.1/8.2 159

var num = 1234.567
var num3 = num.toExponential(3) //returns 1.235e+3
var num2 = num.toExponential(0) //returns 1e+3
var num9 = num.toExponential(9) //returns 1.234567000e+3

var smallnum = 0.0001234
var smallnum2 = smallnum.toExponential(2) //returns 1.2e-4
var smallnumerr = smallnum.toExponential(-1) //throws error

Convert Number to Fixed Decimal Method
The Convert Number to Fixed Decimal method converts a number according to the decimal places
that you specify. It returns the number that it converts. It allows you to express a number that
includes a number of decimal places that you specify. For example, to express the results of a
currency calculation that includes two decimal places.

This method does the same work as the Convert Number to Exponential Notation method. For more
information, see “How the Convert Number to Exponential Notation Method Handles the Len Argument”
on page 158.

This method uses the same argument as the Convert Number to Exponential Notation method. For
more information, see Table 88 on page 158.

Format
numberVar.toFixed(len)

Example
The following example uses the Convert Number to Fixed Decimal method:

var profits=2487.8235
var profits3 = profits.toFixed(3) //returns 2487.824
var profits2 = profits.toFixed(2) //returns 2487.82
var profits7 = profits.toFixed(7) //returns 2487.8235000
var profits0 = profits.toFixed(0) //returns 2488
var profitserr = profits.toFixed(-1) //throws error

Convert Number to Precision Method
The Convert Number to Precision method converts a number to a number that includes a number of
significant digits. It returns the converted number contained in the numberVar variable, expressed
to the number of significant digits that you specify in the len argument.

This method allows you to express a number at a desired length. For example, the result of a
scientific calculation might only require accuracy to a specific number of significant digits.

This method does one of the following depending on if the value that the len argument contains is:

■ Less than the number of significant decimal places that exist in the value that the numberVar
variable contains. It does one of the following:

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Conversion Methods

160

■ If the number is five or greater, then it rounds the result up.

■ If the number is less than five, then it rounds the result down.

■ Greater than the number of significant decimal places that exist in the value that the numberVar
variable contains. It pads the extra digits with zeroes and adds a decimal point, if necessary.

This method uses the same argument as the Convert Number to Exponential Notation method. For
more information, see Table 88 on page 158.

Format
numberVar.toPrecision(len)

Example
The following example uses the Convert Number to Precision method:

var anumber = 123.45
var a6 = anumber.toPrecision(6) //returns 123.450
var a4 = anumber.toPrecision(4) //returns 123.5
var a2 = anumber.toPrecision(2) //returns 1.2e+2

Convert Special Characters to URL Method
The Convert Special Characters to URL method replaces special characters that a string contains with
character combinations so that Siebel CRM can use the string with a URL. It returns a modified string.

Format
escape(string)

Table 89 describes the arguments for the Convert Special Characters to URL method.

Usage
The character combinations include Unicode values. For a character in the standard ASCII set, this
is the hexadecimal ASCII code of the character preceded by a percentage symbol (%). The standard
ASCII set includes decimal values 0 through 127.

The following items remain in the string:

■ Uppercase letters

■ Lowercase letters

■ Numbers

Table 89. Arguments for the Convert Special Characters to URL Method

Argument Description

string A string that contains the characters that this method replaces.

Methods Reference ■ Conversion Methods

Siebel eScript Language Reference Version 8.1/8.2 161

■ Ampersand (@)

■ Asterisk (*)

■ Plus sign (+)

■ Underscore (_)

■ Period (.)

■ Forward slash (/)

This method replaces other characters with their respective Unicode sequence.

Example 1
The following example encodes a string. It does not replace the ampersand (@) or asterisk (*)
characters:

var str = escape("@#$*96!");

This example provides the following result:

"@%23%24*96%21"

Example 2
The following example encodes a string:

var encodeStr = escape("@#$*%!");

This example provides the following result:

"@%23%24*%25%21"

Convert Unicode to ASCII Method
The Convert Unicode to ASCII method converts Unicode character combinations that exist in a string
to equivalent ASCII characters. It returns the revised string.

Format
unescape(string)

Table 90 describes the arguments for the Convert Unicode to ASCII method.

Table 90. Arguments for the Convert Unicode to ASCII Method

Argument Description

string A string literal or string variable that contains the Unicode character combinations
that this method converts.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Conversion Methods

162

Example
The following example displays the string in the argument. The Convert Unicode to ASCII method
converts the Unicode character combinations to printable characters. The %20 is the Unicode
representation of the space character. The following example normally displays on a single line
because a new line cannot break a string:

TheApplication().RaiseErrorText(unescape("http://obscushop.com/texis/
%20%20showcat.html?catid=%232029
rg=r133"));

This example produces the following result:

http://obscushop.com/texis/ showcat.html?catid=#2029
rg=r133

Convert Value to Boolean Method
The Convert Value to Boolean method converts a value to the Boolean data type. It returns a value
that depends on the data type of the value that the value argument contains. This method is unique
to Siebel eScript. For more information, see “Make Sure the JavaScript Interpreter Can Run a Function”
on page 57.

Format
ToBoolean(value)

Table 91 describes the arguments for the Convert Value to Boolean method.

Values That the Convert Value to Boolean Method Returns
Table 92 describes the values that the Convert Value to Boolean method returns.

Table 91. Arguments for the Convert Value to Boolean Method

Argument Description

value The value that this method converts to a Boolean value.

Table 92. Values That the Convert Value to Boolean Method Returns

Data Type Return Value

Boolean Value that the value argument contains.

buffer This method returns one of the following values depending on if the buffer is
empty:

■ Buffer is empty. It returns false.

■ Buffer is not empty. It returns true.

Methods Reference ■ Conversion Methods

Siebel eScript Language Reference Version 8.1/8.2 163

Convert Value to Buffer Method
The Convert Value to Buffer method converts the value that the value argument contains to a
sequence of ASCII bytes. It then places this value in a buffer. These bytes depend on the data type
of the value that the value argument contains. This method is unique to Siebel eScript. For more
information, see “Make Sure the JavaScript Interpreter Can Run a Function” on page 57.

Format
ToBuffer(value)

Table 93 describes the arguments for the Convert Value to Buffer method.

null False

number This method returns one of the following values:

■ If the value that the value argument contains is one of the following, then it
returns false:

■ 0

■ +0

■ -0

■ NaN

■ If the value that the value argument contains is not 0, +0, -0, or NaN, then
it returns false.

For more information, see “NaN Numbers” on page 28.

object True

string This method returns one of the following values depending on if the string is
empty:

■ The string is empty. It returns false.

■ The string is not empty. It returns true.

undefined False

Table 93. Arguments for the Convert Value to Buffer Method

Argument Description

value The value that this method saves to a buffer.

Table 92. Values That the Convert Value to Boolean Method Returns

Data Type Return Value

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Conversion Methods

164

Values That the Convert Value to Buffer Method Returns
Table 94 describes the values that the Convert Value to Buffer method returns.

Table 94. Values That the Convert Value to Buffer Method Returns

Data Type Return Value

Boolean This method returns one of the following values:

■ If the value that the value argument contains is false, then it returns the
following value:

false

■ If the value that the value argument contains is not false, then it returns the
following value:

true

null This returns the following string:

null

number This method returns a value depending on which of the following values the value
argument contains:

■ NaN. It returns the following value:

NaN

■ +0 or -0. It returns the following value:

0

■ POSITIVE_INFINITY or NEGATIVE_INFINITY. It returns the following
value:

Infinity

■ A number. It returns a string that includes this number.

For more information on the number object, see “NaN Numbers” on page 28.

object This method returns the following string:

[object Object]

string This method returns the text of the string.

undefined This method returns the following string:

undefined

Methods Reference ■ Conversion Methods

Siebel eScript Language Reference Version 8.1/8.2 165

Convert Value to Bytes Method
The Convert Value to Bytes method converts the value that the value argument contains to bytes,
and then places this value in a buffer. This method is unique to Siebel eScript. For more information,
see “Make Sure the JavaScript Interpreter Can Run a Function” on page 57.

This method does not convert a Unicode value to a corresponding ASCII value. For example, it stores
the Unicode string Hit as the following value:

\OH\Oi\Ot

This value is the following hexadecimal sequence:

00 48 00 69 00 74

Format
ToBytes(value)

Table 95 describes the arguments for the Convert Value to Bytes method.

Convert Value to Integer Method
The Convert Value to Integer method converts the value that the value argument contains to an
integer in the range of negative 215 through 215 minus 1. The equivalent nonexponential range is
negative 32,768 through 32,767. It returns a value depending on which of the following values the
value argument contains:

■ NaN. It returns the following value:

+0

■ +0. It returns the following value:

-0

■ POSITIVE_INFINITY or NEGATIVE_INFINITY. It returns the result.

■ A number. It rounds the integer part of this number toward zero, and then returns the integer.

This method is unique to Siebel eScript. For more information, see “Make Sure the JavaScript
Interpreter Can Run a Function” on page 57.

This method uses the same arguments as the Convert Value to Integer 32 method. For more
information, see Table 96 on page 167.

Table 95. Arguments for the Convert Value to Bytes Method

Argument Description

value The value that this method converts to bytes, and then places in a buffer.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Conversion Methods

166

Format
ToInteger(value)

Usage
To avoid an error, you must first pass the value that the value argument contains to the Is NaN
method or to the Convert Value to Number method. To use the Convert Value to Number method,
you can include a statement that uses the following format:

var x;
x = toNumber(value);
(if x == 'NaN')
.
. [error -handling statements];
.
else

ToInteger(value);

The Convert Value to Integer method truncates rather than rounds the value it receives. It rounds
numbers toward 0. For example, it rounds negative 12.88 to negative 12. It rounds 12.88 to 12.

Related Topics
For more information, see the following topics:

■ “NaN Numbers” on page 28

■ “Round Number Method” on page 192

Convert Value to Integer 32 Method
The Convert Value to Integer 32 method converts the value that the value argument contains to an
integer in the range of negative 231 through 231 minus 1. The equivalent nonexponential range is
negative 2,147,483,648 through 2,147,483,647. It returns a value depending on which of the
following values the value argument contains:

■ NaN. It returns the following value:

NaN

■ +0 or -0. It returns the following value:

0

■ POSITIVE_INFINITY or NEGATIVE_INFINITY. It returns the following value:

Infinity

■ A number. It rounds the integer part of this number toward zero, and then returns the integer.

This method is unique to Siebel eScript. For more information, see “Make Sure the JavaScript
Interpreter Can Run a Function” on page 57 and “NaN Numbers” on page 28.

Methods Reference ■ Conversion Methods

Siebel eScript Language Reference Version 8.1/8.2 167

Format
ToInt32(value)

Table 96 describes the arguments for the Convert Value to Integer 32 method.

Usage
To avoid an error, you must first pass the value that the value argument contains to the Is NaN
method or to the Convert Value to Number method. To use the Is NaN method, you include a
statement that uses the following format:

if (isNaN(value))
.
. [error-handling statements];
.
else

ToInt32(value);

The Convert Value to Integer 32 method truncates rather than rounds the value it receives, so it
rounds numbers toward 0. For example, it rounds negative 12.88 to negative 12. It rounds 12.88 to
12.

Convert Value to Unsigned Integer 16 Method
The Convert Value to Unsigned Integer 16 method converts the value that the value argument
contains to an integer in the range of 0 through 216 minus 1. The nonexponential value is 0 through
65,535. It returns a value depending on which of the following values the value argument contains:

■ NaN. It returns the following value:

+0

■ +0. It returns the following value:

0

■ POSITIVE_INFINITY. It returns the following value:

Infinity

■ Any other value. It returns the absolute value of the integer part of the number, rounded toward
0. The absolute value does not include a positive sign or a negative sign.

This method is unique to Siebel eScript. For more information, see “Make Sure the JavaScript
Interpreter Can Run a Function” on page 57.

Table 96. Arguments of the Convert Value to Integer 32 Method

Argument Description

value The value that this method converts.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Conversion Methods

168

This method uses the same argument as the Convert Value to Integer 32 method. For more
information, see Table 96 on page 167.

Format
ToUint16(value)

Usage
To avoid an error, you must first pass the value argument to the Is NaN method or to the Convert
Value to Number method. To use the Convert Value to Number method, you can include a statement
that uses the following format:

var x;i
x = toNumber(value);
(if x == 'NaN')
.
. [error -handling statements];
.
else

ToUint16(value);

The Convert Value to Unsigned Integer 16 method truncates rather than rounds the value it receives,
so it rounds numbers toward 0. For example, it rounds 12.88 to 12.

Related Topics
For more information, see the following topics:

■ “NaN Numbers” on page 28

■ “Round Number Method” on page 192

Convert Value to Unsigned Integer 32 Method
The Convert Value to Unsigned Integer 32 method converts the value that the value argument
contains to an integer in the range of 0 through 232 minus 1. The nonexponential value is 0 through
4,294,967,296. It returns the same value as the Convert Value to Unsigned Integer 16 method. For
more information, see “Convert Value to Unsigned Integer 16 Method” on page 167.

This method is unique to Siebel eScript. For more information, see “Make Sure the JavaScript
Interpreter Can Run a Function” on page 57.

This method uses the same argument as the Convert Value to Integer 32 method. For more
information, see Table 96 on page 167.

Format
ToUint32(value)

Methods Reference ■ Conversion Methods

Siebel eScript Language Reference Version 8.1/8.2 169

Usage
To avoid an error, you must first pass the value argument to the Is NaN method or to the Convert
Value to Number method. To use the Convert Value to Number method, you can include a statement
that uses the following format:

if (isNaN(value))
.
. [error-handling statements];
.
else

ToUint32(value);

The Convert Value to Unsigned Integer 32 method truncates rather than rounds the value it receives,
so it rounds numbers toward 0. For example, it rounds 12.88 to 12.

Related Topics
For more information, see the following topics:

■ “NaN Numbers” on page 28

■ “Round Number Method” on page 192

Convert Value to Number Method
The Convert Value to Number method converts the value that the value argument contains to a
number. It returns a value that depends on the original data type of the value that the value
argument contains. Table 95 on page 165 describes these data types.

This method is unique to Siebel eScript. For more information, see “Make Sure the JavaScript
Interpreter Can Run a Function” on page 57.

This method uses the same argument as the Convert Value to Integer 32 method. For more
information, see Table 96 on page 167.

Format
ToNumber(value)

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Conversion Methods

170

Values That the Convert Value to Number Method Returns
Table 97 describes values that the Convert Value to Number method returns.

Related Topics
For more information, see “Round Number Method” on page 192.

Convert Value to Object Method
The Convert Value to Object method converts the value that the value argument contains to an
object. It returns a value that depends on the data type of the value that the value argument
contains.

This method is unique to Siebel eScript. For more information, see “Make Sure the JavaScript
Interpreter Can Run a Function” on page 57.

This method uses the same argument as the Convert Value to Integer 32 method. For more
information, see Table 96 on page 167.

Table 97. Values That the Convert Value to Number Method Returns

Data Type Return Value

Boolean This method returns one of the following values, depending on if the value that
the value argument contains is:

■ False. It returns the following value:

+0

■ True. It returns the following value:

1

buffer This method returns one of the following values, depending on if the
conversion is:

■ Successful. It returns the value that the value argument contains.

■ Not successful. It returns the following value:

NaN

For more information on the number object, see “NaN Numbers” on page 28.

string

null 0

number This method returns the value that the value argument contains.

object NaN

undefined

Methods Reference ■ Conversion Methods

Siebel eScript Language Reference Version 8.1/8.2 171

Format
ToObject(value)

Data Types of the Value That the Convert Value to Object Method Returns
Table 98 describes data types of the value that the Convert Value to Object method returns.

Convert Value to String Method
The Convert Value to String method converts the value that the value argument contains to a string.
It returns a value in the format of a Unicode string. The contents of this string depends on the data
type of the value that the value argument contains.

This method is unique to Siebel eScript. For more information, see “Make Sure the JavaScript
Interpreter Can Run a Function” on page 57.

This method uses the same argument as the Convert Value to Integer 32 method. For more
information, see Table 96 on page 167.

Format
ToString(value)

Table 98. Data Types of the Value That the Convert Value to Object Method Returns

Data Type Returns

Boolean A new Boolean object that includes the value that the value argument
contains.

number A new number object that includes the value that the value argument contains.

string A new string object that includes the value that the value argument contains.

object The value that the value argument contains.

null A run-time error.

undefined

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Conversion Methods

172

Values That the Convert Value to String Method Returns
Table 99 describes values that the Convert Value to String method returns.

Example
For an example, see “Evaluate Expression Method” on page 173.

Table 99. Values That the Convert Value to String Method Returns

Data Type Return Values

Boolean This method returns one of the following values, depending on if the value that
the value argument contains is:

■ False. It returns the following value:

false

■ Not false. It returns the following value:

true

null This method returns the following string:

null

number This method returns a value depending on which of the following values the
value argument contains:

■ NaN. It returns the following value:

NaN

■ +0 or -0. It returns the following value:

0

■ Infinity. It returns the following value:

Infinity

A number. It returns a string that includes this number.

For more information on the number object, see “NaN Numbers” on page 28.

object This method returns the following string:

[object Object]

string This method returns the value that the value argument contains.

undefined This method returns the following string:

undefined

Methods Reference ■ Conversion Methods

Siebel eScript Language Reference Version 8.1/8.2 173

Evaluate Expression Method
The Evaluate Expression method evaluates the value that the expression argument contains. It
returns the value that it evaluates in the expression argument. If the expression argument is a
string, then this method attempts to interpret the string as if it is JavaScript code. If this method:

■ Interprets the string. It returns the value in the expression argument.

■ Cannot interpret the string. It returns the following value:

undefined

If the expression is not a string, then this method returns the value that exists in the expression
argument. For example, calling eval(5) returns the value 5.

Format
eval(expression)

Table 100 describes the arguments for the Evaluate Expression method.

Example
The following example describes the result of using the Evaluate Expression method on different
types of expressions. This method does the following work:

■ Interprets the string in the test[0] variable because it can interpret this string as a JavaScript
statement.

■ Does not interpret the string in the test[1] variable or the test[3] variable because it cannot
interpret either string as a JavaScript statement. It returns a value of undefined for each of these
variables.

This example includes the following code:

function clickme_Click ()
{

var msgtext = "";
var a = 7;
var b = 9;
var test = new Array(4);
var test[0] = "a * b";
var test[1] = ToString(a * b);
var test[2] = a + b;
var test[3] = "Strings are undefined.";
var test[4] = test[1] + test[2];

Table 100. Arguments for the Evaluate Expression Method

Argument Description

expression The expression that this method must evaluate.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Data Querying Methods

174

for (var i = 0; i < 5; i++)
msgtext = msgtext + i + ": " + eval(test[i]) + "\n";

TheApplication().RaiseErrorText(msgtext);

Running this code produces the following result:

0: 63
1: undefined
2: 16
3: undefined
4: undefined

Data Querying Methods
This topic describes data querying methods and objects that contain information. It includes the
following topics:

■ “Is Defined Method” on page 174

■ “Is Finite Method” on page 175

■ “Is NaN Method” on page 176

■ “Exception Object” on page 176

■ “Function Object” on page 177

Is Defined Method
The Is Defined method tests if a variable or object property is defined. It returns one of the following
values:

■ The item is defined. It returns the following value:

True

■ The item is not defined. It returns the following value:

False

This method is unique to Siebel eScript. For more information, see “Make Sure the JavaScript
Interpreter Can Run a Function” on page 57.

Format
defined(var)

Methods Reference ■ Data Querying Methods

Siebel eScript Language Reference Version 8.1/8.2 175

Table 101 describes the arguments for the Is Defined method.

Example
The following example includes two uses of the Is Defined method. The first use examines a variable
named t. The second use examines an object named t.t:

var t = 1;
if (defined(t))

TheApplication().Trace("t is defined");
else

TheApplication().Trace("t is not defined");

if (!defined(t.t))
TheApplication().Trace("t.t is not defined"):

else
TheApplication().Trace("t.t is defined");

Related Topics
For more information, see “Undefine Method” on page 154.

Is Finite Method
The Is Finite method determines if the value that the value argument contains is a finite number. It
returns one of the following values:

■ It can convert the value to a number. It returns the following value:

True

■ The value evaluates to any of the following items. It returns False:

■ NaN

■ POSITIVE_INFINITY

■ NEGATIVE_INFINITY

For more information, see “NaN Numbers” on page 28.

This method uses the same argument as the Is NaN method. For more information, see Table 102 on
page 176.

Format
isFinite(value)

Table 101. Arguments for the Is Defined Method

Argument Description

var The variable or object property you must query.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Data Querying Methods

176

Is NaN Method
The Is NaN method determines if the value that the value argument contains is a number. It returns
one of the following values:

■ The value is a number. It returns the following value:

True

■ The value is not a number. It returns the following value:

False

If the value argument references an object, then the Is NaN method always returns true because an
object reference is not a number. For more information on the number object, see “NaN Numbers” on
page 28.

Format
isNaN(value)

Table 102 describes the arguments for the Is NaN method.

Example
The following examples use the Is NaN method:

IsNaN("123abc") //returns true

IsNaN("123") //returns false

IsNaN("999888777123") //returns false

IsNaN("The answer is 42") //returns true

Related Topics
For more information, see “Is Finite Method” on page 175.

Exception Object
If an operation fails, then the Siebel eScript engine creates an exception in the exception object.

Table 102. Arguments for the Is NaN Method

Argument Description

value The variable or expression that this method evaluates.

Methods Reference ■ Data Querying Methods

Siebel eScript Language Reference Version 8.1/8.2 177

Table 103 describes the arguments for the exception object.

Example
The following example includes an exception object:

try
}

var oBO = TheApplication().GetService(“Incorrect name”);
}
catch (e)
}

var sText = e.errText;
var nCode = e.errCode;

}

Function Object
A Function object contains the definition of a function that you define in Siebel eScript. It returns the
code that you configure this function to return. For more information, see “Return Statement of a
Function Object” on page 178.

Format A
function funcName([arg1 [, ..., argn]])
{

body
}

In format A you declare a function, and then call it in your code. It is the standard way to define a
function.

Format B
var funcName = new Function([arg1 [, ..., argn,]] body);

In format B you explicitly create a function. If you use format B to create a function object, then
Siebel CRM evaluates it each time it uses this function. This configuration is not as efficient as format
A because Siebel CRM compiles a declared function only one time instead of evaluating it every time
it uses the function.

Table 103. Arguments for Exception Objects

Argument Description

errCode Contains the error number.

errText Contains a textual description of the error.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Data Querying Methods

178

Arguments
Table 104 describes the arguments for a function object.

Example 1
The following example uses format A to declare a function named AddTwoNumbers. It uses
AddTwoNumbers as the name of the function:

function AddTwoNumbers (a, b)
{

return (a + b);
}

Example 2
The following example uses format B to create a function named AddTwoNumbers. It uses the
Function constructor to create a variable named AddTwoNumbers. The value of this variable is a
reference to the function that the Function constructor creates:

AddTwoNumbers = new Function ("a", "b", "return (a + b)");

Length Property of a Function Object
The length property returns the number of arguments that the function expects.

Format
funcName.length

Table 105 describes the arguments for the length property.

Return Statement of a Function Object
The Return statement passes a value back to the function that called it.

Table 104. Arguments of a Function

Argument Description

funcName The name of the function.

arg1 [, …, argn] An optional list of arguments that the function accepts.

body The lines of code that the function runs.

Table 105. Arguments for the Length Property

Argument Description

funcName The name of the function that the length property uses to return the
number of arguments.

Methods Reference ■ Mathematical Methods

Siebel eScript Language Reference Version 8.1/8.2 179

Format
return value

Table 106 describes the arguments for the Return statement.

Usage
Siebel CRM does not run any code in a function that occurs after a Return statement.

If you define a return type for a custom function, then you must explicitly return a value of the same
type that the function header specifies. All control paths must lead to a Return statement.

Example 1
The function in the following example returns a value that is equal to the number that Siebel CRM
passes to it multiplied by 2, and then divided by 5:

function DoubleAndDivideBy5(a)
{

return (a*2)/5
}

Example 2
The following example does the following work:

■ Uses the value from the function in “Example 1” on page 179

■ Calculates the following expression:

n = (10 * 2) / 5 + (20 * 2) / 5

■ Displays the value for n, which is 12:

function myFunction()
{

var a = DoubleAndDivideBy5(10);
var b = DoubleAndDivideBy5(20);
TheApplication().RaiseErrorText(a + b);

}

Mathematical Methods
This topic describes mathematical methods. It includes the following topics:

■ “Overview of Mathematical Methods” on page 180

■ “Properties of the Math Object” on page 180

Table 106. Arguments for the Return Statement

Argument Description

value Contains a value from the function that calls the Return statement.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Mathematical Methods

180

■ “Get Absolute Value Method” on page 182

■ “Get Arc Cosine Method” on page 182

■ “Get Arcsine Method” on page 183

■ “Get Arctangent Method” on page 183

■ “Get Arctangent 2 Method” on page 184

■ “Get Ceiling Method” on page 185

■ “Get Cosine Method” on page 185

■ “Get Exponential Method” on page 186

■ “Get Floor Method” on page 187

■ “Get Logarithm Method” on page 187

■ “Get Maximum Method” on page 188

■ “Get Minimum Method” on page 188

■ “Get Quotient Method” on page 189

■ “Get Random Number Method” on page 189

■ “Get Remainder Method” on page 190

■ “Get Sine Method” on page 191

■ “Get Square Root Method” on page 191

■ “Get Tangent Method” on page 191

■ “Raise Power Method” on page 192

■ “Round Number Method” on page 192

For more information on the number object, see “NaN Numbers” on page 28.

Overview of Mathematical Methods
Some math methods return data in radians. To convert radians to degrees, you can use the following
formula:

radians multiplied by (180/Math.PI).

Properties of the Math Object
This topic describes properties of the math object.

Base E Property
The Base E property stores the number value for e, which is the base for natural logarithms. The
value of e internally is approximately 2.7182818284590452354.

Methods Reference ■ Mathematical Methods

Siebel eScript Language Reference Version 8.1/8.2 181

Format
Math.E

Logarithm 2 E Property
The Logarithm 2 E property stores the number value for the base 2 logarithm of e, which is the base
of the natural logarithms. The value of the base 2 logarithm of e internally is approximately
1.4426950408889634. The value of the Logarithm 2 E property is approximately the reciprocal of
the value of Math Logarithm 2 property.

Format
Math.LOG2E

Logarithm 10 E Property
The Logarithm 10 E property is the number value for the base 10 logarithm of e, which is the base
of the natural logarithms. The value of the base 10 logarithm of e internally is approximately
0.4342944819032518. The value of the Logarithm 10 E property is approximately the reciprocal of
the value of the Natural Logarithm 10 property.

Format
Math.LOG10E

Natural Logarithm 2 Property
The Natural Logarithm 2 property stores the number value for the natural logarithm of 2. The value
of the natural logarithm of 2 internally is approximately 0.6931471805599453.

Format
Math.LN2

Math Natural Logarithm 10 Property
The Natural Logarithm 10 property stores the number value for the natural logarithm of 10. The value
of the natural logarithm of 10 internally is approximately 2.302585092994046.

Format
Math.LN10

PI Property
The Pi property holds the number value for pi, which is the ratio of the circumference of a circle to
the diameter of the circle. This value internally is approximately 3.14159265358979323846.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Mathematical Methods

182

Format
Math.PI

Square Root 1/2 Property
The Square Root 1/2 property stores the number value for the square root of ½. This value internally
is approximately 0.7071067811865476. The value of the Square Root 1/2 property is approximately
the reciprocal of the value of the Square Root 2 property.

Format
Math.SQRT1_2

Square Root 2 Property
The Square Root 2 property stores the number value for the square root of 2. This value internally
is approximately 1.4142135623730951.

Format
Math.SQRT2

Get Absolute Value Method
The Get Absolute Value method returns the absolute value of the value that the number argument
contains. If it cannot convert this value to a number, then it returns NaN.

Format
Math.abs(number)

Table 107 describes the arguments for the Get Absolute Value method.

Get Arc Cosine Method
The Get Arc Cosine method returns the arc cosine of the value that the number argument contains,
expressed in radians from 0 to pi. If any of the following situations are true, then it returns NaN:

■ The method cannot convert the value to a number.

■ The value is greater than 1 or less than negative 1.

Table 107. Arguments for the Get Absolute Value Method

Argument Description

number A numeric literal or numeric variable.

Methods Reference ■ Mathematical Methods

Siebel eScript Language Reference Version 8.1/8.2 183

This method uses the same argument as the Get Absolute Value method. For more information, see
Table 107 on page 182.

Format
Math.acos(number)

Get Arcsine Method
The Get Arcsine method returns an approximate arcsine of the value that the number argument
contains expressed in radians in the range of negative pi/2 through pi/2. If any of the following
situations are true, then this method returns NaN:

■ It cannot convert the value to a number.

■ The value is greater than 1 or less than negative 1.

This method uses the same argument as the Get Absolute Value method. For more information, see
Table 107 on page 182.

Format
Math.asin(number)

Get Arctangent Method
The Get Arctangent method returns an approximate arctangent of the value that the number
argument contains, expressed in radians and ranging from negative pi/2 through pi/2.

This method assumes the value that the number argument contains is the ratio of the following sides
of a right triangle:

■ The side that is opposite of the angle that this method must calculate

■ The side that is adjacent to the angle

It returns a value for this ratio.

