

[image: Oracle Corporation]

Oracle® Fusion Middleware

Developer's Guide for Oracle SOA Suite

11g Release 1 (11.1.1)

E10224-05

June 2010

Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite, 11g Release 1 (11.1.1)

E10224-05

Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Virginia Beecher, Deanna Bradshaw, Tulika Das, Vimmika Dinesh, Anirban Ghosh, Mark Kennedy, Alex Prazma, Richard Smith, and Deborah Steiner

Contributor: Oracle SOA Suite development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

Part I Introduction to Oracle SOA Suite

1 Introduction to Building Applications with Oracle SOA Suite

	1.1 Introduction to Service-Oriented Architecture
	1.2 Introduction to Services
	1.3 Introduction to Oracle SOA Suite
	1.4 Standards Used by Oracle SOA Suite to Enable SOA
	1.5 Service Component Architecture within SOA Composite Applications
	1.5.1 Service Components
	1.5.2 Binding Components
	1.5.3 Wires

	1.6 Runtime Behavior of a SOA Composite Application
	1.6.1 Service Infrastructure
	1.6.2 Service Engines
	1.6.3 Deployed Service Archives

	1.7 Approaches for Designing SOA Composite Applications
	1.8 Learning Oracle SOA Suite

2 Developing SOA Composite Applications with Oracle SOA Suite

	2.1 Creating a SOA Application
	2.1.1 How to Create a SOA Application and Project
	2.1.2 What Happens When You Create a SOA Application and Project

	2.2 Adding Service Components
	2.2.1 How to Add a Service Component
	2.2.2 What You May Need to Know About Adding and Deleting a Service Component
	2.2.3 How to Edit a Service Component

	2.3 Adding Service Binding Components
	2.3.1 How to Add a Service Binding Component
	2.3.2 How to Add a WSDL for a Web Service
	2.3.3 How to View Schemas
	2.3.4 How to Edit a Service Binding Component
	2.3.5 What You May Need to Know About Adding and Deleting Services

	2.4 Adding Reference Binding Components
	2.4.1 How to Add a Reference Binding Component
	2.4.2 What You May Need to Know About Adding and Deleting References
	2.4.3 What You May Need to Know About WSDL References
	2.4.4 What You May Need to Know About Invoking the Default Revision of a Composite

	2.5 Adding Wires
	2.5.1 How to Wire a Service and a Service Component
	2.5.2 How to Wire a Service Component and a Reference
	2.5.3 What You May Need to Know About Adding and Deleting Wires

	2.6 Adding Security
	2.7 Deploying a SOA Composite Application
	2.7.1 How to Invoke Deployed Composites

	2.8 Managing and Testing a SOA Composite Application
	2.8.1 How to Manage Deployed Composites
	2.8.2 How to Test a Deployed Composite

3 Introduction to the SOA Sample Application

	3.1 Introduction to the Fusion Order Demo
	3.1.1 Store Front Module
	3.1.2 WebLogic Fusion Order Demo Application

	3.2 Setting Up the Fusion Order Demo Application
	3.2.1 Task 1: Install Oracle JDeveloper Studio
	3.2.2 Task 2: Install the Fusion Order Demo Application
	3.2.3 Task 3: Install Oracle SOA Suite

	3.3 Taking a Look at the WebLogic Fusion Order Demo Application
	3.3.1 Project Applications of the WebLogic Fusion Order Demo Application
	3.3.2 The composite.xml File

	3.4 Understanding the OrderBookingComposite Flow
	3.5 Deploying Fusion Order Demo
	3.5.1 Task 1: Create a Connection to an Oracle WebLogic Server
	3.5.2 (Optional) Task 2: Create a Connection to the Oracle BAM Server
	3.5.3 Task 3: Install the Schema for the Fusion Order Demo Application
	3.5.4 Task 4: Set Configuration Property for the Store Front Module
	3.5.5 Task 5: Deploy the Store Front Module
	3.5.6 Task 6: Deploy the WebLogic Fusion Order Demo Application

	3.6 Running Fusion Order Demo
	3.7 Viewing Data Sent to Oracle BAM Server
	3.8 Undeploying the Composites for the WebLogic Fusion Order Demo Application

Part II Using the BPEL Process Service Component

4 Getting Started with Oracle BPEL Process Manager

	4.1 Introduction to the BPEL Process Service Component
	4.1.1 How to Add a BPEL Process Service Component

	4.2 Introduction to Activities
	4.3 Introduction to Partner Links
	4.4 Creating a Partner Link
	4.4.1 How to Create a Partner Link
	4.4.1.1 Partner Links for an Outbound Adapter
	4.4.1.2 Partner Links for an Inbound Adapter
	4.4.1.3 Partner Links from an Abstract WSDL to Call a Service
	4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
	4.4.1.5 Partner Links and Human Tasks or Business Rules
	4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator

	4.5 Introduction to Technology Adapters
	4.6 Introduction to BPEL Process Monitors
	4.7 Migrating Custom SOA Composite Applications in Oracle JDeveloper
	4.7.1 How to Migrate a Custom SOA Composite Application

5 Introduction to Interaction Patterns in a BPEL Process

	5.1 Introduction to One-Way Messages
	5.2 Introduction to Synchronous Interactions
	5.3 Introduction to Asynchronous Interactions
	5.4 Introduction to Asynchronous Interactions with a Timeout
	5.5 Introduction to Asynchronous Interactions with a Notification Timer
	5.6 Introduction to One Request, Multiple Responses
	5.7 Introduction to One Request, One of Two Possible Responses
	5.8 Introduction to One Request, a Mandatory Response, and an Optional Response
	5.9 Introduction to Partial Processing
	5.10 Introduction to Multiple Application Interactions

6 Manipulating XML Data in a BPEL Process

	6.1 Introduction to Manipulating XML Data in BPEL Processes
	6.1.1 XML Data in BPEL
	6.1.2 Data Manipulation and XPath Standards

	6.2 Delegating XML Data Operations to Data Provider Services
	6.2.1 How to Create an Entity Variable
	6.2.1.1 Understanding How SDO Works in the Inbound Direction
	6.2.1.2 Understanding How SDO Works in the Outbound Direction
	6.2.1.3 Creating an Entity Variable and Choosing a Partner Link
	6.2.1.4 Creating a Binding Key

	6.3 Using Standalone SDO-based Variables
	6.3.1 How to Declare SDO-based Variables
	6.3.2 How to Convert from XML to SDO

	6.4 Initializing a Variable with Expression Constants or Literal XML
	6.4.1 How To Assign a Literal XML Element

	6.5 Copying Between Variables
	6.5.1 How to Copy Between Variables

	6.6 Accessing Fields Within Element-Based and Message Type-Based Variables
	6.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables

	6.7 Assigning Numeric Values
	6.7.1 How to Assign Numeric Values

	6.8 Using Mathematical Calculations with XPath Standards
	6.8.1 How To Use Mathematical Calculations with XPath Standards

	6.9 Assigning String Literals
	6.9.1 How to Assign String Literals

	6.10 Concatenating Strings
	6.10.1 How to Concatenate Strings

	6.11 Assigning Boolean Values
	6.11.1 How to Assign Boolean Values

	6.12 Assigning a Date or Time
	6.12.1 How to Assign a Date or Time

	6.13 Manipulating Attributes
	6.13.1 How to Manipulate Attributes

	6.14 Manipulating XML Data with bpelx Extensions
	6.14.1 How to Use bpelx:append
	6.14.2 How to Use bpelx:insertBefore
	6.14.3 How to Use bpelx:insertAfter
	6.14.4 How to Use bpelx:remove
	6.14.5 How to Use bpelx:rename and XSD Type Casting
	6.14.6 How to Use bpelx:copyList

	6.15 Validating XML Data with bpelx:validate
	6.15.1 How to Validate XML Data with bpelx:validate

	6.16 Manipulating XML Data Sequences That Resemble Arrays
	6.16.1 How to Statically Index into an XML Data Sequence That Uses Arrays
	6.16.2 How to Use SOAP-Encoded Arrays
	6.16.3 How to Determine Sequence Size
	6.16.4 How to Dynamically Index by Applying a Trailing XPath to an Expression
	6.16.4.1 Applying a Trailing XPath to the Result of getVariableData
	6.16.4.2 Using the bpelx:append Extension to Append New Items to a Sequence
	6.16.4.3 Merging Data Sequences
	6.16.4.4 Generating Functionality Equivalent to an Array of an Empty Element

	6.16.5 What You May Need to Know About Using the Array Identifier

	6.17 Converting from a String to an XML Element
	6.17.1 How To Convert from a String to an XML Element

	6.18 Understanding the Differences Between Document-Style and RPC-Style WSDL Files
	6.18.1 How To Use RPC-Style Files

	6.19 Manipulating SOAP Headers in BPEL
	6.19.1 How to Receive SOAP Headers in BPEL
	6.19.2 How to Send SOAP Headers in BPEL

	6.20 Using MIME/DIME SOAP Attachments

7 Invoking a Synchronous Web Service from a BPEL Process

	7.1 Introduction to Invoking a Synchronous Web Service
	7.2 Invoking a Synchronous Web Service
	7.2.1 How to Invoke a Synchronous Web Service
	7.2.2 What Happens When You Invoke a Synchronous Web Service
	7.2.2.1 Partner Link in the BPEL Code
	7.2.2.2 Partner Link Type and Port Type in the BPEL Code
	7.2.2.3 Invoke Activity for Performing a Request
	7.2.2.4 Synchronous Invocation in BPEL Code

	7.3 Specifying Timeout Values
	7.3.1 How To Specify Timeout Values
	7.3.2 What You May Need to Know About SyncMaxWaitTime and Synchronous Requests Not Timing Out

	7.4 Calling a One-Way Mediator with a Synchronous BPEL Process

8 Invoking an Asynchronous Web Service from a BPEL Process

	8.1 Introduction to Invoking an Asynchronous Web Service
	8.2 Invoking an Asynchronous Web Service
	8.2.1 How to Invoke an Asynchronous Web Service
	8.2.1.1 Adding a Partner Link for an Asynchronous Service
	8.2.1.2 Adding an Invoke Activity
	8.2.1.3 Adding a Receive Activity
	8.2.1.4 Performing Additional Activities

	8.2.2 What Happens When You Invoke an Asynchronous Web Service
	8.2.2.1 portType Section of the WSDL File
	8.2.2.2 partnerLinkType Section of the WSDL File
	8.2.2.3 Partner Links Section in the BPEL File
	8.2.2.4 Composite Application File
	8.2.2.5 Invoke and Receive Activities
	8.2.2.6 createInstance Attribute for Starting a New Instance
	8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes
	8.2.2.8 Multiple Runtime Endpoint Locations

	8.3 Using a Dynamic Partner Link at Runtime
	8.3.1 How To Add and Use a Dynamic Partner Link at Runtime

	8.4 Using WS-Addressing in an Asynchronous Service
	8.4.1 How to Use WS-Addressing in an Asynchronous Service
	8.4.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs

	8.5 Using Correlation Sets in an Asynchronous Service
	8.5.1 How to Use Correlation Sets in an Asynchronous Service
	8.5.1.1 Step 1: Creating a Project
	8.5.1.2 Step 2: Configuring Partner Links and File Adapter Services
	8.5.1.3 Step 3: Creating Three Receive Activities
	8.5.1.4 Step 4: Creating Correlation Sets
	8.5.1.5 Step 5: Associating Correlation Sets with Receive Activities
	8.5.1.6 Step 6: Creating Property Aliases
	8.5.1.7 Step 7: Reviewing WSDL File Content

9 Using Parallel Flow in a BPEL Process

	9.1 Introduction to Parallel Flows in BPEL Processes
	9.2 Creating a Parallel Flow
	9.2.1 How to Create a Parallel Flow
	9.2.2 What Happens When You Create a Parallel Flow

	9.3 Customizing the Number of Flow Activities with the flowN Activity
	9.3.1 How to Create a flowN Activity
	9.3.2 What Happens When You Create a FlowN Activity

10 Using Conditional Branching in a BPEL Process

	10.1 Introduction to Conditional Branching
	10.2 Creating a Switch Activity to Define Conditional Branching
	10.2.1 How to Create a Switch Activity
	10.2.2 What Happens When You Create a Switch Activity

	10.3 Creating a While Activity to Define Conditional Branching
	10.3.1 How To Create a While Activity
	10.3.2 What Happens When You Create a While Activity

	10.4 Specifying XPath Expressions to Bypass Activity Execution
	10.4.1 How to Specify XPath Expressions to Bypass Activity Execution
	10.4.2 What Happens When You Specify XPath Expressions to Bypass Activity Execution

11 Using Fault Handling in a BPEL Process

	11.1 Introduction to a Fault Handler
	11.2 Introduction to BPEL Standard Faults
	11.3 Introduction to Categories of BPEL Faults
	11.3.1 Business Faults
	11.3.2 Runtime Faults
	11.3.2.1 bindingFault
	11.3.2.2 remoteFault
	11.3.2.3 replayFault

	11.4 Using the Fault Management Framework
	11.4.1 How to Design a Fault Policy
	11.4.1.1 Understanding How Fault Policy Binding Resolution Works
	11.4.1.2 Creating a Fault Policy File for Automated Fault Recovery
	11.4.1.3 Associating a Fault Policy with Fault Policy Binding
	11.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples
	11.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers

	11.4.2 How to Execute a Fault Policy
	11.4.3 How to Use a Java Action Fault Policy
	11.4.4 What You May Need to Know About Fault Management Behavior When the Number of Instance Retries is Exceeded
	11.4.5 What You May Need to Know About Binding Level Retry Execution Within Fault Policy Retries

	11.5 Catching BPEL Runtime Faults
	11.5.1 How to Catch BPEL Runtime Faults

	11.6 Getting Fault Details with the getFaultAsString XPath Extension Function
	11.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function

	11.7 Throwing Internal Faults
	11.7.1 How to Create a Throw Activity
	11.7.2 What Happens When You Create a Throw Activity

	11.8 Returning External Faults
	11.8.1 How to Return a Fault in a Synchronous Interaction
	11.8.2 How to Return a Fault in an Asynchronous Interaction

	11.9 Using a Scope Activity to Manage a Group of Activities
	11.9.1 How to Create a Scope Activity
	11.9.2 How to Add Descriptive Notes and Images to a Scope Activity
	11.9.3 What Happens After You Create a Scope Activity
	11.9.4 What You May Need to Know About Scopes
	11.9.5 How to Use a Fault Handler within a Scope
	11.9.6 How to Create a Catch Activity
	11.9.7 What Happens When You Create a Catch Branch
	11.9.8 How to Create an Empty Activity to Insert No-Op Instructions into a Business Process
	11.9.9 What Happens When You Create an Empty Activity

	11.10 Using Compensation After Undoing a Series of Operations
	11.10.1 How to Use Compensation After Undoing a Series of Operations
	11.10.2 How to Create a Compensate Activity
	11.10.3 What Happens When You Create a Compensate Activity

	11.11 Using the Terminate Activity to Stop a Business Process Instance
	11.11.1 How to Create a Terminate Activity
	11.11.2 What Happens When You Create a Terminate Activity

	11.12 Throwing Faults with Assertion Conditions
	11.12.1 Use of faultName and message Attributes
	11.12.2 Multiple Assertions
	11.12.3 Use of Built-in and Custom XPath Functions and $variable References
	11.12.4 Assertion Condition Evaluation Logs Events to the Instance Audit Trail
	11.12.5 Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault
	11.12.6 How to Create Assertion Conditions
	11.12.7 How to Disable Assertions
	11.12.8 What Happens When You Create Assertion Conditions

12 Transaction and Fault Propagation Semantics in BPEL Processes

	12.1 Introduction to Transaction Semantics
	12.1.1 Oracle BPEL Process Manager Transaction Semantics
	12.1.1.1 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew
	12.1.1.2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to required

	12.2 Introduction to Execution of One-way Invocations

13 Incorporating Java and Java EE Code in a BPEL Process

	13.1 Introduction to Java and Java EE Code in BPEL Processes
	13.2 Incorporating Java and Java EE Code in BPEL Processes
	13.2.1 How to Wrap Java Code as a SOAP Service
	13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service
	13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag
	13.2.4 How to Use an XML Facade to Simplify DOM Manipulation
	13.2.5 How to Use bpelx:exec Built-in Methods
	13.2.6 How to Use Java Code Wrapped in a Service Interface

	13.3 Adding Custom Classes and JAR Files
	13.3.1 How to Add Custom Classes and JAR Files

	13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper
	13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper
	13.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding Activity

	13.5 Embedding Service Data Objects with bpelx:exec

14 Using Events and Timeouts in BPEL Processes

	14.1 Introduction to Event and Timeout Concepts
	14.2 Creating a Pick Activity to Select Between Continuing a Process or Waiting
	14.2.1 How To Create a Pick Activity
	14.2.2 What Happens When You Create a Pick Activity

	14.3 Setting Timeouts for Request-Response Operations in Receive Activities
	14.3.1 Timeout Settings Relative from When the Activity is Invoked
	14.3.2 Timeout Settings as an Absolute Date Time
	14.3.3 Timeout Settings Computed Dynamically with an XPath Expression
	14.3.4 bpelx:timeout Fault Thrown During an Activity Timeout
	14.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout
	14.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration Alarm Table)
	14.3.7 How to Set Timeouts for Request-Response Operations in Receive Activities
	14.3.8 What Happens When You Set Timeouts for Request-Response Operations in Receive Activities

	14.4 Creating a Wait Activity to Set an Expiration Time
	14.4.1 How To Specify the Minimum Wait Time
	14.4.2 How to Create a Wait Activity
	14.4.3 What Happens When You Create a Wait Activity

	14.5 Setting Timeouts for Synchronous Processes

15 Coordinating Master and Detail Processes

	15.1 Introduction to Master and Detail Process Coordinations
	15.1.1 BPEL File Definition for the Master Process
	15.1.1.1 Correlating a Master Process with Multiple Detail Processes

	15.1.2 BPEL File Definition for Detail Processes

	15.2 Defining Master and Detail Process Coordination in Oracle JDeveloper
	15.2.1 How to Create a Master Process
	15.2.2 How to Create a Detail Process
	15.2.3 How to Create an Invoke Activity

16 Customizing SOA Composite Applications

	16.1 Introduction to Customizing SOA Composite Applications
	16.1.1 How To Create the Customizable Composite
	16.1.2 How To Customize the Vertical Application
	16.1.3 How to Customize the Customer Version
	16.1.4 How to Upgrade the Composite
	16.1.4.1 Core Application Team
	16.1.4.2 The Vertical Application Team
	16.1.4.3 The Customer

17 Using the Notification Service

	17.1 Introduction to the Notification Service
	17.2 Introduction to Notification Channel Setup
	17.3 Selecting Notification Channels During BPEL Process Design
	17.3.1 How To Configure the Email Notification Channel
	17.3.1.1 Setting Email Attachments
	17.3.1.2 Formatting the Body of an Email Message as HTML
	17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function

	17.3.2 How to Configure the IM Notification Channel
	17.3.3 How to Configure the SMS Notification Channel
	17.3.4 How to Configure the Voice Notification Channel
	17.3.5 How to Select Email Addresses and Telephone Numbers Dynamically
	17.3.6 How to Select Notification Recipients by Browsing the User Directory

	17.4 Allowing the End User to Select Notification Channels
	17.4.1 How to Allow the End User to Select Notification Channels
	17.4.1.1 How to Create and Send Headers for Notifications

18 Using Oracle BPEL Process Manager Sensors

	18.1 Introduction to Sensors
	18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper
	18.2.1 How to Configure Sensors
	18.2.2 How to Configure Sensor Actions
	18.2.3 How to Publish to Remote Topics and Queues
	18.2.4 How to Create a Custom Data Publisher
	18.2.5 How to Register the Sensors and Sensor Actions in composite.xml

	18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control Console

Part III Using the Oracle Mediator Service Component

19 Getting Started with Oracle Mediator

	19.1 Introduction to Oracle Mediator
	19.2 Introduction to the Mediator Editor Environment
	19.3 Creating an Oracle Mediator
	19.3.1 Creating an Oracle Mediator Without an Interface Definition
	19.3.1.1 How to Create an Oracle Mediator Without an Interface Definition
	19.3.1.2 How to Define an Interface for an Oracle Mediator Without an Interface Definition

	19.3.2 Creating an Oracle Mediator Based on a WSDL File
	19.3.2.1 How to Create an Oracle Mediator Based on a WSDL File

	19.3.3 Creating an Oracle Mediator with a One-Way Interface Definition
	19.3.3.1 How to Create an Oracle Mediator with a One-Way Interface Definition
	19.3.3.2 What Happens When You Create an Oracle Mediator with a One-Way Interface Definition

	19.3.4 Creating an Oracle Mediator with a Synchronous Interface Definition
	19.3.4.1 How to Create an Oracle Mediator with a Synchronous Interface Definition
	19.3.4.2 What Happens When You Create an Oracle Mediator with a Synchronous Interface Definition

	19.3.5 Creating an Oracle Mediator with an Asynchronous Interface Definition
	19.3.5.1 How to Create an Oracle Mediator with an Asynchronous Interface Definition
	19.3.5.2 What Happens When You Create an Oracle Mediator with an Asynchronous Interface Definition

	19.3.6 Creating an Oracle Mediator for an Event Subscription
	19.3.6.1 How to Create an Oracle Mediator for an Event Subscription
	19.3.6.2 What Happens When You Create an Oracle Mediator for an Event Subscription

	19.3.7 What You May Need to Know About the Information Available in the Mediator Editor
	19.3.7.1 Oracle Mediator Definition
	19.3.7.2 Routing Rule

	19.4 Generating a WSDL File
	19.4.1 How to Generate a WSDL File

	19.5 Specifying Operation or Event Subscription Properties
	19.6 Modifying an Oracle Mediator Service Component
	19.6.1 How To Modify Operations of an Oracle Mediator
	19.6.2 How To Modify Event Subscriptions of an Oracle Mediator

20 Creating Oracle Mediator Routing Rules

	20.1 Introduction to Routing Rules
	20.2 Defining Routing Rules
	20.2.1 How To Use the Routing Rules Section
	20.2.2 How to Create Static Routing Rules
	20.2.2.1 How to Specify Oracle Mediator Services or Events
	20.2.2.2 What You May Need to Know About Using the Echo Option
	20.2.2.3 How to Specify Sequential or Parallel Execution
	20.2.2.4 How to Handle Response Messages
	20.2.2.5 How to Handle Multiple Callbacks
	20.2.2.6 How to Handle Faults
	20.2.2.7 How to Specify an Expression for Filtering Messages
	20.2.2.8 How to Create Transformations
	20.2.2.9 How to Assign Values
	20.2.2.10 What You May Need to Know About the Assign Activity
	20.2.2.11 How to Access Headers for Filters and Assignments
	20.2.2.12 How to Use Semantic Validation
	20.2.2.13 How to Use Java Callouts

	20.2.3 How to Create Dynamic Routing Rules
	20.2.4 What You May Need to Know About Using Dynamic Routing Rules
	20.2.5 How to Define Default Routing Rules
	20.2.5.1 Default Rule Scenarios
	20.2.5.2 Default Rule Target
	20.2.5.3 Default Rule: Validation, Transformation, and Assign Functionality
	20.2.5.4 Default Rule: Java Callouts
	20.2.5.5 Default Rule: Mediator .mplan File

	20.3 Creating an Oracle Mediator for Routing Messages
	20.3.1 How to Create the CustomerRouter Use Case
	20.3.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project
	20.3.1.2 Task 2: How to Create the CustomerRouter Oracle Mediator Service Component
	20.3.1.3 Task 3: How to Create a File Adapter Service
	20.3.1.4 Task 4: How to Create a File Adapter Reference
	20.3.1.5 Task 5: How to Specify Routing Rules
	20.3.1.6 Task 6: How to Create an Application Server Connection
	20.3.1.7 Task 7: How to Deploy the CustomerRouterProject

	20.3.2 Running and Monitoring the CustomerRouterProject Application

	20.4 Creating an Asynchronous Request and Response Using Oracle Mediator
	20.4.1 How to Create the AsyncMediator Use Case
	20.4.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project
	20.4.1.2 Task 2: How to Create a Server BPEL Process
	20.4.1.3 Task 3: How to Create an Oracle Mediator Service Component
	20.4.1.4 Task 4: How to Create a Client BPEL Process
	20.4.1.5 Task 5: How to Create the Invoke, Receive, and Assign Activities
	20.4.1.6 Task 6: How to Configure an Application Server Connection
	20.4.1.7 Task 7: How to Deploy the SOA Composite Application

21 Working with Multiple Part Messages in Oracle Mediator

	21.1 Introduction to Oracle Mediator Multipart Message Support
	21.2 Working with Multipart Request Messages
	21.2.1 How to Work with Multipart Request Messages
	21.2.1.1 How to Specify Filter Expressions
	21.2.1.2 How to Add Validations
	21.2.1.3 How to Create Transformations
	21.2.1.4 How to Assign Values

	21.2.2 How to Work with Multipart Reply, Fault, and Callback Source Messages
	21.2.3 How to Work with Multipart Target Messages

22 Using Oracle Mediator Error Handling

	22.1 Introduction to Oracle Mediator Error Handling
	22.1.1 Fault Policies
	22.1.1.1 Conditions
	22.1.1.2 Actions

	22.1.2 Fault Bindings
	22.1.3 Error Groups in Oracle Mediator

	22.2 Using Error Handling with Oracle Mediator
	22.2.1 How to Use Error Handling for an Oracle Mediator Service Component
	22.2.2 What Happens at Runtime

	22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control Console
	22.4 Error Handling XML Schema Definition Files
	22.4.1 Schema Definition File for fault-policies.xml
	22.4.2 Schema Definition File for fault-bindings.xml

23 Support for Resequencing in Oracle Mediator

	23.1 Introduction to the Resequencer
	23.1.1 Groups and Sequence IDs
	23.1.2 Identification of Groups and Sequence IDs

	23.2 Resequencing Order
	23.2.1 Standard Resequencer
	23.2.1.1 Overview of Standard Resequencer
	23.2.1.2 Information Required for Standard Resequencing
	23.2.1.3 Example of the Standard Resequencer

	23.2.2 FIFO Resequencer
	23.2.2.1 Overview of the FIFO Resequencer
	23.2.2.2 Information Required for FIFO Resequencing
	23.2.2.3 Example of the FIFO Resequencer

	23.2.3 BestEffort Resequencer
	23.2.3.1 Overview of the BestEffort Resequencer
	23.2.3.2 Information Required for BestEffort Resequencing
	23.2.3.3 Example of BestEffort Resequencing

	23.3 Configuring the Resequencer
	23.3.1 How to Determine the Resequencing Level
	23.3.2 How to Configure the Resequencing Strategy
	23.3.2.1 Standard Resequencing
	23.3.2.2 FIFO Resequencing
	23.3.2.3 BestEffort Resequencing

	23.4 Limitations in the Resequencer

24 Understanding Message Exchange Patterns of an Oracle Mediator

	24.1 Understanding a One-way Message Exchange Pattern
	24.1.1 The one.way.returns.fault Property

	24.2 Understanding a Request-Reply Message Exchange Pattern
	24.3 Understanding a Request-Reply-Fault Message Exchange Pattern
	24.4 Understanding a Request-Callback Message Exchange Pattern
	24.5 Understanding a Request-Reply-Callback Message Exchange Pattern
	24.6 Understanding a Request-Reply-Fault-Callback Message Exchange Pattern

Part IV Using the Business Rules Service Component

25 Getting Started with Oracle Business Rules

	25.1 Introduction to the Business Rule Service Component
	25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks

	25.2 Overview of Rules Designer Editor Environment
	25.2.1 Application Navigator
	25.2.2 Rules Designer Window
	25.2.3 Structure Window
	25.2.4 Business Rule Validation Log Window

	25.3 Introduction to Creating and Editing Business Rules
	25.3.1 How to Create Business Rules Components
	25.3.2 Introduction to Working with Business Rules in Rules Designer

	25.4 Adding Business Rules to a BPEL Process
	25.4.1 How to Add Business Rules to a BPEL Process
	25.4.2 What Happens When You Add Business Rules to a BPEL Process
	25.4.3 What Happens When You Create a Business Rules Dictionary
	25.4.4 What You Need to Know About Invoking Business Rules in a BPEL Process
	25.4.5 What You Need to Know About Decision Component Stateful Operation

	25.5 Adding Business Rules to a SOA Composite Application
	25.5.1 How to Add Business Rules to a SOA Composite Application
	25.5.2 How to Select and Modify a Decision Function in a Business Rule Component

	25.6 Running Business Rules in a Composite Application
	25.7 Using Business Rules with Oracle ADF Business Components Fact Types

26 Using Declarative Components and Task Flows

	26.1 Introduction to Declarative Components and Task Flows
	26.2 Using the Oracle Business Rules Editor Declarative Component
	26.2.1 Introduction to the Oracle Business Rules Editor Component
	26.2.2 How to Create and Run a Sample Application by Using the Rules Editor Component
	26.2.3 How to Deploy a Rules Editor Application to a Standalone Weblogic Server
	26.2.4 What You May Need to Know About the Supported Tags of the Rules Editor Component

	26.3 Using the Oracle Business Rules Dictionary Editor Declarative Component
	26.3.1 Introduction to the Oracle Business Rules Dictionary Component
	26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary Editor Component
	26.3.3 How to Deploy a Rules Dictionary Editor Application to a Standalone Weblogic Server
	26.3.4 What You May Need to Know About the Supported Attributes of the Rules Dictionary Editor Component

	26.4 Using the Oracle Business Rules Dictionary Task Flow
	26.4.1 Introduction to the Oracle Business Rules Dictionary Task Flow
	26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary Editor Task Flow
	26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone Weblogic Server

	26.5 Localizing the ADF-Based Web Application

Part V Using the Human Workflow Service Component

27 Getting Started with Human Workflow

	27.1 Introduction to Human Workflow
	27.2 Introduction to Human Workflow Concepts
	27.2.1 Introduction to Design and Runtime Concepts
	27.2.1.1 Task Assignment and Routing
	27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
	27.2.1.3 Task Stakeholders
	27.2.1.4 Task Deadlines
	27.2.1.5 Notifications
	27.2.1.6 Task Forms
	27.2.1.7 Advanced Concepts
	27.2.1.8 Reports and Audit Trails

	27.2.2 Introduction to the Stages of Human Workflow Design

	27.3 Introduction to Human Workflow Features
	27.3.1 Human Workflow Use Cases
	27.3.1.1 Task Assignment to a User or Role
	27.3.1.2 Use of the Various Participant Types
	27.3.1.3 Escalation, Expiration, and Delegation
	27.3.1.4 Automatic Assignment and Delegation
	27.3.1.5 Dynamic Assignment of Users Based on Task Content

	27.3.2 Designing a Human Task from Start to Finish
	27.3.2.1 Prerequisites
	27.3.2.2 How to Create the Vacation Request Process

	27.3.3 Additional Tutorials

	27.4 Introduction to Human Workflow Architecture
	27.4.1 Human Workflow Services
	27.4.2 Use of Human Task
	27.4.3 Service Engines

28 Designing Human Tasks

	28.1 Introduction to Human Task Design Concepts
	28.2 Introduction to the Modeling Process
	28.2.1 Create a Human Task Definition
	28.2.2 Associate the Human Task Definition with a BPEL Process
	28.2.3 Generate the Task Form

	28.3 Creating the Human Task Definition with the Human Task Editor
	28.3.1 How to Create a Human Task Service Component
	28.3.2 What Happens When You Create a Human Task Service Component
	28.3.3 How to Access the Sections of the Human Task Editor
	28.3.4 How to Specify the Title, Description, Outcome, Priority, Category, Owner, and Application Context
	28.3.4.1 Specifying a Task Title
	28.3.4.2 Specifying a Task Description
	28.3.4.3 Specifying a Task Outcome
	28.3.4.4 Specifying a Task Priority
	28.3.4.5 Specifying a Task Category
	28.3.4.6 Specifying a Task Owner
	28.3.4.7 Specifying an Application Context

	28.3.5 How to Specify the Task Payload Data Structure
	28.3.6 How to Assign Task Participants
	28.3.6.1 Configuring the Single Participant Type
	28.3.6.2 Configuring the Parallel Participant Type
	28.3.6.3 Configuring the Serial Participant Type
	28.3.6.4 Configuring the FYI Participant Type

	28.3.7 How to Select a Routing Policy
	28.3.7.1 Routing Tasks to All Participants in the Specified Order
	28.3.7.2 Specifying Advanced Task Routing Using Business Rules
	28.3.7.3 Using External Routing
	28.3.7.4 Configuring the Error Assignee

	28.3.8 How to Specify Multilingual Settings and Style Sheets
	28.3.8.1 Specifying WordML and Other Style Sheets for Attachments
	28.3.8.2 Specifying Multilingual Settings

	28.3.9 How to Escalate, Renew, or End the Task
	28.3.9.1 Introduction to Escalation and Expiration Policy
	28.3.9.2 Specifying a Policy to Never Expire
	28.3.9.3 Specifying a Policy to Expire
	28.3.9.4 Extending an Expiration Policy Period
	28.3.9.5 Escalating a Task Policy
	28.3.9.6 Specifying Escalation Rules
	28.3.9.7 Specifying a Due Date

	28.3.10 How to Specify Participant Notification Preferences
	28.3.10.1 Notifying Recipients of Changes to Task Status
	28.3.10.2 Editing the Notification Message
	28.3.10.3 Setting Up Reminders
	28.3.10.4 Changing the Character Set Encoding
	28.3.10.5 Securing Notifications to Exclude Details
	28.3.10.6 Making Email Messages Actionable
	28.3.10.7 Sending Task Attachments with Email Notifications

	28.3.11 How to Specify Access Policies and Task Actions on Task Content
	28.3.11.1 Specifying Access Policies on Task Content

	28.3.12 How to Specify a Workflow Digital Signature Policy
	28.3.12.1 Specifying a Certificate Authority

	28.3.13 How to Specify Restrictions on Task Assignments
	28.3.14 How to Specify Java or Business Event Callbacks
	28.3.14.1 Specifying Callback Classes on Task Status

	28.3.15 How to Specify Task and Routing Customizations in BPEL Callbacks
	28.3.16 How to Exit the Human Task Editor and Save Your Changes

	28.4 Associating the Human Task Service Component with a BPEL Process
	28.4.1 How to Associate a Human Task with a BPEL Process
	28.4.2 What You May Need to Know About Deleting a Wire Between a Human Task Service Component and a BPEL Process
	28.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter Variables
	28.4.3.1 Specifying the Task Title
	28.4.3.2 Specifying the Task Initiator and Task Priority
	28.4.3.3 Specifying Task Parameters

	28.4.4 How to Define the Human Task Activity Advanced Features
	28.4.4.1 Specifying a Scope Name and a Global Task Variable Name
	28.4.4.2 Specifying a Task Owner
	28.4.4.3 Specifying an Identification Key
	28.4.4.4 Specifying an Identity Context
	28.4.4.5 Specifying an Application Context
	28.4.4.6 Including the Task History of Other Human Tasks

	28.4.5 How to View the Generated Human Task Activity
	28.4.5.1 Invoking BPEL Callbacks

	28.4.6 What You May Need to Know About Changing the Generated Human Task Activity
	28.4.7 What You May Need to Know About Deleting a Partner Link Generated by a Human Task
	28.4.8 How to Define Outcome-Based Modeling
	28.4.8.1 Specifying Payload Updates
	28.4.8.2 Using Case Statements for Other Task Conclusions

29 Designing Task Forms for Human Tasks

	29.1 Introduction to the Task Form
	29.1.1 What You May Need to Know About Task Forms: Time Zone Conversion

	29.2 Associating the Task Flow with the Task Service
	29.3 Creating an ADF Task Flow Based on a Human Task
	29.3.1 How To Create an ADF Task Flow from the Human Task Editor
	29.3.2 How To Create an ADF Task Flow Based on a Human Task
	29.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task
	29.3.4 What You May Need to Know About Having Multiple ADF Task Flows That Contain the Same Element with Different Meta-attributes

	29.4 Creating a Task Form
	29.4.1 How To Create an Autogenerated Task Form
	29.4.2 How To Create a Custom Task Form Using the Task Form Wizard
	29.4.3 How To Create a Task Form Using the Complete Task with Payload Drop Handler
	29.4.4 How To Create Task Form Regions Using Individual Drop Handlers
	29.4.5 How To Add the Payload to the Task Form
	29.4.6 What Happens When You Create a Task Form

	29.5 Refreshing Data Controls When the Task XSD Changes
	29.6 Securing the Task Flow Application
	29.7 Creating an Email Notification
	29.7.1 How To Create an Email Notification
	29.7.1.1 Creating a Task Flow with a Router
	29.7.1.2 Creating an Email Notification Page

	29.7.2 What Happens When You Create an Email Notification Page
	29.7.3 What You May Need to Know About Creating an Email Notification Page

	29.8 Deploying a Composite Application with a Task Flow
	29.8.1 Before Deploying the Task Form: Port Changes
	29.8.2 How To Deploy a Composite Application with a Task Flow
	29.8.3 How To Redeploy the Task Form
	29.8.4 How To Deploy a Task Flow as a Separate Application
	29.8.5 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server
	29.8.5.1 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
	29.8.5.2 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
	29.8.5.3 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server
	29.8.5.4 Including a Grant for bpm-services.jar
	29.8.5.5 Deploying the Application

	29.8.6 What Happens When You Deploy the Task Form
	29.8.7 What You May Need to Know About Undeploying a Task Flow

	29.9 Displaying a Task Form in the Worklist
	29.9.1 How To Display the Task Form in the Worklist

	29.10 Displaying a Task in an Email Notification
	29.11 Reusing the Task Flow Application with Multiple Human Tasks
	29.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks

30 Using Oracle BPM Worklist

	30.1 Introduction to Oracle BPM Worklist
	30.1.1 What You May Need To Know About Oracle BPM Worklist

	30.2 Logging In to Oracle BPM Worklist
	30.2.1 How To Log In to the Worklist
	30.2.1.1 Enabling the weblogic User for Logging in to the Worklist

	30.2.2 What Happens When You Log In to the Worklist
	30.2.3 What Happens When You Change a User's Privileges While They are Logged in to Oracle BPM Worklist

	30.3 Customizing the Task List Page
	30.3.1 How To Filter Tasks
	30.3.2 How To Create and Customize Worklist Views
	30.3.3 How To Customize the Task Status Chart
	30.3.4 How To Create a ToDo Task
	30.3.5 How To Create a Subtask

	30.4 Acting on Tasks: The Task Details Page
	30.4.1 System Actions
	30.4.2 Task History
	30.4.3 How To Act on Tasks
	30.4.4 How To Act on Tasks That Require a Digital Signature

	30.5 Approving Tasks
	30.6 Setting a Vacation Period
	30.7 Setting Rules
	30.7.1 How To Create User Rules
	30.7.2 How To Create Group Rules
	30.7.3 Assignment Rules for Tasks with Multiple Assignees

	30.8 Using the Worklist Administration Functions
	30.8.1 How To Manage Other Users' or Groups' Rules (as an Administrator)
	30.8.2 How To Set the Worklist Display (Application Preferences)

	30.9 Specifying Notification Settings
	30.9.1 Messaging Filter Rules
	30.9.1.1 Data Types
	30.9.1.2 Attributes

	30.9.2 Rule Actions
	30.9.3 Managing Messaging Channels
	30.9.3.1 Viewing Your Messaging Channels
	30.9.3.2 Creating, Editing, and Deleting a Messaging Channel

	30.9.4 Managing Messaging Filters
	30.9.4.1 Viewing Messaging Filters
	30.9.4.2 Creating Messaging Filters
	30.9.4.3 Editing a Messaging Filter
	30.9.4.4 Deleting a Messaging Filter

	30.10 Using Flex Fields
	30.10.1 How To Map Flex Fields

	30.11 Creating Worklist Reports
	30.11.1 How To Create Reports
	30.11.2 What Happens When You Create Reports
	30.11.2.1 Unattended Tasks Report
	30.11.2.2 Tasks Priority Report
	30.11.2.3 Tasks Cycle Time Report
	30.11.2.4 Tasks Productivity Report

	30.12 Accessing Oracle BPM Worklist in Local Languages
	30.12.1 How To Change the Language Used in the Worklist
	30.12.2 What You May Need to About Runtime Languages Not Displaying in the Worklist
	30.12.3 What You May Need to Know About Inconsistent Display Languages in Worklist and Embedded User's Notification Preference Interface
	30.12.4 How To Change the Time Zone Used in the Worklist

	30.13 Creating Reusable Worklist Regions
	30.13.1 How to Create an Application With an Embedded Reusable Worklist Region
	30.13.2 How to Set Up the Deployment Profile
	30.13.3 How to Prepare Federated Mode Task Flows For Deployment
	30.13.4 What You May Need to Know About Task List Task Flow
	30.13.5 What You May Need to Know About Certificates Task Flow
	30.13.6 What You May Need to Know About the Reports Task Flow
	30.13.7 What You May Need to Know About Application Preferences Task Flow
	30.13.8 What You May Need to Know About Flex Fields Task Flow
	30.13.9 What You May Need to Know About Rules Task Flow

31 Building a Custom Worklist Client

	31.1 Introduction to Building Clients for Workflow Services
	31.2 Packages and Classes for Building Clients
	31.3 Workflow Service Clients
	31.3.1 The IWorkflowServiceClient Interface

	31.4 Class Paths for Clients Using SOAP
	31.5 Class Paths for Clients Using Remote EJBs
	31.6 Class Paths for Clients Using Local EJBs
	31.7 Enterprise JavaBeans References in Web Applications
	31.8 Initiating a Task
	31.8.1 Creating a Task
	31.8.2 Creating a Payload Element in a Task
	31.8.3 Initiating a Task Programmatically

	31.9 Changing Workflow Standard View Definitions
	31.10 Writing a Worklist Application Using the HelpDeskUI Sample

32 Introduction to Human Workflow Services

	32.1 Introduction to Human Workflow Services
	32.1.1 Enterprise JavaBeans, SOAP, and Java Support for the Human Workflow Services
	32.1.1.1 Support for Foreign JNDI Names

	32.1.2 Security Model for Services
	32.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP Web Services
	32.1.2.2 Creating Human Workflow Context on Behalf of a User
	32.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by a JAAS Application

	32.1.3 Task Service
	32.1.4 Task Query Service
	32.1.5 Identity Service
	32.1.5.1 Identity Service Providers

	32.1.6 Task Metadata Service
	32.1.7 User Metadata Service
	32.1.8 Task Report Service
	32.1.9 Runtime Config Service
	32.1.9.1 Internationalization of Attribute Labels

	32.1.10 Evidence Store Service and Digital Signatures
	32.1.10.1 Prerequisites
	32.1.10.2 Interfaces and Methods

	32.1.11 Task Instance Attributes

	32.2 Notifications from Human Workflow
	32.2.1 Contents of Notification
	32.2.2 Error Message Support
	32.2.3 Reliability Support
	32.2.4 Management of Oracle Human Workflow Notification Service
	32.2.5 How to Configure the Notification Channel Preferences
	32.2.6 How to Configure Notification Messages in Different Languages
	32.2.7 How to Send Actionable Messages
	32.2.7.1 How to Send Actionable Emails for Human Tasks

	32.2.8 How to Send Inbound and Outbound Attachments
	32.2.9 How to Send Inbound Comments
	32.2.10 How to Send Secure Notifications
	32.2.11 How to Set Channels Used for Notifications
	32.2.12 How to Send Reminders
	32.2.13 How to Set Automatic Replies to Unprocessed Messages
	32.2.14 How to Create Custom Notification Headers

	32.3 Assignment Service Configuration
	32.3.1 Dynamic Assignment and Task Escalation Functions
	32.3.1.1 How to Implement a Dynamic Assignment Function
	32.3.1.2 How to Configure Dynamic Assignment Functions
	32.3.1.3 How to Configure Display Names for Dynamic Assignment Functions
	32.3.1.4 How to Implement a Task Escalation Function

	32.3.2 Dynamically Assigning Task Participants with the Assignment Service
	32.3.2.1 How to Implement an Assignment Service
	32.3.2.2 Example of Assignment Service Implementation
	32.3.2.3 How to Deploy a Custom Assignment Service

	32.3.3 Custom Escalation Function

	32.4 Class Loading for Callbacks and Resource Bundles
	32.5 Resource Bundles in Workflow Services
	32.5.1 Task Resource Bundles
	32.5.2 Global Resource Bundle – WorkflowLabels.properties
	32.5.3 Worklist Client Resource Bundles
	32.5.4 Task Detail ADF Task Flow Resource Bundles
	32.5.5 Case Sensitivity

	32.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services
	32.6.1 Human Workflow Services Clients
	32.6.1.1 Task Query Service Client Code
	32.6.1.2 Configuration Option
	32.6.1.3 Client Logging
	32.6.1.4 Configuration Migration Utility

	32.6.2 Identity Propagation
	32.6.2.1 Enterprise JavaBeans Identity Propagation
	32.6.2.2 SAML Token Identity Propagation for SOAP Client
	32.6.2.3 Public Key Alias

	32.6.3 Client JAR Files

	32.7 Database Views for Oracle Workflow
	32.7.1 Unattended Tasks Report View
	32.7.2 Task Cycle Time Report View
	32.7.3 Task Productivity Report View
	32.7.4 Task Priority Report View

33 Integrating Microsoft Excel with a Human Task

	33.1 Configuring Your Environment for Invoking a BPEL Process from an Excel Workbook
	33.1.1 How to Create an JDeveloper Project of the Type Web Service Data Control
	33.1.2 How to Create a Dummy JSF Page
	33.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project
	33.1.4 What Happens When You Add Desktop Integration to Your JDeveloper Project
	33.1.5 How to Deploy the Web Application You Created in Step 1
	33.1.6 How to Install Microsoft Excel
	33.1.7 How to Install the Oracle ADF-Desktop Integration Plug-in
	33.1.8 How to Specify the User Interface Controls and Create the Excel Workbook

	33.2 Attaching Excel Workbooks to Human Task Workflow Email Notifications
	33.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email Notifications
	33.2.2 What Happens During Runtime When You Enable Attachment of Excel Workbooks to Human Task Workflow Email Notifications
	33.2.3 Example: Attaching an Excel Workbook to Email Notifications
	33.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities
	33.2.3.2 Task 2: Set up Authentication
	33.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel Workbook
	33.2.3.4 Task 4: Prepare the Excel Workbook
	33.2.3.5 Task 5: Deploy the ADF Task Flow
	33.2.3.6 Task 6: Test the Deployed Application

34 Configuring Task List Portlets

	34.1 Introduction to Task List Portlets
	34.2 Deploying the Task List Portlet Producer Application to a Portlet Server
	34.2.1 Deployment Prerequisites
	34.2.2 How to Deploy the Task List Portlet Producer Application
	34.2.3 How to Connect the Task List Producer to the Remote SOA Server
	34.2.3.1 How to Define the Foreign JNDI on the Oracle WebCenter Oracle WebLogic Server
	34.2.3.2 How to Configure EJB Identity Propagation
	34.2.3.3 How to Configure the Identity Store

	34.2.4 How to Secure the Task List Portlet Producer Application Using Web Services Security
	34.2.5 How to Specify the Inbound Security Policy

	34.3 Creating a Portlet Consumer Application for Embedding the Task List Portlet
	34.3.1 How To Create a Portlet Consumer Application for Embedding the Task List Portlet

	34.4 Passing Worklist Portlet Parameters
	34.4.1 Assignment Filter Constraints
	34.4.2 Example of File Containing All Column Constants

Part VI Using Binding Components

35 Getting Started with Binding Components

	35.1 Introduction to Binding Components
	35.1.1 Web Services
	35.1.1.1 WS-Atomic Transaction Support

	35.1.2 HTTP Binding Service
	35.1.2.1 Supported Interactions
	35.1.2.2 How to Configure the HTTP Binding Service
	35.1.2.3 How to Enable Basic Authentication

	35.1.3 JCA Adapters
	35.1.3.1 AQ Adapter
	35.1.3.2 Database Adapter
	35.1.3.3 File Adapter
	35.1.3.4 FTP Adapter
	35.1.3.5 JMS Adapter
	35.1.3.6 MQ Adapter
	35.1.3.7 Oracle Applications Adapter
	35.1.3.8 Socket Adapter
	35.1.3.9 Third Party Adapter

	35.1.4 Oracle BAM
	35.1.5 Oracle B2B
	35.1.6 ADF-BC Services
	35.1.7 EJB Services
	35.1.8 Direct Binding Services

	35.2 Introduction to Integrating a Binding Component in a SOA Composite Application
	35.2.1 How to Integrate a Binding Component in a SOA Composite Application
	35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java Class

36 Integrating Enterprise JavaBeans with SOA Composite Applications

	36.1 Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications
	36.1.1 Integration Through SDO-Based EJBs
	36.1.2 Integration Through Java Interfaces

	36.2 Designing an SDO-Based Enterprise JavaBeans Application
	36.2.1 How to Create SDO Objects Using the SDO Compiler
	36.2.2 How to Create a Session Bean and Import the SDO Objects
	36.2.3 How to Create a Profile and an EAR File
	36.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean
	36.2.5 How to Use Web Service Annotations
	36.2.6 How to Deploy the Enterprise JavaBeans EAR File

	36.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper
	36.3.1 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications
	36.3.2 How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite Applications

	36.4 Designing an SDO-Based Enterprise JavaBeans Client to Invoke Oracle SOA Suite
	36.5 Specifying Enterprise JavaBeans Roles
	36.6 Configuring JNDI Access
	36.6.1 How to Create a Foreign JNDI
	36.6.2 How to Create a Custom CSF Map for JNDI Lookup

37 Using the Direct Binding Invocation API

	37.1 Introduction to Direct Binding
	37.2 Introduction to the Direct Binding Invocation API
	37.2.1 Synchronous Direct Binding Invocation
	37.2.2 Asynchronous Direct Binding Invocation
	37.2.3 SOA Direct Address Syntax
	37.2.4 SOA Transaction Propagation

	37.3 Invoking a SOA Composite Application with the Invocation API
	37.3.1 How to Create an Inbound Direct Binding Service
	37.3.2 How to Create an Outbound Direct Binding Reference

	37.4 Samples Using the Direct Binding Invocation API

Part VII Sharing Functionality Across Service Components

38 Creating Transformations with the XSLT Mapper

	38.1 Introduction to the XSLT Mapper
	38.1.1 Overview of XSLT Creation
	38.1.2 Guidelines for Using the XSLT Mapper

	38.2 Creating an XSL Map File
	38.2.1 How to Create an XSL Map File in Oracle BPEL Process Manager
	38.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files in Oracle BPEL Process Manager
	38.2.3 How to Create an XSL Map File in Oracle Mediator
	38.2.4 What You May Need to Know About Creating an XSL Map File
	38.2.5 What Happens at Runtime If You Pass a Payload Through Oracle Mediator Without Creating an XSL Map File
	38.2.6 What Happens If You Receive an Empty Namespace Tag in an Output Message

	38.3 Designing Transformation Maps with the XSLT Mapper
	38.3.1 How to Add Additional Sources
	38.3.2 How to Perform a Simple Copy by Linking Nodes
	38.3.3 How to Set Constant Values
	38.3.4 How to Add Functions
	38.3.4.1 Editing Function Parameters
	38.3.4.2 Chaining Functions
	38.3.4.3 Using Named Templates
	38.3.4.4 Importing User-Defined Functions

	38.3.5 How to Edit XPath Expressions
	38.3.6 How to Add XSLT Constructs
	38.3.6.1 Using Conditional Processing with xsl:if
	38.3.6.2 Using Conditional Processing with xsl:choose
	38.3.6.3 Creating Loops with xsl:for-each
	38.3.6.4 Cloning xsl:for-each
	38.3.6.5 Applying xsl:sort to xsl:for-each
	38.3.6.6 Copying Nodes with xsl:copy-of
	38.3.6.7 Including External Templates with xsl:include

	38.3.7 How to Automatically Map Nodes
	38.3.7.1 Using Auto Mapping with Confirmation

	38.3.8 What You May Need to Know About Automatic Mapping
	38.3.9 How to View Unmapped Target Nodes
	38.3.10 How to Generate Dictionaries
	38.3.11 What You May Need to Know About Generating Dictionaries in Which Functions are Used
	38.3.12 How to Create Map Parameters and Variables
	38.3.12.1 Creating a Map Parameter
	38.3.12.2 Creating a Map Variable

	38.3.13 How to Search Source and Target Nodes
	38.3.14 How to Control the Generation of Unmapped Target Elements
	38.3.15 How to Ignore Elements in the XSLT Document
	38.3.16 How to Replace a Schema in the XSLT Mapper
	38.3.17 How to Substitute Elements and Types in the Source and Target Trees

	38.4 Testing the Map
	38.4.1 How to Test the Transformation Mapping Logic
	38.4.2 How to Generate Reports
	38.4.2.1 Correcting Memory Errors When Generating Reports

	38.4.3 How to Customize Sample XML Generation

	38.5 Demonstrating Features of the XSLT Mapper
	38.5.1 Opening the Application
	38.5.2 Creating a New XSLT Map in the BPEL Process
	38.5.3 Using Type Substitution to Map the Purchase Order Items
	38.5.4 Referencing Additional Source Elements
	38.5.5 Using Element Substitution to Map the Shipping Address
	38.5.6 Mapping the Remaining Fields
	38.5.7 Testing the Map

39 Using Business Events and the Event Delivery Network

	39.1 Introduction to Business Events
	39.1.1 Local and Remote Events Boundaries

	39.2 Creating Business Events in Oracle JDeveloper
	39.2.1 How to Create a Business Event

	39.3 Subscribing to a Business Event or Publishing a Business Event from an Oracle Mediator Service Component
	39.3.1 How to Subscribe to a Business Event
	39.3.2 What Happens When You Create and Subscribe to a Business Event
	39.3.3 What You May Need to Know About Subscribing to a Business Event
	39.3.4 How to Publish a Business Event
	39.3.5 What Happens When You Publish a Business Event

	39.4 Subscribing to a Business Event or Publishing a Business Event from a BPEL Process Service Component
	39.4.1 How to Subscribe to a Business Event
	39.4.2 How to Publish a Business Event
	39.4.3 What Happens When You Subscribe to and Publish a Business Event

	39.5 What You May Need to Know About Subscribing to a Business Event
	39.6 How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

Part VIII Completing Your Application

40 Enabling Security with Policies

	40.1 Introduction to Policies
	40.2 Attaching Policies to Binding Components and Service Components
	40.2.1 How to Attach Policies to Binding Components and Service Components
	40.2.2 How to Override Policy Configuration Property Values
	40.2.2.1 Overriding Client Configuration Property Values
	40.2.2.2 Overriding Server Configuration Property Values

41 Deploying SOA Composite Applications

	41.1 Introduction to Deployment
	41.2 Deployment Prerequisites
	41.2.1 Creating the Oracle SOA Suite Schema
	41.2.2 Creating a SOA Domain
	41.2.3 Configuring a SOA Cluster

	41.3 Understanding the Packaging Impact
	41.4 Anatomy of a Composite
	41.5 Preparing the Target Environment
	41.5.1 Creating Data Sources and Queues
	41.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS Adapter
	41.5.1.2 Script for Creation of the Database Resource and Redeployment of the Database Adapter

	41.5.2 Creating Connection Factories and Connection Pooling
	41.5.3 Enabling Security
	41.5.4 Deploying Trading Partner Agreements and Task Flows
	41.5.5 Creating an Application Server Connection
	41.5.6 Creating a SOA-MDS Connection

	41.6 Customizing Your Application for the Target Environment Prior to Deployment
	41.6.1 Customizing SOA Composite Applications for the Target Environment
	41.6.1.1 Introduction to Configuration Plans
	41.6.1.2 Introduction to a Configuration Plan File
	41.6.1.3 Introduction to Use Cases for a Configuration Plan
	41.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper
	41.6.1.5 How to Create a Configuration Plan with the WLST Utility
	41.6.1.6 How to Attach a Configuration Plan with ant Scripts

	41.7 Deploying SOA Composite Applications
	41.7.1 Deploying a Single SOA Composite in Oracle JDeveloper
	41.7.1.1 How to Deploy a Single SOA Composite

	41.7.2 Deploying Multiple SOA Composite Applications in Oracle JDeveloper
	41.7.2.1 How to Deploy Multiple SOA Composite Applications

	41.7.3 Deploying and Using Shared Metadata Across SOA Composite Applications in Oracle JDeveloper
	41.7.3.1 How to Deploy Shared Metadata
	41.7.3.2 How to Use Shared Metadata

	41.7.4 Deploying an Existing SOA Archive in Oracle JDeveloper
	41.7.4.1 How to Deploy an Existing SOA Archive from Oracle JDeveloper

	41.7.5 Managing SOA Composite Applications with Scripts
	41.7.5.1 How to Manage SOA Composite Applications with the WLST Utility
	41.7.5.2 How to Manage SOA Composite Applications with ant Scripts

	41.7.6 Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware Control Console
	41.7.7 Deploying SOA Composite Applications to a Cluster

	41.8 Postdeployment Configuration
	41.8.1 Security
	41.8.2 Updating Connections
	41.8.3 Updating Data Sources and Queues
	41.8.4 Attaching Policies

	41.9 Testing and Troubleshooting
	41.9.1 Verifying Deployment
	41.9.2 Initiating an Instance of a Deployed Composite
	41.9.3 Automating the Testing of Deployed Composites
	41.9.4 Troubleshooting Common Deployment Errors
	41.9.4.1 Common Oracle JDeveloper Deployment Issues
	41.9.4.2 Common Configuration Plan Issues
	41.9.4.3 Deploying to a Managed Oracle WebLogic Server
	41.9.4.4 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server
	41.9.4.5 Deploying with an Unreachable Proxy Server
	41.9.4.6 Increasing Memory to Recover from Compilation Errors

42 Automating Testing of SOA Composite Applications

	42.1 Introduction to the Composite Test Framework
	42.1.1 Test Cases Overview
	42.1.2 Test Suites Overview
	42.1.3 Emulations Overview
	42.1.4 Assertions Overview

	42.2 Introduction to the Components of a Test Suite
	42.2.1 Process Initiation
	42.2.2 Emulations
	42.2.3 Assertions
	42.2.4 Message Files

	42.3 Creating Test Suites and Test Cases
	42.3.1 How to Create Test Suites and Test Cases

	42.4 Creating the Contents of Test Cases
	42.4.1 How to Initiate Inbound Messages
	42.4.2 How to Emulate Outbound Messages
	42.4.3 How to Emulate Callback Messages
	42.4.4 How to Emulate Fault Messages
	42.4.5 How to Create Assertions
	42.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document
	42.4.5.2 Creating Assertions on a Leaf Element

	42.4.6 What You May Need to Know About Assertions

	42.5 Deploying and Running a Test Suite

Part IX Advanced Topics

43 Managing Large Documents and Large Numbers of Instances

	43.1 Best Practices for Handling Large Documents
	43.1.1 Use Cases for Handling Large Documents
	43.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads
	43.1.1.2 End-to-End Streaming with Attachments
	43.1.1.3 Processing Large XML with Repeating Constructs
	43.1.1.4 Processing Large XML Documents with Complex Structures

	43.1.2 Limitations on Concurrent Processing of Large Documents
	43.1.2.1 Opaque Schema for Processing Large Payloads
	43.1.2.2 Streaming MTOM Attachments

	43.1.3 General Tuning Recommendations
	43.1.3.1 General Recommendations
	43.1.3.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing
	43.1.3.3 Using the Assign Activity in Oracle BPEL Process Manager/Oracle Mediator
	43.1.3.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process Manager and Oracle Mediator)
	43.1.3.5 Using XSLT Transformations for Repeating Structures
	43.1.3.6 Processing Large Documents in Oracle B2B

	43.2 Best Practices for Handling Large Metadata
	43.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process
	43.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN)
	43.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)
	43.2.4 Using a Flow With Multiple Sequences
	43.2.5 Using a Flow with One Sequence
	43.2.6 Using Flow with No Sequence
	43.2.7 Large Numbers of Oracle Mediators in a Composites
	43.2.8 Importing Large Data Sets in Oracle B2B

	43.3 Best Practices for Handling Large Numbers of Instances
	43.3.1 Instance and Rejected Message Deletion with the Purge Script
	43.3.2 Improving the Loading of Pages in Oracle Enterprise Manager Fusion Middleware Control Console

44 Working with Domain Value Maps

	44.1 Introduction to Domain Value Maps
	44.1.1 Domain Value Map Features
	44.1.1.1 Qualifier Support
	44.1.1.2 Qualifier Order Support
	44.1.1.3 One-to-Many Mapping Support

	44.2 Creating Domain Value Maps
	44.2.1 How to Create Domain Value Maps
	44.2.2 What Happens When You Create a Domain Value Map

	44.3 Editing a Domain Value Map
	44.3.1 How to Add Columns to a Domain Value Map
	44.3.2 How to Add Rows to a Domain Value Map

	44.4 Using Domain Value Map Functions
	44.4.1 Understanding Domain Value Map Functions
	44.4.1.1 dvm:lookupValue
	44.4.1.2 dvm:lookupValue1M

	44.4.2 How to Use Domain Value Map Functions in Transformations
	44.4.3 How to Use Domain Value Map Functions in XPath Expressions
	44.4.4 What Happens at Runtime

	44.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup
	44.5.1 How to Create the HierarchicalValue Use Case
	44.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project
	44.5.1.2 Task 2: How to Create a Domain Value Map
	44.5.1.3 Task 3: How to Create a File Adapter Service
	44.5.1.4 Task 4: How to Create ProcessOrders Oracle Mediator Component
	44.5.1.5 Task 5: How to Create a File Adapter Reference
	44.5.1.6 Task 6: How to Specify Routing Rules
	44.5.1.7 Task 7: How to Configure an Application Server Connection
	44.5.1.8 Task 8: How to Deploy the Composite Application

	44.5.2 How to Run and Monitor the HierarchicalValue Application

	44.6 Creating a Domain Value Map Use Case For Multiple Values
	44.6.1 How to Create the Multivalue Use Case
	44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project
	44.6.1.2 Task 2: How to Create a Domain Value Map
	44.6.1.3 Task 3: How to Create a File Adapter Service
	44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Oracle Mediator
	44.6.1.5 Task 5: How to Create a File Adapter Reference
	44.6.1.6 Task 6: How to Specify Routing Rules
	44.6.1.7 Task 7: How to Configure an Application Server Connection
	44.6.1.8 Task 8: How to Deploy the Composite Application

	44.6.2 How to Run and Monitor the Multivalue Application

45 Using SOA Composer with Domain Value Maps

	45.1 Introduction to the SOA Composer
	45.1.1 How to Log in to the SOA Composer

	45.2 Viewing Domain Value Maps at Runtime
	45.2.1 How To View Domain Value Maps at Runtime

	45.3 Editing Domain Value Maps at Runtime
	45.3.1 How to Edit Domain Value Maps at Runtime
	45.3.1.1 Adding Rows
	45.3.1.2 Editing Rows
	45.3.1.3 Deleting Rows

	45.4 Saving Domain Value Maps at Runtime
	45.4.1 How to Save Domain Value Maps at Runtime

	45.5 Committing Changes at Runtime
	45.5.1 How to Commit Changes at Runtime

	45.6 Detecting Conflicts

46 Working with Cross References

	46.1 Introduction to Cross References
	46.2 Introduction to Cross Reference Tables
	46.3 Creating and Modifying Cross Reference Tables
	46.3.1 How to Create Cross Reference Metadata
	46.3.2 What Happens When You Create a Cross Reference
	46.3.3 How to Create Custom Database Tables
	46.3.4 How to Add an End System to a Cross Reference Table

	46.4 Populating Cross Reference Tables
	46.4.1 About the xref:populateXRefRow Function
	46.4.2 About the xref:populateXRefRow1M Function
	46.4.3 How to Populate a Column of a Cross Reference Table

	46.5 Looking Up Cross Reference Tables
	46.5.1 About the xref:lookupXRef Function
	46.5.2 About the xref:lookupXRef1M Function
	46.5.3 About the xref:lookupPopulatedColumns Function
	46.5.4 How to Look Up a Cross Reference Table for a Value

	46.6 Deleting a Cross Reference Table Value
	46.6.1 How to Delete a Cross Reference Table Value

	46.7 Creating and Running the Cross Reference Use Case
	46.7.1 How to Create the Use Case
	46.7.1.1 Task 1: How to Configure the Oracle Database and Database Adapter
	46.7.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project
	46.7.1.3 Task 3: How to Create a Cross Reference
	46.7.1.4 Task 4: How to Create a Database Adapter Service
	46.7.1.5 Task 5: How to Create EBS and SBL External References
	46.7.1.6 Task 6: How to Create the Logger File Adapter External Reference
	46.7.1.7 Task 7: How to Create an Oracle Mediator Service Component
	46.7.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service Component
	46.7.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	46.7.1.10 Task 10: How to Configure an Application Server Connection
	46.7.1.11 Task 11: How to Deploy the Composite Application

	46.7.2 How to Run and Monitor the XrefCustApp Application

	46.8 Creating and Running Cross Reference for 1M Functions
	46.8.1 How to Create the Use Case
	46.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter
	46.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project
	46.8.1.3 Task 3: How to Create a Cross Reference
	46.8.1.4 Task 4: How to Create a Database Adapter Service
	46.8.1.5 Task 5: How to Create an EBS External Reference
	46.8.1.6 Task 6: How to Create a Logger File Adapter External Reference
	46.8.1.7 Task 7: How to Create an Oracle Mediator Service Component
	46.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Component
	46.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	46.8.1.10 Task 10: How to Configure an Application Server Connection
	46.8.1.11 Task 11: How to Deploy the Composite Application

47 Defining Composite Sensors

	47.1 Introduction to Composite Sensors
	47.1.1 Restrictions on Use of Composite Sensors

	47.2 Adding Composite Sensors
	47.2.1 How to Add Composite Sensors
	47.2.2 How to Add a Variable
	47.2.3 How to Add an Expression
	47.2.4 How to Add a Property

	47.3 Monitoring Composite Sensor Data During Runtime

48 Using Two-Layer Business Process Management (BPM)

	48.1 Introduction to Two-Layer Business Process Management
	48.2 Creating a Phase Activity
	48.2.1 How to Create a Phase Activity
	48.2.2 What Happens When You Create a Phase Activity
	48.2.3 What Happens at Runtime When You Create a Phase Activity
	48.2.4 What You May Need to Know About Creating a Phase Activity

	48.3 Creating the Dynamic Routing Decision Table
	48.3.1 How to Create the Dynamic Routing Decision Table
	48.3.2 What Happens When You Create the Dynamic Routing Decision Table

	48.4 Use Case: Two-Layer BPM
	48.4.1 Designing the SOA Composite
	48.4.2 Creating a Phase Activity
	48.4.3 Creating and Editing the Dynamic Routing Decision Table
	48.4.4 Adding Assign Activities to the BPEL Process Model
	48.4.5 Deploying and Testing the Sample

49 Integrating the Spring Framework in SOA Composite Applications

	49.1 Introduction to the Spring Service Component
	49.2 Integration of Java and WSDL-Based Components in the Same SOA Composite Application
	49.2.1 Java and WSDL-Based Integration Example
	49.2.2 Using Callbacks with the Spring Framework

	49.3 Creating a Spring Service Component in Oracle JDeveloper
	49.3.1 How to Create a Spring Service Component in Oracle JDeveloper

	49.4 Spring Service Component Integration in the Fusion Order Demo
	49.4.1 How to Use EJBs with Java Vector Type Parameters

	49.5 JAXB and OXM Support
	49.5.1 Extended Mapping Files

Part X Using Oracle Business Activity Monitoring

50 Integrating Oracle BAM with SOA Composite Applications

	50.1 Introduction to Integrating Oracle BAM with SOA Composite Applications
	50.2 Configuring Oracle BAM Adapter
	50.3 Using Oracle BAM Monitor Express With BPEL Processes
	50.3.1 How to Access BPEL Designer Monitor View
	50.3.2 How to Configure Activity Monitors
	50.3.3 How To Create BPEL Process Monitoring Objects
	50.3.4 How to Configure Counters
	50.3.5 How to Configure Intervals
	50.3.6 How to Configure Business Indicators
	50.3.7 How to Add Existing Monitoring Objects to Activities
	50.3.8 How To Configure BPEL Process Monitors for Deployment
	50.3.9 What You Need To Know About Monitor Express Data Objects
	50.3.9.1 Understanding the COMPONENT Data Object
	50.3.9.2 Understanding the COUNTER Data Object
	50.3.9.3 Understanding the INTERVAL Data Object
	50.3.9.4 Understanding Business Indicator Data Objects
	50.3.9.5 Troubleshooting

	50.3.10 What You Need to Know About Using the Monitor Express Dashboard

	50.4 Creating a Design Time Connection to an Oracle BAM Server
	50.4.1 How to Create a Connection to an Oracle BAM Server

	50.5 Using Oracle BAM Adapter in an SOA Composite Application
	50.5.1 How to Use Oracle BAM Adapter in an SOA Composite Application

	50.6 Using Oracle BAM Adapter in a BPEL Process
	50.6.1 How to Use Oracle BAM Adapter in a BPEL Process

	50.7 Integrating BPEL Sensors Using Oracle BAM Sensor Action
	50.7.1 How to Create a Sensor
	50.7.2 How to Create an Oracle BAM Sensor Action

	50.8 Integrating SOA Applications and Oracle BAM Using Enterprise Message

51 Using Oracle BAM Data Control

	51.1 Introduction to Oracle BAM Data Control
	51.2 Creating Projects That Can Use Oracle BAM Data Controls
	51.3 Creating Oracle BAM Server Connections
	51.3.1 How to Modify Oracle BAM Data Control Connections to Oracle BAM Servers
	51.3.1.1 How to Associate a BAM Data Control with a New Oracle BAM Connection

	51.4 Exposing Oracle BAM with Oracle ADF Data Controls
	51.4.1 How to Create Oracle BAM Data Controls
	51.4.2 What Happens in Your Project When You Create an Oracle BAM Data Control
	51.4.2.1 How an Oracle BAM Data Control Appears in the Data Controls Panel

	51.5 Creating Oracle BAM Data Control Queries
	51.5.1 How to Choose a Query Type
	51.5.2 How to Create Parameters
	51.5.3 How to Pass Values to Parameters
	51.5.4 How to Create Calculated Fields
	51.5.4.1 Creating Groups in Calculated Fields

	51.5.5 How to Select, Organize, and Sort Fields
	51.5.6 How to Create Filters
	51.5.6.1 How to Create Filter Headers
	51.5.6.2 How to Create Filter Entries
	51.5.6.3 Entering Comparison Values
	51.5.6.4 Using Active Now

	51.5.7 How to Select and Organize Groups
	51.5.7.1 How to Configure Time Groups and Time Series

	51.5.8 How to Create Aggregates
	51.5.9 How to Modify the Query

	51.6 Using Oracle BAM Data Controls in ADF Pages
	51.6.1 How to Use an Oracle BAM Data Control in a JSF Page

	51.7 Deploying Applications With Oracle BAM Data Controls
	51.7.1 How to Deploy to Oracle WebLogic Server in Development Mode
	51.7.2 How to Deploy to a Production Mode Oracle WebLogic Server

52 Defining and Managing Oracle BAM Data Objects

	52.1 Introduction to Oracle BAM Data Objects
	52.2 Defining Data Objects
	52.2.1 How to Define a Data Object
	52.2.2 How to Add Columns to a Data Object
	52.2.3 How to Add Lookup Columns to a Data Object
	52.2.4 How to Add Calculated Columns to a Data Object
	52.2.5 How to Add Time Stamp Columns to a Data Object
	52.2.6 What You May Need to Know About System Data Objects
	52.2.7 What You May Need to Know About Oracle Data Integrator Data Objects

	52.3 Creating Permissions on Data Objects
	52.3.1 How to Create Permissions on a Data Object
	52.3.2 How to Add a Group of Users
	52.3.3 How to Copy Permissions from Other Data Objects

	52.4 Viewing Existing Data Objects
	52.4.1 How to View Data Object General Information
	52.4.2 How to View Data Object Layouts
	52.4.3 How to View Data Object Contents

	52.5 Using Data Object Folders
	52.5.1 How to Create Folders
	52.5.2 How to Open Folders
	52.5.3 How to Set Folder Permissions
	52.5.4 How to Move Folders
	52.5.5 How to Rename Folders
	52.5.6 How to Delete Folders

	52.6 Creating Security Filters
	52.6.1 How to Create a Security Filter
	52.6.2 How to Copy Security Filters from Other Data Objects

	52.7 Creating Dimensions
	52.7.1 How to Create a Dimension
	52.7.2 How to Create a Time Dimension

	52.8 Renaming and Moving Data Objects
	52.8.1 How to Rename a Data Object
	52.8.2 How to Move a Data Object

	52.9 Creating Indexes
	52.9.1 How to Create an Index

	52.10 Clearing Data Objects
	52.10.1 How to Clear a Data Object

	52.11 Deleting Data Objects
	52.11.1 How to Delete a Data Object

53 Creating Oracle BAM Enterprise Message Sources

	53.1 Introduction to Enterprise Message Sources
	53.2 Creating Enterprise Message Sources
	53.2.1 How to Create an Enterprise Message Source
	53.2.2 How to Configure DateTime Specification
	53.2.3 How to Use Advanced XML Formatting

	53.3 Using Enterprise Message Sources
	53.3.1 How to Edit, Copy, and Delete Enterprise Message Sources
	53.3.2 How to Start and Stop Enterprise Message Sources
	53.3.3 How to Subscribe and Unsubscribe Enterprise Message Sources
	53.3.4 How to Test Enterprise Message Sources
	53.3.5 How to Refresh Enterprise Message Sources
	53.3.6 How to Monitor Enterprise Message Source Metrics

	53.4 Using Foreign JMS Providers
	53.5 Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider
	53.5.1 Creating a JMS Topic in AQ-JMS
	53.5.2 Creating a Data Source in Oracle WebLogic Server
	53.5.3 Creating a Foreign JMS Server
	53.5.4 Defining an EMS in Oracle BAM Architect
	53.5.5 Inserting and Updating Records in the SQL Table

54 Using Oracle Data Integrator With Oracle BAM

	54.1 Introduction to Using the Oracle Data Integrator With Oracle Business Activity Monitoring
	54.2 Installing the Oracle Data Integrator Integration Files
	54.2.1 How to Install Integration Files Using the Script
	54.2.2 How to Manually Install Integration Files
	54.2.3 Using the Logs

	54.3 Using Oracle BAM Knowledge Modules
	54.4 Creating the Oracle BAM Target
	54.4.1 How to Create the Oracle BAM Target

	54.5 Reverse Engineering the Oracle BAM Schema
	54.6 Updating the Oracle Data Integrator External Data Source Definition
	54.6.1 How to Update the Oracle Data Integrator External Data Source Definitions

	54.7 Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts
	54.8 Running Oracle Data Integrator Agent as a Daemon or a Microsoft Windows Service With Oracle BAM Embedded

55 Creating External Data Sources

	55.1 Introduction to External Data Sources
	55.2 Creating External Data Sources
	55.2.1 How to Create an External Data Source
	55.2.2 What You May Need to Know About Oracle Data Integrator External Data Sources
	55.2.3 How to Edit an External Data Source
	55.2.4 How to Delete an External Data Source

	55.3 External Data Source Example
	55.4 Use Case: Creating an EDS Against Oracle Business Intelligence Enterprise Edition

56 Using Oracle BAM Web Services

	56.1 Introduction to Oracle BAM Web Services
	56.2 Using the DataObjectOperations Web Services
	56.2.1 How to Use the DataObjectOperations Web Services

	56.3 Using the DataObjectDefinition Web Service
	56.3.1 How to Use the DataObjectDefinition Web Service

	56.4 Using the ManualRuleFire Web Service
	56.4.1 How to Use the ManualRuleFire Web Service

	56.5 Using the ICommand Web Service
	56.5.1 How to Use the ICommand Web Service

57 Creating Oracle BAM Alerts

	57.1 Introduction to Creating Alerts
	57.2 Creating Alert Rules
	57.2.1 How to Create an Alert Rule
	57.2.2 How to Activate Alerts
	57.2.3 How to Modify Alert Rules
	57.2.4 How to Delete an Alert

	57.3 Creating Alert Rules From Templates
	57.3.1 How to Create Alert Rules From Templates

	57.4 Creating Alert Rules With Messages
	57.4.1 How to Create an Alert Rule With a Message

	57.5 Creating Complex Alerts
	57.5.1 How to Create a Dependent Rule

	57.6 Using Alert History
	57.6.1 How to View Alert History
	57.6.2 How to Clear Alert History

	57.7 Launching Alerts by Invoking Web Services
	57.8 Calling an External Action

58 Using ICommand

	58.1 Introduction to ICommand
	58.2 Executing ICommand
	58.3 Specifying the Command and Option Syntax
	58.3.1 How to Specify the Security Credentials
	58.3.2 How to Specify the Command
	58.3.3 How to Specify Object Names
	58.3.4 How to Specify Multiple Parameter Targets

	58.4 Using Command-line-only Parameters
	58.5 Running ICommand Remotely

Part XI Using Oracle User Messaging Service

59 Oracle User Messaging Service

	59.1 Introduction to User Messaging Service
	59.1.1 Components
	59.1.2 Architecture

60 Sending and Receiving Messages using the User Messaging Service EJB API

	60.1 Introduction to the UMS Java API
	60.1.1 Creating a Java EE Application Module

	60.2 Creating a UMS Client Instance
	60.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative Approach
	60.2.2 API Reference for Class MessagingClientFactory

	60.3 Sending a Message
	60.3.1 Creating a Message
	60.3.1.1 Creating a Plaintext Message
	60.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	60.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	60.3.2 API Reference for Class MessageFactory
	60.3.3 API Reference for Interface Message
	60.3.4 API Reference for Enum DeliveryType
	60.3.5 Addressing a Message
	60.3.5.1 Types of Addresses
	60.3.5.2 Creating Address Objects
	60.3.5.3 Creating a Recipient with a Failover Address
	60.3.5.4 API Reference for Class AddressFactory
	60.3.5.5 API Reference for Interface Address

	60.3.6 Retrieving Message Status
	60.3.6.1 Synchronous Retrieval of Message Status
	60.3.6.2 Asynchronous Notification of Message Status

	60.4 Receiving a Message
	60.4.1 Registering an Access Point
	60.4.2 Synchronous Receiving
	60.4.3 Asynchronous Receiving
	60.4.4 Message Filtering

	60.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application
	60.5.1 Overview of Development
	60.5.2 Configuring the Email Driver
	60.5.3 Using JDeveloper 11g to Build the Application
	60.5.3.1 Opening the Project

	60.5.4 Deploying the Application
	60.5.5 Testing the Application

	60.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application
	60.6.1 Overview of Development
	60.6.2 Configuring the Email Driver
	60.6.3 Using JDeveloper 11g to Build the Application
	60.6.3.1 Opening the Project

	60.6.4 Deploying the Application
	60.6.5 Testing the Application

	60.7 Creating a New Application Server Connection

61 Sending and Receiving Messages using the User Messaging Service Java API

	61.1 Introduction to the UMS Java API
	61.2 Creating a UMS Client Instance and Specifying Runtime Parameters
	61.2.1 API Reference for Class MessagingClientFactory

	61.3 Sending a Message
	61.3.1 Creating a Message
	61.3.1.1 Creating a Plaintext Message
	61.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	61.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	61.3.2 API Reference for Class MessagingFactory
	61.3.3 API Reference for Interface Message
	61.3.4 API Reference for Enum DeliveryType
	61.3.5 Addressing a Message
	61.3.5.1 Types of Addresses
	61.3.5.2 Creating Address Objects
	61.3.5.3 Creating a Recipient with a Failover Address
	61.3.5.4 API Reference for Class MessagingFactory
	61.3.5.5 API Reference for Interface Address

	61.4 Retrieving Message Status
	61.4.1 Synchronous Retrieval of Message Status
	61.4.2 Asynchronous Receiving of Message Status
	61.4.2.1 Creating a Listener Programmatically
	61.4.2.2 Default Status Listener
	61.4.2.3 Per Message Status Listener

	61.5 Receiving a Message
	61.5.1 Registering an Access Point
	61.5.2 Synchronous Receiving
	61.5.3 Asynchronous Receiving
	61.5.3.1 Creating a Listener Programmatically
	61.5.3.2 Default Message Listener
	61.5.3.3 Per Access Point Message Listener

	61.5.4 Message Filtering

	61.6 Configuring for a Cluster Environment
	61.7 Configuring Security
	61.8 Threading Model
	61.8.1 Listener Threading

	61.9 Using the UMS Client API to Build a Client Application
	61.9.1 Overview of Development
	61.9.2 Configuring the Email Driver
	61.9.3 Using JDeveloper 11g to Build the Application
	61.9.3.1 Opening the Project

	61.9.4 Deploying the Application
	61.9.5 Testing the Application

	61.10 Using the UMS Client API to Build a Client Echo Application
	61.10.1 Overview of Development
	61.10.2 Configuring the Email Driver
	61.10.3 Using JDeveloper 11g to Build the Application
	61.10.3.1 Opening the Project

	61.10.4 Deploying the Application
	61.10.5 Testing the Application

	61.11 Creating a New Application Server Connection

62 Parlay X Web Services Multimedia Messaging API

	62.1 Introduction to Parlay X Messaging Operations
	62.2 Send Message Interface
	62.2.1 sendMessage Operation
	62.2.2 getMessageDeliveryStatus Operation

	62.3 Receive Message Interface
	62.3.1 getReceivedMessages Operation
	62.3.2 getMessage Operation
	62.3.3 getMessageURIs Operation

	62.4 Oracle Extension to Parlay X Messaging
	62.4.1 ReceiveMessageManager Interface
	62.4.1.1 startReceiveMessage Operation
	62.4.1.2 stopReceiveMessage Operation

	62.5 Parlay X Messaging Client API and Client Proxy Packages
	62.6 Sample Chat Application with Parlay X APIs
	62.6.1 Overview
	62.6.1.1 Provided Files

	62.6.2 Running the Pre-Built Sample
	62.6.3 Testing the Sample
	62.6.4 Creating a New Application Server Connection

63 User Messaging Preferences

	63.1 Introduction to User Messaging Preferences
	63.1.1 Terminology
	63.1.2 Configuration of Notification Delivery Preferences
	63.1.3 Delivery Preference Rules
	63.1.3.1 Data Types
	63.1.3.2 System Terms
	63.1.3.3 Business Terms

	63.1.4 Rule Actions

	63.2 How to Manage Messaging Channels
	63.2.1 Creating a Channel
	63.2.2 Editing a Channel
	63.2.3 Deleting a Channel
	63.2.4 Setting a Default Channel

	63.3 Creating Contact Rules using Filters
	63.3.1 Creating Filters
	63.3.2 Editing a Filter
	63.3.3 Deleting a Filter

	63.4 Configuring Settings

Part XII Appendices

A BPEL Process Activities and Services

	A.1 Introduction to Activities and Components
	A.2 Introduction to BPEL Activities
	A.2.1 Tabs Common to Many Activities
	A.2.2 Assign Activity
	A.2.3 Bind Entity Activity
	A.2.4 Compensate Activity
	A.2.5 Create Entity
	A.2.6 Email Activity
	A.2.7 Empty Activity
	A.2.8 Flow Activity
	A.2.9 FlowN Activity
	A.2.10 IM Activity
	A.2.11 Invoke Activity
	A.2.12 Java Embedding Activity
	A.2.13 Phase Activity
	A.2.14 Pick Activity
	A.2.15 Receive Activity
	A.2.16 Receive Signal Activity
	A.2.17 Remove Entity Activity
	A.2.18 Reply Activity
	A.2.19 Scope Activity
	A.2.20 Sequence Activity
	A.2.21 Signal Activity
	A.2.22 SMS Activity
	A.2.23 Switch Activity
	A.2.24 Terminate Activity
	A.2.25 Throw Activity
	A.2.26 Transform Activity
	A.2.27 User Notification
	A.2.28 Validate Activity
	A.2.29 Voice Activity
	A.2.30 Wait Activity
	A.2.31 While Activity

	A.3 Introduction to BPEL Services
	A.3.1 Partner Link (Adapter/Web Service)
	A.3.2 ADF-BC Service
	A.3.3 AQ Adapter
	A.3.4 Oracle B2B
	A.3.5 Oracle BAM Adapter
	A.3.6 Database Adapter
	A.3.7 Direct Binding Service
	A.3.8 EJB Service
	A.3.9 File Adapter
	A.3.10 FTP Adapter
	A.3.11 HTTP Binding
	A.3.12 JMS Adapter
	A.3.13 MQ Adapter
	A.3.14 Oracle Applications
	A.3.15 Socket Adapter
	A.3.16 Third Party Adapter
	A.3.17 Web Service

	A.4 Publishing and Browsing the Oracle Service Registry
	A.4.1 How to Publish a Business Service
	A.4.2 How to Create a Connection to the Registry
	A.4.3 How to Configure a SOA project to Invoke a Service from the Registry
	A.4.3.1 Dynamically Resolving the SOAP Endpoint Location
	A.4.3.2 Dynamically Resolving the WSDL Endpoint Location

	A.4.4 How To Configure the Inquiry URL, UDDI Service Key, and Endpoint Address for Runtime

	A.5 Providing Design-time Governance with the Oracle Enterprise Repository
	A.6 Validating When Loading a Process Diagram

B XPath Extension Functions

	B.1 SOA XPath Extension Functions
	B.1.1 Database Functions
	B.1.1.1 lookup-table
	B.1.1.2 query-database
	B.1.1.3 sequence-next-val

	B.1.2 Date Functions
	B.1.2.1 add-dayTimeDuration-to-dateTime
	B.1.2.2 current-date
	B.1.2.3 current-dateTime
	B.1.2.4 current-time
	B.1.2.5 day-from-dateTime
	B.1.2.6 format-dateTime
	B.1.2.7 hours-from-dateTime
	B.1.2.8 implicit-timezone
	B.1.2.9 minutes-from-dateTime
	B.1.2.10 month-from-dateTime
	B.1.2.11 seconds-from-dateTime
	B.1.2.12 subtract-dayTimeDuration-from-dateTime
	B.1.2.13 timezone-from-dateTime
	B.1.2.14 year-from-dateTime

	B.1.3 Mathematical Functions
	B.1.3.1 abs

	B.1.4 String Functions
	B.1.4.1 compare
	B.1.4.2 compare-ignore-case
	B.1.4.3 create-delimited-string
	B.1.4.4 ends-with
	B.1.4.5 format-string
	B.1.4.6 get-content-as-string
	B.1.4.7 get-content-from-file-function
	B.1.4.8 get-localized-string
	B.1.4.9 index-within-string
	B.1.4.10 last-index-within-string
	B.1.4.11 left-trim
	B.1.4.12 lower-case
	B.1.4.13 matches
	B.1.4.14 right-trim
	B.1.4.15 upper-case

	B.2 BPEL XPath Extension Functions
	B.2.1 addQuotes
	B.2.2 appendToList
	B.2.3 copyList
	B.2.4 countNodes
	B.2.5 doc
	B.2.6 doStreamingTranslate
	B.2.7 doTranslateFromNative
	B.2.8 doTranslateToNative
	B.2.9 doXSLTransform
	B.2.10 doXSLTransformForDoc
	B.2.11 formatDate
	B.2.12 generateGUID
	B.2.13 getApplicationName
	B.2.14 getAttachmentContent
	B.2.15 getComponentName
	B.2.16 getComponentInstanceID
	B.2.17 getCompositeName
	B.2.18 getCompositeInstanceID
	B.2.19 getCompositeURL
	B.2.20 getContentAsString
	B.2.21 getConversationId
	B.2.22 getCreator
	B.2.23 getCurrentDate
	B.2.24 getCurrentDateTime
	B.2.25 getCurrentTime
	B.2.26 getDomainId
	B.2.27 getECID
	B.2.28 getElement
	B.2.29 getFaultAsString
	B.2.30 getFaultName
	B.2.31 getGroupIdsFromGroupAlias
	B.2.32 getInstanceId
	B.2.33 getNodeValue
	B.2.34 getNodes
	B.2.35 getOwnerDocument
	B.2.36 getParentComponentInstanceID
	B.2.37 getPreference
	B.2.38 getProcessId
	B.2.39 getProcessOwnerId
	B.2.40 getProcessURL
	B.2.41 getProcessVersion
	B.2.42 getUserAliasId
	B.2.43 getUserIdsFromGroupAlias
	B.2.44 setCompositeInstanceTitle
	B.2.45 instanceOf
	B.2.46 integer
	B.2.47 parseEscapedXML
	B.2.48 parseXML
	B.2.49 processXQuery
	B.2.50 processXSLT
	B.2.51 processXSLTAttachment
	B.2.52 processXSQL
	B.2.53 readBinaryFromFile
	B.2.54 readFile
	B.2.55 writeBinaryToFile
	B.2.56 BPEL Extension Functions
	B.2.56.1 getLinkStatus
	B.2.56.2 getVariableData
	B.2.56.3 getVariableProperty

	B.2.57 Utility Functions
	B.2.57.1 batchProcessActive
	B.2.57.2 batchProcessCompleted
	B.2.57.3 format
	B.2.57.4 genEmptyElem
	B.2.57.5 getChildElement
	B.2.57.6 getMessage
	B.2.57.7 max-value-among-nodeset
	B.2.57.8 min-value-among-nodeset
	B.2.57.9 square-root
	B.2.57.10 translateFromNative
	B.2.57.11 translateToNative
	B.2.57.12 translateFromNativeAttachment
	B.2.57.13 translateToNativeAttachment

	B.3 Mediator XPath Extension Functions
	B.3.1 getComponentInstanceID
	B.3.2 getComponentName
	B.3.3 getCompositeInstanceID
	B.3.4 getCompositeName
	B.3.5 getHeader
	B.3.6 getECID
	B.3.7 getParentComponentInstanceID
	B.3.8 setCompositeInstanceTitle

	B.4 Advanced Functions
	B.4.1 create-nodeset-from-delimited-string
	B.4.2 generate-guid
	B.4.3 lookupPopulatedColumns
	B.4.4 lookupValue
	B.4.5 lookupValue1M
	B.4.6 lookupXRef
	B.4.7 lookupXRef1M
	B.4.8 lookup-xml
	B.4.9 markForDelete
	B.4.10 populateXRefRow
	B.4.11 populateXRefRow1M

	B.5 Workflow Service Functions
	B.5.1 clearTaskAssignees
	B.5.2 createWordMLDocument
	B.5.3 getNotificationProperty
	B.5.4 getNumberOfTaskApprovals
	B.5.5 getPreviousTaskApprover
	B.5.6 getTaskAttachmentByIndex
	B.5.7 getTaskAttachmentByName
	B.5.8 getTaskAttachmentContents
	B.5.9 getTaskAttachmentsCount
	B.5.10 getTaskResourceBundleString
	B.5.11 wfDynamicGroupAssign
	B.5.12 wfDynamicUserAssign
	B.5.13 Identity Service Functions
	B.5.13.1 getDefaultRealmName
	B.5.13.2 getGroupProperty
	B.5.13.3 getManager
	B.5.13.4 getReportees
	B.5.13.5 getSupportedRealmNames
	B.5.13.6 getUserProperty
	B.5.13.7 getUserRoles
	B.5.13.8 getUsersInGroup
	B.5.13.9 isUserInRole
	B.5.13.10 lookupGroup
	B.5.13.11 lookupUser

	B.6 Using the XPath Building Assistant
	B.6.1 XPath Building Assistant Description
	B.6.2 How to Start the XPath Building Assistant
	B.6.3 How to Use the XPath Building Assistant in Oracle JDeveloper: Step-By-Step Example
	B.6.4 Using the XPath Building Assistant in the XSLT Mapper
	B.6.5 Function Parameter Tool Tips
	B.6.6 Syntactic and Semantic Validation
	B.6.7 Creating Expressions with Free Form Text and XPath Expressions

	B.7 Creating User-Defined XPath Extension Functions
	B.7.1 How to Implement User-Defined XPath Extension Functions
	B.7.1.1 How to Implement Functions for the XSLT Mapper
	B.7.1.2 How to Implement Functions for All Other Components

	B.7.2 How to Configure User-Defined XPath Extension Functions
	B.7.3 How to Deploy User-Defined Functions to Runtime

C Deployment Descriptor Properties

	C.1 Introduction to Deployment Descriptor Properties
	C.1.1 How to Define Deployment Descriptor Properties
	C.1.2 How to Get the Value of a Preference within a BPEL Process

	C.2 Deprecated 10.1.3 Properties

D Understanding Sensor Public Views and the Sensor Actions XSD

	D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File
	D.2 Sensor Public Views
	D.2.1 BPM Schema
	D.2.1.1 BPEL_PROCESS_INSTANCES
	D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES
	D.2.1.3 BPEL_FAULT_SENSOR_VALUES
	D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES

	D.3 Sensor Actions XSD File

E Oracle BAM Web Services Operations

	E.1 DataObjectOperations10131
	E.1.1 Batch
	E.1.1.1 Request Message

	E.1.2 Delete
	E.1.2.1 Request Message

	E.1.3 Insert
	E.1.3.1 Request Message

	E.1.4 Update
	E.1.4.1 Request Message

	E.1.5 Upsert
	E.1.5.1 Request Message

	E.2 DataObjectOperationsByName
	E.2.1 Delete
	E.2.1.1 Request Message

	E.2.2 Get
	E.2.2.1 Request Message

	E.2.3 Insert
	E.2.3.1 Request Message

	E.2.4 Update
	E.2.4.1 Request Message

	E.2.5 Upsert
	E.2.5.1 Request Message

	E.3 DataObjectOperationsByID
	E.3.1 Batch
	E.3.1.1 Request Message

	E.3.2 Delete
	E.3.2.1 Request Message

	E.3.3 Insert
	E.3.3.1 Request Message

	E.3.4 Update
	E.3.4.1 Request Message

	E.3.5 Upsert
	E.3.5.1 Request Message

	E.4 DataObjectDefinition Operations
	E.4.1 Create
	E.4.1.1 Request Message
	E.4.1.2 Response Message

	E.4.2 Delete
	E.4.2.1 Request Message
	E.4.2.2 Response Message

	E.4.3 Get
	E.4.3.1 Request Message
	E.4.3.2 Response Message

	E.4.4 Update
	E.4.4.1 Request Message
	E.4.4.2 Response Message

	E.5 ManualRuleFire Operations
	E.5.1 FireRuleByName
	E.5.1.1 Request Message
	E.5.1.2 Response Message

F Oracle BAM Alert Rule Options

	F.1 Events
	F.1.1 In a specific amount of time
	F.1.2 At a specific time today
	F.1.3 On a certain day at a specific time
	F.1.4 Every interval between two times
	F.1.5 Every date interval starting on certain date at a specific time
	F.1.6 When a report changes
	F.1.7 When a data field changes in data object
	F.1.8 When a data field in a report meets specified conditions
	F.1.9 When a data field in a data object meets specified conditions
	F.1.10 When this rule is launched

	F.2 Conditions
	F.2.1 If it is between two times
	F.2.2 If It is between two days
	F.2.3 If it is a particular day of the week

	F.3 Actions
	F.3.1 Send a report via email
	F.3.2 Send a message via email
	F.3.3 Send a report via email and escalate to another user after a specific amount of time
	F.3.4 Send a parameterized message
	F.3.5 Launch a rule
	F.3.6 Launch rule if an action fails
	F.3.7 Delete rows from a Data Object
	F.3.8 Call a Web Service
	F.3.8.1 How to Use Call a Web Service: An Example

	F.3.9 Run an Oracle Data Integrator Scenario
	F.3.10 Call an External Action

	F.4 Frequency Constraint

G Oracle BAM ICommand Operations and File Formats

	G.1 Summary of Individual Operations
	G.2 Detailed Operation Descriptions
	G.2.1 Clear
	G.2.2 Delete
	G.2.3 Export
	G.2.4 Import
	G.2.5 Rename

	G.3 Format of Command File
	G.3.1 Inline Content
	G.3.2 Command IDs
	G.3.3 Continue On Error

	G.4 Format of Log File
	G.5 Sample Export File
	G.6 Regular Expressions

H Normalized Message Properties

	H.1 Introduction to Normalized Messages
	H.2 Oracle BPEL Process Manager Properties
	H.3 Oracle Web Services Addressing Properties

I Interfaces Implemented By Rules Dictionary Editor Task Flow

	I.1 The MetadataDetails Interface
	I.1.1 The getDocument Method
	I.1.2 The getRelatedDocument Method
	I.1.3 The setDocument Method

	I.2 The NLSPreferences Interface

J Oracle User Messaging Service Applications

	J.1 Send Message to User Specified Channel
	J.1.1 Overview
	J.1.1.1 Provided Files

	J.1.2 Installing and Configuring SOA and User Messaging Service
	J.1.2.1 Updating Addresses in Your LDAP User Profile

	J.1.3 Building the Sample
	J.1.4 Creating a New Application Server Connection
	J.1.5 Deploying the Project
	J.1.6 Configuring User Messaging Preferences
	J.1.7 Testing the Sample
	J.1.7.1 Verifying the Execution of Sending the Email

	J.2 Send Email with Attachments
	J.2.1 Overview
	J.2.1.1 Provided Files

	J.2.2 Installing and Configuring SOA and User Messaging Service
	J.2.2.1 Updating Addresses in Your LDAP User Profile

	J.2.3 Running the Pre-Built Sample
	J.2.4 Testing the Sample
	J.2.4.1 Verifying the Execution

	J.2.5 Building the Sample
	J.2.5.1 Sending Text Content with base64 Encoding

	J.2.6 Creating a New Application Server Connection

K Oracle SOA Suite Properties Road Map

	K.1 Oracle BPEL Process Manager Deployment Descriptor Properties
	K.2 Normalized Message Header Properties
	K.2.1 Oracle JCA Adapter Message Header Properties
	K.2.2 Oracle BPEL Process Manager and Oracle Web Services Addressing Message Header Properties
	K.2.3 Oracle B2B Message Header Properties

	K.3 SOA Composite Application Properties
	K.4 Fault Policy and Adapter Rejected Message Properties
	K.5 Oracle B2B System Properties
	K.6 Oracle Enterprise Manager Fusion Middleware Control Console Property Pages
	K.6.1 SOA Infrastructure Properties
	K.6.2 Oracle BPEL Process Manager
	K.6.3 Human Workflow Notification and Task Service
	K.6.4 Oracle Mediator
	K.6.5 Cross References
	K.6.6 Oracle B2B
	K.6.7 Service and Reference Binding Component Properties

	K.7 System MBean Browser Properties
	K.7.1 SOA Infrastructure Properties
	K.7.2 Oracle BPEL Process Manager Properties
	K.7.3 Oracle Mediator Properties
	K.7.4 Human Workflow Notification and Task Service Properties
	K.7.5 Oracle Service Registry WSDL URL Caching Configuration

Index

Preface

This manual describes how to use Oracle SOA Suite.

This preface contains the following topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

This manual is intended for anyone who is interested in developing applications with Oracle SOA Suite.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

Related Documents

For more information, see the following Oracle resources:

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

To download Oracle BPEL Process Manager documentation, technical notes, or other collateral, visit the Oracle BPEL Process Manager site at Oracle Technology Network (OTN):

http://www.oracle.com/technology/bpel/

If you have a username and password for OTN, then you can go directly to the documentation section of the OTN web site at

http://www.oracle.com/technology/documentation/

See the Business Process Execution Language for Web Services Specification, available at the following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbizspec/html/bpel1-1.asp

See the XML Path Language (XPath) Specification, available at the following URL:

http://www.w3.org/TR/1999/REC-xpath-19991116

See the Web Services Description Language (WSDL) 1.1 Specification, available at the following URL:

http://www.w3.org/TR/wsdl

Oracle Fusion Middleware Infrastructure Management Java API Reference for Oracle SOA Suite:

http://www.oracle.com/technology/products/soa/soasuite/collateral/apidocs/soasuite_11.1.1.0.0/overview-summary.html

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Part I

Introduction to Oracle SOA Suite

This part provides an introduction to Oracle SOA Suite and developing SOA composite applications.

This part contains the following chapters:

	
Chapter 1, "Introduction to Building Applications with Oracle SOA Suite"

	
Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite"

	
Chapter 3, "Introduction to the SOA Sample Application"

1 Introduction to Building Applications with Oracle SOA Suite

This chapter describes the architecture and key functionality of Oracle SOA Suite.

This chapter includes the following sections:

	
Section 1.1, "Introduction to Service-Oriented Architecture"

	
Section 1.2, "Introduction to Services"

	
Section 1.3, "Introduction to Oracle SOA Suite"

	
Section 1.4, "Standards Used by Oracle SOA Suite to Enable SOA"

	
Section 1.5, "Service Component Architecture within SOA Composite Applications"

	
Section 1.6, "Runtime Behavior of a SOA Composite Application"

	
Section 1.7, "Approaches for Designing SOA Composite Applications"

	
Section 1.8, "Learning Oracle SOA Suite"

1.1 Introduction to Service-Oriented Architecture

Changing markets, increasing competitive pressures, and evolving customer needs are placing greater pressure on IT to deliver greater flexibility and speed. Today, every organization is faced with predicting change in a global business environment, to rapidly respond to competitors, and to best exploit organizational assets for growth. In response to these challenges, leading companies are adopting service-oriented architecture (SOA) to deliver on these requirements by overcoming the complexity of their application and IT environments.

SOA provides an enterprise architecture that supports building connected enterprise applications to provide solutions to business problems. SOA facilitates the development of enterprise applications as modular business web services that can be easily integrated and reused, creating a truly flexible, adaptable IT infrastructure.

1.2 Introduction to Services

SOA separates business functions into distinct units, or services. A SOA application reuses services to automate a business process.

A standard interface and message structure define services. The most widely used mechanism are web services standards. These standards include the Web Service Description Language (WSDL) file for service interface definition and XML Schema Documents (XSD) for message structure definition. These XML standards are easily exchanged using standard protocols. Because standards for web services use a standard document structure, they enable existing systems to interoperate regardless of the choice of operating system and computer language used for service implementation.

When designing a SOA approach, you create a service portfolio plan to identify common functionality to use as a service within the business process. By creating and maintaining a plan, you ensure that existing services and applications are reused or repurposed whenever possible. This plan also reduces the time spent in creating needed functionality for the application.

1.3 Introduction to Oracle SOA Suite

Oracle SOA Suite provides a complete set of service infrastructure components for designing, deploying, and managing composite applications. Oracle SOA Suite enables services to be created, managed, and orchestrated into composite applications and business processes. Composites enable you to easily assemble multiple technology components into one SOA composite application. Oracle SOA Suite plugs into heterogeneous IT infrastructures and enables enterprises to incrementally adopt SOA.

The components of Oracle SOA Suite benefit from common capabilities, including a single deployment, management, and tooling model, end-to-end security, and unified metadata management. Oracle SOA Suite is unique in that it provides the following set of integrated capabilities:

	
Messaging

	
Service discovery

	
Orchestration

	
Web services management and security

	
Business rules

	
Events framework

	
Business activity monitoring

1.4 Standards Used by Oracle SOA Suite to Enable SOA

Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among the standards it leverages are:

	
Service Component Architecture (SCA) assembly model

Provides the service details and their interdependencies to form composite applications. SCA enables you to represent business logic as reusable service components that can be easily integrated into any SCA-compliant application. The resulting application is known as a SOA composite application. The specification for the SCA standard is maintained by the Organization for the Advancement of Structured Information Standards (OASIS) through the Open Composite Services Architecture (CSA) Member Section:

http://www.oasis-opencsa.org

	
Service Data Objects (SDO)

Specifies a standard data method and can modify business data regardless of how it is physically accessed. Knowledge is not required about how to access a particular back-end data source to use SDO in a SOA composite application. Consequently, you can use static or dynamic programming styles and obtain connected and disconnected access.

	
Business Process Execution Language (BPEL)

Provides enterprises with an industry standard for business-process orchestration and execution. Using BPEL, you design a business process that integrates a series of discrete services into an end-to-end process flow. This integration reduces process cost and complexity.

	
XSL Transformations (XSLT)

Processes XML documents and transforms document data from one XML schema to another.

	
Java Connector Architecture (JCA)

Provides a Java technology solution to the problem of connectivity between the many application servers in Enterprise Information Systems (EIS).

	
Java Messaging Service (JMS)

Provides a messaging standard that allows application components based on the Java 2 Platform, Enterprise Edition (Java EE) to access business logic distributed among heterogeneous systems.

	
Web Services Description Language (WSDL) file

Provides the entry points into a SOA composite application. The WSDL file provides a standard contract language and is central for understanding the capabilities of a service.

	
Simple Object Access Protocol (SOAP)

Provides the default network protocol for message delivery.

1.5 Service Component Architecture within SOA Composite Applications

Oracle SOA Suite uses the SCA standard as a way to assemble service components into a SOA composite application. SCA provides a programming model for the following:

	
Creating service components written with a wide range of technologies, including programming languages such as Java, BPEL, C++, and declarative languages such as XSLT. The use of specific programming languages and technologies (including web services) is not required with SCA.

	
Assembling the service components into a SOA composite application. In the SCA environment, service components are the building blocks of applications.

SCA provides a model for assembling distributed groups of service components into an application, enabling you to describe the details of a service and how services and service components interact. Composites are used to group service components and wires are used to connect service components. SCA helps to remove middleware concerns from the programming code by applying infrastructure declaratively to composites, including security and transactions.

The key benefits of SCA include the following:

	
Loose coupling

Service components integrate with other service components without needing to know how other service components are implemented.

	
Flexibility

Service components can easily be replaced by other service components.

	
Services invocation

Services can be invoked either synchronously or asynchronously.

	
Productivity

Service components are easily integrated to form a SOA composite application.

	
Easy Maintenance and Debugging

Service components can be easily maintained and debugged when an issue is encountered.

A SOA composite is an assembly of services, service components, and references designed and deployed in a single application. Wiring between the services, service components, and references enable message communication. The details for a composite are stored in the composite.xml file.

Figure 1-1 provides an example of a composite that includes an inbound service binding component, a BPEL process service component (named Account), a business rules service component (named AccountRule), and two outbound reference binding components.

Figure 1-1 Simple SOA Composite Architecture

[image: Composite]

1.5.1 Service Components

Service components are the building blocks that you use to construct a SOA composite application.

The following service components are available. There is a corresponding service engine of the same name for each service component. All service engines can interact in a single composite.

	
BPEL processes provide process orchestration and storage of synchronous or asynchronous process. You design a business process that integrates a series of business activities and services into an end-to-end process flow.

	
Business rules enable you to design a business decision based on rules.

	
Human tasks provide workflow modeling that describes the tasks for users or groups to perform as part of an end-to-end business process flow.

	
Mediators route events (messages) between different components

	
Spring enables you to integrate Java interfaces into SOA composite applications

1.5.2 Binding Components

Binding components establish a connection between a SOA composite and the external world. There are two types of binding components:

	
Services provide the outside world with an entry point to the SOA composite application. The WSDL file of the service advertises its capabilities to external applications. These capabilities are used for contacting the SOA composite application components. The binding connectivity of the service describes the protocols that can communicate with the service, for example, SOAP/HTTP or a JCA adapter.

	
References enable messages to be sent from the SOA composite application to external services in the outside world.

Table 1-1 lists and describes the binding components provided by Oracle SOA Suite.

Table 1-1 Binding Components Provided by Oracle SOA Suite

	Binding Components	Description
	
Web Service (SOAP over HTTP)

	
Use for connecting to standards-based services using SOAP over HTTP.

	
JCA Adapters

	
Use for integrating services and references with technologies (for example, databases, file systems, FTP servers, messaging: JMS, IBM WebSphere MQ, and so on) and applications (Oracle E-Business Suite, PeopleSoft, and so on). This includes AQ Adapter, Database Adapter, File Adapter, FTP Adapter, JMS Adapter, MQ Adapter, and Socket Adapter.

	
B2B binding component

	
Use for browsing B2B metadata in the MDS repository and selecting document definitions.

	
ADF-BC Service

	
Use for connecting Oracle Application Development Framework (ADF) applications using SDO with the SOA platform.

	
Oracle Applications

	
Use for integrating Oracle Application Adapter with Oracle Applications.

	
BAM Adapter

	
Use for integrating Java EE applications with Oracle BAM Server to send data and also used as a reference binding component in a SOA composite application.

	
EJB Service

	
Use for integrating SDO parameters or Java interfaces with Enterprise JavaBeans.

	
Direct Binding Service

	
Use to invoke a SOA composite application and exchange messages over a remote method invocation (RMI) in the inbound direction and to invoke an Oracle Service Bus (OSB) flow or another SOA composite application in the outbound direction.

	
HTTP Binding

	
Use to integrate SOA composite applications with HTTP binding.

1.5.3 Wires

Wires enable you to graphically connect the following components in a single SOA composite application for message communication:

	
Services to service components

	
Service components to other service components

	
Service components to references

1.6 Runtime Behavior of a SOA Composite Application

Figure 1-2 shows the operability of a SOA composite application using SCA technology. In this example, an external application (.NET payment calculator) initiates contact with the SOA composite application.

For more information about descriptions of the tasks that services, references, service components, and wires perform in an application, see Section 1.5, "Service Component Architecture within SOA Composite Applications."

Figure 1-2 Runtime Behavior of SOA Composite Application

[image: Introduction to SOA Composite Application]

The .NET payment calculator is an external application that sends a SOAP message to the SOA application to initiate contact. The Service Infrastructure picks up the SOAP message from the binding component and determines the intended component target. The BPEL service engine receives the message from the Service Infrastructure for processing by the BPEL Loan Process application and posts the message back to the Service Infrastructure after completing the processing.

Table 1-2 describes the operability of the SOA composite application shown in Figure 1-1.

Table 1-2 Introduction to a SOA Composite Application Using SCA Technologies

	Part	Description	Example of Use in Figure 1-1	See Section
	
Binding Components

	
Establishes the connectivity between a SOA composite and the external world. There are two types:

	
Service binding components provide an entry point to the SOA composite application.

	
Reference binding components enable messages to be sent from the SOA composite application to external services.

	
The SOAP binding component service:

	
Advertises its capabilities in the WSDL file.

	
Receives the SOAP message from the .NET application.

	
Sends the message through the policy infrastructure for security checking.

	
Translates the message to a normalized message (an internal representation of the service's WSDL contract in XML format).

	
Posts the message to the Service Infrastructure.

An example of a binding component reference in Figure 1-2 is the Loan Process application.

	
Section 1.5.1, "Service Components"

	
Service Infrastructure

	
Provides internal message transport

	
The Service Infrastructure:

	
Receives the message from the SOAP binding component service.

	
Posts the message for processing to the BPEL process service engine first and the human task service engine second.

	
Section 1.6.1, "Service Infrastructure"

	
Service Engines (containers hosting service components)

	
Host the business logic or processing rules of the service components. Each service component has its own service engine.

	
The BPEL service engine:

	
Receives the message from the Service Infrastructure for processing by the BPEL Loan Process application.

	
Posts the message to the Service Infrastructure after completing the processing.

	
Section 1.6.2, "Service Engines"

	
UDDI and MDS

	
The MDS (Metadata Service) repository stores descriptions of available services. The UDDI advertises these services, and enables discovery and dynamic binding at runtime.

	
The SOAP service used in this composite application is stored in the MDS and can also be published to UDDI.

	
Oracle Fusion Middleware Getting Started with Oracle SOA Suite

	
SOA Archive: Composite

(deployment unit)

	
The deployment unit that describes the composite application.

	
The SOA archive (SAR) of the composite application is deployed to the Service Infrastructure.

	
Section 1.6.3, "Deployed Service Archives"

1.6.1 Service Infrastructure

The Service Infrastructure provides the following internal message routing infrastructure capabilities for connecting components and enabling data flow:

	
Receives messages from the service providers or external partners through SOAP services or adapters

	
Sends the message to the appropriate service engine

	
Receives the message back from the service engine and sends it to any additional service engines in the composite or to a reference binding component based on the wiring

1.6.2 Service Engines

Service engines are containers that host the business logic or processing rules of these service components. Service engines process the message information received from the Service Infrastructure.

There is a corresponding service engine of the same name for each service component. All service engines can interact in a single composite.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

1.6.3 Deployed Service Archives

The SAR is a SOA archive deployment unit. A SAR file is a special JAR file that requires a prefix of sca_. (for example, sca_OrderBookingComposite_rev1.0.jar). The SAR file is deployed to the Service Infrastructure. The SAR packages service components, such as BPEL processes, business rules, human tasks, and mediator routing services into a single application. The SAR file is analogous to the BPEL suitcase archive of previous releases, but at the higher composite level and with any additional service components that your application includes (for example, human tasks, business rules, and mediator routing services).

For more information, see Chapter 41, "Deploying SOA Composite Applications."

1.7 Approaches for Designing SOA Composite Applications

When creating a SOA composite application, you have a choice of approaches for building it:

	
Top-Down: You analyze your business processes and identify activities in support of your process. When creating a composite, you define all the SOA components through the SOA Composite Editor. You create all the services first, and then build the BPEL process, referencing the created services.

	
Bottom-Up: You analyze existing applications and assets to identify those that can be used as services. As you create a BPEL process, you build the services on as-needed basis. This approach works well when IT must react to a change.

1.8 Learning Oracle SOA Suite

In addition to this developer's guide, Oracle also offers the following resources to help you learn how you can best use Oracle SOA Suite in your applications:

	
Getting Started: Oracle Fusion Middleware Getting Started with Oracle SOA Suite introduces you to Oracle SOA Suite, its components, and provides you with a high-level understanding of what you can accomplish with the suite. Also, you could refer to the Oracle SOA Suite section of the Oracle Fusion Middleware 11g Release 1 documentation library for additional documentation.

	
Cue Cards in Oracle JDeveloper: Oracle JDeveloper cue cards provide step-by-step support for the application development process using Oracle SOA Suite. They are designed to be used either with the included examples and a sample schema, or with your own data. Cue cards also include topics that provide more detailed background information, viewlets that demonstrate how to complete the steps in the card. Cue cards provide a fast, easy way to become familiar with the basic features of Oracle SOA Suite, and to work through a simple end-to-end task. In Oracle JDeveloper, click Help, Cue Cards to access the cue cards.

	
http://www.oracle.com/technology/sample_code/products/soa: The SOA OTN provides access to various use case samples for Oracle SOA Suite and its components.

2 Developing SOA Composite Applications with Oracle SOA Suite

This chapter describes how to use Oracle JDeveloper to create a SOA composite application. This overview is intended to guide you through the basic steps of composite creation, along with describing key issues to be aware of when designing a composite application.

This chapter includes the following sections:

	
Section 2.1, "Creating a SOA Application"

	
Section 2.2, "Adding Service Components"

	
Section 2.3, "Adding Service Binding Components"

	
Section 2.4, "Adding Reference Binding Components"

	
Section 2.5, "Adding Wires"

	
Section 2.6, "Adding Security"

	
Section 2.7, "Deploying a SOA Composite Application"

	
Section 2.8, "Managing and Testing a SOA Composite Application"

2.1 Creating a SOA Application

The first steps in building a new application are to assign it a name and to specify the directory where to save source files. By creating an application using application templates provided by JDeveloper, you automatically get the organization of the workspace into projects, along with many of the configuration files required by the type of application you are creating.

2.1.1 How to Create a SOA Application and Project

You first create an application for the SOA project.

	
Note:

In order to create and deploy SOA composite applications and projects, you must install the Oracle SOA Suite extension. For instructions on installing this extension for Oracle JDeveloper, see the Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.

To create an application:

	
Start Oracle JDeveloper Studio Edition Version 11.1.1.3.0.

	
If Oracle JDeveloper is running for the first time, specify the location for the Java JDK.

	
Create a new SOA composite application, as described in Table 2-1.

Table 2-1 SOA Composite Application Creation

	If Oracle JDeveloper...	Then...
	
Has no applications

For example, you are opening Oracle JDeveloper for the first time.

	
In the Application Navigator in the upper left, click New Application.

	
Has existing applications

	
From the File main menu or the Application menu:

	
Select New > Applications.

The New Gallery opens, where you can select different application components to create.

	
In the Categories tree, under the General node, select Applications. In the Items pane, select SOA Application and click OK.

The Create SOA Application wizard starts.

	
In the Name your application page, you can optionally change the name and location for your web project. If this is your first application, from Application Template, select SOA Application. Accept the defaults for the package prefix, and click Next.

	
Notes:

	
Do not create an application name with spaces.

	
Do not create applications and projects in directory paths that have spaces (for example, c:\Program Files).

	
On a UNIX operating system, it is highly recommended to enable Unicode support by setting the LANG and LC_All environment variables to a locale with the UTF-8 character set. This action enables the operating system to process any character in Unicode. SOA technologies are based on Unicode. If the operating system is configured to use non-UTF-8 encoding, SOA components may function in an unexpected way. For example, a non-ASCII file name can make the file inaccessible and cause an error. Oracle does not support problems caused by operating system constraints.

In a design-time environment, if you are using Oracle JDeveloper, select Tools > Preferences > Environment > Encoding > UTF-8 to enable Unicode support. This setting is also applicable for runtime environments.

	
In the Name your project page, you can optionally change the name and location for your SOA project. By default, Oracle JDeveloper adds the SOA project technology, the composite.xml that generates, and the necessary libraries to your model project. Click Next.

	
Note:

Composite and component names cannot exceed 500 characters.

A project deployed to the same infrastructure must have a unique name across SOA composite applications. The uniqueness of a composite is determined by its project name. For example, do not perform the actions described in Table 2-2. During deployment, the second deployed project (composite) overwrites the first deployed project (composite).

Table 2-2 Restrictions on Naming a SOA Project

	Create an Application Named...	With a SOA Project Named...
	
Application1

	
Project1

	
Application2

	
Project1

The Project SOA Settings page of the Create SOA Application wizard appears.

	
In the Configure SOA Settings page, click Empty Composite, and click Finish.

	
Select Save All from the File main menu.

2.1.2 What Happens When You Create a SOA Application and Project

When you create a SOA application, Oracle JDeveloper creates a project that contains all the source files related to your application. Oracle JDeveloper automatically adds the following libraries needed for your SOA project:

	
SOA Design time

	
SOA Runtime

	
BPEL Runtime

	
Mediator Runtime

	
MDS Runtime

Once the project is created for you, you can rename it. You can then use JDeveloper to create additional projects needed for your application.

Figure 2-1 shows the SOA Composite Editor for the OrderBookingComposite, project contained within the WebLogicFusionOrderDemo application of the Fusion Order Demo.

Figure 2-1 New Workspace for a SOA Composite Application

[image: Description of Figure 2-1 follows]

Table 2-3 describes the SOA Composite Editor.

Table 2-3 SOA Composite Editor

	Element	Description
	
Application Navigator

	
Displays the key files for the specific service components included in the SOA project:

	
A composite.xml file that is automatically created when you create a SOA project. This file describes the entire composite assembly of services, service components, references, and wires.

	
The business rules service component file (rules_name.decs). Additional business rules files display under the Oracle > rules subfolder (rules_name.rules).

	
The mediator service component file (mediator_name.mplan).

	
The BPEL process service component files (process_name.bpel and process_name.wsdl).

	
The human task service component files (task_name.task).

	
The spring service component file (spring.xml).

	
The componentType file that describes the services and references for each service component. This file ensures that the wiring you create between components works.

	
Additional subfolders for class files, XSDs (schemas), and XSLs (transformations).

You can drag and drop components and service adapters from the Component Palette window to the Designer window. When you drop a service component into the Designer window, it starts a property editor for configuring that service component. For example, when you drop a Mediator component into the Designer window, this also opens the Mediator editor window that enables you to configure the Mediator.

To edit the configuration of an existing component in the Designer window, double-click the component to re-open the editor.

	
Designer

	
You drag service components, services, and references into the composite in the designer. When you drag and drop a service component into the Designer window, a corresponding property editor is invoked for performing configuration tasks related to that service component. For example, when you drag and drop the Mediator component into Designer, then the Mediator Editor window is displayed that enables you to configure the Mediator component.

For all subsequent editing sessions, you double-click these service components to invoke their editors.

	
Left Swimlane (Exposed Services)

	
The left swimlane is for services, such as a web services or JCA adapters, providing an entry point to the SOA composite application.

	
Right Swimlane (External References)

	
The right swimlane is for references that send messages to external services in the outside world, such as web services and JCA adapters.

	
Component Palette

	
The component palette provides the various resources that you can use in a SOA composite. It contains the following service components and adapters:

	
Service components

Displays the BPEL Process, business rule, human task, mediator service, and spring components that can be dragged and dropped into the designer.

	
Service adapters

Displays the JCA adapter (AQ, file, FTP, database, JMS, MQ, Oracle Applications, and socket), Oracle BAM binding component, B2B binding component, EJB binding component, ADF-BC binding component, direct binding component, HTTP binding component, and web service binding component that can be dragged into the left or right swimlanes.

If the Component Palette does not display, select Component Palette from the View main menu.

	
Resource Palette

	
The Resource Palette provides a single dialog from which you can browse both local and remote resources. For example, you can access the following resources:

	
Shared local application metadata such as schemas, WSDLs, event definitions, business rules, and so on.

	
WSIL browser functionality that uses remote resources that can be accessed through an HTTP connection, file URL or Application Server connection.

	
Remote resources that are registered in a UDDI (Universal Description, Discover and Integration) registry.

If the Resource Palette does not display, then select Resource Palette from the View main menu.

You select these resources for the SOA composite application through the SOA Resource Browser dialog. This dialog is accessible through a variety of methods. For example, when you select the WSDL file to use with a service binding component or a mediator service component or select the schema file to use in a BPEL process, the SOA Resource Browser dialog appears. Click Resource Palette at the top of this dialog to access available resources.

	
Log Window

	
The Log window displays messages about application compilation, validation, and deployment.

	
Property Inspector

	
The Property Inspector displays properties for the selected service component, service, or reference.

If the Property Inspector does not display, select Property Inspector from the View main menu.

	
Application View

	
The Application View shows the artifacts for the SOA composite application.

The composite.xml file displays as a tab in the designer and a file in the Application Navigator. This file is automatically created when you create a new SOA project. This file describes the entire composite assembly of services, service components, and references. There is one composite.xml file for each SOA project.

When you work with the composite.xml file, you use mostly the designer, the Structure window, and the Property Inspector, as shown in Figure 2-1. The designer enables you to view many of your files in a WYSIWYG environment, or you can view a file in an overview editor where you can declaratively make changes, or you can view the source code for the file. The Structure window shows the structure of the currently selected file. You can select objects in this window, and then edit the properties for the selection in the Property Inspector. As you add artifacts to the SOA composite application, you can view them in the Application Overview.

Figure 2-2 shows the Application Overview for the WebLogicFusionOrderDemo application after it is initially created with an empty composite.

Figure 2-2 Application Overview for a New SOA Composite Application

[image: Description of Figure 2-2 follows]

2.2 Adding Service Components

Once you create your application, often the next step is to add service components that implement the business logic or processing rules of your application. You can use the Component Palette from the SOA Composite Editor to drag and drop service components to the composite.

2.2.1 How to Add a Service Component

To add a service component:

	
From the Component Palette, select SOA.

	
From the Service Components list, drag a component into the designer.

Figure 2-4 shows a BPEL process being added to the designer.

Figure 2-3 Adding BPEL Process to Composite

[image: Description of Figure 2-3 follows]

A specific dialog for the selected service components displays. Table 2-4 describes the available editors.

Table 2-4 Starting Service Component Editors

	Dragging This Service Component...	Invokes The...
	
BPEL Process

	
Create BPEL Process dialog to create a BPEL process that integrates a series of business activities and services into an end-to-end process flow.

	
Business Rule

	
Create Business Rules dialog to create a business decision based on rules.

	
Human Task

	
Create Human Task dialog to create a workflow that describes the tasks for users or groups to perform as part of an end-to-end business process flow.

	
Mediator

	
Create Mediator dialog to define services that perform message and event routing, filtering, and transformations.

	
Spring Context

	
Create Spring dialog to create a spring context file for integrating Java interfaces into SOA composite applications.

	
Configure the settings for a service component. For help with a service component dialog, click Help or press F1. Click Finish.

Figure 2-4 shows the BPEL Process dialog with data entered to create the OrderProcessor BPEL process for the WebLogicFusionOrderDemo application of the Fusion Order Demo. The process is selected to be asynchronous. The Expose as a SOAP Service option directs Oracle JDeveloper to create this service component automatically connected to an inbound web service.

Figure 2-4 Create BPEL Process Dialog

[image: Description of Figure 2-4 follows]

	
Click OK.

The service component displays in the designer. Figure 2-5 shows the OrderProcessor BPEL process added to the composite.xml file. A SOAP service binding component called orderprocessor_client_ep in the left swimlane provides the outside world with an entry point into the SOA composite application. If the Expose as a SOAP Service option was not selected in the Create BPEL Process dialog, the orderprocessor_client_ep service would not display. Section 2.3.1, "How to Add a Service Binding Component," describes how you later add a service.

Figure 2-5 BPEL Process in Composite

[image: Description of Figure 2-5 follows]

You can more fully define the content of the service component now or at a later time. For this top-down example, the content is defined now.

	
Select Save All from the File main menu.

2.2.2 What You May Need to Know About Adding and Deleting a Service Component

Note the following details about adding service components:

	
Create a service component from either the SOA Composite Editor or the designer of another component. For example, you can create a human task component from the SOA Composite Editor or the Oracle BPEL Designer.

	
Use the Resource Palette to browse for service components defined in the SOA Composite Editor, and those deployed.

Note the following details about deleting service components:

	
You can delete a service component by right-clicking it and selecting Delete from the context menu.

	
When a service component is deleted, all references pointing to it are invalidated and all wires are removed. The service component is also removed from the Application Navigator.

	
A service component created from within another service component can be deleted. For example, a human task created within the BPEL process service component of Oracle JDeveloper can be deleted from the SOA Composite Editor. In addition, the partner link to the task can be deleted. Deleting the partner link removes the reference interface from its .componentType file and removes the wire to the task.

2.2.3 How to Edit a Service Component

You modify a service component to define specific details about the service component.

To edit a service component:

	
Double-click the service component in the designer to display the appropriate editor or designer, as described in Table 2-5.

Table 2-5 Starting SOA Service Component Wizards and Dialogs

	Double-Clicking This Service Component...	Displays The...
	
BPEL Process

	
Oracle BPEL Designer for further designing.

	
Business Rule

	
Business Rules Designer for further designing.

	
Human Task

	
Human Task Editor for further designing.

	
Mediator

	
Oracle Mediator Editor for further designing.

	
Spring Context

	
Spring Editor for further designing.

To return to the SOA Composite Editor from within any service component, click Go to Composite Editor on the tool bar. You can also double-click composite.xml in the Application Navigator or single-click composite.xml above the designer.

For help with a service component editor, click Help or press F1. Click Finish.

	
Modify the settings for a service component. For help with a service component editor or designer, click Help or press F1. Click Finish.

	
In the Application Navigator, double-click composite.xml or single-click composite.xml above the designer.

This action returns you to the SOA Composite Editor.

	
Select Save All from the File main menu.

2.3 Adding Service Binding Components

You add a service binding component to act as the entry point to the SOA composite application from the outside world.

2.3.1 How to Add a Service Binding Component

	
Notes:

	
This section describes how to manually create a service binding component. You can also automatically create a service binding component by selecting Expose as a SOAP Service when you create a service component. This selection creates an inbound web service binding component that is automatically connected to your BPEL process, human task service, or Oracle Mediator component.

	
You cannot invoke a representational state transfer (REST) service from the SOA Composite Editor.

You can use the Component Palette from the SOA Composite Editor to drag and drop service binding components to the composite.

To add a service binding component:

	
From the Component Palette, select SOA.

	
From the Service Adapters list, drag a service to the left swimlane to define the service interface.

Figure 2-6 shows a web service being added to the designer.

Figure 2-6 Adding Web Service to Composite

[image: Description of Figure 2-6 follows]

A specific dialog for the selected service displays. Table 2-6 describes the available editors.

Table 2-6 Service Editors

	Dragging This Service...	Invokes The...
	
Web service

	
Create Web Service dialog to create a web invocation service.

	
Adapters

	
Adapter Configuration Wizard to guide you through integration of the service with database tables, database queues, file systems, FTP servers, Java Message Services (JMS), IBM WebSphere MQ, BAM servers, sockets, or Oracle E-Business Suite applications.

	
ADF-BC Service

	
Create ADF-BC Service dialog to create a service data object (SDO) invocation service.

	
B2B

	
B2B Wizard to guide you through selection of a document definition.

	
EJB Service

	
Create EJB Service to create an Enterprise JavaBeans service for using SDO parameters or Java interfaces with Enterprise JavaBeans.

	
HTTP Binding

	
Create HTTP Binding Wizard to create HTTP binding. This wizard enables you to invoke SOA composite applications through HTTP POST and GET operations.

	
Direct Binding

	
Create Direct Binding Service Dialog to invoke a SOA composite application and exchange messages over a remote method invocation (RMI) in the inbound direction.

	
Configure the settings for the service. For help with a service editor, click Help or press F1. Click Finish.

Figure 2-7 shows the Web Service dialog with data entered to create the orderprocessor_client_ep service for the OrderProcessor BPEL process.

Figure 2-7 Create Web Service Dialog

[image: Description of Figure 2-7 follows]

	
Click OK.

The service binding component displays in the left swimlane. Figure 2-8 shows the orderprocessor_client_ep service binding component added to the composite.xml file.

Figure 2-8 Web Service in Composite

[image: Description of Figure 2-8 follows]

	
Select Save All from the File main menu.

2.3.2 How to Add a WSDL for a Web Service

To add a WSDL for a web service:

	
In the Component Palette, select SOA.

	
From the Service Adapters list, drag a Web Service to the left swimlane.

This invokes the Create Web Service dialog shown in Figure 2-7.

	
Enter the details shown in Table 2-7:

Table 2-7 Create Web Service Dialog Fields and Values

	Field	Value
	
Name

	
Enter a name for the service.

	
Type

	
Select the type (message direction) for the web service. Since you dragged the web service to the left swimlane, the Service type is the correct selection, and displays by default:

	
Service (default)

Creates a web service to provide an entry point to the SOA composite application

	
Reference

Creates a web service to provide access to an external service in the outside world

Since this example describes how to create an entry point to the SOA composite application, Service is selected.

	
Select the WSDL file for the service. There are three methods for selection:

	
To the right of the WSDL URL field, click the first icon and select an existing WSDL file from the local file system (for this example, OrderProcessor.wsdl is selected). Note that File System in the list at the top of the dialog is automatically selected. Figure 2-9 provides details.

Figure 2-9 WSDL File Selection

[image: Description of Figure 2-9 follows]

	
To the right of the WSDL URL field, click the first icon and select Resource Palette from the list at the top of the dialog, as shown in Figure 2-10. This action enables you to use existing WSDL files from other applications.

Figure 2-10 Use of Existing WSDL files from Other Applications

[image: Description of Figure 2-10 follows]

	
To the right of the WSDL URL field, click the second icon to automatically generate a WSDL file from a schema. Figure 2-11 shows the Create WSDL dialog.

Figure 2-11 Automatic Generation of WSDL File

[image: Description of Figure 2-11 follows]

	
Click OK to return to the Create Web Service dialog.

	
Note the additional details described in Table 2-8:

Table 2-8 Create Web Service Dialog Fields and Values

	Field	Value
	
Port Type

	
Displays the port type.

	
Callback Port Type

	
Disabled, since this WSDL file is for a synchronous service. This field is enabled for asynchronous services.

	
Click OK.

	
From the File main menu, select Save All.

	
Notes:

	
Do not manually update the WSDL location in the WSDL file in Source View. This action is not supported. Only updates made in Design View are supported.

	
WSDL namespaces must be unique. Do not just copy and rename a WSDL. Ensure that you also change the namespaces.

2.3.3 How to View Schemas

You can view all schemas used by the interface's WSDL file and, if you want, choose a new message schema for a selected message part in the Update Interface dialog.

To access this dialog:

	
Click the small arrow handle that appears on the specific binding component or service component.

Figure 2-12 Selection of Inbound Interface Handle

[image: Description of Figure 2-12 follows]

The Update Interface dialog displays all schemas currently used by the WSDL file.

	
If you want to select a new message schema, click Help or press F1 for instructions.

2.3.4 How to Edit a Service Binding Component

After initially creating a service, you can edit its contents at a later time. Double-click the component icon to display its appropriate editor or wizard. Table 2-9 provides an overview.

Table 2-9 Starting Service Wizards and Dialogs

	Double-Click This Service...	To...
	
Web service

	
Display the Update Service dialog.

	
Adapters

	
Reenter the Adapter Configuration Wizard.

	
ADF-BC Service

	
Display the Update Service dialog.

	
B2B

	
Reenter the B2B wizard.

	
EJB Service

	
Display the Update Service dialog.

	
HTTP Binding

	
Reenter the HTTP Binding Wizard.

	
Direct Binding

	
Reenter the Update Service dialog.

2.3.5 What You May Need to Know About Adding and Deleting Services

Note the following detail about adding services:

	
When a new service is added for a service component, the service component is notified so that it can make appropriate metadata changes. For example, when a new service is added to a BPEL service component, the BPEL service component is notified to create a partner link that can be connected to a receive or an on-message activity.

Note the following detail about deleting services:

	
When a service provided by a service component is deleted, all references to that service component are invalidated and the wires removed.

2.4 Adding Reference Binding Components

You add reference binding components that enable the SOA composite application to send messages to external services in the outside world.

2.4.1 How to Add a Reference Binding Component

You can use the Component Palette from the SOA Composite Editor to drag and drop reference binding components to the composite.

To add a reference binding component:

	
From the Component Palette, select SOA.

	
From the Service Adapters list, drag a service to the right swimlane.

Figure 2-13 shows a web service being added to the designer.

Figure 2-13 Adding Web Service to Composite

[image: Description of Figure 2-13 follows]

A specific dialog or wizard for the selected reference displays. Table 2-10 describes the available editors.

Table 2-10 Reference Editors

	Dragging This Service...	Invokes The...
	
Web Service

	
Create Web Service dialog to create a web invocation service.

	
Adapters

	
Adapter Configuration Wizard to guide you through integration of the service with database tables, database queues, file systems, FTP servers, Java Message Services (JMS), IBM WebSphere MQ, BAM servers, sockets, or Oracle E-Business Suite applications.

	
ADF-BC Service

	
Create ADF-BC Service dialog to create a service data object (SDO) invocation service.

	
B2B

	
B2B Wizard to guide you through selection of a document definition.

	
EJB Service

	
Create EJB Service dialog to create an Enterprise JavaBeans service for using SDO parameters with Enterprise JavaBeans.

	
HTTP Binding

	
Create HTTP Binding Wizard to create HTTP binding. This wizard enables you to invoke SOA composite applications through HTTP POST and GET operations, and invoke HTTP endpoints through HTTP POST and GET operations.

	
Direct Binding

	
Create Direct Binding Service Dialog to invoke an Oracle Service Bus (OSB) flow or another SOA composite application.

	
Configure the settings for the reference binding component. For help with a reference editor, click Help or press F1. Click Finish.

Figure 2-14 shows the Web Service dialog with data entered to create a reference called StoreFrontService.

Figure 2-14 Create Web Service Dialog

[image: Description of Figure 2-14 follows]

	
Click OK.

The reference binding component displays in the right swimlane. Figure 2-8 shows the StoreFrontService reference added to the composite.xml file.

Figure 2-15 Web Service in Composite

[image: Description of Figure 2-15 follows]

	
Select Save All from the File main menu.

2.4.2 What You May Need to Know About Adding and Deleting References

Note the following detail about adding references:

	
The only way to add a new reference in the SOA Composite Editor is by wiring the service component to the necessary target service component. When a new reference is added, the service component is notified so it can make appropriate changes to its metadata. For example, when a reference is added to a BPEL service component, the BPEL service component is notified to add a partner link that can then be used in an invoke activity.

Note the following details about deleting references:

	
When a reference for a service component is deleted, the associated wire is also deleted and the service component is notified so it can update its metadata. For example, when a reference is deleted from a BPEL service component, the service component is notified to delete the partner link in its BPEL metadata.

	
Deleting a reference connected to a wire clears the reference and the wire.

2.4.3 What You May Need to Know About WSDL References

A WSDL file is added to the SOA composite application whenever you create a new component that has a WSDL (for example, a service binding component, service component (for example, Oracle Mediator, BPEL process, and so on), or reference binding component. When you delete a component, any WSDL imports used by that component are removed only if not used by another component. The WSDL import is always removed when the last component that uses it is deleted.

When a service or reference binding component is updated to use a new WSDL, it is handled as if the interface was deleted and a new one was added. Therefore, the old WSDL import is only removed if it is not used by another component.

If a service or reference binding component is updated to use the same WSDL (porttype qname), but from a new location, the WSDL import and any other WSDL reference (for example, the BPEL process WSDL that imports an external reference WSDL) are automatically updated to reference the new location.

Simply changing the WSDL location on the source view of the composite.xml file's import is not sufficient. Other WSDL references in the metadata are required by the user interface (see the ui:wsdlLocation attribute on composite and componentType services and references). There can also be other WSDL references required by runtime (for example, a WSDL that imports another WSDL, such as the BPEL process WSDL).

Always modify the WSDL location though the dialogs of the SOA Composite Editor in which a WSDL location is specified (for example, a web service, BPEL partner link, and so on). Changing the URL's host address is the exact case in which the SOA Composite Editor automatically updates all WSDL references.

2.4.4 What You May Need to Know About Invoking the Default Revision of a Composite

A WSDL URL that does not contain a revision number is processed by the default composite application. This action enables you to always call the default revision of the called service without having to make other changes in the calling composite.

Select the default WSDL to use in the Resource Palette in Oracle JDeveloper.

	
In the Create Web Service dialog, click the icon to the right of the WSDL URL field to invoke the SOA Resource Browser dialog.

	
Select Resource Palette from the list at the top.

	
Expand the nodes under the Application Server connection or WSIL connection to list all deployed composites and revisions. The default revision is identified by the word Default in the title. For example, OrderBookingComposite [Default].

	
Select the appropriate default endpoint and click OK.

2.5 Adding Wires

You wire (connect) the web service and service component. Note the following:

	
Since a web service is an inbound service, a reference handle displays on the right side. Web services that are outbound references do not have a reference handle on the right side.

	
You can drag a defined interface to an undefined interface in either direction (reference to service or service to reference). The undefined interface then inherits the defined interface. There are several exceptions to this rule:

	
A component has the right to reject a new interface. For example, a mediator can only have one inbound service. Therefore, it rejects attempts to create a second service.

	
You cannot drag an outbound service (external reference) to a business rule, because business rules do not support references. When dragging a wire, the user interface highlights the interfaces that are valid targets.

	
You cannot wire services and composites that have different interfaces. For example, you cannot connect a web service configured with a synchronous WSDL file to an asynchronous BPEL process. Figure 2-16 provides details.

Figure 2-16 Limitations on Wiring Services and Composites with Different Interfaces

[image: Description of Figure 2-16 follows]

The service and reference must match, meaning the interface and the callback must be the same. If you have two services that have different interfaces, you can place a mediator between the two services and perform a transformation between the interfaces.

2.5.1 How to Wire a Service and a Service Component

You can wire a service binding component to a service component from the SOA Composite Editor.

To wire a service and a service component:

	
From a service reference handle, drag a wire to the service component interface, as shown in Figure 2-17.

Figure 2-17 Wire Connection

[image: Description of Figure 2-17 follows]

	
If the service component is a BPEL process, double-click the BPEL process and note that the service displays as a partner link in the left swimlane, as shown in Figure 2-18.

Figure 2-18 Display of the Service as a Partner Link in the BPEL Process

[image: Description of Figure 2-18 follows]

	
Select Save All from the File main menu.

2.5.2 How to Wire a Service Component and a Reference

You can wire a service component to a reference binding component from the SOA Composite Editor.

To wire a service component and a reference:

	
In the Application Navigator, double-click composite.xml or single-click composite.xml above the designer.

	
From the service component, drag a wire to the reference, as shown in Figure 2-19.

Figure 2-19 Wiring of a Service Component and Reference

[image: Description of Figure 2-19 follows]

	
If the service component is a BPEL process, double-click the BPEL process and note that the reference displays as a partner link in the right swimlane, as shown in Figure 2-20.

Figure 2-20 Display of the Reference as a Partner Link in the BPEL Process

[image: Description of Figure 2-20 follows]

	
Select Save All from the File main menu.

	
In the Application Navigator, select the composite.xml file.

	
Click the Source tab to review what you have created.

The orderprocessor_client_ep service binding component shown in Example 2-1 provides the entry point to the composite.

Example 2-1 Service

<service name="orderprocessor_client_ep"
 ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/orderbooking/OrderBookingProcessor.wsdl">
 <interface.wsdl interface= "http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.interface(OrderProcessor)"
 <binding.adf serviceName="OrderProcessorService" registryName=""/>
 <callback>
 <binding.ws port="http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.endpoint(orderprocessor_clientep/OrderProcessorCallback_
pt)"/>
 </callback>
 </service>

The OrderProcessor BPEL process service component is shown in Example 2-2:

Example 2-2 Service Component

<component name="OrderProcessor">
 <implementation.bpel src="OrderProcessor.bpel"/>
</component>

A reference binding component named StoreFrontService is shown in Example 2-3. The reference provides access to the external service in the outside world.

Example 2-3 Reference

 <reference name="StoreFrontService"
 ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/oracle/fodemo/storefront/store/service/common/serviceinterface/StoreFron
tService.wsdl">
 <interface.wsdl
 interface="www.globalcompany.example.com#wsdl.interface(StoreFrontService)"/>
 <binding.ws
port="www.globalcompany.example.com#wsdl.endpoint(StoreFrontService/StoreFrontServ
iceSoapHttpPort)"
 location="oramds:/apps/FusionOrderDemoShared/services/oracle/fodemo/storefront/sto
re/service/common/serviceinterface/StoreFrontService.wsdl"/>
 </reference>

In Example 2-4, the communication (or wiring) between service components is described:

	
The source orderprocessor_client_ep service binding component is wired to the target OrderProcessor BPEL process service component. Wiring enables web service message communication with this specific BPEL process.

	
The source OrderProcessor BPEL process is wired to the target StoreFrontService reference binding component. This is the reference to the external service in the outside world.

Example 2-4 Wires

 <wire>
 <source.uri>orderprocessor_client_ep</source.uri>
 <target.uri>OrderProcessor/orderprocessor_client_ep</target.uri>
 </wire>

 <wire>
 <source.uri>OrderProcessor/StoreFrontService</source.uri>
 <target.uri>StoreFrontService</target.uri>
 </wire>

2.5.3 What You May Need to Know About Adding and Deleting Wires

Note the following details about adding wires:

	
A service component can be wired to another service component if its reference matches the service of the target service component. Note that the match implies the same interface and callback interface.

	
Adding the following wiring between two mediator service components causes an infinite loop:

	
Create a business event.

	
Create a mediator service component and subscribe to the event.

	
Create a second mediator service component to publish the same event.

	
Wire the first mediator to the second mediator component service.

If you remove the wire between the two mediators, then for every message, the second mediator can publish the event and the first mediator can subscribe to it.

Note the following details about deleting wires:

	
When a wire is deleted, the component's outbound reference is automatically deleted and the component is notified so that it can clean up (delete the partner link, clear routing rules, and so on). However, the component's interface is never deleted. All Oracle SOA Suite services are defined by their WSDL interface. When a component's interface is defined, there is no automatic deletion of the service interface in the SOA Composite Editor.

If you want to change the service WSDL interface, there are several workarounds:

	
In most cases, you just want to change the schema instead of the inbound service definition. In the SOA Composite Editor, click any interface icon that uses the WSDL. For example, you can click the web service interface icon or the Oracle Mediator service icon. This invokes the Update Interface dialog, which enables you to change the schema for any WSDL message.

	
If you are using an Oracle Mediator service component, the Refresh operations from WSDL icon of the Oracle Mediator Editor enables you to refresh (after adding new operations) or replace the Oracle Mediator WSDL. However, you are warned if the current operations are to be deleted. If you change the WSDL to the new inbound service WSDL using this icon, the wire typically breaks because the interface has changed. You can then wire Oracle Mediator to the new service.

	
In many cases, a new service requires a completely new Oracle Mediator. Delete the old Oracle Mediator, create a new one, and wire it to the new service.

	
If you are using a BPEL process service component, select a new WSDL through the Edit Partner Link dialog.

See Section 2.3.3, "How to View Schemas" for details about the Update Interface dialog.

2.6 Adding Security

As you create your SOA composite application, you can secure web services by attaching policies to service binding components, service components, and reference binding components. For more information about implementing policies, see Chapter 40, "Enabling Security with Policies."

2.7 Deploying a SOA Composite Application

Deploying the SOA composite application involves creating a connection to an Oracle WebLogic Server and deploying an archive of the SOA composite application to an Oracle WebLogic Server Managed Server. For more information about deploying SOA composite applications, see Chapter 41, "Deploying SOA Composite Applications."

2.7.1 How to Invoke Deployed Composites

You can invoke other deployed SOA composite applications from your SOA composite application. The other applications must be deployed.

To invoke other composites:

	
Create a web service or partner link through one of the following methods.

	
In the SOA Composite Editor, drag a Web Service from the Component Palette to the External References swimlane.

	
In Oracle BPEL Designer, drag a Partner Link from the Component Palette to the right swimlane.

	
Access the SOA Resource Browser dialog based on the type of service you created.

	
For the Create Web Service dialog, click the Find existing WSDLs icon.

	
For the Edit Partner Link dialog, click the SOA Resource Browser icon.

	
From the list at the top, select Resource Palette.

	
Expand the tree to display the application server connection to the Oracle WebLogic Administration Server on which the SOA composite application is deployed.

	
Expand the application server connection.

	
Expand the SOA folder. Figure 2-21 provides details.

Figure 2-21 Browse for a SOA Composite Application

[image: Description of Figure 2-21 follows]

	
Select the composite service.

	
Click OK.

2.8 Managing and Testing a SOA Composite Application

As you build and deploy a SOA composite application, you manage and test it using a combination of Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware Control.

2.8.1 How to Manage Deployed Composites

You can manage deployed SOA composite applications from the Application Server Navigator in Oracle JDeveloper. Management tasks consist of undeploying, activating, retiring, turning on, and turning off SOA composite application revisions.

	
Note:

These instructions assume you have created an application server connection to an Oracle WebLogic Administration Server on which the SOA Infrastructure is deployed. Creating a connection to an Oracle WebLogic Administration Server enables you to browse for managed Oracle WebLogic Servers or clustered Oracle WebLogic Servers in the same domain. From the File main menu, select New > Connections > Application Server Connection to create a connection.

	
From the View main menu, select Application Server Navigator.

	
Expand your connection name (for this example, named MyAppServerConnection).

The SOA folder appears, as shown in Figure 2-22. The SOA folder displays all deployed SOA composite application revisions and services. You can browse all applications deployed on all Oracle WebLogic Administration Servers, managed Oracle WebLogic Servers, and clustered Oracle WebLogic Servers in the same domain. Figure 2-22 provides details.

Figure 2-22 Application Server Navigator

[image: Description of Figure 2-22 follows]

	
Expand the SOA folder.

	
Expand the partition in which the composite application is deployed.

Deployed SOA composite applications and services appear, as shown in Figure 2-23.

Figure 2-23 Deployed SOA Composite Applications

[image: Description of Figure 2-23 follows]

	
Right-click a deployed SOA composite application.

	
Select an option to perform. The options that display for selection are based upon the current state of the application. Table 2-11 provides details.

Table 2-11 SOA Composite Application Options

	Option	Description
	
Stop

	
Shuts down a running SOA composite application revision. Any request (initiating or a callback) to the composite is rejected if the composite is shut down.

Note: The behavior differs based on which binding component is used. For example, if it is a web service request, it is rejected back to the caller. A JCA adapter binding component may do something else in this case (for example, put the request in a rejected table).

This option displays when the composite application has been started.

	
Start

	
Restarts a composite application revision that was shut down. This action enables new requests to be processed (and not be rejected). No recovery of messages occurs.

This option displays when the composite application has been stopped.

	
Retire

	
Retires the selected composite revision. If the process life cycle is retired, you cannot create a new instance. Existing instances are allowed to complete normally.

An initiating request to the composite application is rejected back to the client. The behavior of different binding components during rejection is the same as for the shut down option.

A callback to an initiated composite application instance is delivered properly.

This option displays when the composite application is active.

	
Activate

	
Activates the retired composite application revision. Note the following behavior with this option:

	
All composite applications are automatically active when deployed.

	
Other revisions of a newly deployed composite application remain active (that is, they are not automatically retired). If you want, you must explicitly retire them.

This option displays when the application is retired.

	
Undeploy

	
Undeploys the selected composite application revision. The consequences of this action are as follows:

	
You can no longer configure and monitor this revision of the composite application.

	
You can no longer process instances of this revision of the composite application.

	
You cannot view previously completed processes.

	
The state of currently running instances is changed to stale and no new messages sent to this composite are processed.

	
If you undeploy the default revision of the composite application (for example, 2.0), the next available revision of the composite application becomes the default (for example, 1.0).

	
Set Default Revision

	
Sets the selected composite application revision to be the default.

	
If you want to deploy a prebuilt SOA composite application archive that includes a deployment profile, right-click the SOA folder and select Deploy SOA Archive. The archive consists of a JAR file of a single application or a SOA bundle ZIP file containing multiple applications.

You are prompted to select the following:

	
The target SOA servers to which you want to deploy the SOA composite application archive.

	
The archive to deploy.

	
The configuration plan to attach to the application. As you move projects from one environment to another (for example, from testing to production), you typically must modify several environment-specific values, such as JDBC connection strings, hostnames of various servers, and so on. Configuration plans enable you to modify these values using a single text (XML) file called a configuration plan. The configuration plan is created in either Oracle JDeveloper or from the command line. During process deployment, the configuration plan is used to search the SOA project for values that must be replaced to adapt the project to the next target environment. This is an optional selection.

	
Whether you want to overwrite an existing composite of the same revision ID. This action enables you to redeploy an application revision.

For more information, see the following documentation:

	
Chapter 41, "Deploying SOA Composite Applications" for details about creating a deployment profile and a configuration plan and deploying an existing SOA archive

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for details about managing deployed SOA composite applications from Oracle Enterprise Manager Fusion Middleware Control Console

2.8.2 How to Test a Deployed Composite

After you deploy a SOA composite application, you can initiate a test instance of it from the Test Web Service page in Fusion Middleware Control to verify the XML payload data. For more information about initiating a test instance, see the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

In addition to creating a test instance, you can also simulate the interaction between a SOA composite application and its web service partners before deployment in a production environment. This helps to ensure that a process interacts with web service partners as expected by the time it is ready for deployment to a production environment. For more information about creating a unit test, see Chapter 42, "Automating Testing of SOA Composite Applications."

3 Introduction to the SOA Sample Application

This chapter introduces the SOA sample application that can be used with this guide. The WebLogic Fusion Order Demo application of the Fusion Order Demo demonstrates various capabilities of Oracle SOA Suite and is used as an example throughout this guide.

This chapter includes the following sections:

	
Section 3.1, "Introduction to the Fusion Order Demo"

	
Section 3.2, "Setting Up the Fusion Order Demo Application"

	
Section 3.3, "Taking a Look at the WebLogic Fusion Order Demo Application"

	
Section 3.4, "Understanding the OrderBookingComposite Flow"

	
Section 3.5, "Deploying Fusion Order Demo"

	
Section 3.6, "Running Fusion Order Demo"

	
Section 3.7, "Viewing Data Sent to Oracle BAM Server"

	
Section 3.8, "Undeploying the Composites for the WebLogic Fusion Order Demo Application"

3.1 Introduction to the Fusion Order Demo

The WebLogic Fusion Order Demo application is part of a larger sample application called Fusion Order Demo. In this larger sample application, Global Company sells electronic devices through many channels, including a web-based client application. Electronic devices are sold through a storefront-type web application. Customers can visit the web site, register, and place orders for the products.

There are two parts to the Fusion Order Demo, the Store Front module and the WebLogic Fusion Order Demo application.

3.1.1 Store Front Module

The Store Front module provides a rich user interface built with Oracle Application Development Framework to show how to combine an easily built AJAX user interface with a sophisticated SOA composite application. It is based on Oracle ADF business components, ADF model data bindings, and ADF faces.

The Store Front module sells electronic devices through a storefront-type web application.

The Store Front module contains the following projects:

	
StoreFrontService: This project provides access to the storefront data and provides transaction support to update data for customers, orders, and products.

	
StoreFrontUI: This project provides web pages that the customer uses to browse the storefront, place orders, register on the site, view order information, and update the user profile.

Figure 3-1 shows the Home page of the Store Front module user interface. It shows the featured products that the site wishes to promote and gives access to the full catalog of items. Products are presented as images along with the name of the product. Page regions divide the product catalog area from other features that the site offers.

Figure 3-1 StoreFrontUI Home Page

[image: Description of Figure 3-1 follows]

From the home page, you can browse the web site as an anonymous user, then log in as a registered customer to place an order.

The Fusion Order Demo application ships with predefined customer data. Because the Fusion Order Demo application implements Oracle ADF Security to manage access to Oracle ADF resources, only the authenticated user can view orders in their cart.

For more information about the Store Front module, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

3.1.2 WebLogic Fusion Order Demo Application

The WebLogic Fusion Order Demo application processes orders placed in the Store Front module. It uses the following Oracle SOA Suite components:

	
Oracle Mediator

	
Oracle BPEL Process

	
Oracle Human Workflow (using a human task)

	
Oracle Business Rules

	
Spring

	
Oracle User Messaging Service

	
Oracle Business Activity Monitoring

	
Oracle Metadata Repository

Once an order has been placed by using the Store Front module, the WebLogic Fusion Order Demo application processes the order. When processing an order, it uses various internal and external applications, including a customer service application, a credit validation system, and both an internal vendor and external vendor. For example, the internal vendor (InternalWarehouseService) and external vendor (ExternalPartnerSupplier), are sent information for every order. As part of the order process, they each return a price for which they would supply the items in the order. A condition in the process determines which supplier is assigned the order.

For information about SOA composite applications, see Chapter 1, "Introduction to Building Applications with Oracle SOA Suite."

3.2 Setting Up the Fusion Order Demo Application

This section describes how to prepare the environment to run the WebLogic Fusion Order Demo application.

3.2.1 Task 1: Install Oracle JDeveloper Studio

Install Oracle JDeveloper 11g Studio Edition to create the WebLogic Fusion Order Demo application. You can download Oracle JDeveloper from:

http://www.oracle.com/technology/products/jdev/11/index.html

Ensure that you download and install 11g and that it is the Studio Edition, not the Java Edition. You can verify these details in Oracle JDeveloper from the Help > About menu option.

In order to create and deploy SOA composite applications and projects, you must install the Oracle SOA Suite extension. For instructions on installing this extension for Oracle JDeveloper, see the Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.

3.2.2 Task 2: Install the Fusion Order Demo Application

Throughout this tutorial, you must view or use content from Fusion Order Demo in your Oracle JDeveloper environment. The Fusion Order Demo is contained within a ZIP file.

To access the ZIP file:

	
Download the Fusion Order Demo application ZIP file (FusionOrderDemo_R1PS2.zip). You can download the ZIP file from:

http://www.oracle.com/technology/products/jdev/samples/fod/index.html

	
Unzip the file to a temporary directory.

This tutorial refers to this directory as DEMO_DOWNLOAD_HOME.

3.2.3 Task 3: Install Oracle SOA Suite

To successfully deploy and run the Fusion Order Demo applications, you must complete an installation for Oracle SOA Suite. Specifically, the domain contains an Administration Server and a Managed Server.

Installing Oracle SOA Suite requires the following

	
Creating schemas for Oracle SOA Suite in an Oracle database

	
Installing Oracle WebLogic Server

	
Configuring a domain in Oracle WebLogic Server to support Oracle SOA Suite, Oracle Enterprise Manager, and optionally, Oracle BAM. Oracle BAM is not required for Fusion Order Demo, but if an Oracle BAM Server is configured, Oracle BAM Adapters send data to the Oracle BAM Server.

After the domain is created, it contains an Administration Server to host Oracle Enterprise Manager Fusion Middleware Control for performing administrative tasks, a Managed Server to host deployed applications, and if you configured Oracle BAM, a second Managed Server for the Oracle BAM Server.

For instructions on installing and configuring Oracle SOA Suite, see the Oracle Fusion Middleware Installation Guide for Oracle SOA Suite.

After successfully completing the installation process, perform the following additional configuration steps:

	
Enable the credentials that are included in the StoreFront module by adding a setting to the configuration file for the domain:

	
Locate the configuration file set for the Oracle SOA Suite domain in the following directory:

(UNIX) MW_HOME/user_projects/domains/domain_name/bin/setDomainEnv.sh
(Windows) MW_HOME\user_projects\domains\domain_name\bin\setDomainEnv.cmd

	
Add the following option to the JAVA_PROPERTIES (UNIX) or the SET JAVA_PROPERTIES (Windows) line:

-Djps.app.credential.overwrite.allowed=true

For more information about setting this property, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
If the Oracle WebLogic Server Administration Server is running, stop it:

On UNIX, as the root user, change directories to directory MW_HOME/user_projects/domains/domain_name/bin and enter the following command:

./stopWebLogic.sh

On Windows, from the Windows Start menu, select All Programs > Oracle WebLogic > User Projects > domain_name > Stop Admin Server.

	
Start the Administration Server:

On UNIX, from directory MW_HOME/user_projects/domains/domain_name/bin, enter the following command:

./startWebLogic.sh

On Windows, from the Windows Start menu, select All Programs > Oracle WebLogic > User Projects > domain_name > Start Admin Server.

When prompted on UNIX, enter your Oracle WebLogic Server user name and password. The password is not visible as you type.

The Administration Server is started when the command window displays the following messages:

<Server state changed to RUNNING>
<Server started in RUNNING mode>

Leave the command window open, although you may minimize it. The Administration Server is now running and ready for use.

	
When the Administration Server is in RUNNING mode, start the Managed Servers, if they are not running. In a command window, enter the following command all on one line:

On UNIX, from directory MW_HOME/user_projects/domains/domain_name/bin, enter the following command:

./startManagedWebLogic.sh managed_server_name admin_url username password

On Windows, from directory MW_HOME\user_projects\domains\domain_name\bin, enter the following command:

startManagedWebLogic.cmd managed_server_name admin_url username password

Substitute the following values in Table 3-1.

Table 3-1 startManagedWebLogic Values

	Value	Description
	
managed_server

	
The name of the Managed Server. For example:

soa_server1

bam_server1

	
admin_url

	
The URL of the Managed Server. For example:

http://soahost:8001

http://soahost:9001

The port of the Managed Server for hosting SOA applications is typically 8001. The port of the Managed Server for Oracle BAM is typically 9001.

	
username

	
The Oracle WebLogic Server administrator. For example:

weblogic

	
password

	
The password of the Oracle WebLogic Server administrator. For example:

welcome1

	
If you are deploying remotely from one computer that has Oracle JDeveloper to another computer that has the Oracle SOA Suite installation with Oracle WebLogic Server, modify the JAVA_HOME and PATH environment variables on the computer with the Oracle SOA Suite installation.

Oracle JDeveloper requires changes to these variables for running the scripts that deploy the composite services. You set the JAVA_HOME variable to include the path to the Oracle WebLogic Server JDK, and set the PATH variable to include the path to the Oracle WebLogic Server bin directory for ant.

On UNIX, use the export command. For example:

export JAVA_HOME=$MW_HOME/jdk160_11
export PATH=$PATH:MW_HOME/modules/org.apache.ant_1.7.0/bin

On Windows, perform the following steps to modify the variables:

	
Open Control Panel from the Windows Start menu and double-click the System icon.

	
In the System Properties dialog, select the Advanced tab and click Environment Variables.

	
In the Environment Variables dialog, locate the JAVA_HOME system variable and ensure that it is set to the location of the Oracle WebLogic Server JDK.

If there is no JAVA_HOME variable defined, click New and in the New System Variable dialog, enter a variable name of JAVA_HOME and a variable value pointing to the Oracle WebLogic Server JDK, such as C:\weblogic\jdk160_11. Click OK to set the new system variable.

	
Double-click the Path system variable and ensure that it includes the path to the Oracle WebLogic Server ant\bin directory. If it does not, add the path to the end of the variable value. For example:

;C:\weblogic\modules\org.apache.ant_1.7.0\bin

Click OK to set the new system variable.

	
Click OK twice more to dismiss the Environment Variables and the System Properties dialogs.

3.3 Taking a Look at the WebLogic Fusion Order Demo Application

After you have set up the WebLogic Fusion Order Demo application, spend time viewing the WebLogic Fusion Order Demo artifacts in Oracle JDeveloper.

To open the WebLogic Fusion Order Demo in Oracle JDeveloper:

	
From the Oracle JDeveloper main menu, choose File > Open.

	
In the Open dialog, browse to DEMO_DOWNLOAD_HOME/CompositeServices and select WebLogic Fusion Order Demo.jws. Click Open.

	
When prompted to migrate files to the 11.1.1.3.0 format, click Yes. When the migration is complete, click OK.

Figure 3-2 shows the Application Navigator after you open the file for the application workspace. It displays the project applications of the WebLogic Fusion Order Demo.

Figure 3-2 Projects of WebLogic Fusion Order Demo Application

[image: This graphic is described in the surrounding text.]

3.3.1 Project Applications of the WebLogic Fusion Order Demo Application

Table 3-2 lists and describes the projects in the WebLogicFusionOrderDemo application workspace.

Table 3-2 Projects in the WebLogic Fusion Order Demo Application

	Application	Description
	
B2BX12OrderGateway

	
This project contains a composite for Oracle B2B. This composite is not used in this guide.

	
bin

	
This project contains a build script for deploying all the SOA projects. It also contains templates for seeding JMS connector information, demo topics, and demo users.

	
CreditCardAuthorization

	
This project provides the service needed by OrderBookingComposite project to verify the credit card information of a customer.

	
ExternalLegacyPartnerSupplierEjb

	
This project provides an external system to provide price quotes.

	
OrderApprovalHumanTask

	
This project provides a task form for approving orders from the OrderBookingComposite project.

	
OrderBookingComposite

	
This project processes an order submitted in the Store Front module user interface. This project contains the main process for the WebLogic Fusion Order Demo application. It also uses the Oracle BAM adapter and Oracle BAM sensors to send active data into Oracle BAM dashboard. This composite is not used in this guide.

	
OrderSDOComposite

	
This project simulates the StoreFrontService service of the Store Front module for testing purposes.

	
PartnerSupplierComposite

	
This project contains a composite containing both a BPEL process and spring context for obtaining a quote from a partner warehouse. It is referenced as a service from the composite for the OrderBookingComposite project. The quote request is routed to either the BPEL process or the spring component based on the amount.

3.3.2 The composite.xml File

To understand how a composite is designed, examine the main project, OrderBookingComposite, in Oracle JDeveloper.

To view the composite.xml file:

	
In Application Navigator, expand OrderBookingComposite > SOA Content.

	
Select composite.xml.

The composite then appears in the SOA Composite Editor in Oracle JDeveloper, as shown in Figure 3-3.

Figure 3-3 SOA Composite Editor

[image: This graphic is described in the surrounding text.]

3.4 Understanding the OrderBookingComposite Flow

OrderBookingComposite is the main project of the WebLogic Fusion Order Demo application, containing a composite application for processing orders from Global Company. This composite demonstrates how services, both internal to an enterprise, and external at other sites, can be integrated using the SOA architecture paradigm to create one cohesive ordering system.

At the center of OrderBookingComposite composite is the OrderProcessor BPEL process. It orchestrates all the existing services in the enterprise for order fulfillment with the right warehouse, based on the business rules in the process.

Figure 3-4 shows an overview of the OrderBookingComposite composite for the WebLogic Fusion Order Demo application, followed by a step-by-step description of the composite flow for how the application processes an order.

Figure 3-4 OrderBookingComposite Flow

[image: Description of Figure 3-4 follows]

When a new customer registers in Global Company's storefront user interface, the web client sends the customer's information to the internal customer service application called StoreFrontService. StoreFrontService then stores the customer information in a database. The customer can then browse products, add them to their online shopping cart, and place the order. User ngreenbe is the only user not required to register before placing an order.

When a registered customer uses Global Company's storefront user interface, the user interface invokes the StoreFrontService and provides authentication. A registered user builds up their shopping cart, and places an order. When the order is submitted, the following events take place:

After an order is placed, the following sequence occurs to complete the order:

	
Oracle ADF Business Component writes the order to a database with schema for Fusion Order Demo, and raises a NewOrderSubmitted event using the Event Delivery Network (EDN). The data associated with this event is the order ID.

	
Because the OrderPendingEvent mediator subscribes to the NewOrderSubmitted event, the EDN layer notifies the OrderPendingEvent mediator of the new order.

	
The OrderPendingEvent mediator receives the order and routes the input order ID to the OrderProcessor BPEL process.

	
The OrderProcessor BPEL process receives the order ID from the database, using a bind entity activity to bind to the exposed Oracle ADF Business Component StoreFrontService service.

Some of the information about the order used later in the process is:

	
Customer ID

	
Items the customer purchased

	
Credit card used

	
Shipping address chosen

	
The BPEL process initiates StoreFrontService, passing it the order ID, to retrieve information about the customer.

	
The BPEL process then sends the purchase amount, credit card type, and credit card number to CreditCardAuthorizationService, which verifies if the customer's credit card is valid.

If credit card is not valid, the BPEL process cancels the order.

If credit card is valid, the BPEL process sends the order to the RequiresApprovalRule business rule to determine if the order requires approval by management.

	
The RequiresApprovalRule business rule evaluates if manual approval is required. The business rule contains a rule that requires manual approval for orders over $2,000.

	
For those orders requiring manual approval, the BPEL process invokes the ApprovalHumanTask human task, which in turn performs the following:

	
Routes a message to an assignee named jstein, who then approves or disapproves the order.

	
Publishes the OnTaskAssigned event. The OrderApprovalTaskAssignedMediator mediator subscribes this event, and if an Oracle BAM Server is configured, it uses an Oracle BAM Adapter to send the assignee ID jstein (based on the ECID) of the order to the Oracle BAM Server.

	
If the order is approved, the BPEL process sends the order information to the following suppliers in parallel to obtain a bid:

	
Internal supplier by using the InternalWarehouseService BPEL process, also located in OrderBookingComposite

	
External supplier by using the PartnerSupplierMediator mediator, which in turn routes to the ExternalPartnerSupplier BPEL process or SpringPartnerSupplierMediator spring component, located in another composite called PartnerSupplierComposite

	
The two suppliers respond with their bids, and the BPEL process send the bids to the EvaluatePreferredSupplierRule business rule.

	
The EvaluatePreferredSupplierRule business rule chooses the supplier with the lower of the two bids.

	
The BPEL process invokes the FulfillOrder mediator, which performs the following four operations:

	
Stores the order in a temporary queue and uploads it to the fulfillment system in batch mode overnight

	
Routes the order to USPS

	
If an Oracle BAM Server is configured, it uses an Oracle BAM Adapter to send data about the order (based on order ID) to the Oracle BAM Server.

	
If an Oracle BAM Server is configured, it uses an Oracle BAM Adapter to send data about the time for the order to process (based on the instance ID) to the Oracle BAM Server.

	
Once the order is fulfilled, the BPEL process sets the order to complete.

	
The BPEL process invokes the NotificationService service, which sends the customer an E-mail notification with the purchase order information.

	
When the order completes, the OrderPendingEvent mediator publishes the OrderCompleted business for the OrderProcessor process.

While not depicted in Figure 3-4, the OrderBookingComposite composite provides the following processing flow for approved orders:

	
The UpdateOrderStatus mediator performs the following:

	
Publishes business event OrderUpdateEvent and sends the order ID to the OrderProcessor BPEL process.

	
If an Oracle BAM Server is configured, it uses an Oracle BAM Adapter to send data about the order ID and order status to the Oracle BAM Server.

	
The OrderUpdateEventMediator mediator subscribes to business event OrderUpdateEvent, sends the order ID to StoreFrontService, and waits for the StoreFrontService to respond with updated details about the order.

To aid with the tracking of an order, the OrderBookingComposite composite contains sensors to provide a method for implementing trackable fields on messages. For example, the CreditCardAuthorization service has a composite sensor that indicates if the credit card was authorized. In addition, the OrderProcessor BPEL process also uses sensors for various activities. For example, the Scope_AuthorizeCreditCard scope in the OrderProcessor BPEL process, which verifies that the customer has acceptable credit using the CreditCardAuthorizationService service, uses a sensor for tracking. When you monitor instances of a composite through Oracle Enterprise Manager Fusion Middleware Control Console, you can monitor the sensors for both the composite and the BPEL process.

In the remaining sections of this chapter, deploy and run Fusion Order Demo. As a part of it running it, use Fusion Middleware Control Console to monitor orders processed by the OrderBookingComposite composite. When you monitor an order, you can also view the composite sensors and activity sensors.

3.5 Deploying Fusion Order Demo

This section describes how to deploy the Fusion Order Demo applications in the partition.

3.5.1 Task 1: Create a Connection to an Oracle WebLogic Server

To create a connection to an Oracle WebLogic Server:

	
Start Oracle JDeveloper:

(UNIX) ORACLE_HOME/jdev/bin/jdev
(Windows) JDEV_ORACLE_HOME\jdeveloper\JDev\bin\jdev.exe

	
From the Application Menu, select New.

Figure 3-5 Application Menu

[image: Description of Figure 3-5 follows]

	
In the New Gallery dialog, in the Categories tree, select General, and then Connections.

	
Select Application Server Connection and click OK.

The Create Application Server Connection Type page displays.

	
Enter a unique name for the connection in the Connection Name field and select WebLogic 10.3 from the Connection Type list.

Figure 3-6 Create Application Server Connection

[image: Description of Figure 3-6 follows]

	
Click Next.

The Authentication page is displayed.

	
Enter weblogic for the User Name and the password for that administrator in the Password field.

	
In the Configuration page, enter the details shown in Table 3-3.

Table 3-3 Configuration Page Fields and Values

	Application	Description
	
Weblogic Hostname (Administration Server)

	
Name of the DNS name or IP address of the Administration Server of the Oracle WebLogic Server

	
Port

	
The address of the port on which the Administration Server is listening for requests (7001 by default)

	
Weblogic Domain

	
The domain name for Oracle WebLogic Server

	
Click Next.

The Test page displays.

	
Click Test Connection.

The following message should appear:

Testing JSR-88 ... success.
Testing JSR-88-LOCAL ... success.
Testing JNDI ... success.
Testing JSR-160 DomainRuntime ... success.
Testing JSR-160 Runtime ... success.
Testing JSR-160 Edit ... success.
Testing HTTP ... success.
Testing Server MBeans Model ... success.

8 of 8 tests successful.

If the test is unsuccessful, ensure that Oracle WebLogic Server is running, and retry the test.

	
Click Finish.

	
In the Resource Palette, under IDE Connections, expand Application Server to see the application server connection that you created.

Figure 3-7 Resource Palette

[image: Description of Figure 3-7 follows]

3.5.2 (Optional) Task 2: Create a Connection to the Oracle BAM Server

If you configured an Oracle BAM Server during installation, create a connection to it.

To create a connection to an Oracle BAM Server:

	
From the Application Menu, select New.

	
In the New Gallery dialog, in the Categories tree, select General, and then Connections.

	
Select BAM Connection and click OK.

The BAM Connection Wizard displays.

	
Ensure that Application Resources is selected.

	
Provide a name for the connection.

	
Click Next.

	
Enter weblogic for the User Name and the password for that administrator in the Password field.

	
Enter the connection information about the Oracle BAM Server host described in Table 3-4.

Table 3-4 Oracle BAM Server Connection Information

	Field	Description
	
BAM Web Host

	
Enter the name of the host on which the Oracle BAM Report Server and web applications are installed. In most cases, the Oracle BAM web applications host, Oracle BAM Server host, and the Oracle WebLogic Server are the same.

	
BAM Server Host

	
Enter the name of the host on which the Oracle BAM Server is installed.

	
User Name

	
Enter the Oracle BAM Server user name. For example:

weblogic

	
Password

	
Enter the password of the user name.

	
HTTP Port

	
Enter the port number or accept the default value of 9001. This is the HTTP port for the Oracle BAM web applications host.

	
JNDI Port

	
Enter the port number or accept the default value of 9001. The JNDI port is for the Oracle BAM report cache, which is part of the Oracle BAM Server.

	
Use HTTPS

	
Select this checkbox to use secure HTTP (HTTPS) to connect to the Oracle BAM Server during design time. Otherwise, HTTP is used.

	
Click Next.

The Test page displays.

	
Click Test Connection.

The following message should appear:

Testing HTTP connection ... success.
Testing Data Object browsing ... success.
Testing JNDI connection ... success.

3 of 3 tests successful.

	
Click Finish.

3.5.3 Task 3: Install the Schema for the Fusion Order Demo Application

To install the schema for the sample application:

	
Start Oracle JDeveloper 11g and from the main menu choose File > Open.

	
In the Open dialog, browse to DEMO_DOWNLOAD_HOME/Infrastructure and select Infrastructure.jws. Click Open.

	
When prompted to migrate files to the 11.1.1.3.0 format, click Yes. When the migration is complete, click OK.

	
In the Application Navigator, expand MasterBuildScript and then Resources, and double-click build.properties.

	
In the editor, modify the following properties shown in Table 3-5 for your environment.

Table 3-5 Properties Required to Install the Fusion Order Demo Application

	Field	Description
	
jdeveloper.home

	
The root directory where you have Oracle JDeveloper 11g installed. For example:

C:/JDeveloper/11

	
jdbc.urlBase

	
The base JDBC URL for your database in the format jdbc:oracle:thin:@<yourhostname>. For example:

jdbc:oracle:thin:@localhost

	
jdbc.port

	
The port for your database. For example:

1521

	
jdbc.sid

	
The SID of your database. For example:

ORCL or XE

	
db.adminUser

	
The administrative user for your database. For example:

system

	
db.demoUser.tablespace

	
The tablespace name for the Fusion Order Demo users. For example:

USERS

	
From the JDeveloper main menu, choose File > Save All.

	
In the Application Navigator, under the Resources node, right-click build.xml and choose Run Ant Target > buildAll.

	
When prompted, enter the administrative-user password for your database.

The buildAll command then creates the FOD user and populates the tables in the FOD schema. In the Apache Ant - Log, a series of SQL scripts display, followed by:

buildAll:
BUILD SUCCESSFUL
Total time: nn minutes nn seconds

For more information on the demo schema and scripts, see the README.txt file in the MasterBuildScript project.

3.5.4 Task 4: Set Configuration Property for the Store Front Module

You can deploy the Store Front module as a simple web application or as part of a SOA environment. There is a property defined in the service portion of the Store Front module that is used within one of its pages to determine whether the Submit Order button fires an event that launches a BPEL process. When using the Store Front module within a SOA environment, you must change the default value for this property.

	
Choose File > Open.

	
In the Open dialog, browse to DEMO_DOWNLOAD_HOME/StoreFrontModule and select StoreFrontModule.jws. Click Open.

	
When prompted to migrate files to the 11.1.1.3.0 format, click Yes. When the migration is complete, click OK.

Figure 3-8 shows the Application Navigator after you open the file for the application workspace.

Figure 3-8 Application Navigator with StoreFrontModule

[image: TBD]

	
In the Application Navigator, expand StoreFrontService > Application Sources > oracle.fodemo.storefront > store > service.

	
Right-click StoreServiceAM and select Configurations.

	
In the Manage Configurations dialog, select StoreServiceAMLocalWeb in the Names list, and then click Edit.

Figure 3-9 StoreServiceAMLocalWeb

[image: Description of Figure 3-9 follows]

	
In the Edit Business Components Configuration dialog, select the Properties tab and the fod.application.issoaenabled property. This property specifies whether the application is being deployed to a SOA environment.

	
Change the value of the fod.application.issoaenabled property to true, and then click OK.

Figure 3-10 fod.application.issoenabled

[image: Description of Figure 3-10 follows]

	
Click OK.

	
In the Manage Configurations dialog, click OK.

3.5.5 Task 5: Deploy the Store Front Module

To deploy the Store Front module, you first deploy services and then to deploy the application itself.

During deployment, Oracle JDeveloper creates the .jar and .war files and then assembles the .ear file, as specified in the deployment profiles. After the file is assembled, Oracle JDeveloper deploys the .ear file and unpacks it in a directory on the application server. The directory that is used is dependent on the target environment.

To deploy the Store Front module:

	
Deploy the services used by the Store Front module to send orders to the OrderBookingComposite composite.

	
From the Application menu, choose Deploy > StoreFrontModule_SDOServices.

Figure 3-11 StoreFrontService_SDOServices

[image: Description of Figure 3-11 follows]

	
In the Deployment Action page of the Deploy StoreFrontService_SDOServices dialog, select Deploy to Application Server, and then click Next.

	
In the Select Server page, select MyAppServerConnection.You created this connection in Section 3.5.1, "Task 1: Create a Connection to an Oracle WebLogic Server."

	
Deselect option Deploy to all server instances in the domain, and then click Next.

	
In the Server Instances page, select the Managed Server for the Oracle WebLogic Server, such as soa_server, and click OK.

	
In the Summary page, click Finish.

	
View the messages that display in the Deployment log window at the bottom of Oracle JDeveloper to ensure deployment was successful.

	
Deploy the Store Front module. From the Application menu, select Deploy > StoreFrontModule > to > MyAppServerConnection.

	
From the Application menu, choose Deploy > StoreFrontModule.

	
In the Deployment Action page of the Deploy StoreFrontModule dialog, select Deploy to Application Server, and then click Next.

	
In the Select Server page, select MyAppServerConnection.

	
Deselect option Deploy to all server instances in the domain, and then click Next.

	
In the Server Instances page, select the Managed Server for the Oracle WebLogic Server, such as soa_server, and click Next.

	
In the Summary page, click Finish.

	
View the messages that display in the Deployment log window at the bottom of Oracle JDeveloper to ensure deployment was successful.

3.5.6 Task 6: Deploy the WebLogic Fusion Order Demo Application

In this task, you deploy the WebLogic Fusion Order Demo application to an Oracle SOA Suite installation, containing an Oracle WebLogic Server domain with an Administration Server and a Managed Server.

To deploy the WebLogic Fusion Order Demo application:

	
In the Application Navigator, select WebLogicFusionOrderDemo.

	
If you configured an Oracle BAM server during installation, perform the following steps:

	
From the Application Navigator, expand OrderBookingComposite, then SOA Content, and then bin. Double-click sca-build.properties.

Figure 3-12 Navigating to sca-build.properties

[image: Description of Figure 3-12 follows]

	
In the editor, modify the following properties shown in Table 3-6 for the Oracle BAM environment.

Table 3-6 Properties Required for Oracle BAM

	Field	Description
	
enable.bam.sensors

	
true

Set to true to enable sensors for Oracle BAM.

	
seed.bam.do

	
true

Set to true to seed data objects, alerts, and reports for Oracle BAM.

After deployment is done, set this value back to false. If this parameter is set true after initial deployment and you redeploy at a later time, then the data objects, alerts, and reports reseed. Therefore, after initial deployment, set this parameter to false.

	
bam.server.host

	
The DNS name or IP address of the Managed Server for Oracle BAM. For example:

soahost

	
bam.server.port

	
The port of the Managed Server for Oracle BAM. For example:

9001

	
bam.server.username

	
The Oracle WebLogic Server administrator. For example:

weblogic

	
bam.server.password

	
The password of the Oracle WebLogic Server administrator. For example:

welcome1

	
From the JDeveloper main menu, choose File > Save All. Keep the sca-build.properties tab open, so you can modify the seed.bam.do parameter to false after deployment.

	
In the editor, perform the following steps for the WebLogicFusionOrderDemo application:

	
From the Application Navigator, expand bin, and then Resources. Double-click build.properties.

Figure 3-13 Navigating to build.properties

[image: Description of Figure 3-13 follows]

	
In the editor, modify the following properties shown in Table 3-7 for the WebLogicFusionOrderDemo application.

Table 3-7 Properties Required for the WebLogic Fusion Order Demo Application

	Field	Description
	
oracle.home

	
The root directory where you have Oracle JDeveloper 11g installed. For example:

C:\\Oracle\\Middleware\\jdeveloper\\

	
soa.only.deployment

	
false

You set this property to true if you are using the OrderSDOComposite composite to place orders. This guide assumes you are using the Store Front Module to place orders. Therefore, you must modify this property to false.

	
admin.server.host

	
The DNS name or IP address of the Administration Server for Oracle SOA Suite for hosting applications. For example:

soahost

	
admin.server.port

	
The port of the Administration Server. For example:

8001

	
managed.server

	
The DNS name or IP address of the Managed Server for Oracle SOA Suite for hosting applications. For example:

soahost

	
managed.server.port

	
The port of the Managed Server for Oracle SOA Suite for hosting applications. For example:

8001

	
server.user

	
The Oracle WebLogic Server administrator. For example:

weblogic

	
server.password

	
The password of the Oracle WebLogic Server administrator. For example:

welcome1

	
server.targets

	
The name of the Managed Server. For example:

soa_server

	
soa.server.oracle.home

	
The location of where to store the deployment plans for the adapters. For example:

C:\\AS11gR1SOA

	
foreign.mds.type

	
The location of the Oracle Metadata Repository.

Leave the value to db and supply values for the mds.db.userid, mds.db.password, and mds.db.url parameters to specify the location of the MDS Repository.

Set the value to Leave the default value to jdev. You do not have to specify the values for the following parameters:

	
soa.partition.name

	
The partition in which to deploy the composites. For example:

soaFusionOrderDemo

	
From the JDeveloper main menu, choose File > Save All.

	
In the Application Navigator, under the Resources node, right-click build.xml and choose Run Ant Target and select the following ant targets in the specified sequential order shown in Table 3-8.

Table 3-8 ant Targets to Deploy the WebLogic Fusion Order Demo Application

	Target	Description
	
1. validateFodConfigSettings

	
This script validates the server settings, checks if the servers are up, and also validates the MDS settings. If this script returns without error, proceed with target server-setup-seed-deploy-test.

	
2. server-setup-seed-deploy-test

	
This script calls the following targets:

	
compile-deploy-all compiles, builds, and deploys all the SOA composites to the Managed Server.

	
seedFodJmsResources populates the JMS resources for the Fulfillment mediator.

	
seedDemoUsers This script adds jstein as the user to approve orders for over $2,000. When you run the demo, you place an order for $2,000 and log in to the Oracle BPM Worklist as jstein and approve the order.

In the Apache Ant - Log, you should see the following message when the target successfully completes:

BUILD SUCCESSFUL
Total time: nn minutes nn seconds

If you set up Oracle BAM after you run target server-setup-seed-deploy-test, you can still configure Oracle BAM for Fusion Order Demo by running one of these targets:

	
Re-run target server-setup-seed-deploy-test.

	
From the Application Navigator, right-click build_sca_composite.xml, (OrderBookingComposite > SOA Content) choose Run Ant Target, and then select seedBAMServerObjects.

	
Go back to the sca-build.properties tab and modify the seed.bam.do parameter to false.

	
From the JDeveloper main menu, choose File > Save All.

3.6 Running Fusion Order Demo

You begin the ordering process in the storefront user interface, where you submit an orders.

When an order is submitted, the Application Development Framework Business Component writes the order to database and raises an NewOrderSubmitted business event using the Events Delivery Network (EDN). The OrderPendingEvent mediator subscribes this event, and initiates the main BPEL process, OrderProcessor, to process the order.

After you submit an orders, you use Fusion Middleware Control for the Oracle SOA Suite installation to monitor how the OrderProcessor BPEL process orchestrated the orders. If you submit an order for more than $2,000, you can monitor how it requires human approval.

The instructions for placing orders and monitoring them in detail with Fusion Middleware Control are available from Oracle Technology Network:

http://download.oracle.com/otn_hosted_doc/jdeveloper/doc/11/runningfod_notes.pdf

3.7 Viewing Data Sent to Oracle BAM Server

If you configured an Oracle BAM server and a Managed Server for it, you can use the Oracle BAM Architect to view data sent to the server. For more information about using Oracle BAM applications, including Oracle BAM Architect, see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.

3.8 Undeploying the Composites for the WebLogic Fusion Order Demo Application

To undeploy the WebLogic Fusion Order Demo composite applications:

	
Access the Undeploy SOA Composite wizard in Fusion Middleware Control through the options described in Table 3-9.

Table 3-9 Options to Access Undeploy SOA Composite Wizard

	From the SOA Infrastructure Menu...	From the SOA Folder in the Navigator...	From the SOA Infrastructure Home Page...	From the SOA Composite Menu...
	
	
Select SOA Deployment > Undeploy.

The Select Composite page appears.

	
In the SOA Composite Deployments section, select OrderBookingComposite and PartnerSupplierComposite to undeploy them, and click Next.

	
	
Right-click soa-infra.

	
Select SOA Deployment > Undeploy.

The Select Composite page appears.

	
In the SOA Composite Deployments section, select OrderBookingComposite and PartnerSupplierComposite to undeploy, and click Next.

	
	
Click the Deployed Composites tab.

	
In the Composite table, select both OrderBookingComposite and PartnerSupplierComposite.

	
Above the Composite table, click Undeploy.

	
Select SOA Deployment > Undeploy.

The Confirmation page appears.

	
Click Undeploy. Note that you are warned if you are about to undeploy the last remaining revision of a deployed composite application.

Processing messages display.

	
When undeployment has completed, click Close.

Part II

Using the BPEL Process Service Component

This part describes the BPEL process service component.

This part contains the following chapters:

	
Chapter 4, "Getting Started with Oracle BPEL Process Manager"

	
Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

	
Chapter 6, "Manipulating XML Data in a BPEL Process"

	
Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process"

	
Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process"

	
Chapter 9, "Using Parallel Flow in a BPEL Process"

	
Chapter 10, "Using Conditional Branching in a BPEL Process"

	
Chapter 11, "Using Fault Handling in a BPEL Process"

	
Chapter 12, "Transaction and Fault Propagation Semantics in BPEL Processes"

	
Chapter 13, "Incorporating Java and Java EE Code in a BPEL Process"

	
Chapter 14, "Using Events and Timeouts in BPEL Processes"

	
Chapter 15, "Coordinating Master and Detail Processes"

	
Chapter 16, "Customizing SOA Composite Applications"

	
Chapter 17, "Using the Notification Service"

	
Chapter 18, "Using Oracle BPEL Process Manager Sensors"

4 Getting Started with Oracle BPEL Process Manager

This chapter describes how to get started with Oracle BPEL Process Manager. Key BPEL design features such as activities, partner links, and adapters are also described.

This chapter includes the following sections:

	
Section 4.1, "Introduction to the BPEL Process Service Component"

	
Section 4.2, "Introduction to Activities"

	
Section 4.3, "Introduction to Partner Links"

	
Section 4.4, "Creating a Partner Link"

	
Section 4.5, "Introduction to Technology Adapters"

	
Section 4.6, "Introduction to BPEL Process Monitors"

	
Section 4.7, "Migrating Custom SOA Composite Applications in Oracle JDeveloper"

4.1 Introduction to the BPEL Process Service Component

This section provides an introduction to the BPEL process service component in the design environment.

4.1.1 How to Add a BPEL Process Service Component

You add BPEL process service components in the SOA Composite Editor.

To add a BPEL process service component:

	
Follow the instructions in Table 4-1 to start Oracle JDeveloper.

Table 4-1 Starting Oracle JDeveloper

	To Start...	On Windows...	On UNIX...
	
Oracle JDeveloper

	
Click JDev_Oracle_Home\jdeveloper\JDev\bin\jdev.exe or create a shortcut

	
$ORACLE_HOME/jdev/bin/jdev

	
Add a BPEL process service component through one of the following methods:

As a service component in an existing SOA composite application:

	
From the Component Palette, drag a BPEL Process service component into the SOA Composite Editor.

In a new application:

	
From the Application Navigator, select File > New > Applications > SOA Application.

This starts the Create SOA Application wizard.

	
In the Application Name dialog, enter an application name in the Application Name field.

	
In the Directory field, enter a directory path in which to create the SOA composite application and project.

	
Click Next.

	
In the Project Name dialog, enter a name in the Project Name field.

	
Click Next.

	
In the Project SOA Settings dialog, select Composite With BPEL Process.

	
Click Finish.

Each method causes the Create BPEL Process dialog shown in Figure 4-1 to appear.

	
Provide the required details (including BPEL process name). Click Help for details about the types of BPEL processes you can create.

Figure 4-1 Create BPEL Process Dialog

[image: Create BPEL process]

Always use completely unique names when creating BPEL processes. Do not create:

	
A process name that begins with a number (for example, 1SayHello)

	
A process name that includes a dash (for example, Say-Hello)

	
Two processes with the same name, but with different capitalization (for example, SayHello and sayhello)

	
A process name that exceeds 500 characters.

	
A non-ASCII process name. The BPEL process name is used in directory and file names of the SOA project, which can cause problems.

	
Click OK.

Oracle BPEL Designer displays the sections shown in Figure 4-2.

Figure 4-2 Oracle BPEL Designer Sections

[image: Description of Figure 4-2 follows]

Each section of this view enables you to perform specific design and deployment tasks. Table 4-2 identifies the sections listed in Figure 4-2.

Table 4-2 Oracle JDeveloper Sections

	Element	Description
	
Application Navigator

	
Displays the process files of a SOA project. Key files include the following:

	
composite.xml

Describes the entire SOA composite application. For more information about this file, see Section 2.1.2, "What Happens When You Create a SOA Application and Project."

	
.bpel

Depending upon the process type you selected, initially contains a minimal set of activities (if you selected to create an asynchronous process, then receive and invoke activities appear). You add syntax to this file when you drag activities, create variables, create partner links, and so on.

	
.componentType

Describes the services and references for the BPEL process service component.

	
.wsdl

The Web Services Description Language (WSDL) client interface, which defines the input and output messages for this BPEL process flow, the supported client interface and operations, and other features. This functionality enables the BPEL process flow to be called as a service.

	
monitor.config

Defines runtime and deployment properties needed to connect with Oracle BAM Server to create the Oracle BAM data objects and dashboards.

	
Designer

	
Provides a visual view of the BPEL process service component that you design. This view displays when you perform one of the following actions:

	
Double-click the .bpel file name in the Application Navigator.

	
Click the Design tab at the bottom of the window with the .bpel file selected.

	
Double-click the BPEL process component in the SOA Composite Editor.

As you design the BPEL process service component by dragging activities, creating partner links, and so on, the Design window changes.

	
Component Palette

	
Displays the available activities to add to the BPEL process service component. Activities are the building blocks. The BPEL Activities selection of the Component Palette displays a set of activities that you drag into the designer of the BPEL process service component. The Component Palette displays only those pages relevant to the state of the designer. BPEL Activities or BPEL Services are nearly always visible. However, if you are designing a transformation in a transform activity, the Component Palette only displays selections relevant to that activity, such as String Functions, Mathematical Functions, and Node-set Functions.

	
Structure window

	
Provides a structural view of the data in the BPEL process service component currently selected in the designer. You can perform a variety of tasks from this section, including:

	
Importing schemas

	
Defining message types

	
Managing (creating, editing, and deleting) elements such as variables, aliases, correlation sets, and partner links.

	
Editing activities in the BPEL process flow sequence that displays in the designer

	
Log window

	
Displays messages about the status of validation and compilation. To ensure that a BPEL process service component validates correctly, you must ensure that the following information is correct:

	
The BPEL process service component must have an input variable.

	
A partner link must be selected.

	
A partner role must be selected.

	
The operation must not be empty.

	
The input variable type must match the partner link operation type.

If deployment is unsuccessful, messages appear that describe the type and location of the error.

	
Source window

	
View the syntax inside the BPEL process service component files. As you drag activities and partner links, and perform other tasks, the syntax in these source files is immediately updated to reflect these changes.

	
History window

	
Displays the revision history of a file and read-only and editable versions of a file side-by-side.

	
Property Inspector

	
Displays details about an activity. Single-click an activity in the Design window to display details.

	
Note:

To learn more about these sections, you can also place the cursor in the appropriate section and press F1 to display online Help.

4.2 Introduction to Activities

Activities are the building blocks of a BPEL process service component. Oracle BPEL Designer includes a set of activities that you drag into a BPEL process service component. You then double-click an activity to define its attributes (property values). Activities enable you to perform specific tasks within a BPEL process service component. For example, here are several key activities:

	
An assign activity enables you to manipulate data, such as copying the contents of one variable to another. Figure 4-3 shows an assign activity.

Figure 4-3 Assign Activity

[image: Description of Figure 4-3 follows]

	
An invoke activity enables you to invoke a service (identified by its partner link) and specify an operation for this service to perform. Figure 4-4 shows an invoke activity.

Figure 4-4 Invoke Activity

[image: Description of Figure 4-4 follows]

	
A receive activity waits for an asynchronous callback response message from a service. Figure 4-5 shows a receive activity.

Figure 4-5 Receive Activity

[image: Description of Figure 4-5 follows]

Figure 4-6 shows an example of a property window (for this example, an invoke activity). In this example, you invoke a partner link named StoreFrontService and define its attributes.

Figure 4-6 Invoke Activity Example

[image: Description of Figure 4-6 follows]

The invoke activity enables you to specify an operation you want to invoke for the service (identified by its partner link). The operation can be one-way or request-response on a port provided by the service. You can also automatically create variables in an invoke activity. An invoke activity invokes a synchronous service or initiates an asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this port to submit required data and receive a response. For synchronous callbacks, only one port is needed for both the send and the receive functions.

For more information about activities, see Appendix A, "BPEL Process Activities and Services."

4.3 Introduction to Partner Links

A partner link enables you to define the external services with which the BPEL process service component is to interact. You can define partner links as services or references (for example, through a JCA adapter) in the SOA Composite Editor or within a BPEL process service component in Oracle BPEL Designer. Figure 4-7 shows the partner link icon (in this example, named CreditCardAuthorizationService).

Figure 4-7 PartnerLink Icon

[image: Description of Figure 4-7 follows]

A partner link type characterizes the conversational relationship between two services by defining the roles played by each service in the conversation and specifying the port type provided by each service to receive messages within the conversation.

Figure 4-8 shows an example of the attributes of a partner link for a service.

Figure 4-8 Partner Link Dialog

[image: Description of Figure 4-8 follows]

Table 4-3 describes the fields of this dialog.

Table 4-3 Create Partner Link Dialog Fields

	Field	Description
	
Name

	
A unique and recognizable name you provide for the partner link.

	
Process

	
Displays the BPEL process service component name.

	
WSDL URL

	
The name and location of the WSDL file that you select for the partner link. Click the SOA Service Explorer icon (second icon from the left above the WSDL URL field) to access a window for selecting the WSDL file to use.

	
Partner Link Type

	
The partner link defined in the WSDL file.

	
Partner Role

	
The role performed by the partner link.

	
My Role

	
The role performed by the BPEL process service component. In this case, the BPEL process service component does not have a role because it is a synchronous process.

	
Note:

The Partner Link Type, Partner Role, and My Role fields in the Create Partner Link dialog are defined and required by the BPEL standard.

	
Best Practice:

As a best practice, always create and wire Oracle mediator and BPEL process service components in the SOA Composite Editor, instead of in Oracle BPEL Designer.
If you add an Oracle mediator or BPEL process partner link to your BPEL process in Oracle BPEL Designer and connect either partner link to your BPEL process through an invoke activity, the wiring is not automatically reflected above in the SOA Composite Editor. You must explicitly wire the Oracle mediator or BPEL process service component to your BPEL process again in the SOA Composite Editor.

Note that this is not an issue with human task or business rule partner links in Oracle BPEL Designer; both are also automatically wired in the SOA Composite Editor.

4.4 Creating a Partner Link

The method by which you create partner links within the BPEL process in Oracle BPEL Designer impacts how the partner link displays above in the SOA Composite Editor. This section describes this impact. The WSDL file can be on the local operating system or hosted remotely (in which case you need a URL for the WSDL).

Likewise, creating and wiring a service or reference binding component to a BPEL process service component in the SOA Composite Editor causes a partner link to display in Oracle BPEL Designer.

4.4.1 How to Create a Partner Link

To create a partner link:

	
In the SOA Composite Editor, double-click the BPEL process service component.

Oracle BPEL Designer is displayed.

	
In the Component Palette, expand BPEL Services.

	
Drag a Partner Link into the appropriate Partner Links swimlane, as shown in Figure 4-9.

Figure 4-9 Partner Link Creation in Oracle BPEL Designer

[image: Description of Figure 4-9 follows]

The Create Partner Link dialog appears.

	
Complete the fields for this dialog, as described in Table 4-3.

The following sections describe the impact of partner link creation on the SOA Composite Editor.

4.4.1.1 Partner Links for an Outbound Adapter

Table 4-4 describes the impact on the SOA Composite Editor.

Table 4-4 Impact of Partner Link Creation on the SOA Composite Editor

	Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
	
A partner link for an outbound adapter

	
	
A reference handle for the BPEL service component

	
A reference representing the outbound adapter in the composite

	
A wire connecting the BPEL service component to the adapter reference

Figure 4-10 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-10 SOA Composite Editor Impact

[image: Description of Figure 4-10 follows]

4.4.1.2 Partner Links for an Inbound Adapter

Table 4-5 describes the impact on the SOA Composite Editor.

Table 4-5 Impact of Partner Link Creation on the SOA Composite Editor

	Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
	
A partner link for an inbound adapter

	
	
A service for the BPEL service component

	
A service representing the inbound adapter in the composite

	
A wire connecting the inbound adapter service to the BPEL service component

Figure 4-11 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-11 SOA Composite Editor Impact

[image: Description of Figure 4-11 follows]

4.4.1.3 Partner Links from an Abstract WSDL to Call a Service

Table 4-6 describes the impact on the SOA Composite Editor.

Table 4-6 Impact of Partner Link Creation on the SOA Composite Editor

	Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
	
A partner link from an abstract WSDL to call a service

	
A reference handle with an interface and callback interface defined for the BPEL service component

4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service

Table 4-7 describes the impact on the SOA Composite Editor.

Table 4-7 Impact of Partner Link Creation on the SOA Composite Editor

	Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
	
A partner link is created from an abstract WSDL to implement a service

	
A service with an interface and callback interface for the BPEL service component is created.

Note: If an external Simple Object Access Protocol (SOAP) reference with the specified interface and callback interface exists in the SOA Composite Editor, you can either create a new external SOAP reference and wire to it or wire to the existing external SOAP reference.

Figure 4-12 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-12 SOA Composite Editor Impact

[image: Description of Figure 4-12 follows]

4.4.1.5 Partner Links and Human Tasks or Business Rules

Table 4-8 describes the impact on the SOA Composite Editor.

Table 4-8 Impact of Partner Link Creation on the SOA Composite Editor

	Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
	
A human task or business rule is created

	
	
A human task or business rule in the composite

	
A reference for the BPEL service component

	
A wire connecting the BPEL service component to the new human task or business rule

Figure 4-13 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-13 SOA Composite Editor Impact

[image: Description of Figure 4-13 follows]

4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator

Table 4-9 describes the impact on the SOA Composite Editor.

Table 4-9 Impact of Partner Link Creation on the SOA Composite Editor

	Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
	
A partner link by dragging an existing human task, business rule, or mediator service component from the Resource Palette to the BPEL process

	
	
A reference for the BPEL service component

	
A wire connecting the BPEL service component to the existing human task, business rule, or mediator

Figure 4-14 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-14 SOA Composite Editor Impact

[image: Description of Figure 4-14 follows]

4.5 Introduction to Technology Adapters

The Partner Link dialog shown in Figure 4-8 also enables you to take advantage of another key feature that Oracle BPEL Process Manager and Oracle JDeveloper provide. Click the Define Service icon shown in Figure 4-15 to access the Adapter Configuration wizard.

Figure 4-15 Defining an Adapter

[image: Description of Figure 4-15 follows]

Adapters enable you to integrate the BPEL process service component (and, therefore, the SOA composite application as a whole) with access to file systems, FTP servers, database tables, database queues, sockets, Java Message Services (JMS), MQ, and Oracle E-Business Suite. This wizard enables you to configure the types of adapters shown in Figure 4-16 for use with the BPEL process service component:

Figure 4-16 Adapter Types

[image: Description of Figure 4-16 follows]

The following adapter types are available:

	
Advanced Queuing (AQ)

For interaction with a queue. AQ provides a flexible mechanism for bidirectional, asynchronous communication between participating applications.

	
Oracle Business Activity Monitoring (BAM)

For publishing data to data objects in an Oracle BAM Server.

	
Database

For interaction with Oracle and non-Oracle databases through JDBC and Oracle Business Intelligence (which is a special data source type).

	
FTP and File

For file exchange (read and write) on local file systems and remote file systems (through use of the file transfer protocol (FTP)).

	
Note:

When calling the file adapter, Oracle BPEL Process Manager may process the same file twice when run against Oracle Real Application Clusters planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once.

	
Java Messaging Service (JMS)

For interaction with JMS. The JMS architecture uses a one client interface to many messaging servers architecture.

	
Message Queue (MQ)

For message exchange with WebSphere MQ queuing systems.

	
Oracle Applications

For interaction with Oracle Application's set of integrated business applications.

	
Oracle B2B

	
For browsing B2B metadata in the metadata service (MDS) repository and selecting document definitions.

	
Sockets

For modeling standard or nonstandard protocols for communication over TCP/IP sockets.

When you select an adapter type, the Service Name window shown in Figure 4-17 prompts you to enter a name. For this example, File Adapter was selected in Figure 4-16. When the wizard completes, a WSDL file by this service name appears in the Application Navigator for the BPEL process service component (for this example, named ReadFile.wsdl). The service name must be unique within the project. This file includes the adapter configuration settings you specify with this wizard. Other configuration files (such as header files and files specific to the adapter) are also created and display in the Application Navigator.

Figure 4-17 Adapter Service Name

[image: Description of Figure 4-17 follows]

The Adapter Configuration wizard windows that appear after the Service Name window are based on the adapter type you selected.

You can also add adapters to your SOA composite application as services or references in the SOA Composite Editor.

For more information about technology adapters, see Oracle Fusion Middleware User's Guide for Technology Adapters.

4.6 Introduction to BPEL Process Monitors

You can configure BPEL process monitors in Oracle BPEL Designer by selecting Monitor at the top of Oracle BPEL Designer. Figure 4-18 provides details. BPEL process monitors can send data to Oracle BAM for analysis and graphical display through the Oracle BAM adapter.

Figure 4-18 BPEL Process Monitors

[image: Description of Figure 4-18 follows]

For more information, see Section 50.3, "Using Oracle BAM Monitor Express With BPEL Processes."

4.7 Migrating Custom SOA Composite Applications in Oracle JDeveloper

When you open Oracle JDeveloper for the first time, you are prompted to migrate existing applications. If you click Yes to migrate custom SOA composite applications to the current release, you must change the metadata namespace and store ID. Not performing these actions causes migration compilation to fail.

4.7.1 How to Migrate a Custom SOA Composite Application

	
Open the ads-config.xml file.

	
Update the metadata-namespaces and metadata-store-usage information shown in Example 4-1.

Example 4-1 Metadata Namespace and Store ID

<metadata-namespaces>
 <namespace metadata-store-usage="soa-shared-usage" path="/soa/shared"/>
</metadata-namespaces>
<metadata-store-usages>
 <metadata-store-usage id="soa-shared-usage">
 <metadata-store
class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
 <property value="${oracle.home}/integration"
name="metadata-path"/>
 <property value="seed" name="partition-name"/>
 </metadata-store>
 </metadata-store-usage>
</metadata-store-usages>

5 Introduction to Interaction Patterns in a BPEL Process

This chapter describes common interaction patterns between a BPEL process service component and an external service, and shows the best use practices for each.

This chapter includes the following sections:

	
Section 5.1, "Introduction to One-Way Messages"

	
Section 5.2, "Introduction to Synchronous Interactions"

	
Section 5.3, "Introduction to Asynchronous Interactions"

	
Section 5.4, "Introduction to Asynchronous Interactions with a Timeout"

	
Section 5.5, "Introduction to Asynchronous Interactions with a Notification Timer"

	
Section 5.6, "Introduction to One Request, Multiple Responses"

	
Section 5.7, "Introduction to One Request, One of Two Possible Responses"

	
Section 5.8, "Introduction to One Request, a Mandatory Response, and an Optional Response"

	
Section 5.9, "Introduction to Partial Processing"

	
Section 5.10, "Introduction to Multiple Application Interactions"

5.1 Introduction to One-Way Messages

In a one-way message, or fire and forget, the client sends a message to the service (d1 in Figure 5-1), and the service is not required to reply. The client sending the message does not wait for a response, but continues executing immediately. Example 5-1 shows the portType and operation part of the BPEL process WSDL file for this environment.

Example 5-1 One-Way WSDL File

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 </wsdl:operation>
</wsdl:portType>
. . .

Figure 5-1 provides an overview.

Figure 5-1 One-Way Message

[image: Description of Figure 5-1 follows]

BPEL Process Service Component as the Client

As the client, the BPEL process service component needs a valid partner link and an invoke activity with the target service and the message. As with all partner activities, the Web Services Description Language (WSDL) file defines the interaction.

BPEL Process Service Component as the Service

To accept a message from the client, the BPEL process service component needs a receive activity.

5.2 Introduction to Synchronous Interactions

In a synchronous interaction, a client sends a request to a service (d1 in Figure 5-2), and receives an immediate reply (d2 in Figure 5-2). A BPEL process service component can be at either end of this interaction, and must be coded based on its role as either the client or the service. For example, a user requests a subscription to an online newspaper and immediately receives email confirmation that their request has been accepted. Example 5-2 shows the portType and operation part of the BPEL process WSDL file for this environment.

Example 5-2 Synchronous WSDL File

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 <wsdl:output message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 5-2 provides an overview.

Figure 5-2 Synchronous Interaction

[image: Description of Figure 5-2 follows]

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of a synchronous transaction, it needs an invoke activity. The port on the client side both sends the request and receives the reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

When the BPEL process service component is on the service side of a synchronous transaction, it needs a receive activity to accept the incoming request, and a reply activity to return either the requested information or an error message (a fault; f1 in Figure 5-2) defined in the WSDL.

For more information about synchronous interactions, see Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process."

5.3 Introduction to Asynchronous Interactions

In an asynchronous interaction, a client sends a request to a service and waits until the service replies. Example 5-3 shows the portType and operation part of the BPEL process WSDL file for this environment.

Example 5-3 Asynchronous WSDL File

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage"/>
 </wsdl:operation>
</wsdl:portType>

. . .
<wsdl:portType name="BPELProcess1Callback">
 <wsdl:operation name="processResponse">
 <wsdl:input message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 5-3 provides an overview.

Figure 5-3 Asynchronous Interaction

[image: Description of Figure 5-3 follows]

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of an asynchronous transaction, it needs an invoke activity to send the request and a receive activity to receive the reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

As with a synchronous transaction, when the BPEL process service component is on the service side of an asynchronous transaction, it needs a receive activity to accept the incoming request and an invoke activity to return either the requested information or a fault. Note the difference between this and responding from a synchronous BPEL process: a synchronous BPEL process uses a reply activity to respond to the client and an asynchronous service uses an invoke activity.

For more information about asynchronous interactions, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."

5.4 Introduction to Asynchronous Interactions with a Timeout

In an asynchronous interaction with a timeout (which you perform in BPEL with a pick activity), a client sends a request to a service and waits until it receives a reply, or until a certain time limit is reached, whichever comes first. For example, a client requests a loan offer. If the client does not receive a loan offer reply within a specified amount of time, the request is canceled. Figure 5-4 provides an overview.

Figure 5-4 Asynchronous Interaction with Timeout

[image: Description of Figure 5-4 follows]

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of an asynchronous transaction with a timeout, it needs an invoke activity to send the request and a pick activity with two branches: an onMessage branch and an onAlarm branch. If the reply comes after the time limit has expired, the message goes to the dead letter queue. As with all partner activities, the WSDL file defines the interaction.

For more information about asynchronous interactions with a timeout, see Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or Waiting."

BPEL Process Service Component as the Service

The behavior of the BPEL process service component as a service matches the behavior with the asynchronous interaction with the BPEL process service component as the service.

5.5 Introduction to Asynchronous Interactions with a Notification Timer

In an asynchronous interaction with a notification time, a client sends a request to a service and waits for a reply, although a notification is sent after a timer expires. The client continues to wait for the reply from the service even after the timer has expired. Figure 5-5 provides an overview.

Figure 5-5 Asynchronous Interaction with a Notification Time

[image: Description of Figure 5-5 follows]

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it needs a scope activity containing an invoke activity to send the request, and a receive activity to accept the reply. The onAlarm handler of the scope activity has a time limit and instructions on what to do when the timer expires. For example, wait 30 minutes, then send a warning indicating that the process is taking longer than expected. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

The behavior for the BPEL process service component as the service matches the behavior with the asynchronous interaction with the BPEL process service component as the service.

5.6 Introduction to One Request, Multiple Responses

In this interaction type, the client sends a single request to a service and receives multiple responses in return. For example, the request can be to order a product online, and the first response can be the estimated delivery time, the second response a payment confirmation, and the third response a notification that the product has shipped. In this example, the number and types of responses are expected. Figure 5-6 provides an overview.

Figure 5-6 One Request, Multiple Responses

[image: Description of Figure 5-6 follows]

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it needs an invoke activity to send the request, and a sequence activity with three receive activities, one for each reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

The BPEL service needs a receive activity to accept the message from the client, and a sequence attribute with three invoke activities, one for each reply.

5.7 Introduction to One Request, One of Two Possible Responses

In an interaction using one request and one of two possible responses, the client sends a single request to a service and receives one of two possible responses. For example, the request can be to order a product online, and the first response can be either an in-stock message, or an out-of-stock message. Figure 5-7 provides an overview.

Figure 5-7 One Request, One of Two Possible Responses

[image: Description of Figure 5-7 follows]

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it needs the following:

	
An invoke activity to send the request

	
A pick activity with two branches: one onMessage for the in-stock response and instructions on what to do if an in-stock message is received

	
A second onMessage for the out-of-stock response and instructions on what to do if an out-of-stock message is received

As with all partner activities, the WSDL file defines the interaction.

For more information about interactions using one request and one of two possible responses, see Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or Waiting."

BPEL Process Service Component as the Service

The BPEL service needs a receive activity to accept the message from the client, and a switch activity with two branches, one with an invoke activity sending the in-stock message if the item is available, and a second branch with an invoke activity sending the out-of-stock message if the item is not available.

5.8 Introduction to One Request, a Mandatory Response, and an Optional Response

In this type of interaction, the client sends a single request to a service and receives one or two responses. Here, the request is to order a product online. If the product is delayed, the service sends a message letting the customer know. In any case, the service always sends a notification when the item ships. Figure 5-8 provides an overview.

Figure 5-8 One Request, a Mandatory Response, and an Optional Response

[image: Description of Figure 5-8 follows]

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it needs a scope activity containing the invoke activity to send the request, and a receive activity to accept the mandatory reply. The onMessage handler of the scope activity is set to accept the optional message and instructions on what to do if the optional message is received (for example, notify you that the product has been delayed). The client BPEL process service component waits to receive the mandatory reply. If the mandatory reply is received first, the BPEL process service component continues without waiting for the optional reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

The BPEL service needs a scope activity containing the receive activity and an invoke activity to send the mandatory shipping message, and the scope's onAlarm handler to send the optional delayed message if a timer expires (for example, send the delayed message if the item is not shipped in 24 hours).

5.9 Introduction to Partial Processing

In partial processing, the client sends a request to a service and receives an immediate response, but processing continues on the service side. For example, the client sends a request to purchase a vacation package, and the service sends an immediate reply confirming the purchase, then continues on to book the hotel, the flight, the rental car, and so on. This pattern can also include multiple shot callbacks, followed by longer-term processing. Figure 5-9 provides an overview.

Figure 5-9 Partial Processing

[image: Description of Figure 5-9 follows]

BPEL Process Service Component as the Client

In this case, the BPEL client is simple; it needs an invoke activity for each request and a receive activity for each reply for asynchronous transactions, or just an invoke activity for each synchronous transaction. Once those transactions are complete, the remaining work is handled by the service. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

The BPEL service needs a receive activity for each request from the client, and an invoke activity for each response. Once the responses are finished, the BPEL process service component as the service can continue with its processing, using the information gathered in the interaction to perform the necessary tasks without any further input from the client.

5.10 Introduction to Multiple Application Interactions

In some cases, there are more than two applications involved in a transaction, for example, a buyer, seller, and shipper. In this case, the buyer sends a request to the seller, the seller sends a request to the shipper, and the shipper sends a notification to the buyer. This A-to-B-to-C-to-A transaction pattern can handle many transactions at the same time. Therefore, a mechanism is required for keeping track of which message goes where. Figure 5-10 provides an overview.

As with all partner activities, the WSDL file defines the interaction.

Figure 5-10 Multiple Party Interactions

[image: Description of Figure 5-10 follows]

This kind of coordination can be managed using WS-Addressing or correlation sets. For more information about both, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."

6 Manipulating XML Data in a BPEL Process

This chapter describes how to manipulate XML data in a BPEL process service component. This chapter provides a variety of examples. Topics include how to work with variables, sequences, and arrays, how to use XPath expressions, and how to perform tasks such as mathematical calculations. The explanations are largely by example, and provide an introduction to the supported specifications.

This chapter includes the following sections:

	
Section 6.1, "Introduction to Manipulating XML Data in BPEL Processes"

	
Section 6.2, "Delegating XML Data Operations to Data Provider Services"

	
Section 6.3, "Using Standalone SDO-based Variables"

	
Section 6.4, "Initializing a Variable with Expression Constants or Literal XML"

	
Section 6.5, "Copying Between Variables"

	
Section 6.6, "Accessing Fields Within Element-Based and Message Type-Based Variables"

	
Section 6.7, "Assigning Numeric Values"

	
Section 6.8, "Using Mathematical Calculations with XPath Standards"

	
Section 6.9, "Assigning String Literals"

	
Section 6.10, "Concatenating Strings"

	
Section 6.11, "Assigning Boolean Values"

	
Section 6.12, "Assigning a Date or Time"

	
Section 6.13, "Manipulating Attributes"

	
Section 6.14, "Manipulating XML Data with bpelx Extensions"

	
Section 6.15, "Validating XML Data with bpelx:validate"

	
Section 6.16, "Manipulating XML Data Sequences That Resemble Arrays"

	
Section 6.17, "Converting from a String to an XML Element"

	
Section 6.18, "Understanding the Differences Between Document-Style and RPC-Style WSDL Files"

	
Section 6.19, "Manipulating SOAP Headers in BPEL"

	
Section 6.20, "Using MIME/DIME SOAP Attachments"

	
Note:

Most of the examples in this chapter assume that the WSDL file defining the associated message types is document-literal style rather than the RPC style. There is a difference in how XPath query strings are formed for RPC-style WSDL definitions. If you are working with a type defined in an RPC WSDL file, see Section 6.18, "Understanding the Differences Between Document-Style and RPC-Style WSDL Files."

6.1 Introduction to Manipulating XML Data in BPEL Processes

This section provides an introduction to using XML data in BPEL processes.

6.1.1 XML Data in BPEL

In a BPEL process service component, most pieces of data are in XML format. This includes the messages passed to and from the BPEL process service component, the messages exchanged with external services, and local variables used by the process. You define the types for these messages and variables with the XML schema, usually in the Web Services Description Language (WSDL) file for the flow, the WSDL files for the services it invokes, or the XSD file referenced by those WSDL files. Therefore, most variables in BPEL are XML data, and any BPEL process service component uses much of its code to manipulate these XML variables. This typically includes performing data transformation between representations required for different services, and local manipulation of data (for example, to combine the results from several service invocations).

BPEL also supports service data object (SDO) variables, which are not in an XML format, but rather in a memory structure format.

6.1.2 Data Manipulation and XPath Standards

The starting point for data manipulation in BPEL is the assign activity, which builds on the XPath standard. XPath queries, expressions, and functions play a large part in this type of manipulation. In addition, more advanced methods are available that involve using XQuery, XSLT, or Java, usually to do more complex data transformation or manipulation.

This section provides a general overview of how to manipulate XML data in BPEL. It summarizes the key building blocks used in various combinations and provides examples. The remaining sections in this chapter discuss and illustrate how to apply these building blocks to perform specific tasks.You use the assign activity to copy data from one XML variable to another, or to calculate the value of an expression and store it in a variable. A copy element within the activity specifies the source and target of the assignment (what to copy from and to), which must be of compatible types. Example 6-1 shows the formal syntax, as described in the Business Process Execution Language for Web Services Specification:

Example 6-1 Assign Activity

<assign standard-attributes>
 standard-elements
 <copy>
 from-spec
 to-spec
 </copy>
</assign>

This syntax is described in detail in that specification. The from-spec and to-spec typically specify a variable or variable part, as shown in Example 6-2:

Example 6-2 from-spec and to-spec Attributes

<assign>
 <copy>
 <from variable="c1" part="address"/>
 <to variable="c3"/>
 </copy>
</assign>

When you use Oracle JDeveloper, you supply assign activity details in a Copy Operation dialog that includes a From section and a To section. This reflects the preceding BPEL source code syntax.

XPath standards play a key role in the assign activity. Brief examples are shown here as an introduction; examples with more context and explanation are provided in the sections that follow.

	
XPath queries

An XPath query selects a field within a source or target variable part. The from or to clause can include a query attribute whose value is an XPath query string. Example 6-3 provides an example:

Example 6-3 query Attribute

<from variable="input" part="payload"
 query="/p:CreditFlowRequest/p:ssn"/>

The value of the query attribute must be a location path that selects exactly one node. You can find further details about the query attribute and XPath standards syntax in the Business Process Execution Language for Web Services Specification (section 14.3) and the XML Path Language (XPath) Specification, respectively.

	
XPath expressions

You use an XPath expression (specified in an expression attribute in the from clause) to indicate a value to be stored in a variable. For example:

<from expression="100"/>

The expression can be any general expression (that is, an XPath expression that evaluates to any XPath value type). Similarly, the value of an expression attribute must return exactly one node or one object only when it is used in the from clause within a copy operation. For more information about XPath expressions, see section 9.1.4 of the XML Path Language (XPath) Specification.

Within XPath expressions, you can call the following types of functions:

	
Core XPath functions

XPath supports a large number of built-in functions, including functions for string manipulation (such as concat), numeric functions (like sum), and others.

<from expression="concat('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the XML Path Language (XPath) Specification.

	
BPEL XPath extension functions

BPEL adds several extension functions to the core XPath core functions, enabling XPath expressions to access information from a process. The extensions are defined in the standard BPEL namespace http://schemas.xmlsoap.org/ws/2003/03/business-process/ and indicated by the prefix bpws:

<from expression= "bpws:getVariableData('input', 'payload', '/p:value') + 1"/>

For more information, see sections 9.1 and 14.1 of the Business Process Execution Language for Web Services Specification.

	
Oracle BPEL XPath extension functions

Oracle provides some additional XPath functions that use the capabilities built into BPEL and XPath standards for adding new functions.

These functions are defined in the namespace http://schemas.oracle.com/xpath/extension and indicated by the prefix ora:.

	
Custom functions

Oracle BPEL Process Manager functions are defined in the bpel-xpath-functions-config.xml and placed inside the orabpel.jar file. For more information, see Section B.7, "Creating User-Defined XPath Extension Functions" and Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

Sophisticated data manipulation can be difficult to perform with the BPEL assign activity and the core XPath functions. However, you can perform complex data manipulation and transformation by using XSLT, Java, or a bpelx operation under an assign activity (See Section 6.14, "Manipulating XML Data with bpelx Extensions"), or as a web service. For XSLT, Oracle BPEL Process Manager includes XPath functions that execute these transformations.

For more information about XPath and XQuery transformation code examples, see Chapter 38, "Creating Transformations with the XSLT Mapper."

	
Note:

Passing large schemas through an assign activity can cause Oracle JDeveloper to freeze up and run low on memory if you right-click the payload in the From or To section of the Copy Operation dialog and select Expand All. As a workaround, manually expand the payload elements.

6.2 Delegating XML Data Operations to Data Provider Services

You can specify BPEL data operations to be performed by an underlying data provider service through use of the entity variable. The data provider service performs the data operations in a data store behind the scenes and without use of other data store-related features provided by Oracle SOA Suite (for example, the database adapter). This action enhances Oracle SOA Suite runtime performance and incorporates native features of the underlying data provider service during compilation and runtime.

For this release, the entity variable can be used with an Oracle Application Development Framework (ADF) Business Component data provider service using SDO-based data.

In previous releases, variables and messages exchanged within a BPEL business process were disconnected payload (a snapshot of data returned by a web service) placed into an XML structure. In some cases, the user required this type of fit. In other cases, this fit presented challenges.

The entity variable addresses the following challenges of previous releases:

	
Extensive data conversion

If the underlying data was not in XML form, data conversion (for example, translating delimited text to XML) was required. If the underlying size of the data was large, the processing potentially impacted performance.

	
Stale snapshot data

Variables (including WSDL messages) in BPEL processes were disconnected payload. In some cases, this was required. In other cases, you wanted a variable to represent the most recent data being modified by other applications outside Oracle BPEL Process Manager. This meant the disconnected data model provided a stale data set that did not fit all needs. The snapshot also duplicated data, which impacted performance when the data size was large.

	
Loss of native data behavior

Some data conversion implementation required data structure enforcement or business data logic beyond the XML schema. For example, the start date needed to be smaller than the end date. When the variable was a disconnected payload, validation occurred only during related web service invocation. Optionally performing the extra business data logic after certain operations, but before web service invocation, was sometimes preferred.

To address these challenges with this release, you create an entity variable during variable declaration. An entity variable acts as a data handle to access and plug in different data provider service technologies behind the scenes. During compilation and runtime, Oracle BPEL Process Manager delegates data operations to the underlying data provider service.

Table 6-1 provides an example of how data conversion was performed in previous releases (using the database adapter as an example) and in release 11g with the entity variable.

Table 6-1 Data Manipulation Capabilities in Previous and Current Releases

	10.1.x Releases	11g Release When Using the Entity Variable
	
Data operations such as explicitly loading and saving data were performed by the database adapter in Oracle BPEL Process Manager. All data (for example, of a purchase order) was saved in the database dehydration store.

	
Data operations such as loading and saving data are performed automatically by the data provider service (the Oracle ADF Business Component application), without asking you to code any service invocation.

Oracle BPEL Process Manager stores a key (for example, purchase order ID (POID)) that points to this data. Oracle BPEL Process Manager fetches the key when access to data is requested (the bind entity activity does this). You must explicitly request the data to be bound using the key. Any data changes are persisted by the data provider service in a database that can be different from the dehydration store database. This prevents data duplication.

	
Data in variables was in document object model (DOM) form

	
Data in variables is in SDO form, which provides for a simpler conversion process than DOM, especially when the data provider service understands SDO forms.

	
Note:

Only BPEL process service components currently allow the use of SDO-formed variables. If your composite application has an Oracle Mediator service component wired with an SDO-based Java binding component reference, the data form of the variable defaults to DOM. In addition, the features described for 10.1.x releases in Table 6-1 are still supported in release 11g.

The WebLogic Fusion Order Demo application describes use of the entity variable.

6.2.1 How to Create an Entity Variable

This section describes how to create an entity variable and a binding key in Oracle JDeveloper.

In previous releases of Oracle BPEL Process Manager, all variable data was in DOM form. With release 11g, variable data in SDO form is also supported. DOM and SDO variables in BPEL process service components are implicitly converted to the required forms. For example, an Oracle BPEL process service component using DOM-based variables can automatically convert these variables as required to SDO-based variables in an assign activity, and vice versa. Both form types are defined in the XSD schema file. No user intervention is required.

Entity variables also support SDO-formed data. However, unlike the DOM and SDO variables, the entity variable with SDO-based data enables you to bind a unique key value to data (for example, a purchase order). Only the key is stored in the dehydration store; the data requiring conversion is stored with the service of the Oracle ADF Business Component application. The key points to the data stored in the service. When the data is required, it is fetched from the data provider service and placed into memory. The process occurs in two places: the bind entity activity and the dehydration store. For example, when Oracle BPEL Process Manager rehydrates, it stores only the key for the entity variable; when it wakes up, it does an implicit bind to get the current data.

6.2.1.1 Understanding How SDO Works in the Inbound Direction

The SDO binding component service provides the outside world with an entry point to the composite application, as shown in Figure 6-1.

Figure 6-1 Inbound Direction

[image: Description of Figure 6-1 follows]

You use the SOA Composite Editor and Oracle BPEL Designer to perform the following tasks:

	
Define an SDO binding component service and a BPEL process service component in the composite application.

	
Connect (wire) the SDO service and BPEL process service component.

	
Define the details of the BPEL process service component.

For more information about using the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."

6.2.1.2 Understanding How SDO Works in the Outbound Direction

The SDO binding component reference enables messages to be sent from the composite application to Oracle ADF Business Component application external partners in the outside world, as shown in Figure 6-2.

Figure 6-2 Outbound Direction

[image: Description of Figure 6-2 follows]

When the Oracle ADF Business Component application is the external partner link to the outside world, there is no SDO binding component reference in the SOA Composite Editor that you drag into the composite application to create outbound communication. Instead, communication between the composite application and the Oracle ADF Business Component application occurs as follows:

	
The Oracle ADF Business Component application is deployed and automatically registered as an SDO service in the Service Infrastructure

	
Oracle JDeveloper is used to browse for and discover this application as an ADF-BC service and create a partner link connection.

	
The composite.xml file is automatically updated with reference details (the binding.adf property) when the Oracle ADF Business Component application service is discovered.

6.2.1.3 Creating an Entity Variable and Choosing a Partner Link

You now create an entity variable and select a partner link for the Oracle ADF Business Component application. The following example describes how the OrderProcessor BPEL process service component receives an ID for an order by using a bind entity activity to point to order data in an Oracle ADF Business Component data provider service in the WebLogic Fusion Order Demo application.

To create an entity variable and choose a partner link:

	
Go to the Structure window of the BPEL process service component in Oracle JDeveloper.

	
Right-click the Variables folder and select Expand All Child Nodes.

	
In the second Variables folder, right-click and select Create Variable.

The Create Variable dialog appears.

	
In the Name field, enter a name.

	
Click the Entity Variable checkbox and select the Search icon to the right of the Partner Link field.

The Partner Link Chooser dialog appears with a list of available services, including the SDO service called ADF-BC Service.

	
Browse for and select the service for the Oracle ADF Business Component application.

	
Click OK to close the Partner Link Chooser and Create Variable dialogs.

The Create Variable dialog looks as shown in .

Figure 6-3 Create Variable Dialog

[image: Description of Figure 6-3 follows]

6.2.1.4 Creating a Binding Key

You now create a key to point to the order data in the Oracle ADF Business Component data provider service.

To create a binding key:

	
Drag a Bind Entity activity into your BPEL process service component.

The Bind Entity dialog appears.

	
In the Name field, enter a name.

	
To the right of the Entity Variable field, click the Search icon.

The Variable Chooser dialog appears.

	
Select the entity variable created in Section 6.2.1.3, "Creating an Entity Variable and Choosing a Partner Link" and click OK.

	
In the Unique Keys section, click the Add icon.

The Specify Key dialog appears. You use this dialog to create a key for retrieving the order ID from the Oracle ADF Business Component data provider service.

	
Enter the details described in Table 6-2 to define the binding key:

Table 6-2 Specify Key Dialog Fields and Values

	Field	Value
	
Key Local Part

	
Enter the local part of the key.

	
Key Namespace URI

	
Enter the namespace URI for the key.

	
Key Value

	
Enter the key value expression. This expression must match the type of a key. The following examples show expression value keys for a POID key:

	
$inputMsg.payload/tns:poid

	
bpws:getVariableData('inputmsg','payload','tns:poid')

The POID key for an entity variable typically comes from another message. If the type of POID key is an integer and the expression result is a string of ABC, the string-to-integer fails and the bind entity activity also fails at runtime.

Figure 6-4 shows the Specify Key dialog after completion.

Figure 6-4 Specify Key Dialog

[image: Description of Figure 6-4 follows]

	
Click OK to close the Specify Key dialog.

A name-pair value appears in the Unique Keys table, as shown in . Design is now complete.

Figure 6-5 Bind Entity Dialog

[image: Description of Figure 6-5 follows]

	
Click OK to close the Bind Entity dialog.

After the Bind Entity activity is executed at runtime, the entity variable is ready to be used.

For more information about using SDOs, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. This guide describes how to expose application modules as web services and publish rows of view data objects as SDOs. The application module is the ADF framework component that encapsulates business logic as a set of related business functions.

6.3 Using Standalone SDO-based Variables

Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based variables. The major difference is that the underlying data form is SDO-based, instead of DOM-based. Therefore, SDO-based variables can use some SDO features such as Java API access, an easier-to-use update API, and the change summary. However, SDO usage is also subject to some restrictions that do not exist with XML-DOM-based variables. The most noticeable restriction is that SDO only supports a small subset of XPath expressions.

6.3.1 How to Declare SDO-based Variables

The syntax for declaring an SDO-based variable is similar to that for declaring BPEL variables. Example 6-4 provides details.

Example 6-4 SDO-based Variable Declaration

<variable name="deptVar_s" element="hrtypes:dept" />
<variable name="deptVar_v" element="hrtypes:dept" bpelx:sdoCapable="false" />

If you want to override the automatic detection, use the bpelx:sdoCapable="true|false" switch. For example, variable deptVar_v described in Example 6-4 is a regular DOM-based variable. Example 6-4 provides an example of the schema.

Example 6-5 XSD Sample

<xsd:element name="dept" type="Dept"/>
 <xsd:complexType name="Dept"
 sdoJava:instanceClass="sdo.sample.service.types.Dept">
 <xsd:annotation>
 <xsd:appinfo source="Key"
 xmlns="http://xmlns.oracle.com/bc4j/service/metadata/">
 <key>
 <attribute>Deptno</attribute>
 </key>
 <fetchMode>minimal</fetchMode>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Deptno" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="Dname" type="xsd:string" minOccurs="0"
 nillable="true"/>
 <xsd:element name="Loc" type="xsd:string" minOccurs="0" nillable="true"/>
 <xsd:element name="Emp" type="Emp" minOccurs="0" maxOccurs="unbounded"
 nillable="true"/>
 </xsd:sequence>
 </xsd:complexType>

6.3.2 How to Convert from XML to SDO

Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can interchange the usage of DOM-based and SDO-based variables within the same business process, even within the same expression. The Oracle BPEL Process Manager data framework automatically converts back and forth between DOM and SDO forms.

By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager enables some XPath features (for example, variable reference and function calls) that the basic SDO specification does not support. However, there are other limitations on the XPath used with SDO-based variables (for example, there is no support for and, or, and not).

Example 6-6 provides a simple example of converting from XML to SDO.

Example 6-6 XML-to-SDO Conversion

<assign>
 <copy>
 <from>
 <ns0:dept xmlns:ns0="http://sdo.sample.service/types/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ns0:Deptno>10</ns0:Deptno>
 <ns0:Dname>ACCOUNTING</ns0:Dname>
 <ns0:Loc>NEW YORK</ns0:Loc>
 <ns0:Emp>
 <ns0:Empno>7782</ns0:Empno>
 <ns0:Ename>CLARK</ns0:Ename>
 <ns0:Job>MANAGER</ns0:Job>
 <ns0:Mgr>7839</ns0:Mgr>
 <ns0:Hiredate>1981-06-09</ns0:Hiredate>
 <ns0:Sal>2450</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7839</ns0:Empno>
 <ns0:Ename>KING</ns0:Ename>
 <ns0:Job>PRESIDENT</ns0:Job>
 <ns0:Hiredate>1981-11-17</ns0:Hiredate>
 <ns0:Sal>5000</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7934</ns0:Empno>
 <ns0:Ename>MILLER</ns0:Ename>
 <ns0:Job>CLERK</ns0:Job>
 <ns0:Mgr>7782</ns0:Mgr>
 <ns0:Hiredate>1982-01-23</ns0:Hiredate>
 <ns0:Sal>1300</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 </ns0:dept>
 </from>
 <to variable="deptVar_s" />
 </copy>
</assign>

Example 6-7 provides an example of copying from an XPath expression of an SDO variable to a DOM variable.

Example 6-7 Copy from an XPath Expression of an SDO Variable to a DOM Variable

<assign>
 <!-- copy from an XPath expression of an SDO variable to DOM variable -->
 <copy>
 <from expression="$deptVar_s/hrtypes:Emp[2]" />
 <to variable="empVar_v" />
 </copy>
 <!-- copy from an XPath expression of an DOM variable to SDO variable -->
 <copy>
 <from expression="$deptVar_v/hrtypes:Emp[2]" />
 <to variable="empVar_s" />
 </copy>
 <!-- insert a DOM based data into an SDO variable -->
 <bpelx:insertAfter>
 <bpelx:from variable="empVar_v" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp" />
 </bpelx:insertAfter>
 <!-- insert a SDO based data into an SDO variable at particular location,
 no XML conversion is needed -->
 <bpelx:insertBefore>
 <bpelx:from expression="$deptVar_s/hrtypes:Emp[hrtypes:Sal = 1300]" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp[6]" />
 </bpelx:insertBefore>
</assign>

Example 6-8 provides an example of removing a portion of SDO data.

Example 6-8 SDO Data Removal

<assign>
 <bpelx:remove>
 <bpelx:target variable="deptVar_s" query="hrtypes:Emp[2]" />
 </bpelx:remove>
</assign>

	
Note:

The bpelx:append operation is not supported for SDO-based variables for the following reasons:
	
The <copy> operation on an SDO-based variable has smart update capabilities (for example, you do not have to perform a <bpelx:append> before the <copy> operation).

	
The SDO data object is metadata driven and does not generally support adding a new property arbitrarily.

6.4 Initializing a Variable with Expression Constants or Literal XML

It is often useful to assign literal XML to a variable in BPEL, for example, to initialize a variable before copying dynamic data into a specific field within the XML data content for the variable. This is also useful for testing purposes when you want to hard code XML data values into the process.

6.4.1 How To Assign a Literal XML Element

Example 6-9 assigns a literal result element to the payload part of the output variable:

Example 6-9 Literal Element Assignment

<assign>
 <!-- copy from literal xml to the variable -->
 <copy>
 <from>
 <result xmlns="http://samples.otn.com">
 <name/>
 <symbol/>
 <price>12.3</price>
 <quantity>0</quantity>
 <approved/>
 <message/>
 </result>
 </from>
 <to variable="output" part="payload"/>
 </copy>
</assign>

6.5 Copying Between Variables

When you copy between variables, you copy directly from one variable (or part) to another variable of a compatible type, without needing to specify a particular field within either variable. In other words, you do not need to specify an XPath query.

6.5.1 How to Copy Between Variables

Example 6-10 shows two assignments being performed, first copying between two variables of the same type and then copying a variable part to another variable with the same type as that part.

Example 6-10 Copying Between Variables

<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>
 <copy>
 <from variable="c1" part = "address"/>
 <to variable="c3"/>
 </copy>
</assign>

The BPEL file defines the variables shown in Example 6-11:

Example 6-11 Variable Definition

<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="y:address"/>

The WSDL file defines the person message type shown in Example 6-12:

Example 6-12 Message Type Definition

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" element="x:address"/>
</message>

For more information about this code example, see Section 9.3.2 of the Business Process Execution Language for Web Services Specification.

6.6 Accessing Fields Within Element-Based and Message Type-Based Variables

Given the types of definitions present in most WSDL and XSD files, you must go down to the level of copying from or to a field within part of a variable based on the element and message type. This in turn uses XML schema complex types. To perform this action, you specify an XPath query in the from or to clause of the assign activity.

6.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables

In Example 6-13, the ssn field is copied from the CreditFlow process's input message into the ssn field of the credit rating service's input message.

Example 6-13 Field Copying Levels

<assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:CreditFlowRequest/tns:ssn"/>
 <to variable="crInput" part="payload" query="/tns:ssn"/>
 </copy>
</assign>

Example 6-14 shows how the BPEL file defines message type-based variables involved in this assignment:

Example 6-14 BPEL File Definition - Message Type-Based Variables

<variable name="input" messageType="tns:CreditFlowRequestMessage"/>
<variable name="crInput"
 messageType="services:CreditRatingServiceRequestMessage"/>

The crInput variable is used as an input message to a credit rating service. Its message type, CreditFlowRequestMessage, is defined in the CreditFlowService.wsdl file, as shown in Example 6-15:

Example 6-15 CreditFlowRequestMessage Definition

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type CreditRatingServiceRequestMessage is defined in the CreditRatingService.wsdl file, as shown in Example 6-16:

Example 6-16 CreditRatingServiceRequestMessage Definition

<message name="CreditRatingServiceRequestMessage">
 <part name="payload" element="tns:ssn"/>
</message>

A BPEL process can also use element-based variables. In Example 6-17, the autoloan field is copied from the loan application process's input message into the customer field of a web service's input message.

Example 6-17 Field Copying Levels

 <assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:
 application/autoloan:customer"/>
 <to variable="customer"/>
 </copy>
</assign>

Example 6-18 shows how the BPEL file defines element-based variables involved in an assignment:

Example 6-18 BPEL File Definition - Element-Based Variables

 <variable name="customer" element="tns:customerProfile"/>

6.7 Assigning Numeric Values

You can assign numeric values in XPath expressions.

6.7.1 How to Assign Numeric Values

Example 6-19 shows how to assign an XPath expression with the integer value of 100.

Example 6-19 XPath Expression Assignment

<assign>
 <!-- copy from integer expression to the variable -->
 <copy>
 <from expression="100"/>
 <to variable="output" part="payload" query="/p:result/p:quantity"/>
 </copy>
</assign>

6.8 Using Mathematical Calculations with XPath Standards

You can use simple mathematical expressions like the one in Section 6.8.1, "How To Use Mathematical Calculations with XPath Standards," which increment a numeric value.

6.8.1 How To Use Mathematical Calculations with XPath Standards

In Example 6-20, the BPEL XPath function getVariableData retrieves the value being incremented. The arguments to getVariableData are equivalent to the variable, part, and query attributes of the from clause (including the last two arguments, which are optional).

Example 6-20 XPath Function getVariableData Retrieval of a Value

<assign>
 <copy>
 <from expression="bpws:getVariableData('input', 'payload',
 '/p:value') + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

You can also use $variable syntax, as shown in Example 6-21:

Example 6-21 $variable Syntax Use

<assign>
 <copy>
 <from expression="$input.payload + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

6.9 Assigning String Literals

You can assign string literals to a variable in BPEL.

6.9.1 How to Assign String Literals

The code in Example 6-22 copies an expression evaluating from the string literal 'GE' to the symbol field within the indicated variable part. (Note the use of the double and single quotes.)

Example 6-22 Expression Copy

<assign>
 <!-- copy from string expression to the variable -->
 <copy>
 <from expression="'GE'"/>
 <to variable="output" part="payload" query="/p:result/p:symbol"/>
 </copy>
</assign>

6.10 Concatenating Strings

Rather than copying the value of one string variable (or variable part or field) to another, you can first perform string manipulation, such as concatenating several strings.

6.10.1 How to Concatenate Strings

The concatenation is accomplished with the core XPath function named concat; in addition, the variable value involved in the concatenation is retrieved with the BPEL XPath function getVariableData. In Example 6-23, getVariableData fetches the value of the name field from the input variable's payload part. The string literal 'Hello ' is then concatenated to the beginning of this value.

Example 6-23 XPath Function getVariableData Fetch of Data

<assign>
 <!-- copy from XPath expression to the variable -->
 <copy>
 <from expression="concat('Hello ',
 bpws:getVariableData('input', 'payload', '/p:name'))"/>
 <to variable="output" part="payload" query="/p:result/p:message"/>
 </copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the XML Path Language (XPath) Specification.

6.11 Assigning Boolean Values

You can assign boolean values with the XPath boolean function.

6.11.1 How to Assign Boolean Values

Example 6-24 provides an example of assigning boolean values. The XPath expression in the from clause is a call to XPath's boolean function true, and the specified approved field is set to true. The function false is also available.

Example 6-24 Boolean Value Assignment

<assign>
 <!-- copy from boolean expression function to the variable -->
 <copy>
 <from expression="true()"/>
 <to variable="output" part="payload" query="/result/approved"/>
 </copy>
</assign>

The XPath specification recommends that you use the "true()" and "false()" functions as a method for returning boolean constant values.

If you instead use "boolean(true)" or "boolean(false)", the true or false inside the boolean function is interpreted as a relative element step, and not as any true or false constant. It attempts to select a child node named true under the current XPath context node. In most cases, the true node does not exist. Therefore, an empty result node set is returned and the boolean() function in XPath 1.0 converts an empty node set into a false result. This result can be potentially confusing.

6.12 Assigning a Date or Time

You can assign the current value of a date or time field by using the Oracle BPEL XPath function getCurrentDate, getCurrentTime, or getCurrentDateTime, respectively. In addition, if you have a date-time value in the standard XSD format, you can convert it to characters more suitable for output by calling the Oracle BPEL XPath function formatDate.

For related information, see section 9.1.2 of the Business Process Execution Language for Web Services Specification.

6.12.1 How to Assign a Date or Time

Example 6-25 shows an example that uses the function getCurrentDate.

Example 6-25 Date or Time Assignment

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
 <copy>
 <from expression="xpath20:getCurrentDate()"/>
 <to variable="output" part="payload"
 query="/invoice/invoiceDate"/>
 </copy>
</assign>

In Example 6-26, the formatDate function converts the date-time value provided in XSD format to the string 'Jun 10, 2005' (and assigns it to the string field formattedDate).

Example 6-26 formatDate Function

<!-- execute the XPath extension function formatDate() -->
<assign>
 <copy>
 <from expression="ora:formatDate('2005-06-10T15:56:00',
 'MMM dd, yyyy')"/>
 <to variable="output" part="payload"
 query="/invoice/formattedDate"/>
 </copy>
</assign>

6.13 Manipulating Attributes

You can copy to or from something defined as an XML attribute. An at sign (@) in XPath query syntax refers to an attribute instead of a child element.

6.13.1 How to Manipulate Attributes

The code in Example 6-27 fetches and copies the custId attribute from this XML data:

Example 6-27 custId Attribute Fetch and Copy Operations

 <invalidLoanApplication xmlns="http://samples.otn.com">
 <application xmlns = "http://samples.otn.com/XPath/autoloan">
 <customer custId = "111" >
 <name>
 Mike Olive
 </name>
 ...
 </customer>
 ...
 </application>
 </invalidLoanApplication>

The code in Example 6-28 selects the custId attribute of the customer field and assigns it to the variable custId:

Example 6-28 custId Attribute Select and Assign Operations

<assign>
 <!-- get the custId attribute and assign to variable custId -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/@custId"/>
 <to variable="custId"/>
 </copy>
</assign>

The namespace prefixes in this example are not integral to the example.The WSDL file defines a customer to have a type in which custId is defined as an attribute, as shown in Example 6-29:

Example 6-29 custId Attribute Definition

<complexType name="CustomerProfileType">
 <sequence>
 <element name="name" type="string"/>
 ...
 </sequence>
 <attribute name="custId" type="string"/>
</complexType>

6.14 Manipulating XML Data with bpelx Extensions

You can perform various operations on XML data in assign activities. The bpelx extension types described in this section provide this functionality.

6.14.1 How to Use bpelx:append

	
Note:

The bpelx:append extension is not supported with SDO variables and causes an error.

The bpelx:append extension in an assign activity enables a BPEL process service component to append the contents of one variable, expression, or XML fragment to another variable's contents. Example 6-30 provides an example.

Example 6-30 bpelx:append Extension

<bpel:assign>
 <bpelx:append>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:append>
</bpel:assign>

The from-spec query within bpelx:append yields zero or more nodes. The node list is appended as child nodes to the target node specified by the to-spec query.

The to-spec query must yield one single L-Value element node. Otherwise, a bpel:selectionFailure fault is generated. The to-spec query cannot refer to a partner link.

Example 6-31 consolidates multiple bills of material into one single bill of material (BOM) by appending multiple b:parts for one BOM to b:parts of the consolidated BOM.

Example 6-31 Consolidation of Multiple Bills of Material

<bpel:assign>
 <bpelx:append>
 <from variable="billOfMaterialVar"
 query="/b:bom/b:parts/b:part" />
 <to variable="consolidatedBillOfMaterialVar"
 query="/b:bom/b:parts" />
 </bpelx:append>
</bpel:assign>

6.14.2 How to Use bpelx:insertBefore

	
Note:

The bpelx:insertBefore extension works with SDO variables, but the target must be the variable attribute into which the copied data must go.

The bpelx:insertBefore extension in an assign activity enables a BPEL process service component to insert the contents of one variable, expression, or XML fragment before another variable's contents. Example 6-32 provides an example.

Example 6-32 bpelx:insertBefore Extension

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertBefore>
</bpel:assign>

The from-spec query within bpelx:insertBefore yields zero or more nodes. The node list is appended as child nodes to the target node specified by the to-spec query.

The to-spec query of the insertBefore operation points to one or more single L-Value nodes. If multiple nodes are returned, the first node is used as the reference node. The reference node must be an element node. The parent of the reference node must also be an element node. Otherwise, a bpel:selectionFailure fault is generated. The node list generated by the from-spec query selection is inserted before the reference node. The to-spec query cannot refer to a partner link.

Example 6-33 shows the syntax before the execution of <insertBefore>. The value of addrVar is:

Example 6-33 Presyntax Execution

<a:usAddress>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

Example 6-34 shows the syntax after the execution:

Example 6-34 Postsyntax Execution

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from>
 <a:city>Redwood Shore></a:city>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:state" />
 </bpelx:insertBefore>
</bpel:assign>

Example 6-35 shows the value of addrVar:

Example 6-35 addrVar Value

<a:usAddress>
 <a:city>Redwood Shore</a:city>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

6.14.3 How to Use bpelx:insertAfter

	
Note:

The bpelx:insertAfter extension works with SDO variables, but the target must be the variable attribute into which the copied data must go.

The bpelx:insertAfter extension in an assign activity enables a BPEL process service component to insert the contents of one variable, expression, or XML fragment after another variable's contents. Example 6-36 provides an example.

Example 6-36 bpelx:insertAfter Extension

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertAfter>
</bpel:assign>

This operation is similar to the functionality described for Section 6.14.2, "How to Use bpelx:insertBefore," except for the following:

	
If multiple L-Value nodes are returned by the to-spec query, the last node is used as the reference node.

	
Instead of inserting nodes before the reference node, the source nodes are inserted after the reference node.

This operation can also be considered a macro of conditional-switch + (append or insertBefore).

Example 6-37 shows the syntax before the execution of <insertAfter>. The value of addrVar is:

Example 6-37 Presyntax Execution

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

Example 6-38 shows the syntax after the execution:

Example 6-38 Postsyntax Execution

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:addressLine[1]" />
 </bpelx:insertAfter>
</bpel:assign>

Example 6-39 shows the value of addrVar:

Example 6-39 addrVar Value

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The from-spec query within bpelx:insertAfter yields zero or more nodes. The node list is appended as child nodes to the target node specified by the to-spec query.

6.14.4 How to Use bpelx:remove

The bpelx:remove extension in an assign activity enables a BPEL process service component to remove a variable. Example 6-40 provides an example.

Example 6-40 bpelx:remove Extension

<bpel:assign>
 <bpelx:remove>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:append>
</bpel:assign>

Node removal specified by the XPath expression is supported. Nodes specified by the XPath expression can be multiple, but must be L-Values. Nodes being removed from this parent can be text nodes, attribute nodes, and element nodes.

The XPath expression can return one or more nodes. If the XPath expression returns zero nodes, then a bpel:selectionFailure fault is generated.

The syntax of bpelx:target is similar to and a subset of to-spec for the copy operation.

Example 6-41 shows addrVar with the following value:

Example 6-41 addrVar

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

After executing the syntax shown in Example 6-42 in the BPEL process service component file, the second address line of Mailstop is removed:

Example 6-42 Removal of Second Address Line

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine[2]" />
 </bpelx:remove>
</bpel:assign>

After executing the syntax shown in Example 6-43 in the BPEL process service component file, both address lines are removed:

Example 6-43 Removal of Both Address Lines

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine" />
 </bpelx:remove>
</bpel:assign>

6.14.5 How to Use bpelx:rename and XSD Type Casting

The bpelx:rename extension in an assign activity enables a BPEL process service component to rename an element through use of XSD type casting. Example 6-44 provides an example.

Example 6-44 bpelx:rename Extension

<bpel:assign>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:rename>
</bpel:assign>

The syntax of bpelx:target is similar to and a subset of to-spec for the copy operation. The target must return a list of one more element nodes. Otherwise, a bpel:selectionFailure fault is generated. The element nodes specified in the from-spec are renamed to the QName specified by the elementTo attribute. The xsi:type attribute is added to those element nodes to cast those elements to the QName type specified by the typeCastTo attribute.

Assume you have the employee list shown in Example 6-45:

Example 6-45 xsi:type Attribute

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp>
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

Promotion changes are now applied to Peter Smith in the employee list in Example 6-46:

Example 6-46 Application of Promotion Changes

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
</bpel:assign>

After executing the above casting (renaming), the data looks as shown in Example 6-47 with xsi:type info added to Peter Smith:

Example 6-47 Data Output

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

The employee data of Peter Smith is now invalid, because <approvalLimit> and <managing> are missing. Therefore, <append> is used to add that information. Example 6-48 provides an example.

Example 6-48 Use of append Extension to Add Information

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
 <bpelx:append>
 <bpelx:from>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
 </bpelx:from>
 <bpelx:to variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:append>
</bpel:assign>

With the execution of both rename and append, the corresponding data looks as shown in Example 6-49:

Example 6-49 rename and append Execution

<e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
<e:emp>

6.14.6 How to Use bpelx:copyList

The bpelx:copyList extension in an assign activity enables a BPEL process service component to perform a copyList operation of the contents of one variable, expression, or XML fragment to another variable. Example 6-50 provides an example.

Example 6-50 bpelx:copyList Extension

<bpel:assign>
 <bpelx:copyList>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:copyList>
</bpel:assign>

The from-spec query can yield a list of either all attribute nodes or all element nodes. The to-spec query can yield a list of L-value nodes: either all attribute nodes or all element nodes.

All the element nodes returned by the to-spec query must have the same parent element. If the to-spec query returns a list of element nodes, all element nodes must be contiguous.

If the from-spec query returns attribute nodes, then the to-spec query must return attribute nodes. Likewise, if the from-spec query returns element nodes, then the to-spec query must return element nodes. Otherwise, a bpws:mismatchedAssignmentFailure fault is thrown.

The from-spec query can return zero nodes, while the to-spec query must return at least one node. If the from-spec query returns zero nodes, the effect of the copyList operation is similar to the remove operation.

The copylist operation provides the following features:

	
Removes all the nodes pointed to by the to-spec query.

	
If the to-spec query returns a list of element nodes and there are leftover child nodes after removal of those nodes, the nodes returned by the from-spec query are inserted before the next sibling of the last element specified by the to-spec query. If there are no leftover child nodes, an append operation is performed.

	
If the to-spec query returns a list of attribute nodes, those attributes are removed from the parent element. The attributes returned by the from-spec query are then appended to the parent element.

For example, assume a schema is defined as shown in Example 6-51.

Example 6-51 Schema

<schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/Event_jws/Event/EventTest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="process">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="processResponse">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
</schema>

The from variable contains the content shown in Example 6-52.

Example 6-52 Variable Content

<ns1:process xmlns:ns1="http://xmlns.oracle.com/Event_jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

The to variable contains the content shown in Example 6-53.

Example 6-53 Variable Content

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >c</ns1: payload >
</ns1:process>

The bpelx:copyList operation looks as shown in Example 6-54.

Example 6-54 bpelx:copyList

<assign>
 <bpelx:copyList>
 <bpelx:from variable="inputVariable" part="payload"
 query="/client:process/client:payload"/>
 <bpelx:to variable="outputVariable" part="payload"
 query="/client:processResponse/client:payload"/>
 </bpelx:copyList>
</assign>

This makes the to variable as shown in Example 6-55.

Example 6-55 Variable Content

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

6.15 Validating XML Data with bpelx:validate

The bpelx:validate function enables you to verify code and identify invalid XML data.

6.15.1 How to Validate XML Data with bpelx:validate

Use this extension as follows:

	
With the validate attribute in an assign activity:

<assign bpelx:validate="yes|no">
...
</assign>

	
In <bpelx:validate> as a standalone, extended activity that can be used without an assign activity:

<bpelx:validate variables="NCNAMES" />

For example:

<bpelx:validate variables="myMsgVariable myPOElemVar" />

6.16 Manipulating XML Data Sequences That Resemble Arrays

Data sequences are one of the most basic data models used in XML. However, manipulating them can be nontrivial. One of the most common data sequence patterns used in BPEL process service components are arrays. Based on the XML schema, the way you can identify a data sequence definition is by its attribute maxOccurs being set to a value greater than one or marked as unbounded. See the XML Schema Specification at http://www.w3.org/TR for more information.

The examples in this section illustrate several basic ways of manipulating data sequences in BPEL. However, there are other associated requirements, such as performing looping or dynamic referencing of endpoints. For additional code samples and further information regarding real-world use cases for data sequence manipulation in BPEL, see http://www.oracle.com/technology/sample_code/products/bpel. The following sections describe a particular requirement for data sequence manipulation.

6.16.1 How to Statically Index into an XML Data Sequence That Uses Arrays

The following two examples illustrate how to use XPath functionality to select a data sequence element when the index of the element you want is known at design time. In these cases, it is the first element.

In Example 6-56, addresses[1] selects the first element of the addresses data sequence:

Example 6-56 Data Sequence Element Selection

<assign>
 <!-- get the first address and assign to variable address -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[1]"/>
 <to variable="address"/>
 </copy>
</assign>

In this query, addresses[1] is equivalent to addresses[position()=1], where position is one of the core XPath functions (see sections 2.4 and 4.1 of the XML Path Language (XPath) Specification). The query in Example 6-57 calls the position function explicitly to select the first element of the addresses data sequence. It then selects that address's street element (which the activity assigns to the variable street1).

Example 6-57 position Function Use

<assign>
 <!-- get the first address's street and assign to street1 -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[position()=1]
 /autoloan:street"/>
 <to variable="street1"/>
 </copy>
</assign>

If you review the definition of the input variable and its payload part in the WSDL file, you go several levels down before coming to the definition of the addresses field. There you see the maxOccurs="unbounded" attribute. The two XPath indexing methods are functionally identical; you can use whichever method you prefer.

6.16.2 How to Use SOAP-Encoded Arrays

Oracle SOA Suite provides support for SOAP RPC-encoded arrays. This support enables Oracle BPEL Process Manager to operate as a client calling a SOAP web service (RPC-encoded) that uses a SOAP 1.1 array.

Example 6-58 provides an example of a SOAP array payload named myFavoriteNumbers.

Example 6-58 SOAP Array Payload

<myFavoriteNumbers SOAP-ENC:arrayType="xsd:int2">
<number>3</number>
<number>4</number>
</myFavoriteNumbers>

In addition, ensure that the schema element attributes attributeFormDefault and elementFormDefault are set to "unqualified" in your schema. Example 6-59 provides details:

Example 6-59 Schema Element Attributes

attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="java:services" xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

The following features are not supported:

	
A service published by BPEL that uses a SOAP array

	
Partially-transmitted arrays

	
Sparse arrays

	
Multidimensional arrays

To use a SOAP-encoded array:

Example 6-60 shows how to prepare SOAP arrays with the bpelx:append tag in a BPEL project.

	
Create a BPEL process in Oracle JDeveloper.

	
Prepare the payload for the invocation. Note that bpelx:append in Example 6-60 is used to add items into the SOAP array.

Example 6-60 SOAP Array

<bpws:assign>
 <bpws:copy>
 <bpws:from variable="input" part="payload" query="/tns:value"/>
 <bpws:to variable="request" part="strArray"
 query="/strArray/JavaLangstring"/>
 </bpws:copy>
</bpws:assign>
<bpws:assign>
 <bpelx:append>
 <bpelx:from variable="request" part="strArray"
 query="/strArray/JavaLangstring1"/>
 <bpelx:to variable="request" part="strArray" query="/strArray"/>
 </bpelx:append>
</bpws:assign>

	
Import the following namespace in your WSDL file. Oracle JDeveloper does not understand the SOAP-ENC tag if the import statement is missing in the WSDL schema element.

<xs:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />

6.16.3 How to Determine Sequence Size

If you must know the runtime size of a data sequence (that is, the number of nodes or data items in the sequence), you can get it by using the combination of the XPath built-in count() function and the BPEL built-in getVariableData() function.

The code in Example 6-61 calculates the number of elements in the item sequence and assigns it to the integer variable lineItemSize.

Example 6-61 Sequence Size Determination

<assign>
 <copy>
 <from expression="count(bpws:getVariableData('outpoint', 'payload',
 '/p:invoice/p:lineItems/p:item')"/>
 <to variable="lineItemSize"/>
 </copy>
</assign>

6.16.4 How to Dynamically Index by Applying a Trailing XPath to an Expression

Often a dynamic value is needed to index into a data sequence; that is, you must get the nth node out of a sequence, where the value of n is defined at runtime. This section covers the methods for dynamically indexing by applying a trailing XPath into expressions.

6.16.4.1 Applying a Trailing XPath to the Result of getVariableData

The dynamic indexing method shown in Example 6-62 applies a trailing XPath to the result of bwps:getVariableData(), instead of using an XPath as the last argument of bpws:getVariableData(). The trailing XPath references to an integer-based index variable within the position predicate (that is, [...]).

Example 6-62 Dynamic Indexing

<variable name="idx" type="xsd:integer"/>
...
<assign>
 <copy>
 <from expression="bpws:getVariableData('input','payload'
)/p:line-item[bpws:getVariableData('idx')]/p:line-total" />
 <to variable="lineTotalVar" />
 </copy>
</assign>

Assume at runtime that the idx integer variable holds 2 as its value. The preceding expression within the from is equivalent to that shown in Example 6-63.

Example 6-63 Equivalent Format

<from expression="bpws:getVariableData('input','payload'
)/p:line-item[2]/p:line-total" />

There are some subtle XPath usage differences, when an XPath used trailing behind the bwps:getVariableData() function is compared with the one used inside the function.Using the same example (where payload is the message part of element "p:invoice"), if the XPath is used within the getVariableData() function, the root element name ("/p:invoice") must be specified at the beginning of the XPath.

Example 6-64 provides details.

Example 6-64 Root Element Name Specification

bpws:getVariableData('input', 'payload','/p:invoice/p:line-item[2]/p:line-total')

If the XPath is used trailing behind the bwps:getVariableData()function, the root element name does not need to be specified in the XPath.

For example:

bpws:getVariableData('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getVariableData() function is the root element. Specifying the root element name again in the XPath is redundant and is incorrect according to standard XPath semantics.

6.16.4.2 Using the bpelx:append Extension to Append New Items to a Sequence

The bpelx:append extension in an assign activity enables BPEL process service components to append new elements to an existing parent element. Example 6-65 provides an example.

Example 6-65 bpelx:append Extension

 <assign name="assign-3">
 <copy>
 <from expression="bpws:getVariableData('idx')+1" />
 <to variable="idx"/>
 </copy>
 <bpelx:append>
 <bpelx:from variable="partInfoResultVar" part="payload" />
 <bpelx:to variable="output" part="payload" />
 </bpelx:append>
 ...
 </assign>

The bpelx:append logic in this example appends the payload element of the partInfoResultVar variable as a child to the payload element of the output variable. In other words, the payload element of output variable is used as the parent element.

6.16.4.3 Merging Data Sequences

You can merge two sequences into a single data sequence. This pattern is common when the data sequences are in an array (that is, the sequence of data items of compatible types).The two append operations shown in Example 6-66 under assign demonstrate how to merge data sequences:

Example 6-66 Data Sequences Merges with append Operations

<assign>
 <!-- initialize "mergedLineItems" variable
 to an empty element -->
 <copy>
 <from> <p:lineItems /> </from>
 <to variable="mergedLineItems" />
 </copy>
 <bpelx:append>
 <bpelx:from variable="input" part="payload"
 query="/p:invoice/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
 <bpelx:append>
 <bpelx:from variable="literalLineItems"
 query="/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
</assign>

6.16.4.4 Generating Functionality Equivalent to an Array of an Empty Element

The genEmptyElem function generates functionality equivalent to an array of an empty element to an XML structure. This function takes the following arguments:

genEmptyElem('ElemQName',int?, 'TypeQName'?, boolean?)

Note the following issues:

	
The first argument specifies the QName of the empty elements.

	
The optional second integer argument specifies the number of empty elements. If missing, the default size is 1.

	
The third optional argument specifies the QName, which is the xsi:type of the generated empty name. This xsi:type pattern matches the SOAPENC:Array. If it is missing or is an empty string, the xsi:type attribute is not generated.

	
The fourth optional boolean argument specifies whether the generated empty elements are XSI - nil, provided the element is XSD-nillable. The default value is false. If missing or false, xsi:nil is not generated.

Example 6-67 shows an append statement initializing a purchase order (PO) document with 10 empty <lineItem> elements under po:

Example 6-67 append Statement

<bpelx:assign>
 <bpelx:append>
 <bpelx:from expression="ora:genEmptyElem('p:lineItem',10)" />
 <bpelx:to variable="poVar" query="/p:po" />
 </bpelx:append>
</bpelx:assign>

The genEmptyElem function in Example 6-67 can be replaced with an embedded XQuery expression, as shown in Example 6-68.

Example 6-68 Embedded XQuery Expression

ora:genEmptyElem('p:lineItem',10)
== for $i in (1 to 10) return <p:lineItem />

The empty elements generated by this function are typically invalid XML data. You perform further data initialization after the empty elements are created. Using the same example above, you can perform the following:

	
Add attribute and child elements to those empty lineItem elements.

	
Perform copy operations to replace the empty elements. For example, copy from a web service result to an individual entry in this equivalent array under a flowN activity.

6.16.5 What You May Need to Know About Using the Array Identifier

For processing in Native Format Builder array identifier environments, information is required about the parent node of a node. Because the reportSAXEvents API is used, this information is typically not available for outbound message scenarios. Setting nxsd:useArrayIdentifiers to true in the native schema enables DOM-parsing to be used for outbound message scenarios. Use this setting cautiously, as it can lead to slower performance for very large payloads. Example 6-69 provides details.

Example 6-69 Array Identifier

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"
nxsd:stream="chars" nxsd:version="NXSD" nxsd:useArrayIdentifiers="true">
 <xsd:element name="Root-Element">

 </xsd:element>
</xsd:schema>

6.17 Converting from a String to an XML Element

Sometimes a service is defined to return a string, but the content of the string is actually XML data. The problem is that, although BPEL provides support for manipulating XML data (using XPath queries, expressions, and so on), this functionality is not available if the variable or field is of type string. With Java, you use DOM functions to convert the string to a structured XML object type. You can use the BPEL XPath function parseEscapedXML to do the same thing.

6.17.1 How To Convert from a String to an XML Element

The parseEscapedXML function takes XML data, parses it through DOM, and returns structured XML data that can be assigned to a typed BPEL variable. Example 6-70 provides an example:

Example 6-70 String to XML Element Conversion

<!-- execute the XPath extension function
parseEscapedXML('<item>') and assign to a variable
-->
<assign>
 <copy>
 <from expression="ora:parseEscapedXML(
 '<item xmlns="http://samples.otn.com"
 sku="006">
 <description>sun ultra sparc VI server
 </description>
 <price>1000
 </price>
 <quantity>2
 </quantity>
 <lineTotal>2000
 </lineTotal>
 </item>')"/>
 <to variable="escapedLineItem"/>
 </copy>
</assign>

6.18 Understanding the Differences Between Document-Style and RPC-Style WSDL Files

The examples shown up to this point have been for document-style WSDL files in which a message is defined with an XML schema element, as shown in Example 6-71:

Example 6-71 XML Schema element Definition

<message name="LoanFlowRequestMessage">
<part name="payload" element="s1:loanApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an XML schema type, as shown in Example 6-72:

Example 6-72 RPC-Style type Definition

<message name="LoanFlowRequestMessage">
<part name="payload" type="s1:LoanApplicationType"/>
</message>

6.18.1 How To Use RPC-Style Files

This impacts the material in this chapter because there is a difference in how XPath queries are constructed for the two WSDL message styles. For an RPC-style message, the top-level element (and therefore the first node in an XPath query string) is the part name (payload in Example 6-72). In document-style, the top-level node is the element name (for example, loanApplication).

Example 6-73 and Example 6-74 show what an XPath query string looks like if an application named LoanServices were in RPC style.

Example 6-73 RPC-Style WSDL File

<message name="LoanServiceResultMessage">
 <part name="payload" type="s1:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
 <sequence>
 <element name="providerName" type="string"/>
 <element name="selected" type="boolean"/>
 <element name="approved" type="boolean"/>
 <element name="APR" type="double"/>
 </sequence>
</complexType>

Example 6-74 RPC-Style BPEL File

<variable name="output"
 messageType="tns:LoanServiceResultMessage"/>
...
<assign>
 <copy>
 <from expression="9.9"/>
 <to variable="output" part="payload" query="/payload/APR"/>
 </copy>
</assign>

6.19 Manipulating SOAP Headers in BPEL

BPEL's communication activities (invoke, receive, reply, and onMessage) receive and send messages through specified message variables. These default activities permit one variable to operate in each direction. For example, the invoke activity has inputVariable and outputVariable attributes. You can specify one variable for each of the two attributes. This is enough if the particular operation involved uses only one payload message in each direction.

However, WSDL supports multiple messages in an operation. In the case of SOAP, multiple messages can be sent along the main payload message as SOAP headers. However, BPEL's default communication activities cannot accommodate the additional header messages.

Oracle BPEL Process Manager solves this problem by extending the default BPEL communication activities with the bpelx:headerVariable extension. The extension syntax is as shown in Example 6-75:

Example 6-75 bpelx:headerVariable Extension

<invoke bpelx:inputHeaderVariable="inHeader1 inHeader2 ..."
 bpelx:outputHeaderVariable="outHeader1 outHeader2 ..."
 .../>

<receive bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<onMessage bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<reply bpelx:headerVariable="inHeader1 inHeader2 ..." .../>

6.19.1 How to Receive SOAP Headers in BPEL

This section provides an example of how to create BPEL and WSDL files to receive SOAP headers.

To receive SOAP headers in BPEL:

	
Create a WSDL file that declares header messages and the SOAP binding that binds them to the SOAP request. Example 6-76 provides an example.

Example 6-76 WSDL File Contents

 <!-- custom header -->
 <message name="CustomHeaderMessage">
 <part name="header1" element="tns:header1"/>
 <part name="header2" element="tns:header2"/>
 </message>

 <binding name="HeaderServiceBinding" type="tns:HeaderService">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="initiate">
 <soap:operation style="document" soapAction="initiate"/>
 <input>
 <soap:header message="tns:CustomHeaderMessage"
 part="header1" use="literal"/>
 <soap:header message="tns:CustomHeaderMessage"
 part="header2" use="literal"/>
 <soap:body use="literal"/>
 </input>
 </operation>
 </binding>

	
Create a BPEL source file that declares the header message variables and uses bpelx:headerVariable to receive the headers, as shown in Example 6-77.

Example 6-77 bpelx:headerVariable Use

<variables> <variable name="input"
 messageType="tns:HeaderServiceRequestMessage"/>
 <variable name="event"
 messageType="tns:HeaderServiceEventMessage"/>
 <variable name="output"
 messageType="tns:HeaderServiceResultMessage"/>
 <variable name="customHeader"
 messageType="tns:CustomHeaderMessage"/>
</variables>

<sequence>
 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:HeaderService" operation="initiate"
 variable="input"
 bpelx:headerVariable="customHeader"
 createInstance="yes"/>

6.19.2 How to Send SOAP Headers in BPEL

This section provides an example of how to send SOAP headers.

To send SOAP headers in BPEL:

	
Define an SCA reference in the composite.xml to refer to the HeaderService.

	
Define the custom header variable, manipulate it, and send it using bpelx:inputHeaderVariable, as shown in Example 6-78.

Example 6-78 bpelx:inputHeaderVariable Use

<variables>
 <variable name="input" messageType="tns:HeaderTestRequestMessage"/>
 <variable name="output" messageType="tns:HeaderTestResultMessage"/>
 <variable name="request" messageType="services:HeaderServiceRequestMessage"/>
 <variable name="response" messageType="services:HeaderServiceResultMessage"/>
 <variable name="customHeader"messageType="services:CustomHeaderMessage"/>
 </variables>
...
<!-- initiate the remote process -->
 <invoke name="invokeAsyncService"
 partnerLink="HeaderService"
 portType="services:HeaderService"
 bpelx:inputHeaderVariable="customHeader"
 operation="initiate"
 inputVariable="request"/>

6.20 Using MIME/DIME SOAP Attachments

A BPEL process service component can receive SOAP attachments in an optimized Message Transmission Optimization Mechanism (MTOM) format. However, the BPEL process cannot internally process the attachments. Instead, the attachments are added to the DOM as part of the XML file. Oracle recommends that you avoid using MTOM attachments and instead use Multipurpose Internet Mail Extensions (MIME) and Direct Internet Message Encapsulation (DIME) SOAP attachments.

7 Invoking a Synchronous Web Service from a BPEL Process

This chapter describes how to invoke a synchronous web service from a BPEL process. This chapter demonstrates how to set up the components necessary to perform a synchronous invocation. This chapter also examines how these components are coded.

This chapter includes the following sections:

	
Section 7.1, "Introduction to Invoking a Synchronous Web Service"

	
Section 7.2, "Invoking a Synchronous Web Service"

	
Section 7.3, "Specifying Timeout Values"

	
Section 7.4, "Calling a One-Way Mediator with a Synchronous BPEL Process"

For a simple Hello World sample (bpel-101-HelloWorld) that takes an input string, adds a prefix of "Hello " to the string, and returns it, visit the following URL:

http://www.oracle.com/technology/sample_code/products/bpel

7.1 Introduction to Invoking a Synchronous Web Service

Synchronous web services provide an immediate response to an invocation. BPEL can connect to synchronous web services through a partner link, send data, and then receive the reply in the same synchronous invocation.

A synchronous invocation requires the following components:

	
Partner link

Defines the location and the role of the web services with which the BPEL process service component connects to perform tasks, and the variables used to carry information between the web service and the BPEL process service component. A partner link is required for each web service that the BPEL process service component calls. You can create partner links in either of two ways:

	
In the SOA Composite Editor, when you drag a Web Service from the Component Palette into the Exposed Services or External References swimlane.

	
In the Oracle BPEL Designer, when you drag a Partner Link (Web Service/Adapter) from the Component Palette into the Partner Links swimlane. This method is described in this chapter.

	
Invoke activity

Opens a port in the BPEL process service component to send and receive data. It uses this port to retrieve information verifying that the customer has acceptable credit using the CreditCardAuthorizationService. For synchronous callbacks, only one port is needed for both the send and receive functions.

7.2 Invoking a Synchronous Web Service

This section examines a synchronous invocation operation using the OrderProcessor.bpel file in the WebLogic Fusion Order Demo application as an example.

7.2.1 How to Invoke a Synchronous Web Service

To invoke a synchronous web service:

	
In the Component Palette in Oracle BPEL Designer, drag the necessary partner link, invoke activity, and assign activities into the designer.

	
Edit their dialogs.

shows the diagram for the Scope_AuthorizeCreditCard scope activity of the OrderProcessor.bpel file, which defines a simple set of actions.

Figure 7-1 Diagram of OrderProcessor.bpel

[image: Description of Figure 7-1 follows]

The following actions take place:

	
The Assign_CreditCheckInput assign activity packages the data from the client. The assign activity provides a method for copying the contents of one variable to another. In this case, it takes the credit card type, credit card number, and purchase amount and assigns them to the input variable for the CreditAuthorizationService service.

	
The InvokeCheckCreditCard activity calls the CreditCardAuthorization service. shows the CreditCardAuthorizationService web service, which is defined as a partner link.

Figure 7-2 CreditCardAuthorizationService Partner Link

[image: Description of Figure 7-2 follows]

shows the InvokeCheckCreditCard invoke activity.

Figure 7-3 InvokeCheckCreditCard Invoke Activity

[image: Description of Figure 7-3 follows]

	
The Switch_EvaluateCCResult switch activity checks the results of the credit card validation. For information about switch activities, see Section 10.2, "Creating a Switch Activity to Define Conditional Branching."

7.2.2 What Happens When You Invoke a Synchronous Web Service

When you create a partner link and invoke activity, the necessary BPEL code for invoking a synchronous web service is added to the appropriate BPEL and Web Services Description Language (WSDL) files.

7.2.2.1 Partner Link in the BPEL Code

In the OrderProcessor.bpel code, the partner link defines the link name and type, and the role of the BPEL process service component in interacting with the partner service.

From the BPEL source code, the CreditCardAuthorizationService partner link definition is shown in Example 7-1:

Example 7-1 Partner Link Definition

<partnerLink name="CreditCardAuthorizationService"
 partnerRole="CreditAuthorizationPort"
 partnerLinkType="ns2:CreditCardAuthorizationService"/>

Variable definitions that are accessible locally in the Scope_AuthorizeCreditCard scope are shown in Example 7-2. The types for these variables are defined in the WSDL for the process itself.

Example 7-2 Variable Definition

<variable name="lCreditCardInput"
 messageType="ns2:CreditAuthorizationRequestMessage"/>
<variable name="lCreditCardOutput"
 messageType="ns2:CreditAuthorizationResponseMessage"/>

The WSDL file defines the interface to your BPEL process service component: the messages that it accepts and returns, the operations that are supported, and other parameters.

7.2.2.2 Partner Link Type and Port Type in the BPEL Code

The web service's CreditCardAuthorizationService.wsdl file contains two sections that enable the web service to work with BPEL process service components:

	
partnerLinkType:

Defines the following characteristics of the conversion between a BPEL process service component and the credit card authorization web service:

	
The role (operation) played by each

	
The portType provided by each for receiving messages within the conversation

	
portType:

A collection of related operations implemented by a participant in a conversation. A port type defines which information is passed back and forth, the form of that information, and so on. A synchronous invocation requires only one port type that both initiates the synchronous process and calls back the client with the response. An asynchronous callback (one in which the reply is not immediate) requires two port types, one to send the request, and another to receive the reply when it arrives.

In this example, the portType CreditAuthorizationPort receives the credit card type, credit card number, and purchase amount, and returns the status results.

Example 7-3 provides an example of partnerLinkType and portType.

Example 7-3 partnerLinkType and portType Definitions

<plnk:partnerLinkType name="CreditCardAuthorizationService">
 <plnk:role name="CreditAuthorizationPort">
 <plnk:portType name="tns:CreditAuthorizationPort"/>
 </plnk:role>
</plnk:partnerLinkType>

7.2.2.3 Invoke Activity for Performing a Request

The invoke activity includes the lCreditCardInput local input variable. The credit card authorization web service uses the lCreditCardInput input variable. This variable contains the customer's credit card type, credit card number, and purchase amount. The lCreditCardOutput variable returns status results from the CreditAuthorizationService service. Example 7-4 provides an example.

Example 7-4 Invoke Activity

<invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>

7.2.2.4 Synchronous Invocation in BPEL Code

The BPEL code shown in Example 7-5 performs the synchronous invocation:

Example 7-5 Synchronous Invocation

<assign name="Assign_CreditCheckInput">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCType"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCNumber"/>
 </copy>
</assign>
<invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>

7.3 Specifying Timeout Values

You can specify timeout values with the property SyncMaxWaitTime in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control Console. This property defines the maximum time a request and response operation takes before timing out. If the BPEL process service component does not receive a reply within the specified time, then the activity fails.

7.3.1 How To Specify Timeout Values

To specify timeout values:

	
From the SOA Infrastructure menu, select SOA Administration > BPEL Properties.

	
At the bottom of the BPEL Service Engine Properties page, click More BPEL Configuration Properties.

	
Click SyncMaxWaitTime.

	
In the Value field, specify a value in seconds.

	
Click Apply.

	
Click Return.

7.3.2 What You May Need to Know About SyncMaxWaitTime and Synchronous Requests Not Timing Out

The SyncMaxWaitTime property applies to durable processes that are called in an asynchronous manner.

Assume you have a BPEL process with the definition shown in Example 7-6. The process is not durable because there are no breakpoint activities.

Example 7-6 Process with No Breakpoint Activities

<receive name="receiveInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>
...
</assign>
<reply name="replyOutput" partnerLink="client" variable="output" />

If a Java client or another BPEL process calls this process, the assign activity is performed and the reply activity sets the output message into a HashMap for the client (actually the delivery service) to retrieve. Since the reply is the last activity, the thread returns to the client side and tries to pick up the reply message. Since the reply message was previously inserted, the client does not wait and returns with the reply.

Assume you have a BPEL process with a breakpoint activity, as shown in Example 7-7.

Example 7-7 Process with Breakpoint Activities

<receive name="receiveInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>
...
</assign>
<wait for="'PT10S'" />
<reply name="replyOutput" partnerLink="client" variable="output" />

While it is not recommended to have asynchronous activities inside a synchronous process, BPEL does not prevent this type of design.

When the client (or another BPEL process) calls the process, the wait (breakpoint) activity is executed. However, since the wait is processed after some time by an asynchronous thread in the background, the executing thread returns to the client side. The client (actually the delivery service) tries to pick up the reply message, but it is not there since the reply activity in the process has not yet executed. Therefore, the client thread waits for the SyncMaxWaitTime seconds value. If this time is exceeded, then the client thread returns to the caller with a timeout exception.If the wait is less than the SyncMaxWaitTime value, the asynchronous background thread then resumes at the wait and executes the reply. The reply is placed in the HashMap and the waiter (the client thread) is notified. The client thread picks up the reply message and returns.

Therefore, SyncMaxWaitTime only applies to synchronous process invocations when the process has a breakpoint in the middle. If there is no breakpoint, the entire process is executed by the client thread and returns the reply message.

7.4 Calling a One-Way Mediator with a Synchronous BPEL Process

You can expose a synchronous interface in the front end while using an asynchronous callback in the back end to simulate a synchronous reply. This is the default behavior in BPEL processes with the automatic setting of the configuration.transaction property to requiresNew in the composite.xml file. Example 7-8 provides details.

Example 7-8 configuration.transaction Property

<component name="BPELProcess1">
@ <implementation.bpel src="BPELProcess1.bpel"/>
@ <property name="configuration.transaction" type="xs:string"
@ many="false">requiresNew</property>
@ </component>

RequiresNew is the recommended value. If you want to participate in the client's transaction, you must set the configuration.transaction property to Required.

8 Invoking an Asynchronous Web Service from a BPEL Process

This chapter describes how to call an asynchronous web service. Asynchronous messaging styles are useful for environments in which a service, such as a loan processor, can take a long time to process a client request. Asynchronous services also provide a more reliable fault-tolerant and scalable architecture than synchronous services.

This chapter includes the following sections:

	
Section 8.1, "Introduction to Invoking an Asynchronous Web Service"

	
Section 8.2, "Invoking an Asynchronous Web Service"

	
Section 8.3, "Using a Dynamic Partner Link at Runtime"

	
Section 8.4, "Using WS-Addressing in an Asynchronous Service"

	
Section 8.5, "Using Correlation Sets in an Asynchronous Service"

8.1 Introduction to Invoking an Asynchronous Web Service

This section introduces asynchronous web service invocation with a company called United Loan. United Loan publishes an asynchronous web service that processes a client's loan application request and then returns a loan offer. This use case discusses how to integrate a BPEL process service component with this asynchronous loan application approver web service.

