

Oracle® Outside In File ID
Developer’s Guide

Release 8.3.5

E12875-01

June 2010

Oracle Outside In File ID Developer's Guide, Release 8.3.5

E12875-01

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Mike Manier

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... vi
Conventions ... vi

1 Introduction

1.1 What’s New in Release 8.3.5.. 1-1
1.2 What Does This Technology Do? ... 1-1
1.3 Overview.. 1-1
1.4 Directory Structure ... 1-1
1.5 Copyright Information... 1-2

2 Windows Implementation Details

2.1 Installation ... 2-1
2.2 Libraries and Structure... 2-2
2.3 The Basics ... 2-2
2.3.1 Source Code.. 2-2
2.3.2 Options and Information Storage.. 2-2
2.3.3 Structure Alignment.. 2-3
2.3.4 Character Sets ... 2-3
2.3.5 Runtime Considerations ... 2-3
2.3.6 Changing Resources .. 2-3

3 UNIX Implementation Details

3.1 Installation ... 3-1
3.2 Libraries and Structure... 3-1
3.3 The Basics ... 3-2
3.3.1 Source Code.. 3-2
3.3.2 Information Storage... 3-2
3.3.3 Character Sets ... 3-3
3.3.4 Signal Handling ... 3-3
3.3.5 Runtime Search Path and $ORIGIN.. 3-3
3.3.6 Environment Variables ... 3-3
3.3.7 Changing Resources .. 3-4

iv

3.4 IBM AIX Compiling and Linking ... 3-4
3.5 Linux Compiling and Linking .. 3-5
3.6 Sun Solaris Compiling and Linking ... 3-5

4 File ID Specification

4.1 Functions .. 4-1
4.1.1 FIDeInit ... 4-1
4.1.2 FIGetFirstId... 4-1
4.1.3 FIGetIDString ... 4-2
4.1.4 FIGetNextId .. 4-2
4.1.5 FIIdFile .. 4-3
4.1.6 FIIdFileEx.. 4-4
4.1.7 FIInit... 4-5
4.1.8 FIThreadInit.. 4-5
4.1.9 FIThreadInitExt .. 4-6

5 Redirected IO

5.1 Using Redirected IO ... 5-1
5.2 IOClose ... 5-2
5.3 IORead.. 5-2
5.4 IOWrite ... 5-3
5.5 IOSeek... 5-3
5.6 IOTell .. 5-4
5.7 IOGetInfo.. 5-4
5.7.1 IOGENSECONDARY and IOGENSECONDARYW Structures 5-6
5.7.2 File Types That Cause IOGETINFO_GENSECONDARY ... 5-7
5.8 IOSEEK64PROC / IOTELL64PROC .. 5-7
5.8.1 IOSeek64.. 5-7
5.8.2 IOTell64 ... 5-7

6 Sample Applications

6.1 Building the Sample on a Windows System ... 6-1
6.2 Building the Sample on a UNIX System.. 6-1
6.3 The fisimple Application ... 6-1

A Copyrights and Licensing

A.1 Outside In File ID Licensing... A-1

Index

v

Preface

This document describes the installation and usage of the Outside In File ID Software
Developer’s Kit (SDK).

Audience
This document is intended for developers who are integrating the Outside In File ID
into Original Equipment Manufacturer (OEM) applications

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

vi

Related Documents
For more information, see http://download.oracle.com/docs/cd/E14154_
01/index.htm.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

File ID is part of Oracle's family of OEM products known as Outside In Technology, a
powerful document extraction, conversion and viewing technology that can access the
information in more than 500 file formats.

There may be references to other Outside In Technology SDKs within this manual. To
obtain complete documentation for any other Outside In product, see
http://download.oracle.com/docs/cd/E14154_01/index.htm.

1.1 What’s New in Release 8.3.5
■ The updated list of supported formats is posted at

http://www.oracle.com/technology/products/content-management/oit/oit_
all.html.

■ The updated list of File ID values is published on My Oracle Support (formerly
known as MetaLink).

1.2 What Does This Technology Do?
The Outside In File ID API allows developers to identify files using the same
technology that all Outside In products use internally. This specification uses a 16-bit
value called the ID or type ID to identify different file formats. These IDs are defined
in sccfi.h.

1.3 Overview
This API includes the following functions:

■ FIIdFile = Returns an ID given a file.

■ FIIdFileEx = Returns an ID and an ID name given a file.

■ FIGetFirstId = Returns the first ID in the range of IDs used by this API.

■ FIGetNextId = Returns the next ID in the range of IDs used by the API.

1.4 Directory Structure
Each Outside In product has an sdk directory, under which there is a subdirectory for
each platform on which the product ships (for example, fi/sdk/fi_win-x86-32_sdk).
Under each of these directories are the following three subdirectories:

■ docs - Contains both a PDF and HTML version of the product manual.

Copyright Information

1-2 Oracle Outside In File ID Developer's Guide

■ redist - Contains only the files that the customer is allowed to redistribute. These
include all the compiled modules, filter support files, .xsd and .dtd files,
cmmap000.bin, and third-party libraries, like freetype.

■ sdk - Contains the other subdirectories that used to be at the root-level of an sdk:
common, lib (windows only), resource, samplefiles, and samplecode (previously
samples). In addition, one new subdirectory has been added, demo, that holds all
of the compiled sample apps and other files that are needed to demo the products.
These are files that the customer should not redistribute (.cfg files, exportmaps,
etc.).

In the root platform directory (for example, fi/sdk/fi_win-x86-32_sdk), there are two
files:

■ README - Explains the contents of the sdk, and that makedemo must be run in
order to use the sample applications.

■ makedemo (either .bat or .sh – platform-based) - This script will either copy (on
Windows) or Symlink (on Unix) the contents of …/redist into …/sdk/demo, so
that sample applications can then be run out of the demo directory.

1.5 Copyright Information
The following notice must be included in the documentation, help system, or About
box of any software that uses any of Oracle's executable code:

Outside In File ID© 1991, 2010 Oracle.

2

Windows Implementation Details 2-1

2Windows Implementation Details

Under Windows, File ID is implemented as entry points in a DLL.

The File ID DLL can either be linked with the developer's application using the library
provided (sccfi.lib) or the developer can use LoadLibrary, LoadLibraryEx and
GetProcAddress to load it dynamically.

This product supports the following platforms:

■ Windows (x86 32-bit): Windows 2000, Windows 2003, Windows XP, Windows
Vista, Windows 2008, and Windows 7

■ Windows (x86 64-bit): Windows Server 2003 x64 Standard, Enterprise, Datacenter
Editions (64-bit Extended Systems), Windows Server 2008, and Windows 7

2.1 Installation
To install the demo version of the SDK, copy the contents of the ZIP archive (available
on the Web site) to a local directory of your choice.

This product requires the Visual C++ libraries included in the Visual C++
Redistributable Package available from Microsoft. There are two versions of this
package (x86 and x64) for each corresponding version of Windows.