This method uses the same argument as the Get Absolute Value method. For more information, see
Table 107 on page 182.

Format
Math.atan(number)

Example for the Get Arctangent Method
The following example calculates the roof angles that are necessary for a house that includes the
following dimensions:

■ An attic ceiling height of 8 feet at the roof peak

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Mathematical Methods

184

■ A 16 foot span from the outside wall to the center of the house

The Get Arctangent method returns the angle in radians. To convert the value to degrees, it multiplies
it by 180/PI. To examine how the Get Arctangent method is different from the Get Arctangent 2
method, you can compare it to the example in the “Example for the Get Arctangent 2 Method” on
page 184 topic. These examples return the same value:

function RoofBtn_Click ()
{

var height = 8;
var span = 16;
var angle = Math.atan(height/span)*(180/Math.PI);

TheApplication().RaiseErrorText("The angle is " +
Clib.rsprintf("%5.2f", angle) + " degrees.")

}

Get Arctangent 2 Method
The Get Arctangent 2 method returns an approximate arctangent of the value that the y argument
contains divided by the value that the x argument contains, expressed in radians and ranging from
negative pi through pi.

To determine the quadrant of the result, this method uses the signs of the arguments. It is intentional
and traditional that the argument named y is the first argument and the argument named x is the
second argument.

Format
Math.atan2(y, x)

Table 108 describes the arguments for the Get Arctangent 2 method.

Example for the Get Arctangent 2 Method
The following example finds the roof angle necessary for a house. It is identical to the example for
the Get Arctangent method except this example uses the Get Arctangent 2 method. For more
information, see “Example for the Get Arctangent Method” on page 183:

function RoofBtn2_Click ()
{

var height = 8;
var span = 16;
var angle = Math.atan2(span, height)*(180/Math.PI);

Table 108. Arguments for the Get Arctangent 2 Method

Argument Description

y The value on the y axis.

x The value on the x axis.

Methods Reference ■ Mathematical Methods

Siebel eScript Language Reference Version 8.1/8.2 185

TheApplication().RaiseErrorText("The angle is " +
Clib.rsprintf("%5.2f", angle) + " degrees.")

}

Get Ceiling Method
The Get Ceiling method returns the smallest integer that is not less than the value that the number
argument contains. If this argument already contains an integer, then this method returns the value
of this argument. If it cannot convert the value to a number, then it returns the following value:

NaN

This method uses the same argument as the Get Absolute Value method. For more information, see
Table 107 on page 182.

Format
Math.ceil(number)

Example
The following example creates a random number between 0 and 100 and displays the integer range
where the number falls. Each run of this code produces a different result:

var x = Math.random() * 100;
TheApplication().RaiseErrorText("The number is between " +

Math.floor(x) + " and " + Math.ceil(x) + ".");

Get Cosine Method
The Get Cosine method returns an approximate cosine of the value that the number argument
contains, expressed in radians.The return value is between negative 1 and 1. The angle can be
positive or negative. If this method cannot convert the value to a number, then it returns the
following value:

NaN

This method uses the same argument as the Get Absolute Value method. The only difference is that
the number argument for the Get Cosine method includes an angle in radians. For more information,
see Table 107 on page 182.

Format
Math.cos(number)

Example
The following example finds the length of a roof, given the roof pitch and the distance of the house
from the center of the house to the outside wall of the house:

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Mathematical Methods

186

function RoofBtn3_Click ()
{

var pitch;
var width;
var roof;

pitch = 35;
pitch = Math.cos(pitch*(Math.PI/180));
width = 75;
width = width / 2;
roof = width/pitch;

TheApplication().RaiseErrorText("The length of the roof is " +
Clib.rsprintf("%5.2f", roof) + " feet.");

}

Get Exponential Method
The Get Exponential method returns e raised to the power of x where:

■ e is the base of the natural logarithms. The value of e internally is approximately
2.7182818284590452354.

■ x is the value that the number argument contains.

If this method cannot convert the value that the number argument contains to a number, then it
returns the following value:

NaN

Format
Math.exp(number)

Table 109 describes the arguments for the Get Exponential method.

Related Topics
For more information, see the following topics:

■ “Base E Property” on page 180

■ “Math Natural Logarithm 10 Property” on page 181

■ “Logarithm 10 E Property” on page 181

■ “Get Logarithm Method” on page 187

Table 109. Arguments of the Get Exponential Method

Argument Description

number The exponent value of the base of e.

Methods Reference ■ Mathematical Methods

Siebel eScript Language Reference Version 8.1/8.2 187

■ “Logarithm 2 E Property” on page 181

■ “Logarithm 10 E Property” on page 181

Get Floor Method
The Get Floor method returns the greatest integer that is not greater than the value that the number
argument contains. If this value is already an integer, then it returns the value that the number
argument contains. If this method cannot convert the value that the number argument contains to
a number, then it returns the following value:

NaN

This method uses the same argument as the Get Absolute Value method. For more information, see
Table 107 on page 182.

Format
Math.floor(number)

Example
For an example, see “Get Ceiling Method” on page 185.

Get Logarithm Method
The Get Logarithm method returns an approximate natural logarithm of the value that the number
argument contains.

This method uses the same argument as the Get Absolute Value method. For more information, see
Table 107 on page 182.

Format
Math.log(number)

Using the Get Logarithm Method and Raise Power Method with Large Numbers
For a large number, you must use the Get Logarithm method. The number 999^1000 (999 to the
1000th power) is an example of a large number. If you use the Raise Power method instead of the
Get Logarithm method with a large number, then the Raise Power method returns the following
value:

Infinity

Example
This example uses the Get Logarithm method to determine which of the following numbers is larger:

■ 999^1000 (999 to the 1000th power)

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Mathematical Methods

188

■ 1000^999 (1000 to the 999th power):

function Test_Click ()
{

var x = 999;
var y = 1000;
var a = y*(Math.log(x));
var b = x*(Math.log(y))
if (a > b)

TheApplication().
RaiseErrorText("999^1000 is greater than 1000^999.");

else
TheApplication().

RaiseErrorText("999^1000 is not greater than 1000^999.");
}

Get Maximum Method
The Get Maximum method returns the larger of the values in the x argument and the y argument. If
it cannot convert the value that the number argument contains to a number, then it returns the
following value:

NaN

Format
Math.max(x, y)

Table 110 describes the arguments for the Get Maximum method.

Related Topics
For more information, see “Get Minimum Method” on page 188.

Get Minimum Method
The Get Minimum method returns the smaller of the values that the x argument and the y argument
contain. If it cannot convert the value that the number argument contains to a number, then it
returns the following value:

NaN

Table 110. Arguments for the Get Maximum Method

Argument Description

x A numeric literal or numeric variable.

y A numeric literal or numeric variable.

Methods Reference ■ Mathematical Methods

Siebel eScript Language Reference Version 8.1/8.2 189

This method uses the same argument as the Math Maximum method. For more information, see
Table 110 on page 188.

Format
Math.min(x, y)

Get Quotient Method
The Get Quotient method returns the quotient after a division operation that the Clib Divide method
performs. You use this method in conjunction with the Clib Divide method.

Format
intVar.quot

Table 111 describes the arguments for the Get Quotient method.

Example
For an example, see “Clib Divide Method” on page 266.

Get Random Number Method
The Get Random Number method creates, and then returns a pseudo-random number between 0 and
1. It uses no arguments.

Where possible, you must use the Get Random Number method instead of the Clib Create Random
Number method. You use the Clib Create Random Number method only if you must use the Clib
Initialize Random Number Generator method to create an initial value for the random number
generator. For more information, see the following topics:

■ “Clib Create Random Number Method” on page 265

■ “Clib Initialize Random Number Generator Method” on page 270

Format
Math.random()

Table 111. Arguments for the Get Quotient Method

Argument Description

intVar Any variable that contains an integer.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Mathematical Methods

190

Example
The following example creates a random string of characters in a range. The Get Random Number
method sets the range between lowercase letter a through lowercase letter z:

function Test_Click ()
{

var str1 = "";
var letter;
var randomvalue;
var upper = "z";
var lower = "a";

upper = upper.charCodeAt(0);
lower = lower.charCodeAt(0);

for (var x = 1; x < 26; x++)
{

randomvalue = Math.round(((upper - (lower + 1)) *
Math.random()) + lower);

letter = String.fromCharCode(randomvalue);
str1 = str1 + letter;

}

TheApplication().RaiseErrorText(str1);
}

Get Remainder Method
The Get Remainder method returns the remainder after a division operation that the Clib Divide
method performs. You use this method in conjunction with the Clib Divide method.

Format
intVar.rem

Table 112 describes the arguments for the Get Remainder method.

Example
For an example, see “Clib Divide Method” on page 266.

Table 112. Arguments for the Get Remainder Method

Argument Description

intVar Any variable that contains an integer.

Methods Reference ■ Mathematical Methods

Siebel eScript Language Reference Version 8.1/8.2 191

Get Sine Method
The Get Sine method returns the sine of an angle, expressed in radians. It returns the sine of the
value that the number argument contains. The return value is between negative 1 and 1. If this
method cannot convert the value that the number argument contains, then it returns the following
value:

NaN

Format
Math.sin(number)

Table 113 describes the arguments for the math sine method.

Get Square Root Method
The Get Square Root method returns the square root of the value that the number argument
contains. If the value that the number argument contains is a negative number or if this method
cannot convert this value to a number, then it returns the following value:

NaN

This method uses the same argument as the Get Absolute Value method. For more information, see
Table 107 on page 182.

Format
Math.sqrt()

Get Tangent Method
The Get Tangent method returns the tangent of the value that the number argument contains. If it
cannot convert the value that the number argument contains, then it returns the following value:

NaN

Format
Math.tan(number)

Table 113. Arguments for the Get Sine Method

Argument Description

number A numeric expression that contains a number that includes the size of an angle,
expressed in radians. This number can be positive or negative.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Mathematical Methods

192

Table 114 describes the arguments for the Get Tangent method.

Raise Power Method
The Raise Power method raises the value that the x argument contains to the power of the value that
the y argument contains. It returns the result in the x argument. For more information, see “Using
the Get Logarithm Method and Raise Power Method with Large Numbers” on page 187.

Format
Math.pow(x, y)

Table 115 describes the arguments for the Raise Power method.

Example
This example uses the Raise Power method to determine which of the following numbers is larger:

■ 99^100 (99 to the 100th power)

■ 100^99 (100 to the 99th power):

function Test_Click ()
{

var a = Math.pow(99, 100);
var b = Math.pow(100, 99);
if (a > b)

TheApplication().RaiseErrorText("99^100 is greater than 100^99.");
else

TheApplication().RaiseErrorText("99^100 is not greater than 100^99.");
}

Round Number Method
The Round Number method does the following:

Table 114. Arguments for the Get Tangent Method

Argument Description

number A numeric expression that contains the number of radians in the angle whose
tangent this method returns.

Table 115. Arguments of the Raise Power Method

Argument Description

x The number that this method raises.

y The power to which this method raises the value that the x argument contains.

Methods Reference ■ Regular Expression Methods

Siebel eScript Language Reference Version 8.1/8.2 193

■ If the fractional part is equal to or greater than 0.5, then it rounds the value in the number
argument up.

■ If the fractional part is less than 0.5, then it rounds the value in the number argument down.

It rounds a positive number or a negative number to the nearest integer.

It returns the integer that is closest in value to the value that the number argument contains.

This method uses the same argument as the Get Absolute Value method. For more information, see
Table 107 on page 182.

Format
Math.round(number)

Example
The following example uses the Round Number method:

var a = Math.round(123.6);
var b = Math.round(-123.6)
TheApplication().RaiseErrorText(a + "\n" + b)

This example provides the following results:

124
negative 124

Avoiding Precision Loss Due to Rounding
The following example illustrates precision loss due to rounding:

var n = 34.855;
n = n* 100;
var r = Math.round(n)

The value of the n variable is 3485.499999999999995 instead of 3485.5. Rounding this value results
in a value of 3485 instead of 3486.

The following example avoids loss of precision due to rounding:

var n = parseFloat(34.855);
n = parseFloat(n1b*100.0);
var r = Math.round(n);

If you multiply or divide a value, and then round that value, then rounding might not be precise.
Multiplication and division can cause precision loss.

Regular Expression Methods
This topic describes regular expression methods. It includes the following topics:

■ “Overview of Regular Expression Methods” on page 194

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Regular Expression Methods

194

■ “Properties of Regular Expressions” on page 194

■ “Compile Regular Expressions Method” on page 196

■ “Get Regular Expression from String Method” on page 197

■ “Is Regular Expression in String Method” on page 200

Overview of Regular Expression Methods
A regular expression is an object instance of a character pattern that is associated with attributes
that ECMAScript uses to perform a character pattern search of a string. A regular expression uses
the following short format:

RegExp

For more information, see ECMAScript specifications.

The Siebel T eScript engine supports the following methods of the regular expression object. The
Siebel ST eScript engine does not support these methods:

■ RegExp.$n, including '$_' and '$&'

■ RegExp.input

■ RegExp.lastMatch

■ RegExp.lastParen

■ RegExp.leftContext

■ RegExp.rightContext

If you must use ST eScript code, then instead of using one of these methods you must modify your
script to use an equivalent function on the target object.

Properties of Regular Expressions
This topic describes properties of regular expressions. The Siebel ST eScript engine and the Siebel
T eScript engine supports these properties. Throughout this topic, the term regexp represents an
object instance of a regular expression.

You can write code that uses the Compile Regular Expressions method to modify the attribute of a
regular expression instance for one of these properties. For example, if you must write code that
modifies the global attribute of a regular expression instance. For more information, see “Compile
Regular Expressions Method” on page 196.

Regular Expression Global Property
The Regular Expression Global property is a read-only property that indicates the value of the global
attribute of an instance of the regular expression object. The value it returns depends on the
attribute:

Methods Reference ■ Regular Expression Methods

Siebel eScript Language Reference Version 8.1/8.2 195

■ The value g is an attribute of the regular expression. It returns the following value:

True

■ The value g is not an attribute of the regular expression. It returns the following value:

False

Format
regexp.global

Example
The following example uses the regular expression global property:

// Create RegExp instance with global attribute.
var pat = /^Begin/g;
//or
var pat = new RegExp("^Begin", "g");
//Then pat.global == true.

Regular Expression Ignore Case Property
The Regular Expression Ignore Case property is a read-only property that indicates the value of the
ignoreCase attribute of an instance of the regular expression object. The value it returns depends on
the attribute:

■ The value i is an attribute of the regular expression. It returns the following value:

True

■ The value i is not an attribute of the regular expression. It returns the following value:

False

Format
regexp.ignoreCase

Example
The following example uses the Regular Expression Ignore Case property:

// Create RegExp instance with ignoreCase attribute.
var pat = /^Begin/i;
//or
var pat = new RegExp("^Begin", "i");
//Then pat.ignoreCase == true.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Regular Expression Methods

196

Regular Expression Multiline Property
The Regular Expression Multiline property is a read-only property that indicates the value of the
multiline attribute of an instance of the regular expression object. It determines if Siebel CRM
performs a pattern search in multiline mode. The value it returns depends on the attribute:

■ The value m is an attribute of the regular expression. It returns the following value:

True

■ The value m is not an attribute of the regular expression. It returns the following value:

False

Format
regexp.multiline

Example
The following example uses the Regular Expression Multiline property:

// Create RegExp instance with multiline attribute.
var pat = /^Begin/m;
//or
var pat = new RegExp("^Begin", "m");
//Then pat.multiline == true.

Regular Expression Source Property
The Regular Expression Source property is a read-only property that stores the regular expression
that Siebel CRM uses to find matches in a string, not including the attributes.

Format
regexp.source

Example
The following example uses the Regular Expression Source property:

var pat = /t.o/g;
// Then pat.source == "t.o"

Compile Regular Expressions Method
The Compile Regular Expressions method modifies the pattern and attributes for the current instance
of a regular expression object. It allows you to use a regular expression instance multiple times with
modifications to the characteristics of this instance. You use it with a regular expression that the
constructor function creates. You do not use this method with the literal notation.

Methods Reference ■ Regular Expression Methods

Siebel eScript Language Reference Version 8.1/8.2 197

Format
regexp.compile(pattern[, attributes])

Table 116 describes the arguments for the Compile Regular Expressions method.

Example
The following example uses the Compile Regular Expressions method:

var regobj = new RegExp("now");
// use this RegExp object
regobj.compile("r*t");
// use it some more
regobj.compile("t.+o", "ig");
// use it some more

Related Topics
For more information, see the following topics:

■ “Regular Expression Global Property” on page 194

■ “Regular Expression Ignore Case Property” on page 195

■ “Regular Expression Multiline Property” on page 196

■ “Regular Expression Source Property” on page 196

Get Regular Expression from String Method
The Get Regular Expression from String method searches the string that you specify in the str
argument for a regular expression. It returns one of the following depending on if it finds this regular
expression:

■ It finds the regular expression. It returns an array of strings that includes information about
each match it finds and the property sets for these matches.

Table 116. Arguments of the Compile Regular Expressions Method

Argument Description

pattern A string that contains a new regular expression.

attributes A string that contains new attributes. If you include the attributes argument,
then this string must be empty, or it must contain one or more of the following
characters:

■ i. Sets the ignoreCase property to true.

■ g. Sets the global property to true.

■ m. Sets the multiline property to true.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Regular Expression Methods

198

■ It does not find the regular expression. It returns the following value:

Null

Format
regexp.exec(str)

Table 117 describes the arguments for the Get Regular Expression from String method.

Usage Without Setting the Global Attribute
Assume you configure Siebel CRM to run the Get Regular Expression from String method, you do not
set the g global attribute on the regular expression instance, and the method finds a match. In this
situation, the array elements that it returns include the following information:

■ Element 0. The first text in the string that matches the primary regular expression.

■ Element 1. The text that the first subpattern of the regular expression instance matches. It
encloses this subpattern in parentheses.

■ Element 2 through element n. Each subsequent element uses the same format as element 1.

The returned array includes the following properties:

■ Length property. The number of text matches that exist in the returned array.

■ Index property. The start position of the first text that matches the primary regular expression.

■ Input property. The target string that the method searched.

Usage With Setting the Global Attribute
Assume you configure Siebel CRM to run the Get Regular Expression from String method but you do
set the g global attribute on the regular expression instance. In this situation, this method returns
the same result as if the global attribute is not set but the behavior is more complex, which allows
more operations. It does the following work:

1 Begins searching at the position in the target string that the this.lastIndex property specifies.

2 After it finds a match, it sets the this.lastIndex property to the position after the last character
in the matched text.

The this.lastIndex property possesses read and write capabilities. To find all matches of a pattern,
you can configure this method to set the this.lastIndex property to the start position of the previous
match that it found plus 1. This configuration causes this method to loop through a string. When it
does not find a match, it resets the this.lastIndex property to 0.

Table 117. Arguments for the Get Regular Expression from String Method

Argument Description

str A string that this method searches for a regular expression.

Methods Reference ■ Regular Expression Methods

Siebel eScript Language Reference Version 8.1/8.2 199

Using the Get Regular Expression from String Method with the T eScript Engine
If you use code that you create with the T eScript engine, and if the Get Regular Expression from
String method finds a match, then it sets the appropriate static properties of the regular expression
object. For example, it sets the following properties:

■ RegExp.leftContext

■ RegExp.rightContext

■ RegExp.$n

■ And so on

This configuration provides more information about the matches.

Using the Get Regular Expression from String Method and the Get Regular Expression from
StringVar Method
The behavior of the Get Regular Expression from String method and the Get Regular Expression from
StringVar method varies depending on if you set the global attribute on the regular expression:

■ You do not set the global attribute. The methods return the same array. The return values
and the index and input properties are the same.

■ You do set the global attribute. The methods return different arrays.

For more information, see “Get Character From String Method” on page 91.

Example 1
The following example calls the Get Regular Expression from String method from a regular
expression whose global attribute is not set:

function fn ()
{

var myString = new String("Better internet");
var myRE = new RegExp(/(.).(.er)/i);
var results = myRE.exec(myString);
var resultmsg = "";
for(var i =0; i < results.length; i++)
{

resultmsg = resultmsg + "return[" + i + "] = " + results[i] + "\n";
}
TheApplication().RaiseErrorText(resultmsg);

}
fn ();

This example provides the following output:

return[0] = etter \\First text that contains primary pattern ...er (any three
\\characters followed by "er")

return[1] = e \\First text matching the first subpattern (.) (any single
\\character) in the first text matching the primary pattern

return[2] = ter \\First text matching the second subpattern (.er) (any single
\\character followed by "er") in the first text matching
\\the primary pattern

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Regular Expression Methods

200

Example 2
The following example calls the Get Regular Expression from String method from a regular
expression whose global attribute is set. This method returns all matches that exist of the primary
pattern in a string of the regular expression, including matches that overlap:

function fn ()
{

var str = "ttttot tto";
var pat = new RegExp("t.t", "g");
var resultmsg = "";
while ((rtn = pat.exec(str)) != null)
{

resultmsg = resultmsg + "Text = " + rtn[0] + " Pos = " + rtn.index
+ " End = " + (pat.lastIndex - 1) + "\n";
pat.lastIndex = rtn.index + 1;

}
TheApplication().RaiseErrorText(resultmsg)

}
fn ();

This example provides the following output:

Text = ttt Pos = 0 End = 2
Text = ttt Pos = 1 End = 3
Text = tot Pos = 3 End = 5
Text = t t Pos = 5 End = 7

Related Topics
For more information, see the following topics:

■ “Get Character From String Method” on page 91

■ “Is Regular Expression in String Method” on page 200

Is Regular Expression in String Method
The Is Regular Expression in String method determines if a string includes a regular expression. It
returns one of the following values:

■ If the string includes a regular expression, then it returns the following value:

True

■ If the string does not include a regular expression, then it returns the following value:

False

This method uses the same arguments as the Get Regular Expression from String method. For more
information, see Table 117 on page 198.

Format
regexp.test(str)

Methods Reference ■ Siebel Library Methods

Siebel eScript Language Reference Version 8.1/8.2 201

Usage
The Is Regular Expression in String method is equivalent to regexp.exec(str)!=null.

Usage for this method with T eScript code is the same as usage for the Get Regular Expression from
String method. For more information, see “Using the Get Regular Expression from String Method with
the T eScript Engine” on page 199.

You can write code that uses the Is Regular Expression in String method with the g global attribute
set on the regular expression instance. This functionality uses the lastIndex property in the same
way as the Get Regular Expression from String method. For more information, see “Usage With
Setting the Global Attribute” on page 198.

Example
The following example includes the Is Regular Expression in String method:

var str = "one two three tio one";
var pat = /t.o/;
rtn = pat.test(str);
// Then rtn == true.

Siebel Library Methods
This topic describes the Siebel library methods that Siebel eScript uses to call external libraries and
applications. It includes the following topics:

■ “Siebel Library Call DLL Method” on page 201

■ “Siebel Library Get Pointer Address Method” on page 206

■ “Siebel Library Peek Method” on page 207

■ “Siebel Library Write Data Method” on page 208

Siebel Library Call DLL Method
The Siebel Library Call DLL method calls a procedure from a dynamic link library in Microsoft Windows
or a shared object in UNIX. It returns an integer.

Windows Format
SElib.dynamicLink(Library, Procedure, Convention[, [desc,] arg1, arg2, arg3, ..., argn])

UNIX Format
SElib.dynamicLink(Library, Procedure[, arg1, arg2, arg3, ...argn])

In UNIX, Siebel CRM cannot use the Siebel Library Call DLL method to pass more than 22 arguments.
These 22 arguments include the shared library name and the procedure name. You can configure
Siebel CRM to pass up to 20 more arguments.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Siebel Library Methods

202

Table 118 describes the arguments for the Siebel Library Call DLL method.

Table 118. Arguments for the Siebel Library Call DLL Method

Argument Description

Library The library argument can include the following:

■ In Microsoft Windows, the name of the DLL that contains the
procedure.

■ In UNIX, the name of a shared object. You must specify the
fully qualified path name.

Procedure The name or ordinal number of the procedure in the library
dynamic link method.

Convention The calling convention.

desc Passes a Unicode string. For example, WCHAR.

arg1, arg2, arg3, ..., argn Arguments for the Siebel Library Call DLL method.

Methods Reference ■ Siebel Library Methods

Siebel eScript Language Reference Version 8.1/8.2 203

Usage for the Convention Argument
Table 119 describes the calling conventions you must use with the Siebel Library Call DLL method.

Usage if An Argument Is Not Defined
Siebel CRM passes values as 32-bit values. If an argument is not defined when Siebel CRM calls the
Siebel Library Call DLL method, then it assumes that the argument is a 32-bit value. It passes the
address of a 32-bit data element to the Siebel Library Call DLL method. This method then sets the
value.

Usage If an Argument Is a Structure
SELib is a feature that Siebel eScript uses to call functions in the native DLLs. These DLLs can contain
functions implemented in a third party language, such as C or C++. In this situation, an argument
can include a structure.

Table 119. Calling Conventions for the Siebel Library Call DLL Method

Value Description

CDECL Send the argument that appears last in the list first. For example, consider the
following format:

SElib.dynamicLink(Library, Procedure, Convention[, [desc,] arg1,
arg2, arg3])

If arg1, arg2, and arg3 are defined, then this method sends the arguments in the
following order:

■ arg3

■ arg2

■ arg1

The caller reads the arguments.

The STDCALL value is almost always used in Win32.

STDCALL

PASCAL Send the argument that appears first in the list first. For example, consider the
following format:

SElib.dynamicLink(Library, Procedure, Convention[, [desc,] arg1,
arg2, arg3])

If arg1, arg2, and arg3 are defined, then this method sends the arguments in the
following order:

■ arg1

■ arg2

■ arg3

The callee reads the arguments.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Siebel Library Methods

204

If an argument is a structure, then it must include a structure that defines the binary data types in
memory. Siebel CRM does the following:

1 Copies the structure to a binary buffer.

2 Calls the method.

3 Converts the binary data back into the data structure according to the rules defined in the Write
BLOB Data method and the Clib Read From File method. It performs data conversion according
to the current BigEndianMode setting.

For more information, see “Write BLOB Data Method” on page 106 and “Clib Read From File Method”
on page 240.

Example 1
The following example describes a proxy DLL that uses denormalized input values, creates the
structure, and calls a method in the destination DLL:

#include <windows.h>
_declspec(dllexport) int __cdecl
score (

double AGE,
double AVGCHECKBALANCE,
double AVGSAVINGSBALANCE,
double CHURN_SCORE,
double CONTACT_LENGTH,
double HOMEOWNER,
double *P_CHURN_SCORE,
double *R_CHURN_SCORE,
char _WARN_[5])

{
*P_CHURN_SCORE = AGE + AVGCHECKBALANCE + AVGSAVINGSBALANCE;
*R_CHURN_SCORE = CHURN_SCORE + CONTACT_LENGTH + HOMEOWNER;
strcpy(_WARN_, "SFD");
return(1);

}

Example 2
The following example calls a DLL. This code uses the buffer for pointers and characters:

function TestDLLCall3()
{

var AGE = 10;
var AVGCHECKBALANCE = 20;
var AVGSAVINGSBALANCE = 30;
var CHURN_SCORE = 40;
var CONTACT_LENGTH = 50;
var HOMEOWNER = 60;
var P_CHURN_SCORE = Buffer(8);
var R_CHURN_SCORE = Buffer(8);
var _WARN_ = Buffer(5);

Methods Reference ■ Siebel Library Methods

Siebel eScript Language Reference Version 8.1/8.2 205

SElib.dynamicLink("jddll.dll", "score", CDECL,
FLOAT64, AGE,
FLOAT64, AVGCHECKBALANCE,
FLOAT64, AVGSAVINGSBALANCE,
FLOAT64, CHURN_SCORE,
FLOAT64, CONTACT_LENGTH,
FLOAT64, HOMEOWNER,
P_CHURN_SCORE,
R_CHURN_SCORE,
WARN);

var r_churn_score = R_CHURN_SCORE.getValue(8, "float");
var p_churn_score = P_CHURN_SCORE.getValue(8, "float");
var nReturns = r_churn_score + p_churn_score;
return(nReturns);
}

Other Examples
The following example calls a DLL function in the default codepage:

var sHello = "Hello";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, sHello);

The following example calls a DLL function that passes Unicode strings:

var sHello = "Hello";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, WCHAR, sHello);

The following example calls a DLL function that passes Unicode and nonUnicode strings:

var sHello = "Hello";
var sWorld = "world";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, WCHAR, sHello, sWorld);

The following example calls an external application and passes arguments 0, 0, and 5 to it:

SElib.dynamicLink("shell32", "ShellExecuteA", STDCALL, 0, "open",
"c:\\Grabdata.exe", 0, 0, 5).

Related Topics
For more information, see “Clib Send Command Method” on page 291.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Siebel Library Methods

206

Siebel Library Get Pointer Address Method
The Siebel Library Get Pointer Address method gets the address in memory of the first byte of data
in a buffer variable. It returns the address of the pointer to the buffer variable. For more information,
see “Buffer Methods” on page 108.

CAUTION: A pointer is valid only until a script modifies the variable that the bufferVar argument
identifies or until the variable goes out of scope in a script. Placing data in the memory that this
variable occupies after such a modification is not recommended. Be careful not to place more data
than this memory can hold.

Format
SElib.pointer(bufferVar])

Table 120 describes the arguments for the Siebel Library Get Pointer Address method.