This use case illustrates the key design concepts for requesting information from an asynchronous service, and then receiving the response. The asynchronous United Loan service in this example is another BPEL process service component. However, the same BPEL call can interact with any properly designed web service. The target web service WSDL file contains the information necessary to request and receive the necessary information.

For the asynchronous web service, the following actions take place (in order of priority):

	
An assign activity prepares the loan application.

	
An invoke activity initiates the loan request. The contents of this request are put into a request variable. This request variable is sent to the asynchronous loan processor web service.

When the loan request is initiated, a correlation ID unique to the client and partner link initiating the request is also sent to the loan processor web service. The correlation ID ensures that the correct loan offer response is returned to the corresponding loan application requester.

	
The loan processor web service then sends the correct response to the receive activity, which has been tracked by the correlation ID.

	
An assign activity reads the loan application offer.

The remaining sections in this chapter provide specific details about the asynchronous functionality.

8.2 Invoking an Asynchronous Web Service

This section provides an overview of the tasks for adding asynchronous functionality to a BPEL process service component.

8.2.1 How to Invoke an Asynchronous Web Service

You perform the following steps to asynchronously invoke a web service:

	
Add a partner link

	
Add an invoke activity

	
Add a receive activity

	
Create assign activities

8.2.1.1 Adding a Partner Link for an Asynchronous Service

These instructions describe how to create a partner link in a BPEL process (for this example, named LoanService) for the loan application approver web service.

To add a partner link for an asynchronous service:

	
In the SOA Composite Editor, drag a BPEL process from the Service Components section of the Component Palette into the designer.

The Create BPEL Process dialog appears.

	
Follow the instructions in the dialog to create a BPEL process service component.

	
Click OK when complete.

	
In the SOA composite application in the SOA Composite Editor, double-click the BPEL process service component (for this example, the component is named LoanBroker).

The Oracle BPEL Designer appears.

	
In the Component Palette, expand BPEL Services.

	
Drag a Partner Link (Web Service/Adapter) into the right Partner Links swimlane.

The Create Partner Link dialog appears.

	
Enter the following details to create a partner link and select the loan application approver web service:

	
Name

Enter a name for the partner link (for this example, LoanService is entered).

	
Process

Displays the BPEL process service component name (for this example, LoanBroker appears).

	
WSDL URL

Enter the name of the Web Services Description Language (WSDL) file to use. Click the SOA Resource Lookup icon above this field to locate the correct WSDL.

	
Partner Link Type

Refers to the external service with which the BPEL process service component is to interface. Select from the list (for this example, LoanService is selected).

	
Partner Role

Refers to the role of the external source, for example, provider. Select from the list (for this example, LoanServiceProvider is selected).

	
My Role

Refers to the role of the BPEL process service component in this interaction. Select from the list (for this example, LoanServiceRequester is selected).

	
Click OK.

A new partner link for the loan application approver web service (United Loan) appears in the swimlane of the designer.

8.2.1.2 Adding an Invoke Activity

Follow these instructions to create an invoke activity and a global input variable named request. This activity initiates the asynchronous BPEL process service component activity with the loan application approver web service (United Loan). The loan application approver web service uses the request input variable to receive the loan request from the client.

To add an invoke activity:

	
In the Component Palette, expand BPEL Activities and Components.

	
From the Component Palette, drag an invoke activity to beneath the receive activity.

	
Go to the Structure window. Note that while this example describes variable creation from the Structure window, you can also create variables by clicking the Add icons to the right of the Input and Output fields of the Invoke dialog.

	
Right-click Variables and select Expand All Child Nodes.

	
In the second Variables folder in the tree, right-click and select Create Variable.

The Create Variable dialog appears.

	
Enter the variable name and select Message Type from the options provided:

	
Simple Type

This option lets you select an XML schema simple type (for example, string, boolean, and so on).

	
Message Type

This option enables you to select a WSDL message file definition of a partner link or of the project WSDL file of the current BPEL process service component (for example, a response message or a request message). You can specify variables associated with message types as input or output variables for invoke, receive, or reply activities.

To display the message type, select the Message Type option, and then select its Browse icon to display the Type Chooser dialog. From here, expand the Message Types tree to make your selection. For this example, Message Types > Partner Links > Loan Service > LoanService.wsdl > Message Types > LoanServiceRequestMessage is selected.

	
Element

This option lets you select an XML schema element of the project schema file or project WSDL file of the current BPEL process service component, or of a partner link.

Figure 8-1 shows the Create Variable dialog.

Figure 8-1 Create Variable Dialog

[image: Description of Figure 8-1 follows]

	
Click OK.

	
Double-click the invoke activity to display the Invoke dialog.

	
In the Invoke dialog, select the partner link from the Partner Link list (for this example, LoanService is selected) and initiate from the Operation list.

	
To the right of the Input Variable field, click the second icon and select the input variable you created in Step 6.

The Variable Chooser dialog appears, where you can select the variable.

There is no output variable specified because the output variable is returned in the receive operation. The invoke activity is created.

For more information about the invoke activity, see Section 8.2.2.5, "Invoke and Receive Activities."

	
Click OK.

8.2.1.3 Adding a Receive Activity

Follow these steps to create a receive activity and a global output variable named response. This activity waits for the loan application approver web service's callback operation. The loan application approver web service uses this output variable to send the loan offer result to the client.

To add a receive activity:

	
From the Component Palette, drag a receive activity to the location right after the invoke activity you created in Section 8.2.1.2, "Adding an Invoke Activity."

	
Create a variable to hold the receive information by invoking the Create Variable dialog, as you did in Step 3 through Step 7, starting.

Figure 8-2 shows the Create Variable dialog.

Figure 8-2 Create Variable Dialog

[image: Description of Figure 8-2 follows]

	
Double-click the receive activity and change its name to receive_invoke.

	
From the Partner Link list, select the partner link (for this example, LoanService is selected).

	
From the Operation list, select onResult. Do not select the Create Instance checkbox.

	
Select the variable you created in Step 3 through Step 7, starting.

	
Click OK.

The receive activity and the output variable are created. Because the initial receive activity in the BPEL file (for this example, LoanBroker.bpel) created the initial BPEL process service component instance, a second instance does not need to be created.

8.2.1.4 Performing Additional Activities

In addition to the asynchronous-specific tasks, you must perform the following tasks.

	
Create an initial assign activity for data manipulation in front of the invoke activity that copies the client's input variable loan application request document payload into the loan application approver web service's request variable payload.

	
Create a second assign activity for data manipulation after the receive activity that copies the loan application approver web service's response variable loan application results payload into the output variable for the client to receive.

8.2.2 What Happens When You Invoke an Asynchronous Web Service

This section describes what happens when you invoke an asynchronous web service.

8.2.2.1 portType Section of the WSDL File

The portType section of the WSDL file (in this example, for LoanService) defines the ports to be used for the asynchronous service.

Asynchronous services have two port types. Each port type performs a one-way operation. In this example, one port type responds to the asynchronous process and the other calls back the client with the asynchronous response. In the example shown in Example 8-1, the portType LoanServiceCallback receives the client's loan application request and the portType LoanService asynchronously calls back the client with the loan offer response.

Example 8-1 portType Definition

<!-- portType implemented by the LoanService BPEL process -->
 <portType name="LoanService">
 <operation name="initiate">
 <input message="tns:LoanServiceRequestMessage"/>
 </operation>
 </portType>
<!-- portType implemented by the requester of LoanService BPEL process
for asynchronous callback purposes
-->
 <portType name="LoanServiceCallback">
 <operation name="onResult">
 <input message="tns:LoanServiceResultMessage"/>
 </operation>
 </portType>

8.2.2.2 partnerLinkType Section of the WSDL File

The partnerLinkType section of the WSDL file (in this example, for LoanService) defines the following characteristics of the BPEL process service component:

	
The role (operation) played

	
The portType provided for receiving messages within the conversation

Partner link types in asynchronous services have two roles: one for the web service provider and one for the client requester.

In the conversation shown in Example 8-2, the LoanServiceProvider role and LoanService portType are used for client request messages and the LoanServiceRequester role and LoanServiceCallback portType are used for asynchronously returning (calling back) response messages to the client.

Example 8-2 partnerLinkType Definition

<plnk:partnerLinkType name="LoanService">
 <plnk:role name="LoanServiceProvider">
 <plnk:portType name="client:LoanService"/>
 </plnk:role>
 <plnk:role name="LoanServiceRequester">
 <plnk:portType name="client:LoanServiceCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

Two port types are combined into this single asynchronous BPEL process service component: portType="services:LoanService" of the invoke activity and portType="services:LoanServiceCallback" of the receive activity. Port types are essentially a collection of operations to be performed. For this BPEL process service component, there are two operations to perform: initiate in the invoke activity and onResult in the receive activity.

8.2.2.3 Partner Links Section in the BPEL File

To call the service from BPEL, you use the BPEL file to define how the process interfaces with the web service. View the partnerLinks section. The services with which a process interacts are designed as partner links. Each partner link is characterized by a partnerLinkType.

Each partner link is named. This name is used for all service interactions through that partner link. This is critical in correlating responses to different partner links for simultaneous requests of the same type.

Asynchronous processes use a second partner link for the callback to the client. In this example, the second partner link, LoanService, is used by the loan application approver web service. Example 8-3 provides an example.

Example 8-3 partnerLink Definition

 <!-- This process invokes the asynchronous LoanService. -->

 <partnerLink name="LoanService"
 partnerLinkType="services:LoanService"
 myRole="LoanServiceRequester"
 partnerRole="LoanServiceProvider"/>
 </partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role indicates the role of the partner in this conversation. Each partnerLinkType has a myRole and partnerRole attribute in asynchronous processes.

8.2.2.4 Composite Application File

In the composite.xml file, the loan application approver web service appears, as shown in Example 8-4.

Example 8-4 Loan Application Approver Web Service

<component name="LoanBroker">
 <implementation.bpel process="LoanBroker.bpel"/>
</component>

For more information, see Section 8.2.1.1, "Adding a Partner Link for an Asynchronous Service" for instructions on creating a partner link.

8.2.2.5 Invoke and Receive Activities

View the variables and sequence sections. Two areas of particular interest concern the invoke and receive activities:

	
An invoke activity invokes a synchronous web service (as discussed in Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process") or initiates an asynchronous service.

The invoke activity includes the request global input variable defined in the variables section. The request global input variable is used by the loan application approver web service. This variable contains the contents of the initial loan application request document.

	
A receive activity that waits for the asynchronous callback from the loan application approver web service. The receive activity includes the response global output variable defined in the variables section. This variable contains the loan offer response. The receive activity asynchronously waits for a callback message from a service. While the BPEL process service component is waiting, it is dehydrated, or compressed and stored, until the callback message arrives.

Example 8-5 provides an example.

Example 8-5 Invoke and Receive Activities

 <variables>

 <variable name="request"
 messageType="services:LoanServiceRequestMessage"/>
 <variable name="response"
 messageType="services:LoanServiceResultMessage"/>
 </variables>

<sequence>

 <!-- initialize the input of LoanService -->
 <assign>
 <!-- initiate the remote process -->
 <invoke name="invoke" partnerLink="LoanService"
 portType="services:LoanService"
 operation="initiate" inputVariable="request"/>

 <!-- receive the result of the remote process -->
 <receive name="receive_invoke" partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID unique to the client request is also sent, using Web Services Addressing (WS-Addressing) (described in Section 8.4, "Using WS-Addressing in an Asynchronous Service"). Because multiple processes may be waiting for service callbacks, the server must know which BPEL process service component instance is waiting for a callback message from the loan application approver web service. The correlation ID enables the server to correlate the response with the appropriate requesting instance.

8.2.2.6 createInstance Attribute for Starting a New Instance

You may notice a createInstance attribute in the initial receive activity. In this initial receive activity, the createInstance element is set to yes. This starts a new instance of the BPEL process service component. At least one instance startup is required for a conversation. For this reason, you set the createInstance variable to no in the second receive activity.

Example 8-6 shows the source code for the createInstance attribute:

Example 8-6 createInstance Attribute

 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:LoanBroker"
 operation="initiate" variable="input"
 createInstance="yes"/>

8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes

To automatically maintain long-running asynchronous processes and their current state information in a database while they wait for asynchronous callbacks, you use a database as a dehydration store. Storing the process in a database preserves the process and prevents any loss of state or reliability if a system shuts down or a network problem occurs. This feature increases both BPEL process service component reliability and scalability. You can also use it to support clustering and failover.

You insert this point between the invoke activity and receive activity.

8.2.2.8 Multiple Runtime Endpoint Locations

Oracle SOA Suite provides support for specifying multiple partner link endpoint locations. This capability is useful for failover purposes if the first endpoint is down. To provide an alternate partner link endpoint location, add the location attribute to the composite.xml file. Example 8-7 provides an example.

Example 8-7 Alternate Runtime Endpoint Location

<reference name="HeaderService ...>
<binding.ws port="http://services.otn.com/HelloWorldApp#wsdl.endpoint(client/
 HelloWorldService_pt)"
location="http://server:port/soa-infra/services/default/
 HelloWorldService!1.0/client?WSDL">
<property name="endpointURI">http://jsmith.us.oracle.com:80/a.jsp
@http://myhost.us.oracle.com:8888/soa-infra/services/HelloWorldApp/HelloWorld!
1.0*2007-10-22_14-33-04_195/client
 </property>
</binding.ws>
</reference>

8.3 Using a Dynamic Partner Link at Runtime

You can dynamically configure a partner link at runtime in BPEL. This is useful for scenarios in which the target service that BPEL wants to invoke is not known until runtime.

8.3.1 How To Add and Use a Dynamic Partner Link at Runtime

	
Create a WSDL file that contains multiple services that use the same portType.

	
Create a reference binding component entry in the composite.xml file that uses the WSDL:

<reference name="loanService">
 <interface.wsdl interface="http://services.otn.com#wsdl.interface(LoanService)"
callbackInterface="http://services.otn.com#wsdl.interface(LoanServiceCallback)"
/>
 <binding.ws port=
 "http://services.otn.com#wsdl.endpoint(AmericanLoan/LoanService_pt)"/>
 </reference>

	
Notes:

	
Adding the binding.ws port setting is optional. This is because the port is overridden at runtime by properties passed from BPEL.

	
If there is no port setting, and there is no composite import of the concrete WSDL associated with this reference, you must specify the location of the concrete WSDL with a location attribute.

	
In the BPEL file, programmatically assign the partner link. For this example, UnitedLoan is one of the services defined in the WSDL.

<copy>
 <from>
 <EndpointReference
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<Address>http://myhost.us.oracle.com:9700/orabpel/default/UnitedLoan</Address>
 </EndpointReference>
 </from>
 <to partnerLink="LoanService"/>
</copy>

8.4 Using WS-Addressing in an Asynchronous Service

Because there can be many active instances at any time, the server must be able to direct web service responses to the correct BPEL process service component instance. You can use WS-Addressing to identify asynchronous messages to ensure that asynchronous callbacks locate the appropriate client.

Figure 8-3 provides an overview of WS-Addressing. WS-Addressing uses Simple Object Access Protocol (SOAP) headers for asynchronous message correlation. Messages are independent of the transport or application used.

Figure 8-3 Callback with WS-Addressing Headers

[image: Description of Figure 8-3 follows]

Figure 8-3 shows how messages are passed along with WS headers so that the response can be sent to the correct destination.

The example in this chapter uses WS-Addressing for correlation. To view the messages, you can use TCP tunneling, which is described in Section 8.4.1.1, "Using TCP Tunneling to See Messages Exchanged Between Programs."

WS-Addressing defines the following information typically provided by transport protocols and messaging systems. This information is processed independently of the transport or application:

	
Endpoint location (reply-to address)

The reply-to address specifies the location at which a BPEL client is listening for a callback message.

	
Conversation ID

Use TCP tunneling to view SOAP messages exchanged between the BPEL process service component flow and the web service (including those containing the correlation ID). You can see the exact SOAP messages that are sent to, or received from, services with which a BPEL process service component flow communicates.

You insert a software listener between your BPEL process service component flow and the web service. Your BPEL process service component flow communicates with the listener (called a TCP tunnel). The listener forwards your messages to the web service, and also displays them. Responses from the web service are returned to the tunnel, which displays and forwards them back to the BPEL process service component.

8.4.1 How to Use WS-Addressing in an Asynchronous Service

WS-Addressing is a public specification and is the default correlation method supported by Oracle BPEL Process Manager. You do not need to edit the .bpel and .wsdl files to use WS-Addressing.

8.4.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs

The messages that are exchanged between programs and services can be seen through TCP tunneling. This is particularly useful when you want to see the exact SOAP messages exchanged between the BPEL process service component flow and web services.

To monitor the SOAP messages, insert a software listener between your flow and the service. Your flow communicates with the listener (called a TCP tunnel) and the listener forwards your messages to the service, and displays them. Likewise, responses from the service are returned to the tunnel, which displays them and then forwards them back to the flow.

To see all the messages exchanged between the server and a web service, you need only a single TCP tunnel for synchronous services because all the pertinent messages are communicated in a single request and reply interaction with the service. For asynchronous services, you must set up two tunnels, one for the invocation of the service and another for the callback port of the flow.

8.4.1.1.1 Setting up a TCP Listener for Synchronous Services

Follow these steps to set up a TCP listener for synchronous services initiated by an Oracle BPEL Process Manager process:

	
Visit the following URL for instructions on how to download and install Axis TCP Monitor (tcpmon)

http://ws.apache.org/commons/tcpmon/

	
Visit the following URL for instructions on how to use tcpmon:

http://ws.apache.org/axis/java/user-guide.html

	
Place axis.jar in your class path.

	
Start tcpmon:

C:\...\> java org.apache.axis.utils.tcpmon localport remoteHost
port_on_which_remote_server_is_running

	
In the composite.xml file, add the endpointURI property under binding.ws for your flow to override the endpoint of the service.

	
From the operating system command prompt, compile and deploy the process with ant.

Note that the same technique can see the SOAP messages passed to invoke a BPEL process service component as a web service from another tool kit such as Axis or .NET.

8.4.1.1.2 Setting up a TCP Listener for Asynchronous Services

Follow these steps to set up a TCP listener to display the SOAP messages for callbacks from asynchronous services:

	
Start a TCP listener to listen on a port and to send on the Oracle BPEL Process Manager port.

	
Open Oracle Enterprise Manager Fusion Middleware Control Console.

	
From the SOA Infrastructure menu, select SOA Administration > Common Properties.

	
Specify the value for Callback Server URL. This URL is sent by the server as part of the asynchronous callback address to the invoker.

	
From the SOA Infrastructure menu, select Administration > System MBean Browser.

	
Expand Application Defined MBeans > oracle.soa.config > Server : soa_server > SCAComposite.

where soa_server is the specific server instance name (for example, AdminServer).

All the SOA composite applications deployed on the server appear.

	
Follow these steps to set this property on a composite application. This action enables it to apply to all bindings in the composite application.

	
Click your composite.

	
Ensure the Attributes tab is selected.

	
In the Name column, click Properties.

	
Click the Add icon.

	
Expand the newly added Element_number (appears at the end of the list).

where number is the next sequential number beyond the last property. For example, if the property list contains twelve elements, adding a new property causes Element_13 to be displayed.

	
In the name field, enter oracle.webservices.local.optimization.

	
In the value field, enter false.

	
In the many field, enter false.

	
Click Apply, and then click Return.

	
In the Name column on the Operations tab, click save.

	
Click Invoke to execute the operation.

	
Click Return or click a node in the System MBean Browser pane.

	
Note:

After adding, deleting, or updating a property, you can click the Refresh cached tree data icon in the upper right corner of the System MBean Browser page to see the new data.

	
Follow these steps to set this property on a specific binding.

	
Expand your composite application. and drill down to the specific SCAComposite.SCAReference.SCABinding folder.

	
Click WSBinding.

	
Perform steps 4b through 4l.

	
Initiate any flow that invokes asynchronous web services. You can combine this with the synchronous TCP tunneling configuration to send a service initiation request through your first TCP tunnel.

The callbacks from the asynchronous services are shown in the TCP listener.

If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to see SOAP messages for both synchronous and asynchronous services.

8.5 Using Correlation Sets in an Asynchronous Service

Correlation sets provide another method for directing web service responses to the correct BPEL process service component instance. You can use correlation sets to identify asynchronous messages to ensure that asynchronous callbacks locate the appropriate client.

Correlation sets are a BPEL mechanism that provides for the correlation of asynchronous messages based on message body contents. To use this method, define the correlation sets in your .bpel file. This method is designed for services that do not support WS-Addressing or for certain sophisticated conversation patterns, for example, when the conversation is in the form A > B > C > A instead of A > B > A.

This section describes how to use correlation sets in an asynchronous service with Oracle JDeveloper. Correlation sets enable you to correlate asynchronous messages based on message body contents. You define correlation sets when interactions are not simple invoke-receive activities. This example illustrates how to use correlation sets for a process having three receive activities with no associated invoke activities.

For a sample (bpel-202-CorrelatedEvents) that shows how a BPEL process can use correlations for two-way communication using events, visit the following URL:

http://www.oracle.com/technology/sample_code/products/bpel

8.5.1 How to Use Correlation Sets in an Asynchronous Service

This section describes the steps to perform to use correlation sets in an asynchronous service.

8.5.1.1 Step 1: Creating a Project

To create a project:

	
Start Oracle JDeveloper.

	
From the File main menu, select New > Applications.

	
Select SOA Application, and click OK.

The Create SOA Application Wizard appears.

	
In the Application Name field, enter MyCorrelationSetApp.

	
Accept the default values for all remaining settings, and click Next.

	
In the Project Name field, enter MyCorrelationSetComposite.

	
Accept the default values for all remaining settings, and click Next.

	
In the Composite Template section, select Composite With BPEL, and click Finish.

The Create BPEL Process dialog appears.

	
Enter the following values:

Table 8-1 Create BPEL Process Dialog Fields and Values

	Field	Value
	
Name

	
Enter MyCorrelationSet.

	
Template

	
Select Asynchronous BPEL Process.

	
Expose as a SOAP Service

	
Select the checkbox. After process creation, note the SOAP service that appears in the Exposed Services swimlane. This service provides the entry point to the composite application from the outside world.

	
Accept the default values for all remaining settings, and click Finish.

8.5.1.2 Step 2: Configuring Partner Links and File Adapter Services

You now create three partner links that use the SOAP service.

This section contains these topics:

	
You create an initial partner link with an adapter service for reading a loan application.

	
You create a second partner link with an adapter service for reading an application response.

	
You create a third partner link with an adapter service for reading a customer response.

8.5.1.2.1 Creating an Initial Partner Link and File Adapter Service

To create an initial partner link and file adapter service:

	
Double-click the MyCorrelationSet BPEL process.

	
In the Component Palette, expand BPEL Services.

	
Drag an initial Partner Link activity into the right swimlane of the designer.

	
Click the third icon at the top (the Define Service icon). This starts the Adapter Configuration Wizard, as shown in Figure 8-4.

Figure 8-4 Adapter Configuration Wizard Startup

[image: Description of Figure 8-4 follows]

	
In the Configure Service or Adapter dialog, select File Adapter and click Next.

	
In the Welcome dialog, click Next.

	
In the Service Name field of the Service Name dialog, enter FirstReceive and click Next.

	
In the Operation dialog, select Read File as the Operation Type and click Next. The Operation Name field is automatically filled in with Read.

	
Select Directory Names are Specified as Physical Path.

	
Above the Directory for Incoming Files (physical path) field, click Browse.

	
Select a directory from which to read files (for this example, C:\files\receiveprocess\FirstInputDir is selected).

	
Click Select.

	
Click Next.

	
In the File Filtering dialog, enter appropriate file filtering parameters.

	
Click Next.

	
In the File Polling dialog, enter appropriate file polling parameters.

	
Click Next.

	
In the Messages dialog, click Browse next to the Schema Location field to display the Type Chooser dialog.

	
Select an appropriate XSD schema file. For this example, Book1_4.xsd is the schema and LoanAppl is the schema element selected.

	
Click OK.

The Schema Location field (Book1_4.xsd for this example) and the Schema Element field (LoanAppl for this example) are filled in.

	
Click Next.

	
Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically completed. The dialog looks as shown in Table 8-2:

Table 8-2 Partner Link Dialog Fields and Values

	Field	Value
	
Name

	
FirstReceive

	
WSDL URL

	
file:/C:/JDeveloper/mywork/Application_Name/SOA_Project_Name/FirstReceive.wsdl

where C:/JDeveloper represents the Oracle JDeveloper home directory for this example.

	
Partner Link Type

	
Read_plt

	
Partner Role

	
Leave unspecified.

	
My Role

	
Read_role

	
Click OK.

8.5.1.2.2 Creating a Second Partner Link and File Adapter Service

To create a second partner link and file adapter service:

	
Drag a second PartnerLink activity beneath the FirstReceivePL partner link activity.

	
At the top, click the third icon (the Define Service icon).

	
In the Welcome dialog, click Next.

	
In the Adapter Type dialog, select File Adapter and click Next.

	
In the Service Name field of the Service Name dialog, enter SecondFileRead and click Next. This name must be unique from the one you entered in Step 7.

	
In the Operation dialog, select Read File as the Operation Type.

	
In the Operation Name field, change the name to Read1.

	
Click Next.

	
Select Directory Names are Specified as Physical Path.

	
Above the Directory for Incoming Files (physical path) field, click Browse.

	
Select a directory from which to read files (for this example, C:\files\receiveprocess\SecondInputDir is entered).

	
Click Select.

	
Click Next.

	
Enter appropriate file filtering parameters in the File Filtering dialog.

	
Click Next.

	
Enter appropriate file polling parameters in the File Polling dialog.

	
Click Next.

	
Next to the Schema Location field in the Messages dialog, click Browse to display the Type Chooser dialog.

	
Select an appropriate XSD schema file. For this example, Book1_5.xsd is the schema and LoanAppResponse is the schema element selected.

	
Click OK.

The Schema Location field (Book1_5.xsd for this example) and the Schema Element field (LoanAppResponse for this example) are filled in.

	
Click Next.

	
Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically completed. The dialog looks as shown in Table 8-3:

Table 8-3 Partner Link Dialog Fields and Values

	Field	Value
	
Name

	
SecondReceive

	
WSDL URL

	
file:/C:/JDeveloper/mywork/Application_Name/SOA_Project_Name/SecondFileRead.wsdl

where C:/JDeveloper represents the Oracle JDeveloper home directory for this example.

	
Partner Link Type

	
Read1_plt

	
Partner Role

	
Leave unspecified.

	
My Role

	
Read1_role

	
Click OK.

8.5.1.2.3 Creating a Third Partner Link and File Adapter Service

To create a third partner link and file adapter service:

	
Drag a third PartnerLink activity beneath the SecondReceivePL partner link activity.

	
At the top, click the third icon (the Define Service icon).

	
In the Welcome dialog, click Next.

	
In the Adapter Type dialog, select File Adapter and click Next.

	
In the Service Name field of the Service Name dialog, enter ThirdFileRead and click Next. This name must be unique from the one you entered in Step 7 and Step 5.

	
In the Operation dialog, select Read File as the Operation Type.

	
In the Operation Name field, change the name to Read2. This name must be unique.

	
Click Next.

	
Select Directory Names are Specified as Physical Path.

	
Above the Directory for Incoming Files (physical path) field, click Browse.

	
Select a directory from which to read files (for this example, C:\files\receiveprocess\ThirdInputDir is entered).

	
Click Select.

	
Click Next.

	
Enter appropriate file filtering parameters in the File Filtering dialog.

	
Click Next.

	
Enter appropriate file polling parameters in the File Polling dialog.

	
Click Next.

	
Next to the Schema Location field in the Messages dialog, click Browse to display the Type Chooser dialog.

	
Select an appropriate XSD schema file. For this example, Book1_6.xsd is the schema and CustResponse is the schema element selected.

	
Click OK.

The Schema Location field (Book1_6.xsd for this example) and the Schema Element field (CustResponse for this example) are filled in.

	
Click Next.

	
Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically completed. The dialog looks as shown in Table 8-4:

Table 8-4 Partner Link Dialog Fields and Values

	Field	Value
	
Name

	
ThirdReceive

	
WSDL URL

	
file:/C:/JDeveloper/mywork/Application_Name/SOA_Project_Name/ThirdFileRead.wsdl

where C:/JDeveloper represents the Oracle JDeveloper home directory for this example.

	
Partner Link Type

	
Read2_plt

	
Partner Role

	
Leave unspecified.

	
My Role

	
Read2_role

	
Click OK.

When complete, the designer looks as shown in Figure 8-5:

Figure 8-5 BPEL Process Design

[image: Description of Figure 8-5 follows]

8.5.1.3 Step 3: Creating Three Receive Activities

You now create three receive activities; one for each partner link. The receive activities specify the partner link from which to receive information.

8.5.1.3.1 Creating an Initial Receive Activity

To create an initial receive activity:

	
Expand BPEL Activities in the Component Palette.

	
From the BPEL Activities and Components list of the Component Palette section, drag a Receive activity beneath the receiveInput receive activity in the designer.

	
Double-click the receive icon to display the Receive dialog.

	
Enter the details described in Table 8-5 to associate the first partner link (FirstReceive) with the first receive activity:

Table 8-5 Receive Dialog Fields and Values

	Field	Value
	
Name

	
receiveFirst

	
Partner Link

	
FirstReceive

	
Create Instance

	
Select this checkbox.

The Operation (Read) field is automatically filled in.

	
To the right of the Variable field, click the first icon. This is the automatic variable creation icon.

	
In the Create Variable dialog, click OK.

A variable named receiveFirst_Read_InputVariable is automatically created in the Variable field.

	
Ensure that you selected the Create Instance checkbox, as mentioned in Step 4.

	
Click OK.

8.5.1.3.2 Creating a Second Receive Activity

To create a second receive activity:

	
From the Component Palette, drag a second Receive activity beneath the receiveFirst receive activity.

	
Double-click the receive icon to display the Receive dialog.

	
Enter the details described in Table 8-6 to associate the second partner link (SecondReceivePL) with the second receive activity:

Table 8-6 Receive Dialog Fields and Values

	Field	Value
	
Name

	
receiveSecond

	
Partner Link

	
SecondFileRead

	
Create Instance

	
Do not select this checkbox.

The Operation (Read1) field is automatically filled in.

	
To the right of the Variable field, click the first icon.

	
In the Create Variable dialog, click OK.

A variable named receiveSecond_Read1_InputVariable is automatically created in the Variable field.

	
Click OK.

8.5.1.3.3 Creating a Third Receive Activity

To create a third receive activity:

	
From the Component Palette, drag a third Receive activity beneath the receiveSecond receive activity.

	
Double-click the receive icon to display the Receive dialog.

	
Enter the details described in Table 8-7 to associate the third partner link (ThirdReceivePL) with the third receive activity:

Table 8-7 Receive Dialog Fields and Values

	Field	Value
	
Name

	
receiveThird

	
Partner Link

	
ThirdFileRead

	
Create Instance

	
Do not select this checkbox.

The Operation (Read2) field is automatically filled in.

	
To the right of the Variable field, click the first icon.

	
In the Create Variable dialog, click OK.

A variable named receiveThird_Read2_InputVariable is automatically created in the Variable field.

	
Click OK.

Each receive activity is now associated with a specific partner link.

8.5.1.4 Step 4: Creating Correlation Sets

You now create correlation sets. A set of correlation tokens is a set of properties shared by all messages in the correlated group.

8.5.1.4.1 Creating an Initial Correlation Set

To create an initial correlation set:

	
In the Structure window of Oracle JDeveloper, right-click Correlation Sets and select Expand All Child Nodes.

	
In the second Correlation Sets folder, right-click and select Create Correlation Set.

	
In the Name field of the Create Correlation Set dialog, enter CorrelationSet1.

	
In the Properties section, click the Add icon to display the Property Chooser dialog.

	
Select Properties, then click the Add icon (first icon at the top) to display the Create Correlation Set Property dialog.

	
In the Name field, enter NameCorr.

	
To the right of the Type field, click the Browse icon.

	
In the Type Chooser dialog, select string and click OK.

	
Click OK to close the Create Correlation Set Property dialog, the Property Chooser dialog, and the Create Correlation Set dialog.

8.5.1.4.2 Creating a Second Correlation Set

To create a second correlation set:

	
Return to the Correlation Sets section in the Structure window of Oracle JDeveloper.

	
Right-click the Correlation Sets folder and select Create Correlation Set.

	
In the Name field of the Create Correlation Set dialog, enter CorrelationSet2.

	
In the Properties section, click the Add icon to display the Property Chooser dialog.

	
Select Properties, then click the Add icon to display the Create Correlation Set Property dialog.

	
In the Name field, enter IDCorr.

	
To the right of the Type field, click the Browse icon.

	
In the Type Chooser dialog, select double and click OK.

	
Click OK to close the Create Correlation Set Property dialog, the Property Chooser dialog, and the Create Correlation Set dialog.

8.5.1.5 Step 5: Associating Correlation Sets with Receive Activities

You now associate the correlation sets with the receive activities. You perform the following correlation set tasks:

	
For the first correlated group, the first and second receive activities are correlated with the CorrelationSet1 correlation set.

	
For the second correlated group, the second and third receive activities are correlated with the CorrelationSet2 correlation set.

8.5.1.5.1 Associating the First Correlation Set with a Receive Activity

To associate the first correlation set with a receive activity:

	
Double-click the receiveFirst receive activity to display the Receive dialog.

	
Click the Correlations tab.

	
Click the second Add icon to display the Correlation Set Chooser dialog.

	
Select CorrelationSet1, then click OK.

	
Set the Initiate column to yes. When set to yes, the set is initiated with the values of the properties occurring in the message being exchanged.

	
Click OK.

8.5.1.5.2 Associating the Second Correlation Set with a Receive Activity

To associate the second correlation set with a receive activity:

	
Double-click the receiveSecond receive activity to display the Receive dialog.

	
Click the Correlations tab.

	
Click the second Add icon to display the Correlation Set Chooser dialog.

	
Select CorrelationSet2, then click OK.

	
Set the Initiate column to yes.

	
Click Add and select CorrelationSet1.

	
Click OK.

	
Set the Initiate column to no for CorrelationSet1.

	
Click OK.

This groups the first and second receive activities into a correlated group.

8.5.1.5.3 Associating the Third Correlation Set with a Receive Activity

To associate the third correlation set with a receive activity:

	
Double-click the receiveThird receive activity to display the Receive dialog.

	
Click the Correlations tab.

	
Click the second Add icon to display the Correlation Set Chooser dialog.

	
Select CorrelationSet2, then click OK.

	
Set the Initiate column to no for CorrelationSet2.

	
Click OK.

This groups the second and third receive activities into a second correlated group.

8.5.1.6 Step 6: Creating Property Aliases

Property aliases enable you to map a global property to a field in a specific message part. This action enables the property name to become an alias for the message part and location. The alias can be used in XPath expressions.

8.5.1.6.1 Creating Property Aliases for NameCorr

You create the following two property aliases for the NameCorr correlation set:

	
Map NameCorr to the LoanAppl message type part of the receiveFirst receive activity. This receive activity is associated with the FirstReceivePL partner link (defined by the FirstReceive.wsdl file).

	
Map NameCorr to the incoming LoanAppResponse message type part of the receiveSecond receive activity. This receive activity is associated with the SecondReceivePL partner link (defined by the SecondFileRead.wsdl file).

To create property aliases for NameCorr:

	
In the Structure window of Oracle JDeveloper, right-click Property Aliases.

	
Select Create Property Alias.

	
From the Property list, select NameCorr.

	
Expand and select Message Types > Web Services > FirstReceivePL > FirstReceive.wsdl > Message Types > LoanAppl_msg > Part - LoanAppl.

	
In the Query field, press Ctrl+Space to define the following XPath expression:

/ns2:LoanAppl/ns2:Name

	
Click OK.

	
Repeat Step 1 through Step 3 to create a second property alias for NameCorr.

	
Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl > Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

	
In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR

8.5.1.6.2 Creating Property Aliases for IDCorr

You create the following two property aliases for the IDCorr correlation set:

	
Map IDCorr to the LoanAppResponse message type part of the receiveSecond receive activity. This receive activity is associated with the SecondReceivePL partner link (defined by the SecondFileRead.wsdl file).

	
Map IDCorr to the CustResponse message type part of the receiveThird receive activity. This receive activity is associated with the ThirdReceivePL partner link (defined by the ThirdFileRead.wsdl file).

To create property aliases for IDCorr:

	
In the Structure window, right-click Property Aliases.

	
Select Create Property Alias.

	
In the Property list, select IDCorr.

	
Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl > Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

	
In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR

	
Click OK.

	
Repeat Step 1 through Step 3 to create a second property alias for IDCorr.

	
Expand and select Message Types > Project WSDL Files > ThirdFileRead.wsdl > Message Types > CustResponse_msg > Part - CustResponse.

	
In the Query field, press Ctrl+Space to define the following XPath expression:

/ns6:CustResponse/ns6:APR

Design is now complete.

8.5.1.7 Step 7: Reviewing WSDL File Content

To review WSDL file content:

	
Refresh the Application Navigator.

The NameCorr and IDCorr correlation set properties are defined in the MyCorrelationSet_Properties.wsdl file in the Application Navigator of Oracle JDeveloper. Example 8-8 provides an example.

Example 8-8 Correlation Set Properties

<definitions
 name="properties"
 targetNamespace="http://xmlns.oracle.com/MyCorrelationSet/correlationset"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <bpws:property name="NameCorr" type="xsd:string"/>
 <bpws:property name="IDCorr" type="xsd:double"/>
</definitions>

The property aliases are defined in the MyCorrelationSet.wsdl file, as shown in Example 8-9:

Example 8-9 Property Aliases

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns3:LoanAppl_msg"
 part="LoanAppl" query="/ns2:LoanAppl/ns2:Name"/>

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns7:CustResponse_msg"
 part="CustResponse" query="/ns6:CustResponse/ns6:APR"/>

Because the BPEL process service component is not created as a web services provider in this example, the MyCorrelationSet.wsdl file is not referenced in the BPEL process service component. Therefore, you must import the MyCorrelationSet.wsdl file inside the FirstReceive.wsdl file to reference the correlation sets defined in the former WSDL. Example 8-10 provides an example.

Example 8-10 WSDL File Import

<import namespace="http://xmlns.oracle.com/MyCorrelationSet"
 location="MyCorrelationSet.wsdl"/>

9 Using Parallel Flow in a BPEL Process

This chapter describes how to use parallel flow in a BPEL process service component. Parallel flows enable a BPEL process service component to perform multiple tasks at the same time. Parallel flow is especially useful when you must perform several time-consuming and independent tasks.

This chapter includes the following sections:

	
Section 9.1, "Introduction to Parallel Flows in BPEL Processes"

	
Section 9.2, "Creating a Parallel Flow"

	
Section 9.3, "Customizing the Number of Flow Activities with the flowN Activity"

For additional information on creating parallel flows in a SOA composite application, see the WebLogic Fusion Order Demo application.

9.1 Introduction to Parallel Flows in BPEL Processes

A BPEL process service component must sometimes gather information from multiple asynchronous sources. Because each callback can take an undefined amount of time (hours or days), it may take too long to call each service one at a time. By breaking the calls into a parallel flow, a BPEL process service component can invoke multiple web services at the same time, and receive the responses as they come in. This method is much more time efficient.

shows the Retrieve_QuotesFromSuppliers flow activity of the WebLogic Fusion Order Demo application. The Retrieve_QuotesFromSuppliers flow activity sends order information to two suppliers in parallel: an internal warehouse (InternalWarehouseService) and an external partner warehouse (PartnerSupplierMediator). The two warehouses return their bids for the order to the flow activity. Here, two asynchronous callbacks execute in parallel. One callback does not have to wait for the other to complete first. Each response is stored in a different global variable.

Figure 9-1 Parallel Flow Invocation

[image: Description of Figure 9-1 follows]

9.2 Creating a Parallel Flow

You can create a parallel flow in a BPEL process service component with the flow activity. The flow activity enables you to specify one or more activities to be performed concurrently. The flow activity also provides synchronization. The flow activity completes when all activities in the flow have finished processing. Completion of this activity includes the possibility that it can be skipped if its enabling condition is false.

9.2.1 How to Create a Parallel Flow

To create a parallel flow:

	
From the Component Palette, drag a Flow activity into the designer.

	
Click the + sign to expand the flow activity, as shown in .

Figure 9-2 Flow Activity

[image: Description of Figure 9-2 follows]

The flow activity includes two branches, each with a box for functional elements. Populate these boxes as you do a scope activity, either by building a function or dragging activities into the boxes.

	
Drag and define additional activities onto each side of the flow to invoke multiple services at the same time.

Figure 9-3 Expanded Flow Activity

[image: Description of Figure 9-3 follows]

When complete, flow activity design can look as shown in . This example shows the Retrieve_QuotesFromSuppliers flow activity of the WebLogicFusionOrderDemo application. Two branches are defined for receiving bids, one for InternalWarehouseService and the other for PartnerSupplierMediator.

Figure 9-4 Flow Activity After Design Completion

[image: Description of Figure 9-4 follows]

9.2.2 What Happens When You Create a Parallel Flow

A flow activity typically contains many sequence activities. Each sequence is performed in parallel. Example 9-1 shows the syntax for two sequences of the Retrieve_QuotesFromSuppliers flow activity in the OrderProcessor.bpel file after design completion. However, a flow activity can have many sequences. A flow activity can also contain other activities. In Example 9-1, each sequence in the flow contains assign, invoke, and receive activities.

Example 9-1 Flow Activity

<flow name="Retrieve_QuotesFromSuppliers">
 <sequence name="Sequence_4">
 <assign name="Assign_InternalWarehouseRequest">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderId"/>
 <to variable="lInternalWarehouseInputVariable"
 part="payload"
 query="/ns1:WarehouseRequest/ns1:orderId"/>
 </copy>
 </assign>
 <invoke name="Invoke_InternalWarehouse"
 inputVariable="lInternalWarehouseInputVariable"
 partnerLink="InternalWarehouseService"
 portType="ns1:InternalWarehouseService"
 operation="process"/>
 <receive name="Receive_InternalWarehouse"
 createInstance="no"
 variable="lInternalWarehouseResponseVariable"
 partnerLink="InternalWarehouseService"
 portType="ns1:InternalWarehouseServiceCallback"
 operation="processResponse"/>
 <assign name="Assign_InterWHResponse">
 <bpelx:append>
 <bpelx:from variable="lInternalWarehouseResponseVariable"
 part="payload"
 query="/ns1:WarehouseResponse"/>
 <bpelx:to variable="gWarehouseQuotes"
 query="/ns1:WarehouseList"/>
 </bpelx:append>
 </assign>
 </sequence>
 <sequence name="Sequence_4">
 <assign name="Assign_PartnerRequest">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO"/>
 <to variable="lPartnerSupplierInputVariable"
 part="request" query="/ns4:orderInfoVOSDO"/>
 </copy>
 </assign>
 <invoke name="Invoke_PartnerSupplier"
 partnerLink="PartnerSupplierMediator"
 portType="ns15:execute_ptt" operation="execute"
 inputVariable="lPartnerSupplierInputVariable"/>
 <receive name="Receive_PartnerResponse"
 createInstance="no"
 variable="lPartnerResponseVariable"
 partnerLink="PartnerSupplierMediator"
 portType="ns15:callback_ptt" operation="callback"/>
 <assign name="Assign_PartnerWHResponse">
 <bpelx:append>
 <bpelx:from variable="lPartnerResponseVariable"
 part="callback"
 query="/ns1:WarehouseResponse"/>
 <bpelx:to variable="gWarehouseQuotes"
 query="/ns1:WarehouseList"/>
 </bpelx:append>
 </assign>
 </sequence>
</flow>

9.3 Customizing the Number of Flow Activities with the flowN Activity

In the flow activity, the BPEL code determines the number of parallel branches. However, often the number of branches required is different depending on the available information. The flowN activity creates multiple flows equal to the value of N, which is defined at runtime based on the data available and logic within the process. An index variable increments each time a new branch is created, until the index variable reaches the value of N.

The flowN activity performs activities on an arbitrary number of data elements. As the number of elements changes, the BPEL process service component adjusts accordingly.

The branches created by flowN perform the same activities, but use different data. Each branch uses the index variable to look up input variables. The index variable can be used in the XPath expression to acquire the data specific for that branch.

For example, suppose there is an array of data. The BPEL process service component uses a count function to determine the number of elements in the array. Then the process sets N to be the number of elements. The index variable starts at a preset value (zero is the default), and flowN creates branches to retrieve each element of the array and perform activities using data contained in that element. These branches are generated and performed in parallel, using all the values between the initial index value and N. flowN terminates when the index variable reaches the value of N. For example, if the array contains 3 elements, N is set to 3. Assuming the index variable begins at 1, the flowN activity creates three parallel branches with indexes 1, 2, and 3.

The flowN activity can use data from other sources as well, including data obtained from web services.

Figure 9-5 shows the runtime flow of a flowN activity in Oracle Enterprise Manager Fusion Middleware Control Console that looks up three hotels. This is different from the view because instead of showing the BPEL process service component, it shows how the process has actually executed. In this case, there are three hotels, but the number of branches changes to match the number of hotels available.

Figure 9-5 Oracle Enterprise Manager Fusion Middleware Control Console View of the Execution of a flowN activity

[image: Description of Figure 9-5 follows]

9.3.1 How to Create a flowN Activity

To create a flowN activity:

	
From the Component Palette, drag a FlowN activity into the designer.

	
Click the + sign to expand the FlowN activity.

	
Double-click the FlowN activity.

Figure 9-6 shows the flowN dialog.

Figure 9-6 FlowN Dialog

[image: Description of Figure 9-6 follows]

The flowN dialog enables you to:

	
Name the activity

	
Enter a value or an expression for calculating the value of N (the number of branches to create)

	
Define the index variable (the time to wait in each branch)

	
Drag and define additional activities in the flowN activity.

Figure 9-7 shows how a FlowN activity appears with additional activities.

Figure 9-7 FlowN Activity with Additional Activities

[image: Description of Figure 9-7 follows]

9.3.2 What Happens When You Create a FlowN Activity

The following code shows the .bpel file that uses the flowN activity to look up information on an arbitrary number of hotels. The following actions take place.

Example 9-2 shows the sequence name.

Example 9-2 Sequence Name

 <sequence name="main">
 <!-- Received input from requester.
 Note: This maps to operation defined in NflowHotels.wsdl
 The requester sends a set of hotels names wrapped into the "inputVariable"
 -->

A receive activity calls the client partner link to get the information that the flowN activity must define N times and look up hotel information. Example 9-3 provides an example.

Example 9-3 Receive Activity

 <receive name="receiveInput" partnerLink="client"
 portType="client:NflowHotels" operation="initiate" variable="inputVariable"
 createInstance="yes"/>
 <!--
 The 'count()' Xpath function is used to get the number of hotelName
 noded passed in.
 An intermediate variable called "NbParallelFlow" is
 used to store the number of N flows being executed
 -->
 <assign name="getHotelsN">
 <copy>
 <from
expression="count(bpws:getVariableData('inputVariable','payload','/client:Nflow
HotelsProcessRequest/client:ListOfHotels/client:HotelName'));"/>
 <to variable="NbParallelFlow"/>
 </copy>
 </assign>
 <!-- Initiating the FlowN activity
 The N value is initialized with the value stored in the
 "NbParallelFlow" variable
 The variable call "Index" is defined as the index variable
 NOTE: Both "NbParallelFlow" and "Index" variables have to be declared
 -->

The flowN activity begins next. After defining a name for the activity of flowN, N is defined as a value from the inputVariable, which is the number of hotel entries. The activity also assigns index as the index variable. Example 9-4 provides an example.

Example 9-4 FlowN Activity

<bpelx:flowN name="FlowN" N="bpws:getVariableData('NbParallelFlow')
indexVariable="Index'>
 <sequence name="Sequence_1">
 <!-- Fetching each hotelName by indexing the "inputVariable" with the
 "Index" variable.
 Note the usage of the "concat()" Xpath function to create the
 expression accessing the array element.
 -->

The copy rule shown in Example 9-5 then uses the index variable to concatenate the hotel entries into a list:

Example 9-5 Assign Activity

<assign name="setHotelId">
 <copy>
 <from expression=
"bpws:getVariableData('inputVariable','payload',concat('/client:Nflo
wHotelsProcessRequest/client:ListOfHotels/client:HotelName[',
bpws:getVariableData('Index'),']'))"/>
 <to variable="InvokeHotelDetailInputVariable" part="payload"
 query="/ns2:hotelInfoRequest/ns2:id"/>
 </copy>
 </assign>

Using the hotel information, an invoke activity looks up detailed information for each hotel through a web service. Example 9-6 provides an example.

Example 9-6 Invoke Activity

 <!-- For each hotel, invoke the web service giving detailed information
 on the hotel -->
 <invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
 portType="ns2:getHotelDetail" operation="process"
 inputVariable="InvokeHotelDetailInputVariable"
 outputVariable="InvokeHotelDetailOutputVariable"/>
 <!-- This procees does not do anything with the retrieved information.
 In real life, it could then be used to continue the process.
 Note: Meanwhile an indexing variable is used. Unlike a while loop, the
 activities are executed in parallel, not sequentially.
 -->
 </sequence>
 </bpelx:flowN>

Finally, the BPEL process sends detailed information on each hotel to the client partner link. Example 9-7 provides an example.

Example 9-7 Invoke Activity

 <invoke name="callbackClient" partnerLink="client"
 portType="client:NflowHotelsCallback" operation="onResult"
 inputVariable="outputVariable"/>
 </sequence>
 </sequence>

10 Using Conditional Branching in a BPEL Process

This chapter describes how to use conditional branching in a BPEL process service component. Conditional branching introduces decision points to control the flow of execution of a BPEL process service component.

This chapter includes the following sections:

	
Section 10.1, "Introduction to Conditional Branching"

	
Section 10.2, "Creating a Switch Activity to Define Conditional Branching"

	
Section 10.3, "Creating a While Activity to Define Conditional Branching"

	
Section 10.4, "Specifying XPath Expressions to Bypass Activity Execution"

For additional information on creating conditional branching in a SOA composite application, see the WebLogic Fusion Order Demo application.

10.1 Introduction to Conditional Branching

BPEL applies logic to make choices through conditional branching. You can use either of the following activities to design your code to select different actions based on conditional branching:

	
Switch activity

Enables you to set up two or more branches, with each branch in the form of an XPath expression. If the expression is true, then the branch is executed. If the expression is false, then the BPEL process service component moves to the next branch condition, until it either finds a valid branch condition, encounters an otherwise branch, or runs out of branches. If multiple branch conditions are true, then BPEL executes the first true branch. Section 10.2, "Creating a Switch Activity to Define Conditional Branching" explains how to create switch activities.

	
While activity

Enables you to create a while loop to select between two actions. Section 10.3, "Creating a While Activity to Define Conditional Branching" describes while activities.

Many branches are set up, and each branch has a condition in the form of an XPath expression.

You can program a conditional branch to have a timeout. That is, if a response cannot be generated in a specified period, the BPEL flow can stop waiting and resume its activities. Chapter 14, "Using Events and Timeouts in BPEL Processes" explains this feature in detail.

	
Note:

You can also define conditional branching logic with business rules. See Oracle Fusion Middleware User's Guide for Oracle Business Rules and the WebLogic Fusion Order Demo application for details.

10.2 Creating a Switch Activity to Define Conditional Branching

Assume you designed a flow activity in the BPEL process service component that gathered loan offers from two companies at the same time, but did not compare either of the offers. Each offer was stored in its own global variable. To compare the two bids and make decisions based on that comparison, you can use a switch activity.

Figure 10-1 provides an overview of a BPEL conditional branching process that has been defined in a switch activity.

Figure 10-1 Conditional Branching

[image: Description of Figure 10-1 follows]

10.2.1 How to Create a Switch Activity

To create a switch activity:

	
From the Component Palette, drag a Switch activity into the designer., as shown in Figure 10-2.

The Switch activity has two switch case branches by default, each with a box for functional elements. If you want to add more branches, select the entire switch activity, right-click, and select Add Switch Case from the menu.

Figure 10-2 Switch Activity

[image: Description of Figure 10-2 follows]

	
In the first branch, double-click the condition box.

A dialog for entering a condition is displayed, as shown in Figure 10-3.

Figure 10-3 Condition Dialog

[image: Description of Figure 10-3 follows]

	
In the Label field, enter a name for the condition branch. When complete, this name is displayed in Oracle BPEL Designer.

	
In the Description field, enter a description of the capabilities of this condition branch.

	
In the Condition field, click the Expression Builder icon to access the Expression Builder dialog.

	
Create your expression. For this example, the expression shown in Example 10-1 is created.

Example 10-1 XPath Expression

bpws:getVariableDate('loanOffer1','payload','/loanOffer/APR') >
bpws:getVariableData('loanOffer2','payload','/loanOffer/APR')

In this example, two loan offers from completing loan companies are stored in the global variables loanOffer1 and loanOffer2. Each loan offer variable contains the loan offer's APR. The BPEL flow must choose the loan with the lower APR. One of the following switch activities takes place:

	
If loanOffer1 has the higher APR, then the first branch selects loanOffer2 by assigning the loanOffer2 payload to the selectedLoanOffer payload.

	
If loanOffer1 does not have the lower APR than loanOffer2, the otherwise case assigns the loanOffer1 payload to the selectedLoanOffer payload.

	
Click OK.

The expression is displayed. The value you entered in the Label field of the dialog becomes the name of the condition branch.

Figure 10-4 Completed Condition Dialog

[image: Description of Figure 10-4 follows]

	
Click OK.

	
Add and configure additional activities as needed. Figure 10-5 provides details.

Figure 10-5 Switch Activity Design

[image: Description of Figure 10-5 follows]

10.2.2 What Happens When You Create a Switch Activity

A switch activity, like a flow activity, has multiple branches. In Example 10-2, there are only two branches shown in the .bpel file after design completion. The first branch, which selects a loan offer from a company named United Loan, is executed if a case condition containing an XPath boolean expression is met. Otherwise, the second branch, which selects the offer from a company named Star Loan, is executed. By default, the switch activity provides two switch cases, but you can add more if you want.

Example 10-2 Switch Activity

<switch name="switch-1">
 <case condition="bpws:getVariableData('loanOffer1','payload',
 '/autoloan:loanOffer/autoloan:APR') >
 bpws:getVariableData('loanOffer2','payload','/autoloan:loanOffer/autoloan:APR
 ')">
" name="Choose_the_Loan_with_the_Lower_APR">
 <bpelx:annotation>
 <bpelx:general>
 <bpelx:property name="userLabel">Choose the Loan with
 the Lower APR</bpelx:property>
 </bpelx:general>
 </bpelx:annotation>
 <assign name="selectUnitedLoan">
 <copy>
 <from variable="loanOffer1" part="payload">
 </from>
 <to variable="selectedLoanOffer" part="payload"/>
 </copy>
 </assign>
 </case>
 <otherwise>
 <assign name="selectStarLoan">
 <copy>
 <from variable="loanOffer2" part="payload">
 </from>
 <to variable="selectedLoanOffer" part="payload"/>
 </copy>
 </assign>
 </otherwise>
</switch>

10.3 Creating a While Activity to Define Conditional Branching

Another way to design your BPEL code to select between multiple actions is to use a while activity to create a while loop. The while loop repeats an activity until a specified success criteria is met. For example, if a critical web service is returning a service busy message in response to requests, you can use the while activity to keep polling the service until it becomes available. The condition for the while activity is that the latest message received from the service is busy, and the operation within the while activity is to check the service again. Once the web service returns a message other than service busy, the while activity terminates and the BPEL process service component continues, ideally with a valid response from the web service.

10.3.1 How To Create a While Activity

To create a while activity:

	
From the Component Palette, drag a While activity into the designer.

	
Click the + sign to expand the while activity.

The while activity has icons to allow you to build condition expressions and to validate the while definition. It also provides an area for you to drag an activity to define the while loop.

	
Drag and define additional activities for using the while condition into the Drop Activity Here area of the While activity (for example, a Scope activity).

The activities can be existing or new activities.

	
Press Ctrl+Space to invoke the XPath Building Assistant or click the XPath Expression Builder icon to open the Expression Builder dialog.

	
Enter an expression to perform repeatedly, as shown in Figure 10-6. This action is performed until the given boolean while condition is no longer true. In this example, this activity is set to loop while less than 5.

Figure 10-6 While Activity with an Expression

[image: Description of Figure 10-6 follows]

	
Click OK when complete.

10.3.2 What Happens When You Create a While Activity

Example 10-3 provides an example of the .bpel file after design completion. The while activity includes a scope activity. The scope activity includes invoke, assign, and wait activities. Database exception handling tasks are performed by creating a local variable and placing the invoke activity inside the scope activity. The local variable is set to false (represented by 0). You attempt to call the external partner service in the while loop activity until the local variable is satisfied (set to 1). The while activity is set to loop a maximum of five times. In the case of an exception, you reset the flag to false (0).

Example 10-3 While Activity

<while name="While_1" condition="bpws:getVariableData('dbStatus') > 5">
 <scope name="Scope_1">
<faultHandlers>
 <catchAll>
 <sequence name="Sequence_2">
 <assign name="assign_DB_retry">
 <copy>
 <from expression="bpws:getVariableData('dbStatus') + 1"/>
 <to variable="dbStatus"/>
 </copy>
 </assign>
 <wait name="Wait_30_sec" for="'PT31S'"/>
 </sequence>
 </catchAll>
 </faultHandlers>
 <sequence name="Sequence_1">
 <invoke name="Write_DBWrite" partnerLink="WriteDBRecord"
 portType="ns2:WriteDBRecord_ptt" operation="insert"
 inputVariable="Invoke_DBWrite_merge_InputVariable"/>
 <assign name="Assign_dbComplete">
 <copy>
 <from expression="'10'"/>
 <to variable="dbStatus"/>
 </copy>
 </assign>
 </sequence>
 </scope>
 </while>

10.4 Specifying XPath Expressions to Bypass Activity Execution

You can specify an XPath expression in an activity that, when evaluated to true, causes that activity to be skipped. This functionality provides an alternative to using a switch activity for conditionally executing activities. The skip condition for activities is specified as follows:

<activity bpelx:skipCondition="boolean-expr"/>

The bpelx:skipCondition attribute causes an XPath expression to be evaluated immediately upon creation of the activity instance. If the skip expression returns a false boolean value, the activity is executed. If the skip expression returns a true boolean value, the activity is completed immediately and execution moves to the activity immediately following that one.

This construct is equivalent to a switch/case structured activity with a single case element with a condition that is the opposite of the skip condition.

Example 10-4 provides an example of bpelx:skipCondition attribute use. If myvalue is 0, the expression evaluates to true, and the assign activity is skipped. If myvalue is 10, the expression evaluates to false, and the copy operation of the assign activity is executed.

Example 10-4 Use of bpelx:skipCondition Attribute

<assign bpelx:skipCondition="bpws:getVariableData('input',
 'payload','/tns:inputMsg/tns:myvalue') <= 0">
 <copy>
 <from expression="'Value is greater than zero'"/>
 <to variable="output" part="payload"
 query="/tns:resultMsg/tns:valueResult"/>
 </copy>
</assign>

The equivalent functionality used with a switch activity is shown in Example 10-5.

Example 10-5 Equivalent Functionality with a Switch Activity

<switch>
 <case condition="bpws:getVariableData('input',
 'payload','/tns:inputMsg/tns:value') > 0">
 <assign>
 <copy>
 <from expression="'Value is greater than zero'"/>
 <to variable="output" part="payload"
 query="/tns:resultMsg/tns:valueResult"/>
 </copy>
 </assign>
 </case>
</switch>

You can also use built-in and custom XPath functions and $variable references within the skip condition expression. Example 10-6 provides several examples:

Example 10-6 Built-in and Custom XPath Functions and $variable References

<assign bpelx:skipCondition="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0">

<assign bpelx:skipCondition="custom:validateRating()" ... />

<assign xmlns:fn='http://www.w3.org/2005/xpath-functions'
 bpelx:skipCondition="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL fault and thrown from the activity.

An event is added to the BPEL instance audit trail for activities that are bypassed due to the skip condition expression evaluating to true. Even if the skip condition evaluates to false (meaning the activity is performed), the fact that a skip condition expression was evaluated is still logged to the audit trail for debugging purposes.

If the XPath engine fails to evaluate the boolean value, bpws:subLanguageFault is thrown. This is the same fault thrown when a switch/case condition does not evaluate to a boolean value. This is also logged to the audit trail for debugging purposes.

10.4.1 How to Specify XPath Expressions to Bypass Activity Execution

To specify XPath expressions to bypass activity execution:

	
From the Component Palette, drag the activity into the designer in which to create the skip condition.

	
Click the Skip Condition tab.

	
Specify an XPath expression that, when evaluated to true, causes an activity to be skipped. Figure 10-7 provides details.

Figure 10-7 Skip Condition XPath Expression

[image: Description of Figure 10-7 follows]

	
Click Apply, then OK.

10.4.2 What Happens When You Specify XPath Expressions to Bypass Activity Execution

The code segment in the .bpel file defines the specific operation after design completion.

For example, the following XPath expression shown in Example 10-7, when evaluated to true (for example, input is 20), causes the assign activity to be skipped.

Example 10-7 skipCondition Attribute For Bypassing Activity Execution

<sequence name="main">
. . .
. . .
<assign name="Assign_1"
 bpelx:skipCondition="number(bpws:getVariableData('inputVariable','payload','/client:
 process/client:input')) > 10">
 <copy>
 <from expression="'Assign Block is not Skipped'"/>
 <to variable="inputVariable" part="payload"
 query="/client:process/client:input"/>
 </copy>
</assign>
. . .
. . .
</sequence>

11 Using Fault Handling in a BPEL Process

This chapter describes how to use fault handling in a BPEL process. Fault handling allows a BPEL process service component to handle error messages or other exceptions returned by outside web services, and to generate error messages in response to business or runtime faults. You can also define a fault management framework to catch faults and perform user-specified actions defined in a fault policy file.

This chapter includes the following sections:

	
Section 11.1, "Introduction to a Fault Handler"

	
Section 11.2, "Introduction to BPEL Standard Faults"

	
Section 11.3, "Introduction to Categories of BPEL Faults"

	
Section 11.4, "Using the Fault Management Framework"

	
Section 11.5, "Catching BPEL Runtime Faults"

	
Section 11.6, "Getting Fault Details with the getFaultAsString XPath Extension Function"

	
Section 11.7, "Throwing Internal Faults"

	
Section 11.8, "Returning External Faults"

	
Section 11.9, "Using a Scope Activity to Manage a Group of Activities"

	
Section 11.10, "Using Compensation After Undoing a Series of Operations"

	
Section 11.11, "Using the Terminate Activity to Stop a Business Process Instance"

	
Section 11.12, "Throwing Faults with Assertion Conditions"

For additional information on creating fault handling in a SOA composite application, see the WebLogic Fusion Order Demo application.

11.1 Introduction to a Fault Handler

Fault handlers define how the BPEL process service component responds when the web services return data other than what is normally expected (for example, returning an error message instead of a number). An example of a fault handler is where the web service normally returns a credit rating number, but instead returns a negative credit message.

provides an example of how a fault handler sets a credit rating variable to -1000.

Figure 11-1 Fault Handling

[image: Description of Figure 11-1 follows]

The code segment in Example 11-1 defines the fault handler for this operation in the BPEL file:

Example 11-1 Fault Handler Definition

<faultHandlers>
 <catch faultName="services:NegativeCredit" faultVariable="crError">
 <assign name="crin">
 <copy>
 <from expression="-1000">
 </from>
 <to variable="input" part="payload"
 query="/autoloan:loanApplication/autoloan:creditRating"/>
 </copy>
 </assign>
 </catch>
</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is a catch activity, which defines the fault name and variable, and the copy instruction that sets the creditRating variable to -1000.

When you select web services for the BPEL process service component, determine the possible faults that may be returned and set up a fault handler for each one.

11.2 Introduction to BPEL Standard Faults

The Business Process Execution Language for Web Services Specification defines the following standard faults in the namespace of http://schemas.xmlsoap.org/ws/2003/03/business-process/:

	
bindingFault

	
conflictingReceive

	
conflictingRequest

	
correlationViolation

	
forcedTermination

	
invalidReply

	
joinFailure

	
mismatchedAssignmentFailure

	
remoteFault

	
repeatedCompensation

	
selectionFailure

	
uninitializedVariable

Standard faults are defined as follows:

	
Typeless, meaning they do not have associated messageTypes

	
Not associated with any Web Services Description Language (WSDL) message

	
Caught without a fault variable:

<catch faultName="bpws:selectionFailure">

11.3 Introduction to Categories of BPEL Faults

A BPEL fault has a fault name called a Qname (name qualified with a namespace) and a possible messageType. There are two categories of BPEL faults:

	
Business faults

	
Runtime faults

11.3.1 Business Faults

Business faults are application-specific faults that are generated when there is a problem with the information being processed (for example, when a social security number is not found in the database). A business fault occurs when an application executes a throw activity or when an invoke activity receives a fault as a response. The fault name of a business fault is specified by the BPEL process service component. The messageType, if applicable, is defined in the WSDL. A business fault can be caught with a faultHandler using the faultName and a faultVariable.

<catch faultName="ns1:faultName" faultVariable="varName">

11.3.2 Runtime Faults

Runtime faults are the result of problems within the running of the BPEL process service component or web service (for example, data cannot be copied properly because the variable name is incorrect). These faults are not user-defined, and are thrown by the system. They are generated if the process tries to use a value incorrectly, a logic error occurs (such as an endless loop), a Simple Object Access Protocol (SOAP) fault occurs in a SOAP call, an exception is thrown by the server, and so on.

Several runtime faults are automatically provided. These faults are included in the http://schemas.oracle.com/bpel/extension namespace. These faults are associated with the messageType RuntimeFaultMessage. The WSDL file shown in Example 11-2 defines the messageType:

Example 11-2 messageType Definition

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="RuntimeFault"
 targetNamespace="http://schemas.oracle.com/bpel/extension"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="RuntimeFaultMessage">
 <part name="code" type="xsd:string" />
 <part name="summary" type="xsd:string" />
 <part name="detail" type="xsd:string" />
 </message>
</definitions>

If a faultVariable (of messageType RuntimeFaultMessage) is used when catching the fault, the fault code can be queried from the faultVariable, along with the fault summary and detail.

11.3.2.1 bindingFault

A bindingFault is thrown inside an activity if the preparation of the invocation fails. For example, the WSDL of the process fails to load. A bindingFault is not retryable. This type of fault usually must be fixed by human intervention.

11.3.2.2 remoteFault

A remoteFault is also thrown inside an activity. It is thrown because the invocation fails. For example, a SOAP fault is returned by the remote service.

11.3.2.3 replayFault

A replayFault replays the activity inside a scope. At any point inside a scope, this fault is migrated up to the scope. The server then re-executes the scope from the beginning.

11.4 Using the Fault Management Framework

Oracle SOA Suite provides a generic fault management framework for handling faults in BPEL processes. If a fault occurs during runtime in an invoke activity in a process, the framework catches the fault and performs a user-specified action defined in a fault policy file associated with the activity. If a fault results in a condition in which human intervention is the prescribed action, you perform recovery actions from Oracle Enterprise Manager Fusion Middleware Control Console. The fault management framework provides an alternative to designing a BPEL process with catch activities in scope activities.

This section provides an overview of the components that comprise the fault management framework.

	
The fault management framework catches all faults (business and runtime) for an invoke activity.

	
A fault policy file defines fault conditions and their corresponding fault recovery actions. Each fault condition specifies a particular fault or group of faults, which it attempts to handle, and the corresponding action for it. A set of actions is identified by an ID in the fault policy file.

	
A set of conditions invokes an action (known as fault policy).

	
A fault policy bindings file associates the policies defined in the fault policy file with the following:

	
SOA composite applications

	
BPEL process and Oracle Mediator service components

	
Reference binding components for BPEL process and Oracle Mediator service components

The framework looks for fault policy bindings in the same directory as the composite.xml file of the SOA composite application or in a remote location identified by two properties that you set.

	
Note:

A fault policy configured with the fault management framework overrides any fault handling defined in catch activities of scope activities in the BPEL process. The fault management framework can be configured to rethrow the fault handling back to the catch activities.

	
The fault policy file (fault-policies.xml) and fault policy bindings file (fault-bindings.xml) are placed in either of the following locations:

	
In the same directory as the composite.xml file of the SOA composite application.

	
In a different location that is specified with two properties that you add to the composite.xml file. This option is useful if a fault policy must be used by multiple SOA composite applications. This option overrides any fault policy files that are included in the same directory as the composite.xml file. Example 11-3 provides details about these two properties. In this example, the fault policy files are placed into the SOA Metadata Service (MDS) shared area.

Example 11-3 Fault Policies used by Multiple SOA Composite Applications

<property
 name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
 fault-bindings.xml
</property>

See Chapter 22, "Using Oracle Mediator Error Handling" for details about Oracle Mediator fault handling capabilities.

11.4.1 How to Design a Fault Policy

This section describes how to design a fault policy.

	
Note:

The Facades API enables you to programmatically perform the abort, retry (with a success action), continue, rethrow, and replay recovery options.

11.4.1.1 Understanding How Fault Policy Binding Resolution Works

A fault policy bindings file associates the policies defined in a fault policy file with the SOA composite application or the component (service component or reference binding component). The framework attempts to identify a fault policy binding in the following order:

	
Reference binding component defined in the composite.xml file.

	
BPEL process or Oracle Mediator service component defined in the composite.xml file.

	
SOA composite application defined in the composite.xml file.

During the resolution process, if no action is found that matches the condition, the framework assumes that resolution failed and moves to the next resolution level.

For example, assume an invoke activity faults with faultname="abc". There is a policy binding specified in the fault-binding.xml file:

	
SOA composite application binds to policy-id-1

	
BPEL process or Oracle Mediator service component or reference binding component binds to policy-id-2

In the fault-bindings.xml file, the following bindings are also specified:

	
SOA composite application binds to policy-id-3

	
Reference binding component or service component binds to policy-id-4

The fault management framework behaves as follows:

	
First match the resolve binding (in this case, policy-id-2).

	
If the fault resolution fails, go to the next possible match (policy-id-4).

	
If the fault resolution fails, go to the next possible match (policy-id-3).

	
If the fault resolution fails, go to the next possible match (in this case, policy-id-1).

	
If the fault resolution still fails, the fault is sent to the BPEL fault catch activity.

11.4.1.2 Creating a Fault Policy File for Automated Fault Recovery

	
Create a fault policy file (for example, named fault-policies.xml). This file includes condition and action sections for performing specific tasks.

	
Place the file in the same directory as the composite.xml file or place it in a different location and define the oracle.composite.faultPolicyFile property. Example 11-4 provides details.

Example 11-4 Defining Properties

<property
 name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
 fault-bindings.xml
</property>

	
Define the condition section of the fault policy file.

	
Note the following details about the condition section:

	
This section provides a condition based on faultName.

	
Multiple conditions may be configured for a faultName.

	
Each condition has one test section (an XPath expression) and one action section.

	
The test section (XPath expression) is evaluated for the fault variable available in the fault.

	
The action section has a reference to the action defined in the same file.

	
You can only query the fault variable available in the fault.

	
The order of condition evaluation is determined by the sequential order in the document.

Table 11-1 provides examples of condition section use in the fault policy file. All actions defined in the condition section must be associated with an action in the action section.

Table 11-1 Use of the condition Section in the Fault Policy File

	Condition Example	Fault Policy File Syntax
	
This condition is checking a fault variable for code = "WSDLFailure"

An action of ora-terminate is specified.

	

<condition>
 <test>$fault.code="WSDLReading Error"
 </test>
 <action ref="ora-terminate"/>
</condition>

	
No test condition is provided. This is a catch all condition for a given faultName.

	

<condition>
 <action ref="ora-rethrow"/>
</condition>

	
If the faultName name attribute is missing, this indicates a catch all activity for faults that have any QName.

	

<faultName > . . . </faultName>

	
Define the action section of the fault policy file. Note that validation of fault policy files is done during deployment. If you change the fault policy, you must redeploy the SOA composite application that includes the fault policy.

Table 11-2 provides several examples of action section use in the fault policy file. You can provide automated recovery actions for some faults. In all recovery actions except retry and human intervention, the framework performs the actions synchronously.

Table 11-2 Use of action Section in the Fault Policy File

	Recovery Actions	Fault Policy File Syntax
	
Retry: Provides the following actions for retrying the activity.

	
Retry a specified number of times.

	
Provide a delay between retries (in seconds).

	
Increase the interval with an exponential back off.

	
Chain to a retry failure action if retry N times fails.

	
Chain to a retry success action if a retry is successful.

Note: Exponential back off indicates the next retry attempt is scheduled at 2 x the delay, where delay is the current retry interval. For example, if the current retry interval is 2 seconds, the next retry attempt is scheduled at 4, the next at 8, and the next at 16 seconds until the retryCount value is reached.

	

<Action id="ora-retry">
 <Retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </Retry>
</Action>

Note the following details:

	
The framework chains to the retry success action if the retry attempt is successful.

	
If all retry attempts fail, the framework chains to the retry failure action.

	
Human Intervention: Causes the current activity to stop processing. You can now go to Oracle Enterprise Manager Fusion Middleware Control Console and perform manual recovery actions on this instance.

	

<Action id="ora-human-intervention">
 <humanIntervention/></Action>

	
Terminate Process: Terminates the process

	

<Action id="ora-terminate"><abort/></Action>

	
Java Code: Enables you to execute an external Java class.

returnValue: The implemented Java class must implement a method that returns a string. The policy can chain to a new action based on the returned string.

For additional information, see Section 11.4.3, "How to Use a Java Action Fault Policy"

	

<Action id="ora-java">
<!-- this is user provided custom java
 class-->
<javaAction className="mypackage.myClass"
 defaultAction="ora-terminate">
 <returnValue value="REPLAY"
 ref="ora-terminate"/>
 <returnValue value="RETRHOW"
 ref="ora-rethrow-fault"/>
 <returnValue value="ABORT"
 ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL"
 ref="ora-human-intervention"/>
</javaAction>
</Action>

	
Rethrow Fault: The framework sends the fault to the BPEL fault handlers (catch activities in scope activities). If none are available, the fault is sent up.

	

<Action id="ora-rethrow-fault"><rethrowFault/></Action>

	
Replay Scope: Raises a replay fault.

	

<Action id="ora-replay-scope"><replayScope/></Action>

	
Note:

The preseeded recovery action tag names (ora-retry, ora-human-intervention, ora-terminate, and so on) are only samples. You can substitute these names with ones appropriate to your environment.

Example 11-5 shows a fault policy file with fully-defined condition and action sections.

	
Notes:

	
Fault policy file names are not restricted to one specific name. However, they must conform to the fault-policy.xsd schema file.

	
Example 11-5 provides an example of catching faults based on fault names. You can also catch faults based on message types, or on both:

<fault name="myfault" type="fault:faultType">

Example 11-5 Fault Policy File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <faultPolicy version="0.0.1" id="FusionMidFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
 <condition>
 <action ref="MediatorJavaAction"/>
 </condition>
 </faultName>
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
 <condition>
 <action ref="BPELJavaAction"/>
 </condition>
 </faultName>
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
 <condition>
 <action ref="BPELJavaAction"/>
 </condition>
 </faultName>
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:runtimeFault">
 <condition>
 <action ref="BPELJavaAction"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <!-- Generics -->
 <Action id="default-terminate">
 <abort/>
 </Action>
 <Action id="default-replay-scope">
 <replayScope/>
 </Action>
 <Action id="default-rethrow-fault">
 <rethrowFault/>
 </Action>
 <Action id="default-human-intervention">
 <humanIntervention/>
 </Action>
 <Action id="MediatorJavaAction">
 <!-- this is user provided class-->
 <javaAction className="MediatorJavaAction.myClass"
 defaultAction="default-terminate">
 <returnValue value="MANUAL" ref="default-human-intervention"/>
 </javaAction>
 </Action>
 <Action id="BPELJavaAction">
 <!-- this is user provided class-->
 <javaAction className="BPELJavaAction.myAnotherClass"
 defaultAction="default-terminate">
 <returnValue value="MANUAL" ref="default-human-intervention"/>
 </javaAction>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

11.4.1.3 Associating a Fault Policy with Fault Policy Binding

	
Note:

The fault policy file binding file must be named fault-bindings.xml. This conforms to the fault-bindings.xsd schema file.

	
Create a fault policy binding file (fault-bindings.xml) that associates the policies defined in the fault policy file with the level of fault policy binding you are using (either a SOA composite application or a component (reference binding component or BPEL process or Oracle Mediator service component).

	
Place the file in the same directory as the composite.xml file or place it in a remote location and define the oracle.composite.faultBindingFile property as shown in Step 2.

Example 11-6 shows a fault policy bindings file that associates the fault policies defined in the fault-policies.xml file with the FusionMidFaults SOA composite application.

Example 11-6 fault-buildings.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="0.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="FusionMidFaults"/>
 <!--<composite faultPolicy="ServiceExceptionFaults"/>-->
 <!--<composite faultPolicy="GenericSystemFaults"/>-->
</faultPolicyBindings>

11.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples

This section provides additional samples of fault policy and fault policy binding files. Example 11-7 shows the fault-policies.xml file contents.

Example 11-7 fault-policies.xml File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
<faultPolicy version="2.0.1"
 id="CRM_ServiceFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- Fault if wsdlRuntimeLocation is not reachable -->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
 <condition>
 <test>$fault.code="WSDLReadingError"</test>
 <action ref="ora-terminate"/>
 </condition>
 <condition>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 <!-- Fault if location port is not reachable-->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
 <!--ORA-00001: unique constraint violated on insert-->
 <condition>
 <test>$fault.code="1"</test>
 <action ref="ora-java"/>
 </condition>
 <!--ORA-01400: cannot insert NULL -->
 <condition>
 <test xmlns:test="http://test">$fault.code="1400"</test>
 <action ref="ora-terminate"/>
 </condition>
 <!--ORA-03220: required parameter is NULL or missing -->
 <condition>
 <test>$fault.code="3220"</test>
 <action ref="ora-terminate"/>
 </condition>
 <condition>
 <action ref="ora-retry-crm-endpoint"/>
 </condition>
 </faultName>
 <!-- Business faults -->
 <!-- Fault comes with a payload of error, make sure the name space is
 provided here or at root level -->
 <faultName xmlns:credit="http://services.otn.com"
 name="credit:NegativeCredit">
 <!-- we get this fault when SSN starts with 0-->
 <condition>
 <test>$fault.payload="Bankruptcy Report"</test>
 <action ref="ora-human-intervention"/>
 <!--action ref="ora-retry"/-->
 </condition>
 <!-- we get this fault when SSN starts with 1-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-abort"</test>
 <action ref="ora-terminate"/>
 </condition>
 <!-- we get this fault when SSN starts with 2-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-rethrow"</test>
 <action ref="ora-rethrow-fault"/>
 </condition>
 <!-- we get this fault when SSN starts with 3-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-replay"</test>
 <action ref="ora-replay-scope"/>
 </condition>
 <!-- we get this fault when SSN starts with 4-->
 <condition>
 <test
 xmlns:myError="http://services.otn.com">$fault.payload="Bankruptcy
 Report-human"</test>
 <action ref="ora-human-intervention"/>
 </condition>
 <!-- we get this fault when SSN starts with 5-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-java"</test>
 <action ref="ora-java"/>
 </condition>
 </faultName>

 </Conditions>
 <Actions>
 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>
 <Action id="ora-retry-crm-endpoint">
 <retry>
 <retryCount>5</retryCount>
 <retryFailureAction ref="ora-java"/>
 <retryInterval>5</retryInterval>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>
 <Action id="ora-replay-scope">
 <replayScope/>
 </Action>
 <Action id="ora-rethrow-fault">
 <rethrowFault/>
 </Action>
 <Action id="ora-human-intervention">
 <humanIntervention/>
 </Action>
 <Action id="ora-terminate">
 <abort/>
 </Action>
 <Action id="ora-java">
 <!-- this is user provided class-->
 <javaAction
 className="com.oracle.bpel.client.config.faultpolicy.TestJavaAction"
 defaultAction="ora-terminate" propertySet="prop-for-billing">
 <returnValue value="REPLAY" ref="ora-terminate"/>
 <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>

 </Actions>
 <Properties>
 <propertySet name="prop-for-billing">
 <property name="user_email_recipient">bpeladmin</property>
 <property name="email_recipient">joe@abc.com</property>
 <property name="email_recipient">mike@xyz.com</property>
 <property name="email_threshold">10</property>
 <property name="sms_recipient">+429876547</property>
 <property name="sms_recipient">+4212345</property>
 <property name="sms_threshold">20</property>
 <property name="user_email_recipient">john</property>
 </propertySet>
 <propertySet name="prop-for-order">
 <property name="email_recipient">john@abc.com</property>
 <property name="email_recipient">jill@xyz.com</property>
 <property name="email_threshold">10</property>
 <property name="sms_recipient">+42222</property>
 <property name="sms_recipient">+423335</property>
 <property name="sms_threshold">20</property>
 </propertySet>

 </Properties>
</faultPolicy>
<faultPolicy version="2.0.1"
 id="Billing_ServiceFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Conditions>
 <faultName>
 <condition>
 <action ref="ora-manual"/>
 </condition>
 </faultName>
</Conditions>
<Actions>
 <Action id="ora-manual">
 <humanIntervention/>
 </Action>
</Actions>
</faultPolicy>
</faultPolicies>

Example 11-8 shows the fault-buildings.xml file that associates the fault policies defined in fault-policies.xml.

Example 11-8 Fault Policy Bindings File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ConnectionFaults"/>
 <component faultPolicy="ServiceFaults">
 <name>Component1</name>
 <name>Component2</name>
 </component>
 <!-- Below listed component names use polic CRM_SeriveFaults -->
 <component faultPolicy="CRM_ServiceFaults">
 <name>HelloWorld</name>
 <name>ShippingComponent</name>
 <name>AnotherComponent"</name>
 </component>
 <!-- Below listed reference names and port types use polic CRM_ServiceFaults
 -->
 <reference faultPolicy="CRM_ServiceFaults">
 <name>creditRatingService</name>
 <name>anotherReference</name>
 <portType
 xmlns:credit="http://services.otn.com">credit:CreditRatingService</portType>
 <portType
 xmlns:db="http://xmlns.oracle.com/pcbpel/adapter/db/insert/">db:insert_
plt</portType>
 </reference>
 <reference faultPolicy="test1">
 <name>CreditRating3</name>
 </reference>
</faultPolicyBindings>

11.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers

If you design a fault policy that uses the action handler for rejected messages, note that only one write action can be performed. Multiple write actions cannot be performed, even if you define multiple rejection handlers, as shown in Example 11-9. In this case, only the first rejection handler defined (for this example, ora-queue) is executed.

Example 11-9 Fault Policy with Multiple Rejection Handlers

<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
 <condition>
 <action ref="ora-queue"/>

 </condition>
 </faultName>
 <faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
 <condition>
 <action ref="ora-file"/>

 </condition>
 </faultName>

11.4.2 How to Execute a Fault Policy

You deploy a fault policy as part of a SOA composite application. After deployment, you can perform the following fault recovery actions from Oracle Enterprise Manager Fusion Middleware Control Console:

	
Retry the activity

	
Modify a variable (available to the faulted activity)

	
Continue the instance (mark the activity as a success)

	
Rethrow the exception

	
Abort the instance

	
Throw a replay scope exception

For additional information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for the following:

	
Instructions on executing a fault policy in Oracle Enterprise Manager Fusion Middleware Control Console

	
Use cases in which you define a fault policy that uses human intervention

11.4.3 How to Use a Java Action Fault Policy

Note the following details when using the Java action fault policy:

	
The Java class provided follows a specific interface. This interface returns a string. Multiple values can be provided for output and fault policy to take after execution.

	
Additional fault policy can be executed by providing a mapping from the output value (return value) of implemented methods to a fault policy.

	
If no ReturnValue is specified, the default fault policy is executed, as shown in Example 11-10.

Example 11-10 Java Action Fault Policy

<Action id="ora-java">
 <JavaAction ClassName="mypackage.myclass"
 defaultAction="ora-human-intervention" propertySet="prop-for-billing">
 <!--defaultAction is a required attribute, but propertySet is optional-->
 <!-- attribute-->
 <ReturnValue value="RETRY" ref="ora-retry"/>
 <!--value is not nilable attribute & cannot be empty-->
 <ReturnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 </JavaAction>
</Action>

Table 11-3 provides an example of ReturnValue use.

Table 11-3 System Interpretation of Java Action Fault Policy

	Code	Description
	

<ReturnValue value="RETRY"
 ref="ora-retry"/>

	
Execute the ora-retry action if the method returns a string of RETRY.

	

<ReturnValue value="”
 ref=”ora-rethrow”/>

	
Fails in validation.

	

<JavaAction
 ClassName="mypackage.myclass"
 defaultAction="ora-human-intervention">

	
Execute ora-human-intervention after Java code execution. This attribute is used if the return from the method does not match any provided ReturnValue.

	

<ReturnValue value="RETRY"
 ref="ora-retry"/>
<ReturnValue value="” ref=””/>

	
Fails in validation.

	

<JavaAction
 ClassName="mypackage.myclass"
 defaultAction=" ora-human-intervention">
<ReturnValue></ReturnValue>

	
Fails in validation.

To invoke a Java class, you can provide a class that implements the IFaultRecoveryJavaClass interface. IFaultRecoveryJavaClass is included in the fabric-runtime.jar file. The package name is oracle.integration.platform.faultpolicy.

The IFaultRecoveryJavaClass interface has two methods, as shown in Example 11-11.

Example 11-11 implementation of IFaultRecoveryJavaClass

public interface IFaultRecoveryJavaClass
{
public void handleRetrySuccess(IFaultRecoveryContext ctx);
public String handleFault(IFaultRecoveryContext ctx);
}

Note the following details:

	
handleRetrySuccess is invoked upon a successful retry attempt. The retry policy chains to a Java action on retrySuccessAction.

	
handleFault is invoked to execute a policy of type javaAction.

Example 11-12 shows the data available with IFaultRecoveryContext:

Example 11-12 Data Available with IFaultRecoveryContext

public interface IFaultRecoveryContext {

/**
 * Gets implementation type of the fault.
 * @return
 */
public String getType();

/**
 * @return Get property set of the fault policy action being executed.
 */
public Map getProperties();

/**
 * @return Get fault policy id of the fault policy being executed.
 */
public String getPolicyId();

/**
 * @return Name of the faulted partner link.
 */
public String getReferenceName();

/**
 * @return Port type of the faulted reference .
 */
public QName getPortType();
}

The service engine implementation of this interface provides more information (for example, Oracle BPEL Process Manager). Example 11-13 provides details.

Example 11-13 Service Engine Implementation of IFaultRecoveryContext

public class BPELFaultRecoveryContextImpl extends BPELXExecLetUtil implements
IBPELFaultRecoveryContext, IFaultRecoveryContext{
...
}

Oracle BPEL Process Manager-specific data is available with IBPELFaultRecoveryContext, as shown in Example 11-14.

Example 11-14 Oracle BPEL Process Manager-Specific Data

public interface IBPELFaultRecoveryContext {
public void addAuditTrailEntry(String message);

public void addAuditTrailEntry(String message, Object detail);

public void addAuditTrailEntry(Throwable t);
/**
 * @return Get action id of the fault policy action being executed.
 */
public String getActionId();

/**
 * @return Type of the faulted activity.
 */
public String getActivityId();

/**
 * @return Name of the faulted activity.
 */
public String getActivityName();

/**
 * @return Type of the faulted activity.
 */
public String getActivityType();

/**
 * @return Correleation id of the faulted activity.
 */
public String getCorrelationId();

/**
 * @return BPEL fault that caused the invoke to fault.
 */
public BPELFault getFault();

/**
 * @return Get index value of the instance
 */
public String getIndex(int i);

/**
 * @return get Instance Id of the current process instance of the faulted
 * activity.
 */
public long getInstanceId();

/**
 * @return Get priority of the current process instance of the faulted
 * activity.
 */
public int getPriority();

/**
 * @return Process DN.
 */
public ComponentDN getProcessDN();

/**
 * @return Get status of the current process instance of the faulted
 * activity.
 */
public String getStatus();

/**
 * @return Get title of the current process instance of the faulted
 * activity.
 */
public String getTitle();

public Object getVariableData(String name) throws BPELFault;

public Object getVariableData(String name, String partOrQuery)
throws BPELFault;

public Object getVariableData(String name, String part, String query)
throws BPELFault;

/**
 * @param priority
 * Set priority of the current process instance of the faulted
 * activity.
 * @return
 */
public void setPriority(int priority);

/**
 * @param status
 * Set status of the current process instance of the faulted
 * activity.
 */
public void setStatus(String status);

/**
 * @param title
 * Set title of the current process instance of the faulted
 * activity.
 * @return
 */
public String setTitle(String title);

public void setVariableData(String name, Object value) throws BPELFault;

public void setVariableData(String name, String partOrQuery, Object value)
throws BPELFault;

public void setVariableData(String name, String part, String query,
Object value) throws BPELFault;
}

Example 11-15 provides an example of javaAction implementation.

Example 11-15 Implementation of a javaAction

public class TestJavaAction implements IFaultRecoveryJavaClass {
public void handleRetrySuccess(IFaultRecoveryContext ctx) {
System.out.println("This is for retry success");
handleFault(ctx);
}
public String handleFault(IFaultRecoveryContext ctx) {
System.out.println("-----Inside handleFault-----\n" + ctx.toString());

 dumpProperties(ctx.getProperties());
/* Get BPEL specific context here */
BPELFaultRecoveryContextImpl bpelCtx = (BPELFaultRecoveryContextImpl) ctx;
bpelCtx.addAuditTrailEntry("hi there");
System.out.println("Policy Id" + ctx.getPolicyId());
 ...
 }

11.4.4 What You May Need to Know About Fault Management Behavior When the Number of Instance Retries is Exceeded

When you configure a fault policy to recover instances with the ora-retry action and the number of specified instance retries is exceeded, the instance is marked as open.faulted (in-flight state). The instance remains active.

Marking instances as open.faulted ensures that no instances are lost. You can then configure another fault handling action following the ora-retry action in the fault policy file, such as the following:

	
Configure an ora-human-intervention action to manually perform instance recovery from Oracle Enterprise Manager Fusion Middleware Control Console.

	
Configure an ora-terminate action to close the instance (mark it as closed.faulted) and never retry again.

However, if you do not set an action to be performed after an ora-retry action in the fault policy file and the number of instance retries is exceeded, the instance remains marked as open.faulted, and recovery attempts to handle the instance.

For example, if no action is defined in the fault policy file shown in Example 11-16 after ora-retry:

Example 11-16 No Action Defined

<Action id="ora-retry">
 <retry>
 <retryCount>2</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 </retry>
 </Action>

The following actions are performed:

	
The invoke activity is attempted (using the above-mentioned fault policy code to handle the fault).

	
Two retries are attempted at increasing intervals (after two seconds, then after four seconds).

	
If all retry attempts fail, the following actions are performed:

	
A detailed fault error message is logged in the audit trail

	
The instance is marked as open.faulted (in-flight state)

	
The instance is picked up and the invoke activity is re-attempted

	
Recovery may also fail. In that case, the invoke activity is re-executed. Additional audit messages are logged.

11.4.5 What You May Need to Know About Binding Level Retry Execution Within Fault Policy Retries

If you are testing retry actions on adapters with both JCA-level retries for the outbound direction and a retry action in the fault policy file for outbound failures, the JCA-level (or binding level) retries are executed within the fault policy retries. For example, assume you have designed the application shown in Figure 11-2:

Figure 11-2 SOA Composite Application

[image: Description of Figure 11-2 follows]

You specify the retry parameters shown in Example 11-17 in the composite.xml file:

Example 11-17 Retry Parameters

<property name="jca.retry.count" type="xs:int" many="false"
 override="may">2</property>
<property name="jca.retry.interval" type="xs:int" many="false"
 override="may">2</property>
<property name="jca.retry.backoff" type="xs:int" many="false"
 override="may">2</property>

In the fault policy file for the EQ reference binding component for the outbound direction, you specify the actions shown in Example 11-18.

Example 11-18 Retry Actions

<retryCount>3</retryCount>
<retryInterval>3</retryInterval>

If an outbound failure occurs, the expected behavior is for the JCA retries to occur within the fault policy retries. When the first retry of the fault policy is executed, the JCA retry is called. In this example, a JCA retry of 2 with an interval of 2 seconds and exponential back off of 2 is executed for every retry of the fault policy:

	
Fault policy retry 1:

	
JCA retry 1 (with 2 seconds interval)

	
JCA retry 2 (with 4 seconds interval)

	
Fault policy retry 2:

	
JCA retry 1 (with 2 seconds interval)

	
JCA retry 2 (with 4 seconds interval)

	
Fault policy retry 3:

	
JCA retry 1 (with 2 seconds interval)

	
JCA retry 2 (with 4 seconds interval)

11.5 Catching BPEL Runtime Faults

BPEL runtime faults can be caught as a named BPEL fault. The bindingFault and remoteFault can be associated with a message. This action enables the faultHandler to get details about the faults.

11.5.1 How to Catch BPEL Runtime Faults

The following procedure shows how to use the provided examples to generate a fault and define a fault handler to catch it. In this case, you modify a WSDL file to generate a fault, and create a catch attribute to catch it.

To catch BPEL runtime faults:

	
Import RuntimeFault.wsdl into your process WSDL. RuntimeFault.wsdl is seeded into the MDS from soa.mar inside soa-infra-wls.ear during its deployment.

You may see a copy of soa.mar in the deployed SOA Infrastructure in the Oracle WebLogic Server domain, which is a JAR/ZIP file containing RuntimeFault.wsdl.

	
Declare a variable with messageType bpelx:RuntimeFaultMessage.

	
Catch it using the following syntax:

 <catch faultName="bpelx:remoteFault" | "bpelx:bindingFault" faultName="varName">

11.6 Getting Fault Details with the getFaultAsString XPath Extension Function

The catchAll activity is provided to catch possible faults. However, BPEL does not provide a method for obtaining additional information about the captured fault. Use the getFaultAsString() XPath extension function to obtain additional information.

11.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function

Example 11-19 shows how to use this function.

Example 11-19 getFaultAsString() XPath Extension Function

<catchAll>
 <sequence>
 <assign>
 <from expression="bpelx:getFaultAsString()"/>
 <to variable="faultVar" part="message"/>
 </assign>
 <reply faultName="ns1:myFault" variable="faultVar" .../>
 </sequence>
</catchAll>

11.7 Throwing Internal Faults

A BPEL application can generate and receive fault messages. The throw activity has three elements: its name, the name of the fault, and the fault variable. The fault thrown by a throw activity is internal to BPEL. You cannot use a throw activity on an asynchronous process to communicate with a client. Throw activity syntax includes the throw name, fault name, and fault variable:

<throw name="delay" faultName="nsPrefix:fault-1" faultVariable="fVar"/>

11.7.1 How to Create a Throw Activity

To create a throw activity:

	
From the Component Palette, drag a Throw activity into the designer.

	
Double-click and define the Throw activity.

	
Optionally enter a name or accept the default value.

	
To the right of the Namespace URI field, click the Search icon to select the fault to monitor.

	
Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field. Your fault selection also automatically displays in the Local Part field.

Figure 11-3 provides an example of a completed Throw dialog. This example shows the Throw_Fault_CC_Denied throw activity of the Scope_AuthorizeCreditCard scope activity in the WebLogic Fusion Order Demo application. This activity throws a fault for orders that are not approved.

Figure 11-3 Throw Dialog

[image: Description of Figure 11-3 follows]

	
Click OK.

11.7.2 What Happens When You Create a Throw Activity

Example 11-20 shows the throw activity in the .bpel file after design completion. The OrderProcessor process terminates after executing this throw activity.

Example 11-20 Throw Activity

<throw name="Throw_Fault_CC_Denied"
 faultName="client:OrderProcessorFault"/>

11.8 Returning External Faults

A BPEL process service component can send a fault to another application to indicate a problem, as opposed to throwing an internal fault. In a synchronous operation, the reply activity can return the fault. In an asynchronous operation, the invoke activity performs this function.

11.8.1 How to Return a Fault in a Synchronous Interaction

The syntax of a reply activity that returns a fault in a synchronous interaction is shown in Example 11-21:

Example 11-21 Reply Activity

<reply partnerlinke="partner-link-name"
 portType="port-type-name"
 operation="operation-name"
 variable="variable-name" (optional)
 faultName="fault-name">
</reply>

Always returning a fault in response to a synchronous request is not very useful. It is better to make the activity part of a conditional branch, in which the first branch is executed if the data requested is available. If the requested data is not available, then the BPEL process service component returns a fault with this information.

For more information, see the following chapters:

	
Chapter 10, "Using Conditional Branching in a BPEL Process" for setting up the conditional structure

	
Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process" for synchronous interactions

11.8.2 How to Return a Fault in an Asynchronous Interaction

In an asynchronous interaction, the client does not wait for a reply. The reply activity is not used to return a fault. Instead, the BPEL process service component returns a fault using a callback operation on the same port type that normally receives the requested information, with an invoke activity.

For more information about asynchronous interactions, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."

11.9 Using a Scope Activity to Manage a Group of Activities

A scope activity provides a container and a context for other activities. A scope provides handlers for faults, events, compensation, data variables, and correlation sets. Using a scope activity simplifies a BPEL flow by grouping functional structures. This grouping enables you to collapse them into what appears to be a single element in Oracle BPEL Designer.

Example 11-22 shows a scope named Scope_FulfillOrder from the WebLogic Fusion Order Demo application. This scope invokes the FulfillOrder mediator component, which determines the shipping method for the order.

Example 11-22 Scope Activity

<scope name="Scope_FulfillOrder">
 <variables>
 <variable name="lFulfillOrder_InputVariable"
 messageType="ns17:requestMessage"/>
 </variables>
 <sequence>
 <assign name="Assign_OrderData">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO"/>
 <to variable="lFulfillOrder_InputVariable"
 part="request" query="/ns4:orderInfoVOSDO"/>
 </copy>
 </assign>
 <invoke name="Invoke_FulfillOrder"
 inputVariable="lFulfillOrder_InputVariable"
 partnerLink="FulfillOrder.FulfillOrder"
 portType="ns17:execute_ptt" operation="execute"/>
 </sequence>
</scope>

11.9.1 How to Create a Scope Activity

To create a scope activity:

	
From the Component Palette, drag a Scope activity into the designer.

	
Open the scope activity by double-clicking it or by single-clicking the Expand icon.

	
From the Component Palette, drag and define activities to build the functionality within the scope.

Figure 11-4 Expanded Scope Activity

[image: Description of Figure 11-4 follows]

	
Click OK.

When complete, scope activity design can look as shown in . This example shows the Scope_AuthorizeCreditCard scope activity of the WebLogic Fusion Order Demo application.

Figure 11-5 Scope Activity After Design Completion

[image: Description of Figure 11-5 follows]

11.9.2 How to Add Descriptive Notes and Images to a Scope Activity

You can add descriptive notes to scope activities that provide simple descriptions of the functionality of the scope. You can also change the graphical image of scopes. The notes and images display in Oracle BPEL Designer. This helps to make a scope easier to understand.

To add descriptive notes and images to a scope activity:

	
Perform one of the following steps:

	
Right-click the scope and select Documentation.

	
Double-click the scope and select the Documentation tab.

The Documentation dialog appears.

	
In the Description field, enter a brief description of functionality of the scope.

	
In the Image field, click the Search icon to optionally change the graphical image for the scope.

	
Click OK.

Your changes display in Oracle BPEL Designer.

Figure 11-6 Scope with Descriptive Note and Modified Image

[image: Description of Figure 11-6 follows]

	
To edit the note, double-click it.

11.9.3 What Happens After You Create a Scope Activity

Example 11-23 shows the throw activity in the .bpel file after design completion. The Scope_AuthorizeCreditCard scope activity consists of activities that perform the following actions:

	
A catch activity for catching faulted orders in which the credit card number is not provided or the credit type is not valid.

	
A throw activity that throws a fault for orders that are not approved.

	
An assign activity that takes the credit card type, credit card number, and purchase amount, and assigns it to the input variable for the CreditCardAuthorizationService service.

	
An invoke activity that calls a CreditCardAuthorizationService service to retrieve customer information.

	
A switch activity that checks the results of the credit card validation.

Example 11-23 Scope Activity

<scope name="Scope_AuthorizeCreditCard">
 <variables>
 <variable name="lCreditCardInput"
 messageType="ns2:CreditAuthorizationRequestMessage"/>
 <variable name="lCreditCardOutput"
 messageType="ns2:CreditAuthorizationResponseMessage"/>
 </variables>
 <faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>
 <assign name="Assign_noCCNumber">
 <copy>
 <from expression="string('CreditCardCheck - NO
 CreditCard')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name ="Throw_NoCreditCard"
 faultVariable="gOrderProcessorFaultVariable"
 faultName="ns9:OrderProcessingFault"/>
 </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
 <sequence>
 <assign name="Assign_InvalidCreditFault">
 <copy>
 <from expression="concat(bpws:getVariableData
 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/
 ns4:CardTypeCode'), ' is not a valid
 creditcard type')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="summary"/>
 </copy>
 <copy>
 <from expression="string('CreditCardCheck - NOT VALID')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name="Throw_OrderProcessingFault"
 faultName="ns9:OrderProcessingFault"
 faultVariable="gOrderProcessorFaultVariable"/>
 </sequence>
 </catch>
 </faultHandlers>
 <sequence>
 <assign name="Assign_CreditCheckInput">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCType"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCNumber"/>
 </copy>
 </assign>
 <invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>
 <switch name="Switch_EvaluateCCResult">
 <case condition="bpws:getVariableData('lCreditCardOutput','status','
 /ns8:status') != 'APPROVED'">
 <bpelx:annotation>
 <bpelx:pattern>status <> approved</bpelx:pattern>
 </bpelx:annotation>
 <throw name="Throw_Fault_CC_Denied"
 faultName="client:OrderProcessorFault"/>
 </case>
 /switch>
 </sequence>
</scope>

11.9.4 What You May Need to Know About Scopes

Scopes can use a significant amount of CPU and memory and should not be overused. Sequence activities use less CPU and memory and can make large BPEL flows more readable.

11.9.5 How to Use a Fault Handler within a Scope

If a fault is not handled, it creates a faulted state that migrates up through the application and can throw the entire process into a faulted state. To prevent this from occurring, contain the parts of the process that have the potential to receive faults within a scope. The scope activity includes the following fault handling capabilities:

	
The catch activity works within a scope to catch faults and exceptions before they can throw the entire process into a faulted state. You can use specific fault names in the catch activity to respond in a specific way to an individual fault.

	
The catchAll activity catches any faults that are not handled by name-specific catch activities.

Example 11-24 shows the syntax for catch and catch all activities. Assume that a fault named x:foo is thrown. The first catch is selected if the fault carries no fault data. If there is fault data associated with the fault, the third catch is selected if the type of the fault's data matches the type of variable bar. Otherwise, the default catchAll handler is selected. Finally, a fault with a fault variable whose type matches the type of bar and whose name is not x:foo is processed by the second catch. All other faults are processed by the default catchAll handler.

Example 11-24 Catch and Catch All Activities

<faulthandlers>
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <catch faultVariable="bar">
 <empty/>
 </catch>
 <catch faultName="x:foo" faultVariable="bar">
 <empty/>
 </catch>
 <catchAll>
 <empty/>
 </catchAll>
</faulthandlers>

11.9.6 How to Create a Catch Activity

To create a catch activity:

	
In the expanded Scope activity, click Add Catch Branch.

Figure 11-7 Add Catch Branch

[image: Description of Figure 11-7 follows]

This creates a catch activity in the right side of the scope activity.

	
Double-click the Catch activity.

	
Optionally enter a name.

	
To the right of the Namespace URI field, click the Search icon to select the fault.

	
Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field. Your fault selection also automatically displays in the Local Part field.

Figure 11-8 provides an example of a Catch dialog. This example shows the selectionFailure catch activity of the Scope_AuthorizeCreditCard scope activity in the WebLogic Fusion Order Demo application. This catch activity catches orders in which the credit card number is not provided.

Figure 11-8 Catch Dialog

[image: Description of Figure 11-8 follows]

	
Design additional fault handling functionality.

	
Click OK.

Figure 11-9 provides an example of two catch activities for the Scope_AuthorizeCreditCard scope activity. The second catch activity catches credit types that are not valid.

Figure 11-9 Catch Activities in the Designer

[image: Description of Figure 11-9 follows]

11.9.7 What Happens When You Create a Catch Branch

Figure 11-9 shows the catch activity in the .bpel file after design completion. The selectionFailure catch activity catches orders in which the credit card number is not provided and the InvalidCredit catch activity catches credit types that are not valid.

Example 11-25 Catch Branch

<faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>
 <assign name="Assign_noCCNumber">
 <copy>
 <from expression="string('CreditCardCheck - NO CreditCard')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name ="Throw_NoCreditCard"
 faultVariable="gOrderProcessorFaultVariable"
 faultName="ns9:OrderProcessingFault"/>
 </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
 <sequence>
 <assign name="Assign_InvalidCreditFault">
 <copy>
 <from expression="concat(bpws:getVariableData
 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/ns4:CardTypeCode'), '
 is not a valid creditcard type')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="summary"/>
 </copy>
 <copy>
 <from expression="string('CreditCardCheck - NOT VALID')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name="Throw_OrderProcessingFault"
 faultName="ns9:OrderProcessingFault"
 faultVariable="gOrderProcessorFaultVariable"/>
 </sequence>
 </catch>
</faultHandlers>

11.9.8 How to Create an Empty Activity to Insert No-Op Instructions into a Business Process

There is often a need to use an activity that does nothing. An example is when a fault must be caught and suppressed. In this case, you can use the empty activity to insert a no-op instruction into a business process.

To create an empty activity:

	
From the Component Palette, drag an Empty activity into the designer.

	
Double-click the Empty activity.

The Empty dialog appears, as shown in Figure 11-10.

Figure 11-10 Empty Activity

[image: Description of Figure 11-10 follows]

	
Optionally enter a name.

	
Click OK.

11.9.9 What Happens When You Create an Empty Activity

The syntax for an empty activity is shown in Example 11-26.

Example 11-26 Empty Activity

 <empty standard-attributes>
 standard-elements
 </empty>

If no catch or catchAll is selected, the fault is not caught by the current scope and is rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown to) the global process scope, and there is no matching fault handler for the fault at the global level, the process terminates abnormally. This is as though a terminate activity (described in Section 11.11, "Using the Terminate Activity to Stop a Business Process Instance") had been performed.

11.10 Using Compensation After Undoing a Series of Operations

Compensation occurs when the BPEL process service component cannot complete a series of operations after some have completed, and the BPEL process service component must backtrack and undo the previously completed transactions. For example, if a BPEL process service component is designed to book a rental car, a hotel, and a flight, it may book the car and the hotel and then be unable to book a flight for the right day. In this case, the BPEL flow performs compensation by going back and unbooking the car and the hotel.

11.10.1 How to Use Compensation After Undoing a Series of Operations

You can invoke a compensation handler by using the compensate activity, which names the scope for which the compensation is to be performed (that is, the scope whose compensation handler is to be invoked). A compensation handler for a scope is available for invocation only when the scope completes normally. Invoking a compensation handler that has not been installed is equivalent to using the empty activity (it is a no-op). This ensures that fault handlers do not have to rely on state to determine which nested scopes have completed successfully. The semantics of a process in which an installed compensation handler is invoked multiple times are undefined.

The ability to explicitly invoke the compensate activity is the underpinning of the application-controlled error-handling framework of Business Process Execution Language for Web Services Specification. You can use this activity only in the following parts of a business process:

	
In a fault handler of the scope that immediately encloses the scope for which compensation is to be performed.

	
In the compensation handler of the scope that immediately encloses the scope for which compensation is to be performed.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the BPEL process service component invokes the instances of the compensation handlers in the successive iterations in reverse order.

If the compensation handler for a scope is absent, the default compensation handler invokes the compensation handlers for the immediately enclosed scopes in the reverse order of the completion of those scopes.

The compensate form, in which the scope name is omitted in a compensate activity, explicitly invokes this default behavior. This is useful when an enclosing fault or compensation handler must perform additional work, such as updating variables or sending external notifications, in addition to performing default compensation for inner scopes. The compensate activity in a fault or compensation handler attached to the outer scope invokes the default order of compensation handlers for completed scopes directly nested within the outer scope. You can mix this activity with any other user-specified behavior except for the explicit invocation of the nested scope within the outer scope. Explicitly invoking a compensation for such a scope nested within the outer scope disables the availability of default-order compensation.

11.10.2 How to Create a Compensate Activity

To create a compensate activity:

	
From the Component Palette, drag an Compensate activity into the designer.

	
Double-click the Compensate activity.

	
Select a scope activity in which to invoke the compensation handler.

Figure 11-11 Compensate Activity

[image: Description of Figure 11-11 follows]

	
Click OK.

11.10.3 What Happens When You Create a Compensate Activity

If an invoke activity has a compensation handler defined inline, then the name of the activity is the name of the scope to be used in the compensate activity. The syntax is shown in Example 11-27:

Example 11-27 Compensation Handler

<compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

11.11 Using the Terminate Activity to Stop a Business Process Instance

The terminate activity immediately terminates the behavior of a business process instance within which the terminate activity is performed. All currently running activities must be terminated as soon as possible without any fault handling or compensation behavior. The terminate activity does not send any notifications of the status of a BPEL process service component. If you are going to use the terminate activity, first program notifications to the interested parties.

11.11.1 How to Create a Terminate Activity

To create a terminate activity:

	
From the Component Palette in Oracle JDeveloper, drag a Terminate activity into the designer. Figure 11-12 provides an example.

Figure 11-12 Terminate Activity

[image: Description of Figure 11-12 follows]

	
Double-click the terminate activity.

	
Optionally enter a name.

	
Click OK.

11.11.2 What Happens When You Create a Terminate Activity

The syntax for the terminate activity is shown in Example 11-28. This stops the business process instance.

Example 11-28 Terminate Activity

<terminate standard-attributes>
 standard-elements
</terminate>

11.12 Throwing Faults with Assertion Conditions

You can specify an assertion condition that is executed upon receipt of a callback message in request-response invoke activities, receive activities, and onMessage branches of pick activities. The assertion specifies an XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from the activity. This condition provides an alternative to creating a potentially large number of switch, assign, and throw activities after a partner callback.

The assertion condition is specified as a nested extension element. Example 11-29 provides details.

Example 11-29 Assertion Condition

<invoke | receive | onMessage>
 standard-elements
 <bpelx:assert name="ncname"? expression="boolean-expr" faultName="QName"+
 message="generic-expr"+/> *
</invoke | receive | onMessage>

The bpelx:assert extension specifies the XPath expression to evaluate upon receipt of a callback message from a partner. If the assertion expression returns a false boolean value, the specified fault is thrown from the activity. If the assertion expression returns a true boolean value, no fault is thrown and the activities following the invoke activity, receive activity, or onMessage branch of a pick activity are executed as in a normal BPEL process flow.

The bpelx:assert extension is similar to the Java assert statement. In Java, if the assert expression does not evaluate to true, an error is reported by the JVM. Similarly, the expression in bpelx:assert must evaluate to true; otherwise, the specified fault is thrown.

For example, with the invoke activity shown in Example 11-30, if the XPath expression specified in the assertion condition returns false, the NegativeCredit fault is thrown.

Example 11-30 Invoke Activity

<scope>
 <faultHandlers>
 <catch faultName="services:NegativeCredit" faultVariable="crError">
 <empty/>
 </catch>
 </faultHandlers>
 <sequence>
 <invoke name="invokeCR" partnerLink="creditRatingService"
 portType="services:CreditRatingService" operation="process"
 inputVariable="crInput" outputVariable="crOutput">
 <bpelx:assert name="negativeCredit"
 expression="$crOutput.payload/tns:rating > 0"
 faultName="services:NegativeCredit" message="'Negative
 Credit'" />
 </invoke>
 </sequence>
</scope>

The optional name attribute for bpelx:assert is used while creating the audit trail event message. The name in this instance enables you to identify the assertion element in case multiple assertions are specified. If no name attribute is specified, the line number of the assertion element in the BPEL file may be used.

11.12.1 Use of faultName and message Attributes

You can specify the faultName and message attributes of the bpelx:assert element, as shown in Example 11-31.

Example 11-31 faultName and message Attributes

<invoke | receive | onMessage>
 standard-elements
 <bpelx:assert name="ncname"? expression="boolean-expr" faultName="QName"+
 message="generic-expr"+/> *
</invoke | receive | onMessage>

If you do not specify the faultName attribute, the fault defaults to bpelx:assertFailure. If the message attribute is not specified, the message value defaults to the name of the activity.

<bpelx:assert expression="boolean-expr" />

The specified fault is thrown whenever the assertion condition evaluates to false. Analysis is performed on the faultName QName to ensure that it properly resolves to a fault that has been defined in the partner WSDL portType. The message expression is a general expression that can evaluate to any XPath value type (string, number or boolean). If a nonstring value is returned, the string equivalent of the value is used.

11.12.2 Multiple Assertions

You can nest multiple assertions in receive activities, invoke activities, and the onMessage branch of pick activities, with evaluation of the assertions continuing in the order in which they were declared until an expression evaluates to false. Example 11-32 provides details.

Example 11-32 Nesting Multiple Assertions

<invoke name="invokeCR" partnerLink="creditRatingService"
 portType="services:CreditRatingService" operation="process"
 inputVariable="crInput" outputVariable="crOutput">
 <bpelx:assert name="negativeCredit" expression="$crOutput.payload/tns:rating >
 0"
 faultName="services:NegativeCredit" message="'Negative Credit'"
 />
 <bpelx:assert name="insufficientCredit"
 expression="$crOutput.payload/tns:rating > 600"
 faultName="services:InsufficientCredit" message="'Insufficient
 Credit'" />
</invoke>

In Example 11-32, the assertion with the expression that checks that the response credit rating is greater than zero is evaluated first. Table 11-4 describes the assertion behavior.

Table 11-4 Assertion Behavior

	If The Credit Rating For the Returned Response Is...	Then...
	
Less than zero

	
The services:NegativeCredit fault is thrown

	
Greater than or equal to zero

	
The assertion is correct and the second assertion is evaluated

	
Less than 600

	
The services:InsufficientCredit fault is thrown

	
Greater than or equal to 600

	
The assertion is correct and no fault is thrown from the invoke activity

Any number of assertions can be nested. For no fault to be thrown from the activity, all assertions specified must evaluate to true.

This construct enables you to apply multiple levels of validation on an incoming payload, similar to if...else if...else statements in Java.

To enable a fault to always be thrown regardless of validation logic, the assertion expression can be specified as false(). This is similar to the else construct in Java.

11.12.3 Use of Built-in and Custom XPath Functions and $variable References

You can also use built-in and custom XPath functions and $variable references within the assertion condition. Example 11-33 provides several examples.

Example 11-33 Built-in and Custom XPath Functions

<bpelx:assert expression="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0" ... />

<bpelx:assert expression="custom:validateRating()" ... />

<bpelx:assert xmlns:fn='http://www.w3.org/2005/xpath-functions'
 expression="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL fault and thrown from the activity.

Faults that are thrown from a request-response invoke activity, receive activity, or onMessage branch of a pick activity because of a failed assertion evaluation can be caught and handled by BPEL's fault policy framework. The fault policy framework enables you to specify the action to take whenever a fault (business or system) is thrown from an invoke activity. For example:

	
Retry of the invocation with exponential backoff

	
Execution of custom Java classes

	
Replay of the immediate scope containing the invoke activity

	
Review of the activity by an administrator and permitting manual editing of variables

Faults that are not caught and handled within a BPEL process flow are thrown from a BPEL component if the component WSDL declares the fault on the operation. If the fault is not declared on the operation, the fault is converted into a FabricInvocationException, which is a runtime fault. This fault can be caught by any caller components (including BPEL components), but the fault type is no longer the one originally thrown (however, the fault message string still retains traces of the original fault message).

For more information about fault policies, see Section 11.4, "Using the Fault Management Framework."

11.12.4 Assertion Condition Evaluation Logs Events to the Instance Audit Trail

Each assertion condition that is evaluated causes an event to be logged to the instance audit trail. The event indicates whether the assertion passed or failed (for failure, the fault name and message are printed). The event also includes the name attribute specified in the assertion element; if no name attribute is provided, the line number of the assertion element in the BPEL process flow is used. The assertion condition printed in the audit event helps identify the assertion and better enables debugging of the flow.

11.12.5 Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault

If the assertion condition XPath expression does not evaluate to an XML schema boolean type, a bpelx:assertFailure fault is thrown from the activity. An event in the instance audit trail is also logged indicating the error. Example 11-34 provides details.

Example 11-34 Throwing a bpelx:assertFailure Fault

<bpelx:assert expression="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0" ... />

<bpelx:assert expression="custom:validateRating()" ... />

<bpelx:assert xmlns:fn='http://www.w3.org/2005/xpath-functions'
 expression="fn:false()" ... />

Analysis of the assertion expression is performed by the BPEL compiler and errors are reported if an expression does not evaluate to an XML schema boolean type. For custom XPath functions, this type of analysis is not performed.

11.12.6 How to Create Assertion Conditions

To create an assert condition:

	
In the SOA Composite Editor, double-click the BPEL process service component.

	
From the Component Palette, drag a receive activity, invoke activity, or pick activity into the designer.

	
Expand the receive, invoke, or onMessage branch of the pick activity.

	
Click the Assertions tab.

	
Click the Add icon.

The Assertion dialog is displayed.

	
Specify values for the assertion condition, as shown in Figure 11-13.

	
Select the Fault QName to be thrown by clicking the Search icon and selecting an existing fault from the Fault Chooser dialog. You can also provide your own values for the Namespace URI and Local Part fields of the fault. If you do not specify anything for the Fault QName, then a bpelx:assertFailure fault is thrown.

Figure 11-13 Assertion Condition Values

[image: Description of Figure 11-13 follows]

	
When complete, click OK to return to the Assertions tab of the activity. The completed assertion conditions is displayed, as shown in Figure 11-14.

Figure 11-14 Assertions Tab with Data

[image: Description of Figure 11-14 follows]

	
Click Apply, then OK.

11.12.7 How to Disable Assertions

You can disable assertions in either of two ways:

	
By setting the System MBean Browser property DisableAsserts to true in Oracle Enterprise Manager Fusion Middleware Control Console.

	
By setting bpel.config.disableAsserts to true in the composite.xml file of the SOA composite application, as shown in Example 11-35.

Example 11-35 Disable Assertions

 <component name="AsyncBPELClient">
 <implementation.bpel src="AsyncBPELClient.bpel"/>
 <property name="bpel.config.disableAsserts">true</property>
 </component>

For more information about setting System MBean Browser properties, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

11.12.8 What Happens When You Create Assertion Conditions

The code segment in the .bpel file defines the specific operation after design completion. For Example 11-36, the bpelx:assert condition, when evaluated to false (for example, a credit rating of 0 is submitted), returns a Negative Credit message. If the condition evaluates to true, no fault is thrown from the invoke activity and the remaining activities in the BPEL process flow are executed normally.

Example 11-36 Assertion Condition

<invoke name="callbackClient" partnerLink="internalwarehouseservice_client"
 portType="client:InternalWarehouseServiceCallback" operation="processResponse"
 inputVariable="outputVariable">
 <bpelx:assert name="negativeCredit"
 expression="$crOutput.payload/tns:rating > 0"
 message="Negative Credit"/>
</invoke>

12 Transaction and Fault Propagation Semantics in BPEL Processes

This chapter describes transaction and fault propagation semantics in Oracle BPEL Process Manager.

This chapter includes the following sections:

	
Section 12.1, "Introduction to Transaction Semantics"

	
Section 12.2, "Introduction to Execution of One-way Invocations"

12.1 Introduction to Transaction Semantics

Transaction semantics in release 11g enable you to use the underlying Java Transaction API (JTA) infrastructure used in the execution of components. This section describes transaction semantics for Oracle BPEL Process Manager

12.1.1 Oracle BPEL Process Manager Transaction Semantics

As with previous releases, Oracle BPEL Process Manager by default creates a new transaction on a request basis. That is, if a transaction exists, it is suspended, and a new transaction is created. Upon completion of the child (new) transaction, the master (suspended) transaction resumes.

However, if the request is asynchronous (that is, one-way), the transaction is either:

	
Inherited for insertion into the dehydration store (table dlv_message).

	
Enlisted transparently into the transaction (if one exists).

There is no message loss. Either the invocation message is inserted into the dehydration store for processing or the consumer is notified through a fault.

In release 10.1.3.x, there were several properties to set on the consuming process (that is, on the partner link) and the providing process. This enabled you to chain an execution into a single global transaction. On the consuming side, you set transaction=participate on the partner link binding in the bpel.xml file. On the providing side, you set transaction=participate in the <configurations> section of bpel.xml.

In release 11g, you only must set a new transaction property on the BPEL component being called (known as the callee process). You add bpel.config.transaction into a BPEL process service component section in the composite.xml file (note the required prefix of bpel.config.). This property configures the transaction behavior for BPEL instances with initiating calls.

Example 12-1 provides details.

Example 12-1 Setting a New Transaction

<component name="InternalWarehouseService">
 <implementation.bpel src="InternalWarehouseService.bpel"/>
 <property name="bpel.config.transaction"
 many="false" type="xs:string">required | requiresNew</property>
 </component>

There are two possible values: required and requiresNew. Table 12-1 describes these values and summarizes the behavior of the BPEL instance based on the settings.

Table 12-1 bpel.config.transaction Property Behavior

	For...	With bpel.config.transaction Set to required...	With bpel.config.transaction Set to requiresNew...
	
Request/response (initiating) invocations

	
The caller's transaction is joined (if there is one) or a new transaction is created (if there is not one).

	
A new transaction is always created and an existing transaction (if there is one) is suspended.

	
One-way initiating invocations in which bpel.config.oneWayDeliveryPolicy is set to sync.

	
Invoked messages are processed using the same thread in the same transaction.

	
A new transaction is always created and an existing transaction (if there is one) is suspended.

	
Note:

The bpel.config.transaction property does not apply for midprocess receive activities. In those cases, another thread in another transaction is used to process the message. This is because correlation is needed and it is always done asynchronously.

For additional information about this property, see Section C.1.1, "How to Define Deployment Descriptor Properties."

The following sections describe the transaction and fault behavior of setting bpel.config.transaction to either required or requiresNew.

12.1.1.1 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew

In Table 12-2, the BPELCaller process calls the BPELCallee process. The BPELCallee process has the property bpel.config.transaction set to requiresNew. Table 12-2 describes fault propagation and transaction behavior when bpel.config.transaction is set to this value.

Table 12-2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew

	If The BPELCallee...	Then The BPELCallee Transaction...	And The BPELCaller...
	
Replies with a fault (that is, it uses <reply>).

	
Is saved.

	
Gets the fault and can catch it.

	
Throws a fault that is not handled (that is, it uses <throw>).

	
Is rolled back.

	
Gets the fault and can catch it.

	
Replies back with a fault (FaultOne), and then throws a fault (FaultTwo).

	
Is rolled back.

	
Gets FaultTwo.

	
Throws a bpelx:rollback fault (that is, it uses <throw>).

	
Is rolled back.

	
Gets a remote fault.

12.1.1.2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to required

In Table 12-3, the BPELCaller process calls the BPELCallee process. The BPELCallee process has the property bpel.config.transaction set to required. Table 12-3 describes fault propagation and transaction behavior when bpel.config.transaction is set to this value.

Table 12-3 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to required

	If The BPELCallee...	Then The BPELCaller...
	
Replies with a fault (that is, it uses <reply>).

	
Gets the fault and can catch it. The BPELCaller owns the transaction. Therefore, if it catches it, the transaction is committed. If the BPELCaller does not handle it, a global rollback occurs.

	
Throws a fault (that is, it uses <throw>).

	
Gets the fault and can catch it.

	
Replies back with a fault (FaultOne), and then throws a fault (FaultTwo).

	
Gets FaultTwo.

	
Throws (that is, it uses <throw>) a bpelx:rollback fault.

	
Gets its transaction rolled back; there is no way to catch it. This fault cannot be handled.

As an example, assume you create two synchronous processes (BPELMaster and BPELChild) that each use the same database adapter reference to insert the same record (and therefore, causes a permission key (PK) violation). The xADatasourceName is set for both.

Without bpel.config.transaction set, after the fault occurs, and it is not handled, the BPELChild is rolled back. If the BPELMaster has a catch block, its transaction is committed. Therefore, you end up with the record from the BPELMaster in the database.

If you do not catch the fault in the BPELMaster as well, you get a second rollback (however, in two different transactions).

If bpel.config.transaction is set to required for the same test case and no fault handlers are in place, the entire transaction is rolled back based on the BPELMaster's unhandled fault.

If you add a fault handler in the BPELMaster to catch the fault from the BPELChild and throw a rollback fault, the transaction is globally rolled back.

This feature enables you to control transaction boundaries and model end-to-end transactional flows (if your sources and targets are also transactional).

12.2 Introduction to Execution of One-way Invocations

A one-way invocation (with a possible callback) is typically exposed in a WSDL as shown in Example 12-2.

Example 12-2 WSDL Exposure

<wsdl:operation name="process">
 <wsdl:input message="client:OrderProcessorRequestMessage"/>
 </wsdl:operation>

This causes the BPEL service engine to split the execution into two parts:

	
For the first part, and always inside the caller transaction, the insertion into the dlv_message table of the dehydration store occurs (in release 10.1.3.x, it was inserted into the inv_message table).

	
For the second part, the transaction and the new thread executes the work items, and a new instance is created.

This has several advantages in terms of scalability, because the service engine's thread pool (invoker threads) executes when a thread is available. However, the disadvantage is that there is no guarantee that it executes immediately.

If you require a synchronous-type call based on a one-way operation, then you can use the onewayDeliveryPolicy property, which is similar to the deliveryPersistPolicy property of release 10.1.3.x.

Specify bpel.config.oneWayDeliveryPolicy in the BPEL process service component section of the composite.xml file. If this value is not set in composite.xml, the value for oneWayDeliveryPolicy in the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control Console is used. The following values are possible.

	
async.persist: Messages are persisted in the database hash map.

	
sync.cache: Messages are stored in memory.

	
sync: Direct invocation occurs on the same thread.

For more information, see Section C.1.1, "How to Define Deployment Descriptor Properties."

Table 12-4 describes the behavior when the main process calls the subprocess asynchronously. Table 12-4 is based on the use cases described in Section 12.1.1.1, "BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew" and Section 12.1.1.2, "BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to required."

Table 12-4 Main Process Calls the Subprocess Asynchronously

	If...	If The Subprocess Throws Any Fault...	If The Subprocess Throws a bpelx:rollback...
	
onewayDeliveryPolicy=async.persist

(The BPELCallee process runs in a separate thread/transaction.)

	
The BPELCaller does not get a response because the message is saved in the delivery service. The BPELCallee transaction is rolled back if the fault is not handled.

	
The BPELCaller does not get a response because the message is saved in the delivery service. The BPELCallee instance is rolled back on the unhandled fault.

	
onewayDeliveryPolicy=sync

and

transaction=requiresNew

(The BPELCallee runs in the same thread, but a different transaction.)

	
The BPELCaller receives a FabricInvocationException. The BPELCallee transaction rolls back if the fault is not handled.

	
The BPELCaller receives a FabricInvocationException. The BPELCallee transaction is rolled back.

	
onewayDeliveryPolicy=sync

and

transaction=required

(The BPELCallee runs in the same thread and the same transaction.)

	
The BPELCallee faulted. The BPELCaller receives a FabricInvocationException. The BPELCaller has a chance to handle the fault.

	
The whole transaction is rolled back.

13 Incorporating Java and Java EE Code in a BPEL Process

This chapter describes how to incorporate sections of Java code into BPEL process service components in SOA composite applications.

This chapter includes the following sections:

	
Section 13.1, "Introduction to Java and Java EE Code in BPEL Processes"

	
Section 13.2, "Incorporating Java and Java EE Code in BPEL Processes"

	
Section 13.3, "Adding Custom Classes and JAR Files"

	
Section 13.4, "Using Java Embedding in a BPEL Process in Oracle JDeveloper"

	
Section 13.5, "Embedding Service Data Objects with bpelx:exec"

13.1 Introduction to Java and Java EE Code in BPEL Processes

This chapter explains how to incorporate sections of Java code into a BPEL process. This is particularly useful when there is Enterprise JavaBeans Java code that can perform the necessary function, and you want to use the existing code rather than start over with BPEL.

13.2 Incorporating Java and Java EE Code in BPEL Processes

There are several methods for incorporating Java and Java EE code in BPEL processes:

	
Wrap as a Simple Object Access Protocol (SOAP) service

	
Embed Java code snippets into a BPEL process with the bpelx:exec tag

	
Use an XML facade to simplify DOM manipulation

	
Use bpelx:exec built-in methods

	
Use Java code wrapped in a service interface

13.2.1 How to Wrap Java Code as a SOAP Service

You can wrap the Java code as a Simple Object Access Protocol (SOAP) service. This method requires that the Java application have a BPEL-compatible interface. A Java application wrapped as a SOAP service appears as any other web service, which can be used by many different kinds of applications. There are also tools available for writing SOAP wrappers.

13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service

A Java application wrapped as a SOAP service has the following drawbacks:

	
There may be reduced performance due to the nature of converting between Java and SOAP, and back and forth.

	
Since SOAP inherently has no support for transactions, this method loses atomic transactionality, that is, the ability to perform several operations in an all-or-none mode (such as debiting one bank account while crediting another, where either both transactions must be completed, or neither of them).

13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag

You can embed Java code snippets directly into the BPEL process using the Java BPEL exec extension bpelx:exec. The benefits of this approach are speed and transactionality. It is recommended that you incorporate only small segments of code. BPEL is about separation of business logic from implementation. If you remove a lot of Java code in your process, you lose that separation. Java embedding is recommended for short utility-like operations, rather than business code. Place the business logic elsewhere and call it from BPEL.

The server executes any snippet of Java code contained within a bpelx:exec activity, within its Java Transaction API (JTA) transaction context.The BPEL tag bpelx:exec converts Java exceptions into BPEL faults and then adds them into the BPEL process.The Java snippet can propagate its JTA transaction to session and entity beans that it calls.

For example, a SessionBeanSample.bpel file uses the bpelx:exec tag shown in Example 13-1 to embed the invokeSessionBean Java bean:

Example 13-1 bpelx:exec Tag

 <bpelx:exec name="invokeSessionBean" language="java" version="1.5">
 <![CDATA[
 try {
 Object homeObj = lookup("ejb/session/CreditRating");
 Class cls = Class.forName(
 "com.otn.samples.sessionbean.CreditRatingServiceHome");
 CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
 PortableRemoteObject.narrow(homeObj,cls);
 if (ratingHome == null) {
 addAuditTrailEntry("Failed to lookup 'ejb.session.CreditRating'"
 + ". Ensure that the bean has been"
 + " successfully deployed");
 return;
 }
 CreditRatingService ratingService = ratingHome.create();

 // Retrieve ssn from scope
 Element ssn =
 (Element)getVariableData("input","payload","/ssn");

 int rating = ratingService.getRating(ssn.getNodeValue());
 addAuditTrailEntry("Rating is: " + rating);

 setVariableData("output", "payload",
 "/tns:rating", new Integer(rating));
 } catch (NamingException ne) {
 addAuditTrailEntry(ne);
 } catch (ClassNotFoundException cnfe) {
 addAuditTrailEntry(cnfe);
 } catch (CreateException ce) {
 addAuditTrailEntry(ce);
 } catch (RemoteException re) {
 addAuditTrailEntry(re);
 }
]]>
 </bpelx:exec>

13.2.4 How to Use an XML Facade to Simplify DOM Manipulation

You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process Manager provides a lightweight Java Architecture for XML Binding (JAXB)-like Java object model on top of XML (called a facade). An XML facade provides a Java bean-like front end for an XML document or element that has a schema. Facade classes can provide easy manipulation of the XML document and element in Java programs.

You add the XML facade by using a createFacade method within the bpelx:exec statement in the .bpel file. Example 13-2 provides an example:

Example 13-2 Addition of XML facade

 <bpelx:exec name= ...
 <![CDATA
 ...
 Element element = ...
 (Element)getVariableData("input","payload","/loanApplication/"):
 //Create an XMLFacade for the Loan Application Document
 LoanApplication xmlLoanApp=
 LoanApplicationFactory.createFacade(element);
 ...

13.2.5 How to Use bpelx:exec Built-in Methods

Table 13-1 lists a set of bpelx:exec built-in methods that you can use to read and update scope variables, instance metadata, and audit trails.

Table 13-1 Built in Methods for bpelx:exec

	Method Name	Description
	
Object lookup(String name)

	
JNDI access

	
long getInstanceId()

	
Unique ID associated with each instance

	
String setTitle(String title) / String getTitle()

	
Title of this instance

	
String setStatus(String status) / String getStatus()

	
Status of this instance

	
void setCompositeInstanceTitle(String title)

	
Set the composite instance title

	
void setIndex(int i, String value) / String getIndex(int i)

	
Six indexes can be used for search

	
void setCreator(String creator) / String getCreator()

	
Who initiated this instance

	
void setCustomKey(String customKey) / String getCustomKey()

	
Second primary key

	
void setMetadata(String metadata) / String getMetadata ()

	
Metadata for generating lists

	
String getPreference(String key)

	
Access preference

	
void addAuditTrailEntry(String message, Object detail)

	
Add an entry to the audit trail

	
void addAuditTrailEntry(Throwable t)

	
Access file stored in the suitcase

	
Object getVariableData(String name) throws BPELFault

	
Access and update variables stored in the scope

	
Object getVariableData(String name, String partOrQuery) throws BPELFault

	
Access and update variables.

	
Object getVariableData(String name, String part, String query)

	
Access and update variables.

	
void setVariableData(String name, Object value)

	
Set variable data.

	
void setVariableData(String name, String part, Object value)

	
Set variable data.

	
void setVariableData(String name, String part, String query, Object value)

	
Set variable data.

13.2.6 How to Use Java Code Wrapped in a Service Interface

Not all applications expose a service interface. You may have a scenario in which a business process must use custom Java code. For this scenario, you can:

	
Write custom Java code.

	
Create a service interface in which to embed the code.

	
Invoke the Java code as a web service over SOAP.

For example, assume you create a BPEL process service component in a SOA composite application that invokes a service interface through a SOAP reference binding component. For this example, the service interface used is an Oracle Application Development Framework (ADF) Business Component.

The high-level instructions for this scenario are as follows.

To use Java code wrapped in a service interface:

	
Create an Oracle ADF Business Component service in Oracle JDeveloper.

This action generates a WSDL file and XSD file for the service.

	
Create a SOA application that includes a BPEL process service component. Ensure that the BPEL process service component is exposed as a composite service. This automatically connects the BPEL process to an inbound SOAP service binding component.

	
Import the Oracle ADF Business Component service WSDL into the SOA composite application.

	
Create a web service binding to the Oracle ADF Business Component service interface.

	
Design a BPEL process in which you perform the following tasks:

	
Create a partner link for the Oracle ADF Business Component service portType.

	
Create an assign activity. For this example, this step copies data (for example, a static XML fragment) into a variable that is passed to the Oracle ADF Business Component service.

	
Create an invoke activity and connect to the partner link you created in Step 5a.

	
Connect (wire) the partner link reference to the composite reference binding component. This reference uses a web service binding to enable the Oracle ADF Business Component service to be remotely deployed.

	
Deploy the SOA application.

	
Invoke the SOA application from the Test Web Service page in Oracle Enterprise Manager Fusion Middleware Control Console.

For more information on creating Oracle ADF Business Components, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

For more information on invoking a SOA composite application, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

13.3 Adding Custom Classes and JAR Files

You can add custom classes and JAR files to a SOA composite application. A SOA extension library for adding extension classes and JARs to a SOA composite application is available in the $ORACLE_HOME/soa/modules/oracle.soa.ext_11.1.1 directory. For Oracle JDeveloper, custom classes and JARs are added to the application_name/project/sca-inf/lib directory.

13.3.1 How to Add Custom Classes and JAR Files

If the classes are used in bpelx:exec, you must also add the JARs with the BpelcClasspath property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control Console.

To add JARs to BpelcClasspath:

	
From the SOA Infrastructure menu, select SOA Administration > BPEL Properties.

	
At the bottom of the BPEL Service Engine Properties page, click More BPEL Configuration Properties.

	
Click BpelcClasspath.

	
In the Value field, specify the class path.

	
Click Apply.

	
Click Return.

In addition, ensure that the JARs are loaded by SOA composite application.

To add custom classes:

	
Copy the classes to the classes directory.

	
Restart Oracle WebLogic Server.

To add custom JARs:

	
Copy the JAR files to this directory or its subdirectory.

	
Run ant.

	
Restart Oracle WebLogic Server.

13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper

In Oracle JDeveloper, you can add the bpelx:exec activity and copy the code snippet into a dialog.

	
Note:

For custom classes, you must include any JAR files required for embedded Java code in the BpelcClasspath property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control Console. See Section 13.3.1, "How to Add Custom Classes and JAR Files" for instructions. The JAR files are then added to the class path of the BPEL loader. If multiple JAR files are included, they must be separated by a colon (:) on UNIX and a semicolon (;) on Windows.

13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper

To use Java embedding in a BPEL process in Oracle JDeveloper:

	
From the Component Palette, drag the Java Embedding activity into the designer.

	
Double-click the Java Embedding activity to display the Java Embedding dialog.

	
In the Name field, enter a name.

	
In the Code Snippet field, enter (or cut and paste) the Java code.

Figure 13-1 bpel:exec Code Example

[image: Description of Figure 13-1 follows]

	
Note:

As an alternative to writing Java code in the Java Embedding activity, you can place your Java code in a JAR file, put it in the class path, and call your methods from within the Java Embedding activity.

13.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding Activity

If you create and deploy a BPEL process that uses thread.sleep() in a Java Embedding activity, the executing thread is blocked and the transaction associated with that thread is prevented from committing. This causes BPEL instances to appear only after the wait is over, which is the expected behavior.

Instead, use a wait activity, which releases the resource upon entering the activity and enables the ongoing transaction to commit and the BPEL instance data to hydrate into the data store.

13.5 Embedding Service Data Objects with bpelx:exec

You can embed service data object (SDO) code in the .bpel file with the bpelx:exec tag. In the syntax provided in Example 13-3, mytest.apps.SDOHelper is a Java class that modifies SDOs.

Example 13-3 Embedding SDO Objects with the bpelx:exec tag

</bpelx:exec>
<bpelx:exec name="ModifyInternalSDO" version="1.5" language="java">
 <![CDATA[try{
 Object o = getVariableData("VarSDO");
 Object out = getVariableData("ExtSDO");
 System.out.println("BPEL:Modify VarSDO... " + o + " ExtSDO: " + out);
 mytest.apps.SDOHelper.print(o);
 mytest.apps.SDOHelper.print(out);
 mytest.apps.SDOHelper.modifySDO(o);
 System.out.println("BPEL:After Modify VarSDO... " + o + " ExtSDO: " + out);
 mytest.apps.SDOHelper.print(o);
 mytest.apps.SDOHelper.print(out);
 }catch(Exception e)
 {
 e.printStackTrace();
}]]>
 </bpelx:exec>

Example 13-4 provides an example of the Java classes modifySDO(o) and print(o) that are embedded in the BPEL file.

Example 13-4 Java Classes

public static void modifySDO(Object o){
 if(o instanceof commonj.sdo.DataObject)
 {
 ((DataObject)o).getChangeSummary().beginLogging();
 SDOType type = (SDOType)((DataObject)o).getType();
 HelperContext hCtx = type.getHelperContext();
 List<DataObject> lines =
 (List<DataObject>)((DataObject)o).get("line");
 for (DataObject line: lines) {
 line.set("eligibilityStatus", "Y");
 }
 } else {
 System.out.println("SDOHelper.modifySDO(): " + o + " is not a
 DataObject!");
 }
 }
. . .
. . .
 public static void print(Object o) {
 try{
 if(o instanceof commonj.sdo.DataObject)
 {
 DataObject sdo = (commonj.sdo.DataObject)o;
 SDOType type = (SDOType) sdo.getType();
 HelperContext hCtx = type.getHelperContext();
 System.out.println(hCtx.getXMLHelper().save(sdo, type.getURI(),
 type.getName()));
 } else {
 System.out.println("SDOHelper.print(): Not a sdo " + o);
 }
 }catch(Exception e)
 {
 e.printStackTrace();
 } }

14 Using Events and Timeouts in BPEL Processes

This chapter describes how to use events and timeouts. Because web services can take a long time to return a response, a BPEL process service component must be able to time out and continue with the rest of the flow after a period of time.

This chapter includes the following sections:

	
Section 14.1, "Introduction to Event and Timeout Concepts"

	
Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or Waiting"

	
Section 14.3, "Setting Timeouts for Request-Response Operations in Receive Activities"

	
Section 14.4, "Creating a Wait Activity to Set an Expiration Time"

	
Section 14.5, "Setting Timeouts for Synchronous Processes"

14.1 Introduction to Event and Timeout Concepts

This chapter provides an example of how to program a BPEL process service component to wait one minute for a response from a web service named Star Loan that provides loan offers. If Star Loan does not respond in one minute, then the BPEL process service component automatically selects an offer from another web service named United Loan. In the real world, the time limit is more like 48 hours. However, for this example, you do not want to wait that long to see if your BPEL process service component is working properly.

Because asynchronous web services can take a long time to return a response, a BPEL process service component must be able to time out, or give up waiting, and continue with the rest of the flow after a certain amount of time. You can use the pick activity to configure a BPEL flow to either wait a specified amount of time or to continue performing its duties. To set an expiration period for the time, you can use the wait activity.

14.2 Creating a Pick Activity to Select Between Continuing a Process or Waiting

The pick activity provides two branches, each one with a condition. The branch that has its condition satisfied first is executed. In the following example, one branch's condition is to receive a loan offer, and the other branch's condition is to wait a specified amount of time.

Figure 14-1 provides an overview. The following activities take place (in order of priority):

	
An invoke activity initiates a service, in this case, a request for a loan offer from Star Loan.

	
The pick activity begins next. It has the following conditions:

	
onMessage

This condition has code for receiving a reply in the form of a loan offer from the Star Loan web service. The onMessage code matches the code for receiving a response from the Star Loan web service before a timeout was added.

	
onAlarm

This condition has code for a timeout of one minute. This time is defined as PT1M, which means to wait one minute before timing out. In this timeout setting:

	
S stands for seconds

	
M for one minute

	
H for hour

	
D for day

	
Y for year

In the unlikely event that you want a time limit of 1 year, 3 days, and 15 seconds, you enter it as PT1Y3D15S. The remainder of the code sets the loan variables selected and approved to false, sets the annual percentage rate (APR) at 0.0, and copies this information into the loanOffer variable.

The time duration format is specified by the BPEL standard. For more detailed information on the time duration format, see the duration section of the most current XML Schema Part 2: Datatypes document at:

http://www.w3.org/TR/xmlschema-2/#duration

	
The pick activity condition that completes first is the one that the BPEL process service component executes. The other branch then is not executed.

Figure 14-1 Overview of the Pick Activity

[image: Description of Figure 14-1 follows]

14.2.1 How To Create a Pick Activity

To create a pick activity:

	
In the SOA Composite Editor, double-click the BPEL process service component.

	
From the Component Palette, drag a Pick activity into the designer.

	
Expand the Pick activity.

The Pick activity includes the onMessage (envelope icon) and onAlarm (alarm clock icon) branches. Figure 14-2 provides an example.

Figure 14-2 Pick Activity

[image: Description of Figure 14-2 follows]

	
Double-click the OnAlarm branch of the pick activity and set its time limit to 1 minute instead of 1 hour. Figure 14-3 provides an example.

Figure 14-3 OnAlarm Branch

[image: Description of Figure 14-3 follows]

	
Click OK.

	
Double-click the onMessage branch. Figure 14-4 provides an example.

Figure 14-4 onMessage Branch

[image: Description of Figure 14-4 follows]

	
Edit its attributes to receive the response from the loan service.

14.2.2 What Happens When You Create a Pick Activity

The code segment in Example 14-1 defines the pick activity for this operation after design completion:

Example 14-1 Pick Activity

 <pick>
 <!-- receive the result of the remote process -->
 <onMessage partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="loanOffer">

 <assign>
 <copy>
 <from variable="loanOffer" part="payload"/>
 <to variable="output" part="payload"/>
 </copy>
 </assign>

 </onMessage>
 <!-- wait for one minute, then timesout -->
 <onAlarm for="PT1M">
 <assign>
 <copy>
 <from>
 <loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Expired</providerName>
 <selected type="boolean">false</selected>
 <approved type="boolean">false</approved>
 <APR type="double">0.0</APR>
 </loanOffer>
 </from>
 <to variable="loanOffer" part="payload"/>
 </copy>
 </assign>
 </onAlarm>
</pick>

14.3 Setting Timeouts for Request-Response Operations in Receive Activities

You can provide a timeout setting for request-response operations in receive activities. This provides an alternative to using the onMessage and onAlarm branches of a pick activity to specify a timeout duration for partner callbacks.

The following sections provide an overview of this functionality:

	
Timeout settings relative from activity invocation

	
Timeout settings as an absolute date time

	
Timeout settings computed dynamically with an XPath expression

	
bpelx:timeout fault thrown during an activity timeout

	
Event added to the BPEL instance audit trail during an activity timeout

	
Recoverable timeout activities during a server restart

14.3.1 Timeout Settings Relative from When the Activity is Invoked

You can specify a timeout setting relative from when the activity is invoked. This setting is specified as a relative duration using the syntax shown in Example 14-2.

Example 14-2 Timeout Settings Relative from When the Activity is Invoked

<receive | bpelx:for="duration-expr">
 standard-elements
</receive>

This type uses the bpelx:for attribute to specify a static value or an XPath expression that must evaluate to an XML schema type duration. Only one of the bpelx:for or bpelx:until attributes is permitted for an activity.

If the XPath expression evaluates to a negative duration, the timeout is ignored and an event is logged to the instance audit trail indicating that the duration value is invalid.

Once a valid duration value is retrieved, the expiration date for the activity is set to the current node time (or cluster time after this is available), plus the duration value. For example, the duration value bpelx:for="'PT5M'" specifies that the activity expects an inbound message to arrive no later than five minutes after the activity has started execution.

	
Note:

The timeout setting attribute does not apply to the onMessage branch of a pick activity because the same functionality currently exists with the onMessage and onAlarm branches of that activity.

Timeout durations can only be specified on the following:

	
Midprocess receive activities

	
Receive activities that do not specify createInstance="true"

A receive activity can only time out after it has been instantiated, which is not the case with entry receive activities.

14.3.2 Timeout Settings as an Absolute Date Time

You can specify a timeout setting as an absolute deadline for request-response receive activities. This type uses the syntax shown in Example 14-3.

Example 14-3 Timeout Settings as an Absolute Date Time

<receive bpelx:until="deadline-expr">
 standard-elements
</receive>

The expected expiration time for the bpelx:until attribute must be at least two seconds ahead of the current time. Otherwise, the timer scheduling is ignored and skipped, just as if the timer was never specified.

The bpelx:until attribute specifies a static value or an XPath expression that must evaluate to an XML schema type datetime or date. Only one of the bpelx:for or bpelx:until attributes is permitted for an activity.

XPath version 1.0 is not XML schema-aware. Therefore, none of the built-in functions of XPath version 1.0 can create or manipulate dateTime or date values. However, it is possible to perform one of the following:

	
Write a constant (literal) that conforms to XML schema definitions and use that as a deadline value

	
Extract a field from a variable (part) of one of these types and use that as a deadline value

XPath version 1.0 treats that literal as a string literal, but the result can be interpreted as a lexical representation of a dateTime or date value.

Once a valid datetime or date value has been retrieved, the expiration date for the activity is set to the specified date. For example, the datetime value bpelx:until="'2009-12-24T18:00+01:00'" specifies that the activity expects an inbound message to arrive no later than Dec 24, 2009 6:00 pm UTC+1 after the activity has started execution.

	
Note:

The timeout setting attribute does not apply to the onMessage branch of a pick activity because the same functionality currently exists with the onMessage and onAlarm branches of the pick activity.

Timeout dates can only be specified on the following activities:

	
Midprocess receives

	
Receive activities that do not specify createInstance="true"

A receive activity can only time out after it has been instantiated, which is not the case with entry receive activities.

14.3.3 Timeout Settings Computed Dynamically with an XPath Expression

The timeout setting for request-response receive and onMessage branches of pick activities can be set using an XPath expression instead of entering a static duration or datetime value. In this case, the value of the expression must return either:

	
A string that can be interpreted as a static XML duration or datetime value

	
An XML schema duration or datetime type

Example 14-4 shows the syntax for using XPath expressions.

Example 14-4 Timeout Settings Computed Dynamically with an XPath Expression

<bpelx:for="bpws:getVariableData('input', 'payload',
 '/tns:waitValue/tns:for')"/>

<bpelx:until="bpws:getVariableData('input', 'payload',
 '/tns:waitValue/tns:until')"/>

If the returned expression value cannot be interpreted as an XML schema duration or datetime type, an event is logged in the instance audit trail indicating that an invalid duration and datetime value was specified, and no activity expiration time can be set.

14.3.4 bpelx:timeout Fault Thrown During an Activity Timeout

If a valid XML schema duration or datetime value is returned from the bpelx:for or bpelx:until attribute, a bpelx:timeout fault is thrown from the timed-out activity. This fault can be caught by any catch or catchAll block and handled like a regular BPEL fault. The message of the fault is the name of the activity. In addition, an event is logged to the instance audit trail indicating that the activity has timed out because the expected callback message failed to be received before the timeout duration.

If the activity receives a callback from the partner before the timeout period, no fault is thrown. If a callback is received while the activity is being timed out, the callback message is not delivered to the activity and it is marked as canceled in the delivery message table. If a timeout action is attempted at the same time that a callback message is handled, the timeout action is ignored. As of 11g Release 1, instances are locked optimistically (as opposed to pessimistic locking in Release 10g). Therefore, the second action in line is still performed. However, the instance version check fails upon dehydration of the instance.

The bpelx:timeout fault can be thrown from a BPEL component if the component WSDL declares the fault on the operation. If the fault is not declared on the operation, the fault is converted into a FabricInvocationException, which is a runtime fault. This fault can be caught by any caller components (including BPEL components), but the fault type is no longer bpelx:timeout (however, the fault message string still indicates that the fault was originally a timeout fault).

14.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout

Once a bpelx:timeout fault is thrown from a timed-out activity, an event is logged to the instance audit trail indicating that the activity has timed out, as opposed to having received the expected callback message from its partner.

14.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration Alarm Table)

Activities that specify a valid timeout duration or datetime are likely implemented in a similar manner to wait and onAlarm activities with an expiration date for the underlying work item object. If the node that scheduled these activities with the scheduler goes down (either through graceful shutdown or abrupt termination), all these activities must be rescheduled with the scheduler upon server restart.

It is not possible to have a single node (the master node) in the cluster be responsible for rescheduling these activities upon node shutdown.

14.3.7 How to Set Timeouts for Request-Response Operations in Receive Activities

To set timeouts for request-response operations in receive activities:

	
In the SOA Composite Editor, double-click the BPEL process service component.

	
From the Component Palette, drag a receive activity into the designer.

	
Expand the activity.

	
Click the Timeout tab.

This tab enables you to set a timeout for request-response operations, as shown in Figure 14-5.

Figure 14-5 Timeout Tab

[image: Description of Figure 14-5 follows]

	
Specify appropriate values, and click Apply. For example:

	
To specify a timeout setting relative from when the activity is invoked, click the For button and enter a value or click the Expression button and specify an XPath expression.

	
To specify a timeout setting as an absolute deadline for a request-response operation, click the Until button and enter a value or click the Expression button and specify an XPath expression.

	
Click Apply, then OK.

14.3.8 What Happens When You Set Timeouts for Request-Response Operations in Receive Activities

The code segment in the .bpel file defines the specific operation after design completion.

For example, if you specified that the activity expects an inbound message to arrive no later than five minutes after the activity has started execution, the syntax displays as shown in Example 14-5.

Example 14-5 Static Duration

bpelx:for="'PT5M'"/>

For example, if you specified that the activity expects an inbound message to arrive no later than January 24, 2010 11:00 am UTC+1 after the activity has started execution, the syntax displays as shown in Example 14-6.

Example 14-6 datetime Value

bpelx:until="'2010-01-24T11:00:00-08:00'"/>

For example, if you specified an XPath expression to obtain a value for a timeout relative from when the activity is invoked, syntax similar to that shown in Example 14-7 can display.

Example 14-7 XPath Expression

bpelx:for="bpws:getVariableData('inputVariable','payload','/tns:waitValue/tns:for')"/>

14.4 Creating a Wait Activity to Set an Expiration Time

The wait activity allows a process to wait for a given time period or until a time limit has been reached. Exactly one of the expiration criteria must be specified. A typical use of this activity is to invoke an operation at a certain time. You typically enter an expression that is dependent on the state of a process.

When specifying a time period for waiting, note the following:

	
Wait times cannot be guaranteed if they are scheduled with other events that require processing. Due to this additional processing, the actual wait time can be greater than the wait time specified in the BPEL process.

	
Wait times of less than two seconds are ignored by the server. Wait times above two seconds, but less than one minute, may not get executed in the exact, specified time. However, wait times in minutes do execute in the specified time.

	
The default value of 2 seconds for wait times is specified with the MinBPELWait property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control Console. You can set this property to any value and the wait delay is bypassed for any waits less than MinBPELWait.

	
Note:

Quartz version 1.6 is supported for scheduling expiration events on wait activities.

14.4.1 How To Specify the Minimum Wait Time

You can specify the minimum time duration for a BPEL process to perform a wait that involves a dehydration. If the wait duration is less than or equal to the value, BPEL continues executing activities in the same thread and transaction.

	
From the SOA Infrastructure menu, select SOA Administration > BPEL Properties.

	
At the bottom of the BPEL Service Engine Properties page, click More BPEL Configuration Properties.

	
Click MinBPELWait.

	
In the Value field, specify a value in seconds.

	
Click Apply.

	
Click Return.

14.4.2 How to Create a Wait Activity

To create a wait activity:

	
From the Component Palette, drag a Wait activity into the designer.

	
Double-click the Wait activity to display the Wait dialog.

	
In the For section, enter the amount of time for which to wait.

	
In the Until section, select the deadline for which to wait, as shown in Figure 14-6.

Figure 14-6 Wait Dialog

[image: Description of Figure 14-6 follows]

14.4.3 What Happens When You Create a Wait Activity

Exactly one of the expiration criteria must be specified, as shown in Example 14-8.

Example 14-8 Wait Activity

<wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

14.5 Setting Timeouts for Synchronous Processes

For synchronous processes that connect to a remote database, you must increase the SyncMaxWaitTime timeout property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control Console.

For information on setting this property, see Section 7.3, "Specifying Timeout Values."

15 Coordinating Master and Detail Processes

This chapter describes how to coordinate master and detail processes in a BPEL process. This coordination enables you to specify the tasks performed by a master BPEL process and its related detail BPEL processes. This is sometimes referred to as a parent and child relationship.

This chapter includes the following sections:

	
Section 15.1, "Introduction to Master and Detail Process Coordinations"

	
Section 15.2, "Defining Master and Detail Process Coordination in Oracle JDeveloper"

15.1 Introduction to Master and Detail Process Coordinations

Master and detail coordinations consist of a one-to-many relationship between a single master process and multiple detail processes.

For example, assume a business process imports sales orders into an application. Each sales order consists of a header (customer information, ship-to address, and so on) and multiple lines (item name, item number, item quantity, price, and so on).

The following tasks are performed to execute the order:

	
Validate the header. If the header is invalid, processing stops.

	
Validate each line. If any lines are invalid, they are marked as invalid and processing stops.

	
Perform inventory checks for each item. If an item is not available, a work order is created to assemble it.

	
Stage items at the shipping dock after items for each line are available.

	
Ship the order to the customer.

To perform these tasks, create a master process to check and validate each header and multiple BPEL processes to check and validate each line item.

Potential coordination points are as follows:

	
The master process must signal the detail processes that header validation is successful and to continue processing.

	
Each detail process must signal the master process after line item validation is complete.

	
Each detail process must signal the master process after the line item is available in inventory.

	
After all line items are available, the master must signal each detail process to move its line item to the shipping dock (the dock may become too crowded if items are simply moved as soon as they are available).

	
After all lines have been moved, the master process must execute logic to ship the fulfilled order to the customer.

Figure 15-1 provides an overview of the header and line item validation coordination points between one master process and two detail processes.

Figure 15-1 Master and Detail Coordination Overview (One BPEL Process to Two Detail Processes)

[image: Description of Figure 15-1 follows]

The following BPEL process activities coordinate actions between the master and detail processes:

	
signal: notifies the other processes (master or detail) to continue processing

	
receive signal: waits until it receives the proper notification signal from the other process (master or detail) before continuing its processing

Both activities are coordinated with label attributes defined in the BPEL process files. Labels are declared per master process definition.

Figure 15-2 provides an overview of the BPEL process flow coordination.

Figure 15-2 Master and Detail Syntax Overview (One BPEL Process to One Detail Process)

[image: Description of Figure 15-2 follows]

As shown in Figure 15-2, each master and detail process includes a signal and receive signal activity. Table 15-1 describes activity responsibilities based on the type of process in which they are defined.

Table 15-1 Master and Detail Process Coordination Responsibilities

	If A...	Contains A...	Then...
	
Master process

	
Signal activity

	
The master process signals all of its associated detail processes at runtime.

	
Detail process

	
Receive signal activity

	
The detail process waits until it receives the signal executed by its master process.

	
Detail process

	
Signal activity

	
The detail process signals its associated master process at runtime that processing is complete.

	
Master process

	
Receive signal activity

	
The master process waits until it receives the signal executed by all of its detail processes.

If the signal activity executes before the receive signal activity, the state set by the signal activity is persisted and still effective for a later receive signal activity to read.

15.1.1 BPEL File Definition for the Master Process

The BPEL file for the master process defines coordination with the detail processes. The BPEL file shows that the master process interacts with the partner links of several detail processes. Example 15-1 provides an example.

Example 15-1 BPEL File Definition for the Master Process

<process name="MasterProcess"
. . .
. . .
 <partnerLinks>
 <partnerLink name="client"
 partnerLinkType="tns:MasterProcess"
 myRole="MasterProcessProvider"
 partnerRole="MasterProcessRequester"/>
 <partnerLink name="DetailProcess"
 partnerLinkType="dp:DetailProcess"
 myRole="DetailProcessRequester"
 partnerRole="DetailProcessProvider"/>
 <partnerLink name="DetailProcess1"
 partnerLinkType="dp1:DetailProcess1"
 myRole="DetailProcess1Requester"
 partnerRole="DetailProcess1Provider"/>
 <partnerLink name="DetailProcess2"
 partnerLinkType="dp2:DetailProcess2"
 myRole="DetailProcess2Requester"
 partnerRole="DetailProcess2Provider"/>
 </partnerLinks>

A signal activity shows the label value and the detail process coordinated with this master process. The label value (startDetailProcess) matches with the label value in the receive signal activity of all detail processes. This ensures that the signal is delivered to the correct process. There is one signal process per receive signal process. The master process signals all detail processes at runtime.

<bpelx:signal name="notifyDetailProcess" label="startDetailProcess" to="details"/>

Assign, invoke, and receive activities describe the interaction between the master and detail processes. This example shows interaction between the master process and one of the detail processes (DetailProcess). Similar interaction is defined in this BPEL file for all detail processes.

In the invoke activity, ensure that the Invoke As Detail checkbox is selected.

Figure 15-3 Invoke As Detail Checkbox

[image: Description of Figure 15-3 follows]

This selection creates the partner process instance (DetailProcess) as a detail instance. You must select this checkbox in the invoke activity of the master process for each detail process with which to interact. Example 15-2 provides an example of the BPEL file contents after you select the Invoke As Detail checkbox.

Example 15-2 bpelx:invokeAsDetail Attribute

<assign>
 <copy>
 <from variable="input" part="payload" query="/tns:processInfo/tns:value"/>
 <to variable="detail_input" part="payload" query="/dp:input/dp:number"/>
 </copy>
</assign

<invoke name="receiveInput" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:invokeAsDetail="true"/>

<!-- receive the result of the remote process -->
<receive name="receive_DetailProcess" partnerLink="DetailProcess"
 portType="dp:DetailProcessCallback"
 operation="onResult" variable="detail_output"/>

The master BPEL process includes a receive signal activity. This activity indicates that the master process waits until it receives a signal from all of its detail processes. The label value (detailProcessComplete) matches with the label value in the signal activity of each detail process. This ensures that the signal is delivered to the correct process. Example 15-3 provides an example.

Example 15-3 Receive Signal Activity

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess"
 label="detailProcessComplete"
 from="details"/>

15.1.1.1 Correlating a Master Process with Multiple Detail Processes

For environments in which you have one master and multiple detail processes, use the bpelx:detailLabel attribute for signal correlation. Example 15-4 shows how to use this attribute.

The first invoke activity invokes the DetailsProcess detail process and associates it with a label of detailProcessComplete0.

Example 15-4 First Invoke Activity

<invoke name="invokeDetailProcess" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:detailLabel="detailProcessComplete0"
 bpelx:invokeAsDetail="true"/>

The second invoke activity invokes the DetailsProcess1 detail process and associates it with a label of detailProcessComplete1. Example 15-5 provides an example.

Example 15-5 Second Invoke Activity

<invoke name="invokeDetailProcess1" partnerLink="DetailProcess1"
 portType="dp1:DetailProcess1"
 operation="initiate"
 inputVariable="detail_input1"
 bpelx:detailLabel="detailProcessComplete1-2"
 bpelx:invokeAsDetail="true"/>

The third invoke activity invokes the DetailsProcess2 detail process again through a different port and with a different input variable. It associates the DetailsProcess2 detail process with a label of detailProcessComplete1-2:

Example 15-6 Third Invoke Activity

<invoke name="invokeDetailProcess2" partnerLink="DetailProcess2"
 portType="dp2:DetailProcess2"
 operation="initiate"
 inputVariable="detail_input2"
 bpelx:detailLabel="detailProcessComplete1-2"
 bpelx:invokeAsDetail="true"/>

The receive signal activity of the master process shown in Example 15-7 waits for a return signal from detail process DetailProcess0.

Example 15-7 Receive Signal Activity

<!-- This is a receiveSignal waiting for 1 child to signal back -->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0"
label="detailProcessComplete0" from="details"/>

The second receive signal activity of the master process shown in Example 15-8 also waits for a return signal from DetailProcess1 and DetailProcess2.

Example 15-8 Second Receive Signal Activity

<!-- This is a receiveSignal waiting for 2 child (detail) processes to signal back -->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess1-2"
 label="detailProcessComplete1-2" from="details"/>

	
Note:

If there is only one receive signal activity in the BPEL process, do not specify the bpelx:detailLabel attribute in the invoke activity. In these situations, a default bpelx:detailLabel attribute is assumed and does not need to be specified.

15.1.2 BPEL File Definition for Detail Processes

The BPEL process file of each detail process defines coordination with the master process.

A receive signal activity indicates that the detail process shown in Example 15-9 waits until it receives a signal executed by its master process. The label value (startDetailProcess) matches with the label value in the signal activity of the master process.

Example 15-9 startDetailProcess Label Value

<bpelx:receiveSignal name="waitForNotifyFromMasterProcess"
 label="startDetailProcess" from="master"/>

A signal activity indicates that the detail process shown in Example 15-10 signals its associated master process at runtime that processing is complete. The label value (detailProcessComplete) matches with the label value in the receive signal activity of each master process.

Example 15-10 Signal Activity

<bpelx:signal name="notifyMAsterProcess" label="detailProcessComplete"
 to="master"/>

15.2 Defining Master and Detail Process Coordination in Oracle JDeveloper

This section provides an overview of how to define master and detail process coordination in Oracle BPEL Designer. In this example, one master process and one detail process are defined.

	
Note:

This section only describes the tasks specific to master and detail process coordination. It does not describe the standard activities that you define in a BPEL process, such as creating variables, creating assign activities, and so on.

15.2.1 How to Create a Master Process

To create a master process:

	
In the SOA Composite Editor, create a BPEL process service component. For this example, the process is named MasterProcess.

	
Double-click the MasterProcess BPEL process.

	
In the Component Palette, expand BPEL Activities.

	
Drag a Signal activity into the designer.

	
Double-click the Signal activity.

This activity signals the detail process to perform processing at runtime.

	
Enter the details described in Table 15-2:

Table 15-2 Signal Dialog Fields and Values

	Field	Value
	
Name

	
Enter a name (for this example, contactDetailProcess).

	
Label

	
Enter a label name (for this example, beginDetailProcess). This label must match the receive signal activity label you set in the detail process in Step 5.

	
To

	
Select details as the type of process to receive this signal.

Figure 15-4 shows the Signal dialog.

Figure 15-4 Signal Dialog

[image: Description of Figure 15-4 follows]

	
Click OK.

	
Drag a Receive Signal activity into the designer.

	
Double-click the Receive Signal activity.

This activity enables the master process to wait until it receives the signal executed by all of its detail processes.

	
Enter the details shown in Table 15-3:

Table 15-3 Receive Signal Dialog Fields and Values

	Field	Value
	
Name

	
Enter a name (for this example, waitForDetailProcess).

	
Label

	
Enter a label name (for this example, completeDetailProcess). This label must match the signal activity label you set in the detail process in Step 9.

	
To

	
Select details as the type of process from which to receive the signal.

Figure 15-5 shows the Receive Signal dialog.

Figure 15-5 Receive Signal Dialog

[image: Description of Figure 15-5 follows]

	
Click OK.

The master process has now been designed to:

	
Signal the detail process to perform processing at runtime.

	
Wait until it receives the signal executed by the detail process.

15.2.2 How to Create a Detail Process

To create a detail process:

	
In the SOA Composite Editor, create a second BPEL process service component. For this example, the process is named DetailProcess.

	
Double-click the DetailProcess BPEL process.

	
Drag a Receive Signal activity into your BPEL process service component.

	
Double-click the Receive Signal activity.

This activity enables the detail process to wait until it receives the signal executed by its master process.

	
Enter the details shown in Table 15-4:

Table 15-4 Receive Signal Dialog Fields and Values

	Field	Value
	
Name

	
Enter a name (for this example, WaitForContactFromMasterProcess).

	
Label

	
Enter a label name (for this example, beginDetailProcess). This label must match the signal activity label you set in the master process in Step 6.

	
To

	
Select master as the type of process from which to receive the signal.

Figure 15-6 shows the Receive Signal dialog.

Figure 15-6 Receive Signal Dialog

[image: Description of Figure 15-6 follows]

	
Click OK.

	
Drag a Signal activity into the designer.

	
Double-click the Signal activity.

This activity enables the detail process to signal its associated master process at runtime that processing is complete.

	
Enter the details described in Table 15-5:

Table 15-5 Signal Dialog Fields and Values

	Field	Value
	
Name

	
Enter a name (for this example, contactMasterProcess).

	
Label

	
Enter a label name (for this example, completeDetailProcess). This label must match the receive signal activity label you set in the master process in Step 10.

	
To

	
Select master as the destination.

Figure 15-7 shows the Signal dialog.

Figure 15-7 Signal Dialog

[image: Description of Figure 15-7 follows]

	
Click OK.

The detail process has now been designed to:

	
Wait until it receives the signal executed by its master process.

	
Signal the master process at runtime that processing is complete.

15.2.3 How to Create an Invoke Activity

To create an invoke activity:

	
Return to the MasterProcess master process.

	
Drag an Invoke activity into your BPEL process service component.

	
Double-click the Invoke activity.

	
Select the DetailProcess BPEL process you created in Step 1 as the partner link.

	
Complete all remaining fields in the Invoke dialog, and click OK.

	
In the designer, click Source.

	
Select the Invoke As Detail checkbox in the invoke activity. The BPEL file appears as shown in Example 15-11.

Example 15-11 bpelx:invokeAsdetail Attribute

<invoke name="MyInvoke" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:invokeAsDetail name="true"/>

This attribute creates the partner process (DetailProcess) as a detail instance.

	
If this is an environment in which one master process is interacting with multiple detail processes, perform the following tasks:

	
Specify the bpelx:detailLabel attribute for correlating with the receive signal activity, as shown in Example 15-12.

Example 15-12 bpelx:detailLabel Attribute

<invoke name="MyInvoke" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"/>
 bpelx:detailLabel="detailProcessComplete0"
 <bpelx:invokeAsdetail name="true"/>

	
Specify the same label value of detailProcessComplete0 in the receive signal activity of the master process, as shown in Example 15-13.

Example 15-13 detailProcessComplete0 Label Value

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0-1"
label="detailProcessComplete0" from="details"/>

	
Repeat these steps as necessary for additional detail processes, ensuring that you specify a different label value.

	
From the File main menu, select Save All.

Master and detail coordination design is now complete.

16 Customizing SOA Composite Applications

This chapter describes how to customize SOA composite applications with the customization feature available with a BPEL process service component.

This chapter includes the following section:

	
Section 16.1, "Introduction to Customizing SOA Composite Applications"

16.1 Introduction to Customizing SOA Composite Applications

This section describes the life cycle for customizing SOA composite applications. For example, assume the following organizations require use of the same composite, but with slight modifications:

	
A core applications development team

	
A vertical applications team

	
A customer

The core applications development team creates a base customizable composite and delivers it to a vertical applications team that customizes it for a certain industry (for example, telecommunications). The tailored solution is then sold to a telecommunications customer that further customizes the composite for their specific geographic business needs. Essentially, there is a base composite and several layers of customized composites. At a later time in the composite life cycle, the core applications development team creates the next version of the base composite, triggering an upgrade cycle for the vertical applications team and the customer.

16.1.1 How To Create the Customizable Composite

This section provides an overview of the steps required for creating the customizable, base SOA composite application.

To create the customizable composite:

	
Start Oracle JDeveloper and select the Default Role.

	
From the File menu, select New > Applications > SOA Application, and click OK.

	
Follow the steps in the Create SOA Application wizard.

	
On the Create SOA Application dialog, select both Composite With BPEL and the Customizable checkbox.

	
Design the BPEL process.

	
Customize the BPEL process by creating a scope activity. This action is required because by default the BPEL process is not customizable.

	
Note:

You cannot customize mediator, human workflow, or business rules service components.

	
Right-click the scope and select Customizable.

	
In the Application Navigator, expand Application Resources > Descriptors > ADF META_INF.

	
Open the adf-config.xml file.

	
Click the Add icon to add the required customization classes, as shown in Figure 16-1.

In real environments, the customization classes are provided by the core applications team. When you use your own customization classes, you must add your customization class JAR file to your project to make the classes available for the adf-config.xml file.

Figure 16-1 Customization Classes

[image: Description of Figure 16-1 follows]

	
Right-click the SOA project and select Deploy. This creates a JAR file package. This JAR is also known as a SOA archive (SAR).

	
Check the application into a source code control system. The file is now ready for delivery to the vertical applications team.

For information on how to write customization classes, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

16.1.2 How To Customize the Vertical Application

This section provides an overview of the steps required for customizing the base SOA composite application.

To customize the vertical application:

	
Open the CustomizationLayerValues.xml file in $JDEV_HOME/jdeveloper/jdev and add the layer values for the customization layers. For example, add the value Communications to the industry layer.

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="industry">
 <cust-layer-value value="communications" display-name="Communications"/>
 </cust-layer>
</cust-layers>

	
Start Oracle JDeveloper and select the Default Role.

	
Create a new SOA application with a different name than the core application.

	
From the File menu, select Import > SOA Archive Into SOA Project.

	
Click Browse to select the composite archive JAR file created by the core application team in Section 16.1.1, "How To Create the Customizable Composite."

	
In the Composite Name field, enter a different name than the core SOA project.

	
Note:

Do not select any SOA project. You must create a new SOA project for the JAR file that you import.

	
Select the Import for Customization checkbox.

	
From the Tools menu, select Preferences -> Roles > Customization Developer.

	
Restart Oracle JDeveloper.

The Customization Context dialog displays the available customization layers and layer values.

	
Select a layer and value to customize, as shown in Figure 16-2 (for this example, layer industry and value Communications are selected).

Figure 16-2 Customization Context

[image: Description of Figure 16-2 follows]

	
In the SOA Composite Editor, double-click the BPEL process to access Oracle BPEL Designer.

You can only edit scope activities that have been set to customizable. In the example shown in Figure 16-3, the core applications team set only one scope to customizable. The other activities in the BPEL process are disabled and cannot be edited.

Figure 16-3 One Customizable Scope

[image: Description of Figure 16-3 follows]

	
Right-click the SOA project and select Deploy to create a JAR file of the customized composite (SAR).

Since deployment is invoked with the customization role enabled, the base composite with the appropriate layers based on the current customization context is automatically merged.

	
Check in the application to a source code control system.

The JAR file contains a merged composite that in turn acts as a base process for the next level of customization. The JAR file can now be delivered to the customer.

16.1.3 How to Customize the Customer Version

This section provides an overview of the steps required for customizing the customer version of the SOA composite application.

How to customize the customer version:

	
Open the CustomizationLayerValues.xml file in $JDEV_HOME/jdeveloper/jdev and add the layer values for the customization layers. For example, add the values North America and Asia Pacific to the site layer.

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="site">
 <cust-layer-value value="communications" display-name="North America"/>
 <cust-layer-value value="communications" display-name="Asia Pacific"/>
 </cust-layer>
</cust-layers>

	
Start Oracle JDeveloper and select the Default Role.

	
Create a new SOA application with a different name than the core application or customized application.

	
From the File menu, select Import > SOA Archive Into SOA Project.

	
Click Browse to select the composite archive JAR file created by the vertical applications team in Section 16.1.2, "How To Customize the Vertical Application."

	
Select the Import for Customization checkbox.

	
From the Tools menu, select Preferences -> Roles > Customization Developer.

	
Restart Oracle JDeveloper.

The Customization Context dialog displays the available customization layers and layer values.

	
Select a layer and value to customize, as shown in Figure 16-4 (for this example, layer site and value North America are selected).

Figure 16-4 Customization Context

[image: Description of Figure 16-4 follows]

	
Customize the BPEL process.

	
Right-click the SOA project and select Deploy to create a JAR file (SAR) for the North American region.

	
Check the application into a source code control system.

16.1.4 How to Upgrade the Composite

This section provides an overview of the steps required for upgrading the SOA composite application to the next version.

To upgrade the composite:

16.1.4.1 Core Application Team

The core application team fixes bugs, makes product enhancements. and creates the next version of the composite.

	
Check out the application created in Section 16.1.1, "How To Create the Customizable Composite" from source control.

	
Start Oracle JDeveloper and select the Default Role.

	
Make bug fixes and product enhancements.

	
Deploy the composite to create the next revision of the JAR file.

	
Deliver the JAR file to the vertical applications team.

16.1.4.2 The Vertical Application Team

The vertical applications team customizes the new base composite to create a version of the JAR file.

	
Check out the application created in Section 16.1.2, "How To Customize the Vertical Application" from source control.

	
Start Oracle JDeveloper and select the Default Role.

	
Open the checked-out application.

	
Select the project node in the Application Navigator to set the current project context. This is important because the import in the next step imports the SOA archive into the selected project to upgrade the base.

	
From the File menu in Oracle JDeveloper, import the new revision of the JAR file created in Section 16.1.4.1, "Core Application Team."

	
From the Tools menu, select Preferences -> Roles > Customization Developer.

	
Restart Oracle JDeveloper.

	
In the Customization Context dialog, select a layer and value to customize (for example, select layer industry and value Communications).

	
Open the BPEL process to see if the new base composite can be merged with layers for the above selected context.

	
Review the log window for potential warnings and errors.

	
If required, fix errors and warnings by modifying the process. This edits the layers behind the scenes.

	
Deploy the composite to create the next revision of the customized JAR file and deliver it to the customer for an upgrade.

16.1.4.3 The Customer

The customer follows the same procedures as the vertical applications team in Section 16.1.4.2, "The Vertical Application Team" to apply their layers to the new base composite.

17 Using the Notification Service

This chapter describes how to send notifications from a BPEL process using a variety of channels. A BPEL process can be designed to send email, voice message, instant messaging (IM), or short message service (SMS) notifications. A BPEL process can also be designed to consider an end user's channel preference at runtime for selecting the notification channel.

This chapter includes the following sections:

	
Section 17.1, "Introduction to the Notification Service"

	
Section 17.2, "Introduction to Notification Channel Setup"

	
Section 17.3, "Selecting Notification Channels During BPEL Process Design"

	
Section 17.4, "Allowing the End User to Select Notification Channels"

	
Note:

The fax and pager notification channels are not supported in 11g Release 1 (11.1.1).

17.1 Introduction to the Notification Service

Various scenarios may require sending email messages or other types of notifications to users as part of the process flow. For example, certain types of exceptions that cannot be handled automatically may require manual intervention. In this case, a BPEL process can use the notification service to alert users by voice, IM, SMS, or email.

The contact information (email address, phone number, and so on) of the recipient is either static (such as admin@yourcompany.com) or obtained dynamically during runtime. To obtain the contact information dynamically, XPath expressions can retrieve it from the identity store (LDAP) or extract it from the BPEL payload.

This chapter uses the following terms:

	
Notification

An asynchronous message sent to a user by a specific channel. The message can be sent as an email, voice, IM, or SMS message.

	
Actionable notification

A notification to which the user can respond. For example, workflow sends an email to a manager to approve or reject a purchase order. The manager approves or rejects the request by replying to the email with appropriate content.

	
Human task email notification layer

Sends email notifications directly from a BPEL process or implicitly from the human task part of a BPEL process. Implicit notifications are modeled from the Human Task Editor.

For sending email notifications directly from a BPEL process, you must explicitly specify the user information in the BPEL process and can be inside or outside of a human task scope.

For sending email notifications implicitly from the human task part of a BPEL process, you only specify the recipient based on the relationship of the user with regards to the task (that is, the creator, assignee, and so on).

	
Note:

Implicit notifications are processed through more layers of code than explicit notifications. If explicit notifications are functioning correctly, it does not mean that implicit notifications also function correctly.

	
Oracle User Messaging Service

Oracle User Messaging Service is a new feature for release 11g. The BPEL notification service uses the underlying infrastructure provided by Oracle User Messaging Service to send notifications.

Oracle User Messaging Service also provides the user preference infrastructure for getting the end user's preferred channel during runtime.

For more information on the Oracle User Messaging Service, see Appendix 59, "Oracle User Messaging Service."

Figure 17-1 shows the Oracle User Messaging Service interfaces and supported service types.

Figure 17-1 Service Interfaces and Supported Service Types

[image: Description of Figure 17-1 follows]

For more information about notifications, see the following section:

	
Section 32.2, "Notifications from Human Workflow"

	
Section 28.3.10, "How to Specify Participant Notification Preferences" for instructions on specifying email notifications in the Human Task Editor

	
Part XI, "Using Oracle User Messaging Service"

17.2 Introduction to Notification Channel Setup

Notification setup is a multiple-step process that involves three user interface tools. Table 17-1 provides an overview of this process, including the task to perform, the tool to use, and the documentation to which to refer for more specific details.

Table 17-1 Notification Tasks

	Task	Description	User Interface	Described In...
	
Select a channel for sending notifications in a SOA composite application.

	
Select a method for sending notifications:

	
Explicitly select and configure an email, IM, SMS, or voice channel.

or

	
Do not explicitly select a notification channel, but simply select that a notification must be sent. Channel selection occurs later in the User Messaging Preferences user interface.

	
Selected and configured by the BPEL process designer in Oracle BPEL Designer

	
Section 17.3, "Selecting Notification Channels During BPEL Process Design"

or

Section 17.4, "Allowing the End User to Select Notification Channels"

	
Configure the driver for the notification channel

	
You configure drivers on the same Oracle WebLogic Server on which you deploy the SOA composite application. This action enables participants to receive and forward notifications. Driver support is provided for email, IM, SMS, and voice channels.

	
Configured by the administrator in Oracle Enterprise Manager Fusion Middleware Control Console

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite

	
Configure the notification mode and actionable accounts for human workflows

	
If you are using notifications with human workflow, you configure the notification mode and actionable account for email.

	
Configured by the administrator in Oracle Enterprise Manager Fusion Middleware Control Console

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite

	
Register the devices used to access messages by specifying user preferences

	
This action enables workflow participants to receive notification messages. For example, the end user registers email clients and specifies the message content to receive and the channel to use for receiving messages.

If no channel is specified, email is used by default. Note that the preferences set in this application are applicable only to that specific end user, and not to other users.

	
Registered by the end user in the User Messaging Preferences user interface. You can access this interface by selecting Preferences > Notification in Oracle BPM Worklist.

	
Part XI, "Using Oracle User Messaging Service"

17.3 Selecting Notification Channels During BPEL Process Design

Oracle JDeveloper includes the email, IM, SMS, and voice channel notification channels in the Component Palette. You can set the exact notification channels to use during design time. For example, a BPEL process can be designed to use the following notification channels:

	
If an expense report amount is less than $1000, an email notification channel is used.

	
If an expense report amount is between $1000 and $2000, an SMS notification channel is used.

	
If an expense report amount is more than $2000, a voice notification channel is used.

To select the notification channel during BPEL process design:

	
From the Component Palette list, select BPEL.

	
Expand BPEL Activities and Components.

	
From the Component Palette, drag a notification channel into the designer:

	
Email

	
IM

	
SMS

	
Voice

	
See the section in Table 17-2 based on the notification channel you selected.

Table 17-2 Notification Channels

	If You Selected...	See...
	
Email

	
Section 17.3.1, "How To Configure the Email Notification Channel" to configure email notification

	
IM

	
Section 17.3.2, "How to Configure the IM Notification Channel" to configure IM notification

	
SMS

	
Section 17.3.3, "How to Configure the SMS Notification Channel" to configure SMS notification

	
Voice

	
Section 17.3.4, "How to Configure the Voice Notification Channel" to configure voice message notification

	
Note:

If you delete an email, voice, SMS, or IM activity, any partner link with which it is integrated is not automatically deleted.

17.3.1 How To Configure the Email Notification Channel

When you select Email from the Component Palette, the Email dialog appears. Figure 17-2 shows the required email notification parameters.

Figure 17-2 Email Dialog

[image: Description of Figure 17-2 follows]

To configure the email notification channel:

	
Enter information for each field as described in Table 17-3.

	
Note:

For the To, CC, and Bcc fields, separate multiple addresses with a semicolon (;).

Table 17-3 Email Notification Parameters

	Name	Description
	
From Account

	
The name of the account used to send this message. The default account is named Default and is editable from the Workflow Notification Properties page in Oracle Enterprise Manager Fusion Middleware Control Console. To add additional accounts, you must use the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control Console.

For information on editing this property in Oracle Enterprise Manager Fusion Middleware Control Console, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

	
To

	
The email address to which the message is to be delivered. This can be one of the following:

	
A static email address entered at the time the message is created

	
An email address retrieved using the identity service

	
A dynamic address from the payload

The XPath Expression Builder can get the dynamic email address from the input. See Section 17.3.5, "How to Select Email Addresses and Telephone Numbers Dynamically."

	
CC and Bcc

	
The email addresses to which the message is copied and blind copied. This can be a static or dynamic address, as described for the To address.

	
Reply To

	
The email address to use for replies. This can be a static or dynamic address, as described for the To address.

	
Subject

	
The subject of the email message. This can be plain text or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify.

	
Body

	
The message body of the email message. This can be plain text, HTML, or dynamic text, as described for the Subject parameter.

	
Multipart message with n attachments

	
Select to specify email attachments. See Section 17.3.1.1, "Setting Email Attachments."

The number of attachments if Multipart message is selected. The number does not include the body. For example, if you have a body and one attachment, specify 1.

	
Click OK.

The BPEL fragment that invokes the notification service to send the email message is created.

	
See Table 17-1 for additional configuration procedures to perform.

The WebLogic Fusion Order Demo application uses an email activity in the Scope_NotifyCustomerofCompletion scope. The Oracle User Messaging Service sends the email to a customer when an order is fulfilled. The following details are specified in the Email dialog:

	
An XPath expression specifies the customer's email address.

bpws:getVariableData('gCustomerInfoVariable','parameters','/ns3:findCustome
rInfoVO1CustomerInfoVOCriteriaResponse/ns3:result/ns2:ConfirmedEmail')

	
A combination of manually-entered text and an XPath expression specifies the ID of the order:

Order with id
<%bpws:getVariableData('gOrderInfoVariable','/ns2:orderInfoVOSDO/ns2:OrderI
d')%> shipped!

	
A combination of manually-entered text and an XPath expression specifies the body of the email message:

Dear<%bpws:getVariableData('gCustomerInfoVariable','parameters','/ns6:findCusto
merInfoVO1CustomerInfoVOCriteriaResponse/ns6:result/ns4:FirstName')%>,
your order has been shipped.

Figure 17-3 provides details.

Figure 17-3 Email Dialog

[image: Description of Figure 17-3 follows]

17.3.1.1 Setting Email Attachments

When you send email attachments, you mark the email as a multipart message and set the number of attachments to send. The number of attachments does not need to include the body plus the attachments. For example, to send an email message with one file as an attachment, set the number to 1. When sending attachments, set the content body to have a MultiPart element that contains as many BodyPart elements as the number of attachments. Each BodyPart has three elements: ContentBody, MimeType, and BodyPartName. All three elements must be set for each attachment.

To add an attachment to an email message:

	
From the Component Palette, select Email as the notification channel.

	
Specify values for To, Subject, and Body.

	
Select Multipart message and enter 1 for the number of attachments. (Note that the number of attachments does not need to include the body part.)

The BPEL fragment with an assign activity with multiple copy rules is generated. One of the copy rules copies the attachment.

	
Click OK.

	
Expand the email activity.

Note that an assign activity named EmailParamsAssign appears.

Each body part has three attributes: ContentBody, MimeType, and BodyPartName. Default names, MIME types, and contents are generated for each attachment in this assign activity.

	
Double-click EmailParamsAssign.

Note the default settings in EmailParamsAssign.

Figure 17-4 EmailParamsAssign Assign Activity

[image: Description of Figure 17-4 follows]

	
Change the default values for ContentBody, MimeType, and BodyPartName to values specific to your environment.

	
Save your changes.

For more information about sending attachments using email, see the following documentation:

	
Appendix J, "Oracle User Messaging Service Applications"

	
The notification-101 sample, which is available at the following URL:

http://www.oracle.com/technology/sample_code/products/hwf

17.3.1.2 Formatting the Body of an Email Message as HTML

You can format the body of an email message as HTML rather than as straight text. To perform this action, apply an XSLT transform to generate the email body. Add in the XSLT tag you want to use. Tools such as XMLSpy can provide assistance in writing and testing the XSLT. The MIME type should be string('text/html;charset=UTF-8').

The email notification assignment looks as shown in Example 17-1:

Example 17-1 Email Notification Assignment

<copy>
 <from
expression="ora:processXSLT('TransformPositionSummary7.xslt',bpws:
getVariableData('ClientPositionSummary'))"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns9:Content/ns9:ContentBody"/>
</copy>

17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function

If the HTML for the message content of an email activity is generated dynamically, (as with XSLT, file read, and so on), it must be wrapped in a CDATA function. This prevents conflicts between the XML/HTML content of the message body and BPEL's internal XML data structures.

For example, assume you use the append operation shown in Example 17-2 for the message content inside the email activity:

Example 17-2 Message Content Inside an Email Activity

<bpelx:append>
 <bpelx:from
 expression="ora:processXSLT('xsl/email.xslt',bpws:getVariableData('Variable_1'
))"/>
 <bpelx:to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[1]
 /ns1:ContentBody"/>
</bpelx:append>

For this to work correctly, you must pass the output of the processXSLT() function to the CDATA() function, as shown in Example 17-3.

Example 17-3 CDATA() Function

<%ora:toCDATA(xdk:processXSLT('xsl/email.xslt',
 bpws:getVariableData('inputVariable','payload','/client:process/client:input')
))%>

17.3.2 How to Configure the IM Notification Channel

When you drag IM from the Component Palette, the IM dialog appears. Figure 17-5 shows the required IM notification parameters.

Figure 17-5 IM Dialog

[image: Description of Figure 17-5 follows]

To configure the IM notification channel:

	
Enter information for each field as described in Table 17-4.

Table 17-4 IM Notification Parameters

	Name	Description
	
To

	
The IM address to which the message is to be delivered. Enter the address manually or click the XPath Expression Builder icon to display the Expression Builder dialog to dynamically enter an account.

	
Body

	
The IM message body. This can be plain text or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify.

	
Click OK.

The BPEL fragment that invokes the notification service for IM notification is created.

	
See Table 17-1 for additional configuration procedures to perform.

17.3.3 How to Configure the SMS Notification Channel

When you select SMS from the Component Palette, the SMS dialog appears. Figure 17-6 shows the required SMS notification parameters.

Figure 17-6 SMS Dialog

[image: Description of Figure 17-6 follows]

To configure the SMS notification channel:

	
Enter information for each field as described in Table 17-5.

Table 17-5 SMS Notification Parameters

	Name	Description
	
From Number

	
The telephone number from which to send the SMS notification. This can be a static telephone number entered at the time the message is created or a dynamic telephone number from the payload. The XPath Expression Builder can get the dynamic telephone number from the input. See Section 17.3.5, "How to Select Email Addresses and Telephone Numbers Dynamically."

	
Telephone Number

	
Select a method for specifying the telephone number to which to deliver the message:

	
A static telephone number entered at the time the message is created.

	
A telephone number retrieved using the identity service.

	
A dynamic telephone number from the payload. The XPath Expression Builder can get the dynamic telephone number from the input.

	
Subject

	
The subject of the SMS message. This can be plain text or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify.

	
Body

	
The SMS message body. This must be plain text. This can be plain text or dynamic text as described for the Subject parameter.

	
Click OK.

The BPEL fragment that invokes the notification service for SMS notification is created.

	
See Table 17-1 for additional configuration procedures to perform.

17.3.4 How to Configure the Voice Notification Channel

When you select Voice from the Component Palette, the Voice dialog appears. Figure 17-7 shows the required voice notification parameters.

Figure 17-7 Voice Dialog

[image: Description of Figure 17-7 follows]

To configure the voice notification channel:

	
Enter information for each field as described in Table 17-6.

Table 17-6 Voice Notification Parameters

	Name	Description
	
Telephone Number

	
The telephone number to which the message is to be delivered. Specify the number through one of the following methods:

	
A static telephone number entered at the time the message is created

	
A telephone number retrieved using the identity service

	
A dynamic telephone number from the payload

The XPath Expression Builder can retrieve the dynamic telephone number from the input.

	
Body

	
The message body. This can be plain text, XML, or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify.

	
Click OK.

The BPEL fragment that invokes the notification service for voice notification is created.

	
See Table 17-1 for additional configuration procedures to perform.

17.3.5 How to Select Email Addresses and Telephone Numbers Dynamically

You may need to set email addresses or telephone numbers dynamically based on certain process variables. You can also look up contact information for a specific user using the built-in XPath functions for the identity service:

	
To get the email address or telephone number directly from the payload, use the following XPath expression:

bpws:getVariableData('<variable name>', '<part>','input_xpath_to_get_an_address')

For example, to get the email address from variable inputVariable and part payload based on XPath /client/BPELProcessRequest/client/mail:

<%bpws:getVariableData('inputVariable','payload','/client:BPELProcessRequest/
client:email')%>

You can use the XPath Expression Builder to select the function and enter the XPath expression to get an address from the input variable.

	
To get the email address or telephone number dynamically from the underlying identity store (LDAP) use the following XPath expression:

ids:getUserProperty(userName, attributeName[, realmName])

The first argument evaluates to the user ID. The second argument is the property name. The third argument is the realm name. Table 17-7 lists the property names that can be used in this XPath function.

Table 17-7 Properties for the Dynamic User XPath Function

	Property Name	Description
	
mail

	
Look up a user's email address.

	
telephoneNumber

	
Look up a user's telephone number.

	
mobile

	
Look up a user's mobile telephone number.

	
homephone

	
Look up a user's home telephone number.

The following example gets the email address of the user identified by the variable inputVariable, part payload, and queries /client:BPELProcessRequest/client:userID:

ids:getUserProperty(bpws:getVariableData('inputVariable',
'payload','/client:BPELProcessRequest/client:userid'), 'mail')

If realmName is not specified, then the default realm name is used. For example, if the default realm name is jazn.com, the following XPath expression searches for the user in the jazn.com realm:

ids:getUserProperty('jcooper', 'mail');

The following XPath expression provides the same functionality as the one above. In this case, however, the realm name of jazn.com is explicitly specified:

ids:getUserProperty('jcooper', 'mail', 'jazn.com');

17.3.6 How to Select Notification Recipients by Browsing the User Directory

You can select users or groups in Oracle JDeveloper to whom you want to send notifications by browsing the user directory (for example, Oracle Internet Directory) that is configured for use with Oracle BPEL Process Manager. Click the Search icon to the right of the following fields to open the Identity Lookup dialog:

	
To field on the Email and IM dialogs

	
Telephone Number field on the SMS and Voice dialogs

For more information about using the Identity Lookup dialog, see Chapter 32, "Introduction to Human Workflow Services"

17.4 Allowing the End User to Select Notification Channels

You can design a BPEL process in which you do not explicitly select a notification channel during design time, but simply indicate that a notification must be sent. The channel to use for sending notifications is resolved at runtime based on preferences defined by the end user in the User Messaging Preferences user interface of the Oracle User Messaging Service. This moves the responsibility of notification channel selection from the BPEL process designer in Oracle BPEL Designer to the end user. If the end user does not select a preferred channel or rule, email is used by default for sending notifications to that user. Regardless of who selects the channel to use, channel use is still based on the driver installation and configuration performed in the Oracle User Messaging Service section of Oracle Enterprise Manager Fusion Middleware Control Console by the administrator.

For example, an end user may set their preferences as follows:

	
If an expense report amount is less than $153, they receive an email notification.

	
If an expense report amount is between $153 and $3678, they receive an SMS notification.

	
If an expense report amount is more than $3678, they receive a voice notification.

	
Note:

You can also set user preferences for sending notifications in human workflows in the Human Task Editor. Set these preferences in the Notification Filters part of the Notification Settings section. These preferences are used to evaluate rules in the task. For more information, see Section 28.3.10.7, "Sending Task Attachments with Email Notifications."

For more information about the User Messaging Preferences user interface, see Chapter 63, "User Messaging Preferences."

17.4.1 How to Allow the End User to Select Notification Channels

To allow the end user to select notification channels:

	
From the Component Palette list, select BPEL.

	
Expand BPEL Activities and Components.

	
From the Component Palette, drag the User Notification activity into the designer. Figure 17-8 shows the required user notification parameters.

Figure 17-8 User Notification Dialog

[image: Description of Figure 17-8 follows]

	
Enter information for each field as described in Table 17-8.

Table 17-8 User Notification Parameters

	Name	Description
	
To

	
Enter a valid user for the recipient of this notification message through one of the following methods:

	
Enter the user manually

	
Click the Search icon to display a dialog for selecting a user configured through the identity service. The identity service enables the lookup of user properties, roles, and group memberships.

	
Click the XPath Expression Builder icon to display the Expression Builder dialog to dynamically enter a user.

Note: You must specify a user name (for example, jcooper) instead of an address.

	
Subject

	
Enter a message name or click the XPath Expression Builder icon to display the Expression Builder dialog to dynamically enter a subject. If notification is sent through email, this field is used during runtime. This field is ignored if notifications are sent through the voice, SMS, or IM channels.

	
Notification Message

	
Enter the notification message or click the XPath Expression Builder icon to display the Expression Builder dialog to dynamically enter a message to send.

	
Click Apply.

17.4.1.1 How to Create and Send Headers for Notifications

The Advanced tab of the User Notification dialog enables you to create and send header and name information that may be useful to an end user in creating their own preference rules for receiving notifications. For example:

	
The BPEL designer creates specifies the users named jcooper and jstein in the General tab.

	
The BPEL designer creates the following header and name information in the Advanced tab:

	
Amount = payload->salary

	
Application = HR-Application

	
The administrator deploys the process and configures various channel drivers in Oracle Enterprise Manager Fusion Middleware Control Console.

	
The end user jcooper creates the following preference rules in the User Messaging Preferences user interface:

'Email if Amount < 30000" and "SMS if Amount is between 30000 and 100000' and
"Voice if Amount > 100000"

	
The end user jstein creates the following preference rule in the User Messaging Preferences user interface:

If "Application == HR-Application" and Amount > 2000000" send Voice

	
If you want to create and send header and name information to an end user for creating their own preference rules, click Advanced.

Figure 17-9 shows the Advanced tab of the User Notification dialog.

Figure 17-9 User Notification Advanced Parameters

[image: Description of Figure 17-9 follows]

	
Click the Add icon to add a row to the Header and Name columns.

	
In the Header column, click the field to display a list for selecting a value. Otherwise, manually enter a value.

	
In the Name column, enter a value.

	
Click OK.

18 Using Oracle BPEL Process Manager Sensors

This chapter describes how to use sensors to select BPEL activities, variables, and faults to monitor during runtime. This chapter describes how to use and set up sensors for a BPEL process.

This chapter includes the following sections:

	
Section 18.1, "Introduction to Sensors"

	
Section 18.2, "Configuring Sensors and Sensor Actions in Oracle JDeveloper"

	
Section 18.3, "Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control Console"

For more information about sensors, see the following sections:

	
Section 50.7, "Integrating BPEL Sensors Using Oracle BAM Sensor Action" for how to create sensor actions in Oracle BPEL Process Manager to publish sensor data as data objects in an Oracle BAM Server

	
Appendix D, "Understanding Sensor Public Views and the Sensor Actions XSD"

18.1 Introduction to Sensors

Sensors are used to declare interest in specific events throughout the life cycle of a BPEL process instance. In a business process, that can be the activation and completion of a specific activity or the modification of a variable value in the business process.

When a sensor is triggered, a specific sensor value is created. For example, if a sensor declares interest in the completion of a BPEL scope, the sensor value consists of the name of the BPEL scope and a time stamp value of when the activity was completed. If a sensor value declares interest in a BPEL process variable, then the sensor value consists of the value of the variable at the moment it was modified, a time stamp when the variable was modified, and the activity name and type that modified the BPEL variable.

The data format for sensor values is normalized and well-defined using XML schema.

A sensor action is an instruction on how to process sensor values. When a sensor is triggered by Oracle BPEL Process Manager, a new sensor value for that sensor is created. After that, all the sensor actions associated with that sensor are performed. A sensor action typically persists the sensor value in a database or sends the normalized sensor value data to a JMS queue or topic. For integration with Oracle Business Activity Monitoring, the sensor value can sent to the BAM adapter.

You can define the following types of sensors, either through Oracle JDeveloper or manually by providing sensor configuration files.

	
Activity sensors

Activity sensors are used to monitor the execution of activities within a BPEL process. For example, they can monitor the execution time of an invoke activity or how long it takes to complete a scope. Along with the activity sensor, you can also monitor variables of the activity.

	
Variable sensors

Variable sensors are used to monitor variables (or parts of a variable) of a BPEL process. For example, variable sensors can monitor the input and output data of a BPEL process.

	
Fault sensors

Fault sensors are used to monitor BPEL faults.

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and variables.

When you model sensors in Oracle JDeveloper, two new files are created as part of the BPEL process archive:

	
bpel_process_name_sensor.xml

Contains the sensor definitions of a BPEL process

	
bpel_process_name_sensorAction.xml

Contains the sensor action definitions of a BPEL process

See Section 18.2.1, "How to Configure Sensors" and Section 18.2.2, "How to Configure Sensor Actions" for how these files are created.

After you define sensors for a BPEL process, you must configure sensor actions to publish the sensor data to an endpoint. You can publish sensor data to the BPEL dehydration store schema, to a JMS queue or topic, or to a custom Java class.

The following information is required for a sensor action:

	
Name

	
Publish type

The publish type specifies the destination in which the sensor data must be presented. You can configure the following publish types:

	
Database

Publishes the sensor data to the reports schema in the database. The sensor data can then be queried using SQL.

	
JMS queue

Publishes the sensor data to a JMS queue. The XML data is posted in accordance with the Sensor.xsd file. This file is included with Oracle JDeveloper in the JDEV_HOME\jdeveloper\integration\seed\soa\shared\bpel directory.

	
JMS topic

Publishes the sensor data to a JMS topic. The XML data is posted in accordance with the same Sensor.xsd file used with JMS queues.

	
Custom

Publishes the data to a custom Java class.

	
JMS Adapter

Uses the JMS adapter to publish to remote queues or topics and a variety of different JMS providers. The JMS queue and JMS topic publish types only publish to local JMS destinations.

	
List of sensors

The sensors for a sensor action.

Oracle BAM sensors publish information and events from Oracle BPEL Process Manager to Oracle BAM. Oracle BAM can display the data in rich real-time dashboards for end-to-end monitoring of an application. For more information, see Section 50.7, "Integrating BPEL Sensors Using Oracle BAM Sensor Action."

18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper

In Oracle JDeveloper, sensor actions and sensors are displayed as part of Monitor view.

	
Select Monitor at the top of Oracle BPEL Designer, as shown in Figure 18-1.

Figure 18-1 Monitor View

[image: Description of Figure 18-1 follows]

Figure 18-2 shows the sensor actions and sensors in the Structure window.

Figure 18-2 Sensors and Sensor Actions Displayed in Oracle JDeveloper

[image: Description of Figure 18-2 follows]

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and variables.

	
Add sensor actions by right-clicking the Sensor Actions folders and selecting Create > Sensor Action.

	
Add activity sensors, variable sensors, or fault sensors as follows:

	
Expand the Sensors folder.

	
Right-click the appropriate Activity, Variable, or Fault subfolder

	
Click Create.

	
Add sensors to individual activities by right-clicking an activity and selecting Create > Sensor. Figure 18-3 provides details.

Figure 18-3 Creating an Activity Sensor

[image: Description of Figure 18-3 follows]

The following sections describe how to configure sensors and sensor actions.

18.2.1 How to Configure Sensors

Assume you are monitoring a LoanFlow application, and want to know the following:

	
When a scope named getCreditRating is initiated

	
When it is completed

	
At completion, what is the credit rating for the customer

The solution is to create an activity sensor for the getCreditRating scope in Oracle BPEL Designer, as shown in Figure 18-4. Activities that have sensors associated with them are identified with a magnifying glass in Oracle BPEL Designer.

Figure 18-4 Creating an Activity Sensor

[image: Description of Figure 18-4 follows]

The Evaluation Time list shown in Figure 18-4 controls the point at which the sensor is fired. You can select from the following:

	
All:

The sensor monitors during the activation, completion, fault, compensation, and retry phases.

	
Activation

The sensor is fired just before the activity is executed.

	
Completion

The sensor is fired just after the activity is executed.

	
Fault

The sensor is fired if a fault occurs during the execution of the activity. Select this value only for sensors that monitor simple activities.

	
Compensation

The sensor is fired when the associated scope activity is compensated. Select this value only for sensors that monitor scopes.

	
Retry

The sensor is fired when the associated invoke activity is retried.

A new entry is created in the bpel_process_name_sensor.xml file, as shown in Example 18-1:

Example 18-1 bpel_process_name_sensor.xml file

<sensor sensorName="CreditRatingSensor"

classname="oracle.tip.pc.services.reports.dca.agents.BpelActivitySensorAgent"
 kind="activity"
 target="callbackClient">

 <activityConfig evalTime="all">
 <variable outputNamespace="http://www.w3.org/2001/XMLSchema"
 outputDataType="int"
 target="$crOutput/payload//services:rating"/>
 </activityConfig>
</sensor>

If you want to record all the incoming loan requests, create a variable sensor for the variable input, as shown in Figure 18-5.

Figure 18-5 Creating a Variable Sensor

[image: Description of Figure 18-5 follows]

A new entry is created in the bpel_process_name_sensor.xml file, as shown in Example 18-2:

Example 18-2 bpel_process_name_sensor.xml file

<sensor sensorName="LoanApplicationSensor"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelVariableSensorAgent"
 kind="variable"
 target="$input/payload">
 <variableConfig outputNamespace="http://www.autoloan.com/ns/autoloan"
 outputDataType="loanApplication"/>
</sensor>

If you want to monitor faults from the identity service, create a fault sensor, as shown in Figure 18-6.

Figure 18-6 Creating a Fault Sensor

[image: Description of Figure 18-6 follows]

A new entry is created in the bpel_process_name_sensor.xml file, as shown in Example 18-3:

Example 18-3 bpel_process_name_sensor.xml file

<sensor sensorName="IdentityServiceFault"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelFaultSensorAgent"
 kind="fault"
 target="is:identityServiceFault">
 <faultConfig/>
</sensor>

18.2.2 How to Configure Sensor Actions

When you create sensors, you identify the activities, variables, and faults you want to monitor during runtime. If you want to publish the values of the sensors to an endpoint (for example, you want to publish the data of LoanApplicationSensor to a JMS queue), then create a sensor action, as shown in Figure 18-7, and associate it with the LoanApplicationSensor.

Figure 18-7 Creating a Sensor Action

[image: Description of Figure 18-7 follows]

A new entry is created in the bpel_process_name_sensorAction.xml file, as shown in Example 18-4:

Example 18-4 bpel_process_name_sensorAction.xml file

<action name="BAMFeed"
 enabled="true"
 publishType="JMSQueue"
 publishTarget="jms/bamTopic">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 weblogic.jms.ConnectionFactory
 </property>
</action>

	
Note:

You cannot specify a < (less than) sign in the Filter field of the Sensor Actions dialog. If you do, Oracle JDeveloper translates the < sign to < in the bpel_process_name_sensorAction.xml file. In addition, you cannot specify a < sign by directly editing the filename_sensorAction.xml file. This action causes an error.

If you want to publish the values of LoanApplicationSensor and CreditRatingSensor to the reports schema in the database, create an additional sensor action, as shown in Figure 18-8, and associate it with both CreditRatingSensor and LoanApplicationSensor.

Figure 18-8 Creating an Additional Sensor Action

[image: Description of Figure 18-8 follows]

A new entry is created in the bpel_process_name_sensorAction.xml file, as shown in Example 18-5:

Example 18-5 bpel_process_name_sensorAction.xml file

<action name="PersistingAction"
 enabled="true"
 publishType="BPELReportsSchema">
 <sensorName>LoanApplicationSensor</sensorName>
 <sensorName>CreditRatingSensor</sensorName>
</action

The data of one sensor can be published to multiple endpoints. In the two preceding code samples, the data of LoanApplicationSensor is published to a JMS queue and to the reports schema in the database.

If you want to monitor loan requests for which the loan amount is greater than $100,000, you can create a sensor action with a filter, as shown in Figure 18-9.

Figure 18-9 Creating a Sensor Action with a Filter

[image: Description of Figure 18-9 follows]

A new entry is created in the bpel_process_name_sensorAction.xml file, as shown in Example 18-6:

Example 18-6 bpel_process_name_sensorAction.xml file

<action name="BigMoneyBAMAction"
 enabled='true'
 filter="boolean(/s:actionData/s:payload
 /s:variableData/s:data
 /autoloan:loanAmount > 100000)"
 publishType="JMSQueue"
 publishTarget="jms/bigMoneyQueue">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 weblogic.jms.ConnectionFactory
 </property>
</action>

	
Notes:

	
You must specify all the namespaces that are required to configure an action filter in the sensor action configuration file.

	
You must specify the filter as a boolean XPath expression.

If you have special requirements for a sensor action that cannot be accomplished by using the built-in publish types (database, JMS queue, JMS topic, and JMS Adapter), then you can create a sensor action with the custom publish type, as shown in Figure 18-10. The name in the Publish Target field denotes a fully qualified Java class name that must be implemented.

Figure 18-10 Using the Custom Publish Type

[image: Description of Figure 18-10 follows]

18.2.3 How to Publish to Remote Topics and Queues

The JMS queue and JMS topic publish types only publish to local JMS destinations. If you want to publish sensor data to remote topics and queues, use the JMS adapter publish type, as shown in Figure 18-11.

Figure 18-11 Using the JMS Adapter Publish Type

[image: Description of Figure 18-11 follows]

In addition to enabling you to publish sensor data to remote topics and queues, the JMS adapter supports a variety of different JMS providers, including:

	
Third-party JMS providers such as Tibco JMS, IBM WebSphere MQ JMS, and SonicMQ

	
Oracle Enterprise Messaging Service (OEMS) providers such as memory/file and database

If you select the JMS Adapter publish type, you must create an entry in the weblogic-ra.xml file, which is updated through the Oracle WebLogic Server Administration Console. Each JMS connection factory (pool) entry created in this console corresponds to one JNDI entry in weblogic-ra.xml. Update the Sensor Actions dialog with the chosen JNDI name selected during the creation of the JMS connection factory (pool).

For more information about the JMS adapter, see Oracle Fusion Middleware User's Guide for Technology Adapters.

18.2.4 How to Create a Custom Data Publisher

To create a custom data publisher, perform the following steps:

To create a custom data publisher:

	
In the Application Navigator, double-click the BPEL project.

The Project Properties dialog appears.

	
Click Libraries and Classpath.

	
Browse and select the following:

SOA_ORACLE_HOME\lib\java\shared\oracle.soainfra.common\11.1.1\orabpel.jar

Figure 18-12 Project Properties Dialog

[image: Adding a BPEL library to a BPEL project]

	
Create a new Java class.

The package and class name must match the publish target name of the sensor action.

	
Implement the com.oracle.bpel.sensor.DataPublisher interface.

This updates the source file and fills in the methods and import statements of the DataPublisher interface.

	
Using the Oracle JDeveloper editor, implement the publish method of the DataPublisher interface, as shown in the sample custom data publisher class in Figure 18-13.

Figure 18-13 Custom Data Publisher Class

[image: Sample custom data publisher class]

	
Ensure that the class compiles successfully.

The next time that you deploy the BPEL process, the Java class is added to the SOA archive (SAR) and deployed.

	
Note:

Ensure that additional Java libraries needed to implement the data publisher are in the class path.
Oracle BPEL Process Manager can execute multiple process instances simultaneously, so ensure that the code in your data publisher is thread safe, or add appropriate synchronization blocks. To guarantee high throughput, do not use shared data objects that require synchronization.

18.2.5 How to Register the Sensors and Sensor Actions in composite.xml

Oracle JDeveloper automatically updates the composite.xml file to include appropriate properties for sensors and sensor actions, as shown in Example 18-7:

Example 18-7 composite.xml File

<composite name="JMSQFComposite" applicationName="JMSQueueFilterApp"
 revision="1.0" label="2007-04-02_14-41-31_553" mode="active" state="on">
 <import namespace="http://xmlns.oracle.com/JMSQueueFilter"
 location="JMSQueueFilter.wsdl" importType="wsdl"/>
 <service name="client">
 <interface.wsdl interface="http://xmlns.oracle.com/
 JMSQueueFilter#wsdl.interface(JMSQueueFilter)"/>
 <binding.ws
 port="http://xmlns.oracle.com/JMSQueueFilter#wsdl.endpoint(client/
 JMSQueueFilter_pt)"/>
 </service>
 <component name="JMSQueueFilter">
 <implementation.bpel src="JMSQueueFilter.bpel"/>
 <property name="configuration.sensorLocation" type="xs:string"
 many="false">JMSQueueFilter_sensor.xml</property>
 <property name="configuration.sensorActionLocation" type="xs:string"
 many="false">JMSQueueFilter_sensorAction.xml</property>
</component>
<wire>
 <source.uri>client</source.uri>
 <target.uri>JMSQueueFilter/client</target.uri>
</wire>
</composite>

You can specify additional properties with <property name= ...>, as shown in Example 18-7.

18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control Console

The Oracle Enterprise Manager Fusion Middleware Control Console provides support for viewing the metadata of sensors, sensor actions, and the sensor data created as part of the process execution.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

	
Notes:

	
For this release, BAM sensor actions are not shown in Oracle Enterprise Manager Fusion Middleware Control Console.

	
Only sensors with an associated database sensor action are displayed in Oracle Enterprise Manager Fusion Middleware Control Console. Sensors associated with a JMS queue, JMS topic, remote JMS, or custom sensor action are not displayed.

Part III

Using the Oracle Mediator Service Component

This part describes the components that comprise the Oracle Mediator service component.

This part contains the following chapters:

	
Chapter 19, "Getting Started with Oracle Mediator"

	
Chapter 20, "Creating Oracle Mediator Routing Rules"

	
Chapter 21, "Working with Multiple Part Messages in Oracle Mediator"

	
Chapter 22, "Using Oracle Mediator Error Handling"

	
Chapter 23, "Support for Resequencing in Oracle Mediator"

	
Chapter 24, "Understanding Message Exchange Patterns of an Oracle Mediator"

19 Getting Started with Oracle Mediator

This chapter provides an overview of Oracle Mediator and also describes how to create an Oracle Mediator service component.

This chapter includes the following sections:

	
Section 19.1, "Introduction to Oracle Mediator"

	
Section 19.2, "Introduction to the Mediator Editor Environment"

	
Section 19.3, "Creating an Oracle Mediator"

	
Section 19.4, "Generating a WSDL File"

	
Section 19.5, "Specifying Operation or Event Subscription Properties"

	
Section 19.6, "Modifying an Oracle Mediator Service Component"

19.1 Introduction to Oracle Mediator

Oracle Mediator provides a lightweight framework to mediate between various components within a composite application. Oracle Mediator converts data to facilitate communication between different interfaces exposed by different components, which are wired together to build a SOA composite application. For example, Oracle Mediator can accept data contained in a text file from an application or service, transform it to a format appropriate for updating a database that serves as a customer repository, and then route and deliver the data to that database.

Oracle Mediator facilitates integration between events and services, where service invocations and events can be mixed and matched. You can use an Oracle Mediator service component to consume a business event or receive a service invocation. An Oracle Mediator service component can evaluate routing rules, perform transformations, validate, and either invoke another service or raise another business event. You can use an Oracle Mediator service component to handle returned responses, callbacks, faults, and timeouts.

This section provides an overview of Oracle Mediator features:

	
Content-Based and Header-Based Routing

Oracle Mediator provides support for setting rules based on message payload or message headers. You can select elements or attributes from the message payload or the message header and, based on the values, you can specify an action. For example, Oracle Mediator receives a file from an application or service containing data about new customers. Based on the country mentioned in the customer's address, you can route and deliver data to the database storing data for that particular country. Similarly, you can route a message based on the message header.

For more information about access header-based routing, see Section 20.2.2.11, "How to Access Headers for Filters and Assignments."

	
Synchronous and Asynchronous Interactions

Oracle Mediator provides support for synchronous and asynchronous request and response interactions. In a synchronous interaction, the client requests a service and then waits for a response to the request. In an asynchronous interaction, the client invokes the service, but does not wait for the response. You can specify a timeout period for an asynchronous interaction, which can perform some action, such as raise an event or start a process.

For more information about synchronous and asynchronous interactions, see Section 20.2.2.4, "How to Handle Response Messages" and Chapter 24, "Understanding Message Exchange Patterns of an Oracle Mediator."

	
Sequential and Parallel Routing of Messages

A routing rule execution type can be either parallel or sequential. You can configure the execution type from the Routing Rules section of the Mediator Editor.

For more information about sequential and parallel routing of messages, see Section 20.2.2.3, "How to Specify Sequential or Parallel Execution."

	
Transformations

Oracle Mediator supports data transformation from one XML schema to another. This feature enables data interchange among applications using different schemas. For example, you can transform a comma-delimited file to the database table structure.

For more information about transformations, see Section 20.2.2.8, "How to Create Transformations."

	
Validations

Oracle Mediator provides support for validating the incoming message payload by using a Schematron or an XSD file. You can specify Schematron files for each inbound message part and Oracle Mediator can execute Schematron file validations for those parts.

For more information about validations, see Section 20.2.2.12, "How to Use Semantic Validation" and http://www.schematron.com/.

	
Java Callouts

Oracle Mediator provides support for Java callouts. Java callouts enable the use of Java code, together with regular expressions.

For more information about Java callouts, see Section 20.2.2.13, "How to Use Java Callouts."

	
Event Handling

An event is message data sent because of an occurrence of an activity in a business environment. Oracle Mediator provides support for subscribing to business events or raising business events. You can subscribe to a business event that is raised when a situation of interest occurs. For example, you can subscribe to an event that is raised when a new customer is created and then use this event to start a business process such as sending a confirmation email. Similarly, you can raise business events when a situation of interest occurs. For example, raise a customer-created event after completing the customer creation process.

For more information about event handling, see Chapter 39, "Using Business Events and the Event Delivery Network."

	
Dynamic Routing

Dynamic routing separates the control logic, which determines the path taken by the process, from the execution of the process. You can create a dynamic routing rule from the Mediator Editor.

For more information about dynamic routing, see Section 20.2.3, "How to Create Dynamic Routing Rules."

	
Error Handling

Oracle Mediator supports both fault policy-based and manual error handling. A fault policy consists of conditions and actions. Conditions specify the action to be carried out for a particular error condition.

For more information about error handling, see Chapter 22, "Using Oracle Mediator Error Handling."

	
Oracle Mediator Echo Support

Oracle Mediator supports echoing source messages back to the initial caller after any transforms, validations, assignments, or sequencing operations are performed.

For more information about Oracle Mediator echo support, see "To echo a service:" of Section 20.2.2.1, "How to Specify Oracle Mediator Services or Events."

	
Multiple Part Message Support

Oracle Mediator supports messages consisting of multiple parts. Some Remote Procedure Call (RPC) web services contain multiple parts in the SOAP message.

For more information about multiple part message support, see Chapter 21, "Working with Multiple Part Messages in Oracle Mediator."

19.2 Introduction to the Mediator Editor Environment

You can create an Oracle Mediator service component in a SOA composite application of Oracle JDeveloper and then configure it by using the Mediator Editor. To display the Mediator Editor, double-click the Oracle Mediator service component in the SOA Composite Editor. For information about the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."

Figure 19-1 shows the Mediator Editor along with the Application Navigator, Structure, and Messages windows.

Figure 19-1 Mediator Editor Window

[image: Description of Figure 19-1 follows]

Each section of the view shown in Figure 19-1 enables you to perform specific design and deployment tasks. The following list describes these sections and their functionality:

	
Application Navigator

The Application Navigator shown in the upper left part of Figure 19-1 displays the Oracle Mediator files. These are the files that appear under the SOA Content folder when you create an Oracle Mediator in a SOA composite application.

A SOA composite application consists of the following Oracle Mediator files:

	
composite.xml: The file that describes the entire SOA composite application. For information about the composite.xml file, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."

	
.componentType: The.componentType file describes the services and references for a service component.

	
.mplan: The.mplan file contains Oracle Mediator metadata.

	
.wsdl: A Web Services Description Language (WSDL) file specifies how other services call an Oracle Mediator. A WSDL file defines the input and output messages and operations of an Oracle Mediator.

	
Mediator Editor

The Mediator Editor, shown in the middle of Figure 19-1, provides a visual view of the Oracle Mediator that you have created. This view is displayed when you perform one of the following actions:

	
Double-click an Oracle Mediator icon in the SOA Composite Editor.

	
Double-click the.mplan file name in the Application Navigator.

	
Source View

The Source view enables you to view the source code of an Oracle Mediator. Click Source at the bottom of the Mediator Editor shown in Figure 19-1 to view the source code. The code in Source view is immediately updated to reflect the changes in an Oracle Mediator.

Example 19-1 shows sample Oracle Mediator source code:

Example 19-1 Oracle Mediator Source Code

<?xml version = '1.0' encoding = 'UTF-8'?>

<!--Generated by Oracle SCA Modeler version 1.0 at [4/16/07 10:05 PM].-->

<Mediator name="CustomerDataRouter" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.oracle.com/sca/1.0/mediator"/>

	
History Window

The History window enables you to perform tasks such as viewing the revision history of a file and viewing read-only and editable versions of a file side-by-side. Click History at the bottom of the Design window shown in Figure 19-1 to open the History window. Figure 19-2 shows the History view for an Oracle Mediator file.

Figure 19-2 History Window

[image: Description of Figure 19-2 follows]

	
Property Inspector

The Property Inspector shown at the bottom of Figure 19-1 enables you to view details about Oracle Mediator properties.

	
Structure Window

The Structure Window shown in the lower left part of Figure 19-1 provides a structural view of the data of an Oracle Mediator.

	
Log Window

The Log Window displays messages about the status of validation and compilation.

19.3 Creating an Oracle Mediator

You can create an Oracle Mediator in a SOA composite application of Oracle JDeveloper by using one of the following methods:

	
By dragging and dropping an Oracle Mediator from the Component Palette (shown in Figure 19-3) to the Components section of the SOA Composite Editor.

Figure 19-3 Component Palette with an Oracle Mediator Service Component

[image: Description of Figure 19-3 follows]

	
By selecting the Composite with Mediator option on the Configure SOA settings page of the Create SOA Application wizard, as shown in Figure 19-4.

Figure 19-4 Composite with Oracle Mediator Selection in Create SOA Project Dialog

[image: Description of Figure 19-4 follows]

	
By selecting Service Components from the Categories list, and then selecting Mediator from the Items list in the New Gallery dialog, as shown in Figure 19-5.

Figure 19-5 New Gallery Dialog with Oracle Mediator Service Component

[image: Description of Figure 19-5 follows]

Each method opens the Create Mediator dialog in which you specify the name for the Oracle Mediator and select a template. A template provides a basic set of default files with which you can begin designing your Oracle Mediator.

19.3.1 Creating an Oracle Mediator Without an Interface Definition

You can create an empty Oracle Mediator with no interface definition. This provides you with the flexibility to create the SOA components in the order you want. For example, you can create an Oracle Mediator first and then create a service or an event that starts the Oracle Mediator.

19.3.1.1 How to Create an Oracle Mediator Without an Interface Definition

You can create an Oracle Mediator with no interface definition by selecting the Define Interface Later template in the Create Mediator dialog.

To create an Oracle Mediator without an interface definition:

	
Drag a Mediator service component from the SOA list of the Component Palette and drop it in the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
In the Name field, enter a name for the Oracle Mediator service component.

	
From the Template list, select Define Interface Later, as shown in Figure 19-6 and click OK.

Figure 19-6 Define Interface Later Template Selection in Create Mediator Dialog

[image: Description of Figure 19-6 follows]

19.3.1.2 How to Define an Interface for an Oracle Mediator Without an Interface Definition

You can define the interface of an Oracle Mediator with no interface definition by subscribing to events or by defining services.

To subscribe to events:

You can subscribe to events by selecting the events defined in a.edl file.

	
Double-click the Oracle Mediator icon in the SOA Composite Editor.

The Mediator Editor is displayed.

	
In the Routing Rules section, click Add Event Subscription.

The Subscribed Events dialog is displayed.

	
Click Add.

The Event Chooser dialog is displayed.

	
To the right of the Event definition field, click Search and select an .edl file.

The Event field is populated with the events defined in the .edl file.

	
Select one or more events and click OK.

	
In the Consistency list, select a level of delivery consistency for the event.

	
In the Run as Roles field, you see $publisher as the default security role. You can either retain this value or leave this field blank.

	
Double-click the Filter field to specify an expression for filtering the event.

	
Click OK.

For more information about the Consistency, Run as Roles, and Filter fields of an event, see Section 19.3.6, "Creating an Oracle Mediator for an Event Subscription."

To define services:

You can define service for an Oracle Mediator with no interface definition in the following two ways:

	
By connecting the Oracle Mediator to a service through a wire in the SOA Composite Editor.

	
By using the Define Service option in Mediator Editor.

To define services for an Oracle Mediator through a wire:

	
In the SOA Composite Editor, drag a wire from an Oracle Mediator to a service.

For more information about wires and how to wire a service component to a service, see Section 2.5.1, "How to Wire a Service and a Service Component."

	
Note:

You can also connect an Oracle Mediator with a defined interface and defined reference to a service through a wire. However, to connect Oracle Mediator to a service, the interface of the Oracle Mediator and the service must match.

The service for an Oracle Mediator is automatically defined by using the WSDL file from the wire source. For example, if you connect the ReadFile service shown in Figure 19-7 to the CustomerDataRouter Oracle Mediator, then the CustomerDataRouter Oracle Mediator automatically inherits the service definition of the ReadFile service.

Figure 19-7 Connecting Oracle Mediator to a Service

[image: Description of Figure 19-7 follows]

To define services for an Oracle Mediator in the Mediator Editor:

	
Double-click the Oracle Mediator icon in the SOA Composite Editor.

The Mediator Editor is displayed.

	
To the right of the WSDL URL field, click Define Service.

The Define Service dialog is displayed, as shown in Figure 19-8.

Figure 19-8 Define Service Dialog

[image: Description of Figure 19-8 follows]

	
To the right of the WSDL URL field, click Find existing WSDLs to use an existing WSDL file or Generate WSDL from schema(s) to create a new WSDL file.

For information about how to generate a WSDL file, see Section 19.4, "Generating a WSDL File."

	
From the Port Type list, select a port.

	
From the Callback Port Type list, select a port for the response message in an asynchronous interaction.

	
Click OK.

19.3.2 Creating an Oracle Mediator Based on a WSDL File

You can create an Oracle Mediator based on an existing WSDL file. A WSDL file describes the interfaces of an Oracle Mediator, such as schemas and operations.

19.3.2.1 How to Create an Oracle Mediator Based on a WSDL File

You can create an Oracle Mediator based on a WSDL file by using the Interface Definition from WSDL template in the Create Mediator dialog.

To create an Oracle Mediator based on a WSDL file:

	
Drag a Mediator service component from the SOA list of the Component Palette and drop it in the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
In the Name field, enter a name for the Oracle Mediator service component.

	
From the Template list, select Interface Definition from WSDL, as shown in Figure 19-9.

Figure 19-9 Interface Definition from WSDL Template Selection in Create Mediator Dialog

[image: Description of Figure 19-9 follows]

	
Deselect the Create Composite Service with SOAP Bindings option if you do not want to create an exposed service with SOAP bindings that is automatically connected to your Oracle Mediator.

	
In the WSDL URL field, enter the name of the WSDL file.

You can either use an existing WSDL file or create a new WSDL file. Click Find existing WSDL files to use an existing WSDL file or Generate WSDL from schema(s) to create a new WSDL file.

For more information about these options, refer to Section 19.4, "Generating a WSDL File."

	
From the Port Type list, select a port. This parses the WSDL file that you specify in the WSDL URL field to display the list of port types.

	
From the Callback Port Type list, select a callback port. A callback port is the one to which the response message is sent in an asynchronous communication.

	
Click OK.

19.3.3 Creating an Oracle Mediator with a One-Way Interface Definition

An Oracle Mediator supports a one-way interaction. In a one-way interaction, the client sends a message to the service, and the service does not need to reply.

19.3.3.1 How to Create an Oracle Mediator with a One-Way Interface Definition

You can create an Oracle Mediator for a one-way interaction by using the One-Way Interface template in the Create Mediator dialog.

To create an Oracle Mediator with a one-way interface definition:

	
Drag a Mediator service component from the SOA list of the Component Palette and drop it in the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
In the Name field, enter a name for the Oracle Mediator service component.

	
From the Template list, select One-Way Interface, as shown in Figure 19-10.

Figure 19-10 One-Way Interface Template Selection in Create Mediator Dialog

[image: Description of Figure 19-10 follows]

	
Deselect the Create Composite Service with SOAP Bindings option if you do not want to create an exposed service with SOAP bindings that is automatically connected to your Oracle Mediator service component.

	
To the right of the Input field, click Search to select a schema element for the input message. By default, the singleString schema element is selected for the input message.

	
Note:

You can use any XSD schema to specify the format of the input document that Oracle Mediator processes. For example, you can use the following schema:

<xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://samples.otn.com/helloworld"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://samples.otn.com/helloworld">
 <include namespace="http://samples.otn.com/helloworld"
 schemaLocation="helloworld.xsd" />
 <xsd:element name="name1" type="xsd:string" />
 <xsd:element name="result1" type="xsd:string"/>
</xsd:schema>

	
Click OK.

An Oracle Mediator for a one-way interaction with a port type defined for the input message is created.

19.3.3.2 What Happens When You Create an Oracle Mediator with a One-Way Interface Definition

Figure 19-11 shows how an Oracle Mediator created with a one-way interface appears in the Mediator Editor. The arrows to the left of the execute operation in Figure 19-13 represents a one-way operation.

Figure 19-11 One-Way Interface Oracle Mediator in Mediator Editor

[image: Description of Figure 19-11 follows]

19.3.4 Creating an Oracle Mediator with a Synchronous Interface Definition

Oracle Mediator supports a synchronous request-response interaction. In a synchronous interaction, a client sends a request to a service and receives an immediate response. The client does not proceed further until the response arrives.

19.3.4.1 How to Create an Oracle Mediator with a Synchronous Interface Definition

You can create an Oracle Mediator for a synchronous interaction by using the Synchronous Interface template in the Create Mediator dialog.

To create an Oracle Mediator with a synchronous interface definition:

	
Drag a Mediator service component from the SOA list of the Component Palette and drop it in the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
In the Name field, enter a name for the Oracle Mediator.

	
From the Template list, select Synchronous Interface, as shown in Figure 19-12.

Figure 19-12 Synchronous Interface Template Selection in Create Mediator Dialog

[image: Description of Figure 19-12 follows]

	
Deselect the Create Composite Service with SOAP Bindings option if you do not want to create an exposed service with SOAP bindings that is automatically connected to your Oracle Mediator.

	
To the right of the Input field, click Search to select a schema element for the input message. By default, the singleString schema element is selected for the input message.

	
Click Search to the right of the Output field to select a schema element for the output message. By default, the singleString schema element is selected for the output message.

	
Click OK.

An Oracle Mediator with a port type defined for the request message is created.

19.3.4.2 What Happens When You Create an Oracle Mediator with a Synchronous Interface Definition

In a synchronous interaction, because the response is sent to the same port as the request, only one port is defined. Figure 19-13 shows how an Oracle Mediator created with a synchronous interface appears in the Mediator Editor. The arrows to the left of the execute operation in Figure 19-13 represent a synchronous operation.

Figure 19-13 Synchronous Oracle Mediator Component in the Mediator Editor

[image: Description of Figure 19-13 follows]

19.3.5 Creating an Oracle Mediator with an Asynchronous Interface Definition

An Oracle Mediator supports an asynchronous request-response interaction. In an asynchronous interaction, a client sends a request to a service, but does not block and wait for a reply.

19.3.5.1 How to Create an Oracle Mediator with an Asynchronous Interface Definition

You can create an Oracle Mediator for asynchronous interaction by using the Asynchronous Interface template in the Create Mediator dialog.

To create an Oracle Mediator with an asynchronous interface definition:

	
Drag a Mediator service component from the SOA list of the Component Palette and drop it in the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
In the Name field, enter a name for the Oracle Mediator.

	
From the Template list, select Asynchronous Interface, as shown in Figure 19-14.

Figure 19-14 Asynchronous Interface Template Selection in Create Mediator Dialog

[image: Description of Figure 19-14 follows]

	
Deselect the Create Composite Service with SOAP Bindings option if you do not want to create an exposed service with SOAP bindings that is automatically connected to your Oracle Mediator service component.

	
To the right of the Input field, click Search to select a schema element for the input message. By default, the singleString schema element is selected for the input message.

	
To the right of the Output field, click Search to select a schema element for the output message. By default, the singleString schema element is selected for the output message.

	
Click OK.

An Oracle Mediator for an asynchronous interaction with port types defined for request and response messages is created.

19.3.5.2 What Happens When You Create an Oracle Mediator with an Asynchronous Interface Definition

Figure 19-15 shows how an Oracle Mediator created with an asynchronous interface appears in the Mediator Editor. The Port Type field displays the port on which the request message is sent. The Callback Port Type field displays the port to which the response is sent. The arrows to the left of the execute operation in Figure 19-15 represent an asynchronous operation.

Figure 19-15 Asynchronous Oracle Mediator in the Mediator Editor

[image: Description of Figure 19-15 follows]

19.3.6 Creating an Oracle Mediator for an Event Subscription

You can create an Oracle Mediator for subscribing to a business event that is raised when a situation of interest occurs. A business event consists of message data sent as the result of an occurrence in a business environment. For information about business events, see Chapter 39, "Using Business Events and the Event Delivery Network."

19.3.6.1 How to Create an Oracle Mediator for an Event Subscription

You can create an Oracle Mediator for subscribing to events by using the Subscribe to Events template in the Create Mediator dialog.

To create an Oracle Mediator for an event subscription:

	
Drag a Mediator service component from the SOA list of the Component Palette and drop it in the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
In the Name field, enter a name for the Oracle Mediator service component.

	
From the Template list, select Subscribe to Events, as shown in Figure 19-16.

Figure 19-16 Subscribe to Events Template Selection in Create Mediator Dialog

[image: Description of Figure 19-16 follows]

	
Click Add.

The Event Chooser dialog is displayed.

	
To the right of the Event Definition field, click Search.

The SOA Resource Browser dialog is displayed.

	
Select an event definition file (.edl) and click OK.

The Event field is populated with the events described in the.edl file that you selected. For more information about creating.edl files, see Chapter 39, "Using Business Events and the Event Delivery Network."

	
Select one or more events in the Event field, as shown in Figure 19-17, and click OK.

Figure 19-17 Event Chooser Dialog

[image: Description of Figure 19-17 follows]

	
Select a level of delivery consistency for the event.

	
one and only one: A global (JTA) transaction is used for event delivery. If the event call fails, the transaction is rolled back and the call is retried a configurable number of times.

	
guaranteed: A local transaction is used to guarantee delivery. There are no retries upon failure.

	
immediate: Events are delivered on the same thread and on the same transaction as the caller.

	
In the Run as Roles field, enter a security role under which an event subscription is run. By default, an event subscription runs under the security of the event publisher $publisher. You can either retain this value or leave this field blank.

	
To filter the event, perform any of the following:

	
Double-click the Filter column of the selected event.

	
Select the event and then click the filter icon (first icon).

The Expression Builder dialog is displayed.

	
In the Expression field, enter an XPath expression and click OK.

Figure 19-18 shows a sample Expression Builder dialog.

Figure 19-18 Business Event Filter

[image: Description of Figure 19-18 follows]

The Filter column of the Create Mediator dialog is populated accordingly.

	
Click OK.

An Oracle Mediator similar to the one shown in Figure 19-19 is created.

19.3.6.2 What Happens When You Create an Oracle Mediator for an Event Subscription

The icon on the left side of the Oracle Mediator indicates that this Oracle Mediator is configured for an event subscription.

Figure 19-19 Oracle Mediator Component Created with the Subscribe to Events Template

[image: Description of Figure 19-19 follows]

When you double-click the Oracle Mediator, the Mediator Editor is displayed.

19.3.7 What You May Need to Know About the Information Available in the Mediator Editor

This section describes the concepts you should know for creating an Oracle Mediator service component.

19.3.7.1 Oracle Mediator Definition

Oracle Mediator is a service component of Oracle SOA Suite that provides mediation capabilities such as selective routing, transformation, and validation capabilities, along with various message exchange patterns, such as synchronous, asynchronous, and event publishing or subscriptions.

For more information about creating an Oracle Mediator, see Section 19.3, "Creating an Oracle Mediator."

19.3.7.2 Routing Rule

Routing rules are mediation logic or execution logic that you define to achieve the requisite mediation. For more information about defining routing rules, see Section 20.2, "Defining Routing Rules."

You must specify the following for creating a routing rule:

	
Operation or Event

An Oracle Mediator routing rule can be triggered either by a service operation or an event subscription. The service operation can be synchronous, asynchronous, or one-way.

	
Java Callout

Java callouts are used to perform external Java logic at various points in the execution of the Oracle Mediator.

	
Static Routing Rule

An Oracle Mediator routing rule is statically defined and is not expected to change depending on the invocation context. In this case, the routing can be an echo, a routing to another service, or a publishing of an event.

Static routing rules involve specifying the following:

	
Request Handler

This defines how Oracle Mediator handles incoming requests.

	
Reply Handler

This defines how the synchronous response from the called service is handled by Oracle Mediator.

	
Fault Handler

This defines how the named or declared faults from the called service are handled by Oracle Mediator.

	
Callback Handler

This defines how the asynchronous response and callback from the called service is handled by Oracle Mediator.

	
Timeout Handler in Callback

This defines how long Oracle Mediator waits for the asynchronous response and callback before performing timeout handling for the particular asynchronous request.

	
Event Publishing and Service Invocation

Event publishing and service invocation call other services or publish an event depending on the configuration of the handlers.

	
Sequential and Parallel Execution

Each routing rule execution can be configured to be either sequential (that is, running in the same thread) or parallel (that is, running in different threads).

	
Note:

For synchronous service invocations, the routing rule should always be sequential.

	
Filter Expression

This defines whether a particular routing rule executes. This feature uses XPath standards and enables selective execution of Oracle Mediator routing rules.

	
Semantic Validation

This feature enables semantic validation of incoming requests, and also verifies the correctness of data. This feature uses the Schematron validation standard.

	
Transformation

This feature enables transformation of incoming data to a format that is compliant with called services or published events. This feature is based on XSL transformation standards.

	
Assign

This feature enables manipulation of headers and properties for a message to suit the called service.

	
Dynamic Routing Rule

An Oracle Mediator routing rule that enables you to externalize the routing logic to an Oracle Rules Dictionary, which in turn enables dynamic modification of the routing logic in a routing rule. This feature depends on a decision service and Oracle Rules to obtain the routing logic at runtime.

	
Note:

Oracle recommends using a Unicode database with AL32UTF8 as the database character set for full globalization support in Oracle Mediator.

19.4 Generating a WSDL File

You can generate a WSDL file by using either of the following methods:

	
By using the Generate WSDL from Schema(s) option that is displayed when you select the Interface Definition from WSDL template in the Create Mediator dialog.

	
By using the Generate WSDL from Schema(s) option in the Define Service dialog that is displayed while defining services for an Oracle Mediator with no interface definition.

Each of these methods opens the Create WSDL dialog shown in Figure 19-20.

Figure 19-20 Create WSDL Dialog

[image: Description of Figure 19-20 follows]

The Create WSDL dialog consists of Request, Reply, Fault, and Callback tabs, which you can use to define the schema files for request, reply, fault, and callback messages. You can specify the same or different schema files for the request, response, fault, and callback messages. Minimally, you must specify the schema file for the request message. By default, the singleString.xsd file is selected for the request message.

You can generate the WSDL file for a message by using an XML schema definition (XSD) file or by using a sample file.

19.4.1 How to Generate a WSDL File

To generate a WSDL file from an XSD file:

	
In the Request tab of the Create WSDL dialog, click Search to access the schema location.

The Type Chooser dialog shown in Figure 19-21 is displayed, containing a list of the schema files (XSD files).

Figure 19-21 Type Chooser Dialog

[image: Description of Figure 19-21 follows]

	
Expand the Project Schema Files and Project WSDL Files nodes to locate the schema to use.

You can also import a schema XSD file or WSDL file into a project by using the Import Schema File or Import WSDL icons in the upper right corner of the dialog, respectively.

	
Note:

If you want to use a schema XSD file that resides on your local file system, then ensure that the XSD file and any XSD files that it imports all reside in the Oracle JDeveloper project directory.

After you specify a file, Oracle JDeveloper parses it to determine the defined schema elements and displays them in a list, from which you can make a selection.

	
Select the root element of the XSD file and click OK.

	
In the Operation Name field, enter the operation name. For example, executeQuery.

Oracle JDeveloper converts the specified operation into an operation element in the WSDL file.

	
Note:

Spaces are not allowed in an operation name.

	
In the Port Type Name field, enter the port name.

	
In the Namespace field, enter a namespace or accept the current value.

For example: http://oracle.com/esb/namespaces/Mediator

The namespace that you specify is defined as the tns namespace in the WSDL file.

	
In the Reply tab, if entering any information, click Search to access a schema and then select a schema element.

The Reply tab enables you to specify the schema for a response message in synchronous communication.

	
In the Fault tab, if entering any information, click Search to access a schema location and then select a schema element. You cannot specify a fault message schema, unless you also specify a response.

	
In the Callback tab, if entering any information, click Search to access a schema and then select a schema element.

The Callback tab enables you to specify the schema for a response message in asynchronous communication.

	
In the Operation Name field, enter the operation name. For example, returnQuery.

	
In the Port Type Name field, enter the port name to which to send the response.

	
Click OK.

To generate the WSDL file based on a sample file:

You can generate a WSDL file from a file in a native format such as a comma-separated value (CSV) file, a fixed-length file, a document type definition (DTD) file, or a COBOL copybook file. You can use the Native Format Builder wizard to generate a WSDL file based on a sample file. The Native Format Builder wizard is displayed when you click Define Schema for Native Format in the Request, Response, Fault, and Callback tabs of the Create WSDL dialog. A WSDL file is generated after you complete the wizard.

For information about the Native Format Builder wizard, see the Oracle Fusion Middleware User's Guide for Technology Adapters.

19.5 Specifying Operation or Event Subscription Properties

After creating an Oracle Mediator, you can use the Mediator Editor to select the Validate Syntax (XSD) checkbox for an operation or event subscription. You can select this option to validate the schemas of the inbound messages. By default, this checkbox is not selected.

19.6 Modifying an Oracle Mediator Service Component

You can modify the operations or event subscriptions of an Oracle Mediator by using the Mediator Editor.

19.6.1 How To Modify Operations of an Oracle Mediator

You can modify an Oracle Mediator WSDL file by adding or deleting operations. After modifying the WSDL file, you can use the Refresh WSDL dialog to synchronize the changes.

To modify the operations of an Oracle Mediator:

	
In the Mediator Editor, click the Refresh operations From WSDL icon to the right of the WSDL URL field.

The Refresh WSDL dialog is displayed. If you have made any modifications to the WSDL file, then the Refresh WSDL dialog lists all the operations to delete or add. The Refresh will delete Mediator operation field lists all the operations that have been removed from the WSDL file. The Refresh will add Mediator operation field lists all the new operations that have been added in the WSDL file. Figure 19-22 displays the Refresh WSDL dialog.

Figure 19-22 Refresh WSDL Dialog

[image: Description of Figure 19-22 follows]

	
To specify a different WSDL file, click Find existing WSDLs to the right of the WSDL URL field to use an existing WSDL file or Generate WSDL From schema(s) to create a new WSDL file.

The Refresh WSDL dialog is updated based on the operations defined in the specified WSDL file.

	
Click OK.

	
From the File menu, select Save All.

19.6.2 How To Modify Event Subscriptions of an Oracle Mediator

You can subscribe to new events, modify existing event subscriptions, and unsubscribe from subscribed events by using the Manage Event Subscriptions option in the Mediator Editor.

To modify event subscriptions of an Oracle Mediator:

	
In the Mediator Editor, click the Manage Event Subscriptions icon to the right of Event Subscriptions.

The Subscribed Events dialog is displayed, as shown in Figure 19-23.

Figure 19-23 The Subscribed Events Dialog

[image: Description of Figure 19-23 follows]

	
You can perform any of the following functions:

	
Subscribe to a new event.

	
Unsubscribe from an event.

	
Modify or specify the filter criteria for an event.

	
Modify the Consistency or Run as Roles properties of an event subscription.

For more information about the Consistency, Run as Roles, and Filter fields of an event, see Section 19.3.6, "Creating an Oracle Mediator for an Event Subscription."

	
Click OK.

	
From the File menu, select Save All.

20 Creating Oracle Mediator Routing Rules

This chapter provides an overview of routing rules and describes how to specify routing rules for an Oracle Mediator service component.

This chapter includes the following sections:

	
Section 20.1, "Introduction to Routing Rules"

	
Section 20.2, "Defining Routing Rules"

	
Section 20.3, "Creating an Oracle Mediator for Routing Messages"

	
Section 20.4, "Creating an Asynchronous Request and Response Using Oracle Mediator"

20.1 Introduction to Routing Rules

Oracle Mediator enables you to route data between service consumers and service providers. As the data flows from service to service, it must be transformed. These two tasks, routing and transformations, are the core responsibilities of Oracle Mediator. You can use routing rules to specify how a message processed by an Oracle Mediator reaches its next destination. Routing rules specify where an Oracle Mediator sends the message, how it sends the message, and what changes should be made to the message structure before sending it to the target service.

Routing rules can be of the following two types:

	
Static Routing Rules

An Oracle Mediator routing rule that is statically defined and is not expected to change depending on the invocation context.

	
Dynamic Routing Rules

An Oracle Mediator routing rule that enables you to externalize the routing logic to an Oracle Rules Dictionary, which in turn enables dynamic modification of the routing logic in a routing rule.

For more information about these routing rules, refer to Section 20.2.2, "How to Create Static Routing Rules" and Section 20.2.3, "How to Create Dynamic Routing Rules."

20.2 Defining Routing Rules

Routing rules can only be defined for an Oracle Mediator with a defined interface. For more information on how to define an interface, refer to Section 19.3.1.2, "How to Define an Interface for an Oracle Mediator Without an Interface Definition."

20.2.1 How To Use the Routing Rules Section

To use the routing rules section:

You can define the routing rules in the Routing Rules section of the Mediator Editor. You can access the Mediator Editor through one of the following methods:

	
From the SOA Composite Editor:

	
Double-click the icon that represents the Oracle Mediator for which you want to specify the routing rules.

	
Click the Plus (+) icon next to the Routing Rules section.

	
From the Application Navigator:

	
In the Application Navigator, expand the SOA project, followed by the SOA Content folder.

	
In the SOA Content folder, double-click the name of the Oracle Mediator file in which you want to specify the routing rules. The Oracle Mediator file has a .mplan extension.

	
Click the Plus (+) icon next to the Routing Rules section.

Figure 20-1 shows the Routing Rules section of the Mediator Editor.

Figure 20-1 Mediator Editor- Routing Rules Section

[image: Description of Figure 20-1 follows]

The icons in the Routing Rules section are summarized in Figure 20-2.

Figure 20-2 Routing Rule Section Icons

[image: Description of Figure 20-2 follows]

20.2.2 How to Create Static Routing Rules

When you configure static routing rules, you can specify the following details:

	
Target service

Specifies the service to which to send the message. See Section 20.2.2.1, "How to Specify Oracle Mediator Services or Events" for more information about how to invoke a target service.

	
Execution type

Specifies the way in which routing rules are executed. You can specify either of the following execution types: sequential or parallel.

See Section 20.2.2.3, "How to Specify Sequential or Parallel Execution" for information about how to specify an execution type.

	
Reply, callback, and fault handlers

Specify how to handle synchronous reply, callback, and fault messages. See Section 20.2.2.4, "How to Handle Response Messages" and Section 20.2.2.6, "How to Handle Faults" for information about synchronous reply, callback, and fault messages handling.

	
Filter expression

Specifies the filter expression to be applied. A filter expression specifies that the contents (payload or headers) of a message be analyzed before any service is invoked. For example, you might apply a filter expression that specifies that a service be invoked only if the message includes a customer ID, or if the value for that customer ID matches a certain pattern. See Section 20.2.2.7, "How to Specify an Expression for Filtering Messages" for information about how to specify filter expressions.

	
Transformations

Specify the transformation to be applied. You can use transformations to set a value on the target payload. You can perform transformations by using mappings or by assigning values.

The XSLT Mapper enables you to define transformations that apply to the whole message body in order to convert messages from one XML schema to another. The Assign dialog, however, works on individual fields. Using this dialog, you can assign values from the message (for example, payload and headers), from a constant, or from various system properties, such as the properties of an adapter present in the data path. See Section 20.2.2.8, "How to Create Transformations" and Section 20.2.2.9, "How to Assign Values" for information about how to create transformations.

	
Accessing header variables from expressions

Detects any SOAP headers that are used in building the expression for the current routing rule operation. See Section 20.2.2.11, "How to Access Headers for Filters and Assignments" and Section 20.2.2.11.2, "Manual Expression Building for Accessing Properties for Filters and Assignments" for information about how to access headers for filters and transformations.

	
Schematron-based validations

Specify the Schematron files for validating different parts of an inbound message.

See Section 20.2.2.12, "How to Use Semantic Validation" for information about how to perform Schematron-based validations.

	
Java callout

Invokes custom Java class callouts. It enables the use of regular expressions with Java code, when regular expressions do not suffice. See Section 20.2.2.13, "How to Use Java Callouts" for information about how to use Java callouts.

	
User-defined extension functions

These are your own set of functions that can be used by the XSLT Mapper. See Section 20.2.2.7.1, "How to Use User-Defined Extension Functions" for information about how to use user-defined extension functions.

20.2.2.1 How to Specify Oracle Mediator Services or Events

After creating an Oracle Mediator, you associate it with inbound service operations or event subscriptions and specify the targets of the Oracle Mediator. Targets are outbound service operations or event publishing. A target specifies the next service or event to which an Oracle Mediator should send the message and which service operation to invoke. You can specify a service or an event as a target type.

You can also echo source messages back to the initial caller after any transformations, validations, assignments, or sequencing operations are performed. Whether the echo is synchronous or asynchronous depends on the WSDL file of the caller. The echo option is only available for inbound service operations and is not available for event subscriptions.

The purpose of the echo option is to expose all the Oracle Mediator functionality as a callable service, without having to route it to any other service. For example, you can call an Oracle Mediator to perform a transformation, a validation, or an assignment, and then echo the Oracle Mediator back to your application, without routing it anywhere else.

You can specify multiple routings for an inbound operation or event. Each routing is mapped to one target service invocation or event. Therefore, to specify multiple service invocations or raise multiple events, you must specify one routing rule for each target. For example, for a message payload, if you want to invoke an operation from the following operations defined in a service:

	
insert

	
update

	
updateid

	
delete

You must create four routings, one for each operation. Later, when you specify a filter expression, you can specify which target and operation is applied to each message instance because of the message payload, as shown in Figure 20-3.

Figure 20-3 Multiple Routings for an Inbound Operation

[image: Description of Figure 20-3 follows]

To invoke a service:

	
In the Routing Rules section, click Add.

The Target Type dialog is displayed, as shown in Figure 20-4.

Figure 20-4 Target Type Dialog

[image: Description of Figure 20-4 follows]

	
Click Service.

	
In the Target Services dialog, navigate to and then select an operation provided by a service, as shown in Figure 20-5.

Figure 20-5 Target Services Dialog

[image: Description of Figure 20-5 follows]

	
Note:

A service can consist of multiple operations, as shown in Figure 20-5.

	
Click OK.

To raise an event:

	
In the Routing Rules section, click Add.

The Target Type dialog is displayed, as shown in Figure 20-4.

	
Click Event.

 The Event Chooser dialog is displayed.

	
To the right of the Event Definition field, click Search.

The SOA Resource Browser dialog is displayed.

	
Select an event file and click OK.

The Event field is populated with the events defined in the selected file, as shown in Figure 20-6.

Figure 20-6 Event Chooser Dialog

[image: Description of Figure 20-6 follows]

	
Select an event.

	
Click OK.

To echo a service:

	
In the Routing Rules section, click Add.

The Target Type dialog is displayed, as shown in Figure 20-7.

Figure 20-7 Target Type Dialog

[image: Description of Figure 20-7 follows]

	
Click Echo.

Figure 20-8 shows a routing rule with a synchronous echo.

	
Note:

An asynchronous echo has an icon with a dotted line on the return.

Figure 20-8 Sample Oracle Mediator Supporting Echo Operation

[image: Description of Figure 20-8 follows]

20.2.2.2 What You May Need to Know About Using the Echo Option

The echo option has the following limitations:

	
The echo option is supported only with Oracle Mediator interfaces having the following types of WSDL files:

	
Request/reply

	
Request/reply/fault

	
Request/callback

	
Note:

The echo option is not available for Oracle Mediator interfaces having request/reply/fault/callback WSDL files.

	
The echo option is available for synchronous operations like request/reply and request/reply/fault.

	
Note:

The echo option is only available for synchronous operations when the routing rule is sequential. This is because parallel routing rules are not supported for Oracle Mediators with synchronous operations.

	
For synchronous operations having a conditional filter set, the echo option does not return any response to the caller when the filter condition is set to false. Instead, a null response is returned to the caller.

	
The echo option is available for asynchronous operations only if the Oracle Mediator interface has a callback operation. In this case, the echo is run on a separate thread.

	
Note:

The asynchronous echo option is available only when the routing rule is parallel. If you use the echo option, then sequential routing rules are not supported for Oracle Mediators with asynchronous operations.

20.2.2.3 How to Specify Sequential or Parallel Execution

You can specify an execution type for a routing rule. A routing rule execution type can be parallel or sequential. To specify an execution type for a routing rule, select the Sequential or Parallel execution type in the Routing Rules section.

Basic Principles of Sequential Routing Rules

	
In sequential execution, routings are evaluated and actions are performed sequentially. Sequential routings are evaluated in the same thread and transaction as the caller.

	
Oracle Mediator always enlists itself into the global transaction propagated through the thread that is processing the incoming message. For example, if an inbound JCA adapter invokes an Oracle Mediator, then the Oracle Mediator enlists itself with the transaction that the JCA adapter has initiated.

	
Oracle Mediator propagates the transaction through the same thread as the target components, while executing the sequential routing rules.

	
Oracle Mediator never commits or rolls back transactions propagated by external entities.

	
Oracle Mediator manages the transaction only if the thread-invoking Oracle Mediator does not already have an active transaction. For example, if Oracle Mediator is invoked from inbound SOAP services, then Oracle Mediator starts a transaction, and commits or rolls back the transaction depending on success and failure.

Basic Principles of Parallel Routing Rules

	
In parallel execution, routings are queued and evaluated in parallel in different threads.

For parallel processing, the messages of each Oracle Mediator service component are retrieved in weighted, round robin fashion. This ensures that all Oracle Mediator service components receive parallel processing cycles. This is true even if one or more Oracle Mediator service components produce a higher number of messages compared to other components. The weight used is the message priority set during design time of an Oracle Mediator service component. Higher numbers of parallel processing cycles are allocated to the components that have higher message priority.

You can use the Priority user interface construct in the Mediator Editor to set the priority of an Oracle Mediator service component. You can a set a priority from zero to nine, with nine being the highest priority. The default priority is four.

	
Note:

The Priority user interface construct is applicable only to parallel routing rules.

	
A new transaction is initiated by the Oracle Mediator for processing each parallel rule. The initiated transaction ends with an enqueue to the Oracle Mediator parallel message dehydration store.

For example, if an Oracle Mediator service component has one parallel routing rule, then one message is enqueued on the Oracle Mediator parallel message dehydration store. The parallel message dispatcher to the store then initiates a transaction, reads the message from the database store, and invokes the target component or service of this routing rule. The transaction initiated by the listener thread is a completely new transaction and is propagated to the target components.

	
Note:

Dehydrating of messages means storing the incoming messages in a database for parallel routing rules, so that they can be processed later by worker threads.

	
In parallel execution, Oracle Mediator commits or rolls back transactions because it is the initiator of these transactions.

If an operation or event has both sequential and parallel routing rules, first sequential routing rules are evaluated and actions are performed, and then parallel routings are queued for parallel execution.

	
Note:

If an Oracle Mediator service component with a request-response interface has only parallel routing rules, then the Oracle Mediator service component does not send any response back to the caller. Though you can create this type of Oracle Mediator service component, the caller of the Oracle Mediator service component does not get any response at runtime.

20.2.2.4 How to Handle Response Messages

You can specify how to handle the response messages in synchronous and asynchronous interactions. In case of synchronous interactions, you can specify the transformations and assignments for the response and the fault message. You can forward the response and the fault message to another service or event. Otherwise, you can send them back to the initial caller, if the initial caller is expecting responses and faults.

In case of asynchronous interaction, you can specify a timeout period for receiving the response. The timeout period can be specified in seconds, hours, days, months, or years. By default, the timeout period is infinite. If a callback response does not come within the specified timeout period, then a timeout response can be forwarded to another service, to another event, or back to the initial caller.

You cannot route an Oracle Mediator response to a two-way service. If you want to route a response to a two-way service, then you should use a one-way Oracle Mediator in between the first Oracle Mediator and the two-way service. The response should first be forwarded to the one-way Oracle Mediator, which in turn should call the two-way service.

	
Notes:

	
Zero is an unsupported value to be specified as a timeout period.

	
If the callback is received, but processing of the callback fails, then by default the timeout handler is invoked for processing the action specified in the timeout handler.

	
Typically, the caller receives the callback after waiting for 100 milliseconds. However, if you have a bridge Oracle Mediator with a sequential routing rule and a connection to a synchronous interface service, then due to the complex flow of the program with all sequential routing rules, the caller may take longer time to get ready to receive the callback. You can work around this issue by changing the routing rule of the bridge Oracle Mediator to parallel.

To specify a timeout period:

Perform the following steps to specify a timeout period.

	
Next to the <<Target Operation>> field in the Callback section, click the Browse for target service operation icon.

The Target Type dialog is displayed.

	
Select Service or Event.

The Target Service or the Event Chooser dialog is displayed depending upon the selection you made.

	
Select an event or service.

	
Click OK.

The timeout response is forwarded to the specified service or event.

	
Note:

If the number of routing rules is larger and the time taken to execute the routing rules exceeds the transaction timeout, then you must set the transaction timeout to a value that is greater than the time taken to execute all the routing rules.

20.2.2.5 How to Handle Multiple Callbacks

A single Oracle Mediator cannot handle multiple callbacks. If you have a composite application with an Oracle Mediator that receives multiple callbacks, then the behavior of the composite application is undetermined. For example, consider the scenario shown in Figure 20-9, where AsyncMediator forwards the callback response from AsyncEchoMediator1 and AsyncEchoMediator2 to FileInMediator. In such a flow, the AsyncMediator may return the callback from bothAsyncEchoMediator1 and AsyncEchoMediator2, or from either one of them. The exact behavior is stochastic and cannot be predicted.

Figure 20-9 Sample Oracle Mediator Handling Multiple Callback

[image: Description of Figure 20-9 follows]

20.2.2.6 How to Handle Faults

If you create a new routing rule in which the target service WSDL operation has one or more faults, then you still see a single fault routing section in the Mediator Editor. If the source Oracle Mediator service component supports one or more faults, then the fault is routed back to the caller by default. You can choose the source and target fault names to be routed. You may also use the service browser to route the fault to another target.

To add another fault routing:

	
Click the Add another fault routing button shown in Figure 20-10.

Figure 20-10 Adding a Second Fault

[image: Description of Figure 20-10 follows]

This adds another fault section to the routing rule. In Figure 20-11, a second fault is being routed to a file adapter service:

Figure 20-11 Adding a Second Fault

[image: Description of Figure 20-11 follows]

	
Note:

It is possible to route the same fault to many different targets using different transformations.

To remove a fault routing section:

	
While choosing the target for fault routing, if you want to remove a fault routing section, then you must click Delete the selected fault routing, as shown in Figure 20-12.

Figure 20-12 Deleting a Fault Routing

[image: Description of Figure 20-12 follows]

Otherwise, you can also click Clear Target on the Target Type dialog.

20.2.2.7 How to Specify an Expression for Filtering Messages

The filter expression routing rule enables you to filter messages based on their payload. If the filter expression for a given message instance evaluates to true, then the message is delivered to the target service or event specified within the routing rule.

For example, suppose you want to route your data to customers in two different countries: US and Canada. However, you only want notices regarding the product line of type MOBILE to be sent to the customers in the US and the product line of type LANDLINE to the customers in Canada. To implement this routing, you must define a routing rule for each component/operation pair that sends messages to the target customers. In addition, you specify filter expressions for the routing rules that send messages to the customers in the US or Canada.

You can also define filter expression message properties or message headers.

Filter Expression Message Properties

Two examples of filter expression message properties are shown in Example 20-1.

Example 20-1 Filter Expression Message Properties

$in.property.custom.Priority = '1'

$in.property.tracking.ecid = '2'

Filter Expression Message Headers

Two examples of filter expression message headers are shown in Example 20-2.

Example 20-2 Filter Expression Message Headers

$in.header.wsse_Security/wsse:Security/Priority = '234'

$in.header.wsse_Security/wsse:Security/Priority = '234'

For the preceding filter expression message headers to work, you must add the attribute shown in Example 20-3 to the root element of the .mplan file:

Example 20-3 Attribute to Add

wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
 secext-1.0.xsd"

To specify an expression for filtering messages:

You can specify a filter expression by using the Expression Builder dialog.

	
To the right of the filter expression field in the Routing Rules section, click the icon.

The Expression Builder dialog is displayed, as shown in Figure 20-13.

Figure 20-13 Expression Builder Dialog

[image: Description of Figure 20-13 follows]

The Expression Builder dialog contains the components and controls that assist you in designing a filter expression.

	
Double-click a value in the Variables field or the Functions palette to add the value to the Expression field. Using a combination of variable elements, functions, and manually entered text, you can build an expression by which you want message payloads to be filtered for a given routing rule.

The following list describes each of the fields in the Expression Builder dialog:

	
Expression field

You can enter the filter expression – either manually, or by using the Variable field and the Functions palette in this field.

The icons on the upper right side of this field enable you to undo the last edit made, redo the last edit made, or clear the entire Expression field, respectively.

	
Variables field

This field contains the message defined for an Oracle Mediator. Oracle JDeveloper parses the Oracle Mediator WSDL file and presents the message definition in the Variables field. The input message is stored in the $in variable. You can use $in.properties to access the properties of an input message.

If the input message consists of multiple parts, then you can use $in.partname to access a part of an input message.

	
Functions palette

This list enables you to select different functions to include in an expression. When you select a function, a preview of how that function appears when added to the Expression field is presented in the Content Preview field, and a description of the function is presented in the Description field.

	
Content Preview

This field indicates how a value selected from the Variables field or Functions palette appears when it is inserted into the Expression field.

	
Description field

This field describes the value selected from the Variables field or Functions palette.

To specify a filter expression on a message payload:

	
In the Routing Rules section, click the Add Filter Expression icon, as shown in Figure 20-2.

The Expression Builder dialog is displayed.

	
In the Variables field, expand the message definition and select the message element on which you want to base the expression. For example, the CustomerId element is shown selected in Figure 20-14.

Figure 20-14 Expression Builder Dialog – Variables Element Selected

[image: Description of Figure 20-14 follows]

	
Click Insert Into Expression.

The expression is added in the Expression field, as shown in Figure 20-15.

Figure 20-15 Expression Builder Dialog – Variables Element Inserted

[image: Description of Figure 20-15 follows]

	
From the Functions list, select the function to apply to the message payload. For example, equals.

Functions are grouped in categories that are listed when you click the down arrow in the Functions list. For example, if you click the down arrow and select Logical Functions, the list appears, as shown in Figure 20-15. When you select a function within the Logical Functions list, a description of that function is presented in the Description box.

	
Click Insert Into Expression.

The XPath expression for the selected function is inserted into the Expression field.

	
Complete the expression. In this example, a value of 1001 is entered, as shown in Figure 20-16.

Figure 20-16 Sample Expression Builder Dialog – Value Entered

[image: Description of Figure 20-16 follows]

	
You can edit the expression manually, or use the expression editing icons, which are summarized in Figure 20-17.

Figure 20-17 Expression Editing Icons

[image: Description of Figure 20-17 follows]

	
Click OK.

The expression is added to the Routing Rules section.

To modify or delete a filter expression, double-click the Add Filter Expression icon, and then modify or delete the expression in the Expression field of the Expression Builder.

20.2.2.7.1 How to Use User-Defined Extension Functions

You can use the Expression Builder to use the user-defined extension functions. Perform the following steps to use the user-defined extension functions:

To use the user-defined extension functions:

	
Create an XPath function.

	
Register the Jaxen XPath function with an Oracle Mediator service component in the xpath-function.xml file on the server side.

	
Open Oracle JDeveloper.

	
Use the Expression Builder to customize the expression.

	
Deploy the Oracle JDeveloper project to Oracle WebLogic Server.

	
Copy the JAR file containing the user-defined extension functions to the $BEAHOME/user_projects/domains/soainfra/autodeploy/soa-infra/APP-INF/lib directory.

	
Modify the .mplan file of the project in the following way:

	
Add the function namespace you have defined for the extension functions under the Mediator element.

	
Add the function names under the Expression element.

This is shown in Figure 20-18.

Figure 20-18 Project .mplan file – Modified to Use User-Defined Extension Functions

[image: Description of Figure 20-18 follows]

	
Invoke the test page with a suitable payload.

20.2.2.8 How to Create Transformations

Oracle JDeveloper provides an XSLT Mapper that enables you to specify a mapper file (XSL file) to transform data from one XML schema (expressed as an XSD file) to another. The XSLT Mapper enables data interchange among applications using different schemas. For example, you can map incoming source purchase order schema to an outgoing invoice schema. After you define an XSL file, you can reuse it in multiple routing rule specifications.

When you click the transformation map icon to the right of the Transform Using field in the Routing Rules section, the Request Transformation Map dialog is displayed. You can select an existing XSL file or create a new XSL file with the XSLT Mapper to perform the required transformation.

You can also specify transformations for a synchronous reply, callback response message, or fault message. In case of synchronous reply or fault message, the Reply Transformation Map dialog or the Fault Transformation Map dialog contains the Include Request in the Reply Payload option. Figure 20-19 shows a Reply Transformation Map dialog with this option.

Figure 20-19 Reply Transformation Map Dialog

[image: Description of Figure 20-19 follows]

When you select this option, an $initial variable is created, which contains the original message of a synchronous interaction, as shown in Figure 20-20.

Figure 20-20 Initial Variable in XSL File

[image: Description of Figure 20-20 follows]

An initial message can also consist of multiple parts. You can use $initial.partname to access a part of the initial message.

	
Note:

If the parts of the inbound and outbound messages are identical, then no transformation is required for data interchange.

For information about the XSLT Mapper, see Chapter 38, "Creating Transformations with the XSLT Mapper."

20.2.2.9 How to Assign Values

You can use the Assign Values field to propagate the headers, payload, and properties of a message from source to target. Figure 20-21 shows the Assign Values dialog that is displayed when you click the Assign Values icon in the Routing Rules section.

Figure 20-21 Assign Values Dialog

[image: Description of Figure 20-21 follows]

To set the properties of the target message:

	
Click Add in the Assign Values dialog.

The Assign Value dialog is displayed, as shown in Figure 20-22.

Figure 20-22 Assign Value Dialog

[image: Description of Figure 20-22 follows]

	
In the From section, select any of the following options from the Type list:

	
Property: Select this option to assign a value of a property to the target message. The property list contains a list of predefined message properties. You can also enter any user-defined property name.

	
Expression: Select this option to assign a value of an expression to the target message. When you click the Invoke Expression Builder icon to the right of the Expression field, the Expression Builder dialog similar to the one shown in Figure 20-13 is displayed.

For more information about the Expression Builder dialog, see Section 20.2.2.7, "How to Specify an Expression for Filtering Messages."

	
Constant: Select this option to assign a constant value to the target message.

	
In the To section, select any of the following options:

	
Property: Select this option to copy the value to a message property. The Variable field of the Expression Builder dialog contains an $out variable that contains the output message. You can use $out.property to access properties of an output message.

	
Expression: Select this option to copy the value to an expression. When you click the Invoke Expression Builder icon to the right of the Expression field, the Expression Builder dialog is displayed. The Variable field of the Expression Builder dialog contains an $out variable that contains the output message. You can use $out.partname to access a complete output message or part of an output message.

Figure 20-23 shows a sample Assign Value dialog in which a constant value is specified as an expression.

Figure 20-23 Populated Assign Value Dialog

[image: Description of Figure 20-23 follows]

	
Click OK in the Assign Value dialog.

	
Click OK. The expression is added to Assign Values field of the Routing Rules section.

	
Notes:

	
When you assign values to a particular Oracle Mediator property during event publishing, the assigned value does not get propagated to the subscribing event.

You can work around this issue by using transformations to include the property as part of the event body.

	
You cannot assign values to the jca.db.userName and jca.db.password properties on Oracle WebLogic Server because their data sources do not support setting the user name or password dynamically to the getConnection method.

Table 20-1 through Table 20-3 list the various possibilities of assignment on constants and properties, payloads, and headers of a message from source to target.

Table 20-1 Possibilities on Constants and Properties

	Source	Target	Example
	
Property

	
Property

	
<copy expression="$in.property.jca.file.FileName" target="$out.property.jca.file.FileName"/>

	
Constant

	
Property

	
<copy value="ConstantNameAssigned.xml" target="$out.property.jca.file.FileName"/>

Table 20-2 Possibilities on Payload

	Source	Target	Example
	
XPath Expression

	
Property

	
<copy expression="concat('ExprPropMed','-',oraext:generate-guid())" target="$out.property.jca.file.FileName" xmlns:oraext="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc"/>

	
XPath Expression (below part level)

	
Property

	
<copy expression="$in.body/imp1:request/ProductReq/Make" target="$out.property.jca.file.FileName" xmlns:imp1="http://xmlns.oracle.com/psft"/>

	
Property

	
XPath Expression (below part level)

	
<copy value="$in.property.jca.file.FileName" target="$out.request/inp1:request/ProductReq/Model" xmlns:inp1="http://xmlns.oracle.com/psft"/>

	
Constant

	
XPath Expression (below part level)

	
<copy value="ConstantModel" target="$out.request/inp1:request/ProductReq/Model" xmlns:inp1="http://xmlns.oracle.com/psft"/>

	
XPath Expression

	
XPath Expression

	
<copy expression="$in.body" target="$out.request"/>

	
XPath Expression (below part level)

	
XPath Expression (below part level)

	
<copy expression="$in.body/imp1:request/ProductReq/Make" target="$out.request/imp1:request/ProductReq/Model" xmlns:imp1="http://xmlns.oracle.com/psft"/>

Table 20-3 Possibilities on Header

	Source	Target	Example
	
XPath Expression (below part level)

	
Property

	
<copy expression="$in.header.inp1_header/inp1:header/Name" target="$out.property.jca.file.FileName" xmlns:inp1="http://xmlns.oracle.com/psft"/>

	
Property

	
XPath Expression (below part level)

	
<copy value="$in.property.jca.file.FileName" target="$out.header.inp1_header/inp1:header/Name" xmlns:inp1="http://xmlns.oracle.com/psft"/>

	
Constant

	
XPath Expression (below part level)

	
<copy value="NewID.xml" target="$out.header.inp1_header/inp1:header/Id" xmlns:inp1="http://xmlns.oracle.com/psft"/>

	
Constant

	
XPath Expression (below part level)

	
<copy value="sampleusername" xmlns:wsse1="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" target="$out.header.wsse1_Security/wsse1:Security/wsse1:UsernameToken/wsse1:Username"/>

	
XPath Expression

	
XPath Expression

	
<copy target="$out.header.inp1_header" expression="$in.header.inp1_header" xmlns:inp1="http://xmlns.oracle.com/psft"/>

	
XPath Expression (below part level)

	
XPath Expression (below part level)

	
<copy target="$out.header.inp1_header/inp1:header/Name" expression="$in.header.inp1_header/inp1:header/Id" xmlns:inp1="http://xmlns.oracle.com/psft"/>

20.2.2.10 What You May Need to Know About the Assign Activity

Note the following issues about the assign activity.

	
The assign activity is executed in the order that is present in the Oracle Mediator <copy> element.

	
A source XPath expression should always refer to a leaf node while the source is assigned to a target property. Otherwise, all the values of the child nodes in the source get concatenated and are assigned to the target property. Example 20-4 provides details.

Example 20-4 XPath Expression Referring to a Leaf Node

<copy target="$out.property.jca.file.FileName"
 expression="$in.body/imp1:request/ProductReq/Make"
 xmlns:imp1="http://xmlns.oracle.com/psft"/>

	
Note:

A leaf node is a node with no child nodes.

	
While assigning a constant or a property to a target XPath expression, the target XPath expression should always point to a leaf node. Otherwise, nonleaf nodes contain only a string value that may generate nonvalid XML according to the .xsd file. Example 20-5 provides details.

Example 20-5 Target XPath Expression Pointing to a Leaf Node

<copy target="$out.request/inp1:request/ProductReq/Make" value="NewMakeValue"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

In this example, $out.request/inp1:request/ProductReq/Make refers to the leaf node.

	
If a transformation is available, then while assigning a source part to a target part, the target is overwritten because the assign activity occurs on top of the transformation. If the transformation is not available, then the assign activity creates the target. Example 20-6 provides details.

Example 20-6 Transformation Availability and Assign Activity

<copy target="$out.request" expression="$in.body"/>

<copy target="$out.header.inp1_header" expression="$in.header.inp1_header"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

	
If one of the child nodes in the target payload has to be modified, then there are the following two use cases:

	
If a transformation is available, then directly assign a source expression to a target XPath expression that is pointing to that child node in the target. Example 20-7 provides details.

Example 20-7 Direct Assignment of a Source Expression to a Target XPath Expression

<copy value="ConstantModel"
target="$out.request/inp1:request/ProductReq/Model"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

	
If a transformation is not available, then there are two steps involved. First, assign the source part to the target part, and then assign the source expression to a target XPath expression that is pointing to the child node in the target. Example 20-8 provides details.

Example 20-8 Assignments if Transformations are Unavailable

<copy target="$out.request" expression="$in.body"/> and <copy
 value="ConstantModel" target="$out.request/inp1:request/ProductReq/Model"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

	
When only one of the child nodes of the source has to be propagated into a target, then first ensure that there is no transformation invoked. Then, assign the source XPath expression to point to the required child node. Example 20-9 provides details.

Example 20-9 One Child Node of the Source is Propagated into a Target

<copy target="$out.request/imp1:ProductReq"
 expression="$in.body/imp1:request/ProductReq"
 xmlns:imp1="http://xmlns.oracle.com/psft"/>

In this case, the source element evaluated from $in.body/imp1:request/ProductReq does not contain a complete tree structure that starts from the root element, but contains only a child node. Example 20-10 provides details.

Example 20-10 Structure Starting from the Root Element that Contains Only a Child Node

<ProductReq>
 <Make>MAKE</Make>
 <Model>MODEL</Model>
</ProductReq>

	
If there are multiple assign activities in an Oracle Mediator and each source XPath expression points to a different child node, then there are the following two use cases:

	
If a transformation is available, then the corresponding child node in the target is updated.

	
If a transformation is not available, then the target should be a multiple part target with each part referring to the source child node.

	
In the case of headers, if the passThroughHeader property is set, then

	
Any header manipulation in a transformation is updated in the target headers.

	
The part level assign activity overwrites the target header part.

	
The below part level node assign activity updates the corresponding node in the target.

	
If multiple source nodes (below part level) are assigned to the same target node (below part level), then the target node contains the value of the last copy element in the assign activity. Example 20-11 provides details.

Example 20-11 Multiple Source Nodes Assigned to the Same Target Node

<copy target="$out.request/imp1:request/ProductReq/Make"
 expression="$in.body/imp1:request/ProductReq/Model"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

<copy target="$out.request/imp1:request/ProductReq/Make"
 expression="$in.body/imp1:request/Description"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

In Example 20-11, the first copy element does not have any effect because the second copy element overwrites it.

	
If the XPath expression results in a list (multiple occurrences), then there are the following two use cases:

	
If the list contains a single element, then the XPath expression is propagated.

	
If the list contains multiple elements, then the XPath expression is not supported.

	
The following activities happen while assigning a source child node to a target child node:

	
The source child node name and namespace are overwritten by the target node name and namespace, respectively.

	
The target child node is replaced by the source child node in the parent node of the target node.

20.2.2.11 How to Access Headers for Filters and Assignments

When the Expression Builder is invoked from an Oracle Mediator, either for defining a filter or for defining an assignment source or target, the WSDL file is parsed. This automatically detects any SOAP headers for the current routing rule operation and makes them visible as variables under the in or out folder as header./ns_elementName/, as shown in Figure 20-24. Here, ns is the namespace prefix and elementName is the root element name for the header schema.

The following examples provide details.

Example 1: Namespace Prefixes wsse and ns1 Are Already Defined

Assume the namespace prefixes wsse and ns1 are already defined in the WSDL file or the .mplan file. You can then write an XPath expression as follows:

$in.header.wsse_Security/wsse:Security/ns1:Foo/Priority

Example 2: Schema Without a Namespace Predefined in the WSDL File

Assume you want to use a schema that does not have a namespace predefined in the WSDL file. The Expression Builder is then enhanced to allow you to enter {full_namespace} instead of a prefix. The Expression Builder then generates a unique prefix and the prefix definition is added to the .mplan file.

For example, enter the expression in the Expression Builder shown in Example 20-12:

Example 20-12 Expression

$in.header.{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd}_Security/
{"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xs
d"}:
Security/{"http://www.globalcompany.com/ns/OrderBooking"}:Foo/Priority

The .mplan file contains the content shown in Example 20-13.

Example 20-13 Contents of .mplan File

xmlns:ns1="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
xmlns:ns2="http://www.globalcompany.com/ns/OrderBooking"
...
expression="$in.header.ns1_Security/ns1:Security/ns2:Foo/Priority"

Figure 20-24 Expression Builder Dialog - Automatic Header Detection

[image: Description of Figure 20-24 follows]

By default, SOAP headers are not passed through by Oracle Mediator. You must add the passThroughHeader endpoint property to the corresponding Oracle Mediator routing service:

<property name="passThroughHeader">true</property>

For example, to add this property, you can modify the composite.xml file, as shown in Example 20-14.

Example 20-14 passThroughHeader Property

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="passThroughHeader">true</property>
</component>

For the headers to pass through, the source and the target must have the same QName (name and namespace). If the source and the target have different QNames, then either a transformation or part-level assignment must be performed.

It is important to note that, in the case of a passthrough Oracle Mediator (without a transformation or assign), if the source and target part QNames are not identical, then Oracle Mediator passes through the message payloads to the target service without any error. However, this can result in an error in the target service because the message payloads are not reconstructed according to the message structure of the target service.

	
Notes:

	
The user interface supports both SOAP 1.1 and SOAP 1.2.

	
For automatic header detection, a concrete WSDL file must be used when creating the Oracle Mediator service component.

	
Assignments execute after filters. Therefore, if you are assigning a value in a custom header, then the particular assignment is not visible to the filter.

20.2.2.11.1 Manual Expression Building for Accessing Headers for Filters and Assignments

There are use cases in which the header schemas cannot be determined from the WSDL files. For example, security headers that are appended to a message, or the headers for an Oracle Mediator that are created using an abstract WSDL file. To access these headers, you must manually enter the XPath expression into the Expression Builder.

The syntax for header expressions is shown in Example 20-15.

Example 20-15 Header Expressions Syntax

$in.header.<header root element namespace prefix>_<header root element name>/<xpath>

Therefore, for the header shown in Example 20-16.

Example 20-16 Header Syntax

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd">
<Priority>234</Priority>
</wsse:Security>

The filter expression is as follows:

$in.header.wsse_Security/wsse:Security/Priority = '234'

The assignment expression is as shown in Example 20-17.

Example 20-17 Assignment Expression

<copy target="$out.property.jca.jms.priority"
 expression="$in.header.wsse_Security/wsse:Security/Priority"/>

For the preceding expressions to work, you must add the attribute shown in Example 20-18 to the root element of the .mplan file.

Example 20-18 Addition of Attribute to .mplan File

wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"

20.2.2.11.2 Manual Expression Building for Accessing Properties for Filters and Assignments

An example of a filter expression is as follows.

$in.property.tracking.ecid = '2'

An example of an assignment expression is as follows.