These can be downloaded from www.microsoft.com/downloads, by searching on the
site for the packages vcredist_x86.exe or vcredist_x64.exe. The required version of each
of these downloads is the 2005 SP1 Redistributable Package.

Outside In requires the msvcr80.dll redistributable module.

The installation directory should contain the following directory structure.

Directory Description

\docs Includes release notes and HTML and PDF versions of the manual you
are reading right now. The release notes contain information that is
potentially more up-to-date than that found in this user guide and
should therefore be read before you install the technology.

\redist Contains a working copy of the Windows version of the technology.

\sdk\common Contains the C include files needed to build or rebuild the technology.

\sdk\demo Contains the compiled executable of the sample application.

\sdk\lib Contains the library (.lib) file for sccfi.dll.

\sdk\resource Contains localization resource files.

\sdk\samplecode Contains the source code for the sample application.

Libraries and Structure

2-2 Oracle Outside In File ID Developer's Guide

2.2 Libraries and Structure
This section provides an overview of the files contained in the main installation
directory for this product.

■ API DLLs: These DLLs implement the API. They should be linked with the
developer's application. LIB files are included in the SDK.

– sccfi.dll: File Identification module (identifies files based on their contents).
The File ID Specification may not be used directly by any application or
workflow without it being separately licensed expressly for that purpose.

■ Support DLLs:

– sccfut.dll: Filter utility module

– scclo.dll: Localization library (all strings, menus, dialogs and dialog
procedures reside here)

– sccut.dll: Utility functions (including IO subsystem)

– wvcore.dll: The System Call Abstraction layer

2.3 The Basics
This section describes some basic information required for installation and usage.

2.3.1 Source Code
Any source code that uses File ID should #include the file sccfi.h and #define
WINDOWS and WIN32. For example, a Windows application might have a source file
with the following lines:

#define WINDOWS
 #define WIN32
 #include <SCCFI.H>

2.3.2 Options and Information Storage
The software creates a default list of persistent option files (*.opt). They are built as
needed, usually the first time the product runs. You do not need to ship these files
with your application.

The files used to store this information are stored in a .oit subdirectory in the following
location:

\Documents and Settings\[user name]\Application Data

If an .oit directory does not exist in the user's directory, the directory is created
automatically by the technology. The *.opt files are automatically regenerated if
corrupted or deleted.

\sdk\samplefiles Contains sample files designed to exercise the technology.

Note: These instructions are Win32-specific, but are essentially the
same for Win64. If you are compiling for 64-bit Windows, simply read
"Win32" or "Win32V" as "64" in the following instructions.

Directory Description

The Basics

Windows Implementation Details 2-3

These file names are intended to be unique enough to avoid conflict for any
combination of machine name and install directory. This allows the user to run
products in separate directories without having to reload the files above. The file
names are built from an 11-character string derived from the directory the Outside In
technology resides in and the name of the machine it is being run on. The string is
generated by code derived from the RSA Data Security, Inc. MD5 Message-Digest
Algorithm.

2.3.3 Structure Alignment
Outside In is built with 8-byte structure alignment. This is the default setting for most
Windows compilers. This and other compiler options that should be used are
demonstrated in the files provided with the sample applications in samples\win.

2.3.4 Character Sets
The strings passed in the Windows API are ANSI1252 by default.

2.3.5 Runtime Considerations
The files used by this product must be in the same directory as the developer's
executable.

2.3.6 Changing Resources
Outside In ships with the scclo.rc file in the resource directory so that OEMs can
change any of the menus or strings in the technology as they see fit.

In some of the newer development environments, these strings can be edited directly
in the compiled DLL file. For this reason, scclo.dll has been compiled with all resource
strings. It was built using Microsoft Developer Studio 8.0. If you are using Microsoft
Developer Studio, the best way to edit the strings in this file is to edit the lodlgstr.h file
in the resource directory. Once you've made your changes, save the scclo.rc file as a
binary resource (.res) file, which can be used to compile scclo.dll. Microsoft Developer
Studio users should not directly edit the .rc files when using this method as this would
in effect place all resource strings directly in the scclo.rc file, thus rendering the
lodlgstr.h file irrelevant.

If you are not editing in Developer Studio, the resource file (scclo.rc) available in the
SDK can be edited directly using any text editor. This file can then be compiled and
linked into the DLL. Typically, this means compiling the resources into a .res file and
linking them into the already compiled scclo.dll. Methods for doing this vary
depending on the compiler used.

Note: Some applications and services may run under a local system
account for which there is no users "application data" folder. The
technology first does a check for an environment variable called OIT_
DATA_PATH. Then it checks for APPDATA, and then
LOCALAPPDATA. If none of those exist, the options files are put into
the executable path of the UT module.

The Basics

2-4 Oracle Outside In File ID Developer's Guide

3

UNIX Implementation Details 3-1

3UNIX Implementation Details

The UNIX implementation of File ID is delivered as a set of shared libraries.

This product supports the following platforms:

■ IBM AIX (32-bit pSeries): 5.2 - 6.1

■ Red Hat Linux (x86): Advanced Server 3, 4, and 5

■ Red Hat Linux (x86 64-bit): Red Hat Enterprise Linux (RHEL) 4 and 5

■ SuSE Linux (x86): 9, 10, and Enterprise Server 9.0

■ SuSE (x86 64-bit): USE Enterprise Server (SLES) 9, 10

■ Sun Solaris (SPARC): 8.x - 10.x

3.1 Installation
To install the demo version of the SDK, copy the tgz file corresponding to your
platform (available on the Web site) to a local directory of your choice. Decompress the
tgz file and then extract from the resulting tar file as follows:

gunzip tgzfile
tar xvf tarfile

The installation directory should contain the following directory structure.

3.2 Libraries and Structure
On the UNIX platforms, Outside In Technology SDKs are delivered with a set of
shared libraries. All libraries should be installed to a single directory. Depending upon

Directory Description

/docs Includes HTML and PDF versions of the manual you are reading right
now.

/redist Contains a working copy of the UNIX version of the technology.

/sdk/common Contains the C include files needed to build or rebuild the technology.

/sdk/demo Contains the compiled executable of the sample application.

/sdk/resource Contains localization resource files.

/sdk/samplecode Contains a subdirectory holding the source code for a sample
application

/sdk/samplefiles Contains sample files designed to exercise the technology.

The Basics

3-2 Oracle Outside In File ID Developer's Guide

your application, you may also need to add that directory to the system's runtime
search path. Please see "IBM AIX Compiling and Linking" on page 3-4, "Linux
Compiling and Linking" on page 3-5, and "Sun Solaris Compiling and Linking" on
page 3-5 for platform-specific path information.

The following is a brief description of the included libraries and support files. In
instances where a file extension is listed as .*, the file extension varies for each UNIX
platform (sl on HP/UX, so on Linux and Solaris, and a or o on IBM AIX):

■ API Libraries: These libraries implement the API. They should be linked with the
developer's application.

– libsc_fi.*: File Identification module (identifies files based on their contents).
The File ID Specification may not be used directly by any application or
workflow without it being separately licensed expressly for that purpose.