Example
The following example includes the Siebel Library Get Pointer Address method:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var v = new Buffer("Now");
// Collect "Now", the original value, for display.
TheApplication().Trace(v);
// Get the address of the first byte of v, "N"
var vPtr = SElib.pointer(v);
// Get the "N"
var p = SElib.peek(vPtr);
// Convert "N" to "P"
SElib.poke(vPtr,p+2);
// Display "Pow"
TheApplication().Trace(v);
TheApplication().TraceOff();

This example produces the following output:

COMMENT,Now
COMMENT,Pow

Related Topics
For more information, see the following topics:

■ “BLOB Methods” on page 101

■ “Clib Get Memory Method” on page 262

Table 120. Arguments for the Siebel Library Get Pointer Address Method

Argument Description

bufferVar The name of a buffer variable.

Methods Reference ■ Siebel Library Methods

Siebel eScript Language Reference Version 8.1/8.2 207

Siebel Library Peek Method
The Siebel Library Peek method reads, and then returns data from a position in memory.

Format
SElib.peek(address[, dataType])

Table 121 describes the arguments for the Siebel Library Peek method.

Example
The following example uses the Siebel Library Peek method:

Table 121. Arguments for the Siebel Library Peek Method

Argument Description

address Identifies the address in memory that this method uses to read data.

dataType The type of data that this method returns. You can specify one of the following
types:

■ UWORD8

■ SWORD8

■ UWORD16

■ SWORD16

■ UWORD24

■ SWORD24

■ UWORD32

■ SWORD32

■ FLOAT32

■ FLOAT64

■ FLOAT80

The default value is UWORD8.

You can add the following prefix on some types:

■ S for signed

■ U for unsigned

The numeric suffix specifies the number of bytes to get. An example of a numeric
suffix is 8 or 16.

FLOAT80 is not available in Win32.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Siebel Library Methods

208

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var v = new Buffer("Now");
// Collect "Now", the original value, for display.
TheApplication().Trace(v);
// Get the address of the first byte of v, "N"
var vPtr = SElib.pointer(v);
// Get the "N"
var p = SElib.peek(vPtr);
// Convert "N" to "P"
SElib.poke(vPtr,p+2);
// Display "Pow"
TheApplication().Trace(v);
TheApplication().TraceOff();

This example produces the following output:

COMMENT,Now
COMMENT,Pow

Related Topics
For more information, see the following topics:

■ “Get BLOB Data Method” on page 103

■ “Clib Get Memory Method” on page 262

■ “Clib Read From File Method” on page 240

Siebel Library Write Data Method
The Siebel Library Write Data method writes data to a specific position in memory. It returns the
address of the byte that immediately follows the data that it writes.

CAUTION: If your code directly accesses memory, then you must use this code with caution. To
avoid moving data unexpectedly, you must clearly understand how the Siebel Library Write Data
method affects memory.

Format
SElib.poke(address, data[, dataType])

Table 122 describes the arguments for the Siebel Library Write Data method.

Table 122. Arguments for the Siebel Library Write Data Method

Argument Description

address The starting address in memory where this method writes data.

Methods Reference ■ Custom Methods

Siebel eScript Language Reference Version 8.1/8.2 209

Example
The following example includes the Siebel Library Write Data method:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var v = new Buffer("Now");
// Collect "Now", the original value, for display.
TheApplication().Trace(v);
// Get the address of the first byte of v, "N"
var vPtr = SElib.pointer(v);
// Get the "N"
var p = SElib.peek(vPtr);
// Convert "N" to "P"
SElib.poke(vPtr,p+2);
// Display "Pow"
TheApplication().Trace(v);
TheApplication().TraceOff();

This example produces the following output:

COMMENT,Now
COMMENT,Pow

Related Topics
For more information, see the following topics:

■ “Write BLOB Data Method” on page 106

■ “Clib Get Memory Method” on page 262

■ “Clib Read From File Method” on page 240

Custom Methods
This topic describes custom methods. It includes the following topics:

■ “Overview of Custom Methods” on page 210

■ “How the Constructor Function Creates an Object” on page 210

■ “How a Function Is Assigned to an Object” on page 211

■ “About Object Prototypes” on page 212

data The data that this method writes in memory. The data type of this data must
match the type that you specify in the dataType argument.

dataType For more information, see Table 121 on page 207.

Table 122. Arguments for the Siebel Library Write Data Method

Argument Description

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Custom Methods

210

Overview of Custom Methods
You can group variables and functions together in one variable, and then reference them as a group.
A compound variable of this sort is an object where each individual item of the object is a property.

An object property is similar to a variable or a constant. An object method is similar to a function.
To reference an object property, you use the name of the object and the name of the property,
separated by a period:

object name.property

You can write code that uses any valid variable name as a property name. The following example
assigns values to the width and height properties of a rectangle object, calculates the area of a
rectangle, and then displays the result:

var Rectangle;

Rectangle.height = 4;
Rectangle.width = 6;

TheApplication().RaiseErrorText(Rectangle.height * Rectangle.width);

An object allows you to work with groups of data in a consistent way. For example, instead of using
a single object named Rectangle, you can use multiple Rectangle objects, where each of these
objects includes a separate value for width and a separate value for height.

How the Constructor Function Creates an Object
A constructor function creates an object template. To create a rectangle object, the following
example uses a constructor function:

function Rectangle(width, height)
{

this.width = width;
this.height = height;

}

The following keyword references the arguments that the constructor function receives:

this

You can think of the this keyword as meaning this object.

Example of Using a Constructor Function
To create a rectangle object, the following example uses the new operator to call the constructor
function:

var joe = new Rectangle(3,4)
var sally = new Rectangle(5,3);

This code creates the following rectangle objects:

Methods Reference ■ Custom Methods

Siebel eScript Language Reference Version 8.1/8.2 211

■ Joe, with a width of 3 and a height of 4

■ Sally, with a width of 5 and a height of 3

This example creates a Rectangle class and two instances of this class. A constructor function creates
objects that belong to the same class. Every object that a constructor function creates is an instance
of that class.

Class instances share the same properties, although a single class instance can possess more unique
properties. For example, adding the following code to the example adds a motto property to the joe
rectangle. The sally rectangle does not include a motto property:

joe.motto = "Be prepared!";

How a Function Is Assigned to an Object
An object can contain a function and variables. A function assigned to an object is a method of that
object.

A method uses the this operator to reference a method variable. The following example is a method
that computes the area of a rectangle:

function rectangle_area()
{

return this.width * this.height;
}

Siebel CRM passes no arguments to this function, so it is meaningless unless an object calls it. This
object provides values for this.width and this.height.

The following code assigns a method to an object:

joe.area = rectangle_area;

The function now uses the values for height and width that were defined when you created the joe
rectangle object.

To assign a method in a constructor function, you can use the this keyword. The following example
creates an object class named Rectangle that includes the rectangle_area method as a property:

function rectangle_area()
{

return this.width * this.height;
}

function Rectangle(width, height)
{

this.width = width;
this.height = height;
this.area = rectangle_area;

}

The method is available to any instance of the class. The following example sets the value of area1
to 12 and the value of area2 to 15:

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Custom Methods

212

var joe = Rectangle(3,4);
var sally = Rectangle(5,3);

var area1 = joe.area();
var area2 = sally.area();

About Object Prototypes
An object prototype lets you specify a set of default values for an object. If Siebel eScript accesses
an object property that is not assigned a value, then it consults the prototype. If this property exists
in the prototype, and if this property contains a value, then Siebel eScript uses that value for the
object property.

How an Object Prototype Conserves Memory
An object prototype helps you to make sure that every instance of an object uses the same default
values and that these instances conserve the amount of memory that Siebel CRM requires to run a
script. The joe and sally rectangles are each assigned an area method when they are created in “How
a Function Is Assigned to an Object” on page 211. Siebel CRM allocates memory for this function twice,
even though the method is exactly the same in each instance. To avoid this redundant memory, you
can place the shared function or property in an object prototype. In this situation, every instance of
the object uses the same function instead of each instance using a copy of the function.

Example of Using an Object Prototype
The following example creates a rectangle object with an area method in a prototype:

function rectangle_area()
{

return this.width * this.height;
}

function Rectangle(width, height)
{

this.width = width;
this.height = height;

}

Rectangle.prototype.area = rectangle_area;

The following code can now reference the rectangle_area method as a method of any Rectangle
object:

var area1 = joe.area();
var area2 = sally.area();

Methods Reference ■ Custom Methods

Siebel eScript Language Reference Version 8.1/8.2 213

Adding Methods and Data to an Object Prototype
You can write code that adds methods and data to an object prototype at any time. You must define
the object class but you do not have to create an instance of the object before you assign prototype
values to it. If you assign a method or data to an object prototype, then Siebel CRM updates every
instance of that object to include the prototype.

If you attempt to write to a property that Siebel CRM assigns through a prototype, then it creates a
new variable for the newly assigned value. It uses this value for the value of this instance of the
object property. Other instances of the object still refer to the prototype for their values. The
following example specifies joe as a special rectangle whose area is equal to three times the width
plus half the height:

function joe_area()
{

return (this.width * 3) + (this.height/2);
}
joe.area = joe_area;

This code creates a value for joe.area that supersedes the prototype value. In this example, this
value is a function. The sally.area property is still the default value that this prototype defines. The
joe instance uses the new definition for the area method.

You cannot write code that declares a prototype in a function scope.

Siebel eScript Language Reference Version 8.1/8.2

Methods Reference ■ Custom Methods

214

Siebel eScript Language Reference Version 8.1/8.2 215

6 C Language Library Reference

This chapter describes reference information for the C language library you can use in Siebel eScript.
It includes the following topics:

■ Overview of the Clib Object on page 215

■ Clib File and Directory Methods on page 217

■ Clib File Input and Output Methods on page 229

■ Clib String Methods on page 251

■ Clib Buffer Methods on page 262

■ Clib Mathematical Methods on page 265

■ Clib Date and Time Methods on page 270

■ Clib Character Classification Methods on page 280

■ Clib Error Methods on page 286

■ Other Clib Methods on page 288

Overview of the Clib Object
The Clib (C library) object includes functions that are part of the standard library of the C
programming language. It includes methods that can reference files, directories, strings, the
environment, memory, and characters. It also includes time functions, error functions, sorting
functions, and math functions. Siebel CRM supports the Clib library in Windows servers and Unix
servers. It does not support the Clib library for Browser script.

The Clib object is a wrapper you can use to call a function in the standard C library as implemented
for a specific operating system. The methods that this chapter describes might behave differently on
different operating systems.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Overview of the Clib Object

216

Using Siebel eScript Methods Instead of Clib Methods
Table 123 lists each Clib method that has an equivalent method in Siebel eScript. These methods are
redundant because their functionality already exists in Siebel eScript. Where possible, you must use
the Siebel eScript method instead of the equivalent Clib method. In some situations the Clib method
is preferred and is more consistent in a section of script. For example, when working with a string
routine that expects a null string.

Table 123. Siebel eScript You Can Use Instead of Clib Methods

Siebel eScript Method Clib Method Description

Get Absolute Value Method abs Calculates absolute value.

Get Arc Cosine Method acos Calculates the arc cosine.

Get Arcsine Method asin Calculates the arc sine.

Get Arctangent Method atan Calculates the arc tangent.

Get Arctangent 2 Method atan2 Calculates the arc tangent of a fraction.

Convert String to Floating-
Point Number Method

atof Converts a string to a floating-point number.

Convert String to Integer
Method

atoi Converts a string to an integer.

Automatic conversion atol Converts a string to a long integer.

Get Ceiling Method ceil Rounds a number up to the nearest integer.

Get Cosine Method cos Calculates the cosine.

Get Exponential Method exp Calculates the exponential function.

Math absolute fabs Calculates the absolute value of a floating-point
number.

Get Floor Method floor Rounds a number down to the nearest integer.

% operator, modulo fmod Calculates the remainder.

Math absolute labs Returns the absolute value of a long.

Get Logarithm Method log Calculates the natural logarithm.

Get Maximum Method max Returns the largest of one or more values.

Get Minimum Method min Returns the smallest of one or more values.

Raise Power Method pow Calculates x to the power of y.

Get Sine Method sin Calculates the sine.

Get Square Root Method sqrt Calculates the square root.

+ operator strcat Appends one string to another.

== operator strcmp Compares two strings.

C Language Library Reference ■ Clib File and Directory Methods

Siebel eScript Language Reference Version 8.1/8.2 217

The phrase automatic conversion in the Siebel eScript Method column means that Siebel eScript
implicitly performs a conversion. For example, when comparing Siebel eScript to the atol Clib
method, if the variable that will hold the converted string is of type Number, then Siebel eScript
implicitly converts the string from a string to a long integer.

Clib File and Directory Methods
This topic describes Clib methods to create, open, lock, close, and delete files. It also describes
methods to manipulate directories. It includes the following topics:

■ “Overview of Clib File and Directory Methods” on page 218

■ “Clib Close File Method” on page 218

■ “Clib Create Temporary File Method” on page 219

■ “Clib Create Temporary File Name Method” on page 219

■ “Clib Delete File Method” on page 220

■ “Clib Lock File Method” on page 220

■ “Clib Open File Method” on page 222

■ “Clib Rename File Method” on page 224

■ “Clib Reopen File Method” on page 225

■ “Clib Change Directory Method” on page 226

■ “Clib Create Directory Method” on page 227

■ “Clib Get Current Working Directory Method” on page 228

■ “Clib Remove Directory Method” on page 229

= operator strcpy Copies a string.

Get String Length Method strlen Gets the length of a string.

Change String to Lowercase
Method

strlwr Converts a string to lowercase.

Automatic conversion strtod Converts a string to decimal.

Automatic conversion strtol Converts a string to long.

Change String to Uppercase
Method

strupr Converts a string to uppercase.

Get Tangent Method tan Calculates the tangent.

string.toLowerCase tolower Converts a character to lowercase.

string.toUpperCase toupper Converts a character to uppercase.

Table 123. Siebel eScript You Can Use Instead of Clib Methods

Siebel eScript Method Clib Method Description

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File and Directory Methods

218

Overview of Clib File and Directory Methods
Siebel eScript can interpret a backslash (\) as a character combination. If you create a Windows path
name, then you must include two backslashes to prevent this interpretation. For example:

■ To change the working directory to C:\Applications\Myfolder, you use the following command:

Clib.chdir(“C:\\Applications\\Myfolder”);

■ To use a UNC path to access a computer on your network, use four backslashes (\\\\) before the
computer name:

Clib.system("copy \\\\server01\\share\\SR.txt D:\\SR.txt ");

For general usage information that applies to these methods, see “Overview of Clib File Input and
Output Methods” on page 230.

Clib Close File Method
The Clib Close File method writes to disk the data that currently resides in the buffer for a file. It
then closes this file. It returns one of the following values:

■ If successful, then it returns the following value:

Zero

■ If not successful, then it returns the following value:

EOF

The file pointer is no longer valid after this call.

Format
Clib.fclose(filePointer)

The arguments for this method are the same as the arguments for the Clib Clear Error method. For
more information, see “Arguments for the Clib Clear Error Method” on page 286.

Example
The following example creates and writes to a text file, and then closes this file. It also tests for an
error condition. If an error occurs, then it displays a message and clears the buffer:

function Test_Click ()
{

var fp = Clib.fopen('c:\\temp000.txt', 'wt');
Clib.fputs('abcdefg\nABCDEFG\n', fp);
if (Clib.fclose(fp) != 0)
{

TheApplication().RaiseErrorText('Unable to close file.' +
'\nContents are lost.');

}

C Language Library Reference ■ Clib File and Directory Methods

Siebel eScript Language Reference Version 8.1/8.2 219

else
Clib.remove('c:\\temp000.txt');

}

For more information, see “Clib Clear Buffer Method” on page 236.

Clib Create Temporary File Method
The Clib Create Temporary File method creates and opens a temporary binary file. It automatically
removes the file pointer and the temporary file when Siebel CRM closes the file or when the code
finishes. It returns one of the following values:

■ If successful, then it returns the file pointer of the file that it created.

■ If not successful, then it returns the following value:

Null

The location of where it creates the temporary file depends on how Clib is implemented on the
operating system you use.

Format
Clib.tmpfile()

Example
For an example, see “Clib Get Characters to Next Line Method” on page 237.

Clib Create Temporary File Name Method
The Clib Create Temporary File Name method creates a temporary file name. This name is not the
same as the name of any existing file and it is not the same as any file name that this method returns
while this code runs. It returns the file name as a string in the str argument.

Format
Clib.tmpnam([str])

Table 124 describes the arguments for the Clib Create Temporary File Name method.

Table 124. Arguments for the Clib Create Temporary File Name Method

Argument Description

str A container that holds the name of the temporary file.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File and Directory Methods

220

Clib Delete File Method
The Clib Delete File method deletes a file. It returns one of the following values:

■ If successful, then it returns the following value:

0

■ If not successful, then it returns the following value:

Negative 1

Format
Clib.remove(filename)

Table 125 describes the arguments for the Clib Delete File method.

Clib Lock File Method
The Clib Lock File method locks or unlocks a file for simultaneous use by multiple processes. It
returns one of the following values:

■ If successful, then it returns the following value:

0

■ If not successful, then it returns a nonzero integer.

Format
Clib.flock(filePointer, mode)

Table 125. Arguments for the Clib Delete File Method

Argument Description

filename A string or string variable that contains the name of the file that this
method deletes.

C Language Library Reference ■ Clib File and Directory Methods

Siebel eScript Language Reference Version 8.1/8.2 221

Table 126 describes the arguments for the Clib Lock File method.

Usage
The Clib Lock File method applies or removes an advisory lock on the file that the filePointer
argument identifies. An advisory lock is a type of lock that allows cooperating processes to perform
consistent operations on a file. Other processes might still reference the files, so inconsistencies
might occur.

Locking allows the following types of locks:

■ Shared lock. Multiple processes can use shared locks on the same file at the same time. Read
permission is required to obtain a shared lock.

■ Exclusive lock. The following configurations cannot exist on one file at the same time:

■ Multiple exclusive locks

■ Shared locks and an exclusive lock

Write permission is required to obtain an exclusive lock.

If you use the Clib Lock File method to:

■ Lock a file that a calling process already locked, then it removes the old lock type and replaces
it with the new lock type. The Lock method locks individual files and not segments.

■ Lock a file that is already locked and:

■ You do not specify LOCK_NB in the mode argument, then it pauses the lock request until the
file is free.

■ Specify LOCK_NB in the mode argument, then the call fails and this method returns an
EWOULDBLOCK error.

Siebel eScript does not support the Clib Lock File method in a Unicode environment. It always returns
0 in a Unicode environment.

Table 126. Arguments for the Clib Lock File Method

Argument Description

filePointer The file that this method locks or unlocks. The Clib Open File method or
the Clib Create Temporary File method can return this file name.

mode You can specify one of the following values:

■ LOCK_EX. Lock for exclusive use.

■ LOCK_SH. Lock for shared use.

■ LOCK_UN. Unlock.

■ LOCK_NB. Nonblock.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File and Directory Methods

222

Clib Open File Method
The Clib Open File method opens the file that you specify in the filename argument. It opens it in
the mode that you specify in the mode argument. It returns one of the following values:

■ If successful, then it returns a file pointer to the file that it opened.

■ If not successful, then it returns the following value:

Null

If this method successfully opens a file, then it clears the error status for this file and initializes a
buffer for automatic buffering of read and write activity with the file.

Several Clib methods require an argument named filePointer. It is often the return value of a Clib
Open File call.

Format
Clib.fopen(filename, mode)

Table 127 describes the arguments for the Clib Open File method.

Usage for the Mode Argument
Table 128 describes usage for the mode argument. The mode argument is a string that includes one
of the following required characters, and then followed by other optional characters:

■ r

■ w

■ a

Table 127. Arguments for the Clib Open File Method

Argument Description

filename Any valid file name that does not include a wildcard character.

mode One of the required characters that specify a file mode followed by optional
characters. For more information, see “Usage for the Mode Argument” on
page 222.

Table 128. Usage for the Mode Argument of the Clib Open File Method

Argument Mode Required

r Opens the file for reading. The file must already exist. Yes. You
must include
one of these
arguments.

w Opens the file for writing. If the file does not exist, then Siebel
eScript creates the file.

a Opens the file in append mode.

C Language Library Reference ■ Clib File and Directory Methods

Siebel eScript Language Reference Version 8.1/8.2 223

Example 1
The following example opens the ReadMe text file for text mode reading and displays each line in
that file:

var fp:File = Clib.fopen("ReadMe","rt");
if (fp == null)

TheApplication().RaiseErrorText("\aError opening file for reading.\n")
else
{

while (null != (line=Clib.fgets(fp)))
{

Clib.fputs(line, stdout)
}

}
Clib.fclose(fp);

Example 2
The following example opens a file, writes a string to that file, and then uses the default codepage
to read the string from this file:

var oFile = Clib.fopen("myfile","rw");
if (null != oFile)
{

var sHello = "Hello";
var nLen = sHello.length;
Clib.fputs(sHello, oFile);
Clib.rewind(oFile);
Clib.fgets (nLen, sHello);

}

b Opens the file in binary mode. If you do not specify b, then this
method opens the file in text mode and performs an end-of-line
translation.

No

t Opens the file in text mode. For a non-ASCII character:

■ You use the u argument.

■ You do not use the t argument.

No

u Opens the file in Unicode mode as UTF-16 or Little Endian. For
example:

Clib.fopen(“filename.txt”, “rwu”)

You can use the u mode for ASCII and non-ASCII characters.

No

+ Opens the file for reading and writing. No

Table 128. Usage for the Mode Argument of the Clib Open File Method

Argument Mode Required

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File and Directory Methods

224

Example 3
The following example opens a file, writes a string to this file, then uses Unicode to read the string
from this file:

var oFile = Clib.fopen("myfile","rwu");
if (null != oFile)
{

var sHello = "Hello";
var nLen = sHello.length;
Clib.fputs(sHello, oFile);
Clib.rewind(oFile);
Clib.fgets (nLen, sHello);

}

Example 4
The following example specifies a file path:

function WebApplet_ShowControl (ControlName, Property, Mode, &HTML)
{
if (ControlName == "GotoUrl")

{
var fp = Clib.fopen("c:\\test.txt","wt+");
Clib.fputs("property = " + Property + "\n", fp);
Clib.fputs("mode = " + Mode + "\n",fp);
Clib.fputs("ORG HTML = " + HTML + "\n",fp);
Clib.fclose(fp);
HTML = "<td>New HTML code</td>";

}
return(ContinueOperation);

Related Topics
For more information, see the following topics:

■ “Clib Create Temporary File Method” on page 219

■ “Clib Get Environment Variable Method” on page 290

Clib Rename File Method
The Clib Rename File method renames a file. It returns one of the following values:

■ If successful, then it returns the following value:

0

■ If not successful, then it returns the following value:

Negative 1

C Language Library Reference ■ Clib File and Directory Methods

Siebel eScript Language Reference Version 8.1/8.2 225

Format
Clib.rename(oldName, newName)

Table 129 describes the arguments for the Clib Rename File method.

Clib Reopen File Method
The Clib Reopen File method closes the file associated with a file pointer. It then opens a file and
associates it with the file pointer of the file that it closed. You can use it to redirect one of the
predefined file handles to a file or from a file. These file handles include stdout, stderr, and stdin. It
returns one of the following values:

■ If successful, then it returns a copy of the old file pointer.

■ If not successful, then it returns the following value:

Null

Format
Clib.freopen(filename, mode, oldFilePointer)

Table 130 describes the arguments for the Clib Reopen File method.

Example
The following example uses the same file pointer to write to two different files:

var oFile = Clib.fopen("c:\\temp\\firstfile","w");
if (oFile == null)
{

Table 129. Arguments for the Clib Rename File Method

Argument Description

oldName A string that contains the name of the file that this method renames. This
name can be an absolute file name or a relative file name.

newName A string that contains the new file name.

Table 130. Arguments for the Clib Reopen File Method

Argument Description

filename The name of the file that this method opens.

mode One of the file modes specified in Clib Open File method. For Unicode, you can
use the same u flag that you can use in the Clib Open File method.

oldFilePointer The file pointer to the file that the Clib Reopen File method closes and where it
associates the file that you specify in the filename argument.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File and Directory Methods

226

TheApplication().RaiseErrorText("File not found.");
}
Clib.fprintf(oFile, "Writing to first file\n");
Clib.freopen("c:\\temp\\secondfile", "w", oFile);
if (oFile == null)
{

TheApplication().RaiseErrorText("File not found.");
}
Clib.fprintf(oFile, "Writing to second file\n");
Clib.fclose(oFile);

Related Topics
For more information, see the following topics:

■ “Clib Open File Method” on page 222

■ “Clib Get Environment Variable Method” on page 290

Clib Change Directory Method
The Clib Change Directory method modifies the current directory for the Siebel application. It returns
one of the following values:

■ If successful, then it returns the following value:

0

■ If not successful, then it returns the following value:

Negative 1

If you restart the Siebel Server, then Siebel CRM automatically resets the current directory
depending on one of the following operating systems that you use:

■ Windows. The current directory on the Siebel Server that the Windows operating system
recognizes.

■ UNIX. The home directory of the administrator who restarts the Siebel Server.

Format
Clib.chdir(dirPath)

Table 131 describes the arguments for the Clib Change Directory method.

Table 131. Arguments for the Clib Change Directory Method

Argument Description

dirpath The directory path that this method makes current. This path can be
absolute or relative.

C Language Library Reference ■ Clib File and Directory Methods

Siebel eScript Language Reference Version 8.1/8.2 227

Example
The following example uses the Clib Change Directory method to change the current working
directory of the Siebel application. The default Siebel working directory is SIEBEL_ROOT\bin. For
example, if you install the Siebel client in the C:\sea81\client directory, then the default working
directory is C:\sea81\client\bin:

function Application_Start (CommandLine)
{

// Start Tracing
TheApplication().TraceOn("c:\\temp\\SiebTrace.txt","Allocation","All");

var currDir = Clib.getcwd();
TheApplication().Trace("Current directory is " + Clib.getcwd());

// Create a new directory
var msg = Clib.mkdir('C:\\Clib test');

// Display the error flag created by creating directory;
// Must be 0, indicating no error.

TheApplication().Trace(msg);

// Change the current directory to the new 'Clib test'
Clib.chdir("C:\\Clib test");
TheApplication().Trace("Current directory is " + Clib.getcwd());

// Delete 'Clib test'
Clib.chdir("C:\\");

// Attempting to make a removed directory current gives an
// error
Clib.rmdir("Clib test");
msg = Clib.chdir("C:\\Clib test");
TheApplication().Trace(msg);

}

This example produces the following result:

Current directory is D:\sea81\client\BIN
0
Current directory is C:\Clib test
-1

Clib Create Directory Method
The Clib Create Directory method creates a directory. It returns one of the following values:

■ If successful, then it returns the following value:

0

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File and Directory Methods

228

■ If not successful, then it returns the following value:

negative 1

Format
Clib.mkdir(dirpath)

Table 132 describes the arguments for the Clib Create Directory method.

Clib Get Current Working Directory Method
The Clib Get Current Working Directory method returns the entire path of the current working
directory. The default current working directory is the directory where you install the Siebel
application.

If a script uses the Clib Change Directory method or a similar method to change the current working
directory, then the current working directory returns to the original value after the script finishes.

Format
Clib.getcwd()

Example
The following example displays the current directory in a message box. The script then makes the
root directory the current directory, creates a new directory, removes that directory, and then
attempts to make the removed directory current:

function Button_Click ()

{

var currDir = Clib.getcwd();
TheApplication().Trace("Current directory is " + Clib.getcwd());
var msg = Clib.mkdir('C:\\Clib test');
// Display the error flag created by creating directory;
// Must be 0, indicating no error.
TheApplication().Trace(msg);
// Change the current directory to the new 'Clib test'
Clib.chdir("C:\\Clib test");

Table 132. Method Arguments for the Clib Create Directory

Argument Description

dirpath A string that contains a valid directory path. This directory can be an
absolute path or a relative path.

This method uses this string to create the directory. If you do not specify
the dirpath argument, then it creates the directory in the C:\siebel\bin
directory.

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 229

TheApplication().Trace("Current directory is " + Clib.getcwd());
// Delete 'Clib test'
Clib.chdir("C:\\");
// Attempting to make a removed directory current yields error

 flag
Clib.rmdir("Clib test");
msg = Clib.chdir("C:\\Clib.test");
TheApplication().Trace(msg);

}

This example displays the following output:

Current directory is C:\SIEBEL\BIN
0
Current directory is C:\Clib test
-1

Clib Remove Directory Method
The Clib Remove Directory method removes a directory. It returns one of the following values:

■ If successful, then it returns the following value:

0

■ If not successful, then it returns the following value:

Negative 1

Format
Clib.rmdir(dirpath)

Table 133 describes the arguments for the Clib Remove Directory method.