<copy target="$out.property.tracking.ecid" value="$in.property.tracking.ecid"/>

20.2.2.12 How to Use Semantic Validation

You can specify Schematron files for validating an inbound message and its various parts. Schematron version 1.5 is the supported version.

Perform the following steps for specifying a Schematron schema to validate an inbound message and its various parts.

To use semantic validation:

	
To the right of the Validate Semantic field, click the Select Validation File icon.

The Validations dialog is displayed.

	
Click Add.

The Add Validation dialog is displayed.

	
From the Part list, select a message part.

	
To the right of the File field, click Search.

The SOA Resource Browser dialog is displayed.

	
Select a Schematron file and click OK.

	
Notes:

	
Schematron files usually have a .sch extension.

	
No error message or warning is displayed if the selected Schematron file is empty.

The Add Validation dialog is updated, as shown in Figure 20-25.

Figure 20-25 Add Validation Dialog

[image: Description of Figure 20-25 follows]

	
Click OK.

The Validation dialog is updated, as shown in Figure 20-26.

Figure 20-26 Validation Dialog

[image: Description of Figure 20-26 follows]

	
Click Add to specify a Schematron file for another message part or click OK.

For more information about building a Schematron schema, refer to the resources available at

http://www.schematron.com

	
Note:

In semantic validation, if you check for the length of each element name, then the element name may change for a different set of inputs. This happens when there are white spaces between nodes because the parser treats the white spaces as test nodes.

20.2.2.13 How to Use Java Callouts

Java callouts enable you to use external Java classes to manipulate messages flowing through the Oracle Mediator. Only one Java callout is supported per WSDL operation or event subscription. The callout class must implement the oracle.tip.mediator.common.api.IjavaCallout interface. Callouts are available for both static and dynamic routings. Figure 20-27 shows a sample Oracle Mediator with two operations, in which both the operations have one routing rule each and the first operation has a callout class.

Figure 20-27 Sample Oracle Mediator Supporting Java Callout

[image: Description of Figure 20-27 follows]

You must ensure that the Java callout class is available on the server. You can use any of the following methods for this:

	
Copy the Java class to the SCA-INF/classes folder.

	
Copy the JAR containing the Java class to the SCA-INF/lib folder.

	
Copy the JAR containing the Java class to the $DOMAIN_HOME/lib folder.

If you want to make the Java callout class available to multiple Mediators, then you must copy the JAR containing the Java class to the $DOMAIN_HOME/lib folder.

You can manually enter the name of the Java callout class in the Callout To field, as shown in Figure 20-28. In this case, the auto-completion information feature of Oracle JDeveloper completes the address and the classes in the current project.

Figure 20-28 Callout To Field

[image: Description of Figure 20-28 follows]

You can also click the Select java callout class button to invoke the standard Oracle JDeveloper class browser.

The class browser is filtered so that it only displays classes that implement the oracle.tip.mediator.common.api.IjavaCallout interface.

If you have a Java callout in Oracle Mediator and use a filter expression in the same Oracle Mediator, then you must set the root element for the payload, as shown in Example 20-19.

Example 20-19 Setting of the Root Element for the Payload

changexmldoc = XmlUtils.getXmlDocument(ChangedDoc);
String mykey = "request";
message.addPayload(mykey,changexmldoc.getDocumentElement());

Table 20-4 discusses the methods in the oracle.tip.mediator.common.api.IjavaCallout interface.

Table 20-4 Description of Methods in the IjavaCallout Interface

	Method	Description
	
initialize

	
This method is invoked when the callout implementation class is instantiated for the first time.

	
preRouting

	
This method is called before Oracle Mediator starts executing the cases. You can customize this method to include validations and enhancements.

	
preRoutingRule

	
This method is called before Oracle Mediator starts executing any particular case. You can customize this method to include case-specific validations and enhancements.

	
preCallbackRouting

	
This method is called before Oracle Mediator finishes executing callback handling. You can customize this method to perform callback auditing and custom fault tracking.

	
postRouting

	
This method is called after Oracle Mediator finishes executing the cases. You can customize this method to perform response auditing and custom fault tracking.

	
postRoutingRule

	
This method is called after Oracle Mediator starts executing the cases. You can customize this method to perform response auditing and custom fault tracking.

	
postCallbackRouting

	
This method is called after Oracle Mediator finishes executing callback handling. You can customize this method to perform callback auditing and custom fault tracking.

	
Note:

If you change the message properties of an Oracle Mediator by using a Java callout in the preRoutingRule method or the preRouting method, then you must explicitly copy the changed property to the outbound message by using Oracle Mediator assignment functionality. For example, if you are changing the jca.file.FileName property in a Java callout, then you must update the Oracle Mediator assignment statement as follows:

<assign>
<copy target="$out.property.jca.file.FileName"
expression="$in.property.jca.file.FileName"/>
</assign>

Table 20-5 discusses the methods in the CalloutMediatorMessage interface.

Table 20-5 Description of Methods in the CalloutMediatorMessage Interface

	Method	Description
	
addPayload

	
This method sets a payload of the Oracle Mediator messages.

	
addProperty

	
This method adds a property to the Oracle Mediator messages.

	
addHeader

	
This method adds a header to the Oracle Mediator messages.

	
getProperty

	
This method retrieves Oracle Mediator message properties by providing the property name.

	
getProperties

	
This method retrieves Oracle Mediator message properties.

	
getId

	
This method retrieves the instance ID of the Oracle Mediator messages. This instance ID is the Oracle Mediator instance ID created for that particular message.

	
getPayload

	
This method retrieves a payload of the Oracle Mediator messages.

	
getHeaders

	
This method retrieves a header of the Oracle Mediator messages.

	
getComponentDN

	
This method retrieves a componentDN for the Oracle Mediator service component.

	
Notes:

	
The oracle.tip.mediator.common.api.AbstractJavaCalloutImpl class is a dummy implementationFoot 1 of the IJavaCallout interface. This class defines all the methods present in the IJavaCallout interface. Therefore, you can extend this class to override only a few specific methods of the IJavaCallout interface.

	
Details of the processing occurring within the Java callout are not displayed in the Oracle Mediator audit trail screen.

Footnote 1 Dummy implementation of an interface means that the implementation class provides definitions for all the methods declared in the particular interface, but one or more defined methods may have an empty method body. Extending a dummy implementation class is much easier because you can choose to override only a subset of the methods, unlike implementing an interface and defining all the methods.

Sample Java Callout Class

Example 20-20 shows a sample Java callout class:

Example 20-20 Sample Java Callout Class

package qa.as11tests.javacallout;

import com.collaxa.cube.persistence.dto.XmlDocument;

import com.oracle.bpel.client.NormalizedMessage;

import java.util.logging.Logger;
import java.util.Map;
import java.util.Iterator;

import oracle.tip.mediator.common.api.CalloutMediatorMessage;
import oracle.tip.mediator.common.api.ExternalMediatorMessage;
import oracle.tip.mediator.common.api.IJavaCallout;
import oracle.tip.mediator.common.api.MediatorCalloutException;
import oracle.tip.mediator.metadata.CaseType;
import oracle.tip.mediator.utils.XmlUtils;

import oracle.tip.pc.services.functions.ExtFunc;

import oracle.xml.parser.v2.XMLDocument;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

public class JavaCalloutSanity implements IJavaCallout {
 Logger logger = Logger.getLogger("Callout");
 public JavaCalloutSanity() { }

 public void initialize(Logger logger) throws MediatorCalloutException {
 this.logger = logger;
 this.logger.info("Initializing...");
 }
 public boolean preRouting(CalloutMediatorMessage calloutMediatorMessage) {
 System.out.println("Pre routing...");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt = calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if (msgKey.equals("request"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 sPayload_org = sPayload;
 String tobeReplaced = "CHANGE_THIS";
 String replaceWith = "JAVA_CALLOUT_||_PRE_ROUTING";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 String uid;
 try {
 uid = ExtFunc.generateGuid();
 } catch (Exception e) {
 }
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,changedoc);
 //calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End Pre routing...\n\n");
 return false;
 }
 public boolean postRouting(CalloutMediatorMessage calloutMediatorMessage,
 CalloutMediatorMessage calloutMediatorMessage1,
 Throwable throwable) throws MediatorCalloutException {
 System.out.println("Start Post routing...");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt = calloutMediatorMessage1.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("reply"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }

 sPayload_org = sPayload;
 String tobeReplaced = "POST_ROUTING_RULE_REQUEST_REPLY";
 String replaceWith = "POST_ROUTING_RULE_REQUEST_REPLY_||_POSTROUTING_||_JAVA_CALLOUT_WORKING";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "reply";
 calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
 // calloutMediatorMessage1.getPayload().put(mykey, changedoc.getDocumentElement());
 } catch (Exception f) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+
 changedPayload);
 System.out.println("End Post routing...\n\n");
 return false;
 }
 public boolean preRoutingRule(CaseType caseType,
 CalloutMediatorMessage calloutMediatorMessage) {
 System.out.println("\nStart PreRoutingRule.\n");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
 calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {

 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("request"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 sPayload_org = sPayload;
 String tobeReplaced = "PRE_ROUTING";
 String replaceWith = "PRE_ROUTING_||_PRE_ROUTING_RULE";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,changedoc);
 // calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End PreRoutingRule.\n\n");
 return true;
 }
 public boolean postRoutingRule(CaseType caseType,
 CalloutMediatorMessage calloutMediatorMessage,
 CalloutMediatorMessage calloutMediatorMessage1,
 Throwable throwable) {
 System.out.println("Start PostRoutingRule.");
 String req_sPayload = "null";
 String req_sPayload_org = "null";
 String rep_sPayload = "null";
 String rep_sPayload_org = "null";
 for (Iterator msgIt =
 calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("request"))
 req_sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 req_sPayload_org = req_sPayload;
 String tobeReplaced = "PRE_ROUTING_RULE";
 String replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST";
 int start = req_sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(req_sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(req_sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,changedoc);
 // calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 for (Iterator msgIt =
 calloutMediatorMessage1.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("reply"))
 rep_sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 rep_sPayload_org = rep_sPayload;
 tobeReplaced = "PRE_ROUTING_RULE";
 replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST_REPLY";
 start = rep_sPayload.indexOf(tobeReplaced);
 sb = new StringBuffer();
 sb.append(rep_sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(rep_sPayload.substring(start + tobeReplaced.length()));
 changedPayload = sb.toString();
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "reply";
 calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
 // calloutMediatorMessage1.getPayload().put(mykey, changedoc.getDocumentElement());
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+req_sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End postRoutingRule\n\n");
 return true;
 }
}

20.2.3 How to Create Dynamic Routing Rules

The basic idea behind dynamic routing is to separate the control logic, which determines the path taken by the process, from the execution of the process. In the dynamic routing scenario, a decision matrix determines the type of Level-2 service to be chosen for each routing. The factors that affect the decision on the type of Level-2 service are channel, customer type, and so on. The solution allows this decision matrix to be modified externally by business analysts without changing the routing. The decision matrix must be evaluated to determine the outbound service.

How to create dynamic routing rules:

	
Use the dynamic routing rule option of the Mediator Editor, as shown in Figure 20-29:

Figure 20-29 Mediator Editor Displaying Dynamic Routing Rule Option

[image: Description of Figure 20-29 follows]

This creates a new business rule service component that is wired to the Oracle Mediator service component within the SOA composite of the Oracle Mediator service component. The wire links between the business rule service component and the Oracle Mediator service component are considered implementation details and are shown as dotted lines in the SOA Composite Editor, as shown in Figure 20-30.

Figure 20-30 SOA Composite Editor with Wire Links Between the Business Rule and Oracle Mediator Service Components

[image: Description of Figure 20-30 follows]

The business rule service component includes a rule dictionary. The rule dictionary is a metadata container for the rule engine artifacts, such as fact types, rulesets, rules, decision tables and so on. As part of creating the business rule service component, the rule dictionary is preinitialized with the following data.

	
Fact Type Model

The fact type model is the data model that can be used for modeling rules. The rule dictionary is populated with a fact type model that corresponds to the input of a phase activity in a BPEL process, and some fixed data model that is required as part of the contract between the Oracle Mediator service component and the business rule service component.

	
Ruleset

A ruleset is a container of rules used as a kind of grouping mechanism for rules. A ruleset can be exposed as a service. As part of creating the business rule service component, one ruleset is created within the rule dictionary.

	
Decision Table (or matrix)

From a rule engine perspective, a decision table is a collection of rules with the same fact type model elements in the condition and action part of the rules. The decision table enables you to visualize rules in a tabular format. As part of creating the business rule service component, a new decision table is created within the ruleset.

	
Decision Service

As part of creating the business rule service component, a decision service is created to expose the ruleset as a service of the business rule service component. The service interface is used by the Oracle Mediator service component to evaluate the decision table.

After all the required artifacts of the phase activity are created, the wizard starts modeling the phase decision matrix (PDM). The wizard launches the Business Rules Designer of Oracle JDeveloper and enables you to edit the phase decision matrix. Figure 20-31 shows a sample decision table within the Business Rules Designer.

Figure 20-31 Sample Decision Table Within the Rule Designer

[image: Description of Figure 20-31 follows]

	
Once the dynamic routing is created, you can modify the associated decision matrix by clicking Edit Dynamic Rules. This launches the Business Rules Designer and enables modification of the associated decision table of the business rule service component. After you create dynamic routing for the Oracle Mediator service component, you cannot return to static routing without deleting the dynamic routing. Currently, there is no option for mixing these two types of routing.

The Mediator Editor looks as shown in Figure 20-32 after the dynamic routing option is chosen.

Figure 20-32 Mediator Editor with a Dynamic Routing Rule

[image: Description of Figure 20-32 follows]

The changes in Source view are as follows.

<Mediator name="Shipment" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/sca/1.0/mediator">
 <operation name="execute" deliveryPolicy="AllOrNothing" priority="0">
 <switch decisionServiceRef="Phase1DecisionService"
 decisionServiceOperation="executeFunction"></switch>
 </operation>
</Mediator>

The switch element contains the decision service reference and operation details to enable the Oracle Mediator service component to invoke the decision service in runtime for obtaining the dynamic routing decisions. Dynamic decisions are returned by the business rule service engine user configuration at runtime.

External service invocation contains an extra attribute called bindingInfo, which contains binding information to make the invocation dynamic.

20.2.4 What You May Need to Know About Using Dynamic Routing Rules

Note the following limitations on using dynamic routing rules with Oracle Mediator:

	
As of now, only SOAP bindings are supported. There is a dummy SOAP binding in the composite.xml file. This endpoint is overridden by Oracle Mediator in runtime through an NM property. Therefore, outbound services can be called only over SOAP.

	
Payload manipulation is limited for dynamic routing rules. No assignment, transformation, or validation can be performed.

	
The reference WSDL file (layer 2 or called references) should have the same abstract WSDL file as the phase reference that gets automatically created.

	
Dynamic routing is not possible for Mediators with a synchronous or one-way interface.

20.2.5 How to Define Default Routing Rules

Oracle Mediator processes messages depending on the conditions specified in the routing rules. In some cases, an Oracle Mediator may not process an incoming message because the message does not satisfy any of the conditions specified in the routing rules. You can define a default routing rule for such messages. The default routing rule is executed when none of the conditions of other routing rules are satisfied.

A default routing rule is the same as the routing rules discussed in Section 20.2.2, "How to Create Static Routing Rules." The only difference between a default routing rule and other routing rules is that a default routing rule does not have any condition associated with it. Otherwise, a default routing rule is the same as other routing rules in every other aspect, such as target service, response handling, fault handling, and so on.

	
Notes:

	
Default rules are available only for static routing rules.

	
You cannot specify a default routing rule for an Oracle Mediator service component with dynamic routing rules because you cannot define both static and dynamic routing rules in the same Oracle Mediator service component.

20.2.5.1 Default Rule Scenarios

A default routing rule can be either a sequential rule or a parallel rule. A default routing rule, whether sequential or parallel, is guaranteed to be executed when no other routing rule condition is satisfied. When the default rule is executed, the Oracle Mediator audit trail shows that the filter conditions of all the routing rules failed, and the filter condition of the default routing rule passed and was executed. Example 20-21 provides details.

Example 20-21 Default Rule Scenarios

ActivityJan 7, 2010 4:35:15 PM
Message onCase "fileout2.Write"
Jan 7, 2010 4:35:15 PM
Message Evaluation of xpath condition " No Filter (DEFAULT CASE) " resulted
true

You can define all routing rules, including default routing rules, as either sequential or parallel routing rules, so the expected behavior of routing rules varies. The following sections discuss each combination and the expected behavior:

Sequential Default Routing Rule

You can have the following possible scenarios with a sequential default routing rule:

	
All the other routing rules of the Mediator are sequential: This is the simplest case in which all the routing rules, including the default routing rule, are of a sequential type. Runtime evaluates the filter conditions of all routing rules and, if none of the filter conditions are matched, then the default sequential routing rule is executed. Default sequential routing rule execution happens in the same transaction as the incoming message. After the default rule is executed, a post Java callout occurs.

	
At Least One of the Routing Rules of the Mediator are parallel: This is a complex case in which the default routing rule is sequential and at least one of the other routing rules is parallel. The default behavior at runtime is to execute all sequential routing rules first and then execute parallel routing rules. Therefore, this is a tricky situation because a default rule should be executed only after all other routing rules are evaluated to be false.

In this case, the server first evaluates the filter condition of parallel rules before evaluating the default routing rule filter condition. If none of the other filter conditions are matched, then the default sequential routing rule is executed.

Parallel Default Routing Rule

You can have the following possible scenarios with a parallel default routing rule:

	
All the other routing rules of the Mediator are parallel: This is a straightforward case. The default routing rule is not executed if any of the filter conditions specified in the other routing rules are matched. If none of the filter conditions are matched, then the default routing rule is executed asynchronously.

	
Other Routing Rules of the Mediator are sequential or parallel: This is a complex but common use case in which there are other sequential or parallel routing rules available, and the default routing rule is parallel. The default routing rule is not executed if any of the other sequential or parallel routing rule criteria is matched. If none of the conditions are matched, then the default routing rule is executed asynchronously.

	
Note:

The fact that the default routing rule is executed automatically implies that the default routing rule is the only case that was executed for the given Oracle Mediator service component. Similarly, if an Oracle Mediator service component has one routing rule without any filter condition and also has a default routing rule, then the default routing rule is never executed.

20.2.5.2 Default Rule Target

The target of the default routing rule is the same as the supported targets of any other existing routing rule. This means that the target can be a service, an event, or an echo. Similarly, the response from the default routing rule target service can be forwarded or returned to the original caller. If the target service returns a fault, then the fault is handled in the same way as it is handled in any other routing rule.

	
Note:

If exceptions occur while evaluating or executing other routing rules, then the default routing rule is not executed.

20.2.5.3 Default Rule: Validation, Transformation, and Assign Functionality

Schematron validation, transformation, and assign functionality for the default routing rule works in the same way as other routing rules.

20.2.5.4 Default Rule: Java Callouts

The current behavior of a pre-Java callout or post-Java callout works in the same way as for other routing rules. For the purpose of Java callouts, the default routing rule is considered another routing rule. Therefore, for the scenarios in which the default routing rule is executed, the postRouting() callback method occurs only after the default routing rule is executed.

	
Note:

The post-Java callouts occur after the execution of sequential rules and do not wait for the parallel rules to complete execution. Therefore, if the default routing rule is sequential, then the postRouting() callback method occurs after executing the default routing rule. If the default routing rule is parallel, then the postRouting() callback occurs after all sequential rules are executed and does not wait for the execution of the parallel default routing rule.

20.2.5.5 Default Rule: Mediator .mplan File

To set a routing rule as the default one, click the Set as Default Routing Rule icon shown on Figure 20-2. The .mplan file changes, as shown in Figure 20-33.

Figure 20-33 .mplan File of an Oracle Mediator with a Default Routing Rule

[image: Description of Figure 20-33 follows]

20.3 Creating an Oracle Mediator for Routing Messages

The CustomerRouter use case provides an overview of how to use an Oracle Mediator in a SOA composite sample application to route messages. For downloading the sample files mentioned in this section, visit the following URL:

http://www.oracle.com/technology/sample_code/products/soa

The CustomerRouter use case consists of the following steps:

	
Legacy customer files are retrieved from a directory by an adapter service named ReadCust.

	
The ReadCust adapter service sends the file data to the CustomerRouter Oracle Mediator.

	
The CustomerRouter Oracle Mediator applies a filter to the XML message payload to determine whether the message should be routed to the USCustomer reference or CanadaCustomer reference.

	
The CustomerRouter Oracle Mediator then transforms the message to the structure required by the adapter reference.

	
The external reference delivers the message to its associated external application.

Figure 20-34 provides an overview of the CustomerRouter use case.

Figure 20-34 Overview of CustomerRouter Use Case

[image: Description of Figure 20-34 follows]

20.3.1 How to Create the CustomerRouter Use Case

This section provides the design-time tasks for creating, building, and deploying the use case.

20.3.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

	
In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

	
In the New Gallery, expand the General node, and select the Applications category.

	
In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

	
In the Application Name field, enter CustomerRouter and then click Next.

The Name your project page appears.

	
In the Project Name field, enter CustomerRouterProject and click Next.

The Configure SOA settings page appears.

	
From the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new application and the project, and the SOA Composite Editor contains a blank palette.

	
From the File menu, select Save All.

20.3.1.2 Task 2: How to Create the CustomerRouter Oracle Mediator Service Component

To create the CustomerRouter Oracle Mediator service component:

	
From the Component Palette, select SOA.

	
Drag and drop a Mediator icon in the Components section.

The Create Mediator dialog is displayed.

	
In the Name field, enter CustomerRouter.

	
From the Templates list, select Define Interface Later.

	
Click OK.

A Oracle Mediator with name CustomerRouter is created.

20.3.1.3 Task 3: How to Create a File Adapter Service

You must create a file adapter service named ReadCust to read the XML files from a directory.

	
Note:

Oracle Mediator may process the same file twice when run against Oracle Real Application Clusters (RAC) planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once.

To create a file adapter service:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

	
Click Next.

The Service Name page is displayed.

	
In the Service Name field, enter ReadCust.

	
Click Next.

The Adapter Interface page is displayed.

	
Select Define from operation and schema (specified later) and click Next.

The Operation page is displayed.

	
In the Operation Type field, select Read File.

	
In the Operation Name field, replace Read with ReadFile.

	
Click Next.

The File Directories page is displayed.

	
In the Directory for Incoming Files (physical path) field, enter the directory from which you want to read the files. For example, enter C:\Customer\In.

	
Click Next.

The File Filtering page is displayed.

	
In the Include Files with Name Pattern field, enter *.xml, and then click Next.

The File Polling page is displayed.

	
Change the Polling Frequency field value to 10 seconds, and then click Next.

The Messages page is displayed.

	
To the right of the URL field, click Search.

The Type Chooser dialog is displayed.

	
Click Import Schema File.

The Import Schema File dialog is displayed.

	
To the right of the URL field, click Search and select the LegacyCustomer.xsd file present in the Samples folder.

	
Click OK.

	
Expand the navigation tree to Type Explorer\Imported Schemas\LegacyCustomer.xsd and select CustomerData, as shown in Figure 20-35.

Figure 20-35 Type Chooser - CustomerData

[image: Description of Figure 20-35 follows]

	
Click OK.

The Adapter Configuration wizard appears, as shown in Figure 20-36.

Figure 20-36 Adapter Configuration Wizard – Messages page

[image: Description of Figure 20-36 follows]

	
Click Next.

The Finish page is displayed.

	
Click Finish.

	
From the File menu, select Save All.

20.3.1.4 Task 4: How to Create a File Adapter Reference

You must create a USCustomer file adapter reference.

To create a file adapter reference:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

	
Click Next.

The Service Name page is displayed.

	
In the Service Name field, enter USCustomer.

	
Click Next.

The Adapter Interface page is displayed.

	
Select Define from operation and schema (specified later) and click Next.

The Operation page is displayed.

	
Click Next.

The Operation page is displayed.

	
In the Operation Type field, select Write File.

	
In the Operation Name field, enter WriteFile.

	
Click Next.

The File Configuration page is displayed.

	
In the Directory for Outgoing Files (physical path) field, enter the name of the directory in which you want to write the files.

For example, C:\Customer\out.

	
In the File Naming Convention field, enter customer_%SEQ%.xml and click Next.

The Messages page is displayed.

	
To the right of the URL field, click Search.

The Type Chooser dialog is displayed.

	
Click Import Schema File.

The Import Schema File dialog is displayed.

	
To the right of the URL field, click Search and select the USCustomer.xsd file present in the Samples folder.

	
Click OK.

	
Expand the navigation tree to Type Explorer\Imported Schemas\USCustomer.xsd, and then select Customer.

	
Click OK.

	
Click Next.

The Finish page is displayed.

	
Click Finish.

	
From the File menu, click Save All.

Create another file adapter reference named CanadaCustomer in a similar way by using the CanCustomer.xsd file.

Figure 20-37 shows how the SOA Composite Editor appears after performing this task.

Figure 20-37 Oracle Mediator Service Component with Adapter Services and References

[image: Description of Figure 20-37 follows]

20.3.1.5 Task 5: How to Specify Routing Rules

You must specify the path that messages take from the ReadCust adapter service to external references.

To specify routing rules:

	
Connect the ReadCust service to the CustomerRouter Oracle Mediator, as shown in Figure 20-38.

This specifies the file adapter service to invoke the CustomerRouter Oracle Mediator while reading a file from the input directory.

Figure 20-38 Connecting the ReadCust Service to the CustomerRouter Oracle Mediator

[image: Description of Figure 20-38 follows]

	
Double-click the CustomerRouter Oracle Mediator in the Mediator Editor.

	
In the Routing Rules section, click Add to the extreme right side of ReadFile, and then click static routing rule.

The Target Type dialog is displayed.

	
Click Service.

The Target Services dialog is displayed.

	
Navigate to CustomerRouterProject > References > USCustomer and select WriteFile, as shown in Figure 20-39.

Figure 20-39 Target Services Dialog

[image: Description of Figure 20-39 follows]

	
Click OK.

The Routing Rules section is displayed.

	
Next to the <<Filter Expression>> field, click the filter icon to create a filter expression for this routing rule.

The Expression Builder dialog is displayed.

	
In the Variables field, navigate to Variables> in > body > imp1:CustomerData, and then select Country.

	
Double-click Country.

The Country node is added in the Expression field, as shown in Figure 20-40.

Figure 20-40 Expression Builder Dialog

[image: Description of Figure 20-40 follows]

	
Modify the expression as follows:

$in.CustomerData/imp1:CustomerData/Country='US'

	
Click OK.

The <<Filter Expression>> field of the Routing Rules section is populated with the expression.

	
To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog is displayed, as shown in Figure 20-41.

Figure 20-41 Request Transformation Map

[image: Description of Figure 20-41 follows]

	
Select Create New Mapper File and click OK.

A CustomerData_To_Customer.xsl file is added, as shown in Figure 20-42.

Figure 20-42 CustomerData_To_Customer.xsl File – Initially

[image: Description of Figure 20-42 follows]

	
Drag and drop the imp1:CustomerData source element to the imp1:Customer target element.

The Auto Map Preferences dialog is displayed.

	
From the During Auto Map options, deselect Match Elements Considering their Ancestor Names.

The Auto Map Preferences dialog is shown in Figure 20-43.

Figure 20-43 Auto Map Preferences Dialog

[image: Description of Figure 20-43 follows]

	
Click OK.

The CustomerData_To_Customer.xsl file appears, as shown in Figure 20-44.

Figure 20-44 CustomerData_To_Customer.xsl Tab – Auto Mapped Connections

[image: Description of Figure 20-44 follows]

	
From the File menu, select Save All.

	
Repeat the procedures mentioned in Step 3 through Step 17 to create a CanadaCustomer reference as the target service. In the Expression Builder dialog, specify the following expression:

	
Note:

For repeating the steps, you must re-enter the Mediator Editor by closing it or by clicking the CustomerRouter.mplan tab above the editor.

$in.CustomerData/imp1:CustomerData/Country='CA'

After performing all the steps described in this section, the SOA Composite Editor appears, as shown in Figure 20-34.

20.3.1.6 Task 6: How to Create an Application Server Connection

An application server connection is required for deploying your SOA composite application. For information about creating an application server connection, see Section 41.7.1.1.1, "Creating an Application Server Connection."

20.3.1.7 Task 7: How to Deploy the CustomerRouterProject

Deploying the CustomerRouterProject composite application to an application server consists of following steps:

	
Creating an application deployment profile

	
Deploying the application deployment profile to an application server

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

20.3.2 Running and Monitoring the CustomerRouterProject Application

After deploying the CustomerRouterProject application, you can run it by copying the input XML files to the input folder. The payload files are written to the specified output directories.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control Console at the following URL:

http://hostname:port_number/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure and port_number is the port of the server on which Oracle Enterprise Manager Fusion Middleware Control Console is installed.

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

20.4 Creating an Asynchronous Request and Response Using Oracle Mediator

This sample demonstrates an asynchronous request response scenario using Oracle Mediator. This composite has a client BPEL process invoking an Oracle Mediator, which invokes a server BPEL process. All the invocations are done as an asynchronous request response.

Figure 20-45 provides an overview of the AsyncMediator use case.

Figure 20-45 Overview of AsyncMediator Use Case

[image: Description of Figure 20-45 follows]

For downloading the sample files mentioned in this section, visit the following URL:

http://www.oracle.com/technology/sample_code/products/soa

20.4.1 How to Create the AsyncMediator Use Case

This section provides the design-time tasks for creating, building, and deploying the use case. These tasks should be performed in the order in which they are presented.

20.4.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project

To create an Oracle JDeveloper application and a project:

	
In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

	
In the New Gallery, expand the General node, and select the Applications category.

	
In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

	
In the Application Name field, enter AsyncMediator and then click Next.

The Name your project page appears.

	
In the Project Name field, enter AsyncMediatorSample and click Next.

The Configure SOA settings page appears.

	
In the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new application and the project, and the SOA Composite Editor contains a blank palette.

	
From the File menu, click Save All.

20.4.1.2 Task 2: How to Create a Server BPEL Process

To create a server BPEL process:

	
In the Application Navigator, double-click composite.xml. The SOA Composite Editor is displayed.

	
From the Component Palette, select SOA.

	
Drag and drop a BPEL Process into the Components section.

The Create BPEL Process dialog is displayed.

	
In the Name field, enter ServerBPELProcess.

	
From the Template list, select Asynchronous BPEL Process.

	
Deselect Expose as a SOAP service and click OK. The ServerBPELProcess is created in the SOA Composite Editor.

20.4.1.3 Task 3: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component named Mediator:

	
From the Component Palette, select SOA.

	
Drag and drop a Mediator into the Components section.

The Create Mediator dialog is displayed.

	
In the Name field, enter Mediator.

	
From the Template list, select Asynchronous Interface.

	
Deselect Create Composite Service with SOAP Bindings.

	
Click OK.

An Oracle Mediator with name Mediator is created, as shown in Figure 20-46.

Figure 20-46 Oracle Mediator and ServerBPELProcess in the Composite Window

[image: Description of Figure 20-46 follows]

	
Double-click the Mediator Oracle Mediator.

The Mediator Editor is displayed.

	
In the Routing Rules section, click Add to the far right side of execute and then select static routing rule.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to AsyncMediatorSample > BPEL Processes > ServerBPELProcess > Services > serverbpelprocess_client > process, as shown in Figure 20-47.

Figure 20-47 Target Services Dialog

[image: Description of Figure 20-47 follows]

	
Click OK.

	
Below the <<Filter Expression>> field, click the icon to the right of the Transform Using field.

The Request Transformation Map dialog is displayed.

	
Select Create New Mapper File and click OK.

The XSLT Mapper is displayed and a target file named singleString_To_process.xsl is added.

	
Drag and drop the cb1:input source element to the client:input target element.

The Auto Map Preferences dialog is displayed.

	
From the During Auto Map options, deselect Match Elements Considering their Ancestor Names and click OK.

The XSLT Mapper displays, as shown in Figure 20-48.

Figure 20-48 singleString_To_process.xsl Window

[image: Description of Figure 20-48 follows]

	
In the Routing Rules section, under Callback, click the icon to the right of the Transform Using field.

The Request Transformation Map dialog is displayed.

	
Select Create New Mapper File and click OK.

The XSLT Mapper is displayed and a target file named processResponse_To_singleString.xsl is added.

	
Drag and drop the client:processResponse source element to the cb1:singleString target element.

The Auto Map Preferences dialog is displayed.

	
From the During Auto Map options, deselect Match Elements Considering their Ancestor Names and click OK.

20.4.1.4 Task 4: How to Create a Client BPEL Process

To create a client BPEL process:

	
In the Application Navigator, double-click composite.xml. The SOA Composite Editor is displayed.

	
From the Component Palette, select SOA.

	
Drag and drop a BPEL Process to the Components section.

The Create BPEL Process dialog is displayed.

	
In the Name field, enter ClientBPELProcess.

	
From the Template list, select Asynchronous BPEL Process.

	
Click OK.

ClientBPELProcess is created in the SOA Composite Editor.

	
Drag and drop the ClientBPELProcess BPEL process to the Mediator Oracle Mediator. The SOA Composite Editor appears, as shown in Figure 20-45.

20.4.1.5 Task 5: How to Create the Invoke, Receive, and Assign Activities

To create the invoke activity:

	
Double-click ClientBPELProcess. The Oracle BPEL Designer is displayed.

	
Drag and drop an Invoke activity from the Component Palette to the design area.

	
Double-click the Invoke activity. The Invoke dialog is displayed.

	
In the Name field, enter InvokeMediator.

	
Next to the Partner Link field, click Browse Partner Links. The Partner Link Chooser dialog is displayed.

	
Select Operation - execute, and click OK.

	
To the right of the Variable field in the Invoke dialog, click the Auto-Create Variable icon. The Create Variable dialog is displayed.

	
In the Variable field, enter InvokeMediator_execute_InputVariable_1 and click OK. The Invoke dialog is displayed.

	
Click OK. The Oracle BPEL Designer appears.

To create the receive activity:

	
Drag and drop a Receive activity from the Component Palette to the design area.

	
Double-click the Receive activity. The Receive dialog is displayed.

	
In the Name field, enter ReceiveFromMediator.

	
Next to the Partner Link field, click Browse Partner Links. The Partner Link Chooser dialog is displayed.

	
Select Operation - callback, and click OK.

	
To the right of the Variable field in the Receive dialog, click the Auto-Create Variable icon. The Create Variable dialog is displayed.

	
Select the default variable name and click OK. The Variable field is populated with the default variable name.

	
Check Create Instance, and click OK. The Oracle BPEL Designer appears.

To create the assign activity:

	
Drag and drop an Assign activity from the Component Palette between the ReceiveFromMediator and InvokeMediator activities in the design area.

	
Double-click the Assign activity. The Assign dialog is displayed.

	
In the Name field, enter AssignRequest.

	
Click the Copy Operation tab. The Assign dialog is displayed.

	
Select Copy Operation. The Create Copy Operation dialog is displayed.

	
Create the copy operation between the triggers file name and the file variable, as shown in Figure 20-49.

Figure 20-49 The Create Copy Operation Dialog

[image: Figure]

	
Click OK in the Create Copy Operation dialog.

	
Click OK to return to the Oracle BPEL Designer, as shown in Figure 20-50.

Figure 20-50 The Oracle JDeveloper - ClientBPELProcess.bpel

[image: Figure]

	
From the File menu, select Save All.

To create an assign activity in the ServerBPELProcess

	
Double-click the ServerBPELProcess BPEL process. The Oracle BPEL Designer is displayed.

	
Drag and drop an Assign activity from the Component Palette between the receiveInput and callbackClient activities in the design area.

	
Double-click the Assign activity. The Assign dialog is displayed.

	
Click the Copy Operation tab.

	
Select Copy Operation. The Create Copy Operation dialog is displayed.

	
Create the copy operation between the triggers file name and the file variable, as shown in Figure 20-51.

Figure 20-51 The Create Copy Operation Dialog

[image: Figure]

	
Click OK in the Create Copy Operation dialog.

	
Click OK to return to the Oracle BPEL Designer, as shown in Figure 20-52.

Figure 20-52 The Oracle JDeveloper - ServerBPELProcess.bpel

[image: Figure]

	
From the File menu, select Save All.

20.4.1.6 Task 6: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 41.7.1.1.1, "Creating an Application Server Connection."

20.4.1.7 Task 7: How to Deploy the SOA Composite Application

Deploying the EventMediatorApp composite application to Oracle WebLogic Server consists of following steps:

	
Creating an application deployment profile

	
Deploying the application to an application server

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

21 Working with Multiple Part Messages in Oracle Mediator

This chapter describes how to use multiple part (multipart) messages with the Oracle Mediator service component.

This chapter includes the following sections:

	
Section 21.1, "Introduction to Oracle Mediator Multipart Message Support"

	
Section 21.2, "Working with Multipart Request Messages"

21.1 Introduction to Oracle Mediator Multipart Message Support

Oracle Mediator includes support for importing multipart WSDL files in the Mediator Editor.

Oracle Mediator supports working with multipart source and target messages, which include multipart filter expression building, multipart schema validation, and transformations between multipart source and target messages for requests, replies, faults, and callbacks.

The Mediator Editor with a multipart source appears as shown in Figure 21-1.

Figure 21-1 Mediator Editor for a Multipart Source

[image: Description of Figure 21-1 follows]

21.2 Working with Multipart Request Messages

This section describes how to work with different types of multipart messages.

21.2.1 How to Work with Multipart Request Messages

This section describes multipart request messages.

21.2.1.1 How to Specify Filter Expressions

If you specify a filter expression for a multipart message, then the Expression Builder displays all message parts under the in variable, as shown in Figure 21-2:

Figure 21-2 Expression Builder for a Multipart Request Source

[image: Description of Figure 21-2 follows]

21.2.1.2 How to Add Validations

If you add a validation for a multiple part message, then the Add Validation dialog displays a list of parts from which you can choose one part, as shown in Figure 21-3. You specify a Schematron file for each request message part. Oracle Mediator then processes the Schematron files for the parts.

Figure 21-3 Add Validation Dialog for a Multipart Request Source

[image: Description of Figure 21-3 follows]

21.2.1.3 How to Create Transformations

If you create a new mapper file for a multipart message, then the generated mapper file shows multiple source parts in the XSLT Mapper, as shown in Figure 21-4:

Figure 21-4 XSLT Mapper for a Multipart Request Source

[image: Description of Figure 21-4 follows]

21.2.1.4 How to Assign Values

If you assign values using a source expression, then the Expression Builder shows an in variable for each message part. This is the same as specifying filter expressions.

21.2.2 How to Work with Multipart Reply, Fault, and Callback Source Messages

The method to create transformations and assign values to multipart reply, fault, and callback source messages is the same as working with request source messages.

	
Note:

You cannot specify filter expressions or add validations for reply, fault, and callback messages.

21.2.3 How to Work with Multipart Target Messages

If a routing target (that is, a request, reply, fault, or callback) has a multipart message, then the transformation is handled in a slightly different way. This is because the XSLT Mapper does not support multipart targets. In such a case, the Oracle Mediator creates and coordinates a separate mapper file for each target part, as shown in Figure 21-5:

Figure 21-5 Request Transformation Map for a Multipart Routing Target

[image: Description of Figure 21-5 follows]

22 Using Oracle Mediator Error Handling

This chapter describes how to handle errors with Oracle Mediator.

This chapter includes the following sections:

	
Section 22.1, "Introduction to Oracle Mediator Error Handling"

	
Section 22.2, "Using Error Handling with Oracle Mediator"

	
Section 22.3, "Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control Console"

	
Section 22.4, "Error Handling XML Schema Definition Files"

22.1 Introduction to Oracle Mediator Error Handling

Oracle Mediator provides sophisticated error handling capabilities that enable you to configure an Oracle Mediator service component for error occurrences and corresponding corrective actions. Error handling enables an Oracle Mediator to handle errors that occur during the processing of messages and also the exceptions returned by outside web services. You can handle both business faults and system faults with Oracle Mediator.

Business faults are application-specific and are explicitly defined in the service WSDL file. You can handle business faults by defining the fault handlers in Oracle JDeveloper at design time. System faults occur because of some problem in the underlying system such as a network not being available. Oracle Mediator provides fault policy-based error handling for system faults.

Fault policies enable you to handle errors automatically or through human intervention. Oracle Mediator fault policy-based error handling consists of the following three components:

	
Fault policies

	
Fault bindings

	
Error groups

22.1.1 Fault Policies

A fault policy defines error conditions and corresponding actions. Fault policies are defined in the fault-policies.xml file. The fault-policies.xml file should be created based on the XML schema defined in Section 22.4.1, "Schema Definition File for fault-policies.xml."

	
Note:

Fault policies are applicable to parallel routing rules only. For sequential routing rules, the fault goes back to the caller. It is the responsibility of the caller to handle the fault. If the caller is an adapter, then you can define rejection handlers on the inbound adapter to take care of the messages that error out (that is, the rejected messages). For more information about rejection handlers, see the Oracle Fusion Middleware User's Guide for Technology Adapters.

A sample fault policy file is shown in Example 22-1:

Example 22-1 Sample Fault Policy File

<?xml version="1.0" encoding="UTF-8"?>

<faultPolicies>

 <faultPolicy version="2.0.1" id="CRM_ServiceFaults">

 <Conditions>

 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"

 name="medns:mediatorFault">

 <condition>

 <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>

 <action ref="ora-retry"/>

 </condition>

 </faultName>

 </Conditions>

 <Actions>

 <Action id="ora-retry">

 <retry>

 <retryCount>3</retryCount>

 <retryInterval>2</retryInterval>

 <exponentialBackoff/>

 <retryFailureAction ref="ora-java"/>

 <retrySuccessAction ref="ora-terminate"/>

 </retry>

 </Action>

 </Actions>

 </faultPolicy>

</faultPolicies>

The two components of the fault policy (conditions and actions) are described in the following sections.

22.1.1.1 Conditions

Conditions identify error or fault conditions along with a reference to the actions to be taken. You can use conditions to identify the action to be taken when a particular error or fault condition occurs. For example, for a particular error occurring because of a service not being available, you can perform an action such as a retry. Similarly, for another error occurring because of the failure of Schematron validation, you can perform the action of human intervention. This fault can be recovered manually by editing the payload and then resubmitting it through Oracle Enterprise Manager Fusion Middleware Control Console.

Conditions are defined in the fault-policies.xml file, as shown in Example 22-2:

Example 22-2 Conditions

<Conditions>

 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"

 name="medns:mediatorFault">

 <condition>

 <test>contains($fault.mediatorErrorCode,"TYPE_DATA_TRANSFORMATION")</test>

 <action ref="ora-java"/>

 </condition>

 </faultName>

 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"

name="medns:mediatorFault">

 <condition>

 <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>

 <action ref="ora-retry"/>

 </condition>

 </faultName>

 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"

name="medns:mediatorFault">

 <condition>

 <test>contains($fault.mediatorErrorCode,"TYPE_DATA_ASSIGN")</test>

 <action ref="ora-retry-crm-endpoint"/>

 </condition>

 </faultName>

</Conditions>

Identifying Fault Types Using Conditions

You can categorize the faults that can be captured using conditions into the following types:

	
Oracle Mediator-specific faults

For all Oracle Mediator-specific faults, the Oracle Mediator service engine throws only one fault, namely {http://schemas.oracle.com/mediator/faults}mediatorFault. Every Oracle Mediator fault is wrapped into this fault. The errors or faults generated by an Oracle Mediator can be captured by using the format shown in Example 22-3:

Example 22-3 Oracle Mediator-Specific Faults

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults" name="medns:mediatorFault">
<!-- mediatorFault is a bucket for all the mediator faults -->

 <condition>
 <test>
 contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")
 </test>
<!-- Captures TYPE_FATAL_MESH errors -->

 <action ref="ora-retry"/>

 </condition>

 </faultName>

	
Business faults and SOAP faults

These errors or faults can be captured by defining an XPath condition, which is based on the fault payload. Example 22-4 provides details.

Example 22-4 Business Faults and SOAP Faults

<faultName xmlns:ns1="http://xmlns.oracle.com/Customer"
 name="ns1:InvalidCustomer"> <!-- Qname of Business/SOAP fault -->
 <condition>
 <test>
contains($fault.<PART_NAME>/custid, 1011)
 </test>
<!-- xpath condition based on fault payload -->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

When a reference service returns a business fault, the fault can be handled in the Oracle Mediator service component. The returned fault can be forwarded to another component, redirected to an adapter service such as a file adapter, or an event can be raised. However, if both a fault policy and fault handler are defined for a business fault, then the fault policy takes precedence over the fault handler. In such a case, the fault handlers in the Oracle Mediator service component are ignored, if the fault policy is successfully executed.

	
Adapter-specific fault

The errors or faults generated by an adapter can be captured by using the format shown in Example 22-5:

Example 22-5 Capturing Errors or Faults Generated by an Adapter

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults" name="medns:mediatorFault">

 <condition>

 <test>$fault.faultCode = "1"</test> <!-- unique constraint violation in DB adapter-->

 <action ref="ora-retry"/>

 </condition>

 </faultName>

22.1.1.2 Actions

Actions specify the tasks to perform when an error occurs. Oracle Mediator provides a list of actions that you can use in a fault policy. These predefined actions are described in the following list:

	
Retry: Retry actions such as enqueueing a message to a JMS queue that is stopped, inserting a record with a unique key constraint error, and so on, enable you to retry a task that caused the error. A new thread is started with every retry action. Therefore, with every retry action, a new transaction starts. Table 22-1 describes the options available with the retry action.

Table 22-1 Retry Action Options

	Option	Description
	
Retry Count

	
Retry N times.

	
Retry Interval

	
Delay in seconds for a retry.

	
Exponential Backoff

	
Retry interval increase with an exponential backoff.

	
Retry Failure Action

	
Chain to this action if a retry N times fails.

	
Retry Success Action

	
Chain to this action if a retry succeeds.

	
Note:

Exponential backoff indicates that the next retry attempt is scheduled at 2 x the delay, where delay is the current retry interval. For example, if the current retry interval is 2 seconds, the next retry attempt is scheduled at 4, the next at 8, and the next at 16 seconds until the retryCount value is reached.

Example 22-6 shows how to specify the retry action:

Example 22-6 Retry Action

 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>

If you set the retry Interval in the fault policy to a duration of less than 30 seconds, then the retry may not happen within the specified intervals. This is because the default value of the org.quartz.scheduler.idleWaitTime property is 30 seconds, and the scheduler waits for 30 seconds before retrying for available triggers, when the scheduler is otherwise idle. If the retry interval is set to a value of less than 30 seconds, then latency is expected.

If you want the system to use a retry interval that is less than 30 seconds, add the following property under the section <property name="quartzProperties"> in the fabric-config-core.xml file:

org.quartz.scheduler.idleWaitTime=<value>

	
Human intervention: You can specify this action in the following way:

<Action id="ora-human-intervention"><humanIntervention/></Action>

	
Abort: This action enables you to abort the flow. You can specify this action in the following way:

<Action id="ora-terminate"><abort/></Action>

	
Java code: This action enables you to call a customized Java class that implements the oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass interface. You can specify this action as shown in Example 22-7:

	
Note:

The implemented Java class must implement a method that returns a string. The policy can be chained to a new action based on the returned string.

Example 22-7 Customized Java Class Calling

 <Action id="ora-java">

 <javaAction className="mypackage.myClass" defaultAction="ora-terminate">

 <returnValue value="ABORT" ref="ora-terminate"/>

 <returnValue value="RETRY" ref="ora-retry"/>

 <returnValue value="MANUAL" ref="ora-human-intervention"/>

 </javaAction>

 </Action>

For more information, see Example 22-8 and Example 22-9.

Example 22-8 oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass Interface

oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass {

 public void handleRetrySuccess(IFaultRecoveryContext ctx);
 public String handleFault(IFaultRecoveryContext ctx);

}

Example 22-9 oracle.integration.platform.faultpolicy.IFaultRecoveryContext Interface

public interface IFaultRecoveryContext {

 /**
 * Gets implementation type of the fault.
 * @return
 */
 public String getType();

 /**
 * @return Get property set of the fault policy action being executed.
 */
 public Map getProperties();

 /**
 * @return Get fault policy id of the fault policy being executed.
 */
 public String getPolicyId();

 /**
 * @return Name of the faulted reference.
 */
 public String getReferenceName();

 /**
 * @return Port type of the faulted reference link.
 */
 public QName getPortType();
}

Oracle Mediator Service Engine Implementation

Example 22-10 shows the Oracle Mediator service engine implementation of the IFaultRecoveryContext interface.

Example 22-10 IFaultRecoveryContext Interface Implementation

package oracle.tip.mediator.common.error.recovery;
public class MediatorRecoveryContext implements IFaultRecoveryContext{
 ...
}

You can use the methods shown in Example 22-11 to retrieve additional Oracle Mediator-specific data available with the MediatorRecoveryContext class:

Example 22-11 Methods for Retrieving Data

public Fault getFault()
public CalloutMediatorMessage getMediatorMessage()

Example 22-12 shows how to retrieve data using the CalloutMediatorMessage interface:

Example 22-12 Data Retrieval Using the CalloutMediatorMessage Interface

 /**
 * Accessing Mediator Message properties by providing the property name
 * @param propertyName
 * @return
 * @throws MediatorException
 */
 public Object getProperty(String propertyName);

 /**
 * Accessing Mediator Message properties
 * @return
 * @throws MediatorException
 */
 public Map getProperties();

 /**
 * Accessing instance id of the mediator message
 * This will be mediator instance id created for that particular message
 * object
 * @return
 * @throws MediatorException
 */
 public String getId() throws MediatorException;

 /**
 * Accessing payload of the mediator message
 * object
 * @return
 * @throws MediatorException
 */
 public Map getPayload();

 /**
 * Accessing header of the mediator message
 * object
 * @return
 * @throws MediatorException
 */
 public List<Element> getHeaders();

 /**
 * Accessing componentDN for mediator component
 * @return
 * @throws MediatorException
 */
 public String getComponentDN(
 /**
 * Setting payload to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addPayload(String partName,Object payload) throws MediatorCalloutException;

 /**
 * Adding property to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addProperty(String name,Object value) throws MediatorCalloutException;

 /**
 * Adding header to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addHeader(Object header) throws MediatorCalloutException;

22.1.2 Fault Bindings

Fault bindings associate fault policies with composites or components, and are defined in the fault-bindings.xml file. Create the fault-bindings.xml file based on the XML schema defined in Section 22.4.2, "Schema Definition File for fault-bindings.xml."

Fault policies can be created at the following levels:

	
Composite: You can define one fault policy for all Oracle Mediator components in a composite. You can specify this level in the following way:

<composite faultPolicy="ConnectionFaults"/>

	
Component: You can define a fault policy exclusively for an Oracle Mediator service component. A component-level fault policy overrides the composite-level fault policy. You can specify this level as shown in Example 22-13.

Example 22-13 Definition of a Fault Policy for an Oracle Mediator

<component faultPolicy="ConnectionFaults">
 <name>Component1</name>
 <name>Component2</name>
</component>

	
Reference: You can define a fault policy for the references of an Oracle Mediator component. You can specify this level as shown in Example 22-14.

Example 22-14 Definition of a Fault Policy for a Reference

<reference faultPolicy="policy1">
 <name>DBAdapter3</name>
 </reference>

	
Note:

Human intervention is the default action for errors that do not have a fault policy defined.

A sample fault binding file is shown in Example 22-15.

Example 22-15 Sample Fault Binding File

<?xml version="1.0" encoding="UTF-8"?>

<faultPolicyBindings version="2.0.1"

 xmlns="http://schemas.oracle.com/bpel/faultpolicy"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <composite faultPolicy="ConnectionFaults"/>

</faultPolicyBindings>

22.1.3 Error Groups in Oracle Mediator

You can specify an action for an error type or error group while defining the conditions in a fault policy. In the previous examples, medns:mediatorFault indicates that the error is an Oracle Mediator error, whereas medns:TYPE_FATAL_MESH refers to an error group. An error group consists of one or more child error types. TYPE_ALL is an error group that contains all Oracle Mediator errors.

The following list describes various error groups contained in the TYPE_ALL error group:

	
TYPE_DATA: Contains errors related to data handling.

	
TYPE_DATA_ASSIGN: Contains errors related to data assignment.

	
TYPE_DATA_FILTERING: Contains errors related to data filtering.

	
TYPE_DATA_TRANSFORMATION: Contains errors that occur during a transformation.

	
TYPE_DATA_VALIDATION: Contains errors that occur during payload validation.

	
TYPE_METADATA: Contains errors related to Oracle Mediator metadata.

	
TYPE_METADATA_FILTERING: Contains errors that occur while processing the filtering conditions.

	
TYPE_METADATA_TRANSFORMATION: Contains errors that occur while getting the metadata for a transformation.

	
TYPE_METADATA_VALIDATION: Contains errors that occur during validation of metadata for Oracle Mediator (.mplan file).

	
TYPE_METADATA_COMMON: Contains other errors that occur during the handling of metadata.

	
TYPE_FATAL: Contains fatal errors that are not easily recoverable.

	
TYPE_FATAL_DB: Contains database-related fatal errors, such as a Datasource not found error.

	
TYPE_FATAL_CACHE: Contains Oracle Mediator cache-related fatal errors.

	
TYPE_FATAL_ERRORHANDLING: Contains fatal errors that occur during error handling such as Resubmission queues not available.

	
TYPE_FATAL_MESH: Contains fatal errors from the Service Infrastructure such as Invoke service not available.

	
TYPE_FATAL_MESSAGING: Contains fatal messaging errors arising from the Service Infrastructure.

	
TYPE_FATAL_TRANSACTION: Contains fatal errors related to transactions such as Commit can't be called on a transaction which is marked for rollback.

	
TYPE_FATAL_TRANSFORMATION: Contains fatal transformation errors such as an error occurring because of the XPath functions used in a transformation.

	
TYPE_TRANSIENT: Contains transient errors that can be recovered on a retry.

	
TYPE_TRANSIENT_MESH: Contains errors related to the Service Infrastructure.

	
TYPE_TRANSIENT_MESSAGING: Contains errors related to JMS such as enqueuing and dequeuing.

	
TYPE_INTERNAL: Contains internal errors.

22.2 Using Error Handling with Oracle Mediator

You can enable error handling for an Oracle Mediator by using the fault-policies.xml and fault-bindings.xml files.

22.2.1 How to Use Error Handling for an Oracle Mediator Service Component

To use error handling for an Oracle Mediator service component:

	
Create a fault-policies.xml file based on the schema defined in Section 22.4.1, "Schema Definition File for fault-policies.xml."

	
Create a fault-bindings.xml file based on the schema defined in Section 22.4.2, "Schema Definition File for fault-bindings.xml."

	
Copy the fault-policies.xml and the fault-bindings.xml file to your SOA composite application project directory.

	
Deploy the SOA composite application project.

22.2.2 What Happens at Runtime

All the fault policies for a composite are loaded when the first error occurs. At runtime, Oracle Mediator checks whether there is any policy defined for the current error. If a fault policy is defined, then Oracle Mediator performs the action according to the configuration in the fault policies file. If there is no fault policy defined, then the default action of human intervention is performed.

22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control Console

Apart from policy-based recovery using the fault policy file, you can also perform fault recovery actions on Oracle Mediator faults identified as recoverable in Oracle Enterprise Manager Fusion Middleware Control Console. This can be performed in the following ways:

	
Manual recovery by modifying the payload using Oracle Enterprise Manager Fusion Middleware Control Console

	
Bulk recovery without modifying the payload using Oracle Enterprise Manager Fusion Middleware Control Console

	
Aborting a faulted instance using Oracle Enterprise Manager Fusion Middleware Control Console, if you do not want to do any more processing on the instance.

For more information about fault recovery using Oracle Enterprise Manager Fusion Middleware Control Console, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

22.4 Error Handling XML Schema Definition Files

This section describes the schema files for the fault-policies.xml and fault-bindings.xml files.

22.4.1 Schema Definition File for fault-policies.xml

The fault-policies.xml file should be based on the XSD file shown in Example 22-16.

Example 22-16 XSD File for fault-policies.xml

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <!-- Conditions contain a list of fault names -->

 <xs:element name="Conditions">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="faultName" type="tns:faultNameType"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- action Ref must exist in the same file -->

 <xs:complexType name="actionRefType">

 <xs:attribute name="ref" type="xs:string" use="required"/>

 </xs:complexType>

 <!-- one condition has a test and action, if test is missing, this is the

 catch all condition -->

 <xs:complexType name="conditionType">

 <xs:all>

 <xs:element name="test" type="tns:idType" minOccurs="0"/>

 <xs:element name="action" type="tns:actionRefType"/>

 </xs:all>

 </xs:complexType>

 <!-- One fault name match contains several conditions -->

 <xs:complexType name="faultNameType">

 <xs:sequence>

 <xs:element name="condition" type="tns:conditionType"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:QName"/>

 </xs:complexType>

 <xs:complexType name="ActionType">

 <xs:choice>

 <xs:element name="retry" type="tns:RetryType"/>

 <xs:element ref="tns:rethrowFault"/>

 <xs:element ref="tns:humanIntervention"/>

 <xs:element ref="tns:abort"/>

 <xs:element ref="tns:replayScope"/>

 <xs:element name="javaAction" type="tns:JavaActionType">

 <xs:key name="UniqueReturnValue">

 <xs:selector xpath="tns:returnValue"/>

 <xs:field xpath="@value"/>

 </xs:key>

 </xs:element>

 </xs:choice>

 <xs:attribute name="id" type="tns:idType" use="required"/>

 </xs:complexType>

 <xs:element name="Actions">

 <xs:annotation>
 <xs:documentation>Fault Recovery Actions</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Action" type="tns:ActionType"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="JavaActionType">

 <xs:annotation>

 <xs:documentation>This action invokes java code

 provided</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="returnValue" type="tns:ReturnValueType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="className" type="tns:idType" use="required"/>

 <xs:attribute name="defaultAction" type="tns:idType" use="required"/>

 <xs:attribute name="propertySet" type="tns:idType"/>

 </xs:complexType>

 <xs:complexType name="RetryType">

 <xs:annotation>

 <xs:documentation>This action attempts retry of activity

 execution</xs:documentation>

 </xs:annotation>

 <xs:all>

 <xs:element ref="tns:retryCount"/>

 <xs:element ref="tns:retryInterval"/>

 <xs:element ref="tns:exponentialBackoff" minOccurs="0"/>

 <xs:element name="retryFailureAction"

 type="tns:retryFailureActionType" minOccurs="0"/>

 <xs:element name="retrySuccessAction"

 type="tns:retrySuccessActionType" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

 <xs:simpleType name="idType">

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="ReturnValueType">

 <xs:annotation>

 <xs:documentation>Return value from java code can chain another action

 using

 return values</xs:documentation>

 </xs:annotation>

 <xs:attribute name="value" type="tns:idType" use="required"/>

 <xs:attribute name="ref" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:element name="exponentialBackoff">

 <xs:annotation>

 <xs:documentation>Setting this will cause retry attempts to use

 exponentialBackoff algorithm</xs:documentation>

 </xs:annotation>

 <xs:complexType/>

 </xs:element>

 <xs:element name="humanIntervention">

 <xs:annotation>

 <xs:documentation>This action causes the activity to

 freeze</xs:documentation>

 </xs:annotation>

 <xs:complexType/>

 </xs:element>

 <xs:element name="replayScope">

 <xs:annotation>
 <xs:documentation>This action replays the immediate enclosing

 scope</xs:documentation>

 </xs:annotation>

 <xs:complexType/>

 </xs:element>

 <xs:element name="rethrowFault">

 <xs:annotation>

 <xs:documentation>This action will rethrow the

 fault</xs:documentation>

 </xs:annotation>

 <xs:complexType/>

 </xs:element>

 <xs:element name="retryCount" type="xs:positiveInteger">

 <xs:annotation>

 <xs:documentation>This value is used to identify number of

 retries</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:complexType name="retryFailureActionType">

 <xs:annotation>

 <xs:documentation>This is the action to be chained if retry attempts

 fail</xs:documentation>

 </xs:annotation>

 <xs:attribute name="ref" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="retrySuccessActionType">

 <xs:annotation>

 <xs:documentation>This is the action to be chained if retry attempts

 is successful</xs:documentation>

 </xs:annotation>

 <xs:attribute name="ref" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:element name="retryInterval" type="xs:unsignedLong">

 <xs:annotation>

 <xs:documentation>This is the delay in milliseconds of retry

 attempts</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="abort">

 <xs:annotation>

 <xs:documentation>This action terminates the

 process</xs:documentation>

 </xs:annotation>

 <xs:complexType/>

 </xs:element>

 <xs:element name="Properties">

 <xs:annotation>

 <xs:documentation>Properties that can be passes to a custom java

 class</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="propertySet" type="tns:PropertySetType"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="PropertySetType">

 <xs:sequence>

 <xs:element name="property" type="tns:PropertyValueType"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" type="tns:idType" use="required"/>

 </xs:complexType>

 <xs:complexType name="PropertyValueType">

 <xs:simpleContent>

 <xs:extension base="tns:idType">

 <xs:attribute name="name" type="tns:idType" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="faultPolicy">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:Conditions"/>

 <xs:element ref="tns:Actions"/>

 <xs:element ref="tns:Properties" minOccurs="0"/>

 <!--Every policy has on Conditions and and one Actions, however,

 Properties is optional -->

 </xs:sequence>

 <xs:attribute name="id" type="tns:idType" use="required"/>

 <xs:attribute name="version" type="xs:string" default="2.0.1"/>

 </xs:complexType>

 <xs:key name="UniqueActionId">

 <xs:selector xpath="tns:Actions/tns:Action"/>

 <xs:field xpath="@id"/>

 </xs:key>

 <xs:key name="UniquePropertySetId">

 <xs:selector xpath="tns:Properties/tns:property_set"/>

 <xs:field xpath="@id"/>

 </xs:key>

 <xs:keyref name="RetryActionRef" refer="tns:UniqueActionId">

 <xs:selector xpath="tns:Actions/tns:Action/tns:retry/tns:retryFailureAction"/>

 <xs:field xpath="@ref"/>

 </xs:keyref>

 <xs:keyref name="RetrySuccessActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Actions/tns:Action/tns:retry/tns:retrySuccessAction"/>

 <xs:field xpath="@ref"/>

 </xs:keyref>

 <xs:keyref name="JavaActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Actions/tns:Action/tns:javaAction/tns:returnValue"/>

 <xs:field xpath="@ref"/>

 </xs:keyref>

 <xs:keyref name="ConditionActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Conditions/tns:faultName/tns:condition/tns:action"/>

 <xs:field xpath="@ref"/>

 </xs:keyref>

 <xs:keyref name="JavaDefaultActionRef" refer="tns:UniqueActionId">

 <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>

 <xs:field xpath="@defaultAction"/>

 </xs:keyref>

 <xs:keyref name="JavaPropertySetRef" refer="tns:UniquePropertySetId">

 <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>

 <xs:field xpath="@property_set"/>

 </xs:keyref>

 </xs:element>

 <xs:element name="faultPolicies">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:faultPolicy" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

22.4.2 Schema Definition File for fault-bindings.xml

The fault-bindings.xml file should be based on the XSD file shown in Example 22-17.

Example 22-17 XSD File for fault-bindings.xml

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="faultPolicyBindings">
 <xs:annotation>
 <xs:documentation>Bindings to a specific fault policy
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="composite" type="tns:compositeType"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="component" type="tns:componentType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="reference" type="tns:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" default="2.0.1"/>
 </xs:complexType>
 <xs:key name="UniquePartnerLinkName">
 <xs:selector xpath="tns:reference/tns:name"/>
 <xs:field xpath="."/>
 </xs:key>
 <xs:key name="UniquePortType">
 <xs:selector xpath="tns:reference/tns:portType"/>
 <xs:field xpath="."/>
 </xs:key>
 <xs:key name="UniquePolicyName">
 <xs:selector xpath="tns:reference"/>
 <xs:field xpath="@faultPolicy"/>
 </xs:key>
 </xs:element>
 <xs:simpleType name="nameType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="propertyType">
 <xs:simpleContent>
 <xs:extension base="tns:nameType">
 <xs:attribute name="name" type="xs:string" use="required"
 fixed="faultPolicy"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="referenceType">
 <xs:annotation>
 <xs:documentation>Bindings for a partner link. Overrides composite
 level binding.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>Specification at partner link name overrides
 specification for a port type</xs:documentation>
 </xs:annotation>
 <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="portType" type="xs:QName" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>

 <xs:complexType name="componentType">
 <xs:annotation>
 <xs:documentation>Binding for a component </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>
 <xs:complexType name="compositeType">
 <xs:annotation>
 <xs:documentation>Binding for the entire composite</xs:documentation>
 </xs:annotation>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>
</xs:schema>

23 Support for Resequencing in Oracle Mediator

This chapter describes support for message resequencing in Oracle Mediator.

This chapter contains the following sections:

	
Section 23.1, "Introduction to the Resequencer"

	
Section 23.2, "Resequencing Order"

	
Section 23.3, "Configuring the Resequencer"

	
Section 23.4, "Limitations in the Resequencer"

23.1 Introduction to the Resequencer

The resequencer rearranges a stream of related but out-of-sequence messages back into order. It sequences the incoming messages that arrive in a random order and then sends them to the target services in an orderly manner. The sequencing is done based on the sequencing strategy selected.

23.1.1 Groups and Sequence IDs

The resequencer works with two central concepts: groups and sequence IDs. The sequence ID is an identifier part of the message, based on which messages are rearranged. The messages arriving for resequencing are split into groups and the messages within a group are sequenced according to the sequence ID. Sequencing within a group is independent of messages in any other group. Groups in themselves are not dependent on each other and can be processed independently of each other.

Messages attached to certain groups arrive to an Oracle Mediator in the following order:

msg9(a), msg8(b), msg7(a), msg6(c), msg5(a), msg4(b), msg3(c), msg2(b), msg1(a)

Table 23-1 shows how the Oracle Mediator sorts the messages into groups. The order of the messages in each group depends on the type of resequencer used.

Table 23-1 Messages Sorted into Groups

	Group c	Group b	Group a
	
msg6(c), msg3(c)

	
msg8(b), msg4(b), msg2(b)

	
msg9(a), msg7(a), msg5(a), msg1(a)

All the groups are processed independently of each other and any error occurring in any group does not affect the processing of other groups.

23.1.2 Identification of Groups and Sequence IDs

Groups and sequence IDs are identified through XPath expressions in the payload. You specify XPath expressions that point to the elements in the message payload, on which:

	
Grouping is done

	
Sequencing is done

In the message payload shown in Figure 23-1, CustomerId is the field on which to base instance sequencing and CustomerName is the field on which to base grouping.

Figure 23-1 Message Payload

[image: Description of Figure 23-1 follows]

	
Note:

Resequencing is supported only for Oracle Mediators with a request operation type and a request-callback operation type in the WSDL file. In other words, resequencing is not allowed by the user interface if the WSDL operation has a synchronous reply element. For more information about these operation types, see Chapter 24, "Understanding Message Exchange Patterns of an Oracle Mediator."

23.2 Resequencing Order

Oracle Mediator can resequence the incoming messages in a user-specified order. This implementation enables you to specify three types of resequencing orders:

	
Standard Resequencer

	
FIFO Resequencer

	
BestEffort Resequencer

23.2.1 Standard Resequencer

This section describes the standard resequencer.

23.2.1.1 Overview of Standard Resequencer

The standard resequencer supports a standard resequencer pattern, which is relevant for applications that use identifiers from a simple numeric identifier sequence in their messages. The standard resequencer receives a stream of messages that may not arrive in order; it then stores the out-of-sequence messages until a complete sequence based on the sequenceID is obtained. The in-sequence messages are then processed asynchronously, based on their sequenceID.

It is important to note that the messages to outbound services of the standard resequencer Oracle Mediator service component are guaranteed to arrive in sequence. The standard resequencer does not modify the message contents; it just orders them.

23.2.1.2 Information Required for Standard Resequencing

When using the standard Oracle Mediator resequencer, you must always specify a group XPath expression and a sequenceID XPath expression. These are used to specify where the Oracle Mediator resequencer should find the group and the sequence ID in the messages. You must also supply the sequence numbering in terms of start sequenceID and the sequenceID incremental delta. This numbering is used to form each group.

23.2.1.3 Example of the Standard Resequencer

Table 23-2 shows how groups are formed differently for two different values of the incremental delta.

Table 23-2 Groups Formed Differently for Two Different Values

	Start SequenceID	Incremental Delta	Group1	Group2	...	Groupn
	
1

	
1

	
1,2,3,4,5,...

	
1,2,3,4,5,...

	
...

	
1,2,3,4,5,...n

	
1

	
5

	
1,5,10,15,...

	
1,5,10,15,...

	
...

	
1,5,10,15,...

	
Notes:

	
If the sequence numbering is different for various groups (for example, if the groups do not have the same incremental delta or start sequenceID) and the messages do not arrive in order, then you can use the BestEffort resequencer.

	
The Oracle Mediator standard resequencer holds back messages in the Oracle Mediator resequencer database until it can produce the right sequence for different groups. It means that if for a given group, the message with a particular sequenceID does not arrive within the timeout periodFoot 1 , then the consecutive messages for that group are held back forever. In such a case, you must manually unlock the group through Oracle Enterprise Manager Fusion Middleware Control Console and go to the next available message, skipping the pending message.

Footnote 1 The timeout period is the time period in seconds to wait for an expected message.

23.2.2 FIFO Resequencer

This section describes the FIFO resequencer.

23.2.2.1 Overview of the FIFO Resequencer

The FIFO resequencer supports the FIFO pattern. This pattern is relevant to applications that need sequencing based on the time of arrival of the message to the Oracle Mediator. The FIFO resequencer receives a stream of messages that are in order and processes them in sequence for every group based on the time of arrival to the Oracle Mediator.

It is important to note that the messages to outbound services of the Oracle Mediator acting as a FIFO resequencer are guaranteed to arrive in order based on the time of arrival. Therefore, the messages are delivered in the order they were stored in the resequencer data store.

23.2.2.2 Information Required for FIFO Resequencing

When using the FIFO resequencer, you must always specify a group XPath expression. However, you do not have to specify a sequence ID because the messages are processed according to the time of arrival to the Oracle Mediator configured as a FIFO resequencer. The group XPath expression is used to specify where the FIFO resequencer should find the group information in the message to perform the grouping of the messages. No further configuration is needed for a FIFO pattern.

23.2.2.3 Example of the FIFO Resequencer

Table 23-3 illustrates the behavior of the FIFO resequencer, where msgX(Y,Z) means that the message arrives as message number X to the Oracle Mediator service component and the message contains sequenceID Y and group Z:

Table 23-3 FIFO Resequencer Behavior

	Incoming Messages	Sequenced Messages
	
msg03(2,c)

msg06(1,c)

msg07(5,a)

msg10(3,a)

msg10(3,c)

msg02(7,a)

msg05(9,a)

msg12(4,c)

	
msg12(4,c),msg10(3,c),msg06(1,c),msg03(2,c)

msg05(9,a), msg02(7,a), msg10(3,a), msg07(5,a)

As shown in Table 23-3, the messages are sequenced based on their time of arrival and the sequenceID is not used for sequencing.

	
Note:

When using the FIFO resequencer, use a single-threaded inbound adapter to avoid unpredictable results. For example, when you use the file/FTP adapter, the database adapter, or the AQ adapter in front of an Oracle Mediator service component that is configured as a resequencer, make sure to configure the adapters as single-threaded in processing. Otherwise, unpredictable results occur because the arrival time of the messages is calculated when the messages arrive to the Oracle Mediator service component, and not when they arrive to the adapter service.

23.2.3 BestEffort Resequencer

This section describes the BestEffort resequencer.

23.2.3.1 Overview of the BestEffort Resequencer

The resequencer supports a best effort pattern. This pattern is relevant to applications that produce a large number of messages in a short-span of time and cannot inform the resequencer about the identifier to be used for sequencing. Typically, the identifier used for sequencing in such scenarios is of a dateTime type or numeric type. Using the dateTime field as the sequence ID XPath enables you to control the sequencing. It is expected that the messages are sent in sequence by the applications. The Oracle Mediator makes the best effort to ensure that the messages are delivered in sequence.

The BestEffort resequencer can receive a stream of messages that are in order or slightly out of order. This resequencer can also reorder messages based on no knowledge about the increment of the sequence ID. This means that unlike the standard resequencer, you do not need to define the increment of the sequence ID for the BestEffort resequencer in advance. When the messages are processed, they are processed in sequence based on the specified sequence ID and the messages that arrived at that point in time, no matter if a true sequence cannot be obtained. The sequence IDs are either numeric or dateTime. Therefore, sequencing occurs on the numeric order or the dateTime order of the sequence IDs.

The BestEffort resequencer processes messages asynchronously. Whenever new messages are available in the resequencer database, the BestEffort resequencer orders them according to the specified sequence ID, locks and picks messages equal to the value of the maxRowsRetrieved parameter from the ordering, and processes the messages one after one in its own transaction in sequence.

It is important to note that the messages to outbound services of the Oracle Mediator service component acting as a BestEffort resequencer are not guaranteed to arrive in the order based on the sequenceID. At any point of time, a snapshot of the available messages is taken and sequencing is done only on those messages. Therefore, unlike a standard resequencer, it is not guaranteed that any message with a smaller sequence ID value is sent before the messages that arrive earlier, but which have a greater sequence ID value. These messages with a smaller sequence ID value that arrive later are picked and processed in the next cycle when again the snapshot of available messages is taken and the messages are ordered.

23.2.3.2 Information Required for BestEffort Resequencing

When using the BestEffort resequencer, you must specify a group XPath expression and a sequence ID XPath expression. These are used to specify where the resequencer should find the group and the sequence ID in the messages. Unlike the standard resequencer, the BestEffort resequencer has no knowledge about how the sequence is built. No further information is used by the BestEffort resequencer to perform its responsibilities.

23.2.3.3 Example of BestEffort Resequencing

Table 23-4 illustrates the behavior of the BestEffort resequencer, where msgX(Y,Z) means that the message arrives as message number X to the Oracle Mediator service component and the message contains sequenceID Y and group Z:

Table 23-4 BestEffort Resequencer Behavior

	Group C	Sequenced Messages
	
msg03(1,c)

msg06(2,c)

msg10(3,c)

msg12(4,c)

	
msg12(4,c),msg10(3,c),msg06(2,c),msg03(1,c)

	
Note:

For the BestEffort resequencer to work correctly, the messages must be completely synchronous or almost synchronous. Otherwise, they are not sequenced correctly. If the messages do not arrive close to each other, then set the value of the maxRowsRetrieved parameter to 1. In this way, the next message in sequence has the time to deliver the actual message to arrive so it is fetched by the worker thread in the next processing loop and therefore delivered in sequence.

23.3 Configuring the Resequencer

You can configure the resequencer using Oracle JDeveloper. This section describes how to configure the resequencer in Oracle JDeveloper.

23.3.1 How to Determine the Resequencing Level

You should first determine the level at which resequencing must be defined. For Oracle Mediator service components, which have only one operation, configuring resequencing at the operation or service component level results in the same behavior. For Oracle Mediators having multiple operations, specifying the resequencing at the service component level means that resequencing is applied to all the operations. Therefore, messages arriving at any operation are resequenced. By default, the resequencing level is operations.

To set the resequencing level:

	
Select the resequencing level from the Resequence Level dropdown list in the Mediator Editor, as shown in Figure 23-2.

Figure 23-2 Mediator Editor with Resequence Level Field

[image: Resequencer level field in Mediator Editor]

If you choose the Resequence Level of component, then the resequencing options under each operation are no longer displayed and the Resequence Mode field appears to set the resequencing mode for the service component. By default, the resequencing mode is set to off.

When you select a resequencing mode, the Resequence Options section is displayed for the service component, as shown in Figure 23-3. If the Resequence Mode field for an operation is set to off, then the Resequence Options section disappears.

Figure 23-3 Mediator Editor with Resequence Options Section

[image: Description of Figure 23-3 follows]

The options in the Resequence Options section change with changes in the resequencing mode.

23.3.2 How to Configure the Resequencing Strategy

This section describes how to configure the resequencing strategy.

23.3.2.1 Standard Resequencing

Table 23-5 describes the fields required to configure the standard resequencer:

Table 23-5 Standard Resequencing

	Field Name	Description	Default Value	Mandatory
	
groupIDExpression

	
XPath that points to the field in the incoming message on which grouping is done.

	
N/A

	
N

	
sequenceIDExpression

	
XPath that points to the field in the incoming message on which resequencing is done.

	
N/A

	
Y

	
timeoutDuration

	
Time period in seconds to wait for an expected message. The resequencer locks the group as timed-out, if a time out happens.

	
0Foot 1

	
N

	
sequenceStart

	
Starting number of the number sequence.

	
1

	
N

	
sequenceIncrement

	
Increment of the number sequence.

	
1

	
N

Footnote 1 This default value means that the timeout never happens for a group by default.

Figure 23-4 shows an Oracle Mediator with the Resequence field set to Standard.

Figure 23-4 Oracle Mediator with Resequence Mode set to Standard

[image: Description of Figure 23-4 follows]

23.3.2.2 FIFO Resequencing

Table 23-6 describes the fields required configure the FIFO resequencer:

Table 23-6 FIFO Resequencing

	Field Name	Description	Default Value	Mandatory
	
groupIDExpression

	
XPath that points to the field in the incoming message on which grouping is done.

	
N/A

	
N

Figure 23-5 shows an Oracle Mediator with the Resequence field set to FIFO.

Figure 23-5 Oracle Mediator with Resequence Mode set to FIFO

[image: Description of Figure 23-5 follows]

23.3.2.3 BestEffort Resequencing

Table 23-7 describes the fields required to configure the BestEffort resequencer:

Table 23-7 BestEffort Resequencing

	Field Name	Description	Default Value	Mandatory
	
groupIDExpression

	
XPath that points to the field in the incoming message, on which grouping is done.

	
N/A

	
N

	
sequenceIDExpression

	
XPath that points to the field in the incoming message, on which resequencing is done.

	
N/A

	
Y

	
sequenceIDDataType

	
The data type of the sequence ID.

Ordering is done based on the data type. Supported values are date/time and numeric.

	
Numeric

	
N

	
maxRowsRetrieved

	
Number of in-sequence messages that the resequencer should pick from the data store at a time.

	
5

	
N

Figure 23-6 shows an Oracle Mediator with the Resequence field set to Best Effort.

Figure 23-6 Oracle Mediator with Resequence Mode set to BestEffort

[image: Description of Figure 23-6 follows]

23.4 Limitations in the Resequencer

The following limitation of resequencer has been noted in this release:

Resequencer Fails If XSD File Contains Multibyte Characters That the Server Locale Encoding Does Not Support

If the XSD file contains multibyte characters that the server locale encoding does not support, then the resequencer execution fails after triggering the project flow.

24 Understanding Message Exchange Patterns of an Oracle Mediator

This chapter describes common message exchange patterns between an Oracle Mediator service component and other applications.

This chapter includes the following sections:

	
Section 24.1, "Understanding a One-way Message Exchange Pattern"

	
Section 24.2, "Understanding a Request-Reply Message Exchange Pattern"

	
Section 24.3, "Understanding a Request-Reply-Fault Message Exchange Pattern"

	
Section 24.4, "Understanding a Request-Callback Message Exchange Pattern"

	
Section 24.5, "Understanding a Request-Reply-Callback Message Exchange Pattern"

	
Section 24.6, "Understanding a Request-Reply-Fault-Callback Message Exchange Pattern"

	
Notes:

The following exchange patterns show the default handling of responses, faults, and callbacks by Oracle JDeveloper when a routing rule is created. Keep in mind the following points for all the cases:
	
When a response, fault, or callback is sent back to the caller, it is also possible to route the same message to a different target service or event by clicking the button next to the target and selecting a different target.

	
When the caller of the Oracle Mediator expects a response, one or more routing rules may route the request to a target that does not return a response, but there should be at least one sequential routing rule that returns a response.

	
If you have multiple routing rules involved in a request-response interaction, then the routing rules that send the response back to the initial caller should precede other routing rules, if any, that forward the response.

	
The asynchronous request-reply pattern in Oracle Mediator is supported only for web services. This exchange pattern is not supported for adapters and other services.

24.1 Understanding a One-way Message Exchange Pattern

In a one-way interaction, the Oracle Mediator is invoked, but it does not send a response back to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-1:

Table 24-1 Response When Oracle Mediator's WSDL Is a One-way Interaction

	Routing Rule Target Type	Response
	
Request

	
No response.

	
Request Response

	
Response is forwarded to another target or event.

	
Request Response Fault

	
Response and fault are forwarded to another target or event.

	
Request Callback

	
Callback is forwarded to another target or event.

	
Request Response Callback

	
Response and callback are forwarded to another target or event.

	
Request Response Fault Callback

	
Response, fault, and callback are forwarded to another target or event.

Figure 24-1 illustrates the one-way message exchange pattern.

Figure 24-1 One-way Message Exchange Pattern

[image: Description of Figure 24-1 follows]

24.1.1 The one.way.returns.fault Property

The one.way.returns.fault property controls how faults and one-way messages are handled for one-way interface SOAP calls. You can add this property to the service binding component of the web service section for one-way web services in the composite.xml file. This property is not applicable to references. It is applicable only to services and only to the binding.ws binding type. Table 24-2 provides more details on this property.

Table 24-2 one.way.returns.fault Property

	If one.way.returns.fault Is...	Then...
	
Set to true:

. . .
<service name="Mediator1_2"
 ui:wsdlLocation="ReadFile.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/pcbpel/adapter/file
 /LocalSandbox/Project1/ReadFile%2F#wsdl.interface(Read_
ptt)"/>
 <binding.ws
 port="http://xmlns.oracle.com/pcbpel/adapter/file
/LocalSandbox/Project1/ReadFile%2F#wsdl.endpoint
(Mediator1/Read_pt)">
 <property name="one.way.returns.fault" type="xs:string" many="false"
 override="may">true</property>
 </binding.ws>
</service>
. . .

	
Any fault that occurs during downstream processing returns a SOAP fault to the client and an HTTP response code of 500. (The same behavior as 11g Release 1.)

	
Set to false:

. . .
<service name="Mediator1_2"
 ui:wsdlLocation="ReadFile.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/pcbpel/adapter/file/
Local Sandbox/Project1/ReadFile%2F#wsdl.interface(Read_
ptt)"/>
 <binding.ws
port="http://xmlns.oracle.com/pcbpel/adapter/file/LocalSan
dbox/Project1/ReadFile%2F#wsdl.endpoint(Mediator1/Read_
pt)">
 <property name="one.way.returns.fault"
 type="xs:string" many="false"
 override="may">false</property>
 </binding.ws>
 </service>
. . .

	
Any fault that occurs during downstream processing returns only an HTTP response code of 500. No SOAP fault is returned to the client.

	
Not set (the default case)

	
Any fault that occurs during downstream processing returns a SOAP fault to the client and an HTTP response code of 500. (The same behavior as 11g Release 1.)

To add the one.way.returns.fault property:

	
In the SOA Composite Editor, select the service binding component to which you want to add the one.way.returns.fault property.

	
Go to the Property Inspector section in the lower right part of the editor.

	
In the Binding Properties section, click the Add icon.

The Create Property dialog is displayed.

	
In the Name field, enter one.way.returns.fault.

	
In the Value field, enter true or false.

	
Click OK.

24.2 Understanding a Request-Reply Message Exchange Pattern

In a request-reply interaction, the Oracle Mediator is invoked and sends a reply to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-3:

Table 24-3 Response When Oracle Mediator's WSDL Is a Request Reply

	Routing Rule Target Type	Response
	
Request

	
There is no response from the target, but there should be at least one sequential routing rule with a request-response service.

	
Request Response

	
The response is sent back to the caller. The response can be forwarded to another target or event, but there should be at least one sequential routing rule that returns a response back to the caller.

	
Request Response Fault

	
The response is sent back to the caller. The fault is forwarded to another target or event.

	
Request Callback

	
There is no response from the target, but there should be at least one sequential routing rule with a request-response service. The callback is forwarded to another target or event.

	
Request Response Callback

	
The response is sent back to the caller. The callback is forwarded to another target or event.

	
Request Response Fault Callback

	
The response is sent back to the caller. The callback and fault are forwarded to another target or event.

Figure 24-2 illustrates the request-reply message exchange pattern.

Figure 24-2 Request-Reply Message Exchange Pattern

[image: Description of Figure 24-2 follows]

24.3 Understanding a Request-Reply-Fault Message Exchange Pattern

In a request-reply-fault interaction, the Oracle Mediator is invoked and sends a reply and one or more faults back to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-4:

Table 24-4 Response When Oracle Mediator's WSDL Is a Request Reply Fault

	Routing Rule Target Type	Response
	
Request

	
There should be at least one sequential routing rule with a request-response-fault service. Oracle Mediator returns null when there is no response to be sent.

	
Request Response

	
The response is sent back to the caller. Any exception in Oracle Mediator message processing may result in a fault.

	
Request Response Fault

	
The response and fault are sent back to the caller. Any exception in Oracle Mediator message processing may result in a fault.

	
Request Callback

	
There is no response from the target, but there should be at least one sequential routing rule with a request-response service. Oracle Mediator returns null when there is no response to be sent. The callback is forwarded to another target or event.

	
Request Response Callback

	
The response is sent back to the caller. Any exception in Oracle Mediator message processing may result in a fault.

	
Request Response Fault Callback

	
The response and fault are sent back to the caller. Any exception in Oracle Mediator message processing may result in a fault.

Figure 24-3 illustrates the request-reply-fault message exchange pattern.

Figure 24-3 Request-Reply-Fault Message Exchange Pattern

[image: Description of Figure 24-3 follows]

24.4 Understanding a Request-Callback Message Exchange Pattern

In a request-callback interaction, the Oracle Mediator is invoked and may send an asynchronous reply to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-5:

Table 24-5 Response When Oracle Mediator's WSDL Is a Request Callback

	WSDL of the Routing Rule Target	Response
	
Request

	
There should be at least one sequential routing rule with a request-callback service. No callback is sent to the caller if there is no routing rule with a defined callback.

	
Request Response

	
The response is sent back to the caller, as a callback, in a separate thread.

	
Request Response Fault

	
The response is sent back to the caller, as a callback, in a separate thread. The fault is forwarded to another target or event.

	
Request Callback

	
The callback is sent back to the caller.

	
Request Response Callback

	
The callback is sent back to the caller, and the response is forwarded to another target or event.

	
Request Response Fault Callback

	
The callback is sent back to the caller. The response and fault are forwarded to another target or event.

Figure 24-4 illustrates the request-callback message exchange pattern.

Figure 24-4 Request-Callback Message Exchange Pattern

[image: Description of Figure 24-4 follows]

24.5 Understanding a Request-Reply-Callback Message Exchange Pattern

In a request-reply-callback interaction, the Oracle Mediator is invoked and sends a response and an asynchronous reply to the initial caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-6:

Table 24-6 Response When Oracle Mediator's WSDL Is a Request Response Callback

	Routing Rule Target Type	Response
	
Request

	
There should be at least one sequential routing rule that returns a response. No callback is sent to the caller if there is no routing rule with a defined callback.

	
Request Response

	
There should be at least one sequential routing rule that returns a response. No callback is sent if there is no routing rule with a defined callback.

	
Request Response Fault

	
There should be at least one sequential routing rule that returns a response. No callback is sent to the caller if there is no routing rule with a defined callback.

	
Request Callback

	
There should be at least one sequential routing rule that returns a response. Oracle Mediator returns null when there is no response to be sent.

	
Request Response Callback

	
The response and callback are sent back to the caller.

	
Request Response Fault Callback

	
The response and callback are sent back to the caller. The fault is forwarded to another target or event.

Figure 24-5 illustrates the request-reply-callback message exchange pattern.

Figure 24-5 Request-Reply-Callback Message Exchange Pattern

[image: Description of Figure 24-5 follows]

24.6 Understanding a Request-Reply-Fault-Callback Message Exchange Pattern

In a request-reply-fault-callback interaction, the Oracle Mediator is invoked and sends a response, an asynchronous reply, and one or more fault types to the initial caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-7:

Table 24-7 Response to a Request Response Fault Callback Oracle Mediator

	WSDL of the Routing Rule Target	Response
	
Request

	
There should be at least one sequential routing rule with a request-callback service. No callback is sent to the caller if there is no routing rule with a defined callback.

	
Request Response

	
There should be at least one sequential routing rule with a request-callback service. No callback is sent to the caller if there is no routing rule with a defined callback.

	
Request Response Fault

	
There should be at least one sequential routing rule with a request-callback service. No callback is sent to the caller if there is no routing rule with a defined callback.

	
Request Callback

	
There should be at least one sequential routing rule that returns a response. Oracle Mediator returns null when there is no response to be sent.

	
Request Response Callback

	
The response and callback are sent back to the caller. Any exception in Oracle Mediator message processing may result in a fault.

	
Request Response Fault Callback

	
The response, fault, and callback are sent back to the caller.

Figure 24-6 illustrates the request-reply-fault-callback message exchange pattern.

Figure 24-6 Request-Reply-Fault-Callback Message Exchange Pattern

[image: Description of Figure 24-6 follows]

Part IV

Using the Business Rules Service Component

This part describes how to use the business rules service component.

This part contains the following chapters:

	
Chapter 25, "Getting Started with Oracle Business Rules"

	
Chapter 26, "Using Declarative Components and Task Flows"

25 Getting Started with Oracle Business Rules

This chapter describes how to use a business rule service component to integrate a SOA composite application with Oracle Business Rules. A business rule service component is also called a Decision component. You can add business rules as part of an SCA application or as part of a BPEL process.

This chapter includes the following sections:

	
Section 25.1, "Introduction to the Business Rule Service Component"

	
Section 25.2, "Overview of Rules Designer Editor Environment"

	
Section 25.3, "Introduction to Creating and Editing Business Rules"

	
Section 25.4, "Adding Business Rules to a BPEL Process"

	
Section 25.5, "Adding Business Rules to a SOA Composite Application"

	
Section 25.6, "Running Business Rules in a Composite Application"

	
Section 25.7, "Using Business Rules with Oracle ADF Business Components Fact Types"

For more examples of using Oracle Business Rules, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

25.1 Introduction to the Business Rule Service Component

A Decision component, also called a business rule service component, supports use of Oracle Business Rules in a SOA composite application. Decision components support the following SOA composite usage:

	
A Decision component can be used within a SOA composite and wired to a BPEL component.

	
A Decision component can be used within a SOA composite and used directly to run business rules.

	
A Decision component can be used with the dynamic routing capability of Mediator.

For more information, see Chapter 20, "Creating Oracle Mediator Routing Rules."

	
A Decision component can be used with the Advanced Routing Rules in Human Workflow.

For more information, see Section 28.4, "Associating the Human Task Service Component with a BPEL Process."

25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks

You can create a SOA composite application that includes BPEL process, business rule, and human task service components. These components are complementary technologies. BPEL processes focus on the orchestration of systems, services, and people. Business rules focus on decision making and policies. Human tasks enable you to model a workflow that describes the tasks for users or groups to perform as part of an end-to-end business process flow.

Some examples of where business rules can be used include:

	
Dynamic processing

Rules can perform intelligent routing within the business process based on service level agreements or other guidelines. For example, if the customer requires a response within one day, send a loan application to the QuickLoan loan agency only. If the customer can wait longer, then route the request to three different loan agencies.

	
Externalize business rules in the process

There are typically many conditions that must be evaluated as part of a business process. However, the parameters to these conditions can be changed independently of the process. For example, you provide loans only to customers with a credit score of at least 650. This value may be changed dynamically based on new guidelines set by business analysts.

	
Data validation and constraint checks

Rules can validate input documents or apply additional constraints on requests. For example, a new customer request must always be accompanied with an employment verification letter and bank account details.

	
Human task routing

Rules are frequently used for human tasks in the business process:

	
Policy-based task assignments dispatch tasks to specific roles or users. For example, a process that handles incoming requests from a portal can route loan requests and insurance quotes to a different set of roles.

	
Load balancing of tasks among users. When a task is assigned to a set of users or a role, each user in that role acquires a set of tasks and acts on them in a specified time. For new incoming tasks, policies may be applied to set priorities on the task and put them in specific user queues. For example, a specific loan agent is assigned a maximum of 10 loans at any time.

For more information about creating business rules in the Human Task editor of a human task component, see Section 28.3.7.2, "Specifying Advanced Task Routing Using Business Rules."

25.2 Overview of Rules Designer Editor Environment

You can create a business rules service component in the SOA composite application of Oracle JDeveloper and then design it by using the Business Rules Designer, which is displayed when you double-click a business rule in the SOA Composite Editor.

The Business Rules Designer consists of the following main sections shown in Figure 25-1. These sections enable you to work with business rules in Oracle JDeveloper.

Figure 25-1 Rules Designer in Oracle JDeveloper

[image: Description of Figure 25-1 follows]

25.2.1 Application Navigator

The Application Navigator displays the files in the project. Each project can only contain one composite. But each composite can have multiple components of either the same type or different types (Business Rules, BPEL process, Oracle Mediator, and human workflow).

As you design business rules, additional files, folders, and elements can appear in the Application Navigator.

25.2.2 Rules Designer Window

The Rules Designer window provides a visual view of the selected dictionary component. You use the Rules Designer navigation tabs to select different parts of the dictionary that you want to work with. The rules designer window displays when you perform one of the following actions:

	
In a composite, double-click a Business Rule component.

	
Double-click the Business Rule component in the SOA Composite Editor.

	
In a BPEL process, double click a business rule.

	
In the Application Navigator, double-click a business rules dictionary file (a file with the .rules extension)

	
Click the Design tab with a .rules file selected.

Table 25-1 describes where you can find information about working with a dictionary with Rules Designer.

Table 25-1 Rules Designer Navigation Areas Descriptions

	Rules Designer Navigation Tab	Description
	
Facts

	
Facts are the objects that rules reason on.

	
Functions

	
A function, in Oracle Business Rules, refers to the standard mathematical functions.

	
Globals

	
A global, in Oracle Business Rules, is similar to a public static variable in Java.

	
Bucketsets

	
Bucketsets define the data types of fact properties.

	
Links

	
Links are used to link to a dictionary in the same application or in another application.

	
Decision Functions

	
A Decision Function is a function that is configured declaratively, without using RL Language programming.

	
Rulesets with Rules and Decision Tables

	
A ruleset provides a unit of execution for rules and for Decision Tables. A Decision Table provides a mechanism for describing data processing tasks.

For more information about the Rules Designer navigation areas and its descriptions, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

25.2.3 Structure Window

The Structure window offers a structural view of the data in the Business Rule dictionary currently selected in the Rules Designer window. You can perform a variety of tasks from this section, by selecting an element and right-clicking on the element, including:

	
Managing (creating, editing, refreshing, and deleting) elements such as facts, functions, globals, bucketsets, dictionary links, and decision functions

	
Accessing rulesets, rules, and Decision Tables

Figure 25-2 shows the Structure window.

Figure 25-2 Structure Window with Rules Designer Dictionary

[image: Structure Window with Rules Designer Dictionary]

25.2.4 Business Rule Validation Log Window

Rules Designer displays the status of dictionary validation in the business rule validation log, as shown in Figure 25-3.

When a dictionary is invalid, Rules Designer produces a list of warning messages and lists the associated dictionary objects that you can use to locate the dictionary object and to correct the problem. You can safely ignore the validation warnings that you see when you create rules using Rules Designer. The validation warnings are removed as you create the rules, but are shown during the intermediate steps. To test or deploy rules, the associated dictionary must not display warnings.

For more information on business rules validation, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

Figure 25-3 Rules Designer Business Rule Validation Log

[image: Rules Designer Business Rule Validation Log]

25.3 Introduction to Creating and Editing Business Rules

This section describes how to get started with business rules and provides a brief introduction to the main sections of Oracle JDeveloper that you use to design business rules.

25.3.1 How to Create Business Rules Components

You can add Business Rule components using the SOA Composite Editor.

To create a Business Rule component:

	
Follow the instructions in Table 25-2 to start Oracle JDeveloper.

Table 25-2 Starting Oracle JDeveloper

	To Start...	On Windows...	On UNIX...
	
Oracle JDeveloper

	
Click JDev_Oracle_Home\JDev\bin\jdev.exe or create a shortcut

	
$ORACLE_HOME/jdev/bin/jdev

	
Create a Business Rule service component through one of the following methods:

As a service component in an existing SOA composite application:

	
From the Component Palette, drag a Business Rule service component into the SOA Composite Editor.

In a new application:

	
From the Application Navigator, select File > New > Applications > SOA Application.

This starts the Create SOA Application wizard.

	
In the Name your application page, enter an application name in the Name field.

	
In the Directory field, enter a directory path in which to create the SOA composite application and project.

	
Click Next.

	
In the Name your project page, enter a unique project name in the Project Name field. The project name must be unique across SOA composite applications. This is because the uniqueness of a composite is determined by its project name. For example, do not perform the actions described in Table 25-3.

Table 25-3 Restrictions on Naming a SOA Project

	Create an Application Named...	With a SOA Project Named...
	
Application1

	
Project1

	
Application2

	
Project1

During deployment, the second deployed project (composite) overwrites the first deployed project (composite).

	
Click Next.

	
In the Configure SOA settings page, select Composite with Business Rule.

	
Click Finish.

Each method causes the Create Business Rules dialog shown in Figure 25-4 to appear.

Figure 25-4 Create Business Rules Dialog

[image: Description of Figure 25-4 follows]

	
Provide the required details. For more information on providing Inputs and Outputs and on using the Import Dictionary option with this dialog, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

	
Click OK.

25.3.2 Introduction to Working with Business Rules in Rules Designer

When you are working with business rules Oracle JDeveloper displays Rules Designer.

25.4 Adding Business Rules to a BPEL Process

You can use a Decision component, also called a business rule service component, to execute business rules in a BPEL process.

25.4.1 How to Add Business Rules to a BPEL Process

You add business rules to a BPEL process using a Business Rule component. When you add a business rule component to a BPEL process, you must include input and output variables to provide input to the rules and obtain results back from the business rules.

A business rule component enables you to execute business rules and make business decisions based on the rules. To create a business rule component, also called a Decision component, you drag-and-drop a Business Rule from the component palette into the BPEL process.

To add a business rule to a BPEL process:

	
Create a BPEL process service component. For more information, see Section 4.1, "Introduction to the BPEL Process Service Component."

	
Expand the BPEL process. For example, expand the BPEL process to view receiveInput and callbackClient as shown in Figure 25-5.

Figure 25-5 Adding A Business Rule to a BPEL Process

[image: Description of Figure 25-5 follows]

	
Select Business Rule from the BPEL Activities and Components section of the Component Palette and drag-and-drop a Business Rule into the position where the business rules are needed. For example, drag-and-drop a Business Rule between receiveInput and callbackClient, as shown in Figure 25-6.

Figure 25-6 Drag-and-drop a Business Rule into a BPEL Process

[image: Description of Figure 25-6 follows]

	
Oracle JDeveloper displays the business rule in the diagram. In the business rule area you can select an existing Oracle Business Rules dictionary or enter the name of a new dictionary to create. The Business Rule area includes a field to enter the business rule name. In the Name field enter a name. For example, enter GetCreditRating, as shown in Figure 25-7. If you previously created a dictionary, in the Dictionary field, select an existing dictionary.

Figure 25-7 Business Rule Added to Auto Loan BPEL Process

[image: Description of Figure 25-7 follows]

	
In the Business Rule area for the Business Rule Dictionary, click the Create Dictionary icon to display the Create Business Rules dialog.

	
In the Create Business Rules dialog you do the following:

	
Specify a name for the Oracle Business Rules dictionary and a package name.

	
Specify the input and output data elements for the business rule. For example, for a sample Decision component named GetCreditRating, the input is a rating request document. The output is generated when you run the business rules, and for this example is a rating document. For example, in BPEL you can create two new variables, RatingRequest and Rating that carry the input and output data for the GetCreditRating rules.

Enter a name for the Oracle Business Rules dictionary. For example, enter GetCreditRating, as shown in Figure 25-8.

Figure 25-8 Adding GetCreditRating Business Rule Dictionary

[image: Description of Figure 25-8 follows]

Add inputs for business rule:

	
In the Create Business Rules dialog, from the dropdown menu next to the Add icon select Add Input Variable... to create the input variable.

This displays the Add Input Variable dialog.

	
In the Add Input Variable dialog expand the Process folder and select the Variables folder immediately inside the Process.

	
Right-click the Variables folder and from the dropdown list select Create Variable... as shown in Figure 25-9.

Figure 25-9 Add Input Variable

[image: Description of Figure 25-9 follows]

This displays the Create Variable dialog.

	
In the Create Variable dialog, in the Name field enter a value. For example, enter RatingRequest as shown in Figure 25-10.

Figure 25-10 Create Variable Dialog

[image: Description of Figure 25-10 follows]

	
In the Create Variable Type area click the Browse Elements icon. Use the navigator to locate the schema element type for the input variable. For example, select the ratingrequest type. Add any needed types using the Type Chooser.

	
Click the Import Schema File icon to import the schema. For example, import CreditRatingTypes.xsd. Also import any other required schema for your application.

	
In the Type Chooser dialog, select ratingrequest and click OK.

	
In the Create Variable dialog, click OK.

	
In the Add Input Variable dialog, click OK.

Add outputs for business rule:

	
In the Create Business Rules dialog, from the dropdown menu next to the Add icon, select Add Output Variable.... This displays the Add Output Variable dialog. Use this dialog to create an output variable. For example, create an output variable for GetCreditRating in the same way you created the input variable.

	
In the Add Output Variable dialog select the scope by selecting the Variables folder under Process.

	
Right-click and from the dropdown list select Create Variable.... This displays the Create Variable dialog.

	
In the Create Variable dialog, in the Name field enter the output variable name. For example enter Rating.

	
In the Create Variable dialog, in the Type area select the Browse elements icon and use the Type Chooser dialog to enter the type for the output variable. For example, expand the CreditRatingTypes.xsd and select the element type rating.

	
In the Type Chooser dialog, click OK.

	
In the Create Variable dialog, click OK.

	
In the Add Output Variable dialog, click OK.

This displays the Create Business Rules dialog, as shown in Figure 25-11.

Figure 25-11 Create Business Rules Dialog with Input and Output Variables

[image: Description of Figure 25-11 follows]

Set options and create decision service and business rules dictionary:

	
If you do not want to use the default service name, then select the Advanced tab and in the Service Name field enter the service name. For example enter the service name CreditRatingService.

	
Determine if the Decision Component is stateful or stateless with Reset Session. For more information, see Section 25.4.5, "What You Need to Know About Decision Component Stateful Operation".

	
In the Create Business Rules dialog, click OK. Oracle JDeveloper creates the Decision component and the dictionary and displays Rules Designer, as shown in Figure 25-12.

Figure 25-12 Rules Designer Canvas Where You Work with Business Rules

[image: Description of Figure 25-12 follows]

For information on Rules Designer, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

25.4.2 What Happens When You Add Business Rules to a BPEL Process

When you add business rules to a BPEL process, Oracle JDeveloper creates a Decision component to control and run the business rules using the Business Rule Service Engine.

A Decision component consists of the following:

	
Rules or Decision Tables that are evaluated using the Rules Engine. These are defined using Rules Designer and stored in a business rules dictionary.

	
A description of the facts required for specific rules to be evaluated and the decision function to call. Each ruleset that contains rules or Decision Tables is exposed as a service with facts that are input and output, and the name of an Oracle Business Rules decision function. The facts are exposed through XSD definitions when you define the inputs and outputs for the business rule. A Decision function is stored in an Oracle Business Rules dictionary. For more information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

	
A web service wraps the input, output, and the call to the underlying Business Rule service engine.

This web service lets business processes assert and retract facts as part of the process. In some cases, all facts can be asserted from the business process as one unit. In other cases, the business process can incrementally assert facts and eventually consult the rule engine for inferences. Therefore, the service supports both stateless and stateful interactions.

You can create a variety of such Decision components.

For more information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

25.4.3 What Happens When You Create a Business Rules Dictionary

After you create an application, a project, and a rules dictionary, the rules dictionary appears in the structure pane in Oracle JDeveloper and Rules Designer opens in the main canvas.

As part of the create Business Rule dialog you either select an existing dictionary or a new rule dictionary is created with the following pre-loaded data:

	
XML fact type model based on the input and output information of the Business Rule.

	
A Ruleset that must be completed by adding rules or Decision Tables. With an existing dictionary, you use the import option to specify a dictionary that may already contain the rules or Decision Tables.

	
A service component with the input and output contract of the Decision component.

	
A Decision component for the rule dictionary and wires to the BPEL process.

	
Note:

When you create inputs and outputs for a business rule, the XML fact type that is created in the associated dictionary is named based on the schema types for the inputs and outputs that you supply in the Create Business Rules dialog. When you specify schema type for the input and the output, Rules Designer defines fact types and aliases associated with your type selections for input and output. If you only use a single type for both the input and the output, then the Decision component creates a single fact that is shown in the Rules Designer Facts tab. This fact represents the fact type you specified and uses an alias name that is a concatenation of both the input variable name and the output variable name. In Rules Designer you can rename this alias if you do not like the default naming scheme for the fact type.

25.4.4 What You Need to Know About Invoking Business Rules in a BPEL Process

When you add business rules to a BPEL process Oracle JDeveloper creates a Decision Service that supports calling Oracle Business Rules with the inputs you supply, and returning the outputs with results. The Decision Service provides access to Oracle Business Rules Engine at runtime as a web service. For more information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

25.4.5 What You Need to Know About Decision Component Stateful Operation

A Decision Component running in a business rules service engine supports either stateful or stateless operation. The Reset Session checkbox in the Create Business Rules dialog provides support for these two modes of operation.

By default the Reset Session checkbox is selected which indicates stateless operation. Stateless operation means that, at runtime, the rule session is released after the Decision Component invocation.

When Reset Session is unselected, the underlying Oracle Business Rules object is kept in the memory of the business rules service engine at a separate location (so that it is not given back to the Rule Session Pool when the operation is finished). A subsequent use of the Decision component re-uses the cached RuleSession object, with all its state information from the callFunctionStateful invocation, and then releases it back to the Rule Session pool after the callFunctionStateless operation is finished. Thus, when Reset Session is unselected the rule session is saved for a subsequent request and a sequence of Decision Service invocations from the same BPEL process should always end with a stateless invocation.

25.5 Adding Business Rules to a SOA Composite Application

To work with Oracle Business Rules in a SOA composite application, you create an application and add business rules.

The business rule service component enables you to integrate your SOA composite application with business rules. This creates a business rule dictionary and enables you to execute business rules and make business decisions based on the rules.

After creating a project in Oracle JDeveloper, you must create a Business Rule Service component within the project. When you add a business rule you can create input and output variables to provide input to the service component and to obtain results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

	
Add a business rules service component

	
Create input and output variables for the service component

	
Create an Oracle Business Rules dictionary

25.5.1 How to Add Business Rules to a SOA Composite Application

To work with Oracle Business Rules in a SOA composite application you use Oracle JDeveloper to create an application, a project, and then add a business rule component.

To create a SOA application with business rules:

	
Create a SOA application and project. For more information, see Section 2.1.1, "How to Create a SOA Application and Project". For a SOA composite using business rules, pick the required technologies for your application. For example, you may need the following for a SOA application with business rules: ADF Business Components, Java, and XML. You move these items to the Selected area on the Project Technologies tab.

	
In the Application Navigator, if the SOA composite editor is not showing, then in your project expand SOA Content folder and double-click composite.xml to launch the SOA composite editor.

	
From the Component Palette, drag-and-drop a Business Rule from the Service Components area of the SOA menu to the Components lane of the SOA composite editor, as shown in Figure 25-13.

Figure 25-13 Adding Business Rules to a SOA Composite Application

[image: Description of Figure 25-13 follows]

	
When you drag-and-drop a Business Rule, Oracle JDeveloper displays the Create Business Rules dialog as shown in Figure 25-14.

Figure 25-14 Adding Business Rules to a SOA Composite and Creating a Dictionary

[image: Description of Figure 25-14 follows]

Add inputs for business rules:

	
In the Create Business Rules dialog, from the dropdown menu next to the Add icon select Input... to add input for the business rule. This displays the Type Chooser dialog.

	
In the Type Chooser dialog, add inputs. If the schema is available in the Project Schema Files, skip to step 9 to select the appropriate schema.

	
Click the Import Schema File... icon. This brings up the Import Schema File dialog.

	
In the Import Schema File dialog click Browse Resources to choose the XML schema elements for the input. This displays the SOA Resource Browser dialog.

	
In the SOA Resource Browser dialog, navigate to find the schema for your business rules input. For example, select the order.xsd schema file, and click OK.

	
In the Import Schema File dialog select Copy to Project, as shown in Figure 25-15.

Figure 25-15 Importing Schema for Input to Business Rules

[image: Description of Figure 25-15 follows]

	
In the Import Schema File dialog, click OK.

	
In the Localize Files dialog, click OK.

	
Use the Type Chooser dialog navigator to locate and select the input from the schema and click OK. For example, select the CustomerOrder element as the input.

Add outputs for business rules:

	
In the Create Business Rules dialog, from the dropdown menu next to the Add icon select Output....

	
In the Type Chooser dialog, in a manner similar to adding an input add the output. For example, add OrderApproval from the order.xsd and click OK.

	
This displays the Create Business Rules dialog, as shown in Figure 25-16.

Figure 25-16 Create Business Rules Dialog with Input and Output

[image: Description of Figure 25-16 follows]

Set options and create decision service and business rules dictionary:

	
In the Create Business Rules dialog, select Expose as Composite Service.

	
If you do not want to use the default service name, then select the Advanced tab and in the Service Name field enter the service name.

	
In the Create Business Rules dialog, click OK. This creates the Business Rule component, also called a Decision component, and Oracle JDeveloper shows the Business Rule component in the canvas workspace as shown in Figure 25-17.

Figure 25-17 Business Rule Component in SOA Composite

[image: Description of Figure 25-17 follows]

	
Double-click the Decision component (for example the OracleRules1 business rule). This opens Rules Designer, as shown in Figure 25-18. The validation log shows validation warnings for the input and output facts. By working with Rules Designer to define rules or decision tables, you remove these warning messages.

Figure 25-18 Rules Designer Showing New Dictionary for SOA Composite Application

[image: Description of Figure 25-18 follows]

For information on Rules Designer, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

25.5.2 How to Select and Modify a Decision Function in a Business Rule Component

You can specify one or more decision functions as inputs for calling Oracle Business Rules as a component in a composite application. For example, you can specify a particular decision function as the input when multiple decision functions are available in an Oracle Business Rules dictionary.

To specify a decision function in a composite application:

	
Add a decision function to the Oracle Business Rules dictionary. For more information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

	
Add a Business Rule component to the composite application. For more information, see Section 25.5.1, "How to Add Business Rules to a SOA Composite Application".

	
Select a business rule component, as shown in Figure 25-19.

Figure 25-19 Selecting a Business Rule Component in a Composite Application

[image: Description of Figure 25-19 follows]

	
Select the decision function port of interest. For example, select the port for DF_2 as shown in Figure 25-20.

Figure 25-20 Selecting a Decision Function Port in a Business Rule Component

[image: Description of Figure 25-20 follows]

	
When you select the port, Oracle JDeveloper shows the port information in the Property Inspector.

	
When you double-click the port, Oracle JDeveloper displays the Update Interface dialog for the port as shown in Figure 25-21.

Figure 25-21 Update Interface Dialog for a Decision Function in a Business Rule Decision Port

[image: Description of Figure 25-21 follows]

25.6 Running Business Rules in a Composite Application

You run business rules as part of a Decision component within a SOA composite application. The business rules are executed by the Business Rule Service Engine. You can use Oracle Enterprise Manager Fusion Middleware Control Console to monitor the Business Rule Service Engine and to test a SOA composite application that includes a Decision component. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

25.7 Using Business Rules with Oracle ADF Business Components Fact Types

You can use Oracle ADF Business Components Fact Types and ActionTypes from the Business Rules Service Engine. Typically, a Decision component can be used within a SOA composite and wired to a BPEL component and the Oracle Business Rules rules act on XML types. The Business Rules Service Engine is called as a web service with a payload containing instances of the XML schema types, and the service engine returns a response similarly.

It is also possible to use Oracle ADF Business Components Fact Types from a Decision component. Instead of loading the Oracle ADF Business Components Fact Type instances and passing them to the Business Rules Service Engine, you call the Business Rules Service Engine with configuration information describing how the Oracle ADF Business Components view object rows can be loaded. Special Oracle Business Rules decision functions in the DecisionPointDictionary and classes in the Oracle Business Rules SDK Decision Point API then load the rows and assert Oracle ADF Business Components fact type instances. When working with Oracle ADF Business Components Fact Types, you write rules that use user-defined Java classes which inherit from ActionType to affect action, such as modifying the Oracle ADF Business Components fact type instances such that they update their underlying database rows.

A Decision component requires an XML document as input. The Oracle Business Rules Decision Point dictionary provides an XML Fact Type called SimpleDecisionPointInput that serves as this input. The primary key(s) of Oracle ADF Business Components are passed to the business rule service component. The business rule service component invokes a user-defined decision function which it invokes to load the Oracle ADF Business Components view object instances, asserts them in the rules engine, and then marshals the results in the following order:

	
DecisionPointDictionary.DecisionPoint_Preprocessing_Webservice Ruleset: The preprocessing ruleset reads the business component from the database and asserts them as facts.

	
User-defined rulesets: The user ruleset matches these facts and should assert facts that extend ActionType to update the business component.

	
DecisionPointDictionary.DecisionPoint_Postprocessing_Webservice Ruleset: The actual updating is performed by the postprocessing ruleset. Use of ActionTypes is optional.

For specific instructions on how to use Oracle ADF Business Components Fact Types and ActionTypes from the Business Rules Service Engine, see the source code for Oracle Business Rules-specific samples available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

26 Using Declarative Components and Task Flows

This chapter describes how to use different Oracle Business Rules declarative components and task flows to develop high-performance, interactive, and multitiered applications that are also easy to maintain.

This chapter includes the following sections:

	
Section 26.1, "Introduction to Declarative Components and Task Flows"

	
Section 26.2, "Using the Oracle Business Rules Editor Declarative Component"

	
Section 26.3, "Using the Oracle Business Rules Dictionary Editor Declarative Component"

	
Section 26.4, "Using the Oracle Business Rules Dictionary Task Flow"

	
Section 26.5, "Localizing the ADF-Based Web Application"

26.1 Introduction to Declarative Components and Task Flows

Declarative components are reusable, composite User Interface (UI) components that comprise other existing Application Development Framework (ADF) Faces components. Consider an application that contains multiple JSF pages. On a particular page, a set of specific components is used in multiple parts of that page. In this scenario, if you make any changes to any of the components in the set, you typically must replicate the changes in multiple parts of the page. This approach makes it difficult to maintain the consistency of the structure and layout of the page. However, by defining a declarative component that comprises the given set of components, you can reuse that composite declarative component in multiple places or pages. Declarative components, thereby, save time and ensure integrity across pages, because when you make any changes to the components, the JSF pages using them automatically get updated.

ADF task flows are reusable components that provide a modular and transactional method in specifying the control flow in an application. You can use a set of reusable task flows as an alternative to representing an application as a single large JSF page flow, thereby providing modularity. Each task flow contains a part of the entire navigational plan of the application. The nodes in a task flow are called activities. Apart from navigation, task flow activities can also call methods on managed beans or call another task flow without invoking any particular page. This facilitates reuse because business logic can be invoked independently of the page being displayed.

26.2 Using the Oracle Business Rules Editor Declarative Component

This section discusses the Oracle Business Rules Editor declarative component. It also provides information on how to create and run an application using the Rules Editor component, and then deploy the application. In addition, this section lists the supported tags and the localization process for the application.

26.2.1 Introduction to the Oracle Business Rules Editor Component

Oracle Business Rules Editor is a declarative component that can be embedded in any ADF-based Web application. The component renders the user interface for rules editing and handles all events associated with rules editing. Rules Editor uses the Rules SDK2 API to create and edit rules.

	
Note:

You should not confuse Rules Editor with Rules Dictionary Editor. Rules Editor is used to edit rules inside a specified ruleset. In fact, Rules Editor is embedded within Rules Dictionary Editor. For more information about Rules Dictionary Editor, see Section 26.3, "Using the Oracle Business Rules Dictionary Editor Declarative Component."

Using Rules Editor, you can edit rules and decision tables that are part of a single ruleset. You require to specify a RuleSetModel object, which is a wrapper around the Rules SDK ruleset object, as a parameter to the Rules Editor component. If multiple rulesets are required to be modified, multiple Rules Editor components must be instantiated, one for each ruleset.

The Rules Editor component performs the following functions:

	
Creates, updates, and deletes:

	
Rules in a ruleset, as shown in Figure 26-1:

Figure 26-1 Rules in a Ruleset

[image: Description of Figure 26-1 follows]

	
Simple tests or conditions in a rule, as shown in Figure 26-2:

Figure 26-2 Simple Tests or Conditions in a Rule

[image: Description of Figure 26-2 follows]

	
Actions in a rule, as shown in Figure 26-3.

Figure 26-3 Actions in a Rule

[image: Description of Figure 26-3 follows]

	
Decision tables, as shown in Figure 26-4.

Figure 26-4 Decision Tables

[image: Description of Figure 26-4 follows]

	
Sets effective dates and priorities for rulesets and rules.

	
Provides support for user-defined operators.

	
Provides a Condition Browser pop-up to display the left or right value options, as shown in Figure 26-5.

Figure 26-5 Condition Browser

[image: Description of Figure 26-5 follows]

	
Provides a Date Browser for selecting date types, as shown in Figure 26-6.

Figure 26-6 Date Browser

[image: Description of Figure 26-6 follows]

	
Provides a Right Operand browser to handle multiple right-hand side expressions, as shown in Figure 26-7.

Figure 26-7 Right Operand Browser

[image: Description of Figure 26-7 follows]

	
Provides support for nested rules, as shown in Figure 26-8.

Figure 26-8 Nested Rules Support

[image: Description of Figure 26-8 follows]

	
Provides the Properties browser for editing properties of a rule action, as shown in Figure 26-9.

Figure 26-9 Properties Browser

[image: Description of Figure 26-9 follows]

	
Provides an Expression Builder window to build custom expressions, as shown in Figure 26-10.

Figure 26-10 Expression Builder Window

[image: Description of Figure 26-10 follows]

	
Provides Advanced Mode features for working with patterns and advanced actions, as shown in Figure 26-11.

Figure 26-11 Advanced Mode Features

[image: Description of Figure 26-11 follows]

	
Provides a Validation panel to manage error messages, as shown in Figure 26-12.

Figure 26-12 Validation Panel to Manage Error Messages

[image: Description of Figure 26-12 follows]

	
Note:

Once all the edits are done, the component user is responsible for saving the ruleset.

26.2.2 How to Create and Run a Sample Application by Using the Rules Editor Component

This section lists the steps for creating and running a sample application by using the Rules Editor component.

The prerequisite for using the Rules Editor component to create ADF-based Web applications is having a running installation of SOA Suite and Oracle JDeveloper on your computer.

To create a sample application by using the Rules Editor:

The first task is to create a sample application.

The steps are:

	
Open Oracle JDeveloper.

	
From the File menu, select New and then Generic Application to create an application.

	
Enter a name for the application in the Application Name field, for example, useRulesDCApp, and click Next as shown in Figure 26-13.

Figure 26-13 Creating a Generic Application

[image: Generic Application]

	
Enter useRulesDC in the Project Name field and ensure that ADF Faces is selected in the Project Technologies tab as shown in Figure 26-14.

Click Finish to create the project.

Figure 26-14 Creating a Project

[image: Creating a Project]

	
Right-click the useRulesDC project in the Application Navigator of Oracle JDeveloper, and select Project Properties to display the Project Properties dialog box.

In the Project Properties dialog box:

	
Select JSP Tag Libraries from the left panel.

	
Click Add and select ADF Faces Components from the extension list in the Choose Tag Libraries dialog box, and click OK as shown in Figure 26-15.

Figure 26-15 Choosing Tab Libraries

[image: Choosing Tag Libraries]

	
Click Add, select User, and then click New in the Choose Tag Libraries dialog box.

	
Browse to JDEV_INSTALL/jdeveloper/soa/modules/oracle.soa.rules_editor_dc.webapp_11.1.1, select one jar file at a time and click Open as shown in Figure 26-16. This adds the selected tag library to the User list.

Figure 26-16 Adding Tag Libraries to the User List

[image: Adding Tag Libraries to the User List]

You find that there are five jar files in this directory: adflibRulesDC.jar, adflibExpBuilderDC.jar, adflibBucketsetEditorDC.jar, adflibRuleValidationTableDC.jar, and adflibValidationTableDC.jar.

Repeat this process till all the jars (tag libraries) are added to the User list.

	
Select all the jars in the User list and click OK in the Choose Tag Libraries dialog box as shown in Figure 26-17.

Figure 26-17 Selecting the Added Tag Libraries in the User List

[image: Select the Added Tag Libraries in User List]

Five tag libraries are added to the project, which are bucketsetEditor, expBuilder, rulesEditor, ruleValidationTable, and validationTable, as shown in Figure 26-18.

Figure 26-18 Tag Libraries Added to the Project

[image: Tag Libraries Added to the project]

	
Select Libraries and Classpath from the left panel and click Add Library to display the Add Library dialog box.

Select Oracle Rules in the Libraries list and click OK as shown in Figure 26-19. This adds the Rules SDK to the project.

Figure 26-19 Adding the Rules SDK to the Project

[image: Adding the Rules SDK to the Project]

	
Click OK to close the Project Properties dialog box.

	
Select Save All from the Oracle JDeveloper File menu to save the project.

To create the RuleSetModel object:

The Rules Editor component requires a oracle.bpel.rulesdc.model.impl.RuleSetModel object. The component uses this object to read the rules and the decision tables that exist in the ruleset. So, the next task is to create a managed bean called SomeBean.java that creates a RuleSetModel object.

The steps are:

	
Open Oracle JDeveloper.

	
From the File menu, select New to display the New Gallery dialog box.

	
In the New Gallery dialog box, select Java under General from the Categories panel. Ensure that Java Class under Items is selected and click OK to display the Create Java Class dialog box.

	
Enter the name of the Java class, for example SomeBean.java, and click OK to create the Java class in your project as shown in Figure 26-20.

Figure 26-20 Creating a Java Class

[image: Creating a Java Class]

The following is a sample of the SomeBean.java file:

package userulesdc;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Reader;

import java.io.Writer;

import java.util.ArrayList;
import java.util.List;

import oracle.bpel.rulesdc.model.impl.RuleSetModel;

import oracle.rules.sdk2.dictionary.RuleDictionary;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.exception.SDKWarning;
import oracle.rules.sdk2.ruleset.RuleSet;
import oracle.rules.sdk2.ruleset.RuleSetTable;

public class SomeBean {
 private static final String RULES_FILE =
 "C:/scratch/asuraj/system/rules/OrderBooking.rules";
 private RuleSetModel ruleSetModel = null;

 public RuleSetModel getRuleSetModel() {
 if (ruleSetModel != null)
 return ruleSetModel; //cache ruleSetModel instead of re-creating it
 // each time

 Reader reader = null;
 try {
 reader = new FileReader(new File(RULES_FILE));
 } catch (FileNotFoundException e) {
 //LOG.severe(e);
 System.err.println(e);
 }
 RuleDictionary dict = null;
 try {
 dict = RuleDictionary.readDictionary(reader, null);
 } catch (SDKException e) {
 System.err.println(e);
 } catch (FileNotFoundException e) {
 System.err.println(e);
 } catch (IOException e) {
 System.err.println(e);
 }
 if (reader != null) {
 try {
 reader.close();
 } catch (IOException ioe) {
 }
 }
 //get the ruleSetTable from the RuleDictionary object
 RuleSetTable ruleSetTable = dict.getRuleSetTable();
 //get the first ruleSet from the ruleSetTable
 RuleSet ruleSet = ruleSetTable.get(0);
 //create a RuleSetModel object and pass this to the rulesDC

 ruleSetModel = new RuleSetModel(ruleSet);
 return ruleSetModel;
 }
 //please refer to Rules SDK documentation for saving a dictionary also
 //because this code does not take care of saving linked dictionaries

 public static boolean saveDictionary(RuleDictionary dict,
 String ruleFileName) {
 Writer writer = null;
 try { writer = new FileWriter(new File(ruleFileName));
 dict.writeDictionary(writer);

 } catch (SDKException e) {
 System.err.println(e);
 return false;
 } catch (FileNotFoundException e) {
 System.err.println(e);
 return false;
 } catch (IOException e) {
 System.err.println(e);
 return false;
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException ioe) {
 return false;
 }
 }
 }
 return true;
 }

 public static void updateDictionary(RuleDictionary dict) {
 if (dict == null)
 return;

 List<SDKWarning> warnings = new ArrayList<SDKWarning>();
 try {
 dict.update(warnings);
 for (SDKWarning warning : warnings)
 System.out.println("warnings: " +
 warning.getLocalizedMessage());
 } catch (SDKException sdkEx) {
 sdkEx.printStackTrace();
 }
 }
 //You can call this method from your "Save" button

 public void saveDictionary() {

 RuleDictionary dict =
 this.getRuleSetModel().getRuleSet().getDictionary();
 if (dict != null) {
 //update the dictionary before saving it
 updateDictionary(dict);
 saveDictionary(dict, RULES_FILE);
 }
 }

 //call the validation method on the ruleSetModel to update the Validation
 //Panel

 public void validate() {
 if (this.ruleSetModel == null)
 return;

 this.ruleSetModel.validate();
 }
}

	
Open the faces-config.xml file in Overview mode and click the + button under Managed Beans to display the Create Managed Bean dialog box. Point to SomeBean.java by providing the Bean Name as someBean and the Scope as session as shown in Figure 26-21.

Figure 26-21 Specifying the Bean Name and Scope

[image: Specifying the Bean Name and Scope]

The ADF/JSF framework makes multiple calls to SomeBean.java to render the user interface. For example, someBean.ruleSetModel is called multiple times. So, it is better to create the RuleSetModel object once, cache it, and return it each time instead of re-creating it.

To create the .jspx file for the Rules Editor component:

The next task is to create the .jspx file to include the Rules Editor component tag.

The steps are:

	
Open Oracle JDeveloper.

	
From the File menu, select New to display the New Gallery dialog box.

	
In the New Gallery dialog box, select JSF under Web Tier from the Categories panel.

	
Select JSF Page under Items and click OK to display the Create JSF Page dialog box.

	
In the Create JSF Page dialog box, enter useRulesDC.jspx as the file name as shown in Figure 26-22.

Figure 26-22 Creating the JSF Page File

[image: Creating the JSF Page File]

RulesCompLib in the component palette of Oracle JDeveloper is displayed as shown in Figure 26-23.

Figure 26-23 Rules Editor Component Library in the Component Palette

[image: Rules Editor Component Library in the Component Palette]

This is because you have added the rulesDC tag library when creating the sample application.

	
Select RulesCompLib to see the Rulesdc tag.You can drag and drop the Rulesdc tag into the .jspx file. You can also add the Rulesdc tag in the .jspx file manually as shown:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:rdc="http://xmlns.oracle.com/bpel/rules/editor"
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="Sample Rules Editor App" id="d1">
 <af:form id="f1">
 <af:panelStretchLayout id="psl1" inlineStyle="margin:15px;"
 partialTriggers="cb1 cb3">
 <f:facet name="center">
 <rdc:rulesdc rulesetModel="#{someBean.ruleSetModel}"
 viewOnly="false" discloseRules="true"
 genericAction="true" genericPattern="true"
 dtColumnPageSize="6" id="r1" dateStyle="yyyy-MM-dd"
 timeStyle="HH-mm-ss"></rdc:rulesdc>
 </f:facet>
 <f:facet name="top">
 <af:panelGroupLayout id="pgl2" layout="horizontal">
 <af:commandButton text="Save Dictionary"
 action="#{someBean.saveDictionary}" id="cb1"/>
 <af:spacer width="10" height="10" id="s5"/>
 <af:commandButton text="Validate" id="cb3"
 action="#{someBean.validate}"
 partialSubmit="true"/>
 </af:panelGroupLayout>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

To refer to the oracle.rules shared library:

After creating the .jspx file, you must refer to the oracle.rules shared library from the weblogic-application.xml file.

The steps are:

	
In Oracle JDeveloper, open the weblogic-application.xml file by browsing to Application Resources, then Descriptors, and then META-INF.

	
Add the following lines to refer to the oracle.rules shared library as shown in Figure 26-24.

<library-ref>
<library-name>oracle.rules</library-name>
</library-ref>

Figure 26-24 Referring to the oracle.rules Shared Library

[image: Referring to the oracle.rules Shared Library]

	
Deploy the oracle.rules shared library to the embedded Weblogic server, else, you might get ClassNotFoundException when you run the sample application. To deploy the oracle.rules shared library to the Weblogic server:

	
Launch WLS console (http://host:port/console/login/LoginForm.jsp). Ensure that the embedded Weblogic server on Oracle JDeveloper is running.

	
Select Deployments, click Install, select <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.rules_11.1.1/rules.jar and click Finish as shown in Figure 26-25.

Figure 26-25 Deploying the Shared Library to the Weblogic Server

[image: Deploying the Shared Library to the Weblogic Server]

To run the sample Rules Editor application:

The last task is running the sample application.

To run the sample application, from Oracle JDeveloper, right-click the useRulesDC.jspx file, and select Run. This starts the sample application on a Web browser as shown in Figure 26-26.

Figure 26-26 Running the Sample Application

[image: Running the Sample Application]

26.2.3 How to Deploy a Rules Editor Application to a Standalone Weblogic Server

When you are ready to deploy your application EAR file to the standalone Weblogic server, perform the following:

	
Launch the Weblogic server console (http://host:port/console/login/LoginForm.jsp) and ensure that oracle.rules is displayed in the deployments list.

	
Ensure that oracle.soa.rules_editor_dc.webapp is displayed in the deployments list. If this is not displayed, click Install and select the <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.soa.rules_editor_dc.webapp_11.1.1/oracle.soa.rules_editor_dc.webapp.war file.

	
Open Oracle JDeveloper.

	
Right-click the project name in the Application Navigator and select Project Properties.

	
Select Libraries and Classpath from the left panel and click Add Library.

	
In the Add Library dialog box, select Oracle Rules Editor Component and click OK as shown in Figure 26-27.

Figure 26-27 Adding the Oracle Rules Editor Component

[image: Adding the Oracle Rules Editor Component]

This step enables you to refer to these libraries, but does not deploy these libraries by default. Therefore, the jars are not included in your project war file.

	
In the project that has to be deployed (where you create the EAR file):

	
Add the following lines to the weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

	
Add the following lines to weblogic.xml in the project WAR file:

<library-ref>
 <library-name>oracle.soa.rules_editor_dc.webapp</library-name>
</library-ref>

	
Deploy the EAR file in the Weblogic server.

For more information about creating an EAR file, see "How to Create an EAR File for Deployment" in Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.

26.2.4 What You May Need to Know About the Supported Tags of the Rules Editor Component

This section lists the tags and attributes that are supported by the Rules Editor component.

Table 26-1 lists the supported facets.

Table 26-1 Supported Facets of the Rules Editor Component

	Name	Description
	
patternDisplay

	
Used to render specific user interfaces. This facet is used to display the rule condition and pattern (in advanced mode), which is the "IF" portion of the rule.

	
actionDisplay

	
Used to render specific user interfaces. This facet is used to display the rule action, which is the "THEN" portion of the rule.

Table 26-2 lists the supported attributes.

Table 26-2 Supported Attributes of the Rules Editor Component

	Name	Type	Required?	Default Value	Supports EL?	Description
	
rulesetModel

	
oracle.bpel.rulesdc.model.RuleSetInterface

	
yes

	
-

	
Only EL

	
Wrapper around the Rules SDK ruleset object.You can use the RuleSetModel object supplied as part of the Rules Editor Component jar file (adflibRulesDC.jar).

	
ruleModel

	
java.lang.String

	
no

	
oracle.bpel.rulesdc.model.RuleModel

	
yes

	
Used to customize the default RuleModel. You can extend the RuleModel class to override certain methods.

	
viewOnly

	
java.lang.Boolean

	
no

	
true

	
yes

	
If "true", in the "viewOnly" mode, you can view the existing rules in the ruleset. If "false", which is the "edit" mode, you can add new rules and edit existing rules.

	
genericPattern

	
java.lang.Boolean

	
no

	
true

	
yes

	
If "true", the Rules Editor component renders the user interface for displaying the IF part, which is Conditions and Patterns (in Advanced Mode). If "false", then the "patternDisplay" facet must be passed to the Rules Editor component. The facet must contain the user-defined user interface. The facet has access to the RuleModel and SimpleTestModel.

	
genericAction

	
java.lang.Boolean

	
no

	
true

	
yes

	
If "true", the Rules Editor component renders the user interface for displaying the THEN part, which is Actions. If "false", then the "actionDisplay" facet must be passed to the Rules Editor component. The facet must contain the user-defined user interface. The facet has access to the ActionModel.

	
locale

	
java.util.Locale

	
no

	
Locale.getDefault()

	
yes

	
Used for Localization

	
timezone

	
java.util.TimeZone

	
no

	
TimeZone.getDefault()

	
yes

	
Used for Localization

	
displayRuleSetEffDate

	
java.lang.Boolean

	
no

	
true

	
yes

	
If "true", the Rules Editor component renders the user interface for displaying the effective dates for the RuleSet.

	
discloseRules

	
java.lang.Boolean

	
no

	
false

	
yes

	
If "true", all the rules in the ruleset are expanded. If "false", all the rules are collapsed.

	
dateStyle

	
java.lang.String

	
no

	
gets it from the locale

	
yes

	
If specified, the date style is used in all inputDate components, for example yyyy.MM.dd

	
timeStyle

	
java.lang.String

	
no

	
gets it from the locale

	
yes

	
If specified, the time style is used in all inputDate components, for example HH:mm:ss

	
dtColumnPageSize

	
java.lang.Integer

	
no

	
5

	
yes

	
Number of columns to be displayed at a time in the decision table. This works only when rules are columnar.

	
dtHeight

	
java.lang.Integer

	
no

	
16

	
yes

	
Number of rows to be displayed at a time in the decision table. A scroll bar is displayed if the number of rows increases over the specified height.

	
displayRuleSetName

	
java.lang.Boolean

	
no

	
true

	
yes

	
Displays the editable ruleset name by default. You can choose to hide this by setting it to "false".

	
disableRuleSetName

	
java.lang.Boolean

	
no

	
false

	
yes

	
If "true", the ruleset name is disabled and not editable. By default, this is "false".

	
showValidationPanel

	
java.lang.Boolean

	
no

	
true

	
yes

	
Displays the validation panel by default. You can choose to hide this by setting it to "false".

26.3 Using the Oracle Business Rules Dictionary Editor Declarative Component

This section discusses the Oracle Business Rules Dictionary Editor declarative component. It also provides information on how to create and run an application using the Rules Dictionary Editor component, and then deploy the application. In addition, this section lists the supported tags and the localization process for the application.

26.3.1 Introduction to the Oracle Business Rules Dictionary Component

The Oracle Business Rules Dictionary Editor is a composite declarative component that can be embedded in any ADF-based Web application. It enables you to edit business rules metadata artifacts, such as Globals, Bucketsets, and Rulesets, by using the Rules SDK2 API.

	
Note:

You should not confuse Rules Dictionary Editor with Rules Editor. Rules Editor is used to edit rules inside a specified ruleset. In fact, Rules Editor is embedded within Rules Dictionary Editor. For more information about Rules Editor, see Section 26.2, "Using the Oracle Business Rules Editor Declarative Component."

The Rules Dictionary Editor Task Flow uses the Rules Dictionary Editor Component to create applications. Typically, you should either use the Rules Dictionary Editor component or the Rules Dictionary Editor task flow, but not both. For more information on Rules Dictionary Editor Task Flow, see Section 26.4, "Using the Oracle Business Rules Dictionary Task Flow."

The Rules Dictionary Editor component performs the following:

	
Edits Globals or Variables that have the final attribute set to true by using the Globals Editor, as shown in Figure 26-28.

Figure 26-28 Globals Editor

[image: Description of Figure 26-28 follows]

Globals Editor enables you to edit only the Name, Description, and Value of Globals. It does not allow creation or deletion of Globals. However, it supports validation of Globals.

	
Edits Bucketsets by using the Bucketset Editor as shown in Figure 26-29.

Figure 26-29 Bucketset Editor

[image: Description of Figure 26-29 follows]

Bucketset Editor enables you to perform CRUD (create, read, update, and delete) operations on Bucketsets and buckets inside a Bucketset. It also supports validation of Bucketsets.

	
Edits Rulesets, as shown in Figure 26-30.

Figure 26-30 Edits Rulesets

[image: Description of Figure 26-30 follows]

Rules Dictionary Editor enables you to edit only rules inside a selected ruleset. It does not allow creation or deletion of rulesets.

26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary Editor Component

This section lists the steps for creating and running a sample application by using the Rules Dictionary Editor component.

The prerequisite for using the Rules Dictionary Editor component to create ADF-based Web applications is having a running installation of SOA Suite and Oracle JDeveloper on your computer.

To create a sample application by using the Rules Dictionary Editor:

The first task is to create a sample application.

The steps are:

	
Open Oracle JDeveloper.

	
From the File menu, select New and then Generic Application to create an application.

	
Enter a name for the application in the Application Name field, for example, useRuleDictDCApp, and click Next as shown in Figure 26-31.

Figure 26-31 Creating a Generic Application

[image: Creating a Generic Application]

	
Enter useRuleDictDC in the Project Name field and ensure that ADF Faces is selected in the Project Technologies tab as shown in Figure 26-32.

Click Finish to create the project.

Figure 26-32 Creating a Project

[image: Creating a Project]

	
Right-click the useRuleDictDC project in the Application Navigator of Oracle JDeveloper, and select Project Properties to display the Project Properties dialog box.

In the Project Properties dialog box:

	
Select JSP Tag Libraries from the left panel.

	
Click Add and select ADF Faces Components from the extension list in the Choose Tag Libraries dialog box, and click OK as shown in Figure 26-33.

Figure 26-33 Choosing Tab Libraries

[image: Choosing Tab Libraries]

	
Click Add, select User, and then click New in the Choose Tag Libraries dialog box.

	
Browse to JDEV_INSTALL/jdeveloper/soa/modules/oracle.soa.rules_dict_dc.webapp_11.1.1, select one jar file at a time and click Open as shown in Figure 26-34. This adds the selected tag library to the User list.

Figure 26-34 Adding Rules Dictionary Tag Libraries to the User List

[image: Adding Rules Dictionary Tag Libraries to the User List]

You find that there are seven jar files in this directory: adflibBucketsetEditorDC.jar, adflibExpBuilderDC.jar, adflibGlobalsEditorDC.jar, adflibRuleDictionaryDC.jar, adflibRulesDC.jar and adflibRuleValidationTableDC.jar and adflibValidationTableDC.jar.

Repeat this process till all the jars (tag libraries) are added to the User list. Screen Shot

	
Select all the jars in the User list and click OK in the Choose Tag Libraries dialog box as shown in Figure 26-35.

Figure 26-35 Selecting the Added Rules Dictionary Tag Libraries in the User List

[image: Select Added Rules Dictionary Tag Libraries in User List]

Seven tag libraries are added to the project, which are bucketsetEditor, expBuilder, globalsEditor, ruleDictionaryDC, rulesCompLib, ruleValidationTable and validationTable, as shown in Figure 26-36.

Figure 26-36 Rules Dictionary Tag Libraries Added to the Project

[image: Rules Dictionary Tag Libraries Added to the Project]

	
Select Libraries and Classpath from the left panel and click Add Library to display the Add Library dialog box.

Select Oracle Rules in the Libraries list and click OK as shown in Figure 26-19. This adds the Rules SDK to the project.

Figure 26-37 Adding the Rules SDK to the Project

[image: Adding the Rules SDK to the Project]

	
Click OK to close the Project Properties dialog box.

	
Select Save All from the Oracle JDeveloper File menu to save the project.

To create the RuleDictionaryModel object:

The Rules Dictionary Editor component requires a oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel object. The component uses this object to read Globals, Bucketsets, and Rulesets information from the dictionary. So, the next task is to create a managed bean called SomeBean.java that creates a RuleDictionaryModel object.

The steps are:

	
Open Oracle JDeveloper.

	
From the File menu, select New to display the New Gallery dialog box.

	
In the New Gallery dialog box, select Java under General from the Categories panel. Ensure that Java Class under Items is selected and click OK to display the Create Java Class dialog box.

	
Enter the name of the Java class, for example SomeBean.java, and click OK to create the Java class in your project as shown in Figure 26-38.

Figure 26-38 Creating a Java Class

[image: Creating a Java Class]

The following is a sample of the SomeBean.java file:

package useruledictdc;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Reader;

import java.io.Writer;

import java.util.ArrayList;
import java.util.List;

import oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel;

import oracle.rules.sdk2.dictionary.DictionaryFinder;
import oracle.rules.sdk2.dictionary.RuleDictionary;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.exception.SDKWarning;

public class SomeBean {
 private RuleDictionaryModel ruleDictModel;
 private static final String RULES_FILE1 =
 "C:\\scratch\\asuraj\\system\\rules\\OrderBookinRules.rules";

 public SomeBean() {
 super();
 }

 public RuleDictionaryModel getRuleDictModel() {
 if (ruleDictModel != null)
 return ruleDictModel; //cache ruleDictModel instead of re-creating it each time

 ruleDictModel = new RuleDictionaryModel(getRuleDictionary());
 return ruleDictModel;
 }

 public RuleDictionary getRuleDictionary() {

 Reader reader = null;
 try {
 reader = new FileReader(new File(RULES_FILE1));
 } catch (FileNotFoundException e) {
 //LOG.severe(e);
 System.err.println(e);
 }
 RuleDictionary dict = openRulesDict(reader, null);
 if (reader != null) {
 try {
 reader.close();
 } catch (IOException ioe) {
 }
 }

 return dict;
 }

 private static RuleDictionary openRulesDict(Reader reader,
 DictionaryFinder finder) {
 RuleDictionary dict = null;

 try {
 dict = RuleDictionary.readDictionary(reader, finder);
 } catch (SDKException e) {
 System.err.println(e);
 } catch (FileNotFoundException e) {
 System.err.println(e);
 } catch (IOException e) {
 System.err.println(e);
 } catch (IllegalArgumentException e) { System.err.println(e);
 } finally {
 }

 return dict;
 }
 //please refer to Rules SDK documentation for saving a dictionary also
 //because this code does not take care of saving linked dictionaries

 public static boolean saveDictionary(RuleDictionary dict,
 String ruleFileName) {
 if (dict == null || ruleFileName == null)
 return false;

 if (dict.isTransactionInProgress())
 System.out.println("Transaction in progress, cannot save dictionary");
 Writer writer = null;
 try {
 writer = new FileWriter(new File(ruleFileName));
 dict.writeDictionary(writer);

 } catch (SDKException e) {
 System.err.println(e);
 return false;
 } catch (FileNotFoundException e) {
 System.err.println(e);
 return false;
 } catch (IOException e) {
 System.err.println(e);
 return false;
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException ioe) {
 return false;
 }
 }
 }
 return true;
 }

 public static void updateDictionary(RuleDictionary dict) {
 if (dict == null)
 return;

 List<SDKWarning> warnings = new ArrayList<SDKWarning>();
 try {
 dict.update(warnings);
 for (SDKWarning warning : warnings)
 System.out.println("warnings: " +
 warning.getLocalizedMessage());
 } catch (SDKException sdkEx) {
 sdkEx.printStackTrace();
 }
 }
 //You can call this method from your "Save" button

 public void saveDictionary() {

 RuleDictionary dict = this.getRuleDictModel().getRuleDictionary();
 if (dict != null) {
 if (dict.isModified())
 updateDictionary(dict);
 if (!dict.isTransactionInProgress())
 saveDictionary(dict, RULES_FILE1);
 }
 }

 //call the validation method on the ruleDictModel to update the Validation Panel

 public void validate() {
 if (this.ruleDictModel == null)
 return;
 this.ruleDictModel.validate();
 }
}

	
Open the faces-config.xml file in the Overview mode and click the + button under Managed Beans to display the Create Managed Bean dialog box. Point to SomeBean.java by providing the Bean Name as someBean and the Scope as session as shown in Figure 26-39.

Figure 26-39 Specifying the Bean Name and Scope

[image: Specifying the Bean Name and Scope]

The ADF/JSF framework makes multiple calls to SomeBean.java to render the user interface. For example, someBean.ruleDictModel is called multiple times. So, it is better to create the RuleDictModel object once, cache it, and return it each time instead of re-creating it.

To create the .jspx file for the Rules Dictionary Editor component:

The next task is to create the .jspx file to include the Rules Dictionary Editor component tag.

The steps are:

	
Open Oracle JDeveloper.

	
From the File menu, select New to display the New Gallery dialog box.

	
In the New Gallery dialog box, select JSF under Web Tier from the Categories panel.

	
Select JSF Page under Items and click OK to display the Create JSF Page dialog box as shown in Figure 26-40.

Figure 26-40 Creating the JSF Page File to Include the Rules Dictionary Editor Tag

[image: Creating the JSF Page File]

	
In the Create JSF Page dialog box, enter useRuleDictDC.jspx as the file name as shown in Figure 26-41.

Figure 26-41 Specifying the Name of the JSF Page

[image: Specifying the Name of the JSF Page]

RuleDictionaryEditor in the component palette of Oracle JDeveloper is displayed as shown in Figure 26-42.

Figure 26-42 Rule Dictionary Editor Library in the Component Palette

[image: Rule Dictionary Editor Library in the Component Palette]

This is because you have added the ruleDictionaryDC tag library when creating the sample application.

	
Select RuleDictionaryDC to view the ruleDictionaryDC tag.You can drag and drop the ruleDictionaryDC tag into the .jspx file. You can also add the ruleDictionaryDC tag in the .jspx file manually as shown:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:rddc="http://xmlns.oracle.com/bpel/rules/dictionaryEditor">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document id="d1" title="Sample Rule Dictionary App">
 <af:form id="f1">
 <af:panelStretchLayout id="psl1" inlineStyle="margin:15px;"
 partialTriggers="cb2 cb3">
 <f:facet name="center">
 <rddc:ruleDictionaryDC ruleDictModel="#{someBean.ruleDictModel}"
 dtColumnPageSize="6" id="rddc1"
 viewOnly="false" dateStyle="yyyy-MM-dd"
 timeStyle="HH-mm-ss"
 discloseRules="true"
 showValidationPanel="true"/>
 </f:facet>
 <f:facet name="top">
 <af:panelGroupLayout id="pgl1" layout="horizontal">
 <af:commandButton text="Save Dict" id="cb2"
 action="#{someBean.saveDictionary}"/>
 <af:spacer width="10" height="10" id="s1"/>
 <af:commandButton text="Validate" id="cb3"
 action="#{someBean.validate}"/>
 </af:panelGroupLayout>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

To refer to the oracle.rules shared library:

After creating the .jspx file, you must refer to the oracle.rules shared library from the weblogic-application.xml file.

The steps are:

	
In Oracle JDeveloper, open the weblogic-application.xml file by browsing to Application Resources, then Descriptors, and then META-INF.

	
Add the following lines to refer to the oracle.rules shared library as shown in Figure 26-43.

<library-ref>
<library-name>oracle.rules</library-name>
</library-ref>

Figure 26-43 Referring to the oracle.rules Shared Library

[image: Referring to the oracle.rules Shared Library]

	
Deploy the oracle.rules shared library to the embedded Weblogic server, else, you might get ClassNotFoundException when you run the sample application. To deploy the oracle.rules shared library to the Weblogic server:

	
Launch WLS console (http://host:port/console/login/LoginForm.jsp). Ensure that the embedded Weblogic server on Oracle JDeveloper is running.

	
Select Deployments, click Install, select <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.rules_11.1.1/rules.jar and click Finish as shown in Figure 26-44.

Figure 26-44 Deploying the Shared Library to the Weblogic Server

[image: Deploying the Shared Library to the Weblogic Server]

To run the sample Rules Dictionary Editor application:

The last task is running the sample application.

To run the sample application, from Oracle JDeveloper, right-click the useRuleDictDC.jspx file, and select Run. This starts the sample application on a Web browser as shown in Figure 26-45.

Figure 26-45 Running the Sample Rules Dictionary Editor Application

[image: Running the Sample Rules Dictionary Editor Application]

26.3.3 How to Deploy a Rules Dictionary Editor Application to a Standalone Weblogic Server

When you are ready to deploy your application EAR file to the standalone Weblogic server, perform the following:

	
Launch the Weblogic server console (http://host:port/console/login/LoginForm.jsp) and ensure that oracle.rules is displayed in the deployments list.

	
Ensure that oracle.soa.rules_dict_dc.webapp is displayed in the deployments list. If this is not displayed, click Install and select the <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.soa.rules_dict_dc.webapp_11.1.1/oracle.soa.rules_dict_dc.webapp.war file.

	
Open Oracle JDeveloper.

	
Right-click the project name in the Application Navigator and select Project Properties.

	
Select Libraries and Classpath from the left panel and click Add Library.

	
In the Add Library dialog box, select Oracle Rules Dictionary Component and click OK as shown in Figure 26-46.

Figure 26-46 Adding the Oracle Rules Dictionary Component

[image: Adding the Oracle Rules Dictionary Component]

This step enables you to refer to these libraries, but does not deploy these libraries by default. Therefore, the jar files are not included in your project war file.

	
In the project that has to be deployed (where you create the EAR file):

	
Add the following lines to the weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

	
Add the following lines to weblogic.xml in the project WAR file:

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

	
Deploy the EAR file in the Weblogic server.

26.3.4 What You May Need to Know About the Supported Attributes of the Rules Dictionary Editor Component

This section lists the attributes that are supported by the Rules Dictionary Editor component.

Table 26-3 lists the supported attributes.

Table 26-3 Supported Rules Dictionary Editor Attributes

	Name	Type	Required?	Default Value	Supports EL?	Description
	
ruleDictModel

	
oracle.bpel.ruledictionarydc.model.interfaces.RuleDictionaryInterface

	
yes

	
-

	
Only EL

	
Wrapper around the Rules SDK Dictionary object.You can use the RuleDictionaryModel object supplied as part of the Rules Dictionary Editor Component jar file (adflibRuleDictionaryDC.jar).

	
viewOnly

	
java.lang.Boolean

	
no

	
true

	
yes

	
If "true", in the "viewOnly" mode, you can view the existing dictionary data, but you cannot edit the data. If "false", which is the "edit" mode, you can edit existing the dictionary data.

	
locale

	
java.util.Locale

	
no

	
Locale.getDefault()

	
yes

	
Used for Localization

	
timezone

	
java.util.TimeZone

	
no

	
TimeZone.getDefault()

	
yes

	
Used for Localization

	
dateStyle

	
java.lang.String

	
no

	
gets it from the locale

	
yes

	
If specified, the date style is used in all inputDate components, for example yyyy.MM.dd

	
timeStyle

	
java.lang.String

	
no

	
gets it from the locale

	
yes

	
If specified, the time style is used in all inputDate components, for example HH:mm:ss

	
dtColumnPageSize

	
java.lang.Integer

	
no

	
5

	
yes

	
Number of columns to be displayed at a time in the decision table. This works only when rules are columnar.

	
dtHeight

	
java.lang.Integer

	
no

	
16

	
yes

	
Number of rows to be displayed at a time in the decision table. A scroll bar is displayed if the number of rows increases over the specified height.

	
selectedTab

	
java.lang.String

	
no

	
-

	
yes

	
Switches to the specified tab name (either GLOBALS, BUCKETSETS, or the RULESET name.)

	
showValidationPanel

	
java.lang.Boolean

	
no

	
true

	
yes

	
Displays the validation panel by default. You can choose to hide this by setting it to "false".

	
discloseRules

	
java.lang.Boolean

	
no

	
false

	
yes

	
If "true", all the rules in the ruleset are expanded. If "false", all the rules are collapsed.

	
displayRuleSetName

	
java.lang.Boolean

	
no

	
true

	
yes

	
By default, displays the editable ruleset name. You can choose to hide this by setting it to "false".

	
disableRuleSetName

	
java.lang.Boolean

	
no

	
false

	
yes

	
If "true", the ruleset name is disabled and is not editable. By default, this is "false".

26.4 Using the Oracle Business Rules Dictionary Task Flow

This section discusses the Oracle Business Rules Dictionary Editor task flow. It also provides information on how to create and run an application using the Rules Dictionary Editor task flow, and then deploy the application.

26.4.1 Introduction to the Oracle Business Rules Dictionary Task Flow

The Rules Dictionary Editor Task Flow is basically a wrapper around the Rules Dictionary Editor declarative component. The task flow is used in ADF-based Web applications that require a task flow instead of a declarative component. For more information on Rules Dictionary Editor Component, see Section 26.3, "Using the Oracle Business Rules Dictionary Editor Declarative Component."

26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary Editor Task Flow

This section lists the steps for creating and running a sample application by using the Rules Dictionary Editor task flow.

The prerequisites for using the Rules Dictionary Editor task flow to create ADF-based Web applications are:

	
Having a running installation of SOA Suite and Oracle JDeveloper on your computer

	
Obtaining the adflibRuleDictionaryTaskFlow.jar file. The steps are:

	
Open <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.soa.rules_dict_dc.webapp_11.1.1/oracle.soa.rules_dict_dc.webapp.war.

	
Unzip WEB-INF/lib/adflibRuleDictionaryTaskFlow.jar to some local directory.

To create a sample application by using the Rules Dictionary Editor task flow:

The first task is to create a sample application.

The steps are:

	
Open Oracle JDeveloper.

	
From the File menu, select New and then Generic Application to create an application.

	
Enter a name for the application in the Application Name field, for example, useRuleDictTaskFlowApp, and click Next as shown in Figure 26-47.

Figure 26-47 Creating a Generic Task Flow Application

[image: Creating a Generic Task Flow Application]

	
Enter useRuleDictTaskFlow in the Project Name field and ensure that ADF Faces is selected in the Project Technologies tab, as shown in Figure 26-48.

Click Finish to create the project.

Figure 26-48 Creating a Task Flow Project

[image: Creating a Task Flow Project]

	
Right-click the useRuleDictTaskFlow project in the Application Navigator of Oracle JDeveloper, and select Project Properties to display the Project Properties dialog box.

In the Project Properties dialog box:

	
Select JSP Tag Libraries from the left panel.

	
Click Add and select ADF Faces Components from the extension list in the Choose Tag Libraries dialog box, and click OK as shown in Figure 26-49.

Figure 26-49 Choosing Tab Libraries for the Task Flow Application

[image: Choosing Tab Libraries for the Task Flow Application]

	
Select Libraries and Classpath from the left panel and click Add Library to display the Add Library dialog box.

	
Select Oracle Rules in the Libraries list and click OK as shown in Figure 26-50. This adds the Rules SDK to the project.

Figure 26-50 Adding the Rules SDK to the Task Flow Project

[image: Adding the Rules SDK to the Task Flow Project]

	
Click Add JAR/Directory, browse to the location where adflibRuleDictionaryTaskFlow.jar is saved, and select it as shown in Figure 26-51.

Figure 26-51 Adding the Task Flow JAR to the Project

[image: Adding the Task Flow JAR to the Project]

	
Click Add JAR/Directory again, browse to <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.soa.composer.webapp_11.1.1, and select soaComposerTemplates.jar, as shown in Figure 26-52.

Figure 26-52 Adding the SOA Composer Template

[image: Adding the SOA Composer Template]

	
Click OK to close the Project Properties dialog box.

	
Select Save All from the Oracle JDeveloper File menu to save the project.

	
Create a Java class that implements the oracle.integration.console.metadata.model.share.MetadataDetails interface, which is defined in soaComposerTemplates.jar. For more information on the MetadataDetails interface, see Section I.1, "The MetadataDetails Interface."

The steps are:

	
Open Oracle JDeveloper.

	
From the File menu, select New to display the New Gallery dialog box.

	
In the New Gallery dialog box, select Java under General from the Categories panel. Ensure that Java Class under Items is selected and click OK to display the Create Java Class dialog box.

	
Enter the name of the Java class, for example MyMetaDataDetails, add the MetadataDetails interface in the Implements box under Optional Attributes, and click OK to create the Java class in your project as shown in Figure 26-53.

Figure 26-53 Creating a Java Class That Implements the MetadataDetails Interface

[image: Implementing the MetadataDetails]

The following is a sample of the MyMetaDataDetails.java file:

package useruledicttaskflow;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.io.Writer;

import java.net.MalformedURLException;
import java.net.URL;

import oracle.integration.console.metadata.model.share.MetadataDetails;
import oracle.integration.console.metadata.model.share.RelatedMetadataPath;

public class MyMetaDataDetails implements MetadataDetails {
 public MyMetaDataDetails() {
 super();
 }

 private static final String RULES_FILE1 =
 "file:///C:/scratch/asuraj/system/rules/OrderBooking.rules";

 public String getDocument() {
 URL url = null;
 try {
 url = new URL(RULES_FILE1);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

 public void setDocument(String string) {
 URL url = null;

 try {
 url = new URL(RULES_FILE1);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return;
 }
 Writer writer = null;
 try {
 //os = new FileWriter(url.getPath());
 writer =
 new OutputStreamWriter(new
 FileOutputStream(url.getPath()),
 "UTF-8");
 } catch (FileNotFoundException e) {
 System.err.println(e);
 return;
 } catch (IOException e) {
 System.err.println(e);
 return;
 }
 try {
 writer.write(string);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
 }
 }

 private String readFile(URL dictURL) {
 InputStream is;
 try {
 is = dictURL.openStream();
 } catch (IOException e) {
 System.err.println(e);
 return "";
 }
 BufferedReader reader;
 try {
 reader = new BufferedReader(new InputStreamReader(is, "UTF-8"));
 } catch (UnsupportedEncodingException e) {
 System.err.println(e);
 return "";
 }
 String line = null;
 StringBuilder stringBuilder = new StringBuilder();
 String ls = System.getProperty("line.separator");
 try {
 while ((line = reader.readLine()) != null) {
 stringBuilder.append(line);
 stringBuilder.append(ls);
 }
 } catch (IOException e) {
 System.err.println(e);
 return "";
 } finally {
 try {
 reader.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return stringBuilder.toString();
 }

 public String getRelatedDocument(RelatedMetadataPath relatedMetadataPath) {
 String currPath =
 RULES_FILE1.substring(0, RULES_FILE1.indexOf("oracle/rules"));
 String relatedDoc =
 currPath + "oracle/rules/" + relatedMetadataPath.getValue();

 URL url = null;
 try {
 url = new URL(relatedDoc);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }
}

	
Create a Java class that implements the oracle.integration.console.metadata.model.share.NLSPreferences interface, which is defined in soaComposerTemplates.jar, as shown in Figure 26-54.

Figure 26-54 Creating a Java Class That Implements the NLSPreferences Interface

[image: Implementing NLSPreferences]

For more information about the NLS Preferences interface, see Section I.2, "The NLSPreferences Interface."

The following is a sample of the MyNLSPreferences.java file:

package useruledicttaskflow;

import java.util.Locale;
import java.util.TimeZone;

import oracle.integration.console.metadata.model.share.NLSPreferences;

public class MyNLSPreferences implements NLSPreferences {
 private static final String DATE_STYLE = "yyyy-MM-dd";
 private static final String TIME_STYLE = "HH-mm-ss";

 public MyNLSPreferences() {
 super();
 }

 public Locale getLocale() {
 return Locale.getDefault();
 }

 public TimeZone getTimeZone() {
 return TimeZone.getTimeZone("America/Los_Angeles");
 }

 public String getDateFormat() {
 return DATE_STYLE;
 }

 public String getTimeFormat() {
 return TIME_STYLE;
 }
}

	
Create a Managed Bean called MyBean.java to return the implementation of MetadataDetails and NLSPreferences. It also returns the oracle.integration.console.metadata.model.share.MetadataDetailsMode object and provides event handlers such as toggleMode(), saveDictionary(), saveNoValidateDictionary(), and validate().

The following is a sample of the MyBean.java file:

package useruledicttaskflow;

import javax.el.ELContext;
import javax.el.ExpressionFactory;
import javax.el.MethodExpression;

import javax.faces.context.FacesContext;
import javax.faces.event.PhaseId;

import oracle.adf.view.rich.component.rich.fragment.RichRegion;

import oracle.integration.console.metadata.model.share.MetadataDetails;
import oracle.integration.console.metadata.model.share.MetadataDetailsMode;
import oracle.integration.console.metadata.model.share.NLSPreferences;

public class MyBean {
 private MyMetaDataDetails details = null;
 private MetadataDetailsMode mode = MetadataDetailsMode.VIEW;
 private RichRegion regionComp;
 private NLSPreferences nlsPrefs;

 public MyBean() {
 super();
 }

 public MetadataDetails getMetaDataDetails() {
 if (details != null)
 return details;

 details = new MyMetaDataDetails();
 return details;
 }

 public MetadataDetailsMode getDetailsMode() {
 return mode;
 }

 public void toggleMode() {
 if (mode.equals(MetadataDetailsMode.EDIT))
 mode = MetadataDetailsMode.VIEW;
 else
 mode = MetadataDetailsMode.EDIT;
 }

 public void saveDictionary() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doMetadataUpdate", String.class,
 new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void saveNoValidateDictionary() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doNoValidateMetadataUpdate",
 String.class, new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void validate() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doValidate", String.class,
 new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void setRegionComp(RichRegion regionComp) {
 this.regionComp = regionComp;
 }
 public RichRegion getRegionComp() {
 return regionComp;
 }

 public NLSPreferences getNlsPrefs() {
 if (nlsPrefs != null)
 return nlsPrefs;

 nlsPrefs = new MyNLSPreferences();
 return nlsPrefs;
 }
}

	
Open the faces-config.xml file in the Overview mode and click the + button under Managed Beans to display the Create Managed Bean dialog box. Point to MyBean.java by providing the Bean Name as MyBean and the Scope as session as shown in Figure 26-55.

Figure 26-55 Specifying the Bean Name and Scope in the Task Flow Application

[image: Specifying the Bean Name and Scope]

To add a Rules Dictionary Editor task flow in a .jspx file:

The next task is to create the .jspx file to include the Rules Dictionary Editor component tag.

The steps are:

	
Open Oracle JDeveloper.

	
From the File menu, select New to display the New Gallery dialog box.

	
In the New Gallery dialog box, select JSF under Web Tier from the Categories panel.

	
Select JSF Page under Items and click OK to display the Create JSF Page dialog box as shown in Figure 26-56.

Figure 26-56 Creating the JSF Page File to Include the Rules Dictionary Editor Task Flow

[image: Creating the JSF Page File]

	
In the Create JSF Page dialog box, enter useRuleDictTaskFlow.jspx as the file name as shown in Figure 26-57.

Figure 26-57 Specifying the Name of the JSF Page for the Task Flow

[image: Specifying the Name of the JSF Page for the Task Flow]

adflibRuleDictionaryTaskFlow.jar in the component palette of Oracle JDeveloper is displayed as shown in Figure 26-58.

Figure 26-58 Rules Dictionary Task Flow JAR in the Component Palette

[image: Rules Dictionary Task Flow JAR in the Component Palette]

This is because you have added adfLibRuleDictionaryTaskFlow.jar to Libraries and Classpath when creating the sample application.

	
Select adflibRuleDictionaryTaskFlow.jar to make rule-dict-flow-definition to be available under Regions in the component palette. You can drag and drop the rule-dict-flow-definition region into the .jspx file as shown in Figure 26-59, and specify all the required parameters.

Figure 26-59 Dragging and Dropping the Region

[image: Dragging and Dropping the Region]

The following is a sample of the useRuleDictTaskFlow.jspx file with the task flow added:

<f:view>
 <af:document id="d1">
 <af:form id="f1">
 <af:panelStretchLayout id="psl1" inlineStyle="margin:8px;">
 <f:facet name="top">
 <af:menuBar id="mb1">
 <af:commandMenuItem text="Toggle Mode" id="cmi1"
 action="#{MyBean.toggleMode}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Save Dict" id="cmi2"
 action="#{MyBean.saveDictionary}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Save Dict No Validate" id="cmi3"
 action="#{MyBean.saveNoValidateDictionary}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Validate" id="cmi4"
 action="#{MyBean.validate}"
 partialSubmit="true"/>
 </af:menuBar>
 </f:facet>
 <f:facet name="center">
 <af:region value="#{bindings.rulesdictflowdefinition1.regionModel}"
 id="r2" binding="#{MyBean.regionComp}"
 partialTriggers="::cmi1 ::cmi2 ::cmi3 ::cmi4"/>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
 </f:view>

In the preceding sample, you can find code snippets for rendering the following buttons to the page:

	
Toggle Mode: Enables switching between Read-Only and Editable modes of SOA Composer

	
Save Dict: Enables saving the dictionary (with or without validation)

To edit the pagedef.xml file:

After you add the task flow to the .jspx file, you must edit the useRuleDictTaskFlowPageDef.xml file. The pagedef.xml file is created when you drop the Rules Dictionary task flow into the .jspx page.

The following is a sample of the pagedef.xml file along with all the parameters that must be passed to the Rules Dictionary task flow:

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.55.99" id="useRuleDictTaskFlowPageDef"
 Package="useruledicttaskflow.pageDefs">
 <parameters/>
 <executables>
 <variableIterator id="variables"/>
 <taskFlow id="rulesdictflowdefinition1"

 taskFlowId="/WEB-INF/rule-dict-flow-definition.xml#rules-dict-flow-definition"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="details" value="#{MyBean.metaDataDetails}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="mode" value="#{MyBean.detailsMode}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="dtHeight" value="10"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="selectedTab" value="Ruleset_1"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="dtColumnPageSize" value="6"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="nlsPrefs" value="#{MyBean.nlsPrefs}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="discloseRules" value="true"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
 </taskFlow>
 </executables>
 <bindings/>
</pageDefinition>

In the preceding code sample, you can see that some of the parameters come from MyBean.java (Managed Bean) and the others are hard-coded.

To refer to the oracle.rules shared library:

The next task is to refer to the oracle.rules shared library from the weblogic-application.xml file.

The steps are:

	
In Oracle JDeveloper, open the weblogic-application.xml file by browsing to Application Resources, then Descriptors, and then META-INF.

	
Add the following lines to refer to the oracle.rules shared library as shown in Figure 26-60.

<library-ref>
<library-name>oracle.rules</library-name>
</library-ref>

Figure 26-60 Referring to the oracle.rules Shared Library

[image: Referring to the oracle.rules Shared Library]

To run the sample task flow application:

The last task is running the sample application.

To run the sample application, from Oracle JDeveloper, right-click the useRulesDictTaskFlow.jspx file, and select Run. This starts the sample application on a Web browser as shown in Figure 26-45.

Figure 26-61 Running the Sample Rules Dictionary Editor Task Flow Application

[image: Running the Sample Rules Dictionary Editor Task Flow]

26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone Weblogic Server

When you are ready to deploy your application EAR file to the standalone Weblogic server, perform the following:

	
Launch the Weblogic server console (http://host:port/console/login/LoginForm.jsp) and ensure that oracle.rules is displayed in the deployments list.

	
Ensure that oracle.soa.rules_dict_dc.webapp is displayed in the deployments list. If this is not displayed, click Install and select the <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.soa.rules_dict_dc.webapp_11.1.1/oracle.soa.rules_dict_dc.webapp.war file.

	
In the project that has to be deployed (where you create the EAR file):

	
Add the following lines to the weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

	
Add the following lines to weblogic.xml in the project WAR file:

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

	
Deploy the EAR file in the Weblogic server.

26.5 Localizing the ADF-Based Web Application

You can localize an application that is created using the Rules Editor component, Rules Dictionary Editor component, or the Rules Dictionary Editor task flow.

The steps are:

	
Modify faces-config.xml in the project that uses the Rules Editor component. The faces-config.xml file must have the following code within the <application> tag to support the available resource bundles:

<locale-config> <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>ar</supported-locale>
 <supported-locale>cs</supported-locale>
 <supported-locale>da</supported-locale>
 <supported-locale>de</supported-locale>
 <supported-locale>el</supported-locale>
 <supported-locale>es</supported-locale>
 <supported-locale>fi</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>hu</supported-locale>
 <supported-locale>it</supported-locale>
 <supported-locale>iw</supported-locale>
 <supported-locale>ja</supported-locale>
 <supported-locale>ko</supported-locale>
 <supported-locale>nl</supported-locale>
 <supported-locale>no</supported-locale>
 <supported-locale>pl</supported-locale>
 <supported-locale>pt-BR</supported-locale>
 <supported-locale>pt</supported-locale>
 <supported-locale>ro</supported-locale>
 <supported-locale>ru</supported-locale>
 <supported-locale>sk</supported-locale>
 <supported-locale>sv</supported-locale>
 <supported-locale>th</supported-locale>
 <supported-locale>tr</supported-locale>
 <supported-locale>zh-CN</supported-locale>
 <supported-locale>zh-TW</supported-locale>
</locale-config>

	
Change the browser language to the locale of your choice.

	
You can override the locale provided by the browser and display the user interface in a specific locale. This is done by passing that locale as an attribute to the component and modifying the f:view tag in the application using the component as shown:

<f:view locale="#{someBean.locale}">

The locale specified here should be the same as the one passed to the component using the locale attribute.

Part V

Using the Human Workflow Service Component

This part describes how to use the human workflow service component.

This part contains the following chapters:

	
Chapter 27, "Getting Started with Human Workflow"

	
Chapter 28, "Designing Human Tasks"

	
Chapter 29, "Designing Task Forms for Human Tasks"

	
Chapter 30, "Using Oracle BPM Worklist"

	
Chapter 31, "Building a Custom Worklist Client"

	
Chapter 32, "Introduction to Human Workflow Services"

	
Chapter 33, "Integrating Microsoft Excel with a Human Task"

	
Chapter 34, "Configuring Task List Portlets"

27 Getting Started with Human Workflow

This chapter introduces human workflow concepts, features, and architecture. Use cases for human workflow are provided. Instructions for designing your first workflow from start to finish are also provided.

This chapter includes the following sections:

	
Section 27.1, "Introduction to Human Workflow"

	
Section 27.2, "Introduction to Human Workflow Concepts"

	
Section 27.3, "Introduction to Human Workflow Features"

	
Section 27.4, "Introduction to Human Workflow Architecture"

For information about composite sensors, see Chapter 47, "Defining Composite Sensors."

27.1 Introduction to Human Workflow

Many end-to-end business processes require human interactions with the process. For example, humans may be needed for approvals, exception management, or performing activities required to advance the business process. The human workflow component provides the following features:

	
Human interactions with processes, including assignment and routing of tasks to the correct users or groups

	
Deadlines, escalations, notifications, and other features required for ensuring the timely performance of a task (human activity)

	
Presentation of tasks to end users through a variety of mechanisms, including a worklist application (Oracle BPM Worklist)

	
Organization, filtering, prioritization, and other features required for end users to productively perform their tasks

	
Reports, reassignments, load balancing, and other features required by supervisors and business owners to manage the performance of tasks

Figure 27-1 provides an overview of human workflow:

Figure 27-1 Human Workflow

[image: High-level view of workflow services.]

In Figure 27-1, the following actions occur:

	
A BPEL process invokes a special activity of the human task type when it needs a human to perform a task.

	
This creates a task in the human task service component. The process waits for the task to complete. It is also possible for the process to watch for other callbacks from the task and react to them.

	
There is metadata associated with the task that is used by the human task service component to manage the lifecycle of the task. This includes specification of the following:

	
Who performs the task. If multiple people are required to perform the task, what is the order?

	
Who are the other stakeholders?

	
When must the task be completed?

	
How do users perform the task, what information is presented to them, what are they expected to provide, and what actions can they take?

	
The human task service component uses an identity directory, such as LDAP, to determine people's roles and privileges.

	
The human task service component presents tasks to users through a variety of channels, including the following:

	
Oracle BPM Worklist, a role-based application that supports the concept of supervisors and process owners, and provides functionality for finding, organizing, managing, and performing tasks.

	
Worklist functionality is also available as portlets that can be exposed in an enterprise portal.

	
Notifications can be sent to email, phone, SMS, and other channels. Email notifications can be actionable, enabling users to perform actions on the task from within the email client without connecting to Oracle BPM Worklist or Oracle WebLogic Server.

27.2 Introduction to Human Workflow Concepts

This section introduces you to key human workflow design time and runtime concepts. This section also provides an overview of the three main stages of human workflow design.

27.2.1 Introduction to Design and Runtime Concepts

Before designing a human task, it is important to understand the design and runtime concepts. A typical task consists of a subject, priority, task participants, task parameters or data, deadlines, notifications or reminders, and task forms. This section provides an overview of key concepts.

	
Note:

Human workflow design-time tasks are performed in a graphical editor known as the Human Task Editor. The tutorial in Section 27.3.2, "Designing a Human Task from Start to Finish" describes how to use this editor.

27.2.1.1 Task Assignment and Routing

Human workflow supports declarative assignment and routing of tasks. In the simplest case, a task is assigned to a single participant (user or group). However, there are many situations in which more detailed task assignment and routing is necessary (for example, when a task must be approved by a management chain or worked and voted on by a set of people in parallel, as shown in Figure 27-2). Human workflow provides declarative pattern-based support for such scenarios.

Figure 27-2 Participants in a Task

[image: Description of Figure 27-2 follows]

27.2.1.1.1 Participant

A participant is a user or set of users in the assignment and routing policy definition. In Figure 27-2, each block with an icon representing people is a participant.

27.2.1.1.2 Participant Type

In simple cases, a participant maps to a user, group, or role. However, as discussed in Section 27.2.1.1, "Task Assignment and Routing," workflow supports declarative patterns for common routing scenarios such as management chain and group vote.The following participant types are available:

	
Single approver

This is the simple case where a participant maps to a user, group, or role.

For example, a vacation request is assigned to a manager. The manager must act on the request task three days before the vacation starts. If the manager formally approves or rejects the request, the employee is notified with the decision. If the manager does not act on the task, the request is treated as rejected. Notification actions similar to the formal rejection are taken.

	
Parallel

This participant indicates that a set of people must work in parallel. This pattern is commonly used for voting.

For example, multiple users in a hiring situation must vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote.

	
Serial

This participant indicates that a set of users must work in sequence. While working in sequence can be specified in the routing policy by using multiple participants in sequence, this pattern is useful when the set of people is dynamic. The most common scenario for this is management chain escalation, which is done by specifying that the list is based on a management chain within the specification of this pattern.

	
FYI (For Your Information)

This participant also maps to a single user, group, or role, just as in single approver. However, this pattern indicates that the participant just receives a notification task and the business process does not wait for the participant's response. FYI participants cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.

For example, a regional sales office is notified that a candidate for employment has been approved for hire by the regional manager and their candidacy is being passed onto the state wide manager for approval or rejection. FYIs cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.

For more information, see Section 28.3.6, "How to Assign Task Participants."

27.2.1.1.3 Participant Assignment

A task is work that must be done by a user. When you create a task, you assign humans to participate in and act upon the task. Participants can perform actions upon tasks during runtime from Oracle BPM Worklist, such as approving a vacation request, rejecting a purchase order, providing feedback on a help desk request, or some other action. There are three types of participants:

	
Users

You can assign individual users to act upon tasks. For example, you may assign users jlondon or jstein to a particular task. Users are defined in an identity store configured with the SOA Infrastructure. These users can be in the embedded LDAP of Oracle WebLogic Server, Oracle Internet Directory, or a third party LDAP directory.

	
Groups

You can assign groups to act upon tasks. Groups contain individual users who can claim and act upon a task. For example, users jcooper and fkafka may be members of the group LoanAgentGroup that you assign to act upon the task.

As with users, groups are defined in the identity store of the SOA Infrastructure.

	
Application roles

You can assign users who are members of application roles to claim and act upon tasks.

Application roles consist of users or other roles grouped logically for application-level authorizations. These roles are application-specific and are defined in the application Java policy store rather than the identity store. These roles are used by the application directly and are not necessarily known to a Java EE container.

Application roles define policy. Java permission can be granted to application roles. Therefore, application roles define a set of permissions granted to them directly or indirectly through other roles (if a role is granted to a role). The policy can contain grants of application roles to enterprise groups or users. In the jazn-data.xml file of the file-based policy store, these roles are defined in <app-role> elements under <policy-store> and written to system-jazn-data.xml at the farm level during deployment. You can also define these roles after deployment using Oracle Enterprise Manager Fusion Middleware Control Console. You can set a task owner or approver to an application role at design time if the role has been previously deployed.

For more information about Oracle BPM Worklist, see Section 27.2.1.6, "Task Forms."

27.2.1.1.4 Ad Hoc Routing

In processes dealing with significant variance, you cannot always determine all participants. Human workflow enables you to specify that a participant can invite other participants as part of performing the task.

For more information, see Section 28.3.7.1.1, "Allowing All Participants to Invite Other Participants."

27.2.1.1.5 Outcome-based Completion of Routing Flow

By default, a task goes from starting to final participant according to the flow defined in the routing policy (as shown in Figure 27-2). However, sometimes a certain outcome at a particular step within a task's routing flow makes it unnecessary or undesirable to continue presenting the task to the next participants. For example, if an approval is rejected by the first manager, it does not need to be routed to the second manager. Human workflow supports specifying that a task or subtask be completed when a certain outcome occurs.

For more information, see Section 28.3.7.1.2, "Stopping Routing of a Task to Further Participants."

27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment

There are different methods for assigning users, groups, and application roles to tasks.

	
Assign tasks statically

You can assign users, groups, and application roles statically (or by browsing the identity service). The values can be either of the following:

	
A single user, group, or application role (for example, jstein, CentralLoanRegion, or ApproverRole).

	
A delimited string of users, groups, or application roles (for example, jstein, wfaulk, cdickens).

	
Assign tasks dynamically

You can assign users, groups, and application roles dynamically using XPath expressions. These expressions enable you to dynamically determine the task participants at runtime. For example, you may have a business requirement to create a dynamic list of task approvers specified in a payload variable. The XPath expression can resolve to zero or more XML nodes. Each node value can be either of the following:

	
A single user, group, or application role

	
A delimited string of users, groups, or application roles. The default delimiter for the assignee delimited string is a comma (,).

For example, if the task has a payload message attribute named po within which the task approvers are stored, you can use the following XPath expression:

	
/task:task/task:payload/po:purchaseOrder/po:approvers

	
ids:getManager('jstein', 'jazn.com')

This returns the manager of jstein.

	
ids:getReportees('jstein', 2, 'jazn.com')

This returns all reportees of jstein up to two levels.

	
ids:getUsersInGroup('LoanAgentGroup', false, 'jazn.com')

This returns all direct and indirect users in the group LoanAgentGroup.

	
Assign tasks with business rules

You can create the list of task participants with complex expressions. The result of using business rules is the same as using XPath expressions.

27.2.1.3 Task Stakeholders

A task has multiple stakeholders. Participants are the users defined in the assignment and routing section of the task definition. These users are the primary stakeholders that perform actions on the task.

In addition to the participants specified in the assignment and routing policy, human workflow supports additional stakeholders:

	
Owner

This participant has business administration privileges on the task. This participant can be specified as part of the task definition or from the invoking process (and for a particular instance). The task owner can act upon tasks they own and also on behalf of any other participant. The task owner can change both the outcome of the task and the assignments.

For more information, see Section 28.3.4.6, "Specifying a Task Owner" to specify an owner in the Human Task Editor or Section 28.4.4.2, "Specifying a Task Owner" to specify an owner in the Advanced tab of the Create Human Task dialog.

	
Initiator

The person who initiates the process (for example, the initiator files an expense report for approval). This person can review the status of the task using initiated task filters. Also, a useful concept is for including the initiator as a potential candidate for request-for-information from other participants.

For more information, see Section 28.4.3.2, "Specifying the Task Initiator and Task Priority."

	
Reviewer

This participant can review the status of the task and add comments and attachments.

	
Admin

This participant can view all tasks and take certain actions such as reassigning a test, suspending a task to handle errors, and so on. The task admin cannot change the outcome of a task.

While the task admin cannot perform the types of actions that a task participant can, such as approve, reject, and so on, this participant type is the most powerful because it can perform actions such as reassign, withdraw, and so on.

	
Error Assignee

When an error occurs, the task is assigned to this participant (for example, the task is assigned to a nonexistent user). The error assignee can perform task recovery actions from Oracle BPM Worklist, the task form in which you perform task actions during runtime.

For more information, see Section 28.3.7.4, "Configuring the Error Assignee."

27.2.1.4 Task Deadlines

Human workflow supports the specification of deadlines associated with a task. You can associate the following actions with deadlines:

	
Reminders:

The task can be reminded multiple times based on the time after the assignment or the time before the expiration.

	
Escalation:

The task is escalated up the management hierarchy.

	
Expiration:

The task has expired.

	
Renewal:

The task is automatically renewed.

For more information, see Section 28.3.9, "How to Escalate, Renew, or End the Task."

27.2.1.5 Notifications

You can configure your human task to use notifications. Notifications enable you to alert interested users to changes in the state of a task during the task life cycle. For example, a notification is sent to an assignee when a task has been approved or withdrawn.

You can specify for notifications to be sent to different types of participants for different actions. For example, you can specify the following:

	
For the owner of a task to receive a notification message when a task is in error (for example, been sent to a nonexistent user).

	
For a task assignee to receive a notification message when a task has been escalated.

You can specify the contents of the notification message and the notification channel to use for sending the message.

	
Email

You can configure email notification messages to be actionable, meaning that a task assignee can act upon a task from within the email.

	
Voice message

	
Instant messaging (IM)

	
Short message service (SMS)

For example, you may send the message shown in Example 27-1 by email when a task assignee requests additional information before they can act upon a task:

Example 27-1 Email Message

In order for me to approve this task, I need more information to justify the need
 for this business trip

During runtime, you can mark a message sender's address as spam and also display a list of bad or invalid addresses. These addresses are automatically removed from the bad address list.

For more information about notifications, see the following:

	
Chapter 17, "Using the Notification Service"

	
Section 28.3.10, "How to Specify Participant Notification Preferences"

	
Part XI, "Using Oracle User Messaging Service"

27.2.1.6 Task Forms

Task forms provide you with a way to interact with a task. Oracle BPM Worklist displays all worklist tasks that are assigned to task assignees in the task form. When you drill down into a specific task, the task form displays the contents of the task to the user's worklist. For example, an expense approval task may show a form with line items for various expenses, and a help desk task form may show details such as severity, problem location, and so on.

The integrated development environment of Oracle SOA Suite includes Oracle Application Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a task form that depicts the human task in the SOA composite.

ADF-based task forms can be automatically generated. Advanced users can design their own task forms by using ADF data controls to lay out the content on the page and connect to the workflow service engine at execution time to retrieve task content and act on tasks.

You can create task forms in JSF, .NET, or any other client technologies using the APIs.

Integration with Microsoft Excel for initiating and acting on tasks is also provided.

For more information, see the following:

	
Chapter 29, "Designing Task Forms for Human Tasks."

	
Chapter 30, "Using Oracle BPM Worklist"

27.2.1.7 Advanced Concepts

This section describes advanced human workflow concepts.

27.2.1.7.1 Rule-based Routing

You can use Oracle Business Rules to dynamically alter the routing flow. If used, each time a participant completes their step, the associated rules are invoked and the routing flow can be overridden from the rules.

For more information, see Section 28.3.7.2, "Specifying Advanced Task Routing Using Business Rules."

27.2.1.7.2 Rule-based Participant Assignment

You can use Oracle Business Rules to dynamically build a list of users, groups, and roles to be associated with a participant.

For more information, see Section 28.3.6, "How to Assign Task Participants."

27.2.1.7.3 Stages

A stage is a way of organizing the approval process for blocks of participant types. You can have one or more stages in sequence or in parallel. Within each stage, you can have one or more participant type blocks in sequence or in parallel.

For more information, see Section 28.3.6, "How to Assign Task Participants."

27.2.1.7.4 Access Rules

You can specify access rules that determine the parts of a task that assignees can view and update. For example, you can configure the task payload data to be read by assignees. This action enables only assignees (and nobody else) to have read permissions. No one, including assignees, has write permissions.

For more information, see Section 28.3.11.1, "Specifying Access Policies on Task Content."

27.2.1.7.5 Callbacks

While human workflow supports detailed behavior that can be declaratively specified, in some advanced situations, more extensible behavior may be required. Task callbacks enable such extensibility; these callbacks can either be handled in the invoking BPEL process or a Java class.

For more information, see Section 28.3.14.1, "Specifying Callback Classes on Task Status."

27.2.1.8 Reports and Audit Trails

Oracle BPM Worklist provides several out-of-the-box reports for task analysis:

	
Unattended tasks

Analysis of tasks assigned to users' groups or reportees' groups that have not yet been acquired.

	
Tasks priority

Analysis of tasks assigned to a user, reportees, or their groups, based on priority.

	
Tasks cycle time

Analysis of the time taken to complete tasks from assignment to completion based on users' groups or reportees' groups.

	
Tasks productivity

Analysis of assigned tasks and completed tasks in a given time period for a user, reportees, or their groups.

	
Tasks time distribution

The time an assignee takes to perform a task.

You can view an audit trail of actions performed by the participants in the task and a snapshot of the task payload and attachments at various points in the workflow. The short history for a task lists all versions created by the following tasks:

	
Initiate task

	
Reinitiate task

	
Update outcome of task

	
Completion of task

	
Erring of task

	
Expiration of task

	
Withdrawal of task

	
Alerting of task to the error assignee

For more information, see Chapter 30, "Using Oracle BPM Worklist."

27.2.2 Introduction to the Stages of Human Workflow Design

Human workflow modeling consists of three stages of modeling, as described in Table 27-1.

Table 27-1 Stages of Human Workflow Modeling

	Step	Description	For More Information...
	
1

	
You create and define contents of the human task in the Human Task Editor, including defining a participant type, routing policy, escalation and expiration policy, notification, and so on.

	
Section 28.2.1, "Create a Human Task Definition."

	
2

	
You associate the human task definition with a BPEL process. The BPEL process integrates a series of activities (including the human task activity) and services into an end-to-end process flow.

	
Section 28.2.2, "Associate the Human Task Definition with a BPEL Process."

	
3

	
You create a task form. This form is used for displaying the task details on which you act at runtime in Oracle BPM Worklist.

	
Section 28.2.3, "Generate the Task Form."

27.3 Introduction to Human Workflow Features

This section provides an introduction to use cases for human workflow. After that, a tutorial guides you through the design of a human task from start to finish.

27.3.1 Human Workflow Use Cases

The following sections describe multiple use cases for workflow services.

27.3.1.1 Task Assignment to a User or Role

A vacation request process may start with getting the vacation details from a user and then routing the request to their manager for approval. User details and the organizational hierarchy can be looked up from a user directory or identity store. This scenario is shown in Figure 27-3.

Figure 27-3 Assigning Tasks to a User or Role from a Directory

[image: Assigning tasks in workflow.]

27.3.1.2 Use of the Various Participant Types

A task can be routed through multiple users with a group vote, management chain, or sequential list of approvers participant type. For example, consider a loan request that is part of the loan approval flow. The loan request may first be assigned to a loan agent role. After a specific loan agent acquires and accepts the loan, the loan may be routed further through multiple levels of management if the loan amount is greater that $100,000. This scenario is shown in Figure 27-4.

Figure 27-4 Flow Patterns and Routing Policies

[image: Description of Figure 27-4 follows]

You can use these types as building blocks to create complex workflows.

27.3.1.3 Escalation, Expiration, and Delegation

A high-priority task can be assigned to a certain user or role based on the task type through use of custom escalation functions. However, if the user does not act on it in a certain time, the task may expire and in turn be escalated to the manager for further action. As part of the escalation, you may also notify the users by email, telephone voice message, or SMS. Similarly, a manager may delegate tasks from one reportee to another to balance the load between various task assignees. All tasks defined in BPEL have an associated expiration date. Additionally, you may specify escalation or renewal policies, as shown in Figure 27-5. For example, consider a support call, which is part of a help desk service request process. A high-priority task may be assigned to a certain user and if the user does not respond in two days, the task is routed to the manager for further action.

Figure 27-5 Escalation and Notification

[image: Escalation and notification]

27.3.1.4 Automatic Assignment and Delegation

A user may decide to have another user perform tasks on their behalf. Tasks can be explicitly delegated from the Oracle BPM Worklist or can be automatically delegated. For example, a manager sets up a vacation rule saying that all their high priority tasks are automatically routed to one of their direct reports while the manager is on vacation. In some cases, tasks can be routed to different individuals based on the content of the task. Another example of automatic routing is to allocate tasks among multiple individuals belonging to a group. For example, a help desk supervisor decides to allocate all tasks for the western region based on a round robin basis or assign tasks to the individual with the lowest number of outstanding tasks (the least busy).

27.3.1.5 Dynamic Assignment of Users Based on Task Content

An employee named James in the human resources department requests new hardware that costs $5000. The company may have a policy that all hardware expenses greater than $3000 must go through manager and vice president approval, and then review by the director of IT. In this scenario, the workflow can be configured to automatically determine the manager of James, the vice president of the human resources department, and the director of IT. The purchase order is routed through these three individuals for approval before the hardware is purchased.

27.3.2 Designing a Human Task from Start to Finish

This section guides you through design of your first human task.

This sample describes how an employee submits a vacation request that is automatically routed to their manager for approval. Once the manager responds (approved or rejected), a notification is sent to the employee.

This sample illustrates creation of a SOA composite application with two components:

	
A BPEL process

	
A human task, for approving a vacation request submitted by an employee

This example highlights the use of the following:

	
Using the SOA Composite Editor

	
Modeling a single approval workflow using Oracle BPEL Designer

	
Creating an Oracle ADF-based Oracle BPM Worklist

	
Using Oracle BPM Worklist to view and respond to the task

27.3.2.1 Prerequisites

This tutorial makes the following assumptions:

	
Oracle SOA Suite is installed on a host on which the SOA Infrastructure is configured.

	
You are familiar with basic BPEL constructs, including BPEL activities and partner links, and basic XPath functions. Familiarity with the SOA Composite Editor and Oracle BPEL Designer, the environment for designing and deploying BPEL processes, is also assumed.

	
Create a file named VacationRequest.xsd with the following syntax. This file includes the schema for the vacation request and subsequent response.

<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/VacationRequest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="VacationRequestProcessRequest">
 <complexType>
 <sequence>
 <element name="creator" type="string"/>
 <element name="fromDate" type="date"/>
 <element name="toDate" type="date"/>
 <element name="reason" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="VacationRequestProcessResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

	
Note:

The VacationRequest.xsd file is also available for download as part of tutorial workflow-100-VacationRequest. See Section 27.3.3, "Additional Tutorials" for information on downloading this and other tutorials.

27.3.2.2 How to Create the Vacation Request Process

In this tutorial, you create a new application and SOA project and design the human task to send a vacation request to a manager for approval or rejection. You also create a second application and project in which you create an Oracle ADF-based task form from which to act upon the vacation request.

27.3.2.2.1 Creating an Application and a Project with a BPEL Process

To create an application and a project with a BPEL process:

	
Start Oracle JDeveloper.

	
From the File main menu, select New > Applications > SOA Application.

	
Click OK.

	
In the Application Name field, enter VacationRequest, and click Next.

	
In the Project Name field, enter VacationRequest, and click Next.

	
In the Composite Template list, select Composite with BPEL, and click Finish.

	
The Create BPEL Process dialog appears.

	
In the Name field, enter VacationRequestProcess.

	
Go to the bottom of the Create BPEL Process dialog.

	
To the right of the Input field, click the Search icon.

The Type Chooser dialog appears.

	
In the upper right corner, click the Import Schema File icon.

The Import Schema dialog appears.

	
Browse for and select the VacationRequest.xsd file you created in Section 27.3.2.1, "Prerequisites."

	
Click OK until you are returned to the Type Chooser dialog, as shown in Figure 27-6.

Figure 27-6 Type Chooser Dialog with the Request and Response Elements

[image: Description of Figure 27-6 follows]

	
Select the input element VacationRequestProcessRequest, and click OK.

You are returned to the Create BPEL Process dialog.

	
To the right of the Output field, click the Search icon.

	
Select the output element VacationRequestProcessResponse, and click OK.

You are returned to the Create BPEL Process dialog, as shown in Figure 27-7.

Figure 27-7 BPEL Process Dialog

[image: Description of Figure 27-7 follows]

	
Accept the default values for all other settings, and click OK.

A BPEL process service component is created in the SOA Composite Editor. Because Expose as a SOAP service was selected in the Create BPEL Process dialog, the BPEL process is automatically connected with a service binding component. The service exposes the SOA composite application to external customers.

Figure 27-8 BPEL Process in SOA Composite Editor

[image: Description of Figure 27-8 follows]

For more information about service components and the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."

27.3.2.2.2 Create the Human Task Service Component

You are now ready to create the human task service component in which you design your human task.

To create the human task service component:

	
From the SOA list of the Component Palette, drag a Human Task into the SOA Composite Editor.

The Create Human Task dialog appears.

	
Enter the details described in Table 27-2.

Table 27-2 Create Human Task Dialog Fields and Values

	Field	Value
	
Name

	
Enter VacationRequestTask.

	
Namespace

	
Accept the default value.

	
Create Composite Service with SOAP Bindings

	
Do not select the checkbox. Instead, you create a human task that you later associate with the BPEL process you created in Section 27.3.2.2.1, "Creating an Application and a Project with a BPEL Process." The BPEL process was created with an automatically-bound web service.

	
Click OK.

The Human Task icon appears in the SOA Composite Editor above the BPEL process, as shown in Figure 27-9.

Figure 27-9 Human Task Icon in SOA Composite Editor

[image: Description of Figure 27-9 follows]

	
Double-click the Human Task icon.

The Human Task Editor appears. You are now ready to begin design of your human task.

27.3.2.2.3 Designing the Human Task

To design the human task:

	
In the Task Title field, enter Request for Vacation.

	
Accept the default values for outcomes (APPROVE and REJECT). For this task, these outcomes represent the two choices the manager has for acting on the vacation request.

	
Click the Data tab on the left side of the editor.

	
Click the Add icon to specify the task payload.

	
Select Add string payload.

The Add Task Parameter dialog is displayed. You now create parameters to represent the elements in your XSD file. This makes the payload data available to the workflow task.

	
Select Element.

	
To the right of the Element field, click the Search icon.

The Type Chooser dialog appears.

	
Expand and select Project Schema Files > VacationRequest.xsd > VacationRequestProcessRequest, and click OK. Figure 27-10 provides details.

Figure 27-10 Type Chooser Dialog

[image: The Human Task window]

	
Ensure that the Editable via worklist checkbox is selected. This provides you with the option to modify this parameter during runtime from Oracle BPM Worklist.

	
Click OK on the Add Task Parameter dialog.

	
Click the Assignment tab on the left side of the editor.

	
Highlight the <Edit participant> box below Stage1, as shown in Figure 27-11.

Figure 27-11 Assignment and Routing Policy

[image: Description of Figure 27-11 follows]

	
Click the Edit icon.

The Edit Participant Type dialog appears. You now add participants to this task. As described in Section 27.2.1.1.2, "Participant Type," Oracle SOA Suite provides several out-of-the-box patterns known as participant types for addressing specific business needs.

	
Accept the default participant type of Single that displays in the Type list. You select this type because a single assignee, the manager, acts on the vacation request task.

	
In the Participant Names table, click the Add icon, and select Add User.

This participant type acts alone on the task.

	
Click the Data Type column, and select By Expression from the list that is displayed. Figure 27-12 provides details.

This action enables the task to be assigned dynamically by the contents of the task. The employee filing the vacation request comes from the parameter passed to the task (the creator element in the XSD file you imported in Section 27.3.2.2.1, "Creating an Application and a Project with a BPEL Process"). The task is automatically routed to the employee's manager.

Figure 27-12 Selection of By Expression from the Data Type Column

[image: Description of Figure 27-12 follows]

	
In the Value column, click the Browse icon (the dots) to invoke the Expression Builder dialog.

	
In the dropdown list in the Functions section, select Identity Service Functions.

	
Select getManager. This function gets the manager of the user who created the vacation request task.

	
Above the Functions section, click Insert into Expression.

	
Place the cursor between the parentheses of the function.

	
In the Schema section, expand task:task > task:payload > ns1:VacationRequestProcessRequest > ns1:creator.

where ns1 is the namespace for this example; your namespace may be different.

	
Click Insert into Expression.

The Expression Builder dialog displays the XPath expression in the Expression section. Figure 27-13 provides details.

Figure 27-13 XPath Expression

[image: Description of Figure 27-13 follows]

	
Click OK to exit the Expression Builder dialog.

	
From the File menu, select Save All.

	
Click OK to exit the Add Participant Type dialog.

27.3.2.2.4 Associating the Human Task and BPEL Process Service Components

You are now ready to associate your human task with the BPEL process you created in Section 27.3.2.2.1, "Creating an Application and a Project with a BPEL Process."

To associate the human task and BPEL process service component:

	
In the Application Navigator, double-click composite.xml.

	
Double-click the VacationRequestProcess BPEL process service component in the SOA Composite Editor.

The BPEL process displays in Oracle BPEL Designer.

	
From the list at the top of the Component Palette, select BPEL.

	
Expand BPEL Activities and Components.

	
Drag a Human Task beneath the receiveInput receive activity.

The Create Human Task dialog appears, as shown in Figure 27-14.

Figure 27-14 Human Task Creation

[image: Description of Figure 27-14 follows]

	
From the Task Definition list, select the VacationRequestTask task you created (if it is not currently displaying).

The dialog refreshes as shown in Figure 27-15 to display additional fields.

Figure 27-15 Create Human Task Dialog

[image: Description of Figure 27-15 follows]

	
In the BPEL Variable column, click the Browse icon (dots) shown in Figure 27-16 for the requester parameter.

Figure 27-16 BPEL Variable Entry

[image: Description of Figure 27-16 follows]

The Task Parameters dialog appears.

	
From the Type list, select Variable.

	
Expand Process > Variables > inputVariable > payload > ns1:VacationRequestProcessRequest. Figure 27-17 provides details.

Figure 27-17 Variable Selection

[image: Description of Figure 27-17 follows]

	
Click OK.

When complete, the dialog looks as shown in Figure 27-18:

Figure 27-18 BPEL Variable

[image: Description of Figure 27-18 follows]

	
Click OK to close the Create Human Task dialog.

The human task activity and request and response partner links now appear.

Figure 27-19 Human Task and Partner Links in Oracle BPEL Designer

[image: Description of Figure 27-19 follows]

	
Return to the SOA Composite Editor and note that the BPEL process and human task service components have been automatically connected.

Figure 27-20 SOA Composite Editor

[image: Description of Figure 27-20 follows]

	
From the File menu, select Save All.

27.3.2.2.5 Creating an Application Server Connection

You are now ready to create a connection to the application server on which Oracle SOA Suite is installed and configured with the SOA Infrastructure.

To create an application server connection

	
From the File main menu, select New > Connections > Application Server Connection.

	
Click OK.

	
In the Connection Name field, enter a connection name.

	
From the Connection Type list, select WebLogic 10.3.

	
Click Next.

	
In the Username field, enter weblogic.

	
In the Password field, enter the password for connecting to the application server.

	
Click Next.

	
Enter the hostname for the application server that is configured with the SOA Infrastructure.

	
In the Weblogic Domain field, enter the Oracle WebLogic Server domain.

	
Click Next.

	
Click Test Connection.

If successful, the message shown in Figure 27-21 is displayed.

Figure 27-21 Connection Success

[image: Description of Figure 27-21 follows]

	
Click Finish.

	
From the File menu, select Save All.

27.3.2.2.6 Deploying the SOA Composite Application

You are now ready to deploy to the application server on which you created the connection.

To deploy the SOA composite application

	
In the Application Navigator, right-click the VacationRequest project and select Deploy > VacationRequest > application_server_connection_name.

	
Follow the pages of the deployment wizard to deploy the project.

The project is deployed.

For more information about deployment, see Section 41.7, "Deploying SOA Composite Applications."

27.3.2.2.7 Initiating the Process Instance

To initiate the process instance:

	
See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for instructions on accessing the Test Web Service page for initiating the process instance.

27.3.2.2.8 Creating a Task Form Project

You are now ready to create a project for the task form. This is a separate project from the one in which you created the human task.

To create a task form project:

	
Double-click the VacationRequestProcess BPEL process.

	
Right-click the VacationRequestTask_1 human task activity in Oracle BPEL Designer.

	
Select Auto-Generate Task Form.

The Create Project dialog appears.

	
In the Project Name field, enter VacationRequestTaskFlow, and click OK.

	
From the File main menu, select Save All.

27.3.2.2.9 Acting on the Task in Oracle BPM Worklist

To resolve the task in Oracle BPM Worklist:

	
Go to Oracle BPM Worklist:

http://hostname:7001/integration/worklistapp

	
Log in to Oracle BPM Worklist.

	
Resolve the task.

27.3.2.2.10 Deploying the Task Form

To deploy the task form:

	
In the Application Navigator, right-click the VacationRequestTaskFlow project and select Deploy > to > VacationRequestTaskFlow > application_server_connection_name.

	
Follow the pages of the deployment wizard to deploy the task form.

The task form is deployed.

For more information about deployment, see Section 41.7, "Deploying SOA Composite Applications."

	
Return to Oracle BPM Worklist.

	
Note that the task form now appears at the bottom of Oracle BPM Worklist.

27.3.3 Additional Tutorials

In addition to the vacation request use case, other tutorials are available at the following URL:

http://www.oracle.com/technology/sample_code/products/hwf

Table 27-3 provides an overview of some samples. All samples show the use of worklist applications and workflow notifications. For the complete list of samples, visit the URL.

Table 27-3 End-to-End Examples

	Sample	Description	Name
	
Vacation Request

	
Provides a sample in which a user submits a vacation request that gets assigned to their manager for approval or rejection. This sample also describes how to create Oracle ADF task forms for the vacation request to act on the task.

	
workflow-100-VacationRequest

	
Help Desk Request

	
Provides a simple workflow sample using Oracle ADF task forms for task approval.

	
workflow-101-HelpDeskRequest

	
Sales Quote Request

	
Provides a complex workflow sample with chaining of multiple tasks.

	
workflow-102-SalesQuote

	
Expense Application

	
Provides a sample that integrates workflow with Oracle ADF Business Components. Events are raised to the BPEL process and the human workflow is invoked for task approval.

	
workflow-103-ExpenseApp

	
Contract Approval

	
Provides a sample of approving a contract. This sample uses digital signatures for tasks.

	
workflow-104-ContractApproval

	
Document Workflow

	
Provides a sample in which a document is reviewed by a group of participants in parallel. In the end, voting determines if the document is approved or rejected.

	
workflow-105-documentworkflow

	
Iterative Design

	
Provides a sample in which a workflow task can be passed multiple times between assignees during the design process. Advanced routing rules implement the routing behavior.

	
workflow-106-IterativeDesign

	
Office Integration

	
Provides a sample in which Microsoft Excel attachments are enabled with workflow notifications.

	

27.4 Introduction to Human Workflow Architecture

This section provides an overview of human workflow architecture. The following topics are discussed:

	
The services that perform a variety of operations in the life cycle of a task, such as querying tasks for a user, retrieving metadata information related to a task, and so on.

	
The two ways to use a human task:

	
Associated with a BPEL process service component

	
Used in standalone mode

	
The role of the service engine in the life of a human task

27.4.1 Human Workflow Services

Starting with release 11g, all human task metadata is stored and managed in the Metadata Service (MDS) repository. The workflow service consists of many services that handle various aspects of human interaction with a business process.

Figure 27-22 shows the following workflow service components:

	
Task Service:

The task service provides task state management and persistence of tasks. In addition to these services, the task service exposes operations to update a task, complete a task, escalate and reassign tasks, and so on. The task service is used by the Oracle BPM Worklist to retrieve tasks assigned to users. This service also determines if notifications are to be sent to users and groups when the state of the task changes. The task service consists of the following services.

	
Task Routing Service

The task routing service offers services to route, escalate, and reassign the task. The service makes these decisions by interpreting a declarative specification in the form of the routing slip.

	
Task Query Service

The task query service queries tasks for a user based on a variety of search criterion such as keyword, category, status, business process, attribute values, history information of a task, and so on.

	
Task Metadata Service

The task metadata service exposes operations to retrieve metadata information related to a task.

	
Identity Service

The identity service is a thin web service layer on top of the Oracle Application Server 11g security infrastructure or any custom user repository. It enables authentication and authorization of users and the lookup of user properties, roles, group memberships, and privileges.

	
Notification Service

The notification service delivers notifications with the specified content to the specified user to any of the following channels: email, telephone voice message, IM, and SMS. See Section 32.2, "Notifications from Human Workflow" for more information.

	
User Metadata Service

The user metadata service manages metadata related to workflow users, such as user work queues, preferences, vacations, and delegation rules.

	
Runtime Config Service

The runtime config service provides methods for managing metadata used in the task service runtime environment. It principally supports management of task payload flex field mappings.

	
Evidence service

The evidence service supports storage and nonrepudiation of digitally-signed workflow tasks.

Figure 27-22 Workflow Services Components

[image: Description of Figure 27-22 follows]

Figure 27-23 shows the interactions between the services and the business process.

Figure 27-23 Workflow Services and Business Process Interactions

[image: Description of Figure 27-23 follows]

27.4.2 Use of Human Task

There are two ways in which to use a human task:

	
Human task associated with a BPEL process

In most cases, you associate your human task with a BPEL process. The BPEL process integrates a series of activities (including the human task activity) and services into an end-to-end process flow.

	
Standalone human task

You can also create the human task as a standalone component only in the SOA Composite Editor and not associate it with a BPEL process. Standalone human task service components are useful for environments in which there is no need for any automated activity in an application. In the standalone case, the client can create the task themselves.

27.4.3 Service Engines

During runtime, the business logic and processing rules of the human task service component are executed by the human workflow service engine. Each service component (BPEL process, human workflow, decision service (business rules), and Oracle mediator) has its own service engine container for performing these tasks. All human task service components, regardless of the SOA composite application of which they are a part, are executed in this single human task service engine.

For more information about configuring, monitoring, and managing the human workflow service engine, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

28 Designing Human Tasks

This chapter describes how to design human tasks. It introduces the Human Task Editor to use for modeling task metadata, routing and assignment policies, escalation policies, expiration policies, and notification settings.

This chapter includes the following sections:

	
Section 28.1, "Introduction to Human Task Design Concepts"

	
Section 28.2, "Introduction to the Modeling Process"

	
Section 28.3, "Creating the Human Task Definition with the Human Task Editor"

	
Section 28.4, "Associating the Human Task Service Component with a BPEL Process"

28.1 Introduction to Human Task Design Concepts

To use the Human Task Editor, you must understand human task design concepts, including the following:

	
The types of users to which to assign tasks

	
The methods by which to assign users to tasks (statically, dynamically, or rule-based)

	
The task participant types available for modeling a task to which you assign users

	
The options for creating lists of task participants

	
The participants involved in the entire life cycle of a task

For information about human task concepts, see Chapter 27, "Getting Started with Human Workflow."

28.2 Introduction to the Modeling Process

Oracle SOA Suite provides a graphical tool, known as the Human Task Editor, for modeling your task metadata. The modeling process consists of the following:

	
Creating and modeling a human task service component in the SOA Composite Editor

	
Associating it with a BPEL process

	
Generating the task form for displaying the human task during runtime in Oracle BPM Worklist.

This section provides a brief overview of these modeling tasks and provides references to specific modeling instructions.

For more information about using the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."

For information about available samples, see Section 27.3.2, "Designing a Human Task from Start to Finish."

28.2.1 Create a Human Task Definition

You define the metadata for the human task in either of two ways:

	
By dragging a human task from the Component Palette into a BPEL process and clicking the Add icon in the Create Human Task dialog that automatically is displayed. This displays a dialog for creating the human task service component. When creation is complete, the Human Task Editor is displayed.

	
By dragging a human task service component from the Component Palette into the SOA Composite Editor. This displays a dialog for creating the human task component. When creation is complete, the Human Task Editor is displayed.

The Human Task Editor enables you to specify human task metadata, such as task outcome, payload structure, assignment and routing policy, expiration and escalation policy, notification settings, and so on. This information is saved to a metadata task configuration file with a .task extension. In addition, some workflow patterns may also need to use the Oracle Business Rules Designer to define task routing policies or the list of approvers.

For more information, see Section 28.3, "Creating the Human Task Definition with the Human Task Editor."

28.2.2 Associate the Human Task Definition with a BPEL Process

You can associate the .task file that consists of the human task settings with a BPEL process in Oracle BPEL Designer. Association is made with a human task that you drag into your BPEL process flow for configuring, as shown in Figure 28-1.

Figure 28-1 Dragging a Human Task into a BPEL Process

[image: Description of Figure 28-1 follows]

You also specify the task definition, task initiator, task priority, and task parameter mappings that carry the input data to a BPEL variable. You can also define advanced features, such as the scope and global task variables names (instead of accepting the default names), task owner, identification key, BPEL callback customizations, and whether to extend the human task to include other workflow tasks.

When association is complete, a task service partner link is created. The task service exposes the operations required to act on the task.

You can also create the human task as a standalone component only in the SOA Composite Editor and not associate it with a BPEL process. Standalone human task service components are useful for environments in which there is no need for any automated activity in an application. In the standalone case, the client can create the task themselves.

For more information, see Section 28.4, "Associating the Human Task Service Component with a BPEL Process."

28.2.3 Generate the Task Form

You can generate a task form using the Oracle Application Development Framework (ADF). This form is used for displaying the task details on which you act at runtime in Oracle BPM Worklist.

For information on generating the task form, see Chapter 29, "Designing Task Forms for Human Tasks."

28.3 Creating the Human Task Definition with the Human Task Editor

The Human Task Editor enables you to define the metadata for the task. The editor enables you to specify human task settings, such as task outcome, payload structure, assignment and routing policy, expiration and escalation policy, notification settings, and so on.

28.3.1 How to Create a Human Task Service Component

You create a human task service component in the SOA Composite Editor or in Oracle BPEL Designer. After creation, you design the component in the Human Task Editor. The method by which you create the human task service component determines whether the component can be associated later with a BPEL process service component or is a standalone component in the SOA Composite Editor.

To create a human task service component in the SOA Composite Editor:

	
Go to the SOA project in which to create a human task service component in the SOA Composite Editor.

	
From the Component Palette list, select SOA.

The list refreshes to display service components and service adapters.

	
From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

	
In the Name field, enter a name.

The name you enter is added as the .task file name.

	
Note the Create Composite Service with SOAP Bindings checkbox. The selection of this checkbox determines how the human task service component is created.

	
To create a human task service component that you later associate with a BPEL process service component, do not select the Create Composite Service with SOAP Bindings checkbox. The human task service component is created as a component that you explicitly associate with a BPEL process service component. Figure 28-2 provides details.

Figure 28-2 Human Task Component

[image: Description of Figure 28-2 follows]

	
To create the human task service component as a standalone component in the SOA Composite Editor, select the Create Composite Service with SOAP Bindings checkbox. This creates a human task service component that is automatically wired to a Simple Object Access Protocol (SOAP) web service. Figure 28-3 provides details.

Figure 28-3 Standalone Human Task Component

[image: Description of Figure 28-3 follows]

This web service provides external customers with an entry point into the human task service component of the SOA composite application.

	
Click OK.

To create a human task in Oracle BPEL Designer:

	
From the Component Palette, select BPEL.

	
From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

	
Click the Add icon to create a human task.

	
In the Name field, enter a name.

The name you enter is added as the .task file name.

	
In the Title field, enter a task.

	
Click OK.

The Human Task Editor appears.

	
Note:

You can also create a human task that you later associate with a BPEL process by selecting New from the File main menu, then selecting SOA Tier > Service Components > Human Task.

For more information about creating a human task service component in the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."

28.3.2 What Happens When You Create a Human Task Service Component

When a human task is created, the following folders and files appear:

	
The human task settings specified in the Human Task Editor are saved to a metadata task configuration file in the metadata service (MDS) repository with a .task extension. This file appears in the Application Navigator under SOA_Project_Name > SOA Content. You can re-edit the settings in this file by double-clicking the following:

	
The .task file in the Application Navigator in either the SOA Composite Editor or Oracle BPEL Designer

	
The human task icon in the SOA Composite Editor or in your BPEL process in Oracle BPEL Designer.

This reopens the .task file in the Human Task Editor.

	
A Human Tasks folder containing the human task you created appears in the Structure window of the SOA Composite Editor.

Figure 28-4 shows these folders and files.

Figure 28-4 Human Task Folders and Files

[image: Description of Figure 28-4 follows]

For information about available samples, see Section 27.3.2, "Designing a Human Task from Start to Finish."

28.3.3 How to Access the Sections of the Human Task Editor

To access the sections of the Human Task Editor:

	
Double-click the Human Task icon in the SOA Composite Editor or double-click the Human Task icon in Oracle BPEL Designer and click the Edit icon in the upper right corner.

The Human Task Editor consists of the main sections shown on the left side in Figure 28-5. These sections enable you to design the metadata of a human task.

Figure 28-5 Human Task Editor

[image: Description of Figure 28-5 follows]

Instructions for using these main sections of the Human Task Editor to create a workflow task are listed in Table 28-1.

Table 28-1 Human Task Editor

	Section	Description	See...
	
General

(title, description, outcomes, category, priority, owner, and application context)

	
Enables you to define task details such as title, task outcomes, owner, and other attributes.

	
Section 28.3.4, "How to Specify the Title, Description, Outcome, Priority, Category, Owner, and Application Context"

	
Data

	
Enables you to define the structure (message elements) of the task payload (the data in the task).

	
Section 28.3.5, "How to Specify the Task Payload Data Structure"

	
Assignment

	
Enables you to assign participants to the task and create a policy for routing the task through the workflow.

	
Section 28.3.6, "How to Assign Task Participants"

Section 28.3.7, "How to Select a Routing Policy"

	
Presentation

	
Enables you to specify the following settings:

	
Multilingual settings

	
WordML and custom style sheets for attachments

	
Section 28.3.8, "How to Specify Multilingual Settings and Style Sheets"

	
Deadlines

	
Enables you to specify the expiration duration of a task, custom escalation Java classes, and due dates.

	
Section 28.3.9, "How to Escalate, Renew, or End the Task"

	
Notification

	
Enables you to create and send notifications when a user is assigned a task or informed that the status of the task has changed.

	
Section 28.3.10, "How to Specify Participant Notification Preferences"

	
Access

	
Enables you to specify access rules for task content and task actions, workflow signature policies, and assignment restrictions.

	
Section 28.3.11, "How to Specify Access Policies and Task Actions on Task Content"

Section 28.3.12, "How to Specify a Workflow Digital Signature Policy"

Section 28.3.13, "How to Specify Restrictions on Task Assignments"

	
Events

	
Enables you to specify callback classes and task and routing assignments in BPEL callbacks.

	
Section 28.3.14, "How to Specify Java or Business Event Callbacks"

28.3.4 How to Specify the Title, Description, Outcome, Priority, Category, Owner, and Application Context

To specify the title, description, outcome, priority, category, owner, and application context:

	
Click the General tab.

Figure 28-6 shows the General section of the Human Task Editor.

This section enables you to specify details such as the task title, description, task outcomes, task category, task priority, and task owner.

Figure 28-6 Human Task Editor — General Section

[image: Description of Figure 28-6 follows]

Instructions for configuring the following subsections of the General section are listed in Table 28-2:

Table 28-2 Human Task Editor — General Section

	For This Subsection...	See...
	
Title

	
Section 28.3.4.1, "Specifying a Task Title"

	
Description

	
Section 28.3.4.2, "Specifying a Task Description"

	
Outcomes

	
Section 28.3.4.3, "Specifying a Task Outcome"

	
Priority

	
Section 28.3.4.4, "Specifying a Task Priority"

	
Category

	
Section 28.3.4.5, "Specifying a Task Category"

	
Owner

	
Section 28.3.4.6, "Specifying a Task Owner"

	
Application Context

	
Section 28.3.4.7, "Specifying an Application Context"

28.3.4.1 Specifying a Task Title

To specify a task title:

Enter an optional task title. The title defaults to this value only if the initiated task does not have a title set in it. The title provides a visual identifier for the task. The task title displays in Oracle BPM Worklist. You can also search on titles in Oracle BPM Worklist.

	
Select a method for specifying a task title:

	
Plain Text: Manually enter a name (for example, Vacation Request Approved).

	
Text and XPath: Enter a combination of manual text and a dynamic expression. After manually entering a portion of the title (for example, Approval Required for Order Id:), place the cursor one blank space to the right of the text and click the icon to the right of this field. This displays the Expression Builder for dynamically creating the remaining portion of the title. After completing the dynamic portion of the name, click OK to return to this field. The complete name is displayed. For example:

Approval Required for Order Id: <%/task:task/task:payload/task:orderId%>

The expression is resolved during runtime with the exact order ID value from the task payload.

If you enter a title in the Task Title field of the General tab of the Create Human Task dialog described in Section 28.4.3.1, "Specifying the Task Title," the title you enter here is overridden.

28.3.4.2 Specifying a Task Description

You can optionally specify a description of the task in the Description field. The description enables you to provide additional details about a task. For example, if the task title is Computer Upgrade Request, you can provide additional details in this field, such as the model of the computer, amount of CPU, amount of RAM, and so on. The description does not display in Oracle BPM Worklist.

28.3.4.3 Specifying a Task Outcome

Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays the outcomes you specify here as the possible task actions to perform during runtime. Figure 28-7 provides details.

Figure 28-7 Outcomes in Oracle BPM Worklist

[image: Description of Figure 28-7 follows]

You can specify the following types of task outcomes:

	
Select a seeded outcome

	
Enter a custom outcome

The task outcomes can also have runtime display values that are different from the actual outcome value specified here. This permits outcomes to be displayed in a different language in Oracle BPM Worklist. For more information about internationalization, see Section 28.3.8.2, "Specifying Multilingual Settings."

To specify a task outcome:

	
To the right of the Outcomes field in the General section, click the Search icon.

The Outcomes dialog shown in Figure 28-8 displays the possible outcomes for tasks. APPROVE and REJECT are selected by default.

Figure 28-8 Outcomes Dialog

[image: Description of Figure 28-8 follows]

	
Select additional task outcomes or unselect the default outcomes.

	
To add custom outcomes, click the Add icon.

	
In the Name field, enter a custom name, and click OK.

	
Note:

Ensure that you do not specify a custom name that matches a name listed in the Actions tab of the Access section of the Human Task Editor (for example, do not specify Delete). Specifying the same name can cause problems at runtime.

	
Click OK to return to the Human Task Editor.

Your selections display in the Outcomes field.

The seeded and custom outcomes selected here display for selection in the Majority Voted Outcome section of the parallel participant type.

For more information, see Section 28.3.6.2.1, "Specifying the Voting Outcome."

28.3.4.4 Specifying a Task Priority

Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest. By default, the priority of a task is 3. This priority value is overridden by any priority value you select in the General tab of the Create Human Task dialog. You can filter tasks based on priority and create views on priorities in Oracle BPM Worklist.

To specify a task priority:

	
From the Priority list, select a priority for the task.

For more information about specifying a priority value in the Create Human Task dialog, see Section 28.4.3.2, "Specifying the Task Initiator and Task Priority."

28.3.4.5 Specifying a Task Category

You can optionally specify a task category in the Category field. This categorizes tasks created in a system. For example, in a help desk environment, you may categorize customer requests as either software-related or hardware-related. The category displays in Oracle BPM Worklist. You can filter tasks based on category and create views on categories in Oracle BPM Worklist.

To specify a task category:

	
Select a method for specifying a task category:

	
By Name: Manually enter a name.

	
By Expression: Click the icon to the right of this field to display the Expression Builder for dynamically creating a category.

28.3.4.6 Specifying a Task Owner

The task owner can view the tasks belonging to business processes they own and perform operations on behalf of any of the assigned task participant types. Additionally, the owner can also reassign, withdraw, or escalate tasks. The task owner can be considered the business administrator for a task. The task owner can also be specified in the Advanced tab of the Create Human Task dialog described in Section 28.4.4.2, "Specifying a Task Owner." The task owner specified in the Advanced tab overrides any task owner you enter here.

For more information about the task owner, see Section 27.2.1.3, "Task Stakeholders."

To specify a task owner:

	
Select a method for specifying the task owner:

	
Statically through the identity service user directory or the list of application roles

	
Dynamically through an XPath expression

For example:

	
If the task has a payload message attribute named po within which the owner is stored, you can specify an XPath expression such as: /task:task/task:payload/po:purchaseOrder/po:owner

	
ids:getManager('jstein', 'jazn.com')

The manager of jstein is the task owner.

For more information about users, groups, and application roles, see Section 27.2.1.1.3, "Participant Assignment."

28.3.4.6.1 Specifying a Task Owner Statically Through the User Directory or Application Roles

Task owners can be selected by browsing the user directory (Oracle Internet Directory, Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles configured for use with Oracle SOA Suite.

To specify a task owner statically through the user directory or a list of application roles:

	
In the first list to the right of the Owner field in the General section, select User, Group, or Application Role as the type of task owner. Figure 28-9 provides details.

Figure 28-9 Specify a Task Owner By Browsing the User Directory or Application Roles

[image: Description of Figure 28-9 follows]

	
In the second list to the right of the Owner field in the General section, select Static.

	
See the step in Table 28-3 based on the type of owner you selected.

Table 28-3 Type of Owner

	If You Selected...	See Step...
	
User or Group

	
4

	
Application Role

	
5

	
If you selected User or Group, the Identity Lookup dialog shown in Figure 28-10 appears.

Figure 28-10 Identity Lookup Dialog

[image: Description of Figure 28-10 follows]

To select a user or group, you must first create an application server connection by clicking the Add icon. Note the following restrictions:

	
Do not create an application server connection to an Oracle WebLogic Administration Server from which to retrieve the list of identity service realms. This is because there is no identity service running on the Administration Server. Therefore, no realm information displays and no users display when performing a search with a search pattern in the Identity Lookup dialog. Instead, create an application server connection to a managed Oracle WebLogic Server.

	
You must select an application server connection configured with the complete domain name (for example, myhost.us.oracle.com). If you select a connection configured only with the hostname (for example, myhost), the Realm list may not display the available realms. If the existing connection does not include the domain name, perform the following steps:

	
In the Resource Palette, right-click the application server connection.

	
Select Properties.

	
In the Configuration tab, add the appropriate domain to the hostname.

	
Return to the Identity Lookup dialog and reselect the connection.

	
Select or create an application server connection to display the realms for selection. A realm provides access to a policy store of users and roles (groups).

	
Search for the owner by entering a search string such as jcooper, j*, *, and so on. Clicking the Lookup icon to the right of the User Name field fetches all the users that match the search criteria. Figure 28-11 provides details. One or more users or groups can be highlighted and selected by clicking Select.

Figure 28-11 Identity Lookup with Realm Selected

[image: Description of Figure 28-11 follows]

	
View the hierarchy of a user by highlighting the user and clicking Hierarchy. Similarly, clicking Reportees displays the reportees of a selected user or group. Figure 28-12 provides details.

Figure 28-12 User Hierarchy in Identity Lookup Dialog

[image: Description of Figure 28-12 follows]

	
View the details of a user or group by highlighting the user or group and clicking Detail. Figure 28-13 provides details.

Figure 28-13 User or Group Details

[image: Description of Figure 28-13 follows]

	
Click OK to return to the Identity Lookup dialog.

	
Click Select to add the user to the Selected User section.

	
Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

	
If you selected Application Role, the Select an Application Role dialog appears.

	
In the Application Server list, select the type of application server that contains the application role or click the Add icon to launch the Create Application Server Connection wizard to create a connection.

	
In the Application list, select the application that contains the application roles (for example, a custom application or soa-infra for the SOA Infrastructure application).

	
In the Available section, select appropriate application roles and click the > button. To select all, click the >> button. Figure 28-14 provides details.

Figure 28-14 Application Role

[image: Description of Figure 28-14 follows]

	
Click OK.

28.3.4.6.2 Specifying a Task Owner Dynamically Through an XPath Expression

Task owners can be selected dynamically in the Expression Builder dialog.

To specify a task owner dynamically:

	
In the first list to the right of the Owner field in the General section, select User, Group, or Application Role as the type of task owner. Figure 28-15 provides details.

Figure 28-15 Specify a Task Owner Dynamically

[image: Description of Figure 28-15 follows]

	
In the second list to the right of the Owner field in the General section, select XPath.

This displays the Expression Builder dialog shown in Figure 28-16:

Figure 28-16 Expression Builder

[image: Description of Figure 28-16 follows]

	
Browse the available variable schemas and functions to create a task owner.

	
Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

For more information, see the following:

	
Click Help for instructions on using the Expression Builder dialog and XPath Building Assistant

	
Appendix B, "XPath Extension Functions" for information about workflow service dynamic assignment functions, identity service functions, and instructions on using the XPath Building Assistant

28.3.4.7 Specifying an Application Context

You can specify the name of the application that contains the application roles used in the task. This indicates the context in which the application role operates. If you do not explicitly create a task, but end up having one, you can set up the context.

	
In the Application Context field, enter the name.

28.3.5 How to Specify the Task Payload Data Structure

Figure 28-17 shows the Data section of the Human Task Editor.

This section enables you to specify the structure (message elements) of the task payload (the data in the task) defined in the XSD file. You create parameters to represent the elements in the XSD file. This makes the payload data available to the workflow task. For example:

	
You create a parameter for an order ID element for placing an order from a store front application

	
You create parameters for the location, type, problem description, severity, status, and resolution elements for creating a help desk request

Task payload data consists of one or more elements or types. Based on your selections, an XML schema definition is created for the task payload.

Figure 28-17 Human Task Editor — Parameters Section

[image: Description of Figure 28-17 follows]

To specify the task payload data structure:

	
Click the Data tab.

	
Click the Add icon and select a payload type:

	
String

	
Integer

	
Boolean

	
Other

The Add Task Parameter dialog is displayed, as shown in Figure 28-18.

Figure 28-18 Add Task Parameter Dialog

[image: Description of Figure 28-18 follows]

	
Enter the details described in Table 28-4:

Table 28-4 Add Task Parameter Dialog Fields and Values

	Field	Description
	
Parameter Type

	
Select Type or Element and click the Search icon to display the Type Chooser dialog for selecting the task parameter.

	
Parameter Name

	
Accept the default name or enter a custom name. This field only displays if Type is the selected parameter type.

	
Editable via worklist

	
Select this checkbox to enable users to edit this part of the task payload in Oracle BPM Worklist. For example, for a loan approval task, the APR attribute may need to be updated by the user reviewing the task, but the SSN field may not be editable.

You can also specify access rules that determine the parts of a task that participants can view and update. For more information, see Section 28.3.11.1, "Specifying Access Policies on Task Content."

	
Note:

You can only define payload flex field mappings in Oracle BPM Worklist for payload parameters that are simple XML types (string, integer, and so on) or complex types (for example, a purchase order, and so on). If you must search tasks using keywords or define views or delegation rules based on task content, then you must use payload parameters based on simple XML types. These simple types can be mapped to flex columns in Oracle BPM Worklist.

	
Select the type, as shown in Figure 28-19.

Figure 28-19 Parameter Type

[image: Description of Figure 28-19 follows]

	
Click OK to return to the Human Task Editor.

Your selection displays in the Data section.

	
To edit your selection, select it and click the Edit icon in the upper right part of the Data section.

28.3.6 How to Assign Task Participants

Figure 28-20 shows the Assignment section of the Human Task Editor. This section enables you to select a participant type that meets your business requirement. While configuring the participant type, you build lists of users, groups, and application roles to act upon tasks.

Figure 28-20 Human Task Editor — Assignment Section

[image: Description of Figure 28-20 follows]

You can easily mix and match participant types to create simple or complex workflow routing policies. You can also extend the functionality of a previously configured human task to model more complex workflows.

A participant type is grouped in a block under a stage (for example, named Stage1 in Figure 28-20). A stage is a way of organizing the approval process for blocks of participant types. You can have one or more stages in sequence or in parallel. Within each stage, you can have one or more participant type blocks in sequence or in parallel. The up and down keys enable you to rearrange the order of your participant type blocks.

For example:

	
You can create all participant type blocks in a single stage (for example, a purchase order request in which the entire contents of the order are approved or rejected as a whole).

	
You can create more complex approval tasks that may include one or more stages. For example, you can place one group of participant type blocks in one stage and another block in a second stage. The list of approvers in the first stage handles line entry approvals and the list of approvers in the second stage handles header entry approvals.

Each of the participant types has an associated editor that you use for configuration tasks. The sequence in which the assignees are added indicates the execution sequence.

To specify a different stage name or have a business requirement that requires you to create additional stages, perform the following steps. Note that creating additional stages is an advanced requirement that may not be necessary for your environment.

For more information about participant types, see Section 27.2.1.1, "Task Assignment and Routing."

To specify a stage name and add parallel and sequential blocks:

The stage is named Stage1 by default. If you want, you can change the name.

	
Double-click the name.

The Edit dialog shown in Figure 28-21 appears.

Figure 28-21 Edit Dialog

[image: Description of Figure 28-21 follows]

	
Enter a name, and click OK.

	
Select the stage and its participant type block, as shown in Figure 28-22.

	
Click the Add icon.

Figure 28-22 Add a Second Stage

[image: Description of Figure 28-22 follows]

	
Select an option from the list (for example, Parallel stage).

A second stage is added in parallel to the first stage, as shown in Figure 28-23.

Figure 28-23 Parallel Stage

[image: Description of Figure 28-23 follows]

	
Select the second stage on the right, and click the Add icon. Note that if you do not select the second stage (for this example, named Stage1 in Figure 28-24) and instead select only the participant type block (for example, named Edit Participant in Figure 28-24), all options under the Add icon are disabled.

	
Select Sequential stage.

A sequential stage is added below the selected block.

Figure 28-24 Sequential Stage

[image: Description of Figure 28-24 follows]

You create participant types within these blocks.

To assign task participants:

	
In the Assignment section, perform one of the following tasks:

	
Highlight the block below the stage box and click the Edit icon. The first time you create a task participant, the box is labeled <Edit Participant>.

or

	
Double-click the participant box below the stage box.

The Edit Participant Type dialog appears. This dialog enables you to select a specific participant type.

	
From the Type list, select a participant type shown in Figure 28-25.

Figure 28-25 Type List

[image: Description of Figure 28-25 follows]

	
See the section shown in Table 28-5 based on your selection.

Table 28-5 Participant Types

	Participant Type	For a Description of this Participant Type, See...	For Instructions on Configuring this Participant Type, See...
	
	
Single

	
Parallel

	
Serial

	
FYI

	
Section 27.2.1.1.2, "Participant Type"

	
Section 28.3.6.1, "Configuring the Single Participant Type"

Section 28.3.6.2, "Configuring the Parallel Participant Type"

Section 28.3.6.3, "Configuring the Serial Participant Type"

Section 28.3.6.4, "Configuring the FYI Participant Type"

28.3.6.1 Configuring the Single Participant Type

Figure 28-26 displays the Edit Participant Type dialog for the single participant type.

Figure 28-26 Edit Participant Type — Single Type

[image: Description of Figure 28-26 follows]

To configure the single participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog for the single participant type are listed in Table 28-6:

Table 28-6 Edit Participant Type — Single Type

	For This Subsection...	See...
	
Participant List

	
Section 28.3.6.1.1, "Creating a Single Task Participant List"

	
Limit allocated duration to (under the Advanced section)

	
Section 28.3.6.1.2, "Specifying a Time Limit for Acting on a Task"

	
Allow this participant to invite other participants (under the Advanced section)

	
Section 28.3.6.1.3, "Inviting Additional Participants to a Task"

	
Specify skip rule (under the Advanced section)

	
Section 28.3.6.1.4, "Bypassing a Task Participant"

28.3.6.1.1 Creating a Single Task Participant List

Users assigned to the list of participants can act upon tasks. In this type of assignment list, only one user is required to act on the task. You can provide either a single user or a list of users, groups, or application roles for this pattern. If a list is specified, then all users are assigned the task; one of them must acquire and act upon the task. When one user acts on it, the task is withdrawn from the task list of other assignees.You can create several types of lists for the single user participant (and also for the parallel, serial, and FYI user participants):

	
Value-based name and expression lists

These lists enable you to statically or dynamically select users, groups, or application roles as task assignees.

	
Value-based management chain lists

Management chains are typically used for serial approvals through multiple users in a management chain hierarchy. Therefore, this list is most likely useful with the serial participant type. This is typically the case if you want all users in the hierarchy to act upon the task. Management chains can also be used with the single participant type. In this case, however, all users in the hierarchy get the task assigned at the same time. As soon as one user acts on the task, it is withdrawn from the other users.

For example, a purchase order is assigned to a manager. If the manager approves the order, it is assigned to their manager. If that manager approves it, it is assigned to their manager, and so on until three managers approve the order. If any managers reject the request or the request expires, the order is rejected if you specify an abrupt termination condition. Otherwise, the task flow continues to be routed.

	
Rule-based names and expression lists and management chain lists

Business rules enable you to create the list of task participants with complex expressions. For example, you create a business rule in which a purchase order request below $5000 is sent to a manager for approval. However, if the purchase order request exceeds $5000, the request is sent to the manager of the manager for approval. Two key features of business rules are facts and action types, which are described in Section 28.3.7.2, "Specifying Advanced Task Routing Using Business Rules."

When you select a participant type, the dialog that displays enables you to choose an option for building your list of task participant assignees (users, groups, or application roles), as shown in Figure 28-27. The three selections described above are available: Names and expressions, Management Chain, and Rule-based.

Figure 28-27 Build a List of Participants

[image: Description of Figure 28-27 follows]

After selecting an option, you dynamically assign task participant assignees (users, groups, or application roles) and a data type, as shown in Figure 28-28.

Figure 28-28 Assignment of Task Assignees

[image: Description of Figure 28-28 follows]

This section describes how to create these lists of participants.

Creating Participant Lists Consisting of Value-Based Names and Expressions

Select a method for statically or dynamically assigning a user, group, or application role as a task participant.

For information about the following:

	
Users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."

	
Statically and dynamically assigning task participants, see Section 27.2.1.2, "Static, Dynamic, and Rule-Based Task Assignment."

To create participant lists consisting of value-based names and expressions:

	
From the Build a list of participants using list, select Names and expressions.

	
From the Specify attributes using list, select Value-based.

The dialog refreshes to display the fields shown in Figure 28-29.

Figure 28-29 Value-Based Names and Expressions

[image: Description of Figure 28-29 follows]

	
Click the Add icon and select a user, group, or application role as a task participant.

The Identification Type column of the Participant Names table displays your selection of user, group, or application role.

	
To change your selection in the Identification Type column, click it to invoke a dropdown list.

	
In the Data Type column, click your selection to invoke a dropdown list to assign a value:

	
By Name: If your identification type is a user or group, click the Browse icon (the dots) on the right to display a dialog for selecting a user or group configured through the identity service. The identity service enables the lookup of user properties, roles, and group memberships. User information is obtained from an LDAP server such as Oracle Internet Directory. You can use wild cards (*) to search for IDs.

If your selection is an application role, click the Browse icon to display the Select an Application Role dialog for selecting an application role. To search for application roles, you must first create a connection to the application server. When searching, you must specify the application name to find the name of the role. Note that the task definition can refer to only one application name. You cannot use application roles from different applications as assignees or task owners.

	
By Expression: For a user, group, or application role, click the Browse icon to dynamically select a task assignee in the Expression Builder dialog. Use the bpws:getVariableData(...) expression or the ids:getManager() XPath function.

The Value column displays the value you specified.

	
To manually enter a value, click the field in the Value column and specify a value.

Creating Participant Lists Consisting of Value-Based Management Chains

Select a method for statically or dynamically assigning management chain parameters as task participants.

For information about the following:

	
Users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."

	
Statically and dynamically assigning task participants, see Section 27.2.1.2, "Static, Dynamic, and Rule-Based Task Assignment."

	
Management chains, see Section 28.3.6.1.1, "Creating a Single Task Participant List."

To specify participant lists based on value-based management chains:

	
From the Build a list of participants using list, select Management Chain.

	
From the Specify attributes using list, select Value-based.

The dialog refreshes to display the fields shown in Figure 28-30.

Figure 28-30 Value-Based Management Chains

[image: Description of Figure 28-30 follows]

	
See Step 3 through Step 6 for instructions on assigning a user, group, or application role to a list in the Starting Participant table.

	
In the Top Participant list, select a method for assigning the number of task participant levels:

	
By Title: Select the title of the last (highest) approver in the management chain.

	
XPath: Select to dynamically enter a top participant through the Expression Builder dialog.

	
In the Number of Levels list, select a method for assigning a top participant:

	
By Number: Enter a value for the number of levels in the management chain to include in this task. For example, if you enter 2 and the task is initially assigned to user jcooper, both the user jstein (manager of jcooper) and the user wfaulk (manager of jstein) are included in the list (apart from jcooper, the initial assignee).

	
XPath: Select to dynamically enter a value through the Expression Builder dialog.

Creating Participant Lists Consisting of Rulesets

A ruleset provides a unit of execution for rules and for decision tables. In addition, rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed in order. This is called rule flow. The ruleset stack determines the order. The order can be manipulated by rule actions that push and pop rulesets on the stack. In rulesets, the priority of rules applies to specify the order of firing of rules in the ruleset. Rulesets also provide an effective date specification that identifies that the ruleset is always active, or that the ruleset is restricted based on a time and date range, or a starting or ending time and date.

The method by which you create a ruleset is based on how you access it. This is described in the following section.

To specify participant lists based on rulesets:

Business rules can define the participant list. There are two options for using business rules:

	
Rules define parameters of a specific list builder (such as Names and Expressions or Management Chain). In this case, the task routing pattern is modeled to use a specific list builder. In the list builder, the parameters are listed as coming from rules. Rules return the list builder of the same type as the one modeled in Oracle JDeveloper.

	
From the Build a list of participants using list, select Names and expressions or Management Chain.

	
From the Specify attributes using list, select Rule-based.

	
In the List Ruleset field, enter a ruleset name.

Figure 28-31 provides details.

Figure 28-31 Rulesets

[image: Description of Figure 28-31 follows]

	
Click OK.

	
Rules define the list builder and the list builder parameters. In this case, the list itself is built using rules. The rules define the list builder and the parameters.

	
From the Build a list of participants using list, select Rule-based.

	
In the List Ruleset field, enter a ruleset name.

Figure 28-32 provides details.

Figure 28-32 Rulesets

[image: Description of Figure 28-32 follows]

	
Click OK.

Both options create a rule dictionary if one is not already created and several rule functions and facts are preseeded for easy specifications of the participant list. In the rule dictionary, the following rule functions are seeded to create participant lists:

	
CreateResourceList

	
CreateManagementChainList

The Task fact is asserted by the task service for basing rule conditions.

After the rule dictionary is created, the Oracle Business Rules Designer is displayed.

	
Model your rule conditions. In the action part, call one of the above functions to complete building your lists. Figure 28-33 provides details.

Figure 28-33 Business Rules

[image: Description of Figure 28-33 follows]

The parameters for the rule functions are similar to the ones in Oracle JDeveloper modeling. In addition to the configurations in Oracle JDeveloper, some additional options are available in the Oracle Business Rules Designer for the following attributes:

	
responseType: If the response type is REQUIRED, the assignee must act on the task. Otherwise, the assignment is converted to an FYI assignment.

	
ruleName: The rule name can create reasons for assignments.

	
lists: This object is a holder for the lists that are built. Clicking this option shows a pre-asserted fact Lists object to use as the parameter.

An example of rules specifying management chain-based participants is shown in Figure 28-34.

Figure 28-34 Business Rules

[image: Description of Figure 28-34 follows]

If multiple rules are fired, the list builder created by the rule with the highest priority is selected.

28.3.6.1.2 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

	
Expand the Advanced section of the Edit Participant Type dialog for the single type, as shown in Figure 28-35.

Figure 28-35 Advanced Section of Edit Participant Type — Single Type

[image: Description of Figure 28-35 follows]

	
Select Limit allocated duration to.

	
Specify the amount of time.

For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 28.3.9, "How to Escalate, Renew, or End the Task."

28.3.6.1.3 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

This is also known as ad hoc routing. If this option is selected, Adhoc Route is added to the Actions list in Oracle BPM Worklist at runtime.

To invite additional participants to a task:

	
Expand the Advanced section of the Edit Participant Type dialog for the single type, as shown in Figure 28-35.

	
Select Allow this participant to invite other participants.

28.3.6.1.4 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.

To bypass a task:

	
Expand the Advanced section of the Edit Participant Type dialog for the single type, as shown in Figure 28-35.

	
Select Specify skip rule.

This action displays an icon for accessing the Expression Builder dialog for building a condition.

The expression to bypass a task participant must evaluate to a boolean value. For example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath expression for skipping a participant.

For more information about creating dynamic rule conditions, see Section 28.3.7.2, "Specifying Advanced Task Routing Using Business Rules."

28.3.6.2 Configuring the Parallel Participant Type

Figure 28-36 and Figure 28-37 display the upper and lower sections of the Parallel dialog.

This participant type is used when multiple users, working in parallel, must act simultaneously, such as in a hiring situation when multiple users vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote.

For example, a business process collects the feedback from all interviewers in the hiring process, consolidates it, and assigns a hire or reject request to each of the interviewers. At the end, the candidate is hired if the majority of interviewers vote for hiring instead of rejecting.

Figure 28-36 Edit Participant Type — Parallel Type (Upper Section of Dialog)

[image: Description of Figure 28-36 follows]

Figure 28-37 Edit Participant Type — Parallel Type (Lower Section of Dialog)

[image: Description of Figure 28-37 follows]

To assign participants to the parallel participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog for the parallel participant type are listed in Table 28-7:

Table 28-7 Edit Participant Type — Parallel Type

	For This Subsection...	See...
	
Vote Outcome

	
Section 28.3.6.2.1, "Specifying the Voting Outcome"

	
Participant List

	
Section 28.3.6.2.2, "Creating a Parallel Task Participant List"

	
Limit allocated duration to (under the Advanced section)

	
Section 28.3.6.2.3, "Specifying a Time Limit for Acting on a Task"

	
Allow this participant to invite other participants (under the Advanced section)

	
Section 28.3.6.2.4, "Inviting Additional Participants to a Task"

	
Specify skip rule (under the Advanced section)

	
Section 28.3.6.2.5, "Bypassing a Task Participant"

28.3.6.2.1 Specifying the Voting Outcome

You can specify a voted-upon outcome that overrides the default outcome selected in the Default Outcome list. This outcome takes effect if the required percentage is reached. Outcomes are evaluated in the order listed in the table.

To specify group voting details:

	
Go to the Vote Outcome section of the Edit Participant Type dialog for the parallel type.

	
From the list in the Voted Outcomes column, select an outcome for the task (for example, Any, ACCEPT, REJECT, or any other outcome specified in Section 28.3.4.3, "Specifying a Task Outcome").

The Any outcome enables you to determine the outcome dynamically at runtime. For example, if you select Any and set the outcome percentage to 60, then at runtime, whichever outcome reaches 60% becomes the final voted outcome. If 60% of assignees vote to reject the outcome, then it is rejected.

	
From the list in the Outcome Type column, select a method for determining the outcome of the final task.

	
By Expression: Dynamically specify the details with an XPath expression.

	
By Percentage: Specify a percentage value that determines when the outcome of this task takes effect.

	
From the list in the Value column, specify a value based on your selection in Step 3.

	
If you selected By Expression, click the Browse icon to the right of the field to display the Expression Builder dialog for creating an expression.

	
If you selected By Percentage, enter a percentage value required for the outcome of this task to take effect (for example, a majority vote (51) or a unanimous vote (100)). For example, assume there are two possible outcomes (ACCEPT and REJECT) and five subtasks. If two subtasks are accepted and three are rejected, and the required acceptance percentage is 50%, the outcome of the task is rejected. Figure 28-38 provides details.

Note that this functionality is nondeterministic. For example, selecting a percentage of 30% when there are two subtasks does not make sense.

Figure 28-38 Vote Outcomes Section

[image: Description of Figure 28-38 follows]

	
Click the Add icon to specify additional outcomes.

	
In the Default Outcome list, select the default outcome or enter an XPath expression for this task to take effect if the consensus percentage value is not satisfied. This happens if there is a tie or if all participants do not respond before the task expires. Seeded and custom outcomes that you entered in the Outcomes dialog in Section 28.3.4.3, "Specifying a Task Outcome" display in this list.

	
Specify additional group voting details:

	
Immediately trigger voted outcome when minimum percentage is met

If selected, the outcome of the task can be computed early with the outcomes of the completed subtasks, enabling the pending subtasks to be withdrawn. For example, assume four users are assigned to act on a task, the default outcome is APPROVE, and the consensus percentage is set at 50. If the first two users approve the task, the third and fourth users do not need to act on the task, since the consensus percentage value has been satisfied.

	
Wait until all votes are in before triggering outcome

If selected, the workflow waits for all responses before an outcome is initiated.

	
To share comments and attachments with all group collaborators or workflow participants for a task, select Share attachments and comments. This information typically displays in the footer region of Oracle BPM Worklist.

28.3.6.2.2 Creating a Parallel Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several types of lists:

	
Value-based name and expression lists

	
Value-based management chain lists

	
Rule-based names and expression lists

	
Rule-based management chain lists

	
Rule-based links

For information about creating these lists of participants, see section Section 28.3.6.1.1, "Creating a Single Task Participant List."

28.3.6.2.3 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

	
In the Advanced section of the Edit Participant Type dialog for the parallel type, click the Advanced icon to expand the section shown in Figure 28-37.

	
Select Limit allocated duration to.

	
Specify the amount of time.

For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 28.3.9, "How to Escalate, Renew, or End the Task."

28.3.6.2.4 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

	
In the Advanced section of the Edit Participant Type dialog for the parallel type, click the Advanced icon to expand the section (if not expanded).

	
Select Allow this participant to invite other participants.

28.3.6.2.5 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.

To bypass a task participant:

	
In the Edit Participant Type dialog for the parallel type, select the Specify skip rule checkbox.

This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.

For information about a valid XPath expression for skipping a participant, see Section 28.3.6.1.4, "Bypassing a Task Participant."

28.3.6.3 Configuring the Serial Participant Type

Figure 28-39 displays the Serial dialog.

This participant type enables you to create a list of sequential participants for a workflow. For example, if you want a document to be reviewed by John, Mary, and Scott in sequence, use this participant type. For the serial participant type, they can be any list of users or groups.

Figure 28-39 Edit Participant Type — Serial Type

[image: Description of Figure 28-39 follows]

To configure the serial participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog for the serial participant type are listed in Table 28-8.

Table 28-8 Edit Participant Type — Serial Type

	For This Subsection...	See...
	
Participant List

	
Section 28.3.6.3.1, "Creating a Serial Task Participant List"

	
Limit allocated duration to (under the Advanced section)

	
Section 28.3.6.3.2, "Specifying a Time Limit for Acting on a Task"

	
Allow this participant to invite other participants (under the Advanced section)

	
Section 28.3.6.3.3, "Inviting Additional Participants to a Task"

	
Specify skip rule (under the Advanced section)

	
Section 28.3.6.3.4, "Bypassing a Task Participant"

28.3.6.3.1 Creating a Serial Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several types of lists:

	
Value-based name and expression lists

	
Value-based management chain lists

	
Rule-based names and expression lists

	
Rule-based management chain lists

	
Rule-based lists

See section Section 28.3.6.1.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.

28.3.6.3.2 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

	
In the Advanced section of the Edit Participant Type dialog for the serial type, click the Advanced icon to expand the section shown in Figure 28-39.

	
Click Limit allocated duration to.

	
Specify the amount of time.

For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 28.3.9, "How to Escalate, Renew, or End the Task."

28.3.6.3.3 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

	
In the Advanced section of the Edit Participant Type dialog for the serial type, click the Advanced icon to expand the section (if not expanded).

	
Select Allow this participant to invite other participants.

	
Note:

For the serial participant type, additional participants can be invited as follows:
	
Globally specifying that the ad hoc participants can be invited at anytime. In this case, even in a sequential workflow, approvers can invite other participants at any level in the sequential workflow.

	
Specifying that an ad hoc invitation of other participants can be done only in specific points in the workflow. In this case, other ad hoc participants are invited only when a serial in complete.

28.3.6.3.4 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.

To bypass a task participant:

	
In the Advanced section of the Edit Participant Type dialog for the serial type, select the Specify skip rule checkbox.

This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.

For more information about a valid XPath expression for skipping a participant, see Section 28.3.6.1.4, "Bypassing a Task Participant."

28.3.6.4 Configuring the FYI Participant Type

Figure 28-40 displays the Edit Participant Type dialog for the FYI type.

This participant type is used when a task is sent to a user, but the business process does not wait for a user response; it just continues. FYIs cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.

For example, a magazine subscription is due for renewal. If the user does not cancel the current subscription before the expiration date, the subscription is renewed. This user is reminded weekly until the request expires or the user acts on it.

Figure 28-40 Edit Participant Type — FYI Type

[image: Description of Figure 28-40 follows]

To configure the FYI participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

28.3.6.4.1 Creating an FYI Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several types of lists:

	
Value-based name and expression lists

	
Value-based management chain lists

	
Rule-based names and expression lists

	
Rule-based management chain lists

	
Rule-based lists

See section Section 28.3.6.1.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.

28.3.7 How to Select a Routing Policy

After you configure a participant type and are returned to the Human Task Editor, click the Task will go from starting to final participant icon, as shown in Figure 28-41.

Figure 28-41 Human Task Editor — Assignment Section

[image: Description of Figure 28-41 follows]

This displays the Configure Assignment dialog shown in Figure 28-42 for specifying a method for routing your task through the workflow.

Figure 28-42 Configure Assignment

[image: Description of Figure 28-42 follows]

Table 28-9 describes the routing policy methods provided.

Table 28-9 Routing Policy Method

	Routing Policy Selection	Use This Policy In Environments Where...	Section
	
Route task to all participants, in order specified

This selection enables you to specify the following suboptions:

	
A task must be routed to each of the participants in the order in which they appear. This is predetermined, default routing. For example, in a hiring process, if three users interview and provide review feedback, then the task is sent to the human resources department.

	
Section 28.3.7.1, "Routing Tasks to All Participants in the Specified Order"

	
	
Allow all participants to invite other participants

	
A participant can select users or groups as the next assignee (ad hoc) when approving the task.

	
Section 28.3.7.1.1, "Allowing All Participants to Invite Other Participants"

	
	
Complete task when a participant chooses <outcome>

	
A participant in a task can accept or reject it, thus ending the workflow without the task being sent to any other participant. For example, a manager rejects a purchase order, meaning that purchase order is not sent to their manager for review.

	
Section 28.3.7.1.2, "Stopping Routing of a Task to Further Participants"

	
	
Enabling Early Completion in Parallel Subtasks

	
Note: This option is for environments in which you have multiple stages and participants working in parallel.

Participants perform subtasks in parallel, and one group's rejection or approval of a subtask does not cause the other group's subtask to also be rejected or approved.

	
Section 28.3.7.1.3, "Enabling Early Completion in Parallel Subtasks"

	
	
Completing Parent Subtasks of Early Completing Subtasks

	
Note: This option is for environments in which you have multiple stages and participants working in parallel.

Participants perform subtasks in parallel, and one group's rejection or approval of a subtask causes the other group's subtask to also be rejected or approved.

	
Section 28.3.7.1.4, "Completing Parent Subtasks of Early Completing Subtasks"

	
Use Advanced Rules

	
The participants to whom the task is routed are determined by the business rule logic that you model. For example, a loan application task is designed to go through a loan agent, their manager, and then the senior manager. If the loan agent approves the loan, but their manager rejects it, the task is returned to the loan agent.

	
Section 28.3.7.2, "Specifying Advanced Task Routing Using Business Rules"

	
Use External Routing

	
The participants in a task are dynamically determined. For example, a company's rules may require the task participants to be determined and then retrieved from a back-end database during runtime.

	
Section 28.3.7.3, "Using External Routing"

	
Assignment tab

	
A participant is assigned a failed task for the purposes of recovery.

	
Section 28.3.7.4, "Configuring the Error Assignee"

28.3.7.1 Routing Tasks to All Participants in the Specified Order

You can select to have a task reviewed by all selected participants. This is known as default routing because the task is routed to each of the participants in the order in which they appear. This type of routing differs from state machine-based routing.

To route tasks to all participants in the specified order:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Select Route task to all participants, in order specified from the list shown in Figure 28-43.

Figure 28-43 Route a Task to All Participants

[image: Description of Figure 28-43 follows]

See the following sections for instructions on defining a routing policy:

	
Allowing all participants to invite other participants

	
Completing a task when a participant chooses

	
Enabling early completion in parallel subtasks

	
Completing parent subtasks of early completing subtasks

28.3.7.1.1 Allowing All Participants to Invite Other Participants

This checkbox is the equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle BPEL Process Manager releases. This applies when there is at least one participant. In this case, each user selects users or groups as the next assignee when approving the task.

To allow all participants to invite other participants:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Select Route task to all participants, in order specified.

	
Select the Allow all participants to invite other participants checkbox for this task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow.

28.3.7.1.2 Stopping Routing of a Task to Further Participants

You can specify conditions under which to complete a task early, regardless of the other participants in the workflow.

For example, assume an expense report goes to the manager, and then the director. If the first participant (manager) rejects it, you can end the workflow without sending it to the next participant (director).

To abruptly complete a condition:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Select Route task to all participants, in order specified from the list.

	
Select the Complete task when a participant chooses <outcome> checkbox.

The Abrupt Completion Details dialog appears.

There are two methods for specifying the abrupt completion of a task:

	
Outcomes

	
XPath expression routing condition

If outcomes are specified, any time the selected task outcome occurs, the task completes. If both outcome and routing condition are specified, the workflow service performs a logical OR on the two.

	
Select appropriate outcomes and click the > button, as shown in Figure 28-44. To select all, click the >> button.

Figure 28-44 Abrupt Completion Details

[image: Description of Figure 28-44 follows]

	
To the right of the Routing Condition field, click the icon to display the Expression Builder dialog for dynamically creating a condition under which to complete this task early. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.

Note that an early completion XPath expression is not evaluated until at least one user has acted upon the task.

	
To enable early completion, click Enable early completion in parallel with subtasks. For more information, see Section 28.3.7.1.3, "Enabling Early Completion in Parallel Subtasks."

	
To enable early completion of parent tasks, click Complete parent tasks of early completing subtasks. For more information, see Section 28.3.7.1.4, "Completing Parent Subtasks of Early Completing Subtasks."

	
Click OK to return to the Human Task Editor.

You can click the icon to the right of the Complete task when a participant chooses <outcome> checkbox to edit this information.

28.3.7.1.3 Enabling Early Completion in Parallel Subtasks

You can use this option in the following environments:

	
Multiple stages and groups of participants perform subtasks in parallel.

	
A participant in one group approves or rejects a subtask, which causes the other participants in that same group to stop acting upon the task. However, this does not cause the other parallel group to stop acting upon subtasks. That group continues taking actions on tasks.

For example, assume there are two parallel subgroups, each in separate stages. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. However, the second parallel group continues to act upon headers in the purchase order. In this scenario, the entire task does not complete early. Figure 28-45 provides details.

Figure 28-45 Early Completion of Parallel Subtasks

[image: Description of Figure 28-45 follows]

28.3.7.1.4 Completing Parent Subtasks of Early Completing Subtasks

You can use this option in the following environments:

	
Multiple stages and groups of participants perform subtasks in parallel.

	
A participant in one group approves or rejects a subtask, which causes the other participants in that same group to stop acting upon the task. This also causes the other parallel group to stop acting upon subtasks.

For example, assume there are two parallel subgroups, each in separate stages, as shown in Figure 28-45. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. In addition, the second parallel group stops acting upon headers in the purchase order. In this scenario, the entire task completes early.

28.3.7.2 Specifying Advanced Task Routing Using Business Rules

Use advanced routing rules to create complex workflow routing scenarios. The participant types (single, parallel, serial, and FYI) are used to create a linear flow from one set of users to another with basic conditions such as abrupt termination, skipping assignees, and so on. However, there is often a need to perform more complex back and forth routing between multiple individuals in a workflow. One option is to use the BPEL process as the orchestrator of these tasks. Another option is to specify it declaratively using business rules. This section describes how you can model such complex interactions by using business rules with the Human Task Editor.

28.3.7.2.1 Introduction to Advanced Task Routing Using Business Rules

You can define state machine routing rules using Oracle Business Rules. This action enables you to create Oracle Business Rules that are evaluated:

	
After a routing slip task participant sets the outcome of the task

	
Before the task is assigned to the next routing slip participant

This action enables you to override the standard task routing slip method described in Section 28.3.7.1, "Routing Tasks to All Participants in the Specified Order" and build complex routing behavior into tasks.

Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on business objects, called facts, to determine which action to take.

28.3.7.2.2 Facts

A fact is an object with certain business data. Each time a routing slip assignee sets the outcome of a task, instead of automatically routing the task to the next assignee, the task service performs the following steps:

	
Asserts facts into the decision service

	
Executes the advanced routing rule set

Rules can test values in the asserted facts and specify the routing behavior by setting values in a TaskAction fact type.

Table 28-10 describes the fact types asserted by the task service.

Table 28-10 Fact Types Asserted By the Task Service

	Fact Type	Description
	
Task

	
This fact contains the current state of the workflow task instance. All task attributes can be tested against it. The task fact also contains the current task payload. This fact enables you to construct tests against payload values and task attribute values.

	
PreviousOutcome

	
This fact describes the previous task outcome and the assignee who set the outcome. The previous outcome fact contains the following attributes:

	
actualParticipant: The name of the participant who set the task outcome (for example, jstein)

	
logicalParticipant: The logical name (or label) for the routing slip participant responsible for setting the task outcome (for example, assignee1)

	
outcome: The outcome that was set (for example, approve or reject)

	
level: If the previous participant was part of a management chain, then this attribute records their level in the chain, where 1 is the first level in the chain. For other participant types, the value is -1.

	
totalNumberOfApprovals: The total number of users that have now set the outcome of the task.

	
TaskAction

	
This fact is not intended for writing rule tests against it. Instead, it is updated by the ruleset, and returned to the task service to indicate how the task should be routed. Rules should not directly update the TaskAction fact. Instead, they should call one of the RL functions described in Section 28.3.7.2.3, "Action Types." These functions handle updating the TaskAction fact with the appropriate values.

Some fact types can only be used in workflow routing rules, while others can only be used in workflow participant rules. Table 28-11 describes where you can use each type.

Table 28-11 Use of Fact Types

	Fact Type	Can Use in Routing Rules?	Can Use in Participant Rules?
	
Task

	
Yes

	
Yes

	
PreviousOutcome

	
Yes

	
No

	
TaskAction

	
Yes

	
No

	
Lists

	
No

	
Yes

	
RoutingSlipObjectFactory

	
No

	
Yes

	
ResourceListType

	
No

	
Yes

	
ManagementChainListType

	
No

	
Yes

	
ResourceType

	
No

	
Yes

	
ParameterType

	
No

	
Yes

	
AutoActionType

	
No

	
Yes

	
ResponseType

	
No

	
Yes

28.3.7.2.3 Action Types

To instruct the task service on how to route the task, rules can specify one of many task actions. This is done by updating the TaskAction fact asserted into the rule session. However, rules should not directly update the TaskAction fact. Instead, rules should call one of the action RL functions, passing the TaskAction fact as a parameter. These functions handle the actual updates to the fact. For example, to specify an action of go forward, you must add a call GO_FORWARD(TaskAction) to the action part of the rule.

Each time a state machine routing rule is evaluated, the rule takes one of the actions shown in Table 28-12:

Table 28-12 Business Rule Actions

	Action	Description	Parameters
	
GO_FORWARD

	
Goes to the next participant in the routing slip (default behavior).

	
None

	
PUSHBACK

	
Goes back to the previous participant in the routing slip (the participant before the one that just set the task outcome).

	
None

	
GOTO

	
Goes to a specific participant in the routing slip.

	
participant'

A string that identifies the label of the participant (for example, Approver1) to which to route the task.

	
COMPLETE

	
Finishes routing and completes the task. The task is marked as completed, and no further routing is required.

	
None

	
ESCALATE

	
Escalates and reassigns the task according to the task escalation policy (usually to the manager of the current assignee).

	
None

28.3.7.2.4 Sample Rule Set

This section describes how to use rules to implement custom routing behavior with a simple example. A human workflow task is created for managing approvals of expense requests. The outcomes for the task are approve and reject. The task definition includes an ExpenseRequest payload element. One of the fields of ExpenseRequest is the total amount of the expense request. The routing slip for the task consists of three single participants (assignee1, assignee2, and assignee3).

By default, the task gets routed to each of the assignees, with each assignee choosing to approve or reject the task.

Instead of this behavior, the necessary routing behavior is as follows:

	
If the total amount of the expense request is less than $100, approval is only required from one of the participants. Otherwise, it must be approved by all three.

	
If an expense request is rejected by any of the participants, it must be returned to the previous participant for re-evaluation. If it is rejected by the first participant, the expense request is rejected and marked as completed.

This behavior is implemented using the following rules. Note that when a rule dictionary is generated for advanced routing rules, it is created with a template rule that implements the default GO_FORWARD behavior. You can edit this rule, and make copies of the template rule by right-clicking and selecting Copy Rule in the Oracle Business Rules Designer.

If the amount is greater than $100 and the previous assignee approved the task, it is not necessary to provide a rule for routing a task to each of the assignees in turn. This is the default behavior that is reverted to if none of the rules in the rule set are triggered:

	
Early approval rule (Figure 28-46):

Figure 28-46 Early Approval Rule

[image: Description of Figure 28-46 follows]

	
Push back on the rejected rule (Figure 28-47):

Figure 28-47 Push Back On The Rejected Rule

[image: Description of Figure 28-47 follows]

	
Complete the Assignee1 rejected rule (Figure 28-48):

Figure 28-48 Completion of the Assignee1 Rejected Rule

[image: Description of Figure 28-48 follows]

For information about iterative design, see the workflow-106-IterativeDesign sample available at the Oracle Technology Network:

http://www.oracle.com/technology/sample_code/products/hwf

28.3.7.2.5 Creating Advanced Routing Rules

To create advanced routing rules:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Select Use Advanced Rules from the list.

	
To the right of Rules Dictionary, click the Edit icon, as shown in Figure 28-49.

Figure 28-49 Creating a Rules Dictionary

[image: Description of Figure 28-49 follows]

This starts the Oracle Business Rules Designer with a preseeded repository containing all necessary fact definitions, as shown in Figure 28-50. A decision service component is created for the dictionary, and is associated with the task service component.

Figure 28-50 Human Task Rule Dictionary

[image: Description of Figure 28-50 follows]

	
Define state machine routing rules for your task using Oracle Business Rules.

This automatically creates a fully-wired decision service in the human task and the associated rule repository and data model.

For more information on business rules:

	
An example human task ruleset, see Section 28.3.7.2.4, "Sample Rule Set"

	
Oracle Fusion Middleware User's Guide for Oracle Business Rules

	
Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

28.3.7.3 Using External Routing

You configure an external routing service that dynamically determines the participants in the workflow. If this routing policy is specified, all other participant types are ignored. It is assumed that the external routing service provides a list of participant types (single approver, serial approver, parallel approver, and so on) at runtime to determine the routing of the task.

Use this option if you do not want to use any of the routing rules to determine task assignees. In this case, all the logic of task assignment is delegated to the external routing service.

	
Note:

If you select Use External Routing in the Configure Assignment dialog, specify a Java class, and click OK to exit, the next time you open this dialog, the other two selections (Route task to all participants, in order specified and Use Advanced Rules) no longer appear in the dropdown list. To access all three selections again, you must delete the entire assignment.

To use external routing

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Select Use External Routing from the list.

	
Click the Edit icon, as shown in Figure 28-51.

Figure 28-51 Selection of Use External Routing

[image: Description of Figure 28-51 follows]

The External Routing dialog appears, as shown in Figure 28-52.

Figure 28-52 Use External Routing Dialog

[image: Description of Figure 28-52 follows]

	
In the Class Name field, enter the fully qualified class file name (for example, the org.mycompany.tasks.RoutingService class name). This class must implement the oracle.bpel.services.workflow.task.IAssignmentService interface.

	
Add name and pair value parameters by name or XPath expression that can be passed to the external service, as shown in Table 28-13.

Table 28-13 External Routing

	Field	Description
	
By Name

	
Enter a name in the Name field and a value in the Value field.

	
By Expression

	
Enter a name and dynamically enter a value by clicking the icon to the right of the field to display the Expression Builder dialog.

	
Click the Add icon to add additional name and pair value parameters.

28.3.7.4 Configuring the Error Assignee

Tasks can error for reasons such as incorrect assignments. When such errors occur, the task is assigned to the error assignee, who can perform corrective actions. Recoverable errors are as follows:

	
Invalid user and group for all participants

	
Invalid XPath expressions that are related to assignees and expiration duration

	
Escalation on expiration errors

	
Evaluating escalation policy

	
Evaluating renewal policy

	
Computing management chain

	
Evaluating dynamic assignment rules. The task is not currently in error, but is still left as assigned to the current user and is therefore recoverable.

	
Dynamic assignment cyclic assignment (for example, user A > user B > user A). The task is not currently in error, but is still left as assigned to the last user in the chain and is therefore recoverable.

The following errors are not recoverable. In these cases, the task is moved to the terminating state ERRORED.

	
Invalid task metadata

	
Unable to read task metadata

	
Invalid GOTO participant from state machine rules

	
Assignment service not found

	
Any errors from assignment service

	
Evaluating custom escalate functions

	
Invalid XPath and values for parallel default outcome and percentage values

During modeling of workflow tasks, you can specify error assignees for the workflow. If error assignees are specified, they are evaluated and the task is assigned to them. If no error assignee is specified at runtime, an administration user is discovered and is assigned the alerted task. The error assignee can perform one of the following actions:

	
Ad hoc route

Route the task to the actual users assigned to the task. Ad hoc routing allows the task to be routed to users in sequence, parallel, and so on.

	
Reassign

Reassign the task to the actual users assigned to this task

	
Error task

Indicate that this task cannot be rectified.

If there are any errors in evaluating the error assignees, the task is marked as being in error.

This dialog enables you to specify the users or groups to whom the task is assigned if an error in assignment has occurred.

To configure the error assignee:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Click the Assignment tab.

	
Click the Add icon to assign reviewers or error assignees, as shown in Figure 28-53.

Figure 28-53 Error Assignment Details

[image: Description of Figure 28-53 follows]

	
Click the Add icon and select a user, group, or application role to participate in this task.

The Identification Type column of the Starting Participant table displays your selection of user, group, or application role.

	
See Step 4 through 6 of Section 28.3.6.1.1, "Creating a Single Task Participant List" for instructions on selecting a user, group, or application role.

For more information about users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."

28.3.8 How to Specify Multilingual Settings and Style Sheets

The Presentation section enables you to specify resource bundles for displaying task details in different languages in Oracle BPM Worklist and WordML and custom style sheets for attachments.

28.3.8.1 Specifying WordML and Other Style Sheets for Attachments

To specify WordML style sheets for attachments:

	
In the Stylesheet for Attachments list of the Presentation section, select one of the following options:

	
Word ML: This option allows for the dynamic creation of Microsoft Word documents for sending them as email attachments using a WordML XSLT style sheet. The XSLT style sheet is applied on the task document.

	
Other: This option allows creation of email attachments using an XSLT style sheet. The XSLT style sheet is applied on the task document.

	
Click the Search icon to select the style sheet as an attachment.

28.3.8.2 Specifying Multilingual Settings

You can specify resource bundles for displaying task details in different languages in Oracle BPM Worklist. Resource bundles are supported for the following task details:

	
Displaying the value for task outcomes in plain text or with the message(key) format

	
Making email notification messages available in different languages. At runtime, specify the XPath extension function hwf:getTaskResourceBundleString(taskId, key, locale?) to obtain the internationalized string from the specified resource bundle. The locale of the notification recipient can be retrieved with the function hwf:getNotificationProperty(propertyName).

Resource bundles can also simply be property files. For example, a resource bundle that configures a display name for task outcomes can look as follows:

	
APPROVE=Approve

	
REJECT=Reject

To specify multilingual settings:

	
In the Presentation section, click the Add icon across from Resource Bundle.

The Resource Details dialog shown in Figure 28-54 appears.

Figure 28-54 Resource Details Dialog

[image: Description of Figure 28-54 follows]

	
In the Resource Name field, enter the name of the resource used in the resource bundle. This should be a .properties based resource bundle file.

	
In the Resource Location field, click the Search icon to select the JAR or ZIP resource bundle file to use. The resource bundle is part of your system archive (SAR) file.

If the resource bundle is outside of the composite project, you are prompted to place a local copy in SCA-INF/lib.

If the resource bundle file is not in the composite class loader (directly under SCA-INF/classes or in a JAR file in SCA-INF/lib), you must specify its location. For example, if the resource bundle is accessible from a location outside of the composite class loader (such as an HTTP location such as http://host:port/bundleApp/taskBundles.jar), then this location must be specified in this field.

	
Click OK to return to the Human Task Editor.

For more information, see Section 32.2.6, "How to Configure Notification Messages in Different Languages."

28.3.9 How to Escalate, Renew, or End the Task

Figure 28-55 shows the Deadlines section of the Human Task Editor.

You can specify expiration duration of a task in this global policy section (also known as the routing slip level). If expiration duration is specified at the routing slip level instead of at the participant type level, then this duration is the expiration duration of the task across all the participants. However, if you specify expiration duration at the participant type level (through the Limit allocated duration to field), then those settings take precedence over settings specified in the Deadlines section (routing slip level).

Figure 28-55 Human Task Editor — Deadlines Section

[image: Description of Figure 28-55 follows]

28.3.9.1 Introduction to Escalation and Expiration Policy

This section provides an overview of how specifying the expiration duration at this level makes this setting the expiration duration of the task across all the participants.

For example, participant LoanAgentGroup and participant Supervisor have three days to act on the task between them, as shown in Figure 28-56:

Figure 28-56 Expire After Policy

[image: Description of Figure 28-56 follows]

If there is no expiration specified at either the participant level or this routing slip level, then that task has no expiration duration.

If expiration duration is specified at any of the participant's level, then for that participant, the participant expiration duration is used. However, the global expiration duration is still used for the participants that do not have participant level expiration duration. The global expiration duration is always decremented by the time elapsed in the task.

The policy for interpreting the participant level expiration for the participants is described as follows:

	
Serial

Each assignment in the management chain gets the same expiration duration as the one specified in the serial. Note that the duration is not for all the assignments resulting from this assignment. If the task expires at any of the assignments in the management chain, the escalation and renewal policy is applied.

	
Parallel:

	
In a parallel workflow, if the parallel participants are specified as a resource, a routing slip is created for each of the resources. The expiration duration of each created routing slip follows these rules:

	
The expiration duration equals the expiration duration of the parallel participant if it has an expiration duration specified.

	
The expiration duration that is left on the task if it was specified at the routing slip level.

	
Otherwise, there is no expiration duration.

	
If parallel participants are specified as routing slips, then the expiration duration for the parallel participants are determined by the routing slip.

	
Note:

When the parent task expires in a parallel task, the subtasks are withdrawn if those tasks have not expired or completed.

28.3.9.2 Specifying a Policy to Never Expire

You can specify for a task to never expire.

To specify a policy to never expire:

	
In the dropdown list in the Deadlines section, select Never Expire, as shown in Figure 28-55.

28.3.9.3 Specifying a Policy to Expire

You can specify for a task to expire. When the task expires, either the escalation policy or the renewal policy at the routing slip level is applied. If neither is specified, the task expires. The expiration policy at the routing slip level is common to all the participants.

To specify for a task to expire:

	
In the dropdown list in the Deadlines section, select Expire after, as shown in Figure 28-55.

	
Specify the maximum time period for the task to remain open.

The expiration policy for parallel participants is interpreted as follows:

	
If parallel participants are specified as resources in parallel elements, there is no expiration policy for each of those participants.

	
If parallel participants are specified as routing slips, then the expiration policy for the routing slip applies to the parallel participants.

Figure 28-57 indicates that the task expires in three days.

Figure 28-57 Expire After Policy

[image: Description of Figure 28-57 follows]

28.3.9.4 Extending an Expiration Policy Period

You can extend the expiration period when the user does not respond within the allotted time. You do this by specifying the number of times the task can be renewed upon expiration (for example, renew it an additional three times) and the duration of each renewal (for example, three days for each renewal period).

To extend an expiration policy period:

	
In the dropdown list in the Deadlines section, select Renew after, as shown in Figure 28-55.

	
Specify the maximum number of times to continue renewing this task.

In Figure 28-58, when the task expires, it is renewed at most three times. It does not matter if the task expired at the LoanAgentGroup participant or the Supervisor participant.

Figure 28-58 Renew After Policy

[image: Description of Figure 28-58 follows]

28.3.9.5 Escalating a Task Policy

You can escalate a task if a user does not respond within the allotted time. For example, if you are using the escalation hierarchy configured in your user directory, the task can be escalated to the user's manager. If you are using escalation callbacks, the task is escalated to whoever you have defined. When a task has been escalated the maximum number of times, it stops escalating. An escalated task can remain in a user inbox even after the task has expired.

To escalate a task policy:

	
In the dropdown list in the Deadlines section, select Escalate after, as shown in Figure 28-55.

	
Specify the following additional values. When both are set, the escalation policy is more restrictive.

	
Maximum Escalation Levels

Number of management levels to which to escalate the task. This field is required.

	
Highest Approver Title

The title of the highest approver (for example, self, manager, director, or CEO). These titles are compared against the title of the task assignee in the corresponding user repository. This field is optional.

The escalation policy specifies the number of times the task can be escalated on expiration and the renewal duration. In Figure 28-59, when the task expires, it is escalated at most three times. It does not matter if the task expired at the LoanAgentGroup participant or the Supervisor participant.

Figure 28-59 Escalate After Policy

[image: Description of Figure 28-59 follows]

28.3.9.6 Specifying Escalation Rules

This option allows a custom escalation rule to be plugged in for a particular workflow. For example, to assign the task to a current user's department manager on task expiration, you can write a custom task escalation function, register it with the workflow service, and use that function in task definitions.

The default escalation rule is to assign a task to the manager of the current user. To add a new escalation rule, follow these steps.

To specify escalation rules:

	
Implement interface oracle.bpel.services.workflow.assignment.dynamic.IDynamicTaskEscalationFunction. This implementation has to be available in the class path for the server.

	
Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

	
Expand the SOA folder in the navigator.

	
Right-click soa-infra, and select SOA Administration > Workflow Task Service Properties.

The Workflow Task Service Properties page appears.

	
Add a new function. For example:

	
Function name: Department_supervisor

	
Classpath: oracle.bpel.services.workflow.assignment.dynamic.patterns.DepartmentSupervisor

	
Function parameter name

	
Function parameter value

	
In the Custom Escalation Java Class field of the Deadlines section, enter the function name as defined in the Workflow Task Service Properties page for the escalation rule.

For more information, see Section 32.3.3, "Custom Escalation Function."

28.3.9.7 Specifying a Due Date

A due date is used to indicate the date by which the task should be completed. Note that the due date is different from the expiration date. When a task expires it is either marked expired or automatically escalated or renewed based on the escalation policy. The due date is generally a date earlier than the expiration date and an indication to the user that the task is about to expire.

You can enter a due date for a task, as shown in Figure 28-55. A task is considered overdue after it is past the specified due date. This date is in addition to the expiration policy. A due date can be specified irrespective of whether an expiration policy has been specified. The due date enables Oracle BPM Worklist to display a due date, list overdue tasks, highlight overdue tasks in the inbox, and so on. Overdue tasks can be queried using a predicate on the TaskQueryService.queryTask(...) API.

To specify a due date:

	
In the Deadlines section, select the Use Due Date checkbox.

	
Select By Duration to enter a time duration or select By Expression to dynamically enter a value as an XPath expression.

Note the following details:

	
The due date can be set on both the task (using the Create ToDo Task dialog in Oracle BPM Worklist) and in the .task file (using the Human Task Editor). This is to allow to-do tasks without task definitions to set a due date during initiation of the task. A due date that is set in the task (a runtime object) overrides a due date that is set in the .task file.

	
In the task definition, the due date can only be specified at the global level, and not for each participant.

	
If the due date is set on the task, the due date in the .task file is ignored.

	
If the due date is not set on the task, the due date in the .task file is evaluated and set on the task.

	
If there is no due date on either the task or in the .task file, there is no due date on the task.

	
Note:

You cannot specify business rules for to-do tasks.

For more information, see Section 30.3.4, "How To Create a ToDo Task."

28.3.10 How to Specify Participant Notification Preferences

Figure 28-60 shows the Notification section of the Human Task Editor (when fully expanded).

Notifications indicate when a user or group is assigned a task or informed that the status of the task has changed. Notifications can be sent through email, voice message, instant message, or SMS. Notifications are sent to different types of participants for different actions. Notifications are configured by default with default messages. For example, a notification message is sent to indicate that a task has completed and closed. You can create your own or modify existing configurations.

	
Note:

Embedded LDAP does not support group email addresses. Therefore, when a task is assigned to a group ID, emails are sent to all of its members instead of to the group email address.

Figure 28-60 Human Task Editor — Notification Section

[image: Description of Figure 28-60 follows]

To specify participant notification preferences:

	
Click the Notification tab (displays as shown in Figure 28-60).

Instructions for configuring the following subsections of the Notification Settings section are listed in Table 28-14.

Table 28-14 Human Task Editor — Notification Section

	For This Subsection...	See...
	
Task Status

Recipient

	
Section 28.3.10.1, "Notifying Recipients of Changes to Task Status"

	
Notification Header

	
Section 28.3.10.2, "Editing the Notification Message"

	
Reminders

	
Section 28.3.10.3, "Setting Up Reminders"

	
Encoding

	
Section 28.3.10.4, "Changing the Character Set Encoding"

	
Make notifications secure (exclude details)

	
Section 28.3.10.5, "Securing Notifications to Exclude Details"

	
Make notifications actionable

	
Section 28.3.10.6, "Making Email Messages Actionable"

	
Send task attachments with email notifications

	
Section 28.3.10.7, "Sending Task Attachments with Email Notifications"

For information about the notification service, see Section 32.2, "Notifications from Human Workflow."

28.3.10.1 Notifying Recipients of Changes to Task Status

Three default status types display in the Task Status column: Assign, Complete, and Error. You can select other status types for which to receive notification messages.

To notify recipients of changes to task status:

	
In the Notification section, click the General tab.

	
In the Task Status column, click a type to display the complete list of task types:

	
Alerted

When a task is in an alerted state, you can notify recipients. However, none of the notification recipients (assignees, approvers, owner, initiator, or reviewer) can move the task from an alerted state to an error state; they only receive an FYI notification of the alerted state. The owner can reassign, withdraw, delete, or purge the task, or ask the error assignee to move the task to an error state if the error cannot be resolved. Only the error assignee can move a task from an alerted state to an error state.

You configure the error assignee on the Assignment tab of the Configure Assignment dialog under the Task will go from starting to final participant icon in the Assignment section. For more information, see Section 28.3.7.4, "Configuring the Error Assignee."