■ Support Libraries

– libsc_fut.*: Filter utility module

– libsc_lo.*: Localization library (all strings, menus, dialogs and dialog
procedures reside here)

– libsc_ut.*: Utility functions, including IO subsystem

– libwv_core.*: The System Call GDI Abstraction layer

3.3 The Basics
This section contains information about basic usage and options.

3.3.1 Source Code
Any source code that uses File ID should #include the file sccfi.h and #define
UNIX. For example, a 32-bit UNIX application might have a source file with the
following lines:

#define UNIX
 #include <sccfi.h>

and a 64-bit UNIX application might have a source file with the following lines:

#define UNIX
#define UNIX_64
 #include <sccfi.h>

3.3.2 Information Storage
The software creates a default list of options. It is built as needed, usually the first time
the product runs. You do not need to ship it with your application.

This list (*.opt) is stored in the $HOME/.oit directory. If the $HOME environment
variable is not set, the file is placed in the same directory as the Outside In
Technology. If a .oit directory does not exist in the user's $HOME directory, the .oit
directory is created automatically by the technology. The file is automatically
regenerated if corrupted or deleted.

The option file ends in *.opt and is intended to be unique enough to avoid conflict for
any combination of machine name and install directory. This is intended to prevent
problems with version conflicts when multiple versions of the Outside In SDKs are
installed on a single system. The file name is built from an 11-character string derived

The Basics

UNIX Implementation Details 3-3

from the directory the Outside In technology resides in and the name of the machine it
is being run on. The string is generated by code derived from the RSA Data Security,
Inc. MD5 Message-Digest Algorithm.

3.3.3 Character Sets
The strings passed in the UNIX API are ISO8859-1 by default.

3.3.4 Signal Handling

3.3.5 Runtime Search Path and $ORIGIN
Libraries and sample applications are all built with the $ORIGIN variable as part of
the binaries' runtime search path. This means that at runtime, OIT libraries will
automatically look in the directory they were loaded from to find their dependent
libraries. You don't necessarily need to include the technology directory in your LD_
LIBRARY_PATH or SHLIB_PATH.

As an example, an application that resides in the same directory as the OIT libraries
and includes $ORIGIN in its runtime search path will have its dependent OIT libraries
found automatically. You will still need to include the technology directory in your
linker's search path at link time using something like -L and possibly -rpath-link.

Another example is an application that loads OIT libraries from a known directory.
The loading of the first OIT library will locate the dependent libraries.

3.3.6 Environment Variables
A number of environment variables must be set at run time. They are described
elsewhere. Following is a short summary of those variables and their use.

Note: The Java Native Interface (JNI) allows Java code to call and be
called by native code (C/C++ in the case of OIT). You may run into
problems if Java isn't allowed to handle signals and forward them to
OIT. If OIT catches the signals and forwards them to Java, the JVMs
will sometimes crash. OIT installs signal handlers when DAInit() is
called, so if you call OIT after the JVM is created, you will need to use
libjsig. Refer here for more information:

http://java.sun.com/javase/6/webnotes/trouble/TSG-VM/html/sig
nals.html

Note: This feature does not work on AIX and FreeBSD.

Variable Description

$LD_LIBRARY_PATH

$SHLIB_PATH

$LIBPATH

Platform-specific variable used to specify the location of the
shared libraries used by the technology. See "IBM AIX Compiling
and Linking" on page 3-4, "Linux Compiling and Linking" on
page 3-5, and "Sun Solaris Compiling and Linking" on page 3-5
for details.

$HOME Must be set to allow the system to write the option list.

IBM AIX Compiling and Linking

3-4 Oracle Outside In File ID Developer's Guide

3.3.7 Changing Resources
All of the strings used in the UNIX versions of Outside In products are contained in a
file called lodlgstr.h. This file, located in the resource directory, can be modified for
internationalization and other purposes. Everything necessary to rebuild the resource
library to use the modified source file is included with the SDK.

Along with lodlgstr.h, an object file, scclo.o, has been provided which is necessary for
the linking phase of the build. A makefile has also been provided for building the
library. The makefile allows building on all of the UNIX platforms supported by
Outside In. It may be necessary to make minor modifications to the makefile so that
the system header files and libraries can be found for compiling and linking. There are
standard INCLUDE and LIB make variables defined for each platform in the makefile.
Edit these variables to point to the header files and libraries on your particular system.
Other make variables are:

■ TECHINCLUDE: May need to be edited to point to the location of the Outside In
common header files that are supplied with the SDK.

■ BUILDDIR: May need to be edited to point to the location of the makefile,
lodlgstr.h, and scclo.o (which should all be in the same directory).

Once these make variables are set, change to the build directory and type make. The
resource library, libsc_lo, will be built and placed in the appropriate platform-specific
directory. To use this library, copy it into the directory where the Outside In product
resides, and the new, modified resource strings can then be used by the technology.

3.4 IBM AIX Compiling and Linking
All libraries should be installed into a single directory and the directory must be
included in the system's shared library path ($LIBPATH) as well as the executable
path ($PATH).

Outside In Technology has been updated to increase performance, at a cost of using
more memory. It is possible that this increased memory usage may cause a problem on
AIX systems, which can be very conservative in the amount of memory they grant to
processes. If your application experiences problems due to memory limitations with
Outside In, you may be able to fix this problem by using the "large page" memory
model. If you anticipate viewing or converting very large files with Outside In
technology, we recommend linking your applications with the "-bmaxdata" flag (for
example, 'cc -o foo foo.c -bmaxdata:0x80000000'). If you are currently seeing "illegal
instruction" errors followed by immediate program exit, this is likely due to not using
the large data model.

The libsc_fi.a library must be linked with your application. It can be loaded when your
application starts by linking it directly at compile time or can be loaded dynamically
by your application using library load functions (load and loadbind) with the ".o"
versions of the libraries provided.

The following is an example command line used to compile the fisimple sample
application from the /sdk/samplecode directory. This command line is only an
example. The actual command line required on the developer's system may vary. The
example assumes that the include and library file search paths for the technology
libraries and any required X libraries are set correctly. If they are not set correctly, the

Note: $LIBPATH MUST be set and must point to the directory
containing the Outside In technology.

Sun Solaris Compiling and Linking

UNIX Implementation Details 3-5

search paths for the include and/or library files must be explicitly specified via the -I
include file path and/or -L library file path options, respectively, so the compiler and
linker can locate all required files.

gcc -w -o ../fisimple/unix/fisimple ../fisimple/unix/fisimple.c -I../../common
-L../../demo -lsc_fi

Two versions of some AIX modules have been included in this package. Including the
libsc_fi.a file on the compiler's command line with a path that causes that path to be
hard coded in the executable. The -L option does not detect object files, and forcing
developers to keep a copy of this file in their own source directory would be clumsy at
best. On the other hand, load does not work with library archive files, only with object
files.

3.5 Linux Compiling and Linking
The libsc_fi.so library must be linked with your application. It can be loaded when
your application starts by linking it directly at compile time or it can be loaded
dynamically using library load functions (for example, dlopen).