Clib File Input and Output Methods
This topic describes Clib file input and output methods. It includes the following topics:

■ “Overview of Clib File Input and Output Methods” on page 230

■ “Format Characters for Methods That Print and Scan” on page 230

■ “Clib Clear Buffer Method” on page 236

■ “Clib End of File Method” on page 236

Table 133. Arguments for the Clib Remove Directory Method

Argument Description

dirpath The directory that this method removes. This argument can reference an
absolute path or a relative path.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

230

■ “Clib Get Character Method” on page 237

■ “Clib Get Characters to Next Line Method” on page 237

■ “Clib Get Cursor Position Method” on page 239

■ “Clib Get Relative Cursor Position Method” on page 239

■ “Clib Move Cursor to Beginning of File Method” on page 240

■ “Clib Read From File Method” on page 240

■ “Clib Restore Cursor Position Method” on page 243

■ “Clib Set Cursor Position Method” on page 243

■ “Clib Scan and Convert File Method” on page 244

■ “Clib Scan and Convert from Input Device Method” on page 246

■ “Clib Unget Method” on page 246

■ “Clib Write Character Method” on page 247

■ “Clib Write Formatted String Method” on page 248

■ “Clib Write String to File Method” on page 250

■ “Clib Write to File Method” on page 250

Overview of Clib File Input and Output Methods
Siebel eScript handles file input and file output operations in a way that is similar to the C
programming language and the C++ programming language. These languages do not directly read
to or write from files. With Siebel eScript, you must first configure the language to open a file. To do
this, you typically pass the name of this file to the Clib Open File method.

File input and file output methods in Siebel eScript read the file into a buffer in memory and return
a file pointer, which is a pointer that references the beginning of the buffer. The file stream is the
data that the buffer contains. Reading and writing occurs relative to the buffer, which is not written
to disk unless you explicitly use the Clib Clear Buffer method to clear the buffer or use the Clib Close
File method to close the file.

Format Characters for Methods That Print and Scan
A method that prints or scans uses a format string to format the data that the method reads and
writes.

Format Characters for Methods That Print
This topic describes format characters for methods that print. The following methods can perform
print operations:

■ “Clib Write Formatted String Method” on page 248

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 231

■ “Clib Get Formatted String Method” on page 255

■ “Clib Write Formatted String Method” on page 261

Each of these methods prints each character while it reads the input until the method encounters a
percentage symbol (%). This symbol instructs that method to use the following format to print a
value:

%[flags][width][.precision]type

To include the % symbol as a character in the string, you use two consecutive percentage symbols
(%%).

Characters That Format Values
Table 134 describes characters that format a value.

Table 134. Characters That Format a Value

Character Description Example Statement and Output

- Left justification in the field with space
padding or right justification with zero or
space padding.

fprintf(file, "[%-8i]", 26);
[26]

+ Force numbers to begin with a plus symbol
(+) or a minus symbol (-).

fprintf(file, "%+i", 26);
+26

space A negative value that begins with a minus
symbol (-). A positive value begins with a
space.

fprintf(file, "[% i]", 26);
[26]

Append one of the following symbols to the
pound (#) character to display the output in
one of the following forms:

■ o. Prefix a zero to nonzero octal output.

■ x or X. Prefix 0x or 0X to the output,
which indicates hexadecimal.

■ f. Include a decimal point even if no
digits follow the decimal point.

■ e or E. Include a decimal point even if
no digits follow the decimal point, and
display the output in scientific notation.

■ g or G. Include a decimal point even if
no digits follow the decimal point,
display the output in scientific notation,
depending on precision, and leave
trailing zeros in place.

fprintf(file, "%#o", 26);
032

fprintf(file, "%#x", 26);
0x1A

fprintf(file, "%#.f", 26);
26.

fprintf(file, "%#e", 26);
2.600000e+001

fprintf(file, "%#g", 26);
26.0000

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

232

Characters That Determine Width
Table 135 describes characters that determine width.

f Floating-point of the format [-]dddd.dddd. fprintf(file, "%f", 26.735);
26.735000

e Floating-point of the format [-]d.ddde+dd
or [-]d.ddde-dd.

fprintf(file, "%e", 26.735);
2.673500e+001

E Floating-point of the format [-]d.dddE+dd
or [-]d.dddE-dd.

fprintf(file, "%E", 26.735);
2.673500E+001

g Floating-point number of f or e type,
depending on precision.

fprintf(file, "%g", 26.735);
26.735

G Floating-point number of F or E type,
depending on precision.

fprintf(file, "%G", 26.735);
26.735

c Character. For example, a, b, or 8. fprintf(file, "%c", 'a');
a

s String. fprintf(file, "%s", "Test");
Test

Table 135. Characters That Determine Width

Character Description Example Statement and Output

n At least n characters are output. If the
value is less than n characters, then
Siebel eScript pads the output on the left
with spaces.

fprintf(file, "[%8s]", "Test");
[Test]

0n At least n characters are output, padded
on the left with zeros.

fprintf(file, "%08i", 26);
00000026

* The next value in the argument list is an
integer that specifies the output width.

fprintf(file, "[%*s]", 8, "Test");
[Test]

Table 134. Characters That Format a Value

Character Description Example Statement and Output

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 233

Characters That Determine Precision
Table 136 describes characters that determine precision. If you specify precision, then you must
begin the precision format with a period (.) and you must use one of the forms described in Table 134
on page 231.

Characters That Determine Character Type
Table 137 describes characters that determine character type.

Table 136. Characters That Determine Precision

Character Description Example Statement and Output

.0 For floating-point type. No decimal point
is output.

fprintf(file, "%.0f", 26.735);
26

.n Output is n characters. If the value is a
floating-point number, then the output is
n decimal places.

Assume you specify a Width value and a
.n Precision value when you format a
floating point number. In this situation, to
determine the width of the output and to
determine if it must pad the output, the
method counts the decimal point and the
characters that occur before and after the
decimal point. For example:

fprintf(file, "%10.2f", 26.735);
[26.73]

fprintf(file, "%.2f", 26.735);
26.73

.* The next value in the argument list is an
integer that specifies the precision width.

fprintf(file, "%.*f", 1, 26.735);
26.7

Table 137. Characters That Determine Character Type

Character Description Example Statement and Output

d,i Signed integer. fprintf(file, "%i", 26);
26

u Unsigned integer. fprintf(file, "%u", -1);
4294967295

o Octal integer. fprintf(file, "%o", 26);
32

x Hexadecimal integer using 0 through 9
and a, b, c, d, e, or f.

fprintf(file, "%x", 26);
1a

X Hexadecimal integer using 0 through 9
and A, B, C, D, E, or F.

fprintf(file, "%X", 26);
1A

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

234

Format Characters for Methods That Scan
This topic describes format characters for methods that scan. The following methods can perform a
scan operation:

■ “Clib Scan and Convert File Method” on page 244

■ “Clib Scan and Convert from Input Device Method” on page 246

Note the following:

■ The format string includes character combinations that specify the type of data.

■ The format string specifies input sequences and how the method must convert the input.

■ The method maps each character to the input as it reads the input until it encounters a
percentage symbol (%).

■ The percentage symbol causes the method to read the value, and then store it in an argument
that follows the format string.

■ Each argument that occurs after the format string receives the next parsed value from the next
argument in the list of arguments that occur after the format string.

Arguments In a Method That Performs a Scan Operation
An argument in a method that performs a scan operation uses the following format:

%[*][width]type

f Floating-point of the format [-
]dddd.dddd.

fprintf(file, "%f", 26.735);
26.735000

e Floating-point of the format [-
]d.ddde+dd or [-]d.ddde-dd.

fprintf(file, "%e", 26.735);
2.673500e+001

E Floating-point of the format [-
]d.dddE+dd or [-]d.dddE-dd.

fprintf(file, "%E", 26.735);
2.673500E+001

g Floating-point number of f or e,
depending on precision.

fprintf(file, "%g", 26.735);
26.735

G Floating-point number of F or E,
depending on precision.

fprintf(file, "%G", 26.735);
26.735

c Character. For example, a, b, 8. fprintf(file, "%c", 'a');
a

s String. fprintf(file, "%s", "Test");
Test

Table 137. Characters That Determine Character Type

Character Description Example Statement and Output

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 235

Table 138 describes usage of the * (asterisk) and the width argument. If you specify the width, then
the input is an array of characters of the length that you specify.

Table 139 describes the values you can use for the type argument.

Example
The following example creates a file named myfile.txt and stores a float number and a string. It then
rewinds the stream and uses fscanf to read the values:

function WebApplet_Load()
{

var f;
var str;
var pFile = Clib.fopen ("c:\\myfile.txt","w+");
Clib.fprintf (pFile, "%f %s", 3.1416, "PI");
Clib.rewind (pFile);
Clib.fscanf (pFile, "%f", f);
Clib.fscanf (pFile, "%s", str);

Table 138. Usage of the Asterisk and Width Arguments in a Method That Performs a Scan Operation

Argument Description

* Suppresses assigning this value to any argument.

width Sets the maximum number of characters to read. If the method encounters a
white-space character or a nonconvertible character, then it stops reading these
characters. For more information, see “Use White Space to Improve Readability” on
page 56.

Table 139. Usage of the Type Argument in a Method That Performs a Scan Operation

Type Value Description

d,D,i,I Signed integer.

u,U Unsigned integer.

o,O Octal integer.

x,X Hexadecimal integer.

f,e,E,g,G Floating-point number.

s String.

[abc] String that includes the characters in brackets, where A–Z represents the range
A to Z.

[^abc] String that includes the following character in brackets:

not

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

236

Clib.fclose (pFile);
Clib.printf ("I have read: %f and %s \n",f,str);

}

This example produces the following output:

I have read: 3.141600 and PI

Clib Clear Buffer Method
The Clib Clear Buffer method writes to disk the data that exists in the buffer depending on the
following value in the filePointer argument:

■ Is not null. It writes to disk any data that exists in the buffer only for the file that the filePointer
argument identifies.

■ Is null. It writes to disk any data that exists in the buffer for all open files.

This method returns one of the following values:

■ If successful, then it returns the following value:

0

■ If not successful, then it returns the following value:

EOF

Format
Clib.fflush(filePointer)

The arguments for this method are the same as the arguments for the Clib Clear Error method. For
more information, see “Arguments for the Clib Clear Error Method” on page 286.

Related Topics
For more information, see “Clib Get Environment Variable Method” on page 290.

Clib End of File Method
The Clib End of File method determines if the file cursor is at the end of the file that the filePointer
argument identifies. It returns one of the following values:

■ If the file cursor is at the end of the file, then it returns the following value:

A nonzero integer

■ If the file cursor is not at the end of the file, then it returns the following value:

0

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 237

Format
Clib.feof(filePointer)

The arguments for this method are the same as the arguments for the Clib Clear Error method. For
more information, see “Arguments for the Clib Clear Error Method” on page 286.

Clib Get Character Method
The Clib Get Character method returns one of the following values:

■ The next character from the buffer of the file that the filePointer argument identifies. It returns
this value as a byte converted to an integer.

■ If a read error occurs or if the cursor is at the end of the file, then it returns the following value
and stores the error number in the errno property:

EOF

Format
Clib.getc(filePointer)
Clib.fgetc(filePointer)

The arguments for these methods are the same as the arguments for the Clib Clear Error method.
For more information, see “Arguments for the Clib Clear Error Method” on page 286.

In most situations, to avoid an error with macro usage, you must use Clib.fgetc.

Clib Get Characters to Next Line Method
The CLib Get Characters to Next Line method returns one of the following values:

■ A string that includes the characters that exist in a file from the current position of the file cursor
up to and including the next newline character.

■ If an error occurs or if it reaches the end of the file, then it returns the following value:

Null

Format
Clib.fgets([maxLen,] filePointer)

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

238

Table 140 describes the arguments for the Get Characters to Next Line method.

Example
The following example writes a string that contains an embedded newline character to a temporary
file. To return and display the output, it then reads from the file twice:

function Test_Click ()
{

var x = Clib.tmpfile();
Clib.fputs("abcdefg\nABCDEFG\n", x);
Clib.rewind(x);
var msg = Clib.fgets(x) + " " + Clib.fgets(x);
Clib.fclose(x);
TheApplication().RaiseErrorText(msg);

}

This example produces the following output:

abcdefg
ABCDEFG

Caution About Using the Get Characters to Next Line Method with Non-ASCII Characters
If the string that the Get Characters to Next Line method returns includes a non-ASCII character,
then you must configure Siebel CRM to open in Unicode the file that the filePointer argument
specifies.

CAUTION: If Siebel CRM opens the file in text mode, then this method treats any non-ASCII
character it encounters as an end-of-line character and stops reading the current line. As a result,
this method might truncate the string that it returns. If the file does not use an encoding standard
that is compatible with Unicode, then you must first configure Siebel CRM to transform it to UTF-8
or UTF-16 with the appropriate byte-order mark (BOM) placed at the beginning of the file. For more
information, see “Clib Open File Method” on page 222.

Related Topics
For more information, see “Clib Write String to File Method” on page 250.

Table 140. Arguments for the Get Characters to Next Line Method

Argument Description

maxLen The maximum length of the string that this method returns if it does not
encounter a newline character.

If the File Mode is Unicode, then the maxLen argument is the length in Unicode
characters.

If you do not specify the maxLen argument, then Siebel eScript uses the
default limit of 999 characters.

filePointer A file pointer that the Clib Open File method returns.

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 239

Clib Get Cursor Position Method
The Clib Get Cursor Position method gets the current position of the file cursor in the file that the
filePointer argument identifies. It stores this value in the position argument.

Format
Clib.fgetpos(filePointer, position)

Table 141 describes the arguments for the Get Pointer Position method.

Example
The following example restores the cursor position. It does the following work:

1 Writes two strings to a temporary text file.

2 To save the position where the second string begins, it uses the Clib Get Cursor Position method.

3 To set the file cursor to the saved position, it uses the Clib Set Cursor Position method:

function Test_Click ()
{

var position;
var fp = Clib.tmpfile();
Clib.fputs("Melody\n”, fp);
Clib.fgetpos(fp, position)
Clib.fputs("Lingers\n", fp);
Clib.fsetpos(fp, position);
var msg = Clib.fgets(fp));
Clib.fclose(fp);
TheApplication().RaiseErrorText(msg);

}

Clib Get Relative Cursor Position Method
The Clib Get Relative Cursor Position method gets the position of the file cursor of an open file
relative to the beginning of the file. It returns one of the following values:

■ If successful, then it returns the current position of the file cursor.

Table 141. Arguments for the Clib Get Cursor Position Method

Argument Description

filePointer A file pointer that the Clib Open File method returns.

position The current position of the pointer in the file that the filePointer argument
identifies.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

240

■ If not successful, then it returns the following value and stores the error value in the errno
property:

Negative 1

The cursor position in a text file might not correspond exactly with the byte offset in the file. A text
file is a file that is not opened in binary mode.

Format
Clib.ftell(filePointer)

The arguments for this method are the same as the arguments for the Clib Clear Error method. For
more information, see “Arguments for the Clib Clear Error Method” on page 286.

Clib Move Cursor to Beginning of File Method
The Clib Move Cursor to Beginning of File method moves the file cursor to the beginning of a file.
This method is identical to the Clib Set Cursor Position method with the mode argument set to
SEEK_SET and the offset argument set to 0. The only difference is that the Clib Move Cursor to
Beginning of File method also clears the error indicator for the file.

Format
Clib.rewind(filePointer)

The arguments for this method are the same as the arguments for the Clib Clear Error method. For
more information, see “Arguments for the Clib Clear Error Method” on page 286.

Usage With a Unicode File
Siebel CRM uses UTF-16 encoding when it writes to a file in Unicode. The first two bytes of the file
are always the BOM (Byte Order Mark). If the Clib Move Cursor to Beginning of File method calls a
Unicode file, then it references BOM (-257) and not the first valid character. To skip the BOM, you
must configure Siebel CRM to call the Clib Get Character Method or the Clib File Get Character Method
method at least one time. For more information, see “Clib Get Character Method” on page 237.

Example
For an example, see “Clib Get Characters to Next Line Method” on page 237.

Clib Read From File Method
The Clib Read From File method reads data from an open file that you specify in the filePointer
argument. It then stores this data in an argument, buffer, or BLOB that you specify. If this argument,
buffer, or BLOB does not exist, then this method creates it. It returns one of the following values:

■ If successful, then it returns the number of elements it read.

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 241

■ If you specify the destBuffer argument, then it returns the number of bytes read, up to the value
you specify in the bytelength argument.

■ If you specify the varDescription argument, then it returns one of the following values:

■ 1 if it reads the data

■ 0 if a read error occurs or if it encounters the end of file

Format A
Clib.fread(destBuffer, bytelength, filePointer)

Format B
Clib.fread(destVar, varDescription, filePointer)

Format C
Clib.fread(blobVar, blobDescriptor, filePointer)

Arguments
Table 142 describes the arguments for the Clib Read From File method.

Table 142. Arguments for the Clib Read From File Method

Argument Description

destBuffer The buffer to contain the data that this method reads.

bytelength The number of bytes that this method reads.

filePointer A file pointer that the Clib Open File method returns.

destVar A container to hold the data that this method reads.

varDescription The format of the data that this method reads. For more information, see
“Format of the Data That the Clib Read From File Method Reads” on page 242.

blobVar The BLOB where this method writes data.

blobDescriptor The BLOB descriptor for the value you specify in the blobVar argument.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

242

Format of the Data That the Clib Read From File Method Reads
Table 143 describes the format of the data that the Clib Read From File method reads. You specify
this format in the varDescription argument. If the destVar argument must hold a single datum, then
you must set the varDescription argument to one of these formats. If the destVar contains blob data,
then you must specify a blobdescriptor argument. A blobdescriptor can also consist of
varDescriptions for the individual elements of the blobdescriptor.

The following code includes example formats:

ClientDef = new blobDescriptor();
ClientDef.Sex = UWORD8;
ClientDef.MaritalStatus = UWORD8;
ClientDef._Unused1 = UWORD16;
ClientDef.FirstName = 30; ClientDef.LastName = 40;
ClientDef.Initial = UWORD8;

Usage for the Clib Read From File Method
The Siebel eScript usage of fread differs from the standard C library usage in that the C library reads
an array of numeric values or structures into consecutive bytes in memory. The Clib Read From File
method reads data in the byte-order that the current value of the BigEndianMode global variable
describes.

Example
The following example reads the following items from the fp file:

■ Reads the 16-bit i integer

■ Reads the 32-bit f float

■ Reads the 10-byte buffer from the buf buffer:

Table 143. Format of the Data That the Clib Read From File Method Reads

Value Description

UWORD8 Stored as an unsigned byte.

SWORD8 Stored as a signed byte.

UWORD16 Stored as an unsigned, 16-bit integer.

SWORD16 Stored as a signed, 16-bit integer.

UWORD24 Stored as an unsigned, 24-bit integer.

SWORD24 Stored as a signed, 24-bit integer.

UWORD32 Stored as an unsigned, 32-bit integer.

SWORD32 Stored as a signed, 32-bit integer.

FLOAT32 Stored as a floating-point number.

FLOAT64 Stored as a double-precision, floating-point number.

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 243

if (!Clib.fread(i, SWORD16, fp) || !Clib.fread(f, FLOAT32, fp)
|| 10 != Clib.fread(buf, 10, fp))

TheApplication().RaiseErrorText("Error reading from file.\n");
}

Clib Restore Cursor Position Method
The Restore Cursor Position method sets the current file cursor to a position that you specify. You
can use it to restore the file cursor to a position that the Clib Get Cursor Position returns. It returns
one of the following values:

■ If successful, then it returns the following value:

0

■ If not successful, then it returns nonzero and stores the error value in the errno property.

Format
Clib.fsetpos(filePointer, position)

Table 144 describes the arguments for the Restore Cursor Position method.

Example
For an example, see “Clib Get Cursor Position Method” on page 239.

Related Topics
For more information, see the following topics:

■ “Clib Get Cursor Position Method” on page 239

■ “Clib Get Relative Cursor Position Method”

Clib Set Cursor Position Method
The Clib Set Cursor Position method sets the position of the file cursor of an open file. It returns one
of the following values:

■ If successful, then it returns the following value:

0

Table 144. Arguments for the Restore Cursor Position Method

Argument Description

filePointer A file pointer that the Clib Open File method returns.

position The value that the Clib Get method returns.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

244

■ If not successful, then it returns a nonzero value.

Format
Clib.fseek(filePointer, offset[, mode])

Table 145 describes the arguments for the Clib Set Cursor Position method.

Related Topics
For more information, see the following topics:

■ “Clib Get Cursor Position Method” on page 239

■ “Clib Get Relative Cursor Position Method” on page 239

■ “Clib Move Cursor to Beginning of File Method” on page 240

Clib Scan and Convert File Method
The Clib Scan and Convert File method reads data from a file and stores data items that exist in this
file in a series of arguments. It returns one of the following values:

■ If successful, then it returns the number of input items it converted and stored.

■ If an input failure occurs before the conversion, then it returns the following value:

EOF

Format
Clib.fscanf(filePointer, formatString, var1, var2, ..., varn)

Table 145. Arguments for the Clib Set Cursor Position Method

Argument Description

filePointer A file pointer that the Clib Open File method returns.

offset The number of bytes that the Clib Set Cursor Position method moves the file
cursor, starting with the value that you specify in the mode argument.

The cursor position in a text file might not correspond exactly with the byte
offset in the file. A text file is a file that is not opened in binary mode.

mode You can specify one of the following values:

■ SEEK_CUR. Relative to the current position of the file cursor.

■ SEEK_END. Relative to the end of the file.

■ SEEK_SET. Relative to the beginning of the file. If you do not specify the
mode argument, then this method uses SEEK_SET.

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 245

Table 146 describes the arguments for the Clib Scan and Convert File method.

Usage
This method does the following work:

1 Reads input from the file that the filePointer argument identifies.

2 Matches characters that exist in the file with characters that the formatString argument specifies
until it reaches a percentage symbol (%).

The percentage symbol causes this method to read and store the values in the arguments that
occur after the string that the formatString argument identifies.

3 Parses each match that occurs after the value of the formatString argument.

As it parses each match, it stores the result in a variable argument, such as var1, var2, ..., and
varn. If a matching failure occurs, then the number of matches it parses might be fewer than the
number of variable arguments you specify.

An argument specification uses the following format:

%[*][width]type

For values for these items, see “Format Characters for Methods That Scan” on page 234.

You must make sure that the file it reads is open and includes read access.

Example
The following example uses the Clib Scan and Convert File method with various options on the
arguments:

var int1;
var int2;
var hour;
var min;
var sec;
var str;

var file = Clib.fopen("c:\\temp\\fscanf.txt", "r");
TheApplication().TraceOn("c:\\temp\\testoutput.txt", "allocation", "all");

// Simple scanf:

Table 146. Arguments for the Clib Scan and Convert File Method

Argument Description

filePointer A file pointer that the Clib Open File method returns.

formatString A string that contains format instructions that the Clib Open File
method uses to read each data item in the file.

var1, var2, ..., varn Variables that the Clib Open File method uses to store the values
that it formats.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

246

// input line e.g.: "Monday 10:18:00"
Clib.fscanf(file, "%s %i:%i:%i\n", str, hour, min, sec);
TheApplication().Trace(str + ", " + hour + ", " + min + ", " + sec);

// Using width specifier:
// input line e.g.: "1234567890"
Clib.fscanf(file, "%5i%5i\n", int1, int2);
TheApplication().Trace(int1 + ", " + int2);

// Reading hexadecimal integers and suppressing assignment to a variable:
// input line e.g.: "AB3F 456A 7B44"
Clib.fscanf(file, "%x %*x %x\n", int1, int2);
TheApplication().Trace(int1 + ", " + int2);

// Using character ranges:
// input line e.g.: "helloHELLO"
Clib.fscanf(file, "%[a-z]\n", str);
TheApplication().Trace(str);

Clib.fclose(file);

This example produces the following output:

COMMENT,"Monday, 10, 18, 0"
COMMENT,"12345, 67890"
COMMENT,"43839, 31556"
COMMENT,hello

Clib Scan and Convert from Input Device Method
The Clib Scan and Convert from Input Device method reads input from an input device and stores
the data in arguments. It reads from the keyboard unless the Clib Reopen File method redirects it to
another file as stdin. It returns one of the following values:

■ If successful, then it returns the number of variables where it assigned data.

■ If not successful, then it returns the following value:

EOF

This method does not read the input until the user presses the ENTER key. This method is identical
to the Clib Scan and Convert File method with stdin set as the first argument. For more information,
see “Clib Scan and Convert File Method” on page 244.

Format
Clib.sscanf([formatString] [,var1, var2, ..., varn])

Clib Unget Method
The Clib Unget method pushes a character back into a file. It returns one of the following values:

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 247

■ If successful, then it returns the value that the char argument contains.

■ If not successful, then it returns the following value:

EOF

If this method pushes a character back into a file, then it converts the character that you specify in
the char argument to a byte. It only pushes back one character. After the unget, this character is
again available in the file for subsequent retrieval. You might need to use this method to read up to,
but not including, a newline character. You can then use it to push the newline character back into
the file buffer.

Format
Clib.ungetc(char, filePointer)

Table 147 describes the arguments for the Clib Unget method.

Clib Write Character Method
The Clib Write Character method writes a character, converted to a byte, to a file that you specify. It
returns one of the following values:

■ If successful, then it returns the value that the char argument contains.

■ If not successful, then it returns the following value:

EOF

The following type of character that the char argument contains determines how this method writes
the character:

■ String. It writes the first character of the string to the file.

■ Number. It writes the character that corresponds to the Unicode value for this number to the
file.

Format
Clib.fputc(char, filePointer)
Clib.putc(char, filePointer)

Table 147. Arguments for the Clib Unget Method

Argument Description

char The character that this method pushes back. It puts back one character to the
file stream that it reads. It moves the seek position of the file pointer by one
character position.

filePointer A file pointer that the Clib Open File method returns.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

248

Clib.fputc writes a character to a file. Clib.putc writes a character to the screen. In most situations,
to avoid an error with macro usage, you must use Clib.fputc.

Table 148 describes the arguments for the Clib Write Character method.

Clib Write Formatted String Method
The Clib Write Formatted String method writes a formatted string to a file.

Format
Clib.fprintf(filePointer, formatString)

Table 149 describes the arguments for the Clib Write Formatted String method.

Example
The following example uses the Clib Write Formatted String method with various values for the
formatString argument:

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)
{

if (MethodName == "fprintfsamples")
{

var intgr = 123456789;
var flt = 12345.6789;
var hour = 1;
var min = 7;
var sec = 0;
var str = "Hello World";
var file = Clib.fopen("c:\\temp\\fprintf.txt", "w");

// Simple formatting:

Table 148. Arguments for the Clib Write Character Method

Argument Description

char A one character string or variable that contains a single character.

filePointer A file pointer that the Clib Open File method returns.

Table 149. Arguments for the Clib Write Formatted String Method

Argument Description

filePointer A file pointer that the Clib Open File method returns.

formatString A string that contains formatting instructions for each data item that the Clib
Write Formatted String method writes. For more information, “Format
Characters for Methods That Print and Scan” on page 230.

C Language Library Reference ■ Clib File Input and Output Methods

Siebel eScript Language Reference Version 8.1/8.2 249

Clib.fprintf(file, "(1) %s, it is now %i:%i:%i pm.\n", str, hour, min, sec);
Clib.fprintf(file, "(2) The number %i is the same as %x.\n", intgr, intgr);
Clib.fprintf(file, "(3) The result is %f.\n", flt);

// Flag values:
// "+" forces a + or - sign; "#" modifies the type flag "x"

// to prepend "0x" to the output. (Compare with the simple
// formatting example.)
Clib.fprintf(file, "(4) The number %+i is the same as %#x.\n", intgr, intgr);

// Width values:
// The width is a minimal width, thus longer values
// are not truncated.
// "2" fills with spaces, "02" fills with zeros.
var myWidth = 2;
Clib.fprintf(file, "(5) %5s, it is now %2i:%02i:%02i pm.\n", str, hour, min,
sec);

// Precision values:
// ".2" restricts to 2 decimals after the decimal separator.
// The number will be rounded appropriately.
Clib.fprintf(file, "(6) The result is %.2f.\n", flt);

// A combined example:
// <space> displays space or minus;
// "+" displays plus or minus;
// "020" uses a minimal width of 20, padded with zeros;
// ".2" displays 2 digits after the decimal separator;
// "*" uses the next argument in the list to specify the width.
Clib.fprintf(file, "(7) The values are:\n%+020.2f\n% 020.2f\n% *.2f", flt,
intgr, 20, intgr);

Clib.fclose(file);

return (CancelOperation);
}
return (ContinueOperation);

}

This example produces the following output:

(1) Hello World, it is now 1:7:0 pm.
(2) The number 123456789 is the same as 75bcd15.
(3) The result is 12345.678900.
(4) The number +123456789 is the same as 0x75bcd15.
(5) Hello World, it is now 1:07:00 pm.
(6) The result is 12345.68.
(7) The values are:
+0000000000012345.68
0000000123456789.00
123456789.00

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib File Input and Output Methods

250

Clib Write String to File Method
The Write String to File method writes a string to a file that you specify. It returns one of the following
values:

■ If successful, then it returns a nonnegative value.

■ If not successful, then it returns the following value:

EOF

Format
Clib.fputs(string, filePointer)

Table 150 describes the arguments for the Write String to File method.

Example
For an example, see “Clib Get Characters to Next Line Method” on page 237.

Clib Write to File Method
The Clib Write to File method writes data to a file. It returns one of the following values:

■ If successful, then it returns the number of elements it wrote

■ If not successful, then it returns the following value:

0

Siebel eScript usage of fwrite differs from the standard C library usage. The C library writes arrays
of numeric values or structures from consecutive bytes in memory. This is not necessarily true in
Siebel eScript.