	
Assign

When the task is assigned to users or a group. This captures the following actions:

	
Task is assigned to a user

	
Task is assigned to a new user in a serial workflow

	
Task is renewed

	
Task is delegated

	
Task is reassigned

	
Task is escalated

	
Information for a task is submitted

	
Complete

	
Error

	
Expire

	
Request Info

	
Resume

	
Suspend

	
Update

	
Task payload is updated

	
Task is updated

	
Comments are added

	
Attachments are added and updated

	
Update Outcome

	
Withdraw

	
All Other Actions

	
Any action not covered in the above task types. This includes acquiring a task.

	
Select a task status type.

Notifications can be sent to users involved in the task in various capacities. This includes when the task is assigned to a group, each user in the group is sent a notification if there is no notification endpoint available for the group.

	
In the Recipient column, click an entry to display a list of possible recipients for the notification message:

	
Assignees

The users or groups to whom the task is currently assigned.

	
Initiator

The user who created the task.

	
Approvers

The users who have acted on the task up to this point. This applies in a serial participant type in which multiple users have approved the task and a notification must be sent to all of them.

	
Owner

The task owner

	
Reviewer

The user who can add comments and attachments to a task.

For more information, see Section 32.2.5, "How to Configure the Notification Channel Preferences."

28.3.10.2 Editing the Notification Message

A default notification message is available for delivery to the selected recipient. If you want, you can modify the default message text.

To edit the notification message:

	
In the Notification section, click the General tab.

	
In the Notification Header column, click the Edit icon to modify the default notification message.

The Edit Notification Message dialog shown in Figure 28-61 appears.

Figure 28-61 Edit Notification Message Dialog

[image: Description of Figure 28-61 follows]

This message applies to all the supported notification channels: email, voice, instant messaging, and SMS. Email messages can also include the worklist task detail defined in this message. The channel by which the message is delivered is based upon the notification preferences you specify.

	
Modify the message wording as necessary.

	
Click OK to return to the Human Task Editor.

For more information about notification preference details, see Section 32.2, "Notifications from Human Workflow."

28.3.10.3 Setting Up Reminders

You can send task reminders, which can be based on the time the task was assigned to a user or the expiration time of a task. The number of reminders and the interval between the reminders can also be configured.

To set up reminders:

	
In the Notification section, click the Advanced tab.

	
From the list, select the number of reminders to send.

	
If you selected to remind the assignee one, two, or three times, select the interval between reminders, and whether to send the reminder before or after the assignment. Figure 28-62 provides details.

Figure 28-62 Notification Section - Advanced Tab

[image: Description of Figure 28-62 follows]

If you select Use Due Date in the Deadlines section, the dropdown list at the far right displays an option for selection called Before Due Date.

For more information, see Section 32.2.12, "How to Send Reminders."

28.3.10.4 Changing the Character Set Encoding

Unicode is a universally encoded character set that enables information from any language to be stored using a single character set. Unicode provides a unique code value for every character, regardless of the platform, program, or language. You can use the default setting of UTF-8 or you can specify a character set with a Java class.

To change the character set encoding

	
In the Notification section, click the Advanced tab.

	
From the Encoding list, select Specify by Java Class.

	
Enter the Java class to use.

28.3.10.5 Securing Notifications to Exclude Details

To secure notifications, make messages actionable, and send attachments:

	
	
In the Notification section, click the Advanced tab.

	
Select Make notifications secure (exclude details).

If selected, a default notification message is used. There are no HTML worklist task details, attachments, or actionable links in the email. Only the task number is in the message.

For more information, see Section 32.2.10, "How to Send Secure Notifications."

28.3.10.6 Making Email Messages Actionable

	
In the Notification section, click the Advanced tab.

	
Select Make notification actionable. This action enables you to perform task actions through email.

For more information about additional configuration details, see Section 32.2.7, "How to Send Actionable Messages."

For more information about configuring outbound and inbound emails, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

28.3.10.7 Sending Task Attachments with Email Notifications

	
In the Notification section, click the Advanced tab.

	
Select Send task attachments with email notifications.

	
If you also want to customize the notification headers, select Notification Header Attributes.

Custom notification headers are used to specify name and value pairs to identify key fields within the notification. These entries can be used by users to define delivery preferences for their notifications. For example:You can set Name to ApprovalType and value to Expense or Name to Priority and value to High.Users can then specify delivery preferences in Oracle BPM Worklist. These preferences can be based on the contents of the notification.

Note that the rule-based notification service is only used to identify the preferred notification channel to use. The address for the preferred channel is still obtained from the identity service.

	
Add name and pair value parameters by name or XPath expression.

For more information about preferences, see Section 32.2.8, "How to Send Inbound and Outbound Attachments," Section 32.2.14, "How to Create Custom Notification Headers," and Part XI, "Using Oracle User Messaging Service".

28.3.11 How to Specify Access Policies and Task Actions on Task Content

You can specify access rules on task content and actions to perform on that content.

28.3.11.1 Specifying Access Policies on Task Content

You can specify access rules that determine the parts of a task that participants can view and update. Access rules are enforced by the workflow service by applying rules on the task object during the retrieval and update of the task.

	
Note:

Task content access rules and task actions access rules exist independently of one another.

28.3.11.1.1 Introduction to Access Rules

Access rules are computed based on the following details:

	
Any attribute configured with access rules declines any permissions for roles not configured against it. For example, assume you configure the payload to be read by assignees. This action enables only assignees and nobody else to have read permissions. No one, including assignees, has write permissions.

	
Any attribute not configured with access rules has all permissions.

	
If any payload message attribute is configured with access rules, any configurations for the payload itself are ignored due to potential conflicts. In this case, the returned map by the API does not contain any entry for the payload. Write permissions automatically provide read permissions.

	
If only a subset of message attributes is configured with access rules, all message attributes not involved have all permissions.

	
Only comments and attachments have add permissions.

	
Write permissions on certain attributes are meaningless. For example, write permissions on history do not grant or decline any privileges on history.

	
The following date attributes are configured as one in the Human Task Editor. The map returned by TaskMetadataService.getVisibilityRules() contains one key for each. Similarly, if the participant does not have read permissions on DATES, the task does not contain any of the following task attributes:

	
START_DATE

	
END_DATE

	
ASSIGNED_DATE

	
SYSTEM_END_DATE

	
CREATED_DATE

	
EXPIRATION_DATE

	
ALL_UPDATED_DATE

	
The following assignee attributes are configured as one in the Human Task Editor. The map returned by TaskMetadataService.getVisibilityRules() contains one key for each of the following. Similarly, if the participant does not have read permissions on ASSIGNEES, the task does not contain any of the following task attributes:

	
ASSIGNEES

	
ASSIGNEE_USERS

	
ASSIGNEE_GROUPS

	
ACQUIRED_BY

	
Flex fields do not have individual representation in the map returned by TaskMetadataService.getVisibilityRules().

	
All message attributes in the map returned by TaskMetadataService.getVisibilityRules() are prefixed by ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_MESSAGE_ATTR_PREFIX (PAYLOAD).

An application can also create pages to display or not display task attributes based on the access rules. This can be achieved by retrieving a participant's access rules by calling the API on oracle.bpel.services.workflow.metadata.ITaskMetadataService. Example 28-1 provides details.

Example 28-1 API Call

public Map<String, IPrivilege> getTaskVisibilityRules(IWorkflowContext context,
 String taskId)
 throws TaskMetadataServiceException;

For more information about this method, see Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager.

28.3.11.1.2 Specifying User Privileges for Acting on Task Content

You can specify the privileges that specific users (such as the task creator or owner) have for acting on specific task content (such as a payload).

To specify user privileges for acting on task content:

	
Click the Access tab.

	
Click the Content tab.

	
Select the task content for which to specify access privileges, as shown in Figure 28-63.

Figure 28-63 Configure Task Content Access

[image: Description of Figure 28-63 follows]

	
Assign privileges (read, write, or no access) to users to act upon task content. Note that a user cannot be assigned a privilege above their highest level. For example, an ADMIN user cannot be assigned write access on the PAYLOAD task content. Table 28-15 shows the maximum privilege each user has on task content.

Table 28-15 Highest Privilege Levels for Users of Task Content

	Task Content	Individual with Read Access	Individual with Write Access
	
ASSIGNEES

	
ASSIGNEES, CREATOR, OWNER, ADMIN, APPROVERS, REVIEWERS

	
--

	
ATTACHMENTS

	
ADMIN, APPROVERS

	
ASSIGNEES, CREATOR, OWNER, REVIEWERS

	
COMMENTS

	
ADMIN, APPROVERS

	
ASSIGNEES, CREATOR, OWNER, REVIEWERS

	
DATES

	
ASSIGNEES, CREATOR, OWNER, ADMIN, APPROVERS, REVIEWERS

	
--

	
FLEXFIELDS

	
ADMIN, APPROVERS, REVIEWERS

	
ASSIGNEES, CREATOR, OWNER

	
HISTORY

	
ASSIGNEES, CREATOR, OWNER, ADMIN, APPROVERS, REVIEWERS

	
--

	
PAYLOAD

	
ADMIN, APPROVERS, REVIEWERS

	
ASSIGNEES, CREATOR, OWNER

	
REVIEWERS

	
ASSIGNEES, CREATOR, OWNER, ADMIN, APPROVERS, REVIEWERS

	
--

	
Payload elements

	
Inherited from payload

	
Inherited from payload

For example, if you accept the default setting of ASSIGNEES, CREATOR, and OWNER with write access, ADMIN, APPROVERS, and REVIEWERS with read access, and PUBLIC with no access to the PAYLOAD task content, the dialog appears as shown in Figure 28-63.

	
Select the method for displaying task content in this dialog. Note that choosing the currently unselected option causes all settings to reset to their default values.

	
Coarse grained (default)

Displays the task content as a whole (for example, displays only one payload or reviewer).

	
Fine grained

Displays the content as individual elements. (or example, displays all payloads (such as p1, p2, and p3) and all reviewers assigned to this task (such as jstein, wfaulk, and cdickens).

	

	
Note:

Access rules are always applied on top of what the system permits, depending on who is performing the action and the current state of the task.

28.3.11.1.3 Specifying Actions for Acting Upon Tasks

You can specify the actions (either access or no access) that specific users (such as the task creator or owner) have for acting on the task content (such as a payload) that you specified in the Configure Task Content Access dialog.

To specify actions for acting upon tasks:

	
Click the Access tab.

	
Click the Actions tab.

	
Select the task action for which to specify users, as shown in Figure 28-64.

Figure 28-64 Selection of Add Action Access Rule

[image: Description of Figure 28-64 follows]

	
Select if participants can or cannot perform the selected actions.

	
Select the method for displaying task actions in this dialog. Note that choosing the currently unselected option causes all settings to reset to their default values.

	
Coarse grained (default)

Displays the task actions as a whole (for example, displays only one approval or rejection).

	
Fine grained

Displays the content actions as individual elements. (or example, displays all approvals or rejections).

28.3.12 How to Specify a Workflow Digital Signature Policy

Digital signatures provide a mechanism for the nonrepudiation of digitally-signed human tasks. This ability to mandate that a participant acting on a task signs the details and their action before the task is updated ensures that they cannot repudiate it later.

	
Note:

If digital signatures are enabled for a task, actionable emails are not sent during runtime. This is the case even if actionable emails are enabled during design-time.

To specify a workflow digital signature policy:

	
Click the Access tab.

	
From the Signature Policy list, select Configure Policy, as shown in Figure 28-65.

Figure 28-65 Digital Signatures

[image: Description of Figure 28-65 follows]

	
Specify the signature policy for task participants to use:

	
No signature required

Participants can send and act upon tasks without providing a signature. This is the default policy.

	
Password required

Participants specify a signature before sending tasks to the next participant. Participants must reenter their password while acting on a task. The password is used to generate the digital signature. A digital signature authenticates the identity of the message sender or document signer. This ensures that the original content of the sent message is unchanged.

	
Digital certificate required

Participants must possess a digital certificate for the nonrepudiation of digitally-signed human tasks. A digital certificate establishes the participant's credentials. It is issued by a certification authority (CA). It contains the following:

	
Your name

	
A serial number

	
Expiration dates

	
A copy of the certificate holder's public key (used for encrypting messages and digital signatures)

	
Digital signature of the certificate-issuing authority so that message authenticity can be established

The CA names and CA CRL and URLs of the issuing authorities must be configured separately.

	
Click OK.

For more information, see Section 32.1.10, "Evidence Store Service and Digital Signatures."

28.3.12.1 Specifying a Certificate Authority

To use digital signatures, you must specify CAs you consider trustworthy in the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control Console. Only certificates issued from such CAs are considered valid by human workflow.

To specify a certificate authority:

	
From the SOA Infrastructure menu, select Administration > System MBean Browser.

	
Select Application Defined MBeans > oracle.as.soainfra.config > Server: server_name > WorkflowConfig > human.workflow.

	
Click the Operations tab.

	
Click AddTrustedCA.

	
In the Value fields for CaName and CaURL, specify appropriate values.

	
Click Invoke.

	
Click Return.

You must validate these values before using them.

28.3.13 How to Specify Restrictions on Task Assignments

You can restrict the users to which a task can be reassigned or routed through a callback class.

While the user community seeded in a typical LDAP directory can represent the whole company or division, it may be necessary at times to limit the potential list of users to associate with a task based on the scope or importance of the task or associated data. For example, in a large company with thousands of users, only a few people have the ability to approve and create purchase orders. Specifically for such tasks, the users that can be chosen for ad hoc routing and reassignment should not be the whole company. Instead, only a few users who are relevant or have the right privilege should be chosen. This can be achieved by the restricted assignment functionality. This is implemented as a callback class that can implement the logic to choose the right set of users dynamically based on the task object that is passed containing the instance data.

To specify restrictions on task assignments:

	
In the Access section, click Configure Restricted Assignments.

The Configure Restricted Assignment dialog appears.

	
Enter the class name. The class must implement the oracle.bpel.services.workflow.task.IRestrictedAssignmentCallback interface.

	
Click the Add icon to add name and value pairs for the property map passed to invoke the callback.

	
Click OK.

28.3.14 How to Specify Java or Business Event Callbacks

You can specify Java or business event callbacks.

28.3.14.1 Specifying Callback Classes on Task Status

You can register callbacks for the workflow service to call when a particular stage is reached during the lifecycle of a task. Two types of callbacks are supported:

	
Java callbacks: The callback class must implement the interface oracle.bpel.services.workflow.task.IRoutingSlipCallback. Make the callback class available in the class path of the server.

	
Business event callbacks: You can have business events raised when the state of a human task changes. You do not need to develop and register a Java class. The caller implements the callback using a mediator service component to subscribe to the applicable business event to be informed of the current state of an approval transaction.

To specify callback classes on task status:

	
Click the Events tab.

The following callbacks are available for selection:

	
OnAssigned

Select if the callback class must be called on any assignment change, including standard routing, reassignment, delegation, escalation, and so on. If a callback is required when a task has an outcome update (that is, one of the approvers in a chain approves or rejects the task), this option must be selected.

	
OnUpdated

Select if the callback class must be called on any update (including payload, comments, attachment, priority, and so on).

	
OnCompleted

Select if the callback class must finally be called when the task is completed and control is about to be passed to the initiator (such as the BPEL process initiating the task).

	
OnStageCompleted

Select if the callback class must be called to enable business event callbacks in a human workflow task. When the event is raised, it contains the name of the completed stage, the outcome for the completed stage, and a snapshot of the task when the callback is invoked.

	
OnSubtaskUpdated

Select if the callback class must be called on any update (including payload, comments, attachment, priority, and so on) on a subtask (one of the tasks in a parallel and parallel scenario).

	
See the following section based on the type callback to perform.

	
Section 28.3.14.1.1, "Specifying Java Callbacks"

	
Section 28.3.14.1.2, "Specifying Business Event Callbacks"

28.3.14.1.1 Specifying Java Callbacks

To specify Java callbacks:

	
In the State column of the Events section, select a task state.

	
In the Java Class column, click the empty field to enter a value. This value is the complete class name of the Java class that implements oracle.bpel.services.workflow.task.IRoutingSlipCallback. Figure 28-66 provides details.

Figure 28-66 CallBack Details Dialog with Java Selected

[image: Description of Figure 28-66 follows]

	
Click OK.

28.3.14.1.2 Specifying Business Event Callbacks

To specify business event callbacks:

	
In the State column of the Events section, select a task state.

	
Leave the Java Class field empty.

	
Select the Trigger Workflow Event checkbox. This action disables the Java Class column, as shown in Figure 28-67. Each callback, such as OnAssigned, corresponds to a business event point. When a business event is fired, the event details contain the task object and a set of properties that are populated based on the context of the event being fired.

Figure 28-67 CallBack Details Dialog with Business Events Selected

[image: Description of Figure 28-67 follows]

A preseeded, static event definition language (EDL) file (JDev_Home\jdeveloper\integration\seed\soa\shared\workflow\HumanTaskEvent.edl) provides the list of available business events to which to subscribe. These business events correspond to the callbacks you select in the Callback Details dialog. You must now create a mediator service component in which you reference the EDL file and subscribe to the appropriate business event.

	
Note:

A file-based MDS connection is required so that the EDL file can be located. The location for the file-based MDS is JDev_Home\jdeveloper\integration\seed.

	
Create an Oracle Mediator service component in the same or a different SOA composite application that can subscribe to the event.

	
In the Template list during Oracle Mediator creation, select Subscribe to Events.

	
Click the Add icon to subscribe to a new event.

	
To the right of the Event Definition field, click the Browse icon to select the EDL file.

The SOA Resource Browser dialog appears.

	
Select the previously created file-based MDS connection.

	
From the list at the top, select Resource Palette.

	
Select SOA > Shared > Workflow > HumanTaskEvent.edl.

	
Click OK.

The Event Chooser is now populated with EDL file business events available for selection.

	
In the Event field, select the event to which to subscribe. Figure 28-68 provides details.

Figure 28-68 Event Callbacks

[image: Description of Figure 28-68 follows]

You can have multiple human tasks available for subscribing to the event. For example, assume you have the following:

	
Configured a human task named TaskA to subscribe to the event (for example, OnAssigned)

	
Configured a human task named TaskB to subscribe to the same event

To distinguish between events for TaskA and TaskB and ensure that an event is processed only by the intended Oracle Mediator, you can add a static routing filter:

xpath20:compare(med:getComponentName(), 'TaskA')

This only invokes this routing when the sending component is TaskA.

	
If the EDL file was not selected from the file-based MDS connection, accept to import the dependent XSD files when prompted, and click OK. If the EDL file was selected from the file-based MDS connection, you are not prompted.

The Oracle Mediator service component is now populated with the business event to which to subscribe. You can also subscribe to other business events defined in the same EDL file now or at a later time.

See the following documentation for additional details about business events and callbacks:

	
Chapter 39, "Using Business Events and the Event Delivery Network" for specific details about business events

	
Sample workflow-116-WorkflowEventCallback, which is available from the Oracle Technology Network:

http://www.oracle.com/technology/sample_code/products/hwf

28.3.15 How to Specify Task and Routing Customizations in BPEL Callbacks

In general, the BPEL process calls into the workflow component to assign tasks to users. When the workflow is complete, the human workflow service calls back into the BPEL process. However, if you want fine-grained callbacks (for example, onTaskUpdate or onTaskEscalated) to be sent to the BPEL process, you can use the Allow task and routing customization in BPEL callbacks option.

Make sure to manually refresh the BPEL diagram for this callback setting.

To specify task and routing customizations in BPEL callbacks:

	
In the Events section, select the Allow task and routing customization in BPEL callbacks checkbox.

	
Return to Oracle BPEL Designer.

	
Open the task activity dialog.

	
Click OK.

This creates the while, pick, and onMessage branch of a pick activity for BPEL callback customization inside the task scope activity.

28.3.16 How to Exit the Human Task Editor and Save Your Changes

You can save your human task changes at any time. The task can be re-edited at a later time by clicking the metadata task configuration .task file in the Application Navigator.

To exit the Human Task Editor and save your changes:

	
From the File main menu, select Save or click the X sign shown in Figure 28-69 to close the .task metadata task configuration file.

Figure 28-69 File Closure

[image: Description of Figure 28-69 follows]

	
If you click the X sign, select Yes when prompted to save your changes.

28.4 Associating the Human Task Service Component with a BPEL Process

To associate the human task service component created in the SOA Composite Editor with a BPEL process, follow these instructions. When association is complete, a task service partner link is created in Oracle BPEL Designer. The task service exposes the operations required to act on a task.

For more information about creating a human task, see Section 28.3, "Creating the Human Task Definition with the Human Task Editor."

28.4.1 How to Associate a Human Task with a BPEL Process

There are two ways to associate a human task component with a BPEL process:

	
If you have created a human task component in the SOA composite application, drag a human task activity into the BPEL process in Oracle BPEL Designer. Then, select the existing human task component from the Task Definition list of the Create Human Task dialog. You can then specify the task title, initiator, parameter values, and other values.

	
If you have not created a human task component, drag the human task activity into the BPEL process in Oracle BPEL Designer Then, click the Add icon to the right of the Task Definition list in the Create Human Task dialog. This action enables you to specify the name of the new human task component, the parameters, and the outcomes. The Human Task Editor then opens for you to design the remaining task metadata. After design completion, close the Human Task Editor.

To associate a human task with a BPEL process:

	
Go to the SOA Composite Editor.

	
Double-click the BPEL process service component with which to associate the .task file of the human task service component.

	
From the Component Palette, select BPEL.

	
Expand BPEL Activities.

	
Drag a new Human Task activity into the BPEL process.

The Create Human Task dialog appears.

	
Note:

When you first drag this activity into Oracle JDeveloper, the dialog is named Create Human Task. After you finish specifying details on this dialog and click OK, the name of this dialog changes to simply Human Task.

	
From the Task Definition list of the General tab, select the human task, as shown in Figure 28-70.

Figure 28-70 Task Definition List Selection

[image: Description of Figure 28-70 follows]

The .task file of the human task service component is associated with the BPEL process.

	
Note:

After you complete association of your human task activity with a BPEL process and close the Create Human Task dialog, you can always re-access this dialog by double-clicking the human task activity in Oracle BPEL Designer.

28.4.2 What You May Need to Know About Deleting a Wire Between a Human Task Service Component and a BPEL Process

If you delete the wire between a BPEL process and the human task service component that it invokes, the invoke activity of the human workflow is deleted from the BPEL process. However, the taskSwitch switch activity for taking action (contains the approve, reject, and otherwise task outcomes) is still there. This is by design for the following reasons:

	
The switch activity contains user-entered BPEL code.

	
The switch can be reused if the intention for deleting the wire is only to point to another human task.

	
Deleting the switch is a single-step action.

If you then drag and drop a human task service component into the BPEL process to use the same taskSwitch switch activity, a new taskSwitch switch activity is created. You then have two switch activities in the BPEL process with the same name. To determine which one to delete, you must go into the approve, reject, and otherwise task outcomes of the taskSwitch switch activities to determine which is the older, modified switch and which is the newer switch.

28.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter Variables

Figure 28-71 shows the General tab that displays after you select the human task.

Figure 28-71 Human Task — General Tab (After Selection)

[image: Description of Figure 28-71 follows]

The General tab of the Human Task activity enables you to perform the tasks shown in Table 28-16:

Table 28-16 Human Task - General Tab

	For this Field...	See...
	
Task Title

	
Section 28.4.3.1, "Specifying the Task Title"

	
Initiator

Priority

	
Section 28.4.3.2, "Specifying the Task Initiator and Task Priority"

	
Task Parameters

	
Section 28.4.3.3, "Specifying Task Parameters"

28.4.3.1 Specifying the Task Title

The title displays the task in Oracle BPM Worklist during runtime. This is a mandatory field. Your entry in this field overrides the task title you entered in the Title field of the Human Task Editor described in Section 28.3.4.1, "Specifying a Task Title."

To specify the task title:

	
In the Task Title field of the General tab, enter the task title through one of the following methods:

	
Enter the title manually.

	
Click the icon to the right of the field to display the Expression Builder dialog to dynamically create the title.

You can also combine static text and dynamic expressions in the same title. To include dynamic text, place your cursor at the appropriate point in the text and click the icon on the right to invoke the Expression Builder dialog.

28.4.3.2 Specifying the Task Initiator and Task Priority

You can specify a task initiator. The initiator is the user who initiates a task. The initiator can view their created tasks from Oracle BPM Worklist and perform specific tasks, such as withdrawing or suspending a task.

To specify the task initiator and task priority:

	
To the right of the Initiator field of the General tab, enter the initiator (for example, jcooper) or click the icon to display the Expression Builder dialog for dynamically specifying an initiator. This field is optional. If not specified, the initiator defaults to the task owner specified on the Advanced tab of the Human Task dialog. The initiator defaults to bpeladmin if a task owner is also not specified.

	
From the Priority list, select a priority value between 1 (the highest) and 5. This field is provided for user reference and does not make this task a higher priority during runtime. Use the priority to sort tasks in Oracle BPM Worklist. This priority value overrides the priority value you select in the Priority list of the Human Task Editor.

For more information about specifying the priority in the Human Task Editor, see Section 28.3.4.1, "Specifying a Task Title."

28.4.3.3 Specifying Task Parameters

The task parameter table shown in Figure 28-72 displays a list of task parameters after you complete the Task Title and Initiator fields.

Figure 28-72 Task Parameter Table

[image: Description of Figure 28-72 follows]

To specify task parameters:

	
In the BPEL Variable column, double-click the dots to map the task parameter to the BPEL variable. You must map only the task parameters that carry input data. For output data that is filled in from Oracle BPM Worklist, you do not need to map the corresponding variables.

The Task Parameters dialog appears.

	
Expand the Variables tree shown in Figure 28-73 and select the appropriate task variable.

Figure 28-73 Variables Tree

[image: Description of Figure 28-73 follows]

	
Click OK.

The Human Task dialog shown in Figure 28-74 appears as follows.

Figure 28-74 Human Task Dialog

[image: Description of Figure 28-74 follows]

	
Click OK.

	
To define advanced features for the human task activity, click the Advanced tab and go to Section 28.4.4, "How to Define the Human Task Activity Advanced Features." Otherwise, click OK to close the Human Task dialog.

28.4.4 How to Define the Human Task Activity Advanced Features

Figure 28-75 shows the Advanced tab.

Figure 28-75 Create Human Task — Advanced Tab

[image: Description of Figure 28-75 follows]

The Advanced tab of the Human Task activity enables you to perform the tasks shown in Table 28-17:

Table 28-17 Human Task - Advanced Tab

	For this Field...	See...
	
Scope Name

Global Task Variable Name

	
Section 28.4.4.1, "Specifying a Scope Name and a Global Task Variable Name"

	
Owner

	
Section 28.4.4.2, "Specifying a Task Owner"

	
Identification Key

	
Section 28.4.4.3, "Specifying an Identification Key"

	
Identity Context

	
Section 28.4.4.4, "Specifying an Identity Context"

	
Application Context

	
Section 28.4.4.5, "Specifying an Application Context"

	
Include task history from

	
Section 28.4.4.6, "Including the Task History of Other Human Tasks"

28.4.4.1 Specifying a Scope Name and a Global Task Variable Name

You are automatically provided with default scope and global task variable names during human task activity creation. However, you can specify custom names that are used to name the scope and global variable during human task activity creation.

To specify a scope name and a global task variable name:

	
In the Scope Name field of the Advanced tab, enter the name for the BPEL scope to be generated.

This BPEL scope encapsulates the entire interaction with the workflow service and BPEL variable manipulation.

	
In the Global Task Variable Name field of the Advanced tab, enter the global task variable name.

This is the name of the BPEL task variable used for the workflow interaction.

28.4.4.2 Specifying a Task Owner

The task owner can view tasks belonging to business processes they own and perform operations on behalf of any of the task assignees. Additionally, the owner can also reassign, withdraw, or escalate tasks.

If you do not specify a task initiator on the General tab of the Human Task dialog, it defaults to the owner specified here.

To specify a task owner:

	
In the Owner field of the Advanced tab, enter the task owner name or click the icon to the right to use the Expression Builder to dynamically specify the owner of this task.

28.4.4.3 Specifying an Identification Key

The identification key can be used as a user-defined ID for the task. For example, if the task is meant for approving a purchase order, the purchase order ID can be set as the identification key of the task. Tasks can be searched from Oracle BPM Worklist using the identification key. This attribute has no default value.

To specify an identification key:

	
In the Identification Key field of the Advanced tab, enter an optional identification key value.

28.4.4.4 Specifying an Identity Context

The identity realm name is used for the task when multiple realms are configured. You cannot have assignees from multiple realms working on the same task. This field is required if you are using multiple realms.

To specify an identity context

	
In the Identity Context field of the Advanced tab, enter a value.

28.4.4.5 Specifying an Application Context

The stripe name of the application contains the application roles used in the task.

To specify an application context

	
In the Application Context field of the Advanced tab, enter a value.

28.4.4.6 Including the Task History of Other Human Tasks

This feature enables one human task to be continued with another human task. There are many scenarios in which you have related tasks in a single BPEL process. For example, assume you have a procurement process to obtain a manager's approval for a computer, then several BPEL activities in between, and then another task for the IT department to buy the computer. The participant of the second task may want to see the approval history, comments, and attachments created when the manager approved the purchase. You can link these different tasks in the BPEL process by chaining the second task to the first task with this option.

For chained tasks, the title of the new task cannot be set from the task metadata (.task file). For example, assume existing TaskA is chained with new task TaskB, and TaskB has a new title set in the Human Task Editor; this title is not recognized. Therefore, if the chained task requires a different title, it must be set in the task instance before calling the task service reinitiate operation. If a BPEL process is initiating the tasks, set the task title before the workflow service APIs are called. If a Java program is calling the workflow APIs programatically, then it must set the title.

To include the task history of other tasks:

	
Select the Include task history from checkbox of the Advanced tab to extend a previous workflow task in the BPEL process. Selecting this checkbox includes the task history, comments, and attachments from the previous task. This provides you with a complete end-to-end audit trail.

When a human task is continued with another human task, the following information is carried over to the new workflow:

	
Task payload and the changes made to the payload in the previous workflow

	
Task history

	
Comments added to the task in the previous workflow

	
Attachments added to the task in the previous workflow

	
Due date is carried over

In the Include task history from list, all existing workflows are listed.

	
Select a particular human task to extend (continue) the selected human task.

For example, a hiring process is used to hire new employees. Each interviewer votes to hire or not hire a candidate. If 75% of the votes are to hire, then the candidate is hired; otherwise, the candidate is rejected. If the candidate is to be hired, an entry in the HR database is created and the human resources contact completes the hiring process. The HR contact also must see the interviewers and the comments they made about the candidate. This process can be modeled using a parallel participant type for the hiring. If the candidate is hired, a database adapter is used to create the entry in the HR database. After this action, a simple workflow can include the task history from the parallel participant type so that the hiring request, history, and interviewer comments are carried over. This simple workflow is assigned to the HR contact.

	
Select a payload to use:

	
Clear old payload and recreate

This option is applicable when the payload attributes in the XML files of the human tasks involved in this extended workflow are different. For example, the payload attribute for the human task whose history you are including has three extra attributes than the payload of the other human task.

	
Use existing payload

This option is applicable when the payload attributes in the XML files of the human tasks involved in this extended workflow are the same.

28.4.5 How to View the Generated Human Task Activity

When you have completed modeling the human task activity, the human task is generated in the designer.

Figure 28-76 shows how a workflow interaction is modeled. Figure 28-76 also illustrates the interaction when no BPEL callbacks are modeled. In this case, after a task is complete, the BPEL process is called back with the completed task. No intermediary events are propagated to the BPEL process instance. It is recommended that any user customizations be done in the first assign, AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.

Figure 28-76 Workflow Interaction Modeling

[image: Description of Figure 28-76 follows]

Click the Expand icon next to the human task activity in Oracle BPEL Designer to display its contents, as shown in Figure 28-77.

Figure 28-77 Expanding the Human Task Activity

[image: Description of Figure 28-77 follows]

28.4.5.1 Invoking BPEL Callbacks

If intermediary events must be propagated to the BPEL process instance, select the Allow task and routing customization in BPEL callbacks checkbox in the Events section of the Human Task Editor. When these options are selected, the workflow service invokes callbacks in the BPEL instance during each update of the task. The callbacks are listed in the TaskService.wsdl file and described as follows:

	
onTaskCompleted

This callback is invoked when the task is completed, expired, withdrawn, or errored.

	
onTaskAssigned

This callback is invoked when the task is assigned to a new set of assignees due to the following actions:

	
Outcome update

	
Skip current assignment

	
Override routing slip

	
onTaskUpdated

This callback is invoked for any other update to the task that does not fall in the onTaskComplete or onTaskAssigned callback. This includes updates on tasks due to a request for information, a submittal of information, an escalation, a reassign, and so on.

	
onSubTaskUpdated

This callback is invoked for any update to a subtask.

Figure 28-78 shows how a workflow interaction with callbacks is modeled. After this task is initiated, a while loop is used to receive messages until the task is complete. The while loop contains a pick with four onMessage branches — one for each of the above-mentioned callback operations. The workflow interaction works fine even if nothing is changed in the onMessage branches, meaning that customizations in the onMessage branches are not required.

In this scenario, a workflow context is captured in the BPEL instance. This context can be used for all interaction with the workflow services. For example, to reassign a task if it is assigned to a group, then you need the workflow context for the reassignTask operation on the task service.

It is recommended that any user customizations be performed in the first assign, AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.

Figure 28-78 Workflow Interaction Modeling (with Callbacks)

[image: Description of Figure 28-78 follows]

28.4.6 What You May Need to Know About Changing the Generated Human Task Activity

If you must change a generated human task activity, note the following details:

	
Do not modify the assign tasks that are automatically created in a switch activity when you add a human task to a BPEL process flow. Instead, add a new assign activity outside the switch activity.

	
If the parameter passed into a human task is modified (for example, you change the parameter type in the Edit Task Parameter dialog), you must open the human task activity in the BPEL process flow and click OK to correct the references to the payload variable. Not doing so causes the parameter name to change and become uneditable.

If the task outcomes in the Human Task Editor are modified, you must edit the human task activity and click OK. The switch case is then updated based on the changes to the outcomes.

28.4.7 What You May Need to Know About Deleting a Partner Link Generated by a Human Task

Deleting a partner link that was generated by a human task (for example, human_task_name.TaskService in the Partner Links swimlane) causes the human task to become unusable. If you delete the partner link, you must delete the human task activity in Oracle BPEL Designer and start over again.

28.4.8 How to Define Outcome-Based Modeling

In many cases, the outcome of a task determines the flow of the business process. To facilitate modeling of the business logic, when a user task is generated, a BPEL switch activity is also generated with prebuilt BPEL case activities. By default, one case branch is created for each outcome selected during creation of the task. An otherwise branch is also generated in the switch to represent cases when the task is withdrawn, expired, or errored.

28.4.8.1 Specifying Payload Updates

The task carries a payload in it. If the payload is set from a business process variable, then an assign activity with the name copyPayloadFromTask is created in each of the case and otherwise branches to copy the payload from the task back to its source. If the payload is expressed as other XPath expressions (such as ora:getNodes(...)), then this assign is not created because of the lack of a process variable to copy the payload back. If the payload does not require modification, then this assign can be removed.

28.4.8.2 Using Case Statements for Other Task Conclusions

By default, the switch activity contains case statements for the outcomes only. The other task conclusions are captured in the otherwise branch. These conclusions are as follows:

	
The task is withdrawn

	
The task is errored

	
The task is expired

If business logic must be added for each of these other conclusions, then case statements can be added for each of the preceding conditions. The case statements can be created as shown in the following BPEL segment. The XPath conditions for the other conclusions in the case activities for each of the preceding cases are shown in bold in Example 28-2.

Example 28-2 XPath Conditions for Other Conclusions in the Case Activities

<switch name="taskSwitch">
 <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'COMPLETED' and
bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:conclusion') = 'ACCEPT'">
 <bpelx:annotation>
 <bpelx:pattern>Task outcome is ACCEPT
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'WITHDRAWN'">
 <bpelx:annotation>
 <bpelx:pattern>Task is withdrawn
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'EXPIRED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is expired
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'ERRORED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is errored
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <otherwise>
 <bpelx:annotation>
 <bpelx:pattern>Task is EXPIRED, WITHDRAWN or ERRORED
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </otherwise>
</switch>

29 Designing Task Forms for Human Tasks

The human workflow service creates tasks for users to interact with the business process. Each task has two parts—the task metadata and the task form. The task form is used to display the contents of the task to the user's worklist.

Oracle BPM Worklist displays all worklist tasks that are assigned to a user or a group. When a worklist user drills down into a specific task, the task form renders the details of that task. For example, the task form for the Fusion Order Demo ApprovalHumanTask shows order information such as the order total and ship-to information.

This chapter describes how to design and customize task forms using ADF task flows in Oracle JDeveloper.

This chapter includes the following sections:

	
Section 29.1, "Introduction to the Task Form"

	
Section 29.2, "Associating the Task Flow with the Task Service"

	
Section 29.3, "Creating an ADF Task Flow Based on a Human Task"

	
Section 29.4, "Creating a Task Form"

	
Section 29.5, "Refreshing Data Controls When the Task XSD Changes"

	
Section 29.6, "Securing the Task Flow Application"

	
Section 29.7, "Creating an Email Notification"

	
Section 29.8, "Deploying a Composite Application with a Task Flow"

	
Section 29.9, "Displaying a Task Form in the Worklist"

	
Section 29.10, "Displaying a Task in an Email Notification"

	
Section 29.11, "Reusing the Task Flow Application with Multiple Human Tasks"

29.1 Introduction to the Task Form

If your SOA composite includes a human task, then you need a way for users to interact with the task. The integrated development environment of Oracle SOA Suite includes Oracle Application Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a task form that depicts the human task in the SOA composite.

The task form is a Java Server Page XML (.jspx) file that you create in the Oracle JDeveloper designer where you created the SOA composite containing the human task. Note that you must set the page encoding to UTF-8 in Oracle JDeveloper before creating the Java Server Page XML file. You can do this in Oracle JDeveloper by choosing Tools > Preferences > Environment, and selecting UTF-8 using the Encoding dropdown list.

Figure 29-1 shows the Oracle JDeveloper ADF Task Flow Based on Human Task option where you start creating a task form.

Figure 29-1 ADF Task Flow Based on a Human Task, in Oracle JDeveloper

[image: Description of Figure 29-1 follows]

29.1.1 What You May Need to Know About Task Forms: Time Zone Conversion

Time zone conversion is not automatic for datetime elements in the task payload when a task form is created. You must add the <af:convertDateTime> tag to enable time zone conversion on a datetime element. See any standard task header time label for an example. Example 29-1 shows a sample header.

Example 29-1 Time Zone Conversion

<af:outputText value="#{bindings.createdDate.inputValue}"
 id="ot15">
 <f:convertDateTime type="#{pageFlowScope.dt}"
 timeZone="#{pageFlowScope.tz}"
 dateStyle="#{pageFlowScope.df}"
 timeStyle="#{pageFlowScope.tf}"/>
 </af:outputText>

29.2 Associating the Task Flow with the Task Service

When you create an ADF task flow based on a human task, you must select a task metadata file to generate the data control. This data control is used to lay out the content on the page and connect to the workflow service engine at execution time to retrieve task content and act on tasks. See "Getting Started with ADF Task Flows" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for more information.

The hwtaskflow.xml file is used to capture the details on connecting with the service engine. By default, it uses remote EJBs to connect to the workflow server. The SOA server URL and port are automatically determined by using WebLogic Server runtime MBeans. However, you can override these by explicitly specifying the URL and port information here.

Seed a user that has ORMI privileges so that the task details application can connect to the workflow service. You can seed this user by using Oracle Enterprise Manager Fusion Middleware Control.

29.3 Creating an ADF Task Flow Based on a Human Task

ADF task flows are used to model the user interface for the task details page. You can create the task flow in the same application that contains the human task or in a separate application.

You must have previously created a human task (.task file) as part of a SOA composite before you can create a task flow. See Chapter 28, "Designing Human Tasks" for how to create the.task file.

If the task flow is in the same application as the human task, create a different project for the task flow. If the SOA composite contains multiple human tasks, create a separate project for each ADF task flow associated with each human task. By using an ADF task flow, you create data controls based on the task parameters and outcomes.

To autogenerate an ADF task form, access the human task in the SOA composite application (form and task are in the same application). See Section 29.3.1, "How To Create an ADF Task Flow from the Human Task Editor," for more information.

To create an ADF task form in a separate application, create the new application and project and browse for the .task file for the human task. See Section 29.3.2, "How To Create an ADF Task Flow Based on a Human Task," for more information.

29.3.1 How To Create an ADF Task Flow from the Human Task Editor

The.task file that specifies the human task is easily associated with the task flow when the two are located in the same application.

To create an ADF task flow for a human task:

	
Open the BPEL process within the SOA composite application.

	
Double-click the human task activity and click Edit.

Figure 29-2 shows the Human Task dialog.

Figure 29-2 Editing a Human Task

[image: Description of Figure 29-2 follows]

	
In the .task tab (shown in Figure 29-3), click Create Form and select Auto-Generate Task Form.

Figure 29-3 Creating a Task Flow from the Human Task Editor

[image: Description of Figure 29-3 follows]

	
Provide a project name and a directory path (or use the default) and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 29-4.

Figure 29-4 The taskDetails1_jspx Icon

[image: Description of Figure 29-4 follows]

The task flow and task form are complete and ready to be deployed.

29.3.2 How To Create an ADF Task Flow Based on a Human Task

The ADF Task Flow Based on Human Task option (shown in Figure 29-1) creates an ADF task flow and additional artifacts to make deployment easier. When you select the .task file to associate with the ADF task flow, human task data controls are created based on the task parameters and outcomes. These are then available to use in the JSPX page. You must have access to the SOA composite project while creating the task flow project.

To create an ADF task flow based on a human task:

	
From the File main menu, select New > Applications > SOA Application.

	
Click OK.

	
Provide an application name and directory information (or accept the default), and click Finish.

	
Right-click the project name and select New.

	
Under Web Tier, select JSF.

	
Select ADF Task Flow Based on Human Task and click OK.

	
In the SOA Resource Browser, find and select the .task file where you defined the human task and click OK.

	
If the human task is in the same application as the task definition, then click File to use the file browser to navigate to the .task file, which is typically in the composite directory.

	
If the human task is in a different application, then click Resource Palette to use the MDS resource catalog and find the .task file in the composite application.

	
If the .task file is located within the current application, then click Application.

This displays the Create Task Flow dialog and creates the data controls.

	
In the Create Task Flow dialog, accept the defaults and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 29-4. The task flow has a view, a control flow, and a task return.

To continue creating the task form, see the following:

	
Section 29.4.3, "How To Create a Task Form Using the Complete Task with Payload Drop Handler."

or

	
Section 29.4.4, "How To Create Task Form Regions Using Individual Drop Handlers."

29.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task

With an ADF task flow based on a human task, the task flow application has task data controls that wire the task form with the workflow services. The data controls provide the following:

	
Various parameters and operations to access task data and act on it

	
Drop handlers with which you can create interface regions to display the contents of the task

The human task-aware data controls appear in the Data Controls panel of the Oracle JDeveloper Application Navigator, as shown in Figure 29-5.

Figure 29-5 The Task Collection in the Data Controls Panel

[image: Description of Figure 29-5 follows]

The data controls for the task (represented by the Task node in Figure 29-5) have drop handlers to render the task form. See Section 29.4, "Creating a Task Form," for more information.

29.3.4 What You May Need to Know About Having Multiple ADF Task Flows That Contain the Same Element with Different Meta-attributes

You must create separate ADF task flows if both contain the same element, but with different meta-attributes specified (for example, editable and noneditable).

For example, assume you perform the following tasks.

	
Create two task form applications for a SOA composite application:

	
Task form application one (for example, named EnterBankDetails.task) has one editable payload (for example, named BankDetails) and one noneditable payload (for example, named Employee).

	
Task form application two (for example, named ValidatePersonalInformation.task) has one editable payload (for example, also Employee).

While creating the task form, the wizard provides you with the option to define the ADF table for payload Employee.

	
Complete the wizard, then deploy the process.

	
Invoke the process.

	
Log in to Oracle BPM Worklist.

There is a Validate Personal Information task (for ValidatePersonalInformation.task).

	
Select the task.

Employee details are available for modification, as expected.

	
Add a new record, then approve the task.

	
Select the Enter Bank Details task (for EnterBankDetails.task). In the task form, note that the Insert New and Delete buttons are still present for Employee data, even though it is a noneditable payload.

	
Click Delete, then select Approve. The payload gets deleted.

Ensure that you create two separate ADF task flow applications because both contain the Employee element, but with different meta-attributes specified (editable and noneditable).

29.4 Creating a Task Form

You can create a task form by using the Auto-Generate Task Form option, the Launch Task Form Wizard option, or by using human task drop handlers.

	
For how to use the Auto-Generate Task Form option, see Section 29.4.1, "How To Create an Autogenerated Task Form."

	
For how to use the Launch Task Form Wizard option, see Section 29.4.2, "How To Create a Custom Task Form Using the Task Form Wizard."

	
For how to use human task drop handlers, see the following:

	
Section 29.4.3, "How To Create a Task Form Using the Complete Task with Payload Drop Handler"

	
Section 29.4.4, "How To Create Task Form Regions Using Individual Drop Handlers"

	
Section 29.4.5, "How To Add the Payload to the Task Form"

29.4.1 How To Create an Autogenerated Task Form

The autogenerated task form can be further edited as needed.

To create an autogenerated task form:

	
Open the BPEL process within the SOA composite application.

	
Double-click the human task activity and click Edit.

	
From the .task editor, click Create Form and select Auto-Generate Task Form, as shown in Figure 29-6.

Figure 29-6 Creating a Task Form

[image: Description of Figure 29-6 follows]

	
Provide a project name and a directory path (or use the default) and click OK.

The default form opens in the taskDetails1.jspx tab. The default form for ApprovalHumanTask is shown in Figure 29-7.

Figure 29-7 Autogenerated Task Form for ApprovalHumanTask

[image: Description of Figure 29-7 follows]

29.4.2 How To Create a Custom Task Form Using the Task Form Wizard

The wizard generates a task form with a header, body (one or more), and footer, and provides for tabular formatting into columns and rows. You can select any of the task (system) actions to display on the form and you can specify that the custom actions defined for the human task appear on the form as buttons. Any or all parts of the payload can be selected to appear, as well as attachments and comments.

	
Note:

You can also access the Task Form Wizard by right-clicking a human task activity and selecting Launch Task Form Wizard. [image: Description of bp_tdf_simpwizmenu1.gif follows]

To create a custom task form:

	
Open the BPEL process within the SOA composite application.

	
Double-click the human task activity and click Edit.

	
Click Create Form and select Launch Task Form Wizard.

	
Provide a project name and a directory path (or use the default) and click OK.

	
On the Name and Definition page, shown in Figure 29-8, provide the following and click Next.

	
Form Name: The name of the form (.jspx file) that is generated at the end of the wizard. The default name, taskDetails1.jspx is provided if you do not provide a name. Ensure that valid characters are used in the name. Spaces are not permitted.

	
Task Flow Name: The name of the ADF task flow that is generated at the end of the wizard.

Figure 29-8 Custom Task Form Wizard: Form Name and Definition

[image: Description of Figure 29-8 follows]

	
On the Header page, shown in Figure 29-9, do the following and click Next.

	
Enter the number of display columns. If you want each header label to display in its own column, then enter the same number as the number of headers you move into the Selected list. If you enter 1, but select 7 headers, all 7 headers appear in one column.

	
Select items for display in the title bar:

	
System actions menu: Lists the system actions that are possible for the task, such as Request Information, Reassign, Renew, Suspend, Escalate, and Save.

	
Custom outcomes (buttons): Displays buttons for task actions that are defined in the human task, such as setting task outcomes.

	
Move header labels into the Selected list and reorder them as needed.

Figure 29-9 Custom Task Form Wizard: Setting Up the Header

[image: Description of Figure 29-9 follows]

	
On the Body page, shown in Figure 29-10, do the following to set up the form, and click Next:

	
Enter a title that describes the body panel.

	
Enter the number of columns for row 1. For a simple form, you may want to enter the same number as you entered for the number of header columns.

	
Click the Add (+) button to add more rows. For each new row, you can also specify the number of columns. Each row can have its own column layout. For each column in each row, a body page is created, labeled Row1, Column1, and so on.

Figure 29-10 Custom Task Form Wizard: Setting Up the Body

[image: Description of Figure 29-10 follows]

	
Note:

If you specify rows or columns for which no payload data appears, then an empty panel group is displayed. You can use this blank section to add content to the form later by using data controls.

	
On the Row1 Column1 page, shown in Figure 29-11, move all or part of the payload to the Selected list and click Next.

Figure 29-11 Custom Task Form Wizard: Selecting the Body Fields

[image: Description of Figure 29-11 follows]

	
For any Rown Columnn page after Row1 Column1, repeat Step 8 and click Next.

	
On the Footer page, shown in Figure 29-12, do the following and click Next.

	
Enter the number of columns for the footer. You may choose to put both the attachments and comments together in one column, or can make a separate column for each one. If you enter 0, then no panel group appears.

	
Enter a title that describes the footer panel.

	
Move attachments, comments, or neither to the Selected list.

Figure 29-12 Custom Task Form Wizard: Selecting the Footer Fields

[image: Description of Figure 29-12 follows]

	
On the Summary page, shown in Figure 29-13, inspect your selections. Click Back to make changes or click Finish.

Figure 29-13 Custom Task Form Wizard: Summary

[image: Description of Figure 29-13 follows]

The Designer initializes and the form_name.jspx tab is displayed, as shown in Figure 29-14.

Figure 29-14 Custom Task Form

[image: Description of Figure 29-14 follows]

29.4.3 How To Create a Task Form Using the Complete Task with Payload Drop Handler

The human task drop handlers appear in the context menu of the designer, as shown in Figure 29-15.

Figure 29-15 Human Task Drop Handlers for Creating the Task Form

[image: Description of Figure 29-15 follows]

Other ADF drop handlers—for forms, tables, trees, and so on (shown in Figure 29-15)—can also be used to create task forms. See Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for more information about standard ADF drop handlers .

Complete Task with Payload

This option creates the combination of all the preceding task form components (the task header, task history, task actions, and task comments and attachments), plus the interface for the payload. The payload interface is created as follows:

	
All text nodes are created as text input fields.

	
If an element has maxOccurs="unbounded", then it appears as a table.

	
Nested tables are not rendered; that is, if an element has maxOccurs="unbounded" and it has a child with maxOccurs="unbounded", then the child element is not rendered.

	
If there are multiple levels of nesting, then drag and drop the individual sections and use a standard ADF drop handler.

Complete Task without Payload

This option creates the combination of all of the preceding task form components (the task header, task history, task actions, and task comments and attachments).

Task Details for Email

This option creates an ADF region that renders well when sent by email. It generates the form shown in Figure 29-16.

Figure 29-16 Task Form for Email Notification

[image: Description of Figure 29-16 follows]

See Section 29.7, "Creating an Email Notification," for more information.

Task Header

All the standard header fields are added to the task form. This includes the task number and title; the state, outcome, and priority of the BPEL process, and information about who created, updated, claimed, or is assigned to the task. The header also displays dates related to task creation, last modification, and expiration. You can add or remove header fields as required for your task display.

Figure 29-17 shows an example of header information.

Figure 29-17 Header Information

[image: Description of Figure 29-17 follows]

Buttons for task actions are also created in the header, as shown in Figure 29-18.

Figure 29-18 Task Header: Task Action Buttons

[image: Description of Figure 29-18 follows]

Task Actions

The following task actions appear from the Actions dropdown list or as buttons. The tasks that appear depend on the state of the task (assigned, completed, and so on) and the privileges that are granted to the user viewing the task. For example, when a task is assigned to a group, only the Claim button appears. After the task is claimed, other actions such as Reject and Approve appear.

The first three custom actions appear on the task form as buttons: Claim, Dismiss, and Resume. Only those buttons applicable to the task appear. Other actions are displayed under the Actions list, starting with Request for Information, Reassign, and Route. Systems actions—Withdraw, Pushback, Escalate, Release, Suspend, and Renew—follow the custom actions, followed by the Save button. These actions require no further dialog to complete.

	
Claim—A task that is assigned to a group or multiple users must be claimed first. Claim is the only action available in the Task Action list for group or multiuser assignments. After a task is claimed, all applicable actions are listed.

	
Dismiss—This action is used for a task that requires the person acting on the task to acknowledge receipt, but not take any action (like an FYI).

	
Resume—A task that was halted by a Suspend action can be worked on again. See Suspend.

	
Request for Information—You can request more information from the task creator or any of the previous assignees. If reapproval is not required, then the task is assigned to the next approver or the next step in the business process.

	
Reassign—Managers can reassign a task to reportees. A user with BPMWorkflowReassign privileges can reassign a task to anyone. The Reassign option also provides a Delegate function. A task can be delegated to another user or group. The delegated task appears in both the original user's and the delegated user's worklists. The delegated user can act on behalf of the original assignee, and has the same privileges for that task as the original assignee.

	
Route—If there is no predetermined sequence of approvers or if the workflow was designed to permit ad hoc routing, then the task can be routed in an ad hoc fashion. For such tasks, a Route button appears on the task details page. From the Routing page, you can look up one or more users for routing. When you specify multiple assignees, you can choose whether the list of assignees is for simple (group assignment to all users), sequential, or parallel assignment. In the case of parallel assignment, you provide the percentage of votes required for approval.

	
Withdraw—Only the task creator can withdraw (cancel) the task. The Comments area is available for an optional comment. The business process determines what happens next.

	
Pushback—This action sends a task up one level in the workflow to the previous assignee.

	
Escalate—An escalated task is assigned to the user's manager. The Comments area is available for an optional comment.

	
Release—Releasing a task makes it available to other assignees. A task assigned to a group or multiple users can then be claimed by the other assignees.

	
Suspend—This action suspends the expiration date indefinitely, until the task is resumed. Suspending and resuming tasks are available only to users who have been granted the BPMWorkflowSuspend role. Other users can access the task by selecting Previous in the task filter or by looking up tasks in the Suspended status. Buttons that update a task are disabled after suspension.

	
Renew—Renewing a task extends the task expiration date seven days (P7D is the default). The renewal duration is controlled from Oracle Enterprise Manager Grid Control Console. A renewal appears in the task history. The Comments area is available for an optional comment.

	
Save—Changes to the task are saved.

While you are creating a task form, all possible system action buttons appear, although only those actions that are appropriate for the task state and fit the user's privileges appear in the worklist.

Task History

The history of task actions appears on the task details page, and is displayed in the worklist as a history table. The history includes the following fields:

	
Version number

	
Participant name—the person who acted on the task

	
Action—for example, if the task was approved or assigned

	
Updated By—name of the person who last updated the task

	
Action date

See Figure 30-20, "History: Graphical View" and Figure 30-21, "History: Full Task Actions" for how task history is displayed in Oracle BPM Worklist, including the options to take a history snapshot, list future participants, and list full task actions.

Task Comments and Attachments

A trail of comments with the comment date and comment writer's user name is maintained throughout the life cycle of a task.

Files or reference URLs associated with a task can be added by any of the human task participants.

Figure 29-19 shows an example of the comments and attachments region.

Figure 29-19 Comments and Attachment Region

[image: Description of Figure 29-19 follows]

The following steps describe how to use a drop handler that creates the task form, including the payload, without building each region individually. To build each region individually, see Section 29.4.4, "How To Create Task Form Regions Using Individual Drop Handlers."

To create a task form using the Complete Task with Payload drop handler:

	
In the designer, double-click taskDetails1_jspx.

	
In the Create JSF Page dialog, provide a file name and directory information (or accept the defaults) and click OK.

	
In the Data Controls panel of the Application Navigator, expand the human task node, then the getTaskDetails node, and then the Return node.

	
Drag the Task icon into the taskDetails.jspx window.

	
Select Human Task, and then Complete Task with Payload.

	
In the Edit Action Binding dialog, shown in Figure 29-20, click OK.

Figure 29-20 Edit the Action Binding

[image: Description of Figure 29-20 follows]

	
In the next Edit Action Binding dialog, the data collection is selected, as shown in Figure 29-21; click OK.

Figure 29-21 Select the Data Collection and Action

[image: Description of Figure 29-21 follows]

The task form is displayed, as shown in Figure 29-22.

Figure 29-22 Task Form

[image: Description of Figure 29-22 follows]

29.4.4 How To Create Task Form Regions Using Individual Drop Handlers

You can create a display form with multiple regions using the individual Task Header, Task Action, Task History, and Task Comment and Attachment drop handlers shown in Figure 29-23.

Figure 29-23 Using Human Task Drop Handlers

[image: Description of Figure 29-23 follows]

Task Header provides both header and task actions, so you do not need the Task Action drop handler when you use Task Header. Use Task Action when you want the actions dropdown menu and buttons, but not header details.

To create the task form without building each region individually, see Section 29.4.3, "How To Create a Task Form Using the Complete Task with Payload Drop Handler."

Before you create this task form, you must have created the following:

	
A new application and SOA project, and a human task service.

	
An ADF task flow based on the human task. See Section 27.3.2.2, "How to Create the Vacation Request Process," for more information.

To create task form regions using individual drop handlers:

	
In the designer, double-click taskDetails1.jspx.

	
In the Create JSF Page dialog, provide a file name and directory information (or accept the defaults) and click OK.

	
In the Data Controls panel of the Application Navigator, expand the human task node, then the getTaskDetails node, and then the Return node.

	
Drag the Task icon into the taskDetails.jspx window.

	
Select Human Task, and then Task Header.

This creates the Actions dropdown list and buttons for task actions, as shown in Figure 29-24, and header details, as shown in Figure 29-25.

Figure 29-24 Designing the Task Form: Buttons for Task Actions

[image: Resolved, Unresolved]

Figure 29-25 Designing the Task Form: Task Headers

[image: Description of Figure 29-25 follows]

	
Drag additional Task icons into the JSPX designer, selecting these options with each iteration:

	
Human Task, then Task History

	
Human Task, then Task Comment and Attachment

The task form now has multiple regions for task action dropdown lists and buttons, task header details, task history, and comments and attachments.

To continue creating the task form, see Step 1 in Section 29.4.5, "How To Add the Payload to the Task Form."

29.4.5 How To Add the Payload to the Task Form

In addition to adding the payload, you can create task form regions. See Step 1 in Section 29.4.4, "How To Create Task Form Regions Using Individual Drop Handlers."

To add the payload to the task form:

	
From the Component Palette, select ADF Faces.

	
Expand Layout.

	
Drag Panel Group Layout between the Header and Comment sections.

	
In the Data Controls panel, expand Task, and then Payload.

	
Drag the payload data collection to the left of the Panel Group Layout area.

An alternative to dropping the payload node onto the form is to expand the payload node and drop the necessary child elements onto the form. For example, to create a read-only form for the VacationRequest payload, expand the payload node, drag the Vacation Request Process Request node onto the form, and select Forms > ADF Read-only Form.

	
From the context menu, select Forms, then ADF Read-only Form, as shown in Figure 29-26.

Figure 29-26 Adding ADF Read-Only Fields to the Task Form Payload Region

[image: Description of Figure 29-26 follows]

	
In the Edit Form Fields dialog, accept the defaults and click OK.

This creates read-only fields in the payload region, between the Details and History sections.

The payload regions appear, as shown in Figure 29-27.

Figure 29-27 The Payload Region of the Task Form

[image: Description of Figure 29-27 follows]

The task form, shown in Figure 29-28, is complete and ready to be deployed.

Figure 29-28 The Task Form (taskDetails.jspx)

[image: Description of Figure 29-28 follows]

29.4.6 What Happens When You Create a Task Form

The form you designed is saved in the .jspx file at

JDev_Oracle_Home\mywork\task_form_application_name\project_name\public_html

The task form is ready to be deployed. See Section 29.8, "Deploying a Composite Application with a Task Flow."

29.5 Refreshing Data Controls When the Task XSD Changes

When task metadata changes, refresh the Data Controls view (XSD changes are not refreshed) that is based on that task metadata. The refresh functionality re-creates the data control. Figure 29-29 shows the Refresh option.

Figure 29-29 Refreshing Data Controls

[image: Description of Figure 29-29 follows]

To refresh the data control:

	
Right-click the data control.

	
Select the Edit Definition option to display the Refresh Data Control dialog, as shown in Figure 29-30.

Figure 29-30 The Refresh Data Control Button

[image: Description of Figure 29-30 follows]

29.6 Securing the Task Flow Application

You can use any container-based security for securing the task flow. See Section 32.6.2.1.2, "Requirements for Client Applications For Identity Propagation," for more information. Form-based authentication and SSO-based authentication are available for web security.

If you are sending a notification as email, do not secure the URL with"/notification/secure" to use container-based security because this is accessed by SOA APIs using an internal context that cannot be created outside of SOA. The URL pattern inside security cannot contain "/" (all URLs) and "//notification".

No additional steps are required for identity propagation. Identity is automatically propagated to the server EJBs.

29.7 Creating an Email Notification

A task form is used to provide an email notification, if email notification is defined as part of the human task. Options for email notification include:

	
Default email notification—Use the first page of the task form that you create for the human task. The content is sent as an HTML-based email. Images in the task flow are included as attachments so that the notification can be viewed in disconnected mode. All drop handlers, including Complete Task with Payload and Complete Task without Payload, are suitable for emails.

	
Custom email notification—Use the Task display for email drop handler to create a custom email notification task page.

Section 32.2, "Notifications from Human Workflow" to review notification settings as part of a human task definition (.task file).

29.7.1 How To Create an Email Notification

To send a custom email notification whose content and layout you have specified, create another JSPX file in which you design an email notification page. (Note, however, that you can use the default page for notification with no further modifications.) Create the custom notification page by using the custom and standard drop handlers, or use the email notification drop handler. In addition, do the following:

	
Add a router to the task flow. The router directs the task flow to send either the email notification page or the default page, depending on the control flow based on the bpmClientType page flow scope value.

	
Edit the generated inline CSS to customize the page. No additional CSS is included at runtime and the ADF CSS is not available at runtime. See the samples notification-101 and notification-102 at

http://www.oracle.com/technology/sample_code/products/hwf

	
Reference images directly from the HTML or JSF page. (Indirect references, for example, an included JSF that in turn includes the image, are not allowed.)

29.7.1.1 Creating a Task Flow with a Router

The control flow case with a router enables you to direct the request to a specific page based on certain parameters. For an ADF task flow based on a human task, you need a special page for email notifications. This section describes how to create a special page for email notifications.

To create a task flow with a router:

	
In the Application Navigator, expand the task flow project and double-click project_name _TaskFlow.xml.

The XML file opens in the designer. In the diagram view, you see the taskDetails1.jspx icon.

	
From the Component Palette, select ADF Task Flow, and drag the View icon into the designer.

	
Click view1 below the icon and enter a name for the email notification page.

Figure 29-31 shows an example using the name EmailPage.

Figure 29-31 Creating the Email Page

[image: Renaming the view icon to EmailPage]

	
From the Component Palette, drag Router into the designer.

	
Click router1 below the icon and enter a router name.

Figure 29-33 shows an example using the name PageRouter.

	
To ensure that the router is called, right-click the router icon and click Mark Activity > Default Activity, as shown in Figure 29-32.

Figure 29-32 Marking the Router as the Default Activity

[image: Description of Figure 29-32 follows]

	
Click the router - router_name - Property Inspector tab.

	
In the default-outcome field, enter default.

	
Click Add, and in the Outcome field, enter the name of the email notification page.

	
Use the Expression Builder to enter the following in the expression field: #{pageFlowScope.bpmClientType=="notificationClient"}

	
In the Component Palette, click Control Flow Case.

	
In the designer, drag from the router page icon to taskDetails1.jspx.

The control flow is automatically labeled default, as shown in Figure 29-33.

Figure 29-33 Connecting the Control Flow

[image: Default flow control]

	
In the Component Palette, click Control Flow Case.

	
In the designer, drag from the router page icon to the email notification page icon.

	
Click the control-flow-case - email_page_name - Property Inspector tab.

	
From the from-outcome list, select the name of the email notification page.

Figure 29-34 shows the completed control flow.

Figure 29-34 Completed Control Flow for an Email Notification

[image: EmailPage property inspector]

To continue creating the email notification page, see Step 1 in Section 29.7.1.2, "Creating an Email Notification Page."

29.7.1.2 Creating an Email Notification Page

Creating an email notification page is similar to creating a task form, with the addition of defining layout and inline styles. See Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for design information.

To create an email notification page:

	
In the designer, double-click EmailPage.

	
In the Create JSF Page dialog, provide a file name and directory information (or accept the defaults) and click OK.

The EmailPage.jspx tab opens in the designer.

	
From the Component Palette, drag any of the Common Components (for an image, for example) or Layout components into the designer.

	
For the layout component you selected, provide alignment and other details in the Property Inspector tab.

Figure 29-35 shows the layout fields available when Panel Group Layout is selected.

Figure 29-35 Specifying a Layout

[image: Panel group layout]

See Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for more information about panel group layout.

	
Expand Appearance, Style and Theme, Behavior, Advanced, Customization, and Annotations to specify other details, as shown in Figure 29-36.

Figure 29-36 Specifying a Layout: More Details

[image: Description of Figure 29-36 follows]

See "How to Set Component Attributes," in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

	
From the Data Controls panel, expand the human task node, then the getTaskDetails node, and then the Return node.

	
Drag Task into the panel group layout area.

	
Select Human Task, and then Task details for email, as shown in Figure 29-37.

Figure 29-37 Human Task Drop Handlers

[image: Description of Figure 29-37 follows]

This drop handler includes a header with inline style, a payload using ADF, and a comment using inline style. Because the payload is dynamically generated, it does not include an inline style.

In general, you can find the inline styles for the Header section for each component and use the same style for the Content section for the respective components.

	
In the Edit Action Bindings dialog, select the data collection and click OK.

The email task form is complete and ready to be deployed.

29.7.2 What Happens When You Create an Email Notification Page

The email notification page is sent as HTML content in the email message body. Images on the page are inlined as attachments. Relative URLs are converted to absolute URLs.

29.7.3 What You May Need to Know About Creating an Email Notification Page

A notification may not display correctly in email if the styles used in the fields of the form are not valid for email. Editing the generated inline CSS to customize the page may be required. See Section 29.7.1, "How To Create an Email Notification," for more information.

Security issues can also prevent the form from being rendered correctly. See Section 29.6, "Securing the Task Flow Application," for more information.

29.8 Deploying a Composite Application with a Task Flow

The composite application containing the task flow must be deployed before you can use the task form in the Worklist Application. The process for deploying an application with a task flow is basically the same as deploying any SOA composite application, as described in Section 29.8.2, "How To Deploy a Composite Application with a Task Flow." See Chapter 41, "Deploying SOA Composite Applications" for more information.

29.8.1 Before Deploying the Task Form: Port Changes

If you are not using the default values for RMI or HTTP ports, open the hwtaskflow.xml file in Oracle JDeveloper to change values. Figure 29-38 shows the file in the Application Navigator.

Figure 29-38 The hwtaskflow.xml File

[image: Description of Figure 29-38 follows]

Example 29-2 shows a sample hwtaskflow.xml file with comments on which values can and cannot be changed.

Example 29-2 Sample hwtaskflow.xml File

<!--Sample hwtaskflow.xml file. This is required for successful deployment of an
ADF Task Flow Based on Human Task application. -->

<?xml version = '1.0' encoding = 'UTF-8'?>
<hwTaskFlows xmlns="http://xmlns.oracle.com/bpel/workflow/hwTaskFlowProperties">

 <!-- Name of the client application used to view the tasks, defaults to
 'worklist' -->

 <ApplicationName>worklist</ApplicationName>

 <!-- Type of ejb lookup used. If not specified, remote lookup is used. Values
 - LOCAL, REMOTE, SOAP -->
 <LookupType>LOCAL</LookupType>

 <!-- Do not modify this element. Value must be 'false' for deployment to
 complete successfully -->

 <TaskFlowDeploy>false</TaskFlowDeploy>

 <!-- Connection details for soa server for remote ejb lookup.
If not specified, default values for ejbProviderUrl is http://localhost/soa-infra
 , aliasKeyName is BPM_SERVICES, keyName is BPM_SERVICES -->

 <SoaServer>
 <ejbProviderUrl/>
 <aliasKeyName/>
 <keyName/>
 <connectionName/>
 </SoaServer>

 <!-- Connection details for server on which task flow is deployed.
If not specified, default values for hostname is localhost,
 httpPort is 8888 and httpsPort is 443 --> -->

 <TaskFlowServer>
 <hostName/>
 <httpPort/>
 <httpsPort/>
 </TaskFlowServer>

 <!-- Task Flow specific properties -->

<hwTaskFlow>
 <WorkflowName></WorkflowName>
 <TaskDefinitionNamespace></TaskDefinitionNamespace>
 <TaskFlowId></TaskFlowId>
 <TaskFlowFileName></TaskFlowFileName>
 </hwTaskFlow>
</hwTaskFlows>

29.8.2 How To Deploy a Composite Application with a Task Flow

An application server connection is required to do the following.

To deploy a composite application with a task flow:

	
Right-click the composite application name, select Deploy, and then application_name > to > application_server_connection.

If you do not have a connection, select New Connection and use the Application Server Connection wizard.

	
In the Select Deployment Targets dialog, select a server instance.

	
Click OK.

29.8.3 How To Redeploy the Task Form

If you change the task form and want to redeploy it, repeat the deployment step. (Right-click the task form application name, select Deploy, and then application_name > to > application_server_connection.) A message asking you if you want to undeploy the form is displayed. Click OK and deploy the task form again.

29.8.4 How To Deploy a Task Flow as a Separate Application

If you want to deploy the task flow as a separate application, outside of the SOA composite application, then create a new application and project as a container for the task flow. After you deploy the SOA composite application, deploy the task flow application.

29.8.5 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server

This section describes how to deploy a task form to a non-SOA Oracle WebLogic Server.

29.8.5.1 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server

The oracle.soa.workflow.jar shared library is needed on the non-SOA Oracle WebLogic Server. It is available from

ORACLE_JDEV_HOME\jdeveloper\soa\modules\oracle.soa.workflow_11.1.1

Use Oracle WebLogic Server Administration Console to deploy the JAR file.

To deploy oracle.soa.workflow.jar:

	
Go to Oracle WebLogic Server Administration Console at

http://remote_hostname:remote_portnumber/console

	
In the Domain Structure area, click Deployments.

	
Click Install, as shown in Figure 29-39.

Figure 29-39 Oracle WebLogic Server Administration Console: List of Deployments

[image: Description of Figure 29-39 follows]

	
In the Path field, provide the following path and click Next.

ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_11.1.1/oracle.soa.workflow.jar

	
Keep the same name for the deployment and click Next, as shown in Figure 29-40.

Figure 29-40 Oracle WebLogic Server Administration Console: Install Applications Assistant

[image: Description of Figure 29-40 follows]

	
Select the Deploy as Library option and click Finish.

	
Confirm that the oracle.soa.workflow(11.1.1,11.1.1) library is in the Active state, as shown in Figure 29-41.

Figure 29-41 Oracle WebLogic Server Administration Console: The oracle.soa.workflow Active State

[image: Description of Figure 29-41 follows]

See Section 29.8.5.2, "Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server," to continue.

29.8.5.2 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server

Use Oracle WebLogic Server Administration Console to complete this portion of the task.

To define the foreign JNDI provider:

	
In the Domain Structure area, expand Services and click Foreign JNDI Providers.

	
Click New.

	
In the Name field, enter ForeignJNDIProvider-SOA, as shown in Figure 29-42, and click OK.

Figure 29-42 Creating a Foreign JNDI Provider

[image: Description of Figure 29-42 follows]

	
Click the ForeignJNDIProvider-SOA link.

	
Do the following and click Save.

	
For Initial Context Factory, enter weblogic.jndi.WLInitialContextFactory.

	
For Provider URL, enter t3://soa_hostname:soa_portnumber/soa-infra.

In a clustered environment, for Provider URL, enter http://soa_hostname:soa_portnumber/soa-infra.

	
For User, enter weblogic.

	
For Password, enter weblogic.

Figure 29-43 shows the page where you enter this information.

Figure 29-43 Defining the Foreign JNDI Provider

[image: Description of Figure 29-43 follows]

See Section 29.8.5.3, "Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server," to continue.

29.8.5.3 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server

Use Oracle WebLogic Server Administration Console to complete this portion of the task.

To define the foreign JNDI provider links:

	
In the Domain Structure area, expand Services and click Foreign JNDI Providers.

	
Click the ForeignJNDIProvider-SOA link.

	
Click the Links tab.

	
Click New.

Figure 29-44 shows the Links tab.

Figure 29-44 Defining the Foreign JNDI Provider Links: The Links Tab

[image: Description of Figure 29-44 follows]

	
Do the following and click OK.

	
For Name, enter RuntimeConfigService.

	
For Local JNDI Name, enter RuntimeConfigService.

	
For Remote JNDI Name, enter RuntimeConfigService.

Figure 29-45 shows where you do this.

Figure 29-45 Defining the Foreign JNDI Provider Links: Link Properties

[image: Description of Figure 29-45 follows]

	
Do the following and click OK.

	
For Name, Local JNDI Name, Remote JNDI Name, enter ejb/bpel/services/workflow/TaskServiceBean.

	
For Name, Local JNDI Name, Remote JNDI Name, enter ejb/bpel/services/workflow/TaskMetadataServiceBean.

	
For Name, Local JNDI Name, Remote JNDI Name, enter TaskReportServiceBean.

	
For Name, Local JNDI Name, Remote JNDI Name, enter TaskEvidenceServiceBean.

	
For Name, Local JNDI Name, Remote JNDI Name, enter TaskQueryService.

	
For Name, Local JNDI Name, Remote JNDI Name, enter UserMetadataService.

See Section 29.8.5.4, "Including a Grant for bpm-services.jar," to continue.

29.8.5.4 Including a Grant for bpm-services.jar

To include a grant for bpm-services.jar, edit the system-jazn-data.xml file and then restart the non-SOA Oracle WebLogic Server.

To include a grant for bpm-services.jar:

	
Locate the system-jazn-data.xml file by navigating to the domain directory, soa-infra, and then to

ORACLE_WEBLOGIC_INSTALL/user_projects/domains/your_domain_name/config/fmwconfig

	
In system-jazn-data.xml, add the following grant. (If all or some portion of the grant exists, then add only what is missing.)

<grant>
 <grantee>
 <codesource>
 <url>file: ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_
11.1.1/bpm-services.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>VerificationService.createInternalWorkflowContext</name>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>credstoressp.credstore.BPM-CRYPTO.BPM-CRYPTO</name>
 <actions>read,write</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>*</actions>
 </permission>
 </permissions>
</grant>

	
Restart the non-SOA Oracle WebLogic Server.

See Section 29.8.5.5, "Deploying the Application," to continue.

29.8.5.5 Deploying the Application

Deploy the application that contains the task form to a non-SOA Oracle WebLogic Server the same way other applications are deployed. When you set up the application server connection, specify the domain on the non-SOA server (the domain you specified in Step 1 of Section 29.8.5.4, "Including a Grant for bpm-services.jar.". See Chapter 41, "Deploying SOA Composite Applications" for information on deploying applications.

29.8.6 What Happens When You Deploy the Task Form

When the task form is deployed, an automatic association is created between the task metadata and the task flow application URL. Use Oracle Enterprise Manager 11g Fusion Middleware Control to update this mapping. Access the task flow component in the Component Metrics table for a specific SOA composite application. The Administration tab shows the URI for the task form. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information. If the task flow is configured for HTTPS access, you may need to do additional settings in Enterprise Manager.

See Chapter 30, "Using Oracle BPM Worklist" for information on how to act on tasks.

	
Notes:

	
For the task form to work correctly, always specify the URL using the complete name for the host on which the task flow is deployed.

	
If you want to access the task form from a different URL that has a different port number than the hostname and port number previously set in Oracle WebLogic Server Administration Console, then you must change the port number for the front-end in Oracle WebLogic Server Administration Console and redeploy the task form so that the task details appear correctly in the worklist.

29.8.7 What You May Need to Know About Undeploying a Task Flow

When a task flow Web application is deployed, the task flow URL is registered in the database. This URL is displayed in Oracle BPM Worklist when a task is clicked and the task details are displayed. If the task flow Web application is later undeployed or stopped, the task flow URL in the database is not removed as part of the undeployment. Consequently, when you click the task in the worklist to see the task details, a 404 Not Found error is displayed rather than the message Details not available for task. To avoid the 404 Not Found error, use Oracle Enterprise Manager Fusion Middleware Control Console to undeploy the task flow application from the application home page.

29.9 Displaying a Task Form in the Worklist

The task form is displayed in Oracle BPM Worklist, a web-based interface for users to act on their assigned human tasks. Specific actions are available or unavailable depending on a user's privileges.

Figure 29-46 shows how the task form for the help desk request example is displayed in the Worklist Application task details page.

Figure 29-46 Worklist Task Details Page

[image: Description of Figure 29-46 follows]

29.9.1 How To Display the Task Form in the Worklist

The task form is available in Oracle BPM Worklist after you log in. See Section 30.2.1, "How To Log In to the Worklist" for instructions.

29.10 Displaying a Task in an Email Notification

Figure 29-47 shows how an email task notification appears in email.

Figure 29-47 Email Task Notification

[image: Description of Figure 29-47 follows]

You can click an available action, RESOLVED or UNRESOLVED, or click the Worklist Application link to log in to the worklist. Clicking an action displays an email composer window in which you can add a comment and send the email.

29.11 Reusing the Task Flow Application with Multiple Human Tasks

You can reuse a single task flow application with multiple human tasks. To use this feature, all human tasks must have identical payload elements.

29.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks

	
Open the TASKFLOW_PROJ_DIR\adfmsrc\hwtaskflow.xml file.

	
For each additional human task, add the following element inside the file (at the bottom just before </hwTaskFlows>):

<hwTaskFlow>
 <WorkflowName>$TASK_NAME</WorkflowName>
 <TaskDefinitionNamespace>$TASK_NAMESPACE</TaskDefinitionNamespace>
 <TaskFlowId>$TASK_FLOW_NAME</TaskFlowId>
 <TaskFlowFileName>$TASK_FLOW_FILENAME</TaskFlowFileName>
</hwTaskFlow

where:

	
$TASK_NAME is replaced with the name of the human task inside the .task file (value of the <name> element).

	
$TASK_NAMESPACE is replaced with the namespace of the human task inside the .task file (value of the attribute targetNameSpace of element <taskDefinition>).

	
$TASK_FLOW_NAME is copied from the existing <hwTaskFlow>/<TaskFlowId> element.

	
$TASK_FLOW_FILENAME is copied from the existing <hwTaskFlow>/<TaskFlowFileName> element.

30 Using Oracle BPM Worklist

This chapter describes how worklist users and administrators interact with Oracle BPM Worklist, and how to customize the worklist display to reflect local business needs, languages, and time zones.

This chapter includes the following sections:

	
Section 30.1, "Introduction to Oracle BPM Worklist"

	
Section 30.2, "Logging In to Oracle BPM Worklist"

	
Section 30.3, "Customizing the Task List Page"

	
Section 30.4, "Acting on Tasks: The Task Details Page"

	
Section 30.5, "Approving Tasks"

	
Section 30.6, "Setting a Vacation Period"

	
Section 30.7, "Setting Rules"

	
Section 30.8, "Using the Worklist Administration Functions"

	
Section 30.9, "Specifying Notification Settings"

	
Section 30.10, "Using Flex Fields"

	
Section 30.11, "Creating Worklist Reports"

	
Section 30.12, "Accessing Oracle BPM Worklist in Local Languages"

	
Section 30.13, "Creating Reusable Worklist Regions"

See Chapter 31, "Building a Custom Worklist Client" for how to use the APIs exposed by the workflow service.

30.1 Introduction to Oracle BPM Worklist

Oracle BPM Worklist enables business users to access and act on tasks assigned to them. For example, from a worklist, a loan agent can review loan applications or a manager can approve employee vacation requests. These processes are defined in human tasks.

Oracle BPM Worklist provides different functionality based on the user profile. Standard user profiles include task assignee, supervisor, process owner, and administrator. For example, worklist users can update payloads, attach documents or comments, and route tasks to other users, in addition to completing tasks by providing conclusions such as approvals or rejections. Supervisors or group administrators can use the worklist to analyze tasks assigned to a group and route them appropriately.

Users can customize their task lists, as required, by adding worklist views, for example, selecting the columns to display, or displaying a subset of the tasks based on filter criteria.

Using Oracle BPM Worklist, task assignees can do the following:

	
Perform authorized actions on tasks in the worklist, acquire and check out shared tasks, define personal to-do tasks, and define subtasks.

	
Filter tasks in a worklist view based on various criteria.

	
Work with standard work queues, such as high priority tasks, tasks due soon, and so on. Work queues allow users to create a custom view to group a subset of tasks in the worklist, for example, high priority tasks, tasks due in 24 hours, expense approval tasks, and more.

	
Define custom work queues.

	
Gain proxy access to part of another user's worklist.

	
Define custom vacation rules and delegation rules.

	
Enable group owners to define task dispatching rules for shared tasks.

	
Collect a complete workflow history and audit trail.

	
Use digital signatures for tasks.

Figure 30-1 shows an illustration of Oracle BPM Worklist.

Figure 30-1 Oracle BPM Worklist—Access Tasks, Forms, Attachments, and Reports

[image: Description of Figure 30-1 follows]

The worklist is rendered in a browser by a task form that you create using ADF task flows in Oracle JDeveloper. See Chapter 29, "Designing Task Forms for Human Tasks" for more information.

Users can also act on tasks through portals such as Oracle WebCenter. Portals enable users to present information from multiple, unrelated data sources in a single organized view. This view, a portal page, can contain one or more components called portlets that can each collect content from different data sources.

You can build clients for workflow services using the APIs exposed by the workflow service. The APIs enable clients to communicate with the workflow service using local and remote EJBs, SOAP, and HTTP.

30.1.1 What You May Need To Know About Oracle BPM Worklist

Note the following:

	
Only one identity provider is supported. Java policy store does not support multiple providers in a sequence. Therefore, fall-through from one directory server to another is not supported for worklists.

30.2 Logging In to Oracle BPM Worklist

Table 30-1 lists the different types of users recognized by Oracle BPM Worklist, based on the privileges assigned to the user.

Table 30-1 Worklist User Types

	Type of User	Access
	
End user (user)

	
Acts on tasks assigned to him or his group and has access to system and custom actions, routing rules, and custom views

	
Supervisor (manager)

	
Acts on the tasks, reports, and custom views of his reportees, in addition to his own end-user access

	
Process owner

	
Acts on tasks belonging to the process but assigned to other users, in addition to his own end-user access

	
Group administrator

	
Manages group rules and dynamic assignments, in addition to his own end-user access

	
Workflow administrator

	
Administers tasks that are in an errored state, for example, tasks that must be reassigned or suspended. The workflow administrator can also change application preferences and map flex fields, and manage rules for any user or group, in addition to his own end-user access.

	
Note:

Multiple authentication providers (for example, SSO and forms) are not supported.

30.2.1 How To Log In to the Worklist

To log in, you must have installed Oracle SOA Suite and the SOA server must be running. See Oracle Fusion Middleware Installation Guide for Oracle SOA Suite for more information.

Use a supported web browser:

	
Microsoft Internet Explorer 7.x

	
Mozilla Firefox 2.x

	
Mozilla Firefox 3.x

	
Apple Safari

To log in:

	
Go to

http://hostname:port_number/integration/worklistapp

	
hostname is the name of the host computer on which Oracle SOA Suite is installed

	
The port_number used at installation

	
Enter the user name and password.

You can use the preseeded user to log in as an administrator. If you have loaded the demo user community in the identity store, then you can use other users such as jstein or jcooper.

The user name and password must exist in the user community provided to JAZN. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for the organizational hierarchy of the demo user community used in examples throughout this chapter.

	
Click Login.

30.2.1.1 Enabling the weblogic User for Logging in to the Worklist

For the weblogic user in OID to log in to Oracle BPM Worklist, the OID Authenticator must have an Administrators group, and the weblogic user must be a member of that group.

To enable the weblogic user:

	
Create a weblogic user in OID using the LDAP browser. The users.ldif file is imported to OID as follows:

dn: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com
objectclass: inetorgperson
objectclass: organizationalPerson
objectclass: person
objectclass: orcluser
objectclass: orcluserV2
objectclass: top
sn: weblogic
userpassword: welcome1
uid: weblogic

	
Create an Administrators group in OID and assign the weblogic user to it. The groups.ldif file is imported to OID as follows:

dn: cn=Administrators,cn=Groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames
objectclass: orclGroup
objectclass: top
owner: cn=orcladmin,cn=Users,dc=us,dc=oracle,dc=com
uniquemember: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com

30.2.2 What Happens When You Log In to the Worklist

Identity service workflow APIs authenticate and authorize logins using a user name, password, and optionally a realm set, if multiple realms were defined for an organization. See Section 30.8.2, "How To Set the Worklist Display (Application Preferences)," for information on how administrators can set a preference to change the realm label displayed in the interface, or specify an alternative location for the source of the login page image.

After a user logs in, the Home (task list) page displays tasks for the user based on the user's permissions and assigned groups and roles. The My Tasks tab and the Inbox are displayed by default. The actions allowed from the Actions list also depend on the logged-in user's privileges.

Figure 30-2 shows an example of the Home page.

Figure 30-2 Oracle BPM Worklist—The Home (Task List) Page

[image: Description of Figure 30-2 follows]

Table 30-2 describes the components of the Home (task list) page.

Table 30-2 Components of the Home (Task List) Page

	Component	Description
	
Tabs

	
The tabs displayed depend on the role granted to the logged-in user.

	
Everyone (the user role) sees My Tasks and Initiated Tasks.

	
Users who are also managers see the My Tasks, Initiated Tasks, and My Staff Tasks tabs.

	
Users who are also owners (of a process) see the My Tasks, Initiated Tasks, and Administration Tasks tabs.

	
Users who are also administrators (the BPMWorkflowAdmin), but not managers, see the My Tasks, Initiated Tasks, Administration Tasks, Administration, and Evidence Search tabs.

	
Users who are managers and administrators see all the tabs— My Tasks, Initiated Tasks, My Staff Tasks, Administration Tasks, Administration, and Evidence Search.

	
Users with the workflow.admin.evidenceStore permission also see the Evidence Search tab.

See the following for more information:

	
Section 30.4.4, "How To Act on Tasks That Require a Digital Signature," for information about evidence search

	
Section 30.8.1, "How To Manage Other Users' or Groups' Rules (as an Administrator)"

	
Worklist Views

	
Inbox, My Work Queues, Proxy Work Queues—See Section 30.3.2, "How To Create and Customize Worklist Views," for more information.

	
Task Status

	
A bar chart shows the status of tasks in the current view. See Section 30.3.3, "How To Customize the Task Status Chart," for more information.

	
Display Filters

	
Specify search criteria from the View, Assignee or Status fields. The category filters that are available depend on which tab is selected.

	
The View filters are Inbox, Due Soon, High Priority, and New Tasks.

	
From the My Tasks tab, the Assignee filters are My, Group, My & Group, Previous (tasks worked on previously), and Reviewer. From the Initiated Tasks tab, the only assignee filter is Creator. From the My Staff Tasks tab, the only assignee filter is Reportees. From the Administration Tasks tab, the only assignee filter is Admin.

	
The Status filters include Any, Assigned, Completed, Suspended, Withdrawn, Expired, Errored, Alerted, Information Requested.

Use Search to enter a keyword, or use Advanced Search. See Section 30.3.1, "How To Filter Tasks," for more information.

	
Actions List

	
Select a group action (Claim) or a custom action (for example, Approve or Reject) that was defined for the human task. Claim appears for tasks assigned to a group or multiple users; one user must claim the task before it can be worked. Other possible actions for a task, such as system actions, are displayed on the task details page for a specific task. You can also create ToDo tasks and subtasks here.

	
Default Columns

	
Title—The title specified when the human task was created. Tasks associated with a purged or archived process instance do not appear.

Number—The task number generated when the BPEL process was created.

Priority—The priority specified when the human task was created. The highest priority is 1; the lowest is 5.

Assignees—The user or group or application roles.

State—Select from Assigned, Completed, Errored, Expired, Information Requested, Stale, Suspended, or Withdrawn.

Created—Date and time the human task was created

Expires—Date and time the tasks expires, specified when the human task was created

	
Task Details

	
The lower section of the worklist displays the inline view of the task details page. Buttons indicate available actions. See Section 30.4, "Acting on Tasks: The Task Details Page," for more information.

Figure 30-2 also shows the Administration, Reports, and Preferences links (upper-right corner). Table 30-3 summarizes the Home, Administration, Reports, and Preferences pages.

Table 30-3 Worklist Main Pages Summary

	Page	Description
	
Home

	
As described in Table 30-2, the logged-in user's list of tasks, details for a selected task, and all the functions needed to start acting on a task are provided.

	
Administration

	
The following administrative functions are available:

	
Setting application preferences

	
Mapping flex fields

	
Searching the evidence store

	
Configuring tasks

	
Reports

	
The following reports are available: Unattended Tasks Report, Tasks Priority Report, Tasks Cycle Time Report, Tasks Productivity Report, and Tasks Time Distribution Report. See Section 30.11.1, "How To Create Reports," for more information.

	
Preferences

	
Preference settings include:

	
Setting rules for users or groups, including vacation rules, and setting vacation periods

	
Uploading certificates

	
Specifying user notification channels and message filters

30.2.3 What Happens When You Change a User's Privileges While They are Logged in to Oracle BPM Worklist

If you change a user's privileges in Oracle Enterprise Manager Fusion Middleware Control Console while the user is logged in to Oracle BPM Worklist, the changes take effect only after a subsequent login by the user. This is true for situations in which there are two active worklist sessions, one in which the user is logged in before the privileges are changed, and one in which the same user logs in after the privileges are changed. In the first case, the changes to the user's privileges do not take effect while the user is logged in. In the second case, when the user logs in to the second instance of the Worklist Application, the changes to the user's privileges do take effect.

30.3 Customizing the Task List Page

You can customize your task list in several ways, including adding worklist views, selecting which columns to display, and displaying a subset of the tasks based on filter criteria. Resize the task list display area to increase the number of tasks fetched.

30.3.1 How To Filter Tasks

Figure 30-3 shows the filter fields.

Figure 30-3 Filters—Assignee, Status, Search, and Advanced Search

[image: Description of Figure 30-3 follows]

Filters are used to display a subset of tasks, based on the following filter criteria:

	
Assignee

From the My Tasks tab, select from the following:

	
My—Retrieves tasks directly assigned to the logged-in user

	
Group—Retrieves the following:

	
Tasks that are assigned to groups that the logged-in user belongs to

	
Tasks that are assigned to an application role that the logged-in user is assigned

	
Tasks that are assigned to multiple users, one of which is the logged-in user

	
My & Group—Retrieves all tasks assigned to the user, whether through direct assignment, or by way of a group, application role, or list of users

	
Previous—Retrieves tasks that the logged-in user has updated

	
Reviewer—Retrieves task for which the logged-in user is a reviewer

From the Initiated Tasks tab, select Creator.

From the My Staff Tasks tab, select Reportees.

From the Administration Tasks tab, select Admin.

	
Status—Select from the following: Any, Assigned, Completed, Suspended (can be resumed later), Withdrawn, Expired, Errored (while processing), Alerted, or Information Requested.

	
Search—Enter a keyword to search task titles, comments, identification keys, and the flex string fields of tasks that qualify for the specified filter criterion.

	
Advanced—Provides additional search filters.

	
Note:

If a task is assigned separately to multiple reportees, when a manager looks at the My Staff Tasks list, the manager sees as many copies of that task as the number of reportees that the task is assigned to.

To filter tasks based on assignee or status:

	
Select options from the Assignee and Status lists.

The task list is automatically updated based on the filter selections.

To filter tasks based on keyword search:

	
Enter a keyword to search task titles, comments, identification keys, and the flex string fields of tasks that qualify for the specified filter criterion.

	
Press Enter or click Refresh.

To filter tasks based on an advanced search:

Flex field attribute labels can be used in an advanced search if you select task types for which flex field mappings have been defined.

See Section 30.10.1, "How To Map Flex Fields," for more information.

	
Click Advanced.

	
(Optional) Check Save As View, provide a view name, and use the Display tab to provide other information, as shown in Figure 30-4 and Figure 30-5.

Figure 30-4 Worklist Advanced Search—Definition Tab

[image: Description of Figure 30-4 follows]

Figure 30-5 Worklist Advanced Search—Display Tab

[image: Description of Figure 30-5 follows]

Table 30-4 describes the advanced search view columns available in the Display tab.

Table 30-4 Advanced Search—View Columns

	Column	Description
	
Start Date

	
The start date of the task (used with ToDo tasks).

	
Task Definition Name

	
The name of the task component that defines the task instance.

	
Owner Role

	
The application role (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is an application role, this field is set.

	
Updated Date

	
The date the task instance was last updated.

	
Composite Version

	
The version of the composite that contains the task component that defines the task instance.

	
Creator

	
The name of the creator of the task.

	
From User

	
The from user for the task.

	
Percentage Complete

	
The percentage of the task completed (used with ToDo tasks).

	
Owner Group

	
The group (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is a group, this field is set.

	
End Date

	
The end date of the task (used with ToDo tasks).

	
Composite

	
The name of the composite that contains the task component that defines the task instance.

	
Due Date

	
The due date of the task (used with ToDo tasks).

	
Composite Distinguished Name

	
The unique name for the particular deployment of the composite that contains the task component that defines the task instance.

	
Task Display URL

	
The URL to display the details for the task.

	
Updated By

	
The user who last updated the task.

	
Outcome

	
The outcome of the task, for example Approved or Rejected. This is only set on completed task instances.

	
Task Namespace

	
A namespace that uniquely defines all versions of the task component that defines this task instance. Different versions of the same task component can have the same namespace, but no two task components can have the same namespace.

	
Approvers

	
The approvers of the task.

	
Application Context

	
The application to which any application roles associated with the tasks (such as assignees, owners, and so on) belong.

	
Owner User

	
The user (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is a user, this field is set.

	
Identifier

	
The (optional) custom unique identifier for the task. This is an additional unique identifier to the standard task number.

	
Category

	
The category of the task.

	
Acquired By

	
The name of the user who claimed the task in the case when the task is assigned to a group, application role, or to multiple users, and then claimed by the user.

	
Component

	
The name of the task component that defines the task instance.

	
Original Assignee User

	
The name of the user who delegated the task in the case when the user delegates a task to another user.

	
Assigned

	
The date that this task was assigned.

	
Domain

	
The domain to which the composite that contains the task component that defines the task instance belongs.

	
Title

	
The title of the task.

	
Number

	
An integer that uniquely identifies the task instance.

	
Priority

	
An integer that defines the priority of the task. A lower number indicates a higher priority—typically numbers 1 to 5 are used.

	
Assignees

	
The current task assignees (users, groups or application roles).

	
State

	
The state of the task instance.

	
Created

	
The date that the task instance was created.

	
Expires

	
The date on which the task instance expires.

The saved view appears in the Inbox under My Views, as shown in Figure 30-6.

Figure 30-6 Saving a View

[image: Description of Figure 30-6 follows]

	
Select an assignee, as shown in Figure 30-7.

Figure 30-7 Worklist Advanced Search

[image: Description of Figure 30-7 follows]

	
Add conditions (filters), as shown in Figure 30-8.

Figure 30-8 Adding Filters for an Advanced Search on Tasks

[image: Description of Figure 30-8 follows]

Table 30-5 describes the available conditions.

Table 30-5 Advanced Search—Conditions

	Condition	Description
	
Start Date

	
The start date of the task (used with ToDo tasks).

	
Assignees

	
The current task assignees (users, groups or application roles).

	
Task Definition Name

	
The name of the task component that defines the task instance.

	
Owner Role

	
The application role (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is an application role, this field is set.

	
Updated Date

	
The date that the task instance was last updated.

	
Created

	
The date that the task instance was created.

	
Composite Version

	
The version of the composite that contains the task component that defines the task instance.

	
Creator

	
The name of the creator of the task.

	
From User

	
The from user for the task.

	
Percentage Complete

	
The percentage of the task completed (used with ToDo tasks).

	
Title

	
The title of the task.

	
Owner Group

	
The group (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is a group, this field is set.

	
End Date

	
The end date of the task (used with ToDo tasks).

	
Priority

	
An integer that defines the priority of the task. A lower number indicates a higher priority—typically numbers 1 to 5 are used.

	
Number

	
An integer that uniquely identifies the task instance.

	
Composite

	
The name of the composite that contains the task component that defines the task instance.

	
Due Date

	
The due date of the task (used with ToDo tasks).

	
State

	
The state of the task instance.

	
Composite Distinguished Name

	
The unique name for the particular deployment of the composite that contains the task component that defines the task instance.

	
Task Display URL

	
The URL to display the details for the task.

	
Updated By

	
The user who last updated the task.

	
Outcome

	
The outcome of the task, for example Approved or Rejected. This is only set on completed task instances.

	
Task Namespace

	
The namespace of the task.

	
Approvers

	
The approvers of the task.

	
Application Context

	
The application to which any application roles associated with the tasks (such as assignees, owners, and so on) belong.

	
Owner User

	
The user (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is a user, this field is set.

	
Identifier

	
The (optional) custom unique identifier for the task. This is an additional unique identifier to the standard task number.

	
Expires

	
The date on which the task instance expires.

	
Category

	
The category of the task.

	
Acquired By

	
The name of the user who claimed the task in the case when the task is assigned to a group, application role, or to multiple users, and then claimed by the user.

	
Component

	
The name of the task component that defines the task instance.

	
Original Assignee User

	
The name of the user who delegated the task in the case when the user delegates a task to another user.

	
Assigned

	
The date that this task was assigned.

	
Domain

	
The domain to which the composite that contains the task component that defines the task instance belongs.

	
Add parameter values, shown in Figure 30-9.

Figure 30-9 Advanced Search

[image: Description of Figure 30-9 follows]

	
Select Any or All for matching multiple filters.

	
(Optional) Search on a task type.

	
Click Search.

The task list page with the tasks filtered according to your criteria appears.

30.3.2 How To Create and Customize Worklist Views

The Worklist Views area, shown in Figure 30-10, displays the following:

	
Inbox—Shows all tasks that result from any filters you may have used. The default shows all tasks.

	
My Work Queues—Shows standard views and views that you defined.

	
Proxy Work Queues—Shows shared views.

Figure 30-10 Worklist Views

[image: Description of Figure 30-10 follows]

Use Worklist Views to create, share, and customize views.

To create a worklist view:

	
In the Worklist Views section, click Add.

	
Use the Definition tab of the Create User View dialog, shown in Figure 30-11.

Figure 30-11 Creating a Worklist View

[image: Description of Figure 30-11 follows]

	
Create View or Use Public View—Create your own view or browse for a public view to copy.

	
Name—Specify a name for your view.

	
Add to Standard Views—This option applies to Administrators only. Administrators select this option to create the view as a standard view, which then appears in the Standard Views list for all worklist users.

	
Assignee—Select My, Group, My&Group, Previous, or Reviewer.

	
Add Condition—Select a filter from the list and click Add. For example, if you select startDate, and click Add, then a calendar and a list including on, equals, not equals, greater than, less than, and so on appears.

	
Task Type—Browse for a task type or leave the field blank for all types. Flex field attribute labels can be selected in the query and display columns dialogs if the selected task types have flex field mappings defined.

	
Match—Select All or Any to match the conditions you added.

	
Share View—You can grant access to another user to either the definition of this view, in which case the view conditions are applied to the grantee's data, or to the data itself, in which case the grantee can see the grantor's worklist view, including the data. Sharing a view with another user is similar to delegating all tasks that correspond to that view to the other user; that is, the other user can act on your behalf. Shared views are displayed under Proxy Work Queues.

	
Assignees—Specify the users (grantees) who can share your view.

	
Use the Display tab of the Create User View dialog, shown in Figure 30-12, to customize the fields that appear in the view.

Figure 30-12 Displaying Fields in a Worklist View

[image: Description of Figure 30-12 follows]

	
Select View Columns—Specify which columns you want to display in your task list. They can be standard task attributes or flex fields that have been mapped for the specific task type. The default columns are the same as the columns in your inbox.

	
Sort by Column—Select a column to sort on.

	
Sort Order—Select ascending or descending order.

	
Click OK.

To customize a worklist view:

	
In the Worklist Views section, click the view name.

	
Click the Edit icon.

	
Use the Definition and Display tabs of the Edit User View dialog to customize the view, as shown in Figure 30-13 and Figure 30-14, and click OK.

Figure 30-13 Customizing a Worklist View

[image: Description of Figure 30-13 follows]

Figure 30-14 Customizing Fields in a Worklist View

[image: Description of Figure 30-14 follows]

When you select and move items from the Available Columns list to the Selected Columns list (or vice-versa), the items remain checked. Therefore, if you select items to move back, the previously selected items are also moved. Be sure to uncheck items after moving them between the lists if you intend to move additional columns.

30.3.3 How To Customize the Task Status Chart

The bar chart shows tasks broken down by status, with a count of how many tasks in each status category. The chart applies to the filtered set of tasks within the current view.

To customize the task status chart:

	
Click the Edit icon.

	
Add or remove status states for display, as shown in Figure 30-15, and click OK.

Figure 30-15 Customizing the Task Status Chart

[image: Description of Figure 30-15 follows]

30.3.4 How To Create a ToDo Task

Use the Create ToDo Task dialog, shown in Figure 30-16, to create a top-level ToDo task for yourself or others. This task is not associated with a business task.

Figure 30-16 The Create ToDo Task Dialog

[image: Description of Figure 30-16 follows]

ToDo tasks appear in the assignee's Inbox.

You can create ToDo tasks that are children of other ToDo tasks or business tasks. A ToDo task can have only one level of child ToDo tasks. When all child ToDo tasks are 100% complete, the parent ToDo task is also marked as completed. If the parent ToDo task is completed, then child ToDo tasks are at 100% within the workflow system. If the parent is a business task, the child ToDo is not marked as completed. You must set the outcome and complete it. If you explicitly set a ToDo task to 100%, there is no aggregation on the parent task.

ToDo tasks can be reassigned, escalated, and so on, and deleted (logical delete) and purged (physical delete). Reassignment, escalation, and so on of the parent task does not affect the assignment of any child ToDo tasks. The completion percentage of a ToDo task can be reset to less than 100% after it is completed.

Assignment rules (such as vacation rules) are not applied to ToDo tasks. You cannot specify business rules for ToDo tasks.

To create a ToDo task:

	
From the Actions list, select Create TODO Task, as shown in Figure 30-17.

Figure 30-17 Creating a ToDo Task

[image: Description of Figure 30-17 follows]

	
Provide details in the Create ToDo Task dialog, shown in Figure 30-17, and click OK.

	
Task Title: Enter anything that is meaningful to you.

	
Category: Enter anything that is meaningful to you.

	
Priority: Select from 1 (highest) to 5 (lowest)

	
Percentage Complete: This attribute indicates how much of the task is completed. 100% sets the attribute as completed.

	
Due Date: The due date does not trigger an expiration. You can also see overdue tasks. The start date need not be the current date.

	
StartDate: The task start date.

	
Assignee: You can assign yourself or someone else.

30.3.5 How To Create a Subtask

Use the Create Sub Task dialog, shown in Figure 30-18, to create a subtask, which is a ToDo task for a business task. You must select a business task before selecting the Create Sub Task option (shown in Figure 30-17).

Figure 30-18 Creating a Subtask

[image: Description of Figure 30-18 follows]

Subtasks can break down a business task into measurable subtasks, and can be created for ToDo tasks also. Multiple levels of subtasks are not supported (that is, you cannot have subtasks inside of subtasks). If you create multiple levels of subtasks, and attempt to act on the main task (for example, to approve or reject), you receive an error.

30.4 Acting on Tasks: The Task Details Page

Task details can be viewed inline (see the lower section in Figure 30-2, "Oracle BPM Worklist—The Home (Task List) Page") or in a pop-up browser window. (Double-click the task.)

Figure 30-19 shows the task details page.

Figure 30-19 Task Details Page

[image: Description of Figure 30-19 follows]

Any kind of change to the task details page, such as changing a priority or adding a comment or attachment, requires you to save the change before you go on to make any other changes.

The task details page has the following components:

	
Task Actions—Lists the system actions that are possible for the task, such as Request Information, Reassign, Renew, Suspend, Escalate, and Save.

	
Action buttons—Displays buttons for custom actions that are defined in the human task, such as setting task outcomes (for example, Resolved and Unresolved for a help desk request or Approve and Reject for a loan request). For the task initiator, manager, or administrator, Withdraw may also appear.

	
Details—Displays task attributes, including the assignee, task creator, task number, state, priority, who acquired the task, and other flex fields. It also displays dates related to task creation, last update, and expiration date.

	
Contents—Displays the payload. The fields displayed are specific to how the human task was created.

	
Requester—Displays details (full name, contact information, and so on) about the task requester.

	
Resolution—Displays any comments or resolution status.

	
History—Displays the approval sequence and the update history for the task. See Section 30.4.2, "Task History," for more information.

	
Comments—Displays comments entered by various users who have participated in the workflow. A newly added comment and the commenter's user name are appended to the existing comments. A trail of comments is maintained throughout the life cycle of the task. To add or delete a comment, you must have permission to update the task.

	
Attachments—Displays documents or reference URLs that are associated with a task. These are typically associated with the workflow as defined in the human task or attached and modified by any of the participants using the worklist. To add or delete an attachment, you must have permission to update the task. When adding file attachments, you can use an absolute path name or browse for a file.

Comments and attachments are shared between tasks and subtasks. Therefore, when you create a ToDo task and add comments and attachments, subtasks of this ToDo task include the same comments and attachments.

A user can view a task when associated with the task as the current assignee (directly or by group membership), the current assignee's manager, the creator, the owner, or a previous actor.

A user's profile determines his group memberships and roles. The roles determine a user's privileges. Apart from the privileges, the exact set of actions a user can perform is also determined by the state of the task, the custom actions, and restricted actions defined for the task flow at design time.

The following algorithm is used to determine the actions a user can perform on a task:

	
Get the list of actions a user can perform based on the privileges granted to him.

	
Get the list of actions that can be performed in the current state of the task.

	
Create a combined list of actions that appear on the preceding lists.

	
Remove any action on the combined list that is specified as a restricted action on the task.

The resulting list of actions is displayed in the task list page and the task details page for the user. When a user requests a specific action, such as claim, suspend, or reassign, the workflow service ensures that the requested action is contained in the list determined by the preceding algorithm.

Step 2 in the preceding algorithm deals with many cases. If a task is in a final, completed state (after all approvals in a sequential flow), an expired state, a withdrawn state, or an errored state, then no further update actions are permitted. In any of the these states, the task, task history, and subtasks (parent task in parallel flow) can be viewed. If a task is suspended, then it can only be resumed or withdrawn. A task that is assigned to a group must be claimed before any actions can be performed on it.

	
Note:

If you act on a task from the task details page, for example, if you approve a task, then any unchanged task details data is saved along with the saved changes to the task. However if you act on a task from the Actions menu, then unchanged task details are not saved.

30.4.1 System Actions

The action bar displays system actions, which are available on all tasks based on the user's privileges. Table 30-6 lists system actions.

Table 30-6 System Task Actions

	Action	Description
	
Claim

	
If a task is assigned to a group or multiple users, then the task must be claimed first. Claim is the only action available in the Task Action list for group or multiuser assignments. After a task is claimed, all applicable actions are listed.

	
Escalate

	
If you are not able to complete a task, you can escalate it and add an optional comment in the Comments area. The task is reassigned to your manager (up one level in a hierarchy).

	
Pushback

	
Use this action to send a task down one level in the workflow to the previous assignee.

The pushback action overrides all other actions. For example, if a task is pushed back and then reassigned, after the reassignee approves it, the task goes to the user who performed the pushback. This is the expected behavior.

	
Reassign

	
If you are a manager, you can delegate a task to reportees. A user with BPMWorkflowReassign privileges can delegate a task to anyone.

	
Release

	
If a task is assigned to a group or multiple users, it can be released if the user who claimed the task cannot complete the task. Any of the other assignees can claim and complete the task.

	
Renew

	
If a task is about to expire, you can renew it and add an optional comment in the Comments area. The task expiration date is extended one week. A renewal appears in the task history. The renewal duration for a task can be controlled by an optional parameter. The default value is P7D (seven days).

	
Submit Information and Request Information

	
Use these actions if another user requests that you supply more information or to request more information from the task creator or any of the previous assignees. If reapproval is not required, then the task is assigned to the next approver or the next step in the business process.

	
Suspend and Resume

	
If a task is not relevant, you can suspend it. These options are available only to users who have been granted the BPMWorkflowSuspend role. Other users can access the task by selecting Previous in the task filter or by looking up tasks in the Suspended status. A suspension is indefinite. It does not expire until Resume is used to resume working on the task.

	
Withdraw

	
If you are the creator of a task and do not want to continue with it, for example, you want to cancel a vacation request, you can withdraw it and add an optional comment in the Comments area. The business process determines what happens next. You can use the Withdraw action on the home page by using the Creator task filter.

30.4.2 Task History

The task history maintains an audit trail of the actions performed by the participants in the workflow and a snapshot of the task payload and attachments at various points in the workflow. The short history for a task lists all versions created by the following tasks:

	
Initiate task

	
Reinitiate task

	
Update outcome of task

	
Completion of task

	
Erroring of task

	
Expiration of task

	
Withdrawal of task

	
Alerting of task to the error assignee

You can include the following actions in the short history list by modifying the shortHistoryActions element.

	
Acquire

	
Ad hoc route

	
Auto release of task

	
Delegate

	
Escalate

	
Information request on task

	
Information submit for task

	
Override routing slip

	
Update outcome and route

	
Push back

	
Reassign

	
Release

	
Renew

	
Resume

	
Skip current assignment

	
Suspend

	
Update

The history provides a graphical view of a task flow, as shown in Figure 30-20.

Figure 30-20 History: Graphical View

[image: Description of Figure 30-20 follows]

Check Full task actions to see all actions performed, including those that do not make changes to the task, such as adding comments, as shown in Figure 30-21.

Figure 30-21 History: Full Task Actions

[image: Description of Figure 30-21 follows]

Available ways to view the task history include:

	
Take a task snapshot

	
See future approvers

	
See complete task actions

30.4.3 How To Act on Tasks

If the human task was designed to permit ad hoc routing, or if no predetermined sequence of approvers was defined, then the task can be routed in an ad hoc fashion in the worklist. For such tasks, a Route button appears on the task details page. From the Route page, you can look up one or more users for routing. When you specify multiple assignees, you can select whether the list of assignees is for simple (group assignment to all users), sequential, or parallel assignment.

Parallel tasks are created when a parallel flow pattern is specified for scenarios such as voting. In this pattern, the parallel tasks have a common parent. The parent task is visible to a user only if the user is an assignee or an owner or creator of the task. The parallel tasks themselves (referred to as subtasks) are visible to whomever the task is assigned, just like any other task. It is possible to view the subtasks from a parent task. In such a scenario, the task details page of the parent task contains a View SubTasks button. The SubTasks page lists the corresponding parallel tasks. In a voting scenario, if any of the assignees updates the payload or comments or attachments, the changes are visible only to the assignee of that task.

A user who can view the parent task (such as the final reviewer of a parallel flow pattern), can drill down to the subtasks and view the updates made to the subtasks by the participants in the parallel flow. The parent task is a container for the subtasks while they are worked on by the assignees. The task owner must not act on or approve the parent task.

If a human task was set up to require a password, then when you act on it, you must provide the password, as shown in Figure 30-22.

Figure 30-22 Acting on a Task That Requires a Password

[image: Description of Figure 30-22 follows]

	
Note:

Any kind of change to the task details page, such as changing a priority or adding a comment, requires you to save the change. If you add an attachment to a task, it is automatically saved.

To reassign or delegate a task:

	
From the Task Actions list, select Reassign, as shown in Figure 30-23.

Figure 30-23 Reassigning a Task

[image: Description of Figure 30-23 follows]

	
Select Reassign or Delegate.

Delegate differs from Reassign in that the privileges of the delegatee are based on the delegator's privileges. This function can be used by managers' assistants, for example.

	
Provide or browse for a user or group name, as shown in Figure 30-24.

Figure 30-24 Reassigning a Task

[image: Description of Figure 30-24 follows]

A supervisor can always reassign tasks to any of his reportees. Users with the BPMWorkflowReassign role can assign tasks to any users in the organization.

	
Move names to the Selected area and click OK.

You can reassign to multiple users or groups. One of the assignees must claim the task, as shown in Figure 30-25.

Figure 30-25 Claiming a Task

[image: Description of Figure 30-25 follows]

To request information:

	
From the Task Actions list, select Request Information, as shown in Figure 30-26.

Figure 30-26 Requesting Information

[image: Description of Figure 30-26 follows]

	
Request information from a past approver or search for a user name, or push the task back to the previous assignee, as shown in Figure 30-27.

Figure 30-27 Requesting Information from Past Approvers or Another User, or Pushing the Task Back

[image: Description of Figure 30-27 follows]

If you use the Search icon to find a user name, the Identity Browser appears, as shown in Figure 30-28.

Figure 30-28 Identity Browser

[image: Description of Figure 30-28 follows]

	
Click OK.

To route a task:

	
From the Task Actions list, select Adhoc Route, as shown in Figure 30-29.

Figure 30-29 Ad Hoc Routing

[image: Description of Figure 30-29 follows]

	
Select an action and a routing option, as shown in Figure 30-30.

Figure 30-30 Routing a Task

[image: Description of Figure 30-30 follows]

	
Single Approver: Use this option for a single user to act on a task. If the task is assigned to a role or group with multiple users, then one member must claim the task and act on it.

	
Group Vote: Use this option when multiple users, working in parallel, must act, such as in a hiring situation when multiple users vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote, as shown in Figure 30-31.

Figure 30-31 Providing Consensus Information

[image: Description of Figure 30-31 follows]

	
Chain of Single Approvers: Use this option for a sequential list of approvers. The list can comprise any users or groups. (Users are not required to be part of an organization hierarchy.)

	
Add optional comments for the next participant on the route.

	
Provide or search for user or group names; then move the names to the Selected area.

	
Click OK.

To add comments or attachments:

	
Notes:

	
Click Save before you browse for or upload attachments, to ensure that any previous changes to the task details page are saved.

	
When you remove an attachment, the task is not automatically updated. You must explicitly select Actions > Save. Otherwise, the attachment is not removed, even though it is displayed as removed. This is the expected behavior.

	
In the Comments or Attachments area, click Add.

Figure 30-32 Worklist Comments and Attachments

[image: Description of Figure 30-32 follows]

	
Enter comment text and click OK.

The date and timestamp and your user name are included with the comment.

	
For attachments, provide a file or URL attachment, as shown in Figure 30-33, and click OK.

Figure 30-33 Adding a Worklist Attachment

[image: Description of Figure 30-33 follows]

	
Note:

Attachment file names that use a multibyte character set (MBCS) are not supported.
Attachments of up to 2 MB can be uploaded. You can modify this setting by setting the context parameter in web.xml as follows:

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_MAX_DISK_SPACE</param-name>
 <param-value>1024000</param-value>
</context-param>

	
From the Task Actions list, click Save.

30.4.4 How To Act on Tasks That Require a Digital Signature

The worklist supports the signature policy created in the human task:

	
No signature required — Participants can send and act on tasks without providing a signature.

	
Password required — Participants must specify their login passwords.

	
Digital certificate (signature) required —Participants must possess a digital certificate before being able to send and act on tasks. A digital certificate contains the digital signature of the certificate-issuing authority so that anyone can verify that the certificate is real. A digital certificate establishes the participant's credentials. It is issued by a certification authority (CA). It contains your name, a serial number, expiration dates, a copy of the certificate holder's public key (used for encrypting messages and digital signatures), and the digital signature of the certificate-issuing authority so that a recipient can verify that the certificate is real.

When you act on a task that has a signature policy, the Sign button appears, as shown in Figure 30-34.

Figure 30-34 Digital Signature Task Details

[image: Description of Figure 30-34 follows]

The evidence store service is used for digital signature storage and nonrepudiation of digitally signed human tasks. You can search the evidence store, as shown in Figure 30-35.

Figure 30-35 The Evidence Store

[image: Description of Figure 30-35 follows]

See Section 32.1.10, "Evidence Store Service and Digital Signatures" for more information.

To provide a digital signature:

	
In the upper right corner of Oracle BPM Worklist, click Preferences.

	
In the navigation bar on the left, click Certificates.

	
Upload the certificate to use to sign your decision, as shown in Figure 30-36.

When signing a task outcome using your certificate, you must upload the entire chain of certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file, not just the one certificate issued to you by the certificate issuer. The entire chain can be exported through Internet Explorer. Mozilla Firefox does not let you export the chain as a .P7B file. Therefore, you can perform the following steps:

	
Export the chain from Mozilla Firefox as a .P12 file (PKCS12 format that also contains your private key).

	
Import the .P12 file in Internet Explorer.

	
Export it again from Internet Explorer as a .P7B file.

	
Upload it through Oracle BPM Worklist.

Figure 30-36 Uploading a Certificate

[image: Description of Figure 30-36 follows]

Note the following important points when providing your certificate to the system. Otherwise, you cannot use your certificate to sign your decisions on tasks.

	
The PKCS7 file format is a binary certificate format. Select this option if you have a standalone certificate file stored on your disk.

	
The PKCS12 file format is a keystore format. Select this option if you have your certificate stored inside a keystore.

	
If you want to copy and paste the contents of the certificate, select Type or Paste Certificate Contents and paste the BASE64-encoded text into the field. Do not paste a certificate in any other format into this field. Likewise, if you choose to upload a certificate, do not try to upload a BASE64-encoded certificate. Only PKCS12 and PKCS7 formatted files are supported for uploads.

	
Return to the task list by clicking the Home link in the upper-right corner of Oracle BPM Worklist.

	
Click a task to approve or reject.

The task details are displayed.

	
Click either Approve or Reject.

Details about the digital signature are displayed.

	
For a task that has a signature policy, click Sign.

The Text Signing Report dialog appears.

	
Select the certificate from the dropdown list to use to sign your decision.

	
Enter the master password of the web browser that you are using.

	
Click OK.

The web browser signs the string displayed in the upper half of the Text Signing Request with the certificate you selected and invokes the action (approval or rejection) that you selected. The task status is appropriately updated in the human workflow service.

For more information about how certificates are uploaded and used, see Section 32.1.10, "Evidence Store Service and Digital Signatures."

30.5 Approving Tasks

Table 30-7 describes the type of actions that can be performed on tasks by the various task approvers.

Table 30-7 Task Actions and Approvers

	Task Action	Admin	Owner (+ Owner Group)	Assignee (+ Assignee Manager + Assignee Group + Proxy Assignee)	Creator	Reviewer	Approver
	
Acquire (Claim)

	
No

	
Yes

	
Yes

	
No

	
No

	
No

	
Custom

	
No

	
YesFoot 1

	
YesFootref 1

	
No

	
No

	
No

	
Delegate

	
No

	
No

	
Yes

	
No

	
No

	
No

	
Delete

	
YesFoot 2

	
YesFootref 2

	
YesFootref 2

	
YesFootref 2

	
No

	
No

	
Error

	
No

	
No

	
YesFoot 3

	
No

	
No

	
No

	
Escalate

	
YesFoot 4

	
YesFootref 4

	
Yes

	
No

	
No

	
No

	
Info Request

	
No

	
No

	
Yes

	
No

	
No

	
No

	
Info Submit

	
No

	
No

	
Yes

	
No

	
No

	
No

	
Override Routing Slip

	
Yes

	
Yes

	
No

	
No

	
No

	
No

	
Push Back

	
No

	
No

	
Yes

	
No

	
No

	
No

	
Purge

	
YesFootref 2

	
Yes

	
No

	
Yes

	
No

	
No

	
Reassign

	
YesFoot 5

	
YesFootref 5

	
Yes (No for proxy assignee)

	
No

	
No

	
No

	
Release

	
Yes

	
Yes

	
Yes

	
No

	
No

	
No

	
Renew

	
No

	
Yes

	
Yes

	
No

	
No

	
No

	
Resume

	
Yes

	
Yes

	
Yes

	
No

	
No

	
No

	
Route

	
No

	
Yes

	
Yes

	
No

	
No

	
No

	
Skip Current Assignment

	
Yes

	
Yes

	
No

	
No

	
No

	
No

	
Suspend

	
Yes

	
Yes

	
Yes

	
No

	
No

	
No

	
Update

	
No

	
Yes

	
Yes

	
Yes

	
No

	
No

	
Update Attachment

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
No

	
Update Comment

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
No

	
View Process History

	
Yes

	
Yes

	
Yes

	
Yes

	
No

	
No

	
View Sub Tasks

	
Yes

	
Yes

	
Yes

	
No

	
No

	
No

	
View Task History

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
Withdraw

	
Yes

	
Yes

	
No

	
Yes

	
No

	
No

Footnote 1 Not valid for ToDo tasks

Footnote 2 Valid only for ToDo tasks

Footnote 3 Applicable for tasks in alerted states

Footnote 4 Without claim and escalate to current assignee's manager

Footnote 5 Without claim

30.6 Setting a Vacation Period

You can set a vacation period so that you are removed from automatic task assignment during the dates you specify, as shown in Figure 30-37.

Figure 30-37 Setting a Vacation Period

[image: Description of Figure 30-37 follows]

Vacation rules are not executed for ToDo tasks. See Section 30.7, "Setting Rules," for how to set a vacation rule that is synchronized with the vacation period.

To create a vacation period:

	
Click the Preferences link.

The My Rules tab is displayed.

	
Click Enable vacation period.

	
Provide start and end dates.

	
Click Save.

The vacation period is enabled, as shown in Figure 30-38.

Figure 30-38 Enabling a Vacation Period

[image: Description of Figure 30-38 follows]

30.7 Setting Rules

Rules act on tasks, either a specific task type or all the tasks assigned to a user or group. Figure 30-39 shows where you set rules, including vacation rules (different from the vacation period settings described in Section 30.6, "Setting a Vacation Period").

Figure 30-39 Creating a Rule

[image: Description of Figure 30-39 follows]

A rule cannot always apply in all circumstances in which it is used. For example, if a rule applies to multiple task types, it may not be possible to set the outcome for all tasks, since different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by using the up and down buttons in the header, as shown in Figure 30-39.

If a rule meets its filter conditions, then it is executed and no other rules are evaluated. For your rule to execute, you must be the only user assigned to that task. If the task is assigned to multiple users (including you), the rule does not execute.

You cannot specify business rules for ToDo tasks

30.7.1 How To Create User Rules

Specify the following when creating a user rule:

	
Rule name

	
If the rule is a vacation rule. See Section 30.6, "Setting a Vacation Period," for how to set the vacation period that is synchronized with the vacation rule.

	
Which task or task type the rule applies to—If unspecified, then the rule applies to all tasks. If a task type is specified, then any flex field attributes mapped for that task type can be used in the rule condition.

	
When the rule applies

	
Conditions on the rule—These are filters that further define the rule, such as specifying that a rule acts on priority 1 tasks only, or that a rule acts on tasks created by a specific user. The conditions can be based on standard task attributes and any flex fields that have been mapped for the specific tasks. See Section 30.10.1, "How To Map Flex Fields," for more information.

User rules do the following actions:

	
Reassign to—You can reassign tasks to subordinates or groups you manage. If you have been granted the BPMWorkflowReassign role, then you can reassign tasks to any user or group.

	
Delegate to—You can delegate to any user or group. Any access rights or privileges for completing the task are determined according to the original user who delegated the task. (Any subsequent delegations or re-assignments do not change this from the original delegating user.)

	
Set outcome to—You can specify an automatic outcome if the workflow task was designed for those outcomes, for example, accepting or rejecting the task. The rule must be for a specific task type. If a rule is for all task types, then this option is not displayed.

	
Take no action—Use this action to prevent other more general rules from applying. For example, to reassign all your tasks to another user while you are on vacation, except for loan requests, for which you want no action taken, then create two rules. The first rule specifies that no action is taken for loan requests; the second rule specifies that all tasks are reassigned to another user. The first rule prevents reassignment for loan requests.

To create a user rule:

	
Click the Preferences link

The My Rules tab is displayed.

	
In the Rules area, click My Rules and click Add.

	
In the My Rule area, do the following and click Save:

	
Provide a name for the rule.

	
Select Use as a vacation rule if you are creating a vacation rule. The start and end dates of the rule are automatically synchronized with the vacation period.

	
Browse for task types to which the rule applies.

	
Select Execute rule only between these dates and provide rule execution dates.

	
In the IF area, add rule conditions.

	
In the THEN area, select actions to be taken: Reassign to, Delegate to, Set outcome to, or Take no action), as shown in Figure 30-39.

The new rule appears under the My Rules node.

30.7.2 How To Create Group Rules

Creating a group rule is similar to creating a user rule, with the addition of a list of the groups that you (as the logged-in user) manage. Examples of group rules include:

	
Assigning tasks from a particular customer to a member of the group

	
Ensuring an even distribution of task assignments to members of a group by using round-robin assignment

	
Ensuring that high-priority tasks are routed to the least busy member of a group

Group rules do the following actions:

	
Assign to member via—You can specify a criterion to determine which member of the group gets the assignment. This dynamic assignment criterion can include round-robin assignment, assignment to the least busy group member, or assignment to the most productive group member. You can also add your custom functions for allocating tasks to users in a group.

	
Assign to—As with user rules, you can assign tasks to subordinates or groups you directly manage. If you have been granted the BPMWorkflowReassign role, then you can reassign tasks to any user or group (outside your management hierarchy).

	
Take no action—As with user rules, you can create a rule with a condition that prevents a more generic rule from being executed.

To create a group rule:

	
Click the Preferences link

	
Click the Other Rules tab.

	
Select Group from the list.

	
Enter a group name and click the Search icon, or enter a group name.

The Identity Browser opens for you to find and select a group.

	
Select the group name under the Group Rules node and click Add, as shown in Figure 30-40.

Figure 30-40 Creating a Group Rule

[image: Description of Figure 30-40 follows]

	
Provide group rule information and click Save.

	
Provide a name for the rule.

	
Browse for task types to which the rule applies.

	
Provide rule execution dates.

	
In the IF area, add rule conditions.

	
In the THEN area, select the actions to be taken (or none) (Assign to member via, Assign to, or Take no action), as shown in Figure 30-40.

The new rule appears under the Group Rules node.

30.7.3 Assignment Rules for Tasks with Multiple Assignees

If a task has multiple assignees, then assignment rules are not evaluated for the task, and the task is not automatically routed. This is because each of the task's assignees can define assignment rules, which can potentially provide conflicting actions to take on the task. Only tasks that are assigned exclusively to a single user are routed by the assignment rules.

For example, consider the following sequence:

	
A rule is created for user cdickens to reassign all assigned requests to user jstein.

	
User jcooper reassigns the allocated tasks to cdickens and cdoyle.

	
Cdickens claims the task, and the task appears in their inbox.

The task is not automatically reassigned to jstein. The task is routed to jstein, following the assignment rule set for cdickens, if user jcooper explicitly re-assigns the task only to cdickens instead of reassigning the task to multiple users (cdickens and cdoyle).

30.8 Using the Worklist Administration Functions

Administrators are users who have been granted the BPMWorkflowAdmin role. Administration functions include the following:

	
Managing other users' or groups' rules

	
Setting the worklist display (application preferences)

	
Mapping flex fields

An administrator can view and update all tasks assigned to all users. An administrator's Assignee filter displays Admin when the Admin tab is selected.

30.8.1 How To Manage Other Users' or Groups' Rules (as an Administrator)

This function is useful for fixing a problem with a rule. Also, for a user who no longer works for the company, administrators can set up a rule for that user so that all tasks assigned to the user are automatically assigned to another user or group.

To create a rule for another user or group:

	
From the task list page, click the Rules link.

	
Click the Other Rules tab.

	
Search for the user or group for whom rules are to be created, as shown in Figure 30-41.

Figure 30-41 Creating Rules for Another User or Group

[image: Description of Figure 30-41 follows]

	
Click a user rules node, or click a group name (for a group rule).

	
Click the Add icon to create a rule.

	
Provide rule information, as shown in Figure 30-42, and click Save.

Figure 30-42 Defining Rules for Another User or Group

[image: Description of Figure 30-42 follows]

30.8.2 How To Set the Worklist Display (Application Preferences)

Application preferences customize the appearance of the worklist. Administrators can specify the following:

	
Login page realm label—If the identity service is configured with multiple realms, then the Oracle BPM Worklist login page displays a list of realm names. LABEL_LOGIN_REALM specifies the resource bundle key used to look up the label to display these realms. The term realm can be changed to fit the user community—terms such as country, company, division, or department may be more appropriate. Administrators can customize the resource bundle, specify a resource key for this string, and then set this parameter to point to the resource key.

	
Global branding icon—This is the image displayed in the top left corner of every page of the worklist. (The Oracle logo is the default.) Administrators can provide a .gif, .png, or .jgp file for the logo. This file must be in the public_html directory.

	
Resource bundle—An application resource bundle provides the strings displayed in the worklist. By default, this is the class at:

oracle.bpel.worklistapp.resource.WorklistResourceBundle

Administrators can change the strings shown in the application by copying WorkflowResourceBundle and creating their own. This parameter allows administrators to specify the class path to this custom resource bundle.

Administrators must extend WorklistResourceBundle.java by adding their resource strings. Administrators can change the strings shown in the application by copying WorkflowResourceBundle and creating their own. This parameter allows administrators to specify the class path to this custom resource bundle. Then administrators create a JAR file from the compiled resource bundle and copy it under

SOA_Oracle_Home\j2ee\home\applications\worklist\worklist\WEB-INF\lib

	
Use language settings of—Select the browser or the identity provider.

The Identity Provider that stores information on worklist users can store the user's locale, which can determine the worklist display language. Alternatively, the user's browser can supply the locale information. This parameter determines which is used as the source for determining the worklist application display language.

To specify application preferences:

	
Click the Administration tab.

	
Click Application Preferences.

	
Browse for the locations of the application preferences (login page realm label, branding icon, or resource bundle), as shown in Figure 30-43.

Figure 30-43 Application Preferences

[image: Description of Figure 30-43 follows]

	
Select which language settings you want to use—from the browser or the identity provider.

	
Click Save.

30.9 Specifying Notification Settings

You can configure the notification settings to control how, when, and where you receive messages in cases when you have access to multiple communication channels (delivery types). Specifically, you can define messaging filters (delivery preferences) that specify the channel to which a message should be delivered, and under what circumstances.

For example, you might want to create filters for messages received from customers with different Service Level Agreements (SLA), specifying to be notified through business phone and SMS channels for customers with a premium SLA and by EMAIL for customers with a nonpremium SLA.

30.9.1 Messaging Filter Rules

A messaging filter rule consists of rule conditions and rule actions. A rule condition consists of a rule attribute, an operator, and an associated value. A rule action is the action to be taken if the specified conditions in a rule are true.

30.9.1.1 Data Types

Table 30-8 lists data types supported by messaging filters. Each attribute has an associated data type, and each data type has a set of predefined comparison operators.

Table 30-8 Data Types Supported by Messaging Filters

	Data Type	Comparison Operators
	
Date

	
isEqual, isNotEqual, isGreaterThan, isGreaterThanOrEqual, isLessThan, isLessThanOrEqual, Between, isWeekday, isWeekend

	
Time

	
isEqual, isNotEqual, Between

	
Number

	
isEqual, isNotEqual, Between, isGreaterThan, isGreaterThanOrEqual, isLessThan, isLessThanOrEqual

	
String

	
isEqual, isNotEqual, Contains, NotContains

	
Note:

The String data type does not support regular expressions.

30.9.1.2 Attributes

Table 30-9 lists the predefined attributes for messaging filters.

Table 30-9 Predefined Attributes for Messaging Filters

	Attribute	Data Type
	
Total Cost

	
Number

	
From

	
String

	
Expense Type

	
String

	
To

	
String

	
Application Type

	
String

	
Duration

	
Number

	
Application

	
String

	
Process Type

	
String

	
Status

	
String

	
Subject

	
String

	
Customer Type

	
String

	
Time

	
Time

	
Group Name

	
String

	
Processing Time

	
Number

	
Date

	
Date

	
Due Date

	
Date

	
User

	
String

	
Source

	
String

	
Amount

	
Number

	
Role

	
String

	
Priority

	
String

	
Customer Name

	
String

	
Expiration Date

	
Date

	
Order Type

	
String

	
Organization

	
String

	
Classification

	
String

	
Service Request Type

	
String

30.9.2 Rule Actions

For a given rule, a messaging filter can define the following actions:

	
Send No Messages: Do not send a message to any channel.

	
Send Messages to All Selected Channels: Send a message to all specified channels in the address list.

	
Send to the First Available Channel: Send a message serially to channels in the address list until one successful message is sent. This entails performing a send to the next channel when the current channel returns a failure status. This filter action is not supported for messages sent from the human workflow layer.

30.9.3 Managing Messaging Channels

In Oracle BPM Worklist, messaging channels represent both physical channels, such as business mobile phones, and also email client applications running on desktops. Specifically, Oracle BPM Worklist supports the following messaging channels:

	
EMAIL

	
IM

	
MOBILE

	
SMS

	
VOICE

	
WORKLIST

Note the following about message channels:

	
Addresses for messaging channels are fetched from the configured identity store.

	
SMS and MOBILE notifications are sent to the mobile phone number.

	
VOICE notifications are sent to the business phone number.

	
No special notification is sent when the messaging channel preference is WORKLIST. Instead, log in to Oracle BPM Worklist to view tasks.

	
EMAIL is the default messaging channel preference when a preferred channel has not been selected.

You can use the Messaging Channels tab to view, create, edit, and delete messaging channels.

30.9.3.1 Viewing Your Messaging Channels

You can display your existing messaging channels.

To view messaging channels:

	
Click the Preferences link.

	
Click the Notification tab.

	
Click the Messaging Channels tab.

The My Messaging Channels list appears (Figure 30-44) and displays the following information:

	
Name: The name of the messaging channel.

	
Type: The type of messaging channel, such as EMAIL or SMS.

	
Address: The address for the channel, such as a phone number or email address.

	
Default: Specifies whether this channel is the default messaging channel.

Figure 30-44 Messaging Channels

[image: Description of Figure 30-44 follows]

	
Click View > Columns and select the columns to display or hide.

You can also click View > Reorder Columns to display a dialog to reorder the displayed columns.

Messaging channel names and addresses are retrieved from the underlying identity store, such as Oracle Internet Directory.

30.9.3.2 Creating, Editing, and Deleting a Messaging Channel

Oracle BPM Worklist uses an underlying identity store, such as Oracle Internet Directory, to manage messaging channels and addresses. Therefore, you cannot directly create, modify, or delete messaging channels using Oracle BPM Worklist.

To perform these actions, contact the system administrator responsible for managing your organization's identity store.

30.9.4 Managing Messaging Filters

You can use the Messaging Filters tab to define filters that specify the types of notifications you want to receive along with the channels through which to receive these notifications. You can do this through a combination of comparison operators (such as is equal to, is not equal to), attributes that describe the notification type, content, or source, and notification actions, which send the notifications to the first available messaging channels, all messaging channels, or to no channels (effectively blocking the notification).

For example, you can create a messaging filter called Messages from Lise, that retrieves all messages addressed to you from your boss, Lise. Notifications that match all of the filter conditions might first be directed to your business mobile phone, for instance, and then to your business email if the first messaging channel is unavailable.

30.9.4.1 Viewing Messaging Filters

You can display your existing messaging filters.

To view your messaging filters:

	
Click the Notification tab.

	
Click the Messaging Filters tab.

The My Messaging Filters list appears (Figure 30-45) and displays the following information:

	
Filter Name: The name of the messaging filter

	
Description: An optional description of the messaging filter

Figure 30-45 Messaging Filters

[image: Description of Figure 30-45 follows]

	
Click View > Columns and select the columns to display or hide.

You can also click View > Reorder Columns to display a dialog to reorder the displayed columns.

30.9.4.2 Creating Messaging Filters

To create a messaging filter:

	
Click Create.

The Messaging Filters page appears, as shown in Figure 30-46.

Figure 30-46 Adding a Messaging Filter

[image: Description of Figure 30-46 follows]

	
Specify the following information:

	
Filter Name: The name of the messaging filter.

	
Description: An optional description for the messaging filter.

	
Define the filter conditions using the lists and fields in the Condition section, as follows:

	
Select whether notifications must meet all of the conditions or any of the conditions by selecting either the All of the following conditions or the Any of the following conditions options.

	
Select the attribute from the list.

	
Select the operator, such as isEqual, from the list.

	
Type the value of the condition in the text box.

	
Click Add to add the condition to the list.

	
Repeat these steps to add more filter conditions. To remove a filter condition, click Delete.

	
Select from the following messaging options in the Action section:

	
Send No Messages: Do not send a message to any channel.

	
Send Messages to All Selected Channels: Send a message to all specified channels in the address list.

	
Send to the First Available Channel: Send a message serially to channels in the address list until one successful message is sent. This entails performing a send to the next channel when the current channel returns a failure status.

	
To set the delivery channel, select a channel from the Add Notification Channel list and click Add. To remove a channel, click Delete.

	
Use the up and down arrows to prioritize channels. If available, the top-most channel receives messages meeting the filter criteria if you select Send to the First Available Channel.

	
Click OK.

The messaging filter appears on the My Messaging Filters page. The My Messaging Filters page enables you to edit or delete the channel. Click Cancel to dismiss the dialog without creating the filter.

30.9.4.3 Editing a Messaging Filter

To edit a messaging filter:

	
Select the filter on the My Messaging Filters page.

	
Click Edit.

	
Click OK to update the messaging filter. Click Cancel to dismiss the dialog without modifying the filter.

30.9.4.4 Deleting a Messaging Filter

To delete a messaging filter:

	
Select the filter on the My Messaging Filters page.

	
Click Delete. A confirmation dialog appears.

	
Click OK to delete the messaging filter. Click Cancel to dismiss the dialog without deleting the filter.

30.10 Using Flex Fields

Human workflow flex fields store and query use case-specific custom attributes. These custom attributes typically come from the task payload values. Storing custom attributes in flex fields provides the following benefits:

	
They can be displayed as a column in the task listing

	
They can filter tasks in custom views and advanced searches

	
They can be used for a keyword-based search

For example the Requester, PurchaseOrderID, and Amount fields in a purchase order request payload of a task can be stored in the flex fields. An approver logging into Oracle BPM Worklist can see these fields as column values in the task list and decide which task to access. The user can define views that filter tasks based on the flex fields. For example, a user can create views for purchase order approvals based on different amount ranges. If the user must also retrieve tasks at some point related to a specific requester or a purchase order ID, they can specify this in the keyword field and perform a search to retrieve the relevant tasks.

For the flex fields to be populated, an administrator must create flex field mappings, as follows:

	
Specify a label for the flex field to be populated.

	
Map the payload attribute containing the data to the label.

These mappings are valid for a certain task type. Therefore, each task type can have different flex field mappings. After the mapping is complete and any new task is initiated, the value of the payload is promoted to the mapped flex field. Tasks initiated before the mapping do not contain the value in the flex field. Only top-level simple type attributes in the payload can be promoted to a flex field. Complex attributes or simple types nested inside a complex attribute cannot be promoted. It is important to define the payload for a task in the Human Task Editor, keeping in mind which attributes from the payload may must promoted to a flex field. All text and number flex fields are automatically included in the keyword-based search.

Essentially, the Human Task Editor is used only when defining the payload for a task. All other operations are performed at runtime.

Directory naming is not available concomitant with the flex file naming convention.

	
Note:

Flex fields must be defined before instances of the business process are generated. Only instances generated after flex fields are created reflect the correct flex fields. Older instances of the business process do not reflect subsequent flex field changes.

30.10.1 How To Map Flex Fields

An administrator, or users with special privileges, can use flex field mapping, shown in Figure 30-47, to promote data from the payload to inline attribute flex fields. By promoting data to flex fields, the data becomes searchable and can be displayed as columns on the task list page.

Administrators can map public flex fields. Users who have been granted the workflow.mapping.publicFlexField privilege can map public flex fields, and see a Public Flex Fields node on the Administration tab.

Figure 30-47 Flex Field Mapping

[image: Description of Figure 30-47 follows]

To create labels:

To create a flex field mapping, an administrator first defines a semantic label, which provides a more meaningful display name for the flex field attribute. Click Add to use the Create Label dialog, as shown in Figure 30-48.

Figure 30-48 Creating a Label

[image: Description of Figure 30-48 follows]

As Figure 30-48 shows, labelName is mapped to the task attribute TextAttribute3. The payload attribute is also mapped to the label. In this example, the Text attribute type is associated with labelName. The result is that the value of the Text attribute is stored in the TextAttribute3 column, and labelName is the column label displayed in the user's task list. Labels can be reused for different task types. You can delete a label only if it is not used in any mappings.

A mapped payload attribute can also be displayed as a column in a custom view, and used as a filter condition in both custom views and workflow rules. The display name of the payload attribute is the attribute label that is selected when doing the mapping.

Note the following restrictions:

	
Only simple type payload attributes can be mapped.

	
A flex field (and thus a label) can be used only once per task type.

	
Data type conversion is not supported for the number or date data types. For example, you may not map a payload attribute of type string to a label of type number.

To browse all mappings:

	
Click Browse all mappings.

	
Select a row in the label table to display all the payload attributes mapped to a particular label.

Figure 30-49 Browsing Mappings

[image: Description of Figure 30-49 follows]

To edit mappings by task type:

	
Click Edit mappings by task type, optionally provide a task type, and click Search.

	
Select a task type and click OK.

Figure 30-50 Selecting a Task Type

[image: Description of Figure 30-50 follows]

	
With the task type displayed in the Edit mappings by task type field, click Go.

All current mappings for the task type are displayed, as shown in Figure 30-51.

Figure 30-51 Selecting a Label

[image: Description of Figure 30-51 follows]

	
Select a mapping label and click Select.

Figure 30-52 shows a completed mapping.

Figure 30-52 Flex Field Mapping Created

[image: Description of Figure 30-52 follows]

See Section 32.1.9.1, "Internationalization of Attribute Labels" for more information.

30.11 Creating Worklist Reports

Table 30-10 lists the worklist reports available for task analysis.

Table 30-10 Worklist Report Types

	Report Name	Description	Input Parameters
	
Unattended Tasks

	
Provides an analysis of tasks assigned to users' groups or reportees' groups that have not yet been acquired (the "unattended" tasks).

	
	
Assignee—This option (required) selects tasks assigned to the user's group (My Group), tasks assigned to the reportee's groups (Reportees), tasks where the user is a creator (Creator), or tasks where the user is an owner (Owner).

	
Creation Date—An optional date range

	
Expiration Date—An optional date range

	
Task State—The state (optional) can by Any, Assigned, Expired, or Information Requested.

	
Priority—The priority (optional) can be Any, Highest, High, Normal, Low, or Lowest.

	
Tasks Priority

	
Provides an analysis of the number of tasks assigned to a user, reportees, or their groups, broken down by priority.

	
	
Assignee—Depending on the assignee that you select, this required option includes tasks assigned to the logged-in user (My), tasks assigned to the user and groups that the user belongs to (My & Group), or tasks assigned to groups to which the user's reportees belong (Reportees).

	
Creation Date—An optional date range

	
Ended Date—An optional date range for the end dates of the tasks to be included in the report

	
Priority—The priority (optional) can by Any, Highest, High, Normal, Low, or Lowest.

	
Tasks Cycle Time

	
Provides an analysis of the time taken to complete tasks from assignment to completion based on users' groups or reportees' groups.

	
	
Assignee—Depending on the assignee that you select, this required option includes your tasks (My) or tasks assigned to groups to which your reportees belong (Reportees).

	
Creation Date—An optional date range

	
Ended Date—An optional date range for the end dates of the tasks to be included in the report

	
Priority—The priority (optional) can by Any, Highest, High, Normal, Low, or Lowest.

	
Tasks Productivity

	
Provides an analysis of assigned tasks and completed tasks in a given time period for a user, reportees, or their groups.

	
	
Assignee—Depending on the assignee that the user selects, this required option includes the user's tasks (My & Group) or tasks assigned to groups to which the user's reportees belong (Reportees).

	
Creation Date (range)—An optional creation date range. The default is one week.

	
Task Type—Use the Search (flashlight) icon to select from a list of task titles. All versions of a task are listed on the Select Workflow Task Type page (optional).

	
Tasks Time Distribution

	
Provides the time an assignee takes to perform a task.

	
	
Assignee—Depending on the assignee that the user selects, this required option includes the user's tasks (My & Group) or tasks assigned to groups to which the user's reportees belong (Reportees).

	
From...to (date range)—An optional creation date range. The default is one week.

	
Task Type—Use the Search (flashlight) icon to select from a list of task titles. All versions of a task are listed on the Select Workflow Task Type page (optional).

30.11.1 How To Create Reports

Reports are available from the Reports link. Report results cannot be saved.

To create a report:

	
Click the Reports link.

	
Click the type of report you want to create.

Figure 30-53 shows the report types available.

Figure 30-53 Oracle BPM Worklist Reports

[image: Description of Figure 30-53 follows]

	
Provide inputs to define the search parameters of the report.

Figure 30-54 shows an example of the Unattended Tasks Report input page. The other reports are similar. See Table 30-10 for information about input parameters for all the report types.

Figure 30-54 Unattended Tasks Report—Input Page for Task Analysis

[image: Description of Figure 30-54 follows]

	
Click Run.

30.11.2 What Happens When You Create Reports

As shown in Figure 30-55, report results (for all report types) are displayed in both a table format and a bar chart format. The input parameters used to run the report are displayed under Report Inputs, in the lower-left corner (may require scrolling to view).

Figure 30-55 Report Display—Table Format, Bar Chart Format, and Report Inputs

[image: Description of Figure 30-55 follows]

30.11.2.1 Unattended Tasks Report

Figure 30-56 shows an example of an Unattended Tasks report.

Figure 30-56 Unattended Tasks Report

[image: Description of Figure 30-56 follows]

The report shows that the California group has 15 unattended tasks, the Supervisor group has 7 unattended tasks, and the LoanAgentGroup has 11 unattended tasks. The unattended (unclaimed) tasks in this report are all DocumentReview tasks. If multiple types of unattended task exists when a report is run, all task types are included in the report, and the various task types are differentiated by color.

30.11.2.2 Tasks Priority Report

Figure 30-57 shows an example of a Tasks Priority report.

Figure 30-57 Tasks Priority Report

[image: Description of Figure 30-57 follows]

The report shows that the California group, the Supervisor group, and the LoanAgentGroup each have 16 tasks of normal priority. The users rsteven and jcooper have 5 and 22 tasks, respectively, all normal priority. Priorities (highest, high, normal, low, lowest) are distinguished by different colors in the bar chart.

30.11.2.3 Tasks Cycle Time Report

Figure 30-58 shows an example of a Tasks Cycle Time Report.

Figure 30-58 Tasks Cycle Time Report

[image: Description of Figure 30-58 follows]

The report shows that it takes 1 hour and 6 minutes on average to complete DocumentReview tasks, and 1 hour and 28 minutes on average to complete VacationApproval tasks. The bar chart shows the average cycle time in milliseconds.

30.11.2.4 Tasks Productivity Report

Figure 30-59 shows an example of a Tasks Productivity Report.

Figure 30-59 Tasks Productivity Report

[image: Description of Figure 30-59 follows]

The report shows the number of tasks assigned to the California, LoanAgentGroup, and Supervisor groups. For individual users, the report shows that jcooper has 22 assigned tasks. In addition to his assigned tasks, jcooper has completed 2 tasks. The report shows that mtwain and rsteven have completed 6 and 11 tasks respectively. In the bar chart, the two task states—assigned and completed—are differentiated by color.

	
Note:

The My and Group and Reportees options have been removed from the Productivity Report.

30.12 Accessing Oracle BPM Worklist in Local Languages

A user's preferred worklist language is configured from the identity store or the browser.

For more information, see the following sections for instructions on how to select Browser or Identity Provider in the worklist interface:

	
Section 30.8.2, "How To Set the Worklist Display (Application Preferences)" for how to select Browser or Identity Provider from the Application Preferences page

	
Section 30.3, "Customizing the Task List Page" and Figure 30-14, "Customizing Fields in a Worklist View"

A user's preferred time zone is configured from the identity store.

If no preference information is available, then the user's preferred language and time zone are determined by the system defaults. System defaults are based on the server settings for language and time zone.

If an LDAP-based provider such as OID is used, then language settings are changed in the OID community. Connect to the embedded LDAP server, where you can change language settings in the OID community.

	
Start an LDAP browser (for example, openLdap browser, ldapbrowser, jXplorer, and so on). See the documentation for your browser for instructions.

	
Connect to the LDAP server by providing the hostname, port number on which the server is running, and the administration user credentials with which to log in.

	
For Embedded LDAP:

	
The default managed server port number is 7001.

	
The administration credential username is cn=admin.

	
The administration password credential is accessible from the Oracle WebLogic Server Administration Console by selecting Security > Embedded LDAP for your domain.

For instructions on changing the default password credential, see Chapter 9, "Managing the Embedded LDAP Server" of Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
For OIDm:

	
The default port number is 3060.

	
The administration username is cn=orcladmin.

	
The administration password is the password for the LDAP server.

	
To change a user's preferred language, navigate to the user entry, and add/set the preferredLanguage attribute. See Table 30-11, "Languages Supported in Oracle BPM Worklist" for a list of supported languages. To change the time zone setting, add/set the orclTimeZone attribute. The format of the time zone string is Continent/Region. You can find the time zone values in the $JAVA_HOME/jre/lib/zi directory. The directories specify the continent names, for example, Africa, Asia, America, and so on, while the files within the directories specify the regions. Note that some regions include subregions, for example America/Indiana/Indianapolis.

When a user logs in, the worklist pages are rendered in the user's preferred language and time zone.

Most strings in the worklist come from the Worklist Application bundle. By default, this is the class

oracle.bpel.services.workflow.resource.WorkflowResourceBundle

However, this can be changed to a custom resource bundle by setting the appropriate application preference (see Section 30.8.2, "How To Set the Worklist Display (Application Preferences)") or by providing an updated version of the default bundle class. See the Workflow Customizations sample for details.

For task attribute names, flex field attribute labels, and dynamic assignment function names, the strings come from configuring the resource property file WorkflowLabels.properties. This file exists in the wfresource subdirectory of the services config directory. See Chapter 32, "Introduction to Human Workflow Services" for information on adding entries to this file for dynamic assignment functions and attribute labels.

For custom actions and task titles, the display names come from the message bundle specified in the task configuration file. If no message bundle is specified, then the values specified at design time are used. See Chapter 32, "Introduction to Human Workflow Services" for information on how to specify message bundles so that custom actions and task titles are displayed in the preferred language.

30.12.1 How To Change the Language Used in the Worklist

The following is based on extracting a user's preferred language from a JAZN XML file.

To change the language:

Change the portion in bold to set the user's preferred language.

<preferredLanguage>en-US</preferredLanguage>

Oracle BPM Worklist supports the languages shown in Table 30-11.

Table 30-11 Languages Supported in Oracle BPM Worklist

	Language	Format
	
English

	
(en)

	
English (United States)

	
(en-US)

	
German

	
(de)

	
Spanish (International)

	
(es)

	
French

	
(fr)

	
Italian

	
(it)

	
Japanese

	
(ja)

	
Korean

	
(ko)

	
Portuguese (Brazil)

	
(pt-BR)

	
Chinese (Simplified)

	
(zh-CN)

	
Chinese (Traditional)

	
(zh-TW)

30.12.2 What You May Need to About Runtime Languages Not Displaying in the Worklist

Oracle BPM Worklist supports nine administration languages. However, the user's notification preference interface, as a standalone application, supports 21 runtime languages. If a user's preferred language is set to a language that is not supported by the worklist, but which is supported by the user's notification preference interface, then the worklist displays the language set by the server (or English if the server language is also not supported by the worklist), while the embedded user's notification preference interface displays in the user's preferred language. In this case, two languages are seen when you navigate to the Preferences settings in the Notification tab in the worklist.

For example, assume that the language of the SOA server is French and that someone tries to access the worklist in a browser with the language set to Arabic. The worklist interface displays the server language, French, while the embedded user's notification preference interface displays in Arabic when navigating to the Preferences > Notification tab.

30.12.3 What You May Need to Know About Inconsistent Display Languages in Worklist and Embedded User's Notification Preference Interface

Oracle BPM Worklist can be configured to set the language from the browser or from the identity store. There are two levels to this setting, the application level and the user level. If the user preference is set, it takes precedence in determining the worklist display language. However, the embedded user's notification preference interface always respects the application preference. Therefore, if the user's preference indicates that the language from the browser is to be used, while the application preference is set to use the language from the identity store, or vice versa, you may see different display languages in the worklist and in the user's notification preference interface.

30.12.4 How To Change the Time Zone Used in the Worklist

The following is based on extracting a user's time zone from a JAZN XML file.

To change the time zone:

Change the string in bold to set the user's preferred time zone.

<timeZone>America/Los_Angeles</timeZone>

The format of the time zone string is Continent/Region. You can find the time zone values in the $JAVA_HOME/jre/lib/zi directory. The directories specify the continent names, for example Africa, Asia, America, and so on, while the files within the directories specify the regions. Note that some regions include sub-regions, for example America/Indiana/Indianapolis.

30.13 Creating Reusable Worklist Regions

Some features available in worklist are exposed as standalone reusable components that can be embedded in any application. Moreover, these standalone task flows provide many customizations through parameters that enable user to build and customize a worklist application to meet requirements. All of the task flows are bundled in an ADF library that can be included in the embedding application.

30.13.1 How to Create an Application With an Embedded Reusable Worklist Region

The usage of each reusable worklist region is the same with a few exceptions. The following procedure provides the detailed steps to create an application and embed the Task List task flow in the application. Where applicable, notes on how to use other types of reusable worklist regions are provided.

To create an application with an embedded reusable worklist region:

	
Create new Fusion Web Application in Oracle JDeveloper. In this example, the name of the application is TaskListTaskFlowSample. Figure 30-60 provides details.

Figure 30-60 Creation of Application with an Embedded Reusable Worklist Region

[image: Description of Figure 30-60 follows]

	
Open the View Controller Project Properties, Libraries and Classpath section, and click Add Library to add the following libraries in the class path:

	
BPM Worklist Components Add this library to add the task flow JAR adflibTaskListTaskFlow.jar and adflibWorklistComponents.jar, which are required in the project's class path.

	
BPM Services

	
WSRP Container

Figure 30-61 provides details.

Figure 30-61 Libraries and Classpath Section

[image: Description of Figure 30-61 follows]

	
If your application runs on non-SOA server, you must perform two additional steps.

	
Install the oracle.soa.workflow shared library.

Note that if your server has oracle.soa.workflow.wc already installed you do not need to install oracle.soa.workflow.

	
Configure a foreign JNDI on the server.

Note that if you run the Task List task flow in federated mode, you do not need to do this step. See the section "federatedMode" for information about how to use the task flow in federated mode.

	
Select the View Controller project and choose File > New > Current Project Technologies > Web Tier > JSF Page to create a jspx file (for example, testSample.jspx).

Be sure to select Create as XML document (*.jspx) in the Create JSF Page dialog.

	
Choose adflibTaskListTaskFlow.jar from the component palette. It contains the list of all the Task Flows and Regions. Figure 30-62 provides details.

Figure 30-62 Component Palette

[image: Description of Figure 30-62 follows]

	
Drag and drop one of the task flow Regions to the jspx page, and select Region in the Create menu (for example, taskList-task-flow-definition for Task List Task Flow).

See the following sections for details about the task flow definitions:

	
Section 30.13.4, "What You May Need to Know About Task List Task Flow"

	
Section 30.13.5, "What You May Need to Know About Certificates Task Flow"

	
Section 30.13.6, "What You May Need to Know About the Reports Task Flow"

	
Section 30.13.7, "What You May Need to Know About Application Preferences Task Flow"

	
Section 30.13.8, "What You May Need to Know About Flex Fields Task Flow"

	
Section 30.13.9, "What You May Need to Know About Rules Task Flow"

	
If you chose flex-fields-task-flow-definition, rules-task-flow-definition, tasklist-reports-task-flow-definition, or taskList-task-flow-definition, pass the task flow parameters in the Edit Task Flow Binding dialog that appears.

	
A new entry is added to the pagenamePagedef.xml file.

For example, adding the taskList-task-flow-definition results in the following new entry:

<taskFlow id="taskListtaskflowdefinition1"
 taskFlowId="/WEB-INF/taskList-task-flow-definition.xml#taskList-task- flow-definition"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="federatedMode" value="true"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="showServerColumn" value="true"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
</taskFlow>

	
Add the shared libraries in the weblogic-application.xml file. If you have oracle.soa.workflow.wc installed on your server, add that library.

<library-ref>
 <library-name>oracle.soa.workflow</library-name>
</library-ref>

	
Before deploying the application, see Section 30.13.2, "How to Set Up the Deployment Profile."

30.13.2 How to Set Up the Deployment Profile

Before deploying the application, you must edit the deployment profile.

To edit the deployment profile

	
Select the ViewController project and choose File > New > General > Deployment Profiles, select WAR File, and click OK.

	
Select WEB-INF/lib > Filters, and check adflibTaskListTaskFlow.jar, adflibWorklistComponents.jar and wsrp-container.jar.

30.13.3 How to Prepare Federated Mode Task Flows For Deployment

If you are using the task flow in federated mode, you must pass the list of federated servers to the task flow. See "federatedMode" for details.

If the task flow is used in the federated mode, then enable global trust between the federated servers. This is done so that the already authenticated user token is passed to all the federated servers passed.

Do the below steps for all the federated servers and restart all the servers. It is very important that you restart all the servers.

To restart the servers:

	
Login to the Oracle Weblogic Server console.

	
Select the domain name soainfra under Domain Structures. The domain name may be different if a SOA server is not used.

	
Select the Security tab.

	
Select the Advanced link (near the bottom Save button).

	
Enter a password in the Credential field. (The same password must be given for all the federated servers).

	
Click Save.

	
Restart the server.

30.13.4 What You May Need to Know About Task List Task Flow

The Task List task flow takes in the parameters to control the display behavior of the embedded region. Figure 30-63 provides details.

Figure 30-63 Task List

[image: Description of Figure 30-63 follows]

Some of the parameters are listed below. For the full list of parameters, see Section 34.4, "Passing Worklist Portlet Parameters."

	
federatedMode

	
federatedServers

	
showServerColumn

	
wfCtxID

federatedMode

Only if passed as true, the task list would be shown in the federated mode. To run the task flow in federated mode, the list of federated servers must be passed to the task flow. You can pass the federated servers list to the task flow in one of the following two ways.

One method is to provide the client configuration file wf_client_config.xml in the class path (APP-INF\classes\wf_client_config.xml at the EAR level, or the WEB-INF\classes of the web application). The client configuration file contains all federated server details. See more information about this parameter in detail in Section 34.4, "Passing Worklist Portlet Parameters."

Another method is to construct a JAXB object, which contains the federated servers list. This JAXB object can be passed to the task flow through the federatedServers parameter. See "federatedServers" for information about constructing the JAXB object.

If both the client configuration file (wf_client_config.xml) and the JAXB object were provided to the task flow, the JAXB object takes the precedence.

federatedServers

This parameter is a JAXB object that contains the list of servers if the task flow is run in federated mode. This parameter takes precedence over the client configuration file (wf_client_config.xml) if it were also provided. See the code example in Example 30-1 for details about to constructing the JAXB object (WorkflowServicesClientConfigurationType).

Make sure that you set one of the servers as default, as shown in Example 30-1. Only one server is required to be designated as the default. Also, verify that the server you designate as the default is excluded from the federated servers list. The relevant code for doing this is in bold in the example.

The default server is used when you have many servers defined in wf_client_config.xml or in the JAXB object, but the workflow client is desired for a single server. There are a few legacy APIs that do not take a server name as a parameter. To support such legacy APIs, your must define a single server as the default server, otherwise any legacy APIs that do not take a server name do not work.

Example 30-1 federatedServers

import oracle.bpel.services.workflow.client.config.IdentityPropagationType;
import oracle.bpel.services.workflow.client.config.PolicyReferenceType;
import oracle.bpel.services.workflow.client.config.PolicyReferencesType;
import oracle.bpel.services.workflow.client.config.RemoteClientType;
import oracle.bpel.services.workflow.client.config.ServerType;
import oracle.bpel.services.workflow.client.config.SoapClientType;
import oracle.bpel.services.workflow.client.config.WorkflowServicesClientConfigurationType;

WorkflowServicesClientConfigurationType wscct =
 new WorkflowServicesClientConfigurationType();

List<ServerType> servers = wscct.getServer();

/**** Setting default server in the list ****/

ServerType defalutServer = new ServerType();
servers.add(defalutServer);

defalutServer.setDefault(true);
defalutServer.setExcludeFromFederatedList(true);
defalutServer.setName("default");

RemoteClientType rct = new RemoteClientType();
rct.setServerURL("t3://myhost.us.oracle.com:7001");
rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct.setParticipateInClientTransaction(false);
defalutServer.setRemoteClient(rct);

SoapClientType sct = new SoapClientType();
PolicyReferencesType prts = new PolicyReferencesType();

PolicyReferenceType prt = new PolicyReferenceType();
prt.setEnabled(true);
prt.setCategory("security");
prt.setUri("oracle/wss10_saml_token_client_policy");
prts.getPolicyReference().add(prt);

IdentityPropagationType ipt = new IdentityPropagationType();
ipt.setMode("dynamic");
ipt.setType("saml");
ipt.setPolicyReferences(prts);

sct.setRootEndPointURL("http://myhost.us.oracle.com:7001");
sct.setIdentityPropagation(ipt);

defalutServer.setSoapClient(sct);

/****** Setting Federated Server 1 to the list ****/

ServerType server1 = new ServerType();
servers.add(server1);
server1.setName("Human Resource");

RemoteClientType rct1 = new RemoteClientType();
rct1.setServerURL("t3://stadl28.us.oracle.com:7001");
rct1.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct1.setParticipateInClientTransaction(false);
server1.setRemoteClient(rct1);

SoapClientType sct1 = new SoapClientType();
PolicyReferencesType prts1 = new PolicyReferencesType();

PolicyReferenceType prt1 = new PolicyReferenceType();
prt1.setEnabled(true);
prt1.setCategory("security");
prt1.setUri("oracle/wss10_saml_token_client_policy");
prts1.getPolicyReference().add(prt1);
IdentityPropagationType ipt1 = new IdentityPropagationType();
ipt1.setMode("dynamic");
ipt1.setType("saml");
ipt1.setPolicyReferences(prts1);

sct1.setRootEndPointURL("http://stadl28.us.oracle.com:7001");
sct1.setIdentityPropagation(ipt1);

server1.setSoapClient(sct1);

/****** Setting Federated Server 2 to the list ****/

ServerType server2 = new ServerType();
servers.add(server2);
server2.setName("Financials");

RemoteClientType rct2 = new RemoteClientType();
rct2.setServerURL("t3://myhost.us.oracle.com:7001");
rct2.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct2.setParticipateInClientTransaction(false);
server2.setRemoteClient(rct2);

SoapClientType sct2 = new SoapClientType();
PolicyReferencesType prts2 = new PolicyReferencesType();

PolicyReferenceType prt2 = new PolicyReferenceType();
prt2.setEnabled(true);
prt2.setCategory("security");
prt2.setUri("oracle/wss10_saml_token_client_policy");
prts2.getPolicyReference().add(prt2);

IdentityPropagationType ipt2 = new IdentityPropagationType();
ipt2.setMode("dynamic");
ipt2.setType("saml");
ipt2.setPolicyReferences(prts2);

sct2.setRootEndPointURL("http://myhost.us.oracle.com:7001");
sct2.setIdentityPropagation(ipt2);

server2.setSoapClient(sct2);

showServerColumn

If the task flow is run in federated mode, the server column in the task list is not shown by default. The server column is shown if this parameter is passed as true, otherwise it is not.

wfCtxID

This is a workflow context token string. It is used to create workflow context inside the task flow. If the application is SSO-enabled, or it is secured using ADF security, this parameter is not required, otherwise this is a required parameter. You can get the workflow context ID as shown in Example 30-2.

Example 30-2 wfCtxID

IWorkflowContext wfCtx = wfSvcClient.getTaskQueryService().authenticate(username,
 password,
 realm,
 null);
wfCtxID = wfCtx.getToken();

30.13.5 What You May Need to Know About Certificates Task Flow

The user can upload the certificate to use to sign a decision, as shown in the following graphic. When signing a task outcome using your certificate, you must upload the entire chain of certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file, not only the one certificate issued to you by the certificate issuer.

A digital certificate contains the digital signature of the certificate-issuing authority, so that anyone can verify that the certificate is real. A digital certificate establishes the participant's credentials. It is issued by a certification authority (CA). It contains your name, a serial number, expiration dates, a copy of the certificate holder's public key (used for encrypting messages and digital signatures), and the digital signature of the certificate-issuing authority, so that a recipient can verify that the certificate is real.

Certificates task flow does not have any parameters. Figure 30-64 provides details.

Figure 30-64 Digital Certificate

[image: Description of Figure 30-64 follows]

30.13.6 What You May Need to Know About the Reports Task Flow

Figure 30-65 shows the unattended tasks report.

Figure 30-65 Unattended Tasks Report

[image: Description of Figure 30-65 follows]

The following worklist reports are available for task analysis.

Unattended Tasks

Unattended Tasks provides an analysis of tasks assigned to users' groups or reportees' groups that have not yet been acquired (the "unattended" tasks).

	
Assignee -This option (required) selects tasks assigned to the user's group (My Group), tasks assigned to the reportee's groups (Reportees), tasks where the user is a creator (Creator), or tasks where the user is an owner (Owner).

	
Creation Date - An optional date range

	
Expiration Date - An optional date range

	
Task State - The state (optional) can by Any, Assigned, Expired, or Information Requested.

	
Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or Lowest.

Tasks Priority

Tasks Priority provides an analysis of the number of tasks assigned to a user, reportees, or their groups, broken down by priority.

	
Assignee - Depending on the assignee that you select, this required option includes tasks assigned to the logged-in user (My), tasks assigned to the user and groups that the user belongs to (My & Group), or tasks assigned to groups to which the user's reportees belong (Reportees).

	
Creation Date - An optional date range

	
Ended Date - An optional date range for the end dates of the tasks to be included in the report.

	
Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or Lowest.

Tasks Cycle Time

Tasks Cycle Time provides an analysis of the time taken to complete tasks from assignment to completion based on users' groups or reportees' groups.

	
Assignee - Depending on the assignee that you select, this required option includes your tasks (My) or tasks assigned to groups to which your reportees belong (Reportees).

	
Creation Date - An optional date range

	
Ended Date - An optional date range for the end dates of the tasks to be included in the report.

	
Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or Lowest.

Tasks Productivity

Tasks Productivity provides an analysis of assigned tasks and completed tasks in a given time period for a user, reportees, or their groups.

	
Assignee - Depending on the assignee that the user selects, this required option includes the user's tasks (My & Group) or tasks assigned to groups to which the user's reportees belong (Reportees).

	
Creation Date (range) - An optional creation date range. The default is one week.

	
Task Type - Use the Search (flashlight) icon to select from a list of task titles. All versions of a task are listed on the Select Workflow Task Type page (optional).

Tasks Time Distribution

Tasks Time Distribution provides the time an assignee takes to perform a task.

	
Assignee - Depending on the assignee that the user selects, this required option includes the user's tasks (My & Group) or tasks assigned to groups to which the user's reportees belong (Reportees).

	
From...to (date range) - An optional creation date range. The default is one week.

	
Task Type - Use the Search (flashlight) icon to select from a list of task titles. All versions of a task are listed on the Select Workflow Task Type page (optional).

30.13.7 What You May Need to Know About Application Preferences Task Flow

Application preferences customize the appearance of the worklist. Administrators can specify the following:

	
Login page realm label-If the identity service is configured with multiple realms, then the Oracle BPM Worklist login page displays a list of realm names. LABEL_LOGIN_REALM specifies the resource bundle key used to look up the label to display these realms. The term realm can be changed to fit the user community. Terms such as country, company, division, or department may be more appropriate. Administrators can customize the resource bundle, specify a resource key for this string, and then set this parameter to point to the resource key.

	
Global branding icon-This is the image displayed in the top left corner of every page of the worklist. (The Oracle logo is the default.) Administrators can provide a .gif, .png, or .jgp file for the logo. This file must be in the public_html directory.

	
Resource bundle-An application resource bundle provides the strings displayed in the worklist. By default, this is the class at oracle.bpel.worklistapp.resource.WorklistResourceBundle. Figure 30-66 provides details.

Figure 30-66 Application Preferences

[image: Description of Figure 30-66 follows]

30.13.8 What You May Need to Know About Flex Fields Task Flow

Human workflow flex fields store and query use case-specific custom attributes. These custom attributes typically come from the task payload values. Storing custom attributes in flex fields provides the following benefits:

	
They can be displayed as a column in the task listing.

	
They can filter tasks in custom views and advanced searches.

	
They can be used for a keyword-based search.

For example the Requester, PurchaseOrderID, and Amount fields in a purchase order request payload of a task can be stored in the flex fields. An approver logging into Oracle BPM Worklist can see these fields as column values in the task list and decide which task to access. The user can define views that filter tasks based on the flex fields.

For example, a user can create views for purchase order approvals based on different amount ranges. If the user must also retrieve tasks at some point related to a specific requester or a purchase order ID, they can specify this in the keyword field and perform a search to retrieve the relevant tasks. Figure 30-67 provides details.

Figure 30-67 Flex Field Mapping

[image: Description of Figure 30-67 follows]

30.13.9 What You May Need to Know About Rules Task Flow

Rules act on tasks, either a specific task type, or all the tasks assigned to a user or group. The graphic below shows where you set rules, including vacation rules.

A rule cannot always apply in all circumstances in which it is used. For example, if a rule applies to multiple task types, it may not be possible to set the outcome for all tasks, since different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by using the up and down buttons in the header. If a rule meets its filter conditions, then it is executed and no other rules are evaluated. For your rule to execute, you must be the only user assigned to that task. If the task is assigned to multiple users (including you), the rule does not execute.

The showOtherUsersRules parameter takes a boolean value. When it is passed as True other users' rules are displayed, and when it is passed as False other users' rules are not shown. In addition, this user has to have required permission to view other user rules. Figure 30-68 and Figure 30-69 provide details.

Figure 30-68 Vacation Period

[image: Description of Figure 30-68 follows]

Figure 30-69 My Rule

[image: Description of Figure 30-69 follows]

31 Building a Custom Worklist Client

Starting with the sample Worklist Application, you can build clients for workflow services using the APIs exposed by the workflow service. The APIs enable clients to communicate with the workflow service using local and remote EJBs, SOAP, and HTTP.

This chapter includes the following sections:

	
Section 31.1, "Introduction to Building Clients for Workflow Services"

	
Section 31.2, "Packages and Classes for Building Clients"

	
Section 31.3, "Workflow Service Clients"

	
Section 31.4, "Class Paths for Clients Using SOAP"

	
Section 31.5, "Class Paths for Clients Using Remote EJBs"

	
Section 31.6, "Class Paths for Clients Using Local EJBs"

	
Section 31.7, "Enterprise JavaBeans References in Web Applications"

	
Section 31.8, "Initiating a Task"

	
Section 31.9, "Changing Workflow Standard View Definitions"

	
Section 31.10, "Writing a Worklist Application Using the HelpDeskUI Sample"

31.1 Introduction to Building Clients for Workflow Services

The typical sequence of calls when building a simple worklist application is as follows.

To build a simple worklist application:

	
Get a handle to IWorklistServiceClient from WorkflowServiceClientFactory.

	
Get a handle to ITaskQueryService from IWorklistServiceClient.

	
Authenticate a user by passing a username and password to the authenticate method on ITaskQueryService. Get a handle to IWorkflowContext.

	
Query the list of tasks using ITaskQueryService.

	
Get a handle to ITaskService from IWorklistServiceClient.

	
Iterate over the list of tasks returned, performing actions on the tasks using ITaskService.

Example 31-1 demonstrates how to build a client for workflow services. A list of all tasks assigned to jstein is queried. A task whose outcome has not been set is approved.

Example 31-1 Building a Client for Workflow Services—Setting the Outcome to Approved

try
{
 //Create JAVA WorflowServiceClient
 IWorkflowServiceClient wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT);
 //Get the task query service
 ITaskQueryService querySvc = wfSvcClient.getTaskQueryService();

 //Login as jstein
 IWorkflowContext ctx = querySvc.authenticate("jstein","welcome1".toCharArry(),null);
 //Set up list of columns to query
 List queryColumns = new ArrayList();
 queryColumns.add("TASKID");
 queryColumns.add("TASKNUMBER");
 queryColumns.add("TITLE");
 queryColumns.add("OUTCOME");

 //Query a list of tasks assigned to jstein
 List tasks = querySvc.queryTasks(ctx,
 queryColumns,
 null, //Do not query additional info
 ITaskQueryService.AssignmentFilter.MY,
 null, //No keywords
 null, //No custom predicate
 null, //No special ordering
 0, //Do not page the query result
 0);
 //Get the task service
 ITaskService taskSvc = wfSvcClient.getTaskService();
 //Loop over the tasks, outputting task information, and approving any
 //tasks whose outcome has not been set...
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 String taskId = task.getSystemAttributes().getTaskId();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null)
 {
 outcome = "APPROVED";
 taskSvc.updateTaskOutcome(ctx,taskId,outcome);
 }
 System.out.println("Task #"+taskNumber+" ("+title+") is "+outcome);
 }

}
catch (Exception e)
{
 //Handle any exceptions raised here...
 System.out.println("Caught workflow exception: "+e.getMessage());
}

31.2 Packages and Classes for Building Clients

Use the following packages and classes for building clients:

	
oracle.bpel.services.workflow.metadata.config.model

The classes in this package contain the object model for the workflow configuration in the task definition file. The ObjectFactory class can create objects.

	
oracle.bpel.services.workflow.metadata.routingslip.model

The classes in this package contain the object model for the routing slip. The ObjectFactory class can create objects.

	
oracle.bpel.services.workflow.metadata.taskdisplay.model

The classes in this package contain the object model for the task display. The ObjectFactory class can create objects.

	
oracle.bpel.services.workflow.metadata.taskdefinition.model

The classes in this package contain the object model for the task definition file. The ObjectFactory class can create objects.

	
oracle.bpel.services.workflow.client.IWorkflowServiceClient

The interface for the workflow service client.

	
oracle.bpel.services.workflow.client.WorkflowServiceClientFactory

The factory for creating the workflow service client.

	
oracle.bpel.services.workflow.metadata.ITaskMetadataService

The interface for the task metadata service.

	
oracle.bpel.services.workflow.task.ITaskService

The interface for the task service.

	
oracle.bpel.services.workflow.task.IRoutingSlipCallback

The interface for the callback class to receive callbacks during task processing.

	
oracle.bpel.services.workflow.task.IAssignmentService

The interface for the assignment service.

31.3 Workflow Service Clients

Any worklist application accesses the various workflow services through the workflow service client. The workflow service client code encapsulates all the logic required for communicating with the workflow services using different local and remote protocols. After the worklist application has an instance of the workflow service client, it does not need to consider how the client communicates with the workflow services.

The advantages of using the client are as follows:

	
Hides the complexity of the underlying connection mechanisms such as SOAP/HTTP and Enterprise JavaBeans

	
Facilitates changing from using one particular invocation mechanism to another, for example from SOAP/HTTP to remote Enterprise JavaBeans

The following class is used to create instances of the IWorkflowServiceClient interface:

oracle.bpel.services.workflow.client.WorkflowServiceClientFactory

WorkflowServiceClientFactory has several methods that create workflow clients. The simplest method, getWorkflowServiceClient, takes a single parameter, the client type. The client type can be one of the following:

	
WorkflowServiceClientFactory.LOCAL_CLIENT—The client uses a local Enterprise JavaBeans interface to invoke the workflow services.

	
WorkflowServiceClientFactory.REMOTE_CLIENT—The client uses a remote Enterprise JavaBeans interface to invoke workflow services located remotely from the client.

	
WorkflowServiceClientFactory.SOAP_CLIENT—The client uses SOAP to invoke web service interfaces to the workflow services, located remotely from the client.

The other factory methods enable you to specify the connection properties directly (rather than having the factory load them from the wf_client_config.xml file), and enable you to specify a logger to log client activity.

The following enhancements to the workflow service clients are included in this release:

	
You can specify the workflow client configuration using either a JAXB object or a map, as shown in Example 31-2 and Example 31-3.

Example 31-2 Workflow Client Configuration Using a JAXB Object

WorkflowServicesClientConfigurationType wscct = new WorkflowServicesClientConfigurationType();
 List<ServerType> servers = wscct.getServer();
 ServerType server = new ServerType();
 server.setDefault(true);
 server.setName(serverName);
 servers.add(server);

 RemoteClientType rct = new RemoteClientType();
 rct.setServerURL("t3://stapj73:7001");
 rct.setUserName("weblogic");
 rct.setPassword("weblogic"));
 rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
 rct.setParticipateInClientTransaction(false);
 server.setRemoteClient(rct);
 IWorkflowServiceClient wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT, wscct, logger);

Example 31-3 Workflow Client Configuration Using a Map

Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String> properties = new
 HashMap<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String>();

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.MODE,
 IWorkflowServiceClientConstants.MODE_DYNAMIC);

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://localhost:8888");

IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

	
Clients can optionally pass in a java.util.logging.Logger where the client logs messages. If no logger is specified, then the workflow service client code does not log anything. Example 31-4 shows how a logger can be passed to the workflow service clients.

Example 31-4 Passing a Logger to the Workflow Service Clients

java.util.logging.Logger logger =;

IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, logger);

Through the factory, it is possible to get the client libraries for all the workflow services. See Table 32-1, "Enterprise JavaBeans, SOAP, and Java Support" for the clients available for each of the services.

Note that you can obtain instances of BPMIdentityService and BPMIdentityConfigService by calling the getSOAPIdentityServiceClient and getSOAPIdentityConfigServiceClient methods on WorkflowServiceClientFactory. You can obtain all other services through an instance of IWorkflowServiceClient.

The client classes use the configuration file wf_client_config.xml for the service endpoints. In the client class path, this file is in the class path directly, meaning the containing directory is in the class path. The wf_client_config.xml file contains:

	
A section for remote clients, as shown in Example 31-5.

Example 31-5 Section for Remote Clients

<remoteClient>
 <serverURL>t3://hostname.domain_name:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

	
A section for SOAP endpoints for each of the services, as shown in Example 31-6.

Example 31-6 Section for SOAP Endpoints

<soapClient>
 <rootEndPointURL>http://hostname.domain_name:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
</soapClient>

The workflow client configuration XML schema definition is in the wf_client_config.xsd file.

31.3.1 The IWorkflowServiceClient Interface

The IWorkflowServiceClient interface provides methods, summarized in Table 31-1, for obtaining handles to the various workflow services interfaces.

Table 31-1 IWorkflowServiceClient Methods

	Method	Interface
	

getTaskService

	

oracle.bpel.services.workflow.task.ITaskService

	

getTaskQueryService

	

oracle.bpel.services.workflow.query.ITaskQueryService

	

getTaskReportService

	

oracle.bpel.services.workflow.report.ITaskReportService

	

getTaskMetadataService

	

oracle.bpel.services.workflow.metadata.ITaskMetadataService

	

getUserMetadataService

	

oracle.bpel.services.workflow.user.IUserMetadataService

	

getRuntimeConfigService

	

oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService

	

getTaskEvidenceService

	

oracle.bpel.services.workflow.metadata.ITaskMetadataService

31.4 Class Paths for Clients Using SOAP

SOAP clients must have the following JAR files in their class path:

	
${bea.home}/wlserver_10.3/server/lib/wlfullclient.jar

	
${bea.home}/AS11gR1SOA/webservices/wsclient_extended.jar

	
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar

	
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.workflow_11.1.1/bpm-services.jar

You can generate the wlfullclient.jar file using the commands shown in Example 31-7.

Example 31-7 wlfullclient.jar File Generation

cd ${bea.home}/wlserver_10.3/server/lib
java -jar ../../../modules/com.bea.core.jarbuilder_1.3.0.0.jar

	
Note:

Client applications no longer use the system\services\config or system\services\schema directories in the class path.

31.5 Class Paths for Clients Using Remote EJBs

Clients using remote EJBs must have the following JAR files in their class path:

	
xmlparserv2.jar

	
xml.jar

	
bpm-infra.jar

	
bpm-services.jar

	
bpm-services-client.jar (only if you are using the ADF data controls for workflow)

	
Note:

Client applications no longer use the system\services\config or system\services\schema directories in the class path.

31.6 Class Paths for Clients Using Local EJBs

Only applications running as part of the soa-infra application or those that are a child application of the soa-infra application can use local EJBs. In either case, the child application has all the necessary classes in its class path, either because they are part of soa-infra or because they inherit the class path as the child of soa-infra.

	
Note:

Client applications no longer use the system\services\config or system\services\schema directories in the class path.

31.7 Enterprise JavaBeans References in Web Applications

If a web application uses the workflow service local EJBs, then the client application must do the following:

	
The application must be a child application of the hw_services application.

	
The application must define the Enterprise JavaBeans local references in its web.xml file. The local references for each of the services are shown in Example 31-8 and Example 31-9.

Example 31-8 Task Service

<ejb-local-ref id="EjbRef_TaskServiceBean_Message">
 <ejb-ref-name>ejb/local/TaskServiceBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>oracle.bpel.services.workflow.task.ejb.TaskServiceLocalHome</local-home>
 <local>oracle.bpel.services.workflow.task.ejb.TaskServiceLocal</local>
 <ejb-link>TaskServiceBean</ejb-link>
</ejb-local-ref>

Example 31-9 Task Metadata Service

<ejb-local-ref id="EjbRef_TaskMetadataServiceBean_Message">
 <ejb-ref-name>ejb/local/TaskMetadataServiceBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>oracle.bpel.services.workflow.metadata.ejb.TaskMetadataServiceLocalHome</local-home>
 <local>oracle.bpel.services.workflow.metadata.ejb.TaskMetadataServiceLocal</local>
 <ejb-link>TaskMetadataServiceBean</ejb-link>
</ejb-local-ref>

	
Note:

Only child applications can use local EJBs. This restricts standalone Java clients to using either remote EJBs or SOAP clients.

See Chapter 32, "Introduction to Human Workflow Services," for more information on TaskQueryService, TaskReportService, UserMetadataService, and RuntimeConfigService.

31.8 Initiating a Task

Tasks can be initiated programmatically, in which case the following task attributes must be set:

	
taskDefinitionId

	
title

	
payload

	
priority

The following task attributes are optional, but are typically set by clients:

	
creator

	
ownerUser—Defaults to bpeladmin if empty

	
processInfo

	
identificationKey—Tasks can be queried based on the identification key from the TaskQueryService.

31.8.1 Creating a Task

The task object model is available in the package

oracle.bpel.services.workflow.task.model

To create objects in this model, use the ObjectFactory class.

31.8.2 Creating a Payload Element in a Task

The task payload can contain multiple payload message attributes. Since the payload is not well defined until the task definition, the Java object model for the task does not contain strong type objects for the client payload. The task payload is represented by the AnyType Java object. The AnyType Java object is created with an XML element whose root is payload in the namespace

http://xmlns.oracle.com/bpel/workflow/task

The payload XML element contains all the other XML elements in it. Each XML element defines a message attribute.

Example 31-10 shows how to set a task payload.

Example 31-10 Setting a Task Payload

import oracle.bpel.services.workflow.task.model.AnyType;
import oracle.bpel.services.workflow.task.model.ObjectFactory;
import oracle.bpel.services.workflow.task.model.Task;
..........

Document document = //createXMLDocument
Element payloadElem = document.createElementNS("http://xmlns.oracle.com/bpel/workflow/
 task", "payload");
Element orderElem = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "order");
Element child = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "id");
 child.appendChild(document.createTextNode("1234567"));
 orderElem.appendChild(child);
 payloadElem.appendChild(orderElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

	
Note:

The AnyType.getContent() element returns an unmodifiable list of XML elements. You cannot add other message attributes to the list.

31.8.3 Initiating a Task Programmatically

Example 31-11 shows how to initiate a vacation request task programmatically.

Example 31-11 Initiating a Vacation Request Task Programmatically

 // create task object
 ObjectFactory objectFactory = new ObjectFactory();
 Task task = objectFactory.createTask();

 // set title
 task.setTitle("Vacation request for jcooper");

 // set creator
 task.setCreator("jcooper");

// set taskDefinitionId. taskDefinitionId is the target
// namespace of the task
// If namespace is used, the active version of the composite corresponding
// to that of the namespace will be used.
task.setTaskDefinitionId("http://xmlns.oracle.com/VacationRequest/
Project1/Humantask1"); (Your task definition ID will be different.)

 // create and set payload
 Document document = XMLUtil.createDocument();
 Element payloadElem = document.createElementNS(TASK_NS, "payload");
 Element vacationRequestElem = document.createElementNS(VACATION_REQUEST_NS,
 "VacationRequestProcessRequest");

 Element creatorChild = document.createElementNS(VACATION_REQUEST_NS, "creator");
 creatorChild.appendChild(document.createTextNode("jcooper"));
 vacationRequestElem.appendChild(creatorChild);

 Element fromDateChild = document.createElementNS(VACATION_REQUEST_NS, "fromDate");
 fromDateChild.appendChild(document.createTextNode("2006-08-05T12:00:00"));
 vacationRequestElem.appendChild(fromDateChild);

 Element toDateChild = document.createElementNS(VACATION_REQUEST_NS, "toDate");
 toDateChild.appendChild(document.createTextNode("2006-08-08T12:00:00"));
 vacationRequestElem.appendChild(toDateChild);

 Element reasonChild = document.createElementNS(VACATION_REQUEST_NS, "reason");
 reasonChild.appendChild(document.createTextNode("Hunting"));
 vacationRequestElem.appendChild(reasonChild);

 payloadElem.appendChild(vacationRequestElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

 IWorkflowServiceClient workflowServiceClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.SOAP_CLIENT);
 ITaskService taskService = workflowServiceClient.getTaskService();
 IInitiateTaskResponse iInitiateTaskResponse = taskService.initiateTask(task);
 Task retTask = iInitiateTaskResponse.getTask();
 System.out.println("Initiated: " + retTask.getSystemAttributes().getTaskNumber() + " - " +
 retTask.getSystemAttributes().getTaskId());
 return retTask;

31.9 Changing Workflow Standard View Definitions

The worklist application and the UserMetadataService API provide methods that you can use to create, update, and delete standard views. See Section 32.1.7, "User Metadata Service" for more information.

31.10 Writing a Worklist Application Using the HelpDeskUI Sample

The following example shows how to modify the help desk interface that is part of the HelpDeskRequest demo.

To write a worklist application

	
Create the workflow context by authenticating the user.

// get workflow service client
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.REMOTE_CLIENT);

//get the workflow context
IWorkflowContext wfCtx =
wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);

This is Step 3 in Section 31.1, "Introduction to Building Clients for Workflow Services."

The login.jsp file of HelpDeskRequest uses the preceding API to authenticate the user and create a workflow context. After the user is authenticated, the statusPage.jsp file displays the tasks assigned to the logged-in user. Example 31-12 shows sample code from the login.jsp file.

Example 31-12 Login.jsp

<%@ page import="javax.servlet.http.HttpSession"
 import="oracle.bpel.services.workflow.client.IWorkflowServiceClient"
 import="oracle.bpel.services.workflow.client.WorkflowServiceClientFactory"
 import="java.util.Set"
 import="java.util.Iterator"
 import="oracle.bpel.services.workflow.verification.IWorkflowContext"
 import="oracle.tip.pc.services.identity.config.ISConfiguration"%>
<%@ page contentType="text/html;charset=windows-1252"%>

<html>
<head>
<title>Help desk request login page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#F0F0F0" text="#000000" style="font: 12px verdana; line-height:18px">
<center>
<div style="width:640px;padding:15px;border-width: 10px; border-color: #87b4d9; border-style:
 solid;
background-color:white; text-align:left">

 <!-- Page Header, Application banner, logo + user status -->
 <jsp:include page="banner.jsp"/>

 <!-- Initiate Meta Information -->

 <div style="background-color:#F0F0F0; border-top:10px solid white;border-bottom:
 10px solid white;padding:10px;text-align:center" >
 Welcome to the HelpDesk application
 </div>

 <%
 String redirectPrefix = "/HelpDeskUI/";
 // Ask the browser not to cache the page
 response.setHeader("Pragma", "no-cache");
 response.setHeader("Cache-Control", "no-cache");

 HttpSession httpSession = request.getSession(false);
 if (httpSession != null) {

 IWorkflowContext ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }
 else
 {
 String authFailedStr = request.getParameter("authFailed");
 boolean authFailed = false;
 if ("true".equals(authFailedStr))
 {
 authFailed = true;
 }
 else
 {
 authFailed = false;
 }

 if (!authFailed)
 {
 //Get page parameters:
 String userId="";
 if(request.getParameter("userId") != null)
 {
 userId = request.getParameter("userId");
 }
 String pwd="";
 if(request.getParameter("pwd") != null)
 {
 pwd = request.getParameter("pwd");
 }

 if(userId != null && (!("".equals(userId.trim())))
 && pwd != null && (!("".equals(pwd.trim()))))
 {
 try {
 HttpSession userSession = request.getSession(true);

 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.REMOTE_CLIENT);
 IWorkflowContext wfCtx =
 wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);
 httpSession.setAttribute("workflowContext", wfCtx);
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }
 catch (Exception e)
 {
 String worklistServiceError = e.getMessage();
 response.sendRedirect(redirectPrefix + "login.jsp?authFailed=true");
 out.println("error is " + worklistServiceError);
 }
 }
 } else
 {
 out.println("Authentication failed");
 }
 }
 }
 %>

 <form action='<%= request.getRequestURI() %>' method="post">
 <div style="width:100%">
 <table cellspacing="2" cellpadding="3" border="0" width="30%" align="center">
 <tr>
 <td>Username
 </td>
 <td>
 <input type="text" name="userId"/>
 </td>
 </tr>
 <tr>
 <td>Password
 </td>
 <td>
 <input type="password" name="pwd"/>
 </td>
 </tr>
 <tr>
 <td>
 <input type="submit" value="Submit"/>
 </td>
 </tr>
 </table>
 </form>
 </div>
</div>
</center>
 </body>
</html>

	
Query tasks using the queryTask API from TaskQueryService.

//add list of attributes to be queried from the task
List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");
 // get the list of tasks
 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (wfCtx,
 displayColumns,
 null,
 ITaskQueryService.AssignmentFilter.MY_AND_GROUP,
 null,
 null,
 null,
 0,
 0);
 // create listing page by using above tasks
 //add href links to title to display details of the task by passing taskId
 as input parameter
 Use getTaskDetailsById(IWorkflowContext wftx, String taskId);

This is Step 4 in Section 31.1, "Introduction to Building Clients for Workflow Services."

The statusPage.jsp file of HelpDeskRequest is used to display the status of help desk requests. Example 31-13 shows the statusPage.jsp example code.

Example 31-13 statusPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page import="oracle.tip.pc.services.identity.BPMAuthorizationService,
 oracle.bpel.services.workflow.verification.IWorkflowContext,
 oracle.tip.pc.services.common.ServiceFactory,
 oracle.bpel.services.workflow.client.IWorkflowServiceClient,
 oracle.bpel.services.workflow.client.WorkflowServiceClientFactory,
 oracle.bpel.services.workflow.query.ITaskQueryService,
 oracle.bpel.services.workflow.task.model.Task,
 oracle.bpel.services.workflow.task.model.IdentityType,
 oracle.tip.pc.services.identity.BPMUser,
 java.util.List,
 java.util.Calendar,
 java.text.SimpleDateFormat,
 java.util.ArrayList"%>
<%@ page contentType="text/html;charset=UTF-8"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>RequestPage</title>
 <style TYPE="text/css">
 Body, Form, Table, Textarea, Select, Input, Option
 {
 font-family : tahoma, verdana, arial, helvetica, sans-serif;
 font-size : 9pt;
 }
 table.banner
 {
 background-color: #eaeff5;
 }
 tr.userInfo
 {
 background-color: #eaeff5;
 }
 tr.problemInfo
 {
 background-color: #87b4d9;
 }
 </style>
 </head>
 <body bgcolor="White">
 <%
 HttpSession httpSession = request.getSession(false);
 httpSession.setAttribute("pageType","STATUSPAGE");
 %>
 <table bordercolor="#eaeff5" border="4" width="100%">
 <tr><td> <jsp:include page="banner.jsp"/> </td></tr>
 </table>
 <%
 BPMUser bpmUser = null;
 String redirectPrefix = request.getContextPath() + "/";
 IWorkflowContext ctx = null;
 if (httpSession != null) {

 ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 bpmUser = getAuthorizationService(ctx.getIdentityContext()).
 lookupUser(ctx.getUser());
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 if(bpmUser == null)
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 String status = (String)httpSession.getAttribute("requeststatus");
 if(status != null && !status.equals(""))
 {
 %>
 <p></p>
 <div style="text-align:left;color:red" >
 <%= status %>
 </div>
 <%
 }
 httpSession.setAttribute("requeststatus",null);
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT);
 List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");
 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (ctx,
 displayColumns,
 null,
 ITaskQueryService.ASSIGNMENT_FILTER_CREATOR,
 null,
 null,
 null,
 0,
 0);
 %>
 <p></p>
 <div style="text-align:left;color:green" >

 Previous help desk request

 </div>
 <p></p>
 <div style="text-align:center" >
 <table cellspacing="2" cellpadding="2" border="3" width="100%">
 <TR class="problemInfo">
 <TH>TaskNumber</TH>
 <TH>Title</TH>
 <TH>Priority</TH>
 <TH>CreatedDate</TH>
 <TH>Assignee(s)</TH>
 <TH>UpdatedDate</TH>
 <TH>UpdatedBy</TH>
 <TH>State</TH>
 <TH>Status</TH>
 </TR>
 <%
 SimpleDateFormat dflong = new SimpleDateFormat("MM/dd/yy hh:mm a");
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 int priority = task.getPriority();
 String assignee = getAssigneeString(task);
 Calendar createdDate = task.getSystemAttributes().getCreatedDate();
 Calendar updateDate = task.getSystemAttributes().getUpdatedDate();
 String updatedBy = task.getSystemAttributes().getUpdatedBy().getId();
 String state = task.getSystemAttributes().getState();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null) outcome = "";
 String titleLink = "http://" + request.getServerName() +
 ":" + request.getServerPort() +
 "/integration/worklistapp/TaskDetails?taskId=" +
 task.getSystemAttributes().getTaskId();
 %>
 <tr class="userInfo">
 <td><%=taskNumber%></td>
 <td><a href="<%=titleLink%>" target="_blank"><%=title%></td>
 <td><%=priority%></td>
 <td><%=dflong.format(createdDate.getTime())%></td>
 <td><%=assignee%></td>
 <td><%=dflong.format(updateDate.getTime())%></td>
 <td><%=updatedBy%></td>
 <td><%=state%></td>
 <td><%=outcome%></td>
 <tr>
 <%
 }
 %>
 </table>
 </div>
 <%!
 private BPMAuthorizationService getAuthorizationService(String identityContext)
 {
 BPMAuthorizationService authorizationService =
 ServiceFactory.getAuthorizationServiceInstance();
 if (identityContext != null)
 authorizationService = ServiceFactory.getAuthorizationServiceInstance(identityContext);

 return authorizationService;
 }
 private String getAssigneeString(Task task) throws Exception
 {
 List assignees = task.getSystemAttributes().getAssigneeUsers();
 StringBuffer buffer = null;
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(U)");
 }
 assignees = task.getSystemAttributes().getAssigneeGroups();
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(G)");
 }
 if(buffer == null)
 {
 return "";
 }
 else
 {
 return buffer.toString();
 }
 }
 %>
 </body>
</html>

32 Introduction to Human Workflow Services

This chapter describes how the human workflow services are used. These services perform a variety of operations in the life cycle of a task.

This chapter includes the following sections:

	
Section 32.1, "Introduction to Human Workflow Services"

	
Section 32.2, "Notifications from Human Workflow"

	
Section 32.3, "Assignment Service Configuration"

	
Section 32.4, "Class Loading for Callbacks and Resource Bundles"

	
Section 32.5, "Resource Bundles in Workflow Services"

	
Section 32.6, "Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services"

	
Section 32.7, "Database Views for Oracle Workflow"

32.1 Introduction to Human Workflow Services

This section describes the responsibilities of the following human workflow services.

	
Task service

	
Task query service

	
Identity service

	
Task metadata service

	
User metadata service

	
Task report service

	
Runtime config service

	
Evidence store service

32.1.1 Enterprise JavaBeans, SOAP, and Java Support for the Human Workflow Services

Table 32-1 lists the type of Simple Object Access Protocol (SOAP), Enterprise JavaBeans, and Java support provided for the task services. Most human workflow services are accessible through SOAP and local and remote Enterprise JavaBeans APIs. You can use these services directly by using appropriate client proxies. Additionally, the client libraries are provided to abstract out the protocol details and provide a common interface for all transports.

Table 32-1 Enterprise JavaBeans, SOAP, and Java Support

	Service Name	Supports SOAP Web Services	Supports Remote Enterprise JavaBeans	Supports Local Enterprise JavaBeans
	
Task Service: Provides task state management and persistence of tasks. In addition to these services, the task service exposes operations to update a task, complete a task, escalate and reassign tasks, and so on.

	
Yes

	
Yes

	
Yes

	
Task Query Service: Queries tasks for a user based on a variety of search criterion such as keyword, category, status, business process, attribute values, history information of a task, and so on.

	
Yes

	
Yes

	
Yes

	
Task Metadata Service: Exposes operations to retrieve metadata information related to a task.

	
Yes

	
Yes

	
Yes

	
Task Reports Service: Provides workflow report details.

	
Yes

	
Yes

	
Yes

	
User Metadata Service: Manages metadata related to workflow users, such as user work queues, preferences, vacation, and delegation rules.

	
Yes

	
Yes

	
Yes

	
Runtime Config Service: Provides methods for managing metadata used in the task service runtime environment.

	
Yes

	
Yes

	
Yes

	
Evidence Store Service: Supports storage and nonrepudiation of digitally-signed workflow tasks.

	
Yes

	
Yes

	
Yes

	
Identity Service: Enables authentication of users and the lookup of user properties, roles, group memberships, and privileges.

	
Yes

	
No

	
No

Table 32-2 lists the location for the SOAP Web Services Description Language (WSDL) file for each task service.

Table 32-2 SOAP WSDL Location for the Task Services

	Service name	SOAP WSDL location
	
Task Service

	
http://host:port/integration/services/TaskService/TaskServicePort?WSDL

	
Task Query Service

	
http://host:port/integration/services/TaskQueryService/TaskQueryService?WSDL

	
Identity Service

	
http://host:port/integration/services/IdentityService/configuration?WSDL

http://host:port/integration/services/IdentityService/identity?WSDL

	
Task Metadata Service

	
http://host:port/integration/services/TaskMetadataService/TaskMetadataServicePort?WSDL

	
User Metadata Service

	
http://host:port/integration/services/UserMetadataService/UserMetadataService?WSDL

	
Task Report Service

	
http://host:port/integration/services/TaskReportService/TaskReportServicePort?WSDL

	
Runtime Config Service

	
http://host:port/integration/services/RuntimeConfigService/RuntimeConfigService?WSDL

	
Evidence Store Service

	
http://host:port/integration/services/EvidenceService/EvidenceService?WSDL

Table 32-3 lists the JDNI names for the different Enterprise JavaBeans.

Table 32-3 JNDI Names for the Different Enterprise JavaBeans

	Service name	JNDI Names for the Different Enterprise JavaBeans
	
Task Service

	
ejb/bpel/services/workflow/TaskServiceBean

	
Task Service Enterprise JavaBeans participating in client transaction

	
ejb/bpel/services/workflow/TaskServiceGlobalTransactionBean

	
Task Metadata Service

	
ejb/bpel/services/workflow/TaskMetadataServiceBean

	
Task Query Service

	
ejb/bpel/services/workflow/TaskQueryService

	
User Metadata Service

	
ejb/bpel/services/workflow/UserMetadataService

	
Runtime Config Service

	
ejb/bpel/services/workflow/RuntimeConfigService

	
Task Report Service

	
ejb/bpel/services/workflow/TaskReportServiceBean

	
Task Evidence Service

	
ejb/bpel/services/workflow/TaskEvidenceServiceBean

For more information about the client library for worklist services, see Chapter 31, "Building a Custom Worklist Client"

32.1.1.1 Support for Foreign JNDI Names

Human Workflow services can be integrated with J2EE applications through web services and remote method invocation (RMI). To simplify remote lookup of EJBs in other managed servers and clusters or even other Oracle WebLogic Server domains, Oracle WebLogic Server includes foreign JNDI providers that are configured with the remote server's host and port to link EJBs from that remote server into the local servers JNDI trees.

Workflow services expose the EJBs listed in Table 32-3 that must all be linked through the foreign JNDI providers to provide full support for Task Query, ADF task flow for human task registration, and embedded worklist region use cases.

	
Log in to Oracle WebLogic Server Administration Console.

http://host:port/console

	
In the Domain Structure, select Services > JDBC > Foreign JNDI Providers.

When linking remote EJB names to the local JNDI namespace through a foreign JNDI provider from a SOA server to a managed server or cluster in the same Oracle WebLogic Server domain, one caveat is that the local JNDI names are exposed to all of the managed servers within that domain. This causes namespace collisions on the SOA server within that domain, which already has those EJBs registered from the Oracle BPM Worklist. An alternative, which avoids collisions while keeping configuration to a minimum, is to use JNDI suffixing. This is done by appending a consistent suffix to the end of all the local JNDI links of the remote workflow EJBs and creating a simple wf_client_config.xml file that contains the suffix key.

You can define client properties in either of three ways. For more information, see Section 32.6.1.2, "Configuration Option."

	
Append the JNDI suffix to each EJB name shown in Table 32-3 to register the foreign JNDI names.

	
ejb/bpel/services/workflow/TaskServiceGlobalTransactionean_server1

	
ejb/bpel/services/workflow/TaskServiceBean_server1

	
ejb/bpel/services/workflow/TaskMetadataServiceBean_server1

	
TaskQueryService_server1

	
UserMetadataService_server1

	
RuntimeConfigService_server1

	
TaskReportServiceBean_server1

	
TaskEvidenceServiceBean_server1

	
Define the remote name by specifying only the ejbJndiSuffix element value in the wf_client_config.xml file, as shown in Example 32-1. You can also use the JAXB WorkflowServicesClientConfigurationType object or the CONNECTION_PROPERTY.EJB_JNDI_SUFFIX in the Map<CONNECTION_PROPERTY, String> properties.

Example 32-1 ejbJndiSuffix Element Value

<remoteClient>
 <ejbJndiSuffix>_server1</ejbJndiSuffix>
</remoteClient>

32.1.2 Security Model for Services

With the exception of the identity service, all services that use the above-mentioned APIs (SOAP, remote Enterprise JavaBeans, local Enterprise JavaBeans, and Java WSIF) require authentication to be invoked. All the above channels support passing the user identity using the human workflow context. The human workflow context contains either of the following:

	
Login and password

	
Token

The task query service exposes the authenticate operation that takes the login and password and returns the human workflow context used for all services. Optionally, with each request, you can pass the human workflow context with the login and password.

The authenticate operation also supports the concept of creating the context on behalf of a user with the admin ID and admin password. This operation enables you to create the context for a logged-in user to the Oracle BPM Worklist if the password for that user is not available.

Oracle recommends that you get the workflow context one time and use it everywhere. There are performance implications for getting the workflow context for every request.

A realm is an identity service context from the identity configuration. The realm name can be null if the default configuration is used.

32.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP Web Services

Identity propagation is the replication of authenticated identities across multiple SOAP web services used to complete a single transaction. SOAP web services also support web service security. When web service security is used, the human workflow context does not need to be present in the SOAP input. The web service security can be configured from the Oracle Enterprise Manager Fusion Middleware Control Console.

	
Note:

Human workflow SOAP clients have been enhanced to work with Security Assertion Markup Language (SAML) token-based identity propagation when the web service is secured.

32.1.2.2 Creating Human Workflow Context on Behalf of a User

The authenticateOnBehalfOf API method on the task query service can create the human workflow context on behalf of a user by passing the user ID and password of an admin user in the request. An admin user is a user with the workflow.admin privilege. This created context is as if it was created using the password on behalf of the user.

This is useful for environments in which a back-end system acts on workflow tasks while users act in their own system. There is no direct interaction with workflow services; the system can use the on-behalf-of-user login to get a context for the user.

	
Note:

Oracle recommends that you only use this feature for system operations. This is because you must create an admin user context and then query for the human workflow context created on behalf of the user. If you instead use identity propagation, the user is already authenticated and the client can get IWorkflowContext for the already authenticated user. For more information, see Section 32.1.2.3, "Obtaining the Workflow Context for a User Previously Authenticated by a JAAS Application."

In Example 32-2, the human workflow context is created for user jcooper.

Example 32-2 Human Workflow Context Creation

String adminUser = "...."
String adminPassword = "...."
String realm = "...."

IWorkflowContext adminCtx =
taskQueryService.authenticate(user,password.toCharArray(),realm);

IWorkflowContext behalfOfCtx =
 taskQueryService.authenticateOnBehalfOf(adminCtx,"jcooper");

32.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by a JAAS Application

If the client wants to obtain the workflow context for a user previously authenticated by a JAAS application, you can use identity propagation as shown in Example 32-3.

Example 32-3 Identity Propagation

public IWorkflowContext getWorkflowContextForAuthenticatedUser() throws WorkflowException;

This API returns a workflow context for the authenticated user if the client configures the identity propagation for the appropriate client type. If the client type is remote, EJB identity propagation is used with this method, if the client type is SOAP, SAML token propagation is used with this method.

32.1.3 Task Service

The task service exposes operations to act on tasks. Table 32-4 describes the operations of the task service. Package oracle.bpel.services.workflow.task corresponds to the task service.

Table 32-4 Task Service Methods

	Method	Description
	
acquireTask

	
Acquire a task.

	
acquireTasks

	
Acquire a set of tasks.

	
addAttachment

	
Add an attachment to a task.

	
addComment

	
Add a comment to a task.

	
createToDoTask

	
Create a to-do task.

	
delegateTask

	
Delegate a task to a different user. Both the current assignee and the user to whom the task is delegated can view and act on the task.

	
delegateTasks

	
Delegate a list of tasks to a different user. Both the current assignee and the user to whom the list of tasks is delegated can view and act on the tasks.

	
deleteTask

	
Perform a logical deletion of a task. The task still exists in the database.

	
deleteTasks

	
Perform a logical deletion of a list of tasks. The tasks still exist in the database.

	
errorTask

	
Cause the task to error. This operation is typically used by the error assignee.

	
escalateTask

	
Escalate a task. The default escalation is to the manager of the current user. This can be overridden using escalation functions.

	
escalateTasks

	
Escalate tasks in bulk. The default escalation is to the manager of the current user. This can be overridden using escalation functions.

	
getApprovers

	
Get the previous approvers of a task.

	
getFutureParticipants

	
Get the future participants of a task. The future participants are returned in the form of a routing slip that contains simple participants (participant node and parallel nodes that contain routing slips in them).

	
getUsersToRequestInfoForTask

	
Get the users from whom a request for information can be requested.

	
initiateTask

	
Initiate a task.

	
mergeAndUpdateTask

	
Merge and update a task. Use this operation when a partial task should be updated. A partial task is one in which not all the task attributes are present. In this partial task, only the following task attributes are interpreted:

	
Task payload

	
Comments

	
Task state

	
Task outcome

	
overrideRoutingSlip

	
Override the routing slip of a task instance with a new routing slip. The current task assignment is nullified and the new routing slip is interpreted as its task is initiated.

	
purgeTask

	
Remove a task from the persistent store.

	
purgeTasks

	
Remove a list of tasks from the persistent store.

	
pushBackTask

	
Push back a task to the previous approver or original assignees. The original assignees do not need to be the approver as they may have reassigned the task, escalated the task, and so on. The property PushbackAssignee in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control Console controls whether the task is pushed back to the original assignees or the approvers.

	
From the SOA Infrastructure menu, select Administration > System MBean Browser.

	
Select Application Defined MBeans > oracle.as.soainfra.config > Server: soa_server1 > WorkflowConfig > human-workflow.

	
Click PushbackAssignee to view or change the value.

	
reassignTask

	
Reassign a task.

	
reassignTasks

	
Reassign tasks in bulk.

	
reinitiateTask

	
Reinitiate a task. Reinitiating a task causes a previously completed task to be carried forward so that the history, comments, and attachments are carried forward in a new task.

	
releaseTask

	
Release a previously acquired task.

	
releaseTasks

	
Release a set of previously acquired tasks.

	
removeAttachment

	
Remove a task attachment.

	
renewTask

	
Renew a task to extend the time it takes to expire.

	
requestInfoForTask

	
Request information for a task.

	
requestInfoForTaskWithReapproval

	
Request information for a task with reapproval. For example, assume jcooper created a task and jstein and wfaulk approved the task in the same order. When the next approver, cdickens, requests information with reapproval from jcooper, and jcooper submits the information, jstein and wfaulk approve the task before it comes to cdickens. If cdickens requests information with reapproval from jstein, and jstein submits the information, wfaulk approves the task before it comes to cdickens.

	
resumeTask

	
Resume a task. Operations can only be performed by the task owners (or users with the BPMWorkflowSuspend privilege) to remove the hold on a workflow. After a human workflow is resumed, actions can be performed on the task.

	
resumeTasks

	
Resume a set of tasks.

	
routeTask

	
Allow a user to route the task in an ad hoc fashion to the next user(s) who must review the task. The user can specify to route the tasks in sequential, parallel, or simple assignment. Routing a task is permitted only when the human workflow permits ad hoc routing of the task.

	
skipCurrentAssignment

	
Skip the current assignment and move to the next assignment or pick the outcome as set by the previous approver if there are no more assignees.

	
submitInfoForTask

	
Submit information for a task. This action is typically performed after the user has made the necessary updates to the task or has added comments or attachments containing additional information.

	
suspendTask

	
Allow task owners (or users with the BPMWorkflowSuspend privilege) to put a human workflow on hold temporarily. In this case, task expiration and escalation do not apply until the workflow is resumed. No actions are permitted on a task that has been suspended (except resume and withdraw).

	
suspendTasks

	
Suspend a set of tasks.

	
updateOutcomeOfTasks

	
Update the outcome of a set of tasks.

	
updateTask

	
Update the task.

	
updateTaskOutcome

	
Update the task outcome.

	
updateTaskOutcomeAndRoute

	
Update the task outcome and route the task. Routing a task allows a user to route the task in an ad hoc fashion to the next user(s) who must review the task. The user can specify to route the tasks in serial, parallel, or single assignment. Routing a task is permitted only when the human workflow permits ad hoc routing of the task.

	
withdrawTask

	
The creator of the task can withdraw any pending task if they are no longer interested in sending it further through the human workflow. A task owner can also withdraw a task on behalf of the creator. When a task is withdrawn, the business process is called back with the state attribute of the task set to Withdrawn.

	
withdrawTasks

	
Withdraw a set of tasks.

For more information, see the following:

	
Section 32.1.11, "Task Instance Attributes"

	
Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager

	
Sample workflow-118-JavaSamples, which demonstrates some APIs

32.1.4 Task Query Service

The task query service queries tasks based on a variety of search criterion such as keyword, category, status, business process, attribute values, history information of a task, and so on. Table 32-5 describes the operations of the task query service, including how to use the service over SOAP. Package oracle.bpel.services.workflow.query corresponds to the task query service.

Table 32-5 Task Query Service Methods

	Method	Description
	
authenticate

	
Authenticates a user with the identity authentication service and passes back a valid IWorkflowContext object.

	
authenticateOnBehalfOf

	
Optionally make authentication on behalf of another user.

	
countTasks

	
Counts the number of tasks that match the specified query criteria.

	
countViewTasks

	
Counts the number of tasks that match the query criteria of the specified view.

	
createContext

	
Creates a valid IWorkflowContext object from a preauthenticated HTTP request.

	
doesTaskExist

	
Checks to see if any tasks exist that match the specified query criteria.

	
doesViewTaskExist

	
Checks to see if any tasks exist match the query criteria of the specified view.

	
getWorkflowContext

	
Gets a human workflow context with the specified context token.

	
destroyWorkflowContext

	
Cleans up a human workflow context that is no longer needed. This method is typically used when a user logs out.

	
getTaskDetailsById

	
Gets the details of a specific task from the task's taskId property.

	
getTaskDetailsByNumber

	
Gets the details of a specific task from the task's task number property.

	
getTaskHistory

	
Gets a list of the task versions for the specified task ID.

	
getTaskSequence

	
Gets the task sequence tree of a task whose ID is a task ID, for those type of sequence.

	
getTaskVersionDetails

	
Gets the specific task version details for the specified task ID and version number.

	
getWorkflowContextForAuthenticatedUser

	
Gets the IWorkflowContext object for a user authenticated by a JAAS application. Use this either with EJB or SAML token identity propagation.

	
queryAggregatedTasks

	
Executes the specified query, and aggregates a count of the tasks returned by the query, grouped by the specified column.

	
queryTaskErrors

	
Returns a list of task error objects matching the specified predicate.

	
queryTasks

	
Returns a list of tasks that match the specified filter conditions. Tasks are listed according to the ordering condition specified (if any). The entire list of tasks matching the criteria can be returned or clients can execute paging queries, in which only a specified number of tasks in the list are retrieved. The filter conditions are as follows:

	
assignmentFilter: Filters tasks according to whom the task is assigned, or who created the task. Possible values for the assignment filter are as follows:

ADMIN: No filtering; returns all tasks regardless of assignment or creator.

ALL: No filtering; returns all tasks regardless of assignment or creator.

CREATOR: Returns tasks in which the context user is the creator.

GROUP: Returns tasks that are assigned to a group, application role, or list of users of which the context user is a member.

MY: Returns tasks that are assigned exclusively to the context user.

MY_AND_GROUP: Returns tasks that are assigned exclusively to the context user, or to a group, application role, or list of users of which the context user is a member.

OWNER: Returns tasks in which the context user is the task owner.

PREVIOUS: Returns tasks the context user previously updated.

REPORTEES: Returns tasks that are assigned to reportees of the context user.

REVIEWER: Returns tasks for which the context user is a reviewer.

	
keywords: An optional search string. This only returns tasks in which the string is contained in the task title, task identification key, or one of the task text flex fields.

	
predicate: An optional oracle.bpel.services.workflow.repos.Predicate object that allows clients to specify complex, SQL-like query predicates.

	
queryViewAggregatedTasks

	
Executes the query as defined in the specified view, and aggregates the selected tasks according to the chart property defined in the view.

	
queryViewTasks

	
Returns a list of tasks according to the criteria in the specified view. The entire list or paged list of tasks can be returned. Clients can specify additional filter and ordering criteria to those in the view.

For more information, see the following:

	
Section 32.1.11, "Task Instance Attributes"

	
Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager in the documentation library

	
Sample workflow-118-JavaSamples, which demonstrates some APIs

32.1.5 Identity Service

The identity service is a thin web service layer on top of the Oracle Application Server 11g security infrastructure, namely Oracle Identity Management and Oracle Platform Security Services (OPSS), or any custom user repository. The identity service enables authentication of users and the lookup of user properties, roles, group memberships, and privileges. Oracle Identity Management is the sole identity service provider for Oracle Application Server 11g. Oracle Identity Management handles all storage and retrieval of users and roles for various repositories, including XML, LDAP, and so on. More specifically, Oracle Identity Management provides the following features:

	
All providers are supported through Oracle Identity Management. The OracleAS JAAS Provider (JAZN) and LDAP providers are no longer supported. The custom provider is deprecated and supported only for backward compatibility. All customization of providers is performed through the custom provider to Oracle Identity Management, through configuring Oracle Virtual Directory (OVD) as an LDAP provider to Oracle Identity Management, or through both. OVD aggregates data across various repositories.

	
The OPSS layer is used, which includes the following:

	
Identity store

	
Policy store

	
Credential store

	
Framework

For more information, see Oracle Fusion Middleware Security Guide. All security configuration is done through the jps-config.xml file.

	
All privileges are validated against permissions, as compared to actions in previous releases.

	
The following set of application roles are defined. These roles are automatically defined in the soa-infra application of the OPSS policy store.

	
SOAAdmin: Grant this role to users who must perform administrative actions on any SOA module. This role is also granted the BPMWorkflowAdmin and B2BAdmin roles.

	
BPMWorkflowAdmin: Grant this role to users who must perform any workflow administrative action. This includes actions such as searching and acting on any task in the system, creating and modifying user and group rules, performing application customization, and so on. This role is granted the BPMWorkflowCustomize role and the following permissions:

	
workflow.mapping.protectedFlexField

	
workflow.admin.evidenceStore

	
workflow.admin

	
BPMWorkflowCustomize: Grant this role to business users who must perform flex field mapping to public flex fields. This role is also granted the workflow.mapping.publicFlexField permission.

	
The following workflow permissions are defined:

	
workflow.admin: Controls who can perform administrative actions related to tasks, user and group rules, and customizations

	
workflow.admin.evidenceStore: Controls who can view and search evidence records related to digitally-signed tasks (tasks that require a signature with the use of digital certificates).

	
workflow.mapping.publicFlexField: Controls who can perform mapping of task payload attributes to public flex fields.

	
workflow.mapping.protectedFlexField: Controls who can perform mapping of task payload attributes to protected flex fields.

	
Note:

You cannot specify multiple authentication providers for Oracle SOA Suite. This is because OPSS does not support multiple providers. The provider to use for human workflow authentication must be the first one listed in the order of authentication providers for Oracle SOA Suite.

For more information, see the following:

	
Oracle Fusion Middleware Security Guide for details about OPSS

	
Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management for details about Oracle Identity Management

	
Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory for details about OVD

32.1.5.1 Identity Service Providers

Oracle Identity Management is the only supported provider for release 11g, as shown in Figure 32-1.

Figure 32-1 Identity Service Providers

[image: Description of Figure 32-1 follows]

32.1.5.1.1 Custom User Repository Plug-ins

This mode enables you to plug in a non-LDAP-based user repository by registering a custom identity service provider. This mode is provided only for backward compatibility. The custom identity service plug-in must implement the BPMIdentityService interface (see the Javadoc). This identityservice class name must be registered in workflow-identity-config.xml.

32.1.6 Task Metadata Service

The task metadata service exposes operations to retrieve metadata information related to a task. Table 32-6 describes these methods. Package oracle.bpel.services.workflow.metadata corresponds to the task metadata service.

Table 32-6 Task Metadata Service Methods

	Method	Description
	
getTaskMetadataByNamespace

	
Get the TaskMetadata object that describes the human task service component with the specified task definition namespace and composite version.

	
getOutcomes

	
Get the permitted outcomes of a task. The outcomes are returned with their display values.

	
getResourceBundleInfo

	
Get the resource bundle information of the task. The resource bundle information contains the location and the name of the bundle.

	
getRestrictedActions

	
Get the actions that are restricted for a particular task.

	
getTaskAttributesForTaskDefinitions

	
Get a list of TaskAttribute objects that describe standard task attributes and mapped flex-field columns that are common for the specified task definitions.

	
getTaskAttributesForTaskNamespaces

	
Get a list of TaskAttribute objects that describe standard task attributes and mapped flex field columns that are common for task definitions identified by the specified namespaces.

	
getTaskAttributes

	
Get the task message attributes.

	
getTaskAttributesForTaskDefinition

	
Get the message attributes for a particular task definition.

	
getTaskDefinition

	
Get the task definition associated with the task.

	
getTaskDefinitionById

	
Get the task definition by the task definition ID.

	
getTaskDefinitionOutcome

	
Get the outcomes given the task definition ID.

	
getTaskDisplay

	
Get the task display for a task.

	
getTaskVisibilityRules

	
Get the task visibility rules.

	
getTaskDisplayRegion

	
Get the task display region for a task.

	
getVersionTrackedAttrs

	
Get the task attributes that when changed cause a task version creation.

	
listTaskMetadata

	
List the task definitions in the system.

For more information, see Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager.

32.1.7 User Metadata Service

The user metadata service provides methods for managing metadata specific to individual users and groups. It is used for getting and setting user worklist preferences, managing user custom views, and managing human workflow rules for users and groups.

For most methods in the user metadata service, the authenticated user can query and update their own user metadata. However, they cannot update metadata belonging to other users.

In the case of group metadata (for example, human workflow rules for groups), only a user designated as an owner of a group (or a user with the workflow.admin privilege) can query and update the metadata for that group. However, a user with the workflow.admin privilege can query and update metadata for any user or group.

Table 32-7 describes the methods in the user metadata service. Package oracle.bpel.services.workflow.user corresponds to the user metadata service.

Table 32-7 User Metadata Service Methods

	Method	Description
	
createRule

	
Creates a new rule.

	
decreaseRulePriority

	
Decreases the priority of a rule by one. This method does nothing if this rule has the lowest priority.

	
deleteRule

	
Deletes a rule.

	
getVacationInfo

	
Retrieves the date range (if any) during which a user is unavailable for the assignment of tasks.

	
getRuleDetail

	
Gets the details for a particular human workflow rule.

	
getRuleList

	
Retrieves a list of rules for a particular user or group.

	
updateRule

	
Updates an existing rule.

	
increaseRulePriority

	
Increases the priority of a rule by one. Rules for a user or group are maintained in an ordered list of priority. Higher priority rules (those closer to the head of the list) are executed before rules with lower priority. This method does nothing if this rule has the highest priority.

	
getUserTaskViewList

	
Gets a list of the user task views that the user owns.

	
getGrantedTaskViewList

	
Gets a list of user task views that have been granted to the user by other users. Users can use granted views for querying lists of tasks, but they cannot update the view definition.

	
getStandardTaskViewList

	
Gets a list of standard task views that ship with the human workflow service, and are available to all users.

	
getUserTaskViewDetails

	
Gets the details for a single view.

	
createUserTaskView

	
Creates a new user task view.

	
updateUserTaskView

	
Updates an existing user task view.

	
deleteUserTaskView

	
Deletes a user task view.

	
updateGrantedTaskView

	
Updates details of a view grant made to this user by another user. Updates are limited to hiding or unhiding the view grant (hiding a view means that the view is not listed in the main inbox page of Oracle BPM Worklist), and changing the name and description that the granted user sees for the view.

	
getUserPreferences

	
Gets a list of user preferences for the user. User preferences are simple name-value pairs of strings. User preferences are private to each user (but can still be queried and updated by a user with the workflow.admin privilege).

	
setUserPreferences

	
Sets the user preference values for the user. Any preferences that were previously stored and are not in the new list of user preferences are deleted.

	
getPublicPreferences

	
Gets a list of public preferences for the user. Public preferences are similar to user preferences, except any user can query them. However, only the user that owns the preferences, or a user with the workflow.admin privilege, can update them. Public preferences are useful for storing application-wide preferences (preferences can be stored under a dummy user name, such as MyAppPrefs).

	
setPublicPreferences

	
Sets the public preferences for the user.

	
setVacationInfo

	
Sets a date range over which the user is unavailable for the assignment of tasks. (Dynamic assignment functions do not assign tasks to a user that is on vacation.)

	
getStandardTaskViewDetails

	
Gets the full details for a particular standard view, identified by its viewId.

For more information, see the following:

	
Chapter 30, "Using Oracle BPM Worklist" for details about the rule configuration and user preference pages

	
Sample workflow-118-JavaSamples, which demonstrates some APIs

	
Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager

32.1.8 Task Report Service

The task report service executes a report and receives the results. Table 32-8 describes the method. Package oracle.bpel.services.workflow.report corresponds to the task report service. The standard reports shown in Table 32-8 are available as part of installation.

Table 32-8 Task Report Service

	Report	Description
	
Unattended tasks report

	
Provides an analysis of tasks assigned to users' groups or reportees' groups that require attention because they have not yet been acquired.

	
Tasks priority report

	
Provides an analysis of the number of tasks by priorities assigned to a user, reportees, or their groups.

	
Tasks cycle time report

	
Provides an analysis of time taken to complete tasks from assignment to completion based on users' groups or reportees' groups.

	
Tasks productivity report

	
Provides an analysis of tasks assigned and tasks completed in a given time period for a user, reportees, or their groups.

	
Tasks time distribution report

	
Provides an analysis of time taken to complete their part of the tasks for a given user, user's groups, or reportees in the given time period.

32.1.9 Runtime Config Service

The runtime config service provides methods for managing metadata used in the task service runtime environment. It principally supports the management of task payload flex field mappings and the URIs used for displaying task details.

The task object used by the task service contains many flex field attributes, which can be populated with information from the task payload. This allows the task payload information to be queried, displayed in task listings, and used in human workflow rules.

The runtime config service provides methods for querying and updating the URI used for displaying the task details of instances of a particular task definition in a client application. For any given task definition, multiple display URIs can be supported, with different URIs being used for different applications. The method getTaskDisplayInfo can query the URIs for a particular task definition. The method setTaskDisplayInfo can define new URIs or update existing ones. Only users with the workflow.admin privilege can call setTaskDisplayInfo, but any authenticated user can call getTaskDisplayInfo.

The runtime config service allows administrators to create mappings between simple task payload attributes and these flex field attributes.

Only a user with the workflow.mapping.publicFlexField or workflow.mapping.protectedFlexField privilege can make updates to payload mappings for public flex fields. Only a user with the workflow.mapping.protectedFlexField privilege can make updates to payload mappings for protected flex fields. Any authenticated user can use the query methods in this service.

An administrator can create attribute labels for the various flex field attributes. These attribute labels provide a meaningful label for the attribute (for example, a label Location may be created for the flex field attribute TextAttribute1). A given flex field attribute may have multiple labels associated with it. This attribute label is what is displayed to users when displaying lists of attributes for a specific task in Oracle BPM Worklist. The attribute labels for a specific task type can be determined by calling the getTaskAttributesForTaskDefinition method on the task metadata service.

When defining attribute labels, the following fields are automatically populated by the service. You do not need to specify values for these attributes when creating or updating attribute labels:

	
Id

	
CreatedDate

	
WorkflowType

	
Active

Valid values for the task attribute field for public flex fields are as follows:

	
TextAttribute1 through TextAttribute20

	
FormAttribute1 through FormAttribute10

	
UrlAttribute1 through UrlAttribute10

	
DateAttribute1 through DateAttribute10

	
NumberAttribute1 through NumberAttribute10

Mappings can then be created between task payload fields and the attribute labels. For example, the payload field customerLocation can be mapped to the attribute label Location. Different task types can share the same attribute label. This allows payload attributes from different task types that have the same semantic meaning to be mapped to the same attribute label.

	
Note:

Only payload fields that are simple XML types can be mapped.

The runtime config service also provides the following:

	
Methods for querying the dynamic assignment functions supported by the server

	
Methods for maintaining the task display URLs used for displaying the task details in the Oracle BPM Worklist and other applications

	
Methods for getting the server HTTP and JNDI URLs

Table 32-9 describes the methods in the runtime config service. Package oracle.bpel.services.workflow.runtimeconfig corresponds to the runtime config service.

Table 32-9 Runtime Config Service

	Method	Description
	
CreateAttributeLabel

	
Creates a new attribute label for a particular task flex field attribute.

	
createPayloadMapping

	
Creates a new mapping between an attribute label and a task payload field.

	
DeleteAttributeLabel

	
Deletes an existing attribute label.

	
deletePayloadMapping

	
Deletes an existing payload mapping.

	
getAttributeLabelUsages

	
Gets a list of attribute labels (either all attribute labels or labels for a specific type of attribute) for which mapping (if any) the labels are currently used.

	
getGroupDynamicAssignmentFunctions

	
Returns a list of the dynamic assignment functions that can select a group that are implemented on this server.

	
getTaskDisplayInfo

	
Retrieves information relating to the URIs used for displaying task instances of a specific task definition.

	
getTaskStatus

	
Gets the status of a task instance corresponding to a particular task definition and composite instance.

	
getUserDynamicAssignmentFunctions

	
Returns a list of the dynamic assignment functions that can select a user that are implemented on this server.

	
GetWorkflowPayloadMappings

	
Gets a list of all the flex field mappings for a particular human workflow definition.

	
setTaskDisplayInfo

	
Sets information relating to the URIs to be used for displaying task instances of a specific task definition.

	
updateAttributeLabel

	
Updates an existing attribute label.

For more information, see the following:

	
Section 32.3.1, "Dynamic Assignment and Task Escalation Functions" for additional details

	
Chapter 30, "Using Oracle BPM Worklist" for details about flex field mapping

	
Sample workflow-118-JavaSamples, which demonstrates some APIs.

	
Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager

32.1.9.1 Internationalization of Attribute Labels

Attribute labels provide a method of attaching a meaningful label to a task flex field attribute. It can be desirable to present attribute labels that are translated into the appropriate language for the locale of the user.

To use a custom resource bundle, place it at the location identified by the workflow configuration parameter workflowCustomClasspathURL (which can be a file or HTTP path).

This can be set in either of two places in Oracle Enterprise Manager Fusion Middleware Control Console:

	
System MBean Browser page

	
Workflow Task Service Properties page

For more information, see the workflow-110-workflowCustomizations sample, which describes how to use this parameter. Visit the following URL for details:

http://www.oracle.com/technology/sample_code/products/hwf

Entries for flex field attribute labels must be of the form:

FLEX_LABEL.[label name]=Label Display Name

For instance, the entry for a label named Location is:

FLEX_LABEL.Location=Location

Note that adding entries to these files for attribute labels is optional. If no entry is present in the file, the name of the attribute label as specified using the API is used instead.

32.1.10 Evidence Store Service and Digital Signatures

The evidence store service is used for digital signature storage and nonrepudiation of digitally-signed human workflows. A digital signature is an electronic signature that authenticates the identity of a message sender or document signer. This ensures that the original content of the message or document sent is unchanged. Digital signatures are transportable, cannot be imitated by others, and are automatically time-stamped. The ability to ensure that the original signed message arrived means that the sender cannot repudiate it later. Digital signatures ensure that a human workflow document is authentic, has not been forged by another entity, has not been altered, and cannot be repudiated by the sender. A cryptographically-based digital signature is created when a public key algorithm signs a sender's message with a sender's private key.

During design time, signatures are enabled for the task. During runtime in the Oracle BPM Worklist, when a user approves or rejects the task, the web browser:

	
Asks the user to choose the private key to use for signing.

	
Generates a digital signature using the private key and task content provided by the Oracle BPM Worklist.

Figure 32-2 provides an example.

Figure 32-2 Digital Signature and Certificate

[image: Description of Figure 32-2 follows]

	
Notes:

	
The certificate refers to a Personal Information Exchange Syntax Standard (PFX) file that includes a certificate and a private key, and is protected by a simple text password. PFX specifies a portable format for storing or transporting a user's private keys, certificates, miscellaneous secrets, and so on.

	
The possession of a private key that corresponds to the public key of a certificate is sufficient to sign the data, because the signature is verifiable through the public key in the certificate. However, no attempt is made to correlate the name of a user of a certificate with the person updating it. For example, user jstein can sign using the private key of user cdickens if jstein has that private key.

The following digital signature features are supported:

	
PKCS7 signatures based on X.509 certificates

	
Browser-based, digitally-signed content without attachments

32.1.10.1 Prerequisites

Prerequisites for using digital signatures and certificates are as follows:

	
Users of the Oracle BPM Worklist must have certificates

	
The administrator must specify the CAs and corresponding CRL URL whose certificates must be trusted. Users are expected to upload only certificates issued by these CAs. This is done by editing the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control Console.

	
Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

	
In the navigator, expand the SOA folder.

	
Right-click soa-infra, and select Administration > System Mbean Browser.

The System Mbean Browser displays on the right side of the page.

	
Expand Application Defined MBeans > oracle.as.soainfra.config > Server: server_name > WorkflowConfig > human-workflow.

	
Click the Operations tab on the right side of the page.

	
Click addTrustedCA.

	
Provide values for caName and caURL. You must do this for each certificate in the trust chain. For example, values provided for each invocation may look as shown in Table 32-10.

Table 32-10 caName and caURL Values

	caName	caURL
	
CN = Intg, OU =AppServ, O =Oracle, C = US

	
http://www.oracle.com/Integration%20CRL%20Data.crl

	
CN = Intg1, OU =AppServ, O =Oracle, C = US

	
http://www.oracleindia.in.com/Integration%20In.crl

	
CN = Intg2, OU =AppServ, O =Oracle, C = US

	
http://www.oracle.us.com/integration.crl

	
Click Invoke.

32.1.10.2 Interfaces and Methods

Table 32-11 through Table 32-14 describe the methods in the evidence store service. Package oracle.bpel.services.security.evidence corresponds to the evidence service.

Table 32-11 ITaskEvidenceService Interface

	Method	Description
	
createEvidence

	
Creates evidence and stores it in the repository for nonrepudiation.

	
getEvidence

	
Gets a list of evidence matching the given criteria. The result also depends on the privileges associated with the user querying the service. If the user has been granted the workflow.admin.evidenceStore permission (points to a location detailing how to grant the permission), all matching evidence is visible. Otherwise, only that evidence created by the user is visible.

	
uploadCertificate

	
Uploads certificates to be used later for signature verification. This is a prerequisite for creating evidence using a given certificate. A user can only upload their certificates.

	
updateEvidence

	
Updates the CRL verification part of the status. This includes verified time, status, and error messages, if any.

	
validateEvidenceSignature

	
Validates the evidence signature. This essentially performs a nonrepudiation check on the evidence. A value of true is returned if the signature is verified. Otherwise, false is returned.

Table 32-12 Evidence Interface

	Method	Description
	
getCertificate

	
Gets the certificate used to sign this evidence.

	
getCreateDate

	
Gets the creation date of the evidence.

	
getErrorMessage

	
Gets the error message associated with the CRL validation.

	
getEvidenceId

	
Gets the unique identifier associated with the evidence.

	
getPlainText

	
Gets the content that was signed as part of this evidence.

	
getPolicy

	
Gets the signature policy of the evidence. This is either PASSWORD or CERTIFICATE.

	
getSignature

	
Gets the signature of this evidence.

	
getSignedDate

	
Gets the date on which the signature was created.

	
getStatus

	
Gets the CRL validation status. This can be one of the following:

	
AVAILABLE: The evidence is available for CRL validation.

	
FAILURE: CRL validation failed.

	
SUCCESS: CRL validation succeeded.

	
UNAVAILABLE: The CRL data could not be fetched.

	
WAIT: CRL validation is in progress.

	
getTaskId

	
Gets the unique identifier of the task with which this evidence is associated.

	
getTaskNumber

	
Gets the task number of the task with which this evidence is associated.

	
getTaskPriority

	
Gets the task priority of the task with which this evidence is associated.

	
getTaskStatus

	
Gets the task status of the task with which this evidence is associated.

	
getTaskSubStatus

	
Gets the task substatus of the task with which this evidence is associated.

	
getTaskTitle

	
Gets the title of the task with which this evidence is associated.

	
getTaskVersion

	
Gets the version of the task with which this evidence is associated.

	
getVerifiedDate

	
Gets the date on which the CRL validation of the certificate used was performed.

	
getWorkflowType

	
Gets the workflow type of the task with which this evidence is associated. This is typically BPELWF.

Table 32-13 Certificate Interface

	Method	Description
	
getCA

	
Gets the certificate issuer's distinguished name (DN).

	
getCertificate

	
Gets the certificate object that is abstracted by the interface.

	
getID

	
Gets the certificate's serial number.

	
getIdentityContext

	
Gets the identity context with which the uploader of this certificate is associated.

	
getUserName

	
Gets the user name with whom this certificate is associated.

	
isValid

	
Returns true if the certificate is still valid.

Table 32-14 Policy Type and Workflow Type Interface

	Method	Description
	
fromValue

	
Constructs an object from the string representation.

	
value

	
Returns the string representation of this object.

For more information, see the following:

	
Section 28.3.12, "How to Specify a Workflow Digital Signature Policy" for details about specifying digital signatures and digital certificates in the Human Task Editor

	
Chapter 29, "Designing Task Forms for Human Tasks" for details about digitally signing a task action in the Oracle BPM Worklist

32.1.11 Task Instance Attributes

A task is work that must be done by a user. When you create a task, you assign humans to participate in and act upon the task. Table 32-15 describes the task attributes that are commonly used and interpreted by applications.

Table 32-15 Task Attributes

	Task Attribute Name	Description
	
task/applicationContext

	
The application with which any application roles associated with this task (assignees, owners, and so on) belong.

	
task/category

	
An optional category of the task.

	
task/creator

	
The name of the creator of this task.

	
task/dueDate

	
The due date for the task. This is used on to-do tasks.

	
task/identificationKey

	
An optional, custom, unique identifier for the task. This can be set as an additional unique identifier to the standard task ID and task number. This key can retrieve a task based on business object identifiers for which the task is created.

	
task/identityContext

	
The identity realm under which the users and groups are seeded. In a single realm environment, this defaults to the default realm.

	
task/ownerGroup

	
The group (if any) that owns this task instance. Task owners can be application roles, users, or groups. If the owner of the task is a group, this field is set.

	
task/ownerRole

	
The application role (if any) that owns this task instance. Task owners can be application roles, users, or groups. If the owner of the task is an application role, this field is set.

	
task/ownerUser

	
The user (if any) that owns this task instance. Task owners can be application roles, users, or groups. If the owner of the task is a user, this field is set.

	
task/payload

	
The task payload that is captured as XML.

	
task/percentageComplete

	
The percentage of the task completed. This is used on to-do tasks.

	
task/priority

	
An integer number that defines the priority of this task. A lower number indicates a higher priority. The numbers 1 to 5 are typically used.

	
task/startDate

	
The start date for the task. This is used on to-do tasks.

	
task/subCategory

	
An optional subcategory of the task.

	
task/taskDefinitionId

	
The task definition ID that binds the task to the task metadata. At task initiation time, this can be either the compositeDN/componentName string or the targetNamespace in the .task file. If the later is used, the active version matching the targetNamespace is used.

	
task/taskDisplayUrl

	
The URL to use to display the details for this task.

	
task/title

	
The title of the task.

Table 32-16 lists the attributes that capture process metadata information.

Table 32-16 Attributes Capturing Process Metadata Information

	Attribute	Description
	
task/processInfo/domain

	
The domain to which the composite that contains the task component that defines this task instance belongs.

	
task/sca/applicationName

	
The application that is deployed.

	
task/sca/componentName

	
The name of the task component that defines this task instance.

	
task/sca/compositeDN

	
A unique name for the particular deployment of the composite that contains the task component that defines this task instance.

	
task/sca/compositeInstanceId

	
The composite instance ID.

	
task/sca/compositeName

	
The name of the composite that contains the task component that defines this task instance.

	
task/sca/compositeVersion

	
The version of the composite that contains the task component that defines this task instance.

Table 32-17 lists the attachment-related attributes.

Table 32-17 Attachment-related attributes

	Attribute	Description
	
task/attachment/content

	
The attachment content.

	
task/attachment/mimeType

	
The Multipurpose Internet Mail Extension (MIME) type of the attachment.

	
task/attachment/name

	
The name of the attachment.

	
task/attachment/updatedBy

	
The user who updated the attachment.

	
task/attachment/updatedDate

	
The date on which the attachment was updated.

	
task/attachment/URI

	
The URI if the attachment is URI-based.

Table 32-18 lists the comment-related attributes.

Table 32-18 Comment-related Attributes

	Attribute	Description
	
task/userComment/comment

	
The user comment.

	
task/userComment/updatedBy

	
The user who added the comment.

	
task/userComment/updatedDate

	
The date on which the comment was added.

Table 32-19 lists the attributes manipulated by the workflow services system.

Table 32-19 Attributes Manipulated by the Workflow Services System

	Attribute	Description
	
task/systemAttributes/acquiredBy

	
If a task is assigned to a group, application role, or to multiple users, and then claimed by a user, this field is set to the name of the user who claimed the task.

	
task/systemAttributes/approvers

	
The IDs of users who performed custom actions on the task.

	
task/systemAttributes/assignedDate

	
The date that this task was assigned.

	
task/systemAttributes/assignees

	
The current task assignees (maybe users, groups, or application roles).

	
task/systemAttributes/createdDate

	
The date the task instance was created.

	
task/systemAttributes/customActions

	
The custom actions that can be performed on the task.

	
task/systemAttributes/endDate

	
The end date for the task. This is used on to-do tasks.

	
task/systemAttributes/expirationDate

	
The date on which the task instance expires.

	
task/systemAttributes/fromUser

	
The user who previously acted on the task.

	
task/systemAttributes/hasSubTasks

	
If true, there are subtasks.

	
task/systemAttributes/isGroup

	
If true, the task is assigned to a group.

	
task/systemAttributes/originalAssigneeUser

	
If a user delegates a task to another user, this field is populated with the name of the user who delegated the task.

	
task/systemAttributes/outcome

	
The outcome of the task (for example, approved or rejected). This is only set on completed task instances.

	
task/systemAttributes/parentTaskId

	
This is only set on reinitiated tasks (the task ID of the previous task that is being reinitiated).

	
task/systemAttributes/parentTaskVersion

	
This only set on a subtask. This refers to the version of the parent task.

	
task/systemAttributes/participantName

	
The logical name of the participant as modeled from Oracle JDeveloper.

	
task/systemAttributes/reviewers

	
The reviewers of the task. This can be a user, group, or application role.

	
task/systemAttributes/rootTaskId

	
The ID of the root task. This is the same as the task ID for the root task.

	
task/systemAttributes/stage

	
The stage name that is being executed.

	
task/systemAttributes/state

	
The current state of the task instance.

	
task/systemAttributes/substate

	
The current substate of the task.

	
task/systemAttributes/subTaskGroupInstanceId

	
A unique ID that is set on a subtask. This same ID is set on the parent task's taskGroupInstanceId. This is required to identify which subtasks were created at which time.

	
task/systemAttributes/systemActions

	
The system actions (such as reassign, escalate, and so on) that can be performed on a task.

	
task/systemAttributes/taskDefinitionName

	
The name of the task component that defines this task instance.

	
task/systemAttributes/taskGroupId

	
This only sets a subtask. This is the ID of the immediate parent task.

	
task/systemAttributes/taskGroupInstanceId

	
A unique ID that is set on the parent task. This same ID is set on the subtask's subTaskGroupInstanceId. This is required to identify which subtasks were created at which time.

	
task/systemAttributes/taskId

	
The unique ID of the task.

	
task/systemAttributes/taskNamespace

	
A namespace that uniquely defines all versions of the task component that defines this task instance. Different versions of the same task component can have the same namespace, but no two task components can have the same namespace.

	
task/systemAttributes/taskNumber

	
An integer number that uniquely identifies this task instance.

	
task/systemAttributes/updatedBy

	
The user who last updated the task.

	
task/systemAttributes/updatedDate

	
The date this instance was last updated.

	
task/systemAttributes/version

	
The version of the task.

	
task/systemAttributes/versionReason

	
The reason the version was created.

	
task/systemAttributes/workflowPattern

	
The pattern that is being executed (for example, parallel, serial, FYI, or single).

Table 32-20 lists the flex field attributes.

Table 32-20 Flex Field Attributes

	Attribute	Description
	
task/systemMessageAttributes/*

	
The flex fields.

32.2 Notifications from Human Workflow

Notifications are sent to alert users of changes to the state of a task. Notifications can be sent through any of the following channels: email, telephone voice message, instant messaging (IM), or short message service (SMS). Notifications can be sent from a human task in a BPEL process or from a BPEL process directly.

In releases before 11g, email notifications were sent through the human workflow email notification layer. Voice and SMS notifications were sent through Oracle's hosted notification service. IM notifications were not supported.

Starting with release 11g, the human workflow email notification layer works with Oracle User Messaging Service to alert users to changes in the state of a task. The Oracle User Messaging Service exposes operations that can be invoked from the BPEL business process or human task to send notifications through email, voice, IM, or SMS channels.

The Oracle User Messaging Service supports features such as:

	
Sending and receiving messages and statuses

	
Sending notifications to a specific address on a particular channel

	
Sending notifications to a set of failover addresses

On application servers other than Oracle Fusion Middleware, the human workflow email notification layer can be used for email notifications.

For more information about configuring the Oracle User Messaging Service, see the following:

	
Chapter 17, "Using the Notification Service"

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for instructions on configuring notification service delivery channels in Oracle Enterprise Manager Fusion Middleware Control Console

32.2.1 Contents of Notification

Each email notification can contain the following parts:

	
The notification message

	
The HTML content from Oracle BPM Worklist:

This is a read-only view of Oracle BPM Worklist on the task. For information on how you can configure email notifications to include the content from Oracle BPM Worklist, see Section 29.7, "Creating an Email Notification."

	
Task attachments:

For notifications that include task attachments.

	
Actionable links

Notifications through SMS, IM, and voice contain only the notification message.

The notification message is an XPath expression that can contain static text and dynamic values. In creating the messages, only the task BPEL variable is available for dynamic values. This restriction is because the messages are evaluated outside the context of the BPEL process. The payload in the task variable is also strongly typed to contain the type of the payload for XPath tree browsing. The XPath extension function hwf:getNotificationProperty(propertyName) is available to get properties for a particular notification. The function evaluates to corresponding values for each notification. The propertyName can be one of the following values:

	
recipient

The recipient of the notification

	
recipientDisplay

The display name of the recipient

	
taskAssignees

The task assignees

	
taskAssigneesDisplay

The display names of the task assignees

	
locale

The locale of the recipient

	
taskId

The ID of the task for which the notification is meant

	
taskNumber

The number of the task for which the notification is meant

	
appLink

The HTML link to the Oracle BPM Worklist task details page

Example 32-4 demonstrates the use of hwf:getNotificationProperty and hwf:getTaskResourceBundle together:

Example 32-4 Use of hwf:getNotificationProperty and hwf:getTaskResourceBundle

concat('Dear ', hwf:getNotificationProperty('recipientDisplay'), ' Task ',
/task:task/task:systemAttributes/task:taskNumber, ' is assigned to you. ',
hwf:getTaskResourceBundleString(/task:task/task:systemAttributes/task:taskId,
'CONGRATULATIONS', hwf:getNotificationProperty('locale')))

This results in a message similar to the following:

Dear Cooper, James Task 1111 is assigned to you. Congratulations

32.2.2 Error Message Support

The human workflow email notification layer is automatically configured to warn an administrator about error occurrences in which intervention is required. Error notifications and error response messages are persisted.

You can view messages in Oracle Enterprise Manager Fusion Middleware Control Console.

For more information about viewing messages, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

32.2.3 Reliability Support

The human workflow email notification layer works with the Oracle User Messaging Service to provide the following reliability support:

	
Messages are not lost:

	
If the human workflow email notification layer fails after acknowledging receipt of a message from the human workflow.

	
If the human workflow email notification layer and Oracle User Messaging Service both fail before the Oracle User Messaging Service acknowledges receipt of a message from the human workflow.

	
If the Oracle User Messaging Service is down. Message delivery is retried until successful.

	
If a notification channel is down.

	
Notifications that cannot be delivered are retried three times and the address is marked as invalid. The address is also added to the bad address list. If needed, you can manually remove these addresses from the bad address list in Oracle Enterprise Manager Fusion Middleware Control Console. Outgoing notifications are not resent until the address is corrected. To guard against any incorrect identification, the address is marked as invalid only for about an hour. No new notifications are sent in this time.

	
Incoming notification responses from an address that has been identified as a spam source are ignored.

	
Incoming notification messages are persisted.

	
Incoming notification responses that indicate notification delivery failure (for example, an unknown host mail) are not ignored; instead corrective actions are automatically taken (for example, the bad address list is updated).

	
Incoming notification responses can be configured to send acknowledgements indicating notification status to the sender.

	
Validation of incoming notification responses is performed by correlating the incoming notification message with the outgoing notification message.

For more information about notifications, see the following:

	
Chapter 17, "Using the Notification Service"

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite

32.2.4 Management of Oracle Human Workflow Notification Service

An administrator can perform the following management tasks from Oracle Enterprise Manager Fusion Middleware Control Console:

	
View failed notifications and erroneous incoming notification responses and take corrective actions.

	
Perform corrective actions such as delete, resend, and edit on outgoing notifications and addresses.

	
View bad emails and block email addresses for incoming notification responses.

	
Manage the bad email address list.

	
Access runtime data of failed notifications. You can purge this data when it is no longer needed.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

32.2.5 How to Configure the Notification Channel Preferences

To configure the notification channel preferences:

	
In Oracle JDeveloper, configure the notification service for email and other channels. See Chapter 17, "Using the Notification Service" for details.

	
Open the Human Task Editor in Oracle JDeveloper.

The notifications for a task can be configured during the creation of a task in the Human Task Editor. Notifications can be sent to different types of participants for different actions.

The actions for which a task notification can be sent are described in Section 28.3.10.1, "Notifying Recipients of Changes to Task Status."

Notifications can be sent to users involved in the task in various capacities. These users are described in Section 28.3.10.1, "Notifying Recipients of Changes to Task Status."

When the task is assigned to a group, each user in the group is sent a notification if no notification endpoint is available for the group.

For more information, see the following:

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for details about configuring the notification channel

	
Section 28.3.10, "How to Specify Participant Notification Preferences" to configure task notifications in the Human Task Editor

	
Chapter 17, "Using the Notification Service"

	
From the messaging server pages of Oracle Enterprise Manager Fusion Middleware Control Console, configure the appropriate channel (for example, email). See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for details.

	
From the Workflow Notification Properties pages of Oracle Enterprise Manager Fusion Middleware Control Console, configure the notification mode parameter for the notification service to either all channels or email.

By default, this value is set to NONE, meaning that no notifications are sent. The possible values are:

	
ALL

The email, IM, SMS, and voice channels are configured and notification is sent through any channel.

	
EMAIL

Only the email channel is configured for sending notification messages.

	
NONE

No channel is configured for sending notification messages. This is the default setting.

32.2.6 How to Configure Notification Messages in Different Languages

A notification consists of four types of data generated from multiples sources and internationalized differently. However, for all internationalized notifications, the locale is obtained from the BPMUser object of the identity service.

	
Prepackaged strings (action links, comments, Oracle BPM Worklist, and so on)

These strings are internationalized in the product as part of the following package:

oracle.bpel.services.workflow.resource

The user's locale is used to get the appropriate message.

	
Task details attachment

The user's locale is used to retrieve the task details HTML content.

	
Task outcome strings (approve, reject, and so on)

The resource bundle for outcomes is specified when the task definition is modeled in the Advanced Settings section of the Human Task Editor. The key to each of the outcomes in the resource bundle is the outcome name itself.

	
Notification message

To configure notification messages in different languages:

	
Use one of the following methods to internationalize messages in the notification content:

	
To use values from the resource bundle specified during the task definition, then use the following XPath extension function:

hwf:getTaskResourceBundleString(taskId, key, locale?)

This function returns the internationalized string from the resource bundle specified in the task definition.

The locale of the notification recipient can be retrieved with the following function:

hwf:getNotificationProperty('locale')

The task ID corresponding to a notification can be retrieved with the following function:

hwf:getNotificationProperty('taskId')

	
If a different resource bundle is used, then use the following XPath extension to retrieve localized messages:

orcl:get-localized-string()

For more information, see Section 28.3.8.2, "Specifying Multilingual Settings."

32.2.7 How to Send Actionable Messages

There are several methods for sending actionable messages. This section provides an overview of procedures.

	
Note:

If digital signatures are enabled for a task, actionable emails are not sent during runtime. This is the case even if actionable emails are enabled during design-time.

32.2.7.1 How to Send Actionable Emails for Human Tasks

Task actions can be performed through email if the task is set up to enable actionable email (the same actions can also be performed from Oracle BPM Worklist). An actionable email account is the account in which task action-related emails are received and processed.

To send actionable emails for human tasks:

	
In the Notification Settings section of the Human Task Editor, select Make notifications actionable to make email notifications actionable. This action enables you to perform task actions through email.

If a notification is actionable, the email contains links for each of the custom outcomes.

	
To send task attachments with the notification message, select Send task attachments with email notifications.

When an actionable email arrives, perform the following tasks.

	
Click the Approve link to invoke a new email window with approval data. Figure 32-3 provides details.

Figure 32-3 Actionable Notifications

[image: Description of Figure 32-3 follows]

	
Add comments in the comments section of the approval mail. For example:

This contract has been approved based on the attached information.

	
Add attachments as needed, as shown in Figure 32-4.

Figure 32-4 Attachment to an Actionable Email

[image: Description of Figure 32-4 follows]

	
Do not change anything in the subject or the body in this email. If you change the content with the NID substrings, the email is not processed.

	
Click Send.

	
Set properties such as incoming server, outgoing mail server, outgoing username and password, and others from the Oracle User Messaging Service section of Oracle Enterprise Manager Fusion Middleware Control Console.

	
In the Workflow Notification Properties page of Oracle Enterprise Manager Fusion Middleware Control Console, set the notification mode to ALL or EMAIL.

	
In the Workflow Task Service Properties page of Oracle Enterprise Manager Fusion Middleware Control Console, set the actionable email account name.

32.2.8 How to Send Inbound and Outbound Attachments

If the include attachments flag is checked; only email is sent. The emails include all the task attachments as email attachments.

To send inbound and outbound attachments:

	
Select Send task attachments with email notifications in the Notification Settings section of the Human Task Editor.

In the actionable email reply, the user can add attachments in the email. These attachments are added as task attachments.

For more information, see Section 28.3.10.6, "Making Email Messages Actionable."

32.2.9 How to Send Inbound Comments

To send inbound comments:

	
Add comments in the actionable email reply between Comments[[' and ']]. Those contents are added as task comments. For example, Comments[[looks good]].

32.2.10 How to Send Secure Notifications

To send secure notifications:

	
Mark a notification as secure in the Notification Settings section of the Human Task Editor. This action enables a default notification message to be used. In this case, the notification message does not include the content of the task. Also, this notification is not actionable. The default notification message includes a link to the task in Oracle BPM Worklist. You must log in to see task details.

For more information, see Section 28.3.10.5, "Securing Notifications to Exclude Details."

32.2.11 How to Set Channels Used for Notifications

To set channels used for notifications:

	
Set up preferred notification channels by using the preferences user interface in Oracle BPM Worklist. The channel is dynamically determined by querying the user preference store before sending the notification. If the user preference is not specified, then the email channel is used.

For more information about the Oracle Delegated Administration Service, see Oracle Fusion Middleware Guide to Delegated Administration for Oracle Identity Management.

32.2.12 How to Send Reminders

Tasks can be configured to send reminders, which can be based on the time the task was assigned to a user or the expiration time of a task. The number of reminders and the interval between the reminders can also be configured. The message used for reminders is the message that is meant for ASSIGNEES when the task is marked as ASSIGNED.

To send reminders:

	
Set reminders in the Notification Settings section of the Human Task Editor. Reminder configuration involves the following parameters:

	
Recurrence:

The recurrence specifies the number of times reminders are sent. The possible values for recurrence are EVERY, NEVER, 0, 1, 2 …, 10.

	
RelativeDate:

The RelativeDate specifies if the reminder duration is computed relative to the assigned date or to the expiration date of the task. The possible values for the relativeDate are ASSIGNED, EXPIRATION, and BEFORE DUE DATE. The final value appears in Oracle JDeveloper if you modify the escalation and expiration policy of the task to use the option DUE DATE.

	
Duration:

The duration from the relativeDate and the first reminder and each reminder since then. The data type of duration is xsd:duration, whose format is defined by ISO 8601 under the form PnYnMnDTnHnMnS. The capital letters are delimiters and can be omitted when the corresponding member is not used. Examples include PT1004199059S, PT130S, PT2M10S, P1DT2S, -P1Y, or P1Y2M3DT5H20M30.123S.

The following examples illustrate when reminders are sent:

	
If the relativeDate is ASSIGNED, the recurrence is EVERY, the reminder duration is PT1D. and the task is assigned at 3/24/2005 10:00 AM, then reminders are sent at 3/25/2005 10:00 AM, 3/26/2005 10:00 AM, 3/27/2005 10:00 AM, and so on until the user acts on the task.

	
If the relativeDate is EXPIRATION, the recurrence is 2, the reminder duration is PT1D, and the task expires at 3/26/2005 10:00 AM, then reminders are sent at 3/24/2005 10:00 AM and 3/25/2005 10:00 AM if the task was assigned before 3/24/2005 10:00 AM.

	
If the relativeDate is EXPIRATION, the recurrence is 2, the reminder duration is PT1D, the task expires at 3/26/2005 10:00 AM, and the task was assigned at 3/24/2005 3:00 PM, then only one reminder is sent at 3/25/2005 10:00 AM.

For more information, see Section 28.3.10.3, "Setting Up Reminders."

32.2.13 How to Set Automatic Replies to Unprocessed Messages

The human workflow notification service sends you an automatic reply message when it cannot process an incoming message (due to system error, exception error, user error, and so on). You can modify the text for these messages in the global resource bundle. For more information see Section 32.5.2, "Global Resource Bundle – WorkflowLabels.properties."

Example 32-5 WorkflowLabels.properties

String to be prefixed to all auto reply messages
AUTO_REPLY_PREFIX_MESSAGE=Oracle Human Workflow Service
String to be sufixed to all auto reply mesages
AUTO_REPLY_SUFFIX_MESSAGE=This message was automatically generated by Human \
 Workflow Mailer. Do not reply to this mail.

Message indicating closed status of a notified task
TaskClosed=You earlier received the notification shown below. That notification \
 is now closed, and no longer requires your response. You may \
 simply delete it along with this message.

Message indicating that notification was "replied" to instead of "responded" by
using the response link.
EMailRepliedNotification=The message you sent appeared to be a reply to a \
 notification. To respond to a notification, use the \
 response link that was included with your notification.

#
EMailUnSolicited= The message you sent did not appear to be in response to a \
 notification. If you are responding to a notification \
 Use the response link that was included with your notification.

EMailUnknownContent= The message you sent did not appear to be in response to a \
 notification. If you are responding to a notification, \
 Use the response link that was included with your notification.

ResponseNotProcessed=Your response to notification could not be processed. \
 Log in to worklist application for more details.

ResponseProcessed=Your response to notification was successfully processed.

32.2.14 How to Create Custom Notification Headers

Some task participants may have access to multiple notification channels. You can use custom notification headers to enable this type of participant to specify a single channel as the preferred channel on which to receive notifications.

To create custom notification headers:

	
In the Custom Notification Headers field of the Notification Settings section of the Human Task Editor, create custom notification headers that specify the preferred notification channel to use (such as voice, SMS, and so on). The human workflow email notification layer provides these header values to the rule-based notification service of the Oracle User Messaging Service for use.

For example, set the Name field to deliveryType and the Value field to SMS.

Note that the rule-based notification service is only used to identify the preferred notification channel to use. The address for the preferred channel is obtained from Oracle Identity Management. The notification message is created from the information provided by both services.

For more information, see the following:

	
Section 28.3.10.7, "Sending Task Attachments with Email Notifications"

	
Chapter 63, "User Messaging Preferences"

32.3 Assignment Service Configuration

This section describes how to configure the assignment service with dynamic assignment functions.

32.3.1 Dynamic Assignment and Task Escalation Functions

When tasks are assigned to a group, users in the group must typically claim a task to act on it. However, you can also automatically send work to users in the group by using various dispatching mechanisms. Automatic task dispatching is done through dynamic assignment functions. Dynamic assignment functions select a particular user or group from either a group, or from a list of users or groups. Several functions are automatically provided. However, you can also create your own functions and register them with the workflow service. Table 32-21 describes the three dynamic assignment functions.

Table 32-21 Dynamic Assignment Functions

	Function	Type	Description
	
LEAST_BUSY

	
Dynamic assignment

	
Picks the user or group with the least number of tasks currently assigned to it.

	
MANAGERS_MANAGER

	
Task escalation

	
Picks the manager's manager.

	
MOST_PRODUCTIVE

	
Dynamic assignment

	
Picks the user or group that has completed the most tasks over a certain time period (by default, the last seven days).

	
ROUND_ROBIN

	
Dynamic assignment

	
Picks each user or group in turn.

These functions all check a user's vacation status. A user that is currently unavailable is not automatically assigned tasks.

These dynamic assignment functions can be called using the custom XPath functions in a BPEL process or task definition:

	
wfDynamicUserAssign

	
wfDynamicGroupAssign

These XPath functions must be called with at least two, and optionally more parameters:

	
The name of the dynamic assignment function being called.

	
The name of the group on which to execute the function (or a list of users or groups).(Optional) The identity realm to which the user or group belongs (the default value is the default identity realm).

	
Additional optional parameters specific to the dynamic assignment function. In the case of the MOST_PRODUCTIVE assignment function, this is the length of time (in days) to calculate a user's productivity. The two other functions do not use additional parameters.

In addition, human workflow rules created for a group can use dynamic assignment functions to select a member of that group for reassignment of a task.

In addition to these functions, a dynamic assignment framework is provided that enables you to implement and configure your own dynamic assignment functions.

32.3.1.1 How to Implement a Dynamic Assignment Function

Follow these procedures to implement your own dynamic assignment function.

To implement dynamic assignment functions:

	
Write a Java class that implements one or both of the following interfaces:

oracle.bpel.services.workflow.assignment.dynamic. IDynamicUserAssignmentFunction
oracle.bpel.services.workflow.assignment.dynamic. IDynamicGroupAssignmentFunction

	
If your dynamic assignment function selects users, implement the first interface. If it selects groups, implement the second interface. If it allows the selection of both users and groups, implement both interfaces.

The two interfaces above both extend the interface oracle.bpel.services.workflow.assignment.dynamic.IDynamicAssignmentFunction.

Your Java class should also implement the methods in that interface. These interfaces as shown in the Javadoc.

The dynamic assignment framework also provides the utility class oracle.bpel.services.workflow.assignment.dynamic.DynamicAssignmentUtils.

This class provides many methods that are useful when implementing dynamic assignment functions.

For information about the Javadoc for dynamic assignment interfaces and utilities, see SOA_ORACLE_HOME\javadoc\soa-infra.

32.3.1.2 How to Configure Dynamic Assignment Functions

Dynamic assignment functions are configured along with other human workflow configuration parameters in Oracle Enterprise Manager Fusion Middleware Control Console.

Each dynamic assignment has two mandatory parameters in this file, in the form of a <function> tag.

The function tag must contain two attributes:

	
name: The name of the function

	
classpath: The fully qualified class name of the class that implements the function.

In addition, each function can optionally have any number of properties. These properties are simple name-value pairs that are passed as initialization parameters to the function.

The property values specified in these tags are passed as a map (indexed by the value of the name attributes) to the setInitParameters method of the dynamic assignment functions.

Two of the functions have initialization parameters. These are:

	
ROUND_ROBIN

The parameter MAX_MAP_SIZE specifies the maximum number of sets of users or groups for which the function can maintain ROUND_ROBIN counts. The dynamic assignment function holds a list of users and groups in memory for each group (or list of users and groups) on which it is asked to execute the ROUND_ROBIN function.

	
MOST_PRODUCTIVE

The parameter DEAFULT_TIME_PERIOD specified the length of time (in days) over which to calculate the user's productivity. This value can be overridden when calling the MOST_PRODUCTIVE dynamic assignment function. Use an XPath function by specifying an alternative value as the third parameter in the XPath function call.

For more information about configuring the dynamic assignment functions from Oracle Enterprise Manager Fusion Middleware Control Console, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

32.3.1.3 How to Configure Display Names for Dynamic Assignment Functions

The runtime config service provides methods for returning a list of available user and group dynamic assignment functions. These functions return both the name of the function, and a user-displayable label for the function. The functions support localization of the display name, so that it displays in the appropriate language for the context user. These functions are used by Oracle BPM Worklist to show a list of available dynamic assignment functions. This applies exclusively to dynamic assignment functions. Display names for task escalation functions are not supported.

To configure display names for dynamic assignment functions:

	
Specify display names (and appropriate translations) for your dynamic assignment functions by adding entries to the resource property file WorkflowLabels.properties, and associated resource property files in other languages. This file exists in the class path identified in the workflow configuration parameter workflowCustomizationsClasspathURL.

Entries for dynamic assignment functions must be of the form:

DYN_ASSIGN_FN.[function name]=Function Display Name

For instance, the entry for the ROUND_ROBIN function is:

DYN_ASSIGN_FN.ROUND_ROBIN = Round Robin

Note that adding entries to these files for dynamic assignment functions is optional. If no entry is present in the file, then the name of the function (for example, ROUND_ROBIN') is used instead.

For more information about the WorkflowLabels.properties file, see the workflow-110-workflowCustomizations sample available at the following URL:

http://www.oracle.com/technology/sample_code/products/hwf

32.3.1.4 How to Implement a Task Escalation Function

Task escalation functions are very similar to dynamic assignment functions, but perform a different function (determining to whom a task is assigned when it is escalated). Custom implementations must implement a different interface (IDynamicTaskEscaltionFunction).

32.3.2 Dynamically Assigning Task Participants with the Assignment Service

Human workflow participants are specified declaratively in a routing slip. The routing slip guides the human workflow by specifying the participants and how they participate in the human workflow (for example, management chain hierarchy, sequential list of approvers, and so on).

The Human Task Editor enables you to declaratively create the routing slip using various built-in patterns. In addition, you can use advanced routing based on business rules to do more complex routing. However, to do more sophisticated routing using custom logic, then you implement a custom assignment service to do routing. To support a dynamic assignment, an assignment service is used. The assignment service is responsible for determining the task assignees. You can also implement your own assignment service and plug in that implementation for use with a particular human workflow.

The assignment service determines the following task assignment details in a human workflow:

	
The assignment when the task is initiated.

	
The assignment when the task is reinitiated.

	
The assignment when a user updates the task outcome. When the task outcome is updated, the task can either be routed to other users or completed.

	
The assignees from whom information for the task can be requested.

	
If the task supports reapproval from Oracle BPM Worklist, a user can request information for reapproval.

	
The users who reapprove the task if reapproval is supported.

The human workflow service identifies and invokes the assignment service for a particular task to determine the task assignment.

For example, a simple assignment service iteration is as follows:

	
A client initiates an expense approval task whose routing is determined by the assignment service.

	
The assignment service determines that the task assignee is jcooper.

	
When jcooper approves the task, the assignment service assigns the task to jstein. The assignment service also specifies that a notification must be sent to the creator of the task, jlondon.

	
jstein approves the task and the assignment service indicates that there are no more users to which to assign the task.

32.3.2.1 How to Implement an Assignment Service

To implement an assignment service:

	
Implement the assignment service with the IAssignmentService interface. The human workflow service passes the following information to the assignment service to determine the task assignment:

	
Task document

The task document that is executed by the human workflow. The task document contains the payload and other task information like current state, and so on.

	
Map of properties

When an assignment service is specified, a list of properties can also be specified to correlate callbacks with back-end services that determine the task assignees.

	
Task history

The task history is a list of chronologically-ordered task documents to trace the history of the task. The task documents in this list contain a subset of attributes in the actual task (such as state, updatedBy, outcome, updatedDate, and so on).

32.3.2.2 Example of Assignment Service Implementation

	
Notes:

	
The assignment service class cannot be stateful because every time human workflow services must call the assignment service, it creates a new instance.

	
The getAssigneesToRequestForInformation method can be called multiple times because one of the criteria to show the request-for-information action is that there are users to request information. Therefore, this method is called every time the human workflow service tries to determine the permitted actions for a task.

You can implement your own assignment service plug-in that the human workflow service invokes during human workflow execution.

Example 32-6 provides a sample IAssignmentService implementation named TestAssignmentService.java.

Example 32-6 Sample IAssignmentService Implementation

/* $Header: TestAssignmentService.java 24-may-2006.18:26:16 Exp $ */
/* Copyright (c) 2004, 2006, Oracle. All rights reserved. */
/*
 DESCRIPTION
 Interface IAssignmentService defines the callbacks an assignment
 service implements. The implementation of the IAssignmentService
 is called by the workflow service
 PRIVATE CLASSES
 <list of private classes defined - with one-line descriptions>
 NOTES
 <other useful comments, qualifications, etc.>
 MODIFIED (MM/DD/YY)

 */
/**
 * @version $Header: IAssignmentService.java 29-jun-2004.21:10:35 Exp
 $
 *
 *
 */
package oracle.bpel.services.workflow.test.workflow;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import oracle.bpel.services.workflow.metadata.routingslip.model.*;
import oracle.bpel.services.workflow.metadata.routingslip.model.Participants;
import oracle.bpel.services.workflow.metadata.routingslip.model.ParticipantsType.*;
import oracle.bpel.services.workflow.task.IAssignmentService;
import oracle.bpel.services.workflow.task.ITaskAssignee;
import oracle.bpel.services.workflow.task.model.Task;
public class TestAssignmentService implements
 oracle.bpel.services.workflow.task.IAssignmentService {
 static int numberOfApprovals = 0;
 static String[] users = new String[]{"jstein", "wfaulk", "cdickens"};
 public Participants onInitiation(Task task,
 Map propertyBag) {
 return createParticipant();
 }
 public Participants onReinitiation(Task task,
 Map propertyBag) {
 return null;
 }
 public Participants onOutcomeUpdated(Task task,
 Map propertyBag,
 String updatedBy,
 String outcome) {
 return createParticipant();
 }
 public Participants onAssignmentSkipped(Task task,
 Map propertyBag) {
 return null;
 }
 public List getAssigneesToRequestForInformation(Task task,
 Map propertyBag) {
 List rfiUsers = new ArrayList();
 rfiUsers.add("jcooper");
 rfiUsers.add("jstein");
 rfiUsers.add("wfaulk");
 rfiUsers.add("cdickens");
 return rfiUsers;
 }
 public List getReapprovalAssignees(Task task,
 Map propertyBag,
 ITaskAssignee infoRequestedAssignee) {
 List reapprovalUsers = new ArrayList();
 reapprovalUsers.add("jstein");
 reapprovalUsers.add("wfaulk");
 reapprovalUsers.add("cdickens");
 return reapprovalUsers;
 }
 private Participants createParticipant() {
 if (numberOfApprovals > 2) {
 numberOfApprovals = 0;
 return null;
 }
 String user = users[numberOfApprovals++];

 ObjectFactory objFactory = new ObjectFactory();
 Participants participants = objFactory.createParticipants();
 Participant participant = objFactory.createParticipantsTypeParticipant();
 participant.setName("Loan Agent");
 ResourceType resource2 = objFactory.createResourceType(user);
 resource2.setIsGroup(false);
 resource2.setType("STATIC");
 participant.getResource().add(resource2);

 participants.getParticipantOrSequentialParticipantOrAdhoc().
 add(participant);
 return participants;
 }

}

32.3.2.3 How to Deploy a Custom Assignment Service

To deploy a custom assignment service:

	
Use one of the following methods to make an assignment service implementation class and its related classes available in the class path of Oracle BPEL Process Manager:

	
Load your classes in SCA-INF/classes directly or SCA-INF/lib as a JAR.

	
Change the Oracle BPEL Process Manager shared library to include your JAR files.

	
Note:

	
You cannot create different versions of the assignment service for use in different BPEL processes unless you change package names or class names.

	
Java classes and JAR files in the suitcase are not available in the class path and therefore cannot be used as a deployment model for the assignment service.

	
The steps must be repeated for each node in a cluster.

32.3.3 Custom Escalation Function

The custom escalation function enables you to integrate a custom rule in a human workflow.

To implement a custom escalation function:

	
Create a custom task escalation function and register this with the human workflow service that uses that function in task definitions.

	
Use the Advanced Settings section of the Human Task Editor to integrate the rule in a human workflow.

For more information, see Section 28.3.9.6, "Specifying Escalation Rules."

32.4 Class Loading for Callbacks and Resource Bundles

You can load classes for the following callbacks and resource bundles directly from the SOA project instead of having to load classes in the oracle.soainfra.common shared library and restarting Oracle WebLogic Server:

	
IAssignmentService

	
IRestrictedAssignmentService

	
IRoutingSlipCallback

	
IPercentageCompletionCallback

	
INotificationCallback

	
Project level resource bundles

The callback classes can be in the following locations:

	
JARs in the SCA-INF/lib directory of the project

	
Classes in the SCA-INF/classes directory of the project

Additionally, to support backward compatibility, the project level resource bundles can also be in the same directory as the .task file.

32.5 Resource Bundles in Workflow Services

This section describes the resource bundles used in human workflow services and how they can be customized to provide alternative resource strings.

The human workflow service APIs and Oracle BPM Worklist use the locale set in the IWorkflowContext object to access the APIs. This is the locale of the user in the user directory configured with the identity service. If no locale is specified for the user, then the default locale for the Java EE server is used instead.

It is possible for API clients to override this locale by setting a new value in the IWorkflowContext object. Oracle BPM Worklist provides a user preference option that allows users to use their browser's locale, rather than the locale set in their user directory.

32.5.1 Task Resource Bundles

Each human workflow component can be associated with a resource bundle. The bundle defines the resource strings to be used as display names for the task outcomes. The resource strings are returned by the TaskMetadataService method getTaskDefinitionOutcomes, and are displayed in Oracle BPM Worklist and the task flow task details application.

In addition, you can use the human workflow XPath function getTaskResourceBundle string to look up resource strings for the task's resource bundle. For example, this XPath function can be used as part of the XPath expression used to construct notification messages for the task.

A human workflow component is associated with a resource bundle by setting the Resource Name and Resource Location fields of the Resource Details dialog in the Advanced Settings section of the Human Task Editor in Oracle JDeveloper. Note that the value for the Resource Location field is a URL, and the resource bundle can be contained within a JAR file pointed to by the URL. It is possible to share the same resource bundle between multiple human workflow components by using a common location for the resource bundle.

If no resource bundle is specified for the human workflow component, the resource string is looked up in the global resource bundle. (See Section 32.5.2, "Global Resource Bundle – WorkflowLabels.properties.") Commonly-used task outcomes can be defined in the global resource bundle, alleviating the need to define a resource bundle for individual human workflow components.

If no resource string can be located for a particular outcome, then the outcome name is used as the display value in all locales.

32.5.2 Global Resource Bundle – WorkflowLabels.properties

The following global resource bundle is used by human workflow service APIs to look up resource strings:

oracle.bpel.services.worklfow.resource.WorkflowLabels.properties

You can customize this bundle to provide alternatives for existing display strings or to add additional strings (for example, for flex field attribute labels, standard views, or custom dynamic assignment functions).

The global resource bundle provides resource strings for the following:

	
Task attributes:

Labels for the various task attributes displayed in Oracle BPM Worklist (or other clients). Resource string values are returned from the following TaskMetadataService methods:

	
getTaskAttributes

	
getTaskAttributesForTaskDefinition

	
getTaskAttributesForTaskDefinitions

	
Flex field attribute labels:

Labels for flex field attribute labels created through the runtime config service. These strings are used in Oracle BPM Worklist when displaying mapped flex field attributes. Resource string values are returned from the TaskMetadataService methods:

	
getTaskAttributesForTaskDefinition

	
getTaskAttributesForTaskDefinitions

If translated resource strings are required for flex field mappings, then customize the WorkflowLabels.properties bundle to include the appropriate strings.

	
Task outcomes:

Default resource strings for common task outcomes. These can be overridden by the task resource bundle, as described above. The resource strings are returned by the TaskMetadataService method getTaskDefinitionOutcomes, if no task-specific resource bundle has been specified. As shipped, the global resource bundle contains resource strings for the following outcomes:

	
Approve

	
Reject

	
Yes

	
No

	
OK

	
Defer

	
Accept

	
Acknowledge

	
Dynamic assignment function names:

Labels for dynamic assignment functions. These strings are returned from the runtime config service methods getUserDynamicAssignmentFunctions and getGroupDynamicAssignmentFunctions. The shipped resource bundle contains labels for the standard dynamic assignment functions (ROUND_ROBIN, LEAST_BUSY, and MOST_PRODUCTIVE). If additional custom dynamic assignment functions have been created, then modify the WorkflowLabels.properties resource bundle to provide resource strings for the new functions.

	
Standard view names:

Labels for standard views. If you want translated resource strings for any standard views you create, then add them here. Standard view resource strings are looked up from the resource bundle, and are returned as the standard view name from the UserMetadataService methods getStandardTaskViewList and getStandardTaskViewDetails. The key for the resource string should be the name given to the standard view when it is created. If no resource string is added for a particular standard view, then the name as entered is used instead.

	
Notification messages:

Resource strings used when the task service sends automatic notifications. These can be customized to suit user requirements.

	
Task routing error comments:

When an error is encountered in the routing of a task, the task service automatically appends comments to the task to describe the error. The various strings used for the comments are defined in this resource bundle.

A copy of the WorkflowLabels.properties resource bundle is available in the sample workflow-110-workflowCustomizations.

You can customize the WorkflowLabels.properties resource bundle by editing it and then adding the customized version to the class path for workflow services, ahead of the version that ships with the product.

This can be done in the following ways:

	
Place the customized file in a directory tree:

directory_path/oracle/bpel/services/workflow/resource/WorkflowLabels.properties

	
Update the worklfowCustomClasspathURL configuration parameter to point to directory_path (As this is a URL, it is possible to host the resource bundles on a web server, and make them accessible to multiple Oracle WebLogic Servers). This approach is described in detail in sample workflow-110-workflowCustomizations. To download this sample, visit the following URL:

http://www.oracle.com/technology/sample_code/products/hwf

32.5.3 Worklist Client Resource Bundles

The ADF worklist client application uses two resource bundles that contain all the strings displayed in the worklist client web application.

	
oracle.bpel.worklistapp.resource.WorkflowResourceBundle: This contains strings used by both the ADF Oracle BPM Worklist, and the JSP-based sample Oracle BPM Worklist that shipped with version 10.1.3 of Oracle SOA Suite.

	
oracle.bpel.worklistapp.resource.WorklistResourceBundle. This contains strings used only by the ADF Oracle BPM Worklist.

Copies of the worklist resource bundles are available in the sample workflow-110-workflowCustomizations.

The sample illustrates how to customize Oracle BPM Worklist by recompiling these resource bundles, and adding the updated classes to Oracle BPM Worklist.

32.5.4 Task Detail ADF Task Flow Resource Bundles

The ADF task flow applications and associated data controls that get created to display the details of a particular task type use the resource bundle oracle.bpel.services.workflow.worklist.resource.worklist to store their resource strings.

You can provide your own custom resource strings for a task detail ADF task flow by adding a customized resource bundle in the task flow application.

You can localize the XML element name displayed in the task flow form through this resource bundle. You can add keys, and use them in the task flow form contents section. The input text label looks as follows:

#{resources.mykeyword}

A copy of the WorkflowLabels.properties resource bundle is available in the sample workflow-110-workflowCustomizations. This sample illustrates in detail how to provide your own customized resource strings for the task detail ADF task flow application.

32.5.5 Case Sensitivity

By default, the human workflow system is case insensitive to user names. All user names are stored in lowercase. However, group names and application role names are always case sensitive. User name case insensitivity can be changed in Oracle Enterprise Manager Fusion Middleware Control Console.

	
Caution:

Only change this setting after performing a new installation. Changing this value on an installation that is actively processing instances, or has many instances in the database, causes serious issues.

To change case sensitivity:

	
Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

	
In the navigator, expand the SOA folder.

	
Right-click soa-infra, and select Administration > System Mbean Browser.

The System MBean Browser displays on the right side of the page.

	
Expand Application Defined MBeans > oracle.as.soainfra.config > Server: server_name > WorkflowIdentityConfig > human-workflow > WorkflowIdentityConfig.PropertyType.