The following example command line is used to compile the fisimple sample
application from the /sdk/samplecode directory. This command line is only an
example. The actual command line required on the developer's system may vary. The
example assumes that the include and library file search paths for the technology
libraries are set correctly. If they are not set correctly, the search paths for the include
and/or library files must be explicitly specified via the -I include file path and/or -L
library file path options, respectively, so that the compiler and linker can locate all
required files.

Linux 32-bit
gcc -w -o ../fisimple/unix/fisimple ../fisimple/unix/fisimple.c -I../../common
-L../../demo -lsc_fi -Wl,-rpath,../../demo -Wl,-rpath,'${ORIGIN}'

Linux 64-bit
gcc -w -o ../fisimple/unix/fisimple ../fisimple/unix/fisimple.c -I../../common
-L../../demo -lsc_fi -DUNIX_64 -Wl,-rpath,../../demo -Wl,-rpath,'${ORIGIN}'

3.6 Sun Solaris Compiling and Linking
This product does not support the old "Solaris BSD" mode.

All libraries should be installed into a single directory and the directory should be
included in the system's executable path ($PATH).

The libsc_fi.so library must be linked with your application. It can be loaded when
your application starts by linking it directly at compile time or can be loaded
dynamically by your application using library load functions (for example, dlopen).

The following is an example command line used to compile the fisimple sample
application from the /sdk/samplecode directory. This command line is only an
example. The actual command line required on the developer's system may vary. The
example assumes that the include and library file search paths for the technology

Note: Developers may need to use the -qcpluscmt flag to allow C++
style comments.

Sun Solaris Compiling and Linking

3-6 Oracle Outside In File ID Developer's Guide

libraries are set correctly. If they are not set correctly, the search paths for the include
and/or library files must be explicitly specified via the -I include file path and/or -L
library file path options, respectively, so the compiler and linker can locate all required
files.

cc -w -o ../fisimple/unix/fisimple ../fisimple/unix/fisimple.c -I/usr/include
-I../../common -L../../demo -lsc_fi -Wl,-R,'${ORIGIN}'

Note: When running the 32-bit SPARC binaries on Solaris 8 or 9 systems, you may see
the following error:

ld.so.1: simple: fatal: libm.so.1: version `SUNW_1.1.1' not found
(required by file ./libsc_vw.so)

This is due to a missing system patch. Please apply one of the following patches (or its
successor) to your system to correct.

■ For Solaris 8 - Patch 111721-04

■ For Solaris 9 - Patch 111722-04

4

File ID Specification 4-1

4File ID Specification

The Outside In Technology File ID module uses an extremely fast and accurate
proprietary algorithm to inspect data in a file until it can be matched with known data
characteristics of a particular file type. This chapter provides an overview of the
functions specific to the File ID SDK.

4.1 Functions
The following functions can be used.

4.1.1 FIDeInit
This function tells the File Identification module that it will not be asked to read
additional documents, so it should perform any necessary cleanup tasks. This function
should be called at application shutdown time, and only if the module was
successfully initialized with a call to FIInit.

Prototype
VTDWORD FIDeInit()

Return Values
■ SCCERR_OK : Returned if the open was successful. Otherwise, one of the other

SCCERR_ values in sccerr.h is returned.

4.1.2 FIGetFirstId
This function is called to get the first of all possible IDs that can be returned by FIIdFile
and FIIdFileEx.

Prototype
VTBOOL FIGetFirstId(
 PFIGET pFiGet,
 VTWORD * pType,
 VTLPTSTR pTypeName,
 VTWORD wNameCount);

Parameters
■ pFiGet: Pointer to a FIGET structure that is used internally by FI to track the

GetFirst / GetNext process. You do not need to initialize this structure.

■ pType: Pointer to the 16-bit value that receives a file ID.

Functions

4-2 Oracle Outside In File ID Developer's Guide

■ pTypeName: A buffer that receives the name of the ID returned through pType.
For example, if 1500 (defined in sccfi.h as FI_BMP) were returned through pType,
the string "Windows Bitmap" would be returned in this buffer.

■ wNameCount: Must contain the maximum number of bytes that can be placed in
pTypeName.

Return Values
■ TRUE: An ID was returned and there may be more IDs.

■ FALSE: No ID was returned and there are no more IDs.

4.1.3 FIGetIDString
Returns the string associated with a particular FI ID. If no string is available for the
specified ID, a value of zero is returned and the pTypeName buffer is not filled.

Prototype
VTWORD FIGetIDString(
VTWORD wType,
VTLPTSTR pTypeName,
VTWORD wNameCount);

Parameters
■ wType: The file type ID with which the returned string is associated.

■ pTypeName: The buffer that is filled with the file type string.

■ wNameCount: Must contain the maximum number of bytes that can be placed in
pTypeName.

Return Values
n: The number of characters filled in pTypeName.

4.1.4 FIGetNextId
This function is called to get the next of all possible IDs that can be returned by
FIIdFile and FIIdFileEx.

Prototype
VTBOOL FIGetNextId(
 PFIGET pFiGet,
 VTWORD * pType,
 VTLPTSTR pTypeName,
 VTWORD wNameCount);

Parameters
■ pFiGet: Pointer to a FIGET structure that is used internally by FI to track the

GetFirst / GetNext process. Must have been initialized by a call to FIGetFirstId.

■ pType: Pointer to the 16-bit value that receives a file ID.

■ pTypeName: A buffer that receives the name of the ID returned through pType.
For example, if 1500 (defined in sccfi.h as FI_BMP) were returned through pType,
the string "Windows Bitmap" would be returned in this buffer.

Functions

File ID Specification 4-3

■ wNameCount: Must contain the maximum number of bytes that can be placed in
pTypeName.

Return Values
■ TRUE: An ID was returned and there may be more IDs.

■ FALSE: No ID was returned and there are no more IDs.

4.1.5 FIIdFile
This function is called to retrieve the type ID of a file.

Prototype
VTWORD FIIdFile(
 VTDWORD dwSpecType,
 VTVOID * pSpec,
 VTDWORD dwFlags,
 VTWORD * pType);

Parameters
■ dwSpecType: Defines the file to be identified.

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) file name conventions.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a
NULL-terminated full path name using the Unicode character set and NTFS
(Win32 and Win64) file name conventions.

– IOTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions.

– IOTYPE_REDIRECT: All platforms. pSpec points to a developer-defined
structure that allows the developer to redirect the IO routines used to read the
file. See Chapter 5, "Redirected IO" for more information.

■ pSpec: Defines the file to be identified. See the description of individual pSpec
values in the preceding list.

■ dwFlags: One of the following values:

– FIFLAG_NORMAL: This is the default value. When this is set, the File
Identification code identifies all formats supported by Outside In as it has
prior to version 6.0.

– FIFLAG_EXTENDEDFI: When this flag is set, the set of possible text values
that may be returned include FI_7BITTEXT, FI_ANSI8, FI_UNICODE, and FI_
UTF8. FI_UTF8 is not guaranteed to be returned for all UTF8 files, which are
very difficult to distinguish from non-UTF8-encoded 8-bit plain text.