Format A
Clib.fwrite(sourceVar, varDescription, filePointer)

Format B
Clib.fwrite(sourceVar, bytelength, filePointer)

Table 150. Arguments for the Write String to File Method

Argument Description

string A string literal or a variable that contains a string.

filePointer A file pointer that the Clib Open File method returns.

C Language Library Reference ■ Clib String Methods

Siebel eScript Language Reference Version 8.1/8.2 251

Arguments
Table 151 describes the arguments for the Clib Write to File method.

Usage for the varDescription Argument
Table 152 describes values you must set for the sourceVar argument and the varDescription
argument. For example, if you use the sourceVar argument to identify a buffer, then you must set
the varDescription argument to the length of that buffer, in bytes.

Example
The following example writes the following data into the fp file:

■ The 16-bit i integer

■ The 32-bit f float

■ The 10-byte buf buffer:

if (!Clib.fwrite(i, SWORD16, fp) || !Clib.fwrite(f, FLOAT32, fp)
|| 10 != fwrite(buf, 10, fp))

{
TheApplication().RaiseErrorText("Error writing to file.\n");

}

Clib String Methods
This topic describes Clib string methods. It includes the following topics:

Table 151. Arguments for the Clib Write to File Method

Argument Description

bytelength Number of bytes that this method writes.

sourceVar The source that this method uses to get the data that it writes.

varDescription A value that depends on the type of object that the sourceVar argument
identifies.

filePointer The file where this method writes data.

Table 152. Relative Values of the varDescription and sourceVar Arguments

Value of the sourceVar Argument Value of the varDescription Argument

Buffer Length of the buffer, in bytes.

Object Value of the object descriptor.

A single datum One of the values listed in “Format of the Data That the
Clib Read From File Method Reads” on page 242.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib String Methods

252

■ “Clib Append String Method” on page 252

■ “Clib Compare Strings Method” on page 253

■ “Clib Convert String to Lowercase Method” on page 254

■ “Clib Copy String Method” on page 254

■ “Clib Get Formatted String Method” on page 255

■ “Clib Get Last Substring Method” on page 256

■ “Clib Get Substring Method” on page 257

■ “Clib Search String for Character Method” on page 258

■ “Clib Search String for Character Set Method” on page 259

■ “Clib Search String for Not Character Set Method” on page 260

■ “Clib Write Formatted String Method” on page 261

Clib Append String Method
The Clib Append String method copies characters from one string to the end of another string. It
appends up to the value that you specify in the maxLen argument of the string that you specify in
the sourceString argument. It does not copy any character that occurs after a null byte. It returns
the appended string that the destString argument contains.

The length of the destString argument is the lesser of the maxLen argument or the length of the
sourceString argument.

Format
Clib.strncat(destString, sourceString, maxLen)

Table 153 describes the arguments for the Clib Append String method.

Example
The following example uses the Clib Append String method:

Table 153. Arguments for the Clib Append String Method

Argument Description

sourceString The string that this method uses to get the characters that it adds.

destString The string where this method adds characters.

maxLen The maximum number of characters to add.

C Language Library Reference ■ Clib String Methods

Siebel eScript Language Reference Version 8.1/8.2 253

var string1 = "I love to ";
var string2 = "ride hang-gliders and motor scooters.";
Clib.strncat(string1, string2, 17);
TheApplication().RaiseErrorText(string1);

This example returns the following string:

"I love to ride hang-gliders"

Related Topics
For more information, see “Clib Copy String Method” on page 254.

Clib Compare Strings Method
The Clib Compare Strings method performs a comparison between two strings, one byte at a time.
It returns one of the following values:

■ If the strings are identical, then it returns the following value:

0

■ If the ASCII code of the first unmatched character in the string1 argument is:

■ Less than that of the first unmatched character in the string2 argument, then it returns a
negative number.

■ Greater than that of the first unmatched character in the string2 argument, then it returns a
positive number.

It stops the comparison if one of the following situations occurs:

■ It encounters a mismatch between strings.

■ It encounters a terminating null byte.

Format
Clib.stricmp(string1, string2)
Clib.strcmpi(string1, string2)
Clib.strncmp(string1, string2, maxLen)
Clib.strncmpi(string1, string2, maxLen)
Clib.strnicmp(string1, string2, maxLen)

You can use one of the following:

■ Search that is case-sensitive. You use Clib.strncmp.

■ Search that is not case-sensitive. You use Clib.stricmp or Clib.strcmpi. In a comparison that
is not case-sensitive, A and a are the same.

The Clib.strncmp, Clib.strncmpi, and Clib.strnicmp methods stop the comparison when one of the
following situations occurs:

■ It has compared the number of bytes that you specify in the maxLen argument.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib String Methods

254

■ It encounters a terminating null byte.

Table 154 describes the arguments for the Clib Compare Strings method.

Clib Convert String to Lowercase Method
The Clib Convert String to Lowercase method converts a string to lowercase. It starts at position 0
of the str argument and ends immediately before the terminating null byte. It returns the value of
the str argument all in lowercase.

Format
Clib.strlwr(str)

Table 155 describes the arguments for the Clib Convert String to Lowercase method.

Clib Copy String Method
The Clib Copy String method copies characters from one string to another string. It returns the ASCII
code of the first character of the string that you specify in the destString argument. You can write
code that copies from one part of a string to another part of the same string.

Format
Clib.strncpy(destString, sourceString, maxLen)

This method uses the same arguments as the Clib Append String method. For more information, see
“Clib Append String Method” on page 252. Note the following differences that the Clib Copy String
method performs:

Table 154. Arguments for the Clib Compare Strings Method

Argument Description

string1 A string or a variable that contains a string that this method compares against the
string that the string2 argument contains.

string2 A string or a variable that contains a string that this method compares against the
string that the string1 argument contains.

maxLen The number of bytes to compare.

Table 155. Arguments for the Clib Convert String to Lowercase Method

Argument Description

str The string that this method modifies to lowercase.

C Language Library Reference ■ Clib String Methods

Siebel eScript Language Reference Version 8.1/8.2 255

■ The number of characters it copies is the lesser of the value of the maxLen argument and the
length of the sourceString argument.

■ If the value that the MaxLen argument contains is greater than the length of the value that the
sourceString argument contains, then it fills the remainder of the destination string with null
bytes.

■ If the string you specify in the destString argument is not defined, then it defines this string.

Clib Get Formatted String Method
The Clib Get Formatted String method returns a formatted string as a numeric literal or as an
argument.

If you use this method to format a floating point number to a specific number of decimal points, then
it returns the value rounded to the number of decimal points that you specify. For example, if you
use the following code to format the num argument, then it returns the num argument rounded to
2 decimal points:

Clib.rsprintf(“%.2f”, num)

Format
Clib.rsprintf([formatString] [,var1, var2, ..., varn])

Table 156 describes the arguments for the Clib Get Formatted String method.

Example
Each of the following code lines includes an example of using the Clib Get Formatted String method
followed by the resulting string:

var TempStr = Clib.rsprintf("I count: %d %d %d.",1,2,3) //"I count: 1 2 3"
var a = 1;
var b = 2;
TempStr = Clib.rsprintf("%d %d %d",a, b, a+b) //"1 2 3"

Table 156. Arguments for the Clib Get Formatted String Method

Argument Description

formatString A string that includes character combinations that describe how to treat
arguments. For more information on the format strings you can use with
this method, see “Format Characters for Methods That Print and Scan” on
page 230.

var1, var2, ..., varn Variables that this method formats according to the format that you define
in the formatString argument.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib String Methods

256

Clib Get Last Substring Method
The Clib Get Last Substring method searches a string for the last occurrence of a character. It returns
one of the following values:

■ If it finds the character, then it returns a string that includes the following items:

■ Begins at the rightmost occurrence of the value that you specify in the char argument

■ Ends with the rightmost character of the string that you specify in the string argument

■ If it does not find the character, then it returns the following value:

Null

It is recommended that you use the Clib Get Last Substring method only if you cannot use the
equivalent standard JavaScript method.

Format
Clib.strrchr(string, char)

Table 157 describes the arguments for the Clib Get Last Substring method.

Example
The following example uses the Clib Get Last Substring method:

var str = "I don’t like soggy cereal."
var substr = Clib.strrchr(str, 'o');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " + substr);

This example provides the following result:

str = I don’t like soggy cereal.
substr = oggy cereal.

Related Topics
For more information, see “Create String From Substring Method” on page 90.

Table 157. Arguments for the Clib Get Last Substring Method

Argument Description

string A string literal or string variable that contains the character that this method
searches.

char The character that this method searches for.

C Language Library Reference ■ Clib String Methods

Siebel eScript Language Reference Version 8.1/8.2 257

Clib Get Substring Method
The Clib Get Substring method searches a string for the first occurrence of a string. It returns one
of the following values:

■ If it finds the string that you specify in the findString argument, then it returns the string that:

■ Begins at the first occurrence of the value that you specify in the findString argument.

■ Ends at the end of the string that you specify in the sourceString argument.

■ If it does not find the string that you specify in the findString argument, then it returns the
following value:

Null

It searches the string that you specify in the sourceString argument from the beginning of this string.

It is recommended that use the Clib Get Substring method only if you cannot use the equivalent
standard JavaScript method.

Format
Clib.strstr(sourceString, findString)
Clib.strstri(sourceString, findString)

You can use one of the following:

■ Search that is case-sensitive. You use Clib.strstr.

■ Search that is not case-sensitive. You use Clib.strstri.

Table 158 describes the arguments for the Clib Get Substring method.

Example 1
The following example uses Clib.strstr:

function Test1_Click ()
{

var str = "We have to go to Haverford."
var substr = Clib.strstr(str, 'H');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " +substr);

}

This example provides the following result:

str = We have to go to Haverford
substr = Haverford

Table 158. Arguments for the Clib Get Substring Method

Argument Description

sourceString The string that this method searches.

findString The string that this method must find.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib String Methods

258

Example 2
The following example uses Clib.strstri:

function Test_Click ()
{

var str = "We have to go to Haverford."
var substr = Clib.strstri(str, 'H');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " +substr);

}

This example provides the following result:

str = We have to go to Haverford.
substr = have to go to Haverford.

Related Topics
For more information, see “Create String From Substring Method” on page 90.

Clib Search String for Character Method
The Clib Search String for Character method searches a string for a character that you specify. It
returns one of the following values:

■ If it finds the character, then it returns the offset of the first occurrence of the character that you
specify in the char argument. This offset is the number of characters in the string from the
beginning to the first occurrence, starting with 0.

■ If it does not find the character, then it returns the following value:

Null

It is recommended that you use the Clib Search String for Character method only if you cannot use
the equivalent standard JavaScript method.

Format
Clib.strchr(string, char)

Table 159 describes the arguments for the Clib Search String for Character method.

Table 159. Arguments for the Clib Search String for Character Method

Argument Description

string A string literal or a string variable that contains the character for which this
method searches.

char The character for which this method searches.

C Language Library Reference ■ Clib String Methods

Siebel eScript Language Reference Version 8.1/8.2 259

Example
The following example uses the Clib Search String for Character method:

var str = "I can't stand soggy cereal."
var substr = Clib.strchr(str, 's');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " + substr);

This example products the following results:

I can't stand soggy cereal.
stand soggy cereal.

Clib Search String for Character Set Method
The Clib Search String for Character Set method searches a string for a set of characters that you
specify in the charSet argument. It returns one of the following values:

■ If it finds this set, then it returns the offset of the first character of the first occurrence of the
set that you specify in the charSet argument. This offset is the number of characters in the string
from the beginning to the first occurrence, starting with 0.

■ If it does not find this set, then it returns the length of the string.

Format
Clib.strcspn(string, charSet)
Clib.strpbrk(string, charSet)

Clib.strcspn is similar to Clib.strpbrk, except that Clib.strpbrk returns the set that begins at the first
character found while Clib.strcspn returns the offset number for that character.

Table 160 describes the arguments for the Clib Search String for Character Set method.

Usage for the Clib Search String for Character Set Method
The Clib Search String for Character Set method searches for characters starting at the beginning of
the string that you specify in the string argument. The search is case-sensitive, so you must use
uppercase and lowercase characters in the charSet argument.

It is recommended that you use the Clib Search String for Character Set Method method only if you
cannot use the equivalent standard JavaScript method.

Table 160. Arguments for the Clib Search String for Character Set Method

Argument Description

string A literal string or a variable that contains the character set for which this
method searches.

charSet A literal string or a variable that is the character set for which this method
searches.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib String Methods

260

Example
The following example demonstrates the difference between Clib.strcspn and Clib.strpbrk:

var string = "There's more than one way to climb a mountain.";
var rStrpbrk = Clib.strpbrk(string, "dxb8w9k!");
var rStrcspn = Clib.strcspn(string, "dxb8w9k!");
TheApplication().RaiseErrorText("The string is: " + string +

"\nstrpbrk returns a string: " + rStrpbrk +
"\nstrcspn returns an integer: " + rStrcspn);

This example provides the following results:

The string is: There’s more than one way to climb a mountain.
strpbrk returns a string: way to climb a mountain.
strcspn returns an integer: 22

Clib Search String for Not Character Set Method
The Clib Search String for Not Character Set method searches a string for a set of characters that is
not part of the value that you specify in the charSet argument. It returns one of the following values:

■ If it finds all characters of the string that you specify in the charSet argument, then it returns
the length of the string.

■ If it does not find all characters of the string that you specify in the string argument, then it
returns the offset of the first character that is not a member of the character set that you specify
in the charSet argument.

Format
Clib.strspn(string, charSet)

This method uses the same arguments as the Clib Search String for Character Set method. Usage is
also the same. For more information, see the following topics:

■ “Clib Search String for Character Set Method” on page 259

■ “Usage for the Clib Search String for Character Set Method” on page 259

Example
The following example searches for the value in the string argument, and then returns the position
of w, counting from 0:

var string = "There is more than one way to swim.";
var rStrspn = Clib.strspn(string, " aeiouTthrsmn");
TheApplication().RaiseErrorText("strspn returns an integer: " + rStrspn);

This example provides the following results:

strspn returns an integer: 23

C Language Library Reference ■ Clib String Methods

Siebel eScript Language Reference Version 8.1/8.2 261

Clib Write Formatted String Method
The Clib Write Formatted String method writes output to a string variable according to a format that
you define. It returns one of the following values:

■ If successful, then it returns the number of characters it wrote in the buffer.

■ If not successful, then it returns the following value:

EOF

You are not required to define the string value. It is large enough to hold the result.

Format
Clib.sprintf(stringVar, formatString, var1, var2, ..., varn)

This method performs the same work and uses the same arguments as the Clib Formatted String
method except it also includes the stringVar argument. This argument identifies the name of the
variable where the Clib Write Formatted String method writes the formatted string. For more
information, “Clib Get Formatted String Method” on page 255.

Example
The following example uses the Clib Write Formatted String method with various format string
arguments:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");

var a, b, c;
a = 5;
b = 2;

Clib.sprintf(c, "First # %d + Second # %d is equal to %03d",a,b, a+b);
TheApplication().Trace("Output : " + c);

Clib.sprintf(c, "\n First # %d \n Second # %d \n => %d",12,16, 12+16)
TheApplication().Trace("Output : " + c);

var x, y, z, n;
var x = "Ali is 25 years old";
var y = "he lives in Ireland.";
var n = Clib.sprintf(z, "\n %s and %s",x,y) ;

TheApplication().Trace("Output : " + z);
TheApplication().Trace("Total characters: " + n);

var a = 16.51;
var b = 5.79;
var c;

Clib.sprintf(c, "%.3f / %.3f is equal to %0.3f",a,b, parseFloat(a/b));

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Buffer Methods

262

TheApplication().Trace("Output : " + c);

TheApplication().TraceOff();

This example produces the following result:

02/18/04,18:37:35,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,3964,3836
02/18/04,18:37:35,COMMENT,Output : First # 5 + Second # 2 is equal to 007
02/18/04,18:37:35,COMMENT,"Output :
 First # 12
 Second # 16
 => 28"
02/18/04,18:37:35,COMMENT,"Output :
 Ali is 25 years old and he lives in Ireland."
02/18/04,18:37:35,COMMENT,Total characters: 46
02/18/04,18:37:35,COMMENT,Output : 16.510 + 5.790 is equal to 2.851
02/18/04,18:37:35,STOP

Clib Buffer Methods
This topic describes Clib buffer methods. It includes the following topics:

■ “Clib Get Memory Method” on page 262

■ “Clib Compare Memory Method” on page 263

■ “Clib Copy Memory Method” on page 264

■ “Clib Set Memory Method” on page 264

Clib Get Memory Method
The Clib Get Memory method searches a buffer for the first occurrence of a character that you
specify. It returns one of the following values:

■ If it finds the character you specify, then it returns the contents of the buffer starting at that
character.

■ If it does not find the character you specify, then it returns the following value:

Null

Format
Clib.memchr(bufferVar, char[, size])

C Language Library Reference ■ Clib Buffer Methods

Siebel eScript Language Reference Version 8.1/8.2 263

Table 161 describes the arguments for the Clib Get Memory method.

Clib Compare Memory Method
The Clib Compare Memory method compares the contents of two buffers. It returns one of the
following values:

■ If the value in the buf1 argument is less than the value in the buf2 argument, then it returns a
negative number.

■ If the value in the buf1 argument is greater than the value in the buf2 argument, then it returns
a positive number.

■ If the value in the buf1 argument is the same as the value in the buf2 argument, then it returns 0.

Format
Clib.memcmp(buf1, buf2[, length])

Table 162 describes the arguments for the Clib Compare Memory method.

Table 161. Arguments for the Clib Get Memory Method

Argument Description

bufferVar A buffer or a variable that references a buffer.

char The character that this method attempts to locate.

size The number of bytes of the buffer that this method searches. It does one of the
following depending on if you specify a size:

■ You do specify a size. It searches at the beginning of the buffer and
continues until it reaches the point in the buffer that you indicate in the size
argument. For example, if you specify the size as 1024, then it searches the
first 1024 bytes of the buffer.

■ You do not specify a size. It searches the entire buffer from the first byte.

Table 162. Arguments for the Clib Compare Memory Method

Argument Description

buf1 A variable that contains the name of a buffer.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Buffer Methods

264

Clib Copy Memory Method
The Clib Copy Memory method copies bytes from a source buffer to a destination buffer.

Format
Clib.memcpy(destBuf, srcBuf[, length])
Clib.memmove(destBuf, srcBuf[, length])

Siebel eScript protects data from being overwritten, so Clib.memmove performs exactly the same
work as Clib.memcpy.

Table 163 describes the arguments for the Clib Copy Memory method.

Clib Set Memory Method
The Clib Set Memory method sets the bytes in a buffer to a character that you specify.

buf2 A variable that contains the name of a buffer.

length The number of bytes that this method compares. It does one of the following
depending on how you specify the length argument:

■ You specify the length argument. It compares the buffers from the first
byte up to the length that you specify. For example, if you specify 1024 as
the length, then it compares the first 1024 bytes of the buffer.

■ You do not specify the length argument. It compares the full length of
the buffers.

If one buffer is shorter than the other buffer, then it compares the buffers from
the beginning byte up to the length of the shorter buffer.

Table 163. Arguments for the Clib Copy Memory Method

Argument Description

destBuf The name of a buffer or a variable that references a buffer. If this buffer does
not exist, then this method creates it.

srcBuf The buffer that this method uses to get the data that it copies.

length The number of bytes that this method copies. If you do not specify the length
argument, then it copies the entire contents of the buffer.

Table 162. Arguments for the Clib Compare Memory Method

Argument Description

C Language Library Reference ■ Clib Mathematical Methods

Siebel eScript Language Reference Version 8.1/8.2 265

Format
Clib.memset(bufferVar, char[, length])

Table 164 describes the arguments for the Clib Set Memory method.

Clib Mathematical Methods
This topic describes Clib mathematical methods. It includes the following topics:

■ “Clib Create Random Number Method” on page 265

■ “Clib Divide Method” on page 266

■ “Clib Get Floating Point Number Method” on page 267

■ “Clib Get Hyperbolic Cosine Method” on page 267

■ “Clib Get Hyperbolic Sine Method” on page 268

■ “Clib Get Hyperbolic Tangent Method” on page 268

■ “Clib Get Integer Method” on page 268

■ “Clib Get Normalized Mantissa Method” on page 269

■ “Clib Initialize Random Number Generator Method” on page 270

Clib Create Random Number Method
The Clib Create Random Number method creates a pseudo-random number between 0 and
RAND_MAX, inclusive. The value of RAND_MAX depends on the operating system. It is typically
32,768.

Table 164. Arguments for the Clib Set Memory Method

Argument Description

bufferVar The name of a buffer or a variable that references a buffer. If this buffer
does not exist, then this method creates it.

char The character to which this method sets the bytes of the buffer.

length The number of bytes that this method writes. This method does one of the
following:

■ If the buffer is shorter than the value you specify in the length
argument, then it increases the size of this buffer so that the size is
equal to the value in the length argument.

■ If you do not specify the length argument, then it sets the length
argument to the size of the buffer, starting at position 0.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Mathematical Methods

266

The initial value of the random number generator and earlier calls to the Clib Create Random Number
method affects the sequence of pseudo-random numbers. For more information, see “Clib Initialize
Random Number Generator Method” on page 270.

Format
Clib.rand()

Related Topics
For more information, see “Get Random Number Method” on page 189.

Clib Divide Method
The Clib Divide method performs integer division and returns a quotient and remainder.

Format
Clib.div(numerator, denominator)
Clib.ldiv(numerator, denominator)

Siebel eScript does not distinguish between integers and long integers, so clib.div and clib.ldiv are
identical.

Table 165 describes the arguments for the Clib Divide method.

Table 166 describes the structure of the return value.

Example
The following example accepts two numbers as input from the user, divides the first number by the
second number, and then displays the result:

Table 165. Arguments for the Clib Divide Method

Argument Description

numerator The number that this method divides.

denominator The number by which this method divides the numerator.

Table 166. Elements That the Clib Divide Method Returns

Element Description

.quot quotient

.rem remainder

C Language Library Reference ■ Clib Mathematical Methods

Siebel eScript Language Reference Version 8.1/8.2 267

var division = Clib.div(ToNumber(n), ToNumber(d));
TheApplication().RaiseErrorText("The quotient is " + division.quot + ".\n\n" +

"The remainder is " + division.rem + ".");

If run this example with the values of n=9 and d=4, then it produces the following result:

The quotient is 2.

The remainder is 1.

Clib Get Floating Point Number Method
The Clib Get Floating Point Number method calculates a floating-point number given a mantissa and
an exponent. It returns the result of the calculation. It calculates a floating-point number from the
following equation:

mantissa multiplied by 2 ^ exponent

This method is the inverse of the Get Normalized Mantissa method. For more information, see “Clib
Get Normalized Mantissa Method” on page 269.

Format
Clib.ldexp(mantissa, exponent)

Table 167 describes the arguments for the Clib Get Floating Point Number method.

Clib Get Hyperbolic Cosine Method
The Clib Get Hyperbolic Cosine method calculates and returns the hyperbolic cosine of x.

Format
Clib.cosh(number)

Table 168 describes the arguments for the Clib Get Hyperbolic Cosine method.

Table 167. Arguments for the Clib Get Floating Point Number Method

Argument Description

mantissa The number on which this method operates.

exponent The exponent that this method uses.

Table 168. Arguments for the Clib Get Hyperbolic Cosine Method

Argument Description

number The hyperbolic cosine of the number that this method returns.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Mathematical Methods

268

Clib Get Hyperbolic Sine Method
The Clib Get Hyperbolic Sine method calculates and returns the hyperbolic sine of a floating point
number.

Format
Clib.sinh(floatNum)

Table 169 describes the arguments for the Clib Get Hyperbolic Sine method.

Clib Get Hyperbolic Tangent Method
The Clib Get Hyperbolic Tangent method calculates and returns the hyperbolic tangent of a floating-
point number.

Format
Clib.tanh(floatNum)

Table 170 describes the arguments for the Clib Get Hyperbolic Tangent method.

Clib Get Integer Method
The Clib Get Integer method calculates and returns the integer part of a decimal number. The effect
is identical to that of the Convert Value to Integer method. For more information, see “Convert Value
to Integer Method” on page 165.

Format
Clib.modf(number, var intVar)

Table 169. Arguments for the Clib Get Hyperbolic Sine Method

Argument Description

floatNum A floating-point number or a variable that contains a floating-point
number. This method calculates the hyperbolic sine of this number.

Table 170. Arguments for the Clib Get Hyperbolic Tangent Method

Argument Description

floatNum A floating-point number or a variable that contains a floating-point number that
this method calculates.

C Language Library Reference ■ Clib Mathematical Methods

Siebel eScript Language Reference Version 8.1/8.2 269

Table 171 describes the arguments for the Clib Get Integer method.

Example
The following example passes the same value to the Clib Get Integer method and to the Convert
Value to Integer method. The result is the same for each method:

function eScript_Click ()
{

Clib.modf(32.154, var x);
var y = ToInteger(32.154);
TheApplication().RaiseErrorText("modf yields " + x +

".\nToInteger yields " + y + ".");
}

This example produces the following result:

modf yields 32
ToInteger yields 32.

Clib Get Normalized Mantissa Method
The Clib Get Normalized Mantissa method converts a number into a normalized mantissa in a value
in the range of 0.5 through 1.0, and then calculates an integer exponent of 2 so that the number is
equivalent to the following value:

mantissa multiplied by 2 ^ exponent

It returns one of the following values:

■ A normalized mantissa in the range of 0.5 through 1.0

■ 0

A mantissa is the decimal part of a natural logarithm.

Format
Clib.frexp(number, exponent)

Table 171. Arguments for the Clib Get Integer Method

Argument Description

number The floating-point number that this method splits.

intVar Contains the integer part of the number.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Date and Time Methods

270

Table 172 describes the arguments for the Clib Get Normalized Mantissa method.

Clib Initialize Random Number Generator Method
The Clib Initialize Random Number Generator method initializes a random number generator.

Format
Clib.srand(seed)

Table 173 describes the arguments for the Clib Initialize Random Number Generator method.

Related Topics
For more information, see the following topics:

■ “Get Random Number Method” on page 189

■ “Clib Create Random Number Method” on page 265

Clib Date and Time Methods
This topic describes Clib date and time methods. It includes the following topics:

■ “Overview of Clib Date and Time Methods” on page 271

■ “About the Objects That Each Clib Time Method Returns” on page 272

■ “Clib Convert Integer to GMT Method” on page 272

■ “Clib Convert Integer to Local Time Method” on page 273

■ “Clib Convert Time to Integer Method” on page 274

■ “Clib Convert Time Object to Integer Method” on page 274

Table 172. Arguments for the Clib Get Normalized Mantissa Method

Argument Description

number The number on which this method operates.

exponent The exponent that this method uses.

Table 173. Arguments for the Clib Initialize Random Number Generator Method

Argument Description

seed The number that the random number generator uses as a starting point.

If you do not specify the seed argument, then this method uses a random
number that is specific to the operating system.

C Language Library Reference ■ Clib Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 271

■ “Clib Get Date and Time Method” on page 276

■ “Clib Get Formatted Date and Time Method” on page 277

■ “Clib Get Local Date and Time Method” on page 279

■ “Clib Get Difference in Seconds Method” on page 279

■ “Clib Get Tick Count Method” on page 280

Overview of Clib Date and Time Methods
The Clib time object measures time in the following ways:

■ As an integral value of the number of seconds that have occurred since January 1, 1970.

■ As a time object that includes properties for the day, month, year, and so on. This time object is
distinct from the standard JavaScript date object.

Note the following:

■ The time object is for use with the date and time functions in the Clib object.

■ You cannot write code that uses a date object property with a time object or a time object
property with a date object.

■ Although the time object is different than the date object, these objects contain similar data.

Table 174 lists the integer properties for the timeInt argument of the Clib time object.

Table 174. Integer Properties of the timeInt Argument of the Clib Time Object

Value for the timeInt Argument Integer Property

tm_sec Second after the minute, from 0.

tm_min Minutes after the hour, from 0.

tm_hour Hour of the day, from 0.

tm_mday Day of the month, from 1.

tm_mon Month of the year, from 0.

tm_year Years since 1900, from 0.

tm_wday Days since Sunday, from 0.

tm_yday Day of the year, from 0.

tm_isdst Flag for Daylight Savings Time.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Date and Time Methods

272

About the Objects That Each Clib Time Method Returns
Table 175 lists the object that each Clib time method returns. Time includes a variable in the Time
object format, while timeInt includes a time value that is an integer.

Clib Convert Integer to GMT Method
The Clib Convert Integer to GMT method uses the integer value that the Clib Convert Time to Integer
method returns and converts it to a time object that includes the current date and time expressed
as Greenwich mean time (GMT).

It is recommended that you use the Clib Convert Integer to GMT method only if you cannot use the
equivalent standard JavaScript method. Note the following code:

var now = Clib.asctime(Clib.gmtime(Clib.time())) + "GMT";

This code is exactly equivalent to the following standard JavaScript code:

var aDate = new Date;
var now = aDate.toGMTString()

Format
Clib.gmtime(timeInt)

This method uses the same arguments as the Clib Get Date and Time method. For more information,
see Table 178 on page 276.