	
Click caseSensitive.

	
Click the Operations tab.

	
Click setValue.

	
In the Value field, enter true, and click Invoke.

If you are upgrading from 10.1.3, which by default was case sensitive, set caseSensitive to true for the system to be the same as with 10.1.3.

32.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

This section describes how human workflow clients integrate with Oracle WebLogic Server services.

32.6.1 Human Workflow Services Clients

Human workflow services expose the following workflow services:

	
Task service

	
Task query service

	
User metadata service

	
Task evidence service

	
Task metadata service

	
Runtime config service

	
Task report service

To use any of these services, you must use the abstract factory pattern for workflow services. The abstract factory pattern provides a way to encapsulate a group of individual factories that have a common theme.

Perform the following tasks:

	
Get the IWorkflowServiceClient instance for the specific service type. The WorkflowServiceClientFactory provides a static factory method to get IWorkflowServiceClient according to the service type.

	
Use the IWorkflowServiceClient instance to get the service instance to use.

There are three supported service types:

	
Local

	
Remote

	
SOAP

Local and remote clients use Enterprise JavaBeans clients (local Enterprise JavaBeans and remote Enterprise JavaBeans, accordingly). SOAP uses SOAP clients. Each type of service requires you to configure workflow clients. Example 32-7 provides details.

Example 32-7 Client Configuration File

<workflowServicesClientConfiguration>
<server name="default" default="true">
 <localClient>
 <participateInClientTransaction>false</participateInClientTransaction>
 </localClient>
 <remoteClient>
 <serverURL>t3://myhost.us.oracle.com:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient>
 <soapClient>
 <rootEndPointURL>http://myhost.us.oracle.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
</server>
</workflowServicesClientConfiguration>

The client configuration file can contain definitions for several configurations. Each server must have its own unique name. If the configuration file defines multiple servers, one server must be set with the default attribute equal to true. The workflowServicesClientConfiguration has an optional attribute named serverType that can be set to one of the following: LOCAL, REMOTE, or SOAP. Each server can override the client type by using the optional attribute clientType.

Example 32-8 provides details.

Example 32-8 Client Configuration File with Multiple Configuration Definitions

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workflowServicesClientConfiguration
 xmlns="http://xmlns.oracle.com/bpel/services/client" clientType="REMOTE"
 <server name="server1" default="true" clientType="SOAP">
 <localClient>
 <participateInClientTransaction>false</participateInClientTransaction>
 </localClient>
 <remoteClient>
 <serverURL>t3://myhost1.us.oracle.com:7001</serverURL>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory</initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient> -->
 <soapClient>
 <rootEndPointURL>http://myhost1.us.oracle.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
 </server>
 <server name="server2">
 <localClient>
 <participateInClientTransaction>false</participateInClientTransaction>
 </localClient>
 <remoteClient>
 <serverURL>t3://myhost2.us.oracle.com:7001</serverURL>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory</initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient> -->
 <soapClient>
 <rootEndPointURL>http://myhost2us.oracle.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
 </server>
</workflowServicesClientConfiguration>

In Example 32-8, server2 uses the default clientType of REMOTE, while server1 overrides the default clientType value to use the clientType of SOAP. The same rule applies if the JAXB WorkflowServicesClientConfigurationType object is used instead of the wf_client_config.xml file.

If the configuration defines a client type, the factory method from WorkflowServiceClientFactory class can be used. Example 32-9 provides details.

Example 32-9 Factory Method from WorkflowServiceClientFactory Class

public static IWorkflowServiceClient
 getWorkflowServiceClient(WorkflowServicesClientConfigurationType wscc, Logger
 logger) throws WorkflowException

If the map defines a client type with the property CONNECTION_PROPERTY.CLIENT_TYPE, the factory method in Example 32-10 can be used:

Example 32-10 Factory Method for CONNECTION_PROPERTY.CLIENT_TYPE

public static IWorkflowServiceClient getWorkflowServiceClient(Map<CONNECTION_
PROPERTY, String> properties, String serverName, Logger logger) throws
 WorkflowException

32.6.1.1 Task Query Service Client Code

Example 32-11 provides an example of the task query service client code.

Example 32-11 Task Query Service Client Code

/**
 * WFClientSample
 */
package oracle.bpel.services.workflow.samples;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import oracle.bpel.services.workflow.IWorkflowConstants;
import oracle.bpel.services.workflow.WorkflowException;
import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.client.WorkflowServiceClientFactory;
import oracle.bpel.services.workflow.client.IWorkflowServiceClientConstants
 .CONNECTION_PROPERTY;
import oracle.bpel.services.workflow.query.ITaskQueryService;
import oracle.bpel.services.workflow.query.ITaskQueryService.AssignmentFilter;
import oracle.bpel.services.workflow.query.ITaskQueryService.OptionalInfo;
import oracle.bpel.services.workflow.repos.Ordering;
import oracle.bpel.services.workflow.repos.Predicate;
import oracle.bpel.services.workflow.repos.TableConstants;
import oracle.bpel.services.workflow.verification.IWorkflowContext;

public class WFClientSample {

 public static List runClient(String clientType) throws WorkflowException {
 try {

 IWorkflowServiceClient wfSvcClient = null;
 ITaskQueryService taskQuerySvc = null;
 IWorkflowContext wfCtx = null;

 // 1. this step is optional since configuration can be set in wf_client_
 config.xml file
 Map<CONNECTION_PROPERTY, String> properties = new HashMap<CONNECTION_
PROPERTY, String>();
 if (WorkflowServiceClientFactory.REMOTE_CLIENT.equals(clientType)) {
 properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.oracle.com:7001");
 properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS,
 "weblogic");
 properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
 } else if (WorkflowServiceClientFactory.SOAP_CLIENT.equals(clientType)) {
 properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost:7001");
 properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_
PROPAGATION,"non-saml"); // optional
 }
 // 2. gets IWorkflowServiceClient for specified client type
 wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(clientType, properties,
 null);

 // 3. gets ITaskQueryService instance
 taskQuerySvc = wfSvcClient.getTaskQueryService();

 // 4. gets IWorkflowContext instance
 wfCtx = taskQuerySvc.authenticate("jcooper", "welcome1".toCharArray(),
 "jazn.com");

 // 5. creates displayColumns
 List<String> displayColumns = new ArrayList<String>(8);
 displayColumns.add("TASKID");
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("CATEGORY");

 // 6. creates optionalInfo
 List<ITaskQueryService.OptionalInfo> optionalInfo = new
 ArrayList<ITaskQueryService.OptionalInfo>();
 optionalInfo.add(ITaskQueryService.OptionalInfo.DISPLAY_INFO);

 // 7. creates assignmentFilter
 AssignmentFilter assignmentFilter = AssignmentFilter.MY_AND_GROUP;

 // 8. creates predicate
 List<String> stateList = new ArrayList<String>();
 stateList.add(IWorkflowConstants.TASK_STATE_ASSIGNED);
 stateList.add(IWorkflowConstants.TASK_STATE_INFO_REQUESTED);
 Predicate predicate = new Predicate(TableConstants.WFTASK_STATE_COLUMN,
 Predicate.OP_IN, stateList);

 // 9. creates ordering
 Ordering ordering = new Ordering(TableConstants.WFTASK_DUEDATE_COLUMN,
 true, false);
 ordering.addClause(TableConstants.WFTASK_CREATEDDATE_COLUMN, true,
 false);

 // 10. calls service - query tasks
 List taskList = taskQuerySvc.queryTasks(wfCtx,
 (List<String>) displayColumns,
 (List<OptionalInfo>) optionalInfo,
 (AssignmentFilter)
 assignmentFilter,
 (String) null, // keywords is
 optional (see javadoc)
 // optional
 predicate,
 ordering,
 0, // starting row
 100); // ending row for paging, 0
 if no paging

 // Enjoy result
 System.out.println("Successfuly get list of tasks for client type: " +
 clientType +
 ". The list size is " + taskList.size());
 return taskList;
 } catch (WorkflowException e) {
 System.out.println("Error occurred");
 e.printStackTrace();
 throw e;
 }
 }

 public static void main(String args[]) throws Exception {
 runClient(WorkflowServiceClientFactory.REMOTE_CLIENT);
 runClient(WorkflowServiceClientFactory.SOAP_CLIENT);
 }

}

32.6.1.2 Configuration Option

Each type of client is required to have a workflow client configuration. You can set the configuration in the following locations:

	
JAXB object

	
wf_client_config.xml file

	
Property map

The property map is always complementary to the wf_client_config.xml file. The JAXB object or property map can overwrite the configuration attribute. The file is optional. If it cannot be found in the application class path, then the property map is the main source of configuration.

32.6.1.2.1 JAXB Object

You can use the JAXB object to define the client configuration. Example 32-8 shows how to use the WorkflowServiceClientFactory method:

Example 32-12 JAXB Object

public static IWorkflowServiceClient getWorkflowServiceClient(String clientType,
 WorkflowServicesClientConfigurationType wscc,
 Logger logger) throws WorkflowException

32.6.1.2.2 Workflow Client Configuration File - wf_client_config.xml

The client configuration XSD schema is present in the wf_client_config.xsd file.

The server configuration should contain three types of clients:

	
localClient

	
remoteClient

	
soapClient

Oracle recommends that you specify all clients. This is because some services (for example, the identity service) do not have remote and local clients. Therefore, when you use remote clients for other services, the identity service uses the SOAP service.

An example of a client configuration XML file is shown in Example 32-13. The configuration defines a server named default. The XML file must go into the client application's EAR file.

Example 32-13 Client Configuration

<workflowServicesClientConfiguration>
server name="default" default="true">
<localClient>
 <participateInClientTransaction>false</participateInClientTransaction>
</localClient>

<remoteClient>
 <serverURL>t3://myhost.us.oracle.com:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

<soapClient>
 <rootEndPointURL>http://myhost.us.oracle.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
</soapClient>

</server>
</workflowServicesClientConfiguration>

You can define client properties in wf_client_config.xml when WorkflowServicesClientConfigurationType wscc is null.

The WorkflowServiceClientFactory getWorkflowServiceClient() methods always look for wf_client_config.xml in the class path. If this file is found, the client properties are loaded.

All properties defined in either the property map or the JAXB object override values defined in the wf_client_config.xml file.

32.6.1.2.3 Workflow Client Configuration in the Property Map

To specify the connection property dynamically, you can use a java.util.Map to specify the properties. The properties take precedence over definitions in the configuration file. Therefore, the values of the properties overwrite the values defined in wf_client_config.xml. If you do not want to dynamically specify connection details to the server, you can omit the property setting in the map and pass a null value to the factory method. In that case, the configuration wf_client_config.xml is searched for in the client application class path.

The configuration file must be in the class path only if you want to get the configuration from the file. It is optional to have the file if all settings from the specific client type are done through the property map. The JAXB object is also not required to have the file, since all settings are taken from the JAXB object. Example 32-14 provides details.

Example 32-14 Property Map

IWorkflowServiceClient wfSvcClient =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT,
(Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY, String>) null, null);

If you do so, the value from wf_client_config.xml found in the class path is used by the client to access the services. If the file is not found in the class path and you do not provide the setting according to the service type, a workflow exception is thrown. If the properties map is null and the file is not found, an exception is thrown. If the client omits some properties in the map while the file is not found, the service call fails at runtime (the properties are complementary to the file).

You can define client properties by using the WorkflowServiceClientFactory method. Example 32-15 provides details.

Example 32-15 WorkflowServiceClientFactory Method

public static IWorkflowServiceClient getWorkflowServiceClient(String clientType,
 Map<CONNECTION_PROPERTY, String> properties,
 Logger logger) hrows WorkflowException

If the map defines a client type with the property CONNECTION_PROPERTY type, the factory method in Example 32-16 can be used:

Example 32-16 Factory Method for CONNECTION_PROPERTY Type

public static IWorkflowServiceClient getWorkflowServiceClient(Map<CONNECTION_
PROPERTY, String> properties, Logger logger) throws WorkflowException

The IWorkflowServiceClientConstants.CONNECTION_PROPERTY, which can be used in the properties map for setting client properties, is shown in Example 32-17:

Example 32-17 CONNECTION_PROPERTY

public enum CONNECTION_PROPERTY {
 MODE, // not supported , deprecated
 EJB_INITIAL_CONTEXT_FACTORY,
 EJB_PROVIDER_URL,
 EJB_SECURITY_PRINCIPAL,
 EJB_SECURITY_CREDENTIALS,
 // SOAP configuration
 SOAP_END_POINT_ROOT,
 SOAP_IDENTITY_PROPAGATION, // if value is 'saml' then SAML-token
 identity propagation is used
 SOAP_IDENTITY_PROPAGATION_MODE, // "dynamic'
 MANAGEMENT_POLICY_URI, // dafault value is "oracle/log_policy"
 SECURITY_POLICY_URI, // default value is "oracle/wss10_
 saml_token_client_policy"
 // LOCAL and REMOTE EJB option
 TASK_SERVICE_PARTICIPATE_IN_CLIENT_TRANSACTION // default value is
 false
 //(task service EJB starts a new transaction)
 CLIENT_TYPE, DISCOVERY_OF_END_POINT,
 WSS_RECIPIENT_KEY_ALIAS,
 EJB_JNDI_SUFFIX // append to jndi name to used foreign jndi name
 };

	
Note:

If you use the properties map, you do not need to specify IWorkflowServiceClientConstants.CONNECTION_PROPERTY.MODE. This property has been deprecated in this release.

Example 32-18 provides an example for remote Enterprise JavaBeans clients.

Example 32-18 Example for Remote Enterprise JavaBeans Clients

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_
FACTORY,"weblogic.jndi.WLInitialContextFactory");

properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.oracle.com:7001");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS, "weblogic");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, null);

Example 32-19 provides an example for a SOAP client.

Example 32-19 Example for SOAP Client

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT, "http://myhost:7001");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

32.6.1.3 Client Logging

Clients can optionally pass in a java.util.logging.Logger to where the client logs messages. If there is no logger specified, the workflow service client code does not log anything. Example 32-20 shows how to pass a logger to the workflow service clients:

Example 32-20 java.util.logging.Logger

java.util.logging.Logger logger =;

IWorkflowServiceClient client =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT, properties, logger);

32.6.1.4 Configuration Migration Utility

The client configuration schema has changed between release 10.1.3.x and 11g Release 1. To migrate from release 10.1.3.x to 11g Release 1, use the utility shown in Example 32-21.

Example 32-21 Configuration Migration Utility

java -classpath wsclient_extended.jar:bpm-services.jar
 oracle.bpel.services.workflow.client.config.MigrateClientConfiguration
original_file [new_file];

where original_file is a wf_client_config.xml file from 10.1.3.x and new_file is the optional name of the new configuration file. If a new name is not specified, the utility backs up the original configuration file and overwrites the wf_client_config.xml file.

32.6.2 Identity Propagation

This section describes how to propagate identities using Enterprise JavaBeans and SAML-tokens for SOAP clients.

There are performance implications for getting the workflow context for every request. This is also true for identity propagation. If you use identity propagation with SAML-token or Enterprise JavaBeans, authenticate the client by passing null for the user and password, get the workflow context instance, and use another service call with workflow context without identity propagation.

32.6.2.1 Enterprise JavaBeans Identity Propagation

The client application can propagate user identity to services by using Enterprise JavaBeans identity propagation. The client code is responsible for securing the user identity.

32.6.2.1.1 Client Configuration

If you use identity propagation, the client code must omit the element's <userName> and <password> under the <remoteClient> element in the wf_client_config.xml configuration file. In addition, do not populate the following properties into Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,String> properties as you did in Section 32.6.1.2.3, "Workflow Client Configuration in the Property Map."

	
IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL

	
IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS

32.6.2.1.2 Requirements for Client Applications For Identity Propagation

Identity propagation only works if the application is deployed under the Oracle WebLogic Server container and secured with container security or the client is secured with a custom JAAS login module.

End users log in to the client application with the correct user name and password. The users using the client application must be available in the identity store used by the SOA application. As a best practice, configure the client to use the same identity store as the workflow services and Oracle SOA Suite are using. This guarantees that if the user exists on the client side, they also exist on the server side.

For information about configuring the identity store, see Oracle Fusion Middleware Security Guide.

For information about interacting with custom identity stores, visit the following URL:

http://www.oracle.com/technology/products/id_mgmt/opss/index.html

32.6.2.2 SAML Token Identity Propagation for SOAP Client

If you use a SOAP client, you can use the SAML-token identity propagation supported by Oracle web services.

This section assumes the application resides in and is secured by the Oracle WebLogic Server container.

32.6.2.2.1 Client configuration

To enable identity propagation, the client configuration must specify a special propagation mode.

32.6.2.2.2 Identity Propagation Mode Setting Through Properties

If properties are used, then populate the property CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION with the value saml.

	
Dynamic SAML token propagation mode

The SAML token policy is provided dynamically (the default). The property shown in Example 32-22 is optional. If the identity propagation mode is set, you run by default in dynamic mode.

Example 32-22 Identity Propagation Mode Setting Through Properties

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_
IDENTITY_PROPAGATION_MODE , "dynamic");

By default, SAML-token constructs dynamic policy based on the following security policy URI: oracle/wss10_saml_token_client_policy. Logging is not used. To overwrite the default policy URI, the client can add the code shown in Example 32-23.

Example 32-23 Default Policy URI Overwrite

properties.put(CONNECTION_PROPERTY.SECURITY_POLICY_URI "oracle/wss10_saml_
token_client_policy");
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");

Example 32-24 shows the SAML token dynamic client.

Example 32-24 Token Dynamic Client

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost.us.oracle.com:7001");
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");
 //optional
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
properties, null);

The client reference to the policy URI must match the server policy URI. Otherwise, SAML token propagation fails.

32.6.2.2.3 Identity Propagation Mode Setting in Configuration File

In the configuration file, you can define the propagation mode by using the <identityPropagation> element in the <soapClient>, as shown in Example 32-25.

Example 32-25 <identityPropagation> Element

<soapClient>
 <rootEndPointURL>http://myhost.us.oracle.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation> </soapClient>

For more information, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

32.6.2.2.4 Identity Propagation Mode Setting Through the JAXB Object

You can programmatically set the identity propagation mode with the JAXB object.

32.6.2.3 Public Key Alias

You can use the oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_RECIPIENT_KEY_ALIAS property with the workflow client. This property sets the alias for the recipient's public key that is used to encrypt the type outbound message. Use this property to secure workflow services with the public key alias. This property is only relevant when the SOAP client type uses identity propagation.

The client code must add the WSS_RECIPIENT_KEY_ALIAS value to the map if the public key alias is defined. Example 32-26 provides details.

Example 32-26 WSS_RECIPIENT_KEY_ALIAS Property

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost.us.oracle.com:7001");
properties.put(CONNECTION_PROPERTY.WSS_RECIPIENT_KEY_ALIAS,keyAlias);
// where keyAlias is a key alias value
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");
 //optional
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

If the client uses the JAXB WorkflowServicesClientConfigurationType object or the wf_client_config.xml file, an optional element called wssRecipientKeyAlias is added under the identityPropagation element for a SOAP client. Example 32-27 provides details.

Example 32-27 wssRecipientKeyAlias Element

<xsd:complexType name="identityPropagationType">
 <xsd:sequence>
 <xsd:element name="policy-references" type="PolicyReferencesType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="wssRecipientKeyAlias" type="xsd:string" minOccurs="0"
 maxOccurs="1"/> </xsd:sequence>
 <xsd:attribute name="type" type="xsd:string" default="saml"/>
 <xsd:attribute name="mode" type="xsd:string" default="dynamic"/>
 </xsd:complexType>

For more information about how to create and use the public key alias in the credential store, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

32.6.3 Client JAR Files

A client application without identity propagation must have the bpm-services.jar file in its class path. For 11g Release 1, the client class path requires the files shown in Example 32-28.

Example 32-28 Client JAR Files

${bea.home}/wlserver_10.3/server/lib/wlfullclient.jar
${bea.home}/AS11gR1SOA/webservices/wsclient_extended.jar
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.workflow_11.1.1/bpm-services.jar

The wlfullclient.jar file must be generated.

	
Generate the wlfullclient.jar as follows:

cd ${bea.home}/wlserver_10.3/server/lib
java -jar ../../../modules/com.bea.core.jarbuilder_1.3.0.0.jar

32.7 Database Views for Oracle Workflow

This section describes database views that enable queries against the Oracle workflow services schema to receive reports. Table 32-22 lists the reports exposed in Oracle BPM Worklist and the database views corresponding to these reports.

Table 32-22 Report Views

	Existing Worklist Report	Corresponding Database View
	
Unattended Tasks report

	
WFUNATTENDEDTASKS_VIEW

	
Task Cycle Time report

	
WFTASKCYCLETIME_VIEW

	
Task Productivity report

	
WFPRODUCTIVITY_VIEW

	
Task Priority Report

	
WFTASKPRIORITY_VIEW

32.7.1 Unattended Tasks Report View

Table 32-23 describes the WFUNATTENDEDTASKS_VIEW report view.

Table 32-23 Unattended Tasks Report View

	Name	Type
	
TASKIDFoot 1

	
VARCHAR2(64)

	
TASKNAME

	
VARCHAR2(200)

	
TASKNUMBER

	
NUMBER

	
CREATEDDATE

	
DATE

	
EXPIRATIONDATE

	
DATE

	
STATE

	
VARCHAR2(100)

	
PRIORITY

	
NUMBER

	
ASSIGNEEGROUPS

	
VARCHAR2(2000)

Footnote 1 NOT NULL column

For example:

	
Query unattended tasks that have an expiration date of next week, as shown in Example 32-29.

Example 32-29 Query of Unattended Tasks with an Expiration Date of Next Week

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE expirationdate > current_date AND expirationdate < current_date +
 7;

	
Query unattended tasks for mygroup, as shown in Example 32-30.

Example 32-30 Query of Unattended Tasks for mygroup

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE 'mygroup' IN assigneegroups;

	
Query unattended tasks created in the last 30 days, as shown in Example 32-31.

Example 32-31 Query of Unattended Tasks Created in the Last 30 Days

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE createddate > current_date -30;

32.7.2 Task Cycle Time Report View

Table 32-24 describes the WFTASKCYCLETIME_VIEW report view.

Table 32-24 Task Cycle Time Report View

	Name	Type
	
TASKIDFoot 1

	
VARCHAR2(64)

	
TASKNAME

	
VARCHAR2(200)

	
TASKNUMBER

	
NUMBER

	
CREATEDDATE

	
DATE

	
ENDDATE

	
DATE

	
CYCLETIME

	
NUMBER(38)

Footnote 1 NOT NULL column

For example:

	
Compute the average cycle time (task completion time) for completed tasks that were created in the last 30 days, as shown in Example 32-32.

Example 32-32 Average Cycle Time for Completed Tasks Created in the Last 30 Days

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE createddate >
 (current_date - 30);

	
Query the average cycle time for all completed tasks created in the last 30 days and group them by task name, as shown in Example 32-33.

Example 32-33 Average Cycle Time for All Completed Tasks Created in Last 30 days Grouped by Task Name

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE
 createddate > (current_date - 30) GROUP BY taskname;

	
Query the least and most time taken by each task, as shown in Example 32-34.

Example 32-34 least and most time taken by each task

SELECT taskname, min(cycletime), max(cycletime) FROM WFTASKCYCLETIME_VIEW
 GROUP BY taskname;

	
Compute the average cycle time for tasks completed in the last seven days, as shown in Example 32-35.

Example 32-35 Average Cycle Time for Tasks Completed in the Last Seven Days

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE enddate >
 (current_date - 7);

	
Query tasks that took more than seven days to complete, as shown in Example 32-36.

Example 32-36 Tasks Taking More than Seven Days to Complete

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE cycletime
 > ((current_date +7) - current_date) GROUP BY taskname;

32.7.3 Task Productivity Report View

Table 32-25 describes the WFPRODUCTIVITY_VIEW report view.

Table 32-25 Task Productivity Report View

	Name	Type
	
TASKNAME

	
VARCHAR2(200)

	
TASKID

	
VARCHAR2(200)

	
TASKNUMBER

	
NUMBER

	
USERNAME

	
VARCHAR2(200)

	
STATEFoot 1

	
VARCHAR2(100)

	
LASTUPDATEDDATE

	
DATE

Footnote 1 For completed tasks, the state is null. Use decode(outcome, '', 'COMPLETED', outcome) in queries.

For example:

	
Count the number of unique tasks that the user has updated in the last 30 days, as shown in Example 32-37.

Example 32-37 Number of Unique Tasks Updated in the Last 30 Days

SELECT username, count(distinct(taskid)) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -30) GROUP BY username;

	
Count the number of tasks that the user has updated (one task may have been updated multiple times) in the last seven days, as shown in Example 32-38.

Example 32-38 Number of Tasks Updated in the Last 7 Days

SELECT username, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -7) GROUP BY username;

	
Count the number of tasks of each task type on which the user has worked, as shown in Example 32-39.

Example 32-39 Number of Tasks of Each Task Type on Which the User has Worked

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW GROUP
 BY username, taskname;

	
Count the number of tasks of each task type that the user has worked on in the last 100 days, as shown in Example 32-40.

Example 32-40 Number of Tasks of Each Task Type Worked on in the Last 100 Days

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -100) GROUP BY username, taskname;

32.7.4 Task Priority Report View

Table 32-26 describes the WFTASKPRIORITY_VIEW report view.

Table 32-26 Task Priority Report View

	Name	Type
	
TASKIDFoot 1

	
VARCHAR2(64)

	
TASKNAME

	
VARCHAR2(200)

	
TASKNUMBER

	
NUMBER

	
PRIORITY

	
NUMBER

	
OUTCOME

	
VARCHAR2(100)

	
ASSIGNEDDATE

	
DATE

	
UPDATEDDATE

	
DATE

	
UPDATEDBY

	
VARCHAR2(64)

Footnote 1 NOT NULL column

For example:

	
Query the number of tasks updated by each user in each task priority, as shown in Example 32-41.

Example 32-41 Number of Tasks Updated by Each User in Each Task Priority

SELECT updatedby, priority, count(taskid) FROM WFTASKPRIORITY_VIEW GROUP
 BY updatedby, priority;

	
Query task-to-outcome distribution, as shown in Example 32-42.

Example 32-42 Task-to-outcome Distribution

SELECT taskname, decode(outcome, '', 'COMPLETED', outcome), count
 (taskid) FROM WFTASKPRIORITY_VIEW GROUP BY taskname, outcome;

	
Query the number of tasks updated by the given user in each priority, as shown in Example 32-43.

Example 32-43 Number of Tasks Updated by the Given User in Each Priority

SELECT priority, count(taskid) FROM WFTASKPRIORITY_VIEW WHERE
 updatedby='jstein' GROUP BY priority;

33 Integrating Microsoft Excel with a Human Task

This chapter describes how to integrate the enterprise system capabilities of Oracle SOA Suite with Microsoft Excel 2007. This integration enables you to invoke a BPEL process from Microsoft Excel and attach Microsoft Excel workbooks to workflow email notifications. You can configure this integration without having to switch between tools.

This chapter includes the following sections:

	
Section 33.1, "Configuring Your Environment for Invoking a BPEL Process from an Excel Workbook"

	
Section 33.2, "Attaching Excel Workbooks to Human Task Workflow Email Notifications"

33.1 Configuring Your Environment for Invoking a BPEL Process from an Excel Workbook

From an Excel workbook, you can invoke a BPEL process that is deployed in Oracle WebLogic. To perform this task, you install a plug-in of the Application Development Framework Desktop Integration (ADF-DI) on the same host as the Excel document that invokes the BPEL process.

To enable this functionality, do the following:

33.1.1 How to Create an JDeveloper Project of the Type Web Service Data Control

You use the Create Web Service Data Control Wizard to create the project.

To create an Oracle JDeveloper project of the type web service data control:

	
In JDeveloper, from the File menu, select New. The New Gallery dialog appears.

	
In the Categories section, expand Business Tier, then select Data Controls. The corresponding items appear in the Items pane.

	
In the Items pane, select Web Service Data Control and click OK. The Create Web Service Data Control Wizard appears.

	
Follow the instructions in the online Help for this wizard. As you follow these instructions, you are prompted to select the WSDL file and operations to use for this project.

33.1.2 How to Create a Dummy JSF Page

In this task you generate a page definition file. Note that the actual layout generated in the JSF file is not of a concern. Instead, you simply want to generate a page definition file that contains these controls and actions. This page definition is used later in the Excel file.

To create a dummy JSF page:

	
In JDeveloper, from the File menu, select New. The New Gallery dialog appears.

	
In the Categories section, from the Web Tier node, select JSF. The corresponding items appear in the Items pane.

	
In the Items pane, select JSF Page and then click OK. The Create JSF Page dialog appears.

	
Fill in the various fields by following the instructions in the online Help for this dialog.

	
When prompted, drag and drop from the Component Palette the controls and fields you are interested in using in the Excel document.

For an example of how to perform this task, see "Task 3: Create a Valid Page Definition File to Be Used in the Excel Workbook".

33.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project

To add Oracle ADF Desktop Integration to the technology scope of your project, use the Project Properties dialog in JDeveloper.

To add Oracle ADF Desktop Integration to your project:

	
In the Application Navigator, right-click the project to which you want to add the Oracle ADF Desktop Integration module and choose Project Properties from the context menu.

If your application uses the Fusion Web Application (ADF) application template, you select the ViewController project. If your application uses another application template, select the project that corresponds to the web application.

	
In the Project Properties dialog, select Technology Scope to view the list of available technologies.

	
Choose the ADF Desktop Integration and ADF Library Web Application Support project technologies and add them to the Selected Technologies list.

	
Click OK.

33.1.4 What Happens When You Add Desktop Integration to Your JDeveloper Project

When you add the Oracle ADF Desktop Integration module to the technology scope of your project, the following events occur:

	
The project adds the Oracle ADF Desktop Integration runtime library. This library references the following .jar files in its class path:

	
wsclient.jar

	
adf-desktop-integration.jar

	
resourcebundle.jar

	
The project adds an ADF bindings filter (adfBindings).

	
The project's deployment descriptor (web.xml) is modified to include the following entries:

	
A servlet named adfdiRemote

	
Note:

The value for the url-pattern attribute of the servlet-mapping element for adfdiRemote must match the value of the RemoteServletPath workbook property described in Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.

	
A filter named adfdiExcelDownload

	
A MIME mapping for Excel files (.xlsx and .xlsm)

The previous list is not exhaustive. Adding Oracle ADF Desktop Integration to a project makes other changes to web.xml. Note that some entries in web.xml are only added if they do not exist.

When you add ADF Library Web Application Support to the technology scope of your project, the project's web.xml file is modified to include the entries shown in Example 33-1.

Example 33-1 web.xml File Entries

 <filter>
 <filter-name>ADFLibraryFilter</filter-name>
 <filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>ADFLibraryFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <servlet>
 <servlet-name>adflibResources</servlet-name>
 <servlet-class>oracle.adf.library.webapp.ResourceServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>adflibResources</servlet-name>
 <url-pattern>/adflib/*</url-pattern>
 </servlet-mapping>

Make sure that the filter for ADF Library Web Application Support (<filter-name>ADFLibraryFilter</filter-name>) appears below the adfdiExcelDownload filter entries in web.xml as shown in Example 33-2 so that integrated Excel workbooks can be downloaded from the Fusion web application.

Example 33-2 web.xml File Entries

<filter>
<filter-name>adfdiExcelDownload</filter-name>
 <filter-class>oracle.adf.desktopintegration.filter.DIExcelDownloadFilter</filter-c
lass>
</filter>
<filter>
<filter-name>ADFLibraryFilter</filter-name>
<filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>
</filter>
...
<filter-mapping>
<filter-name>adfdiExcelDownload</filter-name>
<url-pattern>*.xlsx</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>adfdiExcelDownload</filter-name>
<url-pattern>*.xlsm</url-pattern>
</filter-mapping>
...
<filter-mapping>
<filter-name>ADFLibraryFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>
</filter-mapping>

For more information about web.xml, see Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.

33.1.5 How to Deploy the Web Application You Created in Step 1

For an example of how to perform this task, see "Task 5: Deploy the ADF Task Flow".

33.1.6 How to Install Microsoft Excel

Install Microsoft Excel by following the appropriate Microsoft documentation.

33.1.7 How to Install the Oracle ADF-Desktop Integration Plug-in

To perform this installation, follow the steps in "Task 4: Prepare the Excel Workbook":

33.1.8 How to Specify the User Interface Controls and Create the Excel Workbook

For instructions see "Task 4: Prepare the Excel Workbook".

33.2 Attaching Excel Workbooks to Human Task Workflow Email Notifications

As an alternative to using the worklist application, you can attach an Excel workbook with task details as part of a Human Task workflow email notification. In this case, the user receives an email about a new task. This email has an Excel workbook attached, and, when the user opens the attachment, she is directed to a login page--similar to that for the worklist application. The Excel workbook includes such task details as task ID, payload, and so on. Buttons correspond to the actions the user can perform, and clicking one of them invokes the corresponding BPEL process.

33.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email Notifications

To enable this functionality, do the following:

	
In Oracle JDeveloper, create an ADF task flow that corresponds to a particular Human Task activity in a BPEL process.

	
Modify the settings in the ADF-DI-enabled Excel sheet to point to the server on which the task flow is deployed, then saves this Excel sheet as part of the .war file packaged for the ADF task flow. The steps for doing these things are covered in "Example: Attaching an Excel Workbook to Email Notifications" . Later, you use the page definition files generated in "How to Create a Dummy JSF Page"

	
Note:

Packaging the Excel workbook with the ADF task flow assumes that there is a one-to-one correspondence between the ADF task flow and the Excel sheet used for a workflow.

	
Enable the ADF task flow project for desktop integration and deploys it to the server.

33.2.2 What Happens During Runtime When You Enable Attachment of Excel Workbooks to Human Task Workflow Email Notifications

Note the following end-user experience during runtime:

	
A user receives an email notification regarding a new task, with the Excel attachment. When the attachment is opened, the user is directed to a login page and prompted to enter username and password. This login page is similar to the login page for worklist application.

	
The Excel workbook loads up with the task details—for example, task identifier, payload. There are buttons corresponding to actions the user can take. Clicking one of these buttons starts the BPEL process in which the task is a step.

Note the following runtime behaviors:

	
The Excel workbook is added as an attachment only when the flag “include task attachments” for the corresponding task is set to true.

	
Before adding the Excel workbook as an attachment, runtime verifies that a digital signature is not enabled for the workflow.

	
When the ADF task flow is deployed to the server, such data as the hostname and port number of the task flow URI is registered in the database.

	
When an email notification is created, runtime retrieves from the database the hostname and port number of the application server and the context root of the task flow application. It uses this information to find the Excel workbook, workflow_name.xls.

33.2.3 Example: Attaching an Excel Workbook to Email Notifications

This section describes how to attach an Excel workbook to email notifications.

33.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities

In this task, you configure the web application to work with Oracle ADF-DI.

	
Create an ADF task flow project based on a Human Task. This creates a data control corresponding to the task, and .xml files corresponding to the task's structure. Figure 33-1 shows JDeveloper with a sample project open.

Figure 33-1 Oracle JDeveloper with a Sample Project Open

[image: This graphic is described in the text.]

	
Add Oracle ADF Desktop Integration to the project by following the instructions in "How to Add Desktop Integration to Your Oracle JDeveloper Project".

Figure 33-2 illustrates the Oracle JDeveloper Project Properties dialog when you are adding Oracle ADF Desktop Integration to your project.

Figure 33-2 Oracle JDeveloper Project Properties Dialog

[image: Description of Figure 33-2 follows]

	
When the technology scopes mentioned in Step 2 are added to the project, verify that the necessary events have occurred:

	
In the Application Navigator, right-click the project.

	
Click Project Properties, then select Libraries and Classpath.

	
Confirm that the entry ADF Desktop Integration Runtime exists and is checked.

	
Select this library and click View.

	
Confirm that the library references wsclient.jar and adf-desktop-integration.jar in its class path.

	
Confirm that the project's deployment descriptor—namely, web.xml—is modified to include the following entries:

	
A servlet named adfdiRemote

	
A filter named adfdiExcelDownload

	
A MIME mapping for Excel files

The previous list is not exhaustive. Adding “ADF Desktop Integration” and “ADF Library Web Application Support” to the project makes other changes to web.xml. Here is a sample snippet of the deployment descriptor:

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
</context-param>
<context-param>
 <description>...</description>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION
 </param-name>
 <param-value>false</param-value>
</context-param>
<context-param>
 <description>Whether the 'Generated by...' comment at the bottom of ADF
 Faces HTML pages should contain version number information.</description>
 <param-name>oracle.adf.view.rich.versionString.HIDDEN</param-name>
 <param-value>false</param-value>
</context-param>
<filter>
 <filter-name>trinidad</filter-name>
 <filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter
 </filter-class>
</filter>
<filter>
 <filter-name>ADFLibraryFilter</filter-name>
 <filter-class>oracle.adf.library.webapp.LibraryFilter
 </filter-class>
</filter>
<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter
 </filter-class>
</filter>
<filter>
 <filter-name>adfdiExcelDownload</filter-name>
 <filter-class>
 oracle.adf.desktopintegration.filter.DIExcelDownloadFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>adfdiRemote</servlet-name>
</filter-mapping>
<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>adfdiRemote</servlet-name>
</filter-mapping>
<filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsx</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsm</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>ADFLibraryFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet>
 <servlet-name>resources</servlet-name>
 <servlet-class>org.apache.myfaces.trinidad.webapp.ResourceServlet</servlet-clas
s>
</servlet>
<servlet>
 <servlet-name>adflibResources</servlet-name>

 <servlet-class>oracle.adf.library.webapp.ResourceServlet</servlet-class>
</servlet>
<servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>oracle.adf.desktopintegration.servlet.DIRemoteServlet</servlet-c
lass>
</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/afr/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>adflibResources</servlet-name>
 <url-pattern>/adflib/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>adfdiRemote</servlet-name>
 <url-pattern>/adfdiRemoteServlet</url-pattern>
</servlet-mapping>
<session-config>
 <session-timeout>35</session-timeout>
</session-config>
<mime-mapping>
 <extension>html</extension>
 <mime-type>text/html</mime-type>
</mime-mapping>
<mime-mapping>
 <extension>txt</extension>
 <mime-type>text/plain</mime-type>
</mime-mapping>
<mime-mapping>
 <extension>xlsx</extension>
 <mime-type>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</m
ime-type>
</mime-mapping>
<mime-mapping>
 <extension>xlsm</extension>
 <mime-type>application/vnd.ms-excel.sheet.macroEnabled.12</mime-type>
</mime-mapping>

	
Add the following <auth-filter> entry to weblogic.xml.

<weblogic-web-app>
 <auth-filter>oracle.bpel.services.workflow.client.worklist.util.FDIFilter
</auth-filter> . .</weblogic-web-app>

	
Click Save All. Right-click the project and click Rebuild. Make sure there are no compilation errors and the build completes successfully.

The web application is now configured to work with Oracle ADF-DI.

33.2.3.2 Task 2: Set up Authentication

This task is required to add Oracle ADF-Desktop Integration to create a web session for an Excel workbook.

	
Add ADF security to your project:

	
From the Application menus, then Secure, then Configure ADF Security.

	
Select ADF Authentication.

	
Click Finish.

	
Create a login page for the application:

	
From the directory ExpenseReportTaskFlow\public_html\ copy the file LoginPage.jsp to the directory project_home\public_html.

	
Refresh the view in Oracle JDeveloper.

	
Verify that the file LoginPage.jsp is visible. It should look like what is illustrated in Figure 33-3.

Figure 33-3 Oracle JDeveloper: Login.jsp File

[image: This graphic is described in the text.]

	
Once you have added ADF security, confirm that the following entries are added to the file web.xml. If some entries are missing, add them manually. Note that form authentication, using the login page created in Step 2, is used.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>allPages</web-resource-name>
 <url-pattern>/</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Administrators</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>adfAuthentication</web-resource-name>
 <url-pattern>/adfAuthentication</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Administrators</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <realm-name>jazn.com</realm-name>
 <form-login-config>
 <form-login-page>/LoginPage.jsp</form-login-page>
 <form-error-page>/LoginPage.jsp</form-error-page>
 </form-login-config>
 </login-config>
 <security-role>
 <role-name>Administrators</role-name>
 </security-role>

Figure 33-4 shows how these entries appear graphically in the Application Deployment Descriptor dialog.

Figure 33-4 Oracle JDeveloper: Application Deployment Descriptor

[image: This graphic is described in the text.]

	
For every logical security role added in web.xml, make a corresponding entry in weblogic.xml as follows:

<weblogic-web-app>
 <auth-filter>oracle.bpel.services.workflow.client.worklist.util.FDIAuthFilter</
auth-filter>
 <security-role-assignment>
 <role-name>Administrators</role-name>
 <principal-name>fmwadmin</principal-name>
 <principal-name>users</principal-name>
 </security-role-assignment>
 .
 .
</weblogic-web-app>

	
Click Save All.

The ADF Task Flow web application is now configured for login capability that can be used by the Excel workbook.

33.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel Workbook

The page definition file ExcelControlsPageDef.xml is used to create the Excel workbook. Perform the following steps:

	
Create a new Java class by following these steps:

	
	
Select Technologies, then select General, then select Simple Files, then select Java Class.

	
Specify details as follows:

Name: TaskRetrievers

Package: (leave it as default)

Extends: oracle.bpel.services.workflow.client.worklist.excel.TasksRetriever (click Browse to select this class)

This creates a new Java class <default-package>.TasksRetriever.

	
Create a data control for this newly created Java class. This data control provides access to an API that retrieves all assigned tasks for a user. Figure 33-5 shows the menu involved in creating the data control.

Figure 33-5 Oracle JDeveloper: Creating a Data Control

[image: This illustration is described in the text.]

	
Verify that the newly created Data Control TasksRetriever is visible in the Data Control palette in the lower portion of the Application Navigator. Figure 33-6 shows the Application Navigator with the Data Control palette expanded.

Figure 33-6 Oracle JDeveloper: Application Navigator with Data Control Palette Expanded

[image: This graphic is described in the text.]

	
Create a new JSF JSP page--namely, ExcelControls.jspx. This generates a page definition that can be used by ADF-DI while authoring the Excel document. Figure 33-7 provides details.

Figure 33-7 Oracle JDeveloper: Creating a JSF JSP Page

[image: Description of Figure 33-7 follows]

	
Drag and drop the task node from the Data Controls palette to ExcelControls.jspx. Select Human Task, then select Complete task with payload. Figure 33-8 illustrates the sequence of menus you use. Click OK on windows that pop up.

Figure 33-8 Oracle JDeveloper: Creating an ADF Read-Only Form

[image: This graphic is described in the text.]

	
Drag and drop one or more task actions to the .jspx file. In this example, as illustrated in Figure 33-9, the actions 'Approve', 'Reject', 'update' and 'Suspend' are added to create the entries in the page definition.

Figure 33-9 Oracle JDeveloper: Configuring the Page Definition File

[image: This graphic is described in the text.]

	
Drag and drop the retrieveTasksForUser() method from the Data Controls palette (expand the node TasksRetriever) to ExcelControls.jspx. For now, click OK on the Edit Action Binding dialog. This creates a binding in ExcelControlsPageDef.xml to extract all assigned tasks for the logged-in user.

	
Drag and drop TaskObject from the Data Control palette to ExcelControls.jspx to create an ADF Read Only Form. Verify that a corresponding <methodIterator> executable and <attributeValues> bindings are created in ExcelControlsPageDef.xml. Figure 33-10 provides details.

Figure 33-10 Oracle JDeveloper: Page Definition File

[image: This graphic is described in the text.]

	
Depending on the number of task details to be exposed in the Excel workbook, drag and drop as many ADF controls as needed. In this example, you expose only as many task details as needed to develop a minimally operational workbook.

	
Create a list binding in ExcelControlsPageDef.xml that can create a list of assigned tasks in the Excel workbook. Add the following entry to the <bindings> element in the page definition.

<list ListOperMode="navigation"
 IterBinding="retrieveTasksForUserIterator" id="retrievedTaskList"
 StaticList="false">
 <AttrNames>
 <Item Value="taskNumber"/>
 </AttrNames>
 </list>

	
Similarly add the following list binding in ExcelControlsPageDef.xml that can be later used to create a list of an updatable table of expense items in the Excel workbook.

<list ListOperMode="navigation" IterBinding="ItemIterator"
 id="expenseItemsList" StaticList="false">
 <AttrNames>
 <Item Value="itemName"/>
 </AttrNames>
 </list>

	
Click Save All. Right-click the project and click Rebuild. Make sure that there are no compilation errors and the build completes successfully.

33.2.3.4 Task 4: Prepare the Excel Workbook

To author the Excel workbook, follow these steps:

	
For information about desktop requirements for running the ADF-DI solution, read Section 3.1 of Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.

	
Configure security for Excel:

	
Open Excel.

	
Click the Microsoft Office button, then click Excel Options.

	
Click the Trust Center tab, then click Trust Center Settings.

	
Click the Macro Settings tab, then click the checkbox labeled Trust Access to the VBA project object model.

	
Click OK.

	
Run the setup tool that comes with the Oracle ADF-DI module. The setup tool is stored in the following folder: JDEV_HOME\jdeveloper\adfdi\bin\excel\client

	
Create a new Excel workbook in the directory project_home\public_html\. Click View, then click Refresh. This displays the Excel workbook in Oracle JDeveloper.

	
Run the conversion command on the Excel workbook. The Oracle ADF-DI module stores the conversion tool, convert-adfdi-excel-solution.exe, in oracle_jdeveloper_home\jdeveloper\adfdi\bin\excel\convert. To convert the Excel workbook, execute the following command: convert-adfdi-excel-solution.exe <workbook.xlsx> -attach.

The Excel workbook is now enabled to use the Oracle ADF-DI framework.

	
Open the Excel workbook and choose a page definition. In this use case, the page definition is expensereporttaskflow_ExcelControlsPageDef. Figure 33-11 provides details.

Figure 33-11 Excel: Page Definition Dialog

[image: Description of Figure 33-11 follows]

	
In the Document Actions pane, select Workbook Properties.

	
Specify ProtectedWebPage: http://application_server:port//workflow/application_name/faces/app/logon. (Note that this URL is protected and triggers form authentication. See Section 33.2.3.2, "Task 2: Set up Authentication.")

Specify WebAppRoot: http://application_server:port//workflow/application_name. Click OK.

Figure 33-12 provides details.

	
See Also:

Section C-2 of Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 33-12 Excel: Setting WebAppRoot

[image: This graphic is described in the text.]

	
From the Document Actions pane, insert ADF Bindings to create the corresponding fields in the Excel workbook. For further details on specific components refer to the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework. For instance, insert binding retrievedTaskList to create a list of values. Figure 33-13 provides details.

Figure 33-13 Excel: Creating s List of Values

[image: This graphic is described in the text.]

	
Insert a methodAction binding to create a button in Excel. Figure 33-14 provides details.

Figure 33-14 Excel: Inserting a methodAction Binding

[image: Description of Figure 33-14 follows]

	
Insert a tree binding to create a ADF Table component. A Table component is an updatable table of records in Excel. For instance, the list binding expenseItemsList is a candidate for a Table component.

	
See Also:

Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework for further information about creating and modifying a Table component.

A completed Excel workbook for an expense report application looks something like what you see in Figure 33-15:

Figure 33-15 Excel Workbook Integrated with Oracle ADF-DI

[image: This graphic is described in the text.]

	
Publish the workbook by following these steps:

	
On the toolbar, click Publish. The Publish Workbook dialog appears.

	
In the File name field, specify the name as workflow_name.xls. The workflow name is the value of the element WorkflowName specified in project_home\adfmsrc\hwtaskflow.xml. In this example, the name of the published Excel workbook is ExpenseReportTask.xls.

	
In Oracle JDeveloper, click View, then click Refresh. Verify that the published workbook is visible under Web Content as illustrated in Figure 33-16.

Figure 33-16 Oracle JDeveloper: Verifying Workbook Under WebContent

[image: This graphic is described in the text.]

	
Click Save All. The ADF Task Flow is now ready for deployment.

33.2.3.5 Task 5: Deploy the ADF Task Flow

To deploy the ADF Task Flow, follow these steps:

	
For the Excel workbook to be sent as an attachment when a task is assigned, you must configure the corresponding task in the SCA Composite:

	
In Oracle JDeveloper, open the SCA composite project that corresponds to the ADF Task Flow.

	
Open the .task file.

	
Verify that the item labeled Send task attachments with email notifications is checked.

	
Deploy the application. To perform a deployment, right-click the SOA Composite, select Deploy, select the composite application name, and then select the application server.

	
Deploy the ADF Task Flow. In the Application Navigator, expand Projects, and select the application. Then select Deploy, then application_TaskFlow (In this example, the application task flow is ExpenseReportTaskFlow), then select the application server. Figure 33-17 shows what the sequence of menus may look like.

Figure 33-17 Oracle JDeveloper: Menu Sequence when Deploying an ADF Task Flow

[image: This graphic is described in the text.]

At this point, the ADF Task Flow is successfully deployed.

33.2.3.6 Task 6: Test the Deployed Application

To test the deployed application, follow these steps:

	
Invoke the deployed SOA composite and verify that the assignee receives the Excel workbook as part of the email notification. Figure 33-18 provides details.

Figure 33-18 Excel Workbook Attached to an Email

[image: Description of Figure 33-18 follows]

	
Note:

To successfully open and execute the workbook, the user's desktop host should have the correct security policy and must run the caspol command to grant trust to the client assemblies hosted on the network share.

	
Open the Excel workbook. You are directed to a login page (This is LoginPage.jsp from Section 33.1.2, "How to Create a Dummy JSF Page.") Enter your security credentials. Figure 33-19 provides details.

Figure 33-19 Desktop-Integrated Excel Workbook: Login Page

[image: Description of Figure 33-19 follows]

	
Examine the workbook to verify the following:

	
All the assigned tasks for the logged-in user are retrieved in the Excel workbook. Figure 33-20 provides details.

Figure 33-20 ADF Desktop-Integrated Excel Workbook with Assigned Tasks

[image: This graphic is described in the text.]

	
You can navigate to the needed task from the list of assigned tasks and update it as required. For instance, as illustrated in Figure 33-21, in the Expense Report application, you can upload new expense items.

Figure 33-21 ADF Desktop-Integrated Excel Workbook Uploading New Items

[image: This graphic is described in the text.]

	
The Status column in the workbook indicates if the upload was successful. Also, you can perform actions on the task by clicking Approve, Reject, Update, or Suspend. Figure 33-22 provides details.

Figure 33-22 ADF Desktop-Integrated Excel Workbook

[image: Description of Figure 33-22 follows]

34 Configuring Task List Portlets

This chapter describes how to configure the task list portlets. This action enables you to review and act upon worklist tasks from an Oracle WebCenter portlet.

This chapter includes the following sections:

	
Section 34.1, "Introduction to Task List Portlets"

	
Section 34.2, "Deploying the Task List Portlet Producer Application to a Portlet Server"

	
Section 34.3, "Creating a Portlet Consumer Application for Embedding the Task List Portlet"

	
Section 34.4, "Passing Worklist Portlet Parameters"

34.1 Introduction to Task List Portlets

The worklist task list is exposed as a JSR-168 Web Services for Remote Portlets (WSRP) portlet and can be embedded in portal applications. This portlet enables you to check the business and personal ToDo tasks assigned to the user and take actions on the tasks. You build a consumer application that can consume the JSR-168 portlet hosted by the task list portlet producer application. Any consumer can consume the portlet after registering with the portlet producer (the Oracle WebLogic Server portlet server). The portlet also supports many customizations through parameters, which are described in Section 34.4, "Passing Worklist Portlet Parameters." Figure 34-1 shows the high level portlet deployment and usage.

Figure 34-1 High Level Portlet Deployment and Usage

[image: Description of Figure 34-1 follows]

34.2 Deploying the Task List Portlet Producer Application to a Portlet Server

This section describes how to deploy and configure the task list portlet producer application on a managed portlet server.

34.2.1 Deployment Prerequisites

This section describes deployment prerequisites for the task list portlet producer application.

	
Since the task list portlet is a WSRP portlet producer application, it must be deployed on a managed server configured for deploying portlet producer applications. For this to occur, you must install Oracle WebCenter.

	
Oracle WebCenter and Oracle SOA Suite must be installed in different domains.

	
If the task list portlet producer application is installed on the SOA server, you can skip the steps described in Section 34.2.3, "How to Connect the Task List Producer to the Remote SOA Server."

	
The task list portlet producer application is deployed on the Oracle WebLogic Server portlet server shown in Figure 34-1 (the host on which Oracle WebCenter is installed). The portlet server contacts the remote Oracle WebLogic Server SOA server to access the task list using remote EJB calls. The portlet producer application EAR file is provided on the SOA server in the following directory:

Oracle_Home/SOA_Home/soa/applications

(for example, /fmwhome/AS11gR1SOA/soa/applications)

	
The shared library oracle.soa.workflow.wc must be targeted to the Oracle WebLogic Server portlet managed server. See Section 34.2.2, "How to Deploy the Task List Portlet Producer Application" for instructions.

34.2.2 How to Deploy the Task List Portlet Producer Application

To deploy the task list portlet producer application:

	
Install Oracle WebCenter as described in Oracle Fusion Middleware Installation Guide for Oracle WebCenter.

	
For this administration domain, start both the Oracle WebLogic Administration Server and the Oracle WebLogic Server portlet managed server. See Oracle Fusion Middleware Administrator's Guide for instructions on starting administration and managed servers.

	
Because the task list portlet producer application uses the deployed library oracle.soa.workflow.wc, you must confirm that the library is targeted to the Oracle WebLogic Server portlet managed server.

	
Log in to Oracle WebLogic Server Administration Console.

http://hostname:port/console

where hostname and port are the hostname and port for the Oracle WebLogic Server Administration Console.

	
Go to Deployments > oracle.soa.workflow.wc >Targets.

	
See if WLS_Portlet is checked. If not, check it and save your updates.

	
Deploy the TaskListTaskFlow.ear file on the Oracle WebLogic Server portlet managed server.

	
In the Domain Structure section, click Deployments.

	
In the Deployment section, click Install.

	
Navigate to and select to install TaskListTaskFlow.ear as an application. For example:

/Oracle_Home/SOA_Home/soa/applications/TaskListTaskFlow.ear

	
Ensure that the WSRP producer application is running by accessing the WSDL from a web browser:

http://server:port/TaskListTaskFlow/portlets/wsrp2?WSDL

34.2.3 How to Connect the Task List Producer to the Remote SOA Server

The task list portlet producer application communicates with the remote Oracle WebLogic Server SOA managed server to get the task list for the logged-in user. See Figure 34-1 for details. The task list portlet producer application uses remote EJB calls to the human workflow services API to achieve this. Therefore, you must configure the remote JNDI providers on the Oracle WebLogic Server on which Oracle WebCenter is installed.

34.2.3.1 How to Define the Foreign JNDI on the Oracle WebCenter Oracle WebLogic Server

To define the foreign JNDI on the Oracle WebCenter Oracle WebLogic Server:

	
Log in to Oracle WebLogic Server Administration Console:

http://remote_hostname:remote_port/console

where remote_hostname and remote_port are the hostname and port for the remote Oracle WebCenter Oracle WebLogic Server.

	
Navigate to Domain Structure > Services > Foreign JNDI Providers.

	
Click New.

	
In the Name field, enter ForeignJNDIProvider-SOA.

	
Click OK.

	
Click the ForeignJNDIProvider-SOA link.

The Settings for ForeignJNDIProvider-SOA page appears.

	
Enter values for the fields listed in Table 34-1, then click Save.

Table 34-1 Parameters and Values

	Field	Description
	
Initial Context Factory

	
Enter weblogic.jndi.WLInitialContextFactory.

	
Provider URL

	
Enter t3://soa_hostname:soa_port/soa-infra.

Note: Replace soa_hostname and soa_port with the hostname and port for the remote Oracle WebLogic Server SOA server that includes the task list to retrieve.

	
User

	
Enter weblogic.

	
Password

	
Enter the password for the user.

	
Confirm Password

	
Enter the same password again.

	
Click ForeignJNDIProvider-SOA.

	
Click the Links tab.

	
Under Foreign JNDI Links, click New.

The Create a Foreign JNDI Link page appears.

	
Enter values for the fields listed in Table 34-2, and click OK.

Table 34-2 Parameters and Values

	Field	Values
	
Name

	
Enter RuntimeConfigService.

	
Local JNDI Name

	
Enter RuntimeConfigService.

	
Remote JNDI Name

	
Enter RuntimeConfigService.

	
Repeat Step 11 six times and enter the values shown in Table 34-3 for the Name, Local JNDI Name, and Remote JNDI Name fields.

Table 34-3 Parameters and Values

	The...	Enter This Value in the Name, Local JNDI Name, and Remote JNDI Name Fields, and click OK...
	
First time

	
ejb/bpel/services/workflow/TaskServiceBean

	
Second time

	
ejb/bpel/services/workflow/TaskMetadataServiceBean

	
Third time

	
TaskReportServiceBean

	
Fourth time

	
TaskEvidenceServiceBean

	
Fifth time

	
TaskQueryService

	
Sixth time

	
UserMetadataService

For more information about configuring a foreign JNDI provider, see the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

34.2.3.2 How to Configure EJB Identity Propagation

The task list portlet producer application must be configured so that the already-authenticated user token in the consumer application is passed to the producer-managed server and then to the remote SOA server. This can be achieved by enabling global trust between the concerned domains. For more information about enabling cross domain security between Oracle WebLogic Server domains, see Oracle Fusion Middleware Securing Oracle WebLogic Server.

To configure EJB identity propagation:

	
To enable the global trust, log in to the Oracle WebLogic Server Administration Console of the Oracle WebCenter Oracle WebLogic Server.

	
On the left side of the page, select the domain name that you specified during installation (for example, soainfra).

	
Select Security, and expand the Advanced section.

	
Modify the domain credentials.

	
Log in to the Oracle WebLogic Server Administration Console of the SOA server Oracle WebLogic Server.

	
Modify the domain credentials of the SOA server and enter the same password as entered for the Oracle WebCenter server in Step 4.

	
Click Save.

34.2.3.3 How to Configure the Identity Store

You must configure the authenticator of the Oracle WebCenter Oracle WebLogic Server domain to point to the same identity provider used by the SOA server.

Note that either the user name used to log in to the consumer application must be present in the identity stores of the portlet server and SOA server or all three servers must point to the same identity store. The three impacted servers are as follows:

	
The Oracle SOA Suite managed server

	
The Oracle WebCenter managed server on which the task list portlet producer application is deployed

	
The server on which the portlet consumer application is deployed

The user first logs in to the consumer application. Therefore, the user must be present in the identity store of this server. Then, when the consumer application contacts the task list portlet producer application, it must propagate the user name to the Oracle WebCenter managed server. The same user name must also be present in the identity store of this server. Then, to fetch the Oracle SOA Suite data, the task list portlet producer application contacts the Oracle SOA Suite managed server. Therefore, it must again propagate the user name to the SOA server. Again, the same user name must be present in the identity store of the Oracle SOA Suite server. Alternatively, all the above servers can point to the same identity store.

To configure the identity store:

	
Log in to the Oracle WebLogic Server Administration Console of the Oracle WebCenter Oracle WebLogic Server.

	
See Section "Reassociating the Identity Store with an External LDAP" of Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter for instructions on configuring the identity store.

	
Follow these instructions for all three servers.

34.2.4 How to Secure the Task List Portlet Producer Application Using Web Services Security

You must perform the following tasks to secure the task list portlet producer application:

	
Enable WS-Security for the task list portlet producer application

	
Set up the certificate keystores

	
Note:

Ensure that you copy the producer.jks file to a location in your file system that is running the task list portlet producer application. For the following example, the keystore is copied under domain_home/config/fmwconfig.

To secure the task list portlet producer application using web services security:

	
See Sections "Securing a WSRP Producer with WS-Security" and "Securing Oracle WebLogic Communication Services (OWLCS) with WS-Security" of Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter for instructions on enabling WS-Security and setting up the certificate keystores.

While following the instructions in those sections, you access the following pages in Oracle Enterprise Manager Fusion Middleware Control Console.

	
In the navigator on the left side, select Farm_base_domain > WebLogic Domain.

where base_domain is the domain name for this example.

	
Right-click base_domain and select Security > Security Provider Configuration.

	
Access the Keystore section at the bottom of the provider configuration page and click Configure, as shown in Figure 34-2.

Figure 34-2 Keystore Section

[image: Description of Figure 34-2 follows]

	
Enter details for keystore management and identity certificates, as shown in Figure 34-3. Section "Securing a WSRP Producer with WS-Security" of Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter provides specific details.

Figure 34-3 Keystore Configuration

[image: Description of Figure 34-3 follows]

	
When complete, click OK.

	
Restart the managed portlet server and the administration server for the managed portlet server.

34.2.5 How to Specify the Inbound Security Policy

You now specify the inbound security policy. This section assumes that the keystore configuration steps described in Section 34.2.4, "How to Secure the Task List Portlet Producer Application Using Web Services Security" have been completed.

To specify the inbound security policy:

	
In Oracle Enterprise Manager Fusion Middleware Control Console under Application Deployments, navigate to the portlet producer application node.

	
Click Application Deployments > TaskListTaskFlow (WLS_Portlet).

	
Select menu > Application Deployments > Web Services.

	
Select the markup port from the page that is displayed, as shown in Figure 34-4.

Figure 34-4 Markup Port Selection

[image: Description of Figure 34-4 follows]

	
On the page that is displayed, click the Policies tab.

	
Click the Attach/Detach button.

	
Attach and detach policies appropriate to your use of the task list portlets producer application, as shown in Figure 34-5.

Figure 34-5 Policy Attachment and Detachment

[image: Description of Figure 34-5 follows]

	
Once complete, click OK in each open page.

	
Restart the managed server to which the task list portlet producer application is deployed.

34.3 Creating a Portlet Consumer Application for Embedding the Task List Portlet

You now create a portlet consumer application for embedding the task list portlet, as shown in Figure 34-1.

Ensure that you have already deployed and configured the task list portlet producer application as described in Section 34.2, "Deploying the Task List Portlet Producer Application to a Portlet Server" and verified that it is running. Note that the portlet consumer application can only be deployed on a managed server that has Oracle WebCenter installed.

34.3.1 How To Create a Portlet Consumer Application for Embedding the Task List Portlet

Follow these procedures to create a consumer application for embedding the task list portlet.

To create a portlet consumer application for embedding the task list portlet:

	
Create a new Oracle WebCenter application in Oracle JDeveloper:

	
From the File main menu, select New > Application.

	
Select WebCenter Application, and click OK.

	
In the Application Name field, enter a name (for this example, TaskListConsumer is entered).

	
Click Finish.

	
Add a new JSPX page to the application consumer.jspx.

	
Register the WSRP producer with the consumer by dragging and dropping the portlet on consumer.jspx:

	
In the Application Navigator, right-click View Controller and select New.

	
Click Portlets under web tier.

	
Select WSRP Producer Registration in the right hand pane, as shown in Figure 34-6.

Figure 34-6 WSRP Producer Registration

[image: Description of Figure 34-6 follows]

	
Click OK.

A Register WSRP Portlet Producer wizard is displayed.

	
Click Next on the Welcome page.

	
Check the Application Resources button.

	
Provide a producer registration name, as shown in Figure 34-7.

Figure 34-7 Producer Name

[image: Description of Figure 34-7 follows]

	
Click Next.

	
Provide the following URL endpoint:

http://server:port/TaskListTaskFlow/portlets/wsrp2?WSDL

where server is the host on which the portal service is installed and port is the port on that server.

	
Enter proxy details appropriate to your environment.

Figure 34-8 provides details.

Figure 34-8 URL Endpoint

[image: Description of Figure 34-8 follows]

	
Click Next.

	
Specify the execution timeout, as shown in Figure 34-9. Oracle recommends that you specify a large value, such as 300 seconds. This reduces the chance of timeout exceptions occurring during runtime.

Figure 34-9 Execution Timeout

[image: Description of Figure 34-9 follows]

	
Click Next.

The Configure Security Attributes page appears.

	
From the Token Profile list, select a token profile appropriate to your environment. For example, select the SAML Token with Message Integrity token profile. The token profile selected must be the same as that selected when you configured WS-Security on the task list portlet producer application, as described in Section "Securing a WSRP Producer with WS-Security" of Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.

	
For the Configuration option, select Custom.

	
Specify the default user as fmwadmin and the issuer name as www.oracle.com, as shown in Figure 34-10.

Figure 34-10 Security Attribute Configuration

[image: Description of Figure 34-10 follows]

	
Copy consumer.jks to your local directory.

	
Click the Browse button to select the consumer keystore (consumer.jks file) you used for configuring web service security for the producer application in Section 34.2.4, "How to Secure the Task List Portlet Producer Application Using Web Services Security."

	
Complete the remaining fields.

Figure 34-11 provides details.

Figure 34-11 Key Store Specification

[image: Description of Figure 34-11 follows]

	
Click Finish.

The registered portlets appear under Application Resources.

	
Select the token profile based on the requirements of your application, as shown in Figure 34-12.

Figure 34-12 Token Profile Selection

[image: Description of Figure 34-12 follows]

	
Drag the task list portlet named Worklist onto the JSPX page consumer.jspx, as shown in Figure 34-13.

Figure 34-13 consumer.jspx

[image: Description of Figure 34-13 follows]

	
Specify the height and width for the task list portlet suitable for your page, as shown in Figure 34-14. This dialog typically appears at the bottom right when you select the portlet component that is dragged onto the page. If this dialog does not appear, select Property Inspector from the View main menu.

Figure 34-14 Height and Width Specifications for the Portlet

[image: Description of Figure 34-14 follows]

	
Right-click consumer.jspx in the designer and select Go to Page Definition, as shown in Figure 34-15.

Figure 34-15 Page Definition Selection

[image: Description of Figure 34-15 follows]

This takes you to consumerPageDef.xml.

	
Provide values for the parameters described in Table 34-4. See Section 34.4, "Passing Worklist Portlet Parameters" for additional details.

Table 34-4 Parameters and Values

	Parameter	Description of Value
	
soaURL

Used when the SOA server and the portlet server are different. The task details for the ToDo task require this URL.

	

<variable Name="Worklist1_1_soaURL" Type="java.lang.Object"
DefaultValue="${'http://soa_host:soa_port')"/>

	
refreshURL

The complete URL of the page, including the task list portlet.

	

<variable Name="Worklist1_1_refreshURL" Type="java.lang.Object"
DefaultValue="${'http://soa_host:soa_port/HWTFConsumer/faces)

Figure 34-16 provides details.

Figure 34-16 consumerPageDef.xml

[image: Description of Figure 34-16 follows]

	
Secure the Oracle WebCenter consumer application using ADF security by following the steps provided in chapter "Enabling ADF Security in a Fusion Web Application" of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework (section "How to Enable Oracle ADF Security").

	
Configure the identity store of the embedded Oracle WebLogic Server of Oracle JDeveloper to point to that of the SOA server. You can do this by following the steps described in Section 34.2.3.3, "How to Configure the Identity Store."

	
Run the consumer.jspx consumer application page:

	
Right-click the consumer.jspx page.

	
Select Run.

This starts the embedded Oracle WebLogic Server instance, deploys the consumer application, and shows the portlet in the consumer.jspx page.

34.4 Passing Worklist Portlet Parameters

The task list portlet can accept certain parameters in the consumerPageDef.xml file. The consumer application for the task list region can do the following:

	
Pass some parameters to the producer application

	
Control the display behavior of the embedded region

	
Pass parameters to filter the task list, such as a list of task types and a task attributes value list

Table 34-5 shows the display parameters.

Table 34-5 Display Parameters

	Parameters	Description	Values	Mandatory
	
displayColumnsList

	
A comma separated string of the columns to be displayed in the task list table.

	
Possible values:

	
title

	
number

	
priority

	
assignees

	
state

	
createdDate

	
expirationDate

See Section 34.4.2, "Example of File Containing All Column Constants" for an example.

	
No

	
localeSource

	
Specifies whether to take language settings from the web browser or the identity settings.

	
Possible values:

	
identity (default)

	
browser

	
No

	
refreshURL

	
The complete URL of the page, including the task list portlet.

This is a mandatory parameter if showTaskDetailsPanel is set to true.

The task details in the task list region are shown in an inline frame. Therefore, if any action is taken on the task details page, it tries to refresh the task listing area. To do that, it refreshes the page URL in which the taskflow/portlet is contained. Since the taskflow does not know the URL of the container page, this URL must be passed as a parameter. If showTaskDetailsPanel is passed as false, this parameter is not required. You can get it by calling the getRequestURL() method on the HttpServletRequest/PortletRequest object.

	
Enter a value appropriate to your environment. See Section 34.4.2, "Example of File Containing All Column Constants" for an example.

	
Yes

	
showActionDropDown

	
Specifies whether to display the Actions list on the toolbar.

	
Possible values:

	
true (default)

	
false

	
No

	
showAssignmentFilter

	
Specifies whether to display the Assignment Filter Selection dropdown list in the toolbar.

	
Possible values:

	
true (default)

	
false

	
No

	
showSearchControl

	
Specifies whether to display the Quick Search text field.

	
Possible values:

	
true (default)

	
false

	
No

	
showStatusFilter

	
Specifies whether to display the Task Status Filter Selection dropdown list in the toolbar.

	
Possible values:

	
true (default)

	
false

	
No

	
showTaskDetailsPanel

	
Specifies whether to display the task details panel.

	
Possible values:

	
true

	
false (default)

	
No

	
showViewFilter

	
Specifies whether to display the View selection dropdown list in the toolbar.

	
Possible values:

	
true (default)

	
false

	
No

	
showViewsPanel

	
Specifies whether to display the View selection panel.

	
Possible values:

	
true

	
false (default)

	
No

	
soaURL

	
Used where the SOA server and the portlet server are different.

This is a mandatory parameter if showTaskDetailsPanel is set to true.

The task details for the ToDo task require this URL. This is because the ToDo task is an internal application and does not know the URL of the SOA server when accessed from an application deployed on a remote non-SOA Oracle WebLogic Server. The format is as follows:

http://soa_host:soa_port

	
Enter a value appropriate to your environment. See Section 34.4.2, "Example of File Containing All Column Constants" for an example.

	
Yes

	
sortColumn

	
The name of the column to use for sorting tasks by default in the region.

	
The default value is createdDate. See Section 34.4.2, "Example of File Containing All Column Constants" for an example.

	
No

	
sortOrder

	
Specifies whether to sort the task list in ascending or descending order.

	
Possible values:

	
asc

	
desc (default)

	
No

	
wfCtxID

	
Specifies the authenticated workflow context token.

	
Enter a value appropriate to your environment. See Section 34.4.2, "Example of File Containing All Column Constants" for an example.

	
No

Table 34-6 shows the filter parameters.

Table 34-6 Filter Parameters

	Parameters	Description	Values	Mandatory
	
assignmentFilter

	
Specifies the type of assignee.

	
See Section 34.4.1, "Assignment Filter Constraints" for examples.

	
No

	
viewFilter

	
Specifies the selected view for which the tasks are displayed.

	
Enter a custom value that you create or accept the default value of Inbox.

	
No

	
taskTypesFilterList

	
A comma-separated list of task type values to display tasks of only the passed-in task types.

	
Enter a value appropriate to your environment.

	
No

	
attributesFilterOperator

	
The join criterion (And/Or) used for searching the specified filter criteria.

	
Possible values:

	
and

	
or (default)

	
No

	
attributesFilterList

	
The specified comma-separated list of name-value pairs used to filter tasks based on attribute values (name is task column name and value is column value).

	
See Section 34.4.2, "Example of File Containing All Column Constants" for an example.

	
No

For example, if you want to see the task with attribute filter values as priority = 1, status = ASSIGNED, and promoted flex field textAttribute1 = NorthAmerica, then you set the values as follows:

attributeFilterList: priority=1, status=ASSIGNED, textAttribute1=NorthAmerica

and set the attribute filter operator as:

attributeFilterOperator: and

The parameters in Table 34-5 and Table 34-6 are defined in the page definition of the test JSPX page. Example 34-1 shows the consumerPageDef.xml page definition file syntax when the task list is consumed as a taskflow. The attribute value has the value of the parameter.

Example 34-1 Parameter Definition

<parameters>
 <parameter id="showViewsPanel" value="#{testBean.showViewsPanel}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="showTaskDetailsPanel"
 value="#{testBean.showTaskDetailsPanel}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="wfCtxID" value="#{testBean.wfCtxID}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="soaHostName" value="#{testBean.soaHostName}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="soaPort" value="#{testBean.soaPort}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="refreshURL" value="#{testBean.refreshURL}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="localeSource" value="#{testBean.localeSource}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="showActionDropdown" value="#{testBean.showActionDropdown}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="showViewFilter" value="#{testBean.showViewFilter}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="showAssignmentFilter"
 value="#{testBean.showAssignmentFilter}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="showStatusFilter" value="#{testBean.showStatusFilter}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="showSearchControl" value="#{testBean.showSearchControl}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="assignmentFilter" value="#{testBean.assignmentFilter}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="viewFilter" value="#{testBean.viewFilter}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="displayColumnsList" value="#{testBean.displayColumnsList}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="sortColumn" value="#{testBean.sortColumn}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="sortOrder" value="#{testBean.sortOrder}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="taskTypesFilterList"
 value="#{testBean.taskTypesFilterList}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="attributesFilterOperator"
 value="#{testBean.attributesFilterOperator}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="attributesFilterList"
 value="#{testBean.attributesFilterList}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>

Example 34-2 shows the page definition code example in consumerPageDef.xml in which the task list is consumed as a portlet. The attribute DefaultValue has the value of the parameter.

Example 34-2 Task List is Consumed as a Portlet

<variableIterator id="variables">
 <variable Name="Worklist1_1_soaURL" Type="java.lang.Object"
 DefaultValue="${'http://<soa_host>:<soa_port>'}" />
 </variableIterator>

34.4.1 Assignment Filter Constraints

The following list shows the available assignment filter constraints.

	
My

	
Group

	
My+Group

	
Reportees

	
Creator

	
Owner

	
Reviewer

	
Previous

	
Admin

34.4.2 Example of File Containing All Column Constants

Example 34-3 shows a file example that contains all column constants that can be passed in the displayColumnList parameter. The constant value must be passed. For example, for TITLE_COLUMN = "title", the “title” must be passed, not the TITLE_COLUMN.

Example 34-3 All Column Constants That Can Be Passed in the displayColumnList parameter.

package oracle.bpel.services.workflow.repos.table;

public interface WFTaskConstants
{
 public static final String TABLE_NAME = "WFTask";
 public static final String TL_TABLE_NAME = "WFTask_TL";
 public static final String HISTORY_TABLE_NAME = "WFTaskHistory";
 public static final String HISTORY_TL_TABLE_NAME = "WFTaskHistory_TL";
 public static final String ASSIGNEE_TABLE_NAME = "WFAssignee";
 public static final String REVIEWER_TABLE_NAME = "WFReviewer";

 public static final String WFCOMMENT_TABLE_NAME = "WFComments";
 public static final String WFATTRIBUTES_TABLE_NAME = "WFMessageAttribute";
 public static final String WFATTACHMENT_TABLE_NAME = "WFAttachment";
 public static final String WFCOLLECTIONTARGET_TABLE_NAME = "WFCollectionTarget";

//table aliases
 public static final String TABLE_ALIAS = "wfn";
 public static final String TL_TABLE_ALIAS = "wfntl";
 public static final String HISTORY_TABLE_ALIAS = "wfnh";
 public static final String HISTORY_TL_TABLE_ALIAS = "wfnhtl";
 public static final String WFCOMMENT_TABLE_ALIAS = "wfc";
 public static final String WFATTRIBUTES_TABLE_ALIAS = "wfma";
 public static final String WFATTACHMENT_TABLE_ALIAS = "wfatt";
 public static final String ASSIGNEE_TABLE_ALIAS = "wfa";
 public static final String REVIEWER_TABLE_ALIAS = "wfr";
 public static final String WFCOLLECTIONTARGET_TABLE_ALIAS = "wfct";

 //task table column
 public static final String ACCESSKEY_COLUMN = "accessKey";
 public static final String APPROVALDURATION_COLUMN = "approvalDuration";
 public static final String ACQUIREDBY_COLUMN = "acquiredBy";
 public static final String ASSIGNEDDATE_COLUMN = "assignedDate";
 public static final String APPROVERS_COLUMN = "approvers";
 public static final String ASSIGNEES_COLUMN = "assignees";
 public static final String ASSIGNEESDISPLAYNAME_COLUMN = "assigneesDisplayName";
 public static final String REVIEWERS_COLUMN = "reviewers";
 public static final String REVIEWERSDISPLAYNAME_COLUMN = "reviewersDisplayName";
 public static final String ASSIGNEEGROUPS_COLUMN = "assigneeGroups";
 public static final String ASSIGNEEGROUPSDISPLAYNAME_COLUMN =
 "assigneeGroupsDisplayName";
 public static final String ASSIGNEEUSERS_COLUMN = "assigneeUsers";
 public static final String ASSIGNEEUSERSDISPLAYNAME_COLUMN =
 "assigneeUsersDisplayName";
 public static final String OUTCOME_COLUMN = "outcome";
 public static final String PARALLELOUTCOMECOUNT_COLUMN = "parallelOutcomeCount";
 public static final String PUSHBACKSEQUENCE_COLUMN = "pushbackSequence";
 public static final String CREATEDDATE_COLUMN = "createdDate";
 public static final String ELAPSEDTIME_COLUMN = "elapsedTime";

 public static final String DIGITALSIGNATUREREQUIRED_COLUMN =
 "digitalSignatureRequired";
 public static final String PASSWORDREQUIREDONUPDATE_COLUMN =
 "passwordRequiredOnUpdate";
 public static final String SECURENOTIFICATION_COLUMN = "secureNotifications";
 public static final String ENDDATE_COLUMN = "endDate";
 public static final String EXPIRATIONDATE_COLUMN = "expirationDate";
 public static final String EXPIRATIONDURATION_COLUMN = "expirationDuration";
 public static final String IDENTITYCONTEXT_COLUMN = "identityContext";
 public static final String FROMUSER_COLUMN = "fromUser";
 public static final String FROMUSERDSIPLAYNAME_COLUMN = "fromUserDisplayName";
 public static final String HASSUBTASK_COLUMN = "hasSubtask";
 public static final String INSHORTHISTORY_COLUMN = "inShortHistory";
 public static final String ISGROUP_COLUMN = "isGroup";
 public static final String LANGUAGE_COLUMN = "language";
 public static final String MAILSTATUS_COLUMN = "mailStatus";
 public static final String MOREINFOROLE_COLUMN = "moreInfoRole";
 public static final String NUMBEROFTIMESMODIFIED_COLUMN =
 "numberOfTimesModified";
 public static final String ORIGINALASSIGNEEUSER_COLUMN = "originalAssigneeUser";
 public static final String REQUESTINFOUSER_COLUMN = "requestInfoUser";
 public static final String STATE_COLUMN = "State";
 public static final String SUBSTATE_COLUMN = "SubState";
 public static final String SYSTEMSTRING1_COLUMN = "systemString1";
 public static final String SYSTEMSTRING2_COLUMN = "systemString2";
 public static final String SYSTEMSTRING3_COLUMN = "SystemString3";
 public static final String TASKGROUPID_COLUMN = "taskGroupId";
 public static final String TASKID_COLUMN = "taskId";
 public static final String VERSION_COLUMN = "version";
 public static final String TASKNUMBER_COLUMN = "taskNumber";
 public static final String UPDATEDBY_COLUMN = "updatedBy";

 public static final String UPDATEDBYDISPLAYNAME_COLUMN = "updatedByDisplayName";
 public static final String UPDATEDDATE_COLUMN = "updatedDate";
 public static final String UPDATEDNOTIFICATIONID_COLUMN =
 "updatedNotificationId";
 public static final String VERSIONREASON_COLUMN = "versionReason";
 public static final String WORKFLOWPATTERN_COLUMN = "workflowPattern";
 public static final String CALLBACKCONTEXT_COLUMN = "callbackContext";
 public static final String CALLBACKID_COLUMN = "callbackId";
 public static final String CALLBACKTYPE_COLUMN = "callbackType";
 public static final String CREATOR_COLUMN = "creator";
 public static final String OWNERUSER_COLUMN = "ownerUser";
 public static final String OWNERGROUP_COLUMN = "ownerGroup";
 public static final String OWNERROLE_COLUMN = "ownerRole";
 public static final String PRIORITY_COLUMN = "priority";
 public static final String DOMAINID_COLUMN = "domainId";
 public static final String INSTANCEID_COLUMN = "instanceId";
 public static final String PROCESSID_COLUMN = "processId";
 public static final String PROCESSNAME_COLUMN = "processName";
 public static final String PROCESSTYPE_COLUMN = "processType";
 public static final String PROCESSVERSION_COLUMN = "processVersion";
 public static final String TITLE_COLUMN = "title";
 public static final String TITLERESOURCEKEY_COLUMN = "titleResourceKey";
 public static final String IDENTIFICATIONKEY_COLUMN = "identificationKey";
 public static final String USERCOMMENT_COLUMN = "userComment";
 public static final String WORKFLOWDESCRIPTORURI_COLUMN =
 "workflowDescriptorURI";
 public static final String TASKDEFINITIONID_COLUMN = "taskDefinitionId";
 public static final String TASKDEFINITIONNAME_COLUMN = "taskDefinitionName";

 // start columns added for AS11
 public static final String APPLICATIONCONTEXT_COLUMN = "applicationContext";
 public static final String APPLICATIONNAME_COLUMN = "applicationName";
 public static final String ASSIGNEETYPE_COLUMN = "assigneeType";
 public static final String CATEGORY_COLUMN = "category";
 public static final String COMPONENTNAME_COLUMN = "componentName";
 public static final String COMPOSITEDN_COLUMN = "compositeDN";
 public static final String COMPOSITEINSTANCEID_COLUMN = "compositeInstanceId";
 public static final String COMPOSITENAME_COLUMN = "compositeName";
 public static final String COMPOSITEVERSION_COLUMN = "compositeVersion";
 public static final String CONVERSATIONID_COLUMN = "conversationId";
 public static final String DUEDATE_COLUMN = "dueDate";
 public static final String ECID_COLUMN = "ecId";
 public static final String ISPUBLIC_COLUMN = "isPublic";
 public static final String ISTESTTASK_COLUMN = "isTestTask";
 public static final String PARENTCOMPONENTINSTANCEID_COLUMN =
 "parentComponentInstanceId";
 public static final String PARENTCOMPONENTINSTANCEREFID_COLUMN =
 "parentComponentInstRefId";
 public static final String INVOKEDCOMPONENT_COLUMN = "invokedComponent";
 public static final String PARTICIPANTNAME_COLUMN = "participantName";
 public static final String PERCENTAGECOMPLETE_COLUMN = "percentageComplete";
 public static final String READBYUSERS_COLUMN = "readByUsers";
 public static final String STARTDATE_COLUMN = "startDate";
 public static final String PARENTTASKVERSION_COLUMN = "parentTaskVersion";
 public static final String TASKGROUPINSTANCEID_COLUMN = "taskGroupInstanceId";
 public static final String SUBTASKGROUPINSTANCEID_COLUMN =
 "subTaskGroupInstanceId";
 public static final String AG_ROOTID_COLUMN = "agRootId";
 public static final String AG_MILESTONE_PATH_COLUMN = "agMileStonePath";
 public static final String ROOTTASKID_COLUMN = "rootTaskId";
 public static final String PARENTTASKID_COLUMN = "parentTaskId";
 public static final String SYSTEMSTRINGACTIONS_COLUMN = "systemStringActions";
 public static final String SUBCATEGORY_COLUMN = "subCategory";
 public static final String CORRELATIONID_COLUMN = "correlationId";
 public static final String TASKDISPLAYURL_COLUMN = "taskDisplayUrl";
 public static final String STAGE_COLUMN = "stage";
 public static final String ASSIGNMENTCONTEXT_COLUMN = "assignmentContext";
 public static final String PREACTIONUSERSTEPS_COLUMN = "preActionUserSteps";
 public static final String AGGREGATIONTASKID_COLUMN = "aggregationTaskId";
 public static final String MDSLABEL_COLUMN = "mdsLabel";
 public static final String ISTEMPLATETASK_COLUMN = "isTemplateTask";

 /* Columns for instance locator service */
 public static final String COMPONENTTYPE_COLUMN = "componentType";
 public static final String ACTIVTYNAME_COLUMN = "activityName";
 public static final String ACTIVTYID_COLUMN = "activityId";
 public static final String PROCESSDUEDATE_COLUMN = "processDueDate";
 public static final String THREAD_COLUMN = "thread";
 public static final String PARENTTHREAD_COLUMN = "parentThread";
 public static final String STEP_COLUMN = "step";

 public static final String TASKNAMESPACE_COLUMN = "taskNamespace";
 // SERVERNAME_COLUMN is pseudo column, it does not exist in the table,
 // colunm can be used for sorting on client side by FederatedTaskQuerySerive in
 Ordering
 public static final String SERVERNAME_COLUMN = "serverName";
 // end columns added for AS11

 public static final String TEXTATTRIBUTE1_COLUMN = "textAttribute1";
 public static final String TEXTATTRIBUTE2_COLUMN = "textAttribute2";
 public static final String TEXTATTRIBUTE3_COLUMN = "textAttribute3";
 public static final String TEXTATTRIBUTE4_COLUMN = "textAttribute4";
 public static final String TEXTATTRIBUTE5_COLUMN = "textAttribute5";
 public static final String TEXTATTRIBUTE6_COLUMN = "textAttribute6";
 public static final String TEXTATTRIBUTE7_COLUMN = "textAttribute7";
 public static final String TEXTATTRIBUTE8_COLUMN = "textAttribute8";
 public static final String TEXTATTRIBUTE9_COLUMN = "textAttribute9";
 public static final String TEXTATTRIBUTE10_COLUMN = "textAttribute10";
 public static final String FORMATTRIBUTE1_COLUMN = "formAttribute1";
 public static final String FORMATTRIBUTE2_COLUMN = "formAttribute2";
 public static final String FORMATTRIBUTE3_COLUMN = "formAttribute3";
 public static final String FORMATTRIBUTE4_COLUMN = "formAttribute4";
 public static final String FORMATTRIBUTE5_COLUMN = "formAttribute5";
 public static final String URLATTRIBUTE1_COLUMN ="urlAttribute1";
 public static final String URLATTRIBUTE2_COLUMN ="urlAttribute2";
 public static final String URLATTRIBUTE3_COLUMN ="urlAttribute3";
 public static final String URLATTRIBUTE4_COLUMN ="urlAttribute4";
 public static final String URLATTRIBUTE5_COLUMN ="urlAttribute5";
 public static final String DATEATTRIBUTE1_COLUMN ="dateAttribute1";
 public static final String DATEATTRIBUTE2_COLUMN ="dateAttribute2";
 public static final String DATEATTRIBUTE3_COLUMN ="dateAttribute3";
 public static final String DATEATTRIBUTE4_COLUMN ="dateAttribute4";
 public static final String DATEATTRIBUTE5_COLUMN ="dateAttribute5";
 public static final String NUMBERATTRIBUTE1_COLUMN ="numberAttribute1";
 public static final String NUMBERATTRIBUTE2_COLUMN ="numberAttribute2";
 public static final String NUMBERATTRIBUTE3_COLUMN ="numberAttribute3";
 public static final String NUMBERATTRIBUTE4_COLUMN ="numberAttribute4";
 public static final String NUMBERATTRIBUTE5_COLUMN ="numberAttribute5";
 public static final String PROTECTEDTEXTATTRIBUTE1_COLUMN =
 "protectedTextAttribute1";
 public static final String PROTECTEDTEXTATTRIBUTE2_COLUMN =
 "protectedTextAttribute2";
 public static final String PROTECTEDTEXTATTRIBUTE3_COLUMN =
 "protectedTextAttribute3";
 public static final String PROTECTEDTEXTATTRIBUTE4_COLUMN =
 "protectedTextAttribute4";
 public static final String PROTECTEDTEXTATTRIBUTE5_COLUMN =
 "protectedTextAttribute5";
 public static final String PROTECTEDTEXTATTRIBUTE6_COLUMN =
 "protectedTextAttribute6";
 public static final String PROTECTEDTEXTATTRIBUTE7_COLUMN =
 "protectedTextAttribute7";
 public static final String PROTECTEDTEXTATTRIBUTE8_COLUMN =
 "protectedTextAttribute8";
 public static final String PROTECTEDTEXTATTRIBUTE9_COLUMN =
 "protectedTextAttribute9";
 public static final String PROTECTEDTEXTATTRIBUTE10_COLUMN =
 "protectedTextAttribute10";
 public static final String PROTECTEDFORMATTRIBUTE1_COLUMN =
 "protectedFormAttribute1";
 public static final String PROTECTEDFORMATTRIBUTE2_COLUMN =
 "protectedFormAttribute2";
 public static final String PROTECTEDFORMATTRIBUTE3_COLUMN =
 "protectedFormAttribute3";
 public static final String PROTECTEDFORMATTRIBUTE4_COLUMN =
 "protectedFormAttribute4";
 public static final String PROTECTEDFORMATTRIBUTE5_COLUMN =
 "protectedFormAttribute5";
 public static final String PROTECTEDURLATTRIBUTE1_COLUMN =
 "protectedUrlAttribute1";
 public static final String PROTECTEDURLATTRIBUTE2_COLUMN =
 "protectedUrlAttribute2";
 public static final String PROTECTEDURLATTRIBUTE3_COLUMN =
 "protectedUrlAttribute3";
 public static final String PROTECTEDURLATTRIBUTE4_COLUMN
 ="protectedUrlAttribute4";
 public static final String PROTECTEDURLATTRIBUTE5_COLUMN
 ="protectedUrlAttribute5";
 public static final String PROTECTEDDATEATTRIBUTE1_COLUMN
 ="protectedDateAttribute1";
 public static final String PROTECTEDDATEATTRIBUTE2_COLUMN
 ="protectedDateAttribute2";
 public static final String PROTECTEDDATEATTRIBUTE3_COLUMN
 ="protectedDateAttribute3";
 public static final String PROTECTEDDATEATTRIBUTE4_COLUMN
 ="protectedDateAttribute4";
 public static final String PROTECTEDDATEATTRIBUTE5_COLUMN
 ="protectedDateAttribute5";
 public static final String PROTECTEDNUMBERATTRIBUTE1_COLUMN
 ="protectedNumberAttribute1";
 public static final String PROTECTEDNUMBERATTRIBUTE2_COLUMN
 ="protectedNumberAttribute2";
 public static final String PROTECTEDNUMBERATTRIBUTE3_COLUMN
 ="protectedNumberAttribute3";
 public static final String PROTECTEDNUMBERATTRIBUTE4_COLUMN
 ="protectedNumberAttribute4";
 public static final String PROTECTEDNUMBERATTRIBUTE5_COLUMN
 ="protectedNumberAttribute5";

 /*
 * Flexfield columns added for AS11
 */
 public static final String TEXTATTRIBUTE11_COLUMN = "textAttribute11";
 public static final String TEXTATTRIBUTE12_COLUMN = "textAttribute12";
 public static final String TEXTATTRIBUTE13_COLUMN = "textAttribute13";
 public static final String TEXTATTRIBUTE14_COLUMN = "textAttribute14";
 public static final String TEXTATTRIBUTE15_COLUMN = "textAttribute15";
 public static final String TEXTATTRIBUTE16_COLUMN = "textAttribute16";
 public static final String TEXTATTRIBUTE17_COLUMN = "textAttribute17";
 public static final String TEXTATTRIBUTE18_COLUMN = "textAttribute18";
 public static final String TEXTATTRIBUTE19_COLUMN = "textAttribute19";
 public static final String TEXTATTRIBUTE20_COLUMN = "textAttribute20";
 public static final String FORMATTRIBUTE6_COLUMN = "formAttribute6";
 public static final String FORMATTRIBUTE7_COLUMN = "formAttribute7";
 public static final String FORMATTRIBUTE8_COLUMN = "formAttribute8";
 public static final String FORMATTRIBUTE9_COLUMN = "formAttribute9";
 public static final String FORMATTRIBUTE10_COLUMN = "formAttribute10";
 public static final String URLATTRIBUTE6_COLUMN ="urlAttribute6";
 public static final String URLATTRIBUTE7_COLUMN ="urlAttribute7";
 public static final String URLATTRIBUTE8_COLUMN ="urlAttribute8";
 public static final String URLATTRIBUTE9_COLUMN ="urlAttribute9";
 public static final String URLATTRIBUTE10_COLUMN ="urlAttribute10";
 public static final String DATEATTRIBUTE6_COLUMN ="dateAttribute6";
 public static final String DATEATTRIBUTE7_COLUMN ="dateAttribute7";
 public static final String DATEATTRIBUTE8_COLUMN ="dateAttribute8";
 public static final String DATEATTRIBUTE9_COLUMN ="dateAttribute9";
 public static final String DATEATTRIBUTE10_COLUMN ="dateAttribute10";
 public static final String NUMBERATTRIBUTE6_COLUMN ="numberAttribute6";
 public static final String NUMBERATTRIBUTE7_COLUMN ="numberAttribute7";
 public static final String NUMBERATTRIBUTE8_COLUMN ="numberAttribute8";
 public static final String NUMBERATTRIBUTE9_COLUMN ="numberAttribute9";
 public static final String NUMBERATTRIBUTE10_COLUMN ="numberAttribute10";
 public static final String PROTECTEDTEXTATTRIBUTE11_COLUMN =
 "protectedTextAttribute11";
 public static final String PROTECTEDTEXTATTRIBUTE12_COLUMN =
 "protectedTextAttribute12";
 public static final String PROTECTEDTEXTATTRIBUTE13_COLUMN =
 "protectedTextAttribute13";
 public static final String PROTECTEDTEXTATTRIBUTE14_COLUMN =
 "protectedTextAttribute14";
 public static final String PROTECTEDTEXTATTRIBUTE15_COLUMN =
 "protectedTextAttribute15";
 public static final String PROTECTEDTEXTATTRIBUTE16_COLUMN =
 "protectedTextAttribute16";
 public static final String PROTECTEDTEXTATTRIBUTE17_COLUMN =
 "protectedTextAttribute17";
 public static final String PROTECTEDTEXTATTRIBUTE18_COLUMN =
 "protectedTextAttribute18";
 public static final String PROTECTEDTEXTATTRIBUTE19_COLUMN =
 "protectedTextAttribute19";
 public static final String PROTECTEDTEXTATTRIBUTE20_COLUMN =
 "protectedTextAttribute20";
 public static final String PROTECTEDFORMATTRIBUTE6_COLUMN =
 "protectedFormAttribute6";
 public static final String PROTECTEDFORMATTRIBUTE7_COLUMN =
 "protectedFormAttribute7";
 public static final String PROTECTEDFORMATTRIBUTE8_COLUMN =
 "protectedFormAttribute8";
 public static final String PROTECTEDFORMATTRIBUTE9_COLUMN =
 "protectedFormAttribute9";
 public static final String PROTECTEDFORMATTRIBUTE10_COLUMN =
 "protectedFormAttribute10";
 public static final String PROTECTEDURLATTRIBUTE6_COLUMN =
 "protectedUrlAttribute6";
 public static final String PROTECTEDURLATTRIBUTE7_COLUMN =
 "protectedUrlAttribute7";
 public static final String PROTECTEDURLATTRIBUTE8_COLUMN =
 "protectedUrlAttribute8";
 public static final String PROTECTEDURLATTRIBUTE9_COLUMN =
 "protectedUrlAttribute9";
 public static final String PROTECTEDURLATTRIBUTE10_COLUMN =
 "protectedUrlAttribute10";
 public static final String PROTECTEDDATEATTRIBUTE6_COLUMN =
 "protectedDateAttribute6";
 public static final String PROTECTEDDATEATTRIBUTE7_COLUMN =
 "protectedDateAttribute7";
 public static final String PROTECTEDDATEATTRIBUTE8_COLUMN =
 "protectedDateAttribute8";
 public static final String PROTECTEDDATEATTRIBUTE9_COLUMN =
 "protectedDateAttribute9";
 public static final String PROTECTEDDATEATTRIBUTE10_COLUMN =
 "protectedDateAttribute10";
 public static final String PROTECTEDNUMBERATTRIBUTE6_COLUMN
 ="protectedNumberAttribute6";
 public static final String PROTECTEDNUMBERATTRIBUTE7_COLUMN
 ="protectedNumberAttribute7";
 public static final String PROTECTEDNUMBERATTRIBUTE8_COLUMN
 ="protectedNumberAttribute8";
 public static final String PROTECTEDNUMBERATTRIBUTE9_COLUMN
 ="protectedNumberAttribute9";
 public static final String PROTECTEDNUMBERATTRIBUTE10_COLUMN
 ="protectedNumberAttribute10";

 // TL table related columns

 public static final String LOCALE_COLUMN = "locale";

 //assignee table column
 public static final String ASSIGNEE_ASSIGNEE_COLUMN = "assignee";

 public static final String WFCOMMENT_COMMENTDATE_COLUMN= "commentDate";
 public static final String WFCOMMENT_ACTION_COLUMN= "action";
 public static final String WFCOMMENT_WFCOMMENT_COLUMN= "wfcomment";
 public static final String WFCOMMENT_DISPLAYNAMELANGUAGE_COLUMN=
 "displayNameLanguage";
 public static final String WFCOMMENT_ACL_COLUMN= "acl";

 public static final String MAXVERSION_COLUMN= "maxVersion";
 public static final String WFATTRIBUTES_NAME_COLUMN= "name";
 public static final String WFATTRIBUTES_STORAGETYPE_COLUMN= "storageType";
 public static final String WFATTRIBUTES_ENCODING_COLUMN= "encoding";
 public static final String WFATTRIBUTES_STRINGVALUE_COLUMN= "stringValue";
 public static final String WFATTRIBUTES_NUMBERVALUE_COLUMN= "numberValue";
 public static final String WFATTRIBUTES_DATEVALUE_COLUMN= "dateValue";
 public static final String WFATTRIBUTES_BLOBVALUE_COLUMN= "blobValue";
 public static final String WFATTRIBUTES_ELEMENTSEQ_COLUMN= "elementSeq";

 //attachment columns
 public static final String WFATTACHMENT_ENCODING_COLUMN= "encoding";
 public static final String WFATTACHMENT_URI_COLUMN= "uri";
 public static final String WFATTACHMENT_CONTENT_COLUMN= "content";
 public static final String WFATTACHMENT_NAME_COLUMN= "name";
 public static final String WFATTACHMENT_ACL_COLUMN= "acl";
 //collection target columns
 public static final String WFCOLLECTIONTARGET_ID_COLUMN= "id";
 public static final String WFCOLLECTIONTARGET_XPATH_COLUMN= "xpath";
 public static final String WFCOLLECTIONTARGET_COLLECTIONNAME_COLUMN=
 "collectionName";
 public static final String WFCOLLECTIONTARGET_COLLECTIONNAMESPACE_COLUMN=
 "collectionNamespace";
 public static final String WFCOLLECTIONTARGET_TYPE_COLUMN= "type";
 public static final String WFCOLLECTIONTARGET_TARGETINDEX_COLUMN= "targetIndex";
 public static final String WFCOLLECTIONTARGET_KEYLIST_COLUMN= "keyList";
 public static final String WFCOLLECTIONTARGET_REFERENCEDTASKID_COLUMN=
 "referencedTaskId";
 public static final String WFCOLLECTIONTARGET_TASKAGGREGATIONID_COLUMN=
 "taskAggregationId";
 public static final String WFCOLLECTIONTARGET_ACTION_COLUMN= "action";
 public static final String WFCOLLECTIONTARGET_ACTIONPARAMS_COLUMN=
 "actionParams";

 public static final String ASSIGNEETYPE_SEPARATOR_STRING = ",";

}

Part VI

Using Binding Components

This section describes how to use binding components.

This part contains the following chapters:

	
Chapter 35, "Getting Started with Binding Components"

	
Chapter 36, "Integrating Enterprise JavaBeans with SOA Composite Applications"

	
Chapter 37, "Using the Direct Binding Invocation API"

35 Getting Started with Binding Components

This chapter provides a high-level overview of supported binding component types and technologies that you can integrate in a SOA composite application. This chapter also provides references to documentation that more fully describes these technologies.

This chapter includes the following sections:

	
Section 35.1, "Introduction to Binding Components"

	
Section 35.2, "Introduction to Integrating a Binding Component in a SOA Composite Application"

35.1 Introduction to Binding Components

Binding components establish the connection between a SOA composite application and the external world. There are two types of binding components:

	
Services

Provide the outside world with an entry point to the SOA composite application. The WSDL file of the service advertises its capabilities to external applications. These capabilities are used for contacting the SOA composite application components. The binding connectivity of the service describes the protocols that can communicate with the service (for example, SOAP/HTTP or a JCA adapter).

	
References

Enable messages to be sent from the SOA composite application to external services in the outside world.

Figure 35-1 shows a SOA composite application in which a service (Service1) in the Exposed Services swimlane provides the entry point to the composite and a reference (WriteFile) in the External References swimlane enables messages to be sent to an external service in the outside world.

Figure 35-1 Service and Reference Binding Components

[image: Description of Figure 35-1 follows]

Binding components enable you to integrate the following types of technologies with SOA composite applications:

	
Web services

	
HTTP binding

	
JCA adapters

	
Oracle Business Activity Monitoring (BAM)

	
Oracle B2B

	
ADF-BC services

	
EJB services

	
Direct binding services

These technologies are described in the following sections.

35.1.1 Web Services

This service enables you to integrate with a standards-based web service using SOAP over HTTP. Web services are described in the WSDL file.

Dragging a web service into a swimlane of the SOA Composite Editor invokes the Create Web Service dialog for specifying configuration properties.

For more information, see Section 2.3.2, "How to Add a WSDL for a Web Service."

35.1.1.1 WS-Atomic Transaction Support

The Create Web Service dialog also enables you to configure support for WS-Coordination and WS-Atomic (WS-AT) transactions. WS-AT provides transaction interoperability between Oracle WebLogic Server and other vendors' transaction services. Interoperability is provided at two levels:

	
Exporting transactions from the local Java Transaction API (JTA) environment for a web service request.

	
Importing transactions from a web service request into the local JTA environment. This allows for distributed transaction processing between multiple nodes in the web services environment.

Figure 35-2 shows the support for WS-Atomic transactions at the bottom of the Create Web Service dialog.

Figure 35-2 WS-Atomic Transaction Support in Create Web Service Dialog

[image: Description of Figure 35-2 follows]

Table 35-1 describes the WS-Atomic Transaction fields.

Table 35-1 WS-Atomic Transaction Fields of the Create Web Service Dialog

	Property	Description
	
Transaction Participation

	
Select a value. If you added the web service to the Exposed Services swim lane, this action enables external transaction managers to coordinate resources hosted on Oracle WebLogic Server over WS-AT. If you added the web service to the External References swim lane, this enables Oracle WebLogic Server transactions to coordinate resources hosted in external environments over WS-AT.

	
Never

No transaction context is imported (for services) or exported (for references). This is the default value if you add the web service as a service binding component in the Exposed Services swim lane.

	
Supports

If a transaction exists, a transaction context is imported (for services) or exported (for references). This information is added to the composite.xml file.

	
Mandatory

A transaction context is imported (for services) or exported (for references). This information is added to the composite.xml file. For exports, a web service exception message is thrown if there is no active transaction. For imports, a fault is returned to the client if there is no transaction context in the request.

	
WSDL Driven

This property only displays if you add the web service as a reference binding component in the External References swim lane. This is the default value.

	
Version

	
Displays the WS-AT supported version (1.0, 1,1, 1,2, or default). By default, this list is only enabled if you select Supports or Mandatory from the Transaction Participation list.

When complete, the composite.xml file displays your WS-Atomic transaction selections, as shown in Example 35-1.

Example 35-1 WS-Atomic Transaction Syntax in composite.xml File

 <service name="Service1" ui:wsdlLocation="BPELProcess1.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.interface(BPELProcess1)"
 callbackInterface="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.interface(BPELProcess1Callback)"/>
 <binding.ws port="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.endpoint(Service1/BPELProcess1_pt)">
 <property name="weblogic.wsee.wsat.transaction.flowOption"
 type="xs:string" many="false">SUPPORTS</property>
 <property name="weblogic.wsee.wsat.transaction.version" type="xs:string"
 many="false">WSAT11</property>
 </binding.ws>

If you want to edit your changes, you can right-click the service and select Edit or double-click the service in the SOA Composite Editor.

After deployment, you can modify the transaction participation and version values through the System MBean Browser. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

For more information about WS-Atomic and WS-Coordination, see Oracle Fusion Middleware Concepts Guide for Oracle Infrastructure Web Services and the WS-Atomic and WS-Coordination specifications, which are available at the following URL:

http://www.oasis-open.org

35.1.2 HTTP Binding Service

The HTTP binding service enables you to integrate SOA composite applications with HTTP binding.

You drag the HTTP Binding service from the Component Palette into a swimlane of the SOA Composite Editor to invoke the HTTP Binding Wizard. This enables you to configure HTTP binding as follows:

	
As a service binding component in the Exposed Services swimlane to invoke SOA composite applications through HTTP POST and GET operations

	
As a reference binding component in the External References swimlane to invoke HTTP endpoints through HTTP POST and GET operations

	
Note:

Note the following details about using HTTP binding in a SOA composite application.
	
An outbound HTTP binding reference supports only XML as a response from an external HTTP endpoint. The response should contain the correct XML part name according to outbound expectation.

	
You cannot change the httpBinding property for the HTTP binding component during runtime in Oracle Enterprise Manager Fusion Middleware Control Console.

35.1.2.1 Supported Interactions

Table 35-2 shows the supported verbs, payloads, and operations for the inbound and outbound directions.

Table 35-2 Supported Verbs, Payloads, and Operations

	Direction	Verb	Payload Type	Operation	Supported?
	
Inbound

	
GET

	
URL-encoded

	
One-way

	
Yes

	
Inbound

	
GET

	
URL-encoded

	
Request-response

	
Yes

	
Inbound

	
GET

	
XML

	
One-way

	
No

	
Inbound

	
GET

	
XML

	
Request-response

	
No

	
Inbound

	
POST

	
URL-encoded

	
One-way

	
Yes

	
Inbound

	
POST

	
URL-encoded

	
Request-response

	
Yes

	
Inbound

	
POST

	
XML

	
One-way

	
Yes

	
Inbound

	
POST

	
XML

	
Request-response

	
Yes

	
Outbound

	
GET

	
URL-encoded

	
One-way

	
No

	
Outbound

	
GET

	
URL-encoded

	
Request-response

	
Yes

	
Outbound

	
GET

	
XML

	
One-way

	
No

	
Outbound

	
GET

	
XML

	
Request-response

	
Yes

	
Outbound

	
POST

	
URL-encoded

	
One-way

	
No

	
Outbound

	
POST

	
URL-encoded

	
Request-response

	
Yes

	
Outbound

	
POST

	
XML

	
One-way

	
No

	
Outbound

	
POST

	
XML

	
Request-response

	
Yes

Table 35-3 shows the supported XSD types for the inbound and outbound directions.

Table 35-3 Supported XSDs

	Direction	XSD Type	Supported?
	
Inbound

	
Simple

	
Yes

	
Inbound

	
Complex

	
No

	
Inbound

	
Native

	
No

	
Outbound

	
Simple

	
Yes

	
Outbound

	
Complex

	
No

	
Outbound

	
Native

	
No

The following HTTP headers are not supported in either the inbound or outbound direction (that is, you cannot access HTTP headers in the composite and set them in the composite):

	
User-agent

	
Content-type

	
Content-length

	
Server

	
Server-port

	
Referrer

	
Authorization

	
MIME-Version

	
Location

35.1.2.2 How to Configure the HTTP Binding Service

You invoke the HTTP Binding Wizard to configure HTTP binding. The HTTP Binding Component page of the wizard enables you to specify the operation type, verb, and payload type. Figure 35-3 provides details.

Figure 35-3 Create HTTP Binding Wizard - HTTP Binding Configuration Page

[image: Description of Figure 35-3 follows]

This page of the wizard enables you to select the following operation types for inbound HTTP binding:

	
A one-way operation that sends or receives messages to or from an HTTP endpoint

	
A synchronous request-response operation that sends and receives input and output messages to and from an HTTP endpoint

For HTTP POST request methods, you can select a payload type of either URL-encoded (ampersand-separated name-value pairs) or XML.

For HTTP GET request methods, the payload type is URL-encoded.

For HTTP GET or POST request methods for reference binding components, you are also prompted to specify the endpoint URL. Support for HTTP authentication and secure socket layer (SSL) is also provided.

	
Note:

Secure HTTP (HTTPS) is supported in both the inbound and outbound directions.

During the configuration process with the HTTP Binding Wizard, you have the option of browsing for an existing request message schema or defining your own schema with the links to the right of the URL field on the Messages page. Figure 35-4 provides details.

Figure 35-4 Create HTTP Binding Wizard - Messages Page

[image: Description of Figure 35-4 follows]

If you select to define your own schema, you are prompted to specify the element names, data types, min occurs value, and max occurs value in the Create Schema dialog. Figure 35-5 provides details.

Figure 35-5 Create HTTP Binding Wizard - Create Schema Page

[image: Description of Figure 35-5 follows]

At runtime, the concrete WSDL is generated with an HTTP binding and a SOAP binding; this is because the SOAP endpoint is used to provide HTTP support.

35.1.2.3 How to Enable Basic Authentication

Inbound and outbound HTTP binding supports basic authentication. If you want to enable basic authentication for inbound HTTP binding, you must attach a security policy. Note that inbound HTTP binding can also be used without enabling basic authentication.

	
Right-click the created HTTP binding service in the Exposed Services swimlane and select Configure WS Policies.

	
In the Configure SOA WS Policies dialog, click the Add icon in the Security section.

	
Select the oracle/wss_http_token_service_policy policy, and click OK.

	
In the Configure SOA WS Policies dialog, click OK.

35.1.3 JCA Adapters

JCA adapters enable you to integrate services and references with the following technologies:

	
Databases

	
File systems

	
FTP servers

	
Message systems such as Advanced Queueing (AQ) and Java Messaging Systems (JMS)

	
IBM WebSphere MQ

	
Oracle E-Business Suite

	
TCP/IP sockets

	
Third-party adapters (SAP, PeopleSoft, and others)

Dragging a JCA adapter into a swimlane of the SOA Composite Editor invokes the Adapter Configuration Wizard for specifying configuration properties.

35.1.3.1 AQ Adapter

The AQ adapter enables you to interact with a single consumer or multiconsumer queue.

Oracle Streams AQ provides a flexible mechanism for bidirectional, asynchronous communication between participating applications. Advanced queues are an Oracle database feature, and are therefore scalable and reliable. Multiple queues can also service a single application, partitioning messages in a variety of ways and providing another level of scalability through load balancing.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.2 Database Adapter

The database adapter enables a BPEL process to communicate with Oracle databases or third-party databases through JDBC.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.3 File Adapter

The file adapter enables a BPEL process or Oracle Mediator to exchange (read and write) files on local file systems. The file contents can be in both XML and non-XML data formats.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.4 FTP Adapter

The FTP adapter enables a BPEL process or Oracle Mediator to exchange (read and write) files on remote file systems through use of the file transfer protocol (FTP). The file contents can be in both XML and non-XML data formats.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.5 JMS Adapter

The JMS adapter enables an Oracle BPEL process or Oracle Mediator to interact with a Java Messaging System (JMS).

The JMS architecture uses one client interface to many messaging servers. The JMS model has two messaging domains, point-to-point and publish-subscribe. In the point-to-point domain, messages are exchanged through a queue and each message is delivered to only one receiver. In the publish-subscribe model, messages are sent to a topic and can be read by many subscribed clients.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.6 MQ Adapter

The MQ adapter provides message exchange capabilities between BPEL processes and Oracle Mediator and the WebSphere MQ queuing systems.

Messaging and Queuing Series (MQ Series) is a set of products and standards developed by IBM. MQ Series provides a queuing infrastructure that provides guaranteed message delivery, security, and priority-based messaging.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.7 Oracle Applications Adapter

The Oracle applications adapter provides connectivity to Oracle Applications. The adapter supports all modules of Oracle Applications in Release 12 and Release 11i, including selecting custom integration interface types based on the version of Oracle E-Business Suite.

For more information, see Oracle Fusion Middleware Adapter for Oracle Applications User's Guide.

35.1.3.8 Socket Adapter

The socket adapter enables you to create a client or a server socket, and establish a connection. This adapter enables you to model standard or nonstandard protocols for communication over TCP/IP sockets. The transported data can be text or binary in format.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.9 Third Party Adapter

The third party adapter enables you to integrate third-party adapters such as PeopleSoft, SAP, and others into a SOA composite application. These third-party adapters produce artifacts (WSDLs and JCA files) that can configure a JCA adapter.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.4 Oracle BAM

The Oracle BAM adapter enables you to integrate Java EE applications with Oracle BAM Server to send data.

Dragging an Oracle BAM adapter into a swimlane of the SOA Composite Editor invokes the Adapter Configuration Wizard for specifying configuration properties.

For more information, see Part X, "Using Oracle Business Activity Monitoring" and Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.

35.1.5 Oracle B2B

The Oracle B2B service enables you to browse B2B metadata in the MDS repository and select document definitions.

Oracle B2B is an e-commerce gateway that enables the secure and reliable exchange of transactions between an organization and its external trading partners. Oracle B2B and Oracle SOA Suite are designed for e-commerce business processes that require process orchestration, error mitigation, and data translation and transformation within an infrastructure that addresses the issues of security, compliance, visibility, and management.

Dragging Oracle B2B into a swimlane of the SOA Composite Editor invokes the B2B Configuration Wizard for specifying configuration properties.

For more information, see Oracle Fusion Middleware User's Guide for Oracle B2B.

35.1.6 ADF-BC Services

The ADF-BC service enables you to integrate Oracle Application Development Framework (ADF) applications using service data objects (SDOs) with SOA composite applications.

Dragging an ADF-BC Service into a swimlane of the SOA Composite Editor invokes the Create ADF-BC Service dialog for specifying configuration properties.

For more information about ADF, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework, Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework, Section 6.2, "Delegating XML Data Operations to Data Provider Services" and Section 6.3, "Using Standalone SDO-based Variables."

35.1.7 EJB Services

The EJB service enables Enterprise JavaBeans and SOA composite applications to interact by passing service data object (SDO) parameters (uses a WSDL file to define the interface) or Java interfaces (does not use a WSDL file to define the interface).

SDOs enable you to modify business data regardless of how it is physically accessed. Knowledge is not required about how to access a particular back-end data source to use SDO in a SOA composite application. Consequently, you can use static or dynamic programming styles and obtain connected and disconnected access.

Enterprise JavaBeans are server-side domain objects that fit into a standard component-based architecture for building enterprise applications with Java. These objects become distributed, transactional, and secure components.

Java interfaces eliminate the need for WSDL file definitions. This type of integration provides support with the following objects:

	
Native Java objects

	
Java Architecture for XML Binding (JAXB)

Dragging an EJB service into a swimlane of the SOA Composite Editor invokes the Create EJB Service dialog for specifying configuration properties.

For more information, see Chapter 36, "Integrating Enterprise JavaBeans with SOA Composite Applications."

35.1.8 Direct Binding Services

The direct binding service uses the Direct Binding Invocation API to invoke a SOA composite application in the inbound direction and exchange messages over a remote method invocation (RMI). This option supports the propagation of both identities and transactions across JVMs and uses the T3 optimized path. Both synchronous and asynchronous invocation patterns are supported.

You can also invoke an Oracle Service Bus (OSB) flow or another SOA composite application in the outbound direction.

Dragging a direct binding service into a swimlane of the SOA Composite Editor invokes the Create Direct Binding Service dialog for specifying configuration properties.

For more information about direct binding, see Chapter 37, "Using the Direct Binding Invocation API."

For information about the Direct Binding Invocation API, see Oracle Fusion Middleware Infrastructure Management Java API Reference for Oracle SOA Suite.

For more information about OSB, see Oracle Fusion Middleware Developer's Guide for Oracle Service Bus.

35.2 Introduction to Integrating a Binding Component in a SOA Composite Application

You integrate a binding component with a SOA composite application by dragging it from the Component Palette.

35.2.1 How to Integrate a Binding Component in a SOA Composite Application

	
From the Service Adapters section of the Component Palette, drag a binding component to the appropriate swimlane. The swimlane in which to drag the component is based on the action you want to perform.

	
If you want to provide the outside world with an entry point to the SOA composite application, drag the binding component to the Exposed Services swimlane.

	
If you want to enable messages to be sent from the SOA composite application to external services in the outside world, drag the binding component to the External References swimlane.

Figure 35-6 shows a web service being dragged into the composite. This action invokes a dialog for specifying various configuration properties.

Figure 35-6 Integration of a Web Service Binding Component into a Composite

[image: Description of Figure 35-6 follows]

For more information on adding binding components, see Section 2.3, "Adding Service Binding Components" and Section 2.4, "Adding Reference Binding Components."

35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java Class

If a SOA composite application uses Web service (WS) binding to define an endpoint reference, the composite cannot be invoked from a JSP/Java class. WS binding is defined with the binding.ws port="" location="" tag in the composite.xml file. Example 35-2 provides details.

Example 35-2 WS Binding Definition

<service name="client_ep" ui:wsdlLocation="BPEL.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/Application/Project/
 BPEL#wsdl.interface(BPEL)"/>
 <binding.ws port="http://xmlns.oracle.com/App/BPELProj/
 BPELProcess#wsdl.endpoint(bpel_client_ep/BPELProcess_pt)"/>
 </service>

Instead, use ADF binding. After deployment of the composite with ADF binding, invocation from a JSP/Java class is successful. Example 35-3 provides details.

Example 35-3 ADF Binding Definition

<service name="client_ep" ui:wsdlLocation="BPEL.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/Application/Project/
 BPEL#wsdl.interface(BPEL)"/>
 <binding.adf serviceName="bpel_client" registryName=""/>
 </service>

36 Integrating Enterprise JavaBeans with SOA Composite Applications

This chapter describes how to integrate Enterprise JavaBeans with SOA composite applications. Integration is achieved through use of service data object (SDO) parameters or Java interfaces.

This chapter includes the following sections:

	
Section 36.1, "Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications"

	
Section 36.2, "Designing an SDO-Based Enterprise JavaBeans Application"

	
Section 36.3, "Creating an Enterprise JavaBeans Service in Oracle JDeveloper"

	
Section 36.4, "Designing an SDO-Based Enterprise JavaBeans Client to Invoke Oracle SOA Suite"

	
Section 36.5, "Specifying Enterprise JavaBeans Roles"

	
Section 36.6, "Configuring JNDI Access"

	
Note:

Support is provided for Enterprise JavaBeans 3.0 and Enterprise JavaBeans 2.0 references (that is, when calling Enterprise JavaBeans 2.0 beans). Support is not provided for Enterprise JavaBeans 2.0 services (that is, when being called with Enterprise JavaBeans 2.0 beans).

36.1 Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications

There are two options for integrating Enterprise JavaBeans with SOA composite applications:

	
Through use of SDO-based EJBs (uses a WSDL file to define the interface)

	
Through use of Java interfaces (does not use a WSDL file to define the interface)

This chapter describes both options.

You can also use the spring service component to integrate Java interfaces with SOA composite applications. For information about using the spring service component, see Chapter 49, "Integrating the Spring Framework in SOA Composite Applications."

36.1.1 Integration Through SDO-Based EJBs

SDOs enable you to modify business data regardless of how it is physically accessed. Knowledge is not required about how to access a particular back-end data source to use SDOs in a SOA composite application. Consequently, you can use static or dynamic programming styles and obtain connected and disconnected access.

Enterprise JavaBeans are server-side domain objects that fit into a standard component-based architecture for building enterprise applications with Java. These objects become distributed, transactional, and secure components.

Oracle SOA Suite interfaces are described by the WSDL file. Enterprise JavaBeans interfaces are described by Java interfaces. Invocations between the two are made possible in Oracle SOA Suite by an Enterprise JavaBeans Java interface that corresponds to an Oracle SOA Suite WSDL interface.

Through this interface, Oracle SOA Suite provides support for the following:

	
Invoking Enterprise JavaBeans with SDO parameters through an Enterprise JavaBeans reference binding component. In this scenario, a SOA composite application passes SDO parameters to an external Enterprise JavaBeans application.

	
Invoking an Enterprise JavaBeans service binding component through Enterprise JavaBeans with SDO parameters. In this scenario, an Enterprise JavaBeans application passes SDO parameters into a SOA composite application.

Figure 36-1 provides an overview.

Figure 36-1 SDO and Enterprise JavaBeans Binding Integration

[image: Description of Figure 36-1 follows]

You use the Create EJB Service dialog in Oracle JDeveloper to define this integration, as described in Section 36.3.1, "How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications." This option requires the use of a WSDL file. Once complete, the WSDL interaction is defined in the composite.xml file through the interface.wsdl entry, as shown in Example 36-1.

Example 36-1 WSDL File Definition Through interface.wsdl Entry

<service name="PortfolioService">
 <interface.wsdl
 interface="http://bigbank.com/#wsdl.interface(PortfolioService)" />
 <binding.ejb javaInterface="java.class.ejb.com" serviceId="PortfolioService"
 jarLocation="soaejb.jar"/>

36.1.2 Integration Through Java Interfaces

You can also integrate Enterprise JavaBeans with Oracle SOA Suite through Java interfaces, therefore eliminating the need for WSDL file definitions. This type of integration provides support with the following objects:

	
Native Java objects

	
Java Architecture for XML Binding (JAXB)

Java interfaces differ from SDO interfaces, which are defined in a WSDL file because of the XML-centric nature of service components such as Oracle BPEL Process Manager, Oracle Mediator, and others. No SDO parameters are required when using Java interfaces.

You use the Create EJB Service dialog in Oracle JDeveloper to define this integration, as described in Section 36.3.2, "How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite Applications." This option does not require the use of a WSDL file. Once complete, the interaction is defined in the composite.xml file through the interface.java entry, as shown in Example 36-2.

Example 36-2 Java Interface Definition Through interface.java Entry

<service name="PortfolioService">
 <interface.java interface="com.bigbank.services.MyService" />
 binding.ejb uri="MyJNDI" ejb-version="EJB3"/>

To successfully deploy an SOA composite application using the Java interface, the Java interface class must be in the composite's class loader. This typically means that the class must be in the SCA-INF/classes directory or in a JAR in the SCA-INF/lib directory. However, it can also be an interface from the system class path.

For information about JAXB, see Oracle Fusion Middleware Developer's Guide for Oracle TopLink and Chapter 49, "Integrating the Spring Framework in SOA Composite Applications."

36.2 Designing an SDO-Based Enterprise JavaBeans Application

This section provides a high-level overview of the steps for designing an Enterprise JavaBeans application. For more information, see the following documentation:

	
Oracle Fusion Middleware Programming Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server

	
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Oracle JDeveloper online help table of contents for the following topics:

	
Enterprise JavaBeans

	
SDO for Enterprise JavaBeans/JPA

Access the help by selecting Help > Table of Contents in Oracle JDeveloper.

36.2.1 How to Create SDO Objects Using the SDO Compiler

Select one of the following options for creating SDO objects:

	
EclipseLink is an open source, object-relational mapping package for Java developers. EclipseLink provides a framework for storing Java objects in a relational database or converting Java objects to XML documents.

Use EclipseLink to create SDO objects. For instructions on installing, configuring, and using EclipseLink to create SDO objects, visit the following URL:

http://wiki.eclipse.org/EclipseLink/Installing_and_Configuring_EclipseLink

	
Oracle JDeveloper enables you to create an SDO service interface for JPA entities. While this feature is more tailored for use with the Oracle Application Development Framework (ADF) service binding in a SOA composite application, you can also use this feature with the Enterprise JavaBeans service binding in SOA composite applications. The SDO service interface feature generates the necessary WSDL and XSD files. If you use this feature, you must perform the following tasks to work with the Enterprise JavaBeans service binding:

	
Browse for and select this WSDL file in the SOA Resource Browser dialog, which is accessible from the WSDL URL field of the Create EJB Service dialog (described in Section 36.3, "Creating an Enterprise JavaBeans Service in Oracle JDeveloper").

	
Add the BC4J Service Runtime library to the SOA project. To add this library, double-click the project and select Libraries and Classpath to add the library in the Project Properties dialog. You are now ready to design the logic.

For more information, see the SDO for Enterprise JavaBeans/JPA topic in the Oracle JDeveloper online help (this includes instructions on how create to an SDO service interface).

36.2.2 How to Create a Session Bean and Import the SDO Objects

To create a session bean and import the SDO objects:

	
Create a simple session bean with the Create Session Bean wizard. For details on using this wizard, see the Creating a Session Bean topic in the Oracle JDeveloper online help.

	
Import the SDO objects into your project through the Project Properties dialog.

	
Add logic and necessary import and library files. In particular, you must import the Commonj.sdo.jar file. JAR files can be added in the Libraries and Classpath dialog. This dialog is accessible by double-clicking the project and selecting Libraries and Classpath in the Project Properties dialog. You are now ready to design the logic.

	
Expose the method to the remote interface.

36.2.3 How to Create a Profile and an EAR File

To create a profile and an EAR file:

	
Create an Enterprise JavaBeans JAR profile in the Project Properties dialog.

	
Create an application level EAR file in the Application Properties dialog.

36.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean

An Enterprise JavaBeans bean must define the SDO types. Example 36-3 provides details.

	
Caution:

Where to call define can be nontrivial. You must force the types to be defined before remote method invocation (RMI) marshalling must occur and in the right helper context. The EclipseLink SDO implementation indexes the helper instance with the application name or class loader.When you invoke the Enterprise JavaBeans method, an application name is available to the EclipseLink SDO runtime. The EclipseLink SDO looks up the context using the application name as the key. Ensure that the types are defined when the application name is visible. When an Enterprise JavaBeans static block is initialized, the application name is not created. Therefore, putting the define in the static block does not work if you are using the default application name-based context. One way to get the application name initialized is to allocate more than two instance beans using the weblogic-ejb-jar.xml file.

Example 36-3 Definition of SDO Types

InputStreamReader reader = new InputStreamReader(url.openStream());
StreamSource source = new StreamSource(reader);
List<SDOType> list = ((SDOXSDHelper) XSDHelper.INSTANCE).define(source, null);

The weblogic-ejb-jar.xml file is the descriptor file that must be added in the deployment jar. The weblogic-ejb-jar.xml file is automatically created when you create a session bean. This file must be modified by adding the following entries.

Example 36-4 weblogic-ejb-jar.xml File

<?xml version = '1.0' encoding = 'windows-1252'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar
 http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">

 <weblogic-enterprise-bean>
 <ejb-name>HelloEJB</ejb-name>
 <stateless-session-descriptor>
 <pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>
 </weblogic-enterprise-bean>

 </weblogic-ejb-jar>

Figure 36-2 provides a code example of a session bean with SDO logic defined:

Figure 36-2 Session Bean with Defined SDO Logic

[image: Description of Figure 36-2 follows]

36.2.5 How to Use Web Service Annotations

In order to generate the WSDL file, the Enterprise JavaBeans interface must use the following web service annotations. Use of these annotations is described in JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0. Visit the following URL for details:

http://www.jcp.org/en/jsr/detail?id=224

In addition, only a document/literal WSDL is currently supported by the Enterprise JavaBeans binding layer.

Table 36-1 describes the annotations to use.

Table 36-1 Annotations

	Name	Description
	
@javax.jws.WebResult;

@javax.jws.WebParam;

	
Customize the mapping of an individual parameter to a web service message part and XML element. Both annotations are used to map SDO parameters to the correct XML element from the normalized message payload.

	
@javax.jws.Oneway;

	
Denote a method as a web service one-way operation that has only an input message and no output message. The Enterprise JavaBeans binding component does not expect any reply in this case.

	
@javax.xml.ws.RequestWrapper;

@javax.xml.ws.ResponseWrapper;

	
Tell the Enterprise JavaBeans binding components whether the deserialized object must be unwrapped or whether a wrapper must be created before serialization.

An Enterprise JavaBeans interface can be generated from an existing WSDL or obtained by some other means. If the WSDL does not exist, it can be generated.

	
@javax.xml.ws.WebFault;

	
Map WSDL faults to Java exceptions. This annotation captures the fault element name used when marshalling the JAXB type generated from the global element referenced by the WSDL fault message.

	
@oracle.webservices.PortableWebService

	
Specify the targetNamespace and serviceName used for the WSDL. For example:

@PortableWebService(
targetNamespace = "http://hello.demo.oracle/",
serviceName = "HelloService")

The serviceName is used as the WSDL file name. If it is not specified in the annotations, the SEI class name is used instead.

	
Add appropriate method parameter annotations

	
Add to control how message elements and types are mapped to the WSDL. For example, if your interface is in doc/lit/bare style, add the following annotations to the methods.

@WebMethod
@SOAPBinding(parameterStyle =
SOAPBinding.ParameterStyle.BARE)

	
@SDODatabinding

	
Add to the interface class to use the existing schema instead of a generated one. For example:

@SDODatabinding(schemaLocation = "etc/HelloService.xsd")

Example 36-5 provides an example of an Enterprise JavaBeans interface with annotations.

Example 36-5 Enterprise JavaBeans Interface with Annotations

@Remote
@PortableWebService(targetNamespace = "http://www.example.org/customer-example",
 serviceName = "CustomerSessionEJBService")
@SDODatabinding(schemaLocation = "customer.xsd")
public interface CustomerSessionEJB {
 @WebMethod(operationName="createCustomer")
 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
 CustomerType createCustomer();
 @WebMethod(operationName="addPhoneNumber")
 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
 CustomerType addPhoneNumber(@WebParam(targetNamespace =
 "http://www.example.org/customer-example", partName = "parameters", name =
 "phone-number")PhoneNumber phNumber);
}

36.2.6 How to Deploy the Enterprise JavaBeans EAR File

To deploy the EAR file from Oracle JDeveloper:

	
Select the Application context menu to the right of the application name.

	
Select Deploy and deploy the EAR file to a previously created application server connection.

36.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper

This section describes how to create an Enterprise JavaBeans reference binding component or Enterprise JavaBeans service binding component in Oracle JDeveloper. The Enterprise JavaBeans service enables the Enterprise JavaBeans application to communicate with Oracle SOA Suite and Oracle SOA Suite to communicate with remote Enterprise JavaBeans.

This section describes how to create the following types of integrations:

	
Integration through an SDO interface

	
Integration through a Java interface

36.3.1 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications

You can create the following types of SDO-based Enterprise JavaBeans integration with SOA Composite Applications:

	
Invoke SDO-based Enterprise JavaBeans from a SOA composite application

	
Invoke a SOA composite application from Enterprise JavaBeans using SDO parameters

To integrate SDO-based Enterprise JavaBeans with SOA composite applications:

	
In the SOA Composite Editor, drag the EJB Service icon into the appropriate swimlane, as described in Table 36-2.

Table 36-2 Swimlane for EJB Service

	To Invoke...	Drag the EJB Service to this Swimlane...
	
SDO-based Enterprise JavaBeans from a SOA composite application

	
External References

	
A SOA composite application from Enterprise JavaBeans using SDO parameters

	
Exposed Services

	
In the Interface section, click WSDL.

	
See the step in Table 36-3 based on the swimlane in which you dragged the EJB Service.

Table 36-3 Swimlane Location

	If You Dragged the EJB Service to this Swimlane...	Then Go To...
	
External References

	
3a

	
Exposed Services

	
3b

	
View the Create EJB Service dialog that displays in the External References swimlane, as shown in Figure 36-3.

Figure 36-3 Create EJB Service in External References Swimlane

[image: Description of Figure 36-3 follows]

	
View the Create EJB Service dialog that displays in the Exposed Services swimlane, as shown in Figure 36-3.

Figure 36-4 Create EJB Service in Exposed Services Swimlane

[image: Description of Figure 36-4 follows]

	
Enter values appropriate to your environment. The fields that display differ based on the swimlane in which you dragged the EJB Service icon. Table 36-4 provides details.

Table 36-4 Create EJB Service Dialog

	Field	Value
	
Name

	
Accept the default value or enter a different name.

	
Type

	
Displays the following value:

	
Displays Reference if you dragged this icon into the External References swimlane.

	
Displays Service if you dragged this icon into the Exposed Services swimlane.

	
Interface

	
Select WSDL.

	
JNDI Name

	
Note: This field only displays if you dragged the EJB Service icon into the External References swimlane.

Enter the JNDI name of your Enterprise JavaBeans.

	
Service ID

	
Note: This field only displays if you dragged the EJB Service icon into the Exposed Services swimlane.

Accept the default value or enter a different name. The service ID is used as a token to uniquely identify the composite service entry from the Enterprise JavaBeans application. If multiple versions of the same composite are deployed, only the default version is used when the invocation arrives. Different composites trying to use the same service ID receive an error during deployment.

	
Java Interface

	
Click the Browse icon to invoke the Class Browser dialog for selecting the fully qualified Java class name of the previously created Enterprise JavaBeans interface. This class must exist in the selected JAR file. If a JAR file is not specified, it is assumed that the class is in the /SCA-INF/classes subdirectory of the current project directory.

If you have a new JAR file, you must add it to the project by selecting Project Properties > Libraries and Classpath > Add JAR/Directory from the Application main menu. This action enables the JAR file to display in the Class Browser.

	
WSDL URL

	
Note: Ensure that you have created the annotations for the Enterprise JavaBeans interface before generating the WSDL file, as described in Section 36.2.5, "How to Use Web Service Annotations."

Click the second icon to the right to generate a WSDL file that represents the Enterprise JavaBeans interface.

If you created SDO objects through Oracle JDeveloper, as described in Section 36.2.1, "How to Create SDO Objects Using the SDO Compiler," ensure that you select the WSDL file that was automatically generated with this option.

	
Port Type

	
Select the port type.

	
Callback Port Type

	
Select the callback port type (for asynchronous services).

	
Click OK.

36.3.2 How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite Applications

You can create the following types of Java interface-based Enterprise JavaBeans integration with SOA Composite Applications:

	
Invoke Java interface-based Enterprise JavaBeans from a SOA composite application

	
Invoke a SOA composite application from Enterprise JavaBeans using a Java interface

To integrate Java interface-based Enterprise JavaBeans with SOA composite applications:

	
Drag an EJB Service icon into the appropriate swimlane:

	
To invoke an Enterprise JavaBeans reference binding component from a SOA composite application, drag the icon to the External References swimlane.

	
To invoke a SOA composite application from an Enterprise JavaBeans service binding component, drag the icon to the Exposed Services swimlane.

	
In the Interface section, click Java (if it is not already selected).

	
The Create EJB Service dialog displays the fields shown in Figure 36-4.

Figure 36-5 Create EJB Service for Java Interface

[image: Description of Figure 36-5 follows]

	
Enter the details shown in Table 36-5. The fields are the same regardless of the swimlane in which you dragged the EJB Service icon.

Table 36-5 Create EJB Service Dialog

	Field	Value
	
Name

	
Accept the default value or enter a different name.

	
Type

	
Displays Reference if you dragged this icon into the External References swimlane.

	
Interface

	
Select Java.

	
JNDI Name

	
Enter the JNDI name of your Enterprise JavaBeans.

	
Java Interface

	
Select one of the following options.

	
Click the Browse for Class File icon to invoke the Class Browser dialog for selecting the Java interface. This class must exist in the SCA-INF/classes directory or in a JAR in the SCA-INF/lib directory. However, it can also be an interface from the system class path.

If you have a new JAR file, you must add it to the project by selecting Project Properties > Libraries and Classpath > Add JAR/Directory from the Application main menu. This action enables the JAR file to display in the Class Browser.

	
Click the Generate Java Interface from a WSDL icon to select the WSDL file from which to generate the Java interface. This option is the same as described in Section 36.3.1, "How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications."

	
Click OK.

36.4 Designing an SDO-Based Enterprise JavaBeans Client to Invoke Oracle SOA Suite

To invoke an SDO - Enterprise JavaBeans service from Enterprise JavaBeans, you must use the client library. Follow these guidelines to design an Enterprise JavaBeans client.

	
Look up the SOAServiceInvokerBean from the JNDI tree.

	
Get an instance of SOAServiceFactory and ask the factory to return a proxy for the Enterprise JavaBeans service interface.

	
You can include a client side Enterprise JavaBeans invocation library (fabric-ejbClient.jar or the fabric-runtime.jar file located in the Oracle JDeveloper home directory or Oracle WebLogic Server) in the Enterprise JavaBeans client application. For example, the fabric-runtime.jar file can be located in the JDev_Home\jdeveloper\soa\modules\oracle.soa.fabric_11.1.1 directory.

If the Enterprise JavaBeans application is running in a different JVM than Oracle SOA Suite, the Enterprise JavaBeans application must reference the ejbClient library.

Example 36-6 provides an example.

Example 36-6 Enterprise JavaBeans Client Code

Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, "t3://" + HOSTNAME + ":" + PORT);
 InitialContext ctx = new InitialContext(props);
 SOAServiceInvokerBean invoker =
 (SOAServiceInvokerBean)
 ctx.lookup("SOAServiceInvokerBean#oracle.integration.platform.blocks.sdox.ejb.api.
SOAServiceInvokerBean");

 //-- Create a SOAServiceFactory instance
 SOAServiceFactory serviceFactory = SOAServiceFactory.newInstance(invoker);

 //-- Get a dynamice proxy that is essentially a remote reference
 HelloInterface ejbRemote =
 serviceFactory.createService("MyTestEJBService", HelloInterface.class);

 //-- Invoke methods
 Item item = (Item) DataFactory.INSTANCE.create(Item.class);
 item.setNumber(new BigInteger("32"));
 SayHello sayHello = (SayHello)
 DataFactory.INSTANCE.create(SayHello.class);
 sayHello.setItem(item);

 SayHelloResponse response = ejbRemote.sayHello(sayHello);
 Item reply = response.getResult();

36.5 Specifying Enterprise JavaBeans Roles

To specify role names required to invoke SOA composite applications from any Java EE application, you add the roles names in the Enterprise JavaBeans service configuration. The Enterprise JavaBeans service checks to see if the caller principal has the security role. Example 36-7 provides details.

Example 36-7 Enterprise JavaBeans Roles

<service name="EJBService" ui:wsdlLocation="BPELEJBProcess.wsdl">
 <interface.wsdl
interface="http://xmlns.oracle.com/EJBApplication/EJBProject/BPELEJBProcess#wsdl.int
erface(BPELProcess1)"callbackInterface="http://xmlns.oracle.com/EJBApplication/
EJBProject/BPELEJBProcess#
wsdl.interface(BPELEJBProcessCallback)"/>
<property name="rolesAllowed">Superuser, Admin</property>
 <binding.ejb javaInterface="java.class.ejb.com" serviceId="EJBService"
 jarLocation="soaejb.jar"/>
</service>

36.6 Configuring JNDI Access

This section describes two methods for configuring JNDI access.

36.6.1 How to Create a Foreign JNDI

Follow these guidelines to configure JNDI access.

	
You can configure a foreign JNDI provider to link a foreign JNDI tree to your local server instance and access the object as if it is local. See Oracle Fusion Middleware Programming JNDI for Oracle WebLogic Server.

	
You can also provide JNDI environment variables as the properties for the Enterprise JavaBeans reference, as shown in Example 36-8. An Enterprise JavaBeans binding component enables you to create your own map or use the default EJBBC binding component map. Note that the map property is optional if you use EJBBC. For security reasons, the JNDI security credentials must be stored in a CSF store and be referenced as shown in Example 36-8.

Example 36-8 Environment Variables for Enterprise JavaBeans Reference

<property name=
"java.naming.factory.initial">weblogic.jndi.WLInitialContextFactory</property>
<property name="java.naming.provider.url">t3://host:7001</property>
<property name="oracle.jps.credstore.map">default</property>
<property name="oracle.jps.credstore.key">weblogic</property>

The security credential can also be stored in the credential store framework. For more information, see Oracle Fusion Middleware Security Guide.

36.6.2 How to Create a Custom CSF Map for JNDI Lookup

If you create your own credential store framework (CSF) map instead of using the default Enterprise JavaBeans BC CSF map, you must modify the Domain_Home/config/fmwconfig/system-jazn.data.xml file and add the permission shown in Example 36-9 to the entry for the fabric-runtime.jar permission grant.

Example 36-9 Permission to Add

<class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>>context=SYSTEM,mapName=*,keyName=*</name>
 <actions>*</actions>
</permission>

You must then restart Oracle WebLogic Server.

For more information on CSF, see Oracle Fusion Middleware Security Guide.

37 Using the Direct Binding Invocation API

This chapter describes the Direct Binding Invocation API and how it can invoke SOA composite applications.

This chapter includes the following sections:

	
Section 37.1, "Introduction to Direct Binding"

	
Section 37.2, "Introduction to the Direct Binding Invocation API"

	
Section 37.3, "Invoking a SOA Composite Application with the Invocation API"

	
Section 37.4, "Samples Using the Direct Binding Invocation API"

37.1 Introduction to Direct Binding

A common way to invoke a composite is to use SOAP over HTTP. This is enabled by creating a SOAP service for your composite using web service binding. However, you can also use direct binding, which provides a tighter integration alternative. Direct binding enables Java clients to directly invoke composite services, bypassing the intermediate conversion to XML required with web service binding.

Direct binding provides two types of invocation styles:

	
Inbound direct binding

The direct service binding component allows an external client to send messages using the Direct Binding Invocation API, where the Direct Binding Invocation API takes the JNDI connection parameters and creates a connection object on behalf of the client.

	
Outbound direct binding (or direct reference binding)

The direct reference binding component provides support for sending SOA messages directly to external services over RMI. These external services must implement the SOA invocation API, the same as the direct inbound invocation API.

In the case of direct outbound binding, the connection object is created with the JNDI name of the external service bean configured for the binding.

Direct binding must be associated with the interface.wsdl, providing the interface clause and, optionally, the callbackInterface clause. The associated WSDL must be imported into the composite.

The service binding component also publishes a modified version of the WSDL that advertises the direct binding.

Direct Service Binding Component

A sample configuration using the direct service binding component is shown in Example 37-1.

Example 37-1 Direct Service Binding Component

<service name="direct2">
 <interface.wsdl
interface="http://xmlns.oracle.com/asyncNonConvDocLit#wsdl.interface(asyncNonConvD
ocLit)"
callbackInterface="http://xmlns.oracle.com/asyncNonConvDocLit#wsdl.interface(async
NonConvDocLitCallback)" xmlns:ns="http://xmlns.oracle.com/sca/1.0"/>
 <binding.direct/>
</service>

Direct Reference Binding Component

The direct reference binding component requires the following information to connect to a user-provided SOA invoker:

	
Properties:

A set of properties that defines the DirectConnection for the end service.

	
ConnectionFactory class name:

The ConnectionFactory class must implement the oracle.soa.api.invocation.DirectConnectFactory interface.

	
Address to be used by the external service:

This address value is not processed by the binding component, but is passed on to the service bean during invocation.

	
AddressingVersion (optional):

The default addressing version used is 2005/08.

	
useSSLForCallback:

Use SSL for the callback JNDI connection. If this flag is set to true, then the WSA replyTo header instructs the service to call back at an SSL JNDI port.

A sample configuration is shown in Example 37-2.

Example 37-2 Sample Configuration

<reference name="HelloReference" ui:wsdlLocation="HelloService.wsdl">
 <interface.wsdl
 interface="http://hello.demo.oracle/#wsdl.interface(HelloInterface)"/>
 <binding.direct connection-factory="oracle.soa.api.JNDIDirectConnectionFactory"
 addressingVersion="http://www.w3.org/2005/08/addressing"
 address="soadirect://syncOut"
 useSSLForCallback="false">
 <property
 name="oracle.soa.api.invocation.direct.bean">MyDirectTestServiceBean#directEjb.Tes
tInvoker</property>
 <property
 name="java.naming.factory.initial">weblogic.jndi.WLInitialContextFactory</property
>
 <property name="java.naming.provider.url">t3://@host:@port</property>
 </binding.direct>
</reference>

The direct binding components support both synchronous and asynchronous invocation patterns. Figure 37-1 describes a sample synchronous invocation pattern and Figure 37-2 describes a sample asynchronous invocation pattern.

Figure 37-1 Sample Synchronous Invocation Patterns

[image: Sample Synchronous]

Figure 37-2 Sample Asynchronous Invocation Pattern

[image: Sample Asynchronous]

37.2 Introduction to the Direct Binding Invocation API

The different packages used in the Direct Binding Invocation API are as follows:

	
oracle.soa.management.facade.Locator

The oracle.soa.management.facade.Locator interface exposes a method, createConnection, which returns a direct connection. The Locator exposes the method shown in Example 37-3 for returning the DirectConnection.

Example 37-3 oracle.soa.management.facade.Locator

import java.util.Map;
public interface DirectConnectionFactory {
 DirectConnection createDirectConnection(CompositeDN compositeDN,
 String serviceName) throws Exception;

You can use the LocatorFactory implementation to obtain the DirectConnection, as shown in Example 37-4.

Example 37-4 LocatorFactory Implementation

Hashtable jndiProps = new Hashtable();
jndiProps.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname + "/soa-infra");
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFactory");
jndiProps.put(Context.SECURITY_PRINCIPAL,"weblogic");
jndiProps.put(Context.SECURITY_CREDENTIALS,"welcome1");
jndiProps.put("dedicated.connection","true");
Locator locator = LocatorFactory.createLocator(jndiProps);
CompositeDN compositedn = new CompositeDN(domainName, compositename, version);
String serviceName = "HelloEntry";
return locator.createDirectConnection(compositedn, serviceName);

	
oracle.soa.api.invocation.DirectConnection

The DirectConnection interface is used to invoke a composite service using direct binding.

The DirectConnection.java is shown in Example 37-5.

Example 37-5 DirectConnection.java

import oracle.soa.api.message.Message;
public interface DirectConnection {
 <T> Message<T> request(String operationName, Message<T> message) throws
 InvocationException, FaultException;
 <T> void post(String operationName, Message<T> message) throws
 InvocationException;
 void close();}

	
oracle.soa.api.message.Message

The Message interface encapsulates the data exchanged.

The Message interface.java is shown in Example 37-6.

Example 37-6 Message interface.java

import java.util.List;
import java.util.Map;
import org.w3c.dom.Element;
public interface Message<T> {
 // Instance-tracking property names
 final static String FLOW_ID;
 final static String CONVERSATION_ID;
 final static String PARENT_ID;
 void setPayload(Payload<T> payload);
 Payload<T> getPayload();
 void addAttachment(Attachment attachment);
 List<Attachment> getAttachments();
 void addHeader(Element header);
 void setHeaders(List<Element> headers);
 List<Element> getHeaders();
 void setProperties(Map<String, Object> properties);
 void setProperty(String name, Object value);
 Map<String, Object> getProperties();
 Object getProperty(String name);
}

For more information about the Facades API, see Oracle Fusion Middleware Infrastructure Management Java API Reference for Oracle SOA Suite.

37.2.1 Synchronous Direct Binding Invocation

Direct binding also supports the Synchronous Direct Invocation with the usage of the method:

<T> Message<T> request(String operationName, Message<T> message) throws InvocationException, FaultException

37.2.2 Asynchronous Direct Binding Invocation

Asynchronous invocation relies on the WS-Addressing headers set on the message instance. All headers must adhere to the WS-Addressing specification.

The Direct Binding Invocation API allows the clients to specify the WS-Addressing ReplyTo SOAP header to communicate a destination by which they can receive responses.

	
Note:

The supported addressing version includes:
	
http://www.w3.org/2005/08/addressing

	
http://schemas.xmlsoap.org/ws/2004/08/addressing

	
http://schemas.xmlsoap.org/ws/2003/03/addressing

An example of the WS-Addressing header used for asynchronous invocation is shown in Example 37-7.

Example 37-7 WS-Addressing Header

<wsa:MessageID>D6202742-D9D9-4023-8167-EF0AB81042EC</wsa:MessageID>
 <wsa:ReplyTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:Address>sb://testserver:9001/callback</wsa:Address>
 <wsa:ReferenceParameters>
 <soa:callback xmlns:soa="http://xmlns.oracle.com/soa/direct"
 connection-factory="mytest.MyDirectionConnectionFactory">
 <soa:property name="oracle.soa.api.invocation.direct.bean"
 value="myTest.MyDirectConnectionBean"/>
 <soa:property name="java.naming.provider.url" value="t3://test:8001"/>
 <soa:property name="java.naming.factory.initial"
 value="weblogic.jndi.WLInitialContextFactory"/>
 </soa:callback>
 </wsa:ReferenceParameters>
 </wsa:ReplyTo>

	
Note:

You must qualify the callback and its property elements properly with soa direct namespace.

The direct binding component is responsible for parsing the addressing headers set on the message instance. In this example, there are two headers: wsa:MessageID and wsa:ReplyTo. The service binding component makes the following properties available for the internal SOA components:

	
tracking.conversationId = D6202742-D9D9-4023-8167-EF0AB81042E

	
replyToAddress = sb://testserver:9001/callback

	
replyToReferenceParameter : element of WSA:ReferenceParameters

37.2.3 SOA Direct Address Syntax

The service paths used with the SOA Direct Binding Invocation API follow the SOA direct address pattern:

	
soadirect:/CompositeDN/serviceName, where CompositeDN stands for composite distinguished name

In the SOA direct address, the CompositeDN has the following form:

domainName/compositeName[!compositeVersion[*label]]

37.2.4 SOA Transaction Propagation

Direct binding supports the SOA transaction propagation feature. You can invoke this feature from the client in the following ways:

	
Begin the Java transaction from the client, and after performing all the database operations, do a commit. You should commit the database operations after a successful commit from the client side.

	
Begin the Java transaction from the client side. In case a fault is thrown back during any operation in the SOA composite, then roll back the transaction from the client side. This should roll back all the database operations.

37.3 Invoking a SOA Composite Application with the Invocation API

The Direct Binding component in Oracle JDeveloper, as shown in Figure 37-3, provides support for exchanging SOA messages with SOA over RMI.

Figure 37-3 Direct Binding Option

[image: Direct Binding Option]

Oracle JDeveloper supports creating a direct service binding and a direct reference binding invoking either an Oracle Service Bus or another SOA composite.

	
Note:

For a client to invoke composite services over direct binding, its class path must include both soa-infra-mgmt.jar and oracle-soa-client-api.jar.

For more information about the Direct Binding Invocation API, see Section 37.2, "Introduction to the Direct Binding Invocation API."

37.3.1 How to Create an Inbound Direct Binding Service

You can invoke a SOA composite application using the Direct Binding option in Oracle JDeveloper.

To create an inbound direct binding service:

	
Open Oracle JDeveloper.

	
From the Component Palette, select SOA.

	
From the Service Components list, drag the Direct Binding component into the Exposed Services swimlane. The Create Direct Binding dialog appears.

	
Enter the details shown in Table 37-1.

Table 37-1 Direct Binding Service Dialog Fields and Values

	Field	Value
	
Name

	
Enter a name.

	
Type

	
Select Service from the list.

	
WSDL URL

	
The URL location of the WSDL file. If you have an existing WSDL, then click the Find Existing WSDLs option. Otherwise, click Generate WSDL from schema(s).

	
Port Type

	
The port type of the WSDL file. You must select a port from the list.

	
Callback Port Type

	
The callback port type for asynchronous processes.

	
Reference Binding Details

	

	
Address

	
This field is automatically populated when the WSDL is concrete and it has at least one binding that is direct.

	
Provider URL

	
This field is automatically populated when the WSDL is concrete and it has at least one binding that is direct.

	
copy wsdl and its dependent artifacts into the project

	
Deselect this checkbox. If you select this checkbox, the local copies of the WSDL file may result in synchronization issues if a remote WSDL is updated.

When complete, the Create Direct Binding dialog appears as shown in Figure 37-4.

Figure 37-4 Create Direct Binding Dialog

[image: Create Direct Binding Dialog]

	
Click OK.

The direct binding service displays in the designer shown in Figure 37-5. The single arrow in a circle indicates that this is a synchronous, one-way direct binding service component.

Figure 37-5 Direct Binding Service

[image: Direct Binding Service]

37.3.2 How to Create an Outbound Direct Binding Reference

You can create an outbound direct binding reference, using the Direct Binding option in Oracle JDeveloper, to either invoking a composite application or an Oracle Service Bus.

To create an outbound direct binding reference:

	
Open Oracle JDeveloper.

	
From the Component Palette, select SOA.

	
From the Service Components list, drag the Direct Binding component into the External References swimlane. The Create Direct Binding dialog appears.

	
Enter the details shown in Table 37-2.

Table 37-2 Direct Binding Service Dialog Fields and Values

	Field	Value
	
Name

	
Enter a name.

	
Type

	
Select Reference from the list.

	
Reference Target

	
To use SOA as an external reference target, select Oracle SOA Composite and to use Oracle Service Bus as an external reference target, select Oracle Service Bus.

	
WSDL URL

	
The URL location of the WSDL file. If you have an existing WSDL, then click the Find Existing WSDLs option.

	
Port Type

	
The port type of the WSDL file. You must select a port from the list. In this example, the value execute_ptt appears in this field.

	
Reference Binding Details

	

	
Address

	
This field is automatically populated when you select a concrete WSDL URL and port type. However, you must manually populate this field if a nonconcrete WSDL is provided.

	
Provider URL

	
This field is automatically populated when you select a concrete WSDL URL and port type. However, you must manually populate this field if a nonconcrete WSDL is provided.

	
copy wsdl and its dependent artifacts into the project

	
Deselect this checkbox. If you select this checkbox, the local copies of the WSDL file may result in synchronization issues if a remote WSDL is updated.

When complete, the Create Direct Binding dialog appears as shown in Figure 37-6. For more information about using the Oracle SOA Suite services with Oracle Service Bus, see the Oracle SOA Suite Transport (SOA-DIRECT) chapter in Oracle Fusion Middleware Developer's Guide for Oracle Service Bus.

Figure 37-6 Create Direct Binding Dialog

[image: Create Direct Binding Dialog]

	
Click OK.

The direct binding reference displays in the designer shown in Figure 37-5. The single arrow in a circle indicates that this is a synchronous, one-way direct binding reference component.

Figure 37-7 Direct Binding Reference

[image: Direct Binding Reference]

37.4 Samples Using the Direct Binding Invocation API

Example 37-8 through Example 37-10 provide some examples of how the API is used. This section describes how the connection parameter can invoke SOA composite applications over direct binding and how message objects can be modified to invoke a direct binding invocation.

Example 37-8 Usage of a Connection Parameter

// The JNDIDirectConnectionFactory can be used to establish SOA instance
 connections for exchanging messages over the direct binding.
DirectConnectionFactory dcFactory = JNDIDirectConnectionFactory.newInstance();
// Connections are created based on the configuration, which is a map of standard
// naming properties, which will be used for the underlying connection lookup.
Map<String, Object> properties = new HashMap<String, Object>();
properties.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
properties.put(Context.PROVIDER_URL, "t3://HOST:PORT");
DirectConnection conn =
 dcFactory.createConnection("soadirect:/default/MyComposite!1.0/MyService",
 properties);

Example 37-9 Usage of Messages

//Messages are created using the MessageFactory
Message<Element> request = XMLMessageFactory.getInstance().createMessage();

//Message objects are then modified to be used for an invocation
Map<String, Element> partData; // Define a Map of WSDL part names to matching XML
 Element objects
Payload<Element> payload = PayloadFactory.createXMLPayload(partData);
request.setPayload(payload);
// One-way invocation
conn.post("onewayoperation", request);
// Request-reply invocation
Message<Element> response = conn.request("requestreplyoperation", request);

Example 37-10 Usage of LocatorFactory

//A Sample Java Code
Hashtable jndiProps = new Hashtable();
jndiProps.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname +
 "/soa-infra");
jndiProps.put(Context.INITIAL_CONTEXT
-FACTORY,"weblogic.jndi.WLInitialContextFactory");
jndiProps.put(Context.SECURITY_PRINCIPAL,"weblogic");
jndiProps.put(Context.SECURITY_CREDENTIALS,"welcome1");
jndiProps.put("dedicated.connection","true");
Locator locator = LocatorFactory.createLocator(jndiProps);
CompositeDN compositedn = new CompositeDN(domainName, compositename, version);
String serviceName = "HelloEntry";
return locator.createDirectConnection(compositedn, serviceName);

Part VII

Sharing Functionality Across Service Components

This part describes functionality that can be used by multiple service components.

This part contains the following chapters:

	
Chapter 38, "Creating Transformations with the XSLT Mapper"

	
Chapter 39, "Using Business Events and the Event Delivery Network"

38 Creating Transformations with the XSLT Mapper

This chapter describes how to use the XSLT Mapper. The XSLT Mapper enables you to create data transformations between source schema elements and target schema elements in either Oracle BPEL Process Manager or Oracle Mediator. Version 1.0 of XSLT is supported.

This chapter includes the following sections:

	
Section 38.1, "Introduction to the XSLT Mapper"

	
Section 38.2, "Creating an XSL Map File"

	
Section 38.3, "Designing Transformation Maps with the XSLT Mapper"

	
Section 38.4, "Testing the Map"

	
Section 38.5, "Demonstrating Features of the XSLT Mapper"

For information on invoking the XSLT Mapper from Oracle BPEL Process Manager, see Section 38.2.1, "How to Create an XSL Map File in Oracle BPEL Process Manager." For information on invoking the XSLT Mapper from Oracle Mediator, see Section 38.2.3, "How to Create an XSL Map File in Oracle Mediator."

38.1 Introduction to the XSLT Mapper

You use the XSLT Mapper transformation tool to create the contents of a map file. Figure 38-1 shows the layout of the XSLT Mapper.

Figure 38-1 Layout of the XSLT Mapper

[image: Description of Figure 38-1 follows]

The Source and the Target schemas are represented as trees and the nodes in the trees are represented using a variety of icons. The displayed icon reflects the schema or property of the node. For example:

	
An XSD attribute is denoted with an icon that is different from an XSD element.

	
An optional element is represented with an icon that is different from a mandatory element.

	
A repeating element is represented with an icon that is different from a nonrepeating element, and so on.

The various properties of the element and attribute are displayed in the Property Inspector in the lower right of the XSLT Mapper when the element or attribute is selected. (for example, type, cardinality, and so on). The Component Palette in the upper right of Figure 38-1 is the container for all functions provided by the XSLT Mapper. The XSLT Mapper is the actual drawing area for dropping functions and connecting them to source and target nodes.

When an XSLT map is first created, the target tree shows the element and attribute structure of the target XSD. An XSLT map is created by inserting XSLT constructs and XPath expressions into the target tree at appropriate positions. When executed, the XSLT map generates the appropriate elements and attributes in the target XSD.

Editing can be done in design view or source view. When a map is first created, you are in design view. Design view provides a graphical display and enables editing of the map. To see the text representation of the XSLT being created, switch to source view. To switch views, click the Source or Design tabs at the bottom of the XSLT Mapper.

While in design view, the following pages from the Component Palette can be used:

	
General: Commonly used XPath functions and XSLT constructs.

	
Advanced: More advanced XPath functions such as database and cross-reference functions.

	
User Defined: User-defined functions and templates. This page is visible only when the user has templates in their XSL or user-defined external functions defined through the preferences pages.

	
All Pages: Provides a view of all functions in one page.

	
My Components: Contains user favorites and recently-used functions. To add a function to your favorites, right-click the function in the Component Palette and select Add to Favorites.

	
Note:

The following functions are only available with Oracle Mediator, and not Oracle BPEL Process Manager, in the XSLT Mapper.
	
getProperty(propertyName as string)

	
setCompositeInstanceTitle(titleElement)

	
getComponentInstanceID()

	
getComponentName()

	
getCompositeInstanceID()

	
getCompositeName()

	
getECID()

For Oracle BPEL Process Manager, you can use these functions in an assign activity.

While in source view, the XML and the http://www.w3.org/1999/XSL/Transform pages can be used.

The XSLT Mapper provides three separate context sensitive menus:

	
One in the source panel

	
One in the target panel

	
One in the center panel

Right-click each of the three separate panels to see what the context menus look like.

By default, design view shows all defined prefixes for all nodes in the source and target trees. You can elect not to display prefixes by selecting Hide Prefixes from the context menu in the center panel of the design view. After prefixes are hidden, select Show Prefixes to display them again.

38.1.1 Overview of XSLT Creation

It is important to understand how design view representation of the map relates to the generated XSLT in source view. This section provides a brief example.

After creating an initial map, the XSLT Mapper displays a graphical representation of the source and target schemas, as shown in Figure 38-2.

Figure 38-2 Source and Target Schemas

[image: Description of Figure 38-2 follows]

At this point, no target fields are mapped. Switching to source view displays an empty XSLT map. XSLT statements are built graphically in design view, and XSLT text is then generated. For example, design view mapping is shown in Figure 38-3.

Figure 38-3 Design View Mapping

[image: Description of Figure 38-3 follows]

The design view results in the generation of the following XSLT statements in source view:

	
The OrderDate attribute from the source tree is linked with a line to the InvoiceDate attribute in the target tree in Figure 38-3. This results in a value-of statement in the XSLT, as shown in Example 38-1.

Example 38-1 value-of Statement

<xsl:attribute name="InvoiceDate">
 <xsl:value-of select="/ns0:PurchaseOrder/@OrderDate"/>
</xsl:attribute>

	
The First and Last name fields from the source tree in Figure 38-3 are concatenated using an XPath concat function. The result is linked to the Name field in the target tree. This results in the XSLT statement shown in Example 38-2:

Example 38-2 concat Function

<Name>
 <xsl:value-of select="concat(/ns0:PurchaseOrder/ShipTo/Name/First,
 /ns0:PurchaseOrder/ShipTo/Name/Last)"/>
</Name>

	
Note the inserted XSLT for-each construct in the target tree in Figure 38-3. For each HighPriorityItems/Item in the source tree, a ShippedItems/Item element is created in the target tree and ProductName and Quantity are copied for each. The XSLT shown in Example 38-3 is generated:

Example 38-3 for-each Construct

<xsl:for-each
 select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <ProductName>
 <xsl:value-of select="ProductName"/>
 </ProductName>
 <Quantity>
 <xsl:value-of select="Quantity"/>
 </Quantity>
 </Item>
</xsl:for-each>

The line linking Item in the source tree to the for-each construct in the target tree in Figure 38-3 determines the XPath expression used in the for-each select attribute. In general, XSLT constructs have a select or test attribute that is populated by an XPath statement typically referencing a source tree element.

Note that the XPath expressions in the value-of statements beneath the for-each construct are relative to the XPath referenced in the for-each. In general, the XSLT Mapper creates relative paths within for-each statements.

If you must create an absolute path within a for-each construct, you must do this within source view. When switching back to design view, it is remembered that the path is absolute and the XSLT Mapper does not modify it.

	
Note:

In Example 38-3, the fields ProductName and Quantity are required fields in both the source and target. If these fields are optional in the source and target, it is a good practice to insert an xsl:if statement around these mappings to test for the existence of the source node. If this is not done, and the source node does not exist in the input document, an empty node is created in the target document. For example, if ProductName is optional in both the source and target, map them as follows:

<xsl:if test="ProductName">
 <ProductName>
 <xsl:value-of select="ProductName"/>
 </ProductName>
</xsl:if>

The entire XSLT map generated for this example is shown in Example 38-4:

Example 38-4 Entire XSLT Map

<xsl:template match="/">
 <tns1:Invoice>
 <xsl:attribute name="InvoiceDate">
 <xsl:value-of select="/ns0:PurchaseOrder/@OrderDate"/>
 </xsl:attribute>
 <ShippedTo>
 <Name>
 <xsl:value-of select="concat
(/ns0:PurchaseOrder/ShipTo/Name/First,/ns0:PurchaseOrder/ShipTo/Name/Last)"/>
 </Name>
 </ShippedTo>
 <ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <ProductName>
 <xsl:value-of select="ProductName"/>
 </ProductName>
 <Quantity>
 <xsl:value-of select="Quantity"/>
 </Quantity>
 </Item>
 </xsl:for-each>
 </ShippedItems>
 </tns1:Invoice>
</xsl:template>

Subsequent sections of this chapter describe how to link source and target elements, add XSLT constructs, and create XPath expressions in design view.

38.1.2 Guidelines for Using the XSLT Mapper

	
A node in the target tree can be linked only once (that is, you cannot have two links connecting a node in the target tree).

	
An incomplete function and expression does not result in an XPath expression in source view. If you switch from design view to source view with one or more incomplete expressions, the Mapper Messages window displays warning messages.

	
When you map duplicate elements in the XSLT Mapper, the style sheet becomes invalid and you cannot work in the Design view. The Log window shows the error messages when you map an element with a duplicate name. Example 38-5 provides details.

Example 38-5 Duplicate Name Error Messages

Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/ns0:rel"
 Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/choice_1/ns0:ind"
 Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/choice_1/ns0:var"

Duplicate nodes can be created in design view by surrounding each duplicate node with a for-each statement that executes once.

38.2 Creating an XSL Map File

Transformations are performed in an XSL map file in which you map source schema elements to target schema elements. This section describes methods for creating the XSL map file.

	
Note:

You can also create an XSL map file from an XSL style sheet. Click New > General > XML > XSL Map From XSL Stylesheet from the File main menu in Oracle JDeveloper.

38.2.1 How to Create an XSL Map File in Oracle BPEL Process Manager

A transform activity enables you to create a transformation using the XSLT Mapper in Oracle BPEL Process Manager. This tool enables you to map one or more source elements to target elements. For example, you can map incoming source purchase order schema data to outgoing invoice schema data.

To create an XSL map file in Oracle BPEL Process Manager:

	
From the Component Palette, drag a transform activity into your BPEL process diagram. Figure 38-4 provides an example.

Figure 38-4 Transform Activity

[image: Description of Figure 38-4 follows]

	
Double-click the transform activity.

The Transform dialog shown in Figure 38-5 appears.

Figure 38-5 Transform Dialog

[image: Description of Figure 38-5 follows]

	
Specify the following information:

	
Add source variables from which to map elements by clicking the Add icon and selecting the variable and part of the variable as needed (for example, a payload schema consisting of a purchase order request).

	
Note:

You can select multiple input variables. The first variable defined represents the main XML input to the XSL map. Additional variables that are added here are defined in the XSL map as input parameters.

	
Add target variables to which to map elements.

	
Add the target part of the variable (for example, a payload schema consisting of an invoice) to which to map.

	
In the Mapper File field, specify a map file name or accept the default name. The map file is the file in which you create your mappings using the XSLT Mapper transformation tool.

	
Click the Add icon (second icon to the right of the Mapper File field) to create a mapping. If the file exists, click the Edit icon (third icon) to edit the mapping.

The XSLT Mapper appears.

	
Go to Section 38.1, "Introduction to the XSLT Mapper" for an overview of using the XSLT Mapper.

38.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files in Oracle BPEL Process Manager

	
Note:

If you select a file with a.xslt extension such as xform.xslt, it opens the XSLT Mapper to create an XSL file named xform.xslt.xsl, even though your intension was to use the existing xform.xslt file. A .xsl extension is appended to any file that does not have a .xsl extension, and you must create the mappings in the new file. As a work around, ensure that your files first have an extension of .xsl. If the XSL file has an extension of .xslt, then rename it to .xsl.

The following steps provide a high level overview of how to create an XSL map in Oracle BPEL Process Manager using a po.xsd file and invoice.xsd file.

To create an XSL map file from imported source and target schema files in Oracle BPEL Process Manager:

	
In Oracle JDeveloper, select the application project in which you want to create the new XSL map.

	
Import the po.xsd and invoice.xsd files into the project (for example, in the Structure window of Oracle JDeveloper, right-click Schemas and select Import Schemas).

	
Right-click the selected project and select New.

The New Gallery dialog appears.

	
In the Categories tree, expand General and select XML.

	
In the Items list, double-click XSL Map.

The Create XSL Map File dialog appears. This dialog enables you to create an XSL map file that maps a root element of a source schema file or Web Services Description Language (WSDL) file to a root element of a target schema file or WSDL file. Note the following details:

	
	
WSDL files that have been added to the project appear under Project WSDL Files.

	
Schema files that have been added to the project appear under Project Schema Files.

	
Schema files that are not part of the project can be imported using the Import Schema File facility. Click the Import Schema File icon (first icon to the right and above the list of schema files).

	
WSDL files that are not part of the project can be imported using the Import WSDL File facility. Click the Import WSDL File icon (second icon to the right and above the list of schema files).

	
Enter a name for the XSL map file in the File Name field.

	
Select the root element for the source and target trees. In the example in Figure 38-6, the PurchaseOrder element is selected for the source root element and the Invoice element is selected for the target root element.

Figure 38-6 Expanded Target Section

[image: Description of Figure 38-6 follows]

	
Click OK.

A new XSL map is created, as shown in Figure 38-7.

Figure 38-7 New XSL Map

[image: Description of Figure 38-7 follows]

	
Save and close the file now or begin to design your transformation. Information on using the XSLT Mapper is provided in Section 38.1, "Introduction to the XSLT Mapper."

	
From the Component Palette, drag a transform activity into your BPEL process.

	
Double-click the transform activity.

	
Specify the following information:

	
Add source variables from which to map elements by clicking the Add icon and selecting the variable and part of the variable as needed (for example, a payload schema consisting of a purchase order request).

	
Note:

You can select multiple input variables. The first variable defined represents the main XML input to the XSL map. Additional variables that are added here are defined in the XSL map as input parameters.

	
Add target variables to which to map elements.

	
Add the target part of the variable (for example, a payload schema consisting of an invoice) to which to map.

	
To the right of the Mapper File field, click the Search icon (first icon) to browse for the map file name you specified in Step 6.

	
Click Open.

	
Click OK.

The XSLT Mapper displays your XSL map file.

	
Go to Section 38.1, "Introduction to the XSLT Mapper" for an overview of using the XSLT Mapper.

38.2.3 How to Create an XSL Map File in Oracle Mediator

The XSLT Mapper enables you to create an XSL file to transform data from one XML schema to another in Oracle Mediator. After you define an XSL file, you can reuse it in multiple routing rule specifications. This section provides an overview of creating a transformation map XSL file with the XSLT Mapper.

The XSLT Mapper is available from the Application Navigator in Oracle JDeveloper by clicking an XSL file or from the Oracle Mediator Editor by clicking the transformation icon, as described in the following steps. You can either create a new transformation map or update an existing one.

To launch the XSLT Mapper from the Mediator Editor and create or update a data transformation XSL file, follow these steps.

To create an XSL map file in Oracle Mediator:

	
Open the Oracle Mediator Editor.

	
To the left of Routing Rules, click the + icon to open the Routing Rules panel.

The transformation map icon is visible in the routing rules panel.

	
To the right of the Transform Using field shown in Figure 38-8, click the appropriate transformation map icon to open the Transformation Map dialog.

Figure 38-8 Routing Rules

[image: Description of Figure 38-8 follows]

The appropriate Transformation Map dialog displays with options for selecting an existing transformation map (XSL) file or creating a new map file. For example, if you select the transformation map icon in the Synchronous Reply section, the dialog shown in Figure 38-9 appears.

Figure 38-9 Reply Transformation Map Dialog

[image: Description of Figure 38-9 follows]

If the routing rule includes a synchronous reply or fault, the Reply Transformation Map dialog or Fault Transformation Map dialog contains the Include Request in the Reply Payload option. When you enable this option, you can obtain information from the request message. The request message and the reply and fault message can consist of multiple parts, meaning you can have multiple source schemas. Callback and callback timeout transformations can also consist of multiple parts.

Each message part includes a variable. For a reply transformation, the reply message includes a schema for the main part (the first part encountered) and an in.partname variable for each subsequent part. The include request message includes an initial.partname variable for each part.

For example, assume the main reply part is the out1.HoustonStoreProduct schema and the reply also includes two other parts that are handled as variables, in.HoustonStoreProduct and in.HoustonStoreProduct2. The request message includes three parts that are handled as the variables initial.expense, initial.expense2, and initial.expense3. Figure 38-10 provides an example.

Figure 38-10 Reply Part

[image: Description of Figure 38-10 follows]

	
Choose one of the following options:

	
Use Existing Mapper File and then click the Search icon to browse for an existing XSLT Mapper file (or accept the default value).

	
Create New Mapper File and then enter a name for the file (or accept the default value). If the source message in the WSDL file has multiple parts, variables are used for each part, as mentioned in Step 3. When the target of a transformation has multiple parts, multiple transformation files map to these targets. In this case, the mediator's transformation dialog has a separate panel for each target part. For example, here is a request in which the target has three parts:

Figure 38-11 provides an example.

Figure 38-11 Request Transformation Map Dialog

[image: Description of Figure 38-11 follows]

	
Click OK.

If you chose Create New Mapper File, the XSLT Mapper opens to enable you to correlate source schema elements to target schema elements.

	
Go to Section 38.1, "Introduction to the XSLT Mapper" for an overview of using the XSLT Mapper.

38.2.4 What You May Need to Know About Creating an XSL Map File

XSL file errors do not display during a transformation at runtime if you manually remove all existing mapping entries from an XSL file except for the basic format data. Ensure that you always specify mapping entries. For example, assume you perform the following actions:

	
Create a transformation mapping of input data to output data in the XSLT Mapper.

	
Design the application to write the output data to a file using the file adapter.

	
Manually modify the XSL file and remove all mapping entries except the basic format data. For example:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.fu
nctions.Xpath20"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:ns0="http://xmlns.oracle.com/pcbpel/adapter/file/MediaterDemo/Validation
UsingSchematron/WriteAccounInfoToFile/"
xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.fu
nctions.ExtFunc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue
"
xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.servi
ce.common.functions.GetRequestHeaderExtnFunction"
xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
xmlns:imp1="http://www.mycompany.com/MyExample/NewAccount"
xmlns:tns="http://oracle.com/sca/soapservice/MediaterDemo/ValidationUsingSchem
atron/CreateNewCustomerService"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRe
fXPathFunctions"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:inp1="http://www.mycompany.com/MyExample/NewCustomer"
exclude-result-prefixes="xsi xsl tns xsd inp1 ns0 imp1 plt xp20 bpws orcl dvm
hwf mhdr ids xref ora">
</xsl:stylesheet>

While the file can still be compiled, the XSL mapping is now invalid.

	
Deploy and create an instance of the SOA composite application.

During instance creation, an exception error occurs when the write operation fails because it did not receive any input. However, note that no errors displayed during XSL transformation.

38.2.5 What Happens at Runtime If You Pass a Payload Through Oracle Mediator Without Creating an XSL Map File

If you design a SOA composite application to pass a payload through Oracle Mediator without defining any transformation mapping, Oracle Mediator passes the payload through. However, for the payload to be passed through successfully, you must ensure that your source and target message part names are the same and of the same type. Otherwise, the target reference may fail to execute with error messages such as Input source like Null or Part not found.

38.2.6 What Happens If You Receive an Empty Namespace Tag in an Output Message

The XML representation from an XSL file may differ from that used in a scenario in which a message is passed through with a transformation being performed or in which an assign activity is used, even though the XMLs are syntactically and semantically the same. For example, if you use a mediator service component to map an inbound payload that includes an element without a namespace to an outbound payload, you may receive an empty namespace tag in the output message.

<Country xmlns="">US</Country>

This is the correct behavior. A blank namespace, xmlns="", is automatically added.

38.3 Designing Transformation Maps with the XSLT Mapper

The following sections describe how to use the XSLT Mapper in Oracle BPEL Process Manager or Oracle Mediator.

38.3.1 How to Add Additional Sources

You can add additional sources to an existing XSLT map. These sources are defined as global parameters and have schema files defining their structure. Multiple source documents may be required in certain instances depending upon the logic of the map. For instance, to produce an invoice, the map may need access to both a purchase order and a customer data document as input.

Note that XSL has no knowledge of BPEL variables. When you add multiple sources in XSL design time, ensure that you also add these multiple sources in the transform activity of a BPEL process.

To add additional sources:

	
Right-click the source panel to display the context menu. Figure 38-12 provides details.

Figure 38-12 Context Menu

[image: Description of Figure 38-12 follows]

	
Select Add Source.

The Add Source dialog shown in Figure 38-13 appears.

	
Enter a parameter name for the source (the name can also be qualified by a namespace and prefix).

Figure 38-13 Add Source Dialog

[image: Description of Figure 38-13 follows]

	
In the Source Schema section, click Select to select a schema for the new source.

The Type Chooser dialog appears.

	
Select or import the appropriate schema or WSDL file for the parameter in the same manner as when creating a new XSLT map. For this example, the Customer element from the sample customer.xsd file is selected.

	
Click OK.

The schema definition appears in the Source Schema section of the Create Source as Parameter dialog.

	
Click OK.

The selected schema is imported and the parameter appears in the source panel above the main source. The parameter can be expanded as shown in Figure 38-14 to view the structure of the underlying schema.

Figure 38-14 Expanded Parameter

[image: Description of Figure 38-14 follows]

The parameter can be referenced in XPath expressions by prefacing it with a $. For example, a parameter named CUST appears as $CUST in an XPath expression. Nodes under the parameter can also be referenced (for example, $CUST/customer/Header/customerid).

38.3.2 How to Perform a Simple Copy by Linking Nodes

To copy an attribute or leaf-element in the source to an attribute or leaf-element in the target, drag the source to the target. For example, copy the element PurchaseOrder/ID to Invoice/ID and the attribute PurchaseOrder/OrderDate to Invoice/InvoiceDate, as shown in Figure 38-15.

Figure 38-15 Linking Nodes

[image: Linking Nodes]

38.3.3 How to Set Constant Values

Perform the following steps to set a constant value.

To set constant values:

	
Select a node in the target tree.

	
Invoke the context menu by right-clicking the mouse.

	
Select the Set Text menu option.

A menu provides the following selections:

	
<Empty>: Enables you to create an empty node.

	
Enter Text: Enables you to enter text.

	
Select Enter Text.

The Set Text dialog appears.

	
In the Set Text dialog, enter text (for example, Discount Applied, as shown in Figure 38-16).

Figure 38-16 Set Text Dialog

[image: Set Text Dialog Box]

	
Click OK to save the text.

A T icon is displayed next to the node that has text associated with it. The beginning of the text that is entered is shown next to the node name.

	
To modify the text associated with the node, right-click the node and select Edit Text to invoke the Set Text dialog again.

	
Edit the contents and click OK.

For more information about the fields, see the online Help for the Set Text dialog.

	
To remove the text associated with the node, right-click the node and select Remove Text.

38.3.4 How to Add Functions

In addition to the standard XPath 1.0 functions, the XSLT Mapper provides many prebuilt extension functions and can support user-defined functions and named templates. The extension functions are prefixed with oraext or orcl and mimic XPath 2.0 functions.

Perform the following steps to view function definitions and use a function.

To add functions:

	
From the Component Palette, select a category of functions (for example, String Functions).

	
Right-click an individual function (for example, lower-case).

	
Select Help. A dialog with a description of the function appears, as shown in Figure 38-17. You can also click a link at the bottom to access this function's description at the World Wide Web Consortium at www.w3.org.

Figure 38-17 Description of Function

[image: Description of Figure 38-17 follows]

	
Drag a function from the Component Palette to the center panel of the XSLT Mapper. You can then connect the source parameters from the source tree to the function and the output of the function to a node in the target tree. For the following example, drag the concat function from the String section of the Component Palette to the center panel.

	
Concatenate PurchaseOrder/ShipTo/Name/First and PurchaseOrder/ShipTo/Name/Last. Place the result in Invoice/ShippedTo/Name by dragging threads from the first and last names and dropping them on the input (left) side on the concat function.

	
Drag a thread from the ShippedTo name and connect it to the output (right) side on the concat function, as shown in Figure 38-18.

Figure 38-18 Using the Concat Function

[image: Using Functions]

38.3.4.1 Editing Function Parameters

To edit the parameters of any function, double-click the function icon to launch the Edit Function dialog. For example, to add a new comma parameter so that the output of the concat function used in the previous example is Last, First, then click Add to add a comma and reorder the parameters to get this output. Figure 38-19 provides details.

Figure 38-19 Editing Function Parameters

[image: Editing Function Parameters]

For more information about how to add, remove, and reorder function parameters, see the online Help for the Edit Function dialog.

38.3.4.2 Chaining Functions

Complex expressions can be built by chaining functions (that is, mapping the output of one function to the input of another). For example, to remove all leading and trailing spaces from the output of the concat function, perform the following steps:

	
Drag the left-trim and right-trim functions into the border area of the concat function.

	
Chain them as shown in Figure 38-20 by dragging lines from the output side of one function to the input side of the next function.

Chaining can also be performed by dragging and dropping a function onto a connecting link.

Figure 38-20 Chaining Functions

[image: Chaining Functions]

38.3.4.3 Using Named Templates

Some complicated mapping logic cannot be represented or achieved by visual mappings. For these situations, named templates are useful. Named templates enable you to share common mapping logic. You can define the common mapping logic as a named template and then use it as often as you want.

You can define named templates in two ways:

	
Add the template directly to your XSL map in source view.

	
Add the template to an external file that you include in your XSL map.

The templates you define appear in the User Defined Named Templates list of the User Defined page in the Component Palette. You can use named templates in almost the same way as you use other functions. The only difference is that you cannot link the output of a named template to a function or another named template; you can only link its output to a target node in the target tree.

To create named templates, you must be familiar with the XSLT language. See any XSLT book or visit the following URL for details about writing named templates:

http://www.w3.org/TR/xslt

For more information about including templates defined in external files, see Section 38.3.6.7, "Including External Templates with xsl:include."

38.3.4.4 Importing User-Defined Functions

You can create and import a user-defined Java function if you have complex functionality that cannot be performed in XSLT or with XPath expressions.

Follow these steps to create and use your own functions. External, user-defined functions can be necessary when logic is too complex to perform within the XSL map.

To import user-defined functions:

	
Code and build your functions.

The XSLT Mapper extension functions are coded differently than the Oracle BPEL Process Manager extension functions. Two examples are provided in the SampleExtensionFunctions.java file of the mapper-107-extension-functions sample scenario. Example 38-6 provides the text for these functions. To download these and other samples, visit the following URL:

http://www.oracle.com/technology/sample_code/products/soa

Each function must be declared as a static function. Input parameters and the returned value must be declared as one of the following types:

	
java.lang.String

	
int

	
float

	
double

	
boolean

	
oracle.xml.parser.v2.XMLNodeList

	
oracle.xml.parser.v2.XMLDocumentFragment

Example 38-6 XSLT Mapper Extension Functions

// SampleExtensionFunctions.java
package oracle.sample;
/*
This is a sample XSLT Mapper User Defined Extension Functions implementation
class.
*/
public class SampleExtensionFunctions
{
 public static Double toKilograms(Double lb)
 {
 return new Double(lb.doubleValue()*0.45359237);
 }
 public static String replaceChar(String inputString, String oldChar, String
 newChar)
 {
 return inputString.replace(oldChar.charAt(0), newChar.charAt(0));
 }
}

	
Create an XML extension function configuration file. This file defines the functions and their parameters.

This file must have the name ext-mapper-xpath-functions-config.xml. See Section B.7, "Creating User-Defined XPath Extension Functions" for more information on the format of this file. The file shown in Example 38-7 represents the functions toKilograms and replaceChar as they are coded in Example 38-6.

Example 38-7 XML Extension Function Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions version="11.1.1"
 xmlns="http://xmlns.oracle.com/soa/config/xpath" xmlns:sample=
"http://www.oracle.com/XSL/Transform/java/oracle.sample.SampleExtensionFunctions"
 >
 <function name="sample:toKilograms">
 <className>oracle.sample.SampleExtensionFunctions</className>
 <return type="number"/>
 <params>
 <param name="pounds" type="number"/>
 </params>
 <desc>Converts a value in pounds to kilograms</desc>
 </function>
 <function name="sample:replaceChar">
 <className>oracle.sample.SampleExtensionFunctions</className>
 <return type="string"/>
 <params>
 <param name="inputString" type="string"/>
 <param name="oldChar" type="string"/>
 <param name="newChar" type="string"/>
 </params>
 <desc>Returns a new string resulting from replacing all occurrences
 of oldChar in this string with newChar</desc>
 </function>
</soa-xpath-functions>

Some additional rules apply to the definitions of XSLT extension functions:

	
The functions need a namespace prefix and a namespace. In this sample, they are sample and http://www.oracle.com/XSL/Transform/java/oracle.sample.Sam pleExtensionFunctions.

	
The function namespace must start with http://www.oracle.com/XSL/Transform/java/ for extension functions to work with the Oracle XSLT processor.

	
The last portion of the namespace, in this sample oracle.sample.SampleExtensionFunctions, must be the fully qualified name of the Java class that implements the extension functions.

	
The types and their equivalent Java types shown in Table 38-1 can be used for parameter and return values:

Table 38-1 Types and Equivalent Java Types

	XML Configuration File Type Name	Java Type
	
string

	
java.lang.String

	
boolean

	
boolean

	
number

	
int, float, double

	
node-set

	
oracle.xml.parser.v2.XMLNodeList

	
tree

	
oracle.xml.parser.v2.XMLDocumentFragment

	
Create a JAR file containing both the XML configuration file and the compiled classes. The configuration file must be contained in the META-INF directory for the JAR file. For the example in this section, the directory structure is as follows with the oracle and META-INF directories added to a JAR file:

	
oracle

	
sample (contains the class file)

	
META-INF

	
ext-mapper-xpath-functions-config.xml

The JAR file must then be registered with Oracle JDeveloper.

	
Go to Tools > Preferences > SOA.

	
Click the Add button and navigate to and select your JAR file.

	
Restart Oracle JDeveloper.

New functions appear in the Component Palette under the User Defined page in the User Defined Extension Functions group.

	
To make the functions available in the runtime environment, Section B.7.3, "How to Deploy User-Defined Functions to Runtime" for details.

38.3.5 How to Edit XPath Expressions

To use an XPath expression in a transformation mapping, select the Advanced page and then the Advanced Function group from the Component Palette and drag xpath-expression from the list into the XSLT Mapper. This is shown in Figure 38-21.

Figure 38-21 Editing XPath Expressions

[image: Description of Figure 38-21 follows]

When you double-click the icon, the Edit XPath Expression dialog appears, as shown in Figure 38-22. You can press Ctrl+Space to invoke the XPath Building Assistant.

Figure 38-22 Edit XPath Expression Dialog

[image: Description of Figure 38-22 follows]

Figure 38-23 shows the XPath Building Assistant.

Figure 38-23 The XPath Building Assistant

[image: Description of Figure 38-23 follows]

For more information about using the XPath Building Assistant, see the online Help for the Edit XPath Expression dialog.

38.3.6 How to Add XSLT Constructs

While mapping complex schemas, it is essential to be able to add XSLT constructs. For instance, you may need to create a node in the target when a particular condition exists; this requires the use of an xsl:if statement or an xsl:choose statement. You may also need to loop over a node-set in the source such as a list of items in a sales order and create nodes in the target XML for each item in the sales order; this requires the use of an xsl:for-each statement. The XSLT Mapper provides XSLT constructs for performing these and other tasks.

There are two ways to add XSLT constructs such as for-each, if, or choose to the target XSLT tree:

To add XSLT constructs from the Component Palette:

	
Select the General page and open the XSLT Constructs group. Figure 38-24 provides details.

Figure 38-24 XSLT Constructs Available Through the Component Palette

[image: Description of Figure 38-24 follows]

	
Drag an XSLT construct from the group onto a node in the target tree. If the XSLT construct can be applied to the node, it is inserted in the target tree. Note that the when and otherwise constructs must be applied to a previously-inserted choose node.

To add XSLT constructs through the context menu on the target tree:

	
Right-click the element in the target tree where you want to insert an XSLT construct. A context menu is displayed. Figure 38-25 provides details.

Figure 38-25 XSLT Constructs in Available Through the Context Menu

[image: Description of Figure 38-25 follows]

	
Select Add XSL Node and then the XSLT construct you want to insert.

The XSLT construct is inserted. In most cases, an error icon initially appears next to the construct. This indicates that the construct requires an XPath expression to be defined for it.

In the case of the for-each construct, for example, an XPath expression defines the node set over which the for-each statement loops. In the case of the if construct, the XPath expression defines a boolean expression that is evaluated to determine if the contents of the if construct are executed.

The XPath expression can be created in the same manner as mapping elements and attributes in the target tree. The following methods create an underlying XPath expression in the XSLT. You can perform all of these methods on XSLT constructs in the target tree to set their XPath expressions:

	
Creating a simple copy by linking nodes

	
Adding functions

	
Adding XPath expressions

The following sections describe specific steps for inserting each supported XSLT construct.

38.3.6.1 Using Conditional Processing with xsl:if

In Figure 38-26, note that HQAccount and BranchAccount are part of a choice in the PurchaseOrder schema; only one of them exists in an actual instance. To illustrate conditional mapping, copy PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/AccountNumber, only if it exists.

To use conditional processing with xsl:if:

	
In the target tree, select Invoice/BilledToAccount/AccountNumber and right-click to invoke the context sensitive menu.

	
Select Add XSL Node > if and connect PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/if.

	
Connect PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/if/AccountNumber.

Figure 38-26 shows the results.

Figure 38-26 Conditional Processing with xsl:if

[image: Conditional Processing]

When mapping an optional source node to an optional target node, it is important to surround the mapping with an xsl:if statement that tests for the existence of the source node. If this is not done and the source node does not exist in the input document, an empty node is created in the target document. For example, note the mapping shown in Example 38-8:

Example 38-8 Statement Without xsl:If

<ProductName>
 <xsl:value-of select="ProductName"/>
</ProductName>

If the ProductName field is optional in both the source and target and the element does not exist in the source document, then an empty ProductName element is created in the target document. To avoid this situation, add an if statement to test for the existence of the source node before the target node is created, as shown in Example 38-9:

Example 38-9 Statement With xsl:If

<xsl:if test="ProductName">
 <ProductName>
 <xsl:value-of select="ProductName"/>
 </ProductName>
</xsl:if>

38.3.6.2 Using Conditional Processing with xsl:choose

In this same example, you can copy PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/AccountNumber, if it exists. Otherwise, copy PurchaseOrder/BranchAccount to Invoice/BilledToAccount/AccountNumber.

To use conditional processing with xsl:choose:

	
In the target tree, select Invoice/BilledToAccount/AccountNumber and right-click to invoke the context sensitive menu.

	
Select Add XSL Node > choose from the menu.

	
Connect PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/choose/when to define the condition.

	
Connect PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/choose/when/AccountNumber.

	
In the target tree, select XSL Add Node > choose and right-click to invoke the context sensitive menu.

	
Select Add XSL node > otherwise from the menu.

	
Connect PurchaseOrder/BranchAccount/AccountNumber to Invoice/BilledToAccount/choose/otherwise/AccountNumber.

Figure 38-27 shows the results.

Figure 38-27 Conditional Processing with xsl:choose

[image: Conditional Processing]

38.3.6.3 Creating Loops with xsl:for-each

The XSLT Mapper enables you to create loops with the xsl:for-each command. For example, copy PurchaseOrder/Items/HighPriorityItems/Item to Invoice/ShippedItems/Item.

To create loops with xsl:for-each:

	
In the target tree, select Invoice/ShippedItems/Item and right-click to invoke the context sensitive menu.

	
Select Add XSL Node > for-each and connect PurchaseOrder/Items/HighPriorityItems/Item to Invoice/ShippedItems/for-each to define the iteration.

	
Connect PurchaseOrder/Items/HighPriorityItems/Item/ProductName to Invoice/ShippedItems/for-each/Item/ProductName.

	
Connect PurchaseOrder/Items/HighPriorityItems/Item/Quantity to Invoice/ShippedItems/for-each/Item/Quantity.

	
Connect PurchaseOrder/Items/HighPriorityItems/Item/USPrice to Invoice/ShippedItems/for-each/Item/PriceCharged.

Figure 38-28 shows the results.

Figure 38-28 Creating Loops with xsl:for-each

[image: Handling Repetition or Arrays]

	
Notes:

	
Executing an auto map automatically inserts xsl:for-each. To see the auto map in use, drag PurchaseOrder/Items/LowPriorityItems to Invoice/UnShippedItems; for-each is automatically created.

	
Ensure that your design does not include infinite loops. These loops result in errors similar to the following displaying during deployment and invocation of your application.

ORAMED-04001:
. . .
oracle.tip.mediator.service.BaseActionHandler requestProcess
SEVERE:
failed reference BPELProcess1.bpelprocess1_client operation = process

38.3.6.4 Cloning xsl:for-each

You can create additional loops by cloning an existing xsl:for-each. For example, copy all LowPriorityItems to ShippedItems, in addition to HighPriorityItems.

To clone xsl:for-each:

	
Under Invoice/ShippedItems, select for-each.

	
Right-click and select Add XSL Node > Clone 'for-each'.

This inserts a copy of the for-each node beneath the original for-each.

	
Drag PurchaseOrder/Items/LowPriorityItems/Item to the copied for-each to define the iteration.

	
Connect PurchaseOrder/Items/LowPriorityItems/Item/ProductName to Item/ProductName in the copied for-each.

	
Connect PurchaseOrder/Items/LowPriorityItems/Item/Quantity to Item/Quantity in the copied for-each.

	
Connect PurchaseOrder/Items/LowPriorityItems/Item/USPrice to Item/PriceCharged in the copied for-each.

38.3.6.5 Applying xsl:sort to xsl:for-each

The XSLT Mapper enables you to add xsl:sort statements to xsl:for-each commands.

To add an xsl:sort statement:

	
Right-click a for-each statement in the target tree.

A context menu appears.

	
Select Add XSL Node > sort. The Sort Edit Dialog is displayed.

Figure 38-29 Sort Edit Dialog

[image: Description of Figure 38-29 follows]

	
Select options to add to the sort statement as needed. See the online Help for information on options.

	
Click OK. The sort statement is added following the for-each.

	
To set the field on which to sort, drag from the necessary sort field node in the source tree to the sort node in the target tree. This creates a simple link and sets the XPath expression for the select attribute on the xsl:sort.

	
To add additional sort statements, right-click the for-each to add another sort or right-click an existing sort node to insert a new sort statement before the selected sort node.

	
To edit a sort node, double-click the sort node or right-click and select Edit Sort from the context menu. This invokes the Sort Edit Dialog and enables you to change the sort options.

38.3.6.6 Copying Nodes with xsl:copy-of

You may need to use the XSLT copy-of construct to copy a node, along with any child nodes, from the source to the target tree. This is typically done when working with anyType or any element nodes. Note that anyType and any element and attribute nodes cannot be mapped directly. Use copy-of or element and type substitution.

To copy nodes with xsl:copy-of:

	
Select the node in the target tree to be created by the copy-of command.

	
Right-click the node and select Add XSL Node > copy-of.

If the node is not an any element node, a dialog appears requesting you to either replace the selected node or replace the children of the selected node.

	
Select the correct option for your application and click OK.

If you select Replace the selected node with the copy-of, a processing directive is created immediately following the copy-of in the XSL indicating which node is replaced by the copy-of. Without the processing directive in the XSL, the conversion back to design view is interpreted incorrectly. For this reason, do not remove or edit this processing instruction while in source view.

	
Set the source node for the copy-of by dragging and dropping from the source tree or by creating an XPath expression.

	
Note:

Always create the copy-of command in design view so that the correct processing directive can be created in the XSLT Mapper to indicate the correct placement of the copy-of command in the target tree.

	
WARNING:

The XSLT Mapper does not currently validate the mapping of data performed through use of the copy-of command. You must ensure that copy-of is used to correctly map elements to the target tree so that the target XML document contains valid data. You can test the validity by using the test tool.

38.3.6.7 Including External Templates with xsl:include

You can reuse templates that are defined in external XSL files by including them in the current map with an include statement.

To include external templates with xsl:include:

	
In the target tree, select and right-click the root node.

	
From the menu, select Add Include File.

A dialog prompts you for the include file name.

	
Select the file and click OK.

The file is copied to the same project directory as the existing map file. A relative path name is created for it and the include statement instruction is inserted in the target tree.

The include file can only contain named template definitions. These are parsed and available to you in design view of the Component Palette under the User Defined Named Templates category in the User Defined page.

	
Note:

An oramds:// shared location cannot be referenced for a user-defined named template include file.

38.3.7 How to Automatically Map Nodes

Mapping nonleaf nodes starts the auto map feature. The system automatically tries to link all relevant nodes under the selected source and target. Try the auto map feature by mapping PurchaseOrder/ShipTo/Address to Invoice/ShippedTo/Address. All nodes under Address are automatically mapped, as shown in Figure 38-30.

Figure 38-30 Auto Mapping

[image: Auto Mapping]

The behavior of the auto map can be tuned by altering the settings in Oracle JDeveloper preferences or by right-clicking the XSLT Mapper and selecting Auto Map Preferences. This displays the dialog shown in Figure 38-31.

Figure 38-31 Auto Map Preferences

[image: Auto Map Preferences]

This dialog enables you to customize your auto mapping as follows:

	
Invoke the automatic mapping feature, which attempts to automatically link all relevant nodes under the selected source and target. When disabled, you must individually map relevant nodes.

	
Display and review all potential source-to-target mappings detected by the XSLT Mapper, and then confirm to create them.

	
Be prompted to customize the auto map preferences before the auto map is invoked.

	
Select the Basic or Advanced method for automatically mapping source and target nodes. This action enables you to customize how the XSLT Mapper attempts to automatically link all relevant nodes under the selected source and target.

	
Manage your dictionaries. The XSLT Mapper uses the rules defined in a dictionary when attempting to automatically map source and target elements.

For more information on the fields, see the online Help for the Auto Map Preferences dialog.

Follow these instructions to see potential source mapping candidates for a target node.

To automatically map nodes:

	
Right-click the target node and select Show Matches.

	
Click OK in the Auto Map Preferences dialog.

The Auto Map dialog appears, as shown in Figure 38-32.

Figure 38-32 Auto Mapping Candidates

[image: Description of Figure 38-32 follows]

For more information on the fields, see the online Help for the Auto Map dialog.

38.3.7.1 Using Auto Mapping with Confirmation

When the Confirm Auto Map Results checkbox shown in Figure 38-31 is selected, a confirmation dialog appears. If matches are found, the potential source-to-target mappings detected by the XSLT Mapper are displayed, as shown in Figure 38-33. The dialog enables you to filter one or more mappings.

Figure 38-33 Auto Map with Confirmation

[image: Auto Map with Confirmation]

For more information about the fields, see the online Help for the Auto Map dialog.

38.3.8 What You May Need to Know About Automatic Mapping

The automatic mapping algorithm depends on existing maps between source and target nodes. When maps exist between source and target nodes before executing automatic mapping, these existing maps are used to define valid synonyms that are used by the algorithm.

For example, assume you have a simple source and target tree, each with two elements called test1 and test2, as shown in Figure 38-34.

Figure 38-34 Source and Target Tree with Two Elements

[image: Description of Figure 38-34 follows]

If no nodes are mapped, the automatic mapping algorithm does not match the names test1 and test2. However, if mapping exists between the test1 and test2 nodes, the algorithm predefines the names test1 and test2 as synonyms for any additional mapping.

In the example in Figure 38-34, if you drag the exampleElement from the source to the target, the automatic mapping algorithm maps the test1 node in the source to the test2 node in the target because your map previously linked those two names. This results in the map shown in Figure 38-35:

Figure 38-35 Results of Dragging exampleElement

[image: Description of Figure 38-35 follows]

38.3.9 How to View Unmapped Target Nodes

You can view a list of target nodes that are currently unmapped to source nodes.

To view unmapped target nodes:

	
In the XSLT Mapper, right-click in the center panel and select Completion Status.

This dialog provides statistics at the bottom about the number of unmapped target nodes. This dialog enables you to identify and correct any unmapped nodes before you test your transformation mapping logic on the Test XSL Map dialog.

	
In the list, select a target node. The node is highlighted. A checkmark indicates that the target node is required to be mapped. If not required, the checkbox is empty.

	
Note:

Nodes are marked as required in the Completion Status dialog based on the XSD definition for a node. It is possible that a node marked as required is not actually required for a specific mapping if a parent node of the required node is optional and is not part of the XSL mapping.

Figure 38-36 provides an example of the Completion Status dialog.

Figure 38-36 Completion Status

[image: Description of Figure 38-36 follows]

38.3.10 How to Generate Dictionaries

A dictionary is an XML file used by automatic mapping. It contains synonyms for field names. For instance, assume that the element QtyOrdered should map to the element Quantity. The element names QtyOrdered and Quantity are then synonyms for one another. If this mapping commonly appears from one map to another, it is a good practice to save these synonyms in a dictionary file. After being saved, they can be reapplied to another map using automatic mapping.

A dictionary can be created from any existing XSL map and contains all mappings that are not automatically generated by the mapper for the existing map.

To generate and use dictionaries:

	
Create an XSL map that contains specific mappings to reuse in other maps.

	
Go to Tools > Preferences > XSL Maps > Auto Map and note the current automatic mapping settings.

	
Note:

Because dictionary entries are dependent upon the current automatic mapping settings, you must make a note of those settings for future use. To later reapply a dictionary mapping, it is best to set the automatic mapping preferences to those that were in effect at the time the dictionary was created. Therefore, it is important to note the automatic mapping settings at the time the dictionary is created.

	
In the XSLT Mapper, right-click in the center panel of the XSLT Mapper and select Generate Dictionary.

This prompts you for the dictionary name and the directory in which to place the dictionary.

	
Check the Open Dictionary checkbox to view the dictionary after it is created. If the dictionary file is empty, this indicates that no fields were mapped that would not have been mapped with the current automatic mapping settings.

	
To use the dictionary in another map, first load the dictionary by selecting Tools > Preferences > XSL Maps > Auto Map.

	
Click Add below the Dictionaries list.

	
Browse for and select the dictionary XML file that was previously created from a similar map.

	
Click OK.

	
Before leaving the automatic mapping preferences, modify the mapping settings to match those used when creating the dictionary.

	
Click OK.

	
Perform an automatic mapping of whichever portion of the new map corresponds to the saved dictionary mappings.

For more information about automatic mapping, see Section 38.3.7, "How to Automatically Map Nodes."

38.3.11 What You May Need to Know About Generating Dictionaries in Which Functions are Used

You cannot create a dictionary for mappings in which functions are used. In these cases, the dictionary XML instructions are missing for the elements that were automatically mapped or which had an XPath function mapping. For example, assume you use string functions to map XSDs during design time. If you right-click in the XSLT Mapper and select Generate Dictionary, the dictionary is created, but instructions are not created in all places in which the string functions were used during mapping.

Note that you can create a dictionary for simple type mappings.

38.3.12 How to Create Map Parameters and Variables

You can create map parameters and variables. You create map parameters in the source tree and map variables in the target tree.

Note the following issues:

	
Parameters are created in the source tree, are global, and can be used anywhere in the mappings.

	
Variables are created in the target tree, and are either global or local. The location in which they are defined in the target tree determines if they are global or local.

	
Global variables are defined immediately beneath the <target> node and immediately above the actual target schema (for example, POAcknowledge). Right-click the <target> node to create a global variable.

	
Local variables are defined on a specific node beneath the actual target schema (for example, subnode name on schema POAcknowledge). Local variables can have the same name provided they are in different scopes. Local variables can only be used in their scopes, while global variables can be used anywhere in the mappings.

38.3.12.1 Creating a Map Parameter

To create a map parameter:

	
In the source tree root, right-click and select Add Parameter.

The Add Parameter dialog shown in Figure 38-37 appears.

	
Specify details for the parameter. For this example, a parameter named discount with a numeric default value of 0.0 is added.

Figure 38-37 Add Parameter Dialog

[image: Description of Figure 38-37 follows]

	
Click OK.

38.3.12.2 Creating a Map Variable

To create a map variable:

	
In the target tree, right-click the target tree root or any node and select Add Variable.

The Add Variable dialog shown in Figure 38-38 appears.

	
Specify details.

Since variables appear in the target tree, their XPath expression can be set in the same manner as other XSLT constructs in the target tree after inserting the variable. Therefore, the only required information in this dialog is a name for the variable. To set content for the variable, you must do it through this dialog. Content is handled differently from the XSLT select attribute on the variable.

Figure 38-38 Add Variable Dialog

[image: Description of Figure 38-38 follows]

	
Click OK.

The variable is added to the target tree at the position selected. The variable initially has a warning icon beside it. This indicates that its select XPath statement is undefined. Define the XPath through linking a source node, creating a function, or defining an explicit XPath expression as done for other target elements and XSLT constructs.

38.3.13 How to Search Source and Target Nodes

You can search source and target nodes. For example, you can search in a source node named invoice for all occurrences of the subnode named price.

To search source and target nodes:

	
Right-click a source or target node and select Find from the context menu.

The Find Node dialog shown in Figure 38-39 is displayed.

	
Enter a keyword for which to search.

	
Specify additional details, as necessary. For example:

	
Select Search Annotations if you want annotations text to also be searched.

	
Specify the scope of the search. You can search the entire source or target tree, search starting from a selected position, or search within a selected subtree.

Figure 38-39 Find Node Dialog

[image: Description of Figure 38-39 follows]

The first match found is highlighted, and the Find dialog closes. If no matches are found, a message displays on-screen.

	
Select the F3 key to find the next match in the direction specified. To search in the opposite direction, select the Shift and F3 keys.

	
Note:

You cannot search on functions or text values set with the Set Text option.

38.3.14 How to Control the Generation of Unmapped Target Elements

There are five options for controlling the generation of empty elements in the target XSL:

	
Do not generate unmapped nodes (default option).

	
Generate empty nodes for all unmapped target nodes.

	
Generate empty nodes for all required, unmapped target nodes.

	
Generate empty nodes for all nillable, unmapped target nodes.

	
Generate empty nodes for all required or nillable, unmapped target nodes.

Set these options as follows:

	
At the global level:

Select Tools > Preferences > XSL Maps. The global setting applies only when a map is created.

	
At the map level:

Select XSL Generation Options from the map context menu. Each map can then be set independently by setting the options at the map level.

Empty elements are then generated for the selected unmapped nodes. If the unmapped node is nillable, it is generated with xsi:nil="true".

38.3.15 How to Ignore Elements in the XSLT Document

When the XSLT Mapper encounters any elements in the XSLT document that cannot be found in the source or target schema, it cannot process them and displays an Invalid Source Node Path error. XSL map generation fails. You can create and import a file that directs the XSLT Mapper to ignore and preserve these specific elements during XSLT parsing by selecting Preferences > XSL Maps in the Tools main menu of Oracle JDeveloper.

For example, preprocessing may create elements named myElement and myOtherElementWithNS that you want the XSLT Mapper to ignore when it creates the graphical representation of the XSLT document. You create and import a file with these elements to ignore that includes the syntax shown in Example 38-10.

Example 38-10 File with Elements to Ignore

<elements-to-ignore>
 <element name="myElement"/>
 <element name="myOtherElementWithNS" namespace="NS"/>
</elements-to-ignore>

You must restart Oracle JDeveloper after importing the file.

38.3.16 How to Replace a Schema in the XSLT Mapper

You can replace the map source or target schema that currently displays in the XSLT Mapper.

To replace a schema in the XSLT Mapper:

	
In either the source or target panel, right-click and select Replace Schema.

This opens the Type Chooser dialog shown in Figure 38-40, which enables you to select the new source or target schema to use.

Figure 38-40 Replacing a Schema

[image: Description of Figure 38-40 follows]

	
Select the replacement schema and click OK.

You are then prompted to select to clear expressions in the current map.

	
Select Yes or No. If expressions are not cleared, you may need to correct the map in source view before reentering design view.

38.3.17 How to Substitute Elements and Types in the Source and Target Trees

You can substitute elements and types in the source and target trees.

Use element substitution when:

	
An element is defined as the head of a substitution group in the underlying schema. The element may or may not be abstract. Any element from the substitution group can be substituted for the original element.

	
An element is defined as an any element. Any global element defined in the schema can be substituted.

Use type substitution when:

	
A global type is available in the underlying schema that is derived from the type of an element in the source or target tree. The global type can then be substituted for the original type of the element. Any type derived from an abstract type can be substituted for that abstract type.

	
An element in the source or target tree is defined to be of the type anyType. Any global type defined in the schema can then be substituted.

Type substitution is supported by use of the xsi:type attribute in XML.

To substitute an element or type in the source and target trees:

	
In the source or target tree, right-click the element for which substitution applies.

	
From the context menu, select Substitute Element or Type. If this option is disabled, no possible substitutions exist for the element or its type in the underlying schema.

The Substitute Element or Type dialog shown in Figure 38-41 appears.

Figure 38-41 Substitute Element or Type Dialog

[image: Description of Figure 38-41 follows]

	
Select either Substitute an element or Substitute a type (only one may be available depending upon the underlying schema).

A list of global types or elements that can be substituted displays in the dialog.

	
Select the type or element to substitute.

	
Click OK.

The element or type is substituted for the originally selected element. This selection displays differently depending upon whether this is a type or element substitution and this is the source or target tree.

	
If the element is in the target tree and type substitution is selected:

The xsi:type attribute is added beneath the original element, as shown in Figure 38-42. It is disabled in design view and set to the type value that was selected. An S icon displays to indicate the node was substituted. You can map to any structural elements in the substituted type.

Figure 38-42 If the Element is in the Target Tree and Type Substitution is Selected

[image: Description of Figure 38-42 follows]

	
If the element is in the source tree and type substitution is selected:

The xsi:type attribute is added beneath the original element, as shown in Figure 38-43. An S icon is displayed to indicate the node was substituted. You can map from any structural elements in the substituted type.

Figure 38-43 If the Element is in the Source Tree and Type Substitution is Selected

[image: Description of Figure 38-43 follows]

	
If the element is in the target tree and element substitution is selected:

The original element is replaced in the tree with the substituted element, as shown in Figure 38-44. A comment indicates the original element name was added and an S icon displays to indicate the node was substituted. You may map to any structural elements in the substituted element.

Figure 38-44 If the Element is in the Target Tree and Element Substitution is Selected

[image: Description of Figure 38-44 follows]

	
If the element is in the source tree and element substitution is selected:

The original element and its possible replacement both display in the source tree under a new node named <Element Substitution>, as shown in Figure 38-45. An S icon displays to indicate the node was added. This feature enables you to build a map where the source object can contain either the original node or a substituted node. You can map to any structural elements in the substituted element.

Figure 38-45 If the Element is in the Source Tree and Element Substitution is Selected

[image: Description of Figure 38-45 follows]

	
Note:

Unlike element substitution, only one type substitution at a time can display in the source tree. This does not prevent you from writing a map that allows the source to sometimes have the original type or the substituted type; you can switch to another type at any time. XPath expressions that map to nodes that may not be visible in the source tree at any given time are still retained.

	
To remove a substituted node, right-click any node with an S icon and select Remove Substitution from the context menu.

	
To see all possible nodes where substitution is allowed, right-click the source or target tree and select Show Substitution Node Icons.

All nodes where substitution is possible are marked with an * icon, as shown in Figure 38-46.

Figure 38-46 All Possible Substitutions

[image: Description of Figure 38-46 follows]

	
To hide the icons, right-click and select Hide Substitution Node Icons.

38.4 Testing the Map

The XSLT Mapper provides a test tool to test the style sheet or map. The test tool can be invoked by selecting the Test menu item, as shown in Figure 38-47.

Figure 38-47 Invoking the Test Dialog

[image: Invoking the Test Dialog]

38.4.1 How to Test the Transformation Mapping Logic

The Test XSL Map dialog shown in Figure 38-48 enables you to test the transformation mapping logic you designed with the XSLT Mapper. The test settings you specify are stored and do not need to be entered again the next time you test. Test settings must be entered again if you close and reopen Oracle JDeveloper.

Figure 38-48 Test XSL Map Dialog

[image: Test Dialog]

To test the transformation mapping logic:

	
In the Source XML File field, choose to allow a sample source XML file to be generated for testing or click Browse to specify a different source XML file.

When you click OK, the source XML file is validated. If validation passes, transformation occurs, and the target XML file is created.

If validation fails, no transformation occurs and a message displays on-screen.

	
Select the Generate Source XML File checkbox to create a sample XML file based on the map source XSD schema.

	
Select the Show Source XML File checkbox to display the source XML files for the test. The source XML files display in an Oracle JDeveloper XML editor.

If the map has defined parameters, the Parameters With Schema or Parameters Without Schema tables can appear.

	
If the Parameters With Schema table appears, you can specify an input XML file for the parameter using the Browse button. Select the Generate File checkbox to generate a file.

	
If the Parameters Without Schema table appears, you can specify a value by selecting the Specify Value checkbox and making appropriate edits to the Type and Value columns.

	
In the Target XML File field, enter a file name or browse for a file name in which to store the resulting XML document from the transformation.

	
Select the Show Target XML File checkbox to display the target XML file for the test. The target XML file displays in an Oracle JDeveloper XML editor.

	
If you select to show both the source and target XML, you can customize the layout of your XML editors. Select Enable Auto Layout in the upper right corner and click one of the patterns.

	
Click OK.

The test results shown in Figure 38-49 appear.

For this example, the source XML and target XML display side-by-side with the XSL map underneath (the default setting). Additional source XML files corresponding to the Parameters With Schema table are displayed as tabs in the same area as the main source file. You can right-click an editor and select Validate XML to validate the source or target XML against the map source or target XSD schema.

Figure 38-49 Test Results

[image: Description of Figure 38-49 follows]

	
Note:

If the XSL map file contains domain value map (DVM) and XRef XPath functions, it cannot be tested. These functions cannot be executed during design time; they can only be executed during runtime.

38.4.2 How to Generate Reports

You can generate an HTML report with the following information:

	
XSL map file name, source and target schema file names, their root element names, and their root element namespaces

	
Target document mappings

	
Target fields not mapped (including mandatory fields)

	
Sample transformation map execution

Follow these instructions to generate a report.

	
In the center panel, right-click and select Generate Report.

The Generate Report dialog appears, as shown in Figure 38-50. Note that if the map has defined parameters, the appropriate parameter tables appear.

Figure 38-50 The Generate Report Dialog

[image: Description of Figure 38-50 follows]

For more information about the fields, see the online Help for the Generate Report dialog.

38.4.2.1 Correcting Memory Errors When Generating Reports

If you attempt to generate a report and receive an out-of-memory error, increase the heap size of the JVM as follows.

To increase the JVM heap size:

	
Open the JDev_Oracle_Home\jdev\bin\jdev.conf file.

	
Go to the following section:

Set the maximum heap to 512M
#
AddVMOption -Xmx512M

	
Increase the size of the heap as follows (for example, to 1024):

AddVMOption -Xmx1024M

In addition, you can also unselect the Open Report option on the Generate Report dialog before generating the report.

38.4.3 How to Customize Sample XML Generation

You can customize sample XML generation by specifying the following parameters. Select Preferences > XSL Maps in the Tools main menu of Oracle JDeveloper to display the Preferences dialog.

	
Number of repeating elements

Specifies how many occurrences of an element are created if the element has the attribute maxOccurs set to a value greater than 1. If the specified value is greater than the value of the maxOccurs attribute for a particular element, the number of occurrences created for that particular element is the maxOccurs value, not the specified number.

	
Generate optional elements

If selected, any optional element (its attribute minOccurs set to a value of 0) is generated the same way as any required element (its attribute minOccurs set to a value greater than 0).

	
Maximum depth

To avoid the occurrence of recursion in sample XML generation caused by optional elements, specify a maximum depth in the XML document hierarchy tree beyond which no optional elements are generated.

38.5 Demonstrating Features of the XSLT Mapper

This sample demonstrates the following features of the XSLT mapper:

	
Element and type substitution

	
Multiple sources use

	
New XSL constructs xsl:sort and xsl:copy-of

	
New variable use

In addition to this sample, Oracle provides other transformation samples that are available for download from the Oracle Technology Network (OTN). These samples are described in Table 38-2. To access these samples, visit the following URL:

http://www.oracle.com/technology/sample_code/products/soa

Table 38-2 Transformation Samples

	Sample	Description
	
mapper-101-basic-mapping

	
Demonstrates creation and basic editing of an XSLT map.

	
mapper-102-import-and-test

	
Demonstrates the following XSL mapper features:

	
Import of external XSL

	
Test execution with an overview of XML editor validation

	
Report execution

	
mapper-104-auto-mapping

	
Demonstrates the automatic mapping feature of the XSLT Editor.

	
mapper-105-multiple-sources

	
Demonstrates the use of multiple sources. The following topics are also covered in the process of creating the map sample.

	
Inserting a cloned for-each

	
Adding predicates to XPath expressions

	
Using variables

	
mapper-107-extension-functions

	
Demonstrates the use of user-defined extension functions.

	
mapper-108-substitution-mapping

	
Demonstrates the use of element substitution when:

	
An element is defined as the head of a substitution group in the underlying schema. The element may or may not be abstract. Any element from the substitution group can be substituted for the original element.

	
An element is defined as an any element. Any global element defined in the schema can be substituted for the any element. This is subject to any namespace constraints placed on the definition of the any element.

	
mapper-109-whats-new

	
Demonstrates the new features in the XSLT Mapper. These features are described in Section 38.5.1, "Opening the Application" through Section 38.5.7, "Testing the Map."

38.5.1 Opening the Application

You first create the sample application. When complete, the application matches the one provided in the WhatsNewApplication directory described in Step 1.

	
Download sample mapper-109-whats-new from OTN.

The sample includes the following files and directories:

	
artifacts/schemas/po.xsd and Attachment.xsd: source schema

	
artifacts/schemas/invoice.xsd and ReasonCodes.xsd: target schema

	
artifacts/application: starting application for this sample

	
WhatsNewApplication directory: completed sample map

	
Copy the artifacts/application folder to a separate work area.

	
Start Oracle JDeveloper.

	
Click WhatsNewApplication.jws in the artifacts/application folder you copied to a separate area.

	
If prompted to migrate files, click Yes.

The WhatsNewApplication displays in the Application Navigator.

38.5.2 Creating a New XSLT Map in the BPEL Process

You now create a new XSLT map with two sources that is invoked from the BPEL process included in the WhatsNewApplication application.

	
In the Application Navigator, double-click the ProcessPO2Invoice.bpel BPEL process.

	
From the BPEL Activities and Components section of the Component Palette, drag a Transform activity below the SetDiscontinuedProducts assign activity.

	
Double-click the Transform activity.

	
In the Name field of the General tab, enter Po2Invoice.

	
In the Transformation tab, perform the following steps:

	
Click the Add icon.

	
From the Source Variable list, select inputVariable.

	
From the Source Part list, select payload.

This variable contains the purchase order that is input to the BPEL process.

	
Click OK.

	
Click the Add icon a second time and select DiscontinuedList from the Source Variable list. The variable is created in the SetDiscontinuedProducts assign activity before the transformation activity.

	
Click OK.

	
From the Target Variable list, select outputVariable. This is the invoice that is returned from the BPEL process.

	
In the Mapper File field, change the name to xsl/Po2Invoice.

	
Click the Create Mapping icon to the right of the Mapper Name field to create and open the mapper file.

The XSLT Mapper opens.

	
From the File menu, select Save All. Your map looks as shown in Figure 38-51. Note that the second source is loaded as a parameter with the name DiscontinuedList:

Figure 38-51 XSLT Mapper File

[image: Description of Figure 38-51 follows]

38.5.3 Using Type Substitution to Map the Purchase Order Items

You now use type and element substitutions to map the purchase order (PO) items to the invoice items.

	
In the target tree, expand the tree so that Invoice/Items/Item is visible. Note that the Item element has an error icon next to it.

	
Move the mouse over the element to display a tool tip indicating that this element is defined as an abstract type.

To map to the Item element, you must first indicate which type the element takes in the final XML output.

	
Perform the following steps to indicate what type the element takes:

	
Right-click the Item element and select Substitute Element or Type.

The Substitute Element or Type dialog appears.

	
Select ShippedItemType from the list and click OK.

The Item element structure is filled out. The xsi:type attribute sets the type of the Item element in the target XML.

	
Note:

If you view invoice.xsd, note that ShippedItemType is derived from the abstract type ItemType, which is the type of the Item element.

	
Drag PurchaseOrder/Items to Invoice/Items to invoke the automatic mapper to map these nodes. To review automatic mapping functionality, see sample mapper-104-auto-mapping.

When complete, the Item elements in your map now look as shown in Figure 38-52:

Figure 38-52 Item Elements in XSLT Mapper

[image: Description of Figure 38-52 follows]

	
From the File menu, select Save All to save the map file.

38.5.4 Referencing Additional Source Elements

You now use the information in the additional source variable, DiscontinuedList, to eliminate items that have been discontinued. If the product name for an item is in DiscontinuedList, then that item cannot be shipped and is not placed in the final shipped item list.

	
Add an if statement above the Item node in the target tree by right-clicking the Item node and selecting Add XSL Node > if.

The if statement must test if a discontinued product exists in DiscontinuedList with the name of the current item. The item is added only to the shipped items if it is not in DiscontinuedList. There are many ways to define the test expression for the if statement. One way is described in the following steps.

	
Define the test expression for the if statement by selecting the following (note that the method for how variables are set has changed from the previous version of Oracle JDeveloper):

	
Add a global variable to the target tree by right-clicking the Invoice node and selecting Add Variable.

The Add Variable dialog appears.

	
In the Local Name field, enter DelimitedList. In the following steps, this variable is set to a string with a delimited list of discontinued product names.

	
Click OK.

The variable is added with a warning icon next to it.

	
To set the value of the variable, drag the create-delimited-string function from the String section of the Component Palette to the center panel.

	
Drag DiscontinuedList/ProductName to the input side of the create-delimited-string function.

	
Drag the output side of the create-delimited-string function to the new variable named DelimitedList.

	
Double-click the create-delimited-string function to open the Edit Function dialog.

	
In the delimiter field, add the pipe ("|") character.

	
Click OK.

Note that the input source is referenced in XPath expressions with $DiscontinuedList. This source is referenced as an input parameter in XPath expressions.

	
To set the XPath expression for the if statement, drag the contains function from the String section of the Component Palette to the center panel.

	
Drag the not function from the Logical Functions section of the Component Palette to the shaded area surrounding the contains function you added in Step 3.

	
Drag a line from the output side of the contains function to the input side of the not function.

	
Drag a line from the output side of the not function to the if statement.

	
Double-click the contains function to open the Edit Function dialog.

	
Enter values for the inputString and searchString, and click OK.

	
From the File menu, select Save All to save the map file.

The map file now looks as shown in Figure 38-53.

Figure 38-53 Mapper File

[image: Description of Figure 38-53 follows]

38.5.5 Using Element Substitution to Map the Shipping Address

You now map a substituted shipping contact element in the source to the ShippedTo element in the target.

	
Expand the PurchaseOrder/CustomerContacts element in the source to see the Contact element.

Note that this element has an error icon next to it.

	
Place the mouse over this element to display a tool tip indicating that this element is abstract.

In this situation, you must perform an element substitution to map the element.

	
Right-click the Contact element in the source tree and select Substitute Element or Type.

The Substitute Element or Type dialog is displayed with a list of elements in the substitution group of the abstract element Contact.

	
Select ShipToContact and click OK.

This is the element that you expect in the input XML. The structure of the ShipToContact element is now displayed in the source tree.

	
Expand the ShipToContact/InternationalAddress element in the source tree to show the address fields.

	
Expand the ShippedTo element in the target tree to show the target address fields.

Note the similarity in field names here, indicating that the automatic mapper can be used.

	
Drag the InternationalAddress element in the source tree to the ShippedTo element in the target tree and use the automatic mapper to help map the address fields below these elements.

	
Map any remaining elements not matched by the automatic mapper so that this section of the map is as shown in Figure 38-54:

Figure 38-54 XSLT Mapper

[image: Description of Figure 38-54 follows]

	
From the File menu, select Save All to save the map file.

38.5.6 Mapping the Remaining Fields

	
Map PurchaseOrder/ID to Invoice/ID.

	
Expand Invoice/Data to show an any element.

	
Use the copy-of xsl statement to copy the attachment data from the source to the target any element:

	
Right-click the Invoice/Data/any element and select Add XSL Node > copy-of.

The copy-of statement is added and the original any element is grayed out. This indicates that it is to be replaced by the nodes selected by the copy-of statement.

	
To set the copy-of selection, drag the PurchaseOrder/Attachments element in the source tree to the copy-of statement.

	
Perform the following steps to map the PurchaseOrder/Comment field to the Invoice/Comment field. Note that the Invoice/Comment field is an anyType element.

	
Right-click the Invoice/Comment field and select Substitute Element or Type.

	
Select xsd:string from the list of types provided.

	
Drag the PurchaseOrder/Comment field to the Invoice/Comment field to map the fields.

	
Add an XSL sort statement to the for-each statement:

	
Right-click the for-each statement in the target tree and select Add XSL Node > sort.

The Sort Edit dialog appears.

	
Select sort according to data-type Number.

	
Select sort order Descending.

	
Click OK. The sort node is added to the target tree.

	
Drag PurchaseOrder/Items/Item/Price from the source tree to the sort node in the target tree.

This sets the field on which to sort.

	
From the File menu, select Save All to save the map file. The map now looks as shown in Figure 38-55:

Figure 38-55 XLST Mapper

[image: Description of Figure 38-55 follows]

38.5.7 Testing the Map

An XSL map can be tested independently from the BPEL process in Oracle JDeveloper using the XSLT Mapper test tool. XML files can be input for each source input to the map.

	
Right-click the center panel and select Test.

The Test XSL Map dialog appears after a warning dialog. The warning indicates that you can test the map by creating your own sample input XML. The sample XML generator cannot generate sample data for the source tree substitutions.

A sample input XML file is provided: artifacts/xml/POInput.xml.

	
Follow these steps to select the sample input file for testing:

	
Uncheck the Generate Source XML File checkbox.

	
Click the Browse button for the Source XML File field.

	
Navigate to select the artifacts/xml/POInput.xml file.

A second sample file has been created with discontinued item data. This file is artifacts/xml/DiscontinuedItems.xml.

	
Follow these steps to use this file as the second source input.

	
Uncheck the Generate File checkbox to the left of the DiscontinuedList parameter name in the Parameters With Schema section of the dialog.

	
Click Browse for the DiscontinuedList parameter and select the artifacts/xml/DiscontinuedItems.xml file.

	
Click OK on the Test XSL Mapper dialog to run the test.

A PO2Invoice-Target.xml file is generated by the execution of the map. Note the use of xsi:type attributes, the Attachments node created by the copy-of statement, and the ordering of items caused by the sort statement in the PO2Invoice-Target.xml file.

39 Using Business Events and the Event Delivery Network

This chapter describes how to publish and subscribe to business events in a SOA composite application. Business events consist of message data sent as the result of an occurrence in a business environment. When a business event is published, other service components can subscribe to it.

This chapter includes the following sections:

	
Section 39.1, "Introduction to Business Events"

	
Section 39.2, "Creating Business Events in Oracle JDeveloper"

	
Section 39.3, "Subscribing to a Business Event or Publishing a Business Event from an Oracle Mediator Service Component"

	
Section 39.4, "Subscribing to a Business Event or Publishing a Business Event from a BPEL Process Service Component"

	
Section 39.5, "What You May Need to Know About Subscribing to a Business Event"

	
Section 39.6, "How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator"

For samples that show how to use business events with Oracle Mediator, visit the following URL:

https://soasamples.samplecode.oracle.com/#mediator

39.1 Introduction to Business Events

You can raise business events when a situation of interest occurs. For example, in a loan flow scenario, a BPEL Process service component executing a loan process can raise a loan completed event at the completion of the process. Other systems within the infrastructure of this application can listen for these events and, upon receipt of one instance of an event:

	
Use the event context to derive business intelligence or dashboard data.

	
Signal to a mail department that a loan package must be sent to a customer.

	
Invoke another business process.

	
Send information to Oracle Business Activity Monitoring (BAM)

Business events are typically a one-way, fire-and-forget, asynchronous way to send a notification of a business occurrence. The business process does not:

	
Rely on any service component receiving the business event to complete.

	
Care if any other service components receive the business event.

	
Need to know where subscribers (if any) are and what they do with the data.

These are important distinctions between business events and direct service invocations that rely on the Web Services Description Language (WSDL) file contract (for example, a SOAP service client). If the author of the event depends on the receiver of the event, then messaging typically must be accomplished through service invocation rather than through a business event. Unlike direct service invocation, the business event separates the client from the server.

A business event is defined using the event definition language (EDL). EDL is a schema used to build business event definitions. Applications work with instances of the business event definition.

EDL consists of the following:

	
Global name

Typically a Java package name (for example, com.acme.ExpenseReport.created), though this is not required.

	
Payload definition

The most common use for a definition is an XML Schema (XSD). The payload of a business event is defined using an XSD. The schema URI is contained in the root element of the payload.

Example 39-1 shows an EDL file with two business events in the BugReport event definition: bugUpdated and bugCreated. The namespace (BugReport) and associated schema file (BugReport.xsd) are referenced.

Example 39-1 EDL File with Two Business Events

<?xml version = '1.0' encoding = 'UTF-8'?>
<definitions targetNamespace="/model/events/edl/BugReport"
 xmlns:ns0="/model/events/schema/BugReport"
 xmlns="http://schemas.oracle.com/events/edl">
 <schema-import namespace="/model/events/schema/BugReport"
 location="BugReport.xsd"/>

 <event-definition name="bugCreated">
 <content element="ns0:bugCreatedInfo"/>
 </event-definition>

 <event-definition name="bugUpdated">
 <content element="ns0:bugUpdatedInfo"/>
 </event-definition>
</definitions>

These two events are available for subscription in Oracle Mediator.

Business events are deployed to the metadata service (MDS) repository. Deploying a business event to MDS along with its artifacts (for example, the XSDs) is known as publishing the EDL (or event definition). This action transfers the EDL and its artifacts to a shared area in MDS. An object in an MDS shared area is visible to all applications in the Resource Palette of Oracle JDeveloper. After an EDL is published, it can be subscribed to by other applications. EDLs cannot be unpublished; the definition always exists.

A subscription is for a specific qualified name (QName) (for example, x.y.z/newOrders). A QName is a tuple (URI, localName) that may be derived from a string prefix:localName with a namespace declaration such as xmlns:prefix=URI or a namespace context. In addition, subscriptions can be further narrowed down by using content-based filters.

Business events are published in the Event Delivery Network (EDN). The EDN runs within every SOA instance. Raised events are delivered by EDN to the subscribing service components. Oracle Mediator service components and BPEL Process service components can subscribe to and publish events.

The EDN has two different implementations:

	
EDN-DB: Uses an Oracle database as a backend store and depends on Oracle-specific features.

	
EDN-JMS: Uses a generic JMS queue as a back-end store.

If you are using an Oracle database, Oracle recommends that you use EDN-DB instead of EDN-JMS.

39.1.1 Local and Remote Events Boundaries

A single SOA composite application instance can reside in a single container or can be clustered across multiple containers. Another application (for example, an Oracle Application Development Framework (ADF) Business Component application) can be configured to run in the same container as the SOA composite application instance or in a different container.

Raising an event from a Java EE application can be done through a local event connection or a remote event connection:

	
Local event connection

If the publisher resides on the same Oracle WebLogic Server as the application and the publisher uses a local business event connection factory, the event is raised through a local event connection. In this scenario, synchronous subscriptions are executed synchronously.

	
Remote event connection

If the caller resides in a different container (different JVM) then the application, the event is raised through a remote event connection. Only asynchronous subscriptions are supported for remote event connections.

You can also raise events through PL/SQL APIs.

If another application (for example, an Oracle ADF Business Component application) is configured to run in the same container as the SOA composite application, it is optimized to use local event connections. The boundary for events is the application instance. When an event is raised in the application instance, subscriptions registered in the application instance are executed. Events are not propagated from one application instance to another. Propagation can be achieved through an Oracle Mediator in both instances, which listens to events and publishes them to a JMS queue.

39.2 Creating Business Events in Oracle JDeveloper

This section provides a high-level overview of how to create and subscribe to a business event. In this scenario, a business event named NewOrderSubmitted is created when a user places an order in a store front application (StoreFrontService service). You then create an Oracle Mediator service component to subscribe to this business event.

39.2.1 How to Create a Business Event

To create a business event:

	
Create a SOA project as an empty composite.

	
Launch the Event Definition Creation wizard in either of two ways:

	
In the SOA Composite Editor, click the icon above the designer. Figure 39-1 provides an example.

Figure 39-1 Event Definition Creation

[image: Description of Figure 39-1 follows]

	
From the File main menu, select New > SOA Tier > Service Components > Event Definition.

The Event Definition Creation dialog appears.

	
Enter the details described in Table 39-1.

Table 39-1 Event Definition Creation Wizard Fields and Values

	Field	Value
	
Event Definition Name

	
Enter a name.

Note: Do not enter a forward slash (/) as the event name. This creates an event definition file consisting of only an extension for a name (.edn).

	
Directory

	
Displays the directory path.

	
Namespace

	
Accept the default namespace or enter a value for the namespace in which to place the event.

	
Click the Add icon to add an event.

The Add an Event dialog appears.

	
Click the Search icon to select the payload, and click OK. Figure 39-2 provides details.

Figure 39-2 Select the Payload

[image: Description of Figure 39-2 follows]

	
In the Name field, enter a name, as shown in Figure 39-3.

Figure 39-3 Add an Event Dialog

[image: Description of Figure 39-3 follows]

	
Click OK.

The added event now appears in the Events section, as shown in Figure 39-4.

Figure 39-4 Event Definition Creation Dialog

[image: Description of Figure 39-4 follows]

	
Above the editor, click the cross icon (x) next to event_definition_name.edl to close the Events editor.

	
Click Yes when prompted to save your changes. If you do not save your changes, the event is not created and cannot be selected in the Event Chooser window.

The business event is published to MDS and you are returned to the SOA Composite Editor. The business event displays for browsing in the Resource Palette.

39.3 Subscribing to a Business Event or Publishing a Business Event from an Oracle Mediator Service Component

This section describes how to subscribe to a business event or publish a business event from an Oracle Mediator service component.

39.3.1 How to Subscribe to a Business Event

To subscribe to a business event:

	
From the Component Palette, drag a Mediator service component into the SOA Composite Editor. This service component enables you to subscribe to the business event.

	
In the Name field, enter a name.

	
From the Options list, select Subscribe to Event.

The window is refreshed to display an events table.

	
Click the Add icon to select an event.

The Event Chooser window appears.

	
Select the event you created and click OK.

You are returned to the Create Mediator dialog.

	
Select a level of delivery consistency for the event.

	
one and only one

Events are delivered to the subscriber in its own global (that is, JTA) transaction. Any changes made by the subscriber within that transaction are committed after the event processing is complete. If the subscriber fails, the transaction is rolled back. Failed events are retried a configured number of times.

	
guaranteed

Events are delivered to the subscriber asynchronously without a global transaction. The subscriber can choose to create its own local transaction for processing, but it is committed independently of the rest of the event processing. The event is guaranteed to be handed to the subscriber, but because there is no global transaction, there is a possibility that a system failure can cause an event to be delivered more than once. If the subscriber throws an exception (or fails in any way), the exception is logged, but the event is not resent.

	
immediate

Events are delivered to the subscriber in the same global transaction and same thread as the publisher. The publish call does not return until all immediate subscribers have completed processing. If any subscribers throw an exception, no additional subscribers are invoked and an exception is thrown to the publisher. The transaction is rolled back in case of any error during immediate processing.

	
If you want to filter the event, double-click the Filter column of the selected event or select the event and click the filter icon (first icon) above the table. This displays the Expression Builder dialog. This dialog enables you to specify an XPath filter expression. A filter expression specifies that the contents (payload or headers) of a message be analyzed before any service is invoked. For example, you can apply a filter expression that specifies that a service be invoked only if the message includes a customer ID.

When the expression logic is satisfied, the event is accepted for delivery.

For more information about filters, see Section 20.2.2.7, "How to Specify an Expression for Filtering Messages."

Figure 39-5 shows the Create Mediator dialog.

Figure 39-5 Create Mediator Dialog

[image: Description of Figure 39-5 follows]

	
Click OK.

Figure 39-6 shows an icon on the left side that indicates that Oracle Mediator is configured for an event subscription.

Figure 39-6 Configuration for Event Subscription

[image: Description of Figure 39-6 follows]

39.3.2 What Happens When You Create and Subscribe to a Business Event

The source code in Example 39-2 provides details about the subscribed event of the Oracle Mediator service component.

Example 39-2 Subscribed Event

<component name="OrderPendingEvent">
 <implementation.mediator src="OrderPendingEvent.mplan"/>
 <business-events>
 <subscribe
 xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
 runAsRoles="$publisher"/>
</business-events>
</component>

While not explicitly demonstrated in this example, you can define XPath filters on events. In Example 39-3, the event is accepted for delivery only if the initial deposit is greater than 50000:

Example 39-3 Definition of XPath Filters on Events

 <business-events>
 . . .
 . . .
 <filter>
 <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
 xmlns:ns1="http://xmlns.oracle.com/singleString"
 <xpath expression= "/be:business-event/be:content/
 sub1:AccountInfo/Details[@initialDeposit > 50000]" />
 </filter>
 . . .
 . . .
 </business-events>

39.3.3 What You May Need to Know About Subscribing to a Business Event

Note that subscribers in nondefault revisions of SOA composite applications can still get business events. For example, note the following behavior:

	
Create a composite application with an initial Oracle Mediator service component named M1 that publishes an event and a second Oracle Mediator service component named M2 that subscribes to the event. The output is written to a directory.

	
Deploy the composite application as revision 1.

	
Modify the composite application by adding a third Oracle Mediator service component named M3 that subscribes to the same event and writes the output to a different directory.

	
Deploy the composite application as revision 2 (the default).

	
Invoke revision 2 of the composite application.

Note that Oracle Mediator M2 writes the output to two files with the same content in the directory. As expected, Oracle Mediator M3 picks up the event and writes the output successfully to another directory. However, note that Oracle Mediator M2 (from revision 1) is also picking up and processing the published event from revision 2 of the composite application. Therefore, it creates one more output file in the same directory.

39.3.4 How to Publish a Business Event

You can create a second Oracle Mediator to publish the event that you subscribed to in Section 39.3.1, "How to Subscribe to a Business Event."

To publish a business event:

	
Create a second Oracle Mediator service component that publishes the event to which the first Oracle Mediator subscribes.

	
Return to the first Oracle Mediator service component.

	
In the Routing Rules section, click the Add icon.

	
Click Service when prompted by the Target Type window.

	
Select the second Oracle Mediator service component.

	
Select Save All from the File main menu.

39.3.5 What Happens When You Publish a Business Event

Note that the two Oracle Mediator service components appear in Example 39-4. One service component (OrderPendingEvent) subscribes to the event and the other service component (PublishOrderPendingEvent) publishes the event.

Example 39-4 Event Subscription and Publication

<component name="PublishOrderPendingEvent">
 <implementation.mediator src="PublishOrderPendingEvent.mplan"/>
 <business-events>
 <publishes xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="pub1:NewOrderSubmitted"/>
 </business-events>
 </component>

<component name="OrderPendingEvent">
 <implementation.mediator src="OrderPendingEvent.mplan"/>
 <business-events>
 <subscribe
 xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
 runAsRoles="$publisher"/>
</business-events>
</component>

39.4 Subscribing to a Business Event or Publishing a Business Event from a BPEL Process Service Component

This section covers the following topics:

	
Section 39.4.1, "How to Subscribe to a Business Event"

	
Section 39.4.2, "How to Publish a Business Event"

	
Section 39.4.3, "What Happens When You Subscribe to and Publish a Business Event"

39.4.1 How to Subscribe to a Business Event

To subscribe to a business event:

	
Drag a BPEL Process service component into the SOA Composite Editor from the Component Palette.

	
In the Name field, enter a name. Do not change any other default option and click OK.

The BPEL Process service component is created.

	
Double-click the BPEL Process service component. The Oracle BPEL Designer is opened. Alternatively, you can also right-click the BPEL Process service component and click Edit.

	
Drag a Receive activity from the Component Palette into the SOA Composite Editor, below the receiveInput activity.

	
Note:

The onMessage node of a pick activity can also be set up to receive events from the EDN. For more information about the onMessage node, refer to Section 5.4, "Introduction to Asynchronous Interactions with a Timeout".

	
Double-click the Receive activity. The Receive dialog opens, as shown in Figure 39-7. Alternatively, you can also right-click the Receive activity and click Edit.

Figure 39-7 Receive Dialog

[image: Receive dialog in the SOA Composite Editor]

	
In the Name field, enter a name.

	
From Interaction Type list, select Event. The layout of the Receive dialog changes, as shown in Figure 39-8.

Figure 39-8 Receive Dialog with Interaction Pattern as Event

[image: Receive dialog where the interaction pattern is set to Event]

	
Click the Browse Events... icon to the right of the Event field. The Subscribed Events dialog appears, as shown in Figure 39-9.

Figure 39-9 Subscribed Events Dialog

[image: Subscribed Events dialog]

	
Click the Add icon to select an event.

The Event Chooser dialog appears, as shown in Figure 39-10.

Figure 39-10 Event Chooser Dialog

[image: Event Chooser dialog]

	
Select the event you created and click OK.

You are returned to the Subscribed Events dialog.

	
Select a level of delivery consistency for the event.

	
one and only one

Events are delivered to the subscriber in its own global (that is, JTA) transaction. Any changes made by the subscriber within that transaction are committed after the event processing is complete. If the subscriber fails, the transaction is rolled back. Failed events are retried a configured number of times.

	
guaranteed

Events are delivered to the subscriber asynchronously without a global transaction. The subscriber can choose to create its own local transaction for processing, but it is committed independently of the rest of the event processing. The event is guaranteed to be handed to the subscriber, but because there is no global transaction, there is a possibility that a system failure can cause an event to be delivered more than once. If the subscriber throws an exception (or fails in any way), the exception is logged, but the event is not resent.

	
immediate

Events are delivered to the subscriber in the same global transaction and same thread as the publisher. The publish call does not return until all immediate subscribers have completed processing. If any subscribers throw an exception, no additional subscribers are invoked and an exception is thrown to the publisher. The transaction is rolled back in case of any error during immediate processing.

	
If you want to filter the event, double-click the Filter column of the selected event or select the event and click the filter icon (first icon) above the table. This displays the Expression Builder dialog. This dialog enables you to specify an XPath filter expression. A filter expression specifies that the contents (payload or headers) of a message be analyzed before any service is invoked. For example, you can apply a filter expression that specifies that a service be invoked only if the order includes a order ID.

When the expression logic is satisfied, the event is accepted for delivery.

	
Click OK to close the Subscribed Events dialog. You are returned to the Receive dialog.

	
Note:

Optionally, you can select the Create Instance checkbox, if this receive activity is the initiating receive activity that starts the BPEL Process service component instance. This action enables creation of a new BPEL Process service component instance for every invocation.
If this receive activity is a midprocess receive activity in which the BPEL instance is already started, then this receive activity waits for another event to continue the execution of this BPEL instance.

	
Click OK.

Figure 39-6 shows a BPEL Process service component that is configured for event subscription.

Figure 39-11 BPEL Process Service component Configuration for Event Subscription

[image: Description of Figure 39-11 follows]

39.4.2 How to Publish a Business Event

To publish a business event:

	
Drag an Invoke activity from the Component Palette into the SOA Composite Editor, below the Receive activity created in Section 39.4.1, "How to Subscribe to a Business Event".

	
Double-click the Invoke activity. The Invoke dialog opens, as shown in Figure 39-12. Alternatively, you can also right-click the Invoke activity and click Edit.

Figure 39-12 Invoke Dialog

[image: Invoke dialog for an invoke activity]

	
In the Name field, enter a name.

	
From Interaction Type list, select Event. The layout of the Invoke dialog changes, as shown in Figure 39-13.

Figure 39-13 Invoke Dialog with Interaction Pattern as Event

[image: Invoke dialog with interaction pattern set to event]

	
Click the Browse Events... icon to the right of the Event field. The Event Chooser window appears.

	
Select the event you created and click OK.

You are returned to the Invoke dialog.

	
Click OK.

Figure 39-14 shows a BPEL Process service component that is configured for an event subscription and publication.

Figure 39-14 BPEL Process Service Component Configuration for Event Subscription and Publishing

[image: Description of Figure 39-14 follows]

39.4.3 What Happens When You Subscribe to and Publish a Business Event

The source code in Example 39-2 shows how the composite.xml source changes for the subscribed and published events of a BPEL Process service component.

Example 39-5 Event Subscription and Publication

<component name="EventBPELProcess">
 <implementation.bpel src="EventBPELProcess.bpel"/>
 <property name="configuration.monitorLocation" type="xs:string"
 many="false">EventBPELProcess.monitor</property>
 <business-events>
 <subscribe xmlns:sub1="http://mycompany.com/events/orders"
 name="sub1:OrderReceivedEvent" consistency="oneAndOnlyOne"
 runAsRoles="$publisher"/>
 <publishes xmlns:pub1="http://mycompany.com/events/orders"
 name="pub1:ProductSoldAlert"/>
 </business-events>
</component>

While not explicitly demonstrated in this example, you can define XPath filters on events. In Example 39-6, the event is accepted for delivery only if the initial deposit is greater than 50000:

Example 39-6 Definition of XPath Filters on Events

 <business-events>
 . . .
 . . .
 <filter>
 <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
 xmlns:ns1="http://xmlns.oracle.com/singleString"
 <xpath expression= "/be:business-event/be:content/
 sub1:AccountInfo/Details[@initialDeposit > 50000]" />
 </filter>
 . . .
 . . .
 </business-events>

The standard BPEL activities such as receive, invoke, and onMessage are extended with an extra attribute bpelx:eventName, so that the BPEL Process service component can receive events from the EDN event bus. The schema for the eventName attribute is shown in Example 39-7:

Example 39-7 The Schema for the Eventname Attribute

<xs:attribute name="eventName" type="xs:QName">
 <xs:annotation>
 <xs:appinfo>
 <tns:parent>
 <bpel11:onMessage/>
 <bpel11:receive/>
 <bpel11:invoke/>
 </tns:parent>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>

Example 39-8 shows how the eventName attribute is used in the BPEL source file:

Example 39-8 BPEL Source Code Using eventName Attribute

<receive name="OrderPendingEvent" createInstance="yes"
 bpelx:eventName="ns1:OrderReceivedEvent"/>
<invoke name="Invoke_1" bpelx:eventName="ns1:ProductSoldAlert"/>

If the bpelx:eventName attribute is used in a receive, invoke, or onMessage element, then the standard attributes such as partnerLink, operation, or portType attributes should not be present. This is because the existence of the bpelx:eventName attribute shows that the activity is only interested in receiving events from the EDN event bus or publishing events to the EDN event bus.

The XSD file for the BPEL Process service component is slightly modified, so that the partnerLink, operation, and portTyp attributes are no longer mandatory. The JDeveloper validation logic should enforce the presence of either the bpelx:eventName attribute or the partnerLink, operation, and portTyp attributes, but not both. Example 39-9 shows the modified schema definition of a BPEL receive activity.

Example 39-9 Schema Definition of a BPEL Receive Activity

<complexType name="tReceive">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations" minOccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <!- BPEL mandatory attributes relaxed to optional for supporting BPEL-EDN ->
 <attribute name="partnerLink" type="NCName" use="optional"/>
 <attribute name="portType" type="QName" use="optional"/>
 <attribute name="operation" type="NCName" use="optional"/>
 <attribute name="variable" type="NCName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

The schema definition for the invoke and onMessage activities are modified similarly.

39.5 What You May Need to Know About Subscribing to a Business Event

Note that subscribers in nondefault revisions of SOA composite applications can still get business events. For example, note the following behavior:

	
Create a composite application with an initial Mediator service component or BPEL process service component named S1 that publishes an event and a second Mediator service component or BPEL process service component named S2 that subscribes to the event. The output is written to a directory.

	
Deploy the composite application as revision 1.

	
Modify the composite application by adding a third Mediator service component or BPEL process service component named s3 that subscribes to the same event and writes the output to a different directory.

	
Deploy the composite application as revision 2 (the default).

	
Invoke revision 2 of the composite application.

Note that service component S2 writes the output to two files with the same content in the directory. As expected, service component S3 picks up the event and writes the output successfully to another directory. However, note that service component S2 (from revision 1) also picks up and processes the published event from revision 2 of the composite application. Therefore, it creates one more output file in the same directory.

39.6 How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

This section provides a high-level overview of how to integrate Oracle ADF Business Component event conditions with SOA components. The SOA components include Mediator service components and BPEL Process service components.

To integrate Oracle ADF Business Component business events with SOA Components:

	
Create a business component project.

	
Add a business event definition to the project. This action generates an EDL file and an XSD file. The XSD file contains the definition of the payload. Ensure also that you specify that the event be raised by the Oracle ADF Business Component upon creation.

For more information about creating and publishing Oracle ADF Business Component business events, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Create a SOA composite application and manually copy the EDL and XSD schema files to the root directory of the SOA project. For example:

JDeveloper/mywork/SOA_application_name/SOA_project_name

	
Place schema files at the proper relative location from the EDL file based on the import.

	
Create a Mediator service component as described in Section 39.3.1, "How to Subscribe to a Business Event".

	
In the Event Chooser window, select the EDL file of the event, as described in Section 39.3.1, "How to Subscribe to a Business Event."

	
Create a BPEL Process service component in the same SOA composite application for the Oracle Mediator to invoke. In the Input Element field of the Advanced tab, ensure that you select the payload of the Business Component business event XSD created in Step 2.

	
Double-click the BPEL Process service component.

	
Drag an Email activity into the BPEL Process service component.

	
Use the payload of the business event XSD to complete the Subject and Body fields.

	
Return to the Oracle Mediator service component in the SOA Composite Editor.

	
Design a second service component to publish the event, such as a BPEL Process service component or a second Oracle Mediator service component.

SOA composite application design is now complete.

Part VIII

Completing Your Application

This part describes how to complete design of your application.

This part contains the following chapters:

	
Chapter 40, "Enabling Security with Policies"

	
Chapter 41, "Deploying SOA Composite Applications"

	
Chapter 42, "Automating Testing of SOA Composite Applications"

40 Enabling Security with Policies

This chapter describes how to manage policies during design-time in SOA composite applications.

This chapter includes the following sections:

	
Section 40.1, "Introduction to Policies"

	
Section 40.2, "Attaching Policies to Binding Components and Service Components"

40.1 Introduction to Policies

Oracle Fusion Middleware uses a policy-based model to manage and secure Web services across an organization. Policies apply security to the delivery of messages. Policies can be managed by both developers in a design-time environment and system administrators in a runtime environment.

Policies are comprised of one or more assertions. A policy assertion is the smallest unit of a policy that performs a specific action. Policy assertions are executed on the request message and the response message, and the same set of assertions is executed on both types of messages. The assertions are executed in the order in which they appear in the policy.

Table 40-1 describes the supported policy categories.

Table 40-1 Supported Policy Categories

	Category	Description
	
Message Transmission Optimization Mechanism (MTOM)

	
Ensures that attachments are in MTOM format. This format enables binary data to be sent to and from web services. This reduces the transmission size on the wire.

	
Reliability

	
Supports the WS-Reliable Messaging protocol. This guarantees the end-to-end delivery of messages.

	
Addressing

	
Verifies that simple object access protocol (SOAP) messages include WS-Addressing headers in conformance with the WS-Addressing specification. Transport-level data is included in the XML message rather than relying on the network-level transport to convey this information.

	
Security

	
Implements the WS-Security 1.0 and 1.1 standards. They enforce authentication and authorization of users. identity propagation, and message protection (message integrity and message confidentiality).

	
Management

	
Logs request, response, and fault messages to a message log. Management policies can also include custom policies.

Within each category there are one or more policy types that you can attach. For example, if you select the reliability category, the following types are available for selection:

	
oracle/wsrm10_policy

Supports version 1.0 of the Web Services Reliable Messaging protocol

	
oracle/wsrm11_policy

Supports version 1.1 of the Web Services Reliable Messaging protocol

For more information about available policies and details about which ones to use in your environment, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

40.2 Attaching Policies to Binding Components and Service Components

You can attach or detach policies to and from service binding components, service components, and reference binding components in a SOA composite application. Use Oracle JDeveloper to attach policies for testing security in a design-time environment. When your application is ready for deployment to a production environment, you can attach or detach runtime policies in Oracle Enterprise Manager Fusion Middleware Control Console.

For more information about runtime management of policies, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

40.2.1 How to Attach Policies to Binding Components and Service Components

To attach a policy to a service or reference binding component:

	
In the SOA Composite Editor, right-click a service binding component or reference binding component.

	
Select Configure WS-Policies.

Depending upon the interface definition of your SOA composite application, you may be prompted with an additional menu of options.

	
If the selected service or reference is interfacing with a synchronous BPEL process or Oracle Mediator service component, a single policy is used for both request and response messages. The Configure SOA WS Policies dialog immediately appears. Go to Step 4.

	
If the service or reference is interfacing with an asynchronous BPEL process or Oracle Mediator service component, the policies must be configured separately for request and response messages. The policy at the callback is used for the response sent from service to client. An additional menu is displayed. Go to Step 3.

	
Select the type of binding to use:

	
For Request:

Select the request binding for the service component with which to bind. You can only select a single request binding. This action enables communication between the binding component and the service component.

When request binding is configured for a service in the Exposed Services swimlane, the service acts as the server. When request binding is configured for a reference in the External References swimlane, the reference acts as the client.

	
For Callback: (only for interactions with asynchronous processes)

Select the callback binding for the service component with which to bind. This action enables message communication between the binding component and the service component. You can only select a single callback binding.

When callback binding is configured for a service in the Exposed Services swimlane, the service acts as the client. When callback binding is configured for a reference in the External References swimlane, the reference acts as the server.

The Configure SOA WS Policies dialog shown in Figure 40-1 appears. For this example, the For Request option was selected for a service binding component. The same types of policy categories are also available if you select For Callback.

Figure 40-1 Configure SOA WS Policies Dialog

[image: Description of Figure 40-1 follows]

	
Click the Add icon for the type of policy to attach:

	
MTOM

	
Reliability

	
Addressing

	
Security

	
Management

For this example, Security is selected. The dialog shown in Figure 40-2 is displayed.

Figure 40-2 Security Policies

[image: Description of Figure 40-2 follows]

	
Place your cursor over a policy name to display a description of policy capabilities.

	
Select the type of policy to attach.

	
Click OK.

You are returned to the Configure SOA WS Policies dialog shown in Figure 40-3. The attached security policy displays in the Security section.

Figure 40-3 Attached Security Policy

[image: Description of Figure 40-3 follows]

	
If necessary, add additional policies.

You can temporarily disable a policy by deselecting the checkbox to the left of the name of the attached policy. This action does not detach the policy.

	
To detach a policy, click the Delete icon.

	
When complete, click OK on the Configure SOA WS Policies dialog.

You are returned to the SOA Composite Editor.

To attach a policy to a service component:

	
Right-click a service component.

	
Select Configure Component WS Policies.

The Configure SOA WS Policies dialog shown in Figure 40-4 appears.

Figure 40-4 Configure SOA WS Policies Dialog

[image: Description of Figure 40-4 follows]

	
Click the Add icon for the type of policy to attach.

	
Security

	
Management

The dialog for your selection appears.

	
Select the type of policy to attach.

	
Click OK.

	
If necessary, add additional policies.

	
When complete, click OK on the Configure SOA WS Policies dialog.

For information about attaching policies during runtime in Oracle Enterprise Manager Fusion Middleware Control Console, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

40.2.2 How to Override Policy Configuration Property Values

Your environment may include multiple clients or servers with the same policies. However, each client or server may have their own specific policy requirements. You can override the policy property values based on your runtime requirements.

40.2.2.1 Overriding Client Configuration Property Values

You can override the default values of client policy configuration properties on a per client basis without creating new policies for each client. In this way, you can override client policies that define default configuration values and customize those values based on your runtime requirements.

	
Right-click one of the following binding components:

	
A service binding component in the Exposed Services swimlane, and select For Callback.

	
A reference binding component in the External References swimlane, and select For Request.

	
Go to the Security and Management sections. These instructions assume you previously attached policies in these sections.

Note that the Edit icon is enabled for both sections. Figure 40-5 provides details.

Figure 40-5 Client Policy Selection

[image: Description of Figure 40-5 follows]

	
Click the Edit icon. Note that regardless of which policies you select, the property names, values, and overridden values display for all of your attached client policies.

	
In the Override Value column, enter a value to override the default value shown in the Value column. Figure 40-6 provides details.

Figure 40-6 Client Policy Override Value

[image: Description of Figure 40-6 follows]

	
Click OK to exit the Config Override Properties dialog.

	
Click OK to exit the Configure SOA WS Policies dialog.

	
Click the Source button in the SOA Composite Editor.

The overriding value is reflected with the property name attribute in the composite.xml file, as shown in Example 40-1.

Example 40-1 Client Policy Override Value in composite.xml File

<binding.ws port="http://xmlns.oracle.com/Application26_
jws/Project1/BPELProcess1#wsdl.endpoint(bpelprocess1_client_
ep/BPELProcess1Callback_pt)">
 <wsp:PolicyReference URI="oracle/wss_http_token_client_policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/wss_http_token_over_ssl_client_policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/wss_oam_token_client_policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/wss_saml_token_bearer_over_ssl_client_
policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/wss_saml_token_over_ssl_client_policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/log_policy"
 orawsp:category="management"
 orawsp:status="enabled"/>
<property name="user.roles.include" type="xs:string" many="false">true</property>
 </binding.ws>

For more information about overriding policy settings, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

40.2.2.2 Overriding Server Configuration Property Values

You can override the default values of server policy configuration properties on a per server basis without creating new policies for each server. In this way, you can override server policies that define default configuration values and customize those values based on your runtime requirements.

	
Right-click one of the following binding components:

	
A service binding component in the Exposed Services swimlane, and select For Request.

	
A reference binding component in the External References swimlane, and select For Callback.

	
Go to the Security or Management sections. These instructions assume you previously attached a policy in these sections.

Note that the Edit icon is not enabled by default for both sections. You must explicitly select a policy to enable this icon. This is because you can override fewer property values for the server. Figure 40-7 provides details.

Figure 40-7 Server Policy Selection

[image: Description of Figure 40-7 follows]

	
Select an attached policy that permits you to override its value, and click the Edit icon.

	
In the Override Value column, enter a value to override the default value shown in the Value column. Figure 40-8 provides details. If the policy store is unavailable, the words no property store found in the store display in red in the Value column.

Figure 40-8 Server Policy Override Value

[image: Description of Figure 40-8 follows]

	
Click OK to exit the Config Override Properties dialog.

	
Click OK to exit the Configure SOA WS Policies dialog.

	
Click the Source button in the SOA Composite Editor.

The overriding value is reflected with the OverrideProperty attribute in the composite.xml file, as shown in Example 40-2.

Example 40-2 Server Policy Override Value in composite.xml File

<wsp:PolicyReference URI="oracle/binding_authorization_denyall_policy"
 orawsp:category="security" orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/binding_authorization_permitall_policy"
 orawsp:category="security" orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/binding_permission_authorization_policy"
 orawsp:category="security" orawsp:status="enabled">
 <orawsp:OverrideProperty orawsp:name="permission-class"
 orawsp:value="permission-different-class"/>
 </wsp:PolicyReference>

For more information about overriding policy settings, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

41 Deploying SOA Composite Applications

This chapter describes the deployment life cycle of SOA composite applications. Deployment prerequisite, packaging, preparation, and configuration tasks are described. Procedures for deploying composites with Oracle JDeveloper and scripting tools and creating configuration plans for moving SOA composite applications to and from different environments are also provided.

This chapter includes the following sections:

	
Section 41.1, "Introduction to Deployment"

	
Section 41.2, "Deployment Prerequisites"

	
Section 41.3, "Understanding the Packaging Impact"

	
Section 41.4, "Anatomy of a Composite"

	
Section 41.5, "Preparing the Target Environment"

	
Section 41.6, "Customizing Your Application for the Target Environment Prior to Deployment"

	
Section 41.7, "Deploying SOA Composite Applications"

	
Section 41.8, "Postdeployment Configuration"

	
Section 41.9, "Testing and Troubleshooting"

See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for instructions on deploying SOA composite applications from Oracle Enterprise Manager Fusion Middleware Control Console.

41.1 Introduction to Deployment

This chapter describes the following deployment life cycle topics:

	
Deployment prerequisites

	
Packaging details

	
Anatomy of a composite

	
Target environment preparation

	
Target environment configuration tasks

	
Composite deployment

	
Postdeployment configuration tasks

	
Testing and troubleshooting composite applications

For more information about the deployment life cycle, see Oracle Fusion Middleware Administrator's Guide.

41.2 Deployment Prerequisites

This section describes the basic prerequisites required for creating and deploying a SOA composite application.

41.2.1 Creating the Oracle SOA Suite Schema

Oracle SOA Suite components require schemas that must be installed in the Oracle or Microsoft SQL Server database. You create and load these schemas in your database with the Repository Creation Utility (RCU). For information about installing and configuring your schemas, see Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and

41.2.2 Creating a SOA Domain

After installation, you use the Oracle Fusion Middleware Configuration Wizard to create and configure a new Oracle WebLogic Server domain, and choose products such as Oracle SOA Suite to configure in that domain. This new domain contains the administration server and other managed servers, depending on the products you choose to configure.For more information, see Oracle Fusion Middleware Installation Guide for Oracle SOA Suite.

41.2.3 Configuring a SOA Cluster

You can deploy a SOA composite application into a clustered environment. For more information on creating and configuring a clustered environment, see Oracle Fusion Middleware High Availability Guide.

41.3 Understanding the Packaging Impact

You can separately package all required artifact files within a project of a SOA composite application into a SOA archive (SAR) JAR file though use of the following tools:

	
Oracle JDeveloper

During deployment on the Deployment Action page, you select the Deploy to SAR option. For more information, see Section 41.7.1.1.3, "Deploying the Profile."

	
ant scripts

Use the ant-sca-package script to package your artifacts. For more information, see Section 41.7.5.2.3, "Packaging a SOA Composite Application into a Composite SAR File."

	
WebLogic Scripting Tool (WLST) commands

Use the sca_package script to package your artifacts. For more information, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

A SAR file is a special JAR file that requires a prefix of sca_ (for example, sca_HelloWorld_rev1.0.jar).

In addition, when you deploy a SOA composite application with the Deploy to Application Server option on the Deployment Action page in Oracle JDeveloper, all required artifact files within a project are automatically packaged into one of the following files:

	
A self-contained JAR file (for single SOA composite applications)

For more information about self-contained composites, see Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper" and Section 41.7.2, "Deploying Multiple SOA Composite Applications in Oracle JDeveloper."

	
A ZIP file of multiple SOA composite applications that share metadata with one another

You can deploy and use shared metadata across SOA composite applications. Shared metadata is deployed to the SOA Infrastructure on the application server as a metadata service (MDS) archive JAR file. The archive file contains all shared resources. For more information, see Section 41.7.3, "Deploying and Using Shared Metadata Across SOA Composite Applications in Oracle JDeveloper."

41.4 Anatomy of a Composite

When you deploy a SOA composite application in Oracle JDeveloper, the composite is packaged in a JAR file (for a single composite application) or a ZIP file (for multiple SOA composite applications). These files can include the following artifacts:

	
Binding components and service components

	
References to B2B agreements, Oracle Web Service Manager (OWSM) policies, and human workflow task flows.

	
Metadata such as WSDL and XSD files. All shared metadata is deployed to an existing SOA Infrastructure partition on the server. This metadata is deployed under the /apps namespace. When you refer to this artifact in Oracle JDeveloper using a SOA-MDS connection, the URL is prefixed with oramds.

41.5 Preparing the Target Environment

The target environment is the SOA Infrastructure environment to which you want to deploy your SOA composite application. This is typically a development, test, or production environment. Depending upon the components, identity service provider, and security policies you are using in your composite application, additional configuration steps may be required as you move your application from one target environment to another. This section describes these tasks.

41.5.1 Creating Data Sources and Queues

A JDBC data source is an object bound to the JNDI tree that includes a pool of JDBC connections. Applications can look up a data source on the JNDI tree and then reserve a database connection from the data source. You create queues in which to enqueue outgoing messages or dequeue incoming messages. The Oracle JCA adapters listed in Table 41-1 require JDBC data sources and queues to be configured before deployment.

Table 41-1 Oracle JCA Adapter Tasks

	Adapter	Configuration Task	See Section...
	
Database adapter

	
JDBC data source

	
“Deployment" of Oracle Fusion Middleware User's Guide for Technology Adapters

	
AQ adapter

	
JDBC data source

	
“Configuring the Data Sources in the Oracle WebLogic Server Administration Console" of Oracle Fusion Middleware User's Guide for Technology Adapters

	
JMS adapter

	
Queue

	
“Using the Adapter Configuration Wizard to Configure Oracle JMS Adapter" of Oracle Fusion Middleware User's Guide for Technology Adapters

41.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS Adapter

Example 41-1 provides a script for creating the JMS resource and redeploying the JMS adapter.

	
Note:

This script is for demonstration purposes. You may need to modify this script based on your environment.

Example 41-1 Script for Creation of JMS Resource and Redeployment of JMS Adapter

lookup the JMSModule
 jmsSOASystemResource = lookup("SOAJMSModule","JMSSystemResource")

 jmsResource = jmsSOASystemResource.getJMSResource()

 cfbean = jmsResource.lookupConnectionFactory('DemoSupplierTopicCF')
 if cfbean is None:
 print "Creating DemoSupplierTopicCF connection factory"
 demoConnectionFactory =
 jmsResource.createConnectionFactory('DemoSupplierTopicCF')
 demoConnectionFactory.setJNDIName('jms/DemoSupplierTopicCF')
 demoConnectionFactory.setSubDeploymentName('SOASubDeployment')

 topicbean = jmsResource.lookupTopic('DemoSupplierTopic')
 if topicbean is None:
 print "Creating DemoSupplierTopic jms topic"
 demoJMSTopic = jmsResource.createTopic("DemoSupplierTopic")
 demoJMSTopic.setJNDIName('jms/DemoSupplierTopic')
 demoJMSTopic.setSubDeploymentName('SOASubDeployment')

try:
 save()
 # activate the changes
 activate(block="true")
 print "jms topic and factory for SOA Fusion Order Demo successfully created"
except:
 print "Error while trying to save and/or activate!!!"
 dumpStack()

print "Creating jms adapter connection factory information"
try:
 redeploy('JmsAdapter', '@deployment.plan@', upload='true', stageMode='stage')

except:
 print "Error while modifying jms adapter connection factory"

41.5.1.2 Script for Creation of the Database Resource and Redeployment of the Database Adapter

Example 41-2 provides a script for creating the database resource and redeploying the database adapter.

	
Note:

This script is for demonstration purposes. You may need to modify this script based on your environment.

Example 41-2 Script for Creation of the Database Resource and Redeployment of the Database Adapter

import os
connect(userName,passWord,'t3://'+wlsHost+':'+adminServerListenPort)
edit()
startEdit()

soaJDBCSystemResource1 = create('DBAdapterTestDataSource',"JDBCSystemResource")
soaJDBCResource1 = soaJDBCSystemResource1.getJDBCResource()
soaJDBCResource1.setName('DBAdapterDataSource')

soaConnectionPoolParams1 = soaJDBCResource1.getJDBCConnectionPoolParams()
soaConnectionPoolParams1.setTestTableName("SQL SELECT 1 FROM DUAL")

soaConnectionPoolParams1.setInitialCapacity(10)
soaConnectionPoolParams1.setMaxCapacity(100)

soaDataSourceParams1 = soaJDBCResource1.getJDBCDataSourceParams()
soaDataSourceParams1.addJNDIName('jdbc/dbSample')
soaDriverParams1 = soaJDBCResource1.getJDBCDriverParams()
soaDriverParams1.setUrl('jdbc:oracle:thin:@'+db_host_name+':'+db_port+':'+db_sid)
soaDriverParams1.setDriverName('oracle.jdbc.xa.client.OracleXADataSource')
soaDriverParams1.setPassword('my_password')

soaDriverProperties1 = soaDriverParams1.getProperties()
soaProperty1 = soaDriverProperties1.createProperty("user")
soaProperty1.setValue('scott')

varSOAServerTarget = '/Servers/'+serverName
soaServerTarget = getMBean(varSOAServerTarget)

soaJDBCSystemResource1.addTarget(soaServerTarget)

dumpStack()

try :

save()

activate(block="true")

except:
 print "Error while trying to save and/or activate!!!"
 dumpStack()

print "Creating DB adapter resource information"
try:
 redeploy('DBAdapter', '@deployment.plan@', upload='true', stageMode='stage')

except:
 print "Error while modifying db adapter connection factory"

41.5.2 Creating Connection Factories and Connection Pooling

The Oracle JCA adapters are deployed as JCA 1.5 resource adapters in an Oracle WebLogic Server container. Adapters are packaged as Resource Adapter Archive (RAR) files using a JAR format. When adapters are deployed, the RAR files are used and the adapters are registered as connectors with the Oracle WebLogic Server or middle-tier platform. The RAR file contains the following:

	
The ra.xml file, which is the deployment descriptor XML file containing deployment-specific information about the resource adapter

	
Declarative information about the contract between Oracle WebLogic Server and the resource adapter

Adapters also package the weblogic-ra.xml template file, which defines the endpoints for connection factories.

For information about creating connection factories and connection pools, see Oracle Fusion Middleware User's Guide for Technology Adapters.

41.5.3 Enabling Security

If you are using an identity service provider with human workflow or attaching authentication and authorization policies, you must perform additional setup tasks.

	
Identity service provider for human workflow

By default, the identity service uses the embedded LDAP server in Oracle WebLogic Server as the default authentication provider. If you are using human workflow, you can configure Oracle WebLogic Server to use an alternative identity service provider, such as Oracle Internet Directory, Microsoft Active Directory, or Sun iPlanet. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite. Note that the embedded LDAP server is not supported in clustered environments.

	
Authentication provider (OWSM policies)

Policies that use certain types of tokens (for example, the username, X.509, and SAML tokens) require an authentication provider. For information about selecting and configuring an authentication provider, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

	
Authorization provider (OWSM policies)

After a user is authenticated, you must verify that the user is authorized to access a web service with an authorization policy. You can create an authorization policy with several types of assertion templates. For information about authorization policies and which resources to protect, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

41.5.4 Deploying Trading Partner Agreements and Task Flows

If you are using Oracle B2B or a human task, you must perform additional setup tasks.

	
Deploying trading partner agreements

A trading partner agreement defines the terms that enable two trading partners, the initiator and the responder, to exchange business documents. It identifies the trading partners, trading partner identifiers, document definitions, and channels. You must deploy the agreement from the design-time repository to the run-time repository. For more information, see Oracle Fusion Middleware User's Guide for Oracle B2B.

	
Deploying the task flow

You must deploy the task flow in order to use it in Oracle BPM Worklist.

41.5.5 Creating an Application Server Connection

To deploy a SOA composite application that does not share metadata with another composite, use the Create Application Server Connection wizard to create an application server connection. For more information, see Section 41.7.1.1.1, "Creating an Application Server Connection."

41.5.6 Creating a SOA-MDS Connection

To deploy a SOA composite application that shares metadata with other composites, use the Create SOA-MDS Connection wizard to create a connection to a database-based MDS server. For more information, see Section 41.7.3.2.1, "Creating a SOA-MDS Connection."

41.6 Customizing Your Application for the Target Environment Prior to Deployment

Not all customization tasks must be manually performed as you move to and from development, test, and production environments. This section describes how to use a configuration plan to automatically configure your SOA composite application for the next target environment.

41.6.1 Customizing SOA Composite Applications for the Target Environment

As you move projects from one environment to another (for example, from testing to production), you typically must modify several environment-specific values, such as JDBC connection strings, hostnames of various servers, and so on. Configuration plans enable you to modify these values using a single text (XML) file called a configuration plan. The configuration plan is created in either Oracle JDeveloper or with WebLogic Scripting Tool (WLST) commands. During process deployment, the configuration plan is used to search the SOA project for values that must be replaced to adapt the project to the next target environment.

41.6.1.1 Introduction to Configuration Plans

This section provides an overview of creating and attaching a configuration plan:

	
You create and edit a configuration plan file in which you can replace the following attributes and properties:

	
Any composite, service component, reference, service, and binding properties in the SOA composite application file (composite.xml)

	
Attribute values for bindings (for example, the location for binding.ws)

	
schemaLocation attribute of an import in a WSDL file

	
location attribute of an include in a WSDL file

	
schemaLocation attribute of an include, import, and redefine in an XSD file

	
Any properties in JCA adapter files

	
Modify and add policy references for the following:

	
Service component

	
Service and reference binding components

	
Note:

The configuration plan does not alter XSLT artifacts in the SOA composite application. If you want to modify any XSL, do so in the XSLT Mapper. Using a configuration plan is not useful. For example, you cannot change references in XSL using the configuration plan file. Instead, they must be changed manually in the XSLT Mapper in Oracle JDeveloper when moving to and from test, development, and production environments. This ensures that the XSLT Mapper opens without any issues in design time. However, leaving the references unchanged does not impact runtime behavior.

	
You attach the configuration plan file to a SOA composite application JAR file or ZIP file (if deploying a SOA bundle) during deployment with one of the following tools:

	
Oracle JDeveloper

For more information, see Section 41.7.1.1.3, "Deploying the Profile."

	
ant scripts

For more information, see Section 41.7.5.2.4, "Deploying a SOA Composite Application."

	
WLST commands

For more information, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

	
During deployment, the configuration plan file is used to search the composite.xml, WSDL, and XSD files in the SOA composite application JAR or ZIP file for values that must be replaced to adapt the project to the next target environment.

41.6.1.2 Introduction to a Configuration Plan File

The following example shows a configuration plan in which you modify the following:

	
An inFileFolder property for composite FileAdaptorComposite is replaced with mytestserver/newinFileFolder.

	
A hostname (myserver17) is replaced with test-server and port 8888 is replaced with 8198 in the following locations:

	
All import WSDLs

	
All reference binding.ws locations

The composite.xml file looks as shown in Example 41-3:

Example 41-3 composite.xml File

<composite>
 <import namespace="http://example.com/hr/"
 location="http://myserver17.us.oracle.com:8888/hrapp/HRAppService?WSDL"
 importType="wsdl"/>
 <service name="readPO">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/readPO/#wsdl.interface(Read
_ptt)"/>
 <binding.jca config="readPO_file.jca"/>
 <property name="inFileFolder" type="xs:string" many="false"
 override="may">/tmp/inFile</property>
 </service>
 <reference name="HRApp">
 <interface.wsdl
 interface="http://example.com/hr/#wsdl.interface(HRAppService)"/>
 <binding.ws
port="http://example.com/hr/#wsdl.endpoint(HRAppService/HRAppServiceSoapHttpPort)"
 location="http://myserver17.us.oracle.com:8888/hrapp/HRAppService?WSDL"/>
 <binding.java serviceName="{http://example.com/hr/}HRAppService"
 registryName="HRAppCodeGen_JBOServiceRegistry"/>
 </reference>
</composite>

The configuration plan file looks as shown in Example 41-4.

Example 41-4 Configuration Plan File

<?xml version="1.0" encoding="UTF-8"?>
<SOAConfigPlan
 xmlns:jca="http://platform.integration.oracle/blocks/adapter/fw/metadata"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 xmlns:edl="http://schemas.oracle.com/events/edl"
 xmlns="http://schemas.oracle.com/soa/configplan">
 <composite name="FileAdaptorComposite">
 <service name="readPO">
 <binding type="*">
 <property name="inFileFolder">
 <replace>/mytestserver/newinFileFolder</replace>
 </property>
 </binding>
 </service>
 </composite>
 <!-- For all composite replace host and port in all imports wsdls -->
 <composite name="*">
 <imports>
 <searchReplace>
 <search>myserver17</search>
 <replace>test-server</replace>
 </searchReplace>
 <searchReplace>
 <search>8888</search>
 <replace>8198</replace>
 </searchReplace>
 </imports>
 <reference name="*">
 <binding type="ws">
 <attribute name="location">
 <searchReplace>
 <search>myserver17</search>
 <replace>test-server</replace>
 </searchReplace>
 <searchReplace>
 <search>8888</search>
 <replace>8198</replace>
 </searchReplace>
 </attribute>
 </binding>
 </reference>
 </composite>
</soaConfigPlan>

A policy is replaced if a policy for the same URI is available. Otherwise, it is added. This is different from properties, which are modified, but not added.

41.6.1.3 Introduction to Use Cases for a Configuration Plan

The following steps provide an overview of how to use a configuration plan when moving from development to testing environments:

	
User A creates SOA composite application Foo.

	
User A deploys Foo to a development server, fixes bugs, and refines the process until it is ready to test in the staging area.

	
User A creates and edits a configuration plan for Foo, which enables the URLs and properties in the application to be modified to match the testing environment.

	
User A deploys Foo to the testing server using Oracle JDeveloper or a series of command-line scripts (can be WLST-based). The configuration plan created in Step 3 modifies the URLs and properties in Foo.

	
User A deploys SOA composite application Bar in the future and applies the same plan during deployment. The URLs and properties are also modified.

The following steps provide an overview of how to use a configuration plan when creating environment-independent processes:

	
Note:

This use case is useful for users that have their own development server and a common development and testing server if they share development of the same process. Users that share the same deployment environment (that is, the same development server) may not find this use case as useful.

	
User A creates SOA composite application Foo.

	
User A deploys Foo to their development server, fixes bugs, and refines the process until it is ready to test in the staging area.

	
User A creates a configuration plan for Foo, which enables the URLs and properties in the process to be modified to match the settings for User A's environment.

	
User A checks in Foo and the configuration plan created in Step 3 to a source control system.

	
User B checks out Foo from source control.

	
User B makes a copy of the configuration plan to match their environment and applies the new configuration plan onto Foo's artifacts.

	
User B imports the application into Oracle JDeveloper and makes several changes.

	
User B checks in both Foo and configuration plan B (which matches user B's environment).

	
User A checks out Foo again, along with both configuration plans.

41.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper

This section describes how to create and use a configuration plan. In particular, this section describes the following:

	
Creating and editing a configuration plan

	
Attaching the configuration plan to a SOA composite application JAR file

	
Validating the configuration plan

	
Deploying the SOA composite application JAR or ZIP file in which the configuration plan is included

To create a configuration plan in Oracle JDeveloper:

	
Open Oracle JDeveloper.

	
Right-click the composite.xml file of the project in which to create a configuration plan, and select Generate Config Plan. Figure 41-1 provides details.

Figure 41-1 Generate a Configuration Plan

[image: Description of Figure 41-1 follows]

The Composite Configuration Plan Generator dialog appears.

Figure 41-2 Composite Configuration Plan Generator Dialog

[image: Description of Figure 41-2 follows]

	
Create a configuration plan file for editing, as shown in Table 41-2.

Table 41-2 Generate a Configuration Plan

	Field	Description
	
Specify the file name (.xml) for the configuration plan

	
Enter a specific name or accept the default name for the configuration plan. The file is created in the directory of the project and packaged with the SOA composite application JAR or ZIP file.

Note: During deployment, you can specify a different configuration file when prompted in the Deploy Configuration page of the deployment wizard.

	
Overwrite existing file

	
Click to overwrite an existing configuration plan file with a different file in the project directory.

	
Click OK.

This creates and opens a single configuration plan file for editing, similar to that shown in Example 41-4. You can modify URLs and properties for the composite.xml, WSDL, and schema files of the SOA composite application. Figure 41-3 provides details.

Figure 41-3 Configuration Plan Editor

[image: Description of Figure 41-3 follows]

	
Add values for server names, port numbers, and so on to the existing syntax. You can also add replacement-only syntax when providing a new value. You can add multiple search and replacement commands in each section.