■ pType: Pointer to the 16-bit value that receives the file's ID.

Return Values
■ 0: The file was successfully identified.

■ -1: File identification failed.

Functions

4-4 Oracle Outside In File ID Developer's Guide

4.1.6 FIIdFileEx
This function is called to retrieve the type ID of a file, including text file types.

Prototype
VTWORD FIIdFileEx(
 VTDWORD dwSpecType,
 VTVOID * pSpec,
 VTDWORD dwFlags,
 VTWORD * pType,
 VTLPTSTR pTypeName,
 VTWORD wNameCount);

Parameters
■ dwSpecType: Defines the file to be identified.

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) file name conventions.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a
NULL-terminated full path name using the Unicode character set and NTFS
(Win32 and Win64) file name conventions.

– IOTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions.

– IOTYPE_REDIRECT: All platforms. pSpec points to a developer-defined
structure that allows the developer to redirect the IO routines used to read the
file. See Chapter 5, "Redirected IO" for more information.

■ pSpec: Defines the file to be identified. See the description of individual pSpec
values in the preceding list.

■ dwFlags: One of the following values:

– FIFLAG_NORMAL: This is the default value. When this flag is set, all types
with specific identification criteria are identified.

– FIFLAG_EXTENDEDFI: When this flag is set, the set of possible text values
that may be returned include FI_7BITTEXT, FI_ANSI8, FI_UNICODE, and FI_
UTF8. FI_UTF8 is not guaranteed to be returned for all UTF8 files, which are
very difficult to distinguish from non-UTF8-encoded 8-bit plain text.

■ pType: Pointer to the 16-bit value that receives the file's ID.

■ pTypeName: A buffer that receives the name of the ID returned through pType.
For example, if 1500 (defined in sccfi.h as FI_BMP) were returned through pType,
the string "Windows Bitmap" would be returned in this buffer.

■ wNameCount: Must contain the maximum number of bytes that can be placed in
pTypeName.

Return Values
■ 0: The file was successfully identified.

■ -1: File identification failed.

Functions

File ID Specification 4-5

4.1.7 FIInit
This function tells the File Identification module to perform any necessary
initialization it needs to prepare for document access. This function must be called
before the first time the application uses the module to retrieve data from any
document.

FIInit should only be called once per application, at application startup time. Any
number of documents can be opened for file identification between calls to FIInit and
FIDeInit. If FIInit succeeds, FIDeInit must be called regardless of any other API calls.

Prototype
VTDWORD FIInit()

Return Values
■ SCCERR_OK : Returned if the open was successful. Otherwise, one of the other

SCCERR_ values in sccerr.h is returned.

4.1.8 FIThreadInit
Multiple threads are supported only on the Windows, Linux, and Sun Solaris
platforms. However, the FIThreadInit function is only implemented on the Sun Solaris
and Linux platforms. Windows users can initialize multiple threads without calling
this function. Failed initialization of this function does not impair other API calls. If the
function is not called or fails, stub functions are called instead of mutex functions.

FIThreadInit initializes the technology, preparing it to be run in a thread. This
preparation includes setting up mutex function pointers to prevent threads from
clashing in critical sections of the technology's code. The developer must actually code
the threads after this function has been called. FIThreadInit should be called just
before the call to FIInit and only once per process. Both functions should be called
before the developer's application begins the thread.

Prototype
VTLONG FIThreadInit(VTSHORT ThreadOption)

Parameters
■ ThreadOption: One of the following values:

– FITHREAD_INIT_NOTHREADS: No thread support requested.

– FITHREAD_INIT_PTHREADS: Support for PTHREADS requested.

– FITHREAD_INIT_NATIVETHREADS: Support for native threading
requested. Supported only on Solaris (Sun).

Return Values
■ FI_THREADINIT_SUCCESS: The open was successful.

■ FI_THREADINIT_FAILED: The open was unsuccessful.

■ FI_THREADINIT_ALREADY_CALLED: FIThreadInit has already been initialized.
This value is returned if FIThreadInit is called more than once in an application.

Functions

4-6 Oracle Outside In File ID Developer's Guide

4.1.9 FIThreadInitExt

FIThreadInitExt initializes the technology, preparing it to be run in a thread. This
preparation includes setting up mutex function pointers that the caller passes in to
prevent threads from clashing in critical sections of the technology's code. The
developer must actually code the threads after this function has been called.
FIThreadInitExt should be called just before the call to FIInit and only once per
process. Both functions should be called before the developer's application begins the
thread.

Prototype
VTLONG FIThreadInit(VTLONG (*Lock)(VOID *), VTLONG
 (*UnLock)(VOID *))

Parameters
■ Lock: A function pointer to a mutex locking function such as pthread_mutex_lock.

Unlock: A function pointer to a mutex unlocking function such as pthread_mutex_
unlock.

Return Values
■ FI_THREADINIT_SUCCESS: The open was successful.

■ FI_THREADINIT_FAILED: The open was unsuccessful.

■ FI_THREADINIT_ALREADY_CALLED: FIThreadInit has already been initialized.
This value is returned if FIThreadInit is called more than once in an application.

Note: Multiple threads are supported only on the Windows, Linux
and Sun Solaris platforms. However, the FIThreadInitExt function is
only implemented on the Sun Solaris and Linux platforms. Windows
users can initialize multiple threads without calling this function.
Failed initialization of this function does not impair other API calls. If
the function is not called or fails, stub functions are called instead of
mutex functions.

5

Redirected IO 5-1

5Redirected IO

This chapter describes methods for redirecting IO.

5.1 Using Redirected IO
A developer can redirect the IO for an input or output file by providing a data
structure that contains pointers to custom IO routines for reading and writing. This
data structure is passed in place of a typical file specification. The developer must set
the dwSpecType parameter of the file to IOTYPE_REDIRECT when the file is sent.
When dwSpecType is set this way, the pSpec element must contain a pointer to a
developer-defined data structure that begins with a BASEIO structure (defined in
baseIO.H). The BASEIO structure contains pointers to the basic IO functions for the
file's IO system such as Read, Seek, Tell, etc. The developer must initialize these
function pointers to their own functions that perform IO tasks. Beyond the BASEIO
element, the developer may place any data. For instance, a developer's structure might
look like the following:

typedef struct MYFILEtag
{
 BASEIO sBaseIO; /* must be the first element */
 VTDWORD dwMyInfo1;
 VTDWORD dwMyInfo2;
 .
 .
 .
} MYFILE;

Because the pSpec passed is essentially the "file handle" that uses, the developer can
redirect the IO on a file-by-file basis while still "regular" disk-based files.