Example
The following example returns the current GMT date and time:

TheApplication().RaiseErrorText(Clib.asctime(Clib.gmtime(Clib.time())));

Table 175. Time Methods and the Objects They Return

Method Object Returned

Clib Get Date and Time Method Time

Clib Get Tick Count Method CPU tick count

Clib Divide Method timeInt

Clib Get Difference in Seconds Method timeInt

Clib Convert Integer to GMT Method timeInt

Clib Convert Integer to Local Time Method timeInt

Clib Convert Time Object to Integer Method Time

Clib Get Formatted Date and Time Method Time

Clib Create Temporary File Name Method timeInt

C Language Library Reference ■ Clib Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 273

It returns this value as a string that uses the following format:

Day Mon dd hh:mm:ss yyyy:

Related Topics
For more information, see the following topics:

■ “Get Day of Month Method” on page 129

■ “Convert Date to GMT String Method” on page 127

■ “Get Time Method” on page 132

■ “Get UTC Day of Month Method” on page 141

■ “Clib Divide Method” on page 266

Clib Convert Integer to Local Time Method
The Clib Convert Integer to Local Time method returns the value of the timeInt argument as a time
object. It is recommended that you use this method only if you cannot use the equivalent standard
JavaScript method. Note the following code:

var now = Clib.asctime(Clib.localtime(Clib.time()));

This code is exactly equivalent to the following standard JavaScript code:

var aDate = new Date;

var now = aDate.toLocaleString()

Format
Clib.localtime(timeInt)

This method uses the same arguments as the Clib Get Date and Time method. For more information,
see Table 178 on page 276.

Related Topics
For more information, see the following topics:

■ “Get Day of Month Method” on page 129

■ “Get Time Method” on page 132

■ “Get UTC Day of Month Method” on page 141

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Date and Time Methods

274

Clib Convert Time to Integer Method
The Clib Return Time in Integers method returns the current time expressed in integers. The time
format is not specifically defined except that it includes the current time according to the closest
approximation that the operating system can make.

The following code assigns the current local time to the timeInt argument:

Clib.time(timeInt) and timeInt = Clib.time()

Format
Clib.time([[var] timeInt])

Table 176 describes the arguments for the Return Time in Integers method.

Example
For examples, see the following topics:

■ “Clib Divide Method” on page 266

■ “Clib Convert Integer to GMT Method” on page 272

■ “Clib Convert Integer to Local Time Method” on page 273

■ “Clib Get Formatted Date and Time Method” on page 277

■ “Clib Get Difference in Seconds Method” on page 279

Related Topics
For more information, see the following topics:

■ “Convert Date to Integer Method” on page 126

■ “Get Day of Month Method” on page 129

Clib Convert Time Object to Integer Method
The Clib Convert Time Object to Integer method converts a time object to the time format that the
Clib Convert Time to Integer method returns. It returns one of the following values:

■ If it can convert the value in the Time argument, then it returns the value that the Time argument
contains expressed as an integer.

■ If it cannot convert the value in the Time argument, then it returns negative 1.

Table 176. Arguments for the Return Time in Integers Method

Argument Description

timeInt Holds the value that this method returns. You must declare this argument as a
variable.

C Language Library Reference ■ Clib Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 275

It sets any element of the Time argument that is not defined to 0 before it performs the conversion.
This method is the opposite of the Convert Integer to Local Time method that converts a time integer
to a time object.

Format
Clib.mktime(Time)

Table 177 describes the arguments for the Clib Convert Time Object to Integer method.

Example
The following example uses the Clib Convert Time Object to Integer method to format a time so that
Siebel eScript can use it with the Clib Get Difference in Seconds method:

// create time object and set time to midnight:
var midnightObject = Clib.localtime(Clib.time());
midnightObject.tm_hour = 0;
midnightObject.tm_min = 0;
midnightObject.tm_sec = 0;

// use mktime to convert Time object to integer:
var midnight = Clib.mktime(midnightObject);

// difftime can now use this value:
var diff = Clib.difftime(Clib.time(), midnight);
TheApplication().Trace("Seconds since midnight: " + diff);

This example produces the following result:

COMMENT,Seconds since midnight: 59627

For an example that describes the difference between the formats that asctime and mktime use, see
“Clib Get Date and Time Method” on page 276.

Related Topics
For more information, see the following topics:

■ “Get Day of Month Method” on page 129

■ “Get Time Method” on page 132

■ “Get UTC Day of Month Method” on page 141

Table 177. Arguments for the Clib Convert Time Object to Integer Method

Argument Description

Time A time object.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Date and Time Methods

276

Clib Get Date and Time Method
The Clib Get Date and Time method returns a string that includes the date and time that it extracts
from a time object. The string it returns uses the following format:

Day Mon dd hh:mm:ss yyyy

For example, Wed Aug 10 13:21:56 2005.

Format
Clib.asctime(Time)

Table 178 describes the arguments for the Clib Get Date and Time method.

Example
The following example describes the difference between the asctime and mkdir formats for time:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");

var tm = Clib.localtime(Clib.time());
var tmStr = Clib.asctime(tm);
var tmVal = Clib.mktime(tm);

TheApplication().Trace("Time String : " + tmStr);
TheApplication().Trace("Time Value : " + tmVal);

TheApplication().TraceOff();

This example produces the following result:

03/05/04,12:26:30,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,6532,6584
03/05/04,12:26:30,COMMENT,"Time String : Fri Mar 05 12:26:30 2004"
03/05/04,12:26:30,COMMENT,Time Value : 1078489590
03/05/04,12:26:30,STOP

Related Topics
For more information, see the following topics:

■ “Get Day of Month Method” on page 129

■ “Get Time Method” on page 132

■ “Get UTC Day of Month Method” on page 141

Table 178. Arguments for the Clib Get Date and Time Method

Argument Description

Time A time object.

C Language Library Reference ■ Clib Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 277

Clib Get Formatted Date and Time Method
The Clib Get Formatted Date and Time method creates a string that includes the date, time, or the
date and time. It returns a formatted string that contains these values.

Format
Clib.strftime(stringVar, formatString, Time)

Table 179 describes the arguments for the Clib Get Formatted Date and Time method.

Conversion Characters That the Return Formatted Date and Time Method Uses
Table 180 describes conversion characters that the Return Formatted Date and Time method uses.

Table 179. Arguments for the Clib Get Formatted Date and Time Method

Argument Description

stringVar A variable that holds the time in a string.

formatString A string that describes how to format the value in the stringVar argument.
Conversion characters represent this format. For more information, see
“Conversion Characters That the Return Formatted Date and Time Method Uses”
on page 277.

Time A time object that the Clib Convert Integer to Local Time method returns. For
more information on the time object, see “Overview of Clib Date and Time
Methods” on page 271.

Table 180. Conversion Characters That the Return Formatted Date and Time Method Uses

Character Description Example

%a Abbreviated weekday name. Sun

%A Full weekday name. Sunday

%b Abbreviated month name. Dec

%B Full month name. December

%c Date and time. Dec 2 06:55:15 1979

%d Two digit day of the month. 02

%H Two digit hour of the 24-hour day. 06

%I Two digit hour of the 12-hour day. 06

%j Three digit day of the year from 001. 335

%m Two digit month of the year from 01. 12

%M Two digit minute of the hour. 55

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Date and Time Methods

278

Example 1
The following example displays the full day name and month name of the current day:

var TimeBuf;
Clib.strftime(TimeBuf,"Today is %A, and the month is %B",

Clib.localtime(Clib.time()));
TheApplication().RaiseErrorText(TimeBuf);

The display is similar to the following:

Today is Friday, and the month is July

Example 2
The following example uses various conversion characters to format the value that the Clib Get
Formatted Date and Time method returns:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");

var tm, tmStrFmt;
tm = Clib.localtime(Clib.time());

Clib.strftime(tmStrFmt, "%m/%d/%Y",tm);
TheApplication().Trace("Time String Format: " + tmStrFmt);

Clib.strftime(tmStrFmt, "%A %B %d, %Y",tm);
TheApplication().Trace("Time String Format: " + tmStrFmt);

TheApplication().TraceOff();

%p AM or PM. AM

%S Two digit seconds of the minute. 15

%U Two digit week of the year where
Sunday is the first day of the week.

48

%w Day of the week where Sunday is 0. 0

%W Two digit week of the year where
Monday is the first day of the week.

47

%x The date. Dec 2 1979

%X The time. 06:55:15

%y Two digit year of the century. 79

%Y The year. 1979

%Z The name of the time zone, if known. EST

%% The percentage symbol. %

Table 180. Conversion Characters That the Return Formatted Date and Time Method Uses

Character Description Example

C Language Library Reference ■ Clib Date and Time Methods

Siebel eScript Language Reference Version 8.1/8.2 279

This example produces the following result:

03/05/04,12:44:01,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,6848,6708
03/05/04,12:44:01,COMMENT,Time String Format: 03/05/2004
03/05/04,12:44:01,COMMENT,"Time String Format: Friday March 05, 2004"
03/05/04,12:44:01,STOP

Clib Get Local Date and Time Method
The Clib Get Local Date and Time method returns a string that includes the date and time, adjusted
for the local time zone. It is equivalent to the following code:

Clib.asctime(Clib.localtime(timeInt));

where:

■ timeInt is the date and time that the Clib Get Date and Time method returns.

Format
Clib.ctime(timeInt)

Table 181 describes the arguments for the Clib Get Local Date and Time method.

Example
The following example returns the current date and time:

TheApplication().RaiseErrorText(Clib.ctime(Clib.time()));

It returns this date and time in a string that uses the following format:

Day Mon dd hh:mm:ss yyyy

Clib Get Difference in Seconds Method
The Clib Get Difference in Seconds method returns the difference in seconds between two times.

Format
Clib.difftime(timeInt1, timeInt0)

Table 181. Arguments for the Clib Get Local Date and Time Method

Argument Description

timeInt The date and time value that this method returns.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Character Classification Methods

280

Table 182 describes the arguments for the Clib Get Difference in Seconds method.

Example
The following example displays the difference in seconds between two times:

function difftime_Click ()
{

var first = Clib.time();
var second = Clib.time();

TheApplication().RaiseErrorText("Elapsed time is " +
Clib.difftime(second, first) + " seconds.");

}

Clib Get Tick Count Method
The Clib Get Tick Count method returns the current processor tick count. The count starts at 0 when
Siebel CRM starts running and increments the number of times per second according to operating
system settings.

Format
Clib.clock()

Clib Character Classification Methods
This topic describes Clib character classification methods that the Clib object supports. It includes
the following topics:

■ “Overview of Clib Character Classification Methods” on page 281

■ “Clib Is Alphabetic Method” on page 281

■ “Clib Is Alphanumeric Method” on page 282

■ “Clib Is ASCII Method” on page 282

■ “Clib Is Control Method” on page 282

■ “Clib Is Digit Method” on page 283

■ “Clib Is Lowercase Method” on page 283

■ “Clib Is Printable Method” on page 283

Table 182. Arguments for the Clib Get Difference in Seconds Method

Argument Description

timeInt0 An integer time value that this method returns.

timeInt1 An integer time value that this method returns.

C Language Library Reference ■ Clib Character Classification Methods

Siebel eScript Language Reference Version 8.1/8.2 281

■ “Clib Is Printable Not Space Method” on page 284

■ “Clib Is Punctuation Mark Method” on page 284

■ “Clib Is Space Method” on page 284

■ “Clib Is Uppercase Method” on page 285

■ “Clib Is Hexadecimal Method” on page 285

Overview of Clib Character Classification Methods
Siebel eScript does not include character types. For example, a char character is actually a string
that is one character in length. Actual usage is similar to the C programming language. For example,
the following Clib Is Alphanumeric method works properly:

var t = Clib.isalnum('a');

var s = 'a';
var t = Clib.isalnum(s);

This code displays the following output:

true
true

The Clib Is Alphanumeric method in the following example causes errors because the each argument
to each statement is a string that contains more than one character:

var t = Clib.isalnum('ab');

var s = 'ab';
var t = Clib.isalnum(s);

A character classification method returns one of the following values:

■ True

■ False

Clib Is Alphabetic Method
The Clib Is Alphabetic method returns True if the value you specify in the char argument is one of
the following values:

■ An alphabetic character from A through Z

■ An alphabetic character from a through z

If the value you specify is not one of the these values, then it returns Null.

Format
Clib.isalpha(char)

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Character Classification Methods

282

Table 183 describes the arguments for the Clib Is Alphabetic method.

Clib Is Alphanumeric Method
The Clib Is Alphanumeric method returns True if the value you specify in the char argument is one
of the following values:

■ An alphabetic character from A through Z

■ An alphabetic character from a through z

■ A digit from 0 through 9

If the value you specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Format
Clib.isalnum(char)

Clib Is ASCII Method
The Clib Is ASCII method returns True if the value you specify in the char argument is an ASCII code
from 0 to 127. If the value you specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Format
Clib.isascii(char)

Clib Is Control Method
The Clib Is Control method returns True if the value you specify in the char argument is a control
character that an ASCII code from 0 through 31 represents. If the value you specify is not one of the
these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Table 183. Arguments for the Clib Is Alphabetic Method

Argument Description

char A single character or a variable that contains a single character.

C Language Library Reference ■ Clib Character Classification Methods

Siebel eScript Language Reference Version 8.1/8.2 283

Format
Clib.iscntrl(char)

Clib Is Digit Method
The Clib Is Digit method returns True if the value you specify in the char argument is a decimal digit
from 0 through 9. If the value you specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Format
Clib.isdigit(char)

Clib Is Lowercase Method
The Clib Is Lowercase method returns True if the value you specify in the char argument is a
lowercase alphabetic character from a through z. If the value you specify is not one of the these
values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Format
Clib.islower(char)

Clib Is Printable Method
The Clib Is Printable method returns True if the value that you specify in the char argument is a
printable character that you can enter from the keyboard and that an ASCII code 32 through 126
represents. If the value you specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Format
Clib.isprint(char)

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Character Classification Methods

284

Clib Is Printable Not Space Method
The Clib Is Printable Not Space method returns True if the value you specify in the char argument is
a printable character other than the space character that ASCII code 32 represents. If the value you
specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Format
Clib.isgraph(char)

Clib Is Punctuation Mark Method
The Clib Is Punctuation Mark method returns True if the value that you specify in the char argument
is a punctuation mark that you can enter from the keyboard. If the value you specify is not one of
these values, then it returns Null.

This method returns True if one of the following ASCII codes represents the punctuation mark:

■ 33 through 47

■ 58 through 63

■ 91 through 96

■ 123 through 126

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Format
Clib.ispunct(char)

Clib Is Space Method
The Clib Is Space method returns True if the value you specify in the char argument is a white space
character. If the value you specify is not one of the these values, then it returns Null.

Table 184 describes the items for which the Clib Is Space method returns a value of true.

Table 184. items for Which the Clib Is Space Method Returns a Value of True

Description ASCII Value

Horizontal tab 9

Newline 10

C Language Library Reference ■ Clib Character Classification Methods

Siebel eScript Language Reference Version 8.1/8.2 285

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

For more information, see “Use White Space to Improve Readability” on page 56.

Format
Clib.isspace(char)

Clib Is Uppercase Method
The Clib Is Uppercase method returns True if the value you specify in the char argument is an
uppercase alphabetic character from A through Z. If the value you specify is not one of the these
values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Format
Clib.isupper(char)

Clib Is Hexadecimal Method
The Clib Is Hexadecimal method returns True if the value you specify in the char argument is a
hexadecimal character. If the value you specify is not one of the these values, then it returns Null.

A hexadecimal character is one of the following:

■ A number from 0 through 9

■ An alphabetic character from a through f.

■ An alphabetic character from A through F.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Vertical tab 11

Form feed 12

Carriage return 13

Space character 32

Table 184. items for Which the Clib Is Space Method Returns a Value of True

Description ASCII Value

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Clib Error Methods

286

Format
Clib.isxdigit(char)

Clib Error Methods
This topic describes clib error methods. It includes the following topics:

■ “Clib Clear Error Method” on page 286

■ “Clib Get Error Number Method” on page 286

■ “Clib Get Error Message Method” on page 287

■ “Clib Save Error Message In String Method” on page 287

■ “Clib Error Number Property” on page 288

Clib Clear Error Method
The Clib Clear Error method clears the error status and resets the end-of-file flag for a file that you
specify. For usage information, see “Overview of Clib File Input and Output Methods” on page 230.

Format
Clib.clearerr(filePointer)

Table 185 describes the arguments for the Clib Clear Error method.

Clib Get Error Number Method
The Clib Get Error Number method determines if an error has occurred in the buffer where Siebel
eScript reads a file. It returns one of the following values:

■ If no error exists, then it returns the following value:

0

■ If an error exists, then it returns the error number.

Format
Clib.ferror(filePointer)

Table 185. Arguments for the Clib Clear Error Method

Argument Description

filePointer Identifies the file name.

C Language Library Reference ■ Clib Error Methods

Siebel eScript Language Reference Version 8.1/8.2 287

The arguments for this method are the same as the arguments for the Clib Clear Error method. For
more information, see “Arguments for the Clib Clear Error Method” on page 286.

Related Topics
For more information, see “Clib Error Number Property” on page 288.

Clib Get Error Message Method
The Clib Get Error Message method returns the descriptive error message that is associated with the
error number that the error number property identifies. When some methods fail to run properly they
store a number in the error number property. This number corresponds to the type of error
encountered. The Clib Get Error Message method converts this error number to a descriptive string
and returns it.

Format
Clib.strerror(ToNumber(Clib.errno)

Related Topics
For more information, see “Clib Error Number Property” on page 288.

Clib Save Error Message In String Method
The Clib Save Error Message In String method is identical to the Clib Get Error Message except if you
specify the errmsg argument, then the Save Error Message In String method saves the error
message in this argument as a string.

Format
Clib.perror([errmsg])

Table 186 describes the arguments for the Save Error Message In String method.

Table 186. Arguments for the Save Error Message In String Method

Argument Description

errmsg An argument that contains the message that describes the error.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Other Clib Methods

288

Clib Error Number Property
The Clib Error Number property stores an error number if a method fails to run correctly. Many
methods in the Clib and Siebel library objects set errno to a nonzero value when an error occurs.
Siebel eScript implements errno as a macro to the internal function errno. For more information, see
“Siebel Library Methods” on page 201.

Format
Clib.errno

Usage
To return the error number stored in the Clib.errno property, you use the following ToNumber
conversion method:

ToNumber(Clib.errno)

For more information, see “Convert Value to Number Method” on page 169.

You cannot use Siebel eScript code to modify the errno property. It is available only for read-only
access.

You can configure Siebel CRM to reference the error message that is associated with a Clib error
number. For more information, see “Clib Get Error Message Method” on page 287.

Other Clib Methods
This topic describes other Clib methods. It includes the following topics:

■ “Clib Convert Character to ASCII Method”

■ “Clib Modify Environment Variable Method”

■ “Clib Get Environment Variable Method”

■ “Clib Send Command Method”

■ “Clib Search Array Method”

■ “Clib Sort Array Method”

Clib Convert Character to ASCII Method
The Clib Convert Character to ASCII method clears every bit of the value that the char argument
contains except for the seven least significant bits. The result is a seven-bit C representation of the
character. It returns this value as a seven-bit ASCII representation.

If the value you specify in the char argument is already a seven-bit ASCII character, then it does not
clear any bits and returns the character.

C Language Library Reference ■ Other Clib Methods

Siebel eScript Language Reference Version 8.1/8.2 289

Format
Clib.toascii(char)

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method.
For more information, see Table 183 on page 282.

Example
The following example returns the close parenthesis character:

TheApplication().RaiseErrorText(Clib.toascii("©"));

Related Topics
For more information, see “Clib Is ASCII Method” on page 282.

Clib Modify Environment Variable Method
The Clib Modify Environment Variable method creates an environment variable, sets the value of an
existing environment variable, or removes an environment variable. It returns one of the following
values:

■ If it is successful, then it returns the following value:

0

■ If it is not successful, then it returns negative 1.

The Clib Modify Environment Variable method does the following:

■ Sets the environment variable that the varName argument identifies to the value that the
stringValue argument contains.

■ Any modification that it makes to an environment variable persists only while the Siebel eScript
code and any process that this code calls is running. After this code runs, the environment
variable reverts to the value it contained before this method modified this value.

■ Automatically removes any environment variable it creates after it finishes.

Format
Clib.putenv(varName, stringValue)

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Other Clib Methods

290

Table 187 describes the arguments for the Clib Modify Environment Variable method.

Example
The following example creates an environment variable and assigns a value to it. To confirm that the
variable was created, it then traces the return value:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var a = Clib.putenv("TEST","test value");
TheApplication().Trace("TEST : " + a);
TheApplication().Trace("TEST= " + Clib.getenv("TEST");
TheApplication().TraceOff();

This example produces the following result:

03/05/04,16:56:28,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,3388,7448
03/05/04,16:56:28,COMMENT,TEST : 0
03/05/04,16:56:28,COMMENT,TEST= test value
03/05/04,16:56:28,STOP

Clib Get Environment Variable Method
The Get Environment Variable method returns the value of an environment variable.

Format
Clib.getenv(varName)

Table 188 describes the arguments for the Get Environment Variable method.

Example
The following example returns the value of the PATH environment variable:

Table 187. Arguments for the Clib Modify Environment Variable Method

Argument Description

varName The name of an environment variable, enclosed in quotes.

stringValue The value that this method assigns to the environment variable, enclosed in
quotes.

If the value in the stringValue argument is null, then this method removes the
environment variable that the varName argument identifies.

Table 188. Arguments for the Get Environment Variable Method

Argument Description

varName The name of an environment variable, enclosed in quotes.

C Language Library Reference ■ Other Clib Methods

Siebel eScript Language Reference Version 8.1/8.2 291

TheApplication().RaiseErrorText("PATH= " + Clib.getenv("PATH"));

Clib Send Command Method
The Clib Send Command method sends a command to the command processor for the operating
system and opens an operating system window where it runs. After completing the command, it
closes this window. It returns the value that the command processor returns. For an alternative that
does not open a window, see “Siebel Library Call DLL Method” on page 201.

Format
Clib.system(commandString)

Table 189 describes the arguments for the Clib Send Command method.

Example
The following example displays a directory in a DOS window:

Clib.system("dir /p C:\\Backup");

Clib Search Array Method
The Clib Search Array method searches an array for a value that you specify. It returns one of the
following values:

■ If it finds the value you specify in the key argument, then it returns an array variable that
matches the value you specify in the key argument.

■ If it does not find the value you specify in the key argument, then it returns the following value:

Null

It only searches through array elements that include a positive index. It ignores array elements that
include a negative index.

Format
Clib.bsearch(key, arrayToSort, [elementCount,] compareFunction)

Table 189. Arguments for the Clib Send Command Method

Argument Description

commandString Contains the name of a valid operating system command. This value can
include a formatted string followed by variables. For more information, see
“Characters That Format Values” on page 231.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Other Clib Methods

292

Table 190 describes the arguments for the Clib Search Array method.

Example
The following example uses Clib.qsort and Clib.bsearch to locate a name and related item in a list:

(general) (ListCompareFunction)
function ListCompareFunction(Item1, Item2)
{

return Clib.strcmpi(Item1[0], Item2[0]);
}

(general) (DoListSearch)
function DoListSearch()

// create array of names and favorite food
var list =
{

{“Brent”, “salad”},
{"Laura", "cheese" },
{ "Alby", "sugar" },
{ "Jonathan","pad thai" },
{ "Zaza", "grapefruit" },
{ "Jordan", "pizza" }

};

// sort the list
Clib.qsort(list, ListCompareFunction);
var Key = "brent";
// search for the name Brent in the list
var Found = Clib.bsearch(Key, list, ListCompareFunction);
// display name, or not found
if (Found != null)

TheApplication().RaiseErrorText(Clib.rsprintf
("%s's favorite food is %s\n", Found[0][0],Found[0][1]));

else
TheApplication().RaiseErrorText("Can not find name in list.");

}

Table 190. Arguments for the Clib Search Array Method

Argument Description

key The value for which this method searches.

arrayToSort The name of the array that this method searches.

elementCount The number of array elements that this method searches. If you do not
specify the elementCount argument, then it searches the entire array.

compareFunction A custom function that can affect the sort order. The value for the
compareFunction argument must include the following items:

■ The key argument as the first argument

■ A variable from the array as the second argument

C Language Library Reference ■ Other Clib Methods

Siebel eScript Language Reference Version 8.1/8.2 293

Clib Sort Array Method
The Clib Sort Array method sorts elements in an array, starting with index 0, and then continuing to
the value that you specify in the elementCount argument minus 1. This method differs from the Sort
Array method in standard JavaScript in the following ways:

■ The Clib Sort Array method can sort a dynamically created array.

■ the Sort Array method in standard JavaScript works only with an array that an Array statement
explicitly creates.

Format
Clib.qsort(array, [elementCount,]compareFunction)

Table 191 describes the arguments for the Clib Sort Array method.

Example
The following example prints a list of colors sorted in reverse alphabetical order, ignoring case:

// initialize an array of colors
var colors = { "yellow", "Blue", "GREEN", "purple", "RED",
"BLACK", "white", "orange" };
// sort the list using qsort and our ColorSorter routine
Clib.qsort(colors,"ReverseColorSorter");
// display the sorted colors
for (var i = 0; i <= getArrayLength(colors); i++)

Clib.puts(colors[i]);

function ReverseColorSorter(color1, color2)
// do a simple string that is not case-sensitive
// comparison, and reverse the results too
{

var CompareResult = Clib.stricmp(color1,color2)
return(_CompareResult);

}

This example produces the following output:

Table 191. Arguments for the Clib Sort Array Method

Argument Description

array The array that this method sorts.

elementCount The number of elements in the array, up to 65,536.

If you do not specify the elementCount argument, then this method sorts
the entire array.

compareFunction A custom function that can affect the sort order.

Siebel eScript Language Reference Version 8.1/8.2

C Language Library Reference ■ Other Clib Methods

294

yellow
white
RED
purple
orange
GREEN
Blue
BLACK

Related Topics
For more information, see “Sort Array Method” on page 86.

Siebel eScript Language Reference Version 8.1/8.2 295

7 Siebel eScript Quick Reference

This chapter describes summary information for Siebel eScript methods and properties. It includes
the following topics:

■ File and Directory Methods on page 295

■ String Methods on page 297

■ Array Methods and Properties on page 298

■ Mathematical Methods and Properties on page 299

■ BLOB Methods on page 301

■ Date and Time Methods on page 301

■ Buffer Methods and Properties on page 303

■ Siebel Library Methods on page 304

■ Conversion Methods on page 304

■ Character Classification Methods on page 305

■ Error Handling Methods on page 306

■ Other Methods on page 306

File and Directory Methods
This topic describes file and directory methods.

File Manipulation Methods
Table 192 describes file control methods.

Table 192. Quick Reference for File Control Methods

Method Description

Clib Close File Method Closes an open file.

Clib Create Temporary File Method Creates a temporary file.

Clib Create Temporary File Name
Method

Gets a temporary file name.

Clib Delete File Method Deletes a file.

Clib Lock File Method Handles file locking and unlocking.

Siebel eScript Language Reference Version 8.1/8.2

Siebel eScript Quick Reference ■

296

File Manipulation Methods
Table 193 describes file manipulation methods.

Clib Open File Method Opens a file.

Clib Rename File Method Renames a file.

Clib Reopen File Method Reopens a file.

Table 193. Quick Reference for File Manipulation Methods

Method Description

Clib Clear Buffer Method Writes to disk the data that exists in the buffer, and then
clears the buffer.

Clib End of File Method Determines if the file cursor is at the end of the file.

Clib Get Character Method Gets a character from the buffer.

Clib Get Characters to Next Line
Method

Gets a string that includes characters from the cursor to the
next newline character.

Clib Get Cursor Position Method Gets the current position of the file cursor.

Clib Get Relative Cursor Position
Method

Gets the position of the file cursor relative to the beginning
of the file.

Clib Move Cursor to Beginning of File
Method

Moves the file cursor to the beginning of a file.

Clib Read From File Method Reads data from a file.

Clib Restore Cursor Position Method Sets the current file cursor to a position that you specify.

Clib Scan and Convert from Input
Device Method

Reads input from an input device and stores the data in
arguments.

Clib Set Cursor Position Method Sets the cursor position in a file.

Clib Unget Method Pushes a character back to a file.

Clib Write Character Method Writes a character to a file.

Clib Write Formatted String Method Writes a formatted string to a file.

Clib Write String to File Method Writes a string to a file.

Clib Write to File Method Writes data to a file.

Table 192. Quick Reference for File Control Methods

Method Description

Siebel eScript Quick Reference ■

Siebel eScript Language Reference Version 8.1/8.2 297

Directory Manipulation Methods
Table 194 describes directory methods.

String Methods
Table 195 describes string and byte array methods.

Table 194. Quick Reference for Disk and Directory Methods

Method Description

Clib Change Directory Method Changes directory.

Clib Create Directory Method Creates a directory.

Clib Get Current Working Directory Method Gets the current working directory.

Clib Remove Directory Method Removes a directory.

Table 195. Quick Reference for String and Byte Array Methods

Method Description

Change String to Lowercase Method Converts a string to lowercase.

Change String to Uppercase Method Converts a string to uppercase.

Clib Append String Method Concatenates a portion of one string to another string.

Clib Compare Strings Method Performs a comparison between two strings.

Clib Convert String to Lowercase
Method

Converts a string to lowercase.

Clib Copy String Method Copies a part of one string to another string.

Clib Get Formatted String Method Returns a formatted string.