	
From the File menu, select Save All.

	
Above the editor, click the x to the right of the file name to close the configuration plan file.

	
Right-click the composite.xml file again, and select Validate Config Plan.

The Composite Configuration Plan Validator appears, as shown in Figure 41-4.

Figure 41-4 Validate the Configuration Plan

[image: Description of Figure 41-4 follows]

	
Select the configuration plan to validate. This step identifies all search and replacement changes to be made during deployment. Use this option for debugging only.

	
Note the directory in which a report describing validation results is created, and click OK.

The Log window in Oracle JDeveloper indicates if validation succeeded and lists all search and replacement commands to perform during SOA composite application deployment. This information is also written to the validation report.

	
Note:

The old composite.xml, WSDL, and XSD files are not replaced with files containing the new values for the URLs and properties appropriate to the next environment. Replacement occurs only when the SOA composite application is deployed.

	
Deploy the SOA composite application by following the instructions in one of the following sections:

	
Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper"

	
Section 41.7.2, "Deploying Multiple SOA Composite Applications in Oracle JDeveloper"

	
Section 41.7.3, "Deploying and Using Shared Metadata Across SOA Composite Applications in Oracle JDeveloper"

During deployment, the Deploy Configuration page shown in Step 4 prompts you to select the configuration plan to include in the SOA composite application archive.

	
Select the configuration plan to include with the SOA composite application.

	
Click OK.

41.6.1.5 How to Create a Configuration Plan with the WLST Utility

As an alternative to using Oracle JDeveloper, you can use the WLST command line utility to perform the following configuration plan management tasks:

	
Generate a configuration plan for editing

sca_generatePlan(configPlan, sar, composite, overwrite, verbose)

	
Attach the configuration plan file to the SOA composite application JAR file

sca_attachPlan(sar, configPlan, overwrite, verbose)

	
Validate the configuration plan

sca_validatePlan(reportFile, configPlan, sar, composite, overwrite, verbose)

	
Extract a configuration plan packaged with the JAR file for editing

sca_extractPlan(sar, configPlan, overwrite, verbose)

For information on how to use these commands, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

41.6.1.6 How to Attach a Configuration Plan with ant Scripts

As an alternative to using Oracle JDeveloper, you can use ant scripts to attach the configuration plan file to the SOA composite application JAR or ZIP file during deployment. For instructions, see Section 41.7.5.2.4, "Deploying a SOA Composite Application."

41.7 Deploying SOA Composite Applications

This section describes how to deploy the following types of SOA composite applications.

	
Deploying a single composite in Oracle JDeveloper

	
Deploying multiple composites in Oracle JDeveloper

	
Deploying and using shared metadata in Oracle JDeveloper

	
Deploying an existing SOA archive in Oracle JDeveloper

	
Managing SOA composite applications with WLST and ant scripts

	
Deploying from Oracle Enterprise Manager Fusion Middleware Control Console

	
Deploying SOA composite applications to a cluster

41.7.1 Deploying a Single SOA Composite in Oracle JDeveloper

Oracle JDeveloper requires the use of profiles for SOA projects and applications to be deployed to Oracle WebLogic Server.

41.7.1.1 How to Deploy a Single SOA Composite

This section describes how to deploy a single SOA composite application with Oracle JDeveloper.

41.7.1.1.1 Creating an Application Server Connection

You must create a connection to the Oracle WebLogic Server to which to deploy a SOA composite application.

To create an application server connection:

	
From the File main menu, select New.

	
In the General list, select Connections.

	
Select Application Server Connection, and click OK.

	
In the Connection Name field, enter a name for the connection.

	
In the Connection Type list, select WebLogic 10.3.

	
Click Next.

	
In the Username field, enter the user authorized for access to the application server.

	
In the Password field, enter the password for this user.

	
Click Next.

	
In the Weblogic Hostname (Administration Server) field, enter the host on which the Oracle WebLogic Server is installed.

	
In the Port and SSL Port fields, enter the appropriate port values.

	
If you want to use SSL, enable the Always use SSL checkbox.

	
In the WebLogic Domain field, enter the Oracle SOA Suite domain. For additional details about specifying domains, click Help.

	
Click Next.

	
Click Test Connection to test your server connection.

	
If the connection is successful, click Finish. Otherwise, click Back to make corrections in the previous dialogs. Even if the connection test is unsuccessful, a connection is created.

41.7.1.1.2 Optionally Creating a Project Deployment Profile

A required deployment profile is automatically created for your project. The application profile includes the JAR files of your SOA projects. If you want, you can create additional profiles.

To create a project deployment profile:

	
In the Application Navigator, right-click the SOA project.

	
Select Project Properties.

The Project Properties dialog appears.

	
Click Deployment.

	
Click New.

The Create Deployment Profile dialog appears.

	
Enter the following values:

Table 41-3 Create Deployment Profile Dialog Fields and Values

	Field	Description
	
Archive Type

	
Select SOA-SAR File.

A SAR is a deployment unit that describes the SOA composite application. The SAR packages service components such as BPEL processes, business rules, human tasks, and mediator routing services into a single application. The SAR file is analogous to the BPEL suitcase archive of previous releases, but at the higher composite level and with any additional service components that your application includes (for example, human tasks, business rules, and mediator routing services).

	
Name

	
Enter a deployment profile name.

	
Click OK.

The SAR Deployment Profile dialog appears.

	
Click OK to close the SAR Deployment Profile Properties dialog.

The deployment profile shown in Figure 41-5 displays in the Project Properties dialog.

Figure 41-5 Project Profile

[image: Description of Figure 41-5 follows]

41.7.1.1.3 Deploying the Profile

You now deploy the project profile to Oracle WebLogic Server. Deployment requires the creation of an application server connection. You can create a connection during deployment by clicking the Add icon in Step 10 or before deployment by following the instructions in Section 41.7.1.1.1, "Creating an Application Server Connection."

To deploy the profile:

	
In the Application Navigator, right-click the SOA project.

	
Select Deploy > project_name.

The value for project_name is the SOA project name.

The Deployment Action page of the Deploy Project_Name wizard appears. Figure 41-6 provides an example.

Figure 41-6 Deployment Action Page

[image: Description of Figure 41-6 follows]

	
Select one of the following deployment options:

	
Deploy to Application Server

Creates a JAR file for the selected SOA project and deploys it to Oracle WebLogic Server.

	
Deploy to SAR

Creates a SAR (JAR) file of the selected SOA project, but does not deploy it to Oracle WebLogic Server. This option is useful for environments in which:

	
Oracle WebLogic Server may not be running, but you want to create the artifact JAR file.

	
You want to deploy multiple JAR files to Oracle WebLogic Server from a batch script. This option offers an alternative to opening all project profiles (which you may not have) and deploying them from Oracle JDeveloper.

The page that displays differs based on your selection.

	
Select the deployment option appropriate for your environment.

Table 41-4 Deployment Target

	If You Select...	Go to...
	
Deploy to Application Server

	
Step 4a

	
Deploy to SAR

	
Step 4b

	
View the Deploy Configuration page shown in Figure 41-7.

Figure 41-7 Deploy Configuration Page for Application Server Deployment

[image: Description of Figure 41-7 follows]

	
View the Deploy Configuration page shown in Figure 41-8.

Figure 41-8 Deploy Configuration Page for SAR Deployment

[image: Description of Figure 41-8 follows]

	
Provide values appropriate to your environment, as described in Table 41-5. If you selected to deploy to a server, additional fields display in the page.

Table 41-5 SOA Deployment Configuration Dialog

	Field	Description
	
Project

	
Displays the project name.

	
Current Revision ID

	
Displays the current revision ID of the project.

	
New Revision ID

	
Optionally change the revision ID of the SOA composite application.

	
Ignore BPEL Monitor deployment errors

Note: This checkbox only appears if there is at least one .monitor file in the application.

	
Deselect this checkbox to display BPEL Monitor deployment errors. This checkbox corresponds to the ignoreErrors property in the monitor.config BPEL project file. This file defines runtime and deployment properties needed to connect with Oracle BAM Server to create the Oracle BAM data objects and dashboards.If Oracle BAM Server is unreachable, and ignoreErrors is set to true, deployment of the composite does not stop. If set to false and Oracle BAM Server is unavailable, deployment fails.

	
Mark composite revision as default

	
If you do not want the new revision to be the default, you can deselect this box. By default, a newly deployed composite revision is the default. This revision is instantiated when a new request comes in.

The option only displays if you selected Deploy to Application Server on the Deployment Action page.

	
Overwrite any existing composites with the same revision ID

	
Select to overwrite any existing SOA composite application of the same revision value.

The option only displays if you selected Deploy to Application Server on the Deployment Action page.

	
Use the following SOA configuration plan for all composites

	
Click Browse to select the same configuration plan to use for all composite applications. This option is used when deploying multiple composite applications.

	
SOA Configuration Plan

	

	
	
Do not attach

	
Select to not include a configuration plan with the SOA composite application JAR file. If you have not created a configuration plan, this field is disabled.

	
	
Select a configuration plan from the list

	
Select to include a configuration plan with the SOA composite application.

The configuration plan enables you to define the URL and property values to use in different environments. During process deployment, the configuration plan is used to search the SOA project for values that must be replaced to adapt the project to the next target environment.

If you have not created a configuration plan, this field is disabled.

See Section 41.6.1, "Customizing SOA Composite Applications for the Target Environment" for instructions on creating a configuration plan.

	
Click Next.

	
If the SOA project you selected for deployment includes a task flow project defined for a human task, you are prompted with the Task Flow Deployment dialog, as shown in Figure 41-9.

Otherwise, go to Step 10.

You create or configure an Enterprise Resource Archive (EAR) file for the task flow forms of human tasks. The EAR file consists of a Web Resource Archive (WAR) profile that you select in the Deployable Task Flow Projects table of this dialog.

Figure 41-9 Task Flow Deployment Page

[image: Description of Figure 41-9 follows]

	
Provide values appropriate to your environment, as described in Table 41-6.

Table 41-6 Task Flow Deployment Dialog

	Field	Description
	
EAR Profile Name

	
Select the EAR file to include in the deployment. This list displays all available EAR profiles in the current Oracle JDeveloper application. These EAR profiles are used as a template to create a new EAR profile to deploy based on the WAR profiles selected in the Deployable Task Flow Projects table. You can also enter any EAR profile name to deploy.

	
Append composite revision to name

	
Select to append the revision number of the composite to the EAR file name. If selected, this checkbox includes the composite revision in the EAR name, WAR profile, and context root. This enables you to deploy an application specific to a composite revision.

	
Add generated profiles to application

	
Select to add the generated EAR profile to the current SOA composite application's EAR deployment profile list. The application may have to be saved to persist the generated EAR profile. Once the deployment profile is available, you can deploy the EAR profile by selecting Application > Deploy. This enables you to avoid using the SOA deployment wizard, if only task flow application deployment is necessary.

	
Overwrite EAR

	
Select to overwrite the existing version of the EAR file on the server.

	
Deployable Task Flow Projects

	
Select the task flow project WAR profiles to include in the EAR file. The task flow project WAR profiles are grouped as per the composites that include the human task related to the task flow project. The context root of the WAR changes if the Append composite revision to name checkbox is selected.

Note: If you do not select a WAR profile, no task flows are deployed.

	
	
Projects

	
Select from the list of deployable task flow projects or select the Projects checkbox to choose all available task flows. The task flows that display are based on the composites included in the SOA project or bundle selected for deployment.

	
	
WAR Profiles

	
Select the task flow project WAR files. Only the most recently created or modified task flow of the human task is available for selection.

	
	
App Context Root

	
Display the application context root directory based on your selection for the WAR profile.

	
Click Next.

	
If you selected to deploy to an application server, the Select Server page appears for selecting an existing Oracle WebLogic Server connection from the list or clicking the Add icon to create a new connection to a server. Figure 41-10 provides details.

Otherwise, go to Step 15.

	
Best Practice:

It is recommended that task detail applications associated with a human workflow composite be deployed only to servers that have SOA configured on them, as well as the required ADF libraries.

Figure 41-10 Select Server Page

[image: Description of Figure 41-10 follows]

	
Click Next.

	
Select the target SOA servers to which to deploy this archive. If there are multiple servers or cluster nodes, select to deploy to one or more servers or nodes. Figure 41-11 provides details.

	
Select the partition in which to deploy this archive. If the server contains no partitions, you cannot deploy this archive. Also, if the server is not in a running state, you cannot deploy this archive. By default, a partition named default is automatically included with Oracle SOA Suite. You create partitions in the Manage Partitions page of Oracle Enterprise Manager Fusion Middleware Control Console.

	
Note:

You cannot deploy the same SOA composite application with a human workflow task into multiple partitions. For example, if the composite named VacationRequest includes VacationRequestTask.task, you cannot deploy this composite into a partition named production and a partition named development. Deploy this composite to only one partition.

Figure 41-11 SOA Servers Page

[image: Description of Figure 41-11 follows]

	
Click Next.

	
Review the archive details on the Summary page, and click Finish.

Figure 41-12 Summary Page

[image: Description of Figure 41-12 follows]

	
If you selected to deploy to an application server, view the messages that display in the Deployment log window at the bottom of Oracle JDeveloper.

	
Enter the user name and password, and click OK.

If deployment is successful, the following actions occur:

	
A JAR file for the SOA project is created under the deploy folder in Oracle JDeveloper with a naming convention of sca_composite_name_revrevision_number.jar.

	
The project is displayed in the Resource Palette under application_server_connection_name > SOA > SOA_server_name > partition_name.

	
The project is displayed in the Application Server Navigator under application_server_connection_name > SOA > SOA_server_name > partition_name.

You are now ready to monitor your application from Oracle Enterprise Manager Grid Control Console. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for details.

If deployment is unsuccessful, view the messages that display in the Deployment log window and take corrective actions. For more information, see Section 41.9, "Testing and Troubleshooting."

For information on creating partitions, see the following documentation:

	
Section 41.7.5.2, "How to Manage SOA Composite Applications with ant Scripts"

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite

	
Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

	
Note:

If you want to redeploy the same version of a SOA composite application, you cannot change the composite name. You can deploy with the same revision number if you selected the Overwrite any existing composites with the same revision ID checkbox on the Deploy Configuration page.

41.7.2 Deploying Multiple SOA Composite Applications in Oracle JDeveloper

You can deploy multiple SOA composite applications to Oracle WebLogic Server at the same time by using the SOA bundle profile. This profile enables you to include one or more SAR profiles in the bundle and deploy the bundle to Oracle WebLogic Server.

	
Note:

You cannot deploy multiple SOA applications that are dependent upon one another in the same SOA bundle profile. For example, if application A calls application B, then you must first deploy application B separately.

41.7.2.1 How to Deploy Multiple SOA Composite Applications

	
Note:

This section assumes you have created an application server connection. If not, see Section 41.7.1.1.1, "Creating an Application Server Connection" for instructions.

To deploy multiple SOA composite applications

	
From the Application menu, select Application Properties, as shown in Figure 41-13.

Figure 41-13 Application Properties

[image: Description of Figure 41-13 follows]

	
In the Application Properties dialog, click Deployment.

	
Click New.

The Create Deployment Profile dialog appears.

	
In the Archive Type list, select SOA Bundle.

	
In the Name field, enter a name.

Figure 41-14 provides details.

Figure 41-14 Select the SOA Bundle

[image: Description of Figure 41-14 follows]

	
Click OK.

	
In the navigator on the left, select the Dependencies node.

	
Select the SARs you want to include in this bundle, as shown in Figure 41-15.

Figure 41-15 Select the SAR

[image: Description of Figure 41-15 follows]

	
Click OK.

	
Click OK to close the Application Properties dialog.

	
Select the Application menu again, then select Deploy > SOA_Bundle_Name.

	
See Step 3 for details about responses to provide.

41.7.3 Deploying and Using Shared Metadata Across SOA Composite Applications in Oracle JDeveloper

This section describes how to deploy and use shared metadata across SOA composite applications.

41.7.3.1 How to Deploy Shared Metadata

Shared metadata is deployed to the SOA Infrastructure on the application server as a JAR file. The JAR file should contain all the resources to share. In Oracle JDeveloper, you can create a JAR profile for creating a shared artifacts archive.

All shared metadata is deployed to an existing SOA Infrastructure partition on the server. This metadata is deployed under the /apps namespace. For example, if you have a MyProject/xsd/MySchema.xsd file in the JAR file, then this file is deployed under the /apps namespace on the server. When you refer to this artifact in Oracle JDeveloper using a SOA-MDS connection, the URL becomes oramds:/apps/MyProject/xsd/MySchema.xsd.

This section describes how to perform the following tasks:

	
Create a JAR profile and include the artifacts to share

	
Create a SOA bundle that includes the JAR profile

	
Deploy the SOA bundle to the application server

41.7.3.1.1 Create a JAR Profile and Include the Artifacts to Share

To create a JAR profile and include the artifacts to share:

	
In the Application Navigator, right-click the SOA project.

	
Select Project Properties.

The Project Properties dialog appears.

	
Click Deployment in the navigational tree on the left.

	
Click New.

The Create Deployment Profile dialog appears.

	
From the Archive Type list, select JAR File.

	
In the Name field, enter a name (for this example, shared_archive is entered).

The Create Deployment Profile dialog looks as shown in Figure 41-16.

Figure 41-16 JAR File Selection

[image: Description of Figure 41-16 follows]

	
Click OK.

The JAR Deployment Profile Properties dialog appears.

	
Select JAR Options from the navigational tree on the left.

	
Deselect Include Manifest File (META-INF/MANIFEST.MF), as shown in Figure 41-17.

This prevents the archive generator from adding the manifest file (META-INF/MANIFEST.MF) into the JAR file.

Figure 41-17 JAR File Options

[image: Description of Figure 41-17 follows]

	
Select File Groups > Project Output > Contributors from the navigational tree on the left.

	
Deselect the Project Output Directory and Project Dependencies options, as shown in Figure 41-18.

This prevents the archive generator from adding the contents of the project output and project dependencies into the archive.

Figure 41-18 Contributors

[image: Description of Figure 41-18 follows]

	
Click Add to add a new contributor.

The Add Contributor dialog appears. This dialog enables you to add artifacts to your archive.

	
Click Browse.

	
Select the folder in which your artifacts reside, as shown in Figure 41-19. Note that this also determines the hierarchy of artifacts in the archive.

Figure 41-19 Artifact Selection

[image: Description of Figure 41-19 follows]

	
Click Select to close the Choose Directory dialog.

	
Click OK to close the Add Contributor dialog.

	
Select File Groups > Project Output > Filters from the navigational tree on the left.

	
Select only the artifacts to include in the archive, as shown in Figure 41-20. For this example, the archive contains the following XSD files:

	
SOADemoComposite/xsd/DemoProcess.xsd

	
SOADemoComposite/xsd/Quote.xsd

	
SOADemoComposite/xsd/VacationRequest.xsd

Figure 41-20 Artifacts to Include in the Archive

[image: Description of Figure 41-20 follows]

	
Click OK to save changes to the JAR deployment profile.

	
Click OK to save the new deployment profile.

	
From the File main menu, select Save All.

41.7.3.1.2 Create a SOA Bundle that Includes the JAR Profile

To create a SOA bundle that includes the JAR profile:

	
From the Application Menu, select Application Properties > Deployment.

	
Click New to create a SOA bundle profile.

The Create Deployment Profile dialog appears.

	
From the Archive Type list, select SOA Bundle. A bundle is a collection of multiple SOA composite applications.

	
In the Name field, enter a name (for this example, sharedArtifactBundle is entered).

Figure 41-21 SOA Bundle Creation

[image: Description of Figure 41-21 follows]

	
Click OK.

	
Select Dependencies from the navigational tree on the left.

	
Select the JAR file and SOA-SAR profiles you previously created (for this example, named shared_archive and sharedArtifactBundle, respectively). You have the option of a JAR, a SOA-SAR, or both.

Figure 41-22 Deployment Profile Dependencies

[image: Description of Figure 41-22 follows]

	
Click OK to save the SOA bundle deployment profile changes.

	
Click OK to save the new deployment profile.

	
From the File main menu, select Save All.

41.7.3.1.3 Deploy the SOA Bundle

To deploy the SOA bundle:

	
Right-click the Application menu and select Deploy > SOA_Bundle_Name.

	
See Step 3 for details about responses to provide.

This deploys the SOA bundle to the application server (shared artifacts are deployed to the MDS database of Oracle SOA Suite).

41.7.3.2 How to Use Shared Metadata

This section describes how to browse and select the shared metadata you created in Section 41.7.3.1, "How to Deploy Shared Metadata."

41.7.3.2.1 Creating a SOA-MDS Connection

To create a SOA-MDS connection:

	
From the File menu, select New > Connections > SOA-MDS Connection.

The Create SOA-MDS Connection dialog shown in Figure 41-23 is displayed.

Figure 41-23 Create SOA-MDS Connection

[image: Description of Figure 41-23 follows]

	
Provide values appropriate to your environment.

Table 41-7 Create SOA-MDS Connection Dialog

	Field	Description
	
Create Connection In:

	
Select IDE Connection. This enables the connection to display in the Resource Palette and be available to multiple applications.

You can no longer create a connection in the Application Resources. This selection is disabled.

	
Connection Name

	
Enter a connection name. Upon successful completion of this connection creation, this name displays under SOA-MDS in the Resource Palette.

	
Connection Type

	
Select a connection type. An MDS repository can be file-based or database-based. The dialog is refreshed based on your selection.

	
DB based MDS

For most production environments, you use a database-based repository. Most components, such as Oracle SOA Suite, require that a schema be installed in a database, necessitating the use of a database-based repository. To use a database-based repository, you must first create it with the Repository Creation Utility.

	
File Based MDS

	
Choose a database connection

	
Select an existing connection or create a new connection to the Oracle SOA Suite database with the MDS schema.

	
Select MDS Partition

	
Select the MDS partition (for example, soa-infra).

	
Test Connection

	
Click to test the SOA-MDS connection.

Note: Even if the connection test fails, a connection is created.

	
Status

	
Displays status of the connection test.

	
Click OK.

You can now browse the connection in the Resource Palette and view shared artifacts under the /apps node.

41.7.3.2.2 Creating a BPEL Process

You can now browse and use the shared metadata from a different SOA composite application. For this example, you create a BPEL process service component in a different application.

To create a BPEL process:

	
Create a new BPEL process service component in a different application.

	
In the Create BPEL Process dialog, click the Browse icon to the right of the Input field.

The Type Chooser dialog appears.

	
In the upper right corner, click the Import Schema File icon.

The Import Schema File dialog appears.

	
To the right of the URL field, click the Browse icon.

The SOA Resource Browser dialog appears.

	
At the top of the dialog, select Resource Palette from the list.

	
Select shared metadata, as shown in Figure 41-24. For this example, the Quote.xsd file that you selected to include in the archive in Step 18 of Section 41.7.3.1.1, "Create a JAR Profile and Include the Artifacts to Share" is selected.

Figure 41-24 Shared Metadata in the SOA Resource Browser

[image: Description of Figure 41-24 follows]

	
Click OK.

	
In the Import Schema File dialog, click OK.

	
In the Type Chooser dialog, select a node of Quote.xsd (for this example, QuoteRequest), and click OK.

	
In the Create BPEL Process dialog, click OK to complete creation.

	
In the Application Navigator, select the WSDL file for the BPEL process.

	
Click Source.

The WSDL file includes the following definition.

<wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.mycompany.com/ns/salesquote"
 schemaLocation="oramds:/apps/SOADemoComposite/xsd/Quote.xsd" />
 </schema>
</wsdl:types>

	
Continue modeling the BPEL process as necessary.

	
Deploy the SOA composite application that includes the BPEL process.

41.7.4 Deploying an Existing SOA Archive in Oracle JDeveloper

You can deploy an existing SOA archive from the Application Server Navigator in Oracle JDeveloper.

	
Notes:

	
The archive must exist. You cannot create an archive in the Deploy SOA Archive dialog.

	
These instructions assume you have created an application server connection to an Oracle WebLogic Administration Server on which the SOA Infrastructure is deployed. Creating a connection to an Oracle WebLogic Administration Server enables you to browse for SOA composite applications deployed in the same domain. From the File main menu, select New > Connections > Application Server Connection to create a connection.

41.7.4.1 How to Deploy an Existing SOA Archive from Oracle JDeveloper

To deploy an existing SOA archive from Oracle JDeveloper:

	
From the View menu, select Application Server Navigator.

	
Expand your connection name.

	
Right-click the SOA folder.

	
Select Deploy SOA Archive.

The Deploy SOA Archive dialog shown in Figure 41-25 appears.

Figure 41-25 Deploy SOA Archive

[image: Description of Figure 41-25 follows]

	
Provide responses appropriate to your environment, as described in Table 41-8.

Table 41-8 Create Deployment Profile Dialog Fields and Values

	Field	Description
	
SOA Server

	
Select the SOA server to which to deploy the archive.

	
Partition

	
Select the partition in which to deploy the archive. If the server contains no partitions, you cannot deploy this archive. By default, a partition named default is automatically included with Oracle SOA Suite.

	
Status

	
Displays the status of the server. If the server is not in a running state, you cannot deploy this archive.

	
Server URL

	
Displays the URL of the server.

	
Choose target SOA server(s) to which you want to deploy this archive

	
Select the Oracle WebLogic Administration Server to which to deploy the archive.

	
SOA Archive

	
Click Browse to select a prebuilt SOA composite application archive. The archive consists of a JAR file of a single application or a SOA bundle ZIP file containing multiple applications.

	
Configuration Plan (Optional)

	
Click Browse to select a configuration plan to attach to the SOA composite application archive. The configuration plan enables you to define the URL and property values to use in different environments. During process deployment, the configuration plan is used to search the SOA project for values that must be replaced to adapt the project to the next target environment.

For information about creating configuration plans, see Section 41.6.1.4, "How to Create a Configuration Plan in Oracle JDeveloper" or Section 41.6.1.5, "How to Create a Configuration Plan with the WLST Utility."

	
Mark composite revision as default

	
If you do not want the new revision to be the default, you can deselect this box. By default, a newly deployed composite revision is the default. This revision is instantiated when a new request comes in.

	
Overwrite any existing composites with the same revision ID

	
Select to overwrite (redeploy) an existing SOA composite application with the same revision ID. The consequences of this action are as follows:

	
A new version 1.0 of the SOA composite application is redeployed, overwriting a previously deployed 1.0 version.

	
The older, currently-deployed version of this revision is removed (overwritten).

	
If the older, currently-deployed version of this revision has running instances, the state of those instances is changed to stale.

	
Click OK.

For more information on deploying and testing SOA composite applications from the Application Server Navigator, see Section 2.8, "Managing and Testing a SOA Composite Application."

41.7.5 Managing SOA Composite Applications with Scripts

You can also manage SOA composite applications from a command line or scripting environment using the WLST scripting utility or ant. These options are well-suited for automation and can be easily integrated into existing release processes.

41.7.5.1 How to Manage SOA Composite Applications with the WLST Utility

You can manage SOA composite applications with the WLST scripting utility. For instructions, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

41.7.5.2 How to Manage SOA Composite Applications with ant Scripts

You can manage SOA composite applications with the ant utility. ant is a Java-based build tool used by Oracle SOA Suite for managing SOA composite applications. The configuration files are XML-based and call out a target tree where various tasks are executed.

Table 41-9 lists the ant scripts available in the Middleware_Home\SOA_Suite_Home\bin directory.

Table 41-9 ant Management Scripts

	Script	Description
	
ant-sca-test.xml

	
Attaches, extracts, generates, and validates configuration plans for a SOA composite application.

	
ant-sca-compile.xml

	
Compiles a SOA composite application.

	
ant-sca-package.xml

	
Packages a SOA composite application into a composite SAR file.

	
ant-sca-deploy.xml

	
Deploys a SOA composite application.

	
ant-sca-deploy.xml undeploy

	
Undeploys a SOA composite application.

	
ant-sca-deploy.xml exportComposite

	
Exports a composite into a SAR file.

	
ant-sca-deploy.xml exportUpdates

	
Exports postdeployment changes of a composite into a JAR file.

	
ant-sca-deploy.xml importUpdates

	
Imports postdeployment changes of a composite.

	
ant-sca-deploy.xml exportSharedData

	
Exports shared data of a given pattern into a JAR file.

	
ant-sca-deploy.xml removeSharedData

	
Removes a top-level shared data folder.

	
ant-sca-mgmt.xml startComposite

	
Starts a SOA composite application.

	
ant-sca-mgmt.xml stopComposite

	
Stops a SOA composite application.

	
ant-sca-mgmt.xml activateComposite

	
Activates a SOA composite application.

	
ant-sca-mgmt.xml retireComposite

	
Retires a SOA composite application.

	
ant-sca-mgmt.xml assignDefaultComposite

	
Assigning a default revision version.

	
ant-sca-mgmt.xml listDeployedComposites

	
Lists deployed SOA composite applications.

	
ant-sca-mgmt.xml listPartitions

	
Lists all available partitions in the SOA Infrastructure.

	
ant-sca-mgmt.xml listCompositesInPartition

	
Lists all composites in a partition.

	
ant-sca-mgmt.xml createPartition

	
Creates a partition in the SOA Infrastructure.

	
ant-sca-mgmt.xml deletePartition

	
Undeploys all composites in a partition before deleting the partition

	
ant-sca-mgmt.xml startCompositesInPartition

	
Starts all composites in a partition.

	
ant-sca-mgmt.xml stopCompositesInPartition

	
Stops all composites in a partition

	
ant-sca-mgmt.xml activateCompositesInPartition

	
Activates all composites in a partition.

	
ant-sca-mgmt.xml retireCompositesInPartition

	
Retiring all composites in a partition.

	
ant-sca-upgrade.xml

	
Migrates BPEL and ESB release 10.1.3 metadata to release 11g.

Note: If any Java code is part of the project, you must manually modify the code to pass compilation with an 11g compiler. For BPEL process instance data, active data used by the 10.1.3 Oracle BPEL Server is not migrated.

For additional information about ant, visit the following URL:

http://ant.apache.org

41.7.5.2.1 Testing a SOA Composite Application

Example 41-5 provides an example of executing a test case. Test cases enable you to automate the testing of SOA composite applications.

Example 41-5 Testing an Application

ant -f ant-sca-test.xml -Dscatest.input=MyComposite
-Djndi.properties=/home/jdoe/jndi.properties

Table 41-10 describes the syntax.

Table 41-10 ant Testing Commands

	Argument	Definition
	

scatest

	
Possible inputs are as follows:

	
java.passed.home

The script picks this from the environment value of JAVA_HOME. Provide this input to override.

	
wl_home

This is the location of Oracle WebLogic Server home (defaults to Oracle_Home/.../wlserver_10.3).

	
scatest.input

The name of the composite to test.

	
scatest.format

The format of the output file (defaults to native; the other option is junit).

	
scatest.result

The result directory in which to place the output files (defaults to temp_dir/out).

	
jndi.properties.input

The jndi.properties file to use.

	

jndi. properties

	
Absolute path to the JNDI property file. This is a property file that contains JNDI properties for connecting to the server. For example:

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://myserver.us.oracle.com:8001/soa-infra
java.naming.security.principal=weblogic
dedicated.connection=true
dedicated.rmicontext=true

Since a composite test (in a test suite) is executed on the SOA Infrastructure, this properties file contains the connection information. For this example, these properties create a connection to the SOA Infrastructure hosted in myserver.us.oracle.com, port 8001 and use a user name of weblogic. You are prompted to specify the password.

You typically create one jndi.properties file (for example, in /home/myhome/jndi.properties) and use it for all test runs.

For more information on creating and running tests on SOA composite applications, see Chapter 42, "Automating Testing of SOA Composite Applications" and Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.7.5.2.2 Compiling a SOA Composite Application

Example 41-6 provides an example of compiling a SOA composite application, which validates it for structure and syntax.

Example 41-6 Compiling an Application

ant -f ant-sca-compile.xml
-Dscac.input=/myApplication/myComposite/composite.xml

Table 41-11 describes the syntax.

Table 41-11 Ant Compiling Commands

	Argument	Definition
	

scac

	
Possible inputs are as follows:

	
java.passed.home

The script picks this from the environment value of JAVA_HOME. Provide this input to override.

	
wl_home

This is the location of Oracle WebLogic Server home (defaults to Oracle_Home/.../wlserver_10.3).

	
scac.input

The composite.xml file to compile.

	
scac.output

The output file with scac results (defaults to temp_dir/out.xml).

	
scac.error

The file with scac errors (defaults to temp_dir/out.err).

	
scac.application.home

The application home directory of the composite being compiled.

	
scac.displayLevel

Controls the level of logs written to scac.output file. The value can be 1, 2, or 3 (this defaults to 1).

41.7.5.2.3 Packaging a SOA Composite Application into a Composite SAR File

Example 41-7 provides an example of packaging a SOA composite application into a composite SAR file. The outcome of this command is a SOA archive. Check the output of the command for the exact location of the resulting file.

Example 41-7 Packaging an Application

ant -f ant-sca-package.xml
-DcompositeDir=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPr
ocessing
-DcompositeName=POProcessing
-Drevision=6-cmdline
-Dsca.application.home=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProces
sing

Table 41-12 describes the syntax.

Table 41-12 ant Packaging Commands

	Argument	Definition
	

compositeDir

	
Absolute path of a directory that contains composite artifacts.

	

compositeName

	
Name of the composite.

	

revision

	
Revision ID of the composite.

	

sca.application.home

	
Optional. Absolute path of the application home directory. This property is required if you have shared data.

	

oracle.home

	
Optional. The oracle.home property.

41.7.5.2.4 Deploying a SOA Composite Application

Example 41-8 provides an example of deploying a SOA composite application.

Example 41-8 Deploying an Application

ant -f ant-sca-deploy.xml
-DserverURL=http://localhost:8001
-DsarLocation=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPro
cessing\deploy\sca_POProcessing_rev6-cmdline.jar
-Doverwrite=true
-Duser=weblogic
-DforceDefault=true
-Dconfigplan=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POProc
 essing\demed_cfgplan.xml
-Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-13 describes the syntax.

Table 41-13 ant Deployment Commands

	Argument	Definition
	
serverURL

	
URL of the server that hosts the SOA Infrastructure application (for example, http://myhost10:8001).

	
sarLocation

	
Absolute path to one the following:

	
SAR file.

	
ZIP file that includes multiple SARs.

	
overwrite

	
Optional. Indicates whether to overwrite an existing SOA composite application on the server.

	
false (default): Does not overwrite the file.

	
true: Overwrites the file.

	
user

	
Optional. User name to access the composite deployer servlet when basic authentication is configured.

	
password

	
Optional. Password to access the composite deployer servlet when basic authentication is configured.

If you enter the user name, you are prompted to enter the password if you do not provide it here.

	
forceDefault

	
Optional. Indicates whether to set the version being deployed as the default version for that composite application.

	
true (default): Makes it the default composite.

	
false: Does not make it the default composite.

	
configplan

	
Absolute path of a configuration plan to be applied to a specified SAR file or to all SAR files included in the ZIP file.

	
sysPropFile

	
Passes in a system properties file that is useful for setting extra system properties, for debugging, for SSL configuration, and so on.

If you specify a file name (for example, tmp-sys.properties), you can define properties such as the following:

javax.net.debug=all

	
partition

	
Optional. The name of the partition in which to deploy the SOA composite application. The default value is default. If you do not specify a partition, the composite is automatically deployed into the default partition.

	
Note:

You cannot deploy the same SOA composite application with a human workflow task into multiple partitions. For example, if the composite named VacationRequest includes VacationRequestTask.task, you cannot deploy this composite into a partition named production and a partition named development. Deploy this composite to only one partition.

41.7.5.2.5 Undeploying a SOA Composite Application

Example 41-9 provides an example of undeploying a SOA composite application.

Example 41-9 Undeploying a SOA Composite Application

ant -f ant-sca-deploy.xml undeploy
-DserverURL=http://localhost:8001
-DcompositeName=POProcessing
-Drevision=rev6-cmdline
-Duser=weblogic
-Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-14 describes the syntax.

Table 41-14 ant Undeployment Commands

	Argument	Definition
	
serverURL

	
URL of the server that hosts the SOA Infrastructure application (for example, http://myhost10:7001).

	
compositeName

	
Name of the SOA composite application.

	
revision

	
Revision ID of the SOA composite application.

	
user

	
Optional. User name to access the composite deployer servlet when basic authentication is configured.

If you enter the user name, you are prompted to enter the corresponding password.

	
password

	
Optional. Password to access the composite deployer servlet when basic authentication is configured.

	
partition

	
Optional. The name of the partition in which the SOA composite application is located. The default value is default. If you do not specify a partition, the default partition is searched for the SOA composite application. However, no other partitions are searched.

41.7.5.2.6 Exporting a Composite into a SAR File

Example 41-10 provides an example of exporting a composite into a SAR file.

Example 41-10 Exporting a Composite into a SAR File

ant -f ant-sca-deploy.xml exportComposite -DserverURL=server.url
 -DupdateType=update.type -DsarFile=sar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-15 describes the syntax.

Table 41-15 ant Export Commands

	Argument	Definition
	
serverURL

	
The URL of the server that hosts the SOA Infrastructure application (for example, http://stabc:8001).

	
updateType

	
The type of postdeployment changes to be included:

	
none: No postdeployment changes are included.

	
all: All postdeployment changes are included.

	
property: Property changes are included (binding component properties, composite properties such as audit level settings and payload validation status, and policy attachments).

	
runtime: Postdeployment runtime changes are included (rules dictionary and domain value maps (DVMs)).

	
sarFile

	
The absolute path of the SAR file to be generated.

	
compositeName

	
The name of the composite to be exported.

	
revision

	
The revision of the composite to be exported.

	
user

	
Optional. The user name for accessing the server when basic configuration is configured.

	
password

	
Optional. The password for accessing the server when basic configuration is configured.

Example 41-11 shows how to export a composite without including any postdeployment changes.

Example 41-11 Exporting a Composite Without Including Any Postdeployment Changes

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://stabc:8001
 -DupdateType=none
 -DsarFile=/tmp/sca_HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Example 41-12 shows how to export a composite with all postdeployment changes.

Example 41-12 Exporting a Composite With All Postdeployment Changes

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://stabc:8001
 -DupdateType=all
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-all.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Example 41-13 shows how to export a composite with property postdeployment updates.

Example 41-13 Exporting a Composite With Property Postdeployment Updates

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://stabc:8001
 -DupdateType=property
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-prop.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Example 41-14 shows how to export a composite with runtime/metadata postdeployment updates.

Example 41-14 Exporting a Composite With Runtime/Metadata Postdeployment Updates

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://stabc:8001
 -DupdateType=runtime
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-runtime.jar
 -DcompositeName=HelloWorld -Drevision=1.0

41.7.5.2.7 Exporting Postdeployment Changes of a Composite into a JAR File

Example 41-15 provides an example of exporting postdeployment changes of a composite into a JAR file.

Example 41-15 Exporting Postdeployment Changes of a Composite into a JAR File

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=server.url
 -DupdateType=update.type -DjarFile=jar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-16 describes the syntax.

Table 41-16 ant Postdeployment Export Commands

	Argument	Definition
	
serverURL

	
The URL of the server that hosts the SOA Infrastructure application (for example, http://stabc:8001).

	
updateType

	
The type of postdeployment changes to be exported.

	
all: Includes all postdeployment changes.

	
property: Includes only property postdeployment changes (binding component properties, composite properties such as audit level settings and payload validation status, and policy attachments).

	
runtime: Includes only runtime (rules dictionary and domain value maps (DVMs)).

	
jarFile

	
The absolute path of the JAR file to be generated.

	
compositeName

	
The name of the composite to be exported.

	
revision

	
The revision of the composite to be exported.

	
user

	
Optional. The user name for accessing the server when basic configuration is configured.

	
password

	
Optional. The password for accessing the server when basic configuration is configured.

Example 41-16 shows how to export all postdeployment updates.

Example 41-16 Exporting All Postdeployment Updates

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://stabc:8001
 -DupdateType=all
 -DjarFile=/tmp/all-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Example 41-17 shows how to export property postdeployment updates.

Example 41-17 Exporting Property Postdeployment Updates

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://stabc:8001
 -DupdateType=property
 -DjarFile=/tmp/prop-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Example 41-18 shows how to export runtime/metadata postdeployment updates.

Example 41-18 Exporting Runtime/Metadata Postdeployment Updates

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://stabc:8001
 -DupdateType=runtime
 -DjarFile=/tmp/runtime-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

41.7.5.2.8 Importing Postdeployment Changes of a Composite

Example 41-19 provides an example of importing postdeployment changes of a composite.

Example 41-19 Importing Postdeployment Changes of a Composite

ant -f ant-sca-deploy.xml importUpdates -DserverURL=server.url -DjarFile=jar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-17 describes the syntax.

Table 41-17 ant Postdeployment Import Commands

	Argument	Definition
	
serverURL

	
The URL of the server that hosts the SOA Infrastructure application (for example, http://stabc:8001).

	
jarFile

	
The absolute path of the JAR file that contains postdeployment changes.

	
compositeName

	
The name of the composite into which the postdeployment changes are imported.

	
revision

	
The revision of the composite to which the postdeployment changes are imported.

	
user

	
Optional. The user name for accessing the server when basic configuration is configured.

	
password

	
Optional. The password for accessing the server when basic configuration is configured.

Example 41-20 shows how to import postdeployment changes of a composite.

Example 41-20 Importing Postdeployment Changes of a Composite

ant -f ant-sca-deploy.xml importUpdates -DserverURL=http://stabc:8001
 -DjarFile=/tmp/prop-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

41.7.5.2.9 Exporting Shared Data of a Given Pattern into a JAR File

Example 41-21 provides an example of exporting shared data of a given pattern into a JAR file.

Example 41-21 Exporting Shared Data of a Given Pattern into a JAR File

ant -f ant-sca-deploy.xml exportSharedData -DserverURL=server.url
 -DjarFile=jar.file -Dpattern=pattern -Duser=user

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-18 describes the syntax.

Table 41-18 ant Shared Data Export Commands

	Argument	Definition
	
serverURL

	
The URL of the server that hosts the SOA Infrastructure application (for example, http://stabc:8001).

	
jarFile

	
The absolute path of the JAR file to be generated.

	
pattern

	
The file pattern supported by MDS transfer APIs. Use the semicolon delimiter (;) if multiple patterns are specified. Exclude the shared data namespace /apps in the pattern. For example:

/Project1/**;/Project2/**

This example exports all documents under /apps/Project1 and /apps/Project2.

	
user

	
Optional. The user name for accessing the server when basic configuration is configured.

	
password

	
The password for accessing the server when basic configuration is configured. This parameter is optional.

Example 41-22 shows how to export shared data of a given pattern into a JAR file.

Example 41-22 Exporting Shared Data of a Given Pattern into a JAR File

ant -f ant-sca-deploy.xml exportSharedData -DserverURL=http://stabc:8001
 -DjarFile=/tmp/MySharedData.jar
 -Dpattern="/Project1/**"

41.7.5.2.10 Removing a Top-level Shared Data Folder

Example 41-23 provides an example of removing a top-level shared data folder, even if there are composites deployed in the service engine.

Example 41-23 Removing a Top-level Shared Data Folder

ant -f ant-sca-deploy.xml removeSharedData -DserverURL=server.url
 -DfolderName=folder.name -Duser=user

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-19 describes the syntax.

Table 41-19 ant Shared Data Folder Removal Commands

	Argument	Definition
	
serverURL

	
URL of the server that hosts the SOA Infrastructure application (for example, http://myhost10:8001).

	
foldername

	
The name of the top-level shared data folder to remove.

	
user

	
Optional. The user name for accessing the server when basic configuration is configured.

	
password

	
Optional. The password for accessing the server when basic configuration is configured.

Example 41-24 shows how to remove a top-level shared data folder named Project1.

Example 41-24 Removing a Top-level Shared Data Folder

ant -f ant-sca-deploy.xml removeSharedData -DserverURL=http://stabc:8001
 -DfolderName=Project1

41.7.5.2.11 Starting a SOA Composite Application

Example 41-25 provides an example of starting a SOA composite application.

Example 41-25 Starting an Application

ant -f ant-sca-mgmt.xml startComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
 -DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-20 describes the syntax.

Table 41-20 ant SOA Composite Application Startup Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
compositeName

	
Name of the SOA composite application.

	
revision

	
Revision of the SOA composite application.

	
label

	
Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one.

	
partition

	
Optional. The name of the partition in which the SOA composite application is located. The default value is default. If you do not specify a partition, the default partition is searched for the SOA composite application. However, no other partitions are searched.

41.7.5.2.12 Stopping a SOA Composite Application

Example 41-26 provides an example of stopping a SOA composite application.

Example 41-26 Stopping an Application

ant -f ant-sca-mgmt.xml stopComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-21 describes the syntax.

Table 41-21 ant SOA Composite Application Stop Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
compositeName

	
Name of the SOA composite application.

	
revision

	
Revision of the SOA composite application.

	
label

	
Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one.

	
partition

	
Optional. The name of the partition in which the SOA composite application is located. The default value is default. If you do not specify a partition, the default partition is searched for the SOA composite application. However, no other partitions are searched.

41.7.5.2.13 Activating a SOA Composite Application

Example 41-27 provides an example of activating a SOA composite application.

Example 41-27 Activating an Application

ant -f ant-sca-mgmt.xml activateComposite -Dhost=myhost -Dport=8001
-Duser=weblogic-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-22 describes the syntax.

Table 41-22 ant SOA Composite Application Activation Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
compositeName

	
Name of the SOA composite application.

	
revision

	
Revision of the SOA composite application.

	
label

	
Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one.

	
partition

	
Optional. The name of the partition in which the SOA composite application is located. The default value is default. If you do not specify a partition, the default partition is searched for the SOA composite application. However, no other partitions are searched.

41.7.5.2.14 Retiring a SOA Composite Application

Example 41-28 provides an example of retiring a SOA composite application.

Example 41-28 Retiring an Application

ant -f ant-sca-mgmt.xml retireComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-23 describes the syntax.

Table 41-23 ant SOA Composite Application Retirement Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
compositeName

	
Name of the SOA composite application.

	
revision

	
Revision of the SOA composite application.

	
label

	
Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one.

	
partition

	
Optional. The name of the partition in which the SOA composite application is located. The default value is default. If you do not specify a partition, the default partition is searched for the SOA composite application. However, no other partitions are searched.

41.7.5.2.15 Assigning the Default Version to a SOA Composite Application

Example 41-29 provides an example of assigning the default version to a SOA composite application.

Example 41-29 Assigning the Default Version to a SOA Composite Application

ant -f ant-sca-mgmt.xml assignDefaultComposite -Dhost=myhost -Dport=8001
-Duser=weblogic -DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-24 describes the syntax.

Table 41-24 ant SOA Composite Application Default Version Assignment Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
compositeName

	
Name of the SOA composite application.

	
revision

	
Revision of the SOA composite application.

	
partition

	
Optional. The name of the partition in which the SOA composite application is located. The default value is default. If you do not specify a partition, the default partition is searched for the SOA composite application. However, no other partitions are searched.

41.7.5.2.16 Listing the Deployed SOA Composite Applications

Example 41-30 provides an example of listing the deployed SOA composite applications.

Example 41-30 Listing the Deployed SOA Composite Applications

ant -f ant-sca-mgmt.xml listDeployedComposites -Dhost=myhost -Dport=8001
-Duser=weblogic

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-25 describes the syntax.

Table 41-25 ant SOA Composite Application Deployment List Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

41.7.5.2.17 Listing All Available Partitions in the SOA Infrastructure

Example 41-31 provides the syntax for listing all available partitions in the SOA Infrastructure.

Example 41-31 Listing All Available Partitions in the SOA Infrastructure

ant -f ant-sca-mgmt.xml listPartitions -Dhost=host -Dport=port -Duser=user

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-26 describes the syntax.

Table 41-26 ant SOA Infrastructure Partitioning List Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

Example 41-32 provides an example of listing all available partitions in the SOA Infrastructure.

Example 41-32 Listing All Available Partitions in the SOA Infrastructure

ant -f ant-sca-mgmt.xml listPartitions -Dhost=stabc10 -Dport=8001

41.7.5.2.18 Listing All Composites in a Partition

Example 41-33 provides the syntax for listing all composites in a partition.

Example 41-33 Listing All Composites in a Partition

ant -f ant-sca-mgmt.xml listCompositesInPartition -Dhost=host -Dport=port -Duser=user -Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-27 describes the syntax.

Table 41-27 ant Composite Partitioning List Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
partition

	
The name of the partition.

Example 41-34 provides an example of listing all composites in a partition named myPartition.

Example 41-34 Listing All Composites in a Partition

ant -f ant-sca-mgmt.xml listCompositesInPartition -Dhost=stabc10 -Dport=8001 -Dpartition=myPartition

41.7.5.2.19 Creating a Partition in the SOA Infrastructure

Example 41-35 provides the syntax for creating a partition in the SOA Infrastructure.

Example 41-35 Creating a Partition in the SOA Infrastructure

ant -f ant-sca-mgmt.xml createPartition -Dhost=host -Dport=port -Duser=user
-Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-28 describes the syntax.

Table 41-28 ant Partition Creation Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
partition

	
The name of the partition to create.

Example 41-36 provides an example of creating a partition in the SOA Infrastructure named myPartition.

Example 41-36 Creating a Partition in the SOA Infrastructure

ant -f ant-sca-mgmt.xml createPartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.20 Deleting a Partition in the SOA Infrastructure

Example 41-37 provides the syntax for deleting a partition in the SOA Infrastructure. This command undeploys all composites in the partition before deleting the partition.

Example 41-37 Deleting a Partition in the SOA Infrastructure

ant -f ant-sca-mgmt.xml deletePartition -Dhost=host -Dport=port -Duser=user
-Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-29 describes the syntax.

Table 41-29 ant Partition Deletion Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
partition

	
The name of the partition to delete.

Example 41-38 provides an example of deleting a partition in the SOA Infrastructure named myPartition.

Example 41-38 Deleting a Partition in the SOA Infrastructure

ant -f ant-sca-mgmt.xml deletePartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.21 Starting All Composites in the Partition

Example 41-39 provides the syntax for starting all composites in the partition.

Example 41-39 Starting All Composites in the Partition

ant -f ant-sca-mgmt.xml startCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-30 describes the syntax.

Table 41-30 ant Partition Startup Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
partition

	
The name of the partition.

Example 41-40 provides an example of starting all composites in the partition named myPartition.

Example 41-40 Starting All Composites in the Partition

ant -f ant-sca-mgmt.xml startCompositesInPartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.22 Stopping All Composites in the Partition

Example 41-41 provides the syntax for stopping all composites in the partition.

Example 41-41 Stopping All Composites in the Partition

ant -f ant-sca-mgmt.xml stopCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-31 describes the syntax.

Table 41-31 ant Partition Composite Stop Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
partition

	
The name of the partition.

Example 41-42 provides an example of stopping all composites in the partition named myPartition.

Example 41-42 Stopping All Composites in the Partition

ant -f ant-sca-mgmt.xml stopCompositesInPartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.23 Activating All Composites in the Partition

Example 41-43 provides the syntax for activating all composites in the partition.

Example 41-43 Activating All Composites in the Partition

ant -f ant-sca-mgmt.xml activateCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-32 describes the syntax.

Table 41-32 ant Partition Composite Activation Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
partition

	
The name of the partition.

Example 41-44 provides an example of activating all composites in the partition named myPartition.

Example 41-44 Activating All Composites in the Partition

ant -f ant-sca-mgmt.xml activateCompositesInPartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.24 Retiring All Composites in the Partition

Example 41-45 provides the syntax for retiring all composites in the partition.

Example 41-45 Retiring All Composites in the Partition

ant -f ant-sca-mgmt.xml retireCompositesInPartition -Dhost=host -Dport=port
 -Duser=user -Dpartition=partition.name

	
Note:

After specifying the user name, enter the password when prompted.

Table 41-33 describes the syntax.

Table 41-33 ant Partition Composite Retirement Commands

	Argument	Definition
	
host

	
Hostname of the Oracle WebLogic Server (for example, myhost).

	
port

	
Port of the Oracle WebLogic Server (for example, 7001).

	
user

	
User name for connecting to the running server to get MBean information (for example, weblogic).

	
password

	
Password for the user name.

	
partition

	
The name of the partition.

Example 41-46 provides an example of retiring all composites in the partition named myPartition.

Example 41-46 Retiring All Composites in the Partition

ant -f ant-sca-mgmt.xml retireCompositesInPartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.25 Upgrading a SOA Composite Application

You can use ant to upgrade a SOA composite application from 10.1.3 to 11g. For information, see Oracle Fusion Middleware Upgrade Guide for Oracle SOA Suite, WebCenter, and ADF.

41.7.5.2.26 How to Manage SOA Composite Applications with ant Scripts

The WebLogic Fusion Order Demo application provides an example of using ant scripts to compile, package, and deploy the application. You can create the initial ant build files by selecting New > Ant > Buildfile from Project from the File main menu.

Figure 41-26 shows the build.properties and build.xml files that display in the Application Navigator after creation.

Figure 41-26 Ant Build Files

[image: Description of Figure 41-26 follows]

	
build.properties

A file that you edit to reflect your environment (for example, specifying Oracle home and Java home directories, setting server properties such as hostname and port number to use for deployment, specifying the application to deploy, and so on).

	
build.xml

Used by ant to compile, build, and deploy composite applications to the server specified in the build.properties file.

	
Modify the build.properties file to reflect your environment.

	
From the Build menu, select Run Ant on project_name.

This builds targets defined in the current project's build file.

41.7.6 Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware Control Console

You can deploy SOA composite applications from Oracle Enterprise Manager Fusion Middleware Control Console. You must first create a deployable archive in Oracle JDeveloper or through the ant or WLST command line tools. The archive can consist of a single SOA composite application revision in a JAR file or multiple composite application revisions (known as a SOA bundle) in a ZIP file. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.7.7 Deploying SOA Composite Applications to a Cluster

You can deploy a SOA composite application into a clustered environment. For more information, see chapter "Configuring High Availability for Oracle Fusion Middleware SOA Suite" of the Oracle Fusion Middleware High Availability Guide.

41.8 Postdeployment Configuration

This section describes postdeployment configuration tasks.

41.8.1 Security

For information about securing SOA composite applications, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.8.2 Updating Connections

Ensure that any connections that you created to the application server or MDS repository are re-created to point to servers applicable to the next target environment. For more information, see Section 41.7.1.1.1, "Creating an Application Server Connection" and Section 41.7.3.2.1, "Creating a SOA-MDS Connection."

41.8.3 Updating Data Sources and Queues

Ensure that all JDBC data source, queue, and connection factory locations that you previously configured are applicable to the next target environment. For more information, see Section 41.5.1, "Creating Data Sources and Queues" and Section 41.5.2, "Creating Connection Factories and Connection Pooling."

41.8.4 Attaching Policies

You can attach policies to a deployed SOA composite application during runtime in Oracle Enterprise Manager Fusion Middleware Control Console. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.9 Testing and Troubleshooting

This section describes how to test and troubleshoot your SOA composite application.

41.9.1 Verifying Deployment

You can verify that you have successfully deployed your SOA composite application to the SOA Infrastructure. If successful, the deployed composite displays in the Deployed Composites tab of the SOA Infrastructure page of Oracle Enterprise Manager Fusion Middleware Control Console. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.9.2 Initiating an Instance of a Deployed Composite

You can initiate an instance of a deployed SOA composite application from the Test Instance page in Oracle Enterprise Manager Fusion Middleware Control Console. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.9.3 Automating the Testing of Deployed Composites

You can create, deploy, and run test cases that automate the testing of SOA composite applications. Test cases enable you to simulate the interaction between a SOA composite application and its web service partners before deployment in a production environment. You create test cases in Oracle JDeveloper and include them in a SOA composite application that is then deployed and administered from Oracle Enterprise Manager Fusion Middleware Control Console. You then run the test cases from Oracle Enterprise Manager Fusion Middleware Control Console.

For information about creating test cases, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

For information about running test cases, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.9.4 Troubleshooting Common Deployment Errors

This section describes how to troubleshoot common deployment errors.

For information about general composite application troubleshooting issues, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.9.4.1 Common Oracle JDeveloper Deployment Issues

This section provides a list of common deployment issues to check.

	
If you are deploying a single composite application, ensure that you are deploying from the Project menu. Right-click the project name in the Application Navigator, and select Deploy > SOA_profile_name.

	
If you are deploying multiple composite applications, ensure that you are deploying from the Application menu. (Right-click the application name in the Application Navigator, and select Deploy > SOA_bundle_profile_name).

	
Once you click Deploy and select the profile name, ensure that the Deployment Action page of the deployment wizard is displayed.

	
Optionally enter a new revision ID (optional) and select the configuration plan (if any).

	
If the composite application you are deploying is already located on the server with the same revision ID, then check the Overwrite any existing composites with the same revision ID checkbox in the Deploy Configuration page of the deployment wizard. Without selecting this option, deployment fails.

	
If compilation fails, a compiler error occurred, and not a deployment error. You only see this error when you compile your project.

	
If compiler messages are not obvious, check the compiler log. A link to this log file (scac.log) is displayed in the Messages tab. The message looks as shown in Example 41-47.

Example 41-47 Compilation Log Message

Compilation of project 'FirstComposite.jpr' finished. Check '/scratch/pdixith/
jdevWorkarea/mywork/Application11/FirstComposite/SCA-INF/classes/scac.log' for
details.

	
After compilation is successful, an SAR/SOA bundle archive is built for the composite. For a SAR archive, the message shown in Example 41-48 is displayed in the Deployment tab.

Example 41-48 Archive Message

Wrote Archive Module to
/scratch/pdixith/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar

For a SOA bundle archive, the message shown in Example 41-49 is displayed in the Deployment tab.

Example 41-49 Archive Message

Wrote Archive Module to
/scratch/pdixith/jdevWorkarea/mywork/Application11/SecondComposite/deploy/sca_
SecondComposite_rev1.0.jar
Wrote Archive Module to
/scratch/pdixith/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar
Wrote Archive Module to
/scratch/pdixith/jdevWorkarea/mywork/Application11/deploy/soabundle1.zip

	
Ensure that all SAR file URLs look as follows

sca_CompositeName_revRevisionID.jar

For example, sca_FirstComposite_rev1.0.jar.

	
After this occurs, Oracle JDeveloper sends the archive binaries to the server. The following message is displayed in the Deployment tab. At this point, Oracle JDeveloper's deployment role ends and the server (SOA Infrastructure) takes control of deployment.

Deploying sca_FirstComposite_rev1.0.jar to myhost19:7001

	
Upon successful deployment, you see the message shown in Example 41-50 in the Deployment tab.

Example 41-50 Successful Deployment Message

Received HTTP response from the server, response code=200 Successfully deployed
archive soa_bundle_name.zip to soa_server_name

	
If deployment fails, the message shown in Example 41-51 is displayed in the Deployment tab with an error message (if any) from the server.

Example 41-51 Deployment Error Message

Error deploying the archive. Check server log for more details.
Connection refused.
Elapsed time for deployment: 8 seconds

	
In most cases, the server provides some information about the error that occurred on the server. If you do not receive any error message from the server, then check soa_server1-diagnostic.log on the server to find additional information (where soa_server1 is the name of the managed server). This file is located on the server in domain_home/servers/soa_server1/logs.

41.9.4.2 Common Configuration Plan Issues

This section provides a list of common configuration plan issues to check.

	
If you selected a configuration plan to deploy, and it is not taking effect on the server, open the SAR file containing the configuration plan. You can find the file location from the Deployment tab in Oracle JDeveloper. Example 41-52 provides details.

Example 41-52 Archive Message

Wrote Archive Module to
/scratch/pdixith/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar

	
Open the JAR file and ensure that it contains the soaconfigplan.xml file. This file is generated during deployment based on the configuration plan you selected.

	
If this file is not present, try deploying the composite application again to ensure that you have correctly selected the configuration plan in the Deploy Configuration page of the deployment wizard.

41.9.4.3 Deploying to a Managed Oracle WebLogic Server

If you start a managed Oracle WebLogic Server without starting an Oracle WebLogic Administration Server (known as running in independence mode) and attempt to deploy a SOA composite application from Oracle JDeveloper, you receive the following error:

Deployment cannot continue! No SOA Configured target servers found

The Oracle WebLogic Administration Server must be running. Deployment uses the Oracle WebLogic Administration Server connection to identify the servers running Oracle SOA Suite. In addition, do not create an application server connection to a managed Oracle WebLogic Server; only create connections to an Oracle WebLogic Administration Server.

You can also receive a similar error if the condition of the SOA-configured Oracle WebLogic Server is not healthy. This condition displays in the Health column of the Servers page of Oracle WebLogic Server Administration Console.

Note that you can use WLST to deploy SOA composite applications to a managed Oracle WebLogic Server without starting an Oracle WebLogic Administration Server. See Section 41.7.5.1, "How to Manage SOA Composite Applications with the WLST Utility" for details.

41.9.4.4 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server

Deployment from Oracle JDeveloper to a two-way, SSL-enabled Oracle WebLogic Server is not supported.

41.9.4.5 Deploying with an Unreachable Proxy Server

You can receive an error similar to that shown in Figure 41-27 during SOA composite application deployment if you have a proxy server set in Oracle JDeveloper that is not reachable from your host.

Figure 41-27 Deployment Error Message

[image: Description of Figure 41-27 follows]

A valid proxy setting is necessary for accessing a SOA Infrastructure (for example, soa_server1) outside the network. If the SOA Infrastructure is within the network, perform one of the following actions:

To change the proxy setting:

	
From the Tools menu, select Preferences > Web Browser and Proxy.

	
Perform one of the following tasks if the SOA server is within the network:

	
Deselect Use HTTP Proxy Server if you can directly access the SOA Infrastructure without any proxy.

	
In the Exceptions field, enter the hostname of the unreachable SOA server.

41.9.4.6 Increasing Memory to Recover from Compilation Errors

If you receive out-of-memory errors during compilation of a SOA composite application, perform the following steps to increase memory.

	
Under the scac element, increase the memory setting. For example:

<jvmarg value="-Xmx512M"/>

42 Automating Testing of SOA Composite Applications

This chapter describes how to create, deploy, and run test cases that automate the testing of SOA composite applications. Test cases enable you to simulate the interaction between a SOA composite application and its web service partners before deployment in a production environment. This helps to ensure that a process interacts with web service partners as expected by the time it is ready for deployment to a production environment.

This chapter includes the following sections:

	
Section 42.1, "Introduction to the Composite Test Framework"

	
Section 42.2, "Introduction to the Components of a Test Suite"

	
Section 42.3, "Creating Test Suites and Test Cases"

	
Section 42.4, "Creating the Contents of Test Cases"

	
Section 42.5, "Deploying and Running a Test Suite"

42.1 Introduction to the Composite Test Framework

Oracle SOA Suite provides an automated test suite framework for creating and running repeatable tests on a SOA composite application.

The test suite framework provides the following features:

	
Simulates web service partner interactions

	
Validates process actions with test data

	
Creates reports of test results

42.1.1 Test Cases Overview

The test framework supports testing at the SOA composite application level. In this type of testing, wires, service binding components, service components (such as BPEL processes and Oracle Mediator service components), and reference binding components are tested.

For more information, see Section 42.3, "Creating Test Suites and Test Cases."

42.1.2 Test Suites Overview

Test suites consist of a logical collection of one or more test cases. Each test case contains a set of commands to perform as the test instance is executed. The execution of a test suite is known as a test run. Each test corresponds to a single SOA composite application instance.

For more information, see the following:

	
Section 42.3, "Creating Test Suites and Test Cases"

	
Section 42.4, "Creating the Contents of Test Cases"

42.1.3 Emulations Overview

Emulations enable you to simulate the behavior of the following components with which your SOA composite application interacts during execution:

	
Internal service components inside the composite

	
Binding components outside the composite

Instead of invoking another service component or binding component, you can specify a response from the component or reference.

For more information, see the following:

	
Section 42.2.2, "Emulations"

	
Section 42.4, "Creating the Contents of Test Cases"

42.1.4 Assertions Overview

Assertions enable you to verify variable data or process flow. You can perform the following types of assertions:

	
Entire XML document assertions:

Compare the element values of an entire XML document to the expected element values. For example, compare the exact contents of an entire loan request XML document to another document. The XMLTestCase class in the XMLUnit package includes a collection of methods for performing assertions between XML files. For more information about these methods, visit the following URL:

http://xmlunit.sourceforge.net

	
Part section of message assertions:

Compare the values of a part section of a message to the expected values. An example is a payload part of an entire XML document message.

	
Nonleaf element assertions:

Compare the values of an XML fragment to the expected values. An example is a loan application, which includes leaf elements SSN, email, customerName, and loanAmount.

	
Leaf element assertions:

Compare the value of a selected string or number element or a regular expression pattern to an expected value. An example is the SSN of a loan application.

For more information about asserts, see Section 42.2.3, "Assertions."

42.2 Introduction to the Components of a Test Suite

This section describes and provides examples of the test components that comprise a test case. Methods for creating and importing these tests into your process are described in subsequent sections of this chapter.

42.2.1 Process Initiation

You first define the operation of your process in a binding component service such as a SOAP web service. Example 42-1 defines the operation of initiate to initiate the TestFwk SOA composite application. The initiation payload is also defined in this section:

Example 42-1 Process Initiation

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:50 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@oracle.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
</compositeTest>

42.2.2 Emulations

You create emulations to simulate the message data that your SOA composite application receives from web service partners.

In the test code in Example 42-2, the loan request is initiated with an error. A fault message is received in return from a web service partner:

Example 42-2 Emulations

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:29 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">
 <emulate duration="PT0S">
 <fault faultName="ser:NegativeCredit" xmlns:ser="http://services.otn.com">
 <message>
 <part partName="payload">
 <filePath>creditRatingFault.xml</filePath>
 </part>
 </message>
 </fault>
 </emulate>
 </wireActions>
</compositeTest>

Two message files, loanApplication.xml and creditRatingFault.xml, are invoked in this emulation. If the loan application request in loanApplication.xml contains a social security number beginning with 0, the creditRatingFault.xml file returns the fault message shown in Example 42-3:

Example 42-3 Fault Message

<error xmlns="http://services.otn.com">
 Invalid SSN, SSN cannot start with digit '0'.
</error>

For more information, see Section 42.4, "Creating the Contents of Test Cases."

42.2.3 Assertions

You create assertions to validate an entire XML document, a part section of a message, a nonleaf element, or a leaf element at a point during SOA composite application execution. Example 42-4 instructs Oracle SOA Suite to ensure that the content of the customername variable matches the content specified.

Example 42-4 Assertions

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:51 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@oracle.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="client" operation="initiate">
 <assert comparisonMethod="string">
 <expected>
 <location key="input" partName="payload"
 xpath="/s1:loanApplication/s1:customerName"
 xmlns:s1="http://www.autoloan.com/ns/autoloan"/>
 <simple>Joe Smith</simple>
 </expected>
 </assert>
 </wireActions>
</compositeTest>

For more information, see Section 42.4, "Creating the Contents of Test Cases."

42.2.4 Message Files

Message instance files provide a method for simulating the message data received back from web service partners. You can manually enter the received message data into this XML file or load a file through the test mode of the SOA Composite Editor. For example, the following message file simulates a credit rating result of 900 returned from a partner:

<rating xmlns="http://services.otn.com">900</rating>

For more information about loading message files into test mode, see Section 42.4, "Creating the Contents of Test Cases."

42.3 Creating Test Suites and Test Cases

This section describes how to create test suites and their test cases for a SOA composite application. The test cases consist of sets of commands to perform as the test instance is executed.

	
Note:

Do not enter a multibyte character string as a test suite name or test case name. Doing so causes an error to occur when the test is executed from Oracle Enterprise Manager Fusion Middleware Control Console.

42.3.1 How to Create Test Suites and Test Cases

To create test suites and test cases:

	
Open the SOA Composite Editor.

	
Open the SOA composite application in which to create a test suite.

	
Go to the Application Navigator or Structure window. If the Structure window shown in Figure 42-1 does not appear, select Structure from the View main menu.

Figure 42-1 Structure Window

[image: Description of Figure 42-1 follows]

	
Create a test suite in either of two ways:

	
In the Application Navigator, right-click testsuites and select Create Test Suite. Figure 42-2 provides details.

Figure 42-2 Create Test Suite Selection

[image: Description of Figure 42-2 follows]

	
In the Structure window, right-click Test Suites and select Create Test Suite. Figure 42-3 provides details.

Figure 42-3 Create Test Suite Selection

[image: Description of Figure 42-3 follows]

	
Enter a test suite name (for example, logicTest).

	
Click OK.

The Create Composite Test dialog appears.

	
Enter a test name (for this example, TestDelivery is entered) and an optional description. This description displays in the Description column of the Test Cases page of the Unit Tests tab in Oracle Enterprise Manager Fusion Middleware Control Console.

	
Click OK.

This action creates a test named TestDelivery.xml in the Application Navigator, along with the following subfolders:

	
componenttests

This folder is not used in 11g Release 1.

	
includes

This folder is not used in 11g Release 1.

	
messages

Contains message test files that you load into this directory through the test mode user interface.

	
tests

Contains TestDelivery.xml.

A TestDelivery.xml folder also displays in the Structure window. Figure 42-4 provides details. This indicates that you are in the test mode of the SOA Composite Editor. You can create test initiations, assertions, and emulations in test mode. No other modifications, such as editing the property dialogs of service components or dropping service components into the editor, can be performed in test mode.

Figure 42-4 TestDelivery.xml Folder

[image: Description of Figure 42-4 follows]

The following operating system test suite directory is also created:

C:\JDeveloper\mywork\application_name\project_name\testsuites\logicTest

The following subdirectories for adding test files are created beneath logicTest: componenttests, includes, messages, and tests.

	
If you want to exit test mode and return to design mode in the SOA Composite Editor, click the last icon below TestDelivery.xml above the designer. Figure 42-5 provides details.

Figure 42-5 Test Mode Exit

[image: Description of Figure 42-5 follows]

	
Save your changes when prompted.

	
Under the testsuites folder in the Application Navigator, double-click TestDelivery.xml to return to test mode. Figure 42-6 provides details.

Figure 42-6 Test Mode Access

[image: Description of Figure 42-6 follows]

	
Notes:

	
Do not edit the filelist.xml files that display under the subfolders of the testsuites folder. These files are automatically created during design time, and are used during runtime to calculate the number of test cases.

	
You cannot create test suites within other test suites. However, you can organize a test suite into subdirectories.

42.4 Creating the Contents of Test Cases

Test cases consist of process initiations, emulations, and assertions. You add these actions to test cases in the test mode of the SOA Composite Editor. You create process initiations to initiate client inbound messages into your SOA composite application. You create emulations to simulate input or output message data, fault data, callback data, or all of these types that your SOA composite application receives from web service partners. You create assertions to validate entire XML documents, part sections of messages, nonleaf elements, and leaf elements as a process is executed.

42.4.1 How to Initiate Inbound Messages

To initiate inbound messages:

You must first initiate the sending of inbound client messages to the SOA composite application.

	
Go to the SOA Composite application in test mode.

	
Double-click the service binding component shown in Figure 42-7 (for this example, named initiate).

Figure 42-7 Binding Component Service Access

[image: Description of Figure 42-7 follows]

The Edit Initiate dialog appears.

	
Enter the details shown in Table 42-1:

Table 42-1 Edit Initiate Dialog Fields and Values

	Field	Value
	
Service

	
Displays the name of the binding component service (client).

	
Operation

	
Displays the operation type of the service binding component (initiate).

	
Part

	
Select the type of inbound message to send (for example, payload).

	
Value

	
Create a simulated message to send from a client:

	
	
Enter Manually

	
Click to manually enter message data in the Enter Value field. A Generate Sample button enables you to automatically generate a sample file for testing. Click Save As to save the sample file.

	
	
Load From File

	
Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator.

Figure 42-8 shows this dialog:

Figure 42-8 Edit Initiate Dialog

[image: Description of Figure 42-8 follows]

Example 42-5 shows an inbound process initiation message from a client:

Example 42-5 Inbound Process Initiation Message

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/12/07 8:36 AM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about/>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
. . .
. . .

The loanApplication.xml referenced in the process initiation file contains a loan application payload. Example 42-6 provides details.

Example 42-6 Loan Application Payload

<loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@oracle.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
</loanApplication>

	
Click OK.

42.4.2 How to Emulate Outbound Messages

To emulate outbound messages:

	
Note:

The creation of multiple emulations in an instance in a test case is supported only if one emulation is for an output message and the other is for a callback message.

You can simulate a message returned from a synchronous web service partner.

	
Go to the SOA composite application in test mode.

	
Beneath the testsuites folder in the Application Navigator, double-click a test case. Figure 42-9 provides details.

Figure 42-9 Test Case Access

[image: Description of Figure 42-9 follows]

The SOA composite application in the SOA Composite Editor is refreshed to display in test mode. This mode enables you to define test information.

	
Double-click the wire of the SOA composite application area to test. For the example shown in Figure 42-10, the wire between the LoanBroker process and the synchronous CreditRating web service is selected.

Figure 42-10 Wire Access

[image: Description of Figure 42-10 follows]

This displays the Wire Actions dialog shown in Figure 42-11, from which you can design emulations and assertions for the selected part of the SOA composite application.

Figure 42-11 Wire Actions Dialog

[image: Description of Figure 42-11 follows]

	
Click the Emulates tab.

	
Click the Add icon.

	
Click Emulate Output.

	
Enter the details described in Table 42-2:

Table 42-2 Emulate Output Message Dialog Fields and Values

	Field	Value
	
Part

	
Select the message part containing the output (for example, payload).

	
Value

	
Create a simulated output message to return from a web service partner:

	
	
Enter Manually

	
Click to manually enter message data in the Enter Value field. A Generate Sample button enables you to automatically generate a sample file for testing. Click Save As to save the sample file.

	
	
Load From File

	
Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator.

	
Duration

	
Enter the maximum amount of time to wait for the message to be delivered from the web service partner.

Figure 42-12 shows this dialog:

Figure 42-12 Emulate Dialog with Emulate Output Selected

[image: Description of Figure 42-12 follows]

Example 42-7 shows a simulated output message from a synchronous web service partner that you enter manually or load from a file:

Example 42-7 Simulated Output Message Example

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:26 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">
 <emulate duration="PT0S">
 <message>
 <part partName="payload">
 <filePath>creditRatingResult.xml</filePath>
 </part>
 </message>
 </emulate>
 </wireActions>
</compositeTest>

The creditRatingResult.xml message file referenced in the output message provides details about the credit rating result.

<rating xmlns="http://services.otn.com">900</rating>

	
Click OK.

42.4.3 How to Emulate Callback Messages

To emulate callback messages:

	
Note:

The creation of multiple emulations in an instance in a test case is supported only if one emulation is for an output message and the other is for a callback message.

You can simulate a callback message returned from an asynchronous web service partner.

	
Access the Wire Actions dialog by following Step 1 through Step 3.

	
Click the Emulates tab.

	
Click the Add icon.

	
Click Emulate Callback. This field is only enabled for asynchronous processes.

	
Enter the details described in Table 42-3:

Table 42-3 Emulate Callback Message Fields

	Field	Value
	
Callback Operation

	
Select the callback operation (for example, onResult).

	
Callback Message

	
Displays the callback message name of the asynchronous process.

	
Part

	
Select the message part containing the callback (for example, payload).

	
Value

	
Create a simulated callback message to return from an asynchronous web service partner:

	
	
Enter Manually

	
Click to manually enter message data in the Enter Value field. A Generate Sample button enables you to automatically generate a sample file for testing. Click Save As to save the sample file.

	
	
Load From File

	
Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator.

	
Duration

	
Enter the maximum amount of time to wait for the callback message to be delivered from the web service partner.

Figure 42-13 shows this dialog:

Figure 42-13 Emulate Dialog with Emulate Callback Selected

[image: Description of Figure 42-13 follows]

Example 42-8 shows a simulated callback message from a web service partner. You enter this message manually or load it from a file:

Example 42-8 Simulated Callback Message Example

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:27 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/LoanService" operation="initiate">
 <emulate callbackOperation="onResult" duration="PT0S">
 <message>
 <part partName="payload">
 <filePath>loanOffer.xml</filePath>
 </part>
 </message>
 </emulate>
 </wireActions>
</compositeTest>

The loanOffer.xml message file referenced in the callback message provides details about the credit rating approval. Example 42-9 provides details.

Example 42-9 Credit Rating Approval Details

<loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Bank Of America</providerName>
 <selected>false</selected>
 <approved>true</approved>
 <APR>1.9</APR>
</loanOffer>

	
Click OK.

42.4.4 How to Emulate Fault Messages

To emulate fault messages:

You can simulate a fault message returned from a web service partner. This simulation enables you to test fault handling capabilities in your process.

	
Access the Wire Actions dialog by following Step 1 through Step 3.

	
Click the Emulates tab.

	
Click the Add icon.

	
Click Emulate Fault.

	
Enter the details described in Table 42-4:

Table 42-4 Emulate Fault Message Fields

	Field	Value
	
Fault

	
Select the fault type to return from a partner (for example, NegativeCredit).

	
Fault Message

	
Displays the message name.

	
Part

	
Select the message part containing the fault (for example, payload).

	
Value

	
Create a simulated fault message to return from a web service partner:

	
	
Enter Manually

	
Click to manually enter message data in the Enter Value field. A Generate Sample button enables you to automatically generate a sample file for testing. Click Save As to save the sample file.

	
	
Load From File

	
Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator.

	
Duration

	
Enter the maximum amount of time to wait for the fault message to be delivered from the web service partner.

Figure 42-14 shows this dialog:

Figure 42-14 Emulate Dialog with Emulate Fault Selected

[image: Description of Figure 42-14 follows]

An example of a simulated fault message from a web service partner that you enter manually or load from a file is shown in Section 42.2.2, "Emulations."

	
Click OK.

42.4.5 How to Create Assertions

To create assertions:

You perform assertions to verify variable data or process flow. Assertions enable you to validate test data in an entire XML document, a part section of a message, a nonleaf element, or a leaf element as a process is executed. This is done by extracting a value and comparing it to an expected value.

	
Access the Wire Actions dialog by following Step 1 through Step 3.

	
Click the Asserts tab.

Figure 42-15 shows this dialog:

Figure 42-15 Wire Actions Dialog with Asserts Tab Selected

[image: Description of Figure 42-15 follows]

	
Click the Add icon.

The Create Assert dialog appears.

	
Select the type of assertion to perform at the top of the dialog, as shown in Table 42-5. If the operation supports only input messages, the Assert Input button is enabled. If the operation supports both input and output messages, the Assert Input and Assert Output buttons are both enabled.

Table 42-5 Assertion Types

	Type	Description
	
Assert Input

	
Select to create an assertion in the inbound direction.

	
Assert Output

	
Select to create an assertion in the outbound direction.

	
Assert Callback

	
Select to create an assertion on a callback.

	
Assert Fault

	
Select to assert a fault into the application flow.

	
See the section shown in Table 42-6 based on the type of assertion you want to perform.

Table 42-6 Assertion Types

	For an Assertion on...	See...
	
	
A part section of a document

	
A nonleaf element

	
An entire XML document

	
Section 42.4.5.1, "Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document"

	
A leaf element

	
Section 42.4.5.2, "Creating Assertions on a Leaf Element"

42.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document

To create assertions on a part section, nonleaf element, or entire XML document:

This test compares the values to the expected values.

	
Note:

If the message contains multiple parts (for example, payload1, payload2, and payload3), you must create separate assertions for each part.

	
Click Browse to select the target part section, nonleaf element, or entire XML document to assert.

The Select Assert Target dialog appears.

	
Select a value, and click OK. For example, select a variable such as payload to perform a part section assertion.

Figure 42-16 shows this dialog. While this example shows how to perform a part section assertion, selecting LoanBrokerRequestMessage is an example of an entire XML document assertion and selecting loanApplication is an example of a nonleaf assertion.

Figure 42-16 Select a Part Section of a Message

[image: Description of Figure 42-16 follows]

The Create Assert dialog refreshes based on your selection of a variable.

	
Enter details in the remaining fields, as shown in Table 42-7:

Table 42-7 Create Assert Dialog Fields and Values

	Field	Value
	
Fault

	
Select the type of fault to assert (for example, NegativeCredit). This field only displays if you select Assert Fault in Step 4.

	
Assert Target

	
Displays the assert target you selected in Step 2.

	
Compare By

	
Specify the strictness of the comparison.

	
xml-identical: Used when the comparison between the elements and attributes of the XML documents must be exact. If there is any difference between the two XML documents, the comparison fails. For example, the comparison fails if one document uses an element name of purchaseOrder, while the other uses an element name of invoice. The comparison also fails if the child attributes of two elements are the same, but the attributes are ordered differently in each element.

	
xml-similar: Used when the comparison must be similar in content, but does not need to exactly match. For example, the comparison succeeds if both use the same namespace URI, but have different namespace prefixes. The comparison also succeeds if both contain the same element with the same child attributes, but the attributes are ordered differently in each element.

In both of these examples, the differences are considered recoverable, and therefore similar.

For more information about comparing the contents of XML files, see the XMLUnit web site:

http://xmlunit.sourceforge.net/userguide/html/ar01s03.html#The%20Difference%20Engine

	
Part

	
Select the message part containing the XML document (for example, payload).

	
Value

	
Create an XML document whose content is compared to the assert target content:

	
	
Enter Manually

	
Click to manually enter message data in the Enter Value field. A Generate Sample button enables you to automatically generate a sample file for testing. Click Save As to save the sample file.

	
	
Load From File

	
Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator.

	
Description

	
Enter an optional description.

Figure 42-17 shows this dialog with Assert Input selected:

Figure 42-17 Create Assert Dialog with Assert Input Selected

[image: Description of Figure 42-17 follows]

	
Click OK.

The Wire Actions dialog shown in Figure 42-18 displays your selection.

Figure 42-18 Wire Actions Dialog with Asserts Tab Selected

[image: Description of Figure 42-18 follows]

	
Click OK.

42.4.5.2 Creating Assertions on a Leaf Element

To create assertions on a leaf element:

This test compares the value to an expected value.

	
Click Browse to select the leaf element to assert.

The Select Assert Target dialog appears.

	
Select a leaf element, and click OK. For example, select loanAmount to perform an assertion. Figure 42-19 provides details.

Figure 42-19 Selection of a Leaf Element

[image: Description of Figure 42-19 follows]

The Create Assert dialog refreshes based on your selection of an entire XML document.

	
Enter details in the remaining fields, as shown in Table 42-8:

Table 42-8 Create Assert Dialog Fields and Values

	Field	Value
	
Fault

	
Select the type of fault to assert (for example, NegativeCredit). This field only displays if you select Assert Fault in Step 4.

	
Callback Operation

	
Select the type of callback to assert (for example, onResult). This field only displays if you select Assert Callback in Step 4.

	
Assert Target

	
Displays the variable assert target you selected in Step 2.

	
Compare By

	
Select the type of comparison:

	
string: Compares string values

	
number: Compares numeric values

	
pattern-match: Compares a regular expression pattern (for example, [0-9]*). Java Development Kit (JDK) regular expression (regexp) constructs are supported. For example, entering a pattern of ab[0-9]*cd means that a value of ab123cd or ab456cd is correct. An asterisk (*) indicates any number of occurrences.

	
Assert Value

	
Enter the value you are expecting. This value is compared to the value for the assert target.

	
Description

	
Enter an optional description.

Figure 42-20 shows this dialog with Assert Input selected:

Figure 42-20 Create Assert Dialog

[image: Description of Figure 42-20 follows]

	
Click OK.

The Wire Actions dialog shown in Figure 42-18 displays your selection.

Figure 42-21 Wire Actions Dialog with Asserts Tab Selected

[image: Description of Figure 42-21 follows]

42.4.6 What You May Need to Know About Assertions

When a test is executed, and the response type returned is different from the type expected, the assertion is skipped. For example, you are expecting a fault (RemoteFault) to be returned for a specific message, but a response (BpelResponseMessage) is instead returned.

As a best practice, always assert and emulate the expected behavior.

42.5 Deploying and Running a Test Suite

After creating a test suite of test cases, you deploy the suite as part of a SOA composite application. You then run the test suites from Oracle Enterprise Manager Fusion Middleware Control Console.

See Section 41.7.1.1, "How to Deploy a Single SOA Composite" for instructions on deploying a SOA composite application from Oracle JDeveloper. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for instructions on deploying a SOA composite application and running a test suite from Oracle Enterprise Manager Fusion Middleware Control Console.

Part IX

Advanced Topics

This part describes advanced topics.

This part contains the following chapters:

	
Chapter 43, "Managing Large Documents and Large Numbers of Instances"

	
Chapter 44, "Working with Domain Value Maps"

	
Chapter 45, "Using SOA Composer with Domain Value Maps"

	
Chapter 46, "Working with Cross References"

	
Chapter 47, "Defining Composite Sensors"

	
Chapter 48, "Using Two-Layer Business Process Management (BPM)"

	
Chapter 49, "Integrating the Spring Framework in SOA Composite Applications"

43 Managing Large Documents and Large Numbers of Instances

This chapter describes the best practices for managing large documents and metadata and for managing environments with large numbers of instances in Oracle SOA Suite.

This chapter includes the following sections:

	
Section 43.1, "Best Practices for Handling Large Documents"

	
Section 43.2, "Best Practices for Handling Large Metadata"

	
Section 43.3, "Best Practices for Handling Large Numbers of Instances"

For more information about Oracle SOA Suite tuning and performance, see Oracle Fusion Middleware Performance and Tuning Guide.

43.1 Best Practices for Handling Large Documents

This section describes the following scenarios for handling large documents and the best practice approach for each scenario. Oracle recommends that you follow these best practices before developing and executing large payloads.

43.1.1 Use Cases for Handling Large Documents

This section describes use cases for handling large documents.

43.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads

This section describes use cases for passing binary objects as Base64-encoded text in the XML payload.

43.1.1.1.1 SOAP Inline

In this use case, the binary attachments (for example, an image) are Base64-encoded as text and then passed inline in the XML document. Table 43-1 provides details.

Table 43-1 Capabilities

	Capability	Description
	
Security

	
Supported.

	
Filter/Transformation/Assign

	
Use of transformations may lead to slower performance, out-of-memory errors, or both.

	
Fanout

	
Supported.

	
Binding

	
WS binding sends it as a document object model (DOM).

	
Oracle BPEL Process Manager/Oracle Mediator

	
Can be decoded in a BPEL process using Java exec.

43.1.1.1.2 SOAP MTOM

In this use case, the binary attachments (for example, an image) are Base64-encoded as text and then passed as a Message Transmission Optimization Mechanism (MTOM) document. Table 43-2 provides details.

Table 43-2 Capabilities

	Capability	Description
	
Security

	
Supported.

	
Filter/Transformation/Assign

	
Assign activities are supported.

	
Fanout

	
Supported.

	
Binding

	
WS binding materializes the attachment sent as MTOM and puts it inside in Base64-encoded format (streaming is not supported). Outbound MTOM is not supported.

	
Oracle BPEL Process Manager/Oracle Mediator

	
No additional work is required.

43.1.1.1.3 Opaque Passed by File/FTP Adapters

In this use case, the binary attachments (for example, an image) are Base64-encoded as text and then passed inline in the XML document. Table 43-3 provides details.

Table 43-3 Capabilities

	Capability	Description
	
Security

	
Not supported.

	
Filter/Transformation/Assign

	
Pass through.

	
Fanout

	
Supported.

	
Binding

	
Adapter encodes it to Base64 format.

	
Oracle BPEL Process Manager/Oracle Mediator

	
Supported. Opaque content cannot be manipulated in an assign or a transformation activity.

43.1.1.1.4 Opaque Passed by Oracle B2B

In this use case, the binary attachments (for example, an image) are Base64-encoded as text encoded. Table 43-4 provides details.

Table 43-4 Capabilities

	Capability	Description
	
Security

	
Not supported.

	
Filter/Transformation/Assign

	
Pass through.

	
Fanout

	
Supported.

	
Oracle B2B

	
Oracle B2B encodes the native payload to Base64 format. For this, you must configure the Oracle B2B binding document definition handling to be opaque.

43.1.1.2 End-to-End Streaming with Attachments

This section describes use cases for end-to-end streaming of attachments.

43.1.1.2.1 SOAP with Attachments

In this use case, the binary attachments (for instance an image) are passed end-to-end as a stream. Table 43-5 provides details.

Table 43-5 Capabilities

	Capability	Description
	
Security

	
Not supported.

	
Filter/Transformation/Assign

	
Pass through. You must use an XPath extension function in Oracle BPEL Process Manager.

	
Fanout

	
Not supported.

	
Binding

	
WS binding creates stream iterators for the SOAP attachment.

	
Oracle BPEL Process Manager/Oracle Mediator

	
Oracle Mediator can perform a pass through without materializing it for synchronous routing rules (asynchronous routing rules are not supported). Oracle BPEL Process Manager persists it.

	
Tuning

	
Manage the database tablespace when using with Oracle BPEL Process Manager.

	
WSDL Code for defining SOAP with attachments

	

<mime:part>
 <mime:content part="bin" type=“image/jpeg"/>
</mime:part>

	
Notes:

	
You cannot stream attachments as part of a web service callback response.

	
Deferred routing rules within Oracle Mediator do not support processing of attachments.

	
The spring service component does not support processing MIME attachments. Only MTOM attachments are supported.

	
You can use various binding components such as direct binding, web services, HTTP, and so on to process large attachments. However, processing large attachments with direct binding is not recommended and results in out-of-memory errors.

Working with Streaming Attachments

Oracle Fusion Middleware web services enable you to pass large attachments as a stream. Unlike the JAX-RPC API, which treats attachments as if they are entirely in memory, streams make the programming model more efficient to use. Streams also enhance performance and scalability because there is no need to load the attachment into memory before service execution.

As with embedded attachments, streamed attachments conform to the multipart MIME binary format. On the wire, messages with streamed attachments are identical to any other SOAP message with attachments.

Example 43-1 provides a sample message with a streamed attachment. The first part in the message is the SOAP envelope (<SOAP-ENV:Envelope...). The second part is the attachment (for this example, myImage.gif).

Example 43-1 Sample Message with a Streamed Attachment

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: NotSure/DoesntMatter

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
. . .
<DocumentName>MyImage.gif</DocumentName>
. . .
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: AnythingYoudLike

...binary GIF image...
--MIME_boundary--

Creating Composites that Use MIME Attachments

Perform the following procedures to create composites that use MIME attachments.

	
Create a composite using a payload schema (for example, an inbound web service wired to an Oracle Mediator wired to an outbound web service).

	
Within the WSDL file of Oracle Mediator, perform the following steps:

	
From the WSDL designer, open the Oracle Mediator WSDL file.

	
Drag and drop bindings into the middle swimlane.

	
Select the RPC binding.

	
Enter a name.

	
Go to Source view of the WSDL and modify the WSDL input and WSDL output with MIME multiparts, as shown in Example 43-2.

Example 43-2 MIME Multiparts

<wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="payload" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="bin" type="application/octet-stream"/>
 </mime:part>
 </mime:multipartRelated>
</wsdl:input>

	
Add the MIME part in the request/response message, as shown in Example 43-3.

Example 43-3 MIME Part in Request/Response Message

<wsdl:message name="BPELProcess1RequestMessage">
 <wsdl:part name="payload" element="ns1:purchaseOrder" />
 <!--add below part-->
 <wsdl:part name="bin" type="xsd:base64Binary"/>
</wsdl:message>

	
Add a namespace in the WSDL definitions, as shown in Example 43-4.

Example 43-4 Namespace

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/">

When complete, the WSDL that references a MIME attachment displays as shown in Example 43-5.

Example 43-5 Sample WSDL

<wsdl:definitions
 name="PhotoCatalogService"
 targetNamespace="http://examples.com/PhotoCatalog"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:types="http://examples.com/PhotoCatalog/types"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tns="http://examples.com/PhotoCatalog">
 <wsdl:message name="addPhotoRequest">
 <wsdl:part name="photo" type="xsd:hexBinary"/>
 </wsdl:message>
 <wsdl:message name="addPhotoResponse">
 <wsdl:part name="status" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="replacePhotoRequest">
 <wsdl:part name="oldPhoto" type="xsd:string"/>
 <wsdl:part name="newPhoto" type="xsd:hexBinary"/>
 </wsdl:message>
 <wsdl:message name="replacePhotoResponse">
 <wsdl:part name="status" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="PhotoCatalog">
 <wsdl:operation name="addPhoto">
 <wsdl:input message="tns:addPhotoRequest"/>
 <wsdl:output message="tns:addPhotoResponse"/>
 </wsdl:operation>
 <wsdl:operation name="replacePhoto">
 <wsdl:input message="tns:replacePhotoRequest"/>
 <wsdl:output message="tns:replacePhotoResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="PhotoCatalogBinding" type="tns:PhotoCatalog">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="addPhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="photo"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <mime:multipartRelated>
 <mime:part>
 <soap:body use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="status" type="text/plain"/>
 <mime:content part="status" type="text/xml"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="replacePhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="oldPhoto" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="newPhoto"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <soap:body parts="status" use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

Performance Overhead and Pass Through Attachments

Because Oracle Mediator is stateless, there is no performance overhead with pass through attachments. However, Oracle BPEL Process Manager dehydrates attachments and has performance overhead, even for pass through attachments. Using Oracle BPEL Process Manager for attachments over a period of time, the SOA Infrastructure schema can grow to its maximum size and encounter memory issues. It is recommended that you extend the database tablespace appropriately for the SOA Infrastructure schema to accommodate large attachments.

In scenarios in which one BPEL process calls a second BPEL process within the same composite, the second BPEL process does not dehydrate the same attachment again.

In scenarios in which one BPEL process from composite 1 invokes a second BPEL process from composite 2 and optimization is disabled, composite 1 makes a SOAP call to composite 2. The second BPEL process does dehydrate attachments.

Properties for Streaming Attachments

To stream attachments, add the following properties in the composite.xml file. If optimization is enabled, then a native call is used instead of a SOAP call. Example 43-6 provides details.

Example 43-6 Properties for Streaming Attachments

<binding.ws
port="http://services.otn.com#wsdl.endpoint(MIMEService/MIMEService)"
xmlns:ns="http://xmlns.oracle.com/sca/1.0"
streamIncomingAttachments="true" streamOutgoingAttachments="true">
<!--Add this prop to reference bindings to make a SOAP call. -->
<property name="oracle.webservices.local.optimization">false</property>
</binding.ws>

For information about the oracle.webservices.local.optimization property, see "Managing SOA Composite Application Policies" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

	
Note:

Oracle Web Services Manager (OWSM) does not inspect or enforce policies on streamed attachments. For more information about OWSM, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

Reading and Encoding SOAP Attachment Content

The ora:getAttachmentContent function reads SOAP attachment content and encodes that data in Base64 format in a BPEL process by providing the BPEL variable as an argument, which has an href of the SOAP attachment. Example 43-7 shows how to use this function:

Example 43-7 ora:getAttachmentContent Function

<copy>
 <from expression="ora:getAttachmentContent('input','bin')"/>
 <to variable="initiateTaskInput" part="payload"
 query="/taskservice:initiateTask/task:task/task:attachment/task:content"/>
</copy>

Example 43-7 copies the attachment content, which has its href stored in the "input/bin" variable to the content variable, in Base64-encoded format.

Sending Attachment Streams

Oracle Mediator can pass an attachment stream to only one target receiver. The receiver can be another component or a web service/adapter. The second target cannot receive the attachment. Oracle BPEL Process Manager supports sending the attachment stream to multiple receivers. For Oracle BPEL Process Manager to send a stream to multiple receivers, it must read the attachment stream from the database using the readBinaryFromFile XPath function and pass the stream to the appropriate targets.

Sharing Attachments Using Synchronous Flows

When Oracle BPEL Process Manager-based composites share attachments using synchronous flows, it is necessary to use the same end-to-end transaction. This is applicable to composites that are colocated and use local/optimized calls. This can be achieved by setting the property shown in Example 43-8 on all the called BPEL components (callees) in the call chain.

Example 43-8 bpel.config.transaction Property

<property name="bpel.config.transaction" many="false"
type="xs:string">required</property>

If such composites do not execute as part of the same transaction context, the attachment data saved by the first BPEL component in the call chain is not visible to the other BPEL components in the call chain. In addition, they incur database locking and timeout exceptions:

"ORA-02049: timeout: distributed transaction waiting for lock"

43.1.1.2.2 Attachment Options of File/FTP Adapters

In this use case, the adapter streams the binary data to a database store and publishes an href to the service engine (Oracle BPEL Process Manager or Oracle Mediator). Table 43-6 provides details.

Table 43-6 Capabilities

	Capability	Description
	
Security

	
N/A.

	
Filter/Transformation/Assign

	
Filters and transformations on the attachment are not supported.

	
Fanout

	
Supported.

	
Binding

	
The adapter streams the non-XML to the database as a binary large object (BLOB) and passes the key to the service engines.

	
Oracle BPEL Process Manager/Oracle Mediator

	
Supported.

	
Tuning

	
	
Extend the database tablespace for the Oracle SOA Suite schema.

	
Delete the attachments after message processing completion.

	
Documentation

	
See Oracle Fusion Middleware User's Guide for Technology Adapters.

Writing Attachments Using an Outbound File Adapter

Example 43-9 shows a sample schema that can be used by the file adapter to write attachments to disk.

Example 43-9 Schema for Writing Attachments to Disk

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.oracle.com/attachment"
 targetNamespace="http://xmlns.oracle.com/attachment"
 elementFormDefault="qualified">
 <xsd:element name="attach">
 <xsd:complexType>
 <xsd:attribute name="href" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Use Oracle Mediator in the flow to map the attachment part from the source (Oracle Mediator) to the target (file adapter) using an Oracle Mediator assign.

If you use Oracle BPEL Process Manager, the attachment is written to the dehydration store, which slows down the process.

Transforming Attachments with the ora:doStreamingTranslate XPath Function

Use of the ora:doStreamingTranslate XPath function is only recommended while transforming attachments within an Oracle BPEL Process Manager/Oracle Mediator composite. This function expects the attachment location to be a relative path on the server. This function cannot translate incoming attachment streams.

For more information about this function, see Section B.2.6, "doStreamingTranslate."

43.1.1.2.3 Oracle B2B Attachment

In this use case, Oracle B2B stores the binary data to a database and publishes an href to the service engine (Oracle BPEL Process Manager or Oracle Mediator) based on an Oracle B2B-defined XSD. Oracle B2B protocols define the attachment. Table 43-7 provides details.

Table 43-7 Capabilities

	Capability	Description
	
Security

	
N/A.

	
Filter/Transformation/Assign

	
Filters and transformations on the attachment are not supported.

	
Fanout

	
Supported.

	
Binding

	
Oracle B2B passes it as an href key to service engines.

	
Tuning

	
Extend the database tablespace for the Oracle SOA Suite schema.

43.1.1.3 Processing Large XML with Repeating Constructs

This section describes use cases for processing large XML with repeating constructs.

43.1.1.3.1 Debatching with the File/FTP Adapter

In this use case, the inbound adapter splits a source document into multiple batches of records, each of which initiates a composite instance. Table 43-8 provides details.

Table 43-8 Capabilities

	Capability	Description
	
Security

	
N/A.

	
Filter/Transformation/Assign

	
Supported.

	
Fanout

	
Supported.

	
Binding

	
The file/FTP adapter debatches it to a small chunk based on the native XSD (NXSD) definition.

	
Oracle BPEL Process Manager/Oracle Mediator

	
Supported.

	
Tuning

	
For repeating structures, XSLT is supported for scenarios in which the repeating structure is of smaller payloads compared to the overall payload size. Substitution with assign activities is preferred, as it performs a shadow copy.

	
Documentation

	
See Oracle Fusion Middleware User's Guide for Technology Adapters.

43.1.1.3.2 Chunking with the File/FTP Adapters

In this use case, a loop within a BPEL process reads a chunk of records at a time and process (that is, cursor). Table 43-9 provides details.

Table 43-9 Capabilities

	Capability	Description
	
Security

	
Supported.

	
Filter/Transformation/Assign

	
Supported.

	
Fanout

	
Supported.

	
Oracle BPEL Process Manager/Oracle Mediator

	
Supported only from Oracle BPEL Process Manager.

	
Documentation

	
See Oracle Fusion Middleware User's Guide for Technology Adapters.

43.1.1.4 Processing Large XML Documents with Complex Structures

This section describes use cases for processing very large XML documents with complex structures.

43.1.1.4.1 Streaming with the File/FTP Adapters

In this use case, very large XML files are streamed through Oracle SOA Suite. Table 43-10 provides details.

Table 43-10 Capabilities

	Capability	Description
	
Security

	
N/A.

	
Filter/Transformation/Assign

	
Supported, but must optimize to avoid issues.

	
Fanout

	
Supported.

	
Binding

	
The adapter streams the payload to a database as an SDOM and passes the key to the service engines.

	
Documentation

	
See Oracle Fusion Middleware User's Guide for Technology Adapters.

43.1.1.4.2 Oracle B2B Streaming

In this use case, large XML files are passed by Oracle B2B to Oracle SOA Suite as an SDOM. This only occurs when a large payload size is defined in the Oracle B2B user interface. Table 43-11 provides details.

Table 43-11 Capabilities

	Capability	Description
	
Security

	
N/A.

	
Filter/Transformation/Assign

	
Supported, but must optimize to avoid issues.

	
Fanout

	
Supported.

	
Binding

	
Oracle B2B streams the payload to a database as SDOM and passes the key to the service engines.

	
Oracle BPEL Process Manager/Oracle Mediator

	
Can use an XPath extension function to manipulate the payload.

43.1.2 Limitations on Concurrent Processing of Large Documents

This section describes the limitations on concurrent processing of large documents.

43.1.2.1 Opaque Schema for Processing Large Payloads

There is a limitation when you use an opaque schema for processing large payloads. The entire data for the opaque translator is converted to a single Base64-encoded string. An opaque schema is generally used for smaller data. For large data, use the attachments feature instead of the opaque translator.

For more information about the usage of these functions, see Oracle Fusion Middleware User's Guide for Technology Adapters.

43.1.2.2 Streaming MTOM Attachments

The incoming requests for streaming MTOM attachments that are passed through the Service Infrastructure are normalized, and the processing of such messages are not optimized inside the Service Infrastructure layer.

43.1.3 General Tuning Recommendations

This section provides general tuning recommendations.

For more information about Oracle SOA Suite tuning and performance, see Oracle Fusion Middleware Performance and Tuning Guide.

43.1.3.1 General Recommendations

This section provides general tuning recommendations.

	
Increase the JTA transaction timeout to 500 seconds in Oracle WebLogic Server Administration Console. For instructions, see section "Resolving Connection Timeouts" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

	
In Oracle Enterprise Manager Fusion Middleware Control Console, set the audit level to Off or Production at the SOA composite application level. See Section 43.1.3.2, "Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing" for additional information.

	
Uncomment the following line in setDomainEnv.sh for JAVA_OPTIONS, and restart the server. If this line does not exist, add it. Without this setting, large payload scenarios fail with ResourceDisabledException for the dehydration data source.

-Dweblogic.resourcepool.max_test_wait_secs=30

	
Update the heap size in setSOADomainEnv.sh as follows:

DEFAULT_MEM_ARGS="-Xms1024m -Xmx2048m"

	
Use optimized translation functions, which are available while performing transformations and translations of large payloads (for example, ora:doTranslateFromNative, ora:doTranslateToNative, ora:doStreamingTranslate, and so on).

	
Extend data files for handling large attachments. For more information, see the Oracle Database Administrator's Guide.

http://download-west.oracle.com/docs/cd/B28359_01/server.111/b28310/toc.htm

	
If you are processing large documents and run into timeout errors, perform the following tasks:

	
Increase the timeout property value

	
Increase the Stuck Thread Max Time property value

Increase the timeout property value as follows:

	
Log in to Oracle Web Services Manager Administration Console.

	
Navigate to Deployments > soa-infra > EJBs.

	
Click each of the following beans, select Configuration, and increase the timeout value:

	
BpelEngineBean

	
BpelDeliveryBean

	
CompositeMetaDataServiceBean

Increase the Stuck Thread Max Time property value as follows:

	
Follow the instructions in Chapter "Using the WebLogic 8.1 Thread Pool Model" of Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.

43.1.3.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing

For large payload processing, turn off audit level logging for the specific composite. You can set the composite audit level option to Off or Production in Oracle Enterprise Manager Fusion Middleware Control Console. If you set the composite audit level option to Development, then it serializes the entire large payload into an in-memory string, which can lead to an out-of-memory error.

For more information about setting audit levels, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

43.1.3.3 Using the Assign Activity in Oracle BPEL Process Manager/Oracle Mediator

When using the assign activity in Oracle BPEL Process Manager or Oracle Mediator to manipulate large payloads, do not assign the complete message. Instead, assign only the part of the payload that you need.

In addition, when using the assign activity in Oracle BPEL Process Manager, Oracle recommends using local variables instead of process variables, wherever possible. Local variables are limited to the scope of the BPEL process. These get deleted from memory and from the database after you close the scope. However, the life cycle of a global variable is tied with the instance life cycle. These variables stay in memory or remain on disk until the instance completes. Thus, local variables are preferred to process or global variables.

43.1.3.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process Manager and Oracle Mediator)

Oracle recommends that you not apply the XSLT Transformation on large payloads because this results in out-of-memory errors when XSLT must traverse the entire document.

43.1.3.5 Using XSLT Transformations for Repeating Structures

In scenarios in which the repeating structure is of smaller payloads compared to the overall payload size, Oracle recommends using XSLT transformation because the current XSLT implementation materializes the entire DOM in memory. For example, use PurchaseOrder.LineItem.Supplier (a subpart of a large payload).

You can also substitute it with the assign activity, as it performs a shadow copy. Although a shadow copy does not materialize DOM, it creates a shadow node to point to the source document.

You can also use the following optimized translation functions while performing transformations/translations of large payloads:

	
ora:doTranslateFromNative

	
ora:doTranslateToNative

	
ora:doStreamingTranslate

For more information about the usage of these functions, see Oracle Fusion Middleware User's Guide for Technology Adapters.

43.1.3.6 Processing Large Documents in Oracle B2B

For processing large documents in Oracle B2B, tune the following parameters:

	
MDSInstance

	
Cache Size

	
Protocol Message Size

	
Number of threads

	
Stuck Thread Max Time

	
Tablespace

The following sections describe the parameters you must set for processing large documents in Oracle B2B:

43.1.3.6.1 MDSInstance Cache Size

To set MDSInstance cache size, the property and value must be added to the $DOMAIN_HOME/config/soa-infra/configuration/b2b-config.xml file, as shown in Example 43-10.

Example 43-10 MDSInstance Cache Size

<property>
 <name>b2b.mdsCache</name>
 <value>200000</value>
 <comment>MDS Instance cache size </comment>
</property>

43.1.3.6.2 Protocol Message Size

If Oracle B2B wants to send or receive more than 10 MB of message or the import/export configuration is more than 10 MB, then the following setting must be changed accordingly in the Oracle WebLogic Server Administration Console:

	
In the Domain Structure, select Environment > Servers.

	
In the Name column of the table, select soa_server.

	
Select the Protocols tab.

	
Change the value for Maximum Message Size.

This setting can also be added/modified in the $DOMAIN_HOME/config/config.xml file next to the server name configuration, as shown in Example 43-11.

Example 43-11 max-message-size Property

<name>soa_server1</name>
<max-message-size>150000000</max-message-size>

	
Note:

By default, max-message-size is not available in the config.xml file.

43.1.3.6.3 Number of Threads

This parameter helps to improve the message processing capability of Oracle B2B and must be set in the $DOMAIN_HOME/config/soa-infra/configuration/b2b-config.xml file. Example 43-12 provides an example.

Example 43-12 Number of Threads

<property>
 <name>b2b.inboundProcess.threadCount</name>
 <value>5</value>
 <comment></comment>
</property>
<property>
 <name>b2b.inboundProcess.sleepTime</name>
 <value>10</value>
 <comment></comment>
</property>
<property>
 <name>b2b.outboundProcess.threadCount</name>
 <value>5</value>
 <comment></comment>
</property>
<property>
 <name>b2b.outboundProcess.sleepTime</name>
 <value>10</value>
 <comment></comment>
</property>
<property>
 <name>b2b.defaultProcess.threadCount</name>
 <value>5</value>
 <comment></comment>
</property>
<property>
 <name>b2b.defaultProcess.sleepTime</name>
 <value>10</value>
 <comment></comment>
</property>

43.1.3.6.4 Stuck Thread Max Time

The Stuck Thread Max Time parameter checks the number of seconds that a thread must be continually working before the server considers the thread stuck. You must change the following setting in the Oracle WebLogic Server Administration Console:

	
In the Domain Structure, select Environment > Servers.

	
In the Name column of the table, select soa_server.

	
Select the Tuning tab.

	
Change the value for Stuck Thread Max Time.

43.1.3.6.5 Tablespace

If you must store more than a 150 MB configuration in the data file, then you must extend or add the data file to increase the tablespace size, as shown in Example 43-13.

Example 43-13 Extension of Data File

ALTER TABLESPACE sh_mds add DATAFILE 'sh_mds01.DBF' SIZE 100M autoextend on next
 10M maxsize unlimited;
ALTER TABLESPACE sh_ias_temp add TEMPFILE 'sh_ias_temp01.DBF' SIZE 100M autoextend
 on next 10M maxsize unlimited;

43.2 Best Practices for Handling Large Metadata

This section provides recommendations for handling large metadata.

43.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process

There is a limit to the number of activities that can be executed in a BPEL process. When you exceed this limit, system memory fills up, which can cause timeouts to occur. For example, with the following parameters, two fault instances occur due to a timeout:

	
100 threads

	
1 second of think time

	
1000 incoming request messages

Try to keep the number of incoming request messages at a proper level to ensure system memory stability.

43.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN)

To deploy BPEL processes that have a large number of activities (for example, 50,000), the following settings are required:

MEM_ARGS: -Xms512m -Xmx1024m -XX:PermSize = 128m -XX:MaxPermSize = 256m

Number of Concurrent Threads = 20

Number of Loops = 5 Delay = 100 ms

The above settings enable you to deploy and execute BPEL processes, which use only while loops without the flowN activities, successfully.

43.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)

To deploy BPEL processes that have a large number of activities (for example, 50,000), the following settings are required:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=256m

Number of Concurrent Threads= 10

Number of Loops=5 Delay=100 ms

Set the StatsLastN property to -1 in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control Console.

The above settings enable you to deploy and execute BPEL processes, which use the flowN activities, successfully.

For more information, see Chapter 9, "Using Parallel Flow in a BPEL Process."

43.2.4 Using a Flow With Multiple Sequences

BPEL processes that have up to 7000 activities can be deployed and executed successfully with the following settings:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=256m

	
Note:

If you deploy BPEL processes with more than 8000 activities, Oracle BPEL Process Manager compilation throws errors.

43.2.5 Using a Flow with One Sequence

BPEL processes that have up to 7000 activities can be deployed and executed successfully with the following settings:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=512m

	
Note:

If you deploy BPEL processes with more than 10,000 activities, the Oracle BPEL Process Manager compilation fails.

43.2.6 Using Flow with No Sequence

You can deploy and execute BPEL processes that have a large number of activities (for example, up to 5000) successfully.

There is a probability that the BPEL compilation could fail for 6000 activities.

43.2.7 Large Numbers of Oracle Mediators in a Composites

Oracle recommends that you not have more than 50 Oracle Mediators in a single composite. Increase the JTA Transaction timeout to a high value based on the environment.

43.2.8 Importing Large Data Sets in Oracle B2B

Oracle recommends that you do not use browsers for large data set imports, and that you use the command-line utility. The following utility commands are recommended for large data configuration:

	
purge: This command is used to purge the entire repository.

	
import: This command is used to import the specified ZIP file.

	
deploy: This command is used to deploy an agreement with whatever name is specified. If no name is specified, then all the agreements are deployed.

However, the purgeimportdeploy option is not recommended to be used for transferring or deploying the Oracle B2B configuration.

43.3 Best Practices for Handling Large Numbers of Instances

This section provides recommendations for handling large numbers of instance and fault metrics.

	
Section 43.3.1, "Instance and Rejected Message Deletion with the Purge Script"

	
Section 43.3.2, "Improving the Loading of Pages in Oracle Enterprise Manager Fusion Middleware Control Console"

43.3.1 Instance and Rejected Message Deletion with the Purge Script

Deleting thousands of instances and rejected messages in Oracle Enterprise Manager Fusion Middleware Control Console takes time and can result in a transaction timeout. If you must perform this task, use the purge_soainfra_oracle.sql PL/SQL script for instance and rejected message deletion.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

43.3.2 Improving the Loading of Pages in Oracle Enterprise Manager Fusion Middleware Control Console

You can improve the loading of pages that display large amounts of instance and fault data in Oracle Enterprise Manager Fusion Middleware Control Console by setting two properties in the Display Data Counts section of the SOA Infrastructure Common Properties page.

These two properties enable you to perform the following:

	
Disable the fetching of instance and fault count data to improve loading times for the following pages:

	
Dashboard pages of the SOA Infrastructure, SOA composite applications, service engines, and service components

	
Delete with Options: Instances dialog

This setting disables the loading of all metrics information upon page load. For example, on the Dashboard page for the SOA Infrastructure, the values that typically appear in the Running and Total fields in the Recent Composite Instances section and the Instances column of the Deployed Composites section and replaced with links. When these values are large, it can take time to load this page and other pages with similar information.

	
Specify a default time period that is used as part of the search criteria for retrieving recent instances and faults for display on the following pages:

	
Dashboard pages and Instances pages of the SOA Infrastructure, SOA composite applications, service engines, and service components

	
Dashboard pages of services and references

	
Faults and Rejected Messages pages of the SOA Infrastructure, SOA composite applications, services, and references

	
Faults pages of service engines and service components

For more information about setting these properties, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

44 Working with Domain Value Maps

This chapter describes how to use domain value maps to map the vocabulary used by different domains.

This chapter includes the following sections:

	
Section 44.1, "Introduction to Domain Value Maps"

	
Section 44.2, "Creating Domain Value Maps"

	
Section 44.3, "Editing a Domain Value Map"

	
Section 44.4, "Using Domain Value Map Functions"

	
Section 44.5, "Creating a Domain Value Map Use Case for a Hierarchical Lookup"

	
Section 44.6, "Creating a Domain Value Map Use Case For Multiple Values"

44.1 Introduction to Domain Value Maps

Domain value maps operate on actual data values that transit through the infrastructure at runtime. They enable you to map from one vocabulary used in a given domain to another vocabulary used in a different domain. For example, one domain may represent a city with a long name (Boston), while another domain may represent a city with a short name (BO). In such cases, you can directly map the values by using domain value maps. A direct mapping of values between two or more domains is known as point-to-point mapping. Table 44-1 shows a point-to-point mapping for cities between two domains:

Table 44-1 Point-to-Point Mapping

	CityCode	CityName
	
BELG_MN_STLouis

	
BelgradeStLouis

	
BELG_NC

	
BelgradeNorthCarolina

	
BO

	
Boston

	
NP

	
Northport

	
KN_USA

	
KensingtonUSA

	
KN_CAN

	
KensingtonCanada

Each domain value map typically holds a specific category of mappings among multiple applications. For example, one domain value map may hold mappings for city codes and another may hold mappings for state codes.

Domain value map values are static. You specify the domain value map values at design time using Oracle JDeveloper, and then at runtime, the domain value map columns are looked up for values.

For information about editing domain value maps at runtime with the SOA Composer, see Chapter 45, "Using SOA Composer with Domain Value Maps."

	
Note:

To dynamically integrate values between applications, you can use the cross referencing feature of Oracle SOA Suite. For information about cross references, see Chapter 46, "Working with Cross References."

44.1.1 Domain Value Map Features

This section describes domain value map functionality.

44.1.1.1 Qualifier Support

Qualifiers qualify mappings. A mapping may not be valid unless qualified with additional information. For example, a domain value map containing a city code-to-city name mapping may have multiple mappings from KN to Kensington because Kensington is a city in both Canada and the USA. Therefore, this mapping requires a qualifier (USA or Canada) to qualify when the mapping becomes valid, as shown in Table 44-2.

Table 44-2 Qualifier Support Example

	Country (Qualifier)	CityCode	CityName
	
USA

	
BO

	
Boston

	
USA

	
BELG_NC

	
Belgrade

	
USA

	
BELG_MN_Streams

	
Belgrade

	
USA

	
NP

	
Northport

	
USA

	
KN

	
Kensington

	
Canada

	
KN

	
Kensington

You can also specify multiple qualifiers for a domain value map. For example, as shown in Table 44-3, BELG to Belgrade mapping can also be qualified with a state name.

Table 44-3 Multiple Qualifier Support Example

	Country (Qualifier)	State (Qualifier)	CityCode	CityName
	
USA

	
Massachusetts

	
BO

	
Boston

	
USA

	
North Carolina

	
BELG

	
Belgrade

	
USA

	
Minnesota

	
BELG

	
Belgrade

	
USA

	
Alabama

	
NP

	
Northport

	
USA

	
Kansas

	
KN

	
Kensington

	
Canada

	
Prince Edward Island

	
KN

	
Kensington

Qualifiers are used only to qualify the mappings. Therefore, the qualifier values cannot be looked up.

44.1.1.2 Qualifier Order Support

A qualifier order is used to find the best match during lookup at runtime. The order of a qualifier varies from highest to lowest depending on the role of the qualifier in defining a more exact match. In Table 44-3, the state qualifier can have a higher order than the country qualifier, as a matching state indicates a more exact match.

Domain value maps support hierarchical lookup. If you specify a qualifier value during a lookup and no exact match is found, then the lookup mechanism tries to find a more generalized match by setting the higher order qualifiers to a "". It proceeds until a match is found, or until a match is not found with all qualifiers set to a "". Figure 44-1 describes the hierarchical lookup performed for the following lookup in Table 44-3.

State=Arkansas, Country=Canada, CityCode=KN_USA

In this example, the State qualifier has a qualifier value of 1 and the Country qualifier has a qualifier value of 2.

As shown in Figure 44-1, the lookup mechanism sets the higher order qualifier State to the exact lookup value Arkansas and uses Canada|"" for the lower order qualifier Country.

Figure 44-1 Hierarchical Lookup Example

[image: Description of Figure 44-1 follows]

When no match is found, the lookup mechanism sets the higher order qualifier State to a value of "" and sets the next higher qualifier Country to an exact value of Canada.

When no match is found, the lookup mechanism sets the value of the previous higher order qualifier Country to a value of "". One matching row is found where CityCode is KN_USA and Kensington is returned as a value.

Table 44-4 provides a summary of these steps.

Table 44-4 Domain Value Map Lookup Result

	State	Country	Short Value	Lookup Result
	
Arkansas

	
CANADA|" "

	
KN_USA

	
No Match

	
" "

	
CANADA

	
KN_USA

	
No Match

	
" "

	
" "

	
KN_USA

	
Kensington

44.1.1.3 One-to-Many Mapping Support

You can map one value to multiple values in a domain value map. For example, a domain value map for payment terms can contain a mapping of payment terms to three values, such as discount percentage, discount period, and net credit period, as shown in Table 44-5.

Table 44-5 One-to-Many Mapping Support

	Payment Term	Discount Percentage	Discount Period	Net Credit Period
	
GoldCustomerPaymentTerm

	
10

	
20

	
30

	
SilverCustomerPaymentTerm

	
5

	
20

	
30

	
RegularPaymentTerm

	
2

	
20

	
30

44.2 Creating Domain Value Maps

You can create one or more domain value maps in a SOA composite application of Oracle JDeveloper, and then at runtime, use it to look up column values.

44.2.1 How to Create Domain Value Maps

You can create a domain value map by using the Create Domain Value Map(DVM) File dialog in Oracle JDeveloper.

To create a domain value map:

	
In the Application Navigator, right-click the project in which you want to create a domain value map and select New.

The New Gallery dialog is displayed.

	
Expand the SOA Tier node, and then select the Transformations category.

	
In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog is displayed.

	
In the File Name field, enter the name of the domain value map file. For example, specify CityCodes to identify a domain value map for city names and city codes.

	
In the Description field, enter a description for the domain value map. For example, Mappings of city names and city codes. This field is optional.

	
In the Domain Name field, enter a name for each domain. For example, you can enter CityCode in one Domain Name field and CityName in another. Each domain name must be unique in a domain value map.

	
Note:

You can later add more domains to a domain value map by using the Domain Value Map Editor.

	
In the Domain Value field, enter a value corresponding to each domain. For example, enter BO for the CityCode domain and Boston for the CityName domain, as shown in Figure 44-2.

Figure 44-2 Populated Create Domain Value Map File Dialog

[image: Description of Figure 44-2 follows]

	
Click OK.

The Domain Value Map Editor is displayed.

44.2.2 What Happens When You Create a Domain Value Map

A file with extension .dvm is created and appears in the Application Navigator, as shown in Figure 44-3.

Figure 44-3 A Domain Value Map File in Application Navigator

[image: Description of Figure 44-3 follows]

All .dvm files are based on the schema definition (XSD) file shown in Example 44-1.

Example 44-1 XSD File for Domain Value Map Files

<?xml version="1.0" encoding="UTF-8" ?>

<!-- Copyright (c) 2006, Oracle. All rights reserved. -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://xmlns.oracle.com/dvm"

 xmlns:tns="http://xmlns.oracle.com/dvm"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

<xsd:element name="dvm">

 <xsd:annotation>

 <xsd:documentation>The Top Level Element

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="description" minOccurs="0" type="xsd:string">

 <xsd:annotation>

 <xsd:documentation>The DVM Description. This is optional

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="columns">

 <xsd:annotation>

 <xsd:documentation>This element holds DVM's column List.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="column" minOccurs="2" maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>This represents a DVM Column

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:attribute name="name" use="required" type="xsd:string"/>
 <xsd:attribute name="qualifier" default="false" type="xsd:boolean"

 use="optional"/>

 <xsd:attribute name="order" use="optional" type="xsd:positiveInteger"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="rows" minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>This represents all the DVM Rows.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="row" minOccurs="1" maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 Each DVM row of values

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="cell" minOccurs="2" maxOccurs="unbounded"

 type="xsd:string">

 <xsd:annotation>
 <xsd:documentation>This is the value for this row and for
 each column in the same order as defined in Columns.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="name" use="required" type="xsd:string"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:annotation>
 <xsd:documentation>This Schema is used to validate the DVM Document got for
 creation and
 update of a DVM.

 </xsd:documentation>

 </xsd:annotation>

</xsd:schema>

44.3 Editing a Domain Value Map

After you have created a domain value map, you can edit it and make adjustments to the presentation of data in the Domain Value Map Editor.

44.3.1 How to Add Columns to a Domain Value Map

A domain value map column defines the domain whose values you want to map with other domains.

To add a column to a domain value map:

	
Click Add.

	
Select Add Column.

The Create DVM Column dialog is displayed.

	
In the Name field, enter a column name.

	
In the Qualifier field, select True to set this column as a qualifier. Otherwise, select False.

	
In the Qualifier Order field, enter a qualifier number. This field is enabled only if you selected True in the Qualifier field.

	
Click OK.

44.3.2 How to Add Rows to a Domain Value Map

A domain value map row contains the values of the domains.

To add a row to a domain value map:

	
In the Domain Value Map Editor, click Add.

	
Select Add Row.

44.4 Using Domain Value Map Functions

After creating a domain value map, you can use the XPath functions of the domain value map to look up appropriate values and populate the targets for the applications at runtime.

44.4.1 Understanding Domain Value Map Functions

You can use the dvm:lookupValue and dvm:lookupValue1M XPath functions to look up a domain value map for a single value or multiple values at runtime.

44.4.1.1 dvm:lookupValue

The dvm:lookupValue function returns a string by looking up the value for the target column in a domain value map, where the source column contains the given source value.

	
Example 44-2 shows an example of dvm:lookupValue function syntax.

Example 44-2 dvm:lookupValue Function Syntax

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,

 SourceValue as string, TargetColumnName as string, DefaultValue as string) as

 string

Example 44-3 provides an example of dvm:lookupValue function use.

Example 44-3 dvm:lookupValue Function Use

dvm:lookupValue('cityMap.dvm','CityCodes','BO', 'CityNames',
'CouldNotBeFound')

	
Example 44-4 shows another example of dvm:lookupValue function syntax.

Example 44-4 dvm:lookupValue Function Syntax

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,

SourceValue as string, TargetColumnName as string, DefaultValue as string,

(QualifierSourceColumn as string, QualifierSourceValue as string)*) as string

Example 44-5 provides another example of dvm:lookupValue function use.

Example 44-5 dvm:lookupValue Function Use

dvm:lookupValue ('cityMap.dvm','CityCodes','BO','CityNames',

 'CouldNotBeFound', 'State', 'Massachusetts')

Arguments

	
dvmMetadataURI - The domain value map URI.

	
SourceColumnName - The source column name.

	
SourceValue - The source value (an XPath expression bound to the source document of the XSLT transformation).

	
TargetColumnName - The target column name.

	
DefaultValue - If the value is not found, then the default value is returned.

	
QualifierSourceColumn: The name of the qualifier column.

	
QualifierSourceValue: The value of the qualifier.

44.4.1.2 dvm:lookupValue1M

The dvm:lookupValue1M function returns an XML document fragment containing values for multiple target columns of a domain value map, where the value for the source column is equal to the source value. Example 44-6 provides details.

Example 44-6 dvm:lookupValue1M Function Syntax

dvm:lookupValue1M(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string,(TargetColumnName as string)?)as nodeset

Arguments

	
dvmMetadataURI - The domain value map URI.

	
SourceColumnName - The source column name.

	
SourceValue - The source value (an XPath expression bound to the source document of the XSLT transformation).

	
TargetColumnName - The name of the target columns. At least one column name should be specified. The question mark symbol (?) indicates that you can specify multiple target column names.

Example 44-7 shows an example of dvm:lookupValue1M function use.

Example 44-7 dvm:lookupValue1M Function Use

dvm:lookupValue1M ('cityMap.dvm','CityCode','BO','CityName',
'CityNickName')

The result is shown in Example 44-8.

Example 44-8 dvm:lookupValue1M Function Result

<CityName>Boston</CityName>
<CityNickName>BeanTown</CityNickName>

44.4.2 How to Use Domain Value Map Functions in Transformations

The domain value map functions can be used for transformations with a BPEL process service component or an Oracle Mediator service component. Transformations are performed by using the XSLT Mapper, which is displayed when you create an XSL file to transform the data from one XML schema to another.

For information about the XSLT Mapper, see Chapter 38, "Creating Transformations with the XSLT Mapper."

To use the lookupValue1M function in a transformation:

	
In the Application Navigator, double-click an XSL file to open the XSLT Mapper.

	
In the XSLT Mapper, expand the trees in the Source and Target panes.

	
In the Component Palette, click the down arrow, and then select Advanced.

	
Select DVM Functions, as shown in Figure 44-4.

Figure 44-4 Domain Value Map Functions in the Component Palette

[image: Description of Figure 44-4 follows]

	
Drag and drop lookupValue1M onto the line that connects the source to the target.

A dvm:lookupValue1M icon appears on the connecting line.

	
Double-click the lookupValue1M icon.

The Edit Function – lookupValue1M dialog is displayed, as shown in Figure 44-5.

Figure 44-5 Edit Function – lookupValue1M Dialog

[image: Description of Figure 44-5 follows]

	
Specify values for the following fields in the Edit Function – lookupValue1M dialog:

	
In the dvmLocation field, enter the location URI of the domain value map file or click Browse to the right of the dvmLocation field to select a domain value map file. You can select an already deployed domain value map from the metadata service (MDS) and also from the shared location in MDS. This can be done by selecting the Resource Palette.

	
In the sourceColumnName field, enter the name of the domain value map column that is associated with the source element value, or click Browse to select a column name from the columns defined for the domain value map you previously selected.

	
In the sourceValue field, enter a value or press Ctrl-Space to use the XPath Building Assistant. Press the up and down arrow keys to locate an object in the list, and press Enter to select an item.

	
In the targetColumnName field, enter the name of the domain value map column that is associated with the target element value, or click Browse to select the name from the columns defined for the domain value map you previously selected.

	
Click Add to add another column as the target column and then enter the name of the column.

A populated Edit Function - lookupValue1M dialog is shown in Figure 44-6.

Figure 44-6 Populated Edit Function – lookupValue1M Dialog

[image: Description of Figure 44-6 follows]

	
Click OK.

The XSLT Mapper is displayed with the lookupValue1M function icon.

	
From the File menu, select Save All.

44.4.3 How to Use Domain Value Map Functions in XPath Expressions

You can use the domain value map functions to create XPath expressions in the Expression Builder dialog. You can access the Expression Builder dialog through the Filter Expressions or the Assign Values functionality of an Oracle Mediator service component.

For information about the Assign Values functionality, see Section 20.2.2.9, "How to Assign Values."

To use the lookupValue function in the Expression Builder dialog:

	
In the Functions list, select DVM Functions.

	
Double-click the dvm:lookupValue function to add it to the expression field.

	
Specify the various arguments of the lookupValue function. For example:

dvm:lookupValue('citymap.dvm','CityCodes',$in.Customer/inp1:Customer/Address/Ci
ty,'CityNames','NotFound')

This expression, also shown in Figure 44-7, looks up a domain value map for the city name equivalent of a city code. The value of the city code depends on the value specified at runtime.

Figure 44-7 Domain Value Map Functions in the Expression Builder Dialog

[image: Description of Figure 44-7 follows]

44.4.4 What Happens at Runtime

At runtime, a BPEL process service component or an Oracle Mediator service component uses the domain value map to look up appropriate values.

44.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup

This use case demonstrates the hierarchical lookup feature of domain value maps. The hierarchical lookup use case consists of the following steps:

	
Files are retrieved from a directory by an adapter service named ReadOrders.

	
The ReadOrders adapter service sends the file data to an Oracle Mediator named ProcessOrders.

	
The ProcessOrders Oracle Mediator then transforms the message to the structure required by the adapter reference. During transformation, Oracle Mediator looks up the UnitsOfMeasure domain value map for an equivalent value of the Common domain.

	
The ProcessOrders Oracle Mediator sends the message to an external reference named WriteOrders.

	
The WriteOrders reference writes the message to a specified output directory.

For downloading the sample files mentioned in this section, visit the following URL:

https://soasamples.samplecode.oracle.com/#mediator

44.5.1 How to Create the HierarchicalValue Use Case

This section provides the design-time tasks for creating, building, and deploying your SOA composite application. These tasks must be performed in the order in which they are presented.

44.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

	
In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

	
In the New Gallery, expand the General node, and select the Applications category.

	
In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

	
In the Application Name field, enter Hierarchical and then click Next.

The Name your project page appears.

	
In the Project Name field, enter HierarchicalValue and click Next.

The Configure SOA settings page appears.

	
In the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new application and the project, and the SOA Composite Editor contains a blank composite.

	
From the File menu, select Save All.

44.5.1.2 Task 2: How to Create a Domain Value Map

After creating an application and a project for the use case, you must create a domain value map.

To create a domain value map:

	
In the Application Navigator, right-click the HierarchicalValue project and select New.

	
In the New Gallery dialog, expand the SOA Tier node, and then select the Transformations category.

	
In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog is displayed.

	
In the File Name field, enter UnitsOfMeasure.dvm.

	
In the Domain Name fields, enter Siebel and Common.

	
In the Domain Value field corresponding to the Siebel domain, enter Ea.

	
In the Domain Value field corresponding to the Common domain, enter Each.

	
Click OK.

The Domain Value Map Editor is displayed.

	
Click Add and then select Add Column.

The Create DVM Column dialog is displayed.

	
In the Name field, enter TradingPartner.

	
In the Qualifier list, select true.

	
In the QualifierOrder field, enter 1 and click OK.

	
Repeat Step 9 through Step 12 to create another qualifier named StandardCode with a qualifier order value of 2.

	
Click Add and then select Add Row.

Repeat this step to add two more rows.

	
Enter the information shown in Table 44-6 in the newly added rows of the domain value map table.

Table 44-6 Information for Rows of Domain Value Map Table

	Siebel	Common	TradingPartner	StandardCode
	
EC

	
Each

	
	
OAG

	
E-RN

	
Each

	
A.C.Networks

	
RN

	
EO

	
Each

	
ABC Inc

	
RN

The Domain Value Map Editor appears, as shown in Figure 44-8.

Figure 44-8 UnitsOfMeasure Domain Value Map

[image: Description of Figure 44-8 follows]

	
From the File menu, select Save All and close the Domain Value Map Editor.

44.5.1.3 Task 3: How to Create a File Adapter Service

After creating the domain value map, you must create a file adapter service named ReadOrders to read the XML files from a directory.

	
Note:

Oracle Mediator may process the same file twice when run against Oracle Real Application Clusters (Oracle RAC) planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once.

To create a file adapter service:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the Exposed Services swimlane.

	
If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page is displayed.

	
In the Service Name field, enter ReadOrders and then click Next.

The Operation page is displayed.

	
In the Operation Type field, select Read File and then click Next.

The File Directories page is displayed.

	
In the Directory for Incoming Files (physical path) field, enter the directory from which you want to read the files.

	
Click Next.

The File Filtering page is displayed.

	
In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page is displayed.

	
Change the Polling Frequency field value to 10 seconds and then click Next.

The Messages page is displayed.

	
Click Search.

The Type Chooser dialog is displayed.

	
Click Import Schema File.

The Import Schema File dialog is displayed.

	
Click Search and select the Order.xsd file in the Samples folder.

	
Click OK.

	
Expand the navigation tree to Type Explorer > Imported Schemas > Order.xsd.

	
Select listOfOrder and click OK.

	
Click Next.

The Finish page is displayed.

	
Click Finish.

	
From the File menu, click Save All.

Figure 44-9 shows the ReadOrders service in the SOA Composite Editor.

Figure 44-9 ReadOrders Service in the SOA Composite Editor

[image: Description of Figure 44-9 follows]

44.5.1.4 Task 4: How to Create ProcessOrders Oracle Mediator Component

To create an Oracle Mediator named ProcessOrders:

	
Drag and drop a Mediator icon from the Component Palette to the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
In the Name field, enter ProcessOrders.

	
From the Template list, select Define Interface Later.

	
Click OK.

An Oracle Mediator with name ProcessOrders is created.

	
In the SOA Composite Editor, connect the ReadOrders service to the ProcessOrders Oracle Mediator, as shown in Figure 44-10.

This specifies the file adapter service to invoke the ProcessOrders Oracle Mediator while reading a file from the input directory.

Figure 44-10 ReadOrders Service Connected to the ProcessOrders Oracle Mediator

[image: Description of Figure 44-10 follows]

	
From the File menu, select Save All.

44.5.1.5 Task 5: How to Create a File Adapter Reference

To create a file adapter reference:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

	
Click Next.

The Service Name page is displayed.

	
In the Service Name field, enter WriteCommonOrder.

	
Click Next.

The Operation page is displayed.

	
In the Operation Type field, select Write File.

	
Click Next.

The File Configuration page is displayed.

	
In the Directory for Outgoing Files (physical path) field, enter the name of the directory in which you want to write the files.

	
In the File Naming Convention field, enter common_order_%SEQ%.xml and click Next.

The Messages page is displayed.

	
Click Search.

The Type Chooser dialog is displayed.

	
Navigate to Type Explorer > Project Schema Files > Order.xsd, and then select listOfOrder.

	
Click OK.

	
Click Next.

The Finish page is displayed.

	
Click Finish.

Figure 44-11 shows the WriteCommonOrder reference in the SOA Composite Editor.

Figure 44-11 WriteCommonOrder Reference in the SOA Composite Editor

[image: Description of Figure 44-11 follows]

	
From the File menu, select Save All.

44.5.1.6 Task 6: How to Specify Routing Rules

You must specify the path that messages take from the ReadOrders adapter service to the external reference.

To specify routing rules:

	
Connect the ProcessOrders Oracle Mediator to the WriteCommonOrder reference, as shown in Figure 44-12.

Figure 44-12 ProcessOrders Oracle Mediator Connected to the WriteCommonOrder Reference

[image: Description of Figure 44-12 follows]

	
Double-click the ProcessOrders Oracle Mediator.

	
To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog is displayed.

	
Select Create New Mapper File and click OK.

A listOfOrder_To_listOfOrder.xsl file is displayed in the XSLT Mapper.

	
Drag and drop the imp1:listOfOrder source element onto the imp1:listOfOrder target element.

The Auto Map Preferences dialog is displayed.

	
From the During Auto Map options, deselect Match Elements Considering their Ancestor Names.

	
Click OK.

The listOfOrder_To_listOfOrder.xsl file appears, as shown in Figure 44-13.

Figure 44-13 imp1:listOfOrder To imp1:listOfOrder Transformation

[image: Description of Figure 44-13 follows]

	
In the Component Palette, select Advanced.

	
Click DVM Functions.

	
Drag and drop lookupValue on the line connecting the unitsOfMeasure elements, as shown in Figure 44-14.

Figure 44-14 Adding lookupValue Function to imp1:listOfOrder To imp1:listOfOrder.xsl

[image: Description of Figure 44-14 follows]

	
Double-click the lookupvalue icon.

The Edit Function-lookupValue dialog is displayed.

	
To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

	
Select UnitsofMeasure.dvm and click OK.

	
To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog is displayed.

	
Select Siebel and click OK.

	
In the sourceValue column, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:unitOfMeasure

	
To the right of the targetColumnName field, click Search.

The Select DVM Column dialog is displayed.

	
Select Common and click OK.

	
In the defaultValue field, enter "No_Value_Found".

	
Click Add.

A qualifierColumnName row is added.

	
In the qualifierColumnName field, enter "StandardCode".

	
Click Add.

A qualifierValue row is added.

	
In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:standard.

	
Click Add to insert another qualifierColumnName row.

	
In the qualifierColumnName field, enter "TradingPartner".

	
Click Add to insert another qualifierValue row.

	
In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:tp.

The Edit Function-lookupValue dialog appears, as shown in Figure 44-15.

Figure 44-15 Edit Function-lookupValue Function Dialog: Hierarchical Lookup Use Case

[image: Description of Figure 44-15 follows]

	
Click OK.

The transformation appears, as shown in Figure 44-16.

Figure 44-16 Complete imp1:listOfOrder To imp1:listOfOrder Transformation

[image: Description of Figure 44-16 follows]

	
From the File menu, select Save All and close the listOfOrder_To_listOfOrder.xsl file at the top.

44.5.1.7 Task 7: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 41.7.1.1.1, "Creating an Application Server Connection."

44.5.1.8 Task 8: How to Deploy the Composite Application

Deploying the HierarchicalValue composite application to an application server consists of the following steps:

	
Creating an application deployment profile.

	
Deploying the application to the application server.

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

44.5.2 How to Run and Monitor the HierarchicalValue Application

After deploying the HierarchicalValue application, you can run it by copying the input XML file sampleorder.xml to the input folder. This file is available in the samples folder. On successful completion, a file named common_order_1.xml is written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control Console at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure.

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

44.6 Creating a Domain Value Map Use Case For Multiple Values

This use case demonstrates the integration scenario for using a domain value map lookup between two endpoints to look up multiple values. For example, if the inbound value is State, then the outbound values are Shortname of State, Language, and Capital. The multivalue lookup use case consists of the following steps:

	
Files are retrieved from a directory by an adapter service named readFile.

	
The readFile adapter service sends the file data to an Oracle Mediator named LookupMultiplevaluesMediator.

	
The LookupMultiplevaluesMediator Oracle Mediator then transforms the message to the structure required by the adapter reference. During transformation, Oracle Mediator looks up the multivalue domain value map for an equivalent value of the Longname and Shortname domains.

	
The LookupMultiplevaluesMediator Oracle Mediator sends the message to an external reference named writeFile.

	
The writeFile reference writes the message to a specified output directory.

For downloading the sample files mentioned in this section, visit the following URL:

https://soasamples.samplecode.oracle.com/#mediator

44.6.1 How to Create the Multivalue Use Case

This section provides the design-time tasks for creating, building, and deploying your SOA composite application. Perform these tasks in the order in which they are presented.

44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project

To create an Oracle JDeveloper application and project:

	
In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

	
In the New Gallery, expand the General node, and select the Applications category.

	
In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

	
In the Application Name field, enter Multivalue and then click Next.

The Name your project page appears.

	
In the Project Name field, enter Multivalue and click Next.

The Configure SOA settings page appears.

	
From the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new application and project, and the SOA Composite Editor contains a blank composite.

	
From the File menu, select Save All.

44.6.1.2 Task 2: How to Create a Domain Value Map

After creating an application and a project for the use case, you must create a domain value map.

To create a domain value map:

	
In the Application Navigator, right-click the Multivalue project and select New.

	
In the New Gallery dialog, expand the SOA Tier node, and then select the Transformations category.

	
In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog is displayed.

	
In the File Name field, enter multivalue.dvm.

	
In the Domain Name fields, enter Longname, Shortname, Language, and Capital.

	
In the Domain Value field corresponding to the Longname domain, enter Karnataka.

	
In the Domain Value field corresponding to the Shortname domain, enter KA.

	
In the Domain Value field corresponding to the Language domain, enter Kannada.

	
In the Domain Value field corresponding to the Capital domain, enter Bangalore.

	
Click OK.

The Domain Value Map Editor is displayed.

	
Click Add and then select Add Row.

Repeat this step to add two more rows.

	
Enter the information shown in Table 44-7 in the newly added rows of the domain value map table:

Table 44-7 Information for Rows of Domain Value Map Table

	Longname	Shortname	Language	Capital
	
Karnataka

	
KA

	
Kannada

	
Bangalore

	
Tamilnadu

	
TN

	
Tamil

	
Chennai

	
Andhrapradesh

	
AP

	
Telugu

	
Hyderbad

	
Kerala

	
KL

	
Malayalam

	
Trivandram

The Domain Value Map Editor appears, as shown in Figure 44-17.

Figure 44-17 Multivalue Domain Value Map

[image: Description of Figure 44-17 follows]

	
From the File menu, select Save All and close the Domain Value Map Editor.

44.6.1.3 Task 3: How to Create a File Adapter Service

After creating the domain value map, you must create a file adapter service named readFile to read the XML files from a directory.

	
Note:

Oracle Mediator may process the same file twice when run against Oracle RAC planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once.

To create a file adapter service:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the Exposed Services swimlane.

	
If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page is displayed.

	
In the Service Name field, enter readFile and then click Next.

The Adapter Interface page is displayed.

	
Click Define from operation and schema (specified later) and then click Next.

The Operation page is displayed.

	
In the Operation Type field, select Read File and then click Next.

The File Directories page is displayed.

	
In the Directory for Incoming Files (physical path) field, enter the directory from which you want to read the files.

	
Click Next.

The File Filtering page is displayed.

	
In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page is displayed.

	
Change the Polling Frequency field value to 1 second and then click Next.

The Messages page is displayed.

	
Click Search.

The Type Chooser dialog is displayed.

	
Click Import Schema File.

The Import Schema File dialog is displayed.

	
Click Search and select the input.xsd file in the Samples folder.

	
Click OK.

	
Expand the navigation tree to Type Explorer > Imported Schemas > input.xsd.

	
Select Root-Element and click OK.

	
Click Next.

The Finish page is displayed.

	
Click Finish.

	
From the File menu, select Save All.

Figure 44-18 shows the readFile service in the SOA Composite Editor.

Figure 44-18 readFile Service in the SOA Composite Editor

[image: Description of Figure 44-18 follows]

44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Oracle Mediator

To create the LookupMultiplevaluesMediator Oracle Mediator:

	
Drag and drop a Mediator icon from the Component Palette to the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
In the Name field, enter LookupMultiplevaluesMediator.

	
From the Template list, select Define Interface Later.

	
Click OK.

An Oracle Mediator with the name LookupMultiplevaluesMediator is created.

	
In the SOA Composite Editor, connect the readFile service to the LookupMultiplevaluesMediator Oracle Mediator, as shown in Figure 44-19.

This specifies the file adapter service to invoke the LookupMultiplevaluesMediator Oracle Mediator while reading a file from the input directory.

Figure 44-19 readFile Service Connected to the LookupMultiplevaluesMediator Oracle Mediator

[image: Description of Figure 44-19 follows]

	
From the File menu, select Save All.

44.6.1.5 Task 5: How to Create a File Adapter Reference

To create a file adapter reference:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

	
Click Next.

The Service Name page is displayed.

	
In the Service Name field, enter writeFile and then click Next.

The Adapter Interface page is displayed.

	
Click Define from operation and schema (specified later) and then click Next.

The Operation page is displayed.

	
Click Next.

The Operation page is displayed.

	
In the Operation Type field, select Write File.

	
Click Next.

The File Configuration page is displayed.

	
In the Directory for Outgoing Files (physical path) field, enter the name of the directory where you want to write the files.

	
In the File Naming Convention field, enter multivalue_%SEQ%.xml and click Next.

The Messages page is displayed.

	
Click Search.

The Type Chooser dialog is displayed.

	
Navigate to Type Explorer > Project Schema Files > output.xsd, and then select Root-Element.

	
Click OK.

	
Click Next.

The Finish page is displayed.

	
Click Finish.

Figure 44-20 shows the writeFile reference in the SOA Composite Editor.

Figure 44-20 writeFile Reference in SOA Composite Editor

[image: Description of Figure 44-20 follows]

	
From the File menu, select Save All.

44.6.1.6 Task 6: How to Specify Routing Rules

You must specify the path that messages take from the readFile adapter service to the external reference.

To specify routing rules

	
Connect the LookupMultiplevaluesMediator Oracle Mediator to the writeFile reference, as shown in Figure 44-21.

Figure 44-21 LookupMultiplevaluesMediator Oracle Mediator Connected to the writeFile Reference

[image: Description of Figure 44-21 follows]

	
Double-click the LookupMultiplevaluesMediator Oracle Mediator.

	
To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog is displayed.

	
Select Create New Mapper File and click OK.

An Input_To_Output_with_multiple_values_lookup.xsl file is displayed in the XSLT Mapper.

	
Drag and drop the imp1:Root-Element source element to the ns2:Root-Element target element.

The Auto Map Preferences dialog is displayed.

	
From the During Auto Map options list, deselect Match Elements Considering their Ancestor Names.

	
Click OK.

The Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT Mapper, as shown in Figure 44-22.

Figure 44-22 imp1:Root-Element To ns2:Root-Element Transformation

[image: Description of Figure 44-22 follows]

	
In the Component Palette, select Advanced.

	
Click DVM Functions.

	
Drag and drop lookupValue1M in the center panel, as shown in Figure 44-23.

Figure 44-23 Adding lookupValue Function to imp1:Root-Element to ns2:Root-Element

[image: Description of Figure 44-23 follows]

	
Double-click the lookupvalue1M icon.

The Edit Function-lookupValue1M dialog is displayed.

	
To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

	
Select multivalue.dvm and click OK.

	
To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog is displayed.

	
Select Longname and click OK.

	
In the sourceValue column, enter the following:

/imp1:Root-Element/imp1:Details/imp1:Longname.

	
To the right of the targetColumnName field, click Search.

The Select DVM Column dialog is displayed.

	
Select Shortname and click OK.

	
Click Add.

A targetColumnName row is added.

	
In the targetColumnName field, enter "Language".

	
Click Add to insert another targetColumnName row.

	
In the targetColumnName field, enter "Capital".

The Edit Function-lookupValue dialog appears, as shown in Figure 44-24.

Figure 44-24 Edit Function-lookupValue Function Dialog: Multiple Value Lookup Use Case

[image: Description of Figure 44-24 follows]

	
Click OK.

The Transformation appears, as shown in Figure 44-25.

Figure 44-25 Complete imp1:Root-Element To ns2:Root-Element Transformation

[image: Description of Figure 44-25 follows]

	
From the File menu, select Save All and close the Input_To_Output_with_multiple_values_lookup.xsl file.

44.6.1.7 Task 7: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 41.7.1.1.1, "Creating an Application Server Connection."

44.6.1.8 Task 8: How to Deploy the Composite Application

Deploying the Multivalue composite application to an application server consists of the following steps:

	
Creating an application deployment profile.

	
Deploying the application to the application server.

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

44.6.2 How to Run and Monitor the Multivalue Application

After deploying the Multivalue application, you can run it by copying the input XML file sampleinput.xml to the input folder. This file is available in the samples folder. On successful completion, a file with name multivalue_1.xml is written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control Console at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure.

In Oracle Enterprise Manager Fusion Middleware Control Console, you can click Multivalue to see the project dashboard.

To view the detailed execution trail, click the instance ID in the instance column. The Flow Trace page is displayed.

45 Using SOA Composer with Domain Value Maps

Domain value maps enable you to map values from one vocabulary used in a given domain to another vocabulary used in a different domain. In earlier releases, for editing a domain value map at runtime, you first had to make the changes in Oracle JDeveloper, and then redeploy the domain value map in the application server. The SOA Composer now offers support for editing domain value maps at runtime. The SOA Composer is an EAR file, which is installed as part of Oracle SOA Suite installation. It enables you to manage domain value maps at runtime.

This chapter includes the following sections:

	
Section 45.1, "Introduction to the SOA Composer"

	
Section 45.2, "Viewing Domain Value Maps at Runtime"

	
Section 45.3, "Editing Domain Value Maps at Runtime"

	
Section 45.4, "Saving Domain Value Maps at Runtime"

	
Section 45.5, "Committing Changes at Runtime"

	
Section 45.6, "Detecting Conflicts"

For more information about domain value maps, see Chapter 44, "Working with Domain Value Maps."

45.1 Introduction to the SOA Composer

The SOA Composer enables you to work with deployed domain value maps. Domain value map metadata can be associated either with a SOA composite application, or it can be shared across different composite applications. Figure 45-1 shows how the SOA Composer enables you to access a domain value map from the Metadata Service (MDS) repository.

Figure 45-1 SOA Composer High-Level Deployment Topology

[image: SOA Workspace topology]

45.1.1 How to Log in to the SOA Composer

To log in to the SOA Composer:

	
Access the SOA Composer at the following location:

http://hostname:port/soa/composer

The SOA Composer Login page is displayed, as shown in Figure 45-2.

Figure 45-2 SOA Composer Login Page

[image: SOA workspace login page]

You must authenticate yourself by entering the login ID and password.

	
In the Username field, enter a user name.

	
In the Password field, enter a password.

	
Click Login.

After you log in to the SOA Composer, you see the SOA Composer home page, as shown in Figure 45-3:

Figure 45-3 SOA Composer Home Page

[image: Oracle SOA Workspace Home Page]

You must have the SOADesigner application role to access SOA Composer metadata. By default, all the users with Oracle Enterprise Manager Fusion Middleware Control Console administrator privileges have this role. If you log in to SOA Composer without this role, you see the following message:

Currently logged in user is not authorized to modify SOA metadata.

45.2 Viewing Domain Value Maps at Runtime

You can view domain value maps at runtime. Perform the following steps to open and view a domain value map.

45.2.1 How To View Domain Value Maps at Runtime

To view domain value maps at runtime:

	
From the Open menu, select Open DVM.

The Select a DVM to open dialog appears, as shown in Figure 45-4:

Figure 45-4 Select a DVM to Open Dialog

[image: Select a DVM to Open Dialog]

You can also select a document from the My Edits option that displays recently opened documents.

	
Note:

Alternatively, you can also search for a domain value map by entering the name of the composite application containing the domain value map file in the Search composite field and then clicking the Search icon to the right of the field.

	
Select a domain value map and click Open. You can also double-click a domain value map to open it.

The selected domain value map opens in view mode.

You can click Bookmarkable Link to get a direct link to the selected domain value map. The Info button provides more information on the selected domain value map.

45.3 Editing Domain Value Maps at Runtime

You can edit domain value maps at runtime. By default, domain value maps open in view mode. To edit a domain value map, you must change the mode to an edit session by clicking the Edit menu item.

45.3.1 How to Edit Domain Value Maps at Runtime

The domain value map opens in an edit session.

45.3.1.1 Adding Rows

To add rows:

You can add rows by performing the following steps:

	
Click Add Domain Values.

The Add Domain Values dialog is displayed.

	
Enter values and click OK.

The entered values are added to the domain value map.

45.3.1.2 Editing Rows

To edit rows:

You can edit rows by performing the following steps:

	
Select the row that you want to edit.

	
Click Edit Domain Values.

The Edit Domain Values dialog is displayed.

	
Edit the values as required and click OK.

45.3.1.3 Deleting Rows

To delete rows:

You can delete rows by performing the following steps:

	
Select the rows that you want to delete.

	
Click Delete Domain Values.

45.4 Saving Domain Value Maps at Runtime

Every time a domain value map is opened in an edit session, a sandbox is created per domain value map, per user. If you save your changes, then the changes are saved in your sandbox.

45.4.1 How to Save Domain Value Maps at Runtime

To save domain value maps at runtime:

	
Click the Save menu item to save your changes. If your changes are saved successfully, you receive a notification message.

You can also revert a domain value map to the last saved state.

	
Click the Revert menu item. A confirmation dialog is displayed.

	
Click Yes to revert your changes.

45.5 Committing Changes at Runtime

You must commit the changes for saving them permanently. Once you commit the changes, runtime picks up the changes and saves them in the MDS repository. In a session, you can also save your changes without committing them. In such a case, the domain value map remains in the saved state. You can reopen the domain value map and commit the changes later.

45.5.1 How to Commit Changes at Runtime

To commit changes at runtime:

	
Click the Commit menu option. A confirmation dialog is displayed.

	
Click Yes to commit your changes.

45.6 Detecting Conflicts

SOA Composer detects conflicts that can occur among concurrent users. If you open a domain value map that is being edited by another user, then you see a warning, as shown in Figure 45-5.

Figure 45-5 Confirm Dialog for Concurrent Users of a Domain Value Map

[image: Confirm Dialog Box for Concurrent Users of a DVM]

However, if you still want to edit the domain value map, you can click Yes and make the modifications.

If the other user makes changes to the domain value map and commits the changes, you receive a notification message while trying to commit your changes.

If you click Yes and commit your changes, then the changes made by the other user are overwritten by your changes.

46 Working with Cross References

This chapter describes how to use the cross referencing feature of Oracle SOA Suite to associate identifiers for equivalent entities created in different applications.

This chapter includes the following sections:

	
Section 46.1, "Introduction to Cross References"

	
Section 46.2, "Introduction to Cross Reference Tables"

	
Section 46.3, "Creating and Modifying Cross Reference Tables"

	
Section 46.4, "Populating Cross Reference Tables"

	
Section 46.5, "Looking Up Cross Reference Tables"

	
Section 46.6, "Deleting a Cross Reference Table Value"

	
Section 46.7, "Creating and Running the Cross Reference Use Case"

	
Section 46.8, "Creating and Running Cross Reference for 1M Functions"

46.1 Introduction to Cross References

Cross references enable you to dynamically map values for equivalent entities created in different applications.

	
Note:

The cross referencing feature enables you to dynamically integrate values between applications, whereas domain value maps enable you to specify values at design time and edit values at runtime. For more information about domain value maps, see Chapter 44, "Working with Domain Value Maps" and Chapter 45, "Using SOA Composer with Domain Value Maps."

When you create or update objects in one application, you may also want to propagate the changes to other applications. For example, when a new customer is created in an SAP application, you may want to create a new entry for the same customer in your Oracle E-Business Suite application named EBS. However, the applications that you are integrating may be using different entities to represent the same information. For example, for each new customer in an SAP application, a new row is inserted in its Customer database with a unique identifier such as SAP_001. When the same information is propagated to an Oracle E-Business Suite application and a Siebel application, the new row should be inserted with different identifiers such as EBS_1001 and SBL001. In such cases, you need some type of functionality to map these identifiers with each other so that they can be interpreted by different applications to be referring to the same entity. This can be done by using cross references.

46.2 Introduction to Cross Reference Tables

Cross references are stored in the form of tables. Table 46-1 shows a cross reference table containing information about customer identifiers in different applications.

Table 46-1 Cross Reference Table Sample

	SAP	EBS	SBL
	
SAP_001

	
EBS_1001

	
SBL001

	
SAP_002

	
EBS_1002

	
SBL002

The identifier mapping is also required when information about a customer is updated in one application and the changes must be propagated to other applications. You can integrate different identifiers by using a common value integration pattern, which maps to all identifiers in a cross reference table. For example, you can add one more column named Common to the cross reference table shown in Table 46-1. The updated cross reference table then appears, as shown in Table 46-2.

Table 46-2 Cross Reference Table with Common Column

	SAP	EBS	SBL	Common
	
SAP_001

	
EBS_1001

	
SBL001

	
CM001

	
SAP_002

	
EBS_1002

	
SBL002

	
CM002

Figure 46-1 shows how you can use common value integration patterns to map identifiers in different applications.

Figure 46-1 Common Value Integration Pattern Example

[image: Description of Figure 46-1 follows]

A cross reference table consists of two parts: metadata and actual data. The metadata is saved as the .xref file created in Oracle JDeveloper, and is stored in the Metadata Services (MDS) repository as an XML file. By default, the actual data is stored in the XREF_DATA table of the database in the SOA Infrastructure database schema. You can also generate a custom database table for each cross reference entity. The database table depends on the metadata of the cross reference entity.

Consider the following two cross reference entities:

	
ORDER with cross reference columns SIEBEL, COMMON, and EBS, as shown in Table 46-3

	
CUSTOMER with cross reference columns EBS, COMMON, and PORTAL, as shown in Table 46-4

Table 46-3 ORDER Table

	Column Name	SIEBEL	COMMON	EBS
	
Column Value

	
SBL_101

	
COM_100

	
EBS_002

	
Column Value

	
	
COM_110

	
EBS_012

Table 46-4 CUSTOMER Table

	Column Name	EBS	COMMON	PORTAL
	
Column Value

	
EBS_201

	
COM_200

	
P2002

If you chose to save all the runtime data in one generic table, then the data is stored in the XREF_DATA table, as shown in Table 46-5.

Table 46-5 XREF_DATA Table

	XREF_TABLE_NAME	XREF_COLUMN_NAME	ROW_NUMBER	VALUE	IS_DELETED
	
ORDER

	
SIEBEL

	
100012345

	
SBL_101

	
N

	
ORDER

	
COMMON

	
100012345

	
COM_100

	
N

	
ORDER

	
EBS

	
100012345

	
EBS_002

	
N

	
ORDER

	
COMMON

	
110012345

	
COM_110

	
N

	
ORDER

	
EBS

	
110012345

	
EBS_012

	
N

	
CUSTOMER

	
EBS

	
200212345

	
EBS_201

	
N

	
CUSTOMER

	
COMMON

	
200212345

	
COM_200

	
N

	
CUSTOMER

	
PORTAL

	
200212345

	
P2002

	
N

This approach has the following advantages:

	
The process of adding, removing, and modifying the columns of the cross reference entities is simple.

	
The process of creating and deleting cross reference entities from an application is straightforward.

However, this approach has the following disadvantages:

	
A large number of rows are generated in the database because each cross reference cell is mapped to a different row in the database. This reduces the performance of the queries.

	
In the generic table, the data for the columns XREF_TABLE_NAME and XREF_COLUMN_NAME is repeated across a large number of rows.

To overcome these problems, you can generate a custom database table for each cross reference entity. The custom database tables depend on the metadata of the cross reference entities. For example, for the XREF_ORDER table and XREF_CUSTOMER table, you can generate the custom database tables shown in Table 46-6 and Table 46-7.

Table 46-6 XREF_ORDER Table

	ROW_ID	SIEBEL	COMMON	EBS
	
100012345

	
SBL_101

	
COM_100

	
EBS_002

	
110012345

	
	
COM_110

	
EBS_012

Table 46-7 XREF_CUSTOMER Table

	ROW_ID	EBS	COMMON	PORTAL
	
200212345

	
EBS_201

	
COM_200

	
P2002

This approach requires you to execute Data Definition Language (DDL) scripts to generate the custom database tables. For more information about custom database tables, see Section 46.3.3, "How to Create Custom Database Tables."

46.3 Creating and Modifying Cross Reference Tables

You can create cross references tables in a SOA composite application and then use it with a BPEL process service component or an Oracle Mediator service component during transformations.

46.3.1 How to Create Cross Reference Metadata

To create cross reference metadata:

	
In Oracle JDeveloper, select the SOA project in which you want to create the cross reference.

	
Right-click the project and select New.

The New Gallery dialog is displayed.

	
Select SOA Tier from the Categories section, and then select Transformations.

	
Select Cross Reference(XREF) from the Items section.

	
Click OK.

The Create Cross Reference(XREF) File dialog is displayed.

	
In the File Name field, specify the name of the cross reference file. For example, specify Customer.

A cross reference name is used to uniquely identify a cross reference table. Two cross reference tables cannot have same name in the cross reference repository. The cross reference file name is the name of the cross reference table with an extension of .xref.

	
In the Description field, enter a description for the cross reference. For example:

Cross reference of Customer identifiers.

	
In the End System fields, enter the end system names.

The end systems map to the cross reference columns in a cross reference table. For example, you can change the first end system name to SAP and the second end system name to EBS. Each end system name must be unique within a cross reference.

A sample Create Cross Reference(XREF) File dialog is displayed in Figure 46-2.

Figure 46-2 Create Cross Reference(XREF) File Dialog

[image: Description of Figure 46-2 follows]

	
Click OK.

The Cross Reference Editor is displayed, as shown in Figure 46-3. You can use this editor to modify the cross reference.

Figure 46-3 Cross Reference Editor

[image: Description of Figure 46-3 follows]

46.3.2 What Happens When You Create a Cross Reference

A file with extension .xref gets created and appears in the Application Navigator. All .xref files are based on the schema definition (XSD) file shown in Example 46-1.

Example 46-1 Cross Reference XSD File

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/xref"
 xmlns:tns="http://xmlns.oracle.com/xref" elementFormDefault="qualified">
 <element name="xref" type="tns:xrefType"/>
 <complexType name="xrefType">
 <sequence>
 <element name="table">
 <complexType>
 <sequence>
 <element name="description" type="string" minOccurs="0"
 maxOccurs="1"/>
 <element name="columns" type="tns:columnsType" minOccurs="0"
 maxOccurs="1"/>
 <element name="rows" type="tns:rowsType" maxOccurs="1"
 minOccurs="0"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="columnsType">
 <sequence>
 <element name="column" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="rowsType">
 <sequence>
 <element name="row" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="cell" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="colName" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

46.3.3 How to Create Custom Database Tables

As mentioned previously, all the runtime data by default gets stored in the XREF_DATA table. If you want to create custom database tables, then perform the following steps.

To create custom database tables:

	
From the Optimize list, select Yes in the Cross Reference Editor.

The name of the custom database table to be generated is displayed in the Table Name field, as shown in Figure 46-4.

Figure 46-4 Generating Custom Database Tables

[image: Generating Custom Database Tables]

The Table Name field is editable and you can change the name of the custom table. The custom database table name should be prefixed with xref_. If you do not prefix your table name with xref_, then while generating the table, you receive the following error message:

Table name should begin with 'xref_' and cannot be 'xref_data' or
'xref_deleted_data' which are reserved table names for XREF runtime.

	
Click Generate Table DDL. The Optimize XREF dialog is displayed.

	
Select the Generate Drop DDL checkbox to drop the table and associated indexes, if a table with the same name already exists. If you select this option and click Run, then the Running Drop DDL Warning dialog is displayed with the following message:

Running the Drop DDL will remove the table and indexes, do you want to
continue?

	
Click Run. The Run Table DDL dialog is displayed.

	
From the Connection list, select the database connection to use.

If there is no available connection, then click Create a new database connection to open the Create Database Connection dialog, as shown in Figure 46-5. If you want to edit an existing connection, then select the connection and click Edit selected database connection to open the Edit Database Connection dialog.

Figure 46-5 Create Database Connection Dialog

[image: Create Database Connection Dialog]

	
Enter all the required details and click OK. The Connection list of the Run Table DDL dialog is now populated.

	
Click OK on the Run Table DDL dialog to run the DDL script.

The Table DDL Run Results dialog displays the execution status of your DDL scripts.

For custom database tables, two additional attributes, namely mode and dbtable, are added to the schema definition mentioned in Section 46.3.2, "What Happens When You Create a Cross Reference." They are added for the table element in the following way:

 <attribute name="mode" type="string" default="generic" />
 <attribute name="dbtable" type="string" default="xref_data"/>

46.3.4 How to Add an End System to a Cross Reference Table

To add an end system to a cross reference table:

	
Click Add.

A new row is added.

	
Double-click the newly-added row.

	
Enter the end system name. For example, SBL.

46.4 Populating Cross Reference Tables

You can create a cross reference table in a SOA composite application in Oracle JDeveloper and then use it to look up column values at runtime. However, before using a cross reference to look up a particular value, you must populate it at runtime. You can use the cross reference XPath functions to populate the cross-reference tables. The XPath functions enable you to populate a cross reference column, perform lookups, and delete a column value. These XPath functions can be used in the Expression Builder dialog to create an expression or in the XSLT Mapper to create transformations. For example, you can use the xref:populateXRefRow function to populate a cross reference column with a single value and the xref:populateXRefRow1M function to populate a cross reference column with multiple values.

You can access the Expression Builder dialog through an assign activity, an XSL transformation, or the filtering functionality of a BPEL process service component or an Oracle Mediator service component. Figure 46-6 shows how you can select the cross reference functions in the Expression Builder dialog.

Figure 46-6 Expression Builder Dialog with Cross Reference Functions

[image: Description of Figure 46-6 follows]

The XSLT Mapper is displayed when you create an XSL file to transform data from one XML schema to another. Figure 46-7 shows how you can select the cross reference functions in the XSLT Mapper.

Figure 46-7 XSLT Mapper Dialog with Cross Reference Functions

[image: Description of Figure 46-7 follows]

A cross reference table must be populated at runtime before using it. By default, the data is stored in the XREF_DATA table under the SOA Infrastructure database schema. You can use the xref:populateXRefRow function to populate a cross reference column with a single value and the xref:populateXRefRow1M function to populate a cross reference column with multiple values.

	
Note:

You can also store the data in a different database schema by configuring a data source in the following way:
	
The JNDI name of the data source should be jdbc/xref.

	
The ORACLE_HOME/rcu/integration/soainfra/sql/xref/createschema_xref_oracle.sql file should be loaded to create the XREF_DATA table in this data source.

46.4.1 About the xref:populateXRefRow Function

The xref:populateXRefRow function populates a cross reference column with a single value. The xref:populateXRefRow function returns a string value, which is the cross reference value being populated. For example, as shown in Table 46-8, the Order table has the following columns: EBS, Common, and SBL with values E100, 100, and SBL_001 respectively.

Table 46-8 Cross Reference Table with Single Column Values

	EBS	Common	SBL
	
E100

	
100

	
SBL_001

The syntax of the xref:populateXRefRow function is shown in Example 46-2.

Example 46-2 xref:populateXRefRow Function

xref:populateXRefRow(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters

	
xrefLocation: The cross reference table URI.

	
xrefReferenceColumnName: The name of the reference column.

	
xrefReferenceValue: The value corresponding to the reference column name.

	
xrefColumnName: The name of the column to be populated.

	
xrefValue: The value to be populated in the column.

	
mode: The mode in which the xref:populateXRefRow function populates the column. You can specify any of the following values: ADD, LINK, or UPDATE. Table 46-9 describes these modes.

Table 46-9 xref:populateXRefRow Function Modes

	Mode	Description	Exception Reasons
	
ADD

	
Adds the reference value and the value to be added.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"EBS","EBS100", "Common","CM001",
"ADD")

Adds the reference value EBS100 in the ESB reference column and the value CM001 in the Common column.

	
Exceptions can occur for the following reasons:

	
The specified cross reference table is not found.

	
The specified columns are not found.

	
The values provided are empty.

	
The value being added is not unique across that column for that table.

	
The column for that row already contains a value.

	
The reference value exists.

	
LINK

	
Adds the cross reference value corresponding to the existing reference value.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"Common","CM001","SBL","SBL_
001","LINK")

Links the value CM001 in the Common column to the SBL_001 value in the SBL column.

	
Exceptions can occur for the following reasons:

	
The specified cross reference table is not found.

	
The specified columns are not found.

	
The values provided are empty.

	
The reference value is not found.

	
The value being linked exists in that column for that table.

	
UPDATE

	
Updates the cross reference value corresponding to an existing reference column-value pair.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"SBL","SBL_001", "SBL","SBL_
1001","UPDATE")

Updates the value SBL_001 in the SBL column to the value SBL_1001.

	
Exceptions can occur for the following reasons:

	
The specified cross reference table is not found.

	
The specified columns are not found.

	
The values provided are empty.

	
Multiple values are found for the column being updated.

	
The reference value is not found.

	
The column for that row does not have a value.

	
Note:

The mode parameter values are case-sensitive and should be specified in upper case only, as shown in Table 46-9.

Table 46-10 describes the xref:populateXRefRow function modes and exception conditions for these modes.

Table 46-10 xref:populateXRefRow Function Results with Different Modes

	Mode	Reference Value	Value to be Added	Result
	
ADD

	
Absent

Present

Present

	
Absent

Absent

Present

	
Success

Exception

Exception

	
LINK

	
Absent

Present

Present

	
Absent

Absent

Present

	
Exception

Success

Exception

	
UPDATE

	
Absent

Present

Present

	
Absent

Absent

Present

	
Exception

Exception

Success

46.4.2 About the xref:populateXRefRow1M Function

Two values in an end system can correspond to a single value in another system. In such a scenario, you should use the xref:populateXRefRow1M function to populate a cross reference column with a value. For example, as shown in Table 46-11, the SAP_001 and SAP_0011 values refer to one value of the EBS and SBL applications. To populate columns such as SAP, you can use the xref:populateXRefRow1M function.

Table 46-11 Cross Reference Table with Multiple Column Values

	SAP	EBS	SBL
	
SAP_001

SAP_0011

	
EBS_1001

	
SBL001

	
SAP_002

	
EBS_1002

	
SBL002

The syntax of the xref:populateXRefRow1M function is shown in Example 46-3.

Example 46-3 xref:populateXRefRow1M Function

xref:populateXRefRow1M(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters

	
xrefLocation: The cross reference URI.

	
xrefReferenceColumnName: The name of the reference column.

	
xrefReferenceValue: The value corresponding to the reference column name.

	
xrefColumnName: The name of the column to be populated.

	
xrefValue: The value to be populated in the column.

	
mode: The mode in which the xref:populateXRefRow function populates the column. You can specify either of the following values: ADD or LINK. Table 46-12 describes these modes:

Table 46-12 xref:populateXRefRow1M Function Modes

	Mode	Description	Exception Reasons
	
ADD

	
Adds the reference value and the value to be added.

For example, the following mode:

xref:populateXRefRow1M("customers.xref","
EBS","EBS_1002", "SAP","SAP_0011","ADD")

Adds the reference value EBS_1002 in the reference column EBS and the value SAP_0011 in the SAP column.

	
Exceptions can occur for the following reasons:

	
The specified cross reference table is not found.

	
The specified columns are not found.

	
The values provided are empty.

	
The value being added is not unique across that column for that table.

	
The reference value exists.

	
LINK

	
Adds the cross reference value corresponding to the existing reference value.

For example, the following mode:

xref:populateXRefRow1M("customers.xref","
EBS","EBS_1002", "SAP","SAP_002","LINK")

Links the value SAP_002 in the SAP column to the EBS_1002 value in the EBS column.

	
Exceptions can occur for the following reasons:

	
The specified cross reference table is not found.

	
The specified columns are not found.

	
The values provided are empty.

	
The reference value is not found.

	
The value being added is not unique across the column for that table.

Table 46-13 describes the xref:populateXRefRow1M function modes and exception conditions for these modes.

Table 46-13 xref:populateXRefRow1M Function Results with Different Modes

	Mode	Reference Value	Value to be Added	Result
	
ADD

	
Absent

Present

Present

	
Absent

Absent

Present

	
Success

Exception

Exception

	
LINK

	
Absent

Present

Present

	
Absent

Absent

Present

	
Exception

Success

Exception

46.4.3 How to Populate a Column of a Cross Reference Table

To populate a column of a cross reference table:

	
In the XSLT Mapper, expand the trees in the Source and Target panes.

	
Drag and drop a source element to a target element.

	
In the Component Palette, select Advanced.

	
Select XREF Functions.

	
Drag and drop the populateXRefRow function to the line that connects the source object to the target object.

A populateXRefRow icon appears on the connecting line.

	
Double-click the populateXRefRow icon.

The Edit Function – populateXRefRow dialog is displayed, as shown in Figure 46-8.

Figure 46-8 Edit Function – populateXRefRow Dialog

[image: Description of Figure 46-8 follows]

	
Specify the following values for the fields in the Edit Function – populateXRefRow dialog:

	
In the xrefLocation field, enter the location URI of the cross reference file.

Click Browse to the right of the xrefLocation field to select the cross reference file. You can select an already-deployed cross reference from MDS and also from a shared location in MDS using the Resource Palette.

	
In the referenceColumnName field, enter the name of the cross reference column.

Click Browse to the right of the referenceColumnName field to select a column name from the columns defined for the cross reference you previously selected.

	
In the referenceValue field, you can manually enter a value or press Ctrl-Space to launch the XPath Building Assistant. Press the up and down keys to locate an object in the list and press Enter to select that object.

	
In the columnName field, enter the name of the cross reference column.

Click the Browse icon to the right of the columnName field to select a column name from the columns defined for the cross reference you previously selected.

	
In the value field, you can manually enter a value or press Ctrl-Space to launch the XPath Building Assistant.

	
In the mode field, enter a mode in which you want to populate the cross reference table column. For example, enter ADD.

You can also click Browse to select a mode. The Select Populate Mode dialog is displayed from which you can select a mode.

	
Click OK.

A populated Edit Function – populateXRefRow dialog is shown in Figure 46-9.

Figure 46-9 Populated Edit Function – populateXRefRow Dialog

[image: Description of Figure 46-9 follows]

46.5 Looking Up Cross Reference Tables

After populating the cross reference table, you can use it to look up a value. The xref:lookupXRef and xref:lookupXRef1M functions enable you to look up a cross reference for single and multiple values, respectively.

46.5.1 About the xref:lookupXRef Function

You can use the xref:lookupXRef function to look up a cross reference column for a value that corresponds to a specific value in a reference column. For example, the following function looks up the Common column of the cross reference tables described in Table 46-2 for a value corresponding to the SAP_001 value in the SAP column.

xref:lookupXRef("customers.xref","SAP","SAP_001","Common",true())

The syntax of the xref:lookupXRef function is shown in Example 46-4.

Example 46-4 xref:lookupXRef Function

xref:lookupXRef(xrefLocation as string, xrefReferenceColumnName as string,
xrefReferenceValue as string, xrefColumnName as string, needAnException as
boolean) as string

Parameters

	
xrefLocation: The cross reference URI.

	
xrefReferenceColumnName: The name of the reference column.

	
xrefReferenceValue: The value corresponding to the reference column name.

	
xrefColumnName: The name of the column to be looked up for the value.

	
needAnException: When the value is set to true, an exception is thrown if the value is not found. Otherwise, an empty value is returned.

Exception Reasons

At runtime, an exception can occur for the following reasons:

	
The cross reference table with the given name is not found.

	
The specified column names are not found.

	
The specified reference value is empty.

	
Multiple values are found.

46.5.2 About the xref:lookupXRef1M Function

You can use the xref:lookupXRef1M function to look up a cross reference column for multiple values corresponding to a specific value in a reference column. The xref:lookupXRef1M function returns a node-set containing multiple nodes. Each node in the node-set contains a value.

For example, the following function looks up the SAP column of Table 46-11 for multiple values corresponding to the EBS_1001 value in the EBS column:

xref:lookupXRef1M("customers.xref","EBS","EBS_1001","SAP",true())

The syntax of the xref:lookupXRefRow1M function is shown in Example 46-5.

Example 46-5 xref:lookupXRefRow1M Function

xref:lookupXRef1M(xrefLocation as String, xrefReferenceColumnName as String,
 xrefReferenceValue as String, xrefColumnName as String, needAnException as
 boolean) as node-set

Parameters

	
xrefLocation: The cross reference URI.

	
xrefReferenceColumnName: The name of the reference column.

	
xrefReferenceValue: The value corresponding to the reference column name.

	
xrefColumnName: The name of the column to be looked up for the value.

	
needAnException: If this value is set to true, an exception is thrown when the referenced value is not found. Otherwise, an empty node-set is returned.

Example of the xref:lookupXRefRow1M Function

Consider the Order table shown in Table 46-14 with the following three columns: Siebel, Billing1, and Billing2.

Table 46-14 Order Table

	Siebel	Billing1	Billing2
	
100

	
101

	
102

	
110

	
	
111

112

For 1:1 mapping, the xref:lookupPopulatedColumns("Order","Siebel","100","false") method returns the values shown in Example 46-6.

Example 46-6 xref:lookupPopulatedColumns Method

<column name="BILLING1">101</column>
<column name="BILLING2">102</column>

In this case, both the columns, Billing1 and Billing2, are populated.

For 1:M mapping, the xref:lookupPopulatedColumns("Order","Siebel","110","false") method returns the values shown in Example 46-7.

Example 46-7 xref:lookupPopulatedColumns

<column name="BILLING2">111</column>
<column name="BILLING2">112</column>

In this case, Billing1 is not populated.

Exception Reasons

An exception can occur for the following reasons:

	
The cross reference table with the given name is not found.

	
The specified column names are not found.

	
The specified reference value is empty.

46.5.3 About the xref:lookupPopulatedColumns Function

You can use the xref:lookupPopulatedColumns function to look up all the populated columns for a given cross reference table, a cross reference column, and a specific value. The xref:lookupPopulatedColumns function returns a node-set with each node containing a column name and the corresponding value.

The syntax of the xref:LookupPopulatedColumns function is shown in Example 46-8.

Example 46-8 xref:LookupPopulatedColumns Function

xref:LookupPopulatedColumns(xrefTableName as String,xrefColumnName as
 String,xrefValue as String,needAnException as boolean)as node-set

Parameters

	
xrefTableName: The name of the reference table.

	
xrefColumnName: The name of the reference column.

	
xrefValue: The value corresponding to the reference column name.

	
needAnException: If this value is set to true, then an exception is thrown when no value is found in the referenced column. Otherwise, an empty node-set is returned.

Exception Reasons

An exception can occur for the following reasons:

	
The cross reference table with the given name is not found.

	
The specified column names are not found.

	
The specified reference value is empty.

46.5.4 How to Look Up a Cross Reference Table for a Value

To look up a cross reference table column:

	
In the XSLT Mapper, expand the trees in the Source and Target panes.

	
Drag and drop the source element to the target element.

	
In the Component Palette, select Advanced.

	
Select XREF Functions.

	
Drag and drop the lookupXRef function to the line that connects the source object to the target object.

A lookupXRef icon appears on the connecting line.

	
Double-click the lookupXRef icon.

The Edit Function – lookupXRef dialog is displayed, as shown in Figure 46-10.

Figure 46-10 Edit Function – lookupXRef Dialog

[image: Description of Figure 46-10 follows]

	
Specify the following values for the fields in the Edit Function – lookupXRef dialog:

	
In the xrefLocation field, enter the location URI of the cross reference file.

Click Browse to the right of the xrefLocation field to select the cross reference file. You can select an already deployed cross reference from MDS and also from a shared location in MDS by using the Resource Palette.

	
In the referenceColumnName field, enter the name of the cross reference column.

Click Browse to the right of the referenceColumnName field to select a column name from the columns defined for the cross reference you previously selected.

	
In the referenceValue field, you can manually enter a value or press Ctrl-Space to use the XPath Building Assistant. Press the up and down keys to locate an object in the list and press Enter to select that object.

	
In the columnName field, enter the name of the cross reference column.

Click Browse to the right of the columnName field to select a column name from the columns defined for the cross reference you previously selected.

	
Click Browse to the right of needException field. The Need Exception dialog is displayed. Select Yes to raise an exception if no value is found. Otherwise, select No.

	
Click OK.

A populated Edit Function – lookupXRef dialog is shown in Figure 46-11.

Figure 46-11 Populated Edit Function – lookupXRef Dialog

[image: Description of Figure 46-11 follows]

46.6 Deleting a Cross Reference Table Value

You can use the xref:markForDelete function to delete a value in a cross reference table. The value in the column is marked as deleted. This function returns true if the deletion is successful. Otherwise, it returns false.

Any column value marked for deletion is treated as if the value does not exist. Therefore, you can populate the same column with the xref:populateXRefRow function in ADD mode.

	
Note:

Using a column value marked for deletion as a reference value in LINK mode of the xref:populateXRefRow function raises an error.

A cross reference table row should have at least two mappings. If you have only two mappings in a row and you mark one value for deletion, then the value in another column is also deleted.

The syntax for the xref:markForDelete function is shown in Example 46-9.

Example 46-9 xref:markForDelete Function

xref:markForDelete(xrefTableName as string, xrefColumnName as string,
xrefValueToDelete as string) return as boolean

Parameters

	
xrefTableName: The cross reference table name.

	
xrefColumnName: The name of the column from which you want to delete a value.

	
xrefValueToDelete: The value to be deleted.

Exception Reasons

An exception can occur for the following reasons:

	
The cross reference table with the given name is not found.

	
The specified column name is not found.

	
The specified value is empty.

	
The specified value is not found in the column.

	
Multiple values are found.

46.6.1 How to Delete a Cross Reference Table Value

To delete a cross reference table value:

	
In the XSLT Mapper, expand the trees in the Source and Target panes.

	
Drag and drop the source element to the target element.

	
In the Component Palette, select Advanced.

	
Select XREF Functions.

	
Drag and drop the markForDelete function to the line that connects the source object to the target object.

A markForDelete icon appears on the connecting line.

	
Double-click the markForDelete icon.

The Edit Function – markForDelete dialog is displayed, as shown in Figure 46-12.

Figure 46-12 Edit Function – markForDelete Dialog

[image: Description of Figure 46-12 follows]

	
Specify the following values for the fields in the Edit Function – markForDelete dialog:

	
In the xrefLocation field, enter the location URI of the cross reference file.

Click the Search icon to the right of the xrefLocation field to select the cross reference file. You can select an already deployed cross reference from MDS and also from a shared location in MDS by using the Resource Palette.

	
In the columnName field, enter the name of cross reference table column.

Click the Search icon to the right of the columnName field to select a column name from the columns defined for the cross reference you previously selected.

	
In the Value field, manually enter a value or press Ctrl-Space to launch the XPath Building Assistant. Press the up and down keys to locate an object in the list and press Enter to select that object.

A populated Edit Function – markForDelete dialog is shown in Figure 46-13.

Figure 46-13 Populated Edit Function – markForDelete Dialog

[image: Description of Figure 46-13 follows]

	
Click OK.

46.7 Creating and Running the Cross Reference Use Case

This cross reference use case implements an integration scenario between Oracle EBS, SAP, and Siebel instances. In this use case, when an insert, update, or delete operation is performed on the SAP_01 table, the corresponding data is inserted or updated in the EBS and SBL tables. Figure 46-14 provides an overview of this use case.

Figure 46-14 XrefCustApp Use Case in SOA Composite Editor

[image: Description of Figure 46-14 follows]

For downloading the sample files mentioned in this section, visit the following URL:

https://soasamples.samplecode.oracle.com/#mediator

46.7.1 How to Create the Use Case

This section provides the design-time tasks for creating, building, and deploying your SOA Composite application. These tasks should be performed in the order in which they are presented.

46.7.1.1 Task 1: How to Configure the Oracle Database and Database Adapter

To configure the Oracle database and database adapter:

	
You need the SCOTT database account with password TIGER for this use case. You must ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in the XrefOrderApp1M/sql directory to unlock the account.

	
Run the create_schema.sql script available in the XrefOrderApp1M/sql directory to create the tables required for this use case.

	
Run the create_app_procedure.sql script available in the XrefOrderApp1M/sql directory to create a procedure that simulates the various applications participating in this integration.

	
Run the createschema_xref_oracle.sql script available in the OH/rcu/integration/soainfra/sql/xref/ directory to create a cross reference table to store runtime cross reference data.

	
Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to the newly created directory called META-INF on your computer.

	
Edit the weblogic-ra.xml file available in the $BEAHOME/META-INF directory as follows:

	
Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

	
Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>

This sample uses eis/DB/DBConnection1 to poll the SAP table for new messages and to connect to the procedure that simulates Oracle EBS and Siebel instances.

	
Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the RAR file by using Oracle WebLogic Server Administration Console.

	
Create a data source using the Oracle WebLogic Server Administration Console with the following values:

	
jndi-name=jdbc/DBConnection1

	
user=scott

	
password=tiger

	
url=jdbc:oracle:thin:@host:port:service

	
connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

	
Create a data source using the Oracle WebLogic Server Administration Console with the following values:

	
jndi-name=jdbc/xref

	
user=scott

	
password=tiger

	
url=jdbc:oracle:thin:@host:port:service

	
connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

46.7.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

	
In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

	
In the New Gallery, expand the General node, and select the Applications category.

	
In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

	
In the Application Name field, enter XrefCustApp, and then click Next.

The Name your SOA project page appears.

	
In the Project Name field, enter XrefCustApp and click Next.

The Configure SOA settings page appears.

	
From the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is updated with the new application and project and the SOA Composite Editor contains a blank composite.

	
From the File menu, select Save All.

46.7.1.3 Task 3: How to Create a Cross Reference

After creating an application and a project for the use case, you must create a cross reference table.

To create a cross reference table:

	
In the Application Navigator, right-click the XrefCustApp project and select New.

	
In the New Gallery dialog, expand the SOA Tier node, and then select the Transformations category.

	
In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

	
In the File Name field, enter customer.xref.

	
In the End System fields, enter SAP_01 and EBS_i76.

	
Click OK.

The Cross Reference Editor is displayed.

	
Click Add.

A new row is added.

	
Enter SBL_78 as the end system name in the newly added row.

	
Click Add and enter Common as the end system name.

The Cross Reference Editor appears, as shown in Figure 46-15.

Figure 46-15 Customer Cross Reference

[image: Description of Figure 46-15 follows]

	
From the File menu, select Save All and close the Cross Reference Editor.

46.7.1.4 Task 4: How to Create a Database Adapter Service

To create a database adapter service:

	
In the Component Palette, select SOA.

	
Select Database Adapter and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

	
Click Next.

The Service Name page is displayed.

	
In the Service Name field, enter SAP.

	
Click Next.

The Service Connection page is displayed.

	
In the Application Connection field, select DBConnection1.

	
In the JNDI Name field, enter eis/DB/DBConnection1.

	
Click Next.

The Operation Type page is displayed.

	
Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

	
Click Import Tables.

The Import Tables dialog is displayed.

	
Select Scott from Schema.

	
In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with SAP_01 table name.

	
Double-click SAP_01.

The selected field is populated with SAP_01.

	
Click OK.

The Select Table page now contains the SAP_01 table.

	
Select SAP_01 and click Next.

The Define Primary Key page is displayed.

	
Select ID as the primary key and click Next.

The Relationships page is displayed.

	
Click Next.

The Attribute Filtering page is displayed.

	
Click Next.

The After Read page is displayed.

	
Select Update a Field in the [SAP_01] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

	
In the Logical Delete field, select LOGICAL_DEL.

	
In the Read Value field, enter Y.

	
In the Unread Value field, enter N.

Figure 46-16 shows the Logical Delete page of the Adapter Configuration wizard.

Figure 46-16 Logical Delete Page: Adapter Configuration Wizard

[image: Description of Figure 46-16 follows]

	
Click Next.

The Polling Options page is displayed.

	
Click Next.

The Define Selection Criteria page is displayed.

	
Click Next.

The Finish page is displayed.

	
Click Finish.

A database adapter service named SAP is created, as shown in Figure 46-17.

Figure 46-17 SAP Database Adapter Service in SOA Composite Editor

[image: Description of Figure 46-17 follows]

	
From the File menu, select Save All.

46.7.1.5 Task 5: How to Create EBS and SBL External References

To create EBS and SBL external references:

	
In the Component Palette, select SOA.

	
Select Database Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

	
Click Next.

The Service Name page is displayed.

	
In the Service Name field, enter EBS.

	
Click Next.

The Service Connection page is displayed.

	
In the Application Connection field, select DBConnection1.

	
In the JNDI Name field, enter eis/DB/DBConnection1.

	
Click Next.

The Operation Type page is displayed.

	
Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

	
Select Scott from Schema.

	
Click Browse.

The Stored Procedures dialog is displayed.

	
Select POPULATE_APP_INSTANCE, as shown in Figure 46-18.

Figure 46-18 Stored Procedure Dialog

[image: Description of Figure 46-18 follows]

	
Click OK.

The Specify Stored Procedure page appears, as shown in Figure 46-19.

Figure 46-19 Specify Stored Procedure Page of Adapter Configuration Wizard

[image: Description of Figure 46-19 follows]

	
Click Next.

The Finish page is displayed.

	
Click Finish.

Figure 46-20 shows the EBS reference in the SOA Composite Editor.

Figure 46-20 EBS Reference in SOA Composite Editor

[image: Description of Figure 46-20 follows]

	
From the File menu, select Save All.

	
Repeat Step 2 through Step 16 to create another external reference named SBL.

After completing this task, the SOA Composite Editor appears, as shown in Figure 46-21.

Figure 46-21 SBL Reference in SOA Composite Editor

[image: Description of Figure 46-21 follows]

46.7.1.6 Task 6: How to Create the Logger File Adapter External Reference

To create the Logger file adapter external reference:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

	
Click Next.

The Service Name page is displayed.

	
In the Service Name field, enter Logger.

	
Click Next.

The Operation page is displayed.

	
In the Operation Type field, select Write File.

	
Click Next.

The File Configuration page is displayed.

	
In the Directory for Outgoing Files (physical path) field, enter the name of the directory in which you want to write the files.

	
In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

	
Click Search.

The Type Chooser dialog is displayed.

	
Navigate to Type Explorer > Project Schema Files > SCOTT_POPULATE_APP_INSTANCE.xsd, and then select OutputParameters.

	
Click OK.

	
Click Next.

The Finish page is displayed.

	
Click Finish.

Figure 46-22 shows the Logger reference in the SOA Composite Editor.

Figure 46-22 Logger Reference in SOA Composite Editor

[image: Description of Figure 46-22 follows]

	
From the File menu. select Save All.

46.7.1.7 Task 7: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component:

	
Drag and drop a Mediator icon from the Component Palette to the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
From the Template list, select Define Interface Later.

	
Click OK.

An Oracle Mediator with name Mediator1 is created.

	
Connect the SAP service to the Mediator1, as shown in Figure 46-23.

Figure 46-23 SAP Service Connected to Mediator1

[image: Description of Figure 46-23 follows]

	
From the File menu, select Save All.

	
Drag and drop another Mediator icon from the Component Palette to the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
From the Template list, select Interface Definition From WSDL.

	
Deselect Create Composite Service with SOAP Bindings.

	
To the right of the WSDL File field, click Find Existing WSDLs.

	
Navigate to and then select the Common.wsdl file. The Common.wsdl file is available in the Samples folder.

	
Click OK.

	
Click OK.

An Oracle Mediator with name Common is created.

46.7.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service Component

You must specify routing rules for the following operations:

	
Insert

	
Update

	
UpdateID

	
Delete

To create routing rules for an insert operation:

	
Double-click the Mediator1 Oracle Mediator.

The Mediator Editor is displayed.

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > Mediators > Common, Services > Common.

	
Select Insert and click OK.

	
Click the Filter icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='INSERT'

	
Click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

	
Click OK.

An SAP_TO_COMMON_INSERT.xsl file is displayed in the XSLT Mapper.

	
Drag and drop the top:SAP01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

	
From the During Auto Map options, deselect Match Elements Considering their Ancestor Names.

	
Click OK.

The transformation is created, as shown in Figure 46-24.

Figure 46-24 SAP_TO_COMMON_INSERT.xsl Transformation

[image: Description of Figure 46-24 follows]

	
From the Component Palette, select Advanced.

	
Select XREF Functions.

	
Drag and drop the populateXRefRow function from the Component Palette to the line connecting the top:id and inp1:id elements.

	
Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

	
Click Search to the right of the xrefLocation field.

The SOA Resource Lookup dialog is displayed.

	
Select customer.xref and click OK.

	
In the referenceColumnName field, enter "SAP_01" or click Search to select the column name.

	
In the referenceValue column, enter /top:Sap01Collection/top:Sap01/top:id.

	
In the columnName field, enter "Common" or click Search to select the column name.

	
In the value field, enter oraext:generate-guid().

	
In the mode field, enter "Add" or click Search to select this mode.

Figure 46-25 shows the populated Edit Function – populateXRefRow dialog.

Figure 46-25 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

[image: Description of Figure 46-25 follows]

	
Click OK.

	
From the File menu, select Save All and close the SAP_TO_COMMON_INSERT.xsl file.

The Routing Rules section appears, as shown in Figure 46-26.

Figure 46-26 Routing Rules Section with Insert Operation

[image: Description of Figure 46-26 follows]

To create routing rules for an update operation:

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > Mediators > Common, Services > Common.

	
Select Update and click OK.

	
Click the Filter icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='UPDATE'

	
Click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

	
Click OK.

An SAP_TO_COMMON_UPDATE.xsl file is displayed.

	
Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

	
Click OK.

	
From the Component Palette, select Advanced.

	
Select XREF Functions.

	
Drag and drop the lookupXRef function from the Component Palette to the line connecting the top:id and inp1:id elements.

	
Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

	
To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

	
Select customer.xref and click OK.

	
In the referenceColumnName field, enter "SAP_01" or click Search to select the column name.

	
In the referenceValue column, enter /top:Sap01Collection/top:Sap01/top:id.

	
In the columnName field, enter "COMMON" or click Search to select the column name.

	
In the needException field, enter true() or click Search to select this mode.

Figure 46-27 shows the populated Edit Function – looupXRef dialog.

Figure 46-27 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

[image: Description of Figure 46-27 follows]

	
Click OK.

	
From the File menu, select Save All and close the SAP_TO_COMMON_UPDATE.xsl file.

The Routing Rules section appears, as shown in Figure 46-28.

Figure 46-28 Insert Operation and Update Operation

[image: Description of Figure 46-28 follows]

To create routing rules for an updateID operation:

Perform the following tasks to create routing rules for an updateID operation:

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > Mediators > Common, Services > Common.

	
Select updateid and click OK.

	
Click the Filter icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'UPDATEID'

	
Click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter SAP_TO_COMMON_UPDATEID.xsl.

	
Click OK.

An SAP_TO_COMMON_UPDATEID.xsl file is displayed.

	
Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

	
Click OK.

	
From the Component Palette, select Advanced.

	
Select XREF Functions.

	
Drag and drop the populateXRefRow function from the Component Palette to the line connecting the top:id and inp1:id elements.

	
Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

	
To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

	
Select customer.xref and click OK.

	
In the referenceColumnName field, enter "SAP_01" or click Search to select the column name.

	
In the referenceValue column, enter /top:Sap01Collection/top:Sap01/top:refId.

	
In the columnName field, enter "SAP_01" or click Search to select the column name.

	
In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

	
In the mode field, enter "UPDATE" or click Search to select this mode.

Figure 46-29 shows a populated Edit Function – populateXRefRow dialog.

Figure 46-29 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

[image: Description of Figure 46-29 follows]

	
Drag and drop the lookupXRef function from the Component Palette to the line connecting the top:id and inp1:id elements.

	
Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

	
To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

	
Select customer.xref and click OK.

	
In the referenceColumnName field, enter "SAP_01" or click Search to select the column name.

	
In the referenceValue column, enter the following:

xref:populateXRefRow("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:refId,"SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"UPDATE").

	
In the columnName field, enter "COMMON" or click Search to select the column name.

	
In the needException field, enter false() or click Search to select this mode.

Figure 46-30 shows a populated Edit Function – lookupXRef dialog.

Figure 46-30 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

[image: Description of Figure 46-30 follows]

	
Click OK.

	
From the File menu, select Save All and close the SAP_TO_COMMON_UPDATEID.xsl file.

The Routing Rules section appears, as shown in Figure 46-31.

Figure 46-31 Insert, Update, and UpdateID Operations

[image: Description of Figure 46-31 follows]

To create routing rules for a delete operation:

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > Mediators > Common, Services > Common.

	
Select delete and click OK.

	
Click the Filter icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'DELETE'

	
Click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter SAP_TO_COMMON_DELETE.xsl.

	
Click OK.

A SAP_TO_COMMON_DELETE.xsl file is displayed.

	
Right-click <sources> and select Add Parameter.

The Add Parameter dialog is displayed.

	
In the Local Name field, enter COMMONID.

	
Select Set Default Value.

	
Select Expression.

	
In the XPath Expression field, enter

xref:lookupXRef("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"COMMON",false()).

	
Click OK.

	
Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

	
Click OK.

	
Delete the line connecting top:id and inp1:id.

	
Connect COMMONID to inp1:id.

	
Right-click inp1:id and select Add XSL node and then if.

A new node if is inserted between inp1:customer and inp1:id.

	
Connect top:id to the if node.

	
From the Component Palette, select Advanced.

	
Select XREF Functions.

	
Drag and drop the markForDelete function from the Component Palette to the line connecting top:id and the if node.

	
Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

	
Click Search to the right of the xrefLocation field.

The SOA Resource Lookup dialog is displayed.

	
Select customer.xref and click OK.

	
In the columnName field, enter "SAP_01" or click Search to select the column name.

	
In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

Figure 46-32 shows a populated Edit Function – markForDelete dialog.

Figure 46-32 Edit Function – markForDelete Dialog: XrefCustApp Use Case

[image: Description of Figure 46-32 follows]

	
Click OK.

The SAP_TO_COMMON_DELETE.xsl file appears, as shown in Figure 46-33.

Figure 46-33 SAP_TO_COMMON_DELETE.xsl

[image: Description of Figure 46-33 follows]

	
From the File menu, select Save All and close the SAP_TO_COMMON_DELETE.xsl file.

The Routing Rules section appears, as shown in Figure 46-34.

Figure 46-34 Insert, Update, UpdateID, and Delete Operations

[image: Description of Figure 46-34 follows]

46.7.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator

You must specify routing rules for the following operations of the Common Oracle Mediator:

	
Insert

	
Delete

	
Update

	
UpdateID

To create routing rules for the insert operation:

	
Double-click the Common Oracle Mediator.

The Mediator Editor is displayed.

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > References > SBL.

	
Select SBL and click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter COMMON_TO_SBL_INSERT.xsl.

	
Click OK.

A COMMON_TO_SBL_INSERT.xsl file is displayed.

	
Drag and drop the inp1:Customers source element to the db:InputParameters target element.

The Auto Map Preferences dialog is displayed.

	
Click OK.

The transformation is created, as shown in Figure 46-35.

Figure 46-35 COMMON_TO_SBL_INSERT.xsl Transformation

[image: Description of Figure 46-35 follows]

	
From the File menu, select Save All and close the COMMON_TO_SBL_INSERT.xsl file.

	
In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > References > Logger.

	
Select Write and click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

	
Select Create New Mapper File and enter SBL_TO_COMMON_INSERT.xsl.

	
Select Include Request in the Reply Payload.

	
Click OK.

A SBL_TO_COMMON_INSERT.xsl file is displayed.

	
Connect the inp1:Customers source element to db:X:APP_ID.

	
Drag and drop the populateXRefRow function from the Component Palette to the connecting line.

	
Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

	
Enter this information in the following fields:

	
xrefLocation: "customer.xref"

	
referenceColumnName: "Common"

	
referenceValue: $initial.Customers/inp1:Customers/inp1:Customer/inp1:Id

	
columnName: "SBL_78"

	
value: /db:OutputParameters/db:X_APP_ID

	
mode: "LINK"

	
Click OK.

The SBL_TO_COMMON_INSERT.xsl file appears, as shown in Figure 46-36.

Figure 46-36 SBL_TO_COMMON_INSERT.xsl Transformation

[image: Description of Figure 46-36 follows]

	
From the File menu, select Save All and close the SBL_TO_COMMON_INSERT.xsl file.

	
In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

	
Click Add.

The Assign Value dialog is displayed.

	
In the From section, select Expression.

	
Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

	
In the To section, select Property.

	
Select the jca.file.FileName property and click OK.

	
Click OK.

The insert operation section appears, as shown in Figure 46-37.

Figure 46-37 Insert Operation with SBL Target Service

[image: Description of Figure 46-37 follows]

	
From the File menu, select Save All.

	
Repeat Step 2 through Step 34 to specify another target service named EBS and its routing rules.

Figure 46-38 shows the insert operation section with SBL and EBS target services.

Figure 46-38 Insert Operation with SBL and EBS Target Services

[image: Description of Figure 46-38 follows]

To create routing rules for a delete operation:

Perform the following tasks to create the routing rules for a delete operation.

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > References > SBL.

	
Select SBL and click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter COMMON_TO_SBL_DELETE.xsl.

	
Click OK.

A COMMON_TO_SBL_DELETE.xsl file is displayed.

	
Drag and drop the inp1:Customers source element to the db:InputParameters target element.

The Auto Map Preferences dialog is displayed.

	
Click OK.

The transformation is created, as shown in Figure 46-39.

Figure 46-39 COMMON_TO_SBL_DELETE.xsl Transformation

[image: Description of Figure 46-39 follows]

	
Drag and drop the lookupXRef function from the Component Palette to the line connecting inp1:id and db:XCUSTOMER_ID.

	
Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

	
Enter this information in the following fields:

	
xrefLocation: "customer.xref"

	
referenceColumnName: "Common"

	
referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

	
columnName: "SBL_78"

	
needException: false()

	
Click OK.

	
From the File menu, select Save All and close the COMMON_TO_SBL_DELETE.xsl file.

	
In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > References > Logger.

	
Select Write and click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

	
Select Create New Mapper File and enter SBL_TO_COMMON_DELETE.xsl.

	
Click OK.

The SBL_TO_COMMON_DELETE.xsl file is displayed.

	
Connect the db:X_APP_ID source element to the db:X:APP_ID target.

	
Drag and drop the markForDelete function from the Component Palette to the connecting line.

	
Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

	
Enter this information in the following fields:

	
xrefLocation: "customer.xref"

	
columnName: "SBL_78"

	
value: /db:OutputParameters/db:X_APP_ID

	
Click OK.

	
From the File menu, select Save All and close the SBL_TO_COMMON_DELETE.xsl file.

	
In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

	
Click Add.

The Assign Value dialog is displayed.

	
In the From section, select Expression.

	
Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression, and click OK.

concat('DELETE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

	
In the To section, select Property.

	
Select the jca.file.FileName property and click OK.

	
Click OK.

The delete operation section appears, as shown in Figure 46-40.

Figure 46-40 Delete Operation with SBL Target Service

[image: Description of Figure 46-40 follows]

	
From the File menu, select Save All.

	
Repeat Step 1 through Step 36 to specify another target service named EBS and specify the routing rules.

Figure 46-41 shows the delete operation section with SBL and EBS target services.

Figure 46-41 Delete Operation with SBL and EBS Target Service

[image: Description of Figure 46-41 follows]

To create routing rules for the update operation:

Perform the following tasks to create routing rules for the update operation.

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp, References > SBL.

	
Select SBL and click OK.

	
Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter COMMON_TO_SBL_UPDATE.xsl.

	
Click OK.

A COMMON_TO_SBL_UPDATE.xsl file is displayed.

	
Drag and drop the inp1:Customers source element to the db:InputParameters target element.

The Auto Map Preferences dialog is displayed.

	
Click OK.

The transformation is created, as shown in Figure 46-39.

	
Drag and drop the lookupXRef function from the Component Palette to the line connecting inp1:id and db:XCUSTOMER_ID.

	
Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

	
Enter this information in the following fields:

	
xrefLocation: "customer.xref"

	
referenceColumnName: "Common"

	
referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

	
columnName: "SBL_78"

	
needException: true()

	
Click OK.

	
From the File menu, select Save All and close the COMMON_TO_SBL_UPDATE.xsl file.

	
In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > References > Logger.

	
Select Write and click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

	
Select Create New Mapper File and enter SBL_TO_COMMON_UPDATE.xsl.

	
Click OK.

A SBL_TO_COMMON_UPDATE.xsl file is displayed.

	
Connect the db:X:APP_ID source element to db:X:APP_ID.

	
From the File menu, select Save All and close the SBL_TO_COMMON_UPDATE.xsl file.

	
In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

	
Click Add.

The Assign Value dialog is displayed.

	
In the From section, select Expression.

	
Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

	
In the To section, select Property.

	
Select the jca.file.FileName property and click OK.

	
Click OK.

The update operation section appears, as shown in Figure 46-42.

Figure 46-42 Update Operation with SBL Target Service

[image: Description of Figure 46-42 follows]

	
From the File menu, select Save All.

	
Repeat Step 1 through Step 32 to specify another target service named EBS and its routing rules.

Figure 46-43 shows the update operation section with SBL and EBS target services.

Figure 46-43 Update Operation with SBL and EBS Target Service

[image: Description of Figure 46-43 follows]

To create routing rules for the UpdateID operation:

Perform the following tasks to create routing rules for the UpdateID operation.

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > References > SBL.

	
Select SBL and click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter COMMON_TO_SBL_UPDATEID.xsl.

	
Click OK.

The COMMON_TO_SBL_UPDATEID.xsl file is displayed.

	
Drag and drop the inp1:Customers source element to the db:InputParameters target element.

The Auto Map Preferences dialog is displayed.

	
Click OK.

The transformation is created, as shown in Figure 46-39.

	
Drag and drop the lookupXRef function from the Component Palette to the line connecting inp1:id and db:X_CUSTOMER_ID.

	
Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

	
Enter this information in the following fields:

	
xrefLocation: customer.xref

	
referenceColumnName: Common

	
referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

	
columnName: SBL_78

	
needException: false()

	
Click OK.

	
From the File menu, select Save All and close the COMMON_TO_SBL_UPDATEID.xsl file.

	
In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefCustApp > References > Logger.

	
Select Write and click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

	
Select Include Request in the Reply Payload.

	
Click OK.

The SBL_TO_COMMON_UPDATEID.xsl file is displayed.

	
Connect inp1:Customers source element to the db:X:APP_ID.

	
Drag and drop the populateXRefRow function from the Component Palette to the connecting line.

	
Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

	
Enter this information in the following fields:

	
xrefLocation: customer.xref

	
referenceColumnName: Common

	
referenceValue: $initial.Customers/inp1:Customers/inp1:Customer/inp1:Id

	
columnName: SBL_78

	
value: /db:OutputParameters/db:X_APP_ID

	
mode: UPDATE

	
Click OK.

	
From the File menu, select Save All and close the SBL_TO_COMMON_UPDATEID.xsl file.

	
In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

	
Click Add.

The Assign Value dialog is displayed.

	
In the From section, select Expression.

	
Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression and click OK.

concat('UPDATEID-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

	
In the To section, select Property.

	
Select the jca.file.FileName property and click OK.

	
Click OK.

The updateid operation section appears, as shown in Figure 46-44.

Figure 46-44 Updateid Operation with SBL Target Service

[image: Description of Figure 46-44 follows]

	
From the File menu, select Save All.

	
Repeat Step 1 through Step 36 to specify another target service named EBS and specify the routing rules.

Figure 46-45 shows the updateid operation section with the SBL and EBS target services.

Figure 46-45 Updateid Operation with SBL and EBS Target Service

[image: Description of Figure 46-45 follows]

46.7.1.10 Task 10: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 41.7.1.1.1, "Creating an Application Server Connection."

46.7.1.11 Task 11: How to Deploy the Composite Application

Deploying the XrefCustApp composite application consists of the following steps:

	
Creating an application deployment profile

	
Deploying the application to the application server

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

46.7.2 How to Run and Monitor the XrefCustApp Application

After deploying the XrefCustApp application, you can run it by using any command from the insert_sap_record.sql file present in the XrefCustApp/sql folder. On successful completion, the records are inserted or updated in the EBS and SBL tables and the Logger reference writes the output to the output.xml file.

For monitoring the running instance, you can use the Oracle Enterprise Manager Fusion Middleware Control Console at the following URL:

http://hostname:port_number/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure and port_number is the port running the service.

46.8 Creating and Running Cross Reference for 1M Functions

The cross reference use case implements an integration scenario between two end-system Oracle EBS and SAP instances. In this use case, the order passes from SAP to EBS. SAP represents the orders with a unique ID, whereas EBS splits the order into two orders: ID1 and ID2. This scenario is created using database adapters. When you poll the SAP table for updated or created records, an SAP instance is created. In EBS, the instance is simulated by a procedure and the table is populated. Figure 46-46 provides an overview of this use case.

Figure 46-46 XrefOrderApp Use Case in SOA Composite Editor

[image: Description of Figure 46-46 follows]

For downloading the sample files mentioned in this section, visit the following URL:

https://soasamples.samplecode.oracle.com/#mediator

46.8.1 How to Create the Use Case

This section provides the design-time tasks for creating, building, and deploying your SOA composite application. These tasks should be performed in the order in which they are presented.

46.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter

To configure the Oracle database and database adapter:

	
You need the SCOTT database account with password TIGER for this use case. You must ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in the XrefOrderApp1M/sql folder to unlock the account.

	
Run the create_schema.sql script available in the XrefOrderApp1M/sql folder to create the tables required for this use case.

	
Run the create_app_procedure.sql script available in the XrefOrderApp1M/sql folder to create a procedure that simulates the various applications participating in this integration.

	
Run the createschema_xref_oracle.sql script available in the Oracle_Home/rcu/integration/soainfra/sql/xref/ folder to create a cross reference table to store runtime cross reference data.

	
Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to the newly created directory called META-INF on your computer.

	
Edit the weblogic-ra.xml file, which is available in the $BEAHOME/src/oracle/tip/adapter/db/test/deploy/weblogic/META-INF folder for your SOA application, as follows:

	
Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

	
Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>

This sample uses eis/DB/DBConnection1 to poll the SAP table for new messages and to connect to the procedure that simulates Oracle EBS and Siebel instances.

	
Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the RAR file by using Oracle WebLogic Server Administration Console.

	
Create a data source using the Oracle WebLogic Server Administration Console with the following values:

	
jndi-name=jdbc/DBConnection1

	
user=scott

	
password=tiger

	
url=jdbc:oracle:thin:@host:port:service

	
connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

	
Create a data source using the Oracle WebLogic Server Administration Console with the following values:

	
jndi-name=jdbc/xref

	
user=scott

	
password=tiger

	
url=jdbc:oracle:thin:@host:port:service

	
connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

46.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

	
In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

	
In the New Gallery, expand the General node, and select the Applications category.

	
In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

	
In the Application Name field, enter XRefOrderApp, and then click Next.

The Name your project page appears.

	
In the Project Name field, enter XRefOrderApp and click Next.

The Configure SOA Settings page appears.

	
In the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is updated with the new application and project and the SOA Composite Editor contains a blank project.

	
From the File menu, select Save All.

46.8.1.3 Task 3: How to Create a Cross Reference

After creating an application and a project for the use case, you must create a cross reference table.

To create a cross reference table:

	
In the Application Navigator, right-click the XRefOrderApp project and select New.

	
In the New Gallery dialog, expand the SOA Tier node, and then select the Transformations category.

	
In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

	
In the File Name field, enter order.xref.

	
In the End System fields, enter SAP_05 and EBS_i75.

	
Click OK.

The Cross Reference Editor is displayed.

	
Click Add.

A new row is added.

	
Enter COMMON as the End System name.

The Cross Reference Editor appears, as shown in Figure 46-47.

Figure 46-47 Customer Cross Reference

[image: Description of Figure 46-47 follows]

	
From the File menu, select Save All and close the Cross Reference Editor.

46.8.1.4 Task 4: How to Create a Database Adapter Service

To create a database adapter service:

	
In the Component Palette, select SOA.

	
Select Database Adapter and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

	
Click Next.

The Service Name page is displayed.

	
In the Service Name field, enter SAP.

	
Click Next.

The Service Connection page is displayed.

	
In the Connection field, select DBConnection1.

	
In the JNDI Name field, enter eis/DB/DBConnection1.

	
Click Next.

The Operation Type page is displayed.

	
Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

	
Click Import Tables.

The Import Tables dialog is displayed.

	
Select Scott from the Schema.

	
In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with the SAP_05 table name.

	
Double-click SAP_05.

The selected field is populated with SAP_05.

	
Click OK.

The Select Table page now contains the SAP_05 table.

	
Select SAP_05 and click Next.

The Define Primary Key page is displayed.

	
Select ID as the primary key and click Next.

The Relationships page is displayed.

	
Click Next.

The Attribute Filtering page is displayed.

	
Click Next.

The After Read page is displayed.

	
Select Update a Field in the [SAP_05] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

	
In the Logical Delete field, select LOGICAL_DEL.

	
In the Read Value field, enter Y.

	
In the Unread Value field, enter N.

Figure 46-16 shows the Logical Delete page of the Adapter Configuration wizard.

	
Click Next.

The Polling Options page is displayed.

	
Click Next.

The Define Selection Criteria page is displayed.

	
Click Next.

The Advanced Options page is displayed.

	
Click Next.

The Finish page is displayed.

	
Click Finish.

A database adapter service named SAP is created, as shown in Figure 46-48.

Figure 46-48 SAP Database Adapter Service in SOA Composite Editor

[image: Description of Figure 46-48 follows]

	
From the File menu, select Save All.

46.8.1.5 Task 5: How to Create an EBS External Reference

To create an EBS external reference:

	
In the Component Palette, select SOA.

	
Select Database Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

	
Click Next.

The Service Name page is displayed.

	
In the Service Name field, enter EBS.

	
Click Next.

The Service Connection page is displayed.

	
In the Connection field, select DBConnection1.

	
In the JNDI Name field, enter eis/DB/DBConnection1.

	
Click Next.

The Operation Type page is displayed.

	
Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

	
Select Scott from the Schema.

	
Click Browse.

The Stored Procedures dialog is displayed.

	
Select POPULATE_APP_INSTANCE_IM, as shown in Figure 46-49.

Figure 46-49 Stored Procedure Dialog

[image: Description of Figure 46-49 follows]

	
Click OK.

The Specify Stored Procedure page appears, as shown in Figure 46-50.

Figure 46-50 Specify Stored Procedure Page of Adapter Configuration Wizard

[image: Description of Figure 46-50 follows]

	
Click Next.

The Advanced Options page is displayed.

	
Click Next.The Finish page is displayed.

	
Click Finish.

Figure 46-51 shows the EBS reference in the SOA Composite Editor.

Figure 46-51 EBS Reference in SOA Composite Editor

[image: Description of Figure 46-51 follows]

	
From the File menu, select Save All.

46.8.1.6 Task 6: How to Create a Logger File Adapter External Reference

To create a Logger file adapter external reference:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

	
Click Next.

The Service Name page is displayed.

	
In the Service Name field, enter Logger.

	
Click Next.

The Adapter Interface page is displayed.

	
Click Define from operation and schema (specified later).

The Operation page is displayed.

	
In the Operation Type field, select Write File.

	
Click Next.

The File Configuration page is displayed.

	
In the Directory for Outgoing Files (physical path) field, enter the name of the directory in which you want to write the files.

	
In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

	
Click Search.

The Type Chooser dialog is displayed.

	
Navigate to Type Explorer > Project Schema Files > SCOTT_POPULATE_APP_INSTANCE_1M.xsd, and then select OutputParameters.

	
Click OK.

	
Click Next.

The Finish page is displayed.

	
Click Finish.

Figure 46-52 shows the Logger reference in the SOA Composite Editor.

Figure 46-52 Logger Reference in SOA Composite Editor

[image: Description of Figure 46-52 follows]

	
From the File menu. select Save All.

46.8.1.7 Task 7: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component:

	
Drag and drop a Mediator icon from the Component Palette to the Components swimlane.

The Create Mediator dialog is displayed.

	
From the Template list, select Define Interface Later.

	
Click OK.

An Oracle Mediator with name Mediator2 is created.

	
Connect the SAP service to Mediator2, as shown in Figure 46-53.

Figure 46-53 SAP Service Connected to Mediator2

[image: Description of Figure 46-53 follows]

	
From the File menu. select Save All.

	
Drag and drop a Mediator icon from the Component Palette to the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

	
From the Template list, select Interface Definition From WSDL.

	
Deselect Create Composite Service with SOAP Bindings.

	
To the right of the WSDL File field, click Find Existing WSDLs.

	
Navigate to and then select the Common.wsdl file. The Common.wsdl file is available in the Samples folder.

	
Click OK.

	
Click OK.

An Oracle Mediator named Common is created.

46.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Component

You must specify routing rules for following operations:

	
Insert

	
Update

To create routing rules for the insert operation:

	
Double-click the Mediator2 Oracle Mediator.

The Mediator Editor is displayed.

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefOrderApp > Mediators > Common, Services > Common.

	
Select Insert and click OK.

	
Click the Filter icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='INSERT'

	
Click OK.

	
Next to the Using Transformation field, click the Transformation icon.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

	
Click OK.

An SAP_TO_COMMON_INSERT.xsl file is displayed.

	
Drag and drop the top:SAP05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

	
From the During Auto Map options list, deselect Match Elements Considering their Ancestor Names.

	
Click OK.

The transformation is created, as shown in Figure 46-54.

Figure 46-54 SAP_TO_COMMON_INSERT.xsl Transformation

[image: Description of Figure 46-54 follows]

	
From the Component Palette, select Advanced.

	
Select XREF Functions.

	
Drag and drop the populateXRefRow1M function from the Component Palette to the line connecting the top:id and inp1:id elements.

	
Double-click the populateXRefRow1M icon.

The Edit Function-populateXRefRow dialog is displayed.

	
To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

	
Select Order.xref and click OK.

	
In the referenceColumnName field, enter "SAP_05" or click Search to select the column name.

	
In the referenceValue column, enter /top:Sap05Collection/top:Sap05/top:id.

	
In the columnName field, enter "Common" or click Search to select the column name.

	
In the value field, enter orcl:generate-guid().

	
In the mode field, enter "Add" or click Search to select this mode.

Figure 46-55 shows the populated Edit Function – populateXRefRow1M dialog.

Figure 46-55 Edit Function – populateXRefRow1M Dialog: XrefOrderApp Use Case

[image: Description of Figure 46-55 follows]

	
Click OK.

	
From the File menu, select Save All and close the SAP_TO_COMMON_INSERT.xsl file.

The Routing Rules section appears, as shown in Figure 46-56.

Figure 46-56 Routing Rules Section with Insert Operation

[image: Description of Figure 46-56 follows]

To create routing rules for the update operation:

Perform the following tasks to create routing rules for the update operation.

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefOrderApp > Mediators > Common, Services > Common.

	
Select Update and click OK.

	
Click the Filter icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='UPDATE'

	
Click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

	
Click OK.

An SAP_TO_COMMON_UPDATE.xsl file is displayed.

	
Drag and drop the top:Sap05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

	
Click OK.

	
From the Component Palette, select Advanced.

	
Select XREF Functions.

	
Drag and drop the lookupXRef function from the Component Palette to the line connecting the top:id and inp1:id elements.

	
Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

	
To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

	
Select customer.xref and click OK.

	
In the referenceColumnName field, enter "SAP_05" or click Search to select the column name.

	
In the referenceValue column, enter /top:Sap05Collection/top:Sap05/top:id.

	
In the columnName field, enter "COMMON" or click Search to select the column name.

	
In the needException field, enter true() or click Search to select this mode.

Figure 46-57 shows the populated Edit Function – looupXRef dialog.

Figure 46-57 Edit Function – looupXRef Dialog: XRefOrderApp Use Case

[image: Description of Figure 46-57 follows]

	
Click OK.

	
From the File menu, select Save All and close the SAP_TO_COMMON_UPDATE.xsl file.

The Routing Rules section appears, as shown in Figure 46-58.

Figure 46-58 Insert Operation and Update Operation

[image: Description of Figure 46-58 follows]

46.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator

You must specify routing rules for the following operations of the Common Oracle Mediator:

	
Insert

	
Update

To create routing rules for the insert operation:

	
Double-click the Common Oracle Mediator.

The Mediator Editor is displayed.

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefOrderApp > References > EBS.

	
Select EBS and click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter COMMON_TO_EBS_INSERT.xsl.

	
Click OK.

A COMMON_TO_EBS_INSERT.xsl file is displayed.

	
Drag and drop the inp1:Order source element to the db:InputParameters target element.

The Auto Map Preferences dialog is displayed.

	
Set the value of the db:X_APP_INSTANCE node on the right side to EBS_i75.

Click OK.

The transformation is created, as shown in Figure 46-59.

Figure 46-59 COMMON_TO_EBS_INSERT.xsl Transformation

[image: Description of Figure 46-59 follows]

	
From the File menu, select Save All and close the COMMON_TO_EBS_INSERT.xsl file.

	
In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefOrderApp > References > Logger.

	
Select Write and click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

	
Select Create New Mapper File and enter EBS_TO_COMMON_INSERT.xsl.

	
Select Include Request in the Reply Payload.

	
Click OK.

An EBS_TO_COMMON_INSERT.xsl file is displayed.

	
Connect the inp1:Order source element to db:X:APP_ID.

	
Drag and drop the populateXRefRow function from the Component Palette to the connecting line.

	
Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

	
Enter this information in the following fields:

	
xrefLocation: order.xref

	
referenceColumnName: Common

	
referenceValue: $initial.Customers/inp1:Customers/inp1:Order/inp1:Id

	
columnName: EBS_75

	
value: /db:OutputParameters/db:X_APP_ID

	
mode: LINK

	
Click OK.

The EBS_TO_COMMON_INSERT.xsl file appears, as shown in Figure 46-60.

Figure 46-60 EBS_TO_COMMON_INSERT.xsl Transformation

[image: Description of Figure 46-60 follows]

	
From the File menu, select Save All and close the EBS_TO_COMMON_INSERT.xsl file.

	
In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

	
Click Add.

The Assign Value dialog is displayed.

	
In the From section, select Expression.

	
Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

	
In the To section, select Property.

	
Select the jca.file.FileName property and click OK.

	
Click OK.

The insert operation section appears, as shown in Figure 46-61.

Figure 46-61 Insert Operation with EBS Target Service

[image: Description of Figure 46-61 follows]

	
From the File menu, select Save All.

To create routing rules for the update operation:

Perform the following tasks to create routing rules for the update operation.

	
In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefOrderApp > References > EBS.

	
Select EBS and click OK.

	
Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

	
Select Create New Mapper File and enter COMMON_TO_EBS_UPDATE.xsl.

	
Click OK.

The COMMON_TO_EBS_UPDATE.xsl file is displayed.

	
Drag and drop the inp1:Orders source element to the db:InputParameters target element.

The Auto Map Preferences dialog is displayed.

	
Click OK.

The transformation is created, as shown in Figure 46-39.

	
Drag and drop the lookupXRef function from the Component Palette to the line connecting inp1:id and db:X_APP_ID.

	
Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

	
Enter this information in the following fields:

	
xrefLocation: order.xref

	
referenceColumnName: Common

	
referenceValue: /inp1:Customers/inp1:Order/inp1:Id

	
columnName: EBS_i75

	
needException: true()

	
Click OK.

	
From the File menu, select Save All and close the COMMON_TO_EBS_UPDATE.xsl file.

	
In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

	
Select Service.

The Target Services dialog is displayed.

	
Navigate to XrefOrderApp > References > Logger.

	
Select Write and click OK.

	
Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

	
Select Create New Mapper File and enter EBS_TO_COMMON_UPDATE.xsl.

	
Click OK.

The EBS_TO_COMMON_UPDATE.xsl file is displayed.

	
Connect the db:X:APP_ID source element to db:X:APP_ID.

	
From the File menu, select Save All and close the EBS_TO_COMMON_UPDATE.xsl file.

	
In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

	
Click Add.

The Assign Value dialog is displayed.

	
In the From section, select Expression.

	
Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

	
In the Expression field, enter the following expression, and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

	
In the To section, select Property.

	
Select the jca.file.FileName property and click OK.

	
Click OK.

The update operation section appears, as shown in Figure 46-62.

Figure 46-62 Update Operation with EBS Target Service

[image: Description of Figure 46-62 follows]

	
From the File menu, select Save All.

46.8.1.10 Task 10: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite application. For information about creating an application server connection, see Section 41.7.1.1.1, "Creating an Application Server Connection."

46.8.1.11 Task 11: How to Deploy the Composite Application

Deploying the XrefOrderApp composite application to the application server consists of the following steps:

	
Creating an application deployment profile

	
Deploying the application to the application server

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

47 Defining Composite Sensors

This chapter describes how to define composite sensors in a SOA composite application.

This chapter includes the following sections:

	
Section 47.1, "Introduction to Composite Sensors"

	
Section 47.2, "Adding Composite Sensors"

	
Section 47.3, "Monitoring Composite Sensor Data During Runtime"

	
Note:

Only the database sensor action is supported for this release. For more information about sensor actions, see Chapter 18, "Using Oracle BPEL Process Manager Sensors."

47.1 Introduction to Composite Sensors

Composite sensors provide a method for implementing trackable fields on messages. Composite sensors enable you to perform the following tasks:

	
Monitor incoming and outgoing messages.

	
Specify composite sensor details in the search utility of the Instances page of a SOA composite application in Oracle Enterprise Manager Fusion Middleware Control Console. This action enables you to locate a particular instance.

You define composite sensors on service and reference binding components in Oracle JDeveloper. This functionality is similar to variable sensors in BPEL processes. During runtime, composite sensor data is persisted in the database.

47.1.1 Restrictions on Use of Composite Sensors

Note the following restrictions on the use of composite sensors:

	
Functions can only be used with the payload. For example, XPath functions such as concat() and others cannot be used with properties.

	
Any composite sensor that uses expressions always captures values as strings. This action makes the search possible only with the like comparison operator. Also, even if the value is a number, you cannot use other logical operators such as <, >, =, and any combination of these.

	
Composite sensors only support the predefined DBSensorAction.

	
Header-based sensors are only supported for web service bindings.

	
Sensors for Oracle B2B, service data objects (SDOs), web services invocation framework (WSIF), and Oracle Business Activity Monitoring bindings are not supported.

	
Sensor values can only be one of the following types.

	
The following scalar types:

	
STRING

	
NUMBER

	
DATE

	
DATE_TIME

	
Complex XML elements

	
When creating an XPath expression for filtering, all functions that return a node set must be explicitly cast as a string:

xpath20:upper-case(string($in.request/inp1:updateOrderStatus/inp1:orderStatus)) = "PENDING"

47.2 Adding Composite Sensors

You add sensors to service or reference binding components of a SOA composite application in the SOA Composite Editor.

47.2.1 How to Add Composite Sensors

To add composite sensors:

	
Use one of the following options to add a composite sensor in the SOA Composite Editor.

	
Right-click a specific service or reference binding component to which to add a composite sensor, and select Composite Sensor.

	
Click the Composite Sensor icon above the SOA Composite Editor.

Figure 47-1 Composite Sensor Icon

[image: Description of Figure 47-1 follows]

The Composite Sensors dialog appears, as shown in Figure 47-2.

Figure 47-2 Composite Sensor Dialog

[image: Description of Figure 47-2 follows]

	
Select the Composite Sensors folder, then click the Add icon.

The Create Composite Sensor dialog appears, as shown in Figure 47-3.

Figure 47-3 Create Composite Sensor Dialog

[image: Description of Figure 47-3 follows]

	
Enter the details shown in Table 47-1.

Table 47-1 Create Composite Sensor Dialog

	Name	Description
	
Name

	
Enter a name for the composite sensor. You must enter a name to enable the Edit icon of the Expression field.

	
Service

	
Displays the name of the service. This field only displays if you are creating a composite sensor for a service binding component. This field cannot be edited.

Service sensors monitor the messages that the service receives from the external world or from another composite application.

	
Reference

	
Displays the name of the reference. This field only displays if you are creating a composite sensor for a reference binding component. This field cannot be edited.

Reference sensors monitor the messages that the reference sends to the external world or to another composite application.

	
Operation

	
Select the operation for the port type of the service or reference.

	
Expression

	
Click the Edit icon to invoke a dropdown list for selecting the type of expression to create:

	
Variables: Select to create an expression value for a variable. See Section 47.2.2, "How to Add a Variable" for instructions.

	
Expression: Select to invoke the Expression Builder dialog for creating an XPath expression. See Section 47.2.3, "How to Add an Expression" for instructions.

	
Properties: Select to create an expression value for a normalized message header property. These are the same properties that display under the Properties tab of the invoke activity, receive activity, reply activity, and OnMessage branch of a pick activity. See Section 47.2.4, "How to Add a Property" for instructions.

	
Filter

	
Click the Edit icon to invoke the Expression Builder dialog to create an XPath filter for the expression. You must first create an expression to enable this field.

For example, you may create an expression for tracking purchase order amounts over 10,000:

$in.inDict/tns:inDict/ns2:KeyValueOfstringstring/ns2:Value > 10000.00

	
Composite Sensor Actions

	
Displays the supported sensor action (DBSensorAction). This feature enables runtime sensor data to be stored in the database. For this release, only this sensor action type is supported for composite sensors. This field cannot be edited.

	
Click Apply to add more composite sensors.

	
Click OK when complete.

A sensor icon displays on the service or reference binding component.

Figure 47-4 Sensor Icon

[image: Description of Figure 47-4 follows]

47.2.2 How to Add a Variable

The Select XPath Expression dialog shown in Figure 47-5 enables you to select an element for tracking.

To add a variable:

	
Expand the tree and select the element to track.

Figure 47-5 Variables

[image: Description of Figure 47-5 follows]

	
Click OK when complete.

47.2.3 How to Add an Expression

The Select Properties shown in Figure 47-6 enables you to create an expression for tracking.

To add an expression:

	
Build an XPath expression of an element to track.

Figure 47-6 Expression

[image: Description of Figure 47-6 follows]

	
Click OK when complete.

47.2.4 How to Add a Property

The Select Property shown in Figure 47-7 enables you to select a normalized message header property for tracking.

To add a property:

	
Select a normalized message header property to track.

Figure 47-7 Properties

[image: Description of Figure 47-7 follows]

	
Click OK when complete.

47.3 Monitoring Composite Sensor Data During Runtime

During runtime, composite sensor data can be monitoring in Oracle Enterprise Manager Fusion Middleware Control Console:

	
Composite sensor data displays in the flow trace of a SOA composite application.

	
Composite sensor data can be searched for in the Instances page of a SOA composite application.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

48 Using Two-Layer Business Process Management (BPM)

This chapter describes how to use two-layer Business Process Management (BPM). Two-layer BPM enables you to create dynamic business processes whose execution, rather than being predetermined at design time, depends on elements of the context in which the process executes. Such elements can include, for example, the type of customer, the geographical location, or the channel.

To illustrate further, assume you have an application that performs multichannel banking using various processes. In this scenario, the execution of each process depends on the channel for each particular process instance.

This chapter includes the following sections:

	
Section 48.1, "Introduction to Two-Layer Business Process Management"

	
Section 48.2, "Creating a Phase Activity"

	
Section 48.3, "Creating the Dynamic Routing Decision Table"

	
Section 48.4, "Use Case: Two-Layer BPM"

48.1 Introduction to Two-Layer Business Process Management

Two-layer BPM enables you to model business processes using a layered approach. In that model, a first level is a very abstract specification of the business process. Activities of a first-level process delegate the work to processes or services in a second level. Figure 48-1 illustrates this behavior.

Figure 48-1 Two-Layer BPM

[image: Architecture of Two-Layer BPM]

In Figure 48-1, the phase I activity of the business process can delegate its work to one of the corresponding layer II processes: Task 1.1, Task 1.2, or Task 1.3.

The two-layer BPM functionality enables you to create the key element (namely, the phase activity) declaratively.

By using the design time and runtime (DT@RT) functionality of Oracle Business Rules, you can add more channels dynamically without having to redeploy the business process. DT@RT enables you to add rules (columns) to the dynamic routing decision table at runtime. Then, during runtime, business process instances consider those new rules and eventually route the requests to a different channel.

The DT@RT functionality of Oracle Business Rules also enables you to modify the endpoint reference of a service that is invoked from a phase activity, pointing that reference to a different service.

	
Note:

In Oracle Fusion Middleware 11g Release 1 (11.1.1), you can use the DT@RT functionality of Oracle Business Rules only through the Oracle Business Rules SDK.
For information about using the Oracle Business Rules SDK, see:

	
Oracle Fusion Middleware User's Guide for Oracle Business Rules

	
Oracle Fusion Middleware Java API Reference for Oracle Business Rules

To enable two-layer BPM, follow the steps shown in Table 48-1.

Table 48-1 Steps for Enabling Two-Layer BPM

	Step	Information
	
Install the Oracle WebLogic Server

	
Oracle WebLogic Server Installation Guide

	
Design the SOA composite application

	
Section 48.4.1, "Designing the SOA Composite"

	
Create element-type variables named InputPhaseVariable and OutputPhaseVar

	
Section 48.4.1, "Designing the SOA Composite"

	
Create a phase activity

	
Section 48.2, "Creating a Phase Activity"

	
Create and edit the dynamic routing decision table

	
Section 48.3, "Creating the Dynamic Routing Decision Table"

	
Add assign activities to the BPEL process model

	
Section A.2.2, "Assign Activity"

	
Create the application deployment profile

	
Chapter 41, "Deploying SOA Composite Applications"

	
Create an application server connection

	
Section 41.7.1.1.1, "Creating an Application Server Connection"

	
Deploy the application

	
Chapter 41, "Deploying SOA Composite Applications"

48.2 Creating a Phase Activity

In two-layer BPM, a phase is a level-1 activity in the BPEL process. It complements the existing higher-level Oracle Business Rules and human task BPEL activities.

You add a phase to a process declaratively in Oracle BPEL Designer by dragging and dropping it from the Activities and Components section of the Component Palette to the process model. Figure 48-2 provides details.

Figure 48-2 Phase Activity in BPEL Designer

[image: Description of Figure 48-2 follows]

	
Note:

The reference WSDL (layer 2 or called references) must have the same abstract WSDL as that for the phase reference that gets automatically created.

48.2.1 How to Create a Phase Activity

You create the phase activity for your composite application after you have created the necessary variables, as described in Section 48.4.1, "Designing the SOA Composite."

Once the phase activity is dropped into the level-1 BPEL process, a wizard guides you through the various configuration steps. It first displays the Create Phase Activity dialog, in which you specify the input and the output variables of the phase.

To create a phase activity:

In the Create Phase Activity dialog:

	
In the Name field, enter a value.

	
In the Input and Output Variables section, select the icon to add input and output variables.

	
Select Add Input Variable. The dialog for selecting a variable appears.

	
Select Process > Variables > phaseIn, and then click OK. The Phase dialog is displayed with the phaseIn variable populated.

	
From the Input and Output Variables icon, select Add Output Variable. The dialog for selecting a variable appears.Select Process > Variables > phaseOut.

	
Click OK. The Phase dialog is displayed with the input and output variable names populated.Click OK. The Oracle BPEL Designer displays the BPEL process.

	
From the File menu, select Save All.

	
Close the BPEL process.

	
Click the composite.xml link about the Oracle BPEL Designer. The SOA Composite Editor appears.

48.2.2 What Happens When You Create a Phase Activity

When you create a phase activity, the artifacts described in Table 48-2 are created.

Table 48-2 Artifacts Created with a Phase Activity

	Artifact	Description
	
BPEL scope

	
At the location where the user dropped the phase activity in the BPEL process, a new BPEL scope is created and inserted into the BPEL process. The scope has the name of the phase activity. Within the scope, a number of standard BPEL activities are created. The most important ones are one invoke activity to an Oracle Mediator and one receive activity from the Oracle Mediator.

	
Oracle Mediator component

	
With the SOA composite application of the BPEL process service component, a new Oracle Mediator service component is created. The Oracle Mediator service component is wired to the phase activity of the BPEL component that comprises the level-1 BPEL process where the phase activity has been dropped into the process model. The input and output of the Oracle Mediator service component is defined by the input and output of the phase activity.

The Oracle Mediator plan (the processing instructions of the Oracle Mediator service component) is very simple; it delegates creation of the processing instructions to the Oracle Business Rules service component.

	
Oracle Business Rules component

	
Within the SOA composite application of the BPEL process service component, a new Oracle Business Rules service component is created and wired to the Oracle Mediator component associated with the phase activity of the BPEL process service component. The Oracle Business Rules service component includes a rule dictionary. The rule dictionary contains metadata for such Oracle Business Rules engine artifacts as fact types, rulesets, rules, decision tables, and similar artifacts. As part of creating the Oracle Business Rules service component, the rule dictionary is preinitialized with the following data:

	
Fact Type Model: The data model that can be used for modeling rules. The rule dictionary is populated with a fact type model that corresponds to the input of the phase activity together with some fixed data model that is required as part of the contract between the Oracle Mediator and Oracle Business Rules service components.

	
Ruleset: A container of rules that is used as a kind of grouping mechanism for rules. A ruleset can be exposed as a service. One ruleset is created within the rule dictionary.

	
Decision Table: From an Oracle Business Rules engine perspective, a decision table is simply a collection of rules with the same fact type model elements in the condition and action part of the rules so that the rules can be visualized in a tabular format. The new decision table is created within the ruleset.

	
Decision Service: A decision service is created that exposes the ruleset as a service of the Oracle Business Rules service component. The service interface is used by the Oracle Mediator to evaluate the decision table.

48.2.3 What Happens at Runtime When You Create a Phase Activity

At runtime, the input of the phase activity is used to evaluate the dynamic routing decision table. This is performed by a specific decision component of the phase activity. The result of this evaluation is an instruction for the Oracle Mediator. The Oracle Mediator routes the request to a service based on instructions from the decision component.

	
Note:

In the current release, an asynchronous phase activity is supported. A synchronous or one-way phase activity is not supported.

48.2.4 What You May Need to Know About Creating a Phase Activity

When creating a phase activity, you must know the following:

	
Rules that you must either configure or create in the decision service. This is based on data from the payload that you use to evaluate a rule.

	
For each rule created in the decision service, you must know the corresponding endpoint URL that must be invoked when a rule evaluates to true. This endpoint URL is used by the Oracle Mediator to invoke the service in layer 2.

For information on specifying endpoints, see Section 48.4.3, "Creating and Editing the Dynamic Routing Decision Table."

	
Note:

No transformation, assignment, or validation can be performed on a payload.

48.3 Creating the Dynamic Routing Decision Table

A Dynamic Routing Decision Table is a decision table evaluated by Oracle Business Rules. Conditions are evaluated on the input data of a phase activity. The result of the evaluation is a routing instruction for the Oracle Mediator.

48.3.1 How to Create the Dynamic Routing Decision Table

After you have created the phase activity, the wizard launches the Oracle Business Rules Designer in Oracle JDeveloper for you to edit the Dynamic Routing Decision Table. Figure 48-3 shows a sample decision table within the Oracle Business Rules Designer.

Figure 48-3 Sample Decision Table

[image: Description of Figure 48-3 follows]

You can leave the decision table empty while modeling the level-2 process phases, and complete it after the level-1 process is being deployed using the Business Analyst tool.

Once you have created and edited the Dynamic Routing Decision Table, the new level-1 phase activity appears in the BPEL process in Oracle JDeveloper, as illustrated in Figure 48-4.

Figure 48-4 Completed Level-1 Phase in Oracle JDeveloper

[image: Description of Figure 48-4 follows]

48.3.2 What Happens When You Create the Dynamic Routing Decision Table

By creating the Dynamic Routing Decision Table, you are configuring the decision service to dynamically evaluate the conditions applied to the incoming payload and give the corresponding routing rules to the Oracle Mediator. The Oracle Mediator then executes these rules when invoking the service in layer 2.

More specifically, here is what happens at design time when you create the Dynamic Routing Decision Table:

	
A new decision component is created in the composite of the project.

	
A new rule dictionary is created in the composite project directory.

	
The rule dictionary is populated with a data model that reflects the data model of the phase input; that is, the XML schema of the phase input is imported into the rule dictionary.

48.4 Use Case: Two-Layer BPM

This section tells you how to build a sample application for routing a customer order. Before you build this application, you must download the BPELPhaseActivity sample from the following location:

http://www.oracle.com/technology/sample_code/products/bpel/index.html

To run the sample:

	
Install the server as described in Oracle WebLogic Server Installation Guide.

	
Model the sample by performing these tasks:

	
Design the SOA composite as described in Section 48.4.1, "Designing the SOA Composite."

	
Create the phase activity as described in Section 48.4.2, "Creating a Phase Activity."

	
Create and edit the Dynamic Routing Decision Table as described in Section 48.4.3, "Creating and Editing the Dynamic Routing Decision Table."

	
Add assign activities to the BPEL process model as described in Section 48.4.4, "Adding Assign Activities to the BPEL Process Model."

	
Deploy the sample with Oracle JDeveloper as described in Section 48.4.5, "Deploying and Testing the Sample."

48.4.1 Designing the SOA Composite

You design the SOA composite application in Oracle JDeveloper.

To design the SOA composite:

	
In Oracle JDeveloper, from the File menu, select New. The New Gallery dialog appears. By default, Generic Application is selected.

	
Click OK. The Create Generic Application wizard displays the first screen.

	
In the Application Name field, enter BPELPhaseActivity and then click Next. The second page of the Create Generic Application wizard appears.

	
In the Project Name field, enter BPELPhaseCustomerRouter.

	
In the Project Technologies tab, from the Available section, select SOA and move it to the Selected section.

	
Click Next. The third page of the Create Generic Application wizard appears.

	
From the Composite Template list, select Composite With BPEL Process, and click Finish.

The Create BPEL Process dialog appears.

	
In the Name field of the Create BPEL Process dialog, enter CustomerRouterBPELProcess.

	
From the Template list, select Synchronous BPEL Process.

	
Import the CustomerData.xsd schema into the project xsd folder. An XML schema definition (XSD) specifies the types of elements and attributes that may appear in an XML document, their relationship to each other, the types of data that may be in them, and other things.

To import the CustomerData.xsd file:

	
In the Input field, click the Browse Input Elements icon.

The Type Chooser dialog displays.

	
Click the Import Schema File icon, as shown in Figure 48-5.

Figure 48-5 Import Schema File Icon

[image: Description of Figure 48-5 follows]

The Import Schema File dialog displays.

	
To the right of the URL field, click the Browse Resources icon.

The SOA Resource Browser appears.

	
Select File System and, in the Location section, search for CustomerData.xsd in the artifacts/schema folder, then click OK.

	
In the Import Schema dialog, ensure the CustomerData.xsd file now appears in the URL field and the Copy to Project option is selected, and then click OK.

The Localize Files dialog prompts you to import the CustomerData.xsd schema file and any dependent files.

	
Deselect the option Maintain original directory structure for imported files and click OK to import the files.

The Type Chooser dialog appears.

	
Expand Project Schema Files > CustomerData.xsd > Customer and then click OK, as shown in Figure 48-6.

Figure 48-6 Type Chooser Dialog

[image: Description of Figure 48-6 follows]

	
After importing the CustomerData.xsd schema, open the CustomerRouterBPELProcess BPEL process.

To create variables:

	
Note:

Phase variables can be of the element type only.

	
Click the Variables icon. The Variables dialog appears.

	
Click the Create icon. The Create Variable dialog appears.

	
In the Name field, enter InputPhaseVariable.

	
Click the Element option.

	
Click the Browse Elements icon. The Type Chooser dialog appears.

	
Select Project Schema Files >CustomerData.xsd > Customer, and then click OK. The Create Variable dialog appears with the element name populated.

	
Click OK. The Variables dialog is displayed with the variable name populated.

	
Click the Create icon in the Variables dialog. The Create Variable dialog appears.

	
In the Name field, enter OutputPhaseVariable.

	
In the Type section, select the Element option.

	
Click the Browse Elements icon. The Type Chooser dialog appears.

	
Select Project Schema Files >CustomerData.xsd > Customer, and then click OK. The Create Variable dialog appears with the element name populated.

	
Click OK. The Variables dialog appears with the input and output variable names populated.

	
Click OK. The variables have been created and the CustomerRouterBPELProcess BPEL process appears.

48.4.2 Creating a Phase Activity

To create a Phase activity:

	
In the CustomerRouterBPELProcess BPEL process, drag and drop a phase activity from the Component Palette into the process model, between receiveInput and replyOutput. The Phase dialog appears.

	
In the Name field, enter CustomerRoutingPhase_1.

	
From the Inputs and Outputs Variables icon, select Add Input Variable. The Add Input Variable dialog appears.

	
Select Process > Variables > phaseIn, and then click OK. The Phase dialog is displayed with the InputPhaseVar variable populated.

	
From the Inputs and Outputs Variables icon, select Add Output Variable. The Add Output Variable dialog appears.

	
Select Process > Variables > OutputPhaseVar.

	
Click OK. The Phase dialog displays the input and output variable names.

	
Click OK. The CustomerRouterBPELProcess BPEL process appears.

	
From the File menu, select Save All.

	
Close the CustomerRouterBPELProcess BPEL process.

	
Click composite.xml. The SOA Composite Editor is displayed.

	
Note:

	
As part of the phase activity wizard, three components are created: Oracle Business Rules, Oracle Mediator, and Dynamic Reference.

	
The Oracle Business Rules service component returns an executable case for the Oracle Mediator service component, because of the rules defined.

	
The Oracle Mediator service component routes because of the routing rules received from the Oracle Business Rules service component.

	
The Dynamic Reference component is the dummy reference for the second-level processes.

	
The rule dictionary is populated with the fact type model of the Oracle Mediator and the fact type corresponding to the input of the phase activity, which in this case is CustomerData.

	
An empty decision table called the Routing Table is created that must be edited to provide dynamic routing rules.

48.4.3 Creating and Editing the Dynamic Routing Decision Table

To create and edit the Dynamic Routing Decision Table:

	
Open the CustomerRouterBPELProcess BPEL process, and double-click the Phase activity in the process diagram. The Phase dialog appears.

	
Click the Edit Dynamic Rules button. The Oracle Business Rules Designer page appears.

	
Under Rulesets, click Ruleset_1. The Ruleset_1 page with an empty Routing Table appears, as shown in Figure 48-7.

Figure 48-7 Ruleset Page

[image: Description of Figure 48-7 follows]

	
In DecitionTable_1, click the Add icon, then Action, and then Assert New. The Actions section of the table appears.

	
In the serviceBindingInfo, specify the SOAP endpoint, replacing the hostname and host port with SOA Server details. The sample has localhost as host server and 8001 as host port.

	
In the otherwise column, enter the following:

http://hostname:host_port /soa-infra/services/default/CustomerRouter!1.0/
DefaultCustomerRouterService

	
In the Intel column, enter the following:

http://hostname:host_port/soa-infra/services/default/CustomerRouter!1.0/
SilverCustomerRouterService

	
In the Cisco column, enter the following:

http://hostname:host_port/soa-infra/services/default/CustomerRouter!1.0/
GoldCustomerRouterService

	
In the HP column, enter the following:

http://hostname:host_port/soa-infra/services/default/CustomerRouter!1.0/
PlatinumCustomerRouterService

48.4.4 Adding Assign Activities to the BPEL Process Model

Before deploying the phase activity, you must initialize the phase variables. You do this by adding assign activities in the phase in the BPEL process.

To add assign activities to the BPEL process model:

	
Click the CustomerRouterBPELProcess BPEL process.

	
Drag and drop an Assign activity from the Component Palette into the process model between the receiveInput activity and the Phase activity. The Assign activity is added to the process model.

	
Double-click the Assign activity. The Assign dialog is displayed.

	
Select the General tab.

	
In the Name field, enter AssignInput.

	
Select the Copy Operation tab.

	
Click the Add icon and select Copy Operation from the list. The Create Copy Operation dialog appears.

	
In the From section, navigate as follows: Variables > Process > Variables > inputVariable > payload > ns1:Customer.

	
In the To section, navigate as follows: Variables > Process > Variables > inputVariable > payload > ns1:Customer. Figure 48-8 provides details.

Figure 48-8 Create Copy Operation Dialog

[image: Description of Figure 48-8 follows]

	
Click OK. This returns you to the Copy Operation page where the input copy operation is recorded, as shown in Table 48-3.

Table 48-3 Input Copy Operations for Adding Assign Activities

	From	To
	
inputVariable/payload//ns1:Customer

	
InputPhaseVar///payload/ns1:Customer

	
Click OK in the Create Copy Operation dialog. The Assign dialog appears with the input copy operation values populated.

	
Click OK. The CustomerRouterBPELProcess process is displayed again.

	
Drag and drop another Assign activity from the Component Palette into the process model between the Phase activity and the replyOutput activity. The new Assign activity is added to the process model.

	
Double-click the Assign activity. The Assign dialog appears.

	
In the Name field in the General tab, enter AssignOutput.

	
Select the Copy Operation tab.

	
Click the Add icon and select Copy Operation from the list. The Create Copy Operation dialog appears.

	
In the From section, navigate as follows: Variables > Process > Variables > OutputPhaseVar > payload > ns1:Customer/ns1:status.

	
In the To section, navigate as follows: Process > Variables > outputVariable > payload > client:processResponse > client:result. Figure 48-9 provides details.

Figure 48-9 Create Copy Operation Dialog

[image: Description of Figure 48-9 follows]

	
Click OK. This returns you to the Copy Operation tab page where the output copy operation is recorded, as shown in Table 48-4.

Table 48-4 Output Copy Operation for Adding Assign Activities

	From	To
	
OutputPhaseVar///ns1:Customer/ns1:status

	
outputVariable/payload//client:processResponse/client:result

	
Click OK in the Create Copy Operation dialog. The Assign dialog is displayed with the output copy operation value populated.

	
Click OK. The CustomerRouterBPELProcess BPEL process appears after the input and output assign activities are created.

	
From the File menu, select Save All.

48.4.5 Deploying and Testing the Sample

For instructions on deploying the sample, see Section 41.7, "Deploying SOA Composite Applications."

For instructions on testing a composite instance in Oracle Enterprise Manager Fusion Middleware Control Console, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

49 Integrating the Spring Framework in SOA Composite Applications

This chapter describes how to use the spring framework to integrate components that use Java interfaces into SOA composite applications. Oracle SOA Suite uses the spring framework functionality provided by the WebLogic Service Component Architecture (SCA) of Oracle WebLogic Server. This chapter also describes how to integrate components that use Java interfaces with components that use WSDL files in the same SOA composite application.

This chapter includes the following sections:

	
Section 49.1, "Introduction to the Spring Service Component"

	
Section 49.2, "Integration of Java and WSDL-Based Components in the Same SOA Composite Application"

	
Section 49.3, "Creating a Spring Service Component in Oracle JDeveloper"

	
Section 49.4, "Spring Service Component Integration in the Fusion Order Demo"

	
Section 49.5, "JAXB and OXM Support"

For more information about the WebLogic SCA functionality used by Oracle SOA Suite, see Oracle Fusion Middleware Developing WebLogic SCA Applications for Oracle WebLogic Server.

49.1 Introduction to the Spring Service Component

The spring framework is a lightweight container that makes it easy to use different types of services. Lightweight containers can accept any JavaBean, instead of specific types of components.

WebLogic SCA enables you to use the spring framework to create Java applications using plain old Java objects (POJOs) and expose components as SCA services and references. In SCA terms, a WebLogic spring framework SCA application is a collection of POJOs plus a spring SCA context file that wires the classes together with SCA services and references.

You can use the spring framework to create service components and wire them within a SOA composite application using its dependency injection capabilities. SCA can extend spring framework capabilities as follows:

	
Publish spring beans as SCA component services that can be accessed by other SCA components or by remote clients

	
Provide spring beans for service references wired to services of other components

Like all service components, spring components have a componentType file. The interfaces defined in the componentType file use the interface.java definition to identify their service and reference interfaces.

Services are implemented by beans and are targeted in the spring context file. References are supplied by the runtime as implicit (or virtual) beans in the spring context file.

You can also integrate Enterprise JavaBeans with SOA composite applications through use of Java interfaces (with no requirement for SDO parameters). For information, see Chapter 36, "Integrating Enterprise JavaBeans with SOA Composite Applications."

For more information about the spring framework, visit the following URL:

http://www.osoa.org/display/Main/SCA+and+Spring+Framework

49.2 Integration of Java and WSDL-Based Components in the Same SOA Composite Application

In past releases, components in SOA composite applications were entirely WSDL-based. Starting with this release, you can integrate components using Java interfaces and WSDL files in a SOA composite application in the SOA Composite Editor. As an example, this integration enables a spring service component to invoke an Oracle BPEL Process Manager or an Oracle Mediator service component to invoke an Enterprise JavaBean, and so on.

The following types of component integrations are supported:

	
Java components to WSDL components

If you drag a wire from a Java interface (for example, Enterprise JavaBeans service or spring service component) to a component that does not support Java interfaces (for example, Oracle Mediator, Oracle BPEL Process Manager, or others) a compatible WSDL is generated for the component interfaces.

	
WSDL components to Java components

If you drag a wire from a WSDL interface to a component that does not support WSDL files (for example, a spring service component), a compatible Java interface is automatically generated. It is also possible to wire an existing WSDL interface to an existing Java interface. In this case, there is no checking of the compatibility between the WSDL and Java interfaces. You must ensure that it is correct.

	
Java components to Java components

If you create a spring service component, you can automatically configure it with Java interface-based EJB service and reference binding components. No WSDL files are required.

49.2.1 Java and WSDL-Based Integration Example

When wiring any two service components (or a service component with a binding component), each end of the wire has an interface defined. With XML, those interfaces must have the same WSDL definition, and are defined with interface.wsdl in the composite.xml file or component.componentType file.

From the JAX-WS point of view, when wiring a Java interface (which is defined by interface.java) to a WSDL interface, it is assumed that the two interfaces are compatible. This is typically enforced and automated by Oracle JDeveloper.

	
Note:

Only use Oracle JDeveloper to create and modify the composite.xml, componentType, and spring context files described in this section. Do not directly edit these files in Source view. These examples are provided to show you how Java interfaces and WSDL files are integrated in a SOA composite application. Use of Oracle JDeveloper to achieve this functionality is described in subsequent sections of this chapter.

For example, assume you have a Java interface for a service, as shown in Example 49-1.

Example 49-1 Java Interface for a Service

public interface PortfolioService {
 public double getPorfolioValue(String portfolioId);
}

Assume the implementation can use an additional StockQuote service that is implemented by another component which may be a BPEL process, an external web service, or an EJB. Example 49-2 provides details.

Example 49-2 Additional Java Interface for a Service

public interface StockQuote {
 public double getQuote (String symbol);
}

The componentType file for the spring framework lists the PortfolioService service and the StockQuote service with the interface.java definitions. Example 49-3 provides details.

Example 49-3 componentType File

<componentType xmlns="http://xmlns.oracle.com/sca/1.0">
 <service name="PortfolioService ">
 <interface.java interface="com.bigbank.PortfolioService"/>
 </service>
 <reference name="StockService">
 <interface.java interface="com.bigbank.StockQuote"/>
 </reference>
</componentType>

The implementation class implements the service interface and provides a setter for the reference interface. Example 49-4 provides details.

Example 49-4 Implementation of the Service Interface

public class PortfolioServiceImpl implements PortfolioService {
 StockQuote stockQuoteRef;

 public void setStockService (StockQuote ref) {
 stockQuoteRef = ref;
 }

 public double getPorfolioValue(String portfolioId) {
 //-- use stock service
 //-- return value
 }
}

The spring context file calls out the services and references and binds them to the implementation. Example 49-5 provides details.

Example 49-5 Callout of Services and References by the Spring Context

<beans ...>
 <sca:service name="PortfolioService" type="com.bigbank.PortfolioService"
 target="impl">
 </sca:service>

 <sca:reference name="StockService" type="com.bigbank.StockQuote">
 </sca:reference>

 <bean id ="impl" class ="com.bigbank.PortfolioServiceImpl">
 <property name="stockService" ref="StockService"/>
 </bean>
</beans>

The composite.xml file of the composite defines the components and references. Example 49-6 provides details.

Example 49-6 Definition of Components and References in the composite.xml File

<composite ...>
 <import location="PortfolioService.wsdl" />
 <service name="PortfolioService">
 <interface.wsdl
 interface="http://bigbank.com/#wsdl.interface(PortfolioService)" />
 <binding.ws
 port="http://bigbank.com/#wsdl.endpoint(PortfolioService/PortfolioServicePort)"/>
 </service>
 <wire>
 <source.uri>PortfolioService</source.uri>
 <target.uri>PortfolioComp/PortfolioService</target.uri>
 </wire>
 <component name="PortfolioComp">
 <implementation.spring src="spring-context.xml"/>
 </component>
 <wire>
 <source.uri>PortfolioService/StockService</source.uri>
 <target.uri>StockService</target.uri>
 </wire>
 <reference name="StockService">
 <interface.java interface="com.bigbank.StockQuote"/>
 <binding.ejb uri="StockService#com.bigbank.StockQuote"/>
 </reference>
</composite>

49.2.2 Using Callbacks with the Spring Framework

Oracle SOA Suite uses callbacks for both interface.wsdl and interface.java. However, the concept of callbacks does not exist in the spring framework. For Oracle SOA Suite services and references, a callback is specified (in the metadata) as a second port type for interface.wsdl or a second Java name for interface.java. The spring metadata has only sca:services and sca:references and no way to specify a callback.

To design a callback with spring, you must provide sca:services and sca:references with a specific name. If you create both a sca:service and sca:reference using the naming conventions of someService and someServiceCallback, Oracle SOA Suite recognizes this convention and creates a single service or reference with a callback.

For example, assume you create the syntax shown in Example 49-7 in the spring context file with the spring editor in Oracle JDeveloper:

Example 49-7 Callbacks with the Spring Service Component

<sca:service name="StockService"
 type="oracle.integration.platform.blocks.java.callback.StockService"
 target="impl" />
 <sca:reference name="StockServiceCallback"
 type="oracle.integration.platform.blocks.java.callback.StockServiceReply" />

Oracle SOA Suite automatically creates a single service (in the spring componentType file) as shown in Example 49-8:

Example 49-8 Single Service

 <service name="StockService">
 <interface.java
 interface="oracle.integration.platform.blocks.java.callback.StockService"
 callbackInterface="oracle.integration.platform.blocks.java.callback.StockServiceRe
ply"/>
 </service>

In the SOA Composite Editor, if a spring interface.java with a callback interface is dragged to a WSDL component (for example, Oracle BPEL Process Manager, Oracle Mediator, or others), a WSDL with two port types is generated (technically, a wrapper WSDL, which is a WSDL that imports two other WSDLs, each having a single port type).

If you drag a WSDL or Java interface that has a callback to a spring service component, a single interface is displayed in the SOA Composite Editor. However, inside the spring editor, you find both a sca:service and sca:reference that have the same naming conventions (someService and someServiceCallback).

49.3 Creating a Spring Service Component in Oracle JDeveloper

This section describes how to create a spring service component and wire the component as follows in Oracle JDeveloper:

	
To Java interface-based EJB services and references (Java-to-Java integration)

	
To an Oracle Mediator service component (Java-to-WSDL integration)

For an overview of spring service component integration in the Fusion Order Demo, see Section 49.4, "Spring Service Component Integration in the Fusion Order Demo."

49.3.1 How to Create a Spring Service Component in Oracle JDeveloper

To create a spring service component in Oracle JDeveloper:

	
From the Component Palette, drag a Spring Context service component into the SOA Composite Editor, as shown in Figure 49-1.

Figure 49-1 Spring Context Service Component

[image: Description of Figure 49-1 follows]

The Create Spring dialog is displayed.

	
In the Name field, enter a name for the spring service component. This name is also automatically added to the Create New Context field. Figure 49-2 provides details.

You can also select Use Existing Context and click Browse to select an existing spring file. For example, you may want to import a spring context that was created in Oracle JDeveloper, but outside of Oracle SOA Suite. If you browse and select a spring context from another project, it is copied to the SOA project.

Figure 49-2 Create Spring Dialog

[image: Description of Figure 49-2 follows]

	
Note:

A standalone spring version of WebLogic SCA is also available for use. This version is typically used outside of Oracle SOA Suite. This version is accessible by selecting Spring 2.5 JEE from the Component Palette while inside the spring editor.

	
Click OK.

A spring icon is displayed in the SOA Composite Editor.

	
Double-click the icon to display the contents of the spring context in the spring editor.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean defintions go here-->
</beans>

	
From the Component Palette, select Weblogic SCA from the dropdown list.

The list is refreshed to display the selections shown in Figure 49-3.

Figure 49-3 WebLogic SCA Menu

[image: Description of Figure 49-3 follows]

	
Drag a Service icon into the spring editor.

The Insert Service dialog appears.

	
Complete the fields shown in Table 49-1 to define the target bean and Java interface.

Table 49-1 Insert Service Dialog

	Field	Description
	
name

	
Enter a name.

	
target

	
Enter the target bean. This action enables you to expose the bean as a service.

Note: Ensure that this target exists. There is no validation support that checks for the existence of this target.

	
type

	
Enter the Java interface.

When complete, the Insert Service dialog looks as shown in Figure 49-4.

Figure 49-4 Insert Service Dialog

[image: Description of Figure 49-4 follows]

	
Click OK.

The target bean becomes the service interface in the spring context.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean defintions go here-->
 <sca:service name="scaserv1" target="ep" type="oracle.mypackage.myinterface"/>
</beans>

Note that if you close the spring editor and return to the SOA Composite Editor, you see that a handle has been added to the left side of the spring service component, as shown in Figure 49-5.

Figure 49-5 Service Handle

[image: Description of Figure 49-5 follows]

	
Return to the spring editor.

	
Drag a Reference icon from the list shown in Figure 49-3 into the spring editor.

The Insert Reference dialog is displayed.

	
Complete the dialog, as shown in Table 49-2, and click OK.

Table 49-2 Insert Reference Dialog

	Field	Description
	
name

	
Enter a name.

	
type

	
Enter the Java interface.

When complete, the spring context displays the service and reference in the spring editor.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean defintions go here-->
 <sca:service name="scaserv1" target="ep" type="oracle.mypackage.myinterface"/>
 <sca:reference name="scaref1" type="external.bean.myInterface"/>
</beans>

	
Close the spring context file, as shown in Figure 49-6.

Figure 49-6 Spring Context File

[image: Description of Figure 49-6 follows]

Note that a handle is added to the right side of the spring service component, as shown in Figure 49-7.

Figure 49-7 Reference Handle

[image: Description of Figure 49-7 follows]

	
Drag the left handle into the Exposed Services swimlane to create a service binding component, as shown in Figure 49-8.

Figure 49-8 Service Binding Component

[image: Description of Figure 49-8 follows]

You are prompted to select to expose the service as either a web service or as an EJB service, as shown in Figure 49-9.

Figure 49-9 Service Type To Create

[image: Description of Figure 49-9 follows]

	
EJB: This exposes the EJB service through a Java interface; this selection does not require the use of a WSDL file.

	
Web Service: This exposes the web service through a SOAP WSDL interface. If you select this option, a WSDL is generated from the Java Interface for compatibility with the spring service component.

	
Select to expose this service as either an EJB or Web service. A service is automatically created in the Exposed Services swimlane and wired to the spring service component (for this example, EJB was selected). Figure 49-10 provides details.

Figure 49-10 EJB Service Binding Component Wired to the Spring Service Component

[image: Description of Figure 49-10 follows]

	
Double-click the EJB service to display the automatically completed configuration, as shown in Figure 49-11. The configuration details were created from the values you entered in the Insert Service dialog in Step 7.

Figure 49-11 EJB Service Dialog in Exposed Services Swimlane

[image: Description of Figure 49-11 follows]

	
Replace the default JNDI name that was automatically generated with the name applicable to your environment.

	
Close the dialog.

	
Drag the right handle of the spring service component into the External References swimlane to create a reference binding component.

You are prompted with the same spring type option message as shown in Step 13.

	
Select an option to expose this reference. A reference is automatically created in the External References swimlane and wired to the spring service component (for this example, EJB was selected). Figure 49-12 provides details.

Figure 49-12 EJB Reference Binding Component Wired to the Spring Service Component

[image: Description of Figure 49-12 follows]

	
Double-click the EJB reference to display the automatically completed configuration, as shown in Figure 49-13. The configuration details were created from the values you entered in the Insert Reference dialog in Step 11.

Figure 49-13 EJB Reference Dialog in External References Swimlane

[image: Description of Figure 49-13 follows]

	
Close the dialog and return to the SOA Composite Editor, as shown in Figure 49-14.

Figure 49-14 Java Interface-Based EJB Service and Reference Binding Components

[image: Description of Figure 49-14 follows]

	
Place the cursor over both the right handle of the service (as shown in Figure 49-15) and the left handle of the spring service component (as shown in Figure 49-16). The Java interface is displayed.

Figure 49-15 Java Interface of Service

[image: Description of Figure 49-15 follows]

Figure 49-16 Java Interface of Spring Service Component

[image: Description of Figure 49-16 follows]

	
Perform the same action on the right handle of the spring service component and the left handle of the reference binding component to display its Java interface.

	
In the Application Navigator, select the componentType file for the spring service component. The interfaces for both components are defined by interface.java.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 1.0 at [2/27/10 1:13 PM]. -->
<componentType
 xmlns="http://xmlns.oracle.com/sca/1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ui="http://xmlns.oracle.com/soa/designer/">
 <service name="scaserv1">
 <interface.java interface="oracle.mypackage.myinterface"/>
 </service>
 <reference name="scaref1">
 <interface.java interface="external.bean.myInterface"/>
 </reference>
</componentType>

	
In the Application Navigator, select the composite.xml file to display similar details.

 <service name="scaserv1">
 <interface.java interface="oracle.mypackage.myinterface"/>
 <binding.ejb uri="scaserv1_ejb_ep" ejb-version="EJB3"/>
 </service>
 <component name="MySpring">
 <implementation.spring src="MySpring.xml"/>
 </component>
 <reference name="scaref1">
 <interface.java interface="external.bean.myInterface"/>
 <binding.ejb uri="scaref1_ejb_ep" ejb-version="EJB3"/>
 </reference>
 <wire>
 <source.uri>orderprocessor_client_ep</source.uri>
 <target.uri>OrderProcessor/orderprocessor_client</target.uri>
 </wire>
 <wire>
 <source.uri>scaserv1</source.uri>
 <target.uri>MySpring/scaserv1</target.uri>
 </wire>
 <wire>
 <source.uri>MySpring/scaref1</source.uri>
 <target.uri>scaref1</target.uri>
 </wire>
</composite>

	
If you wire the right handle of the spring service component to an XML-based component such as Oracle Mediator instead of the Java interface-based EJB reference, a compatible WSDL file is generated. The following steps provide details.

	
Drag the right handle of the spring service component to the Oracle Mediator, as shown in Figure 49-17.

Figure 49-17 Integration of Spring Service Component and Oracle Mediator

[image: Description of Figure 49-17 follows]

	
Click OK when prompted to acknowledge that a compatible interface was created from the Oracle Mediator WSDL file.

Figure 49-18 Java File Creation from the Oracle Mediator WSDL File

[image: Description of Figure 49-18 follows]

	
Place the cursor over both the right handle of the spring service component (as shown in Figure 49-19) and the left handle of the Oracle Mediator (as shown in Figure 49-20) to display the compatible interface.

Figure 49-19 Spring Service Component Interface

[image: Description of Figure 49-19 follows]

Figure 49-20 Oracle Mediator Interface

[image: Description of Figure 49-20 follows]

	
Double-click the spring service component to display the contents of the spring context file in the spring editor.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean defintions go here-->
 <sca:service name="scaserv1" target="ep" type="oracle.mypackage.myinterface"/>
 <sca:reference type="mediator1.project1.application4.com.oracle.xmlns.Execute_
ptt" name="Mediator1.Mediator1"/>
</beans>

For more information about integrating components that use Java interfaces with components that use WSDL files in the same SOA composite application, see Section 49.4, "Spring Service Component Integration in the Fusion Order Demo."

49.4 Spring Service Component Integration in the Fusion Order Demo

The Partner Supplier Composite application of the Fusion Order Demo demonstrates how the spring service component is used to obtain a price quote from a partner warehouse. Figure 49-21 shows the SOA Composite Editor for this composite application.

Figure 49-21 Partner Supplier Composite with Spring Service Component

[image: Description of Figure 49-21 follows]

IInternalPartnerSupplier is exposed as an external client service in the Exposed Services swimlane.

The Oracle Mediator service component PartnerSupplierMediator routes client requests differently based on the amount of the quote:

	
Quotes below $2000 are routed to Oracle BPEL Process Manager.

	
Requests that are more than $2000 and less than $3000 are routed to the SpringPartnerSupplierMediator spring service component. An external EJB reference binding component IExternalPartnerSupplierService is invoked to obtain a quote. An external file adapter WriteQuoteRequest is invoked for writing the quote results to a file.

	
Requests greater than $3000 are routed to the SpringPartnerSupplierMediator spring service component. However, these requests are not routed to the external EJB reference binding component. Instead they are handled internally by implementing the EJB interface. The external file adapter WriteQuoteRequest is also invoked for writing the quote results to a file.

Figure 49-22 provides an overview of this behavior.

For requests that are more than $2000 and less than $3000, the target bean InternalPartnerSupplierMediator is exposed as a service. The Java interface IInternalPartnerSupplier is used. In the External References swimlane, the Java interface IExternalPartnerSupplierService is exposed as an external EJB for obtaining a quote.

For requests that are more than $3000, the target bean InternalPartnerSupplierMediatorSimple is exposed as a service. The Java interface IInternalPartnerSupplier is used. The internal Java Interface IExternalPartnerSupplierServiceMock is used to obtain a quote. The IExternalPartnerSupplierService reference in the External References swimlane is not invoked.

In the External References swimlane, since the WriteQuoteRequest references uses a WSDL-based file adapter and does not support Java interfaces, a compatible WSDL file is generated.

Figure 49-22 Spring Architecture in Fusion Order Demo

[image: Description of Figure 49-22 follows]

Example 49-9 shows the IInternalPartnerSupplier.java file. IInternalPartnerSupplier is implemented by InternalSupplierMediator.

Example 49-9 IInternalPartnerSupplier.java

package com.otn.sample.fod.soa.internalsupplier;
import
 com.otn.sample.fod.soa.internalsupplier.exception.InternalSupplierException;
import java.util.List;
/**
 * The interface for the spring based service, with a typed list.
 *
 * !!! ATTENTION !!!
 * This interface was used to generate the wsdl
 * (IInternalPartnerSupplierService.wsdl) - DO NOT MODIFY!
 *
 * @author clemens utschig
 */
public interface

IInternalPartnerSupplier
{
 /**
 * Get a price for a list of orderItems
 * @param pOrderItems the list of orderitems
 * @return the price
 */
 public double getPriceForOrderItemList(List<Orderitem> pOrderItems)
 throws InternalSupplierException;

}

The SpringPartnerSupplierMediator.componentType file in Example 49-10 shows the services and references defined for the spring service component shown in Figure 49-22.

Example 49-10 SpringPartnerSupplierMediator.componentType File

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 1.0 at [7/16/09 2:36 PM]. -->
<componentType
 xmlns="http://xmlns.oracle.com/sca/1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ui="http://xmlns.oracle.com/soa/designer/">
 <service name="IInternalPartnerSupplier">
 <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 </service>
 <service name="IInternalPartnerSupplierSimple">
 <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 </service>
 <reference name="IExternalPartnerSupplierService">
 <interface.java
 interface="com.otn.sample.fod.soa.externalps.IExternalPartnerSupplierService"/>
 </reference>
 <reference name="WriteQuoteRequest">
 <interface.java
interface="writequoterequest.partnersuppliercomposite.weblogicfusionorderdemo.file
.adapter.pcbpel.com.oracle.xmlns.Write_ptt"/>
 </reference>
</componentType>

Example 49-11 shows the SpringPartnerSupplierMediator.xml spring context file.

Example 49-11 SpringPartnerSupplierMediator.xml spring context File

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca">

 <!--
 The below sca:service(s) corresponds to the services exposed by the
 component type file: SpringPartnerSupplierMediator.componentType
 -->

 <!-- expose the InternalPartnerSupplierMediator + EJB as service

 <service name="IInternalPartnerSupplier">
 <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 </service>
 -->
 <sca:service name="IInternalPartnerSupplier"
 target="InternalPartnerSupplierMediator"
 type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 <!-- expose the InternalPartnerSupplierMediator + Mock as service
 <service name="IInternalPartnerSupplierSimple">
 <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 </service>

 -->
 <sca:service name="IInternalPartnerSupplierSimple"
 target="InternalPartnerSupplierMediatorSimple"
 type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 <!-- the partner supplier mediator bean with the mock ep -->

 <bean id="InternalPartnerSupplierMediatorSimple"
 class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator"
 scope="prototype">
 <!-- inject the external partner supplier bean -->
 <property name="externalPartnerSupplier"
 ref="IExternalPartnerSupplierServiceMock"/>
 <!-- inject the quoteWriter -->
 <property name="quoteWriter" ref="WriteQuoteRequest"/>
 </bean>

 <!-- the partner supplier mediator bean with the ejb -->
 <bean id="InternalPartnerSupplierMediator"
 class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator"
 scope="prototype">
 <!-- inject the external partner supplier bean -->
 <property name="externalPartnerSupplier"
 ref="IExternalPartnerSupplierService"/>
 <!-- inject the quoteWriter -->
 <property name="quoteWriter" ref="WriteQuoteRequest"/>
 </bean>
 <!-- mock bean for the IExternalPartnerSupplierService -->
 <bean id="IExternalPartnerSupplierServiceMock"

 class="com.otn.sample.fod.soa.externalps.test.MockExternalPartnerSupplierTest"/>

 <!--
 Use a reference from the outside world based on the
 IExternalPartnerSupplierService interface.
 The below is specified on the SpringPartnerSupplierMediator.componentType -
 and wired to an external EJB binding.

 <reference name="IExternalPartnerSupplierService">
 <interface.java
 interface="com.otn.sample.fod.soa.externalps.IExternalPartnerSupplierService"/>
 </reference>
 -->
 <sca:reference name="IExternalPartnerSupplierService"
 type="com.otn.sample.fod.soa.externalps.IExternalPartnerSupplierService"/>

 <!--
 <reference name="WriteQuoteRequest">
 <interface.java

interface="writequoterequest.partnersuppliercomposite.weblogicfusionorderdemo.file
.adapter.pcbpel.com.oracle.xmlns.Write_ptt"/>
 </reference>
 -->
 <sca:reference type="writequoterequest.partnersuppliercomposite.weblogicfusionorderdemo.file.adap
ter.pcbpel.com.oracle.xmlns.Write_ptt"
 name="WriteQuoteRequest"/>
</beans>

For information on downloading and installing the Fusion Order Demo and using the Partner Supplier Composite, see Section 3.2, "Setting Up the Fusion Order Demo Application."

After download, see the following Fusion Order Demo directory for Java code samples used by the Partner Supplier Composite:

CompositeServices\PartnerSupplierComposite\src\com\otn\sample\fod\soa

49.4.1 How to Use EJBs with Java Vector Type Parameters

Your Java code may include vectors. However, vectors cannot be serialized to XML without declaring the content POJOs. The following example provides an overview of how to resolve this issue and uses code samples from the Fusion Order Demo.

To use EJBs with Java vector type parameters:

	
Assume your Java code includes vectors, as shown in Figure 49-23.

Figure 49-23 Vectors

[image: Description of Figure 49-23 follows]

	
Create an EJB binding reference based on the Java interface class and the JNDI name. Figure 49-24 provides an example.

Figure 49-24 EJB Binding Reference Creation

[image: Description of Figure 49-24 follows]

	
Wire the EJB reference to the spring service component, as shown in Figure 49-25.

Figure 49-25 EJB Reference Wired to Spring Service Component

[image: Description of Figure 49-25 follows]

A new reference is created in the spring context file. Figure 49-26 provides details.

Figure 49-26 Reference Addition to Spring Context File

[image: Description of Figure 49-26 follows]

	
Enable spring to inject the reference into the class by declaring a public member of type IExternalPartnerSupplierService. Figure 49-27 provides details.

Figure 49-27 Public Member Declaration

[image: Description of Figure 49-27 follows]

	
Add a property with the name of the member to the IExternalPartnerSupplierService and refer to the ExternalPartnerSupplier reference bean. Figure 49-28 provides details.

Figure 49-28 Property Added with Name of the Member

[image: Description of Figure 49-28 follows]

This converts the vectors to EJB parameters.

49.5 JAXB and OXM Support

Oracle Fusion Middleware provides support for using Java Architecture for XML Binding (JAXB) and the EclipseLink O/X-Mapper (OXM) to map Java classes to XML data. You can store and retrieve data in memory in any XML format without implementing a specific set of XML routines for the program's class structure. This support enables you to perform the following:

	
Map Java objects to XML data

	
Map XML data back to Java objects

For design information about external metadata for JAXB mappings, visit the following URL:

http://wiki.eclipse.org/EclipseLink/DesignDocs/277920

For information about JAXB OXM and the OXM mapping file (eclipselink-oxm.xsd), visit the following URLs:

http://wiki.eclipse.org/EclipseLink/FAQ/WhatIsMOXy

http://wiki.eclipse.org/EclipseLink/Examples/MOXy

http://wiki.eclipse.org/Category:XML

You can also map Java classes to XML data when integrating Enterprise JavaBeans with SOA composite applications. For more information, see Chapter 36, "Integrating Enterprise JavaBeans with SOA Composite Applications."

49.5.1 Extended Mapping Files

Oracle SOA Suite extends JAXB and OXM file support through use of an extended mapping (EXM) file. If an EXM file is present in the class path of the design time project, then it can be used for Java-to-WSDL conversions. The EXM file provides data binding metadata in the following situations:

	
When you cannot add the JAXB annotations into the Java source and must specify them separately

	
When scenarios are not covered by JAXB (for example, with top level elements like method return types or parameter types)

The external JAXB annotations can be specified either directly in the EXM file or included in the separate TopLink JAXB mapping OXM file that can be referred to from the EXM file.

Oracle SOA Suite design time supports placing the EXM file in either the source path (SCA-INF/src) or the class path (SCA-INF/classes or a JAR in SCA-INF/lib).

Placing the EXM file in the source path (SCA-INF/src) enables you to edit the EXM using Oracle JDeveloper (files in the class path do not appear in the Application Navigator in Oracle JDeveloper). When project compilation is complete, the EXM file (and any XML files that it imports) is copied to the class path (SCA-INF/classes) for deployment.If the EXM file is in the source path, it must still be in the same corresponding directory structure.

Example 49-12 and Example 49-13 provide examples of EXM files.