The BASEIO structure is defined as follows:

typedef struct BASEIOtag
{
 IOCLOSEPROC pClose;
 IOREADPROC pRead;
 IOWRITEPROC pWrite;
 IOSEEKPROC pSeek;
 IOTELLPROC pTell;
 IOGETINFOPROC pGetInfo;
 IOOPENPROC pOpen; /* pOpen *MUST* be set to NULL. */
#ifndef NLM
 IOSEEK64PROC pSeek64;
 IOTELL64PROC pTell64;
#endif
 VTVOID *aDummy[3];

IOClose

5-2 Oracle Outside In File ID Developer's Guide

} BASEIO, * PBASEIO;

The developer must implement the Close, Read, Seek, Tell and GetInfo routines. The
Open routine must be set to NULL. The first parameter to each of these routines is
called hFile and is of the type HIOFILE. HIOFILE is simply the VTLPVOID to your
data structure that was passed in the pSpec parameter of the Outside IN API call.

5.2 IOClose
Closes the file identified by hFile and cleans up all memory associated with the file.

Prototype
IOERR IOClose(
 HIOFILE hFile);

Parameters
■ hFile: Identifies the file to be closed. Should be cast into a pointer to your data

structure (MYFILE in the preceding discussion).

Return Values
■ IOERR_OK: Close was successful.

■ IOERR_UNKNOWN: Some error occurred on close.

5.3 IORead
Reads data from the current file position forward and resets the position to the byte
after the last byte read.

Prototype
IOERR IORead(
 HIOFILE hFile,
 VTBYTE * pData,
 VTDWORD dwSize,
 VTDWORD * pCount);

Parameters
■ hFile: Identifies the file to be read. Should be cast into a pointer to your data

structure (MYFILE in the preceding discussion).

■ pData: Points to the buffer into which the bytes should be read. Will be at least
dwSize bytes big.

■ dwSize: Number of bytes to read.

■ pCount: Points to the number of bytes actually read by the function. This value is
only valid if the return value is IOERR_OK.

Note: Redirected IO does not cache the whole file. Seeks can occur
throughout the file during the course of processing. If the developer is
implementing redirected IO on a slow or sequential link, it is the
developer's responsibility to cache the file locally.

IOSeek

Redirected IO 5-3

Return Values
■ IOERR_OK: Read was successful. pCount contains the number of bytes read and

pData contains the bytes themselves.

■ IOERR_EOF: Read failed because the file pointer was beyond the end of the file at
the time of the read.

■ IOERR_UNKNOWN: Read failed for some other reason.

5.4 IOWrite
Writes data from the current file position forward and resets the position to the byte
after the last byte written.

Prototype
IOERR IOWrite(
 HIOFILE hFile,
 VTBYTE * pData,
 VTDWORD dwSize,
 VTDWORD * pCount);

Parameters
■ hFile: Identifies the file where the data is to be written. Should be cast into a

pointer to your data structure (MYFILE in the preceding discussion).

■ pData: Points to the buffer from which the bytes should be written. It must be at
least dwSize bytes big.

■ dwSize: Number of bytes to write.

■ pCount: Points to the number of bytes actually written by the function. This value
is only valid if the return value is IOERR_OK.

Return Values
■ IOERR_OK: Write was successful, pCount contains the number of bytes written.

■ IOERR_UNKNOWN: Write failed for some reason.

5.5 IOSeek
Moves the current file position.

Prototype
IOERR IOSeek(
 HIOFILE hFile,
 VTWORD wFrom,
 VTLONG lOffset);

Parameters
■ hFile: Identifies the file to be read. Should be cast into a pointer to your data

structure (MYFILE in the preceding discussion).

■ wFrom: One of the following values:

– IOSEEK_TOP: Move the file position lOffset bytes from the top (beginning) of
the file.

IOTell

5-4 Oracle Outside In File ID Developer's Guide

– IOSEEK_BOTTOM: Move the file position lOffset bytes from the bottom (end)
of the file.

– IOSEEK_CURRENT: Move the file position lOffset bytes from the current file
position.

■ lOffset: Number of bytes to move the file pointer. A positive value moves the file
pointer forward in the file and a negative value moves it backward. If a requested
seek value would move the file pointer before the beginning of the file, the file
pointer should remain unchanged and IOERR_UNKNOWN should be returned.
Seeking past EOF is allowed. In that case IOERR_OK should be returned. IOTell
would return the requested seek position and IORead should return IOERR_EOF
and 0 bytes read.

Return Values
■ IOERR_OK: Seek was successful.

■ IOERR_UNKNOWN: Seek failed for some reason.

5.6 IOTell
Returns the current file position.

Prototype
IOERR IOTell(
 HIOFILE hFile,
 VTDWORD * pOffset);

Parameters
■ hFile: Identifies the file to be read. Should be cast into a pointer to your data

structure (MYFILE in the preceding discussion).

■ pOffset: Points to the current file position returned by the function.

Return Values
■ IOERR_OK: Tell was successful.

■ IOERR_UNKNOWN: Tell failed for some reason.

5.7 IOGetInfo
Returns information about an open file.

Prototype
IOERR IOGetInfo(
 HIOFILE hFile,
 VTDWORD dwInfoId,
 VTVOID * pInfo);

Parameters
■ hFile: Identifies the file to be read. Should be cast into a pointer to your data

structure (MYFILE in the previous discussion).

■ dwInfoId: One of the following values:

IOGetInfo

Redirected IO 5-5

– IOGETINFO_FILENAME: pInfo points to a string that should be filled with
the base file name (no path) of the open file (for example TEST.DOC). If you
do not know the file name, return IOERR_UNKNOWN. Certain file types
(such as DataEase) must know the original file name in order to open
secondary files required to correctly view the original file. If you return
IOERR_UNKNOWN, these file types do not convert.

– IOGETINFO_PATHNAME: pInfo points to a string that should be filled with
the fully qualified path name (including the file name) of the open file. For
example, C:\MYDIR\TEST.DOC. If you do not know the path name, return
IOERR_UNKNOWN.

– IOGETINFO_PATHTYPE: pInfo points to a DWORD that should be filled
with the IOTYPE of the path returned by IOGETINFO_PATHNAME. For
instance, if you return a DOS path name in the Unicode character set, you
should return IOTYPE_UNICODEPATH.

– IOGETINFO_ISOLE2STORAGE: Must return IOERR_FALSE. pInfo is not
used.

– IOGETINFO_GENSECONDARY: pInfo points to a structure of type
IOGENSECONDARY. Some file types require supporting files to be opened.
These supporting files may contain formatting information or extra data.
Correct handling of IOGETINFO_GENSECONDARY is critical to the
operation of the Outside In technology.

Because the developer is in total control of the IO for the primary file, the
technology does not know how to generate a path to these secondary files or
even if the secondary files are accessible through the regular file system. The
IOGETINFO_GENSECONDARY call gives the developer a chance to resolve
this problem by generating a new IO specification for the secondary file in
question. The developer gets just the base file name (often embedded in the
original document or generated from the primary file's name) of the secondary
file.

The developer may either use one of the standard Outside In IO types or
totally redirect the IO for the secondary file, as well.

– IOGETINFO_64BITIO: For redirected I/O that wishes to use 64-bit seek/tell
functions, your IOGetInfo function must respond IOERR_TRUE to this
dwInfoId. In addition, the pSeek64/pTell64 items in the baseio structure must
be valid pointers to the proper function types.