Clib Get Last Substring Method Searches a string for the last occurrence of a character.

Clib Get Substring Method Searches a string for a string.

Clib Search String for Character
Method

Searches a string for a character.

Clib Search String for Character Set
Method

Searches a string for a set of characters.

Clib Search String for Not Character
Set Method

Searches a string for a character that is not in a set of
characters.

Clib Write Formatted String Method Writes formatted output to a string.

Compile Regular Expressions
Method

Modifies the pattern and attributes that Siebel CRM uses with
the current instance of a regular expression object.

Siebel eScript Language Reference Version 8.1/8.2

Siebel eScript Quick Reference ■

298

Array Methods and Properties
Table 196 describes array methods and properties.

Create String From Substring
Method

Returns a section of a string.

Create String From Unicode Values
Method

Converts Unicode values to a string.

Get Character From String Method Returns the character that resides at a location in a string.

Get Regular Expression from String
Method

Returns an array of strings that match a regular expression.

Get Unicode Character From String
Method

Returns the Unicode value of the character that resides at a
specific position in a string.

Is Regular Expression in String
Method

Indicates if a string includes a regular expression.

Parse String Method Parses a string and returns an array of strings according to a
separator.

Replace String Method Replaces a string with a string that you define.

Search String for Last Substring
Method

Returns the position of the last instance of a substring.

Search StringVar for Regular
Expression Method

Returns the position of a regular expression.

Table 196. Quick Reference for Array Methods

Method or Property Description

Add Array Elements Method Appends new elements to the end of an array.

Clib Search Array Method Searches an array for a value that you specify

Clib Sort Array Method Sorts elements in an array.

Create Array Elements Method Creates a string of array elements.

Delete Last Array Element
Method

Returns the last element of the current array object, and then
removes the element from the array.

Get Array Length Method Returns the length of a dynamically created array.

Get Largest Array Index Method Returns a number that includes the largest index of an array, plus
1.

Insert Array Elements Method Inserts new elements into an array.

Table 195. Quick Reference for String and Byte Array Methods

Method Description

Siebel eScript Quick Reference ■

Siebel eScript Language Reference Version 8.1/8.2 299

Mathematical Methods and Properties
This topic describes mathematical methods and properties.

Numeric Methods
Table 197 describes numeric methods.

Reverse Array Order Method Reverses the order of elements of an array.

Set Array Length Method Sets the size of an array.

Sort Array Method Sorts array elements.

Table 197. Quick Reference for Numeric Methods

Method Description

Clib Create Random Number Method Creates a pseudo-random number.

Clib Divide Method Performs integer division and returns a quotient and
remainder.

Clib Get Floating Point Number Method Calculates a floating-point number given a mantissa
and an exponent.

Clib Get Integer Method Returns the integer part of a decimal number.

Clib Get Normalized Mantissa Method Breaks a real number into a mantissa and an exponent
as a power of 2.

Clib Initialize Random Number Generator
Method

Creates an initial value for the random number
generator.

Get Absolute Value Method Returns the absolute value of an integer.

Get Ceiling Method Returns the smallest integer that is not less than the
value that the number argument contains.

Get Exponential Method Computes the exponential function.

Get Floor Method Returns the greatest integer that is not greater than the
value that the number argument contains.

Get Logarithm Method Calculates the natural logarithm.

Get Maximum Method Returns the largest of one or more values.

Get Minimum Method Returns the smallest of one or more values.

Get Random Number Method Returns a random real number between 0 and 1.

Get Square Root Method Calculates the square root.

Table 196. Quick Reference for Array Methods

Method or Property Description

Siebel eScript Language Reference Version 8.1/8.2

Siebel eScript Quick Reference ■

300

Trigonometric Methods
Table 198 describes trigonometric methods.

Mathematical Properties
Table 199 describes mathematical properties, each of which is a numeric constant.

Raise Power Method Calculates x to the power of y.

Round Number Method Rounds a value up or down.

Table 198. Quick Reference for Trigonometric Methods

Method Description

Clib Get Hyperbolic Cosine Method Calculates the hyperbolic cosine.

Clib Get Hyperbolic Sine Method Calculates the hyperbolic sine.

Clib Get Hyperbolic Tangent Method Calculates the hyperbolic tangent.

Get Arc Cosine Method Calculates the arc cosine.

Get Arcsine Method Calculates the arcsine.

Get Arctangent 2 Method Calculates the arc tangent of a fraction.

Get Arctangent Method Calculates the arc tangent.

Get Cosine Method Calculates the cosine.

Get Sine Method Calculates the sine.

Get Tangent Method Calculates the tangent.

Table 199. Quick Reference for Mathematical Properties

Property Description

Base E Property Returns the value of e, which is the base for natural
logarithms.

Logarithm 10 E Property Returns the value of the base 10 logarithm of e.

Logarithm 2 E Property Returns the value of the base 2 logarithm of e.

Math Natural Logarithm 10 Property Returns the value of the natural logarithm of 10.

PI Property Returns the value of pi.

Square Root 1/2 Property Returns the value of the square root of ½.

Square Root 2 Property Returns the value of the square root of 2.

Table 197. Quick Reference for Numeric Methods

Method Description

Siebel eScript Quick Reference ■

Siebel eScript Language Reference Version 8.1/8.2 301

BLOB Methods
Table 200 describes BLOB methods.

Date and Time Methods
Table 201 describes date and time methods.

Table 200. Quick Reference for BLOB Methods

Method Description

Get BLOB Data Method Reads data from a specified position in a BLOB.

Get BLOB Size Method Determines the size of a BLOB.

Write BLOB Data Method Writes data to a specified position in a BLOB.

Table 201. Quick Reference for Date and Time Methods

Method Description

Clib Convert Integer to GMT Method Converts a date and time to GMT.

Clib Convert Integer to Local Time Method Converts an integer to local time.

Clib Convert Time Object to Integer Method Converts a time object to an integer.

Clib Get Difference in Seconds Method Computes the difference between two times.

Clib Get Formatted Date and Time Method Writes a formatted date and time to a string.

Clib Get Local Date and Time Method Returns a string that includes the local date and time.

Clib Get Tick Count Method Returns the current processor tick count.

Convert Date and Time to String Method Converts a date and time to a string.

Convert Date String to Date Object Method Converts a date string to a date object.

Convert Date to GMT String Method Converts a date object to a GMT string.

Convert Date to Integer Method Converts a date object to an integer.

Convert Integer Date to JavaScript Date
Method

Converts an integer date to a JavaScript date.

Convert UTC Date to Readable Date Method Converts a UTC date to a format that a human can
read.

Get Day of Month Method Returns the day of the month.

Get Day of Week Method Returns the day of the week.

Get Full Year Method Returns the year as a four digit number.

Get Hours Method Returns the hour.

Get Milliseconds Method Returns the millisecond.

Siebel eScript Language Reference Version 8.1/8.2

Siebel eScript Quick Reference ■

302

Get Minutes Method Returns the minute.

Get Month Method Returns the month.

Get Seconds Method Returns the second.

Get Time Method Returns the date and time, in milliseconds, of a date
object.

Get Time Zone Offset Method Returns the difference, in minutes, from GMT.

Get UTC Day of Month Method Returns the UTC day of the month.

Get UTC Day of Week Method Returns the UTC day of the week.

Get UTC Full Year Method Returns the UTC year as a four digit number.

Get UTC Hours Method Returns the UTC hour.

Get UTC Milliseconds Method Returns the UTC millisecond.

Get UTC Minutes Method Returns the UTC minute.

Get UTC Month Method Returns the UTC month.

Get UTC Seconds Method Returns the UTC second.

Get Year Method Returns the year as a two digit number.

Set Date Method Sets the day of the month.

Set Full Year Method Sets the year as a four digit number.

Set Hours Method Sets the hour.

Set Milliseconds Method Sets the millisecond.

Set Minutes Method Sets the minute.

Set Month Method Sets the month.

Set Seconds Method Sets the second.

Set Time Method Sets the date and time in a date object, in
milliseconds.

Set UTC Date Method Sets the UTC day of the month.

Set UTC Full Year Method Sets the UTC year as a four digit number.

Set UTC Hours Method Sets the UTC hour.

Set UTC Milliseconds Method Sets the UTC millisecond.

Set UTC Minutes Method Sets the UTC minute.

Set UTC Month Method Sets the UTC month.

Table 201. Quick Reference for Date and Time Methods

Method Description

Siebel eScript Quick Reference ■

Siebel eScript Language Reference Version 8.1/8.2 303

Buffer Methods and Properties
Table 202 lists buffer methods and properties.

Set UTC Seconds Method Sets the UTC second.

Set Year Method Sets the year as a two digit number.

Table 202. Quick Reference for Buffer Methods

Method or Property Description

Clib Compare Memory Method Compares the contents of two buffers.

Clib Copy Memory Method Copies bytes from a source buffer to a destination buffer.

Clib Get Memory Method Searches a buffer for the first occurrence of a character.

Clib Set Memory Method Sets the bytes in a buffer to a character that you specify.

Create Buffer Method Returns a section of a buffer.

Create Buffer Method Returns a new buffer object that includes the data between two
positions.

Cursor Position in Buffer Property Stores the current position of the buffer cursor.

Data in Buffer Property A reference to the internal data of a buffer.

Get Buffer Data Method Returns a string that contains the same data as the buffer.

Get Cursor Position Value From
Buffer Method

Returns the value of the current cursor position in a buffer.

Get String From Buffer Method Returns a string that starts from the current cursor position.

Put String in Buffer Method Puts a string into a buffer.

Put Value in Buffer Method Puts a value into a buffer.

Siebel Library Get Pointer
Address Method

Gets the address in memory of a buffer variable.

Use Big Endian in Buffer Property Stores a Boolean flag for bigEndian byte ordering.

Use Unicode in Buffer Property Stores a Boolean flag that specifies whether to use Unicode
strings when calling the Get String from Buffer method or the
Put String in Buffer method.

Write Byte to Buffer Method Provides access to individual bytes in the buffer.

Table 201. Quick Reference for Date and Time Methods

Method Description

Siebel eScript Language Reference Version 8.1/8.2

Siebel eScript Quick Reference ■

304

Siebel Library Methods
Table 207 describes methods that can manipulate data at specific memory locations in the Siebel
Library.

Conversion Methods
Table 204 describes conversion methods.

Table 203. Quick Reference for Siebel Library Methods

Method Description

Siebel Library Get Pointer Address Method Gets the address in memory of a buffer variable.

Siebel Library Peek Method Reads and returns data from a position in memory

Siebel Library Write Data Method Writes data to a specific position in memory.

Table 204. Quick Reference for Conversion Methods

Method Description

Convert Number to Exponential
Notation Method

Converts a number to exponential notation.

Convert Number to Fixed Decimal
Method

Converts a number to a specific number of decimal places.

Convert Number to Precision Method Converts a number to a specific number of significant digits.

Convert Special Characters to URL
Method

Replaces special characters in a string.

Convert String to Floating-Point
Number Method

Converts an alphanumeric string to a floating-point decimal
number.

Convert String to Integer Method Converts an alphanumeric string to an integer number.

Convert Unicode to ASCII Method converts Unicode characters to equivalent ASCII
characters.

Convert Value to Boolean Method Converts a value to the Boolean data type.

Convert Value to Buffer Method Converts a value to a buffer.

Convert Value to Integer Method Converts a value to an integer.

Convert Value to Number Method Converts a value to a number.

Convert Value to Object Method Converts a value to an object.

Convert Value to String Method Converts a value to a string.

Convert Value to String Method Converts a value to a string.

Siebel eScript Quick Reference ■

Siebel eScript Language Reference Version 8.1/8.2 305

Character Classification Methods
Table 205 describes character classification methods.

Convert Value to Unsigned Integer 16
Method

Converts a value to an unsigned integer.

Convert Value to Unsigned Integer 32
Method

Converts a value to an unsigned large integer.

Evaluate Expression Method Returns the value in the expression argument.

Table 205. Quick Reference for Character Classification Methods

Method Description

Clib Is Alphabetic Method Determines if a character is alphabetic.

Clib Is Alphanumeric Method Determines if a character is alphanumeric.

Clib Is ASCII Method Determines if a character is an ASCII character.

Clib Is Control Method Determines if a character is a control.

Clib Is Digit Method Determines if character is a decimal digit.

Clib Is Hexadecimal Method Determines if a character is a hexadecimal-digit character.

Clib Is Lowercase Method Determines if a letter is a lowercase alphabetic letter.

Clib Is Printable Method Determines if a character is a printable character.

Clib Is Printable Not Space Method Determines if character is a printing character except for
space.

Clib Is Punctuation Mark Method Determines if a character is a punctuation character.

Clib Is Space Method Determines if a character is a white-space character.

Clib Is Uppercase Method Determines if a character is an uppercase alphabetic
character.

Is Finite Method Determines if a value is finite.

Is NaN Method Determines if a value is not a number (NaN).

Table 204. Quick Reference for Conversion Methods

Method Description

Siebel eScript Language Reference Version 8.1/8.2

Siebel eScript Quick Reference ■

306

Error Handling Methods
Table 206 describes error handling methods.

Other Methods
Table 207 describes uncategorized methods.

Table 206. Quick Reference for Error Handling Methods

Method Description

Clib Clear Error Method Clears the error status and resets the end-of-file flag for a
file.

Clib Get Error Message Method Returns the error message associated with an error number.

Clib Get Error Number Method Returns the error number.

Clib Save Error Message In String
Method

Saves an error message in a string.

Throw Statement Stops running code if an error occurs.

Table 207. Quick Reference for Other Methods

Method Description

Clib Convert Character to ASCII Method Converts a character to ASCII.

Clib Get Environment Variable Method Returns the value of an environment variable.

Clib Modify Environment Variable
Method

Creates or modifies environment variable.

Clib Send Command Method Causes the operating system to run a command.

Siebel Library Call DLL Method Calls a procedure from a dynamic link library in Microsoft
Windows or a shared object in UNIX.

Undefine Method Makes a variable undefined.

Siebel eScript Language Reference Version 8.1/8.2 307

A Compilation Error Messages

This appendix describes error messages that Siebel eScript creates when Siebel Tools compiles ST
eScript code. It includes the following topics:

■ Format Error Messages on page 308

■ Semantic Error Messages on page 312

■ Semantic Warnings on page 316

■ Preprocessing Error Messages on page 320

Formats That This Appendix Uses
This appendix uses the following formats:

■ The error prefix is the text that displays for all errors in a group of errors. For example,

Syntax error at Line line# position character#:

■ The message is the unique part of an error message that applies only to a single error. The
message can include text appended after an error prefix, or it can include the entire error
message.

Siebel eScript Language Reference Version 8.1/8.2

Compilation Error Messages ■

308

Format Error Messages
Table 208 describes error messages that can result from incorrect script format. A format error
message starts with the following error prefix: Syntax error at line line# position character#.

Table 208. Format Error Messages in Siebel eScript

Message Example Cause

Expected ':' Example 1
function main ()
{
var a = false;
var b = a ? 1, 2;
//expect : after 1
}

Example 2
function main ()
{
var a = {prop1:1, prop2};
//expect : after prop2
}

Example 3
function main ()
{
var a = 1;
var b;
switch (a)
{
case 1
//expect : after 1
b =a;
default
//expect : after default
b = 0;

}
}

A colon (:) character is required in
the context but you did not provide
one. To correct the error, you do the
following:

■ In an expression using the
conditional operator, make sure
you include a colon between the
second and third operands.

■ In a Switch statement, make
sure you include a colon after
the value in the Case statement.
For example, see example 3.

Compilation Error Messages ■

Siebel eScript Language Reference Version 8.1/8.2 309

Expected ';' function main ()
{
for (i=1; i<10 i++)
//miss ; after i<10
{
...
}
}

A semi-colon (;) character is
required in the context but you did
not provide one.

A semi-colon is used to end a
statement. Make sure you do the
following:

■ End each statement with a
semi-colon.

■ Include a semi-colon in the For
Loop statement.

Expected '(' function main <>
//expect (after main
{
...
}

The open parenthesis (() and the
close parenthesis ()) do not pair
up.

Expected ')'. Not applicable The open parenthesis (() and the
close parenthesis ()) do not pair
up.

Expected ']'. function main ()
{
var a = new Array (10);
a[10 = 1;
//expect] after a[10 = 1
}

The open square bracket ([) and
the close square bracket (]) do not
pair up.

Expected '{'. function main ()
var a = new Array (1);
//expect { before var

The open curly bracket ({) and the
close curly bracket (}) do not pair
up.

Expected '}'. Not applicable The open curly bracket ({) and the
close curly bracket (}) do not pair
up.

Expected
identifier.

function ()
// expect an identifier after
// function */
{
...
}

function main ()
{
var;
//expect an identifier after var
}

A name is required in the context
but you did not provide one. The
name can include one of the
following items:

■ Variable

■ Property

■ Array

■ Function name

Table 208. Format Error Messages in Siebel eScript

Message Example Cause

Siebel eScript Language Reference Version 8.1/8.2

Compilation Error Messages ■

310

Invalid token. function main ()
{
var a = "\u000G";
// '\u000G' is an invalid
// unicode character combination
}

function main ()
{
var a = "\u0G";
// '\u0G' is an invalid hex
// character combination
}

An invalid Unicode character
combination or an invalid hex
character combination exists.

Expected
while.

function main ()
{
do
{
...

}
//expect while on this line
}

The Do While statement is not
complete. A while method is
required to complete the statement
but you did not provide one.

Throw must
be followed
by an
expression on
the same line.

try
{
var a =
TheApplication().GetService(“Incorrec
t name”);
}
catch(e)
{

throw ;
//The Throw statement expects an
expression which is not supplied
//It must be: throw e;
}

The Throw statement must be
followed by a name that identifies
an exception on the same line, but
you did not provide an expression of
this type.

Invalid
continue
statement.

function main ()
{
continue;
// continue is not in a loop
}

The Continue statement is not in the
body of one of the following items:

■ Do while

■ While

■ For

■ For in

Table 208. Format Error Messages in Siebel eScript

Message Example Cause

Compilation Error Messages ■

Siebel eScript Language Reference Version 8.1/8.2 311

Invalid Break
statement.

function BreakError()
{
break;
// break is not in a valid
// loop
}

The Break statement is not in the
body of one of the following items:

■ Do while

■ While

■ For

■ For in

Invalid return
statement.
Return
statement
cannot be
used outside
the function
body.

function fn ()
{
….
}
return;
//Return is outside the function
//body.

A Return statement exists outside
the body of a function but it must
exist in the body of a function.

Invalid left-
hand side
value.

function main ()
{
new Object () = 1;
// new Object () is not a valid
// left value
}

The left hand side value in an
assignment operation must be
compatible with the value assigned.

In the example, the New Object
statement is an invalid left-hand
value for the equal (=) assignment
operator. The valid left-hand value
must contain a variable.

Invalid
regular
expression.

var oRegExp:RegExp;
oRegExp = /[a-c*/;
// The regular expression is
// missing the closing]. It
// must be [a-c]*.

The regular expression is invalid.
For example, the closing square
bracket (]) is missing.

Table 208. Format Error Messages in Siebel eScript

Message Example Cause

Siebel eScript Language Reference Version 8.1/8.2

Compilation Error Messages ■

312

Semantic Error Messages
Table 209 describes error messages that can result from semantic errors when Siebel Tools compiles
ST eScript code. A semantic error message starts with the following error prefix: Semantic Error
around line line#. For more information, see “Semantic Warnings” on page 316.

Table 209. Semantic Error Messages in Siebel eScript

Message Examples Cause

Argument
argument_label either
type does not correct or
is not defined.

function main ()
{
fn (new Date(), new Date());
// type of the second parameter
// mismatches with function
// definition and cannot be
// implicitly converted to
// 'Number' type
}

function fn (arg1: chars, arg2:
Number)
{
TheApplication().RaiseErrorText
("fn");

}
main ();

The argument passed to the
function is not of the data
type specified in the function
definition, or is not defined
in the function definition.

In the example, the arg2
parameter must be of type
Number, as specified in the
function definition, but the
function passes the
parameter, which is in the
following string format:

new date

No such predefined
property property_label
in class object_type.

function main ()
{
delete "123".prop1;
// prop1 is not a property of
// String object. Also, because
// the String object is
// constructed here by implicitly
// converting "123", prop1
// cannot be created dynamically.

}

The property is not defined
in the class object.

In this example, you can
specify only string object
properties. The following
property is not a property of
the string object:

Prop1

[] operator can only
apply to Object, Buffer or
Array class.

Not applicable The script is trying to use
the [] operator for a type
other than an object, buffer,
or array.

Compilation Error Messages ■

Siebel eScript Language Reference Version 8.1/8.2 313

Type mismatch: L:
left_type; R: right_type.

Example 1
function TypeMismatch()
{
var BC:BusComp;
var MyDate:Date = new Date();
BC =MyDate;

// MyDate is not the same data type
// as strongly typed variable BC
}

Example 1
function fn ()
{
var a: String;
a = new Date ();
//Type mismatch: strongly typed
//String is assigned a Date.

}

A value that belongs to one
data type is assigned to a
strongly typed variable of
another data type. For more
information, see “Using
Strongly Typed and Typeless
Variables” on page 43.

Return type is wrong.
Defined return type is
return_type.

function fn (): Array
{
return new Date ();

}

fn ();

The actual return type is
different from the defined
return type. Siebel CRM
cannot implicitly convert the
actual return type to the
defined type.

No such label label
defined.

switch(switch_variable)
{

case value1:
statement_block
break labl;

// where labl is not a valid label
 .
.
.
[default:

statement_block;]
}

The label referenced in a
Break statement or a Goto
statement is defined. You
must make sure the label
name is correct and that the
label is defined in the code.

In the example, if the Break
statement is to resume at
the labl location, then you
must define the labl label.

Table 209. Semantic Error Messages in Siebel eScript

Message Examples Cause

Siebel eScript Language Reference Version 8.1/8.2

Compilation Error Messages ■

314

Continue out of loop. function ContinueOut()
{
var i =0
while (i<3)
{
i++;
continue Mylabel;
// Mylabel label is defined
//outside of the while loop.
}
Mylabel:
var a=1;

}

A continue command
attempts to branch to a label
that is not in a loop.

Label redefined. function LabelError()
{
Outer:
for (var i = 0; i < 5; i++)
{
var j = 0;
Inner:
while (j!=5)
{
j++;
continue Inner;
Inner: //Label Inner is

//redefined.
var b=1;

}
}

}

A label already exists that
possesses the same name.

function function_label is
double defined.

function fn ()
{
TheApplication().RaiseErrorText
("fn");

}
function fn ()
// second declaration of function
// fn is not allowed
{
TheApplication().RaiseErrorText
("fn again");

}

A function already exists
that possesses the same
name.

In the example, you must
define the function with a
name other than the
following name:

fn

Table 209. Semantic Error Messages in Siebel eScript

Message Examples Cause

Compilation Error Messages ■

Siebel eScript Language Reference Version 8.1/8.2 315

Calling function
function_label with
insufficient number of
arguments.

function main ()
{
fn ();
// does not provide enough
//parameters

}

function fn (arg1: chars, arg2:
chars)
{
...

}

You did not provide all of the
arguments that the function
requires.

The number of arguments
you include must equal the
number specified in the
function definition.

In the example, the
following function requires
two character arguments:

fn

Cannot access property
property_name on native
type.

function main ()
{
var a:chars = "123";
a.m_prop = "123";
// chars is a primitive, so it
// has no properties

}
main ();

You cannot write code that
assigns a property to a
variable that is of a primitive
data type, such as char,
float, or bool.

In the example, because
chars is a primitive data
type, you cannot assign it to
the following property:

a.m_prop

Table 209. Semantic Error Messages in Siebel eScript

Message Examples Cause

Siebel eScript Language Reference Version 8.1/8.2

Compilation Error Messages ■

316

Semantic Warnings
A semantic warning notifies you that a script will run but it might produce unexpected results or it
might not be efficient. A semantic warning does not display during compilation. To view them in
Siebel Tools, you choose Debug, and then Check Syntax.

Object_name is an
invalid object type.

function main ()
{
var a: Obj1 = "123";
// where Obj1 is an invalid object
// type

}
main ();

If you use Siebel eScript that
is strongly typed, then you
must specify a valid data
type in the declaration of the
variable.

In the example, the
following variable is not a
defined object type

obj1

For more information, see
“Using Strongly Typed and
Typeless Variables” on
page 43.

Indiscriminate usage of
goto.

function main ()
{
var obj = new Object();
with (obj)
{
labl:
TheApplication().RaiseErrorText
("in with");
}

goto labl;
}
main ();

This script uses a Goto
statement to attempt a
branch to a With statement
block from outside of the
With statement block.

Table 209. Semantic Error Messages in Siebel eScript

Message Examples Cause

Compilation Error Messages ■

Siebel eScript Language Reference Version 8.1/8.2 317

Table 210 describes semantic warnings in eScript when Siebel Tools compiles ST eScript code.
Semantic warnings start with the following prefix: Semantic Warning around line line#. For more
information, see “Semantic Error Messages” on page 312.

Table 210. Semantic Warnings in Siebel eScript

Message Example Cause

Undefined identifier
identifier. Global object
will be used to locate the
identifier.

function main ()
{
obj = new Object();
// obj is created without being
// declared with var.

}
main ();

An undeclared variable
created in a function is not
locally defined. Instead, it is
created as a property of the
Global object.

Variable variable might
not be initialized.

function main ()
{
var a;
TheApplication().RaiseErrorText
(a);

}
main ();

The variable declared is not
explicitly assigned a value. It
is recommended that you
initialize a variable to a default
value when you declare it. For
example:

var a="";

In the example, you must
assign the following variable a
value so Siebel CRM can
display it in the RaiseErrorText
function:

a

Label 'label' is unused
and can be removed.

function main ()
{
var a = 1;
labl:
// labl is unused
TheApplication().RaiseErrorText
(a);

}
main ();

A label is defined in the
function but none of the
following statements use it. In
this situation, you can remove
this label:

■ Continue

■ Break

■ Goto

Siebel eScript Language Reference Version 8.1/8.2

Compilation Error Messages ■

318

Calling function
function_label with
insufficient number of
arguments.

function main ()
{
// It is a warning condition
// instead of an error if the
// missing argument is not
// strongly typed.*/
var c = fn ();

}

function fn (a, b)
{
return a+b;

}
main ();

You did not provide all of the
arguments that the function
requires.

The number of arguments you
provide must equal the
number of arguments
specified in the function
definition.

Type conversion from
data_type1 to
data_type2 cannot
succeed.

function main ()
{
var n: float = "123";
}

When the data type of a
variable does not match the
value assigned to the variable,
the ST eScript engine attempts
to convert the data type. This
conversion process might not
be successful.

In the example, the following
string value is assigned to a
variable that is of a float data
type:

123

The ST eScript engine
attempts to convert this string
to a float data type.

Table 210. Semantic Warnings in Siebel eScript

Message Example Cause

Compilation Error Messages ■

Siebel eScript Language Reference Version 8.1/8.2 319

No such method
method_name.

function main ()
{
fn ();
}
main ();

The specified method is not
defined or the method name is
incorrect.

In the example, you must
define fn.

Variable variable is
double declared.

Example 1
function fn ()
{
for (var n = 0 ; n < 3 ; n++)
{
...;
}
for (var n = 0 ; n < 3 ; n++)
// n is double declared in //

the scope of fn.
{
...;

}
fn ();

Example 1
function main ()
{
var string1 = "a string";
var string1 = “another string”;
// string1 must not be

redeclared.
}
main ();

A local variable is declared
more than once.

To avoid this warning for the
common case in Example 1,
you can do the following:

■ Declare the counter
variable outside of the for
definition.

■ Use the counter variable
without var in the for
definition.

For example:

function fn ()
{
var n;
for (n = 0 ; n < 3 ; n++)
{
...
}
for (n = 0 ; n < 3 ; n++)
{
...

In Example 2, the multiple
declarations result in Siebel
eScript assigning each
declaration that occurs after the
first declaration as a simple
assignment but with the
unnecessary overhead of
declaring a variable. Instead,
you can use a simple
assignment after the first
declaration. For example:

string1 = “another
string”.

Table 210. Semantic Warnings in Siebel eScript

Message Example Cause

Siebel eScript Language Reference Version 8.1/8.2

Compilation Error Messages ■

320

Preprocessing Error Messages
Table 211 describes the preprocessing error message created when Siebel Tools compiles ST eScript
code. A preprocessing error message indicates a compatibility issue when Oracle’s Siebel Tools
compiles ST eScript code. A preprocessing error message starts with the following prefix: PreProcess
Error.

The #include directive instructs the preprocessor to treat the contents of a specified file as if these
contents exist in the source program at the same location where the directive occurs. You can
organize constants and other definitions in include files, and then use #include directives to add
these definitions to any source file.

Table 211. Preprocessing Error Codes in Oracle’s Siebel eScript

Message Example Cause

Cannot open include file
file_path.

#include "mystuff.js"
//where mystuff.js does not
exist

The path to the file in an
Include statement is not valid.