Example 49-12 EXM Sample File

<java-web-service-endpoint
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
 xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 databinding="toplink.jaxb">

 <xml-schema-mapping>
 <toplink-oxm-file
 java-package="weblogic.wsee.databinding.internal.test.toplink"
 file-path="./person-oxm.xml"/>
 </xml-schema-mapping>

<!--
 <web-service name="hello-ws" target-namespace="hello-ns"/>
 <java-methods>
 <java-method name="hello" oxm:xml-mixed="false">
 <oxm:xml-elements>
 <oxm:xml-element type="java.lang.Integer"/>
 </oxm:xml-elements>
 <web-result name="result"/>
 <java-params>
 <java-param oxm:xml-mixed="false">
 <oxm:xml-elements>
 <oxm:xml-element type="java.lang.String"/>
 </oxm:xml-elements>
 <web-param name="request"/>
 </java-param>
 </java-params>
 </java-method>
 </java-methods>
 -->
</java-web-service-endpoint>

Example 49-13 EXM Sample File

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-wsdl-mapping
 name="weblogic.wsee.databinding.internal.test.toplink.CollectionMapExtTypeArg"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
 xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 databinding="toplink.jaxb">
 <soap-binding parameter-style="BARE"/>
 <java-methods>
 <java-method name="testListOfCustomer">
 <java-params>
 <java-param>
 <oxm:xml-element
 type="weblogic.wsee.databinding.internal.test.toplink.Customer"/>
 </java-param>
 </java-params>
 </java-method>

 <!-- Not implemented by EclipseLink yet
 <java-method name="testMapOfCustomer">
 <java-params>
 <java-param>
 <oxm:xml-element
 xmlns='http://www.eclipse.org/eclipselink/xsds/persistence/oxm'>
 <xml-map>
 <key type='java.lang.String'/>
 <value
 type='weblogic.wsee.databinding.internal.test.toplink.Customer'/>
 </xml-map>
 </oxm:xml-element>
 </java-param>
 </java-params>
 </java-method>
 -->

 <java-method name="testMapOfCustomerAdapters">
 <oxm:xml-element
 xmlns='http://www.eclipse.org/eclipselink/xsds/persistence/oxm'>
 <oxm:xml-java-type-adapter
 value='weblogic.wsee.databinding.internal.test.toplink.MapStringIntegerAdapter'/>
 </oxm:xml-element>
 <java-params>
 <java-param>
 <oxm:xml-element
 xmlns='http://www.eclipse.org/eclipselink/xsds/persistence/oxm'>
 <oxm:xml-java-type-adapter
 value='weblogic.wsee.databinding.internal.test.toplink.MapStringCustomerAdapter'/>
 </oxm:xml-element>
 </java-param>
 </java-params>
 </java-method>

 <!-- Not implemented: Bare Multi-part -->
 <java-method name="test3Lists">
 <web-method exclude="true"/>
 </java-method>
 </java-methods>
</java-wsdl-mapping>

The EXM schema file for external mapping metadata for the data binding framework is available at the following URL:

http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1/weblogic-wsee-databinding.xsd

The data defines the attributes of a particular Java web service endpoint. This schema defines three types of XML constructs:

	
Constructs that are analogous to JAX-WS or JSR-181that override or define attributes on the service endpoint interface (SEI) and JAXB annotations for the value types utilized in the interfaces of the SEI.

	
Additional mapping specifications not available using standard JAX-WS or JAXB annotations, primarily for use with the java.util.Collections API.

	
References to external JAXB mapping metadata from a Toplink OXM file.

When a construct is the direct analog of a JAX-WS, JSR-181, or JAXB annotation, the comment in the schema contains a notation such as:

Corresponding Java annotation: javax.jws.WebParam.Mode

Part X

Using Oracle Business Activity Monitoring

This part describes Oracle Business Activity Monitoring.

This part contains the following chapters:

	
Chapter 50, "Integrating Oracle BAM with SOA Composite Applications"

	
Chapter 51, "Using Oracle BAM Data Control"

	
Chapter 52, "Defining and Managing Oracle BAM Data Objects"

	
Chapter 53, "Creating Oracle BAM Enterprise Message Sources"

	
Chapter 54, "Using Oracle Data Integrator With Oracle BAM"

	
Chapter 55, "Creating External Data Sources"

	
Chapter 56, "Using Oracle BAM Web Services"

	
Chapter 57, "Creating Oracle BAM Alerts"

	
Chapter 58, "Using ICommand"

50 Integrating Oracle BAM with SOA Composite Applications

This chapter provides information about using the Oracle BAM Adapter in the SOA composite applications using Oracle JDeveloper.

This chapter contains the following topics:

	
Section 50.1, "Introduction to Integrating Oracle BAM with SOA Composite Applications"

	
Section 50.2, "Configuring Oracle BAM Adapter"

	
Section 50.3, "Using Oracle BAM Monitor Express With BPEL Processes"

	
Section 50.4, "Creating a Design Time Connection to an Oracle BAM Server"

	
Section 50.5, "Using Oracle BAM Adapter in an SOA Composite Application"

	
Section 50.6, "Using Oracle BAM Adapter in a BPEL Process"

	
Section 50.7, "Integrating BPEL Sensors Using Oracle BAM Sensor Action"

	
Section 50.8, "Integrating SOA Applications and Oracle BAM Using Enterprise Message"

50.1 Introduction to Integrating Oracle BAM with SOA Composite Applications

The Oracle BAM Adapter is a Java Connector Architecture (JCA)-compliant adapter which can be used from a Java EE client to send data and events to the Oracle BAM Server. The Oracle BAM Adapter supports the following operations on Oracle BAM data objects: inserts, updates, upserts, and deletes.

The Oracle BAM Adapter can perform these operations over Remote Method Invocation (RMI) calls (if they are deployed in the same farm), direct Java object invocations (if they are deployed in the same container), or over Simple Object Access Protocol (SOAP) (if there is a fire wall between them).

Oracle BAM Adapter is configured in Oracle WebLogic Server Administration Console to provide any of these connection pools. See Section 50.2, "Configuring Oracle BAM Adapter" for more information.

Some configuration is required to connect SOA composite applications to Oracle BAM. See Section 50.4, "Creating a Design Time Connection to an Oracle BAM Server" for more information.

Oracle BAM Adapter can be used with various features in SOA composite applications by which you can send data to an Oracle BAM Server:

	
The Oracle BAM Adapter transfers data from BPEL process monitors to automatically generated Oracle BAM data objects. See Section 50.3, "Using Oracle BAM Monitor Express With BPEL Processes" for more information.

	
The Oracle BAM Adapter can be used as a reference binding component in an SOA composite application. For example, Oracle Mediator can send data to Oracle BAM using the Oracle BAM Adapter. See Section 50.5, "Using Oracle BAM Adapter in an SOA Composite Application" for more information.

	
The Oracle BAM Adapter can also be used as a partner link in a Business Process Execution Language (BPEL) process to send data to Oracle BAM as a step in the process. See Section 50.6, "Using Oracle BAM Adapter in a BPEL Process" for more information.

	
Oracle BAM sensor actions can be included within a BPEL process to publish event-based data to the Oracle BAM data objects. See Section 50.7, "Integrating BPEL Sensors Using Oracle BAM Sensor Action" for more information.

	
JMS sensor actions on BPEL sensors can also be used to feed data to Oracle BAM. See Section 50.8, "Integrating SOA Applications and Oracle BAM Using Enterprise Message" for more information.

50.2 Configuring Oracle BAM Adapter

The Oracle BAM Adapter Java Naming and Directory Interface (JNDI) connection pools must be configured when you use the Oracle BAM adapter to connect with the Oracle BAM Server at runtime. For information about configuration see "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

Make note of the JDNI names that you configure in the Oracle BAM Adapter properties, so that you can use them in the Oracle BAM Adapter wizard, Monitor Express configuration, and the Oracle BAM sensor action configuration in Oracle JDeveloper.

When using an RMI connection between an SOA composite application and Oracle BAM Server, that is, when they are deployed in different domains, trusted domain configuration must be done in Oracle WebLogic Server Administrative Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

50.3 Using Oracle BAM Monitor Express With BPEL Processes

The Monitor Express offering from Oracle BAM provides high level instrumentation of BPEL processes, automatically handling Oracle BAM data object deployment and population.

Activity Monitors and Monitoring Objects are used to capture BPEL process metrics, which are sent to Oracle BAM Server, and then used for analysis and graphic display. All of the connection, design, and deployment configuration is accomplished in Oracle JDeveloper.

Monitor Express ships with sample dashboards to demonstrate solutions you can build on top of the automatically deployed data objects.

Using the BPEL Designer Monitor view in Oracle JDeveloper, you can create the following types of monitors on a BPEL process:

	
Activity Monitors capture running time data for BPEL process activities, scopes, and human tasks. Activity Monitors can help identify bottlenecks in the BPEL process.

	
Counter monitoring objects capture the date and time when a particular BPEL activity event is encountered within the BPEL process. Counters may be useful for reporting the number of times a particular activity is executed over a period of time.

	
Interval monitoring objects capture the amount of time for the process to go from one BPEL activity event to another. Interval monitoring objects can help identify bottlenecks in the BPEL process.

	
Business Indicator monitoring objects capture a snapshot of BPEL variables or expressions at a specified activity event in the BPEL process.

When the SOA composite application is deployed, the Oracle BAM data objects corresponding to the BPEL process monitors are created or updated automatically.

This section contains the following topics:

	
Section 50.3.1, "How to Access BPEL Designer Monitor View"

	
Section 50.3.2, "How to Configure Activity Monitors"

	
Section 50.3.3, "How To Create BPEL Process Monitoring Objects"

	
Section 50.3.4, "How to Configure Counters"

	
Section 50.3.5, "How to Configure Intervals"

	
Section 50.3.6, "How to Configure Business Indicators"

	
Section 50.3.7, "How to Add Existing Monitoring Objects to Activities"

	
Section 50.3.8, "How To Configure BPEL Process Monitors for Deployment"

	
Section 50.3.9, "What You Need To Know About Monitor Express Data Objects"

	
Section 50.3.10, "What You Need to Know About Using the Monitor Express Dashboard"

Related Documentation

	
Chapter 52, "Defining and Managing Oracle BAM Data Objects"

	
Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring

50.3.1 How to Access BPEL Designer Monitor View

To access BPEL Designer Monitor view, select Monitor in the BPEL Designer toolbar.

[image: Description of bam_mon_menu.gif follows]

In Monitor view, the structure pane displays the Monitoring Objects folder. You can expand the folder to expose the Business Indicators, Intervals, and Counters folders.

[image: monitor view structure pane]

50.3.2 How to Configure Activity Monitors

Configure and enable Activity Monitors to capture data on start and end times for the BPEL process including the individual BPEL activities, scopes, and human tasks.

To configure Activity Monitors:

	
In the Monitor view of a BPEL process, click Activity Monitoring Configuration in the BPEL Designer tool bar.

[image: Description of bpel_mon_actconfig.gif follows]

	
In the Activity Monitoring Configuration dialog, select Enable Activity Monitoring, and choose the Mode to configure the level of monitoring.

[image: Description of bpel_mon_actdialog.gif follows]

	
The All Activities option captures start and end time data for every activity in the BPEL process, including individual activities, scopes, and human tasks. An activity starts when the activation event for the activity is begun, and it ends when the completion event is finished.

	
The Scopes and Human Tasks Only option captures start and end time data for every scope and human task defined in the BPEL process. A scope starts when the first activity activation event within the scope is begun, and it ends when the final activity completion event within the scope is finished. A human task activity starts when the activation event for the human task activity is begun, and it ends when the completion event in the human task activity is finished.

	
The Human Tasks Only option captures start and end time data for every human task activity defined in the BPEL process.

	
The BPEL Process Only option captures start and end time data for the BPEL process.

You can disable Activity Monitors by deselecting the Enable Activity Monitoring checkbox.

	
Click OK.

If Activity Monitors are enabled, data is sent to Oracle BAM data object at runtime. See Section 50.3.9, "What You Need To Know About Monitor Express Data Objects" for more information about Oracle BAM data objects for monitoring objects.

50.3.3 How To Create BPEL Process Monitoring Objects

Use the BPEL Designer Monitor view in Oracle JDeveloper to create BPEL process monitoring objects.

To create a BPEL process monitoring object:

	
While in the Monitor view, open a context menu on an activity in the BPEL process diagram, select Create, and choose a monitoring object type from the list.

[image: activity shortcut menu]

Alternatively, you can use the Monitoring Objects menu, located at the top left corner of the BPEL Designer window, to create monitoring objects.

[image: Description of bam_mon_create_menu.gif follows]

As another alternative, you can open a context menu for each Monitoring Objects type folder in the Structure pane to create a monitoring object.

[image: create from structure pane]

BPEL process configurable monitoring objects are available in three types: Counters, Intervals, and Business Indicators. See the following topics for more information.

	
Section 50.3.4, "How to Configure Counters"

	
Section 50.3.5, "How to Configure Intervals"

	
Section 50.3.6, "How to Configure Business Indicators"

	
To enable the BPEL process monitoring objects at deployment, verify that the Enable Monitoring checkbox, located at the top left corner of the BPEL Designer Monitor view, is selected.

Figure 50-1 Enable Monitoring Checkbox

[image: Description of Figure 50-1 follows]

When checked, the Enable Monitoring option in BPEL Designer enables all of the the monitors and sensors in all BPEL processes in the current SOA composite application. It overrides any monitoring object-level enable flags.

When the Enable Monitoring option is not checked, a property called enableProcessSensors is added to composite.xml with the value false. That property disables all monitors and sensors in all BPEL processes in the current SOA composite application.

50.3.4 How to Configure Counters

Every time the BPEL process passes a snapshot of a Counter (which is attached to an activity in the BPEL process diagram), data is sent to Oracle BAM. The Counter indicates how often a BPEL activity is encountered, and creates a new record in an Oracle BAM data object with time data.

Use the Counter dialog to configure a Counter monitoring object.

[image: Description of bam_mon_countconfig.gif follows]

The Enabled checkbox enables or disables this particular monitoring object. If it is not enabled, the Counter is not evaluated during the BPEL process, therefore no data is sent to Oracle BAM.

To attach a snapshot of a Counter to a BPEL activity, click the Add icon in the Counter dialog. Then select an activity from the list.

[image: Description of bam_mon_countact.gif follows]

Next, choose an evaluation event (an event within the activity), by clicking the browsing icon.

[image: choose evaluation opint]

The Evaluation Event Chooser opens to let you select one or more evaluation events.

[image: event chooser dialog]

When the Counter snapshot configuration is complete, it is displayed as an N icon next to activity in the BPEL process diagram.

[image: Description of bam_mon_counticon.gif follows]

The Counter and its snapshot are represented in the structure pane.

[image: Description of bam_mon_countstruc.gif follows]

50.3.5 How to Configure Intervals

An Interval monitoring object captures the amount of time to go from one activity to another in the BPEL process. The start and end times are captured and sent to an Oracle BAM data object.

Use the Interval dialog to configure an Interval monitoring object.

[image: interval configuration dialog]

The Enabled checkbox enables or disables this particular monitoring object. If it is not enabled, the Interval is not evaluated during the BPEL process, therefore no data is sent to Oracle BAM.

The Start Activity defines the beginning of the Interval. Select a Start Activity from the list, and a single selection in the Evaluation Events list.

End Activity defines the end of the Interval. Select an End Activity from the list, and a single selection in the Evaluation Events list.

You can select Associated Indicators if a Business Indicator has been previously defined in the BPEL process. Selecting an associated indicator automatically provides two snapshots on the selected Business Indicator. This captures the Business Indicator metrics at the start and at the end of the Interval.

	
Note:

If you plan to include an associated indicator snapshot in the Interval, it is not recommended to use the main or receiveInput activities at the Activate evaluation event as the start or end points, because the variables in the XPath expression might not yet be populated.
BPEL activities of type receive, typically named receiveInput, allow the process to wait for a matching message to arrive. The arriving message is copied to a variable specified in the definition of the activity. The copy operation occurs between the activate and complete evaluation events, and not before or on activate. Therefore, caution must be taken when defining monitoring object snapshots on BPEL activities of type receive, especially if the activate evaluation event is chosen.

The Interval is represented in the structure pane.

[image: Description of bam_mon_intstruc.gif follows]

On execution, the Interval start and end times are sent to Oracle BAM as a new record in a data object. See Section 50.3.9, "What You Need To Know About Monitor Express Data Objects" for information about the Oracle BAM data objects.

An empty Interval, one in which the start and end activities and evaluation events are the same, is valid, and it can be used to label Business Indicator snapshots. The Interval can be used to uniquely identify multiple snapshots for a single Business Indicator. Instead of configuring snapshots in the Business Indicator dialog, you can create an empty Interval for each snapshot you want to create for a Business Indicator, and select the Business Indicator's indicator reference in each Interval.

50.3.6 How to Configure Business Indicators

A Business Indicator monitoring object captures a snapshot of BPEL variables, specified by the metrics in the Business Indicator, or evaluates expressions, when the events specified in the Business Indicator are encountered in the BPEL process.

Use the Business Indicator dialog to configure a Business Indicator monitoring object.

[image: business indicator dialog]

The Enabled checkbox enables or disables this particular monitoring object. If it is not enabled, the configured expression in the Business Indicator is not evaluated during the BPEL process, therefore no data is sent to Oracle BAM.

Metrics are defined to evaluate an expression or variable when the events specified in the Business Indicator are encountered in the BPEL process.

Click the green plus icon to configure a metric. Metrics have a name, data type, and XPath expression.

[image: define a metric]

You can enter an expression directly in the XPath field, or click Edit to open the Metric configuration dialog, and click Edit to use the Expression Builder.

[image: Description of bam_mon_metric.gif follows]

Snapshots associate the Business Indicator with activities in the BPEL process. The snapshot tells the BPEL process at what point to evaluate the Business Indicator metrics. To create a snapshot, click the green plus icon.

[image: snapshot activity configuration]

	
Note:

You can use empty Interval monitoring objects to uniquely identify snapshots of a particular Business Indicator. See Section 50.3.5, "How to Configure Intervals" for more information.

Evaluation Events indicate at what point during the activity to evaluate the Business Indicator metrics. Select a Snapshot in the table and click Edit to select one or more evaluation events. You can pick multiple evaluation events within the BPEL activity on which to evaluate the metric.

	
Note:

Configuring a snapshot on the main or receiveInput activities at the Activate evaluation event is not recommended because the variables in the XPath expression might not yet be populated.

When the configuration is saved, a Business Indicator icon is displayed in the top right corner of the associated activity in the BPEL process diagram.

[image: Description of bam_mon_bi_icon.gif follows]

The Business Indicator is also represented in the structure pane with its metrics and snapshots.

[image: Description of bam_mon_bistruc.gif follows]

On execution, when a Business Indicator is encountered in the BPWL process, the metrics are evaluated and results sent to Oracle BAM as new records in a data object. See Section 50.3.9, "What You Need To Know About Monitor Express Data Objects" for information about the Oracle BAM data objects.

50.3.7 How to Add Existing Monitoring Objects to Activities

You can add previously created Counters and Business Indicators to activities in the BPEL process with a shortcut menu provided in the BPEL Designer Monitor view. This creates a new snapshot in the selected Counter or Business Indicator.

To add a monitor to an activity:

	
Right-click the activity to which you want to add the monitor, and select Add.

[image: Description of bam_mon_add.gif follows]

	
Select Counter or Business Indicator.

	
Select one or more monitoring objects in the dialog and click OK. Press Shift-click to select multiple monitoring objects.

[image: select monitors]

	
An icon appears within the activity boundary.

[image: Description of bam_mon_icon.gif follows]

50.3.8 How To Configure BPEL Process Monitors for Deployment

When any BPEL process in the current SOA composite application contains monitoring objects, during the deployment of that composite, Oracle BAM data objects are created in Oracle BAM Server in the location specified in the monitor.config file.

	
Note:

The monitor.config file is created on demand. If there are no monitors configured in the BPEL process, there is no monitor.config file.
The monitor.config file does not appear automatically in Oracle JDeveloper Application Navigator when the first monitor object is created. The user must save all of the files in the project (using Save All), and then refresh the Application Navigator.

Deployment is incremental, meaning that existing data objects are not deleted, and columns are added to data objects when required by the monitoring object configuration. See Section 50.3.9, "What You Need To Know About Monitor Express Data Objects" for details about the data objects.

To configure deployment properties:

In the Application Navigator project folder, open the monitor.config file for editing.

[image: monitor configuration file]

The monitor.config file defines deployment and runtime properties needed to connect with Oracle BAM Server to create and populate the data objects.

	
Caution:

Do not edit the BPELProcess.monitor file. It is an internal file, and it must not be edited manually. It stores the metadata for all of the BPEL process monitors in the specific BPEL process.

The default monitor.config file is shown in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<MonitorConfig>
 <Connection>
 <BAM dataObjectsFolder="/Samples/Monitor Express/"
 adapterConnectionFactoryJNDI="eis/bam/rmi" batch="true"
 deploymentProtocol="http">
 </BAM>
 </Connection>
 <Deployment ignoreErrors="true"/>
</MonitorConfig>

The properties are described in Table 50-1.

Define only one Connection block per BPEL project.

Table 50-1 Monitor Configuration Properties

	Property	Default	Description
	
dataObjectsFolder

	
/Samples/Monitor Express/

	
Path to the location of the data objects for the monitors configured in all of the BPEL process for the SOA composite application. If the directory does not exist, it is created during deployment. The path is relative to the root data object folder in Oracle BAM Server.

Note that there is only one data objects folder per SOA composite application. The application can contain many BPEL processes. All of the data objects associated with all of the BPEL processes in the application are created in this location.

	
adapterConnectionFactoryJNDI

	
eis/bam/rmi

	
Oracle BAM Adapter connection pool configured in Oracle WebLogic Server Administration Console. Oracle BAM Adapter must be configured before deployment and runtime.

When using the RMI protocol, as when Oracle SOA Server and Oracle BAM Server are deployed in separate domains, you must also configure trusted domain credentials for both Oracle SOA Server and Oracle BAM Server domains.

See Section 50.2, "Configuring Oracle BAM Adapter" and Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

	
batch

	
true

	
Indicates that batching using Oracle BAM Adapter is enabled. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for information about batching configuration properties.

	
deploymentProtocol

	
http

	
The only valid value is http.

	
ignoreErrors

	
true

	
If Oracle BAM Server is unreachable or there are any problems with the deployment of the Oracle BAM data objects, and this property is set to true, deployment of the composite does not halt. If set to false and Oracle BAM Server is unavailable, the deployment fails.

This property corresponds to the Ignore BPEL Monitor deployment errors checkbox in the deployment configuration wizard.

50.3.9 What You Need To Know About Monitor Express Data Objects

Oracle BAM data objects are deployed automatically when a SOA composite application containing enabled BPEL process monitors is deployed. Preseeded sample data objects are present in the Samples/Monitor Express/ directory.

You can use these data objects to construct Oracle BAM dashboards. See Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring for information about creating dashboards in Oracle BAM Active Studio.

You can add columns and indexes to the data objects using Oracle BAM Architect. The custom columns and indexes you add in Oracle BAM Architect are preserved when a revised SOA composite application containing changes to BPEL process monitor configuration is deployed. See Chapter 52, "Defining and Managing Oracle BAM Data Objects" for information about adding columns and indexes.

If a data object already exists in the configured location at deployment time, it is used as is, or updated with the appropriate additional columns to accommodate messages from the BPEL process monitors.

Oracle BAM data objects cannot be changed if they are in use. If there are Oracle BAM dashboards open against BPEL process monitor data objects, and the data objects require changes upon deployment, the data object updates fail.

	
Note:

Do not change the existing monitoring data object column names.

Oracle BAM Adapter Configuration

BPEL process monitors use Oracle BAM Adapter to convey messages to Oracle BAM Server. At deployment time, if Oracle BAM Server is unreachable, deployment fails. If Oracle BAM Server is unreachable at runtime, the retry behavior is determined by the Oracle BAM Adapter configuration. See Section 50.2, "Configuring Oracle BAM Adapter" and "Configuring Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

See the following sections for a detailed description of the data objects and troubleshooting information.

	
Section 50.3.9.1, "Understanding the COMPONENT Data Object"

	
Section 50.3.9.2, "Understanding the COUNTER Data Object"

	
Section 50.3.9.3, "Understanding the INTERVAL Data Object"

	
Section 50.3.9.4, "Understanding Business Indicator Data Objects"

	
Section 50.3.9.5, "Troubleshooting"

50.3.9.1 Understanding the COMPONENT Data Object

The COMPONENT data object is the main dimension table. It compiles information about how long a BPEL process instance takes to run, and if it has failed at least once.

This data object is always populated when at least one monitoring object is configured or if you have activity monitoring enabled.

Table 50-2 COMPONENT Data Object Fields

	Column Name	Description
	
COMPOSITE_INSTANCE_ID

	
SCA composite instance ID number.

	
COMPONENT_INSTANCE_ID

	
SCA component instance ID number. For BPEL it is the BPEL instance ID number.

	
DOMAIN_NAME

	
The partition name.

	
COMPOSITE_NAME

	
The name of the SOA composite application.

	
COMPOSITE_REVISION

	
The revision number of the SOA composite application.

	
COMPOSITE_LABEL

	
SOA composite application internal label.

This label is created every time you deploy even if you override the revision ID.

	
COMPONENT_TYPE

	
The component type (BPEL, for a BPEL process, for example).

	
COMPONENT_NAME

	
The component display name (The name of a BPEL process, for example).

	
COMPONENT_START_TIME

	
The date and time that the component started running.

	
COMPONENT_END_TIME

	
The date and time that the component stopped running.

	
COMPONENT_FAULT_FLAG

	
Indicates whether the component has faulted at least once. 1=faulted, 0=no fault.

	
FAULT_NAME

	
Name of the last fault that occurred.

	
COMPONENT_RUNNING_FLAG

	
Indicates whether the component is currently running. 1=the component is running, 0=the component is not running.

	
COMPONENT_RUNNING_TIME_IN_SEC

	
The calculated length of time between COMPONENT_START_TIME and COMPONENT_END_TIME in seconds.

	
COMPONENT_RUNNING_TIME_IN_MIN

	
The calculated length of time between COMPONENT_START_TIME and COMPONENT_END_TIME in minutes.

	
COMPONENT_COMPLETED_NO_FAULT_FLAG

	
Indicates whether the component completed with no faults. 1=completed with no fault, 0=either did not complete yet, or did complete with fault.

	
COMPONENT_INCOMPLETE_FLAG

	
Indicates that the component has not completed, and has faulted at least once. 1=has not completed, and has faulted at least once, 0=otherwise.

50.3.9.2 Understanding the COUNTER Data Object

The COUNTER data object contains data captured by all of the Counter monitoring objects encountered in the BPEL processes.

Table 50-3 COUNTER Data Object Fields

	Column Name	Description
	
COMPOSITE_INSTANCE_ID

	
SCA composite instance ID number.

	
COMPONENT_INSTANCE_ID

	
SCA component instance ID number. For BPEL it is the BPEL instance ID number.

	
DOMAIN_NAME

	
Lookup to DOMAIN_NAME field in COMPONENT data object.

	
COMPOSITE_NAME

	
Lookup to COMPOSITE_NAME field in COMPONENT data object.

	
COMPOSITE_REVISION

	
Lookup to COMPOSITE_REVISION field in COMPONENT data object.

	
COMPOSITE_LABEL

	
Lookup to COMPOSITE_LABEL field in COMPONENT data object.

	
COMPONENT_TYPE

	
Lookup to COMPONENT_TYPE field in COMPONENT data object.

	
COMPONENT_NAME

	
Lookup to COMPONENT_NAME field in COMPONENT data object.

	
COMPONENT_START_TIME

	
Lookup to COMPONENT_START_TIME field in COMPONENT data object.

	
COMPONENT_END_TIME

	
Lookup to COMPONENT_END_TIME field in COMPONENT data object.

	
COMPONENT_FAULT_FLAG

	
Lookup to COMPONENT_FAULT_FLAG field in COMPONENT data object.

	
FAULT_NAME

	
Lookup to FAULT_NAME field in COMPONENT data object.

	
COUNTER_NAME

	
The name of the Counter monitoring object.

	
SUBCOMPONENT_ID

	
An internal value that is used as a key field.

	
SUBCOMPONENT_TYPE

	
Type of the sub-component (sequence indicates a BPEL sequence activity, for example) where the Counter data was captured. The human task type is used for Human Task activities.

	
SUBCOMPONENT_NAME

	
Name of the sub-component (receiveInput, for example) where the Counter data was captured. In BPEL it is the name of the activity.

	
EVALUATION_EVENT

	
The event within the life cycle of the BPEL activity (activate, for example) at which the data is captured.

	
SNAPSHOT_TIME

	
Date and time when the Counter data was captured.

50.3.9.3 Understanding the INTERVAL Data Object

The INTERVAL data object contains data captured by all of the Interval monitoring objects and Activity Monitors configured in the BPEL processes.

Table 50-4 INTERVAL Data Object Fields

	Column Name	Description
	
COMPOSITE_INSTANCE_ID

	
SCA composite instance ID number.

	
COMPONENT_INSTANCE_ID

	
SCA component instance ID number. For BPEL it is the BPEL instance ID number.

	
DOMAIN_NAME

	
Lookup to DOMAIN_NAME field in COMPONENT data object.

	
COMPOSITE_NAME

	
Lookup to COMPOSITE_NAME field in COMPONENT data object.

	
COMPOSITE_REVISION

	
Lookup to COMPOSITE_REVISION field in COMPONENT data object.

	
COMPOSITE_LABEL

	
Lookup to COMPOSITE_LABEL field in COMPONENT data object.

	
COMPONENT_TYPE

	
Lookup to COMPONENT_TYPE field in COMPONENT data object.

	
COMPONENT_NAME

	
Lookup to COMPONENT_NAME field in COMPONENT data object.

	
COMPONENT_START_TIME

	
Lookup to COMPONENT_START_TIME field in COMPONENT data object.

	
COMPONENT_END_TIME

	
Lookup to COMPONENT_END_TIME field in COMPONENT data object.

	
COMPONENT_FAULT_FLAG

	
Lookup to COMPONENT_FAULT_FLAG field in COMPONENT data object.

	
FAULT_NAME

	
Lookup to FAULT_NAME field in COMPONENT data object.

	
INTERVAL_NAME

	
Display name of the Interval monitoring object, or the name of the activity, human task, or scope being monitored by Activity Monitors.

	
INTERVAL_TYPE

	
Indicates the type of BPEL process monitor where the data was captured.

CUSTOM indicates an Interval monitoring object configured with custom start and end times. Interval monitoring objects are described in Section 50.3.5, "How to Configure Intervals."

SUBCOMPONENT indicates an Activity Monitor. Activity Monitors are described in Section 50.3.2, "How to Configure Activity Monitors."

	
INTERVAL_START_TIME

	
Date and time recorded when the Interval or Activity Monitor start activity was encountered.

	
INTERVAL_END_TIME

	
Date and time recorded when the Interval or Activity Monitor end activity was encountered.

	
START_SUBCOMPONENT_ID

	
An internal value that is used as a key field.

	
START_SUBCOMPONENT_TYPE

	
The type of the BPEL process activity being monitored by an interval. The human task type is used for Human Task activities.

	
START_SUBCOMPONENT_NAME

	
The display name of the process activity being monitored by an interval.

	
START_EVALUATION_EVENT

	
The event within the life cycle of the BPEL activity (activate, for example) at which the data is captured.

	
END_SUBCOMPONENT_ID

	
An internal value that is used as a key field.

	
END_SUBCOMPONENT_TYPE

	
The type of the BPEL process activity being monitored by an interval. The human task type is used for Human Task activities.

	
END_SUBCOMPONENT_NAME

	
The display name of the process activity being monitored by an interval.

	
END_EVALUATION_EVENT

	
The event within the life cycle of the BPEL activity (activate, for example) at which the data is captured.

	
SUBCOMPONENT_CREATOR

	
For future use.

	
INTERVAL_RUNNING_FLAG

	
Indicates if the Interval or Activity Monitor end activity is running. 1 indicates that the end activity has not been encountered. 0 indicates otherwise.

	
INTERVAL_RUNNING_TIME_IN_SEC

	
The length of time between the INTERVAL_START_TIME and INTERVAL_END_TIME in seconds.

	
INTERVAL_RUNNING_TIME_IN_MIN

	
The length of time between the INTERVAL_START_TIME and INTERVAL_END_TIME in minutes.

50.3.9.4 Understanding Business Indicator Data Objects

The data objects containing data captured by all of the Business Indicator metrics configured in a BPEL process are named BI_Partition_Name_Composite_Name_BPELPROCESS_Name.

A separate data object is created for each BPEL process in the SOA composite application that contains Business Indicator monitoring objects.

If a Business Indicator is referenced by an Interval monitoring object, some of the data related to the Interval (INTERVAL_NAME, INTERVAL_START_FLAG, and INTERVAL_END_FLAG) is captured in the Business Indicator data object.

	
Note:

If one of the metrics fails at the time of evaluation (snapshot) the data is not sent to Oracle BAM; however, the remaining metrics configured in the Business Indicator are evaluated at the snapshot. If the failed Business Indicator metric is encountered at another snapshot, the BPEL engine attempts to evaluate it.

Table 50-5 Business Indicator Data Object Fields

	Column Name	Description
	
COMPOSITE_INSTANCE_ID

	
SCA composite instance ID number.

	
COMPONENT_INSTANCE_ID

	
SCA component instance ID number. For BPEL it is the BPEL instance ID number.

	
DOMAIN_NAME

	
Lookup to DOMAIN_NAME field in COMPONENT data object.

	
COMPOSITE_NAME

	
Lookup to COMPOSITE_NAME field in COMPONENT data object.

	
COMPOSITE_REVISION

	
Lookup to COMPOSITE_REVISION field in COMPONENT data object.

	
COMPOSITE_LABEL

	
Lookup to COMPOSITE_LABEL field in COMPONENT data object.

	
COMPONENT_TYPE

	
Lookup to COMPONENT_TYPE field in COMPONENT data object.

	
COMPONENT_NAME

	
Lookup to COMPONENT_NAME field in COMPONENT data object.

	
COMPONENT_START_TIME

	
Lookup to COMPONENT_START_TIME field in COMPONENT data object.

	
COMPONENT_END_TIME

	
Lookup to COMPONENT_END_TIME field in COMPONENT data object.

	
COMPONENT_FAULT_FLAG

	
Lookup to COMPONENT_FAULT_FLAG field in COMPONENT data object.

	
FAULT_NAME

	
Lookup to FAULT_NAME field in COMPONENT data object.

	
BI_NAME

	
Name of the Business Indicator.

	
SNAPSHOT_TIME

	
Date and time recorded when the Business Indicator data was captured.

	
SUBCOMPONENT_ID

	
An internal value that is used as a key field.

	
SUBCOMPONENT_TYPE

	
Type of the subcomponent (invoke indicates a BPEL invoke activity, for example) where the Business Indicator data was captured. The human task type is used for Human Task activities.

	
SUBCOMPONENT_NAME

	
Name of the subcomponent (callbackClient, for example) where the Business Indicator data was captured

	
EVALUATION_EVENT

	
The event within the life cycle of the BPEL activity (activate, for example) at which the data is captured.

	
INTERVAL_NAME

	
The name of the Business Indicator-instrumented Interval monitoring object that lead to the Business Indicator data capture.

The field is null if the data was captured within an Activity Monitor.

	
INTERVAL_START_FLAG

	
Indicates whether the data was captured at the Interval start activity. 1=yes, NULL=otherwise.

The field is null if the data was captured within an Activity Monitor.

	
INTERVAL_END_FLAG

	
Indicates whether the data was captured at the Interval end activity. 1=yes, NULL=otherwise.

The field is null if the data was captured within an Activity Monitor.

	
METRIC_NAME

	
Contains the result of the XPath expression evaluated in the NAME metric.

Each METRIC_NAME field is the data type configured in the metric.

The NAME portion of these column names is the display name of the metrics configured in the Business Indicators.

There are as many METRIC_NAME fields as there are metrics configured in the BPEL process.

Metric names must be unique within a BPEL process to avoid name collisions in this data object.

50.3.9.5 Troubleshooting

This section contains Monitor Express troubleshooting information.

50.3.9.5.1 Controlling Oracle BAM Data Object Size

In Oracle BAM Server data objects, older data can be purged with an alert rule, so that the data object does not grow too large.

See Chapter 57, "Creating Oracle BAM Alerts" for general information alerts, and see Section F.3.7, "Delete rows from a Data Object" for information about configuring the delete action.

50.3.9.5.2 Using the Logs

Monitor Express runtime logs messages using the oracle.soa.bpel.engine.sensor logger. For more information, see Configuring Log Files in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

50.3.10 What You Need to Know About Using the Monitor Express Dashboard

Oracle BAM provides a sample dashboard that you can use to monitor your BPEL process out of the box.

The Monitor Express dashboard and data object samples allow users to enable Oracle BAM for your SOA composite applications in relatively few steps from within Oracle JDeveloper. The ready-to-use dashboards provide a single integrated view to track Key Performance Indicators (KPIs) in real-time and promote operational efficiency. The rich user experience for monitoring is delivered by BPEL Monitor instrumentation in Oracle JDeveloper.

The data objects are located in the Samples/Monitors/ data object directory in Oracle BAM Architect, and the sample reports are located in the Shared Reports/Samples/Monitor Express/ folder in Oracle BAM Active Viewer.

If the samples are not installed on your system, the installation script and instructions are located in the SOA_ORACLE_HOME/bam/samples/bam/monitorexpress directory.

50.4 Creating a Design Time Connection to an Oracle BAM Server

You must create a connection to an Oracle BAM Server to browse the available data objects and construct transformations while you are designing your applications in Oracle JDeveloper.

	
Note:

Oracle BAM Server connections should be created in Application Resources, directly, or by copying an existing connection from the Resource Catalog.

50.4.1 How to Create a Connection to an Oracle BAM Server

You create a connection to an Oracle BAM Server to browse data objects available on that server.

To create a connection to an Oracle BAM Server:

	
From the File main menu in Oracle JDeveloper, select New.

The New Gallery dialog box opens.

	
From the General category, choose Connections.

	
From the Items list, select BAM Connection, and click OK.

The BAM Connection wizard opens.

	
Ensure that Application Resources is selected.

	
Provide a name for the connection.

	
Click Next.

	
Enter the connection information about the Oracle BAM Server host described in Table 50-6.

Table 50-6 Oracle BAM Server Connection Information

	Field	Description
	
BAM Web Host

	
Enter the name of the host on which the Oracle BAM Report Server and web applications are installed. In most cases, the Oracle BAM web applications host and Oracle BAM Server host are the same.

	
BAM Server Host

	
Enter the name of the host on which the Oracle BAM Server is installed.

	
User Name

	
Enter the Oracle BAM Server user name.

	
Password

	
Enter the password of the user name.

	
HTTP Port

	
Enter the port number or accept the default value of 9001. This is the HTTP port for the Oracle BAM web applications host.

	
JNDI Port

	
Enter the port number or accept the default value of 9001. The JNDI port is for the Oracle BAM report cache, which is part of the Oracle BAM Server.

	
Use HTTPS

	
Select this checkbox to use secure HTTP (HTTPS) to connect to the Oracle BAM Server during design time. Otherwise, HTTP is used.

	
Click Next.

	
Test the connection by clicking Test Connection. If the connection was successful, the following message appears:

Testing HTTP connection ... success.
Testing Data Object browsing ... success.
Testing JNDI connection ... success.

3 of 3 tests successful.

	
Click Finish.

50.5 Using Oracle BAM Adapter in an SOA Composite Application

The Oracle BAM Adapter is used as a reference that enables the SOA composite application to send data to an Oracle BAM Server external to the SOA composite application.

50.5.1 How to Use Oracle BAM Adapter in an SOA Composite Application

You can add Oracle BAM Adapter references that enable the SOA composite application to send data to Oracle BAM Servers external to the SOA composite application.

To add an Oracle BAM Adapter reference:

	
In the Component Palette, select SOA.

	
Drag the BAM Adapter to the right swim lane.

This launches the Adapter Configuration wizard.

	
In the Service Name page, provide a Service Name and an optional Description.

	
In the Data Object Operation and Keys page,

	
Select a Data Object using the BAM Data Object Chooser dialog box.

When you click Browse the Data Object Chooser dialog box opens allowing you to browse the available Oracle BAM Server connections in the BAM Data Object Explorer tree. Select a data object and click OK.

	
Choose an Operation from the list.

Insert adds a row to the data object.

Upsert inserts new data into an existing row in a data object if the row exists. If the row does not exist a new row is created. You must select a key from the Available column to upsert rows in a data object.

Delete removes a row from the data object. You must select a key from the Available column to delete rows in a data object.

Update inserts new data into an existing row in a data object. You must select a key from the Available column to update rows in a data object.

	
Provide an appropriate display name in the Operation Name field for this operation in your SOA composite application.

	
To select Enable Batching select the checkbox.

The data cached in memory by the Oracle BAM Adapter of the Oracle BPEL Process Manager runtime is flushed (sent) to Oracle BAM Server periodically. The Oracle BAM component may decide to send data before a batch timeout if the cache has some data objects between automatically defined lower and upper limit values.

Batching properties are configured in BAMCommonConfig.xml. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

	
In the JNDI Name page, specify the JNDI Name for the Oracle BAM Server connection.

The JNDI name is configured in the Oracle WebLogic Server Administration Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

	
Click Finish.

50.6 Using Oracle BAM Adapter in a BPEL Process

The Oracle BAM Adapter is used as a partner link in a BPEL process to send data to Oracle BAM as a step in the process.

For more information, see Section 4.3, "Introduction to Partner Links."

50.6.1 How to Use Oracle BAM Adapter in a BPEL Process

You can add the Oracle BAM Adapter to a BPEL process to send data to Oracle BAM as a step in the process. The Oracle BAM Adapter is used as a partner link and connected to an activity in the BPEL process.

To add an Oracle BAM partner link:

	
In the SOA Composite Editor in Oracle JDeveloper, double-click the BPEL process icon to open it in the BPEL Process Designer.

	
In the Component Palette, expand the BPEL Services panel.

	
Drag and drop the Oracle BAM Adapter into the Partner Links swim lane on the right side of the BPEL Process Designer.

	
In the Adapter Configuration wizard, enter a display name in the Service Name field and click Next.

When the wizard completes, a Web Services Description Language (WSDL) file by this name appears in the Application Navigator for the BPEL process or Oracle Mediator message flow. This file includes the adapter configuration settings you specify with this wizard.

	
In the Data Object Operation and Keys page,

	
Select a Data Object using the BAM Data Object Chooser dialog box.

When you click Browse the Data Object Chooser dialog box opens allowing you to browse the available Oracle BAM Server connections in the BAM Data Object Explorer tree. Select a data object and click OK.

	
Choose an Operation from the list.

Insert adds a row to the data object.

Upsert inserts new data into an existing row in a data object if the row exists. If the row does not exist a new row is created.

Delete removes a row from the data object.

Update inserts new data into an existing row in a data object.

	
Provide an appropriate display name in the Operation Name field for this operation in your SOA composite application.

	
To select Enable Batching select the checkbox.

The data cached in memory by the Oracle BAM Adapter of the Oracle BPEL Process Manager runtime is flushed (sent) to Oracle BAM Server periodically. The Oracle BAM component may decide to send data before a batch timeout if the cache has some data objects between automatically defined lower and upper limit values.

Batching properties are configured in BAMCommonConfig.xml. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

	
In the JNDI Name page, specify the JNDI Name for the Oracle BAM Server connection.

The JNDI name is configured in the Oracle WebLogic Server Administration Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

	
Click Finish.

	
Create a new Process Variable in the BPEL process of type Message Type, and browse the Type Chooser dialog box to select the WDSL for the data object you want to write to on the Oracle BAM Server.

For more information about using the Oracle BPEL Process Manager see Chapter 4, "Getting Started with Oracle BPEL Process Manager."

	
In the BPEL Process add an activity that you can use to map the source data to the new variable you created.

	
In the BPEL Process add an Invoke activity to send data to the Oracle BAM Adapter partner link you created. Add the variable you just created as the Input Variable.

	
Save all of the project files.

50.7 Integrating BPEL Sensors Using Oracle BAM Sensor Action

You can create sensor actions in Oracle BPEL Process Manager to publish sensor data into existing data objects on an Oracle BAM Server. When you create the sensor action, you can select an Oracle BPEL Process Manager variable sensor or activity sensor to get the data from and the data object in Oracle BAM Server in which you want to publish the sensor data.

The Oracle BAM Adapter supports batching of operations, but behavior with batching is different from behavior without batching. As the Oracle BAM Adapter is applied to BPEL sensor actions, the Oracle BAM sensor action is not part of the BPEL transaction. When batching is enabled, BPEL does not wait for an Oracle BAM operation to complete. It is an asynchronous call.

When batching is disabled, BPEL waits for the Oracle BAM operation to complete before proceeding with the BPEL process, but it does not roll back or stop when there is an exception from Oracle BAM. The Oracle BAM sensor action logs messages to the same sensor action logger as BPEL. See "Configuring Oracle BAM Batching Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for information about batching behavior.

These instructions assume you have installed and configured Oracle BAM.

	
Notes:

Connection factory configuration must be completed before using Oracle BAM sensor actions. Also, if the Oracle BAM Adapter is using credentials rather than a plain text user name and password, in order for the Oracle BAM Adapter (including Oracle BAM sensor actions used in BPEL) to connect to the Oracle BAM Server the credentials must also be established and mapped. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

50.7.1 How to Create a Sensor

Before you can create an Oracle BAM sensor action, you must first create a sensor in the BPEL process. You must create a sensor before creating a Oracle BAM sensor action.

	
Variable sensor

Restrictions: A Variable sensor's variable must be defined in a standalone XSD. This variable must not be defined inline in the WSDL file. If the variable has message parts, then there must be only one message part.

	
An Activity sensor containing exactly one sensor variable

Restrictions: Because you map the sensor data to a single Oracle BAM Server data object, the Activity sensor must contain only one variable. All of the Variable sensor restrictions also apply.

	
Note:

Any sensor that does not conform to these rules are be filtered from the Oracle BAM sensor action configuration dialog box. Also, if a sensor is created conforming to the restrictions, but the variable is deleted (rendering the sensor invalid), it does not appear in Oracle BAM sensor action configuration dialog box.

For more information about creating sensors, see Section 18.2, "Configuring Sensors and Sensor Actions in Oracle JDeveloper."

50.7.2 How to Create an Oracle BAM Sensor Action

When you create the Oracle BAM sensor action, you select the BPEL variable sensor or activity sensor from which to get data, and you select the data object in Oracle BAM Server to which you want to publish the sensor data.

To create an Oracle BAM sensor action:

	
Go to your BPEL process in Oracle JDeveloper.

	
Select Monitor from the BPEL Designer menu in the upper right corner.

[image: bpel designer menu]

	
In the Structure window, select and right-click Sensor Actions.

[image: structure pane]

If the Structure window is not open, select View > Structure Window to open it.

	
Select Create > BAM Sensor Action.

The Create Sensor Action dialog box appears.

[image: create sensor action dialog]

	
Enter the details described in Table 50-7:

Table 50-7 Create Sensor Action Dialog Box Fields and Values

	Field	Description
	
Action Name

	
Enter a unique and recognizable name for the sensor action.

	
Enable

	
Select this option to enable the sensor action. When disabled no sensor action data is sent to Oracle BAM.

Sensors can be also be disabled using the Oracle Fusion Middleware Control console.

	
Sensor

	
Select a BPEL sensor to monitor. This is the sensor that you created in Section 50.7.1, "How to Create a Sensor" for mapping sensor data to a data object in Oracle BAM Server.

	
Data Object

	
Click the Browse icon to open the BAM Data Object Chooser dialog box to select the data object in Oracle BAM Server in which you want to publish the sensor data.

If you have not created a connection to Oracle BAM Server to select data objects, click the icon in the upper right corner of the BAM Data Object Chooser dialog box.

	
Operation

	
Select to Delete, Update, Insert, or Upsert a row in the Oracle BAM Server database. Upsert first attempts to update a row if it exists. If the row does not exit, it is inserted.

	
Available Keys/Selected Keys

	
If you selected the Delete, Update, or Upsert operation, you must also select a column name in the Oracle BAM Server database to use as a key to determine the row with which this sensor object corresponds. A key can be a single column or a composite key consisting of multiple columns. Select a key and click the > button. To select all, click the >> button.

	
Map File

	
Provide a file name to create a mapping between the sensor data (selected in the Sensor list) and the Oracle BAM Server data object (selected in the Data Object list). You can also invoke a mapper dialog box by clicking the Create Mapping icon (second icon) or Edit Mapping icon (third icon).

	
Filter

	
Enter an XPath expression to filter sensor action data that is sent to Oracle BAM. At runtime the XPath expression entered in the field is evaluated, and it must return true for the sensor action to be fired.

Enter filter logic as a boolean expression. A filter enables you to monitor sensor data within a specific range. For example, you may want to monitor loan requests in which the loan amount is greater that $100,000. In this case, you can enter an expression such as the following:

boolean(/s:actionData/s:payload/s:variableData/s:data/autoloan:loanAmount > 100000)

See Figure 18-9, "Creating a Sensor Action with a Filter" for an example.

	
BAM Connection Factory JNDI

	
Specify the JNDI name for the Oracle BAM Server connection factory.

The JNDI name is configured in the Oracle WebLogic Server Administration Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

	
Enable Batching

	
The data accumulated by the Oracle BAM component of the Oracle BPEL Process Manager runtime is flushed (sent) to Oracle BAM Server periodically. The Oracle BAM component may decide to send data before a batch timeout if the queue has some data objects between automatically defined lower and upper limit values.

If batching is enabled, performance is dramatically improved, but there is no transaction guarantee. The BPEL process continues to run without waiting for the data to get to the Oracle BAM Server.

If batching is not enabled, the BPEL process waits until the Oracle BAM Server confirms that the record operation was completed; however, if there is a failure, the exception from Oracle BAM Server is logged and the BPEL process continues. BPEL does not roll back the operation or stop when there is an exception from Oracle BAM.

See "Configuring Oracle BAM Batching Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for information about batching behavior.

	
WARNING:

If you restart Oracle BPEL Server, any messages currently being batched are lost. Ensure that all messages have completed batching before restarting Oracle BPEL Server.

	
Notes:

After you click the Create Mapping or Edit Mapping, or the OK button on the Create Sensor Action dialog box, you must explicitly save the BPEL file.

	
Click OK to close the Create Sensor Action dialog box.

You must complete the XSLT mapping the sensor action XML schema to the Oracle BAM data object schema.

50.8 Integrating SOA Applications and Oracle BAM Using Enterprise Message

You can use BPEL JMS sensor actions to send data to Oracle BAM from an SOA composite application by way of a JMS topic or queue, using Oracle BAM Enterprise Message Sources.

You can also use the generic JMS adapter at the SOA composite or BPEL level, and Enterprise Message Sources can read that data into Oracle BAM.

See the following documentation for the relevant details:

	
Chapter 53, "Creating Oracle BAM Enterprise Message Sources"

	
Section 18.2, "Configuring Sensors and Sensor Actions in Oracle JDeveloper."

	
"Oracle JCA Adapter for JMS" in Oracle Fusion Middleware User's Guide for Technology Adapters

51 Using Oracle BAM Data Control

Oracle BAM data control is a binding component in the Oracle ADF Model with support for Active Data Services. This chapter provides information about creating and using Oracle BAM data control.

For more comprehensive information about using Oracle ADF Model data binding and Active Data Services, refer to Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

This chapter contains the following topics:

	
Section 51.1, "Introduction to Oracle BAM Data Control"

	
Section 51.2, "Creating Projects That Can Use Oracle BAM Data Controls"

	
Section 51.3, "Creating Oracle BAM Server Connections"

	
Section 51.4, "Exposing Oracle BAM with Oracle ADF Data Controls"

	
Section 51.5, "Creating Oracle BAM Data Control Queries"

	
Section 51.6, "Using Oracle BAM Data Controls in ADF Pages"

	
Section 51.7, "Deploying Applications With Oracle BAM Data Controls"

51.1 Introduction to Oracle BAM Data Control

Oracle BAM data control allows ADF developers to build applications with a dynamic user interface that changes based on real-time business events. Oracle BAM data control is used to bind data from Oracle BAM data objects to databound UI components in an ADF page.

Oracle BAM data control abstracts a query on Oracle BAM data objects using standard metadata interfaces to describe the Oracle BAM data collections. Using JDeveloper, you can view that information as icons which you can drag and drop onto a page. Using those icons, you can create databound UI components (for JSF JSP pages) by dragging and dropping them from the Data Controls panel onto the visual editor for a page. JDeveloper automatically creates the metadata that describes the bindings from the page to the Oracle BAM data objects. At runtime, the ADF Model layer reads the metadata information from appropriate XML files for both the data controls and bindings and implements the connection between your user interface and Oracle BAM data objects. Note that Oracle BAM data control is read-only.

For general information about Oracle ADF data controls, and information about ADS (active data services), see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

51.2 Creating Projects That Can Use Oracle BAM Data Controls

Oracle BAM data control must to be hosted by a valid ADF web application. Also, a limited set of ADF Faces components support active data, therefore a limited set of ADF Faces components can make use of the main functionality of an Oracle BAM data control. Refer to Oracle JDeveloper ADF documentation for information about creating ADF web applications, including a list of components that support active data.

Note that an Oracle BAM data control can still be used by view components that do not support active data.

Oracle BAM data control requires that the project contain the ADF Faces and ADF Page Flow technologies. The Fusion Web Application (ADF) template in JDeveloper contains these technologies.

51.3 Creating Oracle BAM Server Connections

You must create a connection to Oracle BAM to browse the available data objects in JDeveloper. This connection information is automatically used during deployment and runtime. See Section 50.4, "Creating a Design Time Connection to an Oracle BAM Server" for details on creating the connection.

	
Note:

Oracle BAM data control only uses connections that appear in the Application Resources panel. It does not find connections in the Resource Palette. Oracle JDeveloper facilitates copying connections from Resource Palette to the Application Resources panel of your application.

	
Note:

To create an Oracle BAM data control against an SSL-enabled Oracle BAM Server Oracle JDeveloper must be started with the -J-Djavax.net.ssl.trustStore option, which should point to the location of the key store. The connection to Oracle BAM Server cannot be created without this option.
Example:

C:\jdevrc1\jdeveloper\jdev\bin>jdev -J-Djavax.net.ssl.trustStore=C:\jdevrc1\wlserver_10.3\server\lib\DemoTrust.jks

51.3.1 How to Modify Oracle BAM Data Control Connections to Oracle BAM Servers

Each Oracle BAM data control has an associated Oracle BAM connection. When a connection has changed name or has been removed from the application resources, you get an error when you attempt to use any data controls that are associated with the connection. You can do one of the following to resolve the lost connection:

	
Create a new Oracle BAM connection with the same name as the connection that is referred to by the data control. See Section 51.3, "Creating Oracle BAM Server Connections" for more information.

	
Update the current project's DataControls.dcx file with the name of a new or existing Oracle BAM connection. See Section 51.3.1.1, "How to Associate a BAM Data Control with a New Oracle BAM Connection" for more information.

51.3.1.1 How to Associate a BAM Data Control with a New Oracle BAM Connection

To change the Oracle BAM connection associated with a particular data control you must edit the DataControls.dcx file in the current project. Change the connection attribute of the BAMDataControl element with the name of the desired Oracle BAM connection.

To modify the Oracle BAM connection in an Oracle BAM data control:

	
Optionally, create a new Oracle BAM connection in the application.

If you do not already have a BAM connection in the Application Resources that you want to use for this data control, create a new one. See Section 51.3, "Creating Oracle BAM Server Connections" for more information.

	
Locate the DataControls.dcx file in the project, and open it for editing.

The DataControls.dcx file is located in the Application Sources directory under the node named for the project.

[image: datacontrol.dcx file location]

Each project in a ADF application has a DataControl.dcx file associated with it. Each DataControls.dcx file may have one or more data control definitions. If the current project does not contain the definition for the data control you wish to modify, look through the other projects in the current application to locate it.

	
In the Source view, locate the appropriate data control definition, and locate the BAMDataControl element within it.

In the source view find the AdapterDataControl block with the id that matches the display name of your data control.

[image: Description of bam_dc_connection_update2.gif follows]

	
Change the connection attribute to the name of the new Oracle BAM connection.

	
Save and close the DataControls.dcx file.

51.4 Exposing Oracle BAM with Oracle ADF Data Controls

Once you have created your Oracle BAM data objects and established a connection to an Oracle BAM server from JDeveloper, you can use JDeveloper to create data controls that provide the information needed to declaratively bind UI components to those data objects. Data controls consist of a number of XML metadata files that define the capabilities of the service that the bindings can work with at runtime.

See Chapter 52, "Defining and Managing Oracle BAM Data Objects" for information about creating Oracle BAM data objects. For information about creating a connection to your Oracle BAM instance, see Section 51.3, "Creating Oracle BAM Server Connections."

51.4.1 How to Create Oracle BAM Data Controls

You create Oracle BAM data controls from within the Application Navigator of JDeveloper.

To create a data control:

	
In the Application Navigator, Application Resources panel, expand the data object folders in the Oracle BAM Server connection.

	
Right-click the Oracle BAM data object for which you want to create a data control, and select Create Data Control from the context menu.

[image: create data control]

	
Complete the BAM Data Control wizard to create the data control query.

See Section 51.5, "Creating Oracle BAM Data Control Queries" for more information.

51.4.2 What Happens in Your Project When You Create an Oracle BAM Data Control

When you create a data control based on an Oracle BAM data object, the data control contains a representation of a query on all of the selected fields that is constructed based on the groupings, aggregates, filters, parameters, and additional calculated fields that you configure using the BAM Data Control wizard in JDeveloper.

For the data control to work directly with the service and the bindings, JDeveloper creates the following metadata XML files:

	
Data control definition file (DataControls.dcx)

	
Structure definition files for every structured object that this service exposes

	
Design time XML files

JDeveloper also adds the icons to the Data Controls panel that you can use to create data bound UI components.

51.4.2.1 How an Oracle BAM Data Control Appears in the Data Controls Panel

The Data Controls panel lists all the data controls that have been created for the application's business services and exposes all the queries that are available for binding to UI components. The panel is a direct representation of the structure of the data to be returned by the data control. By editing the data control, you can change the elements displayed in the panel.

Figure 51-1 Data Controls Panel in Oracle JDeveloper

[image: data controls panel]

51.5 Creating Oracle BAM Data Control Queries

You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. When you use Oracle BAM data controls to create a UI component, JDeveloper automatically creates the various code and objects needed to bind the component to the data control you selected.

You can create an Oracle BAM data control query using the Oracle BAM Data Control wizard. The wizard lets you choose between creating a flat query or a group query.

The following sections explain how to use each page in the wizard to create your query:

	
Section 51.5.1, "How to Choose a Query Type"

	
Section 51.5.2, "How to Create Parameters"

	
Section 51.5.4, "How to Create Calculated Fields"

	
Section 51.5.5, "How to Select, Organize, and Sort Fields"

	
Section 51.5.6, "How to Create Filters"

	
Section 51.5.7, "How to Select and Organize Groups"

	
Section 51.5.8, "How to Create Aggregates"

51.5.1 How to Choose a Query Type

On the Name page of the Oracle BAM Data Control wizard, in addition to naming the data control and selecting the metadata XML files location, you can choose to create either a flat query or a group query.

In the BAM Data Control Name field, enter a display name for the data control.

In the Directory Name field, enter the directory in which the data control metadata XML files are saved.

The Data Object path displays the location of the data object from which the query is built.

Select Group Query when you want to create groups and aggregates of data to display in trees or charts. The Collapsed checkbox, enabled only when Group Query is selected, makes the structure of the group query flat.

Select Flat Query when you want to show the data in a flat table or list.

[image: wizard name page]

51.5.2 How to Create Parameters

On the Parameters page of the Oracle BAM Data Control wizard you can create parameters that are used to pass values to filters on the Filters page of the wizard. For more information about creating filters see Section 51.5.6, "How to Create Filters."

For information about passing values to parameters, see Section 51.5.3, "How to Pass Values to Parameters."

To create parameters:

	
Click Add to add a parameter.

Click the Add icon above and to the right of the Parameters box.

[image: add a parameter]

	
To rename the parameter enter the text in the Name field.

[image: change the name]

	
Select the data type from the Type list.

[image: select the type]

Table 51-1 Oracle BAM and Java Type Mapping

	Java Type	Oracle BAM Type
	
java.lang.Integer

	
Integer

	
java.lang.String

	
String

	
java.util.Date

	
DateTime, Timestamp

	
java.lang.Boolean

	
Boolean

	
java.lang.BigDecimal

	
Decimal

	
jave.lang.Double

	
Float

	
	
Field*

*The Field parameter type is used in charts for specifying groups at runtime. This parameter type allows the user to choose which field in the data object to group by. See the following topics for more information:

	
Section 51.5.7, "How to Select and Organize Groups"

	
Section 51.5.3, "How to Pass Values to Parameters"

	
To provide a default value for the parameter when loading the data control query, select Enable Default Value and choose a default value.

[image: select a default]

To enter a default value for the parameter, select one of the available defaults, or select the first option and enter a value in the field.

	
ALL returns rows containing all values.

	
NULL returns rows containing null values.

	
BLANK returns rows containing blank string values.

51.5.3 How to Pass Values to Parameters

The operation setParameters appears in the Oracle BAM data control structure every time an Oracle BAM data control query is created with parameters.

[image: setParameters operation]

To pass parameters to an Oracle BAM data control, the setParameters operation must be called in Oracle BAM data control before the query is executed.

One of the many ways that can be done is by using an ADF parameter form. For more information, see Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

51.5.4 How to Create Calculated Fields

Calculated fields allow you to create new columns based on data derived from existing fields without updating the physical data object. Use the Oracle BAM Data Control wizard Calculated Fields page to create them.

To create calculated fields:

	
Click Add to add a calculated field.

Click the Add icon above and to the right of the box.

[image: add calculation]

The new default field name appears in the list of calculations. You can rename it later, after entering a valid expression.

[image: default calculation]

	
To enter an expression, choose an expression from the expressions list, and click Insert Expr.

[image: insert expression]

Complete the expression in the right-hand box, and click Validate to check the syntax of your expression.

[image: expression editor]

There are several preformed expressions available. See Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring for examples and more information about each expression.

	
Click Rename to change the display name of a calculated field.

[image: rename calculation]

	
To use a data object field in a calculation, select the field from the field list, and click Insert Field.

[image: insert field]

51.5.4.1 Creating Groups in Calculated Fields

You can create groups in the calculations page.

To create groups on calculations:

	
Select a calculation in the calculations list.

	
Click Group By.

[image: create a grouping]

	
Choose a field to group by, and click OK.

You can use the up and down arrows to change the group order.

[image: select fields]

51.5.5 How to Select, Organize, and Sort Fields

To deselect all of the fields, uncheck the ALL checkbox, and select individual fields.

The field at the top of the list appears in the left-most column of the final table in the ADF page. To change the order in which the fields appear, select a field and use the blue arrows to move it up or down the list.

To apply sorting on a field, click the sorting type in the Sorting column, and choose a new sorting type from the list.

	
Note:

If you use Active Data, sorting is preserved on Update, Upsert operations, but not on Insert operations.

51.5.6 How to Create Filters

You can apply filters to both Group Query and Flat Query types of Oracle BAM data controls. Add combinations of entries and headers to create complex filter expressions.

51.5.6.1 How to Create Filter Headers

To create a sub-header under an existing header:

	
In the Filters page of the Create BAM Data Control wizard, select a header under which to add the sub-header, and click Add Header.

You can select the main header at the top of the filter expression to create a sub-header under it.

	
To change the operator (default ALL), select the header, and click Edit. For the following operator options, data is returned when:

	
ALL. All of the included entries are true.

	
NONE. None of the included entries are true.

	
AT LEAST ONE. At least one and maybe more of the included entries are true.

	
NOT ALL. Some or none of the included entries are true, but not all of the included entries are true.

	
Select an operator from the Filters list, and click OK.

51.5.6.2 How to Create Filter Entries

To create a filter entry:

	
In the Filters page of the Create BAM Data Control wizard, select a header under which to add the filter entry.

For information about creating headers in the filter expression see Section 51.5.6.1, "How to Create Filter Headers."

	
Click Add Filter Entry.

The Add Filter Entry dialog opens.

	
Choose a field from the Field list.

	
Choose an expression from the Comparison list. Choices include:

	
is equal to returns rows containing an exact value match.

See Section 51.5.6.3, "Entering Comparison Values" for information on configuring comparison values.

	
is not equal to returns rows containing all values except specified value.

	
is less than returns rows containing values less than specified value.

	
is less than or equal to returns rows containing values less than or equal to specified value.

	
is greater than returns rows containing values greater than specified value.

	
is greater than or equal to returns rows containing values greater than or equal to specified value.

	
is like returns rows containing values that match a string pattern. Include an underscore (_) as a wildcard for a single character in a string and a percent symbol (%) as a wildcard for one character or more. Wildcard characters can be combined, for example, %mm _00 would return all columns (35mm 200, 35mm 400, 35mm 800). Do not enter any spaces in the expression since spaces are treated as characters in the data match.

	
is not like returns rows containing values that do not match a string pattern.

	
is null returns rows containing values where the column is null. If you select this comparison, your filter configuration is complete. Click OK to create the filter. For numeric data types, nulls are not returned for filters returning values equal to zero. In other words, zeroes are not treated as null values. A null represents missing data in the field.

	
is not null returns rows containing values where the column is not null. If you select this comparison, your filter configuration is complete. Click OK to create the filter. For numeric data types, nulls are not returned for filters returning values equal to zero. In other words, zeroes are not treated as null values. A null represents missing data in the field.

	
is in list returns rows containing values included in a list. To build a list, click Edit. Type a value in the field and click Add to add it to the list. Add as many values as needed. Click Browse to choose values currently present in the Data Object. Click Remove to remove a value. Click OK to close the dialog.

	
is not in list returns rows containing values not included in the list. To build a list, click Edit. Type a value in the field and click Add to add it to the list. Add as many values as needed. Click Browse to choose values currently present in the Data Object. Click Remove to remove a value. Click OK to close the dialog.

	
is within a time interval returns rows containing values that occur within the specified time interval. Configure the time interval using the provided lists. Select a Type, enter a multiplier in the field and select a Unit.

When filtering on a datetime or timestamp field, you can enable Active Now to keep the displayed time interval current as time passes. Configure the Active Now Interval to specify how often to refresh the display. See Section 51.5.6.4, "Using Active Now" for more information.

	
is within the current time period returns rows containing values that occur within the current specified time unit. Select a Unit from the list.

When filtering on a datetime or timestamp field, you can enable Active Now to keep the displayed time period current as time passes. See Section 51.5.6.4, "Using Active Now" for more information.

	
is within a time period returns rows containing values that occur within the specified time period. Configure the time period using the provided lists. Enter a value in the Offset field, select a Unit, and select a Type.

When filtering on a datetime or timestamp field, you can enable Active Now to keep the displayed time period current as time passes. See Section 51.5.6.4, "Using Active Now" for more information.

	
Click OK to add the entry to the filter expression.

51.5.6.3 Entering Comparison Values

For most Comparison values you must choose Value, Field, or Calculation from the Value list.

Only the following comparisons do not require a comparison value:

	
is null

	
is not null

	
is in list

	
is not in list

	
is within a time in interval

	
is within the current time period

	
is within a time period

51.5.6.3.1 Comparison With a Value

If you select Value, do one of the following:

	
Click Browse to see a list of values present in the data object. Select a value from the list. Up to 50 values display in the list. The field can be left blank to create a filter on a blank string.

	
Note:

If there are more than 50 values in the field, not all of the values are shown in the Browse list. Your Oracle Business Activity Monitoring administrator can configure the number of rows to display in the list. See the Oracle Business Activity Monitoring Installation Guide for more information.

	
Manually enter a value in the field.

51.5.6.3.2 Comparison With a Calculation

If you select Calculation, enter an expression in the field to compare with the first field.

For example, if you create a list view using the sample Call Center data object and create a filter with the following attributes:

	
Field. Total

	
Comparison. is equal to

	
Value. Calculation

	
Calculation field. Quantity*2

This filter yields only those rows where the value in the Total column is equal to twice the value in the Quantity column.

51.5.6.3.3 Comparison With a Field

If you select Field, select a field from the last list to compare with the field selected in the Field list.

51.5.6.3.4 Comparison with a Parameter

If you select Parameter, select a parameter from the list at the right. Creating a filter using a parameter allows the user to change the filter values at runtime.

The list contains the parameters you created in the Parameters step of the Create Oracle BAM Data Control wizard. For more information about creating parameters see Section 51.5.2, "How to Create Parameters."

51.5.6.4 Using Active Now

The Active Now feature in data filtering enables you to display in your views a segment of the data that is always within a defined time window. As time passes, the view is updated with the data within the defined time interval in the filter. Older data is removed from the view and newer data is added as time passes.

Active Now is available when you choose one of the following comparison expressions:

	
is within a time interval

	
is within the current time period

	
is within a time period

Active Now behaves differently depending on which comparison expression you choose.

When you choose is within a time interval, you can control how often the data is refreshed using the Active Now Interval setting.

For example, if you create a filter using is within a time interval, previous type, 1, Hours unit, and Active Now, set the Active Now Interval to 60 seconds, and the current time is 3:25 p.m., data from 2:25 p.m. - 3:25 p.m. is displayed in the view. When the current time changes to 3:26 p.m., data from 2:26 p.m. - 3:26 p.m. is displayed in the view. Every 60 seconds the oldest minute of data is removed from the view and the newest minute is added.

When you choose is within the current time period or is within a time period, the data is refreshed when the time period changes.

For example, when you create a filter using is within the current time period, the Hours unit, and Active Now, and the current time is 3:25 p.m., only data from 3:00 p.m. - 3:59 p.m. is displayed in the view until the current time is 4:00 p.m. At 4:00 p.m. all the data from 3:00 p.m. - 3:59 p.m. is removed from the view, and data that accumulates during the 4:00 p.m. - 4:59 p.m. time interval is displayed in the view.

51.5.7 How to Select and Organize Groups

To specify a group:

	
In the Groups page of the Create BAM Data Control wizard, select one or more fields in the Group Fields list.

If you created a Field parameter, it appears in the list. See Section 51.5.2, "How to Create Parameters" for more information about creating field parameters.

To group by numeric fields, first select Show Numeric Fields at the bottom of the list.

	
To change the display order in which the groups are presented in a graph, select a sorting option from the Sorting list for any selected field.

	
If a datetime field is selected in the Fields list, several options are enabled for configuring Time Groups on the right side of the wizard page.

See Section 51.5.7.1, "How to Configure Time Groups and Time Series" for more information.

51.5.7.1 How to Configure Time Groups and Time Series

You can create a chart where the grouping (x axis) is based on a datetime field.

To configure time groups:

	
In the Groups page of the Create BAM Data Control wizard, select a single field of type datetime in the Group Fields list.

This action enables the Time Groups options on the right side of the wizard page.

	
Select Continuous Time Series to display empty groups for time intervals where no data is available.

There may be time gaps where the data object did not have entries. The Continuous Time Series feature adds groups to the result whose values are zero, so that when the results are shown on the graph, the x axis represents a smooth time series.

Continuous Time Series is valid only if you have chosen a single datetime field to group by. Continuous Time Series is not supported if any additional group fields are selected.

	
Select either Use Time Series or Use Time Groups.

	
Use Time Series displays the data from the first datetime data point available in the data object to the last in the configured time interval.

	
Use Time Groups displays data grouped into a set number of time intervals. For example, if you select Month from the time unit list, all data from January from all years where data is available are grouped in one data point on the chart.

	
Select a time unit from the list.

If you selected Use Time Groups, the groups are described in the following list.

	
Year displays groups for all of the years where data is available.

	
Quarter displays four groups representing the quarters of a year (January-March, April-June, July-September, and October-December).

	
Month displays twelve groups representing the months of the year.

	
Week displays 52 groups representing the weeks in a year.

	
Day of Year displays groups representing the 365 possible days in a year.

	
Day of Month displays 31 groups representing the possible days of a month.

	
Day of Week displays seven groups representing the days of the week.

	
Hour displays 24 groups representing the hours of a day.

	
Minute displays 60 groups representing the minutes in an hour.

	
Second displays 60 groups representing the seconds in a minute.

	
Enter a quantity of the time unit to group by. For example, entering a 2 next to the Month time unit displays the groups in two month increments (January and February are grouped as one data point on the chart).

	
Click Next or Finish.

51.5.8 How to Create Aggregates

To specify an aggregate on a field:

	
In the Aggregates page of the Create BAM Data Control wizard, select a field in the Fields list.

The valid Summary Functions for the data type of that field are enabled.

	
Select one or more valid Summary Functions.

The expressions appear in the Summary Values list.

51.5.9 How to Modify the Query

To edit the Oracle BAM data control query, right click the data control node, and select Edit Definition. The Edit BAM Data Control wizard opens and you can jump to any page to edit that part of the query.

51.6 Using Oracle BAM Data Controls in ADF Pages

Oracle BAM data controls can be used in all ADF Faces components. Only a subset of ADF Faces components are ADS (active data service) capable. Refer to Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for information about ADF Faces components that support ADS.

Oracle BAM data control instances use the resources of the Oracle BAM Server instance they are connected to. Those resources are released when the data control is released. In order to release those resources in a timely fashion it is required that you use Oracle BAM data controls within bounded ADF task flows with Data Control Scope set to isolated. It is recommended that you set the session time out in web.xml to a reasonable value so that resources are released in a timely way. Refer to Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for information about the general life cycle of data controls.

	
Note:

Oracle BAM data control instance sharing is not supported. When two or more ADF Faces components must display the same data, and are bound to the same Oracle BAM data control definition, make sure to wrap each ADF Faces component in a bounded ADF task flow, and set the Data Control Scope to isolated. See Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for more information.
When using an Oracle BAM data control with setParamters inside the task flow, you must pass the parameter to the task flow and ensure that the method gets called before the query call.

51.6.1 How to Use an Oracle BAM Data Control in a JSF Page

To use an Oracle BAM data control in a JSF page:

	
Set the default browser:

	
In the JDeveloper Tools menu, select Preferences.

	
In the Preferences dialog, select Web Browser and Proxy.

	
Choose a default browser by entering the path to the browser's executable in the Browser Command Line field, enter any applicable proxy information, and click OK.

	
Create a bounded ADF Task Flow:

	
Right click project, select New, select JSF under the Web Tier category, and select ADF Task Flow in Items list.

	
Make sure the Create as Bounded Task Flow option is checked.

	
Drag and drop View from Components in the Component Palette to the ADF Task Flow editor.

	
Drag and drop data-control-scope under Source Elements in the Component Palette to the ADF Task Flow editor.

	
Change the Data Control Scope to isolated in the Property Inspector.

	
Create a JSF Page Fragment by double-clicking in the View you previously dropped in the ADF Task Flow editor.

	
Drag and drop an accessor node from the Data Controls panel to the JSF page editor.

	
Select a data visualization component.

A subset of ADF components support active data. See the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for more information about binding data controls with data visualization components.

	
Save all, and in the Oracle JDeveloper toolbar, click Run Project.

51.7 Deploying Applications With Oracle BAM Data Controls

At runtime, Oracle BAM data control must use the Oracle BAM connection to connect to Oracle BAM Server.

Deployment to the Integrated WebLogic Server is automatic; however, deployment to a standalone Oracle WebLogic Server requires some extra steps. See Section 51.7.1, "How to Deploy to Oracle WebLogic Server in Development Mode," and Section 51.7.2, "How to Deploy to a Production Mode Oracle WebLogic Server," for more information

See Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for more information about deploying Fusion Web applications.

51.7.1 How to Deploy to Oracle WebLogic Server in Development Mode

Before deployment to a development-mode Oracle WebLogic Server, verify that the Java system property jps.app.credential.overwrite.allowed to true during Oracle WebLogic Server startup.

Add the following to the JAVA_PROPERTIES entry in the ORACLE_HOME/user_projects/domains/domain/bin/setDomainEnv.sh file:

-Djps.app.credential.overwrite.allowed=true

Post-deployment configuration is not required.

51.7.2 How to Deploy to a Production Mode Oracle WebLogic Server

Before and after deploying an ADF application with Oracle BAM data controls to a production-mode Oracle WebLogic Server you must do the following steps:

	
The application must be deployed using MDS (Metadata Data Services). To enable MDS:

	
Create and/or register your MDS Repository.

	
Edit the adf-config.xml file to add the following block:

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <persistence-config>
 <metadata-store-usages>
 <metadata-store-usage default-cust-store="true" deploy-target="true" id="myRepos">
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
</adf-mds-config>

	
Deploy the application to Oracle WebLogic Server after choosing the appropriate repository during deployment from the MDS Repository dialog that opens.

	
After deployment, the Oracle BAM connection must be recreated in Oracle Fusion Middleware Control Console.

Go to the ADF Connections Configuration page, and create a BAM connection.

	
Open the Oracle Enterprise Manager Fusion Middleware Control Console (http://host:port_number/em).

	
In the left pane select Deployments, then select your application.

	
In the right pane, select Application Deployment and select ADF -> Configure ADF Connections in the menu.

	
Select BAM in the Connection Type list.

	
Enter the Connection Type to be the same as the one defined in Oracle JDeveloper.

	
Select Create Connection to add a new row under BAM Connections.

	
Select the new connection and click the Edit icon, specify the appropriate values for all connection parameters in the dialog, and click OK.

[image: Description of bam_em_adf_conn.gif follows]

The Oracle BAM Web Tier is the location where report server is running. The valid values for BAM Webtier Protocol are http and https.

You must enter the same Connection Name as the Oracle BAM connection that was configured for design time (see Section 50.4, "Creating a Design Time Connection to an Oracle BAM Server").

	
Click Apply, restart the server, and run the application.

52 Defining and Managing Oracle BAM Data Objects

This chapter contains the information needed to create and manage data objects, including assigning permissions, managing folders, creating security filters, and adding dimensions and hierarchies.

This chapter includes the following sections:

	
Section 52.1, "Introduction to Oracle BAM Data Objects"

	
Section 52.2, "Defining Data Objects"

	
Section 52.3, "Creating Permissions on Data Objects"

	
Section 52.4, "Viewing Existing Data Objects"

	
Section 52.5, "Using Data Object Folders"

	
Section 52.6, "Creating Security Filters"

	
Section 52.7, "Creating Dimensions"

	
Section 52.8, "Renaming and Moving Data Objects"

	
Section 52.9, "Creating Indexes"

	
Section 52.10, "Clearing Data Objects"

	
Section 52.11, "Deleting Data Objects"

52.1 Introduction to Oracle BAM Data Objects

Data objects are tables that store raw data in the database. Each data object has a specific layout which can be a combination of data fields, lookup fields, and calculated fields.

The data objects are used to create reports in Oracle BAM Active Studio, active data visualization components in ADF applications, among other uses. For more information about how data objects are used see "Creating and Managing Reports" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring and Chapter 51, "Using Oracle BAM Data Control."

The data objects you define are based on the types of data available from Enterprise Message Sources (EMS) that you can define in Oracle BAM Architect. You must define columns in the data object. The data object contains no data when you create it. You must load or stream data into data objects using the technologies discussed in the following topics:

	
Chapter 50, "Integrating Oracle BAM with SOA Composite Applications"

	
Chapter 53, "Creating Oracle BAM Enterprise Message Sources"

	
Chapter 54, "Using Oracle Data Integrator With Oracle BAM"

	
Chapter 55, "Creating External Data Sources"

	
Chapter 56, "Using Oracle BAM Web Services"

Data objects can also be accessed and updated by Oracle BAM alerts. See Chapter 57, "Creating Oracle BAM Alerts" for more information.

	
WARNING:

Do not read or manipulate data directly in the database. All access to data must be done using Oracle BAM Architect or the Oracle BAM Active Data Cache API.

52.2 Defining Data Objects

Data objects are defined using Oracle BAM Architect.

52.2.1 How to Define a Data Object

To define a data object:

	
Select Data Objects from the Oracle BAM Architect function list.

	
Click Create Data Object.

	
Enter a name for the data object.

	
Caution:

A single or double quotation mark in an Oracle BAM object name, such as a data object, report, or enterprise message source name, causes a runtime error.
Do not include single or double quotation marks in an Oracle BAM object name.

	
Enter the path to the location in the folder tree in which to store the data object. Click Browse to use the Select a Folder dialog.

	
Optionally, enter a description of the data object.

	
If this data object is loaded from an External Data Source (EDS) select the External Data Source checkbox and configure the following:

	
Select an External Data Source from the list. EDS definitions are configured on the External Data Sources screen. See Chapter 55, "Creating External Data Sources" for more information.

	
Select the External Table Name.

	
Note:

Only the tables that belong to the user are shown when a data object is created on an EDS.
Creating a data object with multiple time stamp fields on an EDS is not supported.

	
Add columns to the data object using the Add a field or Add one or more lookup fields options.

See Section 52.2.2, "How to Add Columns to a Data Object" and Section 52.2.3, "How to Add Lookup Columns to a Data Object" for more information.

	
Click Create Data Object when you are finished adding columns or lookup columns.

52.2.2 How to Add Columns to a Data Object

To add columns to a data object:

	
In a data object you are creating or editing, click Add a field.

	
Specify the column name, data type, maximum size (scale for decimal columns), whether it is nullable, whether it is public, and tip text.

If you are adding a column in a data object based on an External Data Source you must also supply the External field name.

The data types include:

	
String. Text columns containing a sequence of characters.

A string with a max size greater than 0 and less than or equal to 2000 becomes an Oracle database data type VARCHAR field. If the max size is less than zero or greater than 2000 the string field is stored as a CLOB. To get a CLOB field, just define a string field with a max size greater than 2000.

	
Integer. Numeric columns containing whole numbers from -2,147,483,648 to 2,147,483,648.

	
Float. Double-precision floating point numbers.

The Oracle BAM Float type does not map to the Oracle database Float type. Oracle BAM Float truncates numeric data that has very high precision. If you do not want to see loss of precision use the Oracle BAM Decimal type (NUMBER in Oracle database) with the scale you want.

	
Decimal. Numbers including decimal points with scale number defined. The number is stored as a string which uses a character for each digit in the value.

The Oracle BAM Decimal data type is stored as a NUMBER (38, X) in the Oracle database. The first argument, 38, is the precision, and this is hard-coded. The second argument, X, is the scale, and you can adjust this value. The scale value cannot be greater than 38.

	
Boolean. Boolean columns with true or false values.

	
Auto-incrementing integer. Automatically incremented integer column.

	
DateTime. Dates and times combined as a real number.

	
Timestamp. Date time stamp generated to milliseconds. A data object can contain only one time stamp field. See Section 52.2.5, "How to Add Time Stamp Columns to a Data Object" for more information.

A DateTime field is stored as an Oracle database data type DATE. A Timestamp field is stored as an Oracle database data type TIMESTAMP(6). Depending on how the Timestamp field is populated, Oracle BAM may fill in the time stamp value for you. For instance, in Oracle BAM Architect you cannot specify the value for Timestamp when adding a row, but if the value for Timestamp is specified in an ICommand import file, the specified value is added as the value of Timestamp instead of the current time.

	
Calculated. Calculated columns are generated by an expression and saved as another data type. See Section 52.2.4, "How to Add Calculated Columns to a Data Object" for more information.

Keep adding columns using Add a field and Add one or more lookup fields until all the required columns are listed. Click Remove to remove a column in the data object.

	
Click Save changes.

52.2.3 How to Add Lookup Columns to a Data Object

You can add lookup columns to a data object. This performs lookups on key columns in a specified data object to return columns to the current data object. You can match multiple columns and return multiple lookup columns.

To add a lookup column to a data object:

	
In a data object you are creating or editing, click Add one or more lookup fields.

The Define Lookup Field dialog opens.

	
Select the data object to use for the lookup.

	
Select the lookup columns from the data object. You can select one or more columns by holding down the Shift or Control key when selecting. Selecting multiple columns creates multiple lookup columns in the data object. These are the columns you want to return.

	
Select the column to match from the lookup data object.

	
Select the column to match from the current data object. You must have previously created other columns in this data object so that you have a column to select.

	
Click Add.

The matched column names are displayed in the list. You can click Remove to remove any matched pairs you create.

	
You can repeat steps 4 through 6 to create multiple matched columns. This is also known as a composite key.

	
Click OK to save your changes and close the dialog.

The new lookup columns are added to the data object. Click Modify Lookup Field in Layout > Edit Layout page to make changes to a lookup column. Multiple selection of return columns is possible when defining a new lookup but not when modifying an existing one.

You can click Remove to remove any lookups you create.

	
Note:

Oracle Business Activity Monitoring supports two types of schema models: unrelated tables or star schemas. Any other kind of schema that does not conform to these models may result in performance issues or deadlocks. Snowflake dimensions (daisy-chained lookups) are not supported.
Supported:

Table 1 (with no lookups to any other tables)
Table 1 > Lookup > Table 2

Not supported:

Table 1 > Lookup > Table 2 > Lookup > Table 3

52.2.4 How to Add Calculated Columns to a Data Object

When creating calculated columns in a data object you can use operators and expression functions, combined with column names, to produce a new column.

Table 52-1 Describes the operators you can use to build calculated columns.

The Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring provides the syntax and examples for expressions you can use in a calculated column.

Table 52-1 Operators Used in Calculated Columns

	Operator	Function
	
+ (plus sign)

	
Add

	
- (minus sign)

	
Subtract

	
* (asterisk)

	
Multiply

	
/ (slash)

	
Divide

	
% (percent sign)

	
Modulus

	
() (parentheses)

	
Parentheses determine the order of operations

	
&& (double ampersand)

	
Logical AND

	
!= (exclamation point and equal sign)

	
Logical NOT

	
|| (double pipe)

	
Logical OR

For example

if ((CallbackClientTime == NULL) ||
(ReceiveInputTime == NULL)) then (-1) else
(CallbackClientTime-ReceiveInputTime)

	
== (double equal sign)

	
Equality

	
= (equal sign)

	
Assignment

Column names containing any special characters, such as the operators listed in Table 52-1 double quotation marks, or spaces, must be surrounded with curly braces {}. If column names contain only numbers, letters and underscores and begin with a letter or underscore they do not need curly braces. For example, if the column name is Sales+Costs, the correct way to enter this in a calculation is {Sales+Costs}.

Double quotation marks must be escaped with another set of double quotation marks if used inside double quotation marks. For example, Length("""Hello World, "" I said").

	
WARNING:

If you enter a calculated column with incorrect syntax in a data object, you could lose the data object definition.

52.2.5 How to Add Time Stamp Columns to a Data Object

You can create a date time stamp column generated to milliseconds by selecting the Timestamp data type. This column in the data object must be empty when the data object is populated by the Oracle BAM ADC so that the time stamp data can be created.

52.2.6 What You May Need to Know About System Data Objects

The System data objects folder contains data objects used to run Oracle Business Activity Monitoring. You should not make any changes to these data objects, except for the following:

	
Custom Parameters lets you define global parameters for Action Buttons.

	
Action Form Templates lets you define HTML forms for Action Form views.

	
Chart Themes lets you add or change color themes for view formatting.

	
Matrix Themes lets you add or change color themes for the Matrix view.

	
Util Templates lets you define templates that are used by Action Form views to transform content.

For more information about matrix and color themes, Action Buttons, and Action Forms see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.

52.2.7 What You May Need to Know About Oracle Data Integrator Data Objects

If you install the integration files for Oracle BAM and Oracle Data Integrator, three data objects are created in Oracle BAM Architect: Context, Scenarios and Variables in the /System/ODI/ folder. These data objects should not be deleted from Oracle BAM Architect, and their configuration should not be changed.

52.3 Creating Permissions on Data Objects

You can add permissions for users and groups on data objects. When users have at least a read permissions on a data object they can choose the data object when creating reports.

52.3.1 How to Create Permissions on a Data Object

To add permissions on a data object:

	
Select Data Objects from the Oracle BAM Architect function list.

	
Select the data object.

The general information for the data object is displayed in the right frame.

	
Click Permissions.

	
Click Edit Permissions.

Alternatively you can copy permissions from another data object. See Section 52.3.3, "How to Copy Permissions from Other Data Objects" for more information.

	
Click the Restrict access to Data Object to certain users or groups checkbox.

The list of users and groups and permissions is displayed.

	
You can choose to display the following by choosing an option:

	
Show all users and groups

	
Show only users and groups with permissions

	
Show users only

	
Show groups only

	
You can set permissions for the entire list by clicking the buttons at the top of the list.

The permissions are Read, Update, and Delete. You can set permissions for individual users or groups in the list by clicking the checkbox in the permission column that is next to the user or group name.

	
Note:

Delete and Update permissions are not effective unless a user is also granted the Read permission.

Members of the Administrator role have all permissions to all data objects, and their permissions cannot be edited.

	
After indicating the permissions with selected checkboxes, click Save changes.

A message is displayed to confirm that your changes are saved.

	
Click Continue to display the actions for the data object.

52.3.2 How to Add a Group of Users

Users assigned to the Administrator role have access to all data objects. The Administrator role overrides the data object permissions.

To add a group to the list:

	
Click Add a group to the list.

	
Type the Windows group name in the field. The group must previously exist as a domain group.

	
Click OK.

The group is added to the list.

52.3.3 How to Copy Permissions from Other Data Objects

You can copy the permissions from another data object and then make additional changes to the permissions before saving.

In Oracle BAM Architect for a data object, click Permissions and then click Copy from. Select the data object that contains the permissions to copy and click OK. You can edit the copied permissions and click Save changes.

To copy permissions from another data object:

	
Select Data Objects from the Oracle BAM Architect function list.

	
Click the data object to add a security filter to.

The general information for the data object is displayed in the right frame.

	
Click Permissions.

	
Click Copy from.

The Choose Data Object dialog opens.

	
Select the data object that contains the permissions to copy and click OK.

	
If the data object previously had no permissions assigned, select the Restrict access to Data Object checkbox.

	
You can edit the copied permissions or add a group to the list.

	
Click Save changes.

52.4 Viewing Existing Data Objects

This section describes how to view information about data objects.

52.4.1 How to View Data Object General Information

The general information of a data object displays the owner, when it was created, when it was last modified, and the row count.

To view the general information of a data object:

	
Click the data object in the list.

If you are currently viewing the layout or contents of a data object, click General.

The general information is displayed in the right frame. It contains the following information:

	
Created. Date and time the data object was created.

	
Last modified. Date and time the data object was last modified.

	
Row count. Number of rows of data in the data object.

	
Location. Location of the data object.

	
Type. Type of the data object.

	
Data Object ID. The ID used to identify the data object. This is based on the name although the ID is used throughout the system so that you can edit the name without affecting any dependencies.

	
Note:

If the row count is over 500,000 rows, an approximate row count is displayed in the General information for increased performance purposes. The approximate row count is accurate within 5-10% of the actual count. If you want to view an exact row count instead of the approximation, click Show exact count. The exact count is displayed. This could take a few minutes if the data object has millions of rows.

52.4.2 How to View Data Object Layouts

The layout describes the columns in a data object. The columns are described by name, column ID, data type, maximum length allowed, scale, nullable, public, calculated, text tip, and lookup.

To view the layout of a data object:

	
Select the data object.

	
The general information is displayed in the right frame.

	
Click Layout.

The layout information is displayed in the right frame. It contains the following information:

	
Field name. Name of the column.

	
Field ID. Generated by the system.

	
External name. External column name from the External Data Source (only appears in data objects based on External Data Sources).

	
Field type. Data type of the column.

	
Max length. Maximum number of characters allowed in column value.

	
Scale. Number of digits on the right side of the decimal point.

	
Nullable. Whether the data type can contain null values.

	
Public. This setting determines if the column is available in Oracle BAM Active Studio to use in a report. If the box is unchecked, the column does not appear in Oracle BAM Active Studio. This is useful for including columns for calculations in data objects that should not appear in reports.

	
Lookup. Displays specifics of a lookup column.

	
Calculated. Displays the expression of a calculated column.

	
Tip Text. Helpful information about the column.

52.4.3 How to View Data Object Contents

You can view the rows of data stored in a data object by viewing the data object contents. You can also edit the contents of the data object.

To view the contents of a data object:

	
Select the data object.

The general information is displayed in the right frame.

	
Click Contents.

The first 100 rows of the data object display in the right frame.

(To change this default, update the Architect_Content_PageSize property. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for information.)

Oracle BAM Architect displays the total number of rows in the data object and the number of rows that are available for viewing. For better server performance, the number of rows shown in Oracle BAM Architect is limited by configuration properties.

When internal data objects are displayed in No row number mode (default), you can view all of the records in the data object using the navigation tools.

When internal data objects are displayed in Show row numbers mode, you can view a limited number of records. This number is 64000 by default, and can be changed by modifying the ADCMaxViewsetRowCount property in BAMServerConfig.xml.

When external data objects are displayed in either mode, you can view a limited number of records. This number is 64000 by default, and can be changed by modifying the Import_Maxsize property in BAMServerConfig.xml.

	
Click Next, Previous, First, and Last to go to other sets of rows.

Rows are listed with a Row ID column. Displaying only Row ID provides faster paging for large data objects. Row IDs are assigned one time in each row and maintain a continuous row count when you clear and reload a data object.

You can click Show row numbers to display an additional column containing a current row count starting at 1. Click No row numbers to hide the row count column again.

	
Click Refresh to get the latest available contents.

52.5 Using Data Object Folders

You can organize data objects by creating folders and subfolders for them. When you create a folder for data objects, you can assign permissions by associating users and actions with the folder.

52.5.1 How to Create Folders

You can create new folders for organizing data objects. Then you can move or create data objects into separate folders for different purposes or users. After creating folders, you can set folder permissions to limit which users can view the data objects it contains.

To create a new folder:

	
Select Data Objects from the Oracle BAM Architect function list.

The current data object folders display in a tree hierarchy.

	
Click Create subfolder.

A field for naming the new folder is displayed.

	
Enter a name for the folder and click Create folder.

The folder is created as a subfolder under the Data Objects folder and a message is displayed confirming that the new folder was created.

	
Click Continue to view the folder.

52.5.2 How to Open Folders

To open a folder:

	
Expand the tree of folders by clicking the + (plus sign) next to the Data Objects folder.

The System subfolders contain data objects for running Oracle Business Activity Monitoring. For more information about these data objects see Section 52.2.6, "What You May Need to Know About System Data Objects."

	
Click the link next to a folder to open it.

The folder is opened, and the data objects in the folder are shown in the list underneath the folder tree. The general properties for the folder display in the right frame and the following links apply to the current folder:

View. Displays the general properties of this folder such as name, date created, date last modified, user who last modified it. View is selected when you first click a folder.

Create subfolder. Creates another folder within the selected folder.

Delete. Removes the selected folder and all the data objects it contains.

Rename. Changes the folder name.

Move. Moves this folder to a new location, for example, as a subfolder under another folder.

Permissions. Sets permissions on this folder.

Create Data Object. Creates a data object in this folder.

52.5.3 How to Set Folder Permissions

When you create a folder, you can set permissions on it so that other users can access the data objects contained in the folder.

To set permissions on a folder:

	
In the Data Objects folder, select the folder to change permissions on.

	
Click Permissions.

	
Click Edit permissions.

	
Select the Restrict access to Data Object to certain users or groups checkbox.

The list of users and groups and permissions is displayed.

	
You can choose to display the following by selecting an option:

	
Show all users and groups

	
Show only users and groups with permissions

	
Show users only

	
Show groups only

	
You can set permissions for the entire list by clicking the column headers at the top of the list.

The permissions are Read, Update, and Delete. You can set permissions for individual users or groups in the list by selecting the checkbox in the permission column that is next to the user or group name.

	
Note:

Delete and Update permissions are not effective unless a user is also granted the Read permission.

	
After indicating the permissions with selected checkboxes, click Save changes.

A message is displayed to confirm that your changes are saved.

	
Click Continue to display the actions for the data object.

To add a group to the list:

	
Click the Add a group to the list link.

	
Type the Windows group name in the field. The group must previously exist as a domain group.

	
Click OK.

The group is added to the list.

52.5.4 How to Move Folders

To move a folder:

	
Select the folder to move.

	
Click Move.

	
Click Browse to select the new location for the folder.

	
Click OK to close the dialog.

	
Click Move folder.

The folder is moved.

	
Click Continue.

52.5.5 How to Rename Folders

To rename a folder:

	
Select the folder to rename.

	
Click Rename.

	
Enter a new name and click Rename folder.

The folder is renamed. You must assign unique folder names within a containing folder.

	
Click Continue.

52.5.6 How to Delete Folders

When you delete a folder, you also delete all of the data objects in the folder.

To delete a folder:

	
Select the folder to delete.

	
Click Delete.

A message is displayed to confirm deletion of the folder and all of its contents.

	
Click OK.

The folder is deleted.

	
Click Continue.

52.6 Creating Security Filters

You can add security filters to data objects so that only specific users can view specific rows in the data object. This can be useful when working with data objects that contain sensitive or confidential information that is not intended for all report designers or report viewers.

Security filters perform a lookup using another data object, referred to as a security data object, containing user names or group names. Before you can add a security filter, you must create a security data object containing the user names or group names and the value in the column to allow for each user name or each group name. Security data objects cannot contain null values.

If the user has a view open, and you change that user's security filter, it does not effect the currently open view. If the user reopens that view, it has the new security filter settings applied. Security filter settings are used to construct the query behind the view at view construction time, so changes to a security filter are not seen by previously created views.

52.6.1 How to Create a Security Filter

To add a security filter to a data object:

	
Select Data Objects from the Oracle BAM Architect function list.

	
Select the data object to add a security filter to.

The general information for the data object is displayed in the right frame.

	
Select Security Filters.

If the data object includes security filters, the filter name is displayed and you can expand and view the information.

	
Click Add filter.

The fields for defining the security filter display.

	
Enter the following information:

Name of this Security Filter. Type a name for this filter.

Security Data Object. Select the name of the security data object containing the mapped columns.

Type of identification. Select either By user or By group from the dropdown list. The security data object must include either domain or local users or groups mapped to values in the identification column.

Identification column in Security Data Object. Select the name of the column for containing user names or group names.

Match column in Security Data Object. Select the column to match in the security data object.

Match column in this Data Object. Select the name of the column to match in this data object.

	
Click Add.

For example, to add a security filter to the following data object, you need a security data object containing Region information to perform the security lookup.

Sample data object:

	User	Region	Sales
	John Smith	1	$55,000
	Bob Wright	1	$43,000
	Betty Reid	2	$38,000

Security data object:

	Login	Region ID
	DomainName\jsmith	1
	DomainName\jsmith	2
	DomainName\bwright	1
	DomainName\breid	2

When the bwright account views a report that accesses the data object with a security filter applied based on Region ID and Region, it is only able to access information for jsmith and bwright. It is not able to view the breid information because it is not able to view data for the same region. However, the jsmith account is set up to view data in both region 1 and 2.

52.6.2 How to Copy Security Filters from Other Data Objects

You can copy security filters from another data object and apply them to the data object you are editing.

To copy security filters from another data object:

	
Select Data Objects from the Oracle BAM Architect function list.

	
Select the data object to add a security filter to.

The general information for the data object is displayed in the right frame.

	
Select Security Filters.

If the data object includes security filters, the filter name is displayed and you can expand and view the information.

	
Click Copy from.

The Choose Data Object dialog opens.

	
Select the data object that contains the security filters to copy and click OK.

	
You can make changes to the security filters by viewing the filter details and clicking Edit.

	
Click Save.

52.7 Creating Dimensions

In Oracle BAM Architect, you can add dimensions to data objects to define drill paths for charts in Oracle BAM Active Studio. Dimensions contain columns in a hierarchy. When a hierarchy is selected in chart, the end user can drill down and up the hierarchy of information. When a user drills down in a chart, they can view data at more and more detailed levels.

Hierarchies are an attribute of a dimension in a data object. Multiple dimensions can be created in each data object. Each column in a data object can belong to one dimension only. You can create and edit multiple, independent hierarchies.

To use hierarchies as drill paths in charts, the report designer must select the hierarchy to use as the drill path. To create a dimension, you must select multiple columns to save as a dimension. Then you organize the columns into a hierarchy.

The following is a sample dimension and hierarchy:

	Dimension	Hierarchy
	Sales	Category
		Brand
		Description

52.7.1 How to Create a Dimension

To add a dimension and hierarchy:

	
Select Data Objects from the Oracle BAM Architect function list.

	
Select the data object to add a dimension to.

The general information for the data object is displayed in the right frame.

	
Select Dimensions.

	
Click Add a new dimension.

	
Enter a dimension name.

	
Enter a description for the dimension. A description is required for drilling configuration.

	
Select the column names to include in the dimension. An example is Sales, Category, Brand, and Description.

The column names are moved from the Data Objects Fields list to the Dimension Fields list to show that they are selected.

	
Click Save.

	
Click Continue.

The new dimension is listed. You must still define a hierarchy for the columns.

	
Click Add new hierarchy.

	
Enter a hierarchy name.

	
Enter a description for the hierarchy.

	
Select the column names to define as attributes for the dimension. An example is Sales remains in the Dimension Field list, and you click Category, Brand, and Description to arrange them in a general to more specific order. The order that you click the columns is the order that they are listed in the Hierarchy Field list. Arrange the more general grouping column at the top of the Hierarchy Fields list and the most granular column at the bottom of the Hierarchy Fields list.

	
Click Save.

	
Click Continue.

The new hierarchy is listed. You can edit or remove hierarchies and dimensions by clicking the links. You can also continue defining multiple hierarchies for the dimension or add new dimensions to the data object.

52.7.2 How to Create a Time Dimension

If your dimension contains a time date data type column, you can select the time levels to include in the hierarchy.

To select time levels:

	
In a dimension containing a time date data type column, add a hierarchy.

	
Select the time date data type column. If you are editing existing time levels, click Edit Time Levels.

The Time Levels Definition dialog opens.

	
Click the levels to include in the hierarchy. The levels include:

	
Year. Year in a four digit number.

	
Quarter. Quarter of four quarters starting with quarter one representing January, February, March.

	
Month. Months one through 12, starting with January.

	
Week of the Year. Numbers for each week starting with January 1st.

	
Day of the Year. Numbers for each day of the year starting with January 1st.

	
Day of the Month. Numbers for each day of the month.

	
Day of the Week. Numbers for each day of the week, starting from Sunday to Saturday.

	
Hour. Numbers from one to twenty four.

	
Minute. Numbers from one to 60.

	
Second. Numbers from one to 60.

	
Click OK to close the dialog.

52.8 Renaming and Moving Data Objects

You can rename and move a data object without editing or clearing the data object. If you only want to change the data object name or description, use the Rename option.

52.8.1 How to Rename a Data Object

To rename a data object:

	
Select Data Objects from the Oracle BAM Architect function list.

	
Select the data object to rename.

The general information for the data object is displayed in the right frame.

	
Select Rename/Move.

	
Enter the new name, tip text, and description for the data object.

	
Click Save changes.

52.8.2 How to Move a Data Object

To move a data object:

	
Select Data Objects from the list.

	
Select the data object to rename.

The general information for the data object is displayed in the right frame.

	
Select Rename/Move.

	
Click Browse to enter the new location for the data object.

	
Click Save changes.

52.9 Creating Indexes

Indexes improve performance for large data objects containing many rows. Without any indexes, accessing data requires scanning all rows in a data object. Scans are inefficient for very large data objects. Indexes can help find rows with a specified value in a column.

If the data object has an index for the columns requested, the information is found without having to look at all the data. Indexes are most useful for locating rows by values in columns, aggregating data, and sorting data.

52.9.1 How to Create an Index

You can add indexes to data objects by selecting columns to be indexed as you are creating a data object.

To add an index:

	
Select Data Objects from the Oracle BAM Architect function list.

	
Select the data object to add an index to.

	
Select Indexes.

	
Click Add Index.

The Add Index dialog opens.

	
Enter a Name and Description for the index

	
Add as many columns as needed to create an index for the table.

Click a column in the list on the right to remove the column from the index.

	
Click OK.

The index is added and is named after the columns it contains. You can create multiple indexes. To remove an index you created, click Remove Index next to the Index name.

52.10 Clearing Data Objects

Clearing a data object removes the current contents without deleting the data object from the Oracle BAM ADC.

52.10.1 How to Clear a Data Object

To clear a data object:

	
Select Data Objects from the Oracle BAM Architect function list.

	
Select the data object to clear.

The general information for the data object is displayed in the right frame.

	
Click Clear.

52.11 Deleting Data Objects

When deleting data objects, you must remove referrals to the data object from reports and alerts that are using it. If the data object is in use by an active alert or report, it cannot be deleted in Oracle BAM Architect.

52.11.1 How to Delete a Data Object

To delete a data object:

	
Select Data Objects from the Oracle BAM Architect function list.

	
Click the data object to delete.

The general information for the data object is displayed in the right frame.

	
Click Delete.

53 Creating Oracle BAM Enterprise Message Sources

This chapter contain the information required to create Enterprise Message Sources (EMS) in the Oracle BAM Architect application.

This chapter includes the following sections:

	
Section 53.1, "Introduction to Enterprise Message Sources"

	
Section 53.2, "Creating Enterprise Message Sources"

	
Section 53.3, "Using Enterprise Message Sources"

	
Section 53.4, "Using Foreign JMS Providers"

	
Section 53.5, "Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider"

53.1 Introduction to Enterprise Message Sources

Enterprise Message Sources (EMS) are used by applications to provide direct Java Message Service (JMS) connectivity to the Oracle BAM Server. JMS is the standard messaging API for passing data between application components and allowing business integration in heterogeneous and legacy environments.

The EMS does not configure Extract Transform and Load (ETL) scenarios, but rather maps from a message directly to a data object on the Oracle BAM Server; however, you can still use XML Stylesheet Language (XSL) to perform a transformation in between. Each EMS connects to a specific JMS topic or queue, and the information is delivered into a data object in the Oracle BAM Active Data Cache. The Oracle BAM Architect web application is used to configure EMS definitions.

The following JMS providers are supported:

	
Messaging for Oracle WebLogic Server

	
Non-Oracle certified JMS providers:

	
IBM WebSphere MQ 6.0

	
Tibco JMS

	
Apache ActiveMQ

See Section 53.4, "Using Foreign JMS Providers" for more information.

The following message types are supported:

	
Map message

	
Text message with XML payload

The following XML formatting options are supported for Text message transformation:

	
Pre-processing

	
Message specification

	
Column value (Column values can be provided either as elements or attributes in the XML payload.)

To view the existing EMS definitions, select Enterprise Message Sources from the Oracle BAM Architect function list.

Figure 53-1 Oracle BAM Architect Function List

[image: Architect function list]

53.2 Creating Enterprise Message Sources

When you define an EMS, you specify all of the fields in the messages to be received. Some messaging systems have a variable number of user-defined fields, while other systems have a fixed number of fields.

For any string type field, you can apply formatting to that field to break apart the contents of the field into separate, individual fields. This is useful for messaging systems where you cannot create user-defined fields and the entire message body is received as one large field. The formatting specifications allow you to specify the path to a location in the XML tree, and then extract the attributes or tags as fields.

Before defining an EMS, you must be familiar with the third party application providing the messages so that you can specify the message source connection details in Oracle BAM Architect. Furthermore, note that the JMS server (where you host queues/topics) can be configured on a different system than that which hosts the Oracle BAM Server. (For Oracle Advanced Queuing (AQ) it is acceptable to host on the same server as Oracle BAM because the database hosts the JMS server, but for other cases it is recommended to host the JMS server on another system).

53.2.1 How to Create an Enterprise Message Source

To define an EMS:

	
Select Enterprise Message Sources from the Oracle BAM Architect function list (see Figure 53-1).

	
Click Create.

[image: Description of bam_ar_ems_create.gif follows]

	
Using Table 53-1 as a guide, enter the appropriate values in each of the fields. Examples given are for connecting to Messaging for Oracle WebLogic Server.

	
Caution:

A single or double quotation mark in an Oracle BAM object name, such as a data object, report, or EMS name, causes a runtime error.
Do not include single or double quotation marks in an Oracle BAM object name.

[image: Description of bam_ar_ems_form.gif follows]

	
If you are using TextMessage type, configure the appropriate parameters in the XML Formatting sections, using Table 53-2 as a guide.

[image: Description of bam_ar_ems_xmlform.gif follows]

	
To configure the DateTime Specification in the Source Value Formatting section, see Section 53.2.2, "How to Configure DateTime Specification."

Note that when DateTime Specification is disabled (not checked), the incoming value must be in xsd:dateFormat. That is, xsd:dateFormat ([-]CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]) is the default format when DateTime Specification is not configured.

Valid value patterns for xsd:dateTime include:

	
2001-10-26T21:32:52

	
2001-10-26T21:32:52+02:00

	
2001-10-26T19:32:52Z

	
2001-10-26T19:32:52+00:00

	
-2001-10-26T21:32:52

	
2001-10-26T21:32:52.12679

	
Map fields from the source message to the selected data object in the Source to Data Object Field Mapping section.

[image: Description of bam_ar_ems_map.gif follows]

	
Click Add to add a mapped field.

	
Select the Key checkbox if the field is a key.

	
Enter the source tag or attribute name in the Tag/Attr name field.

	
Select the target data object field from the Data Object Field list.

	
Click Save to save the EMS.

Table 53-1 EMS Configuration Parameters

	Parameter	Description
	
Name

	
A unique display name that appears in the EMS list in Oracle BAM Architect.

	
Initial Context Factory

	
The initial context factory to be used for looking up specified JMS connection factory or destination. For example:

weblogic.jndi.WLInitialContextFactory

	
JNDI Service Provider URL

	
Configuration information for the service provider to use. Used to set javax.naming.Context.PROVIDER_URL property and passed as an argument to initialContext(). An incorrect provider URL is the most common cause of errors. For example:

t3://localhost:7001

	
Topic/Queue ConnectionFactory Name

	
The name used in a JNDI lookup of a previously created JMS connection factory. For example:

jms/QueueConnectionFactory

	
Topic/Queue Name

	
The name used in the JNDI lookup of a previously created JMS topic or queue. For example:

jms/demoQueue

jms/demoTopic

	
JNDI Username

	
The identity of the principal for authenticating the JNDI service caller. This user must have RMI login permissions.

Used to set javax.naming.Context.SECURITY_PRINCIPAL and passed to initialContext().

	
JNDI Password

	
The identity of the principal for authenticating the JNDI service caller.

Used to set javax.naming.Context.SECURITY_CREDENTIALS and passed to initialContext().

	
JMS Message Type

	
TextMessage or MapMessage.

If TextMessage is selected, XML is used to specify the contents of the payload, and an additional set of XML Formatting configuration parameters must be completed. See Table 53-2 for more information.

	
Durable Subscriber Name

	
Enter the name of the subscriber, for example, BAMFilteredSubscription. The Durable Subscriber Name should match the event-publisher subscriber name property if it is provided.

A durable subscription can preserve messages published on a topic while the subscriber is not active. It enables Oracle BAM to be disconnected from the JMS provider for periods of time, and then reconnect to the provider and process messages that were published during the disconnected period.

See Section 53.3.3, "How to Subscribe and Unsubscribe Enterprise Message Sources" for information about unsubscribing an EMS from a durable subscription once the EMS is started.

	
Message Selector (Optional)

	
A single name-value pair (currently only one name-value pair is supported) that allows an application to have a JMS provider select, or filter, messages on its behalf using application-specific criteria. When this parameter is set, the application-defined message property value must match the specified criteria for it to receive messages. To set message property values, use stringProperty() method on the Message interface.

he name value pair format should be name=value, for example, message=mymessage. The equals sign (=) is the name-value pair separator.

	
Data Object Name

	
Data object in Oracle BAM in which to deposit message data. Operations can be performed on only one data object per EMS. The data object can have Lookup columns.

Click Browse to choose a data object.

	
Operation

	
Select the operation from the list:

Insert inserts all new data as new rows

Upsert merges data into existing rows

Update updates existing rows

Delete removes rows from the data object

	
Batching

	
Specify whether the EMS communicates with the Oracle BAM Active Data Cache API with batching enabled. Batching allows multiple messages to be inserted using a single Text Message. If Batching is disabled (the default state), each row read from JMS would be sent to the Active Data Cache as a separate unit and not part of a batch of rows.

Batching properties are contained in configuration files. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

	
Transaction

	
Enabling Transaction ensures that the operation is atomic when Batching is enabled (Batching allows multiple messages to be inserted using a single Text Message).

Transaction itself does not have any impact on Active Data Cache batching, but setting Transaction to true ensures that all of the messages in Messaging Batching (when many messages are batched in a single batch) are part of an atomic operation. See Message Batching inTable 53-2.

	
Start when BAM Server starts

	
Specify whether the EMS starts reading messages and sending them to the Active Data Cache as soon as the Oracle BAM Server starts (or restarts).

	
JMS Username (Optional)

JMS Password (Optional)

	
You can optionally provide this information when a new JMS connection is created by a connection factory. Used to authenticate a connection to a JMS provider for either application-managed or container-managed authentication.

Table 53-2 EMS XML Formatting Configuration Parameters

	Parameter	Description
	
Pre-Processing

	
XSL transformation can be applied to an incoming Text Message before message retrieval and column mapping are done. See Section 53.2.3, "How to Use Advanced XML Formatting" for more information.

XML names can be qualified. If qualified, select the Namespace Qualified box and enter the namespace URI in the field.

	
Message Element Name

	
The parent element that contains column values in either its sub-elements or attributes.

XML names can be qualified. If qualified, select the Namespace Qualified box and enter the namespace URI in the field.

	
Message Batching

	
Multiple messages can be batched in a single JMS message. If this is the case, a wrapper element must be specified as the containing element in Batch Element Name.

If qualified, select the Namespace Qualified box and enter the namespace URI in the field.

	
Column Value

	
Column values can be provided using either elements or attributes in an XML payload. Specify which column value type is provided in the payload.

53.2.2 How to Configure DateTime Specification

To configure DateTime Specification:

	
Select the DateTime Specification checkbox as shown in Figure 53-2.

	
Enter the date and time pattern in the Pattern field.

You can select one of the suggested supported patterns provided in the dropdown list, or enter it manually into the text box.

You must supply a valid date and time pattern that adheres to the Java SimpleDateFormat. Table 53-3 provides the syntax elements for SimpleDateFormat, and Table 53-4 provides some examples.

	
Note:

When you explicitly select the HH:mm:ss datetime format, the default value 1/1/1970 is inserted for the date. EMS ignores the date value.
When you explicitly select only the date (excluding the hour, minute, and second) as the datetime format, then the date is inserted with its hour, minute, and second set to 12:00:00 AM. EMS ignores the time value.

	
Optionally, you can enter the locale information in the Language, Country, and Variant fields.

Figure 53-2 EMS Configuration Source Value Formatting Section

[image: Description of Figure 53-2 follows]

Table 53-3 Syntax Elements for SimpleDateFormat

	Symbol	Meaning	Presentation	Example
	
G

	
Era

	
Text

	
AD

	
y

	
Year

	
Number

	
2003

	
M

	
Month

	
Text or Number

	
July; Jul; 07

	
w

	
Week in year (1-53)

	
Number

	
27

	
W

	
Week in month (1-5)

	
Number

	
2

	
D

	
Day in year (1-365 or 1-364)

	
Number

	
189

	
d

	
Day in a month

	
Number

	
10

	
F

	
Day of week in month (1-5)

	
Number

	
2

	
E

	
Day in week

	
Text

	
Tuesday; Tue

	
a

	
AM/PM marker

	
Text

	
AM

	
H

	
Hour (0-23)

	
Number

	
0

	
k

	
Hour (1-24)

	
Number

	
24

	
K

	
Hour (0-11 AM/PM)

	
Number

	
0

	
h

	
Hour (1-12 AM/PM)

	
Number

	
12

	
m

	
Minute in an hour

	
Number

	
30

	
s

	
Second in a minute

	
Number

	
55

	
S

	
Millisecond (0-999)

	
Number

	
978

	
z

	
Time zone

	
General time zone

	
Pacific Standard Time; PST; GMT-08:00

	
Z

	
Time zone

	
RFC 822 time zone

	
-0800

	
'

	
Escape for text

	
Delimiter

	
MMM ''01 -> Jul '01

The examples in Table 53-4 show how date and time patterns are interpreted in the United States locale. The date and time used in all of the examples are 2001-07-04 12:08:56 local time in the U.S. Pacific Time time zone.

Table 53-4 Date and Time Pattern Examples

	Date and Time Pattern	Result
	
"yyyy.MM.dd G 'at' HH:mm:ss z"

	
2001.07.04 AD at 12:08:56 PDT

	
"EEE, MMM d, '' yy"

	
Wed, Jul 4, '01

	
"h:mm a"

	
12:08 PM

	
"hh 'o''clock' a, zzzz"

	
12 o'clock PM, Pacific Daylight Time

	
"K:mm a, z"

	
0:08 PM, PDT

	
"yyyyy.MMMMM.dd GGG hh:mm aaa"

	
02001.July.04 AD 12:08 PM

	
"EEE, d MMM yyyy HH:mm:ss Z"

	
Wed, 4 Jul 2001 12:08:56 -0700

	
"yyMMddHHmmssZ"

	
010704120856-0700

	
"yyyy-MM-dd'T'HH:mm:ss.SSSZ"

	
2001-07-04T12:08:56.235-0700

53.2.3 How to Use Advanced XML Formatting

The Advanced formatting options allow an EMS to contain a user-supplied XSL Transformation (XSLT) for each formatted field in the message.

Uses for XSLT include:

	
Handling of hierarchical data. The Data Flow does not handle hierarchical data. The XSLT can flatten the received XML into a single record with repeating fields.

	
Handling of message queues that contain messages of multiple types in a single queue. The Data Flow requires that all records from the Message Receiver be of the same schema. The EMS output can be defined as a combined superset of the message schemas that are received, and the XSL transformation can identify each message type and map it to the superset schema as appropriate.

	
Handling of XML that, while not expressing hierarchical data, does contain needed data at multiple levels in the XML. EMS formatting can only read from one level with the XML. The XSL transformation can identify the data needed at various levels in the input XML and output it all in new XML that contains all of the data combined at one level.

To specify an XSL transformation:

	
In an EMS that you are defining or editing, select Pre-Processing in the XML Formatting section.

[image: Description of bam_ar_ems_advanced.gif follows]

	
Click Advanced formatting options.

The Advanced Formatting dialog opens.

	
Type or paste the XSL markup for the transformation for the XML in this field. You might want to write the XSL markup in another editing tool and then copy and paste the code into this dialog.

	
In the Sample XML to transform field, type sample XML to test the transformation against. The sample XML is not saved in this dialog and is not displayed if you close and open this dialog.

	
Click Verify transformation syntax to validate the XSL syntax.

	
Click Test transformation on sample XML to test your transformation.

The results are displayed in the field underneath the links. If any errors are found in the XSL syntax, the sample XML syntax, or during the transformation, the error text is shown in this field.

53.3 Using Enterprise Message Sources

The Enterprise Message Sources page in Oracle BAM Architect is used to view the EMS definition, and perform operations on it. Select any EMS in the Enterprise Message Sources list to display information about it and work with it.

[image: Description of bam_ar_ems_links.gif follows]

Use the links displayed at the top of the EMS definition page (the pane on the right side of the browser window) to perform operations on the EMS.

The following topics describe the available operations:

	
Section 53.3.1, "How to Edit, Copy, and Delete Enterprise Message Sources"

	
Section 53.3.2, "How to Start and Stop Enterprise Message Sources"

	
Section 53.3.3, "How to Subscribe and Unsubscribe Enterprise Message Sources"

	
Section 53.3.4, "How to Test Enterprise Message Sources"

	
Section 53.3.5, "How to Refresh Enterprise Message Sources"

	
Section 53.3.6, "How to Monitor Enterprise Message Source Metrics"

53.3.1 How to Edit, Copy, and Delete Enterprise Message Sources

Use the Edit, Copy, and Delete links on an individual EMS definition page to edit, copy, or delete the current EMS definition.

53.3.2 How to Start and Stop Enterprise Message Sources

Use the Start and Stop links on an individual EMS definition page to start and stop the EMS, which makes the consumer inactive in Stopped status.

For a durable subscribed EMS, clicking on Stop only makes the consumer inactive. It does not unsubscribe the EMS from a durable subscription. See Section 53.3.3, "How to Subscribe and Unsubscribe Enterprise Message Sources" for more information.

By default the EMS starts when the Oracle BAM Server is started.

Click Edit to change the Start when BAM Server starts property.

[image: Description of bam_ar_ems_start.gif follows]

53.3.3 How to Subscribe and Unsubscribe Enterprise Message Sources

Use the Unsubscribe link on an individual EMS definition page to unsubscribe a durable subscribed EMS.

For a durable subscribed EMS, clicking on Stop only makes the consumer inactive with Stopped status.

Clicking on Unsubscribe unsubscribes it and the EMS status displays as Unsubscribed.

For non-durable subscribed EMS, clicking Unsubscribe does not have any effect. A message is displayed that the feature is not applicable in this case.

See Table 53-1 for information about configuring the Durable Subscriber Name property.

53.3.4 How to Test Enterprise Message Sources

Use the Test link on an individual EMS definition page to test the EMS definition against the data source and the mapped data object fields. The test results appear in the Status field in the EMS definition.

The status is reflected in the Status field as Test OK if the test is done successfully, or Test failed - exception are displayed when there is a problem. Also, when the Test link is clicked:

	
If the EMS is started already, then it stops it and starts it again.

	
If the EMS is in a stopped state, then it starts and stops again.

53.3.5 How to Refresh Enterprise Message Sources

Use the Refresh link on an individual EMS definition page to refresh the EMS definition page. Typically a user refreshes the page to obtain the current status of the EMS.

53.3.6 How to Monitor Enterprise Message Source Metrics

Use the Metrics link on an individual EMS definition page to monitor selected EMS statistics. The Metrics page displays the Total Messages Received, Total Messages committed in ADC, and Total Messages Lost counters. These values are accumulated since last start or reset.

Total Messages Lost is calculated by subtracting Total Messages committed in ADC from Total Messages Received.

Click Refresh to see these latest counter values.

Click Reset to set counter values to zero.

53.4 Using Foreign JMS Providers

Oracle WebLogic Server provides support for integrating non-Oracle WebLogic Server (foreign) JMS providers with applications deployed in it, such as Oracle BAM. Foreign JMS providers have their own JMS client and Java Naming and Directory Interface (JNDI) Client APIs. some configuration must be done to identify these depedencies and make these APIs available on Oracle WebLogic Server so that JMS resources hosted on a remote provider can be looked up by application deployed in Oracle WebLogic Server.

See "Configuring Foreign Server Resources to Access Third-Party JMS Providers" in Oracle Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server for more information.

Section 53.5.3, "Creating a Foreign JMS Server" in the "Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider" provides a detailed example.

The high level configuration steps are:

	
Make the JMS and JNDI client library of the foreign the provider available to applications deployed on Oracle WebLogic Server.

Identify the JMS and JNDI client Java Archive (JAR) files of the foreign provider and place them in the DOMAIN_HOME/lib directory.

	
Create a foreign server using Oracle WebLogic Server Administration Console.

Go to JMS Modules in Oracle WebLogic Server Administration Console, and create a new module.

Inside this module, click New, select Foreign Server, and create a new foreign server by navigating through all of the pages.

Provide appropriate JNDI properties for the remote provider for the foreign server definition.

	
Create JMS resources (that is, connection factories and destinations) for the foreign JMS server.

Inside the Foreign Server link, select the Destination tab and create links for

	
Remote ConnectionFactory

	
Remote Destination (Queue/Topic)

Local JNDI names configured for these destinations must be used while configuring EMS to consume messages from these destinations.

	
Configure an EMS definition in Oracle BAM Architect to consume messages from foreign destinations.

The whole process of accessing JMS resources hosted on foreign providers is transparent to Oracle BAM Server. After the previous steps have been followed correctly, remote destinations from foreign JMS providers are published on the local WL server JNDI tree, so that applications deployed on the server (like Oracle BAM EMS) can look them up, just like any other collocated Oracle WebLogic Server JMS resource. Oracle WebLogic Server takes care of communicating with the appropriate foreign JMS provider at runtime.

53.5 Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

The following are the steps to configure Oracle Streams AQ JMS Provider (AQ-JMS) in Oracle WebLogic Server, and an EMS definition in Oracle BAM Architect.

	
Creating a JMS Topic in AQ-JMS.

	
Creating a Data Source in Oracle WebLogic Server.

	
Creating a Foreign JMS Server.

	
Defining an EMS in Oracle BAM Architect.

	
Inserting and Updating Records in the SQL Table.

53.5.1 Creating a JMS Topic in AQ-JMS

Open a SQLplus command prompt and do the following:

	
Login as sysdba

sqlplus sys as sysdba

	
Enter the password for the system dba account when prompted.

	
Create and execute the following scripts in the following order (see Example 53-1, Example 53-2, and Example 53-3 for the contents of the scripts).

@<SCRIPT_PATH>/usertabletopiccreation.sql
@<SCRIPT_PATH>/createtable.sql
@<SCRIPT_PATH>/createtrigger.sql

The scripts do the following things:

	
Creates a fresh schema under user MyChannelDemoUser.

	
Creates a JMS a topic in AQ-JMS.

	
Creates a SQL table by name EMP.

	
Creates a trigger that publishes messages to AQ-JMS topic on inset/update on EMP.

Example 53-1 Contents of usertabletopiccreation.sql

DROP USER MyChannelDemoUser CASCADE;

GRANT connect, resource,AQ_ADMINISTRATOR_ROLE TO MyChannelDemoUser IDENTIFIED BY
 MyChannelDemoPassword;
GRANT execute ON sys.dbms_aqadm TO MyChannelDemoUser;
GRANT execute ON sys.dbms_aq TO MyChannelDemoUser;
GRANT execute ON sys.dbms_aqin TO MyChannelDemoUser;
GRANT execute ON sys.dbms_aqjms TO MyChannelDemoUser;

connect MyChannelDemoUser/MyChannelDemoPassword;

BEGIN
--dbms_aqadm.stop_queue(queue_name => 'MY_TOPIC');
--dbms_aqadm.drop_queue(queue_name => 'MY_TOPIC');
--DBMS_AQADM.DROP_QUEUE_TABLE (queue_table => 'TTab');
dbms_aqadm.create_queue_table(queue_table => 'TTab', queue_payload_type =>
 'sys.aq$_jms_text_message', multiple_consumers => true);
dbms_aqadm.create_queue(queue_name => 'MY_TOPIC', queue_table => 'TTab');
dbms_aqadm.start_queue(queue_name => 'MY_TOPIC');
END;
/

Example 53-2 Contents of createtable.sql

connect MyChannelDemoUser/MyChannelDemoPassword;

CREATE TABLE EMP (EMPNO NUMBER(4), ENAME VARCHAR2(10), JOB VARCHAR2(9), MGR
 NUMBER(4), HIREDATE DATE, SAL NUMBER(7,2), COMM NUMBER(7,2), DEPTNO NUMBER(2));

quit;

Example 53-3 Contents of createtrigger.sql

connect MyChannelDemoUser/MyChannelDemoPassword;
create or replace
trigger employee AFTER INSERT OR Update ON EMP
 FOR each row
 declare
 xml_complete varchar2(1000);
 v_enqueue_options dbms_aq.enqueue_options_t;
 v_message_properties dbms_aq.message_properties_t;
 v_msgid raw(16);
 temp sys.aq$_jms_text_message;
 v_recipients dbms_aq.aq$_recipient_list_t;

 Begin
 temp:=sys.aq$_jms_text_message.construct;
 xml_complete :=
 '<?xml version="1.0"?>' ||
 '<row>' ||
 '<EMPNO>' || :new.EMPNO || '</EMPNO>' ||
 '<ENAME>' || :new.ENAME || '</ENAME>' ||
 '<JOB>' || :new.JOB || '</JOB>' ||
 '<MGR>' || :new.MGR || '</MGR>' ||
 '<HIREDATE>' || :new.HIREDATE || '</HIREDATE>' ||
 '<SAL>' || :new.SAL || '</SAL>' ||
 '<COMM>' || :new.COMM || '</COMM>' ||
 '<DEPTNO>' || :new.DEPTNO || '</DEPTNO>' ||
 '</row>' ;
 temp.set_text(xml_complete);
 dbms_aq.enqueue(queue_name => 'MY_TOPIC',
 enqueue_options => v_enqueue_options,
 message_properties => v_message_properties,
 payload => temp,
 msgid => v_msgid);
 End ;
/
quit;

53.5.2 Creating a Data Source in Oracle WebLogic Server

You can skip this step if a data source exists. An existing data source can also be reused in this section.

	
Open Oracle WebLogic Server Administration Console at

http://hostname:7001/console

where hostname is the name of the system where Oracle BAM Server is installed.

	
After logging into the console click the Data Sources link in the JDBC section, and click New.

	
Enter a name for the data source (For example, BAMAQDataSource).

	
Enter a JNDI name from the data source (for example, jdbc/oracle/bamaq). This name is used to configure the foreign JMS server.

	
Select Oracle to be the Database Type.

	
Select Oracle's Driver (Thin) for Database Driver field, and click Next.

	
Uncheck Support Global Transaction, and click Next.

	
Enter your database SID in the Database Name field (for example, ORCL).

	
Enter the hostname of the system where the database is installed as the Host Name (for example, localhost).

	
Enter data base port number (for example, 1521).

	
Enter the user name (for example, MyChannelDemoUser).

	
Enter the password, and click Next.

	
Click Test Configuration to test the configuration.

	
After it is successful, click Finish.

53.5.3 Creating a Foreign JMS Server

To create a foreign JMS server:

	
Add as an Oracle WebLogic Server JMS module.

	
In the Oracle WebLogic Server Administration Console, from the home page, go to the JMS Modules page.

	
Click New to create an Oracle WebLogic Server JMS module.

	
Enter a name for the JMS module (for example, BAMAQsystemModule).

	
Click Next and assign appropriate targets.

	
Click Next, and click Finish.

	
Add an AQ-JMS foreign server to the JMS module.

	
Select the JMS module that you just created.

	
Click New, and go to the list of JMS resources to add.

	
Select the Foreign Server option, and click Next.

	
Enter a name for the foreign server (for example, BAMAQForeignServer), and click Finish.

	
Configure the AQ-JMS foreign server.

	
Select the AQ-JMS foreign server that you created.

	
In the JNDI Initial Context Factory field, enter

oracle.jms.AQjmsInitialContextFactory

	
In the JNDI Properties area, enter

datasource=datasource_jndi_location

where datasource_jndi_location is the JNDI location of your data source (for example, jdbc/oracle/bamaq).

	
Add connection factories to the AQ-JMS foreign server.

	
Select the AQ-JMS foreign server that you created.

	
Select the Connection Factories tab.

	
Enter a name for the connection factory. This is a logical name referenced by Oracle WebLogic Server.

	
In the Local JNDI Name field, enter the local JNDI name that is used by The Oracle BAM EMS to look up this connection factory (For example, jms/BAMAQTopicCF).

	
In the Remote JNDI Name field, enter:

- TopicConnectionFactory (select for this use case)
- QueueConnectionFactory
- ConnectionFactory

	
Click OK.

	
Add destinations to the AQ-JMS foreign server.

	
Select the AQ-JMS foreign server that you created.

	
Select the Destinations tab.

	
Enter a name for this destination. This is a logical name referenced by Oracle WebLogic Server, and it has nothing to do with the destination name.

	
In the Local JNDI Name field, enter the local JNDI name that is used by the Oracle BAM EMS to lookup this destination (for example, jms/BAMAQTopic).

	
In the Remote JNDI Name field, if the destination is a queue, enter the following value:

Queues/queue_name

If the destination is a topic enter the following value:

Topics/topic_name

	
Click OK.

	
Restart Oracle WebLogic Server.

53.5.4 Defining an EMS in Oracle BAM Architect

	
Open Oracle BAM Architect, and select Enterprise Message Sources in the dropdown list.

	
Enter the message source information you just created.

	
Enter the Initial Context Factory value:

weblogic.jndi.WLInitialContextFactory

	
Enter the JNDI provider URL:

t3://hostname:7001

	
Enter the Connection Factory Name (for example, jms/BAMAQTopicCF).

	
Enter the Destination Name (for example, jms/BAMAQTopic).

	
Choose the Oracle BAM data object to send the values received from AQ-JMS server.

	
Complete the source-to-data object field mapping so that data from the incoming XML can be mapped to an appropriate field in selected data object.

53.5.5 Inserting and Updating Records in the SQL Table

Now you can test the functionality end to end by inserting or updating some records in the EMP database table.

You can use SQLPlus to run SQL queries.

Now you should see the values from the record being inserted into data object.

For example,

insert into emp values (25,'Ford','ANALYST',7566,sysdate,60000,3000,20);

update emp set ENAME='McOwen' where ENAME='Ford';

54 Using Oracle Data Integrator With Oracle BAM

This chapter provides information about the Oracle Data Integrator integration with Oracle Business Activity Monitoring.

This chapter includes the following sections:

	
Section 54.1, "Introduction to Using the Oracle Data Integrator With Oracle Business Activity Monitoring"

	
Section 54.2, "Installing the Oracle Data Integrator Integration Files"

	
Section 54.3, "Using Oracle BAM Knowledge Modules"

	
Section 54.4, "Creating the Oracle BAM Target"

	
Section 54.5, "Reverse Engineering the Oracle BAM Schema"

	
Section 54.6, "Updating the Oracle Data Integrator External Data Source Definition"

	
Section 54.7, "Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts"

	
Section 54.8, "Running Oracle Data Integrator Agent as a Daemon or a Microsoft Windows Service With Oracle BAM Embedded"

Oracle Data Integrator documentation is located on the Oracle Technology Network web site at the following location:

http://www.oracle.com/technology/products/oracle-data-integrator/10.1.3/htdocs/1013_support.html

54.1 Introduction to Using the Oracle Data Integrator With Oracle Business Activity Monitoring

This document assumes the following:

	
The Oracle database is installed and you can connect to it.

	
Oracle BAM is installed and running.

	
Oracle Data Integrator installed and the basic configuration is done (the Oracle Data Integrator Master repository is created, repository connections are configured, Work repositories are created and connected, and any source topologies are configured).

	
If Oracle Data Integrator is installed on a separate host, Java 1.6 must be installed on the Oracle Data Integrator host before you can work with the Oracle BAM and Oracle Data Integrator integration.

When using Oracle Data Integrator with Oracle BAM, keep the following in mind:

	
Within the Oracle Data Integrator interface you must add quotation marks around field names that contain spaces.

	
Oracle Data Integrator cannot insert data into Oracle BAM read-only fields of type Lookup, Calculated, Auto-incrementing integer, and Timestamp. These fields are automatically populated. Although Oracle Data Integrator enables you to select these fields as target fields, running Oracle Data Integrator with these fields populated throws an exception.

	
Do not use Oracle BAM as a staging area (for example, if Oracle BAM is used as a source (as when using a loading knowledge module), do not use this source as staging area, and if Oracle BAM is being used as a target (as when using an integration knowledge module) do not use that target as staging area.

54.2 Installing the Oracle Data Integrator Integration Files

There are two ways to set up the Oracle BAM and Oracle Data Integrator integration.

The first method uses an installation script, typically when Oracle Data Integrator and Oracle BAM are deployed on the same system or the same network file system (Section 54.2.1, "How to Install Integration Files Using the Script").

The second method uses manual steps to configure the properties and copy the required files to the Oracle Data Integrator directories (Section 54.2.2, "How to Manually Install Integration Files"). This method is typically used if you are unable to map the ODI_HOME drive from the system where Oracle BAM is installed (usually when Oracle Data Integrator and Oracle BAM are installed in different network or file system).

The logs contain information about the installation and the integration messages. See Section 54.2.3, "Using the Logs" for more information.

Recommended Memory Settings for Using Oracle Data Integrator with Oracle BAM

The default memory settings for Oracle Data Integrator are included in the odiparams.sh script (or odiparams.bat for windows). The values for the ODI_INIT_HEAP and ODI_MAX_HEAP properties default to 32M and 256M. It is recommended that you change these values to 256 M and 1024 M respectively. This enhances Oracle Data Integrator performance. Otherwise, Oracle Data Integrator OutOfMemory errors may occur, especially when running memory intensive tasks.

54.2.1 How to Install Integration Files Using the Script

Use the installation script when you have Oracle Data Integrator and Oracle BAM installed on the same system or the same network file system.

A log file called utility.log is created if there is a problem with the installation. The file location is controlled by the utility.logging.properties file. See Section 54.2.3, "Using the Logs" for more information.

To install the integration files:

	
Verify that Oracle BAM Server is running and reachable from the Oracle Data Integrator host.

	
On the Oracle BAM host, go to the ORACLE_HOME\bam\config directory and edit the bam_odi_configuration.properties file.

	
ODI_HOME

This property identifies the path to the Oracle Data Integrator home directory.

The default value on Linux is /scratch/$user/ODI_HOME/oracledi.

On Microsoft Windows systems, use the short 8-character name convention. Also, use double back-slashes (\\) to denote a directory separator. For example, C:\Program Files\ODI_HOME\oracledi would appear as:

ODI_HOME = C:\\Progra~1\\ODI_HOME\\oracledi

	
Note:

If Oracle BAM Server and Oracle Data Integrator are deployed on two different hosts, then you must map the Oracle Data Integrator drive on the Oracle BAM system, and then set the ODI_HOME path using that mapped drive to successfully make use of the integration configuration scripts. If drive mapping is not possible see Section 54.2.2, "How to Manually Install Integration Files."

	
WL_SERVER

This property identifies the Oracle WebLogic Server folder name on the Oracle BAM system.

The default value is wlserver_10.3.

	
Execute bam_odi_configuration.sh (or bam_odi_configuration.bat on a Microsoft Windows host) in ORACLE_HOME\bam\bin.

Enter the values as prompted by the script. You must have the Oracle Data Integrator Master and Oracle Data Integrator Work repository account credentials to complete the script execution.

Note that the prompts displayed with [value] have default values in the brackets. Press Enter to choose the default. If there is no bracketed default value displayed, an input value is required, or the script stops.

The script creates the resources required in the Oracle BAM web applications, sets the Oracle BAM configuration properties in Oracle Data Integrator, generates a Oracle WebLogic Server client Java Archive (JAR) to deploy to the Oracle Data Integrator system, and copies all of the required files into the appropriate Oracle Data Integrator directories.

While the script is running the following message may appear: "Trying to contact Oracle BAM Server. It may take few minutes." If Oracle BAM Server cannot be reached, the script retries the connection multiple times.

	
Note:

If you cannot use the script in your environment, use the instructions in Section 54.2.2, "How to Manually Install Integration Files."

	
Note:

Every time bam_odi_configuration.sh is run, a backup of the BAMODIConfig.xml file is created in the same directory with a time stamp, and the old file is overwritten with the new file. If you made any changes to the property settings in the old version of BAMODIConfig.xml, those changes must be made again in the latest version.

Now you can create an Oracle BAM target in the Oracle Data Integrator Topology Manager. See Section 54.4, "Creating the Oracle BAM Target" for instructions.

54.2.2 How to Manually Install Integration Files

Use these steps if Oracle Data Integrator and Oracle BAM Server are installed on hosts in different networks, or for any reason you cannot use the script in your environment.

There are four major steps to this process:

	
Set JAVA_HOME

	
Create External Data Sources for Oracle Data Integrator

	
Set Oracle Data Integrator Configuration Properties

	
Copy files to Oracle Data Integrator Directories

	
Generate the Oracle WebLogic Server Client JAR

Set JAVA_HOME

The environment variable JAVA_HOME must be set to Java version 1.6.x in the environment in which an Oracle Data Integrator application is invoked. This means that Java version 1.6.x must be installed on the host. To set the environment variable:

On Microsoft Windows, go to the Control Panel, click the System icon. In the System Properties, go to the Advanced tab, and then click the Environment Variables button. In the Environment Variables window, create or modify a variable named JAVA_HOME for the user (upper box), and set the value to the path for the Java installation (for example: c:\PROGRA~1\Java\jdk1.6.0_12). Click OK. When you launch Oracle Data Integrator, be sure to do it from a fresh command prompt, to pick up the new environment variable.

On UNIX, follow the procedure for the shell script to create the environment variable JAVA_HOME. This can be done in a startup script (such as .cshrc in the user's home directory) or on the command line before invoking Oracle Data Integrator.

Create External Data Sources for Oracle Data Integrator

Create the external data sources in Oracle BAM Architect.

	
Open Oracle BAM Architect and select the External Data Sources page.

[image: Description of bam_architect_menu_eds.gif follows]

	
Click Create, and configure the two external data sources (ODI_Master and ODI_Work) with the values shown in Table 54-1 and Table 54-2.

Table 54-1 ODI_Master external data source values

	Property	Value
	
External Data Source Name

	
ODI_Master

	
Driver

	
oracle.jdbc.driver.OracleDriver

	
Login

	
Oracle Data Integrator Master repository account user name

	
Password

	
Oracle Data Integrator Master repository account password

	
Connection String

	
jdbc:oracle:thin:ip_address:port_number:db_service_name

Table 54-2 ODI_Work external data source values

	Property	Value
	
External Data Source Name

	
ODI_Work

	
Driver

	
oracle.jdbc.driver.OracleDriver

	
Login

	
Oracle Data Integrator Work repository account user name

	
Password

	
Oracle Data Integrator Work repository account password

	
Connection String

	
jdbc:oracle:thin:ip_address:port_number:db_service_name

Set Oracle Data Integrator Configuration Properties

Modify the ODI_JAVA_OPTIONS and ODI_ADDITIONAL_CLASSPATH values in the odiparams.sh(bat) file located in ODI_HOME/bin as shown in Example 54-1 and Example 54-2.

Example 54-1 ODI_JAVA_OPTIONS Modification

On Microsoft Windows:

SET ODI_JAVA_OPTIONS=-Djava.security.policy=server.policy
 -Djava.util.logging.config.file=../lib/bam_odi.logging.properties

On Linux:

SET ODI_JAVA_OPTIONS="-Djava.security.policy=server.policy
 -Djava.util.logging.config.file=../lib/bam_odi.logging.properties"

Example 54-2 ODI_ADDITIONAL_CLASSPATH Modification

SET ODI_ADDITIONAL_CLASSPATH=../lib/weblogic/wlfullclient.jar

Copy files to Oracle Data Integrator Directories

This procedure copies several JAR files, logging properties files, and knowledge modules into the Oracle Data Integrator directories.

	
Copy the following files from ORACLE_HOME/bam/modules/oracle.bam_11.1.1 toODI_HOME/lib:

	
oracle-bam-common.jar

	
oracle-bam-etl.jar

	
oracle-bam-adc-ejb.jar

	
Copy the following files from ORACLE_HOME/bam/modules/oracle.bam.thirdparty_11.1.1 to ODI_HOME/lib:

	
commons-codec-1.3.jar

	
xstream-1.1.3.jar

	
Copy the following file from ORACLE_HOME/modules/oracle.odl_11.1.1 to ODI_HOME/lib:

	
ojdl.jar

	
Copy the following file from ORACLE_HOME/modules/oracle.jps_11.1.1 to ODI_HOME/lib:

	
jps-api.jar

	
Copy the following file from ORACLE_HOME/modules/oracle.dms_11.1.1 to ODI_HOME/lib:

	
dms.jar

	
Copy the following file from ORACLE_HOME/modules to ODI_HOME/lib:

	
org.jaxen_1.1.1.jar

	
Copy the following file from ORACLE_HOME/bam/config to ODI_HOME/lib:

	
bam.odi.logging.properties

	
Copy the following file from ORACLE_HOME/bam/ODI/config to ODI_HOME/lib/config:

	
BAMODIConfig.xml

	
Copy all of the XML files from ORACLE_HOME/bam/odi/knowledge_modules to ODI_HOME/impexp.

Generate the Oracle WebLogic Server Client JAR

	
Generate a wlfullclient.jar file using the Oracle WebLogic Server JarBuilder tool. See "Using the WebLogic JARBuilder tool" in Oracle Fusion Middleware Programming Stand-alone Clients for Oracle WebLogic Server for instructions.

	
Create a subdirectory called ODI_HOME/oracledi/lib/weblogic.

	
Copy wlfullclient.jar into ODI_HOME/oracledi/lib/weblogic.

54.2.3 Using the Logs

Install Log

Part of the installation process uses Oracle BAM ICommand, and the logs associated with this process are written to files in the same directory where the configuration script is run (ORACLE_HOME\bam\bin).

The logging properties for installation logs are configured in the utility.logging.properties file in the same directory. The default logging level is set to INFO.

Runtime Log

The bam_odi.logging.properties file is used to configure logging for messages that occur when Oracle Data Integrator is running with Oracle BAM. This file is located in ODI_HOME/lib.

54.3 Using Oracle BAM Knowledge Modules

Knowledge modules are generic code templates containing the sequence of commands necessary for a data integration pattern. A knowledge module contains the knowledge required by Oracle Data Integrator to perform a specific set of tasks against a specific storage technology. It defines methods related to a given storage technology and it enables processes generation for that technology.

There are different knowledge modules for loading (from the source data store), integration (to target data store), checking, reverse-engineering, journalizing and creating services. All knowledge modules work by generating code to be executed at runtime by knowledge module Interpreter.

There is a set of knowledge modules specific to Oracle BAM functionality within Oracle Data Integrator. These knowledge modules are installed in the ODI_HOME/oracledi/impexp directory when the integration files are installed. To use these Oracle BAM-specific knowledge modules, you must import them into the appropriate projects in the Oracle Data Integrator Designer application. Table 54-3 describes the Oracle BAM-specific knowledge modules.

For information about importing knowledge modules, see "Importing a KM" in Oracle Data Integrator User's Guide. Oracle Data Integrator documentation is located on the Oracle Technology Network web site at the following location:

http://www.oracle.com/technology/products/oracle-data-integrator/10.1.3/htdocs/1013_support.html

Table 54-3 Oracle BAM Knowledge Modules

	Knowledge Module	Description
	
CKM Get Oracle BAM Metadata

	
A check knowledge module that is used internally before integration knowledge module steps. This check knowledge module is the default knowledge module in Oracle BAM technology, and it is automatically acquired by Oracle Data Integrator. This check knowledge module creates two arrays which are later used by Oracle BAM-specific integration knowledge modules in the same Java session.

This knowledge module has no options.

	
IKM SQL to Oracle BAM (delete)

	
An integration knowledge module that can delete rows from Oracle BAM data objects by sending matching key column values. It has the following options:

COMMIT_SIZE

BATCH_SIZE

DATETIME_PATTERN

KEY_CONDITION

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

	
IKM SQL to Oracle BAM (insert)

	
An integration knowledge module that can insert rows to Oracle BAM data objects from heterogeneous data sources. It has the following options:

BATCH_SIZE

COMMIT_SIZE

CREATE_TARG_TABLE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

	
IKM SQL to Oracle BAM (looksert natural)

	
An integration knowledge module that can insert rows into Oracle BAM data objects from heterogeneous data sources. It differs from IKM SQL to Oracle BAM (insert) by also inserting new entries in dimension tables (that is, the data object to which the lookup column refers) if it does not yet exist.

Looksert integration knowledge modules do an insert into an Oracle BAM target based on a lookup field. Typically, this is used to load a fact table in a star schema. (A star schema is characterized by one or more very large fact tables that contain the primary information in the data warehouse, and some much smaller dimension tables (or lookup tables), each of which contains information about the entries for a particular attribute in the fact table.)

This integration knowledge module is provided for better performance. It has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

NON_KEY_MATCHING

	
IKM SQL to Oracle BAM (looksert surrogate)

	
An integration knowledge module that can insert rows into Oracle BAM data objects from heterogeneous data sources. It is similar to IKM SQL to Oracle BAM (looksert natural) and differs in using a surrogate key instead of a natural key between a fact data object and dimension object.

Looksert integration knowledge modules do an insert into an Oracle BAM data object based on a lookup field. Typically, this used to load a fact table in a star schema. (A star schema is characterized by one or more very large fact tables that contain the primary information in the data warehouse, and some much smaller dimension tables (or lookup tables), each of which contains information about the entries for a particular attribute in the fact table.)

If the value for a lookup field does not exist in the relevant dimension table, the value is automatically inserted.

This integration knowledge module must be used with LKM Get Source Metadata and CKM Get Oracle BAM Metadata.

This knowledge module has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

NON_KEY_MATCHING

	
IKM SQL to Oracle BAM (update)

	
An integration knowledge module that can update rows in Oracle BAM data objects from heterogeneous data sources. It has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

	
IKM SQL to Oracle BAM (upsert)

	
An integration knowledge module that can merge (upsert) rows (that is, update a data object if matching row exists or insert data object if a new row) to Oracle BAM data objects from heterogeneous data sources. It has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

Note: During execution, the number of upsert operations are reported in the No. of Updates field, because the Oracle Data Integrator Operator user interface does not have a No. of Upserts field. Furthermore, the count for all of the inserts and updates to the Oracle BAM database are reported in the Updates field, and are not reported separately.

	
LKM Get Source Metadata

	
A loading knowledge module. This is not a traditional loading knowledge module because it does not load any data from the source to staging area. Instead it simply gathers the metadata that is required by the integration knowledge module IKM SQL to Oracle BAM (looksert surrogate).

IKM ORACLE to BAM (looksert surrogate) performs the task of loading directly from a SQL source into the Oracle BAM target. In doing so, it uses the metadata provided by LKM Get Source Metadata.

This knowledge module has no options.

	
LKM Oracle BAM to SQL

	
A loading knowledge module that allows client applications to load data from Oracle BAM.

If using an Oracle BAM loading knowledge module as a source in an interface (for example LKM Oracle BAM to SQL), the user must change the default execute on button for each mapped field in the target to staging area. If left at the default source, erroneous results may occur. Technologies that do not allow for a staging area, such as Oracle BAM, should not have transformations performed on them.

It has the following options:

DELETE_TEMPORARY_OBJECTS

DROP_PURGE

LAST_BAM_TASK

	
RKM Oracle BAM

	
A customized reverse engineering knowledge module for Oracle BAM. It has the following options:

GET_COLUMNS

GET_FOREIGN_KEYS

GET_INDEXES

GET_PRIMARY_KEYS

LOG_FILE_NAME

USE_LOG

Table 54-4 describes the parameters used in Oracle BAM knowledge modules.

Table 54-4 Oracle BAM Knowledge Module Parameters

	Parameter	Description
	
BATCH_SIZE

	
The maximum number of records which are sent as a batch across from the client to the server.

The batch size that is used to send batches from the client to the server. As larger hosts are used with bigger Java Virtual Machine sizes, this parameter can be increased to improve performance.

Default value: 1024

	
COMMIT_SIZE

	
The maximum number of records in a single transaction. The default, 0, means commit all input records in one transaction. A positive, nonzero, value denotes that the maximum number of records to be committed at a time.Negative values for this option are invalid.

Default value: 0

	
CREATE_TARG_TABLE

	
Select this option to create the target data object on Oracle BAM Server.

	
DATETIME_PATTERN

	
This option and Locale specifications (for example, LOCALE_LANGUAGE, LOCALE_COUNTRY, and LOCALE_VARIANT) are used to construct a Java SimpleDateFormat object which is used in parsing the date and time data strings.

See Section 53.2.2, "How to Configure DateTime Specification" for information about SimpleDateFormat.

	
DELETE_TEMPORARY_OBJECTS

	
Set this option to NO to retain temporary objects after integration. This option is useful for debugging.

	
DROP_PURGE

	
Set this option to YES to not only drop the work table, but purge it as well. When a table is dropped, it is recoverable in the database's recycle bin. When the table is dropped and purged, it is permanently deleted.

	
GET_COLUMNS

	
Set to Yes to reverse engineer the columns.

	
GET_FOREIGN_KEYS

	
Set to Yes to reverse engineer the foreign keys.

	
GET_INDEXES

	
Set to Yes to reverse engineer the indexes.

	
GET_PRIMARY_KEYS

	
Set to Yes to reverse engineer the primary keys.

	
KEY_CONDITION

	
Set this option to match one or more corresponding rows from source to target. Use the following operators: *, =, !=, <, <=, >, >=. The match value (that is, the where clause value) should be supplied as the mapping value for the target data store's key field in the Diagram tab for the interface in Oracle Data Integrator Designer.

Note that when the * operator is chosen as the KEY_CONDITION option value, all rows are deleted from the target data store, regardless of its key field's mapping value.

	
LAST_BAM_TASK

	
Use this option to manage the life cycle of the Oracle BAM JDBC connection. If this task is the last Oracle BAM task in the work flow, it closes the JDBC connection; otherwise, it leaves the connection open.

	
LOCALE_COUNTRY

	
The country option is a valid ISO Country Code. These codes are the upper-case, two-letter codes as defined by ISO-3166.

This option plus LOCALE_LANGUAGE and LOCALE_VARIANT are used to construct a Java Locale object.

	
LOCALE_LANGUAGE

	
The language option is a valid ISO Language Code. These codes are the lower-case, two-letter codes as defined by ISO-639.

This option plus LOCALE_COUNTRY and LOCALE_VARIANT are used to construct a Java Locale object.

	
LOCALE_VARIANT

	
The variant option is a vendor or browser-specific code. For example, use WIN for Windows, MAC for Macintosh, and POSIX for POSIX. Where there are two variants, separate them with an underscore, and put the most important one first. For example, a Traditional Spanish collation might construct a locale with parameters for language, country and variant as: es, ES, Traditional_WIN.

This option plus LOCALE_LANGUAGE and LOCALE_COUNTRY are used to construct a Java Locale object.

	
LOG_FILE_NAME

	
Specify when USE_LOG is set to Yes. Specify the path and file name of the log. Be sure to set this property value properly (that is, choose a location where user has write permissions) before running the reverse engineering.

	
NON_KEY_MATCHING

	
Determines if the incoming non-key column values are to be compared to the non-key column values in the dimension table.

If NON_KEY_MATCHING is set to true, if the incoming non-key column values match those in the dimension table, the row is inserted into the fact table (which is the target data store). Otherwise, that row insert fails, which might even lead to the entire transaction being rolled back (in case COMMIT_SIZE was set to 0). A COMMIT_SIZE of 1 results in only this row being rolled back and ignored, and all other row inserts progress as usual.

If NON_KEY_MATCHING is set to false and lookup succeeds, incoming non-key column values for the dimension table are ignored.

	
USE_LOG

	
Set to Yes if you want the reverse-engineering process log details in a log file. Specify the log file location using the LOG_FILE_NAME option.

54.4 Creating the Oracle BAM Target

This section details the steps for creating an Oracle BAM target using the Oracle Data Integrator Topology Manager.

For more information about using Oracle Data Integrator, see the Oracle Data Integrator documentation located on the Oracle Technology Network web site at:

http://www.oracle.com/technology/products/oracle-data-integrator/10.1.3/htdocs/1013_support.html

54.4.1 How to Create the Oracle BAM Target

To create an Oracle BAM Target in Oracle Data Integrator:

	
Open the Oracle Data Integrator Topology Manager.

	
Go to Physical Architecture > Technologies > Oracle BAM.

	
Right-click and choose Insert Data Server.

	
Configure the following in the Data Server Definition tab:

	
Name: Oracle BAM target name

	
Server (Data Server): leave blank

	
User: Oracle BAM Administrator user name

	
Password: Oracle BAM Administrator password

	
Configure the following in the JDBC tab:

	
JDBC Driver: any_text_will_do

	
JDBC URL: instance1:hostname:port_number

The instance1 string can be any string.

The hostname value must be the same as the ADCServerName property value in the BAMCommonConfig.xml file, and the port_number value must be the same as the ADCServerPort property value in the BAMCommonConfig.xml file.

	
Do not use the Test button in this dialog, because it is not functional for the integration between Oracle BAM and Oracle Data Integrator. After you successfully reverse engineer the data objects in the Oracle BAM model, then you can verify that the connection information is correct.

	
Click OK.

	
Configure the following in the Physical Data Server dialog:

	
In the Physical Schema Definition tab:

	
Modify the Local Object Mask to be %OBJECT.

	
In the Context tab:

	
Create a new row which automatically introduces a row with the Context name Global.

For that row, the Logical Schema value is initially <Undefined>. You must select the <Undefined> text and replace it with the display name for Oracle BAM.

	
Type in a display name for the Oracle BAM target such as BAM_TARGET as the name of a new Logical Schema. Oracle Data Integrator automatically creates the logical schema.

	
Click OK.

54.5 Reverse Engineering the Oracle BAM Schema

You must be able to see the Oracle BAM schema in Oracle Data Integrator before you can do any operations on a particular Oracle BAM data object. To accomplish this, the Oracle BAM schema (that is, all of the data objects in Oracle BAM) must be reverse engineered using the RKM Oracle BAM knowledge module described in Table 54-3.

To reverse engineer the Oracle BAM schema:

	
Create a Model on the Oracle BAM target created in Section 54.4, "Creating the Oracle BAM Target."

	
Configure the following in the Definition tab:

	
Technology: Oracle BAM target

	
Logical Schema: BAM_TARGET

	
Configure the following in the Reverse tab:

	
Choose Customized reverse.

	
Context: Global

	
Select your KM: RKM Oracle BAM

	
Note:

Because this reverse engineering is not done using a JDBC driver, it is not possible to right-click a data store and view its data.

	
Click Reverse to begin reverse engineering.

You can monitor the reverse engineering process by viewing its progress in Oracle Data Integrator Operator.

The reverse engineering produces a reverse.log file. The name and location of the log file can be changed in the LOG_FILE_NAME option.

Any of the knowledge module options can be changed on this tab (they are described in Table 54-4).

	
When reverse engineering is complete, the metadata for the Oracle BAM schema appears in Oracle Data Integrator Designer, under the Oracle BAM target node.

54.6 Updating the Oracle Data Integrator External Data Source Definition

When you install the Oracle BAM integration files for Oracle Data Integrator with a correctly populated properties file, you are not required to do any other configuration in Oracle BAM. Two external data source (EDS) definitions are created during the installation process, and they are populated with the correct values to connect Oracle BAM Server with the ODI_Master and ODI_Work repositories in Oracle Data Integrator. These Oracle Data Integrator-specific EDS definitions must never be deleted.

There are cases in which you must update the Oracle Data Integrator EDS definitions:

	
If you change the Oracle Data Integrator login credentials, you must update the Oracle Data Integrator EDS definitions in Oracle BAM Architect.

	
If the ODI_Master or ODI_Work repositories are moved to different hosts after the initial installation, you must update the corresponding EDS definitions in Oracle BAM Architect.

54.6.1 How to Update the Oracle Data Integrator External Data Source Definitions

To update the Oracle Data Integrator external data source definitions:

	
Open Oracle BAM Architect, and go to the External Data Sources page.

Figure 54-1 Opening External Data Source Page in Oracle BAM Architect

[image: Description of Figure 54-1 follows]

	
Select ODI_Master or ODI_Work, and click Edit.

Figure 54-2 Editing the ODI_Master External Data Source

[image: Description of Figure 54-2 follows]

	
Update the Login, Password, or Connection String parameters as needed, and click Save.

54.7 Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts

Alerts created in Oracle BAM can launch Oracle Data Integrator scenarios when specified conditions are met. See Section F.3.9, "Run an Oracle Data Integrator Scenario" for more information.

54.8 Running Oracle Data Integrator Agent as a Daemon or a Microsoft Windows Service With Oracle BAM Embedded

There are several ways to run Oracle Data Integrator scenarios in which Oracle BAM functionality has been embedded. This section provides information about configuring Oracle BAM if you run the Oracle Data Integrator agent as a daemon or a Microsoft Windows Service.

	
On the Oracle BAM host, go to the ORACLE_HOME\bam\ODI\tools\wrapper\conf directory.

	
Copy the two files contained in that directory (snpsagent.conf.bam and readme.txt) to the host on which the Oracle Data Integrator agent runs as a daemon or service, in the ODI_HOME\tools\wrapper\conf directory.

	
Follow the instructions in the readme.txt file in that directory to configure the Oracle Data Integrator agent to run with Oracle BAM.

The agent.bat (or agent.sh) file picks up the same environment variables as do the other Oracle Data Integrator applications (such as Designer, Topology, Operator). As long as the Oracle Data Integrator integration installation has been performed on the Oracle Data Integrator directory in which the agent script runs, no additional steps are needed to run the Oracle Data Integrator agent as a standalone application or as a daemon or service.

55 Creating External Data Sources

This chapter contains the information needed to create and manage External Data Sources (EDS).

This chapter contains the following topics:

	
Section 55.1, "Introduction to External Data Sources"

	
Section 55.2, "Creating External Data Sources"

	
Section 55.3, "External Data Source Example"

	
Section 55.4, "Use Case: Creating an EDS Against Oracle Business Intelligence Enterprise Edition"

55.1 Introduction to External Data Sources

An External Data Source (EDS) is a connection to an external database. An EDS usually contains data that does not change very much or data that is too large to bring into the Oracle BAM Active Data Cache (ADC).

The EDS definition in Oracle BAM acts as a pointer to the external data. For example, looking up the customer name based on a customer code in a customer management system. The customer name-code mapping is fairly static so that bringing that external data into Oracle BAM is not required.

EDS definitions can be exported and imported using ICommand, but you cannot import or edit the contents using ICommand or Oracle BAM Architect.

Passwords are entered in clear text. You cannot use DSNs (data source names).

To view the existing EDS:

	
Select External Data Sources from the Oracle BAM Architect function list.

Figure 55-1 Oracle BAM Architect Function List

[image: Description of Figure 55-1 follows]

55.2 Creating External Data Sources

Oracle BAM external data sources are created, edited, and deleted using Oracle BAM Architect.

55.2.1 How to Create an External Data Source

To define an EDS:

	
Select External Data Sources from the Oracle BAM Architect function list.

	
Click Create.

	
Enter a name and a description for the EDS.

	
Caution:

A single or double quotation mark in an Oracle BAM object name, such as a data object, report, or enterprise message source name, causes a runtime error.
Do not include single or double quotation marks in an Oracle BAM object name.

	
Enter Driver, for example, oracle.jdbc.driver.OracleDriver for Oracle.

	
Enter database user credentials in the Login and Password fields.

	
Enter Connection string/URL, for example

jdbc:oracle:thin:@db_host_name:db_port:db_instance

55.2.2 What You May Need to Know About Oracle Data Integrator External Data Sources

If you install the integration files for Oracle BAM and Oracle Data Integrator, two EDS definitions are created in Oracle BAM Architect: ODI_Master and ODI_Work. These EDS definitions cannot be deleted from Oracle BAM Architect, and their configuration should not be changed unless you are updating your Oracle Data Integrator host.

55.2.3 How to Edit an External Data Source

To edit an EDS:

	
Select External Data Sources from the Oracle BAM Architect function list.

	
Select the EDS to edit.

The EDS properties display.

	
Select Edit.

	
Make the changes and click Save.

55.2.4 How to Delete an External Data Source

	
Note:

If the EDS definitions ODI_Master and ODI_Work appear in Oracle BAM Architect, do not delete them. These EDS definitions are used by the integration between Oracle BAM and Oracle Data Integrator

To delete an EDS:

	
Select External Data Sources from the Oracle BAM Architect function list.

	
Select the EDS to delete.

The data source properties display.

	
Select Delete.

	
Click OK to confirm deletion of the data source.

The data source is deleted.

55.3 External Data Source Example

This example uses the sample SCOTT user account and the EMP table in the Oracle database. You may need to unlock the account before proceeding with this example.

Step 1: Create an EDS

	
Select External Data Sources from the Oracle BAM Architect function list.

	
Click Create.

	
Enter myDataSource in the External Data Source Name field.

	
Enter My Example External Data Source in the Description field.

	
Enter Microsoft ODBC for Oracle in the Driver field.

	
Enter scott in the Login field and tiger in the Password field.

This sample account comes with your Oracle database installation. If you do not have this sample account you can create a new account and use it for this example.

	
Enter server=net_service_name in the Connection string/URL.

This entry needs to be a Net Service Name defined in your tnsnames.ora file.

	
Click Save.

	
Click Continue.

The EDS information is displayed on the screen.

Step 2: Create a Data Object using the EDS

	
Select Data Objects from the Oracle BAM Architect function list.

	
Click Create Data Object.

	
Enter Employees in the Name for new Data Object field.

	
Leave the slash (/) in the Location for new Data Object field.

The data object appears in the top level Data Objects folder.

	
Leave the Tip text field blank.

	
Enter Oracle Database Sample EMP Table in the Description field.

	
Select the External Data Source checkbox.

	
Select myDataSource from the External Data Source list.

	
Enter emp in the External Table Name field.

	
Add the following fields to the data object:

Table 55-1 Fields in Employees Data Object

	Field	External Field Name	Field Type
	
ename

	
ename

	
String

	
empno

	
empno

	
Integer

	
job

	
job

	
String

	
mgr

	
mgr

	
Integer

	
hiredate

	
hiredate

	
DateTime

	
sal

	
sal

	
Decimal

	
comm

	
comm

	
Decimal

	
deptno

	
deptno

	
Integer

Keep default settings for field attributes not specified in the table.

	
Click Create Data Object.

	
Click Continue.

	
Click Contents to view the contents of the data object

The data in the Employees data object should match the data in the Oracle database sample EMP table.

55.4 Use Case: Creating an EDS Against Oracle Business Intelligence Enterprise Edition

The following are the steps to configure an EDS definition in Oracle BAM Architect to work with Oracle Business Intelligence Enterprise Edition.

	
Get the bijdbc.jar file and add it to the Oracle WebLogic Server class path.

Add the JAR to WEBLOGIC_CLASSPATH in

WLS_HOME/wlserver 10.3/common/bin/commEnv.cmd

	
Create an EDS in Oracle BAM Architect with the following details:

Driver: oracle.bi.jdbc.AnaJdbcDriver

Login: User name for the Oracle Business Intelligence Server

Password: Password for the Oracle Business Intelligence Server

Connection String/URL: jdbc:oraclebi://host_name:port_number/catalog=catalog_name;

For example: jdbc:oraclebi://bihost:9703/catalog=Paint;

See "Step 1: Create an EDS" for an example EDS configuration.

	
Create a data object based on this EDS. See "Step 2: Create a Data Object using the EDS" for an example.

56 Using Oracle BAM Web Services

The Oracle BAM web services are part of the Oracle BAM technologies that feeds data to the Oracle BAM Server. This chapter provides information about using the Oracle BAM web services.

This chapter includes the following sections:

	
Section 56.1, "Introduction to Oracle BAM Web Services"

	
Section 56.2, "Using the DataObjectOperations Web Services"

	
Section 56.3, "Using the DataObjectDefinition Web Service"

	
Section 56.4, "Using the ManualRuleFire Web Service"

	
Section 56.5, "Using the ICommand Web Service"

56.1 Introduction to Oracle BAM Web Services

The Oracle BAM web services allow users to build applications that publish data to the Oracle BAM Server for use in real-time charts and dashboards. Any client that can talk to standard web services can use these APIs to publish data to Oracle BAM. The Oracle BAM web services interfaces allow integration of Oracle BAM with other components such as Oracle BPEL Process Manager and Oracle Mediator, and they facilitate SOA composite application development.

	
Note:

This option cannot be used for complex processing of messages, performing lookups in Oracle BAM Active Data Cache to augment the data, or initial bulk uploads to set up a star schema.

The data objects in the Oracle BAM Server are available using the Oracle BAM web services. There are several other meta objects that are available using the ICommand web service.

External web services can be called by an Oracle BAM alert rule. See Section 57.2, "Creating Alert Rules" for more information.

Oracle BAM provides the following static untyped web service APIs:

	
DataObjectOperations10131 allows clients developed for Oracle BAM 10.1.3.x servers to make web service calls to DataObjectOperations on Oracle BAM 11g servers.

	
DataObjectOperationsByID allows developers to interact with data objects by their ID (for example, _Call_Center).

	
DataObjectOperationsByName allows developers to interact with data objects by their display names (for example, Call Center).

	
DataObjectDefinition performs operations to get, create, delete, and update definitions of Data Objects.

	
ManualRuleFire is used by other Oracle BAM services to launch rules created in Oracle BAM Active Studio.

	
ICommand is a DOS command-line utility that provides a set of commands that perform various operations on items in the Oracle BAM Server. The ICommand web service exposes all of the ICommand functionality through a web service.

These services can be discovered within an Oracle BAM Server using a WSIL interface.

56.2 Using the DataObjectOperations Web Services

The DataObjectOperations web service allows users to manipulate the Data Objects in the Oracle BAM Server by inserting, updating, deleting and upserting rows into the Data Objects.

The following operations are supported by the DataObjectOperations web service interfaces.

	
Batch performs batch operations on a data object. Batch is not supported for DataObjectOperationsByName web service.

	
Delete removes a row from the data object.

	
Get fetches the details from a data object per the specifications in the XML payload. Get is only available in DataObjectOperationsByName web service.

	
Insert adds a row to the data object.

	
Upsert inserts new data into an existing row in a data object if the row exists. If the row does not exist a new row is created.

	
Update inserts new data into an existing row in a data object.

The request and response messages vary depending on the operation used. See Section E.1, "DataObjectOperations10131," Section E.2, "DataObjectOperationsByName," and Section E.3, "DataObjectOperationsByID" for information about using the operations supported by each of the web services.

56.2.1 How to Use the DataObjectOperations Web Services

To use the DataObjectOperations web service, create a web service proxy in your application in Oracle JDeveloper.

The Web Services Description Language (WSDL) files for the DataObjectOperations web services are available at the following URLs on the system where Oracle BAM web services are installed.

http://host_name:7001/OracleBAMWS/Services/DataObject/DataObjectOperations.asmx?WSDL

http://host_name:7001/OracleBAMWS/WebServices/DataObjectOperationsByID?WSDL

http://host_name:7001/OracleBAMWS/WebServices/DataObjectOperationsByName?WSDL

	
Note:

The default port for Oracle BAM web services on the Administration Server is 7001. On managed servers the default port number is 9001.

When the web service proxy is created, you see it in the Application Navigator under the Application Sources folder in your project as shown in Figure 56-1.

Figure 56-1 DataObjectOperations Web service proxy in Application Sources

[image: web service proxy node]

56.3 Using the DataObjectDefinition Web Service

The DataObjectDefinition web service allows a web service client to create, update, delete, and get data object definitions.

The following operations are supported by DataObjectDefinition web service.

	
Create creates a data object. For more information see Section E.4.1, "Create."

	
Delete removes a data object from the server. For more information see Section E.4.2, "Delete."

	
Get returns the definition of an existing data object. For more information see Section E.4.3, "Get."

	
Update changes the definition of a data object. For more information see Section E.4.4, "Update."

The request and response messages vary depending on the operation used. See Section E.4, "DataObjectDefinition Operations" for more information.

56.3.1 How to Use the DataObjectDefinition Web Service

To use the DataObjectDefinition web service you create a web service proxy in your application in Oracle JDeveloper.

The WSDL file for the DataObjectDefinition web service is available at the following URL on the system where Oracle BAM web services are installed.

http://host_name:7001/OracleBAMWS/WebServices/DataObjectDefinition?WSDL

	
Note:

The default port for Oracle BAM web services on the Administration Server is 7001. On managed servers the default port number is 9001.

When the web service proxy is created, you see it in the Application Navigator under the Application Sources folder in your project as shown in Figure 56-2.

Figure 56-2 DataObjectDefinition Web service proxy in Application Sources

[image: web service proxy node]

56.4 Using the ManualRuleFire Web Service

The ManualRuleFire web service allows users to launch rules in the Oracle BAM Server. FireRuleByName is the available operation. See Section E.5, "ManualRuleFire Operations" for details.

56.4.1 How to Use the ManualRuleFire Web Service

To use the ManualRuleFire web service, you create a web service proxy in your application in Oracle JDeveloper.

The WSDL file for the ManualRuleFire web service is available at the following URL on the system where Oracle BAM web services are installed.

http://host_name:7001/OracleBAMWS/WebServices/ManualRuleFire?WSDL

	
Note:

The default port for Oracle BAM web services on the Administration Server is 7001. On managed servers the default port number is 9001.

When the web service proxy is created, you see it in the Application Navigator under the Application Sources folder in your project.

56.5 Using the ICommand Web Service

ICommand is available as a web service for application developers who want to interact with ICommand features over HTTP.

The ICommand web service includes most of the same features as the command-line utility. For example, you can use it to:

	
Delete a data object

	
Import rows into a data object

	
Export a report

The key differences revolve around the fact that the web service cannot access files on the remote system. Therefore, you cannot pass in a file name when using the import command or the export command.

Instead, you must pass in the import content inline. Similarly, you receive the export content inline.

Commands other than import and export generally work the same as with the command-line utility.

For more information about the commands and parameters provided by ICommand, see Appendix G, "Oracle BAM ICommand Operations and File Formats."

The ICommand web service has a single method, called Batch. It takes a single input parameter, which is a string containing a set of commands in the syntax described in Section G.3, "Format of Command File." The return value is a string containing the results of executing each command, in the log syntax described in Section G.4, "Format of Log File."

56.5.1 How to Use the ICommand Web Service

The WSDL file for the ICommand web service is available on the system where Report Server has been installed. It is available at the following URL:

http://host_name:7001/OracleBAMWS/WebServices/ICommand?WSDL

	
Note:

The default port for Oracle BAM web services on the Administration Server is 7001. On managed servers the default port number is 9001.

Example 56-1 Deleting a Data Object (Input)

<OracleBAMCommands>
 <Delete type="dataobject" name="/test123"/>
</OracleBAMCommands>

57 Creating Oracle BAM Alerts

This chapter describes how to create alerts in Oracle BAM.

This chapter contains the following topics:

	
Section 57.1, "Introduction to Creating Alerts"

	
Section 57.2, "Creating Alert Rules"

	
Section 57.3, "Creating Alert Rules From Templates"

	
Section 57.4, "Creating Alert Rules With Messages"

	
Section 57.5, "Creating Complex Alerts"

	
Section 57.6, "Using Alert History"

	
Section 57.7, "Launching Alerts by Invoking Web Services"

	
Section 57.8, "Calling an External Action"

57.1 Introduction to Creating Alerts

Alerts are launched by a set of specified events and conditions, known as a rule. Alerts can be launched by data changing in a report or can send a report to users daily, hourly, or at set intervals. Events in an alert rule can be an amount of time, a specific time, or a change in a specific report. Conditions restrict the alert rule to an event occurring between two specific times or dates. As a result of events and conditions, reports can be sent to users through email.

Alerts can be created in both the Oracle BAM Architect and Oracle BAM Active Studio web applications.

Alerts are shown in the Alert Rules table. In Oracle BAM Active Studio the table includes a Last Launched column that indicates the last time the alert rule was fired. Each alert name is accompanied by an icon indicating its status as described in Table 57-1.

Figure 57-1 Alert Rules Table in Oracle BAM Architect

[image: Description of Figure 57-1 follows]

Table 57-1 Alert Rule Icons

	Icon	Description
	
[image: normal alert icon]

	
Normal indicates that the alert is active and fires under the conditions specified in the rule.

	
[image: invalid alert icon]

	
Invalid indicates that an alert has become orphaned or broken due to some error. This icon is displayed when an alert cannot be loaded properly into the Event Engine. The rule might require correction.

For example, when a report is deleted and an alert based on this report still exists, that alert cannot be loaded properly.

This icon appears only when rules are loaded into the Event Engine (on restarts). Alerts displayed with this icon do not fire again until they are edited and corrected.

	
[image: expired alert icon]

	
Expired means that the alert does not fire again. This icon is seen in time based alerts which fire only one time, after the alert has fired. However, these alerts can be edited and reused, resetting the state to Normal.

Note that inactive and expired alerts behave differently. An alert can be deactivated only if it is running. This behavior is a benefit to users who do not want to receive alerts for some time interval, but want to retain the ability to activate the alert at a convenient time. Alerts that are not active, but still valid (displayed with the Normal icon) can be activated again.

Those alerts that are expired have run for the specified condition and do not run again. They cannot be activated to run again. However, if you want to reuse an expired alert, double click the alert, update the definition to make it a valid rule, and save the alert rule definition. The alert is reloaded and is ready to fire again.

	
Note:

If any changes to the time or time zone are made on the Oracle BAM Server system, the Oracle BAM Server application must be restarted or time-based alerts misfire.

57.2 Creating Alert Rules

A rule specifies the events and conditions under which an alert fires.

	
Note:

An alert fires only if its triggering event conditions are met from the point in time the alert is defined (or reenabled) and forward. An alert does not fire if its conditions were met before it was defined, or while it was disabled.

57.2.1 How to Create an Alert Rule

This section describes how to create Oracle BAM alert rules in Oracle BAM Architect. The procedure is the same in Oracle BAM Active Studio.

To create a rule:

	
Select Alerts in the Oracle BAM Architect function list.

In Oracle BAM Active Studio, select the Alerts tab.

	
Click Create A New Alert.

The Rule Creation and Edit dialog box opens.

	
Click Create A Rule.

	
Enter a name for the rule.

	
Caution:

A single or double quotation mark in an Oracle BAM object name, such as a data object, report, or enterprise message source name, causes a runtime error.
Do not include single or double quotation marks in an Oracle BAM object name.

	
Select an event that launches the alert.

See Section F.1, "Events" for descriptions of each event.

	
Click Next.

	
Select one or more conditions, if needed.

See Section F.2, "Conditions" for descriptions of each condition.

	
Select one or more actions. See Section F.3, "Actions" for descriptions of each action.

	
In the rule expression, click each underlined item and specify a value to complete the alert rule.

For example, click select report, and choose a report in the dialog box that opens. Other values you define include user names receiving reports, dates and times, time intervals, and filter expressions for a specific field. To continue adding conditions or actions, click the last line in the expression and then select another condition or action.

You can click the Back and Next buttons to go between the events page and the page containing actions and conditions, and make changes to those parts of the rule expression you have constructed.

	
You can click the Frequency Constraint button to set a limit to how often an alert can launch.

The default frequency constraint for alerts is five seconds. Type a number and select a time measurement such as seconds, minutes, or hours, and click OK. To turn off the frequency constraint, uncheck the Constraint Enabled checkbox. For more information about frequency constraint see Section F.4, "Frequency Constraint."

	
Click Delete this expression to remove lines from the alert rule.

	
Click OK.

The alert rule is added to list and is active.

57.2.2 How to Activate Alerts

When you create an alert rule, it is automatically active. If you want an alert to be temporarily inactive but you do not want to delete it, you can turn it off by deselecting the Activate checkbox.

To change the activity status of an alert rule:

	
Select Alerts from the Oracle BAM Architect function list.

	
Select the Activate checkbox for the alert rule.

A checked box means the alert rule is active.

An unchecked box means the alert rule is inactive.

Selecting the Activate checkbox does not cause an alert to launch, it only enables the rule so that if the specified event occurs, the alert launches.

An exclamation mark on the alert icon indicates it has launched and is not valid again, or because items that it references are missing and it cannot launch.

57.2.3 How to Modify Alert Rules

When you modify alert rules created from a template, you can add new lines and select conditions and actions the same as when you build alert rules without templates.

To modify an alert rule:

	
Select the alert rule to edit.

	
Click Edit in the Alert Actions list.

The Rule Creation and Edit dialog box opens.

	
Make changes to the alert and click OK.

57.2.4 How to Delete an Alert

To delete an alert:

	
Select the alert to delete.

	
Click Delete in the Alert Actions list.

A dialog box opens to confirm alert deletion.

	
Click OK.

The alert is deleted.

57.3 Creating Alert Rules From Templates

Alert rule templates are a convenient preselected group of events and conditions based on some common use cases.

57.3.1 How to Create Alert Rules From Templates

To create an alert rule from a template:

	
Click Create A New Alert.

The Create Alert Rule dialog box opens.

	
Click Create A Rule From A Template.

	
Enter a name for the alert rule.

	
Select a template from the list.

	
In the Rule Expression box, click each underlined item and specify a value to complete the alert rule. For example, click select report, and choose a report in the dialog box that opens. Other values you define include user names receiving reports, dates and times, time intervals, and filter expressions for a specific field.

	
You can click Frequency Constraint to specify how often an alert can launch. The default frequency constraint for alerts is five seconds. Enter a number and select a time measurement such as seconds, minutes, or hours, and click OK.

	
You can click Modify this rule to modify the rule without using the template. This provides more options for creating rules.

	
Click OK.

The alert rule is added to list and is active.

57.4 Creating Alert Rules With Messages

You can create alert rules that send messages. The messages can contain information such as report names, links to reports, and user names. Messages can also include variables that are set when the alert is launched, such as the time that an event occurred and the data that launched the event. To use data variables, the event must be based on data.

57.4.1 How to Create an Alert Rule With a Message

You can create alert rules that send messages. The messages can contain information such as report names, links to reports, and user names. Messages can also include variables that are set when the alert is launched, such as the time that an event occurred and the data that launched the event. To use data variables, the event must be based on data.

To create an alert rule that includes a message:

	
Start building an alert rule.

	
Select the action Send a message via email.

	
Click create message in the rule expression.

The Alert Message dialog box opens.

	
Enter a subject in the Subject line.

	
Enter the message in the Message Text box.

	
Include special fields into the message.

Special fields are listed in the box in the lower left corner of the Alert Message dialog box. The special fields listed change when reports are selected on the right side of the dialog box.

To insert a special field into the message:

	
Select a special field from the list.

	
Click Insert into subject or Insert into text.

You can insert multiple values of the same type, for example, multiple links to different reports.

	
Send Report Name inserts name of selected report.

	
Send Report Owner inserts owner name of selected report.

	
Send Report Link inserts link to selected report.

	
Changed Report Name inserts name of the changed report.

	
Changed Report Owner inserts Owner Name Of Changed Report.

	
Target User inserts user name of message recipient.

	
Date/Time Sent inserts date and time of message sent.

	
Click OK.

57.5 Creating Complex Alerts

You can create nested rules with many actions and chained rules that launch other rules.

You can chain rules by creating two types of rules:

	
A dependent rule that must be launched by another rule.

	
A rule with an action to launch a dependent rule.

57.5.1 How to Create a Dependent Rule

To create dependent rules:

	
Create a rule that includes the event When this rule is launched. No value is required for this event.

	
Create a rule that includes the action Launch a rule or Launch rule if an action fails. The Launch rule if action fails applies to any of the actions contained in the rule.

	
Click select rule in the action.

The Select Dependent Rule dialog box opens.

	
Select a dependent rule. Only rules that include the When this rule is launched event are displayed in the list.

	
Click OK.

To handle a failing action, add the action Launch rule if action fails. For example, if a rule is supposed to send a message, and for some reason the message does not send, you could launch another rule to notify you.

57.6 Using Alert History

Alert history is available in Oracle BAM Active Studio providing a list of alert rules triggered and their status messages.

[image: Description of bam_alerthistmsg.gif follows]

57.6.1 How to View Alert History

You can view recent history of alert activity on the Alerts tab in Oracle BAM Active Studio. The Alerts History list displays the 25 most recent alerts launched.

In the Alerts History list, you can view the names of recently launched alerts, any messages associated with the alerts, the users who created the alerts, and the time and date that the alert rules were triggered.

In the case of alert rules that send e-mail, the Alerts History list only displays the alert if the user currently logged in is an alert e-mail recipient. It is not listed in the Alerts History list--even if the user is the creator of the alert--if the user is not a recipient of the alert.

Alerts History Messages

The Message column of the Alerts History list provides information about the success or failure of alert delivery. The successful alert is shown with a green checkmark next to the message. The unsuccessful alert is displayed with a red x icon and a message indicating how the alert failed at the time of loading or processing. Click the x icon for additional information about the error.

57.6.2 How to Clear Alert History

When many alerts are actively launching and the alert history list becomes long, you might want to clear your alert history list.

To clear the alert history:

	
On the Alerts tab, click Clear alert history.

A message is displayed to confirm to clear alert history.

	
Click OK.

The alert history list is deleted. New alerts launched after clearing appear in the alert history list.

57.7 Launching Alerts by Invoking Web Services

You can use the alerts web service to manually launch alerts. For more information, refer to:

http://host:http_port/OracleBAMWS/WebServices/ManualRuleFire?wsdl

You define the rule name using the format:

username.alertname

	
Note:

Oracle BAM Active Studio URLs used in alerts and report links contain a virtual directory using the product build number for caching and performance purposes. This directory must be included in links, and it is not recommended to edit these links. Links created with a previous version of Oracle BAM do not work after a product upgrade. The alert requires editing or the report shortcut must be copied again.

57.8 Calling an External Action

Call an External Action is used to develop a custom action. For users whose requirements cannot be fulfilled by the actions provided by Oracle BAM, this feature is used to extend the action set.

External actional actions are not seen in the Oracle BAM Alerts user interface by default. They must be registered with Oracle BAM before they are seen in the user interface.

To do this, the EventEngine interface must be implemented and you must develop an action around it. That means you must write Java code, bundle the compiled code in a JAR file. Then register it in Oracle BAM Architect as an action in the System/Alerts/External Actions data object.

Call an External Action action is not required to invoke Web services. The action was used in this way in pre 11g releases, but was replaced by Call a Web Service action in Oracle BAM 11g. Call a Web Service action has a more sophisticated Web services client, which is dynamic and can invoke any service by reading WSDLs at runtime.

58 Using ICommand

This chapter provides usage information for the ICommand command-line utility.

This chapter includes the following sections:

	
Section 58.1, "Introduction to ICommand"

	
Section 58.2, "Executing ICommand"

	
Section 58.3, "Specifying the Command and Option Syntax"

	
Section 58.4, "Using Command-line-only Parameters"

	
Section 58.5, "Running ICommand Remotely"

58.1 Introduction to ICommand

ICommand is a command-line utility (and web service) that provides a set of commands that perform various operations on items in the Active Data Cache. You can use ICommand to export, import, rename, clear, and delete items from Active Data Cache. The commands can be contained in an input XML file, or a single command can be entered on the command line. Informational and error messages may be output to either the command window or to an XML file.

For more information about using the ICommand web service, see Section 56.5, "Using the ICommand Web Service."

For information about individual commands and their parameters see Appendix G, "Oracle BAM ICommand Operations and File Formats."

58.2 Executing ICommand

ICommand can be executed using the ORACLE_HOME\bam\bin\icommand.bat file on the Microsoft Windows platform and ORACLE_HOME\bam\bin\icommand.sh shell script on UNIX platforms.

Just entering icommand on the command line provides the user with a summary of the ICommand operations and parameters.

Before attempting to execute ICommand, the JAVA_HOME environment variable must be set to point to the root directory of the supported version of Java Development Kit (see the Oracle BAM support matrix on Oracle Technology Network web site for supported JDK versions).

	
Note:

When Oracle BAM is installed, ICommand looks for the Oracle BAM Server on port 9001 by default. If the Oracle BAM Server port number is changed from the default during the setup and configuration of Oracle BAM, then the user must manually change the port number from 9001 to the new port number in the file BAMICommandConfig.xml.
The property to change is

<ADCServerPort>9001</ADCServerPort>

The BAMICommandConfig.xml file is located in WLS_HOME/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/.

58.3 Specifying the Command and Option Syntax

The basic structure of the ICommand command line entry is as follows:

icommand -username user_name -cmd command_name -name value -type value [-parameter value]

All parameters given on the command line are in the following form:

-parameter value

The parameter portion is not case sensitive. If the value portion contains spaces or other special characters, it must be enclosed in double quotation marks. For example

icommand -cmd export -name "/Samples/Call Center" -type dataobject
 -file C:\CallCenter.xml

It is required to use quotation marks around report names and file names that contain spaces and other special characters.

For some parameters, the value may be omitted. See Section G.2, "Detailed Operation Descriptions," for information about individual parameter values.

58.3.1 How to Specify the Security Credentials

ICommand requires users to provide security credentials when running operations. If no security credentials have been specified in the configuration file, ICommand securely prompts for a user name and password.

To use default credentials, add the ICommand_Default_User_Name and ICommand_Default_Password properties to the WLS_HOME/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/BAMICommandConfig.xml file. For example:

<ICommand_Default_User_Name>user_name</ICommand_Default_User_Name>
<ICommand_Default_Password>password</ICommand_Default_Password>

However, command line entries always override the properties specified in the configuration file.

The user name and password for running ICommand operations can come from the configuration file, command line prompts, or command line options as follows:

	
If the user name and password are only specified in the configuration file (that is, -username parameter is not used in the command line), then the ICommand_Default_User_Name and ICommand_Default_Password values in the configuration file are used.

	
If only the user name is specified in the configuration file and the password is not, then the user name value is used, and ICommand prompts the user for the password at the command line.

	
If user name is specified on the command line, then that value is used, and ICommand prompts the user for a password. The password prompt occurs regardless of any properties specified in the configuration file. For example:

icommand -cmd export -name TestDO -file C:\TestDO.xml -username user_name

58.3.2 How to Specify the Command

On the command line, commands are specified by the value of the cmd parameter. Options for the command are specified by additional parameters. For example

icommand -cmd export -name TestDO
 -type dataobject -file C:\TestDO.xml

In an XML command file, commands are specified by the XML tag. Options for the command are given as XML attribute values of the command tag, in the form parametername=value.

Command names and parameter values (except for Active Data Cache item names) are not case sensitive.

For information about individual commands and their parameters see Appendix G, "Oracle BAM ICommand Operations and File Formats."

58.3.3 How to Specify Object Names

Whenever an object name is specified in a command, the following rules apply.

General rules

When specified on a command line, if the name contains spaces or characters that have special meaning to DOS or UNIX, the name must be quoted according to the rules for command lines.

When specified in an XML command file, if the name contains characters that have special meaning within XML, the standard XML escaping must be used.

Data Objects

If the Data Object is not at the root, the full path name must be given, as in the following example:

/MyFolder/MySubfolder/MyDataObject

If the Data Object is at the root, the leading slash (/) is optional. The following two examples are equivalent:

/MyDataObject
MyDataObject

Data Object Folders

To specify a folder in Data Objects you must include the prefix /public/DataObject/ at the beginning of the path to the folder.

/public/DataObject/MyFolder/MySubfolder

Reports and Report Folders

The full path name plus the appropriate prefix must be specified as in the following examples.

For shared reports the /public/Report/ prefix must be included as shown here:

"/public/Report/Subfolder1/My Report"

For private reports the /private:user_name/Report/ prefix must be included:

"/private:jsmith/Report/Subfolder1/My Report"

The /private:user_name/ part of the prefix may be omitted if the user running ICommand is the user that owns the report.

"Report/Subfolder1/My Report"

The path information without the public or private prefix is saved in the export file.

Similarly, a report folder can be specified using the appropriate prefix.

/public/Report/Subfolder1

/private:jsmith/Report/Subfolder1

Alert Rules

Either the name of the Alert, or the full name of the Alert may be specified. The following two examples are equivalent for Alerts if the user running ICommand is the user that owns Alert1:

Alert1

/private:user_name/Rule/Alert1

If the user running ICommand is not the owner of Alert1, then only the second form may be used.

All other object types

Specify the full name of the object.

58.3.4 How to Specify Multiple Parameter Targets

Instead of creating a separate command line for each Active Data Cache object type, such as Dataobject, Folder, Report, and Rule, on which to execute a particular command, ICommand enables you to pass parameter values to several object types in the same command line.

For example:

icommand -cmd export -type all -report,rule,folder:owner 1
-dataobject,folder:permissions 1 -systemobjects 1 -file filename.xml

In this example, while exporting all of the objects in the system, the command passes owner = 1 to the report, rule, and folder Active Data Cache object types. The command also passes permissions = 1 to the dataobject and folder object types. The comma (,) separates the object types and the parameter is listed after a colon (:).

Supplying multiple values in the example single command line gives the same results as the following three commands:

icommand -cmd export -type report -owner 1 ...
icommand -cmd export -type rule -owner 1 ...
icommand -cmd export -type folder -owner 1 ...

58.4 Using Command-line-only Parameters

The following parameters can appear only on the command line:

	
Cmd

-cmd commandname

Optional parameter that specifies a single command to be executed. Any parameters needed for the command must also be on the command line.

The Cmdfile and cmd parameters are mutually exclusive. Exactly one of them must be present.

	
Cmdfile

-cmdfile file_name

Optional parameter that specifies the name of the file that contains commands to be processed. Because this is an XML file, it would usually have the XML extension, although that is not required.

The Cmdfile and cmd parameters are mutually exclusive. Exactly one of them must be present.

	
Debug

-debug flag

Optional parameter that indicates whether extra debugging information is to be output if there is an error. Any value other than 0 (zero), or the absence of any value, indicates that debugging information is to be output. If this parameter is not present, no debugging information is output.

	
Domain

-domain domain_name

Optional parameter that specifies the domain name to use to login to the Active Data Cache (the name of the computer on which the Active Data Cache server is running).

If this parameter is omitted, main is used, which means the server information is obtained from the ADCServerName key in the ICommand.exe.config file.

If the reserved value ADCInProcServer is used, then ICommand directly accesses the Active Data Cache database (which must be local on the same system on which ICommand is running) rather than contacting the Active Data Cache server. This option is necessary only when the Active Data Cache server is not running; otherwise corruption of the database could occur. The information about the location and structure of the Active Data Cache database is obtained from various keys in the ICommand.exe.config file.

	
Logfile

-logfile file_name

Optional parameter that specifies the name of the file to which results and errors are logged. If the file does not exist, it is created. If the file does exist, any contents are overwritten. Because this is an XML file, it would usually have the XML extension, although that is not required.

If this parameter is not present, results and errors are output to the console.

See Section G.4, "Format of Log File" for more information about the log file format.

	
Logmode

-logmode mode

Optional parameter that indicates whether an existing log file is to be overwritten or appended to. The possible values for this parameter are append or overwrite. In either case, if the log file does not exist it is created.

If this parameter is not present, overwrite is assumed.

Note that because it is XML that is being added to the log file, if the append option is used the XML produced may not be strictly legal, as there is no top level root tag in the XML produced by successive appends (ICommand appends the same tag each time it is run). It is left up to the user to handle this.

	
Username

-username user_name

Optional parameter that specifies the username that the command should run as. There is no password parameter.

ICommand requires users to specify security credentials when running commands. ICommand securely prompts for a user name and password. If the -username parameter is specified on the command line, ICommand prompts the user for the password only.

58.5 Running ICommand Remotely

You can run ICommand from a remote system (where Oracle BAM is installed) and execute the commands on a server located remotely. To run ICommand remotely, add the properties ServerName and ServerPort in WLS_HOME/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/BAMICommandConfig.xml, as shown below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<BAMICommand>
 <ADCServerName>host_name</ADCServerName>
 <ADCServerPort>7001</ADCServerPort>
 <Communication_Protocol>t3</Communication_Protocol>
 <SensorFactory>oracle.bam.common.statistics.noop.SensorFactoryImpl</SensorFactor
y>
 <GenericSatelliteChannelName>invm:topic/oracle.bam.messaging.systemobjectnotific
ation</GenericSatelliteChannelName>
</BAMICommand>

The Oracle BAM version installed on the remote system should be same as the Oracle BAM Server version (that is, both servers should be from the same label).

Part XI

Using Oracle User Messaging Service

This part describes how to use Oracle User Messaging Service.

This part contains the following chapters:

	
Chapter 59, "Oracle User Messaging Service"

	
Chapter 60, "Sending and Receiving Messages using the User Messaging Service EJB API"

	
Chapter 61, "Sending and Receiving Messages using the User Messaging Service Java API"

	
Chapter 62, "Parlay X Web Services Multimedia Messaging API"

	
Chapter 63, "User Messaging Preferences"

59 Oracle User Messaging Service

This chapter describes Oracle User Messaging Service (UMS).

This chapter includes the following section:

	
Section 59.1, "Introduction to User Messaging Service"

59.1 Introduction to User Messaging Service

Oracle User Messaging Service enables two-way communication between users and deployed applications. Key features include:

	
Support for a variety of messaging channels—Messages can be sent and received through Email, IM (XMPP), SMS (SMPP), and Voice. Messages can also be delivered to a user's SOA/WebCenter Worklist.

	
Two-way Messaging—In addition to sending messages from applications to users (referred to as outbound messaging), users can initiate messaging interactions (inbound messaging). For example, a user can send an email or text message to a specified address; the message is routed to the appropriate application which can then respond to the user or invoke another process according to its business logic.

	
User Messaging Preferences—End users can use a web interface to define preferences for how and when they receive messaging notifications. Applications immediately become more flexible; rather than deciding whether to send to a user's email address or instant messaging client, the application can simply send the message to the user, and let UMS route the message according to the user's preferences.

	
Robust Message Delivery—UMS keeps track of delivery status information provided by messaging gateways, and makes this information available to applications so that they can respond to a failed delivery. Or, applications can specify one or more failover addresses for a message in case delivery to the initial address fails. Using the failover capability of UMS frees application developers from having to implement complicated retry logic.

	
Pervasive integration within Fusion Middleware: UMS is integrated with other Fusion Middleware components providing a single consolidated bi-directional user messaging service.

	
Integration with Oracle BPEL—Oracle JDeveloper includes pre-built BPEL activities that enable messaging operations. Developers can add messaging capability to a SOA composite application by dragging and dropping the necessary activity into any workflow.

	
Integration with Oracle Human Workflow—UMS enables the Human Workflow engine to send actionable messages to and receive replies from users over email.

	
Integration with Oracle BAM—Oracle BAM uses UMS to send email alerts in response to monitoring events.

	
Integration with Oracle WebCenter—UMS APIs are available to developers building applications for Oracle WebCenter Spaces. The API is a realization of Parlay X Web Services for Multimedia Messaging, version 2.1, a standard web service interface for rich messaging.

59.1.1 Components

There are three types of components that comprise the Oracle User Messaging Service. These components are standard Java EE applications, making it easy to deploy and manage them using the standard tools provided with Oracle WebLogic Server.

	
UMS Server: The UMS Server orchestrates message flows between applications and users. The server routes outbound messages from a client application to the appropriate driver, and routes inbound messages to the correct client application. The server also maintains a repository of previously sent messages in a persistent store, and correlates delivery status information with previously sent messages.

	
UMS Drivers: UMS Drivers connect UMS to the messaging gateways, adapting content to the various protocols supported by UMS. Drivers can be deployed or undeployed independently of one another depending on what messaging channels are available in a given installation.

	
UMS Client applications: UMS client applications implement the business logic of sending and receiving messages. A UMS client application might be a SOA application that sends messages as one step of a BPEL workflow, or a WebCenter Spaces application that can send messages from a web interface.

In addition to the components that comprise UMS itself, the other key entities in a messaging environment are the external gateways required for each messaging channel. These gateways are not a part of UMS or Oracle WebLogic Server. Since UMS Drivers support widely-adopted messaging protocols, UMS can be integrated with existing infrastructures such as a corporate email servers or XMPP (Jabber) servers. Alternatively, UMS can connect to outside providers of SMS or text-to-speech services that support SMPP or VoiceXML, respectively.

59.1.2 Architecture

The system architecture of Oracle User Messaging Service is shown in Figure 59-1.

For maximum flexibility, the components of UMS are separate Java EE applications. This allows them to be deployed and managed independently of one another. For example, a particular driver can be stopped and reconfigured without affecting message delivery on all other channels.

Exchanges between UMS client applications and the UMS Server occur as SOAP/HTTP web service requests for web service clients, or through Remote EJB and JMS calls for BPEL messaging activities. Exchanges between the UMS Server and UMS Drivers occur through JMS queues.

Oracle UMS server and drivers are installed alongside SOA or BAM in their respective WebLogic Server instances. A WebCenter installation includes the necessary libraries to act as a UMS client application, invoking a server deployed in a SOA instance.

Figure 59-1 UMS architecture

[image: Description of Figure 59-1 follows]

60 Sending and Receiving Messages using the User Messaging Service EJB API

This chapter describes how to use the User Messaging Service (UMS) EJB API to develop applications, and describes how to build two sample applications, usermessagingsample-ejb.ear and usermessagingsample-echo-ejb.ear.

	
Note:

The User Messaging Service EJB API (described in this chapter) is deprecated. Use the User Messaging Service Java API instead, as described in Chapter 61, "Sending and Receiving Messages using the User Messaging Service Java API".

This chapter includes the following sections:

	
Section 60.1, "Introduction to the UMS Java API"

	
Section 60.2, "Creating a UMS Client Instance"

	
Section 60.3, "Sending a Message"

	
Section 60.4, "Receiving a Message"

	
Section 60.5, "Using the UMS Enterprise JavaBeans Client API to Build a Client Application"

	
Section 60.6, "Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application"

	
Section 60.7, "Creating a New Application Server Connection"

	
Note:

To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle Technology Network code sample page at the following URL: https://codesamples.samplecode.oracle.com/
Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search.

60.1 Introduction to the UMS Java API

The UMS Java API supports developing applications for Enterprise JavaBeans clients. It consists of packages grouped as follows:

	
Common and Client Packages

	
oracle.sdp.messaging

	
oracle.sdp.messaging.filter: A MessageFilter is used by an application to exercise greater control over what messages are delivered to it.

	
User Preferences Packages

	
oracle.sdp.messaging.userprefs

	
oracle.sdp.messaging.userprefs.tools

60.1.1 Creating a Java EE Application Module

There are two choices for a Java EE application module that uses the UMS Enterprise JavaBeans Client API:

	
Enterprise JavaBeans Application Module - Stateless Session Bean - This is a back end, core message-receiving or message-sending application.

	
Web Application Module - This is for applications that have an HTML or web front end.

Whichever application module is selected uses the UMS Client API to register the application with the UMS Server and subsequently invoke operations to send or retrieve messages, status, and register or unregister access points. For a complete list of operations refer to the UMS Javadoc.

The samples with source code are available on Oracle Technology Network (OTN).

60.2 Creating a UMS Client Instance

This section describes the requirements for creating a UMS Enterprise JavaBeans Client. You can create a MessagingEJBClient instance by using the code in the MessagingClientFactory class.

When creating an application using the UMS Enterprise JavaBeans Client, the application must be packaged as an EAR file, and the usermessagingclient-ejb.jar module bundled as an Enterprise JavaBeans module.

60.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative Approach

Example 60-1 shows code for creating a MessagingEJBClient instance using the programmatic approach:

Example 60-1 Programmatic Approach to Creating a MessagingEJBClient Instance

ApplicationInfo appInfo = new ApplicationInfo();
appInfo.setApplicationName("SampleApp");
appInfo.setApplicationInstanceName("SampleAppInstance");
MessagingClient mClient =
 MessagingClientFactory.createMessagingEJBClient(appInfo);

You can also create a MessagingEJBClient instance using a declarative approach. The declarative approach is normally the preferred approach since it enables you to make changes at deployment time.

You must specify all the required Application Info properties as environment entries in your Java EE module's descriptor (ejb-jar.xml or web.xml).

Example 60-2 shows code for creating a MessagingEJBClient instance using the declarative approach:

Example 60-2 Declarative Approach to Creating a MessagingEJBClient Instance

MessagingClient mClient = MessagingClientFactory.createMessagingEJBClient();

60.2.2 API Reference for Class MessagingClientFactory

The API reference for class MessagingClientFactory can be accessed from the Javadoc.

60.3 Sending a Message

You can create a message by using the code in the MessageFactory class and Message interface of oracle.sdp.messaging.

The types of messages that can be created include plaintext messages, multipart messages that can consist of text/plain and text/html parts, and messages that include the creation of delivery channel (DeliveryType) specific payloads in a single message for recipients with different delivery types.

60.3.1 Creating a Message

This section describes the various types of messages that can be created.

60.3.1.1 Creating a Plaintext Message

Example 60-3 shows how to create a plain text message using the UMS Java API.

Example 60-3 Creating a Plaintext Message Using the UMS Java API

Message message = MessageFactory.getInstance().createTextMessage("This is a Plain Text message.");
Message message = MessageFactory.getInstance().createMessage();
message.setContent("This is a Plain Text message.", "text/plain");

60.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)

Example 60-4 shows how to create a multipart or alternative message using the UMS Java API.

Example 60-4 Creating a Multipart or Alternative Message Using the UMS Java API

Message message = MessageFactory.getInstance().createMessage();
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart();
mp_partPlain.setContent("This is a Plain Text part.", "text/plain");
mp.addBodyPart(mp_partPlain);
MimeBodyPart mp_partRich = new MimeBodyPart();
mp_partRich
 .setContent(
 "<html><head></head><body><i>This is an HTML part.</i></body></html>",
 "text/html");
mp.addBodyPart(mp_partRich);
message.setContent(mp, "multipart/alternative");

60.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

When sending a message to a destination address, there can be multiple channels involved. Oracle UMS application developers are required to specify the correct multipart format for each channel.

Example 60-5 shows how to create delivery channel (DeliveryType) specific payloads in a single message for recipients with different delivery types.

Each top-level part of a multiple payload multipart/alternative message should contain one or more values of this header. The value of this header should be the name of a valid delivery type. Refer to the available values for DeliveryType in the enum DeliveryType.

Example 60-5 Creating Delivery Channel-specific Payloads in a Single Message for Recipients with Different Delivery Types

Message message = MessageFactory.getInstance().createMessage();

// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");

// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setContent("Text content for SMS.", "text/plain");

part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");

// add first part
mp.addBodyPart(part1);

// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setContent("Text content for EMAIL/IM.", "text/plain");
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setContent("<html><head></head><body><i>" + "HTML content for EMAIL/IM." +
"</i></body></html>", "text/html");
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, "multipart/alternative");

part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");

// add second part
mp.addBodyPart(part2);

// set the content of the message
message.setContent(mp, "multipart/alternative");

// set the MultiplePayload flag to true
message.setMultiplePayload(true);

60.3.2 API Reference for Class MessageFactory

The API reference for class MessageFactory can be accessed from the Javadoc.

60.3.3 API Reference for Interface Message

The API reference for interface Message can be accessed from the Javadoc.

60.3.4 API Reference for Enum DeliveryType

The API reference for enum DeliveryType can be accessed from the Javadoc.

60.3.5 Addressing a Message

This section describes type of addresses and how to create address objects.

60.3.5.1 Types of Addresses

There are two types of addresses, device addresses and user addresses. A device address can be of various types, such as email addresses, instant messaging addresses, and telephone numbers. User addresses are user IDs in a user repository.

60.3.5.2 Creating Address Objects

You can address senders and recipients of messages by using the class AddressFactory to create Address objects defined by the Address interface.

60.3.5.2.1 Creating a Single Address Object

Example 60-6 shows code for creating a single Address object:

Example 60-6 Creating a Single Address Object

Address recipient = AddressFactory.getInstance().createAddress("Email:john.doe@oracle.com");

60.3.5.2.2 Creating Multiple Address Objects in a Batch

Example 60-7 shows code for creating multiple Address objects in a batch:

Example 60-7 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john.doe@oracle.com", "IM:jabber|john.doe@oracle.com"};
Address[] recipients = AddressFactory.getInstance().createAddress(recipientsStr);

60.3.5.2.3 Adding Sender or Recipient Addresses to a Message

Example 60-8 shows code for adding sender or recipient addresses to a message:

Example 60-8 Adding Sender or Recipient Addresses to a Message

Address sender = AddressFactory.getInstance().createAddress("Email:john.doe@oracle.com");
Address recipient = AddressFactory.getInstance().createAddress("Email:jane.doe@oracle.com");
message.addSender(sender);
message.addRecipient(recipient);

60.3.5.3 Creating a Recipient with a Failover Address

Example 60-9 shows code for creating a recipient with a failover address:

Example 60-9 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john.doe@oracle.com, IM:jabber|john.doe@oracle.com";
Address recipient = AddressFactory.getInstance().createAddress(recipientWithFailoverStr);

60.3.5.4 API Reference for Class AddressFactory

The API reference for class AddressFactory can be accessed from the Javadoc.

60.3.5.5 API Reference for Interface Address

The API reference for interface Address can be accessed from the Javadoc.

60.3.6 Retrieving Message Status

You can use Oracle UMS to retrieve message status either synchronously or asynchronously.

60.3.6.1 Synchronous Retrieval of Message Status

To perform a synchronous retrieval of current status, use the following flow from the MessagingClient API:

String messageId = messagingClient.send(message);
Status[] statuses = messagingClient.getStatus(messageId);

or,

Status[] statuses = messagingClient.getStatus(messageId, address[]) --- where
 address[] is an array of one or more of the recipients set in the message.

60.3.6.2 Asynchronous Notification of Message Status

To retrieve an asynchronous notification of message status, perform the following:

	
Implement a status listener.

	
Register a status listener (declarative way)

	
Send a message (messagingClient.send(message);)

	
The application automatically gets the status through an onStatus(status) callback of the status listener.

60.4 Receiving a Message

This section describes how an application receives messages. To receive a message you must first register an access point. From the application perspective there are two modes for receiving a message, synchronous and asynchronous.

60.4.1 Registering an Access Point

AccessPoint represents one or more device addresses to receive incoming messages. An application that wants to receive incoming messages must register one or more access points that represent the recipient addresses of the messages. The server matches the recipient address of an incoming message against the set of registered access points, and routes the incoming message to the application that registered the matching access point.

You can use AccessPointFactory.createAccessPoint to create an access point and MessagingClient.registerAccessPoint to register it for receiving messages.

To register an SMS access point for the number 9000:

AccessPoint accessPointSingleAddress =
 AccessPointFactory.createAccessPoint(AccessPoint.AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999:

AccessPoint accessPointRangeAddress =
 AccessPointFactory.createAccessPoint(AccessPoint.AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");
messagingClient.registerAccessPoint(accessPointRangeAddress);

60.4.2 Synchronous Receiving

You can use the method MessagingClient.receive to synchronously receive messages. This is a convenient polling method for light-weight clients that do not want the configuration overhead associated with receiving messages asynchronously. This method returns a list of messages that are immediately available in the application inbound queue.It performs a nonblocking call, so if no message is currently available, the method returns null.

	
Note:

A single invocation does not guarantee retrieval of all available messages. You must poll to ensure receiving all available messages.

60.4.3 Asynchronous Receiving

Asynchronous receiving involves many tasks, including configuring MDBs and writing a Stateless Session Bean message listener. See the sample application usermessagingsample-echo for detailed instructions.

60.4.4 Message Filtering

A MessageFilter is used by an application to exercise greater control over what messages are delivered to it. A MessageFilter contains a matching criterion and an action. An application can register a series of message filters; they are applied in order against an incoming (received) message; if the criterion matches the message, the action is taken. For example, an application can use MessageFilters to implement necessary blacklists, by rejecting all messages from a given sender address.

You can use MessageFilterFactory.createMessageFilter to create a message filter, and MessagingClient.registerMessageFilter to register it. The filter is added to the end of the current filter chain for the application. When a message is received, it is passed through the filter chain in order; if the message matches a filter's criterion, the filter's action is taken immediately. If no filters match the message, the default action is to accept the message and deliver it to the application.For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessageFilterFactory.createMessageFilter("spam",
 MessageFilter.FieldType.SUBJECT, null, MessageFilter.Action.REJECT);
messagingClient.registerMessageFilter(subjectFilter);

To reject messages from email address spammer@foo.com:

MessageFilter senderFilter =
 MessageFilterFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

60.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application

This section describes how to create an application called usermessagingsample, a web client application that uses the UMS Enterprise JavaBeans Client API for both outbound messaging and the synchronous retrieval of message status. usermessagingsample also supports inbound messaging. Once you have deployed and configured usermessagingsample, you can use it to send a message to an email client.

	
Note:

To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle Technology Network code sample page at the following URL: https://codesamples.samplecode.oracle.com/
Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search.

Of the two application modules choices described in Section 60.1.1, "Creating a Java EE Application Module," this sample focuses on the Web Application Module (WAR), which defines some HTML forms and servlets. You can examine the code and corresponding XML files for the web application module from the provided usermessagingsample-src.zip source. The servlets uses the UMS Enterprise JavaBeans Client API to create an UMS Enterprise JavaBeans Client instance (which in turn registers the application's info) and sends messages.

This application, which is packaged as an Enterprise Archive file (EAR) called usermessagingsample-ejb.ear, has the following structure:

	
usermessagingsample-ejb.ear

	
META-INF

	
application.xml -- Descriptor file for all of the application modules.

	
weblogic-application.xml -- Descriptor file that contains the import of the oracle.sdp.messaging shared library.

	
usermessagingclient-ejb.jar -- Contains the Message Enterprise JavaBeans Client deployment descriptors.

	
META-INF

	
ejb-jar.xml

	
weblogic-ejb-jar.xml

	
usermessagingsample-web.ear -- Contains the web-based front-end and servlets.

	
WEB-INF

	
web.xml

	
weblogic.xml

The prebuilt sample application, and the source code (usermessagingsample-src.zip) are available on OTN.

60.5.1 Overview of Development

The following steps describe the process of building an application capable of outbound messaging using usermessagingsample-ejb.ear as an example:

	
Section 60.5.2, "Configuring the Email Driver"

	
Section 60.5.3, "Using JDeveloper 11g to Build the Application"

	
Section 60.5.4, "Deploying the Application"

	
Section 60.5.5, "Testing the Application"

60.5.2 Configuring the Email Driver

To enable the Oracle User Messaging Service's email driver to perform outbound messaging and status retrieval, configure the email driver as follows:

	
Enter the name of the SMTP mail server as the value for the OutgoingMailServer property.

	
Note:

This sample application is generic and can support outbound messaging through other channels when the appropriate messaging drivers are deployed and configured.

60.5.3 Using JDeveloper 11g to Build the Application

This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample through the following steps:

60.5.3.1 Opening the Project

	
Unzip usermessagingsample-src.zip, to the JDEV_HOME/communications/samples/ directory. This directory must be used for the shared library references to be valid in the project.

	
Note:

If you choose to use a different directory, you must update the oracle.sdp.messaging library source path to JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar.

	
Open usermessagingsample.jws (contained in the .zip file) in Oracle JDeveloper.

Figure 60-1 Oracle JDeveloper Main Window

[image: Description of Figure 60-1 follows]

In the Oracle JDeveloper main window, the project appears.

	
Verify that the build dependencies for the sample application have been satisfied by checking that the following library has been added to the web module.

	
Library: oracle.sdp.messaging, Classpath: JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar. This is the Java library used by UMS and applications that use UMS to send and receive messages.

	
In the Application Navigator, right-click web module usermessagingsample-web, and select Project Properties.

	
In the left pane, select Libraries and Classpath.

Figure 60-2 Verifying Libraries

[image: Description of Figure 60-2 follows]

	
Click OK.

	
Verify that the usermessagingclient-ejb project exists in the application. This is an Enterprise JavaBeans module that packages the messaging client beans used by UMS applications. The module allows the application to connect with the UMS server.

	
Explore the Java files under the usermessagingsample-web project to see how the messaging client APIs are used to send messages, get statuses, and synchronously receive messages. The application info that is registered with the UMS Server is specified programmatically in SampleUtils.java in the project (Example 60-10).

Example 60-10 Application Information

 ApplicationInfo appInfo = new ApplicationInfo();
 appInfo.setApplicationName(SampleConstants.APP_NAME);
 appInfo.setApplicationInstanceName(SampleConstants.APP_INSTANCE_NAME);
 appInfo.setSecurityPrincipal(request.getUserPrincipal().getName());

60.5.4 Deploying the Application

Perform the following steps to deploy the application:

	
Create an Application Server Connection by right-clicking the application in the navigation pane and selecting New. Follow the instructions in Section 60.7, "Creating a New Application Server Connection."

	
Deploy the application by selecting the usermessagingsample application, Deploy, usermessagingsample, to, and SOA_server (Figure 60-3).

Figure 60-3 Deploying the Project

[image: Description of Figure 60-3 follows]

	
Verify that the message Build Successful appears in the log.

	
Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample, you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.

	
Note:

Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

60.5.5 Testing the Application

Once usermessagingsample has been deployed to a running instance of Oracle WebLogic Server, perform the following:

	
Launch a web browser and enter the address of the sample application as follows: http://host:http-port/usermessagingsample/. For example, enter http://localhost:7001/usermessagingsample/ into the browser's navigation bar.

When prompted, enter login credentials. For example, username weblogic. The browser page for testing messaging samples appears (Figure 60-4).

Figure 60-4 Testing the Sample Application

[image: Description of Figure 60-4 follows]

	
Click Send sample message. The Send Message page appears (Figure 60-5).

Figure 60-5 Addressing the Test Message

[image: Description of Figure 60-5 follows]

	
As an optional step, enter the sender address in the following format:

Email:sender_address.

For example, enter Email:sender@oracle.com.

	
Enter one or more recipient addresses. For example, enter Email:recipient@oracle.com. Enter multiple addresses as a comma-separated list as follows:

Email:recipient_address1, Email:recipient_address2.

If you have configured user messaging preferences, you can address the message simply to User:username. For example, User:weblogic.

	
As an optional step, enter a subject line or content for the email.

	
Click Send. The Message Status page appears, showing the progress of transaction (Message received by Messaging engine for processing in Figure 60-6).

Figure 60-6 Message Status

[image: Description of Figure 60-6 follows]

	
Click Refresh to update the status. When the email message has been delivered to the email server, the Status Content field displays Outbound message delivery to remote gateway succeeded.

60.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

This section describes how to create an application called usermessagingsample-echo, a demo client application that uses the UMS Enterprise JavaBeans Client API to asynchronously receive messages from an email address and echo a reply back to the sender.

	
Note:

To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle Technology Network code sample page at the following URL: https://codesamples.samplecode.oracle.com/
Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search.

This application, which is packaged as a Enterprise Archive file (EAR) called usermessagingsample-echo-ejb.ear, has the following structure:

	
usermessagingsample-echo-ejb.ear

	
META-INF

	
application.xml -- Descriptor file for all of the application modules.

	
weblogic-application.xml -- Descriptor file that contains the import of the oracle.sdp.messaging shared library.

	
usermessagingclient-ejb.jar -- Contains the Message Enterprise JavaBeans Client deployment descriptors.

	
META-INF

	
ejb-jar.xml

	
weblogic-ejb-jar.xml

	
usermessagingsample-echo-ejb.jar -- Contains the application session beans (ClientSenderBean, ClientReceiverBean) that process a received message and return an echo response.

	
META-INF

	
ejb-jar.xml

	
weblogic-ejb-jar.xml

	
usermessagingsample-echo-web.war -- Contains the web-based front-end and servlets.

	
WEB-INF

	
web.xml

	
weblogic.xml

The prebuilt sample application, and the source code (usermessagingsample-echo-src.zip) are available on OTN.

60.6.1 Overview of Development

The following steps describe the process of building an application capable of asynchronous inbound and outbound messaging using usermessagingsample-echo-ejb.ear as an example:

	
Section 60.6.2, "Configuring the Email Driver"

	
Section 60.6.3, "Using JDeveloper 11g to Build the Application"

	
Section 60.6.4, "Deploying the Application"

	
Section 60.6.5, "Testing the Application"

60.6.2 Configuring the Email Driver

To enable the Oracle User Messaging Service's email driver to perform inbound and outbound messaging and status retrieval, configure the email driver as follows:

	
Enter the name of the SMTP mail server as the value for the OutgoingMailServer property.

	
Enter the name of the IMAP4/POP3 mail server as the value for the IncomingMailServer property. Also, configure the incoming user name, and password.

	
Note:

This sample application is generic and can support inbound and outbound messaging through other channels when the appropriate messaging drivers are deployed and configured.

60.6.3 Using JDeveloper 11g to Build the Application

This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample-echo through the following steps:

60.6.3.1 Opening the Project

	
Unzip usermessagingsample.echo-src.zip, to the JDEV_HOME/communications/samples/ directory. This directory must be used for the shared library references to be valid in the project.

	
Note:

If you choose to use a different directory, you must update the oracle.sdp.messaging library source path to JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar.

	
Open usermessagingsample-echo.jws (contained in the .zip file) in Oracle JDeveloper.

In the Oracle JDeveloper main window, the project appears (Figure 60-7).

Figure 60-7 Oracle JDeveloper Main Window

[image: Description of Figure 60-7 follows]

	
Verify that the build dependencies for the sample application have been satisfied by checking that the following library has been added to the usermessagingsample-echo-web and usermessagingsample-echo-ejb modules.

	
Library: oracle.sdp.messaging, Classpath: JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar. This is the Java library used by UMS and applications that use UMS to send and receive messages.

Perform the following steps for each module:

	
In the Application Navigator, right-click the module and select Project Properties.

	
In the left pane, select Libraries and Classpath (Figure 60-8).

Figure 60-8 Verifying Libraries

[image: Description of Figure 60-8 follows]

	
Click OK.

	
Verify that the usermessagingclient-ejb project exists in the application. This is an Enterprise JavaBeans module that packages the messaging client beans used by UMS applications. The module allows the application to connect with the UMS server.

	
Explore the Java files under the usermessagingsample-echo-ejb project to see how the messaging client APIs are used to asynchronously receive messages (ClientReceiverBean), and send messages (ClientSenderBean).

	
Explore the Java files under the usermessagingsample-echo-web project to see how the messaging client APIs are used to register and unregister access points.

	
Note that the application info that is registered with the UMS Server is specified declaratively in the usermessagingclient-ejb project's ejb-jar.xml file. (Example 60-11).

Example 60-11 Application Information

 <env-entry>
 <env-entry-name>sdpm/ApplicationName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>UMSEchoApp</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>sdpm/ApplicationInstanceName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>UMSEchoAppInstance</env-entry-value>
 </env-entry>

 <env-entry>
 <env-entry-name>sdpm/ReceivingQueuesInfo</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMAppDefRcvQ1<
/env-entry-value>
 </env-entry>

 <env-entry>
 <env-entry-name>
 sdpm/MessageListenerSessionBeanJNDIName
 </env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>
 sdpm/MessageListenerSessionBeanHomeClassName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 oracle.sdp.messaging.sample.ejbApp.ClientReceiverHomeLocal
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>
 sdpm/StatusListenerSessionBeanJNDIName
 </env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>sdpm/StatusListenerSessionBeanHomeClassName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>oracle.sdp.messaging.sample.ejbApp.ClientReceiverHomeLocal</env-e
ntry-value>
 </env-entry>

	
Note that the Application Name (UMSEchoApp) and Application Instance Name (UMSEchoAppInstance) are also used in the Message Selector for the MessageDispatcherBean MDB, which is used for asynchronous receiving of messages and statuses placed in the application receiving queue (Example 60-12).

Example 60-12 Application Information

<activation-config-property>
 <activation-config-property-name>
 messageSelector
 </activation-config-property-name>
 <activation-config-property-value>
 appName='UMSEchoApp' or sessionName='UMSEchoApp-UMSEchoAppInstance'
 </activation-config-property-value>
</activation-config-property>

	
Note:

If you chose a different Application Name and Application Instance Name for your own application, remember to update this message selector. Asynchronous receiving does not work, otherwise.

60.6.4 Deploying the Application

Perform the following steps to deploy the application:

	
Create an Application Server Connection by right-clicking the application in the navigation pane and selecting New. Follow the instructions in Section 60.7, "Creating a New Application Server Connection."

	
Deploy the application by selecting the usermessagingsample-echo application, Deploy, usermessagingsample-echo, to, and SOA_server (Figure 60-9).

Figure 60-9 Deploying the Project

[image: Description of Figure 60-9 follows]

	
Verify that the message Build Successful appears in the log.

	
Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.

	
Note:

Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

60.6.5 Testing the Application

Once usermessagingsample-echo has been deployed to a running instance of Oracle WebLogic Server, perform the following:

	
Launch a web browser and enter the address of the sample application as follows: http://host:http-port/usermessagingsample-echo/. For example, enter http://localhost:7001/usermessagingsample-echo/ into the browser's navigation bar.

When prompted, enter login credentials. For example, username weblogic. The browser page for testing messaging samples appears (Figure 60-10).

Figure 60-10 Testing the Sample Application

[image: Description of Figure 60-10 follows]

	
Click Register/Unregister Access Points. The Access Point Registration page appears (Figure 60-11).

Figure 60-11 Registering an Access Point

[image: Description of Figure 60-11 follows]

	
Enter the access point address in the following format:

EMAIL:server_address.

For example, enter EMAIL:myserver@example.com.

	
Select the Action Register and Click Submit. The registration status page appears, showing "Registered" in Figure 60-12).

Figure 60-12 Access Point Registration Status

[image: Description of Figure 60-12 follows]

	
Send a message from your messaging client (for email, your email client) to the address you just registered as an access point in the previous step.

If the UMS messaging driver for that channel is configured correctly, you should expect to receive an echo message back from the usermessagingsample-echo application.

60.7 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

	
Create a new Application Server Connection by right-clicking the project and selecting New, Connections, and Application Server Connection (Figure 60-13).

Figure 60-13 New Application Server Connection

[image: Description of Figure 60-13 follows]

	
Name the connection SOA_server and click Next (Figure 60-14).

	
Select WebLogic 10.3 as the Connection Type.

Figure 60-14 New Application Server Connection

[image: Description of Figure 60-14 follows]

	
Enter the authentication information. A typical value for user name is weblogic.

	
In the Connection dialog, enter the hostname, port, and SSL port for the SOA admin server, and enter the name of the domain for WLS Domain.

	
Click Next.

	
In the Test dialog, click Test Connection.

	
Verify that the message Success! appears.

The Application Server Connection has been created.

61 Sending and Receiving Messages using the User Messaging Service Java API

This chapter describes how to use the User Messaging Service (UMS) client API to develop applications. This API serves as a programmatic entry point for Fusion Middleware application developers to incorporate messaging features within their enterprise applications.

Because the API provides a plain old java (POJO/POJI) programming model, this eliminates the needs for application developers to package and implement various Java EE modules (such as an EJB module) in an application to access UMS features. This reduces application development time because developers can create applications to run in a Java EE container without performing any additional packaging of modules, or obtaining specialized tools to perform such packaging tasks.

Consumers of the UMS Java API are not required to use any Java EE mechanism such as environment entries or other Java EE deployment descriptor artifacts. Besides the overhead involved in maintaining Java EE descriptors, many client applications already have a configuration framework that does not rely on Java EE descriptors.

This chapter includes the following sections:

	
Section 61.1, "Introduction to the UMS Java API"

	
Section 61.2, "Creating a UMS Client Instance and Specifying Runtime Parameters"

	
Section 61.3, "Sending a Message"

	
Section 61.4, "Retrieving Message Status"

	
Section 61.5, "Receiving a Message"

	
Section 61.6, "Configuring for a Cluster Environment"

	
Section 61.7, "Configuring Security"

	
Section 61.8, "Threading Model"

	
Section 61.9, "Using the UMS Client API to Build a Client Application"

	
Section 61.10, "Using the UMS Client API to Build a Client Echo Application"

	
Section 61.11, "Creating a New Application Server Connection"

	
Note:

To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle Technology Network code sample page at the following URL: https://codesamples.samplecode.oracle.com/
Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search.

61.1 Introduction to the UMS Java API

The UMS Java API is exposed as a POJO/POJI API. Consumers of the API can get an instance of a MessagingClient object using a factory method. The consumers do not need to deploy any EJB or other Java EE modules in their applications, but must ensure that the UMS libraries are available in an application' s runtime class path. The deployment is as a shared library, "oracle.sdp.messaging".

The UMS Java API consists of packages grouped as follows:

	
Common and Client Packages

	
oracle.sdp.messaging

	
oracle.sdp.messaging.filter: A MessageFilter is used by an application to exercise greater control over what messages are delivered to it.

The samples with source code are available on Oracle Technology Network (OTN).

61.2 Creating a UMS Client Instance and Specifying Runtime Parameters

This section describes the requirements for creating a UMS Client. You can create a MessagingClient instance by using the code in the MessagingClientFactory class. Specifically, use the MessagingClientFactory.createMessagingClient() method to create the instance.

Client applications can specify a set of parameters at runtime when instantiating a client object. For example, you configure a MessagingClient instance by specifying parameters as a map of key-value pairs in a java.util.Map<String, Object>. Among other things, the configuration parameters serve to identify the client application, point to the UMS server, and establish security credentials. Client applications are responsible for storing and loading the configuration parameters using any available mechanism.

Table 61-1 lists some configuration parameters that may be set for the Java API. In typical use cases, most of the parameters do not need to be provided and the API implementation uses sensible default values.

Table 61-1 Configuration Parameters Specified at Runtime

	Parameter	Notes
	
APPLICATION_NAME

	
Optional. By default, the client is identified by its deployment name. This identifier can be overridden by specifying a value for key ApplicationInfo.APPLICATION_NAME.

	
APPLICATION_INSTANCE_NAME

	
Optional. Only required for certain clustered use cases or to take advantage of session-based routing.

	
SDPM_SECURITY_PRINCIPAL

	
Optional. By default, the client's resources are available to any application with the same application name and any security principal. This behavior can be overridden by specifying a value for key ApplicationInfo.SDPM_SECURITY_PRINCIPAL. If a security principal is specified, then all subsequent requests involving the application's resources (messages, access points, and so on.) must be made using the same security principal.

	
MESSAGE_LISTENER_THREADSSTATUS_LISTENER_THREADS

	
Optional. When listeners are used to receive messages or statuses asynchronously, the number of listener worker threads can be controlled by specifying values for the MessagingConstants.MESSAGE_LISTENER_THREADS and MessagingConstants.STATUS_LISTENER_THREADS keys.

	
RECEIVE_ACKNOWLEDGEMENT_MODELISTENER_ACKNOWLEDGEMENT_MODE

	
Optional. When receiving messages, you can control the reliability mode by specifying values for the MessagingConstants.RECEIVE_ACKNOWLEDGEMENT_MODE (synchronous receiving) and MessagingConstants. LISTENER_ACKNOWLEDGEMENT_MODE (asynchronous receiving) keys.

A MessagingClient cannot be reconfigured after it is instantiated. Instead, a new instance of the MessagingClient class must be created using the new configuration.

To release resources used by the MessagingClient instance when it is no longer needed, call MessagingClientFactory.remove(client) . If you do not call this method, some resources such as worker threads and JMS listeners may remain active.

Example 61-1 shows code for creating a MessagingClient instance using the programmatic approach:

Example 61-1 Programmatic Approach to Creating a MessagingClient Instance

Map<String, Object> params = new HashMap<String, Object>();
// params.put(key, value); // if optional parameters need to be specified.
MessagingClient messagingClient = MessagingClientFactory.createMessagingClient(params);

A MessagingClient cannot be reconfigured after it is instantiated. Instead, you must create a new instance of the MessagingClient class using the desired configuration.

61.2.1 API Reference for Class MessagingClientFactory

The API reference for class MessagingClientFactory can be accessed from the Javadoc.

61.3 Sending a Message

The client application can create a message object using the MessagingFactory class of oracle.sdp.messaging. MessagingFactory is a factory class to create various messaging objects. (You can use other methods in this class to create Addresses, AccessPoints, MessageFilters, and MessageQueries. See the Javadoc for these methods).

The client application can then send the message. The API returns a String identifier that the client application can later use to retrieve message delivery status. The status returned is the latest known status based on UMS internal processing and delivery notifications received from external gateways.

The types of messages that can be created include plaintext messages, multipart messages that can consist of text/plain and text/html parts, and messages that include the creation of delivery channel (DeliveryType) specific payloads in a single message for recipients with different delivery types.

61.3.1 Creating a Message

This section describes the various types of messages that can be created.

61.3.1.1 Creating a Plaintext Message

Example 61-2 shows how to create a plaintext message using the UMS Java API.

Example 61-2 Creating a Plaintext Message Using the UMS Java API

Message message = MessagingFactory.createTextMessage("This is a Plain Text message.");
Message message = MessagingFactory.createMessage();
message.setContent("This is a Plain Text message.", "text/plain");

61.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)

Example 61-3 shows how to create a multipart or alternative message using the UMS Java API.

Example 61-3 Creating a Multipart or Alternative Message Using the UMS Java API

Message message = MessagingFactory.createMessage();
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart();
mp_partPlain.setContent("This is a Plain Text part.", "text/plain");
mp.addBodyPart(mp_partPlain);
MimeBodyPart mp_partRich = new MimeBodyPart();
mp_partRich
 .setContent(
 "<html><head></head><body><i>This is an HTML part.</i></body></html>",
 "text/html");
mp.addBodyPart(mp_partRich);
message.setContent(mp, "multipart/alternative");

61.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

When sending a message to a destination address, there could be multiple channels involved. Oracle UMS application developers are required to specify the correct multipart format for each channel.

Example 61-4 shows how to create delivery channel (DeliveryType) specific payloads in a single message for recipients with different delivery types.

Each top-level part of a multiple payload multipart/alternative message should contain one or more values of this header. The value of this header should be the name of a valid delivery type. Refer to the available values for DeliveryType in the enum DeliveryType.

Example 61-4 Creating Delivery Channel-specific Payloads in a Single Message for Recipients with Different Delivery Types

Message message = MessagingFactory.createMessage();

// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");

// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setContent("Text content for SMS.", "text/plain");

part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");

// add first part
mp.addBodyPart(part1);

// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setContent("Text content for EMAIL/IM.", "text/plain");
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setContent("<html><head></head><body><i>" + "HTML content for EMAIL/IM." +
"</i></body></html>", "text/html");
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, "multipart/alternative");

part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");

// add second part
mp.addBodyPart(part2);

// set the content of the message
message.setContent(mp, "multipart/alternative");

// set the MultiplePayload flag to true
message.setMultiplePayload(true);

61.3.2 API Reference for Class MessagingFactory

The API reference for class MessagingFactory can be accessed from the Javadoc.

61.3.3 API Reference for Interface Message

The API reference for interface Message can be accessed from the Javadoc.

61.3.4 API Reference for Enum DeliveryType

The API reference for enum DeliveryType can be accessed from the Javadoc.

61.3.5 Addressing a Message

This section describes type of addresses and how to create address objects.

61.3.5.1 Types of Addresses

There are two types of addresses, device addresses and user addresses. A device address can be of various types, such as email addresses, instant messaging addresses, and telephone numbers. User addresses are user IDs in a user repository.

61.3.5.2 Creating Address Objects

You can address senders and recipients of messages by using the class MessagingFactory to create Address objects defined by the Address interface.

61.3.5.2.1 Creating a Single Address Object

Example 61-5 shows code for creating a single Address object:

Example 61-5 Creating a Single Address Object

Address recipient = MessagingFactory.createAddress("Email:john.doe@oracle.com");

61.3.5.2.2 Creating Multiple Address Objects in a Batch

Example 61-6 shows code for creating multiple Address objects in a batch:

Example 61-6 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john.doe@oracle.com", "IM:jabber|john.doe@oracle.com"};
Address[] recipients = MessagingFactory.createAddress(recipientsStr);

61.3.5.2.3 Adding Sender or Recipient Addresses to a Message

Example 61-7 shows code for adding sender or recipient addresses to a message:

Example 61-7 Adding Sender or Recipient Addresses to a Message

Address sender = MessagingFactory.createAddress("Email:john.doe@oracle.com");
Address recipient = MessagingFactory.createAddress("Email:jane.doe@oracle.com");
message.addSender(sender);
message.addRecipient(recipient);

61.3.5.3 Creating a Recipient with a Failover Address

Example 61-8 shows code for creating a recipient with a failover address:

Example 61-8 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john.doe@oracle.com, IM:jabber|john.doe@oracle.com";
Address recipient = MessagingFactory.createAddress(recipientWithFailoverStr);

61.3.5.4 API Reference for Class MessagingFactory

The API reference for class MessagingFactory can be accessed from the Javadoc.

61.3.5.5 API Reference for Interface Address

The API reference for interface Address can be accessed from the Javadoc.

61.4 Retrieving Message Status

After sending a message, you can use Oracle UMS to retrieve the message status either synchronously or asynchronously.

61.4.1 Synchronous Retrieval of Message Status

To perform a synchronous retrieval of current status, use the following flow from the MessagingClient API:

String messageId = messagingClient.send(message);
Status[] statuses = messagingClient.getStatus(messageId);

or,

Status[] statuses = messagingClient.getStatus(messageId, address[]) --- where
 address[] is an array of one or more of the recipients set in the message.

61.4.2 Asynchronous Receiving of Message Status

When asynchronously receiving status, the client application specifies a Listener object and an optional correlator object. When incoming status arrives, the listener' s onStatus callback is invoked. The originally-specified correlator object is also passed to the callback method.

61.4.2.1 Creating a Listener Programmatically

Listeners are purely programmatic. You create a listener by implementing the oracle.sdp.messaging.Listener interface. You can implement it as any concrete class - one of your existing classes, a new class, or an anonymous or inner class.

The following code example shows how to implement a status listener:

import oracle.sdp.messaging.Listener;

 public class StatusListener implements Listener {

 @Override
 public void onMessage(Message message, Serializable correlator) {
 }
 @Override
 public void onStatus(Status status, Serializable correlator) {
 System.out.println("Received Status: " + status + " with optional correlator: " +

correlator);
 }
 }

You pass a reference to the Listener object to the setStatusListener or send methods, as described in "Default Status Listener" and "Per Message Status Listener". When a status arrives for your message, the UMS infrastructure invokes the Listener's onStatus method as appropriate.

61.4.2.2 Default Status Listener

The client application typically sets a default status listener (Example 61-9). When the client application sends a message, delivery status callbacks for the message invoke the default listener's onStatus method.

Example 61-9 Default Status Listener

messagingClient.setStatusListener(new MyStatusListener());
messagingClient.send(message);

61.4.2.3 Per Message Status Listener

In this approach, the client application sends a message and specifies a Listener object and an optional correlator object (Example 61-10). When delivery status callbacks are available for that message, the specified listener's onStatus method is invoked. The originally-specified correlator object is also passed to the callback method.

Example 61-10 Per Message Status Listener

messagingClient.send(message, new MyStatusListener(), null);

61.5 Receiving a Message

This section describes how an application receives messages. To receive a message you must first register an access point. From the application perspective there are two modes for receiving a message, synchronous and asynchronous.

61.5.1 Registering an Access Point

The client application can create and register an access point, specifying that it wants to receive incoming messages sent to a particular address. Since the client application has not specified any message listeners, any received messages are held by UMS. The client application can then invoke the receive method to fetch the pending messages. When receiving messages without specifying an access point, the application receives messages for any of the access points that it has registered. Otherwise, if an access point is specified, the application receives messages sent to that access point.

AccessPoint represents one or more device addresses to receive incoming messages. An application that wants to receive incoming messages must register one or more access points that represent the recipient addresses of the messages. The server matches the recipient address of an incoming message against the set of registered access points, and routes the incoming message to the application that registered the matching access point.

You can use MessagingFactory.createAccessPoint to create an access point and MessagingClient.registerAccessPoint to register it for receiving messages.

To register an SMS access point for the number 9000:

AccessPoint accessPointSingleAddress =
 MessagingFactory.createAccessPoint(AccessPoint.AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999:

AccessPoint accessPointRangeAddress =
 MessagingFactory.createAccessPoint(AccessPoint.AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");
messagingClient.registerAccessPoint(accessPointRangeAddress);

61.5.2 Synchronous Receiving

Receive is a non-blocking operation. If there are no pending messages for the application or access point, the call returns immediately with an empty list. Receive is not guaranteed to return all available messages, but may return only a subset of available messages for efficiency reasons.

You can use the method MessagingClient.receive to synchronously receive messages. This is a convenient polling method for light-weight clients that do not want the configuration overhead associated with receiving messages asynchronously. This method returns a list of messages that are immediately available in the application inbound queue.

It performs a nonblocking call, so if no message is currently available, the method returns null.

	
Note:

A single invocation does not guarantee retrieval of all available messages. You must poll to ensure receiving all available messages.

61.5.3 Asynchronous Receiving

When asynchronously receiving messages, the client application registers an access point and specifies a Listener object and an optional correlator object. When incoming messages arrive at the specified access point address, the listener' s onMessage callback is invoked. The originally-specified correlator object is also passed to the callback method.

61.5.3.1 Creating a Listener Programmatically

Listeners are purely programmatic. You create a listener by implementing the oracle.sdp.messaging.Listener interface. You can implement it as any concrete class - one of your existing classes, a new class, or an anonymous or inner class.

The following code example shows how to implement a message listener:

import oracle.sdp.messaging.Listener;

 public class MyListener implements Listener {

 @Override
 public void onMessage(Message message, Serializable correlator) {
 System.out.println("Received Message: " + message + " with optional correlator: " +
correlator);
 }
 @Override
 public void onStatus(Status status, Serializable correlator) {
 System.out.println("Received Status: " + status + " with optional correlator: " +
correlator);
 }

 }

You pass a reference to the Listener object to the setMessageListener or registerAccessPoint methods, as described in "Default Message Listener" and "Per Access Point Message Listener". When a message arrives for your application, the UMS infrastructure invokes the Listener's onMessage method.

61.5.3.2 Default Message Listener

The client application typically sets a default message listener (Example 61-11). This listener is invoked for any delivery statuses for messages sent by this client application that do not have an associated listener. When Oracle UMS receives messages addressed to any access points registered by this client application, it invokes the onMessage callback for the client application's default listener.

To remove a default listener, call this method with a null argument.

Example 61-11 Default Message Listener

messagingClient.setMessageListener(new MyListener());

See the sample application usermessagingsample-echo for detailed instructions on asynchronous receiving.

61.5.3.3 Per Access Point Message Listener

The client application can also register an access point and specify a Listener object and an optional correlator object (Example 61-12). When incoming messages arrive at the specified access point address, the specified listener' s onMessage method is invoked. The originally-specified correlator object is also passed to the callback method.

Example 61-12 Per Access Point Message Listener

messagingClient.registerAccessPoint(accessPoint, new MyListener(), null);

61.5.4 Message Filtering

A MessageFilter is used by an application to exercise greater control over what messages are delivered to it. A MessageFilter contains a matching criterion and an action. An application can register a series of message filters; they are applied in order against an incoming (received) message; if the criterion matches the message, the action is taken. For example, an application can use MessageFilters to implement necessary blacklists, by rejecting all messages from a given sender address.

You can use MessagingFactory.createMessageFilter to create a message filter, and MessagingClient.registerMessageFilter to register it. The filter is added to the end of the current filter chain for the application. When a message is received, it is passed through the filter chain in order; if the message matches a filter's criterion, the filter's action is taken immediately. If no filters match the message, the default action is to accept the message and deliver it to the application.For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessagingFactory.createMessageFilter("spam",
 MessageFilter.FieldType.SUBJECT, null, MessageFilter.Action.REJECT);
messagingClient.registerMessageFilter(subjectFilter);

To reject messages from email address spammer@foo.com:

MessageFilter senderFilter =
 MessagingFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

61.6 Configuring for a Cluster Environment

The API supports an environment where client applications and the UMS server are deployed in a cluster environment. For a clustered deployment to function as expected, client applications must be configured correctly. The following rules apply:

	
Two client applications are considered to be instances of the same application if they use the same ApplicationName configuration parameter. Typically this parameter is synthesized by the API implementation and does not need to be populated by the application developer.

	
Instances of the same application share most of their configuration, and artifacts such as Access Points and Message Filters that are registered by one instance are shared by all instances.

	
The ApplicationInstanceName configuration parameter enables you to distinguish instances from one another. Typically this parameter is synthesized by the API implementation and does not need to be populated by the application developer. Refer to the Javadoc for cases in which this value must be populated.

	
Application sessions are instance-specific. You can set the session flag on a message to ensure that any reply is received by the instance that sent the message.

	
Listener correlators are instance-specific. If two different instances of an application register listeners and supply different correlators, then when instance A' s listener is invoked, correlator A is supplied; when instance B' s listener is invoked, correlator B is supplied.

61.7 Configuring Security

Client applications may need to specify one or more additional configuration parameters (described in Table 61-1) in order to establish a secure listener.

61.8 Threading Model

Client applications that use the UMS Java API are usually multithreaded. Typical scenarios include a pool of EJB instances, each of which uses a MessagingClient instance; and a servlet instance that is serviced by multiple threads in a web container. The UMS Java API supports the following thread model:

	
Each call to MessagingClientFactory.createMessagingClient returns a new MessagingClient instance.

	
When two MessagingClient instances are created by passing parameter maps that are equal to MessagingClientFactory.createMessagingClient, they are instances of the same client. Instances created by passing different parameter maps are instances of separate clients.

	
An instance of MessagingClient is not thread safe when it has been obtained using MessagingClientFactory.createMessagingClient. Client applications must ensure that a given instance is used by only one thread at a time. They may do so by ensuring that an instance is only visible to one thread at a time, or by synchronizing access to the MessagingClient instance.

	
Two instances of the same client (created with identical parameter maps) do share some resources – notably they share Message and Status Listeners, and use a common pool of Worker threads to execute asynchronous messaging operations. For example, if instance A calls setMessageListener(), and then instance B calls setMessageListener(), then B's listener is the active default message listener.

The following are typical use cases:

	
To use the UMS Java API from an EJB (either a Message Driven Bean or a Session Bean) application, the recommended approach is to create a MessagingClient instance in the bean' s ejbCreate (or equivalent @PostConstruct) method, and store the MessagingClient in an instance variable in the bean class. The EJB container ensures that only one thread at a time uses a given EJB instance, which ensures that only one thread at a time accesses the bean' s MessagingClient instance.

	
To use the UMS Java API from a Servlet, there are several possible approaches. In general Web containers create a single instance of the servlet class, which may be accessed by multiple threads concurrently. If a single MessagingClient instance is created and stored in a servlet instance variable, then access to the instance must be synchronized.

Another approach is to create a pool of MessagingClient instances that are shared among servlet threads.

Finally, you can associate individual MessagingClient instances with individual HTTP Sessions. This approach allows increased concurrency compared to having a single MessagingClient for all servlet requests. However, it is possible for multiple threads to access an HTTP Session at the same time due to concurrent client requests, so synchronization is still required in this case.

61.8.1 Listener Threading

You can achieve asynchronous listening by spawning one or more worker threads that listen to the configured JMS queues for incoming messages and statuses. By default, one worker thread is spawned for incoming messages, and one worker thread is spawned for incoming status notifications (assuming at least one message or status listener is registered, respectively). Client applications can increase the concurrency of asynchronous processing by configuring additional worker threads. This is done by specifying integer values for the MessagingConstants.MESSAGE_LISTENER_THREADS and MessagingConstants.STATUS_LISTENER_THREADS keys, settings these values to the desired number of worker threads in the configuration parameters used when creating a MessagingClient instance.

61.9 Using the UMS Client API to Build a Client Application

This section describes how to create an application called usermessagingsample, a web client application that uses the UMS Client API for both outbound messaging and the synchronous retrieval of message status. usermessagingsample also supports inbound messaging. Once you have deployed and configured usermessagingsample, you can use it to send a message to an email client.

	
Note:

To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle Technology Network code sample page at the following URL: https://codesamples.samplecode.oracle.com/
Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search.

This sample focuses on a Web Application Module (WAR), which defines some HTML forms and servlets. You can examine the code and corresponding XML files for the web application module from the provided usermessagingsample-src.zip source. The servlets uses the UMS Client API to create an UMS Client instance (which in turn registers the application's information) and sends messages.

This application, which is packaged as a Enterprise ARchive file (EAR) called usermessagingsample.ear, has the following structure:

	
usermessagingsample.ear

	
META-INF

	
application.xml -- Descriptor file for all of the application modules.

	
weblogic-application.xml -- Descriptor file that contains the import of the oracle.sdp.messaging shared library.

	
usermessagingsample-web.ear -- Contains the web-based front-end and servlets.

	
WEB-INF

	
web.xml

	
weblogic.xml

The prebuilt sample application, and the source code (usermessagingsample-src.zip) are available on OTN.

61.9.1 Overview of Development

The following steps describe the process of building an application capable of outbound messaging using usermessagingsample.ear as an example:

	
Section 61.9.2, "Configuring the Email Driver"

	
Section 61.9.3, "Using JDeveloper 11g to Build the Application"

	
Section 61.9.4, "Deploying the Application"

	
Section 61.9.5, "Testing the Application"

61.9.2 Configuring the Email Driver

To enable the Oracle User Messaging Service's email driver to perform outbound messaging and status retrieval, configure the email driver as follows:

	
Enter the name of the SMTP mail server as the value for the OutgoingMailServer property.

	
Note:

This sample application is generic and can support outbound messaging through other channels when the appropriate messaging drivers are deployed and configured.

61.9.3 Using JDeveloper 11g to Build the Application

This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample through the following steps:

61.9.3.1 Opening the Project

	
Unzip usermessagingsample-src.zip, to the JDEV_HOME/communications/samples/ directory. This directory must be used for the shared library references to be valid in the project.

	
Note:

If you choose to use a different directory, you must update the oracle.sdp.messaging library source path to JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar.

	
Open usermessagingsample.jws (contained in the .zip file) in Oracle JDeveloper.

Figure 61-1 Oracle JDeveloper Open Application Window

[image: Description of Figure 61-1 follows]

In the Oracle JDeveloper main window, the project appears.

Figure 61-2 Oracle JDeveloper Main Window

[image: Description of Figure 61-2 follows]

	
Verify that the build dependencies for the sample application have been satisfied by checking that the following library has been added to the web module.

	
Library: oracle.sdp.messaging, Classpath: JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar. This is the Java library used by UMS and applications that use UMS to send and receive messages.

	
In the Application Navigator, right-click web module usermessagingsample-web, and select Project Properties.

	
In the left pane, select Libraries and Classpath.

Figure 61-3 Verifying Libraries

[image: Description of Figure 61-3 follows]

	
Click OK.

	
Explore the Java files under the usermessagingsample-web project to see how the messaging client APIs are used to send messages, get statuses, and synchronously receive messages. The MessagingClient instance is created in SampleUtils.java in the project.

61.9.4 Deploying the Application

Perform the following steps to deploy the application:

	
Create an Application Server Connection by right-clicking the application in the navigation pane and selecting New. Follow the instructions in Section 61.11, "Creating a New Application Server Connection."

	
Deploy the application by selecting the usermessagingsample application, Deploy, usermessagingsample, to, and SOA_server (Figure 61-4).

Figure 61-4 Deploying the Project

[image: Description of Figure 61-4 follows]

	
Verify that the message Build Successful appears in the log.

	
Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample, you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.

	
Note:

Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

61.9.5 Testing the Application

Once usermessagingsample has been deployed to a running instance of Oracle WebLogic Server, perform the following:

	
Launch a web browser and enter the address of the sample application as follows: http://host:http-port/usermessagingsample/. For example, enter http://localhost:7001/usermessagingsample/ into the browser's navigation bar.

When prompted, enter login credentials. For example, username weblogic. The browser page for testing messaging samples appears (Figure 61-5).

Figure 61-5 Testing the Sample Application

[image: Description of Figure 61-5 follows]

	
Click Send sample message. The Send Message page appears (Figure 61-6).

Figure 61-6 Addressing the Test Message

[image: Description of Figure 61-6 follows]

	
As an optional step, enter the sender address in the following format:

Email:sender_address.

For example, enter Email:sender@oracle.com.

	
Enter one or more recipient addresses. For example, enter Email:recipient@oracle.com. Enter multiple addresses as a comma-separated list as follows:

Email:recipient_address1, Email:recipient_address2.

If you have configured user messaging preferences, you can address the message simply to User:username. For example, User:weblogic.

	
As an optional step, enter a subject line or content for the email.

	
Click Send. The Message Status page appears, showing the progress of transaction (Message received by Messaging engine for processing in Figure 61-7).

Figure 61-7 Message Status

[image: Description of Figure 61-7 follows]

	
Click Refresh to update the status. When the email message has been delivered to the email server, the Status Content field displays Outbound message delivery to remote gateway succeeded., as illustrated in Figure 61-8.

Figure 61-8 Checking the Message Status

[image: Description of Figure 61-8 follows]

61.10 Using the UMS Client API to Build a Client Echo Application

This section describes how to create an application called usermessagingsample-echo, a demo client application that uses the UMS Client API to asynchronously receive messages from an email address and echo a reply back to the sender.

	
Note:

To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle Technology Network code sample page at the following URL: https://codesamples.samplecode.oracle.com/
Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search.

This application, which is packaged as a Enterprise Archive file (EAR) called usermessagingsample-echo.ear, has the following structure:

	
usermessagingsample-echo.ear

	
META-INF

	
application.xml -- Descriptor file for all of the application modules.

	
weblogic-application.xml -- Descriptor file that contains the import of the oracle.sdp.messaging shared library.

	
usermessagingsample-echo-web.war -- Contains the web-based front-end and servlets. It also contains the listener that processes a received message and returns an echo response

	
WEB-INF

	
web.xml

	
weblogic.xml

The prebuilt sample application, and the source code (usermessagingsample-echo-src.zip) are available on OTN.

61.10.1 Overview of Development

The following steps describe the process of building an application capable of asynchronous inbound and outbound messaging using usermessagingsample-echo.ear as an example:

	
Section 61.10.2, "Configuring the Email Driver"

	
Section 61.10.3, "Using JDeveloper 11g to Build the Application"

	
Section 61.10.4, "Deploying the Application"

	
Section 61.10.5, "Testing the Application"

61.10.2 Configuring the Email Driver

To enable the Oracle User Messaging Service's email driver to perform inbound and outbound messaging and status retrieval, configure the email driver as follows:

	
Enter the name of the SMTP mail server as the value for the OutgoingMailServer property.

	
Enter the name of the IMAP4/POP3 mail server as the value for the IncomingMailServer property. Also, configure the incoming user name, and password.

	
Note:

This sample application is generic and can support inbound and outbound messaging through other channels when the appropriate messaging drivers are deployed and configured.

61.10.3 Using JDeveloper 11g to Build the Application

This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample-echo through the following steps:

61.10.3.1 Opening the Project

	
Unzip usermessagingsample-echo-src.zip, to the JDEV_HOME/communications/samples/ directory. This directory must be used for the shared library references to be valid in the project.

	
Note:

If you choose to use a different directory, you must update the oracle.sdp.messaging library source path to JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar.

	
Open usermessagingsample-echo.jws (contained in the .zip file) in Oracle JDeveloper (Figure 61-9).

Figure 61-9 Opening the Project

[image: Description of Figure 61-9 follows]

In the Oracle JDeveloper main window the project appears (Figure 61-10).

Figure 61-10 Oracle JDeveloper Main Window

[image: Description of Figure 61-10 follows]

	
Verify that the build dependencies for the sample application have been satisfied by checking that the following library has been added to the usermessagingsample-echo-web module.

	
Library: oracle.sdp.messaging, Classpath: JDEV_HOME/communications/modules/oracle.sdp.messaging_11.1.1/sdpmessaging.jar. This is the Java library used by UMS and applications that use UMS to send and receive messages.

Perform the following steps for each module:

	
In the Application Navigator, right-click the module and select Project Properties.

	
In the left pane, select Libraries and Classpath (Figure 61-11).

Figure 61-11 Verifying Libraries

[image: Description of Figure 61-11 follows]

	
Click OK.

	
Explore the Java files under the usermessagingsample-echo-web project to see how the messaging client APIs are used to register and unregister access points, and how the EchoListener is used to asynchronously receive messages.

61.10.4 Deploying the Application

Perform the following steps to deploy the application:

	
Create an Application Server Connection by right-clicking the application in the navigation pane and selecting New. Follow the instructions in Section 61.11, "Creating a New Application Server Connection."

	
Deploy the application by selecting the usermessagingsample-echo application, Deploy, usermessagingsample-echo, to, and SOA_server (Figure 61-12).

Figure 61-12 Deploying the Project

[image: Description of Figure 61-12 follows]

	
Verify that the message Build Successful appears in the log.

	
Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.

	
Note:

Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

61.10.5 Testing the Application

Once usermessagingsample-echo has been deployed to a running instance of Oracle WebLogic Server, perform the following:

	
Launch a web browser and enter the address of the sample application as follows: http://host:http-port/usermessagingsample-echo/. For example, enter http://localhost:7001/usermessagingsample-echo/ into the browser's navigation bar.

When prompted, enter login credentials. For example, username weblogic. The browser page for testing messaging samples appears (Figure 61-13).

Figure 61-13 Testing the Sample Application

[image: Description of Figure 61-13 follows]

	
Click Register/Unregister Access Points. The Access Point Registration page appears (Figure 61-14).

Figure 61-14 Registering an Access Point

[image: Description of Figure 61-14 follows]

	
Enter the access point address in the following format:

EMAIL:server_address.

For example, enter EMAIL:myserver@example.com.

	
Select the Action Register and Click Submit. The registration status page appears, showing "Registered" in Figure 61-15).

Figure 61-15 Access Point Registration Status

[image: Description of Figure 61-15 follows]

	
Send a message from your messaging client (for email, your email client) to the address you just registered as an access point in the previous step.

If the UMS messaging driver for that channel is configured correctly, you should expect to receive an echo message back from the usermessagingsample-echo application.

61.11 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

	
Create a new Application Server Connection by right-clicking the project and selecting New, Connections, and Application Server Connection (Figure 61-16).

Figure 61-16 New Application Server Connection

[image: Description of Figure 61-16 follows]

	
Name the connection SOA_server and click Next (Figure 61-17).

	
Select WebLogic 10.3 as the Connection Type.

Figure 61-17 New Application Server Connection

[image: Description of Figure 61-17 follows]

	
Enter the authentication information. A typical value for user name is weblogic.

	
In the Connection dialog, enter the hostname, port, and SSL port for the SOA admin server, and enter the name of the domain for WLS Domain.

	
Click Next.

	
In the Test dialog, click Test Connection.

	
Verify that the message Success! appears.

The Application Server Connection has been created.

62 Parlay X Web Services Multimedia Messaging API

This chapter describes the Parlay X Multimedia Messaging Web Service that is available with Oracle User Messaging Service and how to use the Parlay X Web Services Multimedia Messaging API to send and receive messages through Oracle User Messaging Service.

	
Note:

To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.

This chapter includes the following sections:

	
Section 62.1, "Introduction to Parlay X Messaging Operations"

	
Section 62.2, "Send Message Interface"

	
Section 62.3, "Receive Message Interface"

	
Section 62.4, "Oracle Extension to Parlay X Messaging"

	
Section 62.5, "Parlay X Messaging Client API and Client Proxy Packages"

	
Section 62.6, "Sample Chat Application with Parlay X APIs"

	
Note:

To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle Technology Network code sample page at the following URL: https://codesamples.samplecode.oracle.com/
Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search.

	
Note:

Oracle User Messaging Service also ships with a Java client library that implements the Parlay X API.

62.1 Introduction to Parlay X Messaging Operations

The following sections describe the semantics of each of the supported operations along with implementation-specific details for the Parlay X Gateway. The following tables, describing input/output message parameters for each operation, are taken directly from the Parlay X specification.

Oracle User Messaging Service implements a subset of the Parlay X 2.1 Multimedia Messaging specification. Specifically Oracle User Messaging Service supports the SendMessage and ReceiveMessage interfaces. The MessageNotification and MessageNotificationManager interfaces are not supported.

62.2 Send Message Interface

The SendMessage interface enables you to send a message to one or more recipient addresses by using the sendMessage operation, or get the delivery status for a previously sent message by using the getMessageDeliveryStatus operation. The following requirements apply:

	
A recipient address must conform to the address format requirements of Oracle User Messaging Service (in addition to being a valid URI). The general format is delivery_type:protocol_specific_address, such as email:user@domain, sms:5551212 or im:user@jabberdomain.

	
Certain characters are not allowed in URIs; if it is necessary to include them in an address they can be encoded or escaped. Refer to the JavaDoc for java.net.URI for details on how to create a properly encoded URI.

	
While the WSDL specifies that sender addresses can be any string, Oracle User Messaging Service requires that they be valid Messaging addresses.

	
Oracle User Messaging Service requires that you specify sender addresses on a per-delivery type basis. So for a sender address to apply to a recipient of a given delivery type, say EMAIL, the sender address must also have delivery type of EMAIL. Since this operation allows multiple recipient addresses but only one sender address, the sender address only applies to the recipients with the same delivery type.

	
Oracle User Messaging Service does not support the MessageNotification interface, and therefore do not produce delivery receipts, even if a receiptRequest is specified. In other words, the receiptRequest parameter is ignored.

62.2.1 sendMessage Operation

Table 62-1 describes message descriptions for the sendMessageRequest input in the sendMessage operation.

Table 62-1 sendMessage Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
addresses

	
xsd:anyURI[0..unbounded]

	
No

	
Destination address for this Message.

	
senderAddress

	
xsd:string

	
Yes

	
Message sender address. This parameter is not allowed for all 3rd party providers. The Parlay X server must handle this according to a SLA for the specific application and its use can therefore result in a PolicyException.

	
subject

	
xsd:string

	
Yes

	
Message subject. If mapped to SMS, this parameter is used as the senderAddress, even if a separate senderAddress is provided.

	
priority

	
MessagePriority

	
Yes

	
Priority of the message. If not present, the network assigns a priority based on the operator policy.Charging to apply to this message.

	
charging

	
common: ChargingInformation

	
Yes

	
Charging to apply to this message.

	
receiptRequest

	
common:SimpleReference

	
Yes

	
Defines the application endpoint, interface name and correlator that is used to notify the application when the message has been delivered to a terminal or if delivery is impossible.

Table 62-2 describes sendMessageResponse output messages for the sendMessage operation.

Table 62-2 sendMessageResponse Output Message Descriptions

	Part Name	Part Type	Optional	Description
	
result

	
xsd:string

	
No

	
This correlation identifier is used in a getMessageDeliveryStatus operation invocation to poll for the delivery status of all sent messages.

62.2.2 getMessageDeliveryStatus Operation

The getMessageDeliveryStatus operation gets the delivery status for a previously sent message. The input "requestIdentifier" is the "result" value from a sendMessage operation. This is the same identifier that is referred to as a Message ID in other Messaging documentation.

Table 62-3 describes the getMessageDeliveryStatusRequest input messages for the getMessageDeliveryStatus operation.

Table 62-3 getMessageDeliveryStatusRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
registrationIdentifier

	
xsd:string

	
No

	
Identifier related to the delivery status request.

Table 62-4 describes the getMessageDeliveryStatusResponse output messages for the getMessageDeliveryStatus operation.

Table 62-4 getMessageDeliveryStatusResponse Output Message Descriptions

	Part Name	Part Type	Optional	Description
	
result

	
DeliveryInformation [0..unbounded]

	
Yes

	
An array of status of the messages that were previously sent. Each array element represents a sent message, its destination address and its delivery status.

62.3 Receive Message Interface

The ReceiveMessage interface has three operations. The getReceivedMessages operation polls the server for any messages received since the last invocation of getReceivedMessages. Note that getReceivedMessages does not necessarily return any message content; it generally only returns message metadata.

The other two operations, getMessage and getMessageURIs, are used to retrieve message content.

62.3.1 getReceivedMessages Operation

This operation polls the server for any received messages. Note the following requirements:

	
The registration ID parameter is a string that identifies the endpoint address for which the application wants to receive messages. See the discussion of the ReceiveMessageManager interface for more details.

	
The Parlay X specification says that if the registration ID is not specified, all messages for this application should be returned. However, the WSDL says that the registration ID parameter is mandatory. Therefore our implementation treats the empty string ("") as the "not-specified" value. If you call getReceivedMessages with the empty string as your registration ID, you get all messages for this application. Therefore the empty string is not an allowed value of registration ID when calling startReceiveMessages.

	
According to the Parlay X specification, if the received message content is "pure ASCII text", then the message content is returned inline within the MessageReference object, and the messageIdentifier (Message ID) element is null. Our implementation treats any content with Content-Type "text/plain", and with encoding "us-ascii" as "pure ASCII text" for the purposes of this operation. As per the MIME specification, if no encoding is specified, "us-ascii" is assumed, and if no Content-Type is specified, "text/plain" is assumed.

	
The priority parameter is currently ignored.

Table 62-5 describes the getReceivedMessagesRequest input messages for the getReceivedMessages operation.

Table 62-5 getReceivedMessagesRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
registrationIdentifier

	
xsd:string

	
No

	
Identifies the off-line provisioning step that enables the application to receive notification of Message reception according to the specified criteria.

	
priority

	
MessagePriority

	
Yes

	
The priority of the messages to poll from the Parlay X gateway. All messages of the specified priority and higher are retrieved. If not specified, all messages shall be returned, that is, the same as specifying "Low."

Table 62-6 describes the getReceivedMessagesResponse output messages for the getReceivedMessages operation.

Table 62-6 getReceivedMessagesResponse Output Message Descriptions

	Part Name	Part Type	Optional	Description
	
registrationIdentifier

	
xsd:string

	
No

	
Identifies the off-line provisioning step that enables the application to receive notification of Message reception according to the specified criteria.

	
priority

	
MessagePriority

	
Yes

	
The priority of the messages to poll from the Parlay X gateway. All messages of the specified priority and higher are retrieved. If not specified, all messages shall be returned. This is equal to specifying Low.

62.3.2 getMessage Operation

The getMessage operation retrieves message content, using a message ID from a previous invocation of getReceivedMessages. There is no SOAP body in the response message; the content is returned as a single SOAP attachment.

Table 62-7 describes the getMessageRequest input messages for the getMessage operation.

Table 62-7 getMessageRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
messageRefIdentifier

	
xsd:string

	
No

	
The identity of the message.

There are no getMessageResponse output messages for the getMessage operation.

62.3.3 getMessageURIs Operation

The getMessageURIs retrieves message content as a list of URIs. Note the following requirements:

	
These URIs are HTTP URLs that can be dereferenced to retrieve the content.

	
If the inbound message has a Content-Type of "multipart", then there are multiple URIs returned, one per subpart. If the Content-Type is not "multipart", then a single URI are returned.

	
Per the Parlay X specification, if the inbound messages a body text part, defined as "the message body if it is encoded as ASCII text", it is returned inline within the MessageURI object. For the purposes of our implementation, we define this behavior as follows:

	
If the message's Content-Type is "text/*" (any text type), and if the charset parameter is "us-ascii", then the content is returned inline in the MessageURI object. There are no URIs returned since there is no content other than what is returned inline.

	
If the message's Content-Type is "multipart/" (any multipart type), and if the first body part's Content-Type is "text/" with charset "us-ascii", then that part is returned inline in the MessageURI object, and there are no URIs returned corresponding to that part.

	
Per the MIME specification, if the charset parameter is omitted, the default value of "us-ascii" is assumed. If the Content-Type header is not specified for the message, then a Content-Type of "text/plain" is assumed.

Table 62-8 describes the getMessageURIsRequest input messages for the getMessageURIs operation.

Table 62-8 getMessageURIsRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
messageRefIdentifier

	
xsd:string

	
No

	
The identity of the message to retrieve.

Table 62-9 describes the getMessageURIsResponse output messages for the getMessageURIs operation.

Table 62-9 getMessageURIsResponse Output Message Descriptions

	Part Name	Part Type	Optional	Description
	
result

	
MessageURI

	
No

	
Contains the complete message, consisting of the textual part of the message, if such exists, and a list of file references for the message attachments, if any.

62.4 Oracle Extension to Parlay X Messaging

The Parlay X Messaging specification leaves certain parts of the messaging flow undefined. The main area that is left undefined is the process for binding a client to an address for synchronous receiving (through the ReceiveMessage interface).

Oracle User Messaging Service includes an extension interface to Parlay X to support this process. The extension is implemented as a separate WSDL in an Oracle XML namespace to indicate that it is not an official part of Parlay X. Clients can choose to not use this additional interface or use it in some modular way such that their core messaging logic remains fully compliant with the Parlay X specification.

62.4.1 ReceiveMessageManager Interface

ReceiveMessageManager is the Oracle-specific interface for managing client registrations for receiving messages. Clients use this interface to start and stop receiving messages at a particular address. (This is analogous to the concept of registering/unregistering access points in the Messaging API).

62.4.1.1 startReceiveMessage Operation

Invoking this operation allows a client to bind itself to a given endpoint for receiving messages. Note the following requirements:

	
An endpoint consists of an address and an optional "criteria", defined by the Parlay X specification as the first white space-delimited token of the message subject or content.

	
In addition to the endpoint information, the client also specifies a "registration ID" when invoking this operation; this ID is just a unique string which can be used later to refer to this particular binding in the stopReceiveMessage and getReceivedMessages operations.

	
If an endpoint is already registered by another client application, or the registration ID is already being used, a Policy Error results.

	
Certain characters are not allowed in URIs; if it is necessary to include them in an address they can be encoded/escaped. See the javadoc for java.net.URI for details on how to create a properly encoded URI. For example, when registering to receive XMPP messages you must specify an address such as IM:jabber|user@example.com, however the pipe (|) character is not allowed in URIs, and must be escaped before submitting to the server.

	
There is no guarantee that the server can actually receive messages at a given endpoint address. That depends on the overall configuration of Oracle User Messaging Service, particularly the Messaging drivers that are deployed in the system. No error is indicated if a client binds to an address where the server cannot receive messages.

The startReceiveMessage operation has the following inputs and outputs:

Table 62-10 describes the startReceiveMessageRequest input messages for the startReceiveMessage operation.

Table 62-10 startReceiveMessageRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
registrationIdentifier

	
xsd:string

	
No

	
A registration identifier.

	
messageService ActivationNumber

	
xsd:anyURI

	
No

	
Message Service Activation Number.

	
criteria

	
xsd:string

	
Yes

	
Descriptive string.

There are no startReceiveMessageResponse output messages for the startReceiveMessage operation.

62.4.1.2 stopReceiveMessage Operation

Invoking this operation removes the previously-established binding between a client and a receiving endpoint. The client specifies the same registration ID that was supplied when startReceiveMessage was called to identify the endpoint binding that is being broken. If there is no corresponding registration ID binding known to the server for this application, a Policy Error results.

Table 62-11 describes the stopReceiveMessageRequest input messages for the stopReceiveMessage operation.

Table 62-11 stopReceiveMessageRequest Input Message Descriptions

	Part Name	Part Type	Optional	Description
	
registrationIdentifier

	
xsd:string

	
No

	
A registration identifier.

There are no stopReceiveMessageResponse output messages for the stopReceiveMessage operation.

62.5 Parlay X Messaging Client API and Client Proxy Packages

While it is possible to assemble a Parlay X Messaging Client using only the Parlay X WSDL files and a web service assembly tool, we also provide pre-built web service stubs and interfaces for the supported Parlay X Messaging interfaces. Due to difficulty in assembling a web service with SOAP attachments in the style mandated by Parlay X, we recommend the use of the provided API rather than starting from WSDL.

For a complete listing of the classes available in the Parlay X Messaging API, see the Messaging JavaDoc. The main entry points for the API are through the following client classes:

	
oracle.sdp.parlayx.multimedia_messaging.send.SendMessageClient

	
oracle.sdp.parlayx.multimedia_messaging.receive.ReceiveMessageClient

	
oracle.sdp.parlayx.multimedia_messaging.extension.receive_manager.ReceiveMessageManager

Each client class allows a client application to invoke the operations in the corresponding interface. Additional web service parameters such as the remote gateway URL and any required security credentials, are provided when an instance of the client class is constructed. See the Javadoc for more details. The security credentials are propagated to the server using standard WS-Security headers, as mandated by the Parlay X specification.

The general process for a client application is to create one of the client classes above, set the necessary configuration items (endpoint, username, password), then invoke one of the business methods (for example, SendMessageClient.sendMessage(), and so on). For examples of how to use this API, see the Messaging samples on Oracle Technology Network (OTN), and specifically usermessagingsample-parlayx-src.zip.

62.6 Sample Chat Application with Parlay X APIs

This chapter describes how to create, deploy and run the sample chat application with Parlay X APIs provided with Oracle User Messaging Service on OTN.

	
Note:

To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle Technology Network code sample page at the following URL: https://codesamples.samplecode.oracle.com/
Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search.

	
Note:

To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.

This chapter contains the following sections:

	
Section 62.6.1, "Overview"

	
Section 62.6.2, "Running the Pre-Built Sample"

	
Section 62.6.3, "Testing the Sample"

	
Section 62.6.4, "Creating a New Application Server Connection"

62.6.1 Overview

This sample demonstrates how to create a web-based chat application to send and receive messages through email, SMS, or IM. The sample uses standards-based Parlay X Web Service APIs to interact with a User Messaging server. The sample application includes web service proxy code for each of three web service interfaces: the SendMessage and ReceiveMessage services defined by Parlay X, and the ReceiveMessageManager service which is an Oracle extension to Parlay X. You define an application server connection in Oracle JDeveloper, and deploy and run the application.The application is provided as a pre-built Oracle JDeveloper project that includes a simple web chat interface.

62.6.1.1 Provided Files

The following files are included in the sample application:

	
Project – the directory containing the archived Oracle JDeveloper project files.

	
Readme.txt.

	
Release notes

62.6.2 Running the Pre-Built Sample

Perform the following steps to run and deploy the pre-built sample application:

	
Open the usermessagingsample-parlayx.jws (contained in the .zip file) in Oracle JDeveloper.

In the Oracle JDeveloper main window the project appears.

Figure 62-1 Oracle JDeveloper Main Window

[image: Description of Figure 62-1 follows]

	
In Oracle JDeveloper, select File > Open..., then navigate to the directory above and open workspace file "usermessagingsample-parlayx.jws".

This opens the precreated JDeveloper application for the Parlay X sample application. The application contains one web module. All of the source code for the application is in place. You must configure the parameters that are specific to your installation.

	
Satisfy the build dependencies for the sample application by adding a library to the web module.

	
In the Application Navigator, right-click web module usermessagingsample-parlayx-war, and select Project Properties.

	
In the left pane, select Libraries and Classpath.

Figure 62-2 Adding a Library

[image: Description of Figure 62-2 follows]

	
Click Add Library.

Figure 62-3 Adding a Library

[image: Description of Figure 62-3 follows]

	
Click New to define a new library.

	
For Library Name, enter oracle.sdp.client.

Figure 62-4 Defining the Library

[image: Description of Figure 62-4 follows]

	
With Class Path selected, select Add Entry.

	
Navigate to JDeveloper_Base_Directory/communications/modules/oracle.sdp.client_11.1.1, and select jar file sdpclient.jar.

Figure 62-5 Selecting sdpclient.jar

[image: Description of Figure 62-5 follows]

	
Click OK/Accept in all popups to create the library and add it as a dependency to the sample web module.

	
Create an Application Server Connection by right-clicking the project in the navigation pane and selecting New. Follow the instructions in Section 62.6.4, "Creating a New Application Server Connection".

	
Deploy the project by selecting the usermessasgingsample-parlayx project, Deploy, usermessasgingsample-parlayx, to, and SOA_server (Figure 62-6).

Figure 62-6 Deploying the Project

[image: Description of Figure 62-6 follows]

	
Verify that the message Build Successful appears in the log.

	
Enter the default revision and click OK.

	
Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.

	
Note:

Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

62.6.3 Testing the Sample

Perform the following steps to run and test the sample:

	
Open a web browser.

	
Navigate to the URL of the application as follows, and log in:

http://host:port/usermessagingsample-parlayx/

The Messaging Parlay X Sample web page appears (Figure 62-7). This page contains navigation tabs and instructions for the application.

Figure 62-7 Messaging Parlay X Sample Web Page

[image: Description of Figure 62-7 follows]

	
Click Configure and enter the following values (Figure 62-8):

	
Specify the Send endpoint. For example, http://localhost:port/sdpmessaging/parlayx/SendMessageService

	
Specify the Receive endpoint. For example, http://localhost:port/sdpmessaging/parlayx/ReceiveMessageService

	
Specify the Receive Manager endpoint. For example, http://localhost:port/sdpmessaging/parlayx/ReceiveMessageMessageService

	
Specify the Username and Password.

	
Specify a Policy (required if the User Messaging Service instance has WS security enabled).

	

Figure 62-8 Configuring the Web Service Endpoints and Credentials

[image: Description of Figure 62-8 follows]

	
Click Save.

	
Click Manage.

	
Enter a Registration ID to specify the registration and address at which to receive messages (Figure 62-9). You can also use this page to stop receiving messages at an address.

Figure 62-9 Specifying a Registration ID

[image: Description of Figure 62-9 follows]

	
Click Start.

Verify that the message Registration operation succeeded appears.

	
Click Chat (Figure 62-10).

	
Enter recipients in the To: field in the format illustrated in Figure 62-10.

	
Enter a message.

	
Click Send.

	
Verify that the message is received.

	

Figure 62-10 Running the Sample

[image: Description of Figure 62-10 follows]

62.6.4 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

	
Create a new Application Server Connection by right-clicking the project and selecting New, Connections, and Application Server Connection (Figure 62-11).

Figure 62-11 New Application Server Connection

[image: Description of Figure 62-11 follows]

	
Name the connection SOA_server and click Next (Figure 62-12).

	
Select WebLogic 10.3 as the Connection Type.

Figure 62-12 New Application Server Connection

[image: Description of Figure 62-12 follows]

	
Enter the authentication information. The typical value for username is weblogic.

	
In the Connection dialog, enter the hostname, port and SSL port for the SOA admin server, and enter the name of the domain for the Oracle WebLogic Server Domain.

	
Click Next.

	
On the Test dialog, click Test Connection.

	
Verify that the message Success! appears.

The Application Server Connection has been created.

63 User Messaging Preferences

This chapter describes the User Messaging Preferences that are packaged with Oracle User Messaging Service. It describes how to work with messaging channels and to create contact rules using messaging filters.

	
Note:

To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.

This chapter includes the following sections:

	
Section 63.1, "Introduction to User Messaging Preferences"

	
Section 63.2, "How to Manage Messaging Channels"

	
Section 63.3, "Creating Contact Rules using Filters"

	
Section 63.4, "Configuring Settings"

63.1 Introduction to User Messaging Preferences

User Messaging Preferences allows a user who has access to multiple channels (delivery types) to control how, when, and where they receive messages. Users define filters, or delivery preferences, that specify which channel a message should be delivered to, and under what circumstances. Information about a user's devices and filters are stored in any database supported for use with Oracle Fusion Middleware.

For an application developer, User Messaging Preferences provide increased flexibility. Rather than an application needing business logic to decide whether to send an email or SMS message, the application can just send to the user, and the message is delivered according to the user's preferences.

Since preferences are stored in a database, this information is shared across all instances of User Messaging Preferences in a domain.

The oracle.sdp.messaging.userprefs package contains the User Messaging Preferences API classes. For more information, refer to the Javadoc.

63.1.1 Terminology

User Messaging Preferences defines the following terminology:

	
Channel: a physical channel, such as a phone, or PDA.

	
Channel address: one of the addresses that a channel can communicate with.

	
Filters: a set of notification delivery preferences.

	
System term: a pre-defined business term that cannot be extended by the administrator.

	
Business term: a rule term defined and managed by the system administrator through Enterprise Manager. Business terms can be added, defined, or deleted.

	
Rule term: a system term or a business term.

	
Operators: comparison operators equals, does not equal, contains, or does not contain.

	
Facts: data passed in from the message to be evaluated, such as time sent, or sender.

	
Rules Engine: the User Messaging Preferences component that processes and evaluates filters.

	
Channel: the transport type, for example, email, voice, or SMS.

	
Comparison: a rule term and the associated comparison operator.

	
Action: the action to be taken if the specified conditions in a rule are true, such as Broadcast to All, Failover, or Do not Send to Any Channel.

63.1.2 Configuration of Notification Delivery Preferences

User Messaging Preferences allows configuration of notification delivery preferences based on the following:

	
a set of well-defined rule terms (system terms or business terms)

	
a set of channel and the corresponding addresses supported by Oracle User Messaging Service

	
a set of User Messaging Preferences filters that are transparently handled by a rules engine

One use case for notification delivery preference is for bugs entered into a bug tracking system. For example, user Alex wants to be notified through SMS and EMAIL channels for bugs filed against his product with priority = 1 by a customer type = Premium. For all other bugs with priority > 1, he only wants to be notified by EMAIL. Alex's preferences can be stated as follows:

Example 63-1 Notification Delivery Preferences

Rule (1): if (Customer Type = Premium) AND (priority = 1) then notify [Alex] using
 SMS and EMAIL.

Rule (2): if (Customer Type = Premium) AND (priority > 1) then notify [Alex] using
EMAIL.

A runtime service, the Oracle Rules Engine, evaluates the filters to process the notification delivery of user requests.

63.1.3 Delivery Preference Rules

A delivery preference rule consists of rule comparisons and rule actions. A rule comparison consists of a rule term (a system term or a business term) and the associated comparison operators. A rule action is the action to be taken if the specified conditions in a rule are true.

63.1.3.1 Data Types

Table 63-2 lists data types supported by User Messaging Preferences. Each system term and business term must have an associated data type, and each data type has a set of pre-defined comparison operators. Administrators cannot extend these operators.

Table 63-1 Data Types Supported by User Messaging Preferences

	Data Type	Comparison Operators	Supported Values
	
Date

	
<, >, between, <=, >=

	
Date is accepted as a java.util.Date object or string representing the number of milliseconds since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT (in essence, the value from java.util.Date.getTime() or java.util.Calendar.getTime()).

	
Time

	
==, !=, between

	
A 4-digit integer to represent time of the day in HHMM format. First 2-digit is the hour in 24-hour format. Last 2-digit is minutes.

	
Number (Decimal)

	
<, >, between, <=, >=, isMultipleOf, isNotMultipleOf

	
A java.lang.Double object or a string representing a floating decimal point number with double precision.