Any other value should return IOERR_BADINFOID.

■ pInfo: The size of the pInfo buffer depends on the dwInfoId selected. For
IOGETINFO_FILENAME and IOGETINFO_PATHNAME, the buffer is of size
MAX_PATH characters (each character is either one byte or two, depending on
PATHTYPE). The IOGETINFO_PATHTYPE buffer is the size of a VTDWORD.

Return Values
■ IOERR_OK: GetInfo was successful.

■ IOERR_TRUE: Affirmative response from a true or false GetInfo.

■ IOERR_FALSE: Negative response from a true or false GetInfo.

■ IOERR_BADINFOID: dwInfoId can not be handled by this file type.

■ IOERR_INVALIDSPEC: The file spec is bad for this type.

■ IOERR_UNKNOWN: GetInfo failed for some other reason.

IOGetInfo

5-6 Oracle Outside In File ID Developer's Guide

5.7.1 IOGENSECONDARY and IOGENSECONDARYW Structures
These structures are passed to the developer through the IOGetInfo function. They
allow the developer to tell the technology where a secondary file, needed by the
conversion process, is located.

The SpecType of the original file determines which of these two structures is used. If
the SpecType is IOTYPE_UNICODEPATH, IOGENSECONDARYW is used.
pFileName will point to a Unicode string terminated with a NULL WORD. For all
other SpecTypes, IOGENSECONDARY is used and pFileName will point to a string
terminated with a NULL BYTE.

The following is a C data structure defined in sccio.h:

typedef struct
{
 VTDWORD dwSize;
 VTLPBYTE pFileName;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTDWORD dwOpenFlags
} IOGENSECONDARY, * PIOGENSECONDARY;

typedef struct
{
 VTDWORD dwSize;
 VTLPWORD pFileName;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTDWORD dwOpenFlags
} IOGENSECONDARYW, * PIOGENSECONDARYW;

■ dwSize: Will be set to sizeof (IOGENSECONDARY) or sizeof
(IOGENSECONDARYW) (both of these values are the same).

■ pFileName: A pointer to a string representing the file name of the secondary file
that the technology requires. It is usually a name stored in the primary file (such as
MYSTYLE.STY for a Word for DOS file) or a name generated from the primary file
name (the primary file for a DataEase database always has a .dba extension. The
secondary name is the same file name but with a .dbm extension).

■ dwSpecType: The developer must fill this with the IOSPEC for the secondary file.

■ pSpec: On entry, this pointer points to an array of 1024 bytes. If the dwSpecType is
set a regular IOTYPE such as IOTYPE_ANSIPATH, the developer may fill this
array with the path name or structure required for that IOTYPE. If the developer is
redirecting access to the secondary file, then dwSpecType will be IOTYPE_
REDIRECT and the developer should replace pSpec with a pointer to a
developer-defined structure that begins with the BASEIO structure.

The file is supposed to be opened by the OEM's redirected IO code by the time
they return the BASEIO struct. This is because the pOpen routine in the BASEIO
struct is supposed to be NULL.

■ dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-ing
them together. The following flags are currently used:

– IOOPEN_READ: The secondary file should be opened for read.

IOSEEK64PROC / IOTELL64PROC

Redirected IO 5-7

– IOOPEN_WRITE: The secondary file should be opened for write. If the
specified file already exists, it's contents are erased when this flag is set.

– IOOPEN_CREATE: The secondary file should be created (if it does not already
exist) and opened for write.

5.7.2 File Types That Cause IOGETINFO_GENSECONDARY
■ Microsoft Word for DOS Versions 4, 5 and 6: Used to open and read the style sheet

file associated with the document. The filter will successfully degrade if the style
sheet is not present.

■ Harvard Graphics DOS 3.x: Used to open and read the individual slides within
ScreenShow and palette files. Files with the extension .ch3 are individual graphics
or slides that can be opened using no secondary files. Files with the extension .sy3
are ScreenShows that reference a list of .ch3 files via the secondary file mechanism.
There is also an optional palette file that can be referenced from a .ch3 file, but the
filter will successfully degrade if the palette file is not present.

■ R:Base: Used to open and read required schema file. The R:Base data files are
named ????2.rbf but the data is useless without the schema file named ????1.rbf.
There is also a ????3.rbf file associated with each database, but it is not used.

■ Paradox 4.0 and Above: Used to open and read memo field data file. Paradox uses
a separate file for all memo field data larger than 32 bytes.

■ DataEase: Used to open and read the data file. DataEase databases include a .dba
file that contains the schema (the file that the technology can identify as DataEase)
and a .dbm file that contains the actual data.

5.8 IOSEEK64PROC / IOTELL64PROC
These functions are for seek/tell using 64-bit offsets. These functions are not used by
default. Rather, they are used if the IOGETINFO_64BITIO message returns IOERR_
TRUE. This is so redirected I/O using strictly 32-bit I/O is unaffected.

5.8.1 IOSeek64
Moves the current file position.

Prototype
IOERR IOSeek64(
HIOFILE hFile,
VTWORD wFrom,
VTOFF_T offset);

Parameters
The parameter information is the same as for IOSeek(). However, the size of the
VTOFF_T offset for IOSeek64() is 64-bit unlike the 32-bit offset in IOSeek().

5.8.2 IOTell64
Returns the current file position.

Prototype
IOERR IOTell64(
HIOFILE hFile,

IOSEEK64PROC / IOTELL64PROC

5-8 Oracle Outside In File ID Developer's Guide

VTOFF_T * pOffset);

Parameters
The parameter information is the same as for IOTell(). The only change is the use of a
pointer to a 64-bit parameter for returning the offset.

6

Sample Applications 6-1

6Sample Applications

The sample application included in this SDK is designed to highlight a specific aspect
of the technology’s functionality. We ship built versions of sample applications. The
compiled executable should be in the root directory where the product is installed.

The following copyright applies to all sample applications shipped with this product:

Copyright © Oracle 1993, 2010

All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute the Sample
Applications (and/or any modified version) in any way you find useful, provided
that you agree that Oracle has no warranty obligations or liability for any Sample
Application files.

6.1 Building the Sample on a Windows System
Microsoft Visual Studio project files are provided for building each of the sample
applications. For 32-bit versions of Windows, versions of the project files are provided
for Visual Studio 6 (.dsp files) and Visual Studio 2005 (.vcproj files).

Because .vcproj files may not pick up the right compiler on their own, you need to
make sure that you are building with the Win64 configuration in Visual Studio 2005.
For 64-bit versions of Windows, only the Visual Studio 2005 versions are available.

The project files for the sample applications can be found in the samplecode\win
subdirectory of the Outside In SDK.

6.2 Building the Sample on a UNIX System
See Chapter 3, "UNIX Implementation Details" for specific information about building
the sample applications on your UNIX OS.

6.3 The fisimple Application
This simple command line driven program allows the user to run a single source file
through the software. The user can choose the source file, an output file and set the
various options.

To run the program, type:

fisimple [-n/-e] in_file

■ -n or -e is optional and dictates the value of SCCUT_FIFLAGS.