Siebel eScript Language Reference Version 8.1/8.2 321

Index

Symbols
" (double quotes) 49
& (ampersand) 49
; (semicolon) 54
? (question mark) 39
’ (single quote) 49

A
absolute value of a parameter 182
ampersand characters 49
arc cosine values 182
arcsine values 183
arctangent values 183, 184
arguments[] property 31
array data types 22
Array join() method 80
Array pop() method 81
Array push() method 79
Array reverse() method 84
Array sort() method 86
Array splice() method 83
arrays

associative 78
constructor 77
element order 84
first index and length 153
length 152
length property 82
methods, list 298
objects, described 76
sorting into ASCII order 86

ASCII, seven bit representation of a
character 288

assignment operators 34
associative arrays 78

B
back quote strings 89
back slash characters 49
bigEndian byte, using 120
bit operators 41
BLOB objects

Blob.get() method 103
Blob.put method 106
Blob.size() method 105
blobDescriptor 102

data to a specified location 106
data, reading 103
described 101

Boolean data types 48
break statement 59
buffers

bigEndian property 120
buffer constructor 109
comparing lengths and contents of two 263
copying bytes from one to another 264
cursor property 119
data property 120
file, writing to disk 236, 296
filling bytes with a character 264
getString() method 115
getValue() method 114
internal data 120
methods 108
methods, list 303
offset[] method 118
properties 108
putString() method 116
putValue() method 117
size property 119
subBuffer() method 112
toString() method 113
unicode property 120

business component object methods 122,
215

business services
calling a function directly 42
custom methods 42
displaying custom methods 43
script libraries 42

byte-array methods, list of 297

C
case-sensitivity

described 54
casting methods

list 304
when to use 25

character combination 49
back quotes and 89
list 88

character combinations
list 88

Siebel eScript Language Reference Version 8.1/8.2

Index ■ C

322

removing from a string 161
replacing special characters with 160

characters
alphabetic 281
alphanumeric 282
ASCII 282
characters from current file cursor 237, 296
classification methods, list 305
combinations 49
control 282
decimal digit 283
first occurrence in a buffer 262
hexadecimal digit 285
last occurrence 256
lowercase alphabetic 283
next in a file stream 237
printable 283, 284
punctuation mark 284
pushing back into a file 246, 247
seven-bit ASCII representation 288
special 49
uppercase alphabetic 285
white-space 284
writing to a specified file 247

charCodeAt method 92
Clib objects

character classification 280
error methods 286
file I/O functions 230
format strings 231, 232, 233
math methods 265
string methods 251
uncategorized methods 288

Clib.asctime() method 276
Clib.bsearch() method 291
Clib.chdir() method 226
Clib.clearerr() method 286
Clib.clock() method 280
Clib.cosh() method 267
Clib.ctime() method 279
Clib.difftime() method 275, 279
Clib.div() method 266
Clib.errno property 288
Clib.fclose() method 218
Clib.ferror() method 286
Clib.fgetc() method 237
Clib.fgetpos() method 239
Clib.fgets() method 237
Clib.flock() method 220
Clib.fopen() method 222
Clib.fputc() method 247
Clib.fputs() method 250
Clib.fread() method 240, 242
Clib.freopen() method 225, 246

Clib.frexp() method 269
Clib.fseek() method 243
Clib.fsetpos() method 243
Clib.ftell() method 239
Clib.fwrite() method 250
Clib.getcwd() method 228
Clib.getenv() method 290
Clib.gmtime() method 272, 273
Clib.Idexp() method 267
Clib.isalnum() method 282
Clib.isalpha() method 281
Clib.isascii() method 282
Clib.iscntrl() method 282
Clib.isgraph() method 284
Clib.islower() method 283
Clib.isprint() method 283
Clib.ispunct() method 284
Clib.isspace() method 284
Clib.isupper() method 285
Clib.isxdigit() method 285
Clib.ldiv() method 266
Clib.localtime() method 273
Clib.memchr() method 262
Clib.memcmp() method 263
Clib.memcpy() method 264
Clib.memmove() method 264
Clib.memset() method 264
Clib.mkdir() method 227
Clib.mktime() method 274, 275
Clib.modf() method 268, 269
Clib.putenv() method 289
Clib.qsort() method 293
Clib.rand() method 265, 266
Clib.remove() method 220
Clib.rename() method 224
Clib.rewind() method 240
Clib.rmdir() method 229
Clib.rsprintf() method 255
Clib.sinh() method 268
Clib.sprintf() method 261
Clib.srand() method 270
Clib.sscanf() method 246
Clib.strchr() method 258
Clib.strcspn() method 259
Clib.strerror() method 287
Clib.strftime() method 277
Clib.stricmp() method 253
Clib.strlwr() method 254
Clib.strncat() method 252, 254
Clib.strncpy() method 254
Clib.strrchr() method 256
Clib.strspn() method 260
Clib.strstr() method 257
Clib.system() method 291

Index ■ D

Siebel eScript Language Reference Version 8.1/8.2 323

Clib.tanh() method 268
Clib.time() method 274
Clib.toascii() method 288
Clib.ungetc() method 246, 247
code flow, directing 65, 67
coding guidelines 51
coding, when to use 15
COMCreateObject() method 150
comments in eScript 57
comparing values 35
complex objects 48
conditional expressions 35, 41
conditional operator 39
constants, numeric 29
control characters 282
conversion methods

alphanumeric string to a floating-point
decimal number 156, 157

exponential notation 158
list 304
parameter to a buffer 163
parameter to a number 169
parameter to an integer 165, 166, 167, 168
parameter to an object 170
parameters to a string 171
value to the Boolean data type 162

copying characters between strings 254
cosine values 185
custom objects 209

D
data

file, writing to disk 218
handling methods, list 301
storing in a series of parameters 244
storing in variables 240
writing data in a specified variable to a

specified file 250
data handling methods, list 174
data types

array 22
Boolean, converting value to 162
decimal floats 28
described 19
floating-point numbers 28
hexadecimal notation 26
implicit type conversion 24
octal notation 27
primitive 20, 46
properties and methods 23
strongly typed 19
typeless 19
undefined 20

data typing
strongly typed variables 43
typeless variables 44

date methods, list of 301
Date objects

about 122
date and time methods 121
Date constructor 123
universal time methods 139

date values
extracted from a Time object 276
stored in variables 277

Date.fromSystem() static method 122, 128
Date.parse() static method 126
Date.toSystem() method 122, 126
Date.UTC() static method 140
decimal digits 283
decimal floats 28
decimal number, integer part of 268, 299
defined() method 174
diagnostic messages 288
directories

changing current 226
creating 227
current working, path of 228
methods, list of 297
removing 229

disk methods, list of 297
division operations 189, 190
do while statement 61
double quote marks 49

E
end-of line comments 57
end-of-file flag, resetting 286
environment variables

creating 289
equality operator 37
error checking functions 32
error messages

preprocessing 320
semantic 312
semantic warnings 316
syntax 308

error messages associated with an error
number 287, 288

error status 286
error-handling methods, list of 306
escape() method 160
eval() method 173
Exception objects 177
exponential functions 186
expressions in eScript 54

Siebel eScript Language Reference Version 8.1/8.2

Index ■ F

324

external calls 201

F
file cursors

position offset, setting 239
position, current 119
position, setting 243
setting to the beginning 240, 296

file cursors.current, setting to a
position 243, 296

file pointers, associating with other
files 225

files
deleting a specified 220
input/output methods 229, 296
opening in a specified mode 222
renaming 224

Fix and Go feature 15
floating-point numbers

converting from alphanumeric 156
described 28
hyperbolic sine 268
hyperbolic tangent 268
mantissa and exponent as givens 267, 299

for in statement 63, 68, 78
for statement 62
Function objects

creating 177
length property 178
return statement 178

functions
arguments[] property 31
error checking 32
passing variables to 48
recursive 31
scope 30
specific location in 64

G
get method, BLOB objects 103
getArrayLength() method 152
getDate() method 129
getDay() method 129
getFullYear() method 130
getHours() method 130
getMilliseconds() method 130
getMinutes() method 131
getMonth() method 131
getSeconds() method 131
getTIme() method 132
getTimezoneOffset() method 132
getUTCDate() method 141
getUTCDay() method 142

getUTCFullYear() method 142
getUTCHours() method 143
getUTCMilliseconds() method 143
getUTCMinutes() method 143
getUTCMonth() method 144
getUTCSeconds() method 144
getYear() method 133
global objects

description 149
functions 149

global variables 45
goto statement 64

H
hard returns 49
hexadecimal digits 285
hexadecimal notation 26
hyperbolic cosine of x values 267
hyperbolic sine values 268
hyperbolic tangent values 268

I
if statement 65
implicit data type conversion 24
integers

converting from alphanumeric 157
described 26
division 266, 299
smallest 185

isFinite() method 175
isNaN() method 176

J
JavaScript

common usage 15

L
length property

Array object 82
Function object 178
String object 95

line breaks in strings 56
local variables 45
locking files for multiple processes 220
logarithms

base 10 of e 181
base 2 of e 181
natural 187
number value for e 180
of 10 181
of 2 181

logical operators 35, 41

Index ■ M

Siebel eScript Language Reference Version 8.1/8.2 325

loops
continue statement 60
do while statement 61
for in statement 63, 68
new iteration, starting 60
repeating 72
terminating 59

M
Math objects, methods and properties 179
math properties, list of 300
Math.abs() method 182
Math.acos() method 182
Math.asin() method 183
Math.atan() method 183
Math.atan2() method 184
Math.ceil() method 185
Math.cos() method 185
Math.E property 180
Math.exp() method 186
Math.floor() method 187
Math.LN10 property 181
Math.LN2 property 181
Math.log() method 187
Math.LOG10E property 181
Math.LOG2E property 181
Math.max() method 188
Math.min() method 188
Math.PI property 181
Math.pow() method 192
Math.random() method 189
Math.round() method 192
Math.sin() method 191
Math.sqrt() method 191
Math.SQRT1_2 property 182
Math.SQRT2 property 182
Math.tan() method 191
mathematical operators

assignment arithmetic 34
auto increment and decrement 39
basic arithmetic 33

MAX_VALUE constant 29
MIN_VALUE constant 29

N
names

not allowed 53
See also variables

NaN constant 29
NEGATIVE_INFINITY constant 29
null objects 22
number objects 22
numbers

calculating integer exponent of 2 269
constants 29
decimal 28
floating point 28
hexadecimal 26
integer 26
NaN 28
octal 27
pseudo-random 189
random, generating 270
rounding 192
scientific notation 28

numeric methods, list of 299

O
object data types

array objects 22
Boolean objects 21
description 20
null objects 22
number objects 22
performance considerations 55
predefined objects in eScript 23, 27, 28
string objects 21

Object objects 210
object properties

testing 174
undefining 154

objects
assigning functions 211
complex 48
looping through properties 63, 68
prototypes 212
templates, creating 210

octal notation 27
operators

assignment arithmetic 34
auto-decrement 39
auto-increment 39
basic arithmetic 33
bit 41
conditional 39
conditional expressions 35
logical 35
order of precedence 35
string concatenation 40
typeof 47

output, writing to a string variable 261

P
parameters

converting to a buffer 163
converting to a number 169

Siebel eScript Language Reference Version 8.1/8.2

Index ■ Q

326

converting to a string 171
converting to an integer 165, 166, 167, 168
converting to an object 170
determining if finite numbers 175
determining if numbers 176
number expected by the function 178
placing in a buffer 165
raising to a power 182, 192
value, returning 173

parseFloat() method 156, 157
performance considerations in using

objects 55
pi, number values 181
POSITIVE_INFINITY constant 29
predefined objects in eScript 23, 27, 28
preprocessing error messages 320
primitive data types

bool 20
chars 20
float 20
undefined 20

processor tick count, current 280, 301
properties, described 210
punctuation marks 284
put method, BLOB objects 106

Q
question marks (?) 39
quot method 189, 190
quote marks

double 49
single 49

quotient, finding 189

R
random numbers

generators 270
recursive functions 31
RegExp exec() method 197
RegExp global property 194
RegExp ignoreCase property 195
RegExp multiline property 196
RegExp object methods 193
RegExp object properties 194
RegExp source property 196
RegExp test() method 200
repository introspection 18
return statements 178

S
scientific notation 28
Script Assist utility

feature of ST eScript engine 15

repository introspection 18
script libraries 42
script profiling 16, 51
scripting engine incompatibilities

accessing objects and arrays 17
commands 16
comparison operations 16
description 16
implicit variable type conversion 16
methods 16
properties 16
variable data typing 16

searching in arrays 291, 298
searching in strings

first occurrence of a second string 257
group of specified characters 259, 260
specified character 258

SEEK_CUR value 244
SEEK_END value 244
SEEK_SET value 244
SElib objects 201
SElib.dynamicLink() method 201, 202
SElib.peek() method 207
SElib.pointer() method 206
SElib.poke() method 208
semantic error messages 312
semantic warnings in eScript 316
semicolon characters(;) 49, 54
sequential data 77
setArrayLength() method 153
setDate() method 133
setFullYear() method 134
setHours() method 134
setMilliseconds() method 135
setMinutes() method 136
setMonth() method 136
setSeconds() method 137
setTime() method 137
setUTCDate() method 144
setUTCFullYear() method 145
setUTCHours() method 146
setUTCMilliseconds() method 146
setUTCMinutes() method 147
setUTCMonth() method 148
setUTCSeconds() method 148
setYear() method 138
Siebel eScript

concepts 51
and JavaScript 15

sine values 191
single quote marks 49
size method, BLOB objects 105
special characters 49, 88, 89
square root values

Index ■ T

Siebel eScript Language Reference Version 8.1/8.2 327

of 1/2 182
of 2 182
parameter 191

ST eScript engine 15
statement block comments 57
statement blocks 55

assigning a default object 73
described 55

statements
described 54
repeating a series 62

string charAt() method 91
string charCodeAt() method 92
string concatenation 40
string concatenation operator 40
string indexOf() method 98
string lastIndexOf() method 100
String match() method 91, 93
string objects

description 21
methods and properties 87

string replace() method 97
string split() method 96
String.fromcharCode() static method 90
strings

appending a specified number of
characters 252

back-quote 89
from character codes 90
character combination 88
converting alphanumeric to a floating-point

decimal number 156, 157
copying characters between 254
copying to lowercase 89
copying to uppercase 89
creating strings of array elements 80
declaring 88
formatted 255
formatted, writing to a file 248, 296
length property 95
length stored as an integer 95
methods, list of 297
as objects 88
objects 87
searching for a group of characters 259,

260, 297
searching for characters 258
searching for first occurrence of a second

string 257
searching for last occurrence of a

character 256
section, retrieving 90
special characters 88
specific place in 91

splitting into arrays 96
substring, first occurrence 98
substring, last occurrence 100
writing to a specified file 250

strongly typed variables
data typing 43
equality operator 37
implicit type conversion 25
ST eScript engine enhancement 15

substring() method 90
switch statements

controlling the flow 59
described 67

syntax error messages 308

T
T eScript engine 15
tangents 191
this object reference 210
throw statement 69
time

difference between two times 279
extracted from a Time object 276
integer representation 274
methods, list 301
stored in variables 277

Time methods 121
Time methods (universal time) 139
Time objects

converting 274
described 271

ToBoolean() method 162
ToBuffer() method 163
ToBytes() method 165
ToFixed() method 159
toGMTString() method 127
ToIExponential() method 158
ToInt32() method 166
ToInteger() method 165
toLocaleString() method 125
toLowerCase() method 89
ToNumber() method 169
ToObject() method 170
ToPrecision() method 159
ToString() method 125, 171
ToUint32() method 168
ToUnit16() method 167
toUTCString() method 140
trigonometric methods, list of 300
try statement

description 70
type conversion, automatic 24, 25
typeless variables

Siebel eScript Language Reference Version 8.1/8.2

Index ■ U

328

data typing 44
implicit type conversion 25

typeof operator 47

U
uncategorized methods, list of 306
undefine() method 154
unescape() method 161
unlocking files for multiple processes 220

V
values

passing back to the function 178
specifying with object prototypes 212
undefining 154

variables

about 44
compound 210
declaring 47
passing by reference 48
passing by value 48
passing to the COM object 150
testing 174
undefining 154

W
while statement 55, 72
white-space characters 56, 284
with statement 73

Y
Y2K sensitivities 122

	Contents
	1 What’s New in This Release
	What’s New in Siebel eScript Language Reference, Version 8.1, Rev A and Version 8.2
	Additional Changes

	2 About Siebel eScript
	Overview of Siebel eScript
	About Siebel eScript Code
	Features of ST eScript Code
	Compatibility Between ST eScript Code and T eScript Code
	Referencing Objects and Arrays
	Reverting ST eScript Code to T eScript Code

	About the Script Assist Utility

	About Data Types and Numbers
	About Primitive Data Types
	Bool Data Type
	Chars Data Type
	Float Data Type
	Undefined Data Type

	About Composite Data Types
	Overview of the Object Data Type
	Boolean Data Type
	String Data Type
	Number Data Type
	Array Data Type
	Null Data Type
	Other Object Types That Siebel eScript Supports

	Properties and Methods of Common Data Types
	How Siebel eScript Converts Data Types
	Concatenation Can Cause a Conversion
	Setting the Data Type Can Cause a Conversion

	About Numbers
	Integer Numbers
	Hexadecimal Numbers
	Octal Numbers
	Floating Point Numbers
	Floating Decimal Numbers
	Scientific Numbers
	NaN Numbers
	Numeric Constants

	About Functions and Methods
	Example of a Function
	About Function Scope
	The Arguments Property of a Function
	About Recursive Functions
	Error Checking with Functions
	Where Data Resides

	3 Using Siebel eScript
	Using Operators in Siebel eScript
	Overview of Mathematical Operators
	Using a Shortcut Operation to Do an Arithmetic Operation
	Modifying the Sequence That Siebel eScript Uses to Evaluate an Expression
	Using Logical Operators and Conditional Expressions
	Example of Using Logical Operators and Conditional Expressions
	Using the Equality Operator with a Strongly Typed Variable

	Increasing or Decreasing the Value of a Variable
	Using Less Code to Write an Else Statement
	Examples of Using the Conditional Operator

	Concatenating Strings
	Examples of Concatenating Strings

	Using a Bit Operator

	Coding with Siebel eScript
	Using Script Libraries
	Example of Calling a Business Service Function
	Example of a Creating Custom Method for a Business Service
	Displaying a Custom Method in Script Assist

	Using Strongly Typed and Typeless Variables
	Creating a Strongly Typed Variable
	Creating a Typeless Variable

	Declaring and Using Variables
	About Local and Global Variables
	Using a Local Variable Is Preferable to Using a Global Variable
	Example of Declaring Local and Global Variables
	Declaring a Variable
	Declaring a Variable In a Statement Block

	Determining the Data Type of a Variable
	Passing a Value to a Function
	Passing a Value Through a Variable
	Passing a Value Through a Reference

	Preventing a Floating-Point Error
	Using the Literal Value of a Special Character
	Running Browser Script When Siebel CRM Starts a Siebel Application
	Releasing an Object from Memory
	Monitoring the Performance of Your Script

	Guidelines for Using Siebel eScript
	Make Sure You Use the Correct Format for Names
	Special Characters
	Reserved Words

	Make Sure You Use the Correct Case
	Use Expressions, Statements, and Statement Blocks
	Running Statements In a Loop

	Use a Primitive Data Type Instead of an Object Data Type
	Use White Space to Improve Readability
	Using White Space in a String Literal Can Cause Errors

	Use Comments to Document Your Code
	Make Sure the JavaScript Interpreter Can Run a Function

	4 Statements Reference
	Break Statement
	Continue Statement
	Do While Statement
	For Statement
	For In Statement
	Goto Statement
	If Statement
	Switch Statement
	Throw Statement
	Try Statement
	While Statement
	With Statement

	5 Methods Reference
	Overview of Methods Reference
	Usage of the Term Put

	Array Methods
	Overview of Array Methods
	Example of Using an Array

	About Array Functions
	About Associative Arrays
	Example of Using an Associative Array

	Add Array Elements Method
	Concatenate Array Method
	Create Array Elements Method
	Delete Last Array Element Method
	Get Largest Array Index Method
	Get Subarray Method
	Insert Array Elements Method
	Reverse Array Order Method
	Shift Array Left Method
	Shift Array Right Method
	Sort Array Method

	String Methods
	Overview of String Methods
	How Siebel eScript Handles Special Characters In a String

	Change String to Lowercase Method
	Change String to Uppercase Method
	Create String From Substring Method
	Create String From Unicode Values Method
	Get Character From String Method
	Get Unicode Character From String Method
	Get Regular Expression From StringVar Method
	Get String Length Method
	Parse String Method
	Replace String Method
	Search String for Substring Method
	Search String for Last Substring Method
	Search StringVar for Regular Expression Method

	BLOB Methods
	About the BLOB Descriptor
	Example of Using a BLOB Descriptor
	Values You Must Use with a BLOB Descriptor

	Get BLOB Data Method
	Get BLOB Size Method
	Write BLOB Data Method

	Buffer Methods
	Overview of Buffer Methods
	About Buffer Constructors
	Create Buffer Method
	Get Buffer Data Method
	Get Cursor Position Value From Buffer Method
	Get String From Buffer Method
	Put String in Buffer Method
	Put Value in Buffer Method
	Write Byte to Buffer Method
	Buffer Size Property
	Cursor Position in Buffer Property
	Data in Buffer Property
	Use Big Endian in Buffer Property
	Use Unicode in Buffer Property

	Date and Time Methods
	Overview of Date Methods
	Format for Calling a Date Method
	Caution About Using Two Digit Dates
	Values for Dates and Times

	About the Date Constructor
	Convert Date and Time to String Method
	Convert Date to Integer Method
	Convert Date String to Date Object Method
	Convert Date to GMT String Method
	Convert Integer Date to JavaScript Date Method
	Get Day of Month Method
	Get Day of Week Method
	Get Full Year Method
	Get Hours Method
	Get Milliseconds Method
	Get Minutes Method
	Get Month Method
	Get Seconds Method
	Get Time Method
	Get Time Zone Offset Method
	Get Year Method
	Set Date Method
	Set Full Year Method
	Set Hours Method
	Set Milliseconds Method
	Set Minutes Method
	Set Month Method
	Set Seconds Method
	Set Time Method
	Set Year Method

	UTC Methods
	Convert UTC Date to Readable Date Method
	Get UTC Date Method
	Get UTC Day of Month Method
	Get UTC Day of Week Method
	Get UTC Full Year Method
	Get UTC Hours Method
	Get UTC Milliseconds Method
	Get UTC Minutes Method
	Get UTC Month Method
	Get UTC Seconds Method
	Set UTC Date Method
	Set UTC Full Year Method
	Set UTC Hours Method
	Set UTC Milliseconds Method
	Set UTC Minutes Method
	Set UTC Month Method
	Set UTC Seconds Method

	Global Methods
	Overview of Global Methods
	Create COM Object Method
	Get Array Length Method
	Set Array Length Method
	Undefine Method

	Conversion Methods
	Overview of Conversion Methods
	Convert String to Floating-Point Number Method
	Convert String to Integer Method
	Convert Number to Exponential Notation Method
	Convert Number to Fixed Decimal Method
	Convert Number to Precision Method
	Convert Special Characters to URL Method
	Convert Unicode to ASCII Method
	Convert Value to Boolean Method
	Convert Value to Buffer Method
	Convert Value to Bytes Method
	Convert Value to Integer Method
	Convert Value to Integer 32 Method
	Convert Value to Unsigned Integer 16 Method
	Convert Value to Unsigned Integer 32 Method
	Convert Value to Number Method
	Convert Value to Object Method
	Convert Value to String Method
	Evaluate Expression Method

	Data Querying Methods
	Is Defined Method
	Is Finite Method
	Is NaN Method
	Exception Object
	Function Object
	Length Property of a Function Object
	Return Statement of a Function Object

	Mathematical Methods
	Overview of Mathematical Methods
	Properties of the Math Object
	Base E Property
	Logarithm 2 E Property
	Logarithm 10 E Property
	Natural Logarithm 2 Property
	Math Natural Logarithm 10 Property
	PI Property
	Square Root 1/2 Property
	Square Root 2 Property

	Get Absolute Value Method
	Get Arc Cosine Method
	Get Arcsine Method
	Get Arctangent Method
	Get Arctangent 2 Method
	Get Ceiling Method
	Get Cosine Method
	Get Exponential Method
	Get Floor Method
	Get Logarithm Method
	Get Maximum Method
	Get Minimum Method
	Get Quotient Method
	Get Random Number Method
	Get Remainder Method
	Get Sine Method
	Get Square Root Method
	Get Tangent Method
	Raise Power Method
	Round Number Method

	Regular Expression Methods
	Overview of Regular Expression Methods
	Properties of Regular Expressions
	Regular Expression Global Property
	Regular Expression Ignore Case Property
	Regular Expression Multiline Property
	Regular Expression Source Property

	Compile Regular Expressions Method
	Get Regular Expression from String Method
	Is Regular Expression in String Method

	Siebel Library Methods
	Siebel Library Call DLL Method
	Siebel Library Get Pointer Address Method
	Siebel Library Peek Method
	Siebel Library Write Data Method

	Custom Methods
	Overview of Custom Methods
	How the Constructor Function Creates an Object
	Example of Using a Constructor Function

	How a Function Is Assigned to an Object
	About Object Prototypes
	How an Object Prototype Conserves Memory
	Example of Using an Object Prototype
	Adding Methods and Data to an Object Prototype

	6 C Language Library Reference
	Overview of the Clib Object
	Using Siebel eScript Methods Instead of Clib Methods

	Clib File and Directory Methods
	Overview of Clib File and Directory Methods
	Clib Close File Method
	Clib Create Temporary File Method
	Clib Create Temporary File Name Method
	Clib Delete File Method
	Clib Lock File Method
	Clib Open File Method
	Clib Rename File Method
	Clib Reopen File Method
	Clib Change Directory Method
	Clib Create Directory Method
	Clib Get Current Working Directory Method
	Clib Remove Directory Method

	Clib File Input and Output Methods
	Overview of Clib File Input and Output Methods
	Format Characters for Methods That Print and Scan
	Format Characters for Methods That Print
	Format Characters for Methods That Scan

	Clib Clear Buffer Method
	Clib End of File Method
	Clib Get Character Method
	Clib Get Characters to Next Line Method
	Clib Get Cursor Position Method
	Clib Get Relative Cursor Position Method
	Clib Move Cursor to Beginning of File Method
	Clib Read From File Method
	Clib Restore Cursor Position Method
	Clib Set Cursor Position Method
	Clib Scan and Convert File Method
	Clib Scan and Convert from Input Device Method
	Clib Unget Method
	Clib Write Character Method
	Clib Write Formatted String Method
	Clib Write String to File Method
	Clib Write to File Method

	Clib String Methods
	Clib Append String Method
	Clib Compare Strings Method
	Clib Convert String to Lowercase Method
	Clib Copy String Method
	Clib Get Formatted String Method
	Clib Get Last Substring Method
	Clib Get Substring Method
	Clib Search String for Character Method
	Clib Search String for Character Set Method
	Clib Search String for Not Character Set Method
	Clib Write Formatted String Method

	Clib Buffer Methods
	Clib Get Memory Method
	Clib Compare Memory Method
	Clib Copy Memory Method
	Clib Set Memory Method

	Clib Mathematical Methods
	Clib Create Random Number Method
	Clib Divide Method
	Clib Get Floating Point Number Method
	Clib Get Hyperbolic Cosine Method
	Clib Get Hyperbolic Sine Method
	Clib Get Hyperbolic Tangent Method
	Clib Get Integer Method
	Clib Get Normalized Mantissa Method
	Clib Initialize Random Number Generator Method

	Clib Date and Time Methods
	Overview of Clib Date and Time Methods
	About the Objects That Each Clib Time Method Returns
	Clib Convert Integer to GMT Method
	Clib Convert Integer to Local Time Method
	Clib Convert Time to Integer Method
	Clib Convert Time Object to Integer Method
	Clib Get Date and Time Method
	Clib Get Formatted Date and Time Method
	Clib Get Local Date and Time Method
	Clib Get Difference in Seconds Method
	Clib Get Tick Count Method

	Clib Character Classification Methods
	Overview of Clib Character Classification Methods
	Clib Is Alphabetic Method
	Clib Is Alphanumeric Method
	Clib Is ASCII Method
	Clib Is Control Method
	Clib Is Digit Method
	Clib Is Lowercase Method
	Clib Is Printable Method
	Clib Is Printable Not Space Method
	Clib Is Punctuation Mark Method
	Clib Is Space Method
	Clib Is Uppercase Method
	Clib Is Hexadecimal Method

	Clib Error Methods
	Clib Clear Error Method
	Clib Get Error Number Method
	Clib Get Error Message Method
	Clib Save Error Message In String Method
	Clib Error Number Property

	Other Clib Methods
	Clib Convert Character to ASCII Method
	Clib Modify Environment Variable Method
	Clib Get Environment Variable Method
	Clib Send Command Method
	Clib Search Array Method
	Clib Sort Array Method

	7 Siebel eScript Quick Reference
	File and Directory Methods
	File Manipulation Methods
	File Manipulation Methods
	Directory Manipulation Methods

	String Methods
	Array Methods and Properties
	Mathematical Methods and Properties
	Numeric Methods
	Trigonometric Methods
	Mathematical Properties

	BLOB Methods
	Date and Time Methods
	Buffer Methods and Properties
	Siebel Library Methods
	Conversion Methods
	Character Classification Methods
	Error Handling Methods
	Other Methods

	A Compilation Error Messages
	Formats That This Appendix Uses
	Format Error Messages
	Semantic Error Messages
	Semantic Warnings
	Preprocessing Error Messages

	Index