The fisimple Application

6-2 Oracle Outside In File ID Developer's Guide

■ in_file is the input file to be converted.

fisimple outputs the file ID and the string ID name.

A

Copyrights and Licensing A-1

ACopyrights and Licensing

This appendix provides a comprehensive overview of all copyright and licensing
information for Outside In File ID.

A.1 Outside In File ID Licensing
The Programs (which include both the software and documentation) contain
proprietary information; they are provided under a license agreement containing
restrictions on use and disclosure and are also protected by copyright, patent, and
other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing. This
document is not warranted to be error-free. Except as may be expressly permitted in
your license agreement for these Programs, no part of these Programs may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose.

If the Programs are delivered to the United States Government or anyone licensing or
using the Programs on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related
documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the
Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the
extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical,
or other inherently dangerous applications. It shall be the licensee's responsibility to
take all appropriate fail-safe, backup, redundancy and other measures to ensure the
safe use of such applications if the Programs are used for such purposes, and we
disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle
Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

Outside In File ID Licensing

A-2 Oracle Outside In File ID Developer's Guide

The Programs may provide links to Web sites and access to content, products, and
services from third parties. Oracle is not responsible for the availability of, or any
content provided on, third-party Web sites. You bear all risks associated with the use
of such content. If you choose to purchase any products or services from a third party,
the relationship is directly between you and the third party. Oracle is not responsible
for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms
of the agreement with the third party, including delivery of products or services and
warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with
any third party.

UnRAR - free utility for RAR archives

License for use and distribution of FREE portable version

The source code of UnRAR utility is freeware. This means:

1. All copyrights to RAR and the utility UnRAR are exclusively owned by the author -
Alexander Roshal.

2. The UnRAR sources may be used in any software to handle RAR archives without
limitations free of charge, but cannot be used to re-create the RAR compression
algorithm, which is proprietary. Distribution of modified UnRAR sources in separate
form or as a part of other software is permitted, provided that it is clearly stated in the
documentation and source comments that the code may not be used to develop a RAR
(WinRAR) compatible archiver.

3. The UnRAR utility may be freely distributed. No person or company may charge a
fee for the distribution of UnRAR without written permission from the copyright
holder.

4. THE RAR ARCHIVER AND THE UNRAR UTILITY ARE DISTRIBUTED "AS IS".
NO WARRANTY OF ANY KIND IS EXPRESSED OR IMPLIED. YOU USE AT YOUR
OWN RISK. THE AUTHOR WILL NOT BE LIABLE FOR DATA LOSS, DAMAGES,
LOSS OF PROFITS OR ANY OTHER KIND OF LOSS WHILE USING OR MISUSING
THIS SOFTWARE.

5. Installing and using the UnRAR utility signifies acceptance of these terms and
conditions of the license.

6. If you don't agree with terms of the license you must remove UnRAR files from
your storage devices and cease to use the utility.

Index-1

Index

Symbols
$HOME, 3-3
$LD_LIBRARY_PATH, 3-3
$LIBPATH, 3-3
$ORIGIN, 3-3
$SHLIB_PATH, 3-3

A
API DLLs, 2-2

D
Directory Structure, 1-1

E
environment variables, 3-3

$HOME, 3-3
$LD_LIBRARY_PATH, 3-3
$LIBPATH, 3-3
$SHLIB_PATH, 3-3

F
File ID Specification, 4-1
fisimple, 6-1
Functions

FIDeInit, 4-1
FIGetFirstId, 4-1
FIGetIDString, 4-2
FIGetNextId, 4-2
FIIdFile, 4-3
FIIdFileEx, 4-4
FIInit, 4-5
FIThreadInit, 4-5
FIThreadInitExt, 4-6

I
Introduction, 1-1
IOClose, 5-2
IOGENSECONDARY and IOGENSECONDARYW

Structures, 5-6
IOGetInfo, 5-4
IOGETINFO_GENSECONDARY, 5-7

IORead, 5-2
IOSeek, 5-3
IOTell, 5-4
IOWrite, 5-3

L
Licensing, A-1
Linux

Compiling and Linking, 3-5

R
Redirected IO, 5-1
Runtime Search Path, 3-3

S
Sample Applications, 6-1
Signal Handling, 3-3
Support DLLs, 2-2

U
UNIX

Character Sets, 3-3
IBM AIX Compiling and Linking, 3-4
Information Storage, 3-2
Installation, 3-1
Libraries and Structure, 3-1
Source Code, 3-2
Sun Solaris Compiling and Linking, 3-5

UNIX Implementation Details, 3-1

W
What’s New in Release 8.3.5, 1-1
Windows

Character Sets, 2-3
Installation, 2-1
Libraries and Structure, 2-2
Options and Information Storage, 2-2
Source Code, 2-2

Windows Implementation Details, 2-1

Index-2

	Contents
	Preface
	1 Introduction
	1.1 What’s New in Release 8.3.5
	1.2 What Does This Technology Do?
	1.3 Overview
	1.4 Directory Structure
	1.5 Copyright Information

	2 Windows Implementation Details
	2.1 Installation
	2.2 Libraries and Structure
	2.3 The Basics
	2.3.1 Source Code
	2.3.2 Options and Information Storage
	2.3.3 Structure Alignment
	2.3.4 Character Sets
	2.3.5 Runtime Considerations
	2.3.6 Changing Resources

	3 UNIX Implementation Details
	3.1 Installation
	3.2 Libraries and Structure
	3.3 The Basics
	3.3.1 Source Code
	3.3.2 Information Storage
	3.3.3 Character Sets
	3.3.4 Signal Handling
	3.3.5 Runtime Search Path and $ORIGIN
	3.3.6 Environment Variables
	3.3.7 Changing Resources

	3.4 IBM AIX Compiling and Linking
	3.5 Linux Compiling and Linking
	3.6 Sun Solaris Compiling and Linking

	4 File ID Specification
	4.1 Functions
	4.1.1 FIDeInit
	4.1.2 FIGetFirstId
	4.1.3 FIGetIDString
	4.1.4 FIGetNextId
	4.1.5 FIIdFile
	4.1.6 FIIdFileEx
	4.1.7 FIInit
	4.1.8 FIThreadInit
	4.1.9 FIThreadInitExt

	5 Redirected IO
	5.1 Using Redirected IO
	5.2 IOClose
	5.3 IORead
	5.4 IOWrite
	5.5 IOSeek
	5.6 IOTell
	5.7 IOGetInfo
	5.7.1 IOGENSECONDARY and IOGENSECONDARYW Structures
	5.7.2 File Types That Cause IOGETINFO_GENSECONDARY

	5.8 IOSEEK64PROC / IOTELL64PROC
	5.8.1 IOSeek64
	5.8.2 IOTell64

	6 Sample Applications
	6.1 Building the Sample on a Windows System
	6.2 Building the Sample on a UNIX System
	6.3 The fisimple Application

	A Copyrights and Licensing
	A.1 Outside In File ID Licensing

	Index