	
String

	
==, !=, contains, not contains

	
Any arbitrary string.

	
Note:

The String data type does not support regular expressions.
The Time data type is only available to System Terms.

63.1.3.2 System Terms

Table 63-2 lists system terms, which are pre-defined business terms. Administrators cannot extend the system terms.

Table 63-2 System Terms Supported by User Messaging Preferences

	System Term	Data Type	Supported Values
	
Date

	
Date

	
Date is accepted as a java.util.Date object or string representing the number of milliseconds since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT (in essence, the value from java.util.Date.getTime() or java.util.Calendar.getTime()).

	
Time

	
Time

	
A 4-digit integer to represent time of the day in HHMM format. First 2-digit is the hour in 24-hour format. Last 2-digit is minutes.

63.1.3.3 Business Terms

Business terms are rule terms defined and managed by the system administrator through Oracle Application Server 11g Enterprise Manager. For more information on adding, defining, and deleting business terms, refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite. A business term consists of a key, a data type, an optional description, and an optional List of Values (LOV).

Table 63-3 lists the pre-defined business terms supported by User Messaging Preferences.

Table 63-3 Pre-defined Business Terms for User Messaging Preferences

	Business Term	Data Type
	
Service Name

	
String

	
Process Name

	
String

	
System Code

	
String

	
Error Code

	
String

	
Occurrence Count

	
Number (Decimal)

	
Organization

	
String

	
Time

	
Number (Decimal)

	
Priority

	
String

	
Application

	
String

	
Application Type

	
String

	
Expiration Date

	
Date

	
From

	
String

	
To

	
String

	
Customer Name

	
String

	
Customer Type

	
String

	
Status

	
String

	
Amount

	
Number (Decimal)

	
Due Date

	
Date

	
Process Type

	
String

	
Expense Type

	
String

	
Total Cost

	
Number (Decimal)

	
Processing Time

	
Number (Decimal)

	
Order Type

	
String

	
Service Request Type

	
String

	
Group Name

	
String

	
Source

	
String

	
Classification

	
String

	
Duration

	
Number (Decimal)

	
User

	
String

	
Role

	
String

63.1.4 Rule Actions

For a given rule, a User Messaging Preferences user can define one of the following actions:

	
Broadcast to All: send a broadcast message to all channels in the broadcast address list.

	
Failover: Send a message serially to channels in the address list until one successful message is sent. This means performing a send to the next channel when the current channel returns a failure status. User Messaging Preferences does not allow a user to specify a channel-specific status code or expiration time.

	
Do not send to Any Channel: Do not send a message to any channel.

	
Tip:

User Messaging Preferences does not provide a filter action that instructs "do not send to a specified channel." A best practice is to specify only positive actions, and not negative actions in rules.

	
Default address: if no action is defined, a message is sent to a default address, as defined in the Messaging Channels page in Enterprise Manager.

63.2 How to Manage Messaging Channels

Any channel that a user creates is associated with that user's system ID. In Oracle User Messaging Service, channels represent both physical channels, such as mobile phones, and also email client applications running on desktops, and are configurable on the The Messaging Channels tab (Figure 63-1).

Figure 63-1 Messaging Channels Tab

[image: Description of Figure 63-1 follows]

The Messaging Channels tab enables users to perform the following tasks:

63.2.1 Creating a Channel

To create a channel:

	
Click Create (Figure 63-2).

Figure 63-2 The Create Icon

[image: Description of Figure 63-2 follows]

	
Enter a name for the channel in the Name field (Figure 63-3).

	
Select the channel's transport type from the Type dropdown menu.

	
Enter the number or address appropriate to the transport type you selected.

	
Select the Default checkbox to set the channel as the default channel.

Figure 63-3 Creating a Channel

[image: Description of Figure 63-3 follows]

	
Click OK to create the channel. The channel appears on the Channels page. The Channels page enables you to edit or delete the channel.

63.2.2 Editing a Channel

To edit a channel, select it and click Edit (Figure 63-4). The editing page appears for the channel, which enables you to add or change the channel properties described in Section 63.2.1, "Creating a Channel".

Figure 63-4 Edit a Channel

[image: Description of Figure 63-4 follows]

Certain channels are based on information retrieved from your user profile in the identity store, and this address cannot be modified by User Messaging Preferences (Figure 63-5). The only operation that can be performed on such as channel is to make it the default.

Figure 63-5 Edit a Identity Store-Backed Channel

[image: Description of Figure 63-5 follows]

63.2.3 Deleting a Channel

To delete a channel, select it and click Delete (Figure 63-6).

Figure 63-6 The Delete Icon

[image: Description of Figure 63-6 follows]

63.2.4 Setting a Default Channel

Email is the default for receiving notifications. To set another channel as the default, select it, click Edit, and then click Set as default channel. A checkmark (Figure 63-7) appears next to the selected channel, designating it as the default means of receiving notifications.

Figure 63-7 The Default Icon

[image: Description of Figure 63-7 follows]

63.3 Creating Contact Rules using Filters

The Messaging Filters tab (Figure 63-8) enables users to build filters that specify not only the type of notifications they want to receive, but also the channel through which to receive these notifications through a combination of comparison operators (such as is equal to, is not equal to), business terms that describe the notification type, content or source, and finally, the notification actions, which send the notifications to all channels, block channels from receiving notifications, or send notifications to the first available channel.

Figure 63-8 Messaging Filters Tab

[image: Description of Figure 63-8 follows]

Figure 63-9 illustrates the creation of a filter called Travel Filter, by a user named weblogic, for handling notifications regarding Customers during his travel. Notifications that match all of the filter conditions are first directed to his "Business Mobile" channel. Should this channel become unavailable, Oracle User Messaging Service transmits the notifications as e-mails since the next available channel selected is Business Email.

Figure 63-9 Creating a Filter

[image: Description of Figure 63-9 follows]

63.3.1 Creating Filters

To create a filter:

	
Click Create (Figure 63-2). The Create Filter page appears (Figure 63-9).

	
Enter a name for the filter in the Filter Name field.

	
If needed, enter a description of the filter in the Description field.

	
Define the filter conditions using the lists and fields of the Condition section as follows:

	
Select whether notifications must meet all of the conditions or any of the conditions by selecting either the All of the following conditions or the Any of the following conditions options.

	
Select the notification's attributes. Refer to Table 63-3 for a list of these attributes.

	
Combine the selected condition type with one of the comparison operators described in Table 63-1.

If you select the Date attribute, select one of the comparison operators and then select the appropriate dates from the date chooser.

	
Add appropriate values describing the attributes or operators.

	
Click Add (Figure 63-6) to add the attribute and the comparison operators to the table.

	
Repeat these steps to add more filter conditions. To delete a filter condition, click Delete (Figure 63-6).

	
Select one of the following delivery rules:

	
Send Messages to all Selected Channels -- Select this option to send messages to every listed channel.

	
Send to the First Available Channel (Failover in the order) -- Select this option to send messages matching the filter criteria to a preferred channel (set using the up and down arrows) or to the next available channel.

	
Send No Messages -- Select this option to block the receipt of any messages that meet the filter conditions.

	
To set the delivery channels, select a channel from the Add Notification Channel list and then click Add (Figure 63-6). To delete a channel, click Delete (Figure 63-6).

	
If needed, use the up and down arrows to prioritize channels. If available, the top-most channel receives messages meeting the filter criteria if you select Send to the First Available Channel.

	
Click OK to create the filter. Clicking Cancel discards the filter.

63.3.2 Editing a Filter

To edit a filter, first select it and then click Edit (Figure 63-9). The editing page appears for the filter, which enables you to add or change the filter properties described in Section 63.3.1, "Creating Filters".

63.3.3 Deleting a Filter

To delete a filter, first select it and then click Delete (Figure 63-6).

63.4 Configuring Settings

The Settings tab (Figure 63-10), accessed from the upper right area, enables users to set the following parameters:

	
Accessibility Mode: select Standard or Screen Reader.

	
Locale Source: select From Identity Store or From Your Browser.

Figure 63-10 Configuring Settings

[image: Description of Figure 63-10 follows]

Part XII

Appendices

This part describes Oracle SOA Suite appendixes.

This part contains the following appendixes:

	
Appendix A, "BPEL Process Activities and Services"

	
Appendix B, "XPath Extension Functions"

	
Appendix C, "Deployment Descriptor Properties"

	
Appendix D, "Understanding Sensor Public Views and the Sensor Actions XSD"

	
Appendix E, "Oracle BAM Web Services Operations"

	
Appendix F, "Oracle BAM Alert Rule Options"

	
Appendix G, "Oracle BAM ICommand Operations and File Formats"

	
Appendix H, "Normalized Message Properties"

	
Appendix I, "Interfaces Implemented By Rules Dictionary Editor Task Flow"

	
Appendix J, "Oracle User Messaging Service Applications"

	
Appendix K, "Oracle SOA Suite Properties Road Map"

A BPEL Process Activities and Services

This appendix describes the activities and services that you use when designing a BPEL process in a SOA composite application.

This appendix includes the following sections:

	
Section A.1, "Introduction to Activities and Components"

	
Section A.2, "Introduction to BPEL Activities"

	
Section A.3, "Introduction to BPEL Services"

	
Section A.4, "Publishing and Browsing the Oracle Service Registry"

	
Section A.5, "Providing Design-time Governance with the Oracle Enterprise Repository"

	
Section A.6, "Validating When Loading a Process Diagram"

A.1 Introduction to Activities and Components

When you expand BPEL Activities and Components in the Component Palette of Oracle BPEL Designer, service components display under the Activities and Components header.

Figure A-1 Activities and Components

[image: Description of Figure A-1 follows]

See the following sections for additional details.

	
BPEL process

See Part II, "Using the BPEL Process Service Component"

	
Business rule

See Part IV, "Using the Business Rules Service Component"

	
Human task

Section 28.4, "Associating the Human Task Service Component with a BPEL Process."

	
Mediator

See Part III, "Using the Oracle Mediator Service Component"

A.2 Introduction to BPEL Activities

Oracle BPEL Designer includes activities that are available for dragging into a BPEL process. These activities enable you to perform specific tasks within a process. This section provides a brief overview of these activities and provides references to other documentation that describes how to use these activities.

To access these activities, expand BPEL Activities and Components in the Component Palette of Oracle BPEL Designer. The activities display under the BPEL Activities header.

For more information about activities, see the Business Process Execution Language for Web Services Specification by visiting the following URL:

http://www.oasis-open.org

A.2.1 Tabs Common to Many Activities

While each activity performs specific tasks, many activities include tabs that enable you to perform similar tasks. This section describes these common tabs.

	
The Timeout tab displays in receive activities and provides a timeout setting for request-response operations. This provides an alternative to the onMessage and onAlarm branches of a pick activity that you must use when you want to specify a time out duration for partner callbacks.

	
The Assertions tab displays in invoke, receive, and the onMessage branches of pick activities. A set of assertions are executed upon receipt of a callback message at a request-response operation in these activities. The assertions specify an XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from the activity. This provides an alternative to using a potentially large number of switch, assign, and throw activities after a partner callback.

	
The Skip Condition tab displays in most activities and enables you to specify an XPath expression that, when evaluated to true, causes the activity to be skipped. This extension provides an alternative to the case pattern of a switch activity that you use to make an activity conditional.

	
The Correlations tab displays in invoke, receive, and reply activities, the onMessage branch of pick activities, and the OnMessage variant of event handlers. Correlation sets address complex interactions between a process and its partners by providing a method for explicitly specifying correlated groups of operations within a service instance. A set of correlation tokens is defined as a set of properties shared by all messages in the correlated group.

	
The Properties tab displays in invoke, receive, and reply activities, and the onMessage branch of pick activities. You create header variables for use with the Oracle JCA adapters.

	
The Headers tab displays in invoke, receive, and reply activities, and the onMessage branch of pick activities. You create header variables for use with the Advanced Queuing (AQ), File, FTP, MQ, and Java Message Service (JMS) adapters.

	
The Annotations tab displays on all activities and enables you to provide descriptions in activities in the form of code comments and name and pair value assignments.

Note that the Annotations tab does not provide a method for changing the order of annotations. As a work around, change the order of annotations in the Source view of the project's BPEL file in Oracle BPEL Designer.

For more information about these tabs, see the following:

	
The online help for these tabs for additional details about their use

	
Section 8.5, "Using Correlation Sets in an Asynchronous Service"

	
Section 10.4, "Specifying XPath Expressions to Bypass Activity Execution"

	
Section 11.12, "Throwing Faults with Assertion Conditions"

	
Section 14.3, "Setting Timeouts for Request-Response Operations in Receive Activities"

	
Appendix H, "Normalized Message Properties"

	
Oracle Fusion Middleware User's Guide for Technology Adapters

A.2.2 Assign Activity

This activity provides a method for data manipulation, such as copying the contents of one variable to another. This activity can contain any number of elementary assignments.

shows the Assign dialog. You can perform the following tasks:

	
Click the General tab to provide the assign activity with a meaningful name.

	
Click the Copy Operation tab and the Add icon (shown in Figure A-2), and then select Copy Operation from the dropdown list to access the Create Copy Operation dialog. This action enables you to copy the contents of the source element (variable, expression, XML fragment, or partner link) in the From field to the contents of the destination element in the To field. You can also select a part (typically the payload) and an XPath query (a language for addressing parts of an XML document). Other selections such as Append Operation, Insert-After Operation, and others are also available from this list.

Figure A-2 Copy Operations Tab of Assign Activity Dialog

[image: Description of Figure A-2 follows]

If an assign activity contains multiple bpelx:append settings, it must be split into two assign activities. Otherwise, the bpelx:append is moved to the end of the list each time, which can cause problems. As a work around, move it manually.

For more information about the assign activity, see Chapter 6, "Manipulating XML Data in a BPEL Process."

A.2.3 Bind Entity Activity

This activity enables you to select the entity variable to act as the data handle to access and plug in different data provider service technologies.

The entity variable can be used with an Oracle Application Development Framework (ADF) Business Component data provider service using service data object (SDO)-based data. The entity variable enables you to specify BPEL data operations to be performed by an underlying data provider service. The data provider service performs the data operations in a data store behind the scenes and without use of other data store-related features provided by Oracle BPEL Process Manager (for example, the database adapter). This action enhances Oracle BPEL Process Manager runtime performance and incorporates native features of the underlying data provider service during compilation and runtime.

shows the Bind Entity dialog.

Figure A-3 Bind Entity Dialog

[image: Description of Figure A-3 follows]

A.2.4 Compensate Activity

This activity invokes compensation on an inner scope activity that has successfully completed. This activity can be invoked only from within a fault handler or another compensation handler. Compensation occurs when a process cannot complete several operations after completing others. The process must return and undo the previously completed operations. For example, assume a process is designed to book a rental car, a hotel, and a flight. The process books the car and the hotel, but cannot book a flight for the correct day. In this case, the process performs compensation by unbooking the car and the hotel.The compensation handler is invoked with the compensate activity, which names the scope on which the compensation handler is to be invoked.

Figure A-4 shows the Compensate dialog. You can perform the following tasks:

	
Click the General tab to provide the activity with a meaningful name.

	
Select the scope activity on which the compensation handler is to be invoked.

Figure A-4 Compensate Dialog

[image: Description of Figure A-4 follows]

For more information about the compensate activity, see Section 11.10, "Using Compensation After Undoing a Series of Operations."

A.2.5 Create Entity

This activity enables you to create an entity variable. The entity variable can be used with an Oracle ADF Business Component data provider service using SDO-based data.

shows the Create Entity dialog.

Figure A-5 Create Entity Dialog

[image: Description of Figure A-5 follows]

For more information, see Section 6.2, "Delegating XML Data Operations to Data Provider Services."

A.2.6 Email Activity

This activity enables you to send an email notification about an event.

For example, an online shopping business process of an online bookstore sends a courtesy email message to you after the items are shipped. The business process calls the notification service with your user ID and notification message. The notification service gets the email address from Oracle Internet Directory.

Figure A-6 shows the Email dialog.

Figure A-6 Email Dialog

[image: Description of Figure A-6 follows]

For more information about the email activity, see Section 17.3.1, "How To Configure the Email Notification Channel."

A.2.7 Empty Activity

This activity enables you to insert a no-operation instruction into a process. This activity is useful when you must use an activity that does nothing (for example, when a fault must be caught and suppressed).

Figure A-7 shows the Empty dialog.

Figure A-7 Empty Dialog

[image: Description of Figure A-7 follows]

For more information about the empty activity, see Section 11.9.8, "How to Create an Empty Activity to Insert No-Op Instructions into a Business Process."

A.2.8 Flow Activity

This activity enables you to specify one or more activities to be performed concurrently. A flow activity completes when all activities in the flow have finished processing. Completion of a flow activity includes the possibility that it can be skipped if its enabling condition is false.

For example, assume you use a flow activity to enable two loan offer providers (United Loan service and Star Loan service) to start in parallel. In this case, the flow activity contains two parallel activities – the sequence to invoke the United Loan service and the sequence to invoke the Star Loan service. Each service can take an arbitrary amount of time to complete their loan processes.

Figure A-8 shows an initial flow activity with its two panels for parallel processing. You drag activities into both panels to create parallel processing. When complete, a flow activity looks like that shown in Figure A-9.

Figure A-8 Flow Dialog (At Time of Creation)

[image: Description of Figure A-8 follows]

Figure A-9 Flow Dialog (After Design Completion)

[image: Description of Figure A-9 follows]

	
Note:

Oracle's BPEL implementation executes flows in the same, single execution thread of the BPEL process and not in separate threads.

For more information about the flow activity, see Section 9.2, "Creating a Parallel Flow."

A.2.9 FlowN Activity

This activity enables you to create multiple flows equal to the value of N, which is defined at runtime based on the data available and logic within the process. An index variable increments each time a new branch is created, until the index variable reaches the value of N.

Figure A-10 shows the FlowN dialog.

Figure A-10 FlowN Dialog

[image: Description of Figure A-10 follows]

For more information about the flowN activity, see Section 9.3, "Customizing the Number of Flow Activities with the flowN Activity."

A.2.10 IM Activity

This activity enables you to send an automatic, asynchronous instant message (IM) notification to a user, group, or destination address. shows the IM dialog.

Figure A-11 IM Dialog

[image: Description of Figure A-11 follows]

For more information, see Section 17.3.2, "How to Configure the IM Notification Channel."

A.2.11 Invoke Activity

This activity enables you to specify an operation you want to invoke for the service (identified by its partner link). The operation can be one-way or request-response on a port provided by the service. You can also automatically create variables in an invoke activity. An invoke activity invokes a synchronous web service or initiates an asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this port to submit required data and receive a response. For synchronous callbacks, only one port is needed for both the send and the receive functions.

The invoke activity supports the bpelx:inputProperty and bpelx:outputProperty that facilitate the passing of properties through the SOAP header and the obtaining of SOA runtime system properties for useful information such as the tracking.compositeInstanceId and tracking.conversationId.

Figure A-12 shows the Invoke dialog. You can perform the following tasks:

	
Provide the activity with a meaningful name.

	
Select the partner link for which to specify an operation.

	
Select the operation to be performed.

	
Automatically create a variable or select an existing variable in which to transport the data (payload).

Figure A-12 Invoke Dialog

[image: Description of Figure A-12 follows]

For more information about the invoke activity, see the following:

	
Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

	
Section 7.2.2.3, "Invoke Activity for Performing a Request"

	
Section 8.2.1.2, "Adding an Invoke Activity"

	
Section 11.8.2, "How to Return a Fault in an Asynchronous Interaction"

	
Section 11.12, "Throwing Faults with Assertion Conditions"

A.2.12 Java Embedding Activity

This activity enables you to add custom Java code to a BPEL process using the Java BPEL exec extension <bpelx:exec>. This is useful when you have Java code that can perform a function, and want to use this existing code instead of starting over.

Figure A-13 shows the Edit Java Embedding dialog.

Figure A-13 Edit Java Embedding Dialog

[image: Description of Figure A-13 follows]

For more information about the Java embedding activity, see Chapter 13, "Incorporating Java and Java EE Code in a BPEL Process."

A.2.13 Phase Activity

This activity creates Oracle Mediator and business rules service components for integration with a BPEL process. You create message request input and message response output variables and design business rules for evaluating variable content for the BPEL process.

When you complete these tasks, the following activities and service components are created:

	
An assign activity that includes the message request input and message response output variables.

	
An invoke activity, which is automatically designed to invoke an Oracle Mediator partner link in the BPEL process.

	
The Oracle Mediator partner link, which is automatically designed to route the message request input variable to the business rules service component in the SOA composite application of which this BPEL process is a part. The business rules service component displays in the SOA Composite Editor. Oracle Mediator also displays as a service component in the SOA Composite Editor.

	
The business rules service component, which evaluates the content of the message request input variable and returns the results in the message response output variable to Oracle Mediator. Oracle Mediator then makes a routing decision and routes the message to the correct target destinations.

Figure A-14 shows Phase dialog.

Figure A-14 Phase Dialog

[image: Description of Figure A-14 follows]

For more information, see Chapter 48, "Using Two-Layer Business Process Management (BPM)."

A.2.14 Pick Activity

This activity waits for the occurrence of one event in a set of events and performs the activity associated with that event. The occurrence of the events is often mutually exclusive (the process either receives an acceptance or rejection message, but not both). If multiple events occur, the selection of the activity to perform depends on which event occurred first. If the events occur nearly simultaneously, there is a race and the choice of activity to be performed is dependent on both timing and implementation.

The pick activity provides two branches, each one with a condition. When you double-click the Pick icon, the dialog shown in Figure A-15 appears and displays two branches:

	
onMessage (on the left)

Contains the code for receiving a reply, for example, from a loan service.

	
onAlarm (on the right)

Contains the code for a timeout, for example, after one minute.

Whichever branch completes first is executed; the other branch is not executed. The branch that has its condition satisfied first is executed.

Figure A-15 Pick Dialog

[image: Description of Figure A-15 follows]

Figure A-16 shows the onAlarm branch of the pick activity.

Figure A-16 OnAlarm Branch Dialog of a Pick Activity

[image: Description of Figure A-16 follows]

If you add correlations to an OnMessage branch, the correlations syntax is placed after the assign activity syntax. The correlation syntax must go before the assign activity.

As a work around, perform the following steps:

	
Create a correlation set in Oracle JDeveloper.

	
Assign this to the OnMessage branch.

	
Complete the remaining design tasks.

	
Before making or deploying the BPEL process, move the correlation syntax before the assign activity in the BPEL source code.

For more information about the pick activity, see the following:

	
Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

	
Section 11.12, "Throwing Faults with Assertion Conditions"

	
Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or Waiting"

	
Section 14.5, "Setting Timeouts for Synchronous Processes"

A.2.15 Receive Activity

This activity specifies the partner link from which to receive information and the port type and operation for the partner link to invoke. This activity waits for an asynchronous callback response message from a service, such as a loan application approver service. While the BPEL process is waiting, it is dehydrated (compressed and stored) until the callback message arrives. The contents of this response are stored in a response variable in the process.

The receive activity supports the bpelx:property extensions that facilitate the passing of properties through the SOAP header, and the obtaining of SOA runtime system properties for useful information such as tracking.compositeInstanceId and tracking.conversationId.

Figure A-17 shows the Receive dialog. You can perform the following tasks:

	
Provide a meaningful name.

	
Select the partner link service for which to specify an operation.

	
Select the operation to be performed.

	
Automatically create a variable or select an existing variable in which to transport the callback response.

Figure A-17 Receive Dialog

[image: Description of Figure A-17 follows]

For more information about the receive activity, see the following:

	
Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

	
Section 8.2.1.3, "Adding a Receive Activity"

	
Section 11.12, "Throwing Faults with Assertion Conditions"

	
Section 14.3, "Setting Timeouts for Request-Response Operations in Receive Activities"

A.2.16 Receive Signal Activity

Use this activity in detail processes to wait for the notification signal from the master process to begin processing and use in a master process to wait for the notification signal from all detail processes indicating that processing has completed.

Figure A-18 shows the Receive Signal dialog.

Figure A-18 Receive Signal Dialog

[image: Description of Figure A-18 follows]

For more information, see Chapter 15, "Coordinating Master and Detail Processes."

A.2.17 Remove Entity Activity

This activity enables you to remove an entity variable. This action removes the row. shows the Remove Entity dialog.

Figure A-19 Remove Entity

[image: Description of Figure A-19 follows]

A.2.18 Reply Activity

This activity allows the process to send a message in reply to a message that was received through a receive activity. The combination of a receive activity and a reply activity forms a request-response operation on the WSDL port type for the process.

Figure A-20 shows the Reply dialog.

Figure A-20 Reply Dialog

[image: Description of Figure A-20 follows]

For more information about the reply activity, see the following:

	
Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

	
Section 11.8.1, "How to Return a Fault in a Synchronous Interaction"

A.2.19 Scope Activity

This activity consists of a collection of nested activities that can have their own local variables, fault handlers, compensation handlers, and so on. A scope activity is analogous to a { } block in a programming language.

Each scope has a primary activity that defines its behavior. The primary activity can be a complex structured activity, with many nested activities within it to arbitrary depth. The scope is shared by all the nested activities.

Figure A-21 shows the Scope dialog. Define appropriate activities inside the scope activity.

Figure A-21 Scope Dialog

[image: Description of Figure A-21 follows]

Fault handling is associated with a scope activity. The goal is to undo the incomplete and unsuccessful work of a scope activity in which a fault has occurred. You define catch activities in a scope activity to create a set of custom fault-handling activities. Each catch activity is defined to intercept a specific type of fault.

Figure A-22 shows the Add Catch Branch icon inside a scope activity. Figure A-23 shows the catch activity area that appears when you click the Add Catch Branch icon. Within the area defined as Drop Activity Here, you drag additional activities to create fault handling logic to catch and manage exceptions.

For example, a client provides a social security number to a Credit Rating service when applying for a loan. This number is used to perform a credit check. If a bad credit history is identified or the social security number is identified as invalid, an assign activity inside the catch activity notifies the client of the loan offer rejection. The entire loan application process is terminated with a terminate activity.

Figure A-22 Creating a Catch Branch

[image: Description of Figure A-22 follows]

Figure A-23 Catch Activity Icon

[image: Description of Figure A-23 follows]

For more information about the scope activity and fault handling, see the following:

	
Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

	
Section 11.9, "Using a Scope Activity to Manage a Group of Activities"

A.2.20 Sequence Activity

This activity enables you to define a collection of activities to be performed in sequential order. For example, you may want the following activities performed in a specific order:

	
A customer request is received in a receive activity.

	
The request is processed inside a flow activity that enables concurrent behavior.

	
A reply message with the final approval status of the request is sent back to the customer in a reply activity.

A sequence activity makes the assumption that the request can be processed in a reasonable amount of time, justifying the requirement that the invoker wait for a synchronous response (because this service is offered as a request-response operation).

When this assumption cannot be made, it is better to define the customer interaction as a pair of asynchronous message exchanges.

When you double-click the Sequence icon, the activity area shown in Figure A-24 appears. Drag and define appropriate activities inside the sequence activity.

Figure A-24 Sequence Activity

[image: Description of Figure A-24 follows]

For more information about the sequence activity, see the following:

	
Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

	
Section 9.2, "Creating a Parallel Flow"

A.2.21 Signal Activity

This activity is used in a master process to notify detail processes to perform processing at runtime and used in detail processes to notify a master process that processing has completed. shows the Signal dialog.

Figure A-25 Signal Dialog

[image: Description of Figure A-25 follows]

For more information, see Chapter 15, "Coordinating Master and Detail Processes."

A.2.22 SMS Activity

This activity enables you to send a short message system (SMS) notification about an event.

Figure A-26 shows the SMS dialog.

Figure A-26 SMS Dialog

[image: Description of Figure A-26 follows]

For more information about the SMS activity, see Section 17.3.3, "How to Configure the SMS Notification Channel."

	
Note:

The fax and pager activities are not supported in 11g.

A.2.23 Switch Activity

This activity consists of an ordered list of one or more conditional branches defined in a case branch, followed optionally by an otherwise branch. The branches are considered in the order in which they appear. The first branch whose condition is true is taken and provides the activity performed for the switch. If no branch with a condition is taken, then the otherwise branch is taken. If the otherwise branch is not explicitly specified, then an otherwise branch with an empty activity is assumed to be available. The switch activity is complete when the activity of the selected branch completes.

A switch activity differs in functionality from a flow activity. For example, a flow activity enables a process to gather two loan offers at the same time, but does not compare their values. To compare and make decisions on the values of the two offers, a switch activity is used. The first branch is executed if a defined condition (inside the case branch) is met. If it is not met, the otherwise branch is executed.

Figure A-27 shows a switch activity with the following defined branches.

Figure A-27 Switch Activity

[image: Description of Figure A-27 follows]

For more information about the switch activity, see the following:

	
Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

	
Section 10.2, "Creating a Switch Activity to Define Conditional Branching"

A.2.24 Terminate Activity

A terminate activity enables you to end the tasks of an activity (for example, the fault handling tasks in a catch branch). For example, if a client's bad credit history is identified or a social security number is identified as invalid, a loan application process is terminated, and the client's loan application document is never submitted to the service loan providers.

Figure A-28 shows several terminate activities in the otherwise branch of a switch activity.

Figure A-28 Terminate Activity

[image: Description of Figure A-28 follows]

For more information about the terminate activity, see Section 11.11, "Using the Terminate Activity to Stop a Business Process Instance."

A.2.25 Throw Activity

This activity generates a fault from inside the business process.

Figure A-29 shows the Throw dialog.

Figure A-29 Throw Dialog

[image: Description of Figure A-29 follows]

For more information about the throw activity, see Section 11.7, "Throwing Internal Faults."

A.2.26 Transform Activity

This activity enables you to create a transformation that maps source elements to target elements (for example, incoming purchase order data into outgoing purchase order acknowledgment data).

Figure A-30 shows the Transform dialog. This dialog enables you to perform the following tasks:

	
Define the source and target variables and parts to map.

	
Specify the transformation mapper file.

	
Click the second icon (the Add icon) to the right of the Mapper File field to access the XSLT Mapper for creating a new XSL file for graphically mapping source and target elements. Click the Edit icon (third icon) to edit an existing XSL file.

Figure A-30 Transform Dialog

[image: Description of Figure A-30 follows]

For more information about the transform activity, see Chapter 38, "Creating Transformations with the XSLT Mapper."

A.2.27 User Notification

This activity enables you to design a BPEL process in which you do not explicitly select a notification channel during design time, but simply indicate that a notification must be sent. The channel to use for sending notifications is resolved at runtime based on preferences defined by the end user in the User Messaging Preferences user interface of the Oracle User Messaging Service. This moves the responsibility of notification channel selection from Oracle BPEL Designer to the end user. If the end user does not select a preferred channel or rule, email is used by default for sending notifications to that user. shows the User Notification dialog.

Figure A-31 User Notification Dialog

[image: Description of Figure A-31 follows]

For more information, see Section 17.4, "Allowing the End User to Select Notification Channels."

A.2.28 Validate Activity

This activity enables you to validate variables in the list. The variables are validated against their XML schema.

Figure A-33 shows the Validate dialog.

Figure A-32 Validate Dialog

[image: Description of Figure A-32 follows]

A.2.29 Voice Activity

This activity enables you to send a telephone voice notification about an event.

Figure A-33 shows the Voice dialog.

Figure A-33 Voice Dialog

[image: Description of Figure A-33 follows]

For more information about the voice activity, see Section 17.3.4, "How to Configure the Voice Notification Channel."

A.2.30 Wait Activity

This activity allows a process to specify a delay for a certain period or until a certain deadline is reached. A typical use of this activity is to invoke an operation at a certain time. This activity enables you to wait for a given time period or until a certain time has passed. Exactly one of the expiration criteria must be specified.

Figure A-34 shows the Wait dialog.

Figure A-34 Wait Dialog

[image: Description of Figure A-34 follows]

For more information about the wait activity, see Section 14.4, "Creating a Wait Activity to Set an Expiration Time."

A.2.31 While Activity

This activity supports repeated performance of a specified iterative activity. The iterative activity is repeated until the given while condition is no longer true.

Figure A-35 shows the While dialog. You can enter expressions in this dialog.

Figure A-35 While Dialog

[image: Description of Figure A-35 follows]

For more information about the while activity, see Section 10.3, "Creating a While Activity to Define Conditional Branching."

A.3 Introduction to BPEL Services

BPEL processes can communicate with web-based applications and clients through web services, JCA adapters, Oracle B2B services, Oracle Business Activity Monitoring, and partner links.

To access BEPL service:

	
In the Component Palette of Oracle BPEL Designer, expand BPEL Activities and Components.

	
Expand BPEL Services to display the services.

For more information about the adapters described in the following sections, see Oracle Fusion Middleware User's Guide for Technology Adapters.

A.3.1 Partner Link (Adapter/Web Service)

This service enables you to define the external services with which your process interacts. A partner link type characterizes the conversational relationship between two services by defining the roles played by each service in the conversation and specifying the port type provided by each service to receive messages within the conversation. For example, if you are creating a process to interact with a Credit Rating Service and two loan provider services (United Loan and Star Loan), you create partner links for all three services.

Figure A-36 shows the Partner Link dialog. You provide the following details:

	
A meaningful name for the service.

	
The web services description language (WSDL) file of the external service.

	
The actual service type (defined as Partner Link Type).

	
The role of the service (defined as Partner Role).

	
The role of the process requesting the service (defined as My Role).

Figure A-36 Partner Link Activity

[image: Description of Figure A-36 follows]

For more information about partner links, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."

A.3.2 ADF-BC Service

This service connects Oracle Application Development Framework (ADF) applications using SDOs with the SOA platform.

A.3.3 AQ Adapter

This adapter acts as both a dequeue (inbound) and enqueue (outbound) messaging adapter. In the inbound direction, the adapter polls the queues for messages to dequeue from a destination. In the outbound direction, the adapter enqueues messages to the queue for subscribers to dequeue.

A.3.4 Oracle B2B

This adapter enables you to browse B2B metadata in the Metadata Service (MDS) repository and select document definitions.

Oracle B2B is an e-commerce gateway that enables the secure and reliable exchange of transactions between an organization and its external trading partners. Oracle B2B and Oracle SOA Suite are designed for e-commerce business processes that require process orchestration, error mitigation, and data translation and transformation within an infrastructure that addresses the issues of security, compliance, visibility, and management.

For more information, see Oracle Fusion Middleware User's Guide for Oracle B2B.

A.3.5 Oracle BAM Adapter

This adapter integrates Java EE applications with Oracle BAM Server to send data. This adapter is used as a reference binding component in a SOA composite application.

For more information, see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring and Part X, "Using Oracle Business Activity Monitoring".

A.3.6 Database Adapter

This adapter enables a BPEL process to communicate with Oracle databases or third-party databases through JDBC. To access an existing relational schema, you use the Adapter Configuration Wizard to do the following:

	
Import a relational schema and map it as an XML schema (XSD).

	
Abstract SQL operations such as SELECT, INSERT, and UPDATE as web services.

While your BPEL process deals with XML and invokes web services, database rows and values are queried, inserted, and updated.

A.3.7 Direct Binding Service

This service uses the Direct Binding API to invoke a SOA composite application in the inbound direction and exchange messages over a remote method invocation (RMI). This option supports the propagation of both identities and transactions across JVMs and uses the T3 optimized path. Both synchronous and asynchronous invocation patterns are supported.

You can also invoke an Oracle Service Bus (OSB) flow or another SOA composite application in the outbound direction.

For more information about the Direct Binding Invocation API, see Oracle Fusion Middleware Infrastructure Management Java API Reference for Oracle SOA Suite and Chapter 37, "Using the Direct Binding Invocation API."

For more information about OSB, see Oracle Fusion Middleware Developer's Guide for Oracle Service Bus.

A.3.8 EJB Service

This service enables you to send and receive messages through Enterprise JavaBeans (EJBs).

For more information, see Chapter 36, "Integrating Enterprise JavaBeans with SOA Composite Applications."

A.3.9 File Adapter

This adapter acts as both an inbound and outbound adapter. In the inbound direction, the adapter polls for files in a directory to retrieve and process. In the outbound direction, the adapter creates files in a directory.

A.3.10 FTP Adapter

This adapter acts as both an inbound and outbound adapter. In the inbound direction, the adapter polls for files in a directory to retrieve and process. In the outbound direction, the adapter creates files in a directory.

A.3.11 HTTP Binding

This service enables you to integrate SOA composite applications with HTTP binding. This enables you to invoke SOA composite applications through HTTP POST and GET operations, and invoke HTTP endpoints through HTTP POST and GET operations.

For more information, see Section 35.1.2, "HTTP Binding Service."

A.3.12 JMS Adapter

This adapter acts as both a consume (inbound) and produce (outbound) messaging adapter. In the inbound direction, the adapter polls (consumes) messages from a JMS destination. In the outbound direction, the adapter sends (produces) messages to a JMS destination.

A.3.13 MQ Adapter

This adapter provides message exchange capabilities between BPEL processes and the IBM MQSeries messaging software.

A.3.14 Oracle Applications

This adapter provides comprehensive, bidirectional, multimodal, synchronous, and asynchronous connectivity to Oracle Applications. The adapter supports all modules of Oracle Applications in Release 12 and Release 11i, including selecting custom integration interface types based on the version of Oracle E-Business Suite. The adapter provides real-time and bidirectional connectivity to Oracle Applications through interface tables, views, application programming interfaces (APIs), and XML Gateway. The adapter inserts data into Oracle Applications using interface tables and APIs. To retrieve data from Oracle Applications, the adapter uses views. In addition, it uses XML Gateways for bidirectional integration with Oracle Applications. XML Gateways are also used to insert and receive Open Application Group Integration Specification (OAGIS)-compliant documents from Oracle Applications.

A.3.15 Socket Adapter

This adapter enables you to model standard or nonstandard protocols for communication over TCP/IP sockets. You can use this adapter to create a client or server socket, and establish a connection. The data that is transported can be text or binary.

A.3.16 Third Party Adapter

This adapter enables you to integrate third-party adapters into a SOA composite application. These third-party adapters produce artifacts (WSDLs and JCA files) that can configure a JCA adapter.

A.3.17 Web Service

This service enables you to connect to standards-based services using SOAP over HTTP.

For more information, see Section 2.3, "Adding Service Binding Components."

A.4 Publishing and Browsing the Oracle Service Registry

The Oracle Service Registry (OSR) provides a common standard for publishing and discovering information about web services. This section describes how to configure OSR against a separately installed Oracle SOA Suite environment.

You can use Oracle SOA Suite with the following versions of OSR:

	
OSR 10.3 (with Oracle WebLogic Server 10.3)

	
OSR 10.1.3

For more information about Oracle Service Registry, visit the following URL:

http://www.oracle.com/technology/goto/regrep

	
Notes:

	
This section does not describe how to configure OSR against the embedded Oracle WebLogic Server in Oracle JDeveloper.

	
OSR 10.3 deploys to the 10.3.0.0 version of Oracle WebLogic Server.

	
OSR 10.3 does not support the 10.3.1.0 version of Oracle WebLogic Server.

A.4.1 How to Publish a Business Service

This section provides an overview of how to publish a business service. For specific instructions, see the documentation at the following URL:

http://www.oracle.com/technology/tech/soa/uddi/index.html

To publish a business service:

	
Go to the Registry Control:

http://hostname:port/registry/uddi/web

	
Click Publish > WSDL.

	
Log in when prompted.

	
Complete the fields on this page to specify the access point URL and publish the WSDL for the business service.

	
Note:

If you later change your endpoint location, you must also update the WSDL location in the Registry Control. Otherwise, UDDI invocation fails during runtime. To change the WSDL location:
	
Log in to the Registry Control.

	
Navigate to the service.

	
Change both URLs within the port type and binding information using the model key.

A.4.2 How to Create a Connection to the Registry

To create a connection to the registry:

	
Go to Oracle JDeveloper.

	
Select File > New > Connections > UDDI Registry Connection to create a UDDI connection.

	
Enter a connection name.

	
Enter an inquiry endpoint URL. For example:

http://myhost.us.oracle.com:7001/registry/uddi/inquiry

	
Ensure that the Business View option is selected.

	
Click Next.

	
Click Test Connection.

	
If successful, click Finish. Otherwise, click the Back button and correct your errors.

A.4.3 How to Configure a SOA project to Invoke a Service from the Registry

To configure a SOA project to invoke a service from the registry:

	
Open the SOA project in which to create a reference to the business service.

	
Drag a Web Service icon into the External Services swimlane.

The Create Web Service dialog appears.

	
To the right of the WSDL URL field, click the icon to select a WSDL.

	
From the list at the top, select Resource Palette.

	
Expand the navigational tree.

	
Expand UDDI Registry > Business Services.

	
Select the published business service, and click OK. Figure A-37 provides details.

Figure A-37 Business Service

[image: Description of Figure A-37 follows]

The UDDI Deployment Options dialog appears.

	
Select one of the following deployment options:

	
Dynamically resolve the SOAP endpoint location at runtime.

	
Dynamically resolve the concrete WSDL location at runtime.

Figure A-38 provides details.

Figure A-38 UDDI Deployment Options Dialog

[image: Description of Figure A-38 follows]

	
Click OK.

You are returned to the Create Web Service dialog.

	
See the following section based on your selection in the UDDI Deployment Options dialog.

	
Section A.4.3.1, "Dynamically Resolving the SOAP Endpoint Location"

	
Section A.4.3.2, "Dynamically Resolving the WSDL Endpoint Location"

A.4.3.1 Dynamically Resolving the SOAP Endpoint Location

	
Complete the remaining fields in the Create Web Service dialog, and click OK.

The Create Web Service dialog looks as shown in Figure A-39.

Figure A-39 Create Web Service Dialog - SOAP Endpoint Location

[image: Description of Figure A-39 follows]

	
Wire the reference with the appropriate service component.

	
In the SOA Composite Editor, click Source.

The composite.xml file shows the serviceKey. The property dynamically resolves the endpoint binding location at runtime.

<property name="oracle.soa.uddi.servicekey" type="xs:string" many="false">uddi:
 d3611b59-1c79-478e-9ae5-874007eb20c4">

	
If you want, you can also resolve the SOAP endpoint location by explicitly adding the oracle.soa.uddi.servicekey property in the Property Inspector. This action dynamically resolves the SOAP endpoint location at runtime for any external reference to a web service. Figure A-40 provides details.

	
Highlight the reference binding component in the External References swimlane.

	
In the Property Inspector, expand the Properties section.

	
Click the Add icon.

	
In the Name list, select oracle.soa.uddi.servicekey.

	
In the Value field, specify the value for oracle.soa.uddi.servicekey from the composite.xml file.

Figure A-40 serviceKey Properties

[image: Description of Figure A-40 follows]

A.4.3.2 Dynamically Resolving the WSDL Endpoint Location

	
Complete the remaining fields in the Create Web Service dialog, and click OK.

The Create Web Service dialog looks as shown in Figure A-41.

Figure A-41 Create Web Service Dialog - WSDL Endpoint Location

[image: Description of Figure A-41 follows]

	
Wire the reference with the appropriate service component.

	
In the SOA Composite Editor, click Source.

The composite.xml file shows that the WSDL location is an abstract URL of orauddi:/uddi_service_key instead of a concrete URL (such as a HTTP URL). The orauddi protocol dynamically resolves the WSDL location at runtime.

<location="orauddi:/uddi:d3689250-6ff5-11de-af2b-76279200af27">

A.4.4 How To Configure the Inquiry URL, UDDI Service Key, and Endpoint Address for Runtime

You can set the inquiry URL, UDDI service key, and endpoint address during runtime in Oracle Enterprise Manager Fusion Middleware Control Console.

To configure the inquiry URL, service key, and endpoint reference for runtime:

	
Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

	
Specify values for the following properties:

	
In the SOA Infrastructure Common Properties page, specify the same UDDI inquiry URL that you specified in the Create UDDI Registry Connection wizard. For information, see section "Configuring SOA Infrastructure Properties" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

	
In the Properties page of the reference binding component, you can change the endpoint reference and service key values created during design time. For information, see section "Configuring Service and Reference Binding Component Properties" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

	
Restart the SOA Infrastructure.

	
Exit Oracle Enterprise Manager Fusion Middleware Control Console.

	
To see endpoint statistics, return to the Registry Control.

	
Go to the Manage page and check statistics to see the increase in the number of invocations when not cached (the first time).

Caching of WSDL URLs occurs by default during runtime. If a WSDL URL is resolved using the orauddi protocol, subsequent invocations retrieve the WSDL URLs from cache, and not from OSR. When an endpoint WSDL obtained from cache is no longer reachable, the cache is refreshed and OSR is contacted to retrieve the new endpoint WSDL location. As a best practice, Oracle recommends that you undeploy services that are no longer required in Oracle Enterprise Manager Fusion Middleware Control Console and used by the SOA Infrastructure. Endpoint services that are shut down or retired (but not undeployed) are still reachable. Therefore, the cache is not refreshed.

If you move the business service WSDL from one host to another, ensure that you change the location in the Registry Control. No change is required in Oracle JDeveloper or Oracle Enterprise Manager Fusion Middleware Control Console.

You can optionally increase the amount of time that the WSDL URL is available in cache for inquiry by the service key. For more information, see "Configuring Service and Reference Binding Component Properties" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

	
Note:

In 11g, caching occurs automatically. If you are using Oracle SOA Suite 10.1.3, caching is supported by setting the CacheRegistryWSDL property to true in bpel.xml. Setting this property to false disables caching.

A.5 Providing Design-time Governance with the Oracle Enterprise Repository

The Oracle Enterprise Repository provides design-time governance in support of the service life cycle, delivering capabilities for the storage and management of metadata for composites, services, business processes, and other IT-related assets.

Oracle Enterprise Repository acts as the central source of Oracle SOA Suite information, providing all participants in the service life cycle with a human-centric discovery environment for planned, existing, and retired services.

Oracle Enterprise Repository provides role-based links to the artifact stores of the assets that it describes and links to design documents, justification documents, test plans, support plans, policies, and other forms of documentation.

From an integrated development environment (IDE) such as Oracle JDeveloper, you can perform the following tasks:

	
Harvest Oracle SOA Suite project artifacts, including BPEL, WSDL, XSD, and XSLT files and file directories. After harvesting, the Oracle Enterprise Repository automatically creates assets, populates asset metadata, and generates relationship links based on the information in the artifact files.

	
Browse for assets and artifacts available in the Oracle Enterprise Repository.

	
View asset details such as description, usage history, expected savings, and relationships.

	
Download an asset's artifacts (that is, payload) into your project. Typically an asset payload is the functionality that you need to use a service (such as a WSDL file) or incorporate it into your code base (such as a binary or a BPEL file).

	
Consume a WSDL file or a service from the Oracle Enterprise Repository.

For more information about these tasks and how to configure and use Oracle Enterprise Repository with an IDE, see the Oracle Fusion Middleware Integration Guide for Oracle Enterprise Repository.

For more information about harvesting from Oracle JDeveloper, see the Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

A.6 Validating When Loading a Process Diagram

You may see an icon (a yellow triangle with an exclamation point) indicating invalid settings as you create and open activities such as a scope or an assign for the first time. The settings are invalid because you have not yet entered details.

To turn this option off for the current project, do the following:

	
Right-click the BPEL diagram and select Display > Diagram Properties.

	
Deselect the Enable Automatic Validation option.

	
Click OK.

	
Select Save All from the File main menu.

B XPath Extension Functions

This appendix describes the XPath extension functions. Oracle provides XPath functions that use the capabilities built into Oracle SOA Suite and XPath standards for adding new functions.

This appendix includes the following sections:

	
Section B.1, "SOA XPath Extension Functions"

	
Section B.2, "BPEL XPath Extension Functions"

	
Section B.3, "Mediator XPath Extension Functions"

	
Section B.4, "Advanced Functions"

	
Section B.5, "Workflow Service Functions"

	
Section B.6, "Using the XPath Building Assistant"

	
Section B.7, "Creating User-Defined XPath Extension Functions"

For additional information about XPath functions, visit the following URL:

http://www.w3.org

B.1 SOA XPath Extension Functions

This section describes the following SOA XPath extension functions:

	
Section B.1.1, "Database Functions"

	
Section B.1.2, "Date Functions"

	
Section B.1.3, "Mathematical Functions"

	
Section B.1.4, "String Functions"

B.1.1 Database Functions

This section describes the following database functions:

B.1.1.1 lookup-table

This function returns a string based on the SQL query generated from the parameters.

The string is obtained by executing:

SELECT outputColumn FROM table WHERE inputColumn = key

against the data source that can be either a JDBC connect string (jdbc:oracle:thin:username/password@host:port:sid) or a data source JNDI identifier. Only the Oracle Thin Driver is supported if the JDBC connect string is used.

Example: oraext:lookup-table('employee','id','1234','last_name','jdbc:oracle:thin:xyz/xyz@localhost:1521:ORCL')

Signature:

oraext:lookup-table(table, inputColumn, key, outputColumn, data source)

Arguments:

	
table - The table from which to draw the data.

	
inputColumn - The column within the table.

	
key - The key value of the input column.

	
outputColumn - The column to output the data.

	
data source - The source of the data.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.1.2 query-database

This function returns a node set by executing the SQL query against the specified database.

Signature:

oraext:query-database(sqlquery as string, rowset as boolean, row as boolean, data source as string)

Arguments:

	
sqlquery - The SQL query to perform.

	
rowset - Indicates if the rows should be enclosed in an element.

	
row - Indicates if each row should be enclosed in an element.

	
data source - Either a JDBC connect string (jdbc:oracle:thin:username/password@host:port:sid) or a JNDI name for the database.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.1.3 sequence-next-val

Returns the next value of an Oracle sequence.

The next value is obtained by executing

SELECT sequence.nextval FROM dual

against a data source that can be either a JDBC connect string (jdbc:oracle:thin:username/password@host:port:sid) or a data source JNDI identifier. Only the Oracle Thin Driver is supported if a JDBC connect string is used.

Example: oraext:sequence-next-val('employee_id_sequence','jdbc:oracle:thin:xyz/xyz@localhost:1521:ORCL')

Signature:

oraext:sequence-next-val(sequence as string, data source as string)

Arguments:

	
sequence - The sequence number in the database.

	
data source - Either a JDBC connect string or a data source JNDI identifier.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.2 Date Functions

This section describes the following functions:

B.1.2.1 add-dayTimeDuration-to-dateTime

This function returns a new date time value adding dateTime to the given duration.

If the duration value is negative, then the resulting value precedes dateTime.

Signature:

xpath20:add-dayTimeDuration-from-dateTime(dateTime as string, duration as string)

Arguments:

	
dateTime as string - The dateTime to which the function adds the duration, in string format.

	
duration as string - The duration to add to the dateTime, or subtract if the duration is negative, in string format.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.2 current-date

This function returns the current date in ISO format YYYY-MM-DD.

Signature:

xpath20:current-date(object)

Arguments:

	
Object - The time in standard format

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.3 current-dateTime

This function returns the current datetime value in ISO format CCYY-MM-DDThh:mm:ssTZD.

Signature:

xpath20:current-dateTime(object)

Arguments:

	
object - The time in standard format

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.4 current-time

This function returns the current time in ISO format. The format is hh:mm:ssTZD.

Signature:

xpath20:current-time(object)

Arguments:

	
object - The time in standard format

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.5 day-from-dateTime

This function returns the day from dateTime. The default day is 1.

Signature:

xpath20:day-from-dateTime(object)

Arguments:

	
object - The time in standard format as a string.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.6 format-dateTime

This function returns the formatted string of dateTime using the format provided.

Signature:

xpath20:format-dateTime(dateTime as string, format as string)

Arguments:

	
dateTime - The dateTime to be formatted.

	
format - The format for the output.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.7 hours-from-dateTime

This function returns the hour from dateTime. The default hour is 0.

Signature:

xpath20:hours-from-dateTime(dateTime as string)

Arguments:

	
dateTime - The string with the date and time.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.8 implicit-timezone

This function returns the current time zone in ISO format +/- hh:mm, indicating a deviation from UTC (Coordinated Universal Timezone).

Signature:

xpath20:implicit-timezone(object)

Arguments:

	
object - The time in standard format.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.9 minutes-from-dateTime

This function returns the minute from dateTime. The default minute is 0.

Signature:

xpath20:minutes-from-dateTime(dateTime as string)

Arguments:

	
dateTime as string - The date and time.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.10 month-from-dateTime

This function returns the month from dateTime. The default month is 1 (January).

Signature:

xpath20:month-from-dateTime(dateTime as string)

Arguments:

	
dateTime as string - The dateTime to be formatted.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.11 seconds-from-dateTime

This function returns the second from dateTime. The default second is 0.

Signature:

xpath20:seconds-from-dateTime(dateTime as string)

Arguments:

	
dateTime as a string - The dateTime as a string.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.12 subtract-dayTimeDuration-from-dateTime

This function returns a new dateTime value after subtracting the duration from dateTime.

If the duration value is negative, then the resultant dateTime value follows input-dateTime value.

Signature:

xpath20:subtract-dayTimeDuration-from-dateTime(dateTime as string, duration as string)

Arguments:

	
dateTime as string - The dateTime from which the function subtracts the duration, in string format.

	
duration as string - The duration to subtract to the dateTime, or to add if the duration is negative, in string format.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xp20

B.1.2.13 timezone-from-dateTime

This function returns the time zone from dateTime. The default time zone is GMT+00:00.

Signature:

xpath20:timezone-from-dateTime(dateTime as string)

Arguments:

	
dateTime as string - The dateTime for which this function returns a time zone.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.2.14 year-from-dateTime

This function returns the year from dateTime.

Signature:

xpath20:year-from-dateTime(dateTime as string)

Arguments:

	
dateTime - The dateTime as a string.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.3 Mathematical Functions

This section describes the following function.

B.1.3.1 abs

This function returns the absolute value of inputNumber.If inputNumber is not negative, the inputNumber is returned. If the inputNumber is negative, the negation of inputNumber is returned.

Example: abs(-1) returns 1.

Signature:

xpath20:abs(inputNumber as number)

Arguments:

	
inputNumber as number - The number for which the function returns an absolute value.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.4 String Functions

This section describes the string functions.

B.1.4.1 compare

This function returns the lexicographical difference between inputString and compareString by comparing the unicode value of each character of both the strings.

This function returns -1 if inputString lexicographically precedes the compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the compareString.

Example: xpath20:compare('Audi', 'BMW') returns -1

Signature:

xpath20:compare(inputString as string, compareString as string)

Arguments:

	
variableName - The source variable for the data.

	
propertyName - The qualified name (QName) of the property.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.4.2 compare-ignore-case

This function returns the lexicographical difference between inputString and compareString while ignoring case and comparing the unicode value of each character of both the strings.

This function returns -1 if inputString lexicographically precedes the compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the compareString.

Example: xpath20:compare-ignore-case('Audi','bmw') returns -1

Signature:

xp:compare-ignore-case(inputString as string, compareString as string)

Arguments:

	
inputString - The string of data to be searched.

	
CompareString - The string to compare against the input string.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.4.3 create-delimited-string

This function returns a delimited string created from nodeSet delimited by delimiter.

Signature:

oraext:create-delimited-string(nodeSet as node-set, delimiter as string)

Arguments:

	
nodeSet - The node set to be converted into a delimited string.

	
delimiter - The character that separates the items in the output string; for example, a comma or a semicolon.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.4.4 ends-with

This function returns true if inputString ends with searchString.

Example: xpath20:ends-with('XSL Map','Map') returns true

Signature:

xpath20:ends-with(inputString as string, searchString as string)

Arguments:

	
inputString - The string of data to be searched.

	
searchString - The string for which the function searches.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.4.5 format-string

This function returns the message formatted with the arguments passed. At least one argument is required and supports up to a maximum of 10 arguments.

Example: oraext:format-string('{0} + {1} = {2}','2','2','4') returns '2 + 2 = 4'

Signature:

oraext:format-string(string,string,string...)

Arguments:

	
string - One of the strings to be used in the formatted output.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.4.6 get-content-as-string

This function returns the XML representation of the input element.

Signature:

oraext:get-content-as-string(element as node-set)

Arguments:

	
element as node-set - The input element that the function returns as an XML representation.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.4.7 get-content-from-file-function

This function returns the content of the file.

Signature:

oraext:get-content-from-file-function(object)

Arguments:

	
object:

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.4.8 get-localized-string

This function returns the locale-specific string for the key. This function uses language, country, variant, and resource bundle to identify the correct resource bundle.

The resource bundle in obtained by resolving resourceLocation against the resourceBaseURL. The URL is assumed to be a directory only if it ends with /.

Usage: oraext:get-localized-string(resourceBaseURL as string, resourceLocation as string, resource bundle as string, language as string, country as string, variant as string, key as string)

Example: oraext:get-localized-string('file:/c:/','','MyResourceBundle','en','US','','MSG_KEY') returns a locale-specific string from a resource bundle 'MyResourceBundle' in the C:\ directory

Signature:

oraext:get-localized-string(resourceURL,resourceLocation,resourceBundleName,language,country,variant,messageKey)

Arguments:

	
resourceURL - The URL of the resource.

	
resourceLocation - The subdirectory location of the resource.

	
resourceBundleName - The name of the ZIP file containing the resource bundle.

	
language - The language of the localized output.

	
country - The country of the localized output.

	
variant - The language variant of the localized output.

	
messageKey - The message key in the resource bundle.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.4.9 index-within-string

This function returns the zero-based index of the first occurrence of searchString within the inputString.

This function returns -1 if searchString is not found.

Example: oraext:index-within-string('ABCABC, 'B') returns 1

Signature:

oraext:index-within-string(inputString as string, searchString as string)

Arguments:

	
inputString - The string of data to be searched.

	
searchString - The string for which the function searches in inputString.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.4.10 last-index-within-string

This function returns the zero-based index of the last occurrence of searchString within inputString.

This function returns -1 if searchString is not found.

Example: oraext:last-index-within-string('ABCABC', 'B') returns 4

Signature:

oraext:last-index-within-string(inputString as string, searchString as string)

Arguments:

	
inputString - The string of data to be searched.

	
searchString - The string for which the function searches in the inputString.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.4.11 left-trim

This function returns the value of inputString after removing all the leading white spaces.

Example: oraext:left-trim(' account ') returns 'account '

Signature:

oraext:left-trim(inputString)

Arguments:

	
inputString - The string to be left-trimmed.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.4.12 lower-case

This function returns the value of inputString after translating every character to its lower-case correspondent.

Example: xpath20:lower-case('ABc!D') returns 'abc!d'

Signature:

xpath20:lower-case(inputString)

Arguments:

	
inputString - The string of data that is in lowercase.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.4.13 matches

This function returns true if intputString matches the regular expression pattern regexPattern.

Example: xpath20:matches('abracadabra', '^a.*a$') returns true

Signature:

xpath20:matches(intputString, regexPattern)

Arguments:

	
inputString - The string of data that must be matched.

	
regexPattern - The regular expression pattern.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.1.4.14 right-trim

This function returns the value inputString after removing all the trailing white spaces.

Example: oraext:right-trim(' account ') returns ' account'

Signature:

oraext:right-trim(inputString as string)

Arguments:

	
inputString - The input string to be right-trimmed.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.1.4.15 upper-case

This function returns the value of inputString after translating every character to its uppercase correspondent.

Example: xpath20:upper-case('abCd0') returns 'ABCD0'

Signature:

xpath20:upper-case(inputString as string)

Arguments:

	
inputString - The string of data that is in uppercase.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20

	
namespace-prefix: xpath20

B.2 BPEL XPath Extension Functions

This section describes the following BPEL XPath extension functions:

B.2.1 addQuotes

This function returns the content of a string with single quotes added.

Signature:

ora:addQuotes(string)

Arguments:

	
string - The string to which this function adds quotes.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.2 appendToList

	
Note:

The appendToList function is deprecated. Oracle recommends that you use the bpelx:copyList extension of an assign activity to append data to a node list.

This function appends to a node list. The node list with which to append should not be null or empty.

Signature:

ora:appendToList('variableName', 'partName'?, 'locationPath'?, Object)

Arguments:

	
variableName - The source variable for the data.

	
partName - The part to select from the variable (optional).

	
locationPath - Provides an absolute location path (with / meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional).

	
Object - The object can be either a list or a single item. If the object is a list, this function appends each item in the list. Each appended item is either an element, or an element with the string value of the node created.

Property IDs:

	
deprecated

Use the bpelx:copyList or bpelx:append extension activity to append to a list.

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.3 copyList

	
Note:

While the copyList function is still available for use, Oracle recommends that you use the bpelx:copyList extension to copy a node list or a node.

This function copies a node list or a node. The node list to be copied to should not be null or empty.

Signature:

ora:copyList('variableName', 'partName'?, 'locationPath'?, Object)

Arguments:

	
variableName - The source variable for the data.

	
partName - The part to select from the variable (optional).

	
locationPath - Provides an absolute location path (with / meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional).

	
Object - The object can be either a list or a single item. If the object is a list, each item in the list is copied. Each item to be copied is either an element, or an element with the string value of the node created.

Property IDs:

	
deprecated

Use the bpelx:copyList extension activity to append to a list.

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.4 countNodes

	
Note:

While the countNodes function is still available for use, Oracle recommends that you use version 1.0 of the XPath count() function to return the size of the elements as an integer.

This function returns the size of the elements as an integer.

Signature:

ora:countNodes('variableName', 'partName'?, 'locationPath'?)

Arguments:

	
variableName - The source variable for the data.

	
partName - The part to select from the variable (optional).

	
locationPath - Provides an absolute location path (with / meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional).

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.5 doc

This function returns the content of an XML file.

Signature:

ora:doc('fileName','xpath'?)

Arguments:

	
fileName - The name of the XML file.

	
xpath - The path to the file.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.6 doStreamingTranslate

This function translates using the streaming XPath APIs. It uses a unique concept called batching so that the transformation engine does not materialize the result of transformation into memory. Therefore, it can handle arbitrarily large payloads of the order of gigabytes. However, it can handle only forward-only XSL constructs such as for-each. The targetType can be SDOM or ATTACHMENT.

Signature:

ora:doStreamingTranslate('input SDOM or attachment element', 'streaming xpath context', 'SDOM or ATTACHMENT', 'attachment element?')

Arguments:

	
input SDOM or attachment element

	
streaming xpath context

	
SDOM or ATTACHMENT

	
attachment element

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.7 doTranslateFromNative

This function translates the input data to XML, where the input can be a string, attachment, or element that contains Base64-encoded data. The targetType can be DOM, ATTACHMENT or SDOM.

Signature:

ora:doTranslateFromNative('input','nxsdTemplate','nxsdRoot','targetType','attachment element?')

Arguments:

	
input - The input data of the XPath function.

	
nxsdTemplate - The NXSD schema to use to translate the input data to XML format.

	
nxsdRoot - The root element in the NXSD schema.

	
targetType - Decides how the XPath function translates the native data into XML.

	
attachment element - This is the attachment for the returned XML. This parameter is optional.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.8 doTranslateToNative

This function translates the input DOM to a string or attachment. The targetType can be STRING or ATTACHMENT

Signature:

ora:doTranslateToNative('input','nxsdTemplate','nxsdRoot','targetType','attachment element?')

Arguments:

	
input - The input data of the XPath function. The data can either be DOM or SDOM data that must be translated to a native format such as comma-separated values (CSV).

The input node is usually the root element of the incoming DOM. Example B-1 provides details.

Example B-1 doTranslateToNative Function

med:doTranslateToNative($in.request/inp1:Root-Element, 'xsd/address_csv.xsd',
@ 'Root-Element','STRING')"

However, the input node can be a subelement and not the root element of the incoming DOM. Example B-2 provides details.

Example B-2 doTranslateToNative Function

med:doTranslateToNative($in.request/inp1:requestToNative/ns1:Root-Element,
 'xsd/address_csv.xsd', 'Root-Element','ATTACHMENT',
 $in.request/inp1:requestToNative/inp1:attachment)

In these situations, you must set the following property in the schema node of the NXSD for this function to execute properly.

nxsd:useArrayIdentifiers="true"

Note that this setting can adversely impact the performance of this function for very large inputs (in which case, use the dostreamingxlate function).

	
nxsdTemplate - The NXSD schema to use to translate the input data to XML format.

	
nxsdRoot - The root element in the NXSD schema.

	
targetType - Decides how the XPath function translates the native data into XML.

	
attachment element - This is the attachment for the returned XML. This parameter is optional.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.9 doXSLTransform

This function implements WS-BPEL 2.0's doXSLTransform function that supports multiple parameters of XSLT. When using this function, the XSL template match must not be set to root (which is /). It must be the root element.

Signature:

ora:doXSLTransform('url_to_xslt',input,['paramQname',paramValue]*)

Arguments:

	
url_to_xslt - Specifies the XSL style sheet URL.

	
input - Specifies the input variable name.

	
paramQname - Specifies the parameter QName.

	
paramValue - Specifies the value of the parameter.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.10 doXSLTransformForDoc

This function is a complement XPath function to doXSLTransform(). It aims to perform the transformation when the XSLT template matches the document.

Signature:

ora:doXSLTransformForDoc('url_to_xslt',input,['paramQname',paramValue]*)

Arguments:

	
url_to_xslt - Specifies the XSL style sheet URL.

	
input - Specifies the input variable name.

	
paramQname - Specifies the parameter QName.

	
paramValue - Specifies the value of the parameter.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.11 formatDate

This function converts standard XSD date formats to characters suitable for output.

Signature:

ora:formatDate('dateTime','format')

Arguments:

	
dateTime - Contains a date-related value in XSD format. For nonstring arguments, this function behaves as if a string() function were applied. If the argument is not a date, the output is an empty string. If it is a valid XSD date and some fields are empty, this function attempts to fill unspecified fields. For example, 2003-06-10T15:56:00.

	
format - Contains a string formatted according to java.text.SimpleDateFormat format

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.12 generateGUID

Generates a unique GUID.

Signature:

ora:generateGUID()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.13 getApplicationName

This function returns the application name.

Signature:

ora:getApplicationName()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.14 getAttachmentContent

This function gets the attachment content from an href function.

Signature:

ora:getAttachmentContent(varName[, partName[, query]])

Arguments:

	
varName - Specifies the source variable for the data.

	
partName - (Optional) Specifies the part to select from the variable.

	
query - (Optional) Specifies an absolute location path (with / meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.15 getComponentName

This function returns the component name.

Signature:

ora:getComponentName()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.16 getComponentInstanceID

This function returns the component instance ID.

Signature:

ora:getComponentInstanceID()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.17 getCompositeName

This function returns the composite name.

Signature:

ora:getCompositeName()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.18 getCompositeInstanceID

This function returns the BPEL process composite instance ID.

Signature:

ora:getCompositeInstanceID()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.19 getCompositeURL

This function returns the composite URL.

Signature:

ora:getCompositeURL()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.20 getContentAsString

This function returns the content of an element as an XML string.

Signature:

ora:getContentAsString(element elementAsNodeList)

Arguments:

	
element - The element (source of the data).

	
elementAsNodeList - The element as the node list.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.21 getConversationId

This function returns the conversation ID.

Signature:

ora:getConversationId()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.22 getCreator

This function returns the instance creator.

Signature:

ora:getCreator()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.23 getCurrentDate

This function returns the current date as a string.

Signature:

ora:getCurrentDate('format'?)

Argument:

	
format - (Optional) Specifies a string formatted according to java.text.SimpleDateFormat format (optional).

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.24 getCurrentDateTime

This function returns the current date time as a string.

Signature:

ora:getCurrentDateTime('format'?)

Argument:

	
format - (Optional) Specifies a string formatted according to java.text.SimpleDateFormat format (optional).

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.25 getCurrentTime

This function returns the current time as a string.

Signature:

ora:getCurrentTime('format'?)

Argument:

	
format - (Optional) Specifies a string formatted according to java.text.SimpleDateFormat format (optional).

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.26 getDomainId

This function returns the current domain ID.

Signature:

ora:getDomainId()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.27 getECID

This function returns ECID.

Signature:

ora:getECID()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.28 getElement

This function returns an element using index from the array of elements.

Signature:

ora:getElement('variableName', 'partName', 'locationPath', index)

Arguments:

	
variableName - The source variable for the data.

	
partName - The part to select from the variable (required).

	
locationPath - Provides an absolute location path (with / meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (required).

	
index - Dynamic index value. The index of the first node is 1.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.29 getFaultAsString

This function returns the fault as a string value.

Signature:

ora:getFaultAsString()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.30 getFaultName

This function returns the fault name.

Signature:

ora:getFaultName()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.31 getGroupIdsFromGroupAlias

This function returns a List of user Ids for a group alias specified in the TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getGroupIdsFromGroupAlias(String aliasName)

Arguments:

	
aliasName - The alias for a list of users or groups.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.32 getInstanceId

This function returns the instance ID.

Signature:

ora:getInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.33 getNodeValue

This function returns the value of a DOM node as a string.

Signature:

ora:getNodeValue(node)

Arguments:

	
node - The DOM node.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.34 getNodes

This function gets a node list. This is implemented as an alternate to bpws:getVariableData, which does not return a node list.

Signature:

ora:getNodes('variableName', 'partName'?, 'locationPath'?)

Arguments:

	
variableName - The source variable for the data.

	
partName - The part to select from the variable (optional).

	
locationPath - Provides an absolute location path (with / meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional).

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.35 getOwnerDocument

This function returns the document object associated with the node.

Signature:

ora:getOwnerDocument(node)

Arguments:

	
node - Specifies the XML node.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.36 getParentComponentInstanceID

This function returns the BPEL process instance parent component instance ID.

Signature:

ora:getParentComponentInstanceID()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.37 getPreference

This function returns the value of a property specified in the preferences section of the BPEL suitcase descriptor.

Signature:

ora:getPreference(preferenceName)

Arguments:

	
preferenceName - The name of the preference as specified in the BPEL suitcase descriptor.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.38 getProcessId

This function returns the ID of the current BPEL process.

Signature:

ora:getProcessId()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.39 getProcessOwnerId

This function returns the ID of the user who owns the process, if specified in the TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getProcessOwnerId()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.40 getProcessURL

This function returns the root URL of the current BPEL process.

Signature:

ora:getProcessURL()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.41 getProcessVersion

This function returns the current process version.

Signature:

ora:getProcessVersion()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.42 getUserAliasId

This function returns the user ID for an alias specified in the TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getUserAliasId (String aliasName)

Arguments:

	
aliasName - The alias for a list of users or groups.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.43 getUserIdsFromGroupAlias

This function returns a List of user IDs for a group alias specified in the TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getUserIdsFromGroupAlias(String aliasName)

Arguments:

	
aliasName - Alias name of the group.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.44 setCompositeInstanceTitle

This function sets a title to the composite instance which can later be used as one of the criteria in searching the instances. This function returns the same string that is passed as the argument.

Signature:

med:setCompositeInstanceTitle(title)

Arguments:

	
title - Specifies the composite instance title. This can be specified as an XPath expression on the message payload.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.45 instanceOf

This function extracts arbitrary values from BPEL variables.

Signature:

ora:instanceOf(an_xpath_expression, 'typeQName')

Arguments:

	
an_xpath_expression - An XPath expression that returns an element

	
typeQName - The QName of a global declared XSD type

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.46 integer

This function returns the content of the node as an integer.

Signature:

ora:integer(node)

Arguments:

	
node - The input node.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.47 parseEscapedXML

This function parses a string to DOM.

Signature:

ora:parseEscapedXML(contentString)

Arguments:

	
contentString - The string that this function parses to a DOM.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.48 parseXML

This function parses a string to a DOM element.

Signature:

ora:parseXML(contentString)

Arguments:

	
contentString - The string that this function parses to a DOM element.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.49 processXQuery

This function returns the result of an XQuery transformation.

Signature:

ora: ry('template','context'?)

Arguments:

	
template - The XSLT template.

	
input - The input data to be transformed.

	
properties - The properties as defined in the bpel.xml file.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.50 processXSLT

This function returns the result of XSLT transformation using the Oracle XDK XSLT processor.

Signature:

xdk:processXSLT('template','input','properties'?)

Arguments:

	
template - The XSLT template. Both HTTP and file URLs are supported.

	
input - The input data to be transformed.

	
properties - The properties as defined in the bpel.xml file.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: xdk

B.2.51 processXSLTAttachment

This function returns the results of XSLT transformation by using the Oracle XDK XSLT processor. This function also supports transformations from and to XML attachments.

Signature:

ora:processXSLTAttachment('template','input','href'?,'properties'?)

Arguments:

	
template - The XSLT template.

	
input - The input data to be transformed.

	
href - The location of the actual data.

	
properties - The properties as defined in the bpel.xml file.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.52 processXSQL

This function returns the result of the XSQL request.

Signature:

ora:processXSQL('template','input','properties'?)

Arguments:

	
template - The XSLT template.

	
input - The input data to be transformed.

	
properties - The properties as defined in the bpel.xml file.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.53 readBinaryFromFile

This function reads data from a file.

Signature:

ora:readBinaryFromFile(fileName)

Arguments:

	
fileName - The file name from which to read data.

Property IDs:

	
namespace-uri:http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.54 readFile

This function returns the content of the file.

Signature:

ora:readFile('fileName','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

	
fileName - The name of the file. This argument can also be an HTTP URL.

This function by default reads files relative to the suitcase JAR file for the process. If the file to read is located in a different directory path, you must specify an extra directory slash (/) to indicate that this is an absolute path. For example:

ora:readFile('file:///c:/temp/test.doc')

If you specify only two directory slashes (//), you receive an error similar to that shown in Example B-3:

Example B-3 Error Message with readFile Function

XPath expression failed to execute.
Error while processing xpath expression,
the expression is "ora:readFile("file://c:/temp/test.doc")",
the reason is c. Verify the xpath query.

	
nxsdTemplate - The NXSD template for the output

	
nxsdRoot -The NXSD root

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

	
Note:

Currently, the readFile function does not support the functionality to access files on a web server that requires authorization. If you tried to access such a file, then you get the following error:
java.io.IOException: Server returned HTTP response code: 401 for URL

B.2.55 writeBinaryToFile

This function writes the binary bytes of a variable (or part of the variable) to a file of the given file name.

Signature:

ora:writeBinaryToFile(varName[, partName[, query]])

Arguments:

	
varName - The name of the variable.

	
partName - The name of the part in the messageType variable.

	
query - The query string to a child of the root element.

Property IDs:

	
namespace-uri:http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.56 BPEL Extension Functions

This section describes BPEL extension functions.

B.2.56.1 getLinkStatus

This function returns a boolean value indicating the status of the link. If the status of the link is positive the value is true, otherwise the value is false. This function can only be used in a join condition.

The linkName argument refers to the name of an incoming link for the activity associated with the join condition.

Signature:

bpws:getLinkStatus ('linkName')

Arguments:

	
variableName - The source variable for the data.

	
propertyName - The QName of the property.

Property IDs:

	
namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/

	
namespace-prefix: bpws

B.2.56.2 getVariableData

This function extracts arbitrary values from BPEL variables.

When only the first argument is present, the function extracts the value of the variable, which in this case must be defined using an XML schema simple type or element. Otherwise, the return value of this function is a node set containing the single node representing either an entire part of a message type (if the second argument is present and the third argument is absent) or the result of the selection based on the locationPath (if both optional arguments are present)

Signature:

bpws:getVariableData ('variableName', 'partName'?, 'locationPath'?)

Arguments:

	
variableName - The source variable for the data.

	
partName - The part to select from the variable (optional).

	
locationPath - Provides an absolute location path (with / meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional).

Property IDs:

	
namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/

	
namespace-prefix: bpws

B.2.56.2.1 selectionFailure Fault is Thrown if the Result Node Set is a Size Other Than One During Execution

According to the Business Process Execution Language for Web Services Specification, if the locationPath argument selects a node set of a size other than one during execution, the standard fault bpws:selectionFailure must be thrown by a compliant implementation.

For example, the count() function shown in Example B-4 does not work if there are multiple entries of product elements under StoreRequest, which would cause a selectionFailure fault to be thrown.

Example B-4 count() Function Error

count(bpws:getVariableData('inputVariable',
 'payload','/ns2:StoreRequest/ns2:product'))

To make this work, change the syntax to the following:

"count($inputVariable.payload/ns2:product)"

B.2.56.3 getVariableProperty

This function extracts arbitrary values from BPEL variables.

If the given property selects a node set of a size other than one during execution, the standard fault bpws:selectionFailure is thrown.

Signature:

bpws:getVariableProperty ('variableName', 'propertyname')

Arguments:

	
variableName - The source variable for the data.

	
propertyName - The QName of the property.

	
locationPath - Provides an absolute location path (with / meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional).

Property IDs:

	
namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/business-process/

	
namespace-prefix: bpws

B.2.57 Utility Functions

This section describes the utility functions.

B.2.57.1 batchProcessActive

This function returns the number of active processes in the batch.

Signature:

ora:batchProcessActive(String batchId, String processId)

Arguments:

	
batchId - The ID of the batch.

	
processId - The ID of the process.

Property IDs:

	
namespace-uri:http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.57.2 batchProcessCompleted

This function returns the number of completed processes in the batch.

Signature:

ora:batchProcessCompleted(String batchId, String processId)

Arguments:

	
batchId - The ID of the batch.

	
processId - The ID of the process.

Property IDs:

	
namespace-uri:http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.57.3 format

This function formats a message using Java's message format.

Signature:

ora:format(formatStrings, args+)

Arguments:

	
formatStrings - The string of data to be formatted.

	
args+ - The arguments referenced by the format specifiers in the format string. If there are more arguments than format specifiers, the extra arguments are ignored. The number of arguments is variable and may be zero.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.57.4 genEmptyElem

This function generates a list of empty elements for the given QName.

Signature:

ora:genEmptyElem('ElemQName',size?, 'TypeQName'?, xsiNil?)

Arguments:

	
ElemQName - The first argument is the QName of the empty elements.

	
size - The second optional integer argument for the number of empty elements. If missing, the default size is 1.

	
TypeQName - The third optional argument is the QName, which is the xsi:type of the generated empty name. This xsi:type pattern matches SOAPENC:Array. If missing or an empty string, the xsi:type attribute is not generated.

	
xsiNil - The fourth optional boolean argument is to specify whether the generated empty elements are XSI - nil, provided the element is XSD-nillable. The default is false. If missing or false, xsi:nil is not generated.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.57.5 getChildElement

This function gets a child element for the given element.

Signature:

ora:getChildElement(element, index)

Arguments:

	
element - The source for the data.

	
index - The integer value of the child element index.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.57.6 getMessage

This function gets a message based on the arguments.

Signature:

ora:getMessage(locale, relativeLocation, resourceName, resourceKey, resourceLocation?)

Arguments:

	
locale - The locale of the message.

	
relativeLocation - The subdirectory or message.

	
resourceName - The name of the message resource.

	
resourceKey - The key of the resource.

	
resourceLocation - The location of the resource.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.57.7 max-value-among-nodeset

This function returns the maximum value from a list of input numbers, the node-set inputNumber.

The node-set inputNumber can be a collection of text nodes or elements containing text nodes.

In the case of elements, the first text node's value is considered.

Signature:

oraext:max-value-among-nodeset(inputNumber as node-set)

Arguments:

	
inputNumber - The node-set of input numbers.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.2.57.8 min-value-among-nodeset

This function returns the minimum value from a list of input numbers, the node-set inputNumbers.The node-set can be a collection of text nodes or elements containing text nodes.In the case of elements, the first text node's value is considered.

Signature:

oraext:min-value-among-nodeset(inputNumbers as node-set)

Arguments:

	
inputNumber - The node-set of input numbers.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.2.57.9 square-root

This function returns the square root of inputNumber.

Example: oraext:square-root(25) returns 5

Signature:

oraext:square-root(inputNumber as number)

Arguments:

	
inputNumber - The input number for which the function calculates the square root.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.2.57.10 translateFromNative

This function translates the input stream to an XML file.

Signature:

ora:translateFromNative('string','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

	
string - The data to be converted into an XML file.

	
nxsdTemplate - The XSD file used to define how the translation is performed.

	
nxsdRoot - The root element defined in the XSD file.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.57.11 translateToNative

Translates the XML to the native data.

Signature:

ora:translateFromNative('string','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

	
string - The XML file to be converted into a string.

	
nxsdTemplate - The XSD file used to define how the translation is performed.

	
nxsdRoot -The root element defined in the XSD file.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.57.12 translateFromNativeAttachment

This function translates the input stream to XML.

Signature:

ora:translateFromNativeAttachment('string','nxsdTemplate'?,'nxsRoot'?)

Arguments:

	
string - The data to be converted into an XML file.

	
nxsdTemplate - The XSD file used to define how the translation is performed.

	
nxsdRoot - The root element defined in the XSD file.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.2.57.13 translateToNativeAttachment

This function translates XML to the native data.

Signature:

ora:translateFromNativeAttachment('string','nxsdTemplate'?,'nxsRoot'?)

Arguments:

	
string - The data to be converted into an XML file.

	
nxsdTemplate - The XSD file used to define how the translation is performed.

	
nxsdRoot - The root element defined in the XSD file.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: ora

B.3 Mediator XPath Extension Functions

This section describes the following functions:

B.3.1 getComponentInstanceID

This function returns the component instance id.

Signature:

mdhr:getComponentInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: mdhr

B.3.2 getComponentName

This function returns the component name.

Signature:

mdhr:getComponentName()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: mdhr

B.3.3 getCompositeInstanceID

This function returns the composite instance id.

Signature:

mdhr:getComponentInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: mdhr

B.3.4 getCompositeName

This function returns the composite name.

Signature:

mdhr:getCompositeName()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: mdhr

B.3.5 getHeader

This function returns the value of an XPath expression from the mediator message header.

	
Note:

The getHeader function works only when both parameters are specified.

Signature:

mdhr:getHeader(xpath as string, namespaces as string)

Arguments:

	
xpath: Refers to the path you traverse from the schema.

	
namespaces: Refers to the abstract container that contains the context of the XPath expression. This argument is not optional. Namespace declarations are in the following form:

'prefix=namespace;

Note the semicolon after the namespace declaration. For example:

getHeader("in.header.ns9_name/ns9:name/ns9:first","ns9=http//exmaple.com;")

In the XSLT Mapper in Oracle JDeveloper, drag the getHeader function into the mapper. In the Edit Function - getHeader dialog, click Add. The namespaces argument is added for you to enter the required information.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix:mdhr

B.3.6 getECID

This function returns the ECID.

Signature:

mdhr:getECID()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: mdhr

B.3.7 getParentComponentInstanceID

This function returns the mediator instance parent component instance id.

Signature:

mdhr:getParentComponentInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: mdhr

B.3.8 setCompositeInstanceTitle

This function sets a title to the composite instance that can be later used as one of the criteria in searching the instances. This function returns the same string that is passed as the argument.

Signature:

mdhr:setCompositeInstanceTitle(title)

Arguments:

	
title - Specifies the composite instance title. This can be specified as an XPath expression on the message payload.

Property IDs:

	
namespace-uri: http://schemas.oracle.com/xpath/extension

	
namespace-prefix: mdhr

B.4 Advanced Functions

This section describes the advanced functions.

B.4.1 create-nodeset-from-delimited-string

The function takes a delimited string and returns a nodeSet.

Signature:

oraext:create-nodeset-from-delimited-string(qname, delimited-string, delimiter)

Arguments:

	
qname - The qualified name in which each node in the node set must be created. The QName can be represented in two forms:

	
task:assignee

	
{http://mytask/task}assignee

	
delimited-string - The sting of elements separated by the delimiter.

	
delimiter - The character that separates the items in the input string; for example, a comma or a semicolon.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.4.2 generate-guid

The function generates a unique GUID.

Signature:

oraext:generate-guid()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.4.3 lookupPopulatedColumns

This function is used to look up a cross-reference column for a single value or multiple values corresponding to a value in a reference column.

Signature:

xref:lookupPopulatedColumns(tableName,columnName,value,needAnException)

Arguments:

	
xrefTableName: The name of the reference table.

	
xrefColumnName: The name of the reference column.

	
xrefValue: The value corresponding to reference column name.

	
needAnException: If this value is set to true, then an exception is thrown when no value is found in the referenced column. Otherwise, an empty node-set is returned.

Property IDs:

	
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions

	
namespace-prefix: xref

B.4.4 lookupValue

The function returns a string by looking up the value for the target column in a domain value map, where the source column contains the given source value.

Signature:

dvm:lookupValue(dvmLocation,sourceColumnName,sourceValue,targetColumnName,defaultValue)

Arguments:

	
dvmLocation: The domain value map URI.

	
sourceColumnName: The source column name.

	
sourceValue: The source value (an XPath expression bound to the source document of the XSLT transformation).

	
targetColumnName: The target column name.

	
defaultValue: If the value is not found, then the default value is returned.

	
QualifierSourceColumn: The name of the qualifier column.

	
QualifierSourceValue: The value of the qualifier.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue

	
namespace-prefix: dvm

For more information, see Section 44.4.1.1, "dvm:lookupValue."

B.4.5 lookupValue1M

The function returns an XML document fragment containing values for multiple target columns of a domain value map, where the value for source column equals the source value.

Signature:

dvm:lookupValue1M(dvmLocation,sourceColumnName,sourceValue,targetColumnName1,targetColumnName2...)

Arguments:

	
dvmMetadataURI - The domain value map URI.

	
SourceColumnName - The source column name.

	
SourceValue - The source value (an XPath expression bound to the source document of the XSLT transformation).

	
TargetColumnName - The name of the target columns. At least one column name should be specified. The question mark symbol (?) indicates that you can specify multiple target column names.

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue

	
namespace-prefix:dvm

For more information, see Section 44.4.1.2, "dvm:lookupValue1M."

B.4.6 lookupXRef

This function is used to look up a cross-reference column for a value that corresponds to a value in a reference column.

Signature:

xref:lookupXRef(tableName,referenceColumnName,referenceValue,columnName,needAnException)

Arguments:

	
xrefLocation: The cross-reference URI.

	
xrefReferenceColumnName: The name of the reference column.

	
xrefReferenceValue: The value corresponding to reference column name.

	
xrefColumnName: The name of the column to be looked up for the value.

	
needAnException: When value is set to true, an exception is thrown if the value is not found, else an empty value is returned.

Property IDs:

	
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions

	
namespace-prefix: xref

For more information, see Section 46.5.1, "About the xref:lookupXRef Function."

B.4.7 lookupXRef1M

This function is used to look up a cross-reference column for multiple values corresponding to a value in a reference column.

Signature:

xref:lookupXRef1M(tableName,referenceColumnName,referenceValue,columnName,needAnException)

Arguments:

	
xrefLocation: The cross-reference URI.

	
xrefReferenceColumnName: The name of the reference column.

	
xrefReferenceValue: The value corresponding to reference column name.

	
xrefColumnName: The name of the column to be looked up for the value.

	
needAnException: If this value is set to true, then an exception is thrown when the referenced value is not found. Else, an empty node-set is returned.

Property IDs:

	
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions

	
namespace-prefix: xref

For more information, see Section 46.5.2, "About the xref:lookupXRef1M Function."

B.4.8 lookup-xml

This function returns the string value of an element defined by lookupXPath in an XML file (docURL) given its parent XPath (parentXPath), the key XPath (keyXPath), and the value of the key (key).

Example: oraext:lookup-xml('file:/d:/country_data.xml', '/Countries/Country', 'Abbreviation', 'FullName', 'UK') returns the value of the element FullName child of /Countries/Country where Abbreviation = 'UK' is in the file D:\country_data.xml.

Signature:

oraext:lookup-xml(docURL, parentXPath, keyXPath, lookupXPath, key)

Arguments:

	
docURL - The XML file

	
parentXPath - The parent XPath

	
keyXPath - The key XPath

	
lookupXPath - The lookup XPath

	
key - The key value

Property IDs:

	
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc

	
namespace-prefix: oraext

B.4.9 markForDelete

The function is used to delete a value in a cross-reference table. The value in the column is marked as deleted. This function returns true if deletion is successful else returns false.

Signature:

xref:markForDelete(tableName,columnName,value)

Arguments:

	
xrefTableName: The cross-reference table name.

	
xrefColumnName: The name of the column from which you want to delete a value.

	
xrefValueToDelete: The value to be deleted.

Property IDs:

	
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions

	
namespace-prefix: xref

For more information, see Section 46.6.1, "How to Delete a Cross Reference Table Value."

B.4.10 populateXRefRow

The function populates the column name in the cross-reference table (XREF) where the reference column has the reference value.

Signature:

xref:populateXRefRow(tableName,referenceColumnName,referenceValue,columnName,value,mode)

Arguments:

	
xrefLocation: The cross-reference URI.

	
xrefReferenceColumnName: The name of the reference column.

	
xrefReferenceValue: The value corresponding to reference column name.

	
xrefColumnName: The name of the column to be looked up for the value.

	
xrefvalue: The value corresponding to reference column name.

	
xrefmode: The name of the XREF population mode.

Property IDs:

	
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions

	
namespace-prefix: xref

For more information, see Section 46.4.1, "About the xref:populateXRefRow Function."

B.4.11 populateXRefRow1M

The function populates the column multiple values in the cross-reference table (XREF) where the reference column has the reference value.

Signature:

xref:populateXRefRow1M(tableName,referenceColumnName,referenceValue,columnName,value,mode)

Arguments:

	
xrefLocation: The cross-reference URI.

	
xrefReferenceColumnName: The name of the reference column.

	
xrefReferenceValue: The value corresponding to reference column name.

	
xrefColumnName: The name of the column to be looked up for the value.

	
xrefvalue: The value corresponding to reference column name.

	
xrefmode: The name of the XREF population mode.

Property IDs:

	
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions

	
namespace-prefix: xref

For more information, see Section 46.4.2, "About the xref:populateXRefRow1M Function."

B.5 Workflow Service Functions

This section describes the workflow service functions.

B.5.1 clearTaskAssignees

This function clears the current task assignees.

Signature:

hwf:clearTaskAssignees(taskID)

Arguments:

	
task - The task ID of the task.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.2 createWordMLDocument

This function creates a Microsoft Word ML document as a base 64-encoded string.

Signature:

hwf:createWordMLDocument(node, xsltURI)

Arguments:

	
node - The node is an XML Node that is an input to the transformation.

	
xsltURI - The XSLT used to transform the node (the first argument) to Microsoft Word ML.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.3 getNotificationProperty

This function retrieves a notification property. The function evaluates to corresponding values for each notification. Only use this function in the notification content XPath expression. If used elsewhere, it returns null.

Signature:

hwf:getNotificationProperty(propertyName)

Arguments:

	
propertyName - The name of the notification property. It can be one of the following values:

	
recipient - The recipient of the notification.

	
recipientDisplay - The display name of the recipient.

	
taskAssignees - The task assignees.

	
taskAssigneesDisplay - The display names of the task assignees.

	
locale - The locale of the recipient.

	
taskId - The task ID of the task for which the notification is meant.

	
taskNumber - The task number of the task for which the notification is meant.

	
appLink - The HTML link to the Oracle BPM Worklist task details page.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.4 getNumberOfTaskApprovals

This function computes the number of times the task was approved.

Signature:

hwf:getNumberOfTaskApprovals(taskId)

Arguments:

	
taskId - The ID of the task

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.5 getPreviousTaskApprover

This function retrieves the previous task approver.

Signature:

hwf:getPreviousTaskApprover(taskId)

Arguments:

	
taskId - The ID of the task

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.6 getTaskAttachmentByIndex

This function retrieves the task attachment at the specified index.

Signature:

hwf:getTaskAttachmentByIndex(taskId, attachmentIndex)

Arguments:

	
taskId - The task ID of the task.

	
attachmentIndex - The index of the attachment. The index begins from 1. The attachmentIndex argument can be a node whose value evaluates to the index number as a string (all node values are strings). If specified statically, it can be specified as '1'.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.7 getTaskAttachmentByName

This function retrieves the task attachment by the attachment name.

Signature:

hwf:getTaskAttachmentByName(taskId, attachmentName)

Arguments:

	
taskId - The task ID of the task.

	
attachmentName - The name of the attachment.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.8 getTaskAttachmentContents

This function retrieves the task attachment contents by the attachment name.

Signature:

hwf:getTaskAttachmentContents(taskId, attachmentName)

Arguments:

	
taskId - The task ID of the task.

	
attachmentName - The name of the attachment.

Property IDs:

	
namespace-uri:http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.9 getTaskAttachmentsCount

This function retrieves the number of task attachments.

Signature:

hwf:getTaskAttachmentsCount(taskId)

Arguments:

	
taskId - The task ID of the task.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.10 getTaskResourceBundleString

This function returns the internationalized resource value from the resource bundle associated with a task definition.

Signature:

hwf:getTaskResourceBundleString(taskId, key, locale?)

Arguments:

	
taskId - The task ID of the task.

	
key - The key to the resource.

	
locale - (Optional) The locale. This value defaults to system locale. This returns a resourceString XML element in the namespace http://xmlns.oracle.com/bpel/services/taskService, which contains the string from the resource bundle.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.11 wfDynamicGroupAssign

This function gets the name of an identity service group, selected according to the specified assignment pattern. The group is selected from either the subordinate groups of the specified group (if a single group name is supplied), or from the list of groups (if a list of user names is supplied). If the identity service is configured with multiple realms, the realm name for the group and groups must also be supplied. Additional assignment pattern specific parameters can be supplied. These additional parameters are optional, depending on the details of the specific assignment pattern used.

There are two signatures of this function.

Signature 1:

hwf:wfDynamicGroupAssign('patternName','groupName','realmName'?,'patternParam1'?,'patternParam2'?,...,'patternParamN'?)

Argument 1:

	
patternName - The name of the assignment pattern (for example, ROUND_ROBIN).

	
groupName - The name of the group from which to select a subordinate group.

	
realmName - The name of the identity service realm to which the group belongs.

	
patternParam1...patternParamN - Any additional parameters required by the assignment pattern implementation (may be optional, depending on pattern).

Signature 2:

hwf:wfDynamicGroupAssign('patternName','groupList','realmName'?,'patternParam1'?,'patternParam2'?,...,'patternParamN'?)

Argument 2:

	
patternName - The name of the assignment pattern (for example, ROUND_ROBIN).

	
groupList - The list of groups from which to select a group.

	
realmName - The name of the identity service realm to which the groups belong.

	
patternParam1...patternParamN - Any additional parameters required by the assignment pattern implementation (may be optional, depending on the pattern).

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.12 wfDynamicUserAssign

This function returns the name of an identity service user, selected according to the specified assignment pattern. The user is selected from either the subordinate users of the specified group (if a single group name is supplied), or from the list of users (if a list of user names is supplied). If the identity service is configured with multiple realms, the realm name for the group and users must also be supplied. Additional assignment pattern specific parameters can be supplied. These additional parameters are optional, depending on the details of the specific assignment pattern used.

There are two signatures for this function.

Signature 1:

hwf:wfDynamicUserAssign('patternName','groupName','realmName'?,'patternParam1'?,....,'patternParam2'?,...,'patternParamN'?)

Arguments 1:

	
patternName - The name of the assignment pattern (for example, ROUND_ROBIN).

	
groupName - The name of the group from which to select a subordinate user.

	
realmName - The name of the identity service realm to which the group belongs.

	
patternParam1 ... patternParamN - Any additional parameters required by the assignment pattern implementation (may be optional, depending on the pattern).

Signature 2:

hwf:wfDynamicUserAssign(patternName,userList,realmName?,patternParam1?,patternParam2?,...,patternParamN?)

Arguments 2:

	
patternName - The name of the assignment pattern (for example, ROUND_ROBIN).

	
userList - The list of users from which to select a user.

	
realmName - The name of the identity service realm to which the users belong.

	
patternParam1...patternParamN - Any additional parameters required by the assignment pattern implementation (may be optional, depending on the pattern).

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

	
namespace-prefix: hwf

B.5.13 Identity Service Functions

This section describes the identity service functions.

B.5.13.1 getDefaultRealmName

This function returns the default realm name.

Signature:

ids:getDefaultRealmName()

Arguments: There are no arguments for this function.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath

	
namespace-prefix: ids

B.5.13.2 getGroupProperty

This function returns the property value for the given group. If the group or attribute does not exist, it returns null.

Signature:

ids:getGroupProperty(groupName, attributeName, realmName)

Arguments:

	
groupName - String or element containing the group whose attribute must be retrieved.

	
attributeName - String or element containing the name of the group attribute. The name is one of the following values:

	
displayName

	
email

If the identity service uses the LDAP providerType or JAZN LDAP-based providers, configure the LDAP server to enable searching by those attributes.

	
realmName - The realm name. This is optional. If not specified, the default realm is assumed.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath

	
namespace-prefix: ids

B.5.13.3 getManager

This function gets the manager of a given user. If the user does not exist or there is no manager for this user, it returns null.

Signature:

ids:getManager(userName, realmName)

Arguments:

	
userName - The user name.

	
realmName - The realm name. This is optional. If not specified, the default realm is assumed.

Property IDs:

	
namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/xpath

	
namespace-prefix: ids

B.5.13.4 getReportees

This function gets the reportees of the user. If the user does not exist, it returns null. The function returns a list of nodes. Each node in the list is called user.

Signature:

ids:getReportees(userName, upToLevel, realmName)

Arguments:

	
userName - The user name.

	
upToLevel- Defines the levels of indirect reportees to be included into the result. If the value is 1, it returns only direct reportees. If the value is -1, it returns all levels of reportees. It can be either an element with value xsd:number or a string, for example '1'.

	
realmName - The realm name. This is optional and if not specified, the default realm is assumed.

Property IDs:

	
namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/xpath

	
namespace-prefix: ids

B.5.13.5 getSupportedRealmNames

This function returns the supported realm names.

Signature:

ids:getSupportedRealms()

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath

	
namespace-prefix: ids

B.5.13.6 getUserProperty

This function returns the property of the user. If the user or attribute does not exist, it returns null.

Signature:

ids:getUserProperty(userName, attributeName, realmName)

Arguments:

	
userName - String or element containing the user whose attribute must be retrieved.

	
attributeName - The name of the user attribute. The attribute name is one of the following values:

	
givenName

	
middleName

	
sn

	
displayName

	
mail

	
telephoneNumber

	
homephone

	
mobile

	
facsimile

	
pager

	
preferredlanguage

	
title

	
manager

If the identity service uses the LDAP providerType or JAZN LDAP-based providers, configure the LDAP server to enable searching by those attributes.

	
realmName - The realm name. This is optional. If not specified, the default realm name is assumed.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath

	
namespace-prefix: ids

B.5.13.7 getUserRoles

This function gets the user roles. This function returns a list of objects, either application roles or groups, depending on the roleType. If the user or role does not exist, it returns null.

Signature:

ids:getUserRoles(userName, roleType, direct)

Arguments:

	
userName - String or element containing the user whose roles are to be retrieved.

	
roleType - The role type that takes one of three values: ApplicationRole, EnterpriseRole, or AnyRole.

	
direct - A string or element indicating if direct or indirect roles must be fetched. This is optional. If not specified, only direct roles are fetched. This is either xsd:boolean or string true/false.

Property IDs:

	
namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService

	
namespace-prefix: ids

B.5.13.8 getUsersInGroup

This function gets the users in a group. If the group does not exist, it returns null. The function returns a list of nodes. Each node in the list is called user.

Signature:

ids:getUsersInGroup(groupName, direct, realmName)

Arguments:

	
groupName - The group name.

	
direct - A boolean flag. If true, the function returns direct user grantees; otherwise, all user grantees are returned. It can be either an element with value xsd:boolean or string 'true'/'false'.

	
realmName - The realm name. This is optional. If not specified, the default realm name is assumed.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath

	
namespace-prefix: ids

B.5.13.9 isUserInRole

This function verifies if a user has a given role.

Signature:

ids:isUserInRole(userID, roleName, realmName)

Arguments:

	
userID - A string or element containing the user whose participation in the role must be verified.

	
roleName - The role name.

	
realmName - The realm name. This is optional. If not specified, the default realm name is assumed.

Property IDs:

	
namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/xpath

	
namespace-prefix: ids

B.5.13.10 lookupGroup

This function gets the group. If the group does not exist, it returns null.

Signature:

ids:lookupGroup(groupName, realmName)

Arguments:

	
groupName - The group name.

	
realmName - The realm name. This is optional. If not specified, the default realm name is assumed.

Property IDs:

	
namespace-uri:http://xmlns.oracle.com/bpel/services/IdentityService/xpath

	
namespace-prefix: ids

B.5.13.11 lookupUser

This function gets the user object. If the user does not exist, it returns null.

Signature:

ids:lookupUser(userName, realmName)

Arguments:

	
userName - The user name.

	
realmName - The realm name. This is optional. If not specified, the default realm name is assumed.

Property IDs:

	
namespace-uri: http://xmlns.oracle.com/bpel/services/IdentityService/xpath

	
namespace-prefix: ids

B.6 Using the XPath Building Assistant

You can use the XPath Building Assistant to create XPath expressions.

B.6.1 XPath Building Assistant Description

Several dialogs enable you to specify XPath expressions at several places, including:

	
Expression field of the XPath Expression Builder

	
Expression field of an operation created under the Copy Operation tab of assign activities

	
Expression field of the while, wait, switch, and pick (onAlarm branch) activities

	
Edit XPath Expression and Edit Function dialogs of the XSLT Mapper

Manually specifying long and complex expressions is supported, but can be a cumbersome and error-prone process. The XPath Building Assistant provides the following set of features that simplify this process:

	
Automatic completion of the following:

	
Elements and attributes

	
Functions

	
BPEL variables and parts

	
Function parameter tool tips

	
Syntactic and semantic validation of XPaths

B.6.2 How to Start the XPath Building Assistant

To start the XPath Building Assistant:

	
Click inside the Expression field and press Ctrl and then the space bar. Figure B-1 provides details.

The XPath Building Assistant is available within all fields of the Oracle JDeveloper and XSLT Mapper function dialogs that require XPath expressions.

Figure B-1 XPath Building Assistant Startup

[image: Description of Figure B-1 follows]

B.6.3 How to Use the XPath Building Assistant in Oracle JDeveloper: Step-By-Step Example

This section provides an example of using the XPath Building Assistant to build an expression in the From section of the Expression field of the Create Copy Operation dialog. This example models an XPath Expression that appends a string value to OrderComments within a purchase order. The purchase order element is part of one of the available BPEL variables.

	
Place the cursor inside the Expression field, as shown in Figure B-2.

Figure B-2 Expression Field

[image: Description of Figure B-2 follows]

	
Press Ctrl and then the space bar to display a list of values for building an expression. Figure B-3 provides details.

Figure B-3 List of Values for Building an Expression

[image: Description of Figure B-3 follows]

	
Make a selection from the list (for this example, concat(String) as String) in either of the following ways:

	
Scroll down the list and double-click concat(String) as String.

	
Enter the letter c to display only items starting with that letter and double-click concat(String) as String.

This value is added to the Expression field. The list automatically displays again with different options and prompts you to enter the next portion of the XPath expression.

	
Select and double-click the next portion (for this example, the second entry for bpws). Figure B-4 provides details.

Figure B-4 Invocation of Next Portion of Function

[image: Description of Figure B-4 follows]

This value is added to the Expression field. The list automatically displays again and prompts you to enter the next portion of the XPath expression.

	
Select and double-click inputVariable, as shown in Figure B-5.

Figure B-5 Selection of inputVariable

[image: Description of Figure B-5 follows]

	
Continue this process to build the remaining parts of the XPath expression, as shown in Figure B-6 (for this example, double-click payload > ns1:/PurchaseOrder > ns1:/OrderInfo > ns1:OrderComments as they appear).

Figure B-6 Remaining Parts of Expression

[image: Description of Figure B-6 follows]

	
Manually add text as appropriate, as shown in Figure B-7 (for this example, ,',Selected: Select Manufacturing'). If needed, you can also manually enter logical operators (such as >, <, and so on).

Figure B-7 Manual Addition of Text

[image: Description of Figure B-7 follows]

	
Note:

Instead of using double-clicks on the XPath Building Assistant popups, you can also use the Enter key to make the selection. If your expression is complete, but you are still being prompted to enter information, press Esc. This closes the list.

B.6.4 Using the XPath Building Assistant in the XSLT Mapper

This section provides an example of using the XPath Building Assistant to build an expression in the Edit XPath Expression dialog of the XSLT Mapper.

	
Go to the transformation dialog.

	
Select Advanced Functions from the Component Palette list.

	
Scroll down the list to the xpath-expression.

	
Drag and drop the xpath-expression into the XSLT Mapper, as shown in Figure B-8.

Figure B-8 xpath-expression

[image: Description of Figure B-8 follows]

	
Double-click the function to display the Edit XPath Expression dialog.

	
Click the cursor inside the XPath Expression field.

	
Press Ctrl and then the space bar to display a list of values for building an expression, as shown in Figure B-9.

Figure B-9 List of Values for Building an Expression

[image: Description of Figure B-9 follows]

	
Make a selection from the list (for this example, concat(String) as String) in either of the following ways:

	
Scroll down the list and double-click concat(String) as String.

	
Enter the letter c to display only items starting with that letter and double-click concat(String) as String.

Figure B-10 provides details.

Figure B-10 Expression List Selection

[image: Description of Figure B-10 follows]

This selection is added to the XPath Expression field. The list automatically displays again with different options and prompts you to enter the next portion of the XPath expression.

	
Continue this process to build the remaining parts of the XPath expression (for this example, double-click po:PurchaseOrder > po:ShipTo > po:Name > po:First as they appear).

	
Continue this process to build the remaining parts of the expression.

	
Click OK to close the Edit XPath Expression dialog when complete.

B.6.5 Function Parameter Tool Tips

Function parameter tool tips display the expected arguments of a chosen XPath function. For example, if you manually enter the function concat, and then enter (, the parameter tool tip appears and displays the expected arguments of the concat function. The current argument name of the function is highlighted in bold. Figure B-11 provides details.

Figure B-11 Current Argument Name of the Function

[image: Description of Figure B-11 follows]

Once you finish specifying one argument, and enter a comma to move to the next argument, the tool tip updates itself to highlight the second argument name in bold, and so on. While editing existing XPaths that contain functions, you can re-invoke parameter tool tips by positioning the cursor within the function and then pressing a combination of the Ctrl, Shift, and space bar keys.

B.6.6 Syntactic and Semantic Validation

Within Oracle JDeveloper, an XPath expression is considered syntactically valid if it conforms to the XPath 1.0 specification. The XPath Building Assistant warns you about syntactically incorrect XPaths (for example, a missing parenthesis or apostrophe) by underlining the erroneous area in red. Drag the mouse pointer over this area. The error message displays as a tool tip. The red underlining error disappears after you make corrections. Figure B-12 provides details.

Figure B-12 Syntactically Incorrect XPaths

[image: Description of Figure B-12 follows]

Syntactically valid XPaths may be semantically invalid. This can cause unexpected errors at runtime. For example, you can misspell the name of an element, variable, function, or part. The XPath Building Assistant warns you about semantic errors by underlining the erroneous area in blue. Drag the mouse pointer over this area. The error message displays as a tool tip. The blue underlining error disappears after you make corrections. Figure B-13 provides details.

Figure B-13 Semantically Incorrect XPaths

[image: Description of Figure B-13 follows]

B.6.7 Creating Expressions with Free Form Text and XPath Expressions

You can mix free form text with XPath expressions in some dialogs.

	
Place your cursor over the field to display a popup message that describes this functionality. Figure B-14 provides details.

Figure B-14 Functionality Description Menu

[image: Description of Figure B-14 follows]

	
Enter free form text (in this example, 'Hello, your telephone number'). Figure B-15 provides details.

Figure B-15 Free Form Text

[image: Description of Figure B-15 follows]

	
Enter <% when you are ready to invoke the XPath Building Assistant. Figure B-16 provides details.

Figure B-16 XPath Building Assistant Invocation Preparation

[image: Description of Figure B-16 follows]

A red underline appears, which indicates that you are being prompted to add information.

	
Press Ctrl and then the space bar to invoke the XPath Building Assistant. Figure B-17 provides details.

Figure B-17 XPath Building Assistant Invocation

[image: Description of Figure B-17 follows]

	
Scroll down the list and double-click the value you want.

	
Continue this process to build the remaining parts of the expression.

B.7 Creating User-Defined XPath Extension Functions

You can create user-defined (custom) XPath extension functions for use in Oracle SOA Suite. These functions can be created for the following components:

	
Oracle BPEL Process Manager

	
Oracle Mediator

	
XSLT Mapper

	
Human workflow

	
Shared by all of these components

XPath extension functions in Oracle SOA Suite adhere to the following standards:

	
A single schema defines the configuration syntax for both system functions and user-defined functions.

	
XPath functions are categorized based on usage (Oracle BPEL Process Manager, Oracle Mediator, human workflow, XSLT Mapper, and those commonly used by all).

	
System functions are separated from user-defined functions.

	
A repository hosts both system function configuration files and user-defined function configuration files.

	
A repository hosts user-defined function implementation JAR files and automatically makes them available for the Java Virtual Machine (JVM) (class loaders).

As a best practice, follow these conventions for creating functions:

	
If possible, write functions that can be shared across all components. Functions shared by all components can be created in a configuration file named ext-soa-xpath-functions-config.xml. Note that you must implement XSLT Mapper functions differently than functions for Oracle BPEL Process Manager, Oracle Mediator, and human workflow.

For more information about description of these implementation differences, see Section B.7.1, "How to Implement User-Defined XPath Extension Functions".

	
If you create a function for one component that cannot be used by others (for example, a function for Oracle BPEL Process Manager that cannot be used by Oracle Mediator or human workflow), then create that function in the configuration file specific to that component. For this example, the Oracle BPEL Process Manager function must be created in a configuration file named ext-bpel-xpath-functions-config.xml.

Example B-5 shows the function schema used by system and user-defined functions.

Example B-5 Function Schema

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/soa/config/xpath"
 targetNamespace="http://xmlns.oracle.com/soa/config/xpath"
 elementFormDefault="qualified">
 <element name="soa-xpath-functions" type="tns:XpathFunctionsConfig"/>
 <element name="function" type="tns:XpathFunction"/>
 <complexType name="XpathFunctionsConfig">
 <sequence>
 <element ref="tns:function" minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="resourceBundle" type="string"/>
 <attribute name="version" type="string"/>
 </complexType>

 <complexType name="XpathFunction">
 <sequence>
 <element name="className" type="string"/>
 <element name="return">
 <complexType>
 <attribute name="type" type="tns:XpathType"
 use="required"/>
 </complexType>
 </element>
 <element name="params" type="tns:Params" minOccurs="0"
 maxOccurs="1"/>
 <element name="desc">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="detail" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="icon" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="helpURL" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="group" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey" type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="wizardClass" type="string" minOccurs="0"/>
</sequence>
<attribute name="name" type="string" use="required"/>
 <attribute name="deprecated" type="boolean" use="optional"/>
</complexType>

 <complexType name="Params">
 <sequence>
 <element name="param" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string" use="required"/>
 <attribute name="type" type="tns:XpathType"
 use="required"/>
 <attribute name="minOccurs" type="string"
 default="1"/>
 <attribute name="maxOccurs" type="string"
 default="1"/>
 <attribute name="wizardEnabled" type="boolean"
 default="false"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <simpleType name="XpathType">
 <restriction base="string">
 <enumeration value="string"/>
 <enumeration value="boolean"/>
 <enumeration value="number"/>
 <enumeration value="node-set"/>
 <enumeration value="tree"/>
 </restriction>
 </simpleType>
</schema>

B.7.1 How to Implement User-Defined XPath Extension Functions

This section describes how to implement user-defined XPath extension functions for Oracle SOA Suite components.

B.7.1.1 How to Implement Functions for the XSLT Mapper

Implementation of user-defined XPath extension functions for the XSLT Mapper is different than for other components:

	
Each XSLT Mapper function requires a corresponding public static method from a public static class. The function name and method name must match.

	
XSLT Mapper function namespaces must take the form http://www.oracle.com/XSL/Transform/java/mypackage.MyFunctionClass, where mypackage.MyFunctionClass is the fully qualified class name of the public static class containing the public static methods for the functions.

For additional details about creating a user-defined XPath extension function for the XSLT Mapper, see Section 38.3.4.4, "Importing User-Defined Functions".

B.7.1.2 How to Implement Functions for All Other Components

For Oracle BPEL Process Manager, Oracle Mediator, and human workflow functions, you must implement either the oracle.fabric.common.xml.xpath.IXPathFunction interface (defined in the fabric-runtime.jar file) or javax.xml.xpath.XPathFunction.

To implement functions for all other components:

	
Implement the oracle.fabric.common.xml.xpath.IXPathFunction interface for your XPath function. The IXPathFunction interface has one method named call(context, args). The signature of this method is as shown in Example B-6:

Example B-6 Implementation of oracle.fabric.common.xml.xpath.IXPathFunction

 package oracle.fabric.common.xml.xpath;
 public interface IXPathFunction
 {
 /** Call this function.
 *
 * @param context The context at the point in the
 * expression when the function is called.
 * @param args List of arguments provided during
 * the call of the function.
 */
 public Object call(IXPathContext context, List args) throws
 XPathFunctionException;
 }

where:

	
context - The context at the point in the expression when the function is called

	
args - The list of arguments provided during the call of the function

For the example shown in Example B-7, a function named getNodeValue(arg1) is implemented that gets a value of w3c node:

Example B-7 Implementation of getNodeValue(arg1) Function

package com.collaxa.cube.xml.xpath.dom.functions;
 import oracle.fabric.common.xml.xpath.IXPathFunction;
 import oracle.fabric.common.xml.xpath.IXPathFunction
 . . .

 public class GetNodeValue implements IXPathFunction {
 Object call(IXPathContext context, List args) throws XPathFunctionException
 {
 org.w3c.dom.Node node = (org.w3c.dom.Node) args.get(0);
 return node.getNodeValue()
 }
 }

B.7.2 How to Configure User-Defined XPath Extension Functions

This section describes how to configure user-defined XPath extension functions.

To configure user-defined xpath extension functions:

	
Create an XPath extension configuration file in which to define the function. Example B-8 shows a sample configuration file that follows the function schema shown in Example B-5. In this example, two functions are created: mf:myFunction1 and mf:myFunction2.

Example B-8 Sample XML Extension Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions resourceBundle="myPackage.myResourceBundle"
 xmlns="http://xmlns.oracle.com/soa/config/xpath"
 xmlns:mf="http://www.my-functions.com">
 <function name="mf:myFunction1">
 <className>myPackage.myFunctionClass1</className>
 <return type="node-set"/>
 <params>
 <param name="p1" type="node-set" wizardEnabled="true"/>
 <param name="p2" type="string"/>
 <param name="p3" type="number" minOccurs="0"/>
 <param name="p4" type="boolean" minOccurs="0" maxOccurs="3"/>
 </params>
 <desc resourceKey="func1-desc-key">this is my first function</desc>
 <detail resourceKey="func2-long-desc-key">my first function does ... </detail>
 <icon>myPackage/resource/image/myFunction1.png</icon>
 <group resourceKey="func-group-key">My Function Group</group>
 <wizardClass>myPackage.myWizardClass1</wizardClass>
 </function>
 <function name="mf:myFunction2">
 <className>myPackage.myFunctionClass2</className>
 <return type="string"/>
 <params>
 <param name="p1" type="node-set" wizardEnabled="true"/>
 <param name="p2" type="string"/>
 <param name="p3" type="number" minOccurs="0"/>
 <param name="p4" type="boolean" minOccurs="0" maxOccurs="unbounded"/>
 </params>
 <desc resourceKey="func2-desc-key">this is my second function</desc>
 <detail resourceKey="func2-long-desc-key">my second function does ...</detail>
 <icon>myPackage/resource/image/myFunction2.png</icon>
 <group resourceKey="func-group-key">My Function Group</group>
 <wizardClass>myPackage.myWizardClass2</wizardClass>
 </function>
</soa-xpath-functions>

Table B-1 describes the elements of the configuration file. Each function configuration file uses soa-xpath-functions as its root element. The root element has an optional resourceBundle attribute. The resourceBundle value is the fully qualified class name of the resource bundle class providing NLS support for all function configurations.

Table B-1 Function Schema Elements

	Element	Description
	
className

	
The fully qualified class name of the function implementation class.

	
return

	
The return type of the function. This can be one of the following types supported by XPath and XSLT: string, number, boolean, node-set, and tree.

	
params

	
The parameters of the function. A function can have no parameters. A parameter has the following attributes:

	
name: The name of the parameter.

	
type: The type of the parameter. This can be one of the following types supported by XPath and XSLT: string, number, boolean, node-set, and tree.

	
minOccurs: The minimum occurrences of the parameter. If set to 0, the parameter is optional. If set to 1, the parameter is required. The current restriction is that this attribute must only take a value of either 0 or 1 and that optional parameters must be defined after the required parameters. The default value is 1 if this attribute is absent.

	
maxOccurs: The maximum occurrences of the parameter. If set to unbounded, the parameter can repeat anytime. This can support functions such as XPath 1.0 function concat(), which can take unlimited parameters. The current restriction is that no parameters except the last parameter of the function can have maxOccurs greater than 1 or unbounded. The default value is 1 if this attribute is absent.

	
wizardEnabled: Indicates whether to enable a wizard to enter the parameter value. This supports a user interface where the parameter value must be entered. If set to true, a wizard launch button is rendered next to the parameter value field. The wizard launch button, when pressed, launches a popup wizard to help the user enter the parameter value. The wizard class must be specified later. The default value is false if this attribute is absent, meaning there is no wizard support for the parameter by default.

	
desc

	
An optional description of the function. If the resourceKey is present, the description is retrieved from the resource bundle specified earlier on the root element.

	
detail

	
An optional longer (detailed) description of the function. If the resourceKey is present, the description is retrieved from the resource bundle specified earlier on the root element.

	
icon

	
An optional icon URL of the function. If the resourceKey is present, the icon URL is retrieved from the resource bundle specified earlier on the root element. This is to support a user interface in which the function must be displayed.

	
helpURL

	
An optional help HTML URL of the function. If the resourceKey is present, the help URL is retrieved from the resource bundle specified earlier on the root element. This is to support a user interface in which the function help link must be displayed.

	
group

	
An optional group name of the function. If the resourceKey is present, the group name is retrieved from the resource bundle specified earlier on the root element. This is to support a user interface where functions must be grouped. If no group name is specified, the function falls into a built-in advanced functions group when being grouped in a user interface.

	
wizardClass

	
The fully qualified class name of the wizard class for all parameters that are wizard-enabled. This is to support a user interface in which parameter values must be entered. This wizard class is invoked by wizard launch buttons to help you enter parameter values. If there is no wizard-enabled parameter, this element must be absent.

Note: This element is not supported for user-defined functions. Only system functions currently support this feature.

	
Name your user-defined XPath extension configuration file based on the component type with which to use the function. Table B-2 describes the naming conventions to use for user-defined configuration files.

Table B-2 User-Defined Configuration Files

	To Use with This Component...	Use This Configuration File Name...
	
Oracle BPEL Process Manager

	
ext-bpel-xpath-functions-config.xml

	
Oracle Mediator

	
ext-mediator-xpath-functions-config.xml

	
XSLT Mapper

	
ext-mapper-xpath-functions-config.xml

	
Human workflow

	
ext-wf-xpath-functions-config.xml

	
All components

	
ext-soa-xpath-functions-config.xml

	
Place the configuration file inside a JAR file along with the compiled classes. Within the JAR file, the configuration file must be located in the META-INF directory. The JAR file does not need to reside in a specific directory.

	
Note:

The customXpathFunction jar must be added explicitly as it is not part of the SOA composite.

	
In Oracle JDeveloper, go to Tools > Preferences > SOA.

	
Click the Add button and select your JAR file.

	
Restart Oracle JDeveloper for the changes to take effect.

The JAR file is automatically added to the JVM's class path to make it available for use.

B.7.3 How to Deploy User-Defined Functions to Runtime

You can deploy user-defined functions to the runtime environment.

To deploy user-defined functions to runtime:

	
Copy the user-defined function JAR files to BEA_Home/user_projects/domains/domain_name/lib or a subdirectory of lib.

where domain_name is the name of the Oracle WebLogic Server domain (for example, soainfra).

	
Restart the Oracle WebLogic Server.

	
Note:

As an alternative, you can add the BEA_Home/user_projects/domains/domain_name/lib directory into the class loader. This prevents you from having to restart the Oracle WebLogic Server.

C Deployment Descriptor Properties

This appendix describes how to define deployment descriptor properties for BPEL process service components.

This appendix includes the following sections:

	
Section C.1, "Introduction to Deployment Descriptor Properties"

	
Section C.2, "Deprecated 10.1.3 Properties"

	
Note:

You cannot specify deployment descriptor properties at runtime.

C.1 Introduction to Deployment Descriptor Properties

Deployment descriptors are BPEL process service component properties used at runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both. There are two types of properties:

	
Configuration

	
Partner link binding

C.1.1 How to Define Deployment Descriptor Properties

You define configuration properties and values in the BPEL process service component section of the composite.xml file. Example C-1 shows how to define the inMemoryOptimization configuration property.

Example C-1 Configuration Property Definition in composite.xml

...
 <component name="myBPELServiceComponent">

 <property name="bpel.config.inMemoryOptimization">true</property>
</component>

Table C-1 lists the configuration deployment descriptor properties.

Table C-1 Properties for the configurations Deployment Descriptors

	Property Name	Description
	
completionPersistPolicy

	
This property configures how the instance data is saved. It can only be set at the BPEL service component level. The following values are available:

	
on (default): The completed instance is saved normally.

	
deferred: The completed instance is saved, but with a different thread and in another transaction.

	
faulted: Only the faulted instances are saved.

	
off: No instances of this process are saved.

	
globalTxMaxRetry

	
If using outbound adapters in an asynchronous BPEL process, specify the maximum number of retries for a remote fault.

	
globalTxRetryInterval

	
If using outbound adapters in an asynchronous BPEL process, specify the time interval in milliseconds between retries for a remote fault.

	
inMemoryOptimization

	
Default value is false. This property can only be set to true if it does not have dehydration points. Activities like wait, receive, onMessage, and onAlarm create dehydration points in the process. If this property is set to true, in-memory optimization is attempted on the instances of this process on to-spec queries.

	
keepGlobalVariables

	
Specify whether the server can keep global variable values in the instance store when the instance completes:

	
false (default): Global variable values are deleted when the instance completes.

	
true: Global variable values are not deleted.

	
oneWayDeliveryPolicy

	
This property sets the persistence policy of the process in the delivery layer. The possible values are:

	
async.persist: Messages into the system are saved in the delivery store before being picked up by the engine.

	
async.cache: Messages into the system are saved in memory before being picked up by the engine.

	
sync: The instance-initiating message is not temporarily saved in the delivery layer. The engine uses the save thread to initiate the message.

	
sensorActionLocation

	
The location of the sensor action XML file. The sensor action XML file configures the action rule for the events.

	
sensorLocation

	
The location of the sensor XML file. The sensor XML file defines the list of sensors into which events are logged.

	
transaction

	
This property configures the transaction behavior of the BPEL instance for initiating calls.

	
requiresNew: A new transaction is created for the execution, and the existing transaction (if there is one) is suspended. This behavior is true for both request/response (initiating) environments and one-way, initiating environments in which bpel.config.oneWayDeliveryPolicy is set to sync.

	
required: In request/response (initiating) environments, this setting joins a caller's transaction (if there is one) or creates a new transaction if there is no transaction. In one-way, initiating environments in which bpel.config.oneWayDeliveryPolicy is set to sync, the invoke message is processed using the same thread in the same transaction.

Note: This property does not apply for midprocess receive activities. In those cases, another thread in another transaction is used to process the message. This is because correlation is needed and it is always done asynchronously.

You define partner link binding properties and values in the BPEL process service component section of the composite.xml file. Example C-2 shows how to define the nonBlockingInvoke partner link binding property.

Example C-2 Property Definition in composite.xml

...
 <component name="myBPELServiceComponent">

 <property name="bpel.partnerLink.nonBlockingInvoke.property">propogate</property>
</component>

Table C-2 lists the partnerLinkBinding deployment descriptor properties.

Table C-2 Properties for the partnerLinkBinding Deployment Descriptors

	Property Name	Description
	
nonBlockingInvoke

	
Default value is false. When this is set to true, a separate thread is spawned to do the invocation so that the invoke activity does not block the instance.

	
validateXML

	
Enables message boundary validation. When set to true, the XML message is validated against the XML schema during a receive activity and an invoke activity for this partner link. If the XML message is invalid, then a bpelx:invalidVariables runtime fault is thrown. This overrides the domain level validateXML property. The following example enables validation for only the StarLoanService partner:

<partnerLinkBinding name="StarLoanService">
<property name="wsdlLocation">
http://<hostname>:9700/orabpel/default/StarLoan/Sta
rLoan?wsdl</property>
<property name="validateXML">true</property>
</partnerLinkBinding>

C.1.2 How to Get the Value of a Preference within a BPEL Process

The value of a property can be read by a BPEL process using the XPath extension function ora:getPreference(myPref). This gets the value of bpel.preference.myPref.

This function can be used as part of a simple assign statement, used in condition expressions, or used as part of a more complex XPath expression.

C.2 Deprecated 10.1.3 Properties

Table C-3 lists deprecated properties that can no longer be used.

Table C-3 Deprecated Properties

	Property	Deployment Descriptor Type	Deprecated for Release...
	
completionPersistLevel

	
configurations

	
11g Release 1

	
defaultInput

	
configurations

	
11g Release 1

	
initializeVariables

	
configurations

	
11g Release 1

	
loadSchema

	
configurations

	
11g Release 1

	
noAlterWSDL

	
configurations

	
11g Release 1

	
optimizeVariableCopy

	
configurations

	
11g Release 1

	
relaxTypeChecking

	
configurations

	
11g Release 1

	
relaxXPathQName

	
configurations

	
11g Release 1

	
transaction

	
configurations

	
10.1.3.4

	
SLACompletionTime

	
configurations

	
11g Release 1

	
xpathValidation

	
configurations

	
11g Release 1

	
user

	
configurations

	
11g Release 1

	
pw

	
configurations

	
11g Release 1

	
role

	
configurations

	
11g Release 1

	
correlation

	
partnerLinkBinding

	
11g Release 1

	
contentType

	
partnerLinkBinding

	
10.1.3

	
retryInterval

	
partnerLinkBinding

	
Deprecated by the fault policy feature in 10.1.3.3

	
retryMaxCount

	
partnerLinkBinding

	
Deprecated by the fault policy feature in 10.1.3.3

	
wsdlLocation

	
partnerLinkBinding

	
11g Release 1

	
wsdlRuntimeLocation

	
partnerLinkBinding

	
11g Release 1

	
wsseHeaders

	
partnerLinkBinding

	
11g Release 1

	
wsseUsername

	
partnerLinkBinding

	
11g Release 1

	
wssePassword

	
partnerLinkBinding

	
11g Release 1

	
preferredPort

	
partnerLinkBinding

	
11g Release 1

	
fullWSAddressing

	
partnerLinkBinding

	
11g Release 1

D Understanding Sensor Public Views and the Sensor Actions XSD

This appendix describes the available sensor public views and the sensor actions XSD file that you can import into Oracle BPEL Designer.

This appendix includes the following sections:

	
Section D.1, "Introduction to Sensor Public Views and the Sensor Actions XSD File"

	
Section D.2, "Sensor Public Views"

	
Section D.3, "Sensor Actions XSD File"

For more information, see Chapter 18, "Using Oracle BPEL Process Manager Sensors."

D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File

A set of public views is exposed to allow SQL access to sensor values from literally any application interested in the data. In addition, a sample sensor action schema is provided for importing into Oracle BPEL Designer.

D.2 Sensor Public Views

The sensor framework of Oracle BPEL Process Manager provides the functionality to persist sensor values created by processing BPEL instances in a relational schema stored in the dehydration store of Oracle BPEL Process Manager. The data is used to display the sensor values of a process instance in Oracle Enterprise Manager Fusion Middleware Control Console.

D.2.1 BPM Schema

The database publisher persists the sensor data in a predefined relational schema in the database. The following public views can be used from a client (Oracle Warehouse, portals, and so on) to query the sensor values using SQL.

	
Note:

In Table D-1 through Table D-4, the Indexed or Unique? column provides unique index names and the order of the attributes. For example, U1,2 means that the attribute is the second one in a unique index named U1. PK means primary key.

D.2.1.1 BPEL_PROCESS_INSTANCES

Table D-1 provides an overview of all the process instances of Oracle BPEL Process Manager.

Table D-1 BPEL_PROCESS_INSTANCES View

	Attribute Name	SQL Type	Attribute Size	Indexed or Unique?	Null?	Comment
	
INSTANCE_KEY

	
NUMBER

	
--

	
PK

	
N

	
Unique instance ID

	
APPLICATION_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined application name

	
COMPOSITE_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined composite name

	
REVISION

	
VARCHAR2

	
50

	
--

	
N

	
User-defined revision number

	
LABEL

	
VARCHAR2

	
500

	
--

	
N

	
User-defined label

	
COMPONENT_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined component name

	
TITLE

	
NVARCHAR2

	
200

	
--

	
Y

	
User-defined title of the BPEL process

	
STATE

	
NUMBER

	
--

	
--

	
Y

	
State of the BPEL process instance

	
STATE_TEXT

	
VARCHAR2

	
21

	
--

	
Y

	
Text presentation of the state attribute

	
PRIORITY

	
NUMBER

	
--

	
--

	
Y

	
User-defined priority of the BPEL process instance

	
STATUS

	
NVARCHAR2

	
200

	
--

	
Y

	
User-defined status of the BPEL process

	
STAGE

	
VARCHAR2

	
100

	
--

	
Y

	
User-defined stage property of a BPEL process

	
CONVERSATION_ID

	
VARCHAR2

	
256

	
--

	
Y

	
User-defined conversation ID of a BPEL process

	
CREATION_DATE

	
TIMESTAMP

	
6

	
--

	
N

	
Creation time stamp of the process instance

	
MODIFY_DATE

	
TIMESTAMP

	
6

	
--

	
Y

	
Time stamp when the process instance was modified

	
TS_DATE

	
DATE

	
--

	
--

	
Y

	
Date portion of modify_date

	
TS_HOUR

	
NUMBER

	
--

	
--

	
Y

	
Hour portion of modify_date

	
EVAL_TIME

	
NUMBER

	
--

	
--

	
Y

	
Evaluation time of the process instance in milliseconds

D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES

Table D-2 contains all the activity sensor values of the monitored BPEL processes.

Table D-2 BPEL_ACTIVITY_SENSOR_VALUES View

	Attribute Name	SQL Type	Attribute Size	Indexed or Unique?	Null?	Comment
	
SENSOR_NAME

	
NVARCHAR2

	
200

	
U1,2

	
N

	
The name of the sensor that fired

	
SENSOR_TARGET

	
NVARCHAR2

	
512

	
--

	
N

	
The target of the fired sensor

	
ACTION_NAME

	
NVARCHAR2

	
200

	
U1,3

	
N

	
The name of the sensor action

	
ACTION_FILTER

	
NVARCHAR2

	
512

	
--

	
Y

	
The filter of the action

	
CREATION_DATE

	
TIMESTAMP

	
6

	
--

	
N

	
The creation date of the activity sensor value

	
MODIFY_DATE

	
TIMESTAMP

	
6

	
--

	
Y

	
The time stamp of last modification

	
TS_DATE

	
DATE

	
--

	
--

	
Y

	
Date portion of modify_date

	
TS_HOUR

	
NUMBER

	
--

	
--

	
Y

	
Hour portion of modify_date

	
CRITERIA_SATISFIED

	
VARCHAR2

	
1

	
--

	
Y

	
NULL, Y, or N

	
ACTIVITY_NAME

	
NVARCHAR2

	
200

	
--

	
N

	
The name of the BPEL activity

	
ACTIVITY_TYPE

	
VARCHAR2

	
30

	
--

	
N

	
The type of the BPEL activity

	
ACTIVITY_STATE

	
VARCHAR2

	
30

	
--

	
Y

	
The state of the BPEL activity

	
EVAL_POINT

	
VARCHAR2

	
30

	
--

	
N

	
The evaluation point of the activity sensor

	
ERROR_MESSAGE

	
NCLOB

	
--

	
--

	
Y

	
An error message

	
RETRY_COUNT

	
NUMBER

	
--

	
--

	
Y

	
The number of retries of the activity

	
EVAL_TIME

	
NUMBER

	
--

	
--

	
Y

	
Evaluation time of the activity in milliseconds

	
ID

	
NUMBER

	
--

	
PK

	
N

	
Unique ID

	
INSTANCE_KEY

	
NUMBER

	
--

	
U1,1

	
N

	
BPEL process ID

	
APPLICATION_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined application name

	
COMPOSITE_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined composite name

	
REVISION

	
VARCHAR2

	
50

	
--

	
N

	
User-defined revision number

	
LABEL

	
VARCHAR2

	
500

	
--

	
N

	
User-defined label

	
COMPONENT_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined component name

D.2.1.3 BPEL_FAULT_SENSOR_VALUES

Table D-3 contains all the fault sensor values.

Table D-3 BPEL_FAULT_SENSOR_VALUES View

	Attribute Name	SQL Type	Attribute Size	Indexed or Unique?	Null?	Comment
	
ID

	
NUMBER

	
--

	
PK

	
N

	
Unique ID

	
INSTANCE_KEY

	
NUMBER

	
--

	
U1,1

	
N

	
BPEL process ID

	
APPLICATION_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined application name

	
COMPOSITE_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined composite name

	
REVISION

	
VARCHAR2

	
50

	
--

	
N

	
User-defined revision number

	
LABEL

	
VARCHAR2

	
500

	
--

	
N

	
User-defined label

	
COMPONENT_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined component name

	
SENSOR_NAME

	
NVARCHAR2

	
200

	
U1,2

	
N

	
The name of the sensor that fired

	
SENSOR_TARGET

	
NVARCHAR2

	
512

	
--

	
N

	
The target of the fired sensor

	
ACTION_NAME

	
NVARCHAR2

	
200

	
U1,3

	
N

	
The name of the sensor action

	
ACTION_FILTER

	
NVARCHAR2

	
512

	
--

	
Y

	
The filter of the action

	
CREATION_DATE

	
TIMESTAMP

	
6

	
--

	
N

	
The creation date of the activity sensor value

	
MODIFY_DATE

	
TIMESTAMP

	
6

	
--

	
Y

	
The time stamp of last modification

	
TS_DATE

	
DATE

	
--

	
--

	
Y

	
Date portion of modify_date

	
TS_HOUR

	
NUMBER

	
--

	
--

	
Y

	
Hour portion of modify_date

	
CRITERIA_SATISFIED

	
VARCHAR2

	
1

	
--

	
Y

	
NULL if no action filter specified; Y if action filter is specified and evaluates to true; N otherwise

	
ACTIVITY_NAME

	
NVARCHAR2

	
200

	
--

	
N

	
The name of the BPEL activity

	
ACTIVITY_TYPE

	
VARCHAR2

	
30

	
--

	
N

	
The type of the BPEL activity

	
MESSAGE

	
CLOB

	
--

	
--

	
Y

	
The fault message

D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES

Table D-4 contains all the variable sensor values.

Table D-4 BPEL_VARIABLE_SENSOR_VALUES View

	Attribute Name	SQL Type	Attribute Size	Indexed or Unique?	Null?	Comment
	
ID

	
NUMBER

	
--

	
PK

	
N

	
Unique ID

	
INSTANCE_KEY

	
NUMBER

	
--

	
U1,1

	
N

	
BPEL process ID

	
APPLICATION_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined application name

	
COMPOSITE_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined composite name

	
REVISION

	
VARCHAR2

	
50

	
--

	
N

	
User-defined revision number

	
LABEL

	
VARCHAR2

	
500

	
--

	
N

	
User-defined label

	
COMPONENT_NAME

	
VARCHAR2

	
500

	
--

	
N

	
User-defined component name

	
SENSOR_NAME

	
NVARCHAR2

	
200

	
U1,2

	
N

	
Name of the sensor that fired

	
SENSOR_TARGET

	
NVARCHAR2

	
512

	
--

	
N

	
Target of the sensor

	
ACTION_NAME

	
NVARCHAR2

	
200

	
U1,3

	
N

	
Name of the action

	
ACTION_FILTER

	
NVARCHAR2

	
512

	
--

	
Y

	
Filter of the action

	
ACTIVITY_SENSOR

	
NUMBER

	
--

	
--

	
Y

	
ID of corresponding activity sensor value

	
CREATION_DATE

	
TIMESTAMP

	
6

	
--

	
N

	
Creation date

	
TS_DATE

	
DATE

	
--

	
--

	
N

	
Date portion of creation_date

	
TS_HOUR

	
NUMBER

	
--

	
--

	
N

	
Hour portion of creation_date

	
VARIABLE_NAME

	
NVARCHAR2

	
512

	
--

	
N

	
The name of the BPEL variable

	
EVAL_POINT

	
VARCHAR2

	
30

	
--

	
Y

	
Evaluation point of the corresponding activity sensor

	
CRITERIA_SATISFIED

	
VARCHAR2

	
1

	
--

	
Y

	
NULL, Y, or N

	
TARGET

	
NVARCHAR2

	
512

	
--

	
--

	
--

	
UPDATER_NAME

	
NVARCHAR2

	
200

	
--

	
N

	
The name of the activity or event that updated the variable

	
UPDATER_TYPE

	
NVARCHAR2

	
200

	
--

	
N

	
The type of the BPEL activity or event

	
SCHEMA_NAMESPACE

	
NVARCHAR2

	
512

	
--

	
Y

	
Namespace of variable sensor value

	
SCHEMA_DATATYPE

	
NVARCHAR2

	
512

	
--

	
Y

	
Data type of the variable sensor value

	
VALUE_TYPE

	
NUMBER

	
--

	
--

	
N

	
The value type of the variable (corresponds to java.sql.Types values)

	
VARCHAR2_VALUE

	
NVARCHAR2

	
4000

	
--

	
Y

	
The value of string-like variables

	
NUMBER_VALUE

	
NUMBER

	
--

	
--

	
Y

	

	
DATE_VALUE

	
TIMESTAMP

	
6

	
--

	
Y

	
User-defined date

	
DATE_VALUE_TZ

	
VARCHAR2

	
10

	
--

	
Y

	
User-defined time zone

	
BLOB_VALUE

	
BLOB

	
--

	
--

	
Y

	

	
CLOB_VALUE

	
CLOB

	
--

	
--

	
Y

	

D.3 Sensor Actions XSD File

Example D-1 provides a sample sensor action schema that you can import into Oracle BPEL Designer. This schema is also relevant to custom data publishers.

Example D-1 Sample Sensor Action Schema

<?xml version="1.0" encoding="utf-8"?>
<!--
 This schema contains the sensor definition. Sensors monitor data
 and execute callbacks appropriately.
-->
<xsd:schema blockDefault="#all" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/bpel/sensor"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/bpel/sensor">

 <xsd:simpleType name="tSensorActionPublishType">
 <xsd:annotation>
 <xsd:documentation>
 This enumeration lists the possibe publishing types for probes.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BpelReportsSchema"/>
 <xsd:enumeration value="JMSQueue"/>
 <xsd:enumeration value="JMSTopic"/>
 <xsd:enumeration value="Custom"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tSensorActionProperty">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <!--
 Attributes of a sensor action
 -->
 <xsd:attributeGroup name="tSensorActionAttributes">
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="enabled" type="xsd:boolean" use="optional"
 default="true"/> <xsd:attribute name="filter" type="xsd:string"/>
 <xsd:attribute name="publishName" type="xsd:string" use="required"/>
 <xsd:attribute name="publishType" type="tns:tSensorActionPublishType"
 use="required"/>
 <!--
 the name of the JMS Queue/Topic or custom java API, ignored for other
 publishTypes
 -->
 <xsd:attribute name="publishTarget" type="xsd:string" use="optional"/>
 </xsd:attributeGroup>

 <!--
 The sensor action type. A sensor action consists:
 + unique name
 + effective date
 + expiration date - Optional. If not defined, the probe is active
 indefinitely.
 + filter (to potentially suppress data publishing even if a sensor marks
 it as interesting). - Optional. If not defined, no filter is
 used.
 + publishName A name of a publisher
 + publishType What to do with the sensor data?
 + publishTarget Name of a JMS Queue/Topic or custom publisher.
 + potentially many sensors.
 -->
 <xsd:complexType name="tSensorAction">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string" minOccurs="1"
 maxOccurs="unbounded"/>
 <xsd:element name="property" minOccurs="0" maxOccurs="unbounded"
 type="tns:tSensorActionProperty"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="tns:tSensorActionAttributes"/>
 </xsd:complexType>

 <!--
 define a listing of sensor actions in a single document. It might be a good
 idea to
 have one sensor action list per business process.
 -->
 <xsd:complexType name="tSensorActionList">
 <xsd:sequence>
 <xsd:element name="action" type="tns:tSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="tSensorKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="variable"/>
 <xsd:enumeration value="activity"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tActivityConfig">
 <xsd:annotation>
 <xsd:documentation>
 The configuration part of an activity sensor comprises of a mandatory
 'evalTime' attribute
 and an optional list of variable configurations
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:sequence>
 <xsd:element name="variable" type="tns:tActivityVariableConfig"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="evalTime" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tAdapterConfig">
 <xsd:annotation>
 <xsd:documentation>
 The configuration part of a adapter activity extends the activty
 configuration with additional attributes for adapters
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityConfig">
 <xsd:attribute name="headerVariable" use="required" type="xsd:string"/>
 <xsd:attribute name="partnerLink" use="required" type="xsd:string"/>
 <xsd:attribute name="portType" use="required" type="xsd:string"/>
 <xsd:attribute name="operation" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:attribute name="outputDataType" use="required" type="xsd:string"/>
 <xsd:attribute name="outputNamespace" use="required" type="xsd:string"/>
 <xsd:attribute name="queryName" use="optional" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tActivityVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableConfig">
 <xsd:attribute name="target" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tFaultConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tNotificationSvcConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityConfig">
 <xsd:attribute name="inputVariable" use="required" type="xsd:string"/>
 <xsd:attribute name="outputVariable" use="required" type="xsd:string"/>
 <xsd:attribute name="operation" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensorConfig">
 <xsd:sequence>
 <xsd:element name="action" type="tns:tInlineSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tInlineSensorAction">
 <xsd:complexContent>
 <xsd:restriction base="tns:tSensorAction"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensor">
 <xsd:sequence>
 <xsd:element name="activityConfig" type="tns:tActivityConfig"
 minOccurs="0"/>
 <xsd:element name="adapterConfig" type="tns:tAdapterConfig" minOccurs="0"/>
 <xsd:element name="faultConfig" type="tns:tFaultConfig" minOccurs="0"/>
 <xsd:element name="notificationConfig" type="tns:tNotificationSvcConfig"
 minOccurs="0"/>
 <xsd:element name="variableConfig" type="tns:tVariableConfig"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="sensorName" use="required" type="xsd:string"/>
 <xsd:attribute name="kind" use="required" type="tns:tSensorKind"/>
 <xsd:attribute name="classname" use="required" type="xsd:string"/>
 <xsd:attribute name="target" use="required" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="tSensorList">
 <xsd:sequence>
 <xsd:element name="sensor" type="tns:tSensor" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tRouterData">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tHeaderInfo"/>
 <xsd:element name="payload" type="tns:tSensorData"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tHeaderInfo">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 <xsd:element name="midTierInstance" type="xsd:string"/>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element name="sensor" type="tns:tSensor"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tActivityData" minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tFaultData" minOccurs="0"/>
 <xsd:element name="adapterData" minOccurs="0" type="tns:tAdapterData"/>
 <xsd:element name="variableData" type="tns:tVariableData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="notificationData" type="tns:tNotificationData"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tFaultData">
 <xsd:sequence>
 <xsd:element name="activityName" type="xsd:string"/>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="data" type="xsd:anyType" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tActivityData">
 <xsd:sequence>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="evalPoint" type="xsd:string"/>
 <xsd:element name="errorMessage" nillable="true" minOccurs="0"
 type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 xml type that is provided to sensors for variable Datas. Note the
 any element represents variable data.
 -->
 <xsd:complexType name="tVariableData">
 <xsd:sequence>
 <xsd:element name="target" type="xsd:string"/>
 <xsd:element name="queryName" type="xsd:string"/>
 <xsd:element name="updaterName" type="xsd:string" minOccurs="1"/>
 <xsd:element name="updaterType" type="xsd:string" minOccurs="1"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tNotificationData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="fromAddress" type="xsd:string" minOccurs="0"/>
 <xsd:element name="toAddress" type="xsd:string" minOccurs="0"/>
 <xsd:element name="deliveryChannel" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

 </xsd:complexType>
 <xsd:complexType name="tAdapterData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="endpoint" type="xsd:string"/>
 <xsd:element name="direction" type="xsd:string"/>
 <xsd:element name="adapterType" type="xsd:string"/>
 <xsd:element name="priority" type="xsd:string" minOccurs="0"/>
 <xsd:element name="messageSize" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!--
 The header of the document contains some metadata.
 -->
 <xsd:complexType name="tSensorActionHeader">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processVersion" type="xsd:string"/>
 <xsd:element name="processID" type="xsd:long"/>
 <xsd:element name="midTierInstance" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="actionName" use="required" type="xsd:string"/>
 </xsd:complexType>

 <!--
 Sensor Action data is presented in the form of a header and potentially many
 data elements depending on how many sensors associated to the sensor action
 marked the data as interesting.
 -->
 <xsd:complexType name="tSensorActionData">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tHeaderInfo"/>
 <xsd:element name="payload" type="tns:tSensorData" minOccurs="1"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
<!--
 <xsd:simpleType name="tActivityEvalPoint">
 <xsd:restriction>
 <xsd:enumeration value="start"/>
 <xsd:enumeration value="complete"/>
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="compensate"/>
 <xsd:enumeration value="retry"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="tNotificationAction">
 <xsd:restriction>
 <xsd:enumeration value="creation"/>
 <xsd:enumeration value="statusUpdate"/>
 </xsd:restriction>
 </xsd:simpleType>
-->

 <!--
 The process sensor value header comprises of a timestamp
 where the sensor was triggered and the sensor metadata
 -->
 <xsd:complexType name="tProcessSensorValueHeader">
 <xsd:sequence>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element ref="tns:sensor"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Extend tActivityData to include more elements
 -->
 <xsd:complexType name="tProcessActivityData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="evalTime" type="xsd:long" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="retryCount" type="xsd:int" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tVariableData to include more elements
 -->
 <xsd:complexType name="tProcessVariableData">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tFaultData to include more elements
 -->
 <xsd:complexType name="tProcessFaultData">
 <xsd:complexContent>
 <xsd:extension base="tns:tFaultData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tAdapterData to include more elements
 -->
 <xsd:complexType name="tProcessAdapterData">
 <xsd:complexContent>
 <xsd:extension base="tns:tAdapterData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tNotificationData to include more elements
 -->
 <xsd:complexType name="tProcessNotificationData">
 <xsd:complexContent>
 <xsd:extension base="tns:tNotificationData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!--
 Copy of tSensorData type with some modified types.
 -->
 <xsd:complexType name="tProcessSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tProcessActivityData"
 minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tProcessFaultData" minOccurs="0"/>
 <xsd:element name="adapterData" minOccurs="0"
 type="tns:tProcessAdapterData"/>
 <xsd:element name="variableData" type="tns:tProcessVariableData"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="notificationData" type="tns:tProcessNotificationData"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--
 A single process sensor value comprises of the sensor value metadata
 (sensor and timestamp) and the payload (the value) of the sensor
 -->
 <xsd:complexType name="tProcessSensorValue">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tProcessSensorValueHeader"/>
 <xsd:element name="payload" type="tns:tProcessSensorData"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Process instance header.
 -->
 <xsd:complexType name="tProcessInstanceInfo">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 The list of sensor values comprises of a process header describing the
 BPEL process with name, cube instance id etc. and a list of sensor values
 comprising of sensor metadata information and sensor values.
 -->
 <xsd:complexType name="tProcessSensorValueList">
 <xsd:sequence>
 <xsd:element name="process" type="tns:tProcessInstanceInfo" minOccurs="1"
 maxOccurs="1"/>
 <xsd:element name="sensorValue" type="tns:tProcessSensorValue" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- The sensor list is the root element of the sensor.xml document in the
 bpel process suitcase and is used to define sensors. -->
 <xsd:element name="sensors" type="tns:tSensorList"/>

 <!-- A sensor is used to monitor a particular aspect of a bpel process -->
 <xsd:element name="sensor" type="tns:tSensor"/>

 <!-- The actions element is the root element of the sensorAction.xml document
 in the bpel process suitcase and is used to define sensor actions.
 Sensor actions define how to publish data captured by sensors -->
 <xsd:element name="actions" type="tns:tSensorActionList"/>

 <!-- actionData elements are produced by the sensor framework and sent to the
 appropriate data publishers when sensors 'fire' -->
 <xsd:element name="actionData" type="tns:tSensorActionData"/>

 <!-- This element is used when the client API is used to query sensor values
 stored in the default reports schema -->
 <xsd:element name="sensorValues" type="tns:tProcessSensorValueList"/>
</xsd:schema>

E Oracle BAM Web Services Operations

This appendix is a reference for the operations provided by the Oracle BAM DataObjectOperations and DataObjectDefinition web services. More information about the Oracle BAM web services is available in Chapter 56, "Using Oracle BAM Web Services."

This appendix includes the following sections:

	
Section E.1, "DataObjectOperations10131"

	
Section E.2, "DataObjectOperationsByName"

	
Section E.3, "DataObjectOperationsByID"

	
Section E.4, "DataObjectDefinition Operations"

	
Section E.5, "ManualRuleFire Operations"

E.1 DataObjectOperations10131

The following operations are supported by the DataObjectOperations10131 web service:

	
Section E.1.1, "Batch"

	
Section E.1.2, "Delete"

	
Section E.1.3, "Insert"

	
Section E.1.4, "Update"

	
Section E.1.5, "Upsert"

E.1.1 Batch

Batch performs batch operations on a data object.

E.1.1.1 Request Message

The request message contains the following parameters.

dataObject (xsd:string)

Full relative path and name of the data object, for example:

/Samples/Employees

xmlPayload (xsd:string)

Contains the batch payload for any operations to be performed. For example:

<payload>
 <_Employees operation="insert">
 <_Salesperson>Tim Bray</_Salesperson>
 <_Sales_Area>EMEA</_Sales_Area>
 <_Sales_Number>12345</_Sales_Number>
 </_Employees>
 <_Employees operation="update" keys="_Sales_Number">
 <_Salesperson>Tim Bray</_Salesperson>
 <_Sales_Area>EMEA</_Sales_Area>
 <_Sales_Number>12345</_Sales_Number>
 </_Employees>
</payload>

E.1.2 Delete

Delete removes a row from the data object.

E.1.2.1 Request Message

The request message contains the following parameters.

dataObject (xsd:string)

Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)

Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)

Payload for the where clause to delete rows in a data object. For example:

<_Employees>
 <_Sales_Number>12345</_Sales_Number>
</_Employees>

E.1.3 Insert

Insert adds rows to the specified data object.

E.1.3.1 Request Message

The request message contains the following parameters.

dataObject (xsd:string)

Full relative path and name of the data object, for example:

/Samples/Employees

xmlPayload (xsd:string)

The payload is specific to each data object.

<_Employees>
 <_Salesperson>Time Bray</_Salesperson>
 <_Sales_Area>EMEA</_Sales_Area>
 <_Sales_Number>12345</_Sales_Number>
</_Employees>

E.1.4 Update

Update operation updates existing data with new data in a data object.

E.1.4.1 Request Message

The request message contains the following parameters.

dataObject (xsd:string)

Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)

Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)

Payload for the update statement and where clause to update rows in a data object. For example:

<_Employees>
 <_Sales_Area>Asia Pacific</_Sales_Area>
 <_Sales_Number>12345</_Sales_Number>
</_Employees>

E.1.5 Upsert

Upsert operation updates existing data with new data in an existing row in a data object. If the row does not exist a new row is created.

E.1.5.1 Request Message

The request message contains the following parameters.

dataObject (xsd:string)

Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)

Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)

Payload for the insert or update statement and where clause to upsert rows in a data object. For example:

<_Employees>
 <_Salesperson>Time Bray</_Salesperson>
 <_Sales_Area>EMEA</_Sales_Area>
 <_Sales_Number>12345</_Sales_Number>
</_Employees>

E.2 DataObjectOperationsByName

The following operations are supported by the DataObjectOperations10131, DataObjectOperationsByName, and DataObjectOperationsByID web services.

	
Section E.2.1, "Delete"

	
Section E.2.2, "Get"

	
Section E.2.3, "Insert"

	
Section E.2.4, "Update"

	
Section E.2.5, "Upsert"

E.2.1 Delete

Delete removes a row from the data object.

E.2.1.1 Request Message

The request message contains the following parameters.

keysCSV (xsd:string)

Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:string)

Payload for the where clause to delete rows in a data object. For example:

<DataObject Name="Employees" Path="/Samples">
 <Contents>
 <Row>
 <Column Name="Salesperson" Value="Greg Guan" />
 </Row>
 </Contents>
</DataObject>

E.2.2 Get

Get fetches the details from a data object per the specifications in the XML payload

Get is only available in DataObjectOperationsByName web service.

E.2.2.1 Request Message

The request message contains the following parameters.

keysCSV (xsd:string)

Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:string)

The payload specifies what to get from the data object.

For the DataObjectOperationsByName web service the data object name is specified in the payload, for example:

<DataObject Name="Employees" Path="/Samples">
 <Contents>
 <Row>
 <Column Name="Salesperson" Value="Greg Masters"/>
 </Row>
 </Contents>
</DataObject>

E.2.3 Insert

Insert adds rows to the specified data object.

E.2.3.1 Request Message

The request message contains the following parameters.

xmlPayload (xsd:string)

The payload is specific to each data object.

<DataObject Name="Employees" Path="/Samples">
 <Contents>
 <Row>
 <Column Name="Salesperson" Value="Greg Guan" />
 <Column Name="Sales Area" Value="Northeast" />
 <column Name="Sales Number" Value="5671" />
 </Row>
 </Contents>
</DataObject>

E.2.4 Update

Update operation updates existing data with new data in a data object.

E.2.4.1 Request Message

The request message contains the following parameters.

keysCSV (xsd:string)

Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:string)

Payload for the update statement and where clause to update rows in a data object. For example:

<DataObject Name="Employees" Path="/Samples">
 <Contents>
 <Row>
 <Column Name="Salesperson" Value="Greg Guan" />
 </Row>
 </Contents>
</DataObject>

E.2.5 Upsert

Upsert operation updates existing data with new data in an existing row in a data object. If the row does not exist a new row is created.

E.2.5.1 Request Message

The request message contains the following parameters.

keysCSV (xsd:string)

Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:string)

Payload for the insert or update statement and where clause to upsert rows in a data object. For example:

<DataObject Name="Employees" Path="/Samples">
 <Contents>
 <Row>
 <Column Name="Salesperson" Value="Greg Guan" />
 <Column Name="Sales Area" Value="Northeast" />
 <column Name="Sales Number" Value="5671" />
 </Row>
 </Contents>
</DataObject>

E.3 DataObjectOperationsByID

The following operations are supported by the DataObjectOperations10131, DataObjectOperationsByName, and DataObjectOperationsByID web services.

	
Section E.3.1, "Batch"

	
Section E.3.2, "Delete"

	
Section E.3.3, "Insert"

	
Section E.3.4, "Update"

	
Section E.3.5, "Upsert"

E.3.1 Batch

Batch performs batch operations on a data object.

E.3.1.1 Request Message

The request message contains the following parameters.

dataObject (xsd:string)

Full relative path and name of the data object, for example:

/Samples/Employees

xmlPayload (xsd:string)

Contains the batch payload for any operations to be performed. For example:

<payload>
 <_Employees operation="insert">
 <_Salesperson>Tim Bray</_Salesperson>
 <_Sales_Area>EMEA</_Sales_Area>
 <_Sales_Number>12345</_Sales_Number>
 </_Employees>
 <_Employees operation="update" keys="_Sales_Number">
 <_Salesperson>Tim Bray</_Salesperson>
 <_Sales_Area>EMEA</_Sales_Area>
 <_Sales_Number>12345</_Sales_Number>
 </_Employees>
</payload>

E.3.2 Delete

Delete removes a row from the data object.

E.3.2.1 Request Message

The request message contains the following parameters.

dataObject (xsd:string)

This parameter is not required by the DataObjectOperationsByName web service because the data object name and path are part of the payload.

Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)

Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)

Payload for the where clause to delete rows in a data object. For example:

<_Employees>
 <_Sales_Number>12345</_Sales_Number>
</_Employees>

E.3.3 Insert

Insert adds rows to the specified data object.

E.3.3.1 Request Message

The request message contains the following parameters.

dataObject (xsd:string)

Full relative path and name of the data object, for example:

/Samples/Employees

xmlPayload (xsd:string)

The payload is specific to each data object.

For the DataObjectOperationsByName web service the data object name is specified in the payload, for example:

<_Employees>
 <_Salesperson>Time Bray</_Salesperson>
 <_Sales_Area>EMEA</_Sales_Area>
 <_Sales_Number>12345</_Sales_Number>
</_Employees>

E.3.4 Update

Update operation updates existing data with new data in a data object.

E.3.4.1 Request Message

The request message contains the following parameters.

dataObject (xsd:string)

Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)

Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)

Payload for the update statement and where clause to update rows in a data object. For example:

<_Employees>
 <_Sales_Area>Asia Pacific</_Sales_Area>
 <_Sales_Number>12345</_Sales_Number>
</_Employees>

E.3.5 Upsert

Upsert operation updates existing data with new data in an existing row in a data object. If the row does not exist a new row is created.

E.3.5.1 Request Message

The request message contains the following parameters.

dataObject (xsd:string)

Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)

Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)

Payload for the insert or update statement and where clause to upsert rows in a data object. For example:

<_Employees>
 <_Salesperson>Time Bray</_Salesperson>
 <_Sales_Area>EMEA</_Sales_Area>
 <_Sales_Number>12345</_Sales_Number>
</_Employees>

E.4 DataObjectDefinition Operations

The following operations are supported by DataObjectDefinition web service.

	
Section E.4.1, "Create"

	
Section E.4.2, "Delete"

	
Section E.4.3, "Get"

	
Section E.4.4, "Update"

E.4.1 Create

Create creates a new data object. By specifying columnar elements, you can create calculated and lookup fields in addition to regular fields ass show in the examples.

E.4.1.1 Request Message

The request message contains the following parameter.

xmlPayload (xsd:string)

Contains the payload to create a data object.

Table E-1 xmlPayload Elements and Descriptions and Valid Values

	Element	Description and Values
	
/DataObject/@External

	
0 (zero) indicates that the data object is not from an external data source (default).

1 indicates that the data object is from an external data source.

	
/DataObject/@Name

	
Name of the data object to be created not including the directory path.

	
/DataObject/@Path

	
Directory path in which to create the data object.

	
/DataObject/@Version

	
Data objects can be versioned 0 (default) through 14.

	
/DataObject/@TipText

	
Description of the data object to be created.

	
/DataObject/Layout/Column/@Name

	
Name of the column (field) in the data object.

	
/DataObject/Layout/Column/@Type

	
The following values are valid for column type: auto-incr-integer boolean calculated clob datetime decimal float iterID integer lookup string timestamp

	
/DataObject/Layout/Column/@Nullable

	
1 (default) indicates that the column supports null values.

0 (zero) indicates that the column does not support null values.

	
/DataObject/Layout/Column/@Public

	
1 (default) indicates that the column is public.

0 (zero) indicates that the column is not public.

	
/DataObject/Layout/Column/@MaxSize

	
For string type columns, this attribute specifies the maximum permissible string size.

Default value is 30.

	
/DataObject/Layout/Column/@Precision

	
For decimal type columns, this attribute specifies the precision of the decimal value.

	
/DataObject/Layout/Column/@Scale

	
For decimal type columns, this attribute specifies the scale of the decimal value.

	
/DataObject/Layout/Column/@TipText

	
Column description

Example E-1 xmlPayload to Create Data Object With Regular Columns

<DataObject Version="14" Name="Employees3" ID="_Employees3" Path="/Samples"
 External="0">
 <Layout>
 <Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="30"
 Nullable="1" Public="1" />
 <Column Name="Sales Number" ID="_Sales_Number" Type="decimal"
 Nullable="1" Public="1" />
 <Column Name="Timestamp" ID="_Timestamp" Type="timestamp"
 Nullable="0" Public="1" />
 <Indexes />
 </Layout>
</DataObject>

Example E-2 xmlPayload to Create Data Object With Lookup Field

<DataObject Version="14" Name="LookupDO" ID="_LookupDO" Path="/Samples">
 <Layout>
 <Description><![CDATA[Lookup]]></Description>
 <Column Name="Name" ID="_Name" Type="string" MaxSize="100"
 Nullable="1" Public="1" />
 <Column Name="ID" ID="_ID" Type="integer" Nullable="1" Public="1" />
 <Column Name="Sales Area" ID="_Sales_Area" Type="lookup">
 <Lookup>
 <DataObject>
 <ID>_Employees</ID>
 <Path>/Samples</Path>
 </DataObject>
 <LookupFieldID>_Sales_Area</LookupFieldID>
 <MatchFields>
 <KeyPair>
 <PrimaryKeyID>_Sales_Number</PrimaryKeyID>
 <ForeignKeyID>_ID</ForeignKeyID>
 </KeyPair>
 </MatchFields>
 </Lookup>
 </Column>
 <Indexes />
 </Layout>
</DataObject>

Note that when you construct the XML payload for the Create operation, and the data object version is lower than 12, use PrimaryKey instead of PrimaryKeyID, ForeignKey instead of ForeignKeyID, LookupField instead of LookupFieldID, and provide name values instead of IDs for those fields.

Example E-3 xmlPayload to Create Data Object With Calculated Field

<DataObject Version="14" Name="CalculatedDO" ID="_CalculatedDO" Path="/Samples">
 <Layout>
 <Description><![CDATA[Calculated Column]]></Description>
 <Column Name="Name" ID="_Name" Type="string" MaxSize="100" Nullable="1"
 Public="1" />
 <Column Name="Address" ID="_Address" Type="string" MaxSize="100" Nullable="1"
 Public="1" />
 <Column Name="Salary" ID="_Salary" Type="decimal" Scale="10" Nullable="1"
 Public="1" />
 <Column Name="Income Tax" ID="_Income_Tax" Type="calculated"
 CalculatedExpression="<expression type="MathExpression"
><operation><left><type>FieldID</type><ivalue>
_Salary</ivalue></left><operator>*</operator><right>
<type>DECIMAL</type><ivalue>0.3</ivalue></right><
/operation></expression>" ExpressionUserText="(Salary * 0.3)" />
 <Indexes />
 </Layout>
</DataObject>

E.4.1.2 Response Message

void

E.4.2 Delete

Delete removes a data object definition and its contents.

E.4.2.1 Request Message

The request message contains the following parameter.

dataObjectFullName (xsd:string)

Full relative path and name of the data object to be deleted. For example:

/Samples/Employees

E.4.2.2 Response Message

void

E.4.3 Get

Get retrieves an existing data object definition.

E.4.3.1 Request Message

The request message contains the following parameters.

dataObjectFullName (xsd:string)

Full relative path and name of the data object, for example:

/Samples/Sales

E.4.3.2 Response Message

The response message contains the following parameter.

xmlPayload (xsd:string)

An XML description of the data object is returned. The schema used is the same definition as described for the Create and Update operations. You can use this operation to find the ID values of the data object and any columns.

Example E-4 xmlPayload for Get Operation

<DataObject Version="14" Name="Employees" Path="/Samples" External="0">
 <Layout>
 <Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="100"
 Nullable="1" Public="1" />
 <Column Name="Sales Area" ID="_Sales_Area" Type="string" MaxSize="100"
 Nullable="1" Public="1" />
 <Column Name="Sales Number" ID="_Sales_Number" Type="integer" Nullable="1"
 Public="1" />
 <Column Name="Timestamp" ID="_Timestamp" Type="timestamp" Nullable="0" />
 Public="1" />
 <Indexes />
 </Layout>
</DataObject>

E.4.4 Update

Update updates the definition of an existing data object. If a specified column exists in the original definition, the new column definition overwrites the old one. If columns in the existing definition are not specified in the new definition, their definitions are removed. The data object index definition can be updated as well.

E.4.4.1 Request Message

The request message contains the following parameters.

xmlPayload (xsd:string)

Payload for the Update operation is similar to the Create payload with one additional attribute. For example:

<DataObject Version="14" Name="Employees4" ID="_Employees4" Path="/Samples" External="0">
 <Layout>
 <Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="50"
 Nullable="1" Public="1" />
 <Column Name="Sales Number" ID="_Sales_Number" Type="integer"
 Nullable="1" Public="1" />
 <Column Name="Timestamp" ID="_Timestamp" Type="timestamp"
 Nullable="0" Public="1" />
 <Indexes />
 </Layout>
</DataObject>

E.4.4.2 Response Message

void

E.5 ManualRuleFire Operations

The following operation is supported by ManualRuleFire web service.

	
Section E.5.1, "FireRuleByName"

E.5.1 FireRuleByName

Use this operation to manually launch a rule.

This web service takes a string parameter, which should have user name, followed by a period (.), followed by the alert name. For example:

user_name.alertname

The period is used as a separator between the user name and the alert name. The web service always treats last period in the string as the separator, allowing the user name to contain periods. For example

user.nema.alerrtname

It follows then that the alert names cannot contain a period. If you must use the ManualRuleFire web service with an alert containing a period in its name, the alert must be renamed so that it does not contain any periods.

E.5.1.1 Request Message

The request message contains the following parameter.

xmlPayload (xsd:string)

An example:

<FireRuleByName xmlns="http://xmlns.oracle.com/bam">
 <strRuleName>string</strRuleName>
</FireRuleByName>

E.5.1.2 Response Message

Returns (xsd:string)

<FireRuleByNameResponse xmlns="http://xmlns.oracle.com/bam">
 <FireRuleByNameResult>string</FireRuleByNameResult>
</FireRuleByNameResponse>

F Oracle BAM Alert Rule Options

This appendix describe the options for creating alert rules.

This appendix includes the following sections:

	
Section F.1, "Events"

	
Section F.2, "Conditions"

	
Section F.3, "Actions"

	
Section F.4, "Frequency Constraint"

F.1 Events

Events launch the rule and trigger the action. Each rule contains only one event. Oracle BAM provides the following events:

	
In a specific amount of time

	
At a specific time today

	
On a certain day at a specific time

	
Every interval between two times

	
Every date interval starting on certain date at a specific time

	
When a report changes

	
When a data field changes in data object

	
When a data field in a report meets specified conditions

	
When a data field in a data object meets specified conditions

	
When this rule is launched

F.1.1 In a specific amount of time

When you select the event In a specific amount of time, you must complete the rule expression by selecting a time interval in seconds, minutes, or hours.

F.1.2 At a specific time today

When you select the event At a specific time today, you must complete the rule expression by selecting the time at which to launch the alert.

F.1.3 On a certain day at a specific time

When you select the event On a certain day at a specific time, you must complete the rule expression by selecting both the date and the time at which to launch the alert.

F.1.4 Every interval between two times

When you select the event Every interval between two times, you must complete the rule expression by configuring the following settings.

	
select time interval

Set the number of minutes, hours, or days between each alert launch.

	
select time

Set the times of day between which the rule is valid and the alert is launched.

F.1.5 Every date interval starting on certain date at a specific time

When you select the event Every date interval starting on a certain date at a specific time, you must complete the rule expression by configuring the following settings.

	
select date interval

Set the alert to launch every Day, Week, Month, or Year.

	
select date

Set the date on which the rule is valid and the alert is launched.

	
select time

Set the time of day at which the rule is valid and the alert is launched.

F.1.6 When a report changes

When a report changes is launched when runtime changes in a report occur (not changes in the report definition), that is every time a change list is delivered to the report from the Oracle BAM Server. Report changes can include changes to data in data objects and changes due to Active Now settings.

When you select the event When a report changes, you must complete the rule expression by configuring the following settings.

	
select report

Select the report to monitor for changes.

	
run as <user_name> (This option appears only if the user creating the alert is a member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only one run as user. The default run as user is the logged in Oracle BAM user who is creating the alert.

Only recipients who have security permissions that are the same or higher than the run as user receive the notification for report changes, honoring row level security as implemented by the Oracle BAM Architect in the data objects used in the report.

Names that are preceded with a hash (#) are distribution lists.

If there are changes in a report's data object rows that none of the alert recipients have permissions to access, no recipients are notified.

F.1.7 When a data field changes in data object

When you select the event When a data field changes in a data object, you must complete the rule expression by configuring the following settings.

	
Note:

The event When a data field in a data object meets specified conditions responds only to row inserts and row updates, but it does not respond to row deletes; however, the event When a data field changes in a data object responds to row deletes.

	
select data field

Select the data object field to monitor for changes. In the Field Selection dialog box, locate the data object in the top left section of the dialog box, then select the field in the top right section of the dialog box. Finally, select one or more fields to group by and an aggregate function for the selected field.

	
run as <user_name> (This option appears only if the user creating the alert is a member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only one run as user. The default run as user is the logged in Oracle BAM user who is creating the alert.

Only recipients who have security permissions that are the same or higher than the run as user receive the notification for report changes, honoring row level security as implemented by the Oracle BAM Architect in the data objects used in the report.

Names that are preceded with a hash (#) are distribution lists.

If there are changes in a report's data object rows that none of the alert recipients have permissions to access, no recipients are notified.

F.1.8 When a data field in a report meets specified conditions

When you select the event When a data field changes in a data object, you must complete the rule expression by configuring the following settings.

	
select report

Select the report to monitor for changes.

	
this data field has a condition of x

In the Alert Rule Editor dialog box, select the data object to monitor. Then you can set the condition under which the alert should fire.

	
Row Filter - Create a filter on a field in the data object to express a condition that, when met, launches the rule. All of the functionality available in report filters is provided. See "Filtering Data" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring for more information.

	
Group Filter - The Group Filter is similar to the Row Filter in that it provides all of the filtering functionality available in report filters. The special feature here is that it allows filters to be created on a field where a summary function has been applied. See "Filtering Data" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring for more information about building filter expressions.

	
Group - Choose one or more fields on which to create a grouping, adding further complexity to any filters created in the Row Filter or Group Filter tabs.

	
run as <user_name> (This option appears only if the user creating the alert is a member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only one run as user. The default run as user is the logged in Oracle BAM user who is creating the alert.

Only recipients who have security permissions that are the same or higher than the run as user receive the notification for report changes, honoring row level security as implemented by the Oracle BAM Architect in the data objects used in the report.

Names that are preceded with a hash (#) are distribution lists.

If there are changes in a report's data object rows that none of the alert recipients have permissions to access, no recipients are notified.

F.1.9 When a data field in a data object meets specified conditions

When you select the event When a data field in a data object meets specified condition, you must complete the rule expression by configuring the following settings.

	
Note:

The event When a data field in a data object meets specified conditions responds only to row inserts and row updates, but it does not respond to row deletes; however, the event When a data field changes in a data object responds to row deletes.

	
this data field has a condition of x

In the Alert Rule Editor dialog box, select the data object to monitor. Then you can set the condition under which the alert should fire.

	
Row Filter - Create a filter on a field in the data object to express a condition that, when met, launches the rule. All of the functionality available in report filters is provided. See "Filtering Data" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring for more information.

	
Group Filter - The Group Filter is similar to the Row Filter in that it provides all of the filtering functionality available in report filters. The special feature here is that it allows filters to be created on a field where a summary function has been applied. See "Filtering Data" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring for more information about building filter expressions.

	
Group - Choose one or more fields on which to create a grouping, adding further complexity to any filters created in the Row Filter or Group Filter tabs.

	
run as <user_name> (This option appears only if the user creating the alert is a member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only one run as user. The default run as user is the logged in Oracle BAM user who is creating the alert.

Names that are preceded with a hash (#) are distribution lists.

Only recipients who have security permissions that are the same or higher than the run as user receive the notification for report changes, honoring row level security as implemented by the Oracle BAM Architect in the data objects used in the report.

If there are changes in a report's data object rows that none of the alert recipients have permissions to access, no recipients are notified.

F.1.10 When this rule is launched

The event When this rule is launched is used to create a rule dependent on another rule which uses the Launch a rule action. Several rules can be created using When this rule is launched in a hierarchy.

F.2 Conditions

Conditions are optional settings for constraining the time period in which the alert is fired. You can select any number and combination of conditions. Oracle BAM provides the following conditions:

	
If it is between two times

	
If It is between two days

	
If it is a particular day of the week

F.2.1 If it is between two times

Select two times between which the rule should launch.

F.2.2 If It is between two days

Select two dates between which the rule should launch.

F.2.3 If it is a particular day of the week

Select a day of the week on which the rule should launch.

F.3 Actions

Actions are the results of the conditions and events of the rule expression having been met. You can configure any number and combination of actions. Oracle BAM provides the following actions:

	
Send a report via email

	
Send a message via email

	
Send a report via email and escalate to another user after a specific amount of time

	
Send a parameterized message

	
Launch a rule

	
Launch rule if an action fails

	
Delete rows from a Data Object

	
Call a Web Service

	
Run an Oracle Data Integrator Scenario

	
Call an External Action

F.3.1 Send a report via email

Select a report, select to send the report as a report link or as a rendered report, and select a recipient.

F.3.2 Send a message via email

Create an email message to send and select a recipient.

F.3.3 Send a report via email and escalate to another user after a specific amount of time

Select a report to send to the specified user. Select a secondary recipient to receive the message if the first recipient does not respond within the specified time period. The secondary recipient can be a single user or a distribution list.

When the condition of the alert rule is met, a report link is sent to the recipient. To respond to this alert, the recipient must click the report link and view the report. If the recipient does not view the report, it is escalated to the secondary user (or distribution list).

F.3.4 Send a parameterized message

This option enables you to email reports that require parameter inputs to Oracle BAM users. This action enables you to create a fully configurable email message and the parameter values that are passed to the report.

For information about creating prompts and parameters in Oracle BAM dashboards see "Using Prompts and Parameters" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.

You can use this option to send reports to other users under the conditions specified in the alert message. This action is available for the events When a data field changes in data object and When a data field in a data object meets specified conditions.

There are two properties that must be configured in this alert action: create message and set parameters.

[image: Description of bam_alert_param_expr.gif follows]

To create the message

	
Click create message in the rule expression.

	
Enter a subject and message to send to the recipient. You can also select links to reports to send in the message body as shown in Figure F-1.

Figure F-1 Alert Message dialog box

[image: Description of Figure F-1 follows]

To configure the parameter values that are passed to the report when it is opened by the recipient:

	
Click set parameters in the rule expression.

	
In the Alert Action Parameter Creation and Edit dialog box, populate the User, Delivery, and Report fields with either predefined values or dynamically from a Data Object field. Use the buttons to set the field values. Select Field enables you to select a field in a data object as a value.

Figure F-2 Alert Action Parameter Creation and Edit dialog box

[image: Description of Figure F-2 follows]

	
User field

If you populate this field using the Select User button, the recipients are selected from Oracle BAM users listed in Oracle BAM Administrator as shown in Figure F-3.

Figure F-3 Select Names dialog box

[image: Description of Figure F-3 follows]

	
Delivery field

If you populate this field with predefined values in the list, the only value that appears in this field is Email.

It is not recommended that you use the Select Field button as you must then populate a data object with a field set to smtp because this is the only delivery method supported. (No other delivery options are supported.)

	
Report field

If you populate this field with the Select Report button, the value that appears in this field is the display name of the report.

If you populate this field from a Data Object, the value must be the report ID of that report, and not the display name. To get the report ID, click the report and click the Copy Shortcut link. A window opens with a link such as:

http://myServer/oraclebam/ReportServer/default.aspx?Event=ViewReport&
ReportDef=1&Buttons=False

In this link the ReportDef value, 1, is the report ID of the report Emp_Report. Every report in Oracle Business Activity Monitoring has a unique report ID.

	
Configure the Report Parameter Values.

Enter all of the parameters required by the report.

Click New in the Report Parameter Values list to configure the parameter.

[image: Description of bam_alert_para_cfg_cr.gif follows]

Enter the parameter name in the Name field, and click Select Field to select the field on which the parameter acts.

[image: Description of bam_alert_para_cfg_nm.gif follows]

Key in the parameter value, or select the field from the Field Selection dialog box, and click OK.

For special values use the underscore (_), for example, _ALL_, _BLANK_, and _NULL_.

[image: Description of bam_alert_para_cfg_fld.gif follows]

The selected field ID appears in the Value text box. Click OK to confirm and return to the parameters list.

[image: Description of bam_alert_para_cfg_sel.gif follows]

F.3.5 Launch a rule

Select a dependent rule that includes the when this rule is launched event. For an example of constructing a dependent rule see Section 57.5, "Creating Complex Alerts."

F.3.6 Launch rule if an action fails

Select a dependent rule to launch if any of the actions included in the rule fail. For an example of constructing a dependent rule see Section 57.5, "Creating Complex Alerts"

F.3.7 Delete rows from a Data Object

Select the data object, and construct a filter entry such that when the filter condition is met the row is removed from the data object.

If the data being deleted is more than 10,000 rows, be aware of the following items:

	
If any reports that are dependent upon the data object from which data is being deleted are open at the time the Delete rows from a Data Object action executes, the active data is stopped on the viewsets and reloaded after deletion is complete. Also, if a user attempts to open a report while the delete action for a dependent data object is in process, the report gets stuck or the outcome may be undefined. It is recommended that users do not open reports dependent on the data object while this action is in process. The reports continue to receive active data when the action is finished.

	
In addition, during Delete rows from a Data Object execution, any alerts that are dependent on that data object are temporarily disabled internally. While this action is being run, any new alert created using that data object, or any dependent existing alerts that are disabled and reenabled, results in the system getting stuck. It is recommended that users do not create, disable, or reenable any alerts dependent on the data object while this action is in process. The alerts continue to function normally after the action is finished.

F.3.8 Call a Web Service

When this action is selected, do the following steps to configure the web service:

	
Enter the web service or WSIL endpoint URL. The URL must begin with the "http" scheme and must end in a valid extension (?WSDL, .WSDL or .WSIL).

For example:

http://host_name:port_number/OracleBAMWS/WebServices/DataObjectOperationsByID?WSDL

http://api.google.com/GoogleSearch.wsdl

http://host_name:port_number/inspection.wsil

If it is a secure web service select the box and enter the required credentials.

	
Note:

Oracle BAM cannot determine if the web service is hosted on a server which is behind a secure server. It is your responsibility to indicate whether the web service is behind an HTTP basic authentication based server, and you must enter valid credentials if they are required.

	
If it is a secure web service check the Secure Web Service checkbox and enter the required credentials.

	
Click Display Services to display the available services of the URL entered in the field.

	
The Endpoint URL field, which is initially disabled and empty, is populated after you enter the WSDL/WSIL and credentials, get the list of operations, and select an operation.

It is populated with the endpoint URL defined in the WSDL file of the web service. If you find this endpoint URL outdated (for example, the web service implementation moved to a different endpoint but you do not have the new WSDL, but know the new endpoint URL) or incorrect, or want to override it, you can edit this URL. When the web service is invoked by Oracle BAM Event Engine, the configured endpoint URL is used to invoke the web service.

	
Click Map Parameters.

When the event is based on a data object change (for example, When a data field changes in data object, When a data field in a report meets specified conditions, When a data field in a data object meets specified conditions), a selection list of fields to which the parameter can be mapped is displayed.

To map the parameters choose the Data Object Field option, and select a data object field from the list next to each web service parameter listed in the Alert Web Service - Parameter Mapping dialog box.

When the event is not based on a data object change, the value is entered in a text box.

	
Click OK to close the Alert Web Service - Parameter Mapping dialog box and the Alert Web Service Configuration dialog box.

See Section F.3.8.1, "How to Use Call a Web Service: An Example" for a specific example.

	
Note:

If the web service does not respond to the call, then there are no logs available pertaining to the non-response or failure.

F.3.8.1 How to Use Call a Web Service: An Example

The following procedure details the steps to create a alert which invokes a web service, using the sample Employees data object to insert a row in a data object.

To use Call a Web Service:

	
Ensure that the /Samples/Employees data object exists in your Oracle BAM instance.

	
Log in to Oracle BAM web applications, and open Oracle BAM Active Studio.

	
Select the Alerts tab, and click Create a New Alert.

	
Click Create a Rule.

	
In the Select an Event list, select the first option: In a specific amount of time.

	
Click select time interval in the Rule Expression panel, and select 1 Second as the time.

	
Click OK and Next.

	
In the Select an Action list, select the action Call a Web Service.

	
Click configure web service in the Rule Expression panel.

The Alert Web Service Configuration dialog opens.

	
Provide the WSDL of the DataObjectOperationByName web service on your instance. The URL looks like:

http://host_name:port_number/OracleBAMWS/WebServices/ DataObjectOperationsByName?WSDL

where host_name and port_number are substituted with your Oracle BAM instance's host name and port number.

	
Select the Secure Web Service checkbox, and provide the credentials.

	
Click Display Operations, and in the operations listed, select the operation Insert.

This populates the endpoint URL of your web service. If the endpoint your of your web service has changed, or you want to override it with some other implementation, provide the new endpoint URL, otherwise, leave it as it is.

	
Click Map Parameters to provide the values that map to the parameters in this web service.

The web service operation in this example requires a value for only one parameter, an XML payload containing the row to insert in the data object.

Enter the following text in the xmlpayload value and click.

<DataObject Name="Employees" Path="/Samples"><Contents><Row><Column
 Name="Salesperson" Value="Greg Guan Gan" /><Column Name="Sales Area"
 Value="Northeast" /><Column Name="Sales Number" Value="1234"
 /></Row></Contents></DataObject>

	
Click OK to close the Alert Web Service Configuration dialog, and click OK in the Rule Creation and Edit dialog.

	
After one second, open Oracle BAM Architect and check the contents of the /Samples/Employees data object to verify that the new row with Salesperson name Greg Guan Gan is inserted in the data object.

F.3.9 Run an Oracle Data Integrator Scenario

Use this action to trigger a scenario in Oracle Data Integrator. This action is only available if the integration files for Oracle Data Integrator have been installed. See Section 54.2, "Installing the Oracle Data Integrator Integration Files."for more information.

Ensure that the Oracle Data Integrator agent is running and that the agent host, port, and login credentials are properly configured in Oracle Enterprise Manager Fusion Middleware Control. Oracle BAM cannot verify that the Oracle Data Integrator agent is running, and if it is not running, the alert fires, but the action is not carried out as expected. Also, Oracle BAM alerts that trigger Oracle Data Integrator scenarios do not track the success or failure of the Oracle Data Integrator scenario call, and it is not logged on the Oracle BAM side. See "Configuring Oracle Data Integrator Properties," in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

In the alert creation dialog box, select the Oracle Data Integrator scenario to invoke by selecting the scenario name and version from the dropdown list.

If the scenario uses variables in it, choose the values (type in a value or choose a field value from the data object) to pass to Scenario Variables in the same screen.

F.3.10 Call an External Action

Call an External Action is used to develop a custom action. For users whose requirements cannot be fulfilled by the actions provided by Oracle BAM, this feature is used to extend the action set.

See Section 57.8, "Calling an External Action" for details on how to configure this action.

F.4 Frequency Constraint

The Frequency Constraint feature prevents a user's email inbox from being flooded with alerts by limiting the number of alert messages that can be sent out during a given time interval.

Frequency Constraint can be edited only if it is appropriate for the event selected. otherwise it is disabled. It can be set to a value of time which could be in seconds, minutes, or hours.

This limits the number of times the rule launches in a given time period. With real-time data, transactions can occur every millisecond, so alerting frequency must be controlled.

G Oracle BAM ICommand Operations and File Formats

This appendix provides a detailed reference for each operation and parameter available in the ICommand command-line utility and web service.

This appendix includes the following sections:

	
Section G.1, "Summary of Individual Operations"

	
Section G.2, "Detailed Operation Descriptions"

	
Section G.3, "Format of Command File"

	
Section G.4, "Format of Log File"

	
Section G.5, "Sample Export File"

	
Section G.6, "Regular Expressions"

For more information about ICommand see the following topics:

	
Chapter 58, "Using ICommand"

	
Section 56.5, "Using the ICommand Web Service"

G.1 Summary of Individual Operations

This section summarizes the parameters that can be used with each ICommand operation. You can also see a summary of these operations in the command window by entering icommand (without any parameters) at the command prompt.

Table G-1 summarizes the commands available in ICommand.

Table G-1 ICommand Command Summary

	Command	Parameters
	
clear

	
-name itemname

[-type [dataobject|folder|distributionlist]]

For more information about clear see Section G.2.1, "Clear."

	
delete

	
[-name itemname]

[-type [dataobject|folder|report|rule|securityfilters|

 distributionlist|ems|eds|all]]

[-match pattern]

[-regex regularexpression]

[-all [0|1]]

[-systemobjects [0|1]]

For more information about delete see Section G.2.2, "Delete."

	
export

	
-file file_name

[-name itemname]

[-type [dataobject|folder|report|rule|securityfilters|

 distributionlist|ems|eds|all]]

[-match pattern]

[-regex regularexpression]

[-all [0|1]]

[-systemobjects [0|1]]

[-dependencies [0|1]]

[-layout [0|1]]

[-contents [0|1]]

[-permissions [0|1]]

[-owner [0|1]]

[-header [0|1]]

[-footer [0|1]]

[-append [0|1]]

[-preview [0|1]]

For more information about export see Section G.2.3, "Export."

	
import

	
-file file_name

-continueonerror

[-delay milliseconds]

[-updatelayout]

[-mode [preserveid|update|overwrite|append|rename|error]]

[-preserveowner]

[-setcol col_name/[null|now|value:override_value]]

[-preview]

For more information about import see Section G.2.4, "Import."

	
rename

	
-name itemname

-newname newitemname

[-type [dataobject|folder|report|rule|distributionlist|ems|

eds]]

For more information about rename see Section G.2.5, "Rename."

G.2 Detailed Operation Descriptions

This section details each of the ICommand commands, their parameters, and gives examples. It includes the following topics:

	
Section G.2.1, "Clear"

	
Section G.2.2, "Delete"

	
Section G.2.3, "Export"

	
Section G.2.4, "Import"

	
Section G.2.5, "Rename"

G.2.1 Clear

Clears the contents of an item in the Active Data Cache.

What it means to be cleared depends upon the item type:

	
For Data Objects, all existing rows within the Data Object are deleted.

	
For Folders, all contents of the Folder are deleted.

	
For Distribution Lists, all members (users and groups) are removed from the distribution list.

Table G-2 Clear Command Parameters

	Parameter	Description
	
-name itemname

	
The name of the item to be cleared. Required.

	
-type itemtype

	
The type of the item to be cleared. The following are valid:

	
dataobject (see Example G-1)

	
folder

	
distributionlist

dataobject is assumed if this parameter is omitted.

Example G-1 Clearing a Data Object

icommand -cmd clear -name "/Samples/Call Center" -type dataobject

G.2.2 Delete

Deletes an item from the Active Data Cache.

Table G-3 Delete Command Parameters

	Parameter	Description
	
-all [0|1]

	
Controls whether all items of the specified type are deleted (see Example G-3).

A nonzero or omitted value means delete all items of the specified type, a zero (0) value means only delete the named (or matched) items. Zero is assumed if this parameter is omitted.

	
-match pattern

	
A DOS-style pattern matching string, using the asterisk (*) and question mark (?) characters. The items whose names match the pattern are deleted.

	
-name itemname

	
The name of the item to be deleted.

	
-regex regularexpr

	
A regular expression pattern matching string. The items whose names match the pattern are deleted. See Section G.6, "Regular Expressions" for more information.

	
-systemobjects [0|1]

	
Controls whether Data Objects in the System folder are included when the all, match, or regex parameters are used. Zero (0) means these data objects are not included. Zero is assumed if this parameter is omitted.

	
-type itemtype

	
The type of the item to be deleted. The following are valid:

	
dataobject (see Example G-2)

	
folder

	
report (see Example G-3)

	
rule

	
securityfilters (For the specified Data Objects)

	
distributionlist

	
ems (Enterprise Message Source)

	
eds (External Data Source)

	
all (see Example G-4)

dataobject is assumed if this parameter is omitted.

Example G-2 Deleting a Data Object

icommand -cmd delete -name TestDO
 //deletes a data object named TestDO. Note that dataobject type is assumed if
 the type parameter is not specified.

Example G-3 Deleting All Reports

icommand -cmd delete -type report -all 1
 //deletes all objects of type report

Example G-4 Deleting All Objects

icommand -cmd delete -type all
 //deletes all items except systemobejcts

G.2.3 Export

Exports information about one or more objects in the Active Data Cache to an XML file. See Section G.5, "Sample Export File" for an example of an exported data object.

Table G-4 Export Command Parameters

	Parameter	Description
	
-all [0|1]

	
Controls whether all items of the specified type are exported.

A nonzero or omitted value means export all items of the specified type, a zero value means only export the named (or matched) items. Zero (0) is assumed if this parameter is omitted.

For Reports, Folders, and Rules, only the items owned by the user running ICommand are exported, unless the user running ICommand is an administrator. When an administrator runs ICommand, any user's items may be exported.

See Example G-12, "Exporting All of the Reports in the System"

	
-append [0|1]

	
Controls whether the exported information is appended to any existing file.

A nonzero value means append. Zero (0) means overwrite the contents of any existing files. Zero is assumed if this parameter is omitted, or if the value is omitted.

The Append parameter must be used with the Header and Footer parameters as described in Example G-20, "Using Append Parameter in Export".

When the Append parameter is used, the Header and Footer parameters must be defined. If they are not, ICommand includes XML header information and closing XML </OracleBAMExport> tags after each append to the export file. The file is unusable for importing into Oracle BAM, because the import stops when it finds the first </OracleBAMExport> closing tag and ignores the rest of the objects.

	
-contents [0|1]

	
Applies only to Data Objects. Controls whether content information (row, column values) is to be exported.

A nonzero value means export content information. Zero (0) means do not export content information. nonzero is assumed if this parameter is omitted, or if the value is omitted.

	
-dependencies [0|1]

	
Applies to only to Data Objects. Controls whether other Data Objects that the exported Data Objects depend on in the lookup columns are exported.

A nonzero value or the parameter present with no value specifies that if the Data Objects being exported contain lookup columns, then the Data Objects that are looked up are exported. Zero is assumed if this parameter is omitted, or if the value is omitted.

	
-file file_name

	
The name of the file to export to. Required.

If the file does not exist, it is created. If the file does exist, any contents are overwritten, unless the append parameter is used. Because the file contains XML, it usually has an XML extension.

	
-footer [0|1]

	
Controls whether closing XML information is written to the end of the export file. This can allow successive executions of ICommand to assemble one XML file by repeatedly appending to the same file.

A nonzero value means write the closing information. Zero (0) means do not write the closing information. nonzero is assumed if this parameter is omitted, or if the value is omitted.

When used with the Append parameter, you must set the Footer value appropriately, or the file cannot be used with ICommand Import. If Footer is not defined, each append includes closing </OracleBAMExport> tags and the import stops when the first closing tag is read and does not import the remaining objects defined in the file.

See Example G-20, "Using Append Parameter in Export" for a sample using this parameter.

	
-header [0|1]

	
Controls whether XML header information is written to the front of the export file. This can allow successive executions of ICommand to assemble one XML file by repeatedly appending to the same file.

A nonzero value means write the header. Zero(0) means do not write the header. nonzero is assumed if this parameter is omitted, or if the value is omitted.

See Example G-20, "Using Append Parameter in Export" for a sample using this parameter.

	
-layout [0|1]

	
Applies only to Data Objects. Controls whether layout information is to be exported.

A nonzero value means export layout information. Zero (0) means do not export layout information. nonzero is assumed if this parameter is omitted, or if the value is omitted.

	
-match pattern

	
A DOS-style pattern matching string, using the asterisk (*) and question mark (?) characters. The items whose names match the pattern are exported (see Example G-19, "Exporting a Data Object Using the Match Parameter").

	
-name itemname

	
The name of the item to be exported.

	
-owner [0|1]

	
Applies only to Folders, Reports, and Rules. Controls whether the information about the owner of the items being exported is included in the export.

A nonzero value means export the owner information. Zero (0) means do not export the owner information. nonzero is assumed if this parameter is omitted, or if the value is omitted.

	
-permissions [0|1]

	
Applies only to Data Objects and Folders. Controls whether permissions information is to be exported.

A nonzero value means export information about the permission settings of the exported Data Objects or Folders. Zero (0) means do not export permission information. Zero is assumed if this parameter is omitted, or if the value is omitted.

For Data Objects, only the permissions of the Data Object itself are exported. Any permissions that might be on the folders or subfolders that the Data Objects are contained within are not included.

For Folders, the permissions reflect the cumulative permissions of all parent Folders of the Folders being exported.

	
-preview [0|1]

	
In preview mode, ICommand goes through the motions of exporting all of the specified items, but does not actually output any information. This can see what would be exported for a given command line, and what errors might occur. In this mode, ICommand export continues processing even after some errors that would cause non-preview mode to stop the export.

A nonzero value means preview mode. nonzero is assumed if the value is omitted. Zero (0) is assumed if the parameter is omitted.

	
-regex regularexpr

	
A regular expression pattern matching string. The items whose names match the pattern are exported. See Section G.6, "Regular Expressions" for more information.

	
-systemobjects [0|1]

	
Controls whether Data Objects in the System folder are included when the all, match, or regex parameters are used. Zero (0) means these data objects are not included. Zero is assumed if this parameter is omitted.

	
-type itemtype

	
The type of the item to be exported. The following are valid:

	
dataobject (see Example G-5 and Example G-6)

	
folder (see Example G-7, Example G-8, and Example G-9)

	
report (see Example G-10, Example G-11, and Example G-12)

	
rule (see Example G-13)

	
securityfilters (For the specified Data Objects) (see Example G-14)

	
distributionlist (see Example G-15)

	
ems (Enterprise Message Source) (see Example G-16)

	
eds (External Data Source) (see Example G-17)

	
all (see Example G-18)

dataobject is assumed if this parameter is omitted.

Example G-5 Exporting a Data Object in a Folder

icommand -cmd export -name "/Samples/Call Center" -file "C:\CallCenter.xml"

Note that the type parameter was not included in this example. By default dataobject is assigned to type if it is not specified.

Example G-6 Exporting a Data Object at the Root

icommand -cmd export -name TestDataObject -file "C:\TestDataObject.xml"

Note that the data object name was not preceded by the slash (/). When a Data Object is in the root Data Objects folder, a slash is not required.

Example G-7 Exporting a Folder from My Reports

In the first case, the private:owner/Report prefix is used in the name parameter because the user exporting the folder is not the folder owner.

icommand -cmd export -name "/private:bamadmin/Report/TestMainFolder/TestSubFolder"
 -type folder -file C:\FolderExportTest.xml

In the second case, the private:owner/Report prefix was not used in the name parameter because the user exporting the folder is the folder owner.

icommand -cmd export -name "/TestMainFolder/TestSubFolder" -type folder -file
 C:\FolderExportTest.xml

Example G-8 Exporting a Folder from Shared Reports

icommand -cmd export -name "/public/Report/MainFolderInShared" -type folder -file
 C:\FolderExportTest2.xml

Note that the public prefix is added to the name parameter.

Example G-9 Exporting a Folder from Data Objects

icommand -cmd export -name "/public/DataObject/Test Sub folder" -type folder -file
 C:\foldertest1.xml

Example G-10 Exporting a Private Report

As in Example G-7, there are two methods of exporting private reports.

icommand -cmd export -name "/private:bamadmin/Report/MyReport" -type report -file C:\MyReport.xml

icommand -cmd export -name MyReport -type report -file C:\MyReport.xml

Example G-11 Exporting a Shared Report

icommand -cmd export -name "/public/Report/SharedReport" -type report -file C:\SharedReport.xml

Example G-12 Exporting All of the Reports in the System

icommand -cmd export -type report -all -file C:\temp\TestAll.xml

Example G-13 Exporting an Alert Rule

icommand -cmd export -name Alert1 -type rule -file C:\Alert1.xml

Example G-14 Exporting a Security Filter

icommand -cmd export -type securityfilters -name "TestDO" -file "C:\TestFilter.xml"

Note that in the name parameter the name of the Data Object is specified rather than the name of the security filter.

Example G-15 Exporting a Distribution List

icommand -cmd export -name MyDistList -type distributionlist -file C:\MyDistList.xml

Example G-16 Exporting an Enterprise Message Source

icommand -cmd export -type ems -name TestEMS -file C:\TestEMS.xml

Example G-17 Exporting an External Data Source

icommand -cmd export -type eds -name TestEDS -file C:\TestEDS.xml

Example G-18 Exporting All Oracle BAM Objects in the System

icommand -cmd export -type all -file C:\temp\TestAll.xml

Example G-19 Exporting a Data Object Using the Match Parameter

icommand -cmd export -match "/M*" -file "c:/exportDOstartingwithM.xml"

Example G-20 Using Append Parameter in Export

In the first case (the incorrect example), Append is used without setting the Header and Footer parameters (by default Header and Footer are set to 1).

icommand -cmd export -type dataobject -name "/Samples/Call Center" -file do.xml
icommand -cmd export -type dataobject -name "/Samples/Employees" -file do.xml -append
icommand -cmd export -type dataobject -name "/Samples/Film Sales" -file do.xml -append

The output from these commands is as follows. Notice that an XML header and closing tags are included with each append to the file. If this file is used for importing data into Oracle BAM, only the first object is imported. As soon as the first </OracleBAMExport> is read at line 4, the import stops.

<?xml version="1.0"?>
<OracleBAMExport Version="2020">
 <exported object/>
</OracleBAMExport>
<?xml version="1.0"?>
<OracleBAMExport Version="2020">
 <exported object/>
</OracleBAMExport>
<?xml version="1.0"?>
<OracleBAMExport Version="2020">
 <exported object/>
</OracleBAMExport>

In the second case (the correct example), The Header and Footer parameters are specified to produce the necessary output.

icommand -cmd export -type dataobject -name "/Samples/Call Center" -file do2.xml
 -header 1 -footer 0
 //only the footer is supressed in the first command
icommand -cmd export -type dataobject -name "/Samples/Employees" -file do2.xml
 -append 1 -header 0 -footer 0
 //both the header and the footer are suppressed in the intermediate commands
icommand -cmd export -type dataobject -name "/Samples/Film Sales" -file do2.xml
 -append 1 -header 0 -footer 1
 //only the header is suppressed in the last commands

The output file produced by these commands can import the objects into an Oracle BAM Server.

<?xml version="1.0"?>
<OracleBAMExport Version="2020">
 <exported object>
 <exported object>
</OracleBAMExport>

G.2.4 Import

Imports the information from an XML file to an object in the Active Data Cache. The object may be created, replaced, or updated.

If the object does not exist, it is created if possible. For Data Objects, the input file must contain layout information to create the Data Object, and if the file contains no content information, then an empty Data Object is created.

If the user running ICommand is not an administrator, Reports are always imported to the private folders of the user running ICommand. If the path information in the import file exactly matches existing private folders of the user running ICommand, the imported report is placed in that location. Otherwise, it is placed into the root of that user's private folders.

If the user running ICommand is an administrator, then the preserveowner option may be used to allow Folders, Reports and Rules to be imported with their original ownership and to their original location.

Table G-5 Import Command Parameters

	Parameter	Description
	
-continueonerror [0|1]

	
While importing objects from a file, by default, ICommand stops whenever an error is encountered. If you are importing several objects and do not want to stop when an error is found in one, use the continueonerror parameter to continue importing the rest of the objects specified in the command.

Specify a one (1) to ignore errors and continue importing other objects (see Example G-21).

	
-delay millisec

	
Applies only to Data Objects. A value that specifies a delay that is to occur between each row insertion or update.

This can simulate active data at a specified rate.

The number is the number of milliseconds to wait between each row. It must be greater than zero.

If this parameter is omitted, there is no delay.

See Example G-21, "Importing a Data Object With Delay"

	
-file file_name

	
The name of the file to import from. Required. This would usually be a file that was created through the export command.

	
-preserveowner

	
Applies only to Folders, Reports, and Rules. Controls whether, when the item is imported, the ownership of the item is set as specified in the import file.

This setting of ownership can only be done if the ownership was included in the file during export, and if the user running ICommand is an administrator.

A nonzero value means set the ownership as specified in the import file. Zero (0) means the imported items remain owned by the user running ICommand. Zero is assumed if this parameter is omitted, or if the value is omitted.

	
-preview [0|1]

	
In preview mode, ICommand goes through the motions of importing all of the specified items, but does not actually input any information. This can see what would be imported for a given command line, and what errors might occur. In this mode, ICommand import continues processing even after some errors that would cause non-preview mode to stop the import.

A nonzero value means preview mode. nonzero is assumed if the value is omitted. Zero (0) is assumed if the parameter is omitted.

This parameter is supported for the following objects: Rule, Distribution list, EDS, EMS, Report, Folder, and Security Filters.

See Example G-22, "Importing a Report in Preview mode"

	
-mode mode

	
By default, if the mode parameter is not specified, the value Error is assumed for objects of type Folder, Report, EDS, EMS, and Distribution List.

The following mode values are valid for Folders, Reports, EMS, and EDS objects:

	
overwrite

If the item exists, replaces it with the imported item.

	
rename

If the item exists, changes the name of the imported item. The new name is computed automatically and reported in a message.

	
error

If the item exists, terminates the import with an error.

The following values are valid for Distribution List objects:

	
overwrite

If the item exists, replaces it with the imported item.

	
rename

If the item exists, changes the name of the imported item. The new name is computed automatically and reported in a message.

	
append

If the item exists, appends the users in the imported list to the existing list.

	
error

If the item exists, terminates the import with an error.

The following value is supported for Data Objects or Reports:

	
preserveid

This option is important because some other items, such as Reports, point to the Data Objects they use by ID, not by name.

Data Object Usage:

If the imported Data Object does not exist and must be created, ICommand attempts to assign the Data Object the same internal ID that the exported Data Object had. If it cannot, the import is terminated with an error.

Report Usage:

If the imported Report does not exist and must be created, ICommand attempts to assign the Report the same internal ID that the exported Report had. If it cannot, the import is terminated with an error.

	
-mode mode (cont.)

	
Only the following value is valid for Data Objects:

	
update

Typically, when ICommand imports a Data Object, it creates a new Data Object or locates the existing Data Object and inserts the imported rows into that Data Object.

In update mode, ICommand instead attempts to locate existing matching rows by Row ID, and updates those existing rows with the values in the import file. Unmatched rows are inserted. For matching Row IDs in the import file that have no data columns specified, the rows are deleted from the existing Data Object.

For Security Filters, the only value supported is overwrite. If overwrite is not specified and the Data Object contains at least one Security Filter, the import is terminated with an error.

This parameter is not supported for Rules.

	
-setcol

	
Allows override of column values from the command line during import, including setting to current date/time.

-setcol column_name/NULL

-setcol column_name/NOW

-setcol column_name/VALUE:override-value

column_name is the name of a column in the Data Object being imported. This cannot be a column of type lookup or calculated. Column names that are not contained in the input XML being imported can be specified, if they are columns in the Data Object being imported into.The portion after the slash specifies a value that should be substituted for that column on each row that is imported -- any value for that column in the import file is ignored (overridden). Note that slash is the one character that is not permitted in column names, so there is no potential conflict with any column names in this syntax.

NULL specifies that the column value should be set to null. The column must be defined as "nullable" in the Data Object's layout.

NOW specifies that the column value should be set to the current date/time when the column value is being set into the row. This option can only be used for columns of type datetime, timestamp, and string.

VALUE:override-value specifies an arbitrary constant value (after the colon) that the column should be set to. The value must be a legal value for the type of the column.To allow multiple columns to be overridden, any number of setcol parameters may be present. However, because duplicate parameters are not permitted, ICommand recognizes any parameter name that starts with setcol as a setcol parameter (for example, setcol1, setcol2, and so on).Sample command line:

icommand -cmd import -file myfile.xml -setcol1 Field1/null -setcol2 Field3/now -setcol3 "Customer Name/value:John Q. Public"

	
-updatelayout

	
Applies only to Data Objects. Controls whether, if the Data Object being imported exists, the layout (schema) of the Data Object is updated according to the layout information in the import file.

True if parameter is present; false if parameter is not present.

Example G-21 Importing a Data Object With Delay

icommand -cmd import -file C:\TestDO.xml -delay 1000 -continueonerror 1

Example G-22 Importing a Report in Preview mode

icommand -cmd import -file C:\TestReport.xml -preview 1

G.2.5 Rename

Renames an item in the Active Data Cache.

Table G-6 Rename Command Parameters

	Parameter	Description
	
-name itemname

	
The name of the item to be renamed. Required.

The full folder path must be given when renaming objects of type Folder (see Example G-24, "Renaming Folders").

	
-newname newitemname

	
The new name for the item. Required.

The full folder path must be given when renaming objects of type Folder (see Example G-24, "Renaming Folders").

For Data Objects and Reports, only the new base name should be given, with no path (for example -newname "MyReport").

	
-type itemtype

	
The type of object to be renamed. The following are valid:

	
dataobject (see Example G-23)

	
folder (see Example G-24)

	
report (see Example G-25)

	
rule

	
distributionlist (see Example G-26)

	
ems (Enterprise Message Source)

	
eds (External Data Source)

dataobject is assumed if this parameter is omitted. all is not supported as an item type in the rename command.

Example G-23 Renaming a Data Object in a Folder

icommand -cmd rename -type dataobject -name "/TestDataObjectFolder/TestDataObject"
 -newname NewTestDataObject

Example G-24 Renaming Folders

Renaming a data object folder:

icommand -cmd rename -type folder -name "/public/DataObject/TestFolder"
 -newname "/public/DataObject/NewTestFolder"

Renaming a private report folder:

icommand -cmd rename -type folder -name "/private:weblogic/Report/MySubFolder"
 -newname "/private:weblogic/Report/NewMySubFolder"

Renaming a shared report folder

icommand -cmd rename -type folder -name "/public/Report/TestSubFolder"
-newname "/public/Report/NewTestSubFolder"

Example G-25 Renaming a Report in a Private Folder

icommand -cmd rename -type report -name "/TestReportFolder/TestReport" -newname
 NewTestReport

Example G-26 Renaming a Distribution List

icommand -cmd rename -type distributionlist -name TestList -newname MyDistList

G.3 Format of Command File

This section contains the following topics:

	
Section G.3.1, "Inline Content"

	
Section G.3.2, "Command IDs"

	
Section G.3.3, "Continue On Error"

The command file contains the root tag OracleBAMCommands.

Within the root tag is a tag for every command to be executed. The tag name is the command name, and the parameters for the command are attributes.

Sample command file:

<?xml version="1.0" encoding="utf-8"?>
<OracleBAMCommands continueonerror="1">
 <Export name="Samples/Media Sales" file="MediaSales.xml" contents="0" />
 <Rename name="Samples/Call Center" newname="Call Centre" />
 <Delete type="EMS" name="WebLog" />
 <Delete type="EMS" name="WebLog2" />
</OracleBAMCommands>

The output of this sample command file is shown in Section G.4, "Format of Log File."

G.3.1 Inline Content

When using a command file to import, the inline option enables you to include the import content inside the command file, rather than in a separate import file. Here is an example:

<?xml version="1.0"?>
<OracleBAMCommands>
<Import inline="1">
<OracleBAMExport Version="2013">
 <DataObject Version="14" Name="Employees_Inline" ID="_Employees_Inline"
 Path="/Samples" External="0">
 <Layout>
 <Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="100"
 Nullable="1" Public="1"/>
 <Column Name="Sales Area" ID="_Sales_Area" Type="string" MaxSize="100"
 Nullable="1" Public="1"/>
 <Column Name="Sales Number" ID="_Sales_Number" Type="integer"
 Nullable="1" Public="1"/>
 <Column Name="Timestamp" ID="_Timestamp" Type="timestamp" Nullable="0"
 Public="1"/>
 <Indexes/>
 </Layout>
 <Contents>
 <Row ID="1">
 <Column ID="_Salesperson" Value="Greg Masters"/>
 <Column ID="_Sales_Area" Value="Northeast"/>
 <Column ID="_Sales_Number" Value="567"/>
 <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
 </Row>
 <Row ID="2">
 <Column ID="_Salesperson" Value="Lynette Jones"/>
 <Column ID="_Sales_Area" Value="Southwest"/>
 <Column ID="_Sales_Number" Value="228"/>
 <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
 </Row>
 <Row ID="3">
 <Column ID="_Salesperson" Value="Noel Rogers"/>
 <Column ID="_Sales_Area" Value="Northwest"/>
 <Column ID="_Sales_Number" Value="459"/>
 <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
 </Row>
 </Contents>
 </DataObject>
</OracleBAMExport>
</Import>
</OracleBAMCommands>

G.3.2 Command IDs

This feature is only used when output is being sent to a log file. To make the parsing of log results easier, each command can be given an ID. This ID is included in the Result or Error elements of any output related to that command.

Sample Input:

<OracleBAMCommands continueonerror="1">
 <Delete id="1" type="dataobject" name="Data Object A"/>
 <Delete id="2" type="dataobject" name="Data Object B"/>
</OracleBAMCommands>

Sample Output Log File:

<?xml version="1.0"?>
<ICommandLog Login="weblogic">
 <Results Command="Delete" ID="1">Data Object "/Data Object A"
 deleted.</Results>
 <Error Command="Delete" ID="2">
 <![CDATA[BAM-02409: There is no Data Object named "Data Object B".
 [ErrorSource="ICommandEngine",ErrorID="ICommandEngine.DOExist"]]]>
 </Error>
</ICommandLog>

G.3.3 Continue On Error

Ordinarily, ICommand executes commands in a command file until a failure occurs, or until they all complete successfully. In other words, if a command file contains 20 commands, and the second command fails for any reason, then no further commands are executed. This behavior can be changed by using the continueonerror attribute at either a global level or for each command.

Example G-27 shows how to use the continueonerror attribute so that all commands are executed regardless of if any failures occur

Example G-27 Enabling Global ContinueOnError Mode

<OracleBAMCommands continueonerror="1">
 <Delete id="1" type="dataobject" name="Data Object A"/>
 <Delete id="2" type="dataobject" name="Data Object B"/>
</OracleBAMCommands>

In Example G-28, continueonerror only applies to the command that deletes Data Object A. If this command fails, then ICommand outputs the error and continues. But if any other command fails, ICommand stops immediately.

Example G-28 Enabling Command-Level ContinueOnError Mode

<OracleBAMCommands>
 <Delete id="1" type="dataobject" name="Data Object A" continueonerror="1"/>
 <Delete id="2" type="dataobject" name="Data Object B"/>
 <Delete id="3" type="dataobject" name="Data Object C"/>
 <Delete id="4" type="dataobject" name="Data Object D"/>
</OracleBAMCommands>

G.4 Format of Log File

The log file contains the root tag ICommandLog.

Within the root tag is an entry for every error or informational message logged.

Errors are logged with the tag Error.

Informational messages are logged with the tag Results.

Both Results and Error tags optionally contain an attribute of the form Command=cmdname, if appropriate, that contains the name of the command that generated the error or informational message.

This sample log file is output of command file given in Section G.3, "Format of Command File":

<?xml version="1.0" encoding="utf-8"?>
<ICommandLog Login="user_name">
 <Results Command="Export">Data Object "/Samples/Media Sales" exported
 successfully (0 rows).</Results>
 <Results Command="Export">1 items exported successfully.</Results>
 <Results Command="Rename">Data Object "/Samples/Call Center" renamed to
 "/Samples/Call Centre".</Results>
 <Results Command="Delete">Enterprise Message Source "WebLog" deleted.</Results>
 <Error Command="Delete"><![CDATA[Error while processing command "Delete".
 [ErrorSource="ICommand", ErrorID="ICommand.Error"] There is no Enterprise Message
 Source named "WebLog2". [ErrorSource="ICommand",
 ErrorID="ICommand.EMSExist"]]]></Error>
</ICommandLog>

G.5 Sample Export File

The following example shows a sample file resulting from exporting a Data Object.

<?xml version="1.0"?>
<OracleBAMExport Version="2018">
 <DataObject Version="14" Name="Employees" ID="_Employees" Path="/Samples"
 External="0">
 <Layout>
 <Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="100"
 Nullable="1" Public="1"/>
 <Column Name="Sales Area" ID="_Sales_Area" Type="string" MaxSize="100"
 Nullable="1" Public="1"/>
 <Column Name="Sales Number" ID="_Sales_Number" Type="integer" Nullable="1"
 Public="1"/>
 <Column Name="Timestamp" ID="_Timestamp" Type="timestamp" Nullable="0"
 Public="1"/>
 <Indexes/>
 </Layout>
 <Contents>
 <Row ID="1">
 <Column ID="_Salesperson" Value="Greg Masters"/>
 <Column ID="_Sales_Area" Value="Northeast"/>
 <Column ID="_Sales_Number" Value="567"/>
 <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
 </Row>
 <Row ID="2">
 <Column ID="_Salesperson" Value="Lynette Jones"/>
 <Column ID="_Sales_Area" Value="Southwest"/>
 <Column ID="_Sales_Number" Value="228"/>
 <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
 </Row>
 <Row ID="3">
 <Column ID="_Salesperson" Value="Noel Rogers"/>
 <Column ID="_Sales_Area" Value="Northwest"/>
 <Column ID="_Sales_Number" Value="459"/>
 <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
 </Row>
 </Contents>
 </DataObject>
</OracleBAMExport>

G.6 Regular Expressions

The export and delete commands optionally accept a regular expression with the regex parameter.

A regular expression is a pattern of text that consists of ordinary characters (for example, letters a through z) and special characters, known as metacharacters. The pattern describes one or more strings to match when searching for items by name.

	
Note:

The behavior of ICommand -regex is exactly like the java.util.regex package for matching character sequences against patterns specified by regular expressions.

Table G-7 contains the complete list of metacharacters and their behavior in the context of regular expressions.

Table G-7 Metacharacters for Regular Expressions

	Character	Description
	
\

	
Marks the next character as a special character, a literal, a backreference, or an octal escape. For example, 'n' matches the character "n". '\n' matches a newline character. The sequence '\\' matches "\" and "\(" matches "(".

	
^

	
Matches the position at the beginning of the input string. If the RegExp object's Multiline property is set, ^ also matches the position following '\n' or '\r'.

	
$

	
Matches the position at the end of the input string. If the RegExp object's Multiline property is set, $ also matches the position preceding '\n' or '\r'.

	
*

	
Matches the preceding character or subexpression zero or more times. For example, zo* matches "z" and "zoo". * is equivalent to {0,}.

	
+

	
Matches the preceding character or subexpression one or more times. For example, 'zo+' matches "zo" and "zoo", but not "z". + is equivalent to {1,}.

	
?

	
Matches the preceding character or subexpression zero or one time. For example, "do(es)?" matches the "do" in "do" or "does". ? is equivalent to {0,1}

	
{n}

	
n is a nonnegative integer. Matches exactly n times. For example, 'o{2}' does not match the 'o' in "Bob," but matches the two o's in "food".

	
{n,}

	
n is a nonnegative integer. Matches at least n times. For example, 'o{2,}' does not match the "o" in "Bob" and matches all the o's in "foooood". 'o{1,}' is equivalent to 'o+'. 'o{0,}' is equivalent to 'o*'.

	
{n,m}

	
M and n are nonnegative integers, where n <= m. Matches at least n and at most m times. For example, "o{1,3}" matches the first three o's in "fooooood". 'o{0,1}' is equivalent to 'o?'. Note that you cannot put a space between the comma and the numbers.

	
?

	
When this character immediately follows any of the other quantifiers (*, +, ?, {n}, {n,}, {n,m}), the matching pattern is non-greedy. A non-greedy pattern matches as little of the searched string as possible, whereas the default greedy pattern matches as much of the searched string as possible. For example, in the string "oooo", 'o+?' matches a single "o", while 'o+' matches all 'o's.

	
.

	
Matches any single character except "\n". To match any character including the '\n', use a pattern such as '[\s\S]'.

	
(pattern)

	
A subexpression that matches pattern and captures the match. The captured match can be retrieved from the resulting Matches collection using the $0...$9 properties. To match parentheses characters (), use '\(' or '\)'.

	
(?:pattern)

	
A subexpression that matches pattern but does not capture the match, that is, it is a non-capturing match that is not stored for possible later use. This is useful for combining parts of a pattern with the "or" character (|). For example, 'industr(?:y|ies) is a more economical expression than 'industry|industries'.

	
(?=pattern)

	
A subexpression that performs a positive lookahead search, which matches the string at any point where a string matching pattern begins. This is a non-capturing match, that is, the match is not captured for possible later use. For example 'Windows (?=95|98|NT|2000)' matches "Windows" in "Windows 2000" but not "Windows" in "Windows 3.1". Lookaheads do not consume characters, that is, after a match occurs, the search for the next match begins immediately following the last match, not after the characters that comprised the lookahead.

	
(?!pattern)

	
A subexpression that performs a negative lookahead search, which matches the search string at any point where a string not matching pattern begins. This is a non-capturing match, that is, the match is not captured for possible later use. For example 'Windows (?!95|98|NT|2000)' matches "Windows" in "Windows 3.1" but does not match "Windows" in "Windows 2000". Lookaheads do not consume characters, that is, after a match occurs, the search for the next match begins immediately following the last match, not after the characters that comprised the lookahead.

	
x|y

	
Matches either x or y. For example, 'z|food' matches "z" or "food". '(z|f)ood' matches "zood" or "food".

	
[xyz]

	
A character set. Matches any of the enclosed characters. For example, '[abc]' matches the 'a' in "plain".

	
[^xyz]

	
A negative character set. Matches any character not enclosed. For example, '[^abc]' matches the 'p' in "plain".

	
[a-z]

	
A range of characters. Matches any character in the specified range. For example, '[a-z]' matches any lowercase alphabetic character in the range 'a' through 'z'.

	
[^a-z]

	
A negative range characters. Matches any character not in the specified range. For example, '[^a-z]' matches any character not in the range 'a' through 'z'.

	
\b

	
Matches a word boundary, that is, the position between a word and a space. For example, 'er\b' matches the 'er' in "never" but not the 'er' in "verb".

	
\B

	
Matches a nonword boundary. 'er\B' matches the 'er' in "verb" but not the 'er' in "never".

	
\cx

	
Matches the control character indicated by x. For example, \cM matches a Control-M or carriage return character. The value of x must be in the range of A-Z or a-z. If not, c is assumed to be a literal 'c' character.

	
\d

	
Matches a digit character. Equivalent to [0-9].

	
\D

	
Matches a nondigit character. Equivalent to [^0-9].

	
\f

	
Matches a form-feed character. Equivalent to \x0c and \cL.

	
\n

	
Matches a newline character. Equivalent to \x0a and \cJ.

	
\r

	
Matches a carriage return character. Equivalent to \x0d and \cM.

	
\s

	
Matches any white space character including space, tab, form-feed, and so on. Equivalent to [\f\n\r\t\v].

	
\S

	
Matches any non-white space character. Equivalent to [^ \f\n\r\t\v].

	
\t

	
Matches a tab character. Equivalent to \x09 and \cI.

	
\v

	
Matches a vertical tab character. Equivalent to \x0b and \cK.

	
\w

	
Matches any word character including underscore. Equivalent to '[A-Za-z0-9_]'.

	
\W

	
Matches any nonword character. Equivalent to '[^A-Za-z0-9_]'.

	
\xn

	
Matches n, where n is a hexadecimal escape value. Hexadecimal escape values must be exactly two digits long. For example, '\x41' matches "A". '\x041' is equivalent to '\x04' & "1". Allows ASCII codes to be used in regular expressions.

	
\num

	
Matches num, where num is a positive integer. A reference back to captured matches. For example, '(.)\1' matches two consecutive identical characters.

	
\n

	
Identifies either an octal escape value or a backreference. If \n is preceded by at least n captured subexpressions, n is a backreference. Otherwise, n is an octal escape value if n is an octal digit (0-7).

	
\nm

	
Identifies either an octal escape value or a backreference. If \nm is preceded by at least nm captured subexpressions, nm is a backreference. If \nm is preceded by at least n captures, n is a backreference followed by literal m. If neither of the preceding conditions exists, \nm matches octal escape value nm when n and m are octal digits (0-7).

	
\nml

	
Matches octal escape value nml when n is an octal digit (0-3) and m and l are octal digits (0-7).

	
\un

	
Matches n, where n is a Unicode character expressed as four hexadecimal digits. For example, \u00A9 matches the copyright symbol (©).

H Normalized Message Properties

This appendix describes normalized message properties.

This appendix includes the following sections:

	
Section H.1, "Introduction to Normalized Messages"

	
Section H.2, "Oracle BPEL Process Manager Properties"

	
Section H.3, "Oracle Web Services Addressing Properties"

H.1 Introduction to Normalized Messages

Header manipulation and propagation is a key business integration messaging requirement. Oracle BPEL Process Manager, Oracle Mediator, Oracle JCA, and Oracle B2B rely extensively on header support to solve customers' integration needs. For example, you can preserve a file name from the source directory to the target directory by propagating it through message headers. In Oracle BPEL Process Manager and Oracle Mediator, you can access, manipulate, and set headers with varying degrees of user interface support.

A normalized message is simplified to have only two parts, properties and payload.

Typically, properties are name-value pairs of scalar types. To fit the existing complex headers into properties, properties are flattened into scalar types.

The user experience is simplified while manipulating headers in design time, because the complex properties are predetermined. In the mediator or BPEL designer, you can manipulate the headers with some reserved key words.

However, this method does not address the properties that are dynamically generated based on your input. Based on your choice, the header definitions are defined. These definitions are not predetermined and therefore cannot be accounted for in the list of predetermined property definitions. You cannot design header manipulation of the dynamic properties before they are defined. To address this limitation, you must generate all the necessary services (composite entry points) and references. This restriction applies to services that are expected to generate dynamic properties. Once dynamic properties are generated, they must be stored for each composite. Only then you can manipulate the dynamic properties in Mediator or BPEL designer.

For more information on normalized message properties, see Oracle Fusion Middleware User's Guide for Technology Adapters and Oracle Fusion Middleware User's Guide for Oracle B2B.

H.2 Oracle BPEL Process Manager Properties

Table H-1 lists all the predetermined properties of a normalized message for Oracle BPEL Process Manager.

Table H-1 Properties for Oracle BPEL Process Manager

	Property Name	Propagatable (Yes/No)	Direction (Inbound /Outbound)	Data Type	Range of Valid Values	Description
	
bpel.metadata

	
Yes

	
Both

	
String

	
Any string, size limit: 1000

	
This contains extra information that user wants to associate the BPEL instance to. Whatever was passed in is stored in the metadata column of the cube_instance table.

	
bpel.priority

	
Yes

	
Inbound

	
String that can be read into an integer

	
[1-10]. 1 being the highest priority

	
Goes into cube_instance priority column. Used by system to prioritize.

	
bpel.title

	
No

	
Inbound

	
String

	
Any string, size limit: 100

	
Goes into the title column of cube_instance table.

	
bpel.instanceIndex1

	
No

	
Inbound

	
String

	
Any string, size limit: 100

	
This goes into ci_indexes table. Extra index for cube_instance.

	
bpel.instanceIndex2

	
No

	
Inbound

	
String

	
Any string, size limit: 100

	
This goes into ci_indexes table. Extra index for cube_instance.

	
bpel.instanceIndex3

	
No

	
Inbound

	
String

	
Any string, size limit: 100

	
This goes into ci_indexes table. Extra index for the cube_instance.

H.3 Oracle Web Services Addressing Properties

Table H-2 lists all the predetermined properties of a normalized message for Web Services Addressing.

Table H-2 Properties for Oracle Web Services Addressing

	Property Name	Propagatable (Yes/No)	Direction (Inbound /Outbound)	Data Type	Range of Valid Values	Description
	
wsa.messageId

	
No

	
Both

	
String

	
URI format

	
This property specifies the identifier for the message and the endpoint to which replies to this message should be sent as an Endpoint Reference.

	
wsa.relatesTo

	
No

	
Both

	
String

	
URI format

	
This optional (repeating) element information item contributes one abstract [relationship] property value, in the form of an (IRI, IRI) pair. The content of this element (of type xs:anyURI) conveys the [message id] of the related message.

	
wsa.replyToAddress

	
No

	
Both

	
String

	
URI format

	
Is a contract between two components communicating asynchronously.

	
wsa.replyToPortType

	
No

	
Both

	
QName

	
Any QName

	
This value is passed to the WS service to configure portType on the service's callback. It is translated to the WSA callback EndpointReference's PortType element.

	
wsa.replyToService

	
No

	
Both

	
QName

	
Any QName

	
This value is passed to the WS service to configure service on the service's callback. It is translated to the WSA callback EndpointReference's ServiceName element.

	
wsa.action

	
No

	
Both

	
String

	
URI format

	
This REQUIRED element (whose content is of type xs:anyURI) conveys the value of the [action] property.

	
wsa.to

	
No

	
Both

	
String

	
URI format

	
This optional element (whose content is of type xs:anyURI) provides the value for the [destination] property. If this element is NOT present then the value of the [destination] property is http://www.w3.org/2005/08/addressing/anonymous.

I Interfaces Implemented By Rules Dictionary Editor Task Flow

Oracle Business Rules Dictionary Editor Task Flow implements two interfaces when creating an ADF-based Web application. The interfaces are defined in the soaComposerTemplates.jar file.

This appendix includes the following sections:

	
Section I.1, "The MetadataDetails Interface"

	
Section I.2, "The NLSPreferences Interface"

I.1 The MetadataDetails Interface

The MetadataDetails interface is a part of the oracle.integration.console.metadata.model.share package and is defined in the soaComposerTemplates.jar file.

The MetadataDetails interface defines three methods, as shown in Example I-1:

Example I-1 MetadataDetails Interface

public interface MetadataDetails {
 /**
 * Retrieve the details of the metadata document
 * @return document in string format.
 */
 String getDocument();

 /**
 * Get related document.
 */
 String getRelatedDocument(final RelatedMetadataPath relatedPath);

 /**
 * Update the metadata document.
 * @param doc represents the updated document.
 */
 void setDocument(String doc) throws Exception;
}

I.1.1 The getDocument Method

This method is used to retrieve the rules file in a string format. For doing this, you must connect to the Oracle Metadata Repository (MDS) or a file system, and return the rules file in a string format.

Example I-2 shows how to get the file from a local file system:

Example I-2 getDocument Method

private static final String RULES_FILE1 =
"file:///C:/scratch/<username>/system/mywork/linkedD/AutoAppProj/oracle/rules/credit/CreditRatingRules.rules";

 public String getDocument() {
 URL url = null;
 try {
 url = new URL(RULES_FILE1);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

 private String readFile(URL dictURL) {
 InputStream is;
 try {
 is = dictURL.openStream();
 } catch (IOException e) {
 System.err.println(e);
 return "";
 }
 BufferedReader reader;
 try {
 reader = new BufferedReader(new InputStreamReader(is, "UTF-8"));
 } catch (UnsupportedEncodingException e) {
 System.err.println(e);
 return "";
 }
 String line = null;
 StringBuilder stringBuilder = new StringBuilder();
 String ls = System.getProperty("line.separator");
 try {
 while ((line = reader.readLine()) != null) {
 stringBuilder.append(line);
 stringBuilder.append(ls);
 }
 } catch (IOException e) {
 System.err.println(e);
 return "";
 } finally {
 try {
 reader.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return stringBuilder.toString();
 }

I.1.2 The getRelatedDocument Method

This method is required when you work with linked dictionaries. You must connect to MDS, find the related dictionary file, and then return it in a string format. Example I-3 shows how to find the path of the linked dictionaries that are stored within the ../oracle/rules directory in a local file system:

Example I-3 getRelatedDocument Method

public String getRelatedDocument(RelatedMetadataPath relatedMetadataPath) {
 String currPath = RULES_FILE1.substring(0, RULES_FILE1.indexOf("oracle/rules"));
 String relatedDoc = currPath + "oracle/rules/" + relatedMetadataPath.getValue();

 URL url = null;
 try {
 url = new URL(relatedDoc);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

I.1.3 The setDocument Method

This method is used to store the rules file. It returns a String doc value, which is the name of the updated dictionary based on user edits performed by using Rules Dictionary Editor Task Flow. You must store the rules file in MDS or a file system. Example I-4 shows how to save the document in the local file system:

Example I-4 setDocument Method

public void setDocument(String string) {
 URL url = null;

 try {
 url = new URL(RULES_FILE1);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return;
 }
 Writer writer = null;
 try {
 //os = new FileWriter(url.getPath());
 writer =
 new OutputStreamWriter(new FileOutputStream(url.getPath()),
 "UTF-8");
 } catch (FileNotFoundException e) {
 System.err.println(e);
 return;
 } catch (IOException e) {
 System.err.println(e);
 return;
 }
 try {
 writer.write(string);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
 }
 }

I.2 The NLSPreferences Interface

The NLSPrefrences interface defines four methods as shown in Example I-5:

Example I-5 NLSPreferences Interface

public interface NLSPreferences
{
 /**
 * Returns the locale to be used.
 **/
 Locale getLocale();

 /**
 * Return the timezone to be used.
 **/
 TimeZone getTimeZone();

 /**
 * Return the dateformat to be used.
 */
 String getDateFormat();

 /**
 * Return the time format to be used.
 */
 String getTimeFormat();
}

Example I-6 is a sample implementation of the NLSPreferences interface:

Example I-6 Sample Implementation of the NLSPreferences Interface

public class MyNLSPreferences implements NLSPreferences {
 private static final String DATE_STYLE = "yyyy-MM-dd";
 private static final String TIME_STYLE = "HH-mm-ss";

 public Locale getLocale() {
 return Locale.FRENCH;
 }

 public TimeZone getTimeZone() {
 return TimeZone.getTimeZone("America/Los_Angeles");
 }

 public String getDateFormat() {
 return DATE_STYLE;
 }

 public String getTimeFormat() {
 return TIME_STYLE;
 }
 }

J Oracle User Messaging Service Applications

This appendix describes how to create your own Oracle User Messaging Service applications using the procedures and code provided.

This appendix includes the following sections:

	
Section J.1, "Send Message to User Specified Channel"

	
Section J.2, "Send Email with Attachments"

	
Note:

To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle Technology Network code sample page at the following URL: https://codesamples.samplecode.oracle.com/
Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search.

J.1 Send Message to User Specified Channel

This chapter describes how to build and run the Send Message to User Specified Channel application provided with Oracle User Messaging Service.

	
Note:

To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.

This chapter contains the following sections:

	
Section J.1.1, "Overview"

	
Section J.1.2, "Installing and Configuring SOA and User Messaging Service"

	
Section J.1.3, "Building the Sample"

	
Section J.1.4, "Creating a New Application Server Connection"

	
Section J.1.5, "Deploying the Project"

	
Section J.1.6, "Configuring User Messaging Preferences"

	
Section J.1.7, "Testing the Sample"

J.1.1 Overview

The "Send Message to User Specified Channel" application demonstrates a BPEL process that allows a message to be sent to a user through a messaging channel specified in User Messaging Preferences. After you have configured a device and messaging channel addresses for each supported channel and the default device, Oracle User Messaging Service routes the message to the user based on the preferred channel setting that you configured.

J.1.1.1 Provided Files

The following files are included in the application:

	
SendMessage.pdf – this document.

	
Project – the directory containing Oracle JDeveloper project files.

	
Readme.txt.

	
Release notes

J.1.2 Installing and Configuring SOA and User Messaging Service

The installation of SOA and User Messaging Service has already been performed on your hosted instance, and the sample users have already been seeded. Perform the following steps to enable notifications in soa-infra, if not already done:

	
Using Enterprise Manager, go to the SOA Infrastructure menu, and select SOA Administration > Workflow Notification Properties, and set Notification Mode to ALL.

	
Configure the User Messaging drivers if required as described in "Configuring Drivers" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

	
Set the email address for user weblogic by using the JXplorer LDAP browser. Refer to "Updating Addresses in Your LDAP User Profile".

	
Restart the server.

J.1.2.1 Updating Addresses in Your LDAP User Profile

Perform the following steps to set the email address for user weblogic by using the JXplorer LDAP browser:

J.1.2.1.1 Installing

Download and install JXplorer from http://www.jxplorer.org.

J.1.2.1.2 Connecting

	
Set the embedded LDAP server admin password as follows:

	
Login to the Oracle WebLogic Server Administration Console.

	
Click the domain name link > Security > Embedded LDAP.

	
Enter a new Credential and Confirm Credential (for example, weblogic).

	
Click Save.

	
Connect from JXplorer by specifying the fields in Table J-1:

Table J-1 JXplorer Connection Fields

	Field	Value
	
Host

	
Oracle WebLogic Administration Server hostname

	
Port

	
Oracle WebLogic Administration Server port

	
Protocol

	
LDAP v3

	
Security Level

	
User + Password

	
User DN

	
cn=Admin

	
Password

	
password

J.1.2.1.3 Setting User Messaging Device Addresses in LDAP

The following example uses the user weblogic. You may create and use additional users.

	
Expand the LDAP tree as follows: domain > myrealm > people > weblogic.

	
Click the user entry.

	
Select the HTML view tab on the right.

	
Enter the necessary Email Address and Mobile Phone Number.

	
Click Submit.

J.1.3 Building the Sample

Performing the following procedure of building the sample from scratch enables you to learn how to add messaging to your SOA Composite Applications, and use User Messaging Preferences.

	
Open Oracle JDeveloper 11g.

	
Create a new application by selecting File, New, General, Applications, and SOA Applications. Click OK.

	
Enter the Application Name and click Next (Figure J-1).

Figure J-1 Creating a New Application and Project (1 of 3)

[image: Description of Figure J-1 follows]

	
Enter the name for the project and click Next (Figure J-2).

	

Figure J-2 Creating a New Application and Project (2 of 3)

[image: Description of Figure J-2 follows]

	
Select the Composite With BPEL composite template (Figure J-3). Click Finish.

Figure J-3 Creating a New Application and Project (3 of 3)

[image: Description of Figure J-3 follows]

	
In the Create BPEL Process dialog, enter the BPEL process name as SendMessage (Figure J-4). Click OK.

Figure J-4 Creating the BPEL Process

[image: Description of Figure J-4 follows]

	
Verify that Expose as a SOAP service is checked. Click OK.

	
You have now created an empty and default BPEL application (Figure J-5).

In the Oracle JDeveloper main window you can view the following components of the application under the Composite.xml tab.

	
The left box is the definition of a web service client that is used to initiate an application.

	
The middle box is a BPEL process that creates and formats the message and calls the messaging service.

	
Note:

You later create the messaging service resource that is used to send the message when you create the User Notification BPEL process (steps 13 - 19).

Figure J-5 Empty and Default BPEL Application

[image: Description of Figure J-5 follows]

	
Expand the xsd folder in the Application Navigator and open BPELProcess1.xsd by double-clicking it.

	
Click the Source tab (Figure J-6).

	
Perform the following modifications to the inputs of this BPEL application:

In the generated file, SendMessage.xsd, in the xsd folder in the Application Navigator under projects, the following element definition is created by default:

<element name="input" type="string"/>

This XSD element defines the input for the BPEL process.

Select the Source tab (Figure J-6), and replace the line above with the following three lines:

<element name="to" type="string"/>
<element name="subject" type="string"/>
<element name="body" type="string"/>

Figure J-6 Modifying the Inputs in the BPELProcess1.xsd File

[image: Description of Figure J-6 follows]

	
From the File menu, select Save All.

	
View the expanded process element (Figure J-7).

Figure J-7 Viewing the Expanded Process Element

[image: Description of Figure J-7 follows]

	
To enable messaging in this process, drag and drop User Notification from BPEL Activities and Components located in the Component Palette between the receiveInput and callbackClient activities.

The User Notification activity appears (Figure J-8).

Figure J-8 User Notification Activity Before Configuring the Inputs

[image: Description of Figure J-8 follows]

	
Click the XPath Expression Builder icon to the right of the To: input box.

	
Modify the expression for the To recipient, as follows:

	
In the BPEL Variables pane, select Variables, inputVariable, Payload, clientprocess, and client:to (Figure J-9).

	
Click Insert Into Expression.

	
Click OK.

Figure J-9 Defining the Recipient ("to") Expression

[image: Description of Figure J-9 follows]

	
Click the XPath Expression Builder icon to the right of the subject: input box.

	
Modify the expression for the subject as follows:

	
In the BPEL Variables pane, select Variables, InputVariable, Payload, clientprocess, and client:subject (Figure J-10).

	
Click Insert Into Expression.

	
Click OK.

Figure J-10 Defining the Subject Expression

[image: Description of Figure J-10 follows]

	
Click the XPath Expression Builder icon to the right of the body: input box.

	
Modify the expression for the body as follows:

	
In the BPEL Variables pane, select Variables, InputVariable, Payload, clientprocess, and client:body (Figure J-11).

	
Click Insert Into Expression.

Figure J-11 Defining the Body Expression

[image: Description of Figure J-11 follows]

	
Click OK.

	
Click Apply and then OK to apply the changes (Figure J-12).

Figure J-12 Confirming the Changes to the Inputs

[image: Description of Figure J-12 follows]

The changes to the inputs are saved and the configuration of the User Notification Activity is complete. You can now see the User Notification activity in the BPEL application (Figure J-13). The SOA Composite is complete.

Figure J-13 User Notification Activity After Configuration of Inputs

[image: Description of Figure J-13 follows]

J.1.4 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

	
Create a new Application Server Connection by right-clicking the project and selecting New, Connections, and Application Server Connection (Figure J-14).

Figure J-14 New Application Server Connection

[image: Description of Figure J-14 follows]

	
Name the connection SOA_server and click Next (Figure J-15).

	
Select WebLogic 10.3 as the Connection Type.

Figure J-15 New Application Server Connection

[image: Description of Figure J-15 follows]

	
Enter the authentication information. The typical value for username is weblogic.

	
In the Connection dialog, enter the hostname, port and SSL port for the SOA admin server, and enter the name of the domain for the Oracle WebLogic Server Domain.

	
Click Next.

	
In the Test dialog, click Test Connection.

	
Verify that the message Success! appears.

The application server connection has been created.

J.1.5 Deploying the Project

Perform the following steps to deploy the project:

	
Deploy the project by selecting the SendMessage project, Deploy, SendMessageProj, to, and SOA_server (Figure J-16).

Figure J-16 Deploying the Project

[image: Description of Figure J-16 follows]

	
Verify that the message Build Successful appears in the log.

	
Enter the default revision and click OK.

	
Verify that the message Deployment Finished appears in the deployment log (Figure J-17).

Figure J-17 Verifying that the Deployment is Successful

[image: Description of Figure J-17 follows]

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.

	
Note:

Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

J.1.6 Configuring User Messaging Preferences

For users to receive the notifications, they must register the devices that they use to access messages through User Messaging Preferences. Perform the following steps:

	
Log in to the User Messaging Preferences application at one of the following URLs:

	
Directly at http://server:port/sdpmessaging/userprefs-ui

	
Through the Worklist application's Preferences > Notification tab at: http://server:port/integration/worklistapp

The User Messaging Preferences application appears.

	
Click the Messaging Channels tab (Figure J-18).

Figure J-18 Messaging Channels Tab

[image: Description of Figure J-18 follows]

You are prompted for login credentials.

	
In the Messaging Channels tab, select a channel.

	
Set a channel as the default by expanding the device folder, and then clicking Set as Default adjacent to the selected channel.

A checkmark appears next to the selected channel, designating it as the default means of receiving notifications. All messages sent to that user are sent to that channel.

J.1.7 Testing the Sample

The following steps describe how to perform a test message transmission through Enterprise Manager.

Perform the following steps to run and test the sample:

	
Open a web browser window and login to Enterprise Manager for the SOA domain. For example, http://host:port/em.

	
In Oracle Enterprise Manager, expand the SOA folder in the navigation tree, and click the deployed SendMessageProj composite application. Click the Test button to launch the test client page.

	
In the Input Arguments section provide the input values for invoking SendMessageProj.

Enter the following values:

	
to: weblogic (the user)

	
subject: notification test (the subject)

	
body: the message content

	
Click Test Web Service.

J.1.7.1 Verifying the Execution of Sending the Email

Log in to the Human Workflow Engine. Verify the outgoing notifications and their statuses from the Notification Manager tab. (Figure J-19).

Figure J-19 Viewing Outgoing Notifications

[image: Description of Figure J-19 follows]

J.2 Send Email with Attachments

This section describes how to build and run the Send Email with Attachments application provided with Oracle User Messaging Service.

	
Note:

To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite.

This chapter contains the following sections:

	
Section J.2.1, "Overview"

	
Section J.2.2, "Installing and Configuring SOA and User Messaging Service"

	
Section J.2.3, "Running the Pre-Built Sample"

	
Section J.2.4, "Testing the Sample"

	
Section J.2.5, "Building the Sample"

	
Section J.2.6, "Creating a New Application Server Connection"

J.2.1 Overview

The "Send Email With Attachment" application demonstrates a BPEL process that sends an email with an attached file. A BPEL process looks up a user's email address from the identity store, reads a file from the file system, creates email content and then sends an email to the user.Section J.2.5, "Building the Sample" shows you how to add an email with attachments to your SOA composite application, allowing your applications to be enabled with messaging.If you want to model the application from scratch, go to the section titled Building the Sample. Or, you can directly use the pre-built project provided with this tutorial.Before you run the pre-built sample or build the application from scratch, you must install and configure the server as described in Section J.2.2, "Installing and Configuring SOA and User Messaging Service". By default, soa-infra does not send out notifications. The following steps describe installing and configuring the email drivers needed to communicate with the email server.

J.2.1.1 Provided Files

The following files are included in the sample application:

	
ns_sendemail.pdf – this document.

	
Project – the directory containing Oracle JDeveloper project files.

	
Readme.txt.

	
Release notes

J.2.2 Installing and Configuring SOA and User Messaging Service

The installation of SOA and User Messaging Service has already been performed on your hosted instance, and the sample user, weblogic, has already been created. Perform the following steps to enable notifications in soa-infra, if not already done:

	
Using Enterprise Manager, go to the SOA Infrastructure menu, and select SOA Administration > Workflow Notification Properties, and set Notification Mode to ALL.

	
Configure the User Messaging drivers if required as described in "Configuring Drivers" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

	
Set the email address for user weblogic by using the JXplorer LDAP browser. Refer to "Updating Addresses in Your LDAP User Profile".

	
Restart the server.

J.2.2.1 Updating Addresses in Your LDAP User Profile

Perform the following steps to set the email address for user weblogic by using the JXplorer LDAP browser:

J.2.2.1.1 Installing

Download and install JXplorer from http://www.jxplorer.org.

J.2.2.1.2 Connecting

	
Set the embedded LDAP server admin password as follows:

	
Login to the Oracle WebLogic Server Administration Console.

	
Click the domain name link > Security > Embedded LDAP.

	
Enter a new Credential and Confirm Credential (for example, weblogic).

	
Click Save.

	
Connect from JXplorer by specifying the fields in Table J-2:

Table J-2 JXplorer Connection Fields

	Field	Value
	
Host

	
Oracle WebLogic Administration Server hostname

	
Port

	
Oracle WebLogic Administration Server port

	
Protocol

	
LDAP v3

	
Security Level

	
User + Password

	
User DN

	
cn=Admin

	
Password

	
password

J.2.2.1.3 Setting User Messaging Device Addresses in LDAP

The following example uses the user weblogic. You may create and use additional users.

	
Expand the LDAP tree as follows: domain > myrealm > people > weblogic.

	
Click the user entry.

	
Select the HTML view tab on the right.

	
Enter the necessary Email Address and Mobile Phone Number.

	
Click Submit.

J.2.3 Running the Pre-Built Sample

Perform the following steps to run and deploy the prebuilt sample application:

	
Open SendEmailWithAttachmentsApp.jws (contained in the .zip file) in Oracle JDeveloper.

In the Oracle JDeveloper main window you can view the following components of the sample application under the Composite.xml tab.

Figure J-20 Oracle JDeveloper Main Window

[image: Description of Figure J-20 follows]

	
The left box is the definition of a web service client that is used to initiate an application.

	
The middle box is a BPEL process that creates and formats the message and calls the messaging service.

	
The right box is the messaging service resource that is used to send the message.

	
Create an Application Server Connection by right-clicking the project in the navigation pane and selecting New. Follow the instructions in Section J.2.6, "Creating a New Application Server Connection."

	
Deploy the project by selecting the SendEmail project, Deploy, SendEmailProj, to, and SOA_server (Figure J-21).

Figure J-21 Deploying the Project

[image: Description of Figure J-21 follows]

	
Verify that the message Build Successful appears in the log.

	
Enter the default revision and click OK.

	
Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.

	
Note:

Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

J.2.4 Testing the Sample

The following steps describe how to perform a test message transmission through Enterprise Manager.

Perform the following steps to run and test the sample:

	
Open a web browser window and login to Enterprise Manager for the SOA domain. For example, http://host:port/em.

	
In Enterprise Manager, expand the SOA folder in the navigation tree, and click the deployed SendEmailWithAttachmentsProj composite application. Click the Test button to launch the test client page.

	
In the Input Arguments section provide the input values for invoking SendEmailWithAttachmentsProj.

Enter the following values:

	
to: weblogic (the user)

	
subject: notification test (the subject)

	
body: the message content

	
attachmentName: the name of the being attached, including extension.

	
attachmentMimeType: for example, image/gif.

To send binary files such as PDF, DOC, GIF, or JPEG files, the following values can be used for the attachmentMimeType entry:

	
file-name.doc – attachmentMimeType: application/msword

	
file-name.pdf – attachmentMimeType: application/pdf

	
file-name.jpg – attachmentMimeType: image/jpeg

	
file-name.gif – attachmentMimeType: image/gif

To send text files such as HTML, XML, or plain text files, the following values can be used for the attachmentMimeType entry:

	
file-name.txt – attachmentMimeType: text/plain

	
file-name.html – attachmentMimeType: text/html

	
Note:

For text files that contain non-ASCII characters that are encoded in UTF-8, the attachmentMimeType must specify the charset attribute, for example, "text/plain;charset=UTF-8". Also, the content itself must be sent using base64 encoding; this procedure is described in "Sending Text Content with base64 Encoding".

	
attachmentURI: the URI for the attachment

	
Click Test Web Service.

J.2.4.1 Verifying the Execution

Check the weblogic email account. It should have received an email with attachment.

J.2.5 Building the Sample

Performing the following procedure of building the sample from scratch enables you to learn how to add messaging to your SOA Composite Applications, and use User Messaging Preferences.

	
Open Oracle JDe1veloper 11g.

	
Create a new application by selecting File, New, Applications, and SOA Application. Click OK.

	
Enter the Application Name and click Next (Figure J-22).

Figure J-22 Creating a New Application and Project (1 of 3)

[image: Description of Figure J-22 follows]

	
Enter the name for the project and click Next (Figure J-23).

	

Figure J-23 Creating a New Application and Project (2 of 3)

[image: Description of Figure J-23 follows]

	
Select the Composite With BPEL composite template (Figure J-24). Click Finish.

Figure J-24 Creating a New Application and Project (3 of 3)

[image: Description of Figure J-24 follows]

	
In the Create BPEL Process dialog, enter the BPEL process name as SendEmailWithAttachments (Figure J-25). Click OK.

Figure J-25 Creating the BPEL Process

[image: Description of Figure J-25 follows]

	
Verify that Expose as a SOAP service is checked. Click OK.

	
You have now created an empty and default BPEL application.

In the Oracle JDeveloper main window you can view the following components of the sample application under the Composite.xml tab.

	
The left box is the definition of a web service client that is used to initiate an application.

	
The middle box is a BPEL process that creates and formats the message and calls the messaging service.

	
Note:

You later create the messaging service resource that is used to send the message when you create the User Notification BPEL process (steps 13-19).

	
Expand the xsd folder in the Application Navigator and open SendEmailWithAttachments.xsd by double-clicking it (Figure J-26).

Figure J-26 Accessing the SendEmailWithAttachments.xsd File

[image: Description of Figure J-26 follows]

	
Click the Source tab (Figure J-26).

	
Perform the following modifications to the inputs of this BPEL application:

In the generated file, SendEmailWithAttachments.xsd, in the xsd folder in the Application Navigator under projects, the following element definition is created by default:

<element name="process">
 <complexType>
 <sequence>
 <element name="input" type="string"/> </sequence>
 </complexType>
</element>

Select the Source tab, and replace the lines above with the following:

<element name="process">
<complexType>
 <sequence>
 <element name="to" type="string"/>
 <element name="subject" type="string"/>
 <element name="body" type="string"/>
 <element name="attachmentName" type="string"/>
 <element name="attachmentMimeType" type="string"/>
 <element name="attachmentURI" type="string"/>
 </sequence>
 </complexType>
 </element>

This xsd element defines the input for the BPEL process.

Figure J-27 Editing Email

[image: Description of Figure J-27 follows]

	
Save the project.

	
Select the SendEmailWithAttachments.bpel editor screen.

	
Drag and drop an Email activity from BPEL Activities and Components located in the Component Palette between the receiveInput and callbackClient activities (Figure J-27).

	
In the Edit Email window, leave the From account as Default.

Figure J-28 Edit Email Window

[image: Description of Figure J-28 follows]

	
To create the expression for To, select the Expression Builder (the second icon, Figure J-29) and perform the following steps:

	
Select Identity Service Functions from the functions dropdown list.

	
Select the getUserProperty() function and select Insert into Expression.

	
Under BPEL variables select Variables > Process > Variables >inputVariable > payload > client:process > client:to.

	
Click Insert into Expression.

	
Type the string mail manually.

	
Correct the parenthesis so they are matched.

	
Click OK.

This expression (Figure J-29) takes the data from the web service and maps it to the business email of the local SOA user.

Figure J-29 Expression Builder for the To Path

[image: Description of Figure J-29 follows]

The expression should appear as follows:

ids:getUserProperty(bpws:getVariableData('inputVariable',
'payload', '/client:process/client:to'),
'mail')

	
For Subject, select the Expression builder. Select getVariableData from Functions and click Insert Into Expression.

The expression should appear as follows:

bpws:getVariableData('inputVariable', 'payload','/client:process/client:subject')

	
For Body, select the Expression Builder and set the expression.

The expression should appear as follows:

bpws:getVariableData('inputVariable','payload','/client:process/client:body')

	
In the Edit Email dialog (Figure J-30), ensure that the Multipart Message with attachments box is checked.

When an email has multiple parts, the attachment count includes the body that is set with the Wizard above. The body specified by the Wizard above is set as the first body part. For example, to represent a multipart mail with one (1) attached file, enter 2 as the number of body parts. When there is one attachment, enter 1 as the number of body parts.

Figure J-30 Edit Email Window

[image: Description of Figure J-30 follows]

	
Set the attachments:

Each body part has three attributes: MimeType, BodyPartName, and ContentBody. By default, the wizard generates default names, MIME types and contents for each of the attachments. The assignment of these body parts has to be changed to set the correct data by modifying the copy rules in the assign activity in the notification scope. The copy rules (specified in the Copy Operation tab) are grouped for each assignment in the following order (the copy-to constructs are also listed):

MimeType - <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:MimeType"/>

Name - <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:BodyPartName"/>

Contents - <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:ContentBody"/>

	
Expand the Email node by selecting the plus sign icon (Figure J-31).

Figure J-31 Expanding the Email Node

[image: Description of Figure J-31 follows]

	
Double-click the EmailParamAssign node (Figure J-32).

Figure J-32 Email ParamAssign Node

[image: Description of Figure J-32 follows]

When making changes in the EmailParamAssign node (for example, editing the XPath variables), perform a Save All from the File menu after making each change. This ensures that the changes are reflected in the .bpel file.

	
To edit the mimeType of the second body part (the first body part is the contents set in the wizard) select the second body part variable ending with MimeType by double-clicking it (Figure J-33).

Figure J-33 Editing the mimeType of the Second Body Part

[image: Description of Figure J-33 follows]

	
Edit the XPath as shown below (Figure J-34):

From: /client:process/client:attachmentMimeType, To: /EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/
ns1:BodyPart[2]/ns1:MimeType

Figure J-34 Editing the XPath for mimeType

[image: Description of Figure J-34 follows]

	
Save the project.

	
To edit the attachment name for the second attachment, select the second body part variable ending with BodyPartName by double-clicking it (Figure J-35).

Figure J-35 Editing the Attachment Name for the Second Attachment

[image: Description of Figure J-35 follows]

	
Edit the XPath as shown below:

From: /client:process/client:attachmentName To: /EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart
/ns1:BodyPart[2]/ns1:BodyPartName

Figure J-36 Editing the XPath for BodyPartName

[image: Description of Figure J-36 follows]

	
Save the project.

	
To edit the attachment contents of the second attachment, select the second body part variable ending with ContentBody by double-clicking it (Figure J-37).

Figure J-37 Editing the Attachment Contents of the Second Attachment

[image: Description of Figure J-37 follows]

	
Edit the XPath as shown below (Figure J-38):

From: ora:readFile(bpws:getVariableData('inputVariable','payload','/client:
process/client:attachmentURI')) To:/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/
ns1:BodyPart[2]/ns1:ContentBody

The ora:readFile() XPath function is available under BPEL Xpath Extension Functions.

Figure J-38 Editing the XPath from the ContentBody

[image: Description of Figure J-38 follows]

	
Click OK in the Edit Copy Operation dialog.

Figure J-39 Copy Operations Tab

[image: Description of Figure J-39 follows]

	
Click OK in the assign activity. Save the project.

The Process Modeling procedure is complete. You can use the information in this procedure to add notifications with binary attachments to your SOA composite application.

J.2.5.1 Sending Text Content with base64 Encoding

To send text file attachments with non-ASCII characters (such as UTF-8 encoded), you must send the text content with base64 encoding. Perform the following additional steps:

	
Click the BPEL source editor and add the following to the appropriate Body Part in the multipart content (look for correct <BodyPart> tag within the <MultiPart>):

<ContentEncoding xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>

Example J-1 Adding the ContentEncoding tag to MultiPart

<copy xml:id="id33">
 <from xml:id="id31">
 <Content xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <MimeType xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 multipart/mixed</MimeType>
 <ContentBody xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService">
 <MultiPart xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService">
 <BodyPart xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService">
 <MimeType xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService"/>
 <ContentBody xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService"/>
 <BodyPartName xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService"/>
 </BodyPart>
 <BodyPart xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService">
 <MimeType xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService"/>
 <ContentBody xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService"/>
 <BodyPartName xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService"/>
 <ContentEncoding xmlns="http://xmlns.oracle.com/ias/pcbpel/
 NotificationService"/>
 </BodyPart>
 </MultiPart>
 </ContentBody>
 </Content

	
In the BPEL design editor expand the Email activity node and double-click the "EmailParamAssign" node.

	
Select the "+" icon to create a new copy operation which copies the "base64" string to our attachment part.

	
Edit the XPath as shown below:

From:
Type-Expresion: string('base64')

To:
Type-Variable:
/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/ns1:ContentEncoding

Figure J-40 Editing Copy Operation (2)

[image: Description of Figure J-40 follows]

	
Click OK.

	
In the Assign window click Apply > OK.

	
Save the project.

You can now deploy and run the application as described in Section J.2.3, "Running the Pre-Built Sample."

J.2.6 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

	
Create a new Application Server Connection by right-clicking the project and selecting New, Connections, and Application Server Connection (Figure J-41).

Figure J-41 New Application Server Connection

[image: Description of Figure J-41 follows]

	
Name the connection SOA_server and click Next (Figure J-42).

	
Select WebLogic 10.3 as the Connection Type.

Figure J-42 New Application Server Connection

[image: Description of Figure J-42 follows]

	
Enter the authentication information. The typical value for username is weblogic.

	
On the Connection dialog, enter the hostname, port and SSL port for the SOA admin server, and enter the name of the domain for the Oracle WebLogic Server Domain.

	
Click Next.

	
In the Test dialog, click Test Connection.

	
Verify that the message Success! appears.

The application server connection has been created.

K Oracle SOA Suite Properties Road Map

This appendix provides an overview of Oracle SOA Suite design-time and runtime configuration properties and provides references to documentation that describes how to configure these properties.

This appendix includes the following sections:

	
Section K.1, "Oracle BPEL Process Manager Deployment Descriptor Properties"

	
Section K.2, "Normalized Message Header Properties"

	
Section K.3, "SOA Composite Application Properties"

	
Section K.4, "Fault Policy and Adapter Rejected Message Properties"

	
Section K.5, "Oracle B2B System Properties"

	
Section K.6, "Oracle Enterprise Manager Fusion Middleware Control Console Property Pages"

	
Section K.7, "System MBean Browser Properties"

K.1 Oracle BPEL Process Manager Deployment Descriptor Properties

Deployment descriptors are BPEL process service component properties used at runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both. You set these properties during design-time in the composite.xml file of the SOA composite application. The following types of properties can be set:

Table K-1 Properties for the configurations Deployment Descriptors

	Property Name	Description
	
completionPersistPolicy

	
How to save instance data

	
globalTxMaxRetry

	
The maximum number of retries for a remote fault

	
globalTxRetryInterval

	
The time interval in milliseconds between retries for a remote fault

	
inMemoryOptimization

	
In-memory optimization on the instances of a process

	
keepGlobalVariables

	
Whether the server can keep global variable values in the instance store when the instance completes

	
oneWayDeliveryPolicy

	
The persistence policy of the process in the delivery layer

	
sensorActionLocation

	
The location of the sensor action XML file

	
sensorLocation

	
The location of the sensor XML file

	
transaction

	
The transaction behavior of the BPEL instance for initiating calls

	
nonBlockingInvoke

	
Whether to spawn a separate thread to do invocations so that the invoke activity does not block the instance

	
validateXML

	
The enabling of message boundary validation

For more information about available deployment descriptor properties, see Section C.1.1, "How to Define Deployment Descriptor Properties" and Chapter 12, "Transaction and Fault Propagation Semantics in BPEL Processes."

K.2 Normalized Message Header Properties

Header manipulation and propagation are key business integration messaging requirements. You can set normalized message header properties during design-time in the Properties tab of receive activities, invoke activities, OnMessage branches of pick activities, and reply activities. You can set properties for the following components:

	
Oracle JCA adapters

	
Oracle BPEL Process Manager

	
Oracle Web Services Addressing

	
Oracle B2B

K.2.1 Oracle JCA Adapter Message Header Properties

Oracle JCA adapters expose the underlying back-end operation-specific properties as header elements and allow for manipulation of these elements within a business process.

For more information about available Oracle JCA adapter message header properties, see the following guides:

	
Appendix A, "Oracle JCA Adapter Properties" of Oracle Fusion Middleware User's Guide for Technology Adapters for file, FTP, AQ, JMS, socket, database, and MQ Series properties

	
Oracle Fusion Middleware Adapter for Oracle Applications User's Guide for Oracle Applications adapter properties

K.2.2 Oracle BPEL Process Manager and Oracle Web Services Addressing Message Header Properties

Oracle BPEL Process Manager and Oracle Web Services Addressing rely extensively on header support to solve customers' integration needs.

For more information about available Oracle BPEL Process Manager and Oracle Web Services Addressing message header properties, see Appendix H, "Normalized Message Properties."

K.2.3 Oracle B2B Message Header Properties

In B2B, you can manipulate headers with reserved key words.

For more information about available Oracle B2B message header properties, see Appendix C, “Back-End Applications Interface" of Oracle Fusion Middleware User's Guide for Oracle B2B.

K.3 SOA Composite Application Properties

While most updates you make to the composite.xml file are performed from within the dialogs of the SOA Composite Editor during design-time, other properties must be added manually to this file from within Source view. Table K-2 lists these properties and provides references to documentation that describes how to configure these properties.

Table K-2 Oracle SOA Suite Properties

	Property	Description	See...
	
endpointURI

	
Specifies multiple partner link endpoint locations. This capability is useful for failover purposes if the first endpoint is down.

	
Section 8.2.2.8, "Multiple Runtime Endpoint Locations"

	
oracle.composite.faultPolicyFile

	
Specifies the location of the fault policy file if it is different from the default location. This option is useful if a fault policy must be used by multiple SOA composite applications.

	
Section 11.4, "Using the Fault Management Framework"

	
oracle.composite.faultBindingFile

	
Specifies the location of the fault binding file if it is different from the default location. This option is useful if a fault policy must be used by multiple SOA composite applications.

	
Section 11.4, "Using the Fault Management Framework"

	
passThroughHeader

	
By default, SOAP headers are not passed through by Oracle Mediator. To pass SOAP headers, add this property to the corresponding Oracle Mediator routing service.

	
Section 20.2.2.9, "How to Assign Values"

Section 20.2.2.11, "How to Access Headers for Filters and Assignments"

	
rolesAllowed

	
Specifies role names required to invoke SOA composite applications from any Java EE application.

	
Section 36.5, "Specifying Enterprise JavaBeans Roles"

	
streamIncomingAttachments

and

streamOutgoingAttachments

	
Specify these properties to stream attachments with SOAP.

	
Section 43.1.1.2.1, "SOAP with Attachments"

	
oracle.webservices.local.optimization

	
Specifies to override a local optimization setting for a policy.

	
Section 43.1.1.2.1, "SOAP with Attachments"

and

Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite

	
one.way.returns.fault

	
Controls how faults and one-way messages are handled for one-way interface SOAP calls.

	
Section 24.1, "Understanding a One-way Message Exchange Pattern"

K.4 Fault Policy and Adapter Rejected Message Properties

A fault policy file defines fault conditions and their corresponding fault recovery actions. Each fault condition specifies a particular fault or group of faults, which it attempts to handle, and the corresponding action for it.

You can also enter additional properties in a fault policy framework file. Table K-3 lists these properties and provides references to documentation that describes how to configure these properties.

Table K-3 Oracle SOA Suite Fault Policy Properties

	Property	Description	See...
	
retryInterval

	
Provide a delay between retries of an activity (in seconds).

	
Section 11.4.1.2, "Creating a Fault Policy File for Automated Fault Recovery"

	
retryCount

	
Retry an activity a specified number of times.

	
Section 11.4.1.2, "Creating a Fault Policy File for Automated Fault Recovery"

	
org.quartz.scheduler.idleWaitTime

	
Specify a time in seconds for the scheduler to wait before retrying.

	
Section 22.1.1.2, "Actions"

You can also enter adapter rejected message properties in the fault policy framework file during design-time.

For more information, see Section "Error Handling" of Oracle Fusion Middleware User's Guide for Technology Adapters.

K.5 Oracle B2B System Properties

You can set most B2B properties on the Configuration tab of the Oracle B2B interface. These settings override property settings performed at the Oracle Enterprise Manager Fusion Middleware Control Console.

For more information about available Oracle B2B properties, see Chapter 15, "Configuring B2B System Parameters" of Oracle Fusion Middleware User's Guide for Oracle B2B.

K.6 Oracle Enterprise Manager Fusion Middleware Control Console Property Pages

You can configure properties for the following components during runtime in the property pages of Oracle Enterprise Manager Fusion Middleware Control Console:

	
SOA Infrastructure

	
Oracle BPEL Process Manager

	
Human workflow notification and task service

	
Oracle Mediator

	
Cross references

	
Oracle B2B

	
Service and reference binding components (JCA adapters, web services, and Oracle Service Registry)

K.6.1 SOA Infrastructure Properties

You can configure properties for the SOA Infrastructure. These property settings can apply to all SOA composite applications running in the SOA Infrastructure. The following types of properties can be set:

	
Audit level

	
Composite instance state to capture

	
Payload validation

	
Callback server and server URLs

	
Instance and fault count metrics retrieval

	
Universal Description, Discovery, and Integration (UDDI) registry

	
Java Naming and Directory Interface (JNDI) data source

	
Web service binding properties

For more information about available SOA Infrastructure properties, see Chapter 3, "Configuring the SOA Infrastructure" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.6.2 Oracle BPEL Process Manager

You can configure BPEL process service engine properties. These properties are used by the BPEL process service engine during processing of BPEL service components. The following types of properties can be set:

	
Audit trail and large document thresholds

	
Dispatcher threads

	
Payload schema validation

	
Audit trail level

	
BPEL monitor and sensor enabling

For more information about available Oracle BPEL Process Manager properties, see Chapter 9, "Configuring BPEL Process Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.6.3 Human Workflow Notification and Task Service

You can configure human workflow notification and task service properties. These properties are used by the human workflow service engine during processing of human workflow service components. The following types of properties can be set:

	
The notification mode for messages

	
The actionable addresses

	
The actionable e-mail account name

	
The workflow session time out and custom class path URL values

	
The dynamic assignment and task escalation functions of the assignment service

For more information about available human workflow notification and task service properties, see Chapter 18, "Configuring Human Workflow Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.6.4 Oracle Mediator

You can configure Oracle Mediator properties. These properties are used by the Oracle Mediator service engine during processing of Oracle Mediator service components. The following types of properties can be set:

	
Audit level and metrics level

	
Parallel worker threads

	
Parallel maximum rows retrieved

	
Parallel locker thread sleep and error locker thread sleep

	
Custom configuration parameters

	
Container ID refresh time and container ID lease timeout

	
Resequencer locker thread sleep, maximum groups locked, and worker threads

For more information about available Oracle Mediator properties, see Chapter 12, "Configuring Oracle Mediator Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.6.5 Cross References

You can configure cross references to dynamically map values for equivalent entities created in different applications.

For more information about available cross reference properties, see Chapter 15, "Managing Cross-References" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.6.6 Oracle B2B

You can enable Oracle B2B Dynamic Monitoring Service (DMS) metrics.

For more information about available Oracle B2B properties, see Chapter 30, "Configuring Oracle B2B" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.6.7 Service and Reference Binding Component Properties

You can configure the following service and reference binding component properties:

	
Activation specification (for services), interaction specification (for references), and endpoint properties (such as time outs, thresholds, maximum intervals, and others) for the file, FTP, AQ, JMS, socket, database, and MQ Series adapters

	
Web services properties such as enabling REST; enabling the WSDL, metadata exchange, and endpoint of the web service; and others

	
Endpoint reference and service key properties for Oracle Service Registry integration

For more information about available service and reference binding component properties, see Chapter 33, "Configuring Service and Reference Binding Components" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.7 System MBean Browser Properties

The System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control Console enables you to modify advanced properties that do not display in the property pages described in Section K.6, "Oracle Enterprise Manager Fusion Middleware Control Console Property Pages." These advanced properties display beneath a link at the bottom of properties pages for the following components:

	
SOA Infrastructure

	
Oracle BPEL Process Manager

	
Oracle Mediator

	
Human workflow notification and task service

	
Oracle Service Registry

	
Note:

In addition to advanced properties, the same properties that display for modifying in the property pages described in Section K.6, "Oracle Enterprise Manager Fusion Middleware Control Console Property Pages" also display for modifying in the System MBean Browser.

K.7.1 SOA Infrastructure Properties

Click the More SOA Infra Advanced Configuration Properties link at the bottom of the SOA Infrastructure Common Properties page to display System MBean Browser properties for the SOA Infrastructure. Properties that display for modifying include the following:

	
The maximum number of times an invocation exception can be retried

	
The number of seconds between retries for an invocation exception

	
The HTTP proxy authentication realm

	
The HTTP proxy authentication type

	
The HTTP proxy host

	
The password for HTTP proxies that require authentication

	
The HTTP proxy port number

	
The user name for HTTP proxies that require authentication

	
The HTTP protocol URL published as part of the SOAP address of a process in the WSDL file

	
The HTTPS protocol URL published as part of the SOAP address of a process in the WSDL file

	
The path to the Oracle SOA Suite keystore

	
The UDDI endpoint cache life span

For more information about available SOA Infrastructure System MBean Browser properties, see Chapter 3, "Configuring the SOA Infrastructure" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.7.2 Oracle BPEL Process Manager Properties

Click the More BPEL Configuration Properties link at the bottom of the BPEL Service Engine Properties page to display System MBean Browser properties for the BPEL process. Properties that display for modifying include the following:

	
The extra BPEL class path to include when compiling BPEL-generated Java sources

	
The maximum number of times a failed expiration call (wait/onAlarm) is retried before failing

	
The delay between expiration retries

	
The size of the block of instance IDs to allocate from the dehydration store during each fetch

	
The number of invoke messages stored in in-memory cache

	
Whether one-way invocation messages are delivered

	
The size of the most recently processed request list

	
The maximum time a request and response operation takes before timing out

For more information about available Oracle BPEL Process Manager System MBean Browser properties, see Chapter 9, "Configuring BPEL Process Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.7.3 Oracle Mediator Properties

Click the More Mediator Configuration Properties link at the bottom of the Mediator Service Engine Properties page to display System MBean Browser properties for Oracle Mediator. Most of the System MBean Browser properties that display for Oracle Mediator can also be modified on the Mediator Service Engine Properties page.

For more information about available Oracle Mediator System MBean Browser properties, see Chapter 12, "Configuring Oracle Mediator Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.7.4 Human Workflow Notification and Task Service Properties

Click the More Workflow Notification Configuration Properties link at the bottom of the Workflow Notification Properties page or click the More Workflow Taskservice Configuration Properties link at the bottom of the Workflow Task Service Properties page to display System MBean Browser properties for human workflow. Properties that display for modifying include the following:

	
The address at which to receive incoming instant messages (IMs)

	
Whether to return custom notification service property names

	
The return number of configured fax cover pages

For more information about available human workflow notification and task service System MBean Browser properties, see Chapter 18, "Configuring Human Workflow Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.7.5 Oracle Service Registry WSDL URL Caching Configuration

You can increase the amount of time that the endpoint WSDL URL is available in cache for inquiry by the service key with the UddiCacheLifetime property.

For more information about the UddiCacheLifetime property, see Chapter 33, "Configuring Service and Reference Binding Components" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y

A

	abs function
	
	description, B.1.3.1

	access points, 60.4.1, 61.5.1
	access policies
	
	on task content, 28.3.11.1

	action types, 28.3.7.2.3
	actionable emails, 32.2.7
	activities
	
	Annotations tab, A.2.1
	Assertions tab, 11.12.6, A.2.1
	assign, A.2.2
	bind entity, A.2.3
	bypassing execution of, 10.4
	compensate, A.2.4
	Correlations tab, A.2.1
	create entity, A.2.5
	definition, 4.2
	email, A.2.6
	empty, A.2.7
	flow, A.2.8
	flowN, A.2.9
	Headers tab, A.2.1
	IM, A.2.10
	invoke, A.2.11
	Java embedding, A.2.12
	overview, 4.2, A.2
	phase, A.2.13
	pick, A.2.14
	Properties tab, A.2.1
	receive, A.2.15
	receive entity, A.2.17
	receive signal, A.2.16
	reply, A.2.18
	scope, A.2.19
	sequence, A.2.20
	signal, A.2.21
	Skip Condition tab, 10.4.1, A.2.1
	SMS, A.2.22
	switch, A.2.23
	tasks common to many activities, A.2.1
	terminate, A.2.24
	throw, A.2.25
	Timeout tab, 14.3, A.2.1
	transform, A.2.26
	user notification, A.2.27
	validate, A.2.28
	voice, A.2.29
	wait, A.2.30
	while, A.2.31

	activity sensors
	
	definition, 18.1

	Adapter Configuration wizard
	
	starting, 4.5

	adapters
	
	configuring, 4.5
	definition, 1.5.2, 4.5, 35.1.3, A.3
	in Oracle JDeveloper, 4.5
	Oracle BAM, 50.1
	overview, 1.5.2, 35.1.3, A.3
	service names, 4.5
	supported, 1.5.2, 35.1.3, A.3

	add-dayTimeDuration-to-dateTime function
	
	description, B.1.2.1

	adding a cross reference table column, 46.3.4
	adding columns to domain value maps, 44.3.1
	adding rows to domain value maps, 44.3.2
	addQuotes function
	
	description, B.2.1

	ADF bindings
	
	files for, 51.4.2
	using to invoke a composite from a JSP/Java class, 35.2.2

	ADF bindings filter, 33.1.4
	ADF Model layer, introduced, 51.1
	ADF task flow for human tasks, 29.3
	ADF, using Oracle BAM, 51.4
	ADF-BC service
	
	capabilities, A.3.2
	definition, 35.1.6

	adfBindings bindings filter, 33.1.4
	adf-desktop-integration.jar, 33.1.4
	adfdiExcelDownload download filter, 33.1.4
	adfdiRemote servlet, 33.1.4
	ADFLibraryFilter filter, 33.1.4
	admin.server.host parameter, 3.5.6
	admin.server.port parameter, 3.5.6
	advanced formatting, message sources, 53.2.3
	aggregate functions in calculations, 52.2.4
	alerts
	
	history, 57.6
	Oracle BAM
	
	about, 57.1
	actions, F.3
	activating, 57.2.2
	activity, 57.6
	conditions, F.2
	creating, 57.2
	dependencies, 57.5
	events, F.1
	frequency constraint, F.4
	history, 57.6
	messages, 57.4
	parameterized, F.3.4
	templates, 57.3
	web services, 57.7

	alidateFodConfigSettings ant script, 3.5.6
	Annotations tab
	
	in activities, A.2.1

	ant scripts
	
	activating all composites in a partition, 41.7.5.2.23
	activating an application, 41.7.5.2.13
	assigning the default version to a SOA composite application, 41.7.5.2.15
	compile-deploy-all, 3.5.6
	compiling a SOA composite application, 41.7.5.2.2
	creating a partition in the SOA Infrastructure, 41.7.5.2.19
	deleting a partition, 41.7.5.2.20
	deploying a SOA composite application, 41.7.5.2.4
	executing a test case, 41.7.5.2.1
	exporting a SOA composite application into a SAR file, 41.7.5.2.6
	exporting postdeployment changes of a composite into a JAR file, 41.7.5.2.7
	exporting shared data of a given pattern into a JAR file, 41.7.5.2.9
	importing postdeployment changes of a composite, 41.7.5.2.8
	listing all available partitions in the SOA Infrastructure, 41.7.5.2.17
	listing all composites in a partition, 41.7.5.2.18
	listing the deployed SOA composite applications, 41.7.5.2.16
	managing composites, 41.7.5.2
	packaging a SOA composite application into a composite SAR file, 41.7.5.2.3
	removing a top-level shared data folder, 41.7.5.2.10
	retiring all composites in a partition, 41.7.5.2.24
	retiring an application, 41.7.5.2.14
	seedBAMServerObjects, 3.5.6, 3.5.6
	seedDemoUsers, 3.5.6
	seedFodJmsResources, 3.5.6
	server-setup-seed-deploy-test, 3.5.6
	starting all composites in a partition, 41.7.5.2.21
	starting an application, 41.7.5.2.11, 41.7.5.2.12, 41.7.5.2.13, 41.7.5.2.14, 41.7.5.2.15, 41.7.5.2.16
	stopping all composites in a partition, 41.7.5.2.22
	stopping an application, 41.7.5.2.12
	undeploying a SOA composite application, 41.7.5.2.5
	validateFodConfigSettings, 3.5.6

	appendToList function
	
	description, B.2.2

	Application Navigator
	
	location of in Oracle JDeveloper, 4.1.1

	application roles
	
	definition, 27.2.1.1.3

	application template, 33.1.3
	AQ adapter
	
	capabilities, A.3.3
	definition, 35.1.3.1

	arrays
	
	determining the size of, 6.16.3
	in transformations, 38.3.6.3
	manipulating, 6.16
	maxOccurs attribute, 6.16
	SOAP-encoded arrays, 6.16.2
	statically indexing into, 6.16.1

	assertion conditions
	
	creating, 11.12.6
	disabling, 11.12.7
	expressions not evaluating to an XML schema boolean type throw a fault, 11.12.5
	log events in the instance audit trail, 11.12.4
	multiple, 11.12.2
	throwing faults, 11.12
	use of built-in and custom XPath functions and $variable references, 11.12.3

	assertion tests
	
	overview, 42.1.4

	assertions
	
	creating value asserts, 42.4.5.1
	in composite test suites, 42.2.3

	Assertions tab
	
	creating assertion conditions, 11.12.6
	in activities, A.2.1

	assign activity
	
	adding to an asynchronous service, 8.2.1.4
	capabilities, A.2.2
	copying data, 6.5.1
	description, 6.1.2
	for data manipulation, 6.1.2
	formatting the email message body as HTML, 17.3.1.2
	in asynchronous services, 8.2.1.4
	using multiple bpelx:append settings, A.2.2

	assignment service
	
	configuration, 32.3
	deploying a custom assignment service, 32.3.2.3
	dynamic assignment functions, 32.3.1, 32.3.1.1, 32.3.1.2, 32.3.1.3
	dynamically assigning task participants, 32.3.2
	example of implementation, 32.3.2.2
	implementing, 32.3.2.1

	asynchronous interaction with a notification timer
	
	BPEL process as the client, 5.5
	BPEL process as the service, 5.5
	definition, 5.5

	asynchronous interaction with a timeout
	
	BPEL process as the client, 5.4
	BPEL process as the service, 5.4
	definition, 5.4

	asynchronous interactions
	
	BPEL process as the client, 5.3
	BPEL process as the service, 5.3
	definition, 5.3
	returning faults, 11.8.2

	asynchronous processes
	
	dehydration store, 8.2.2.7, 8.2.2.7

	asynchronous services
	
	assign activities, 8.2.1.4
	calling, 8.2
	correlation IDs, 8.2.2.5
	invoke activities, 8.2.1.2, 8.2.2.5
	parallel flows, 9.1
	partner links, 8.2.1.1, 8.2.2.2, 8.2.2.3
	receive activities, 8.2.1.3, 8.2.2.5
	WS-Addressing, 8.2.2.5

	attachments
	
	sending with the notification wizard, 17.3.1.1
	task attachments with email notifications, 32.2.8
	using MIME/DIME SOAP attachments, 6.20
	using WordML style sheets, 28.3.8.1

	attribute labels
	
	internationalization, 32.1.9.1

	attributes
	
	manipulating, 6.13

	audit level
	
	setting, 43.1.3.1

	auto mapping
	
	in transformations, 38.3.7
	with confirmation in transformations, 38.3.7.1

B

	B2BX12OrderGateway project, 3.3.1
	bam.server.host parameter, 3.5.6
	bam.server.password parameter, 3.5.6
	bam.server.port parameter, 3.5.6
	bam.username parameter, 3.5.6
	batching
	
	message batching limitations with Oracle Business Activity Monitoring, 50.7.2

	batchProcessActive function
	
	description, B.2.57.1

	batchProcessCompleted function
	
	description, B.2.57.2

	best practices
	
	creating and wiring BPEL and mediator service components in the SOA Composite Editor, 4.3
	for handling large documents, 43.1
	for handling large metadata, 43.2
	for handling large numbers of instances, 43.3
	tuning recommendations, 43.1.3

	bin project, 3.3.1
	bind entity activity
	
	capabilities, A.2.3

	binding components
	
	ADF-BC services, 35.1.6
	definition, 1.5.2, 1.6
	direct binding services, 35.1.8
	EJB services, 35.1.7
	HTTP binding, 35.1.2
	integrating into a SOA composite application, 35.2
	introduction, 35.1
	JCA adapters, 35.1.3
	Oracle B2B, 35.1.5
	Oracle BAM, 35.1.4
	supported, 1.5.2, 2.3.1
	web services, 35.1.1
	WS-Atomic transactions, 35.1.1.1

	bindingFault
	
	definition, 11.3.2.1

	boolean values
	
	assigning, 6.11

	bottom-up design approach, 1.7
	BPEL design environment
	
	overview, 4.1

	BPEL processes
	
	common interaction patterns, 5, 24
	creating, 3.5.1, 3.5.2
	definition, 1.4
	transaction semantics, 12.1

	BPEL projects
	
	naming conventions, 4.1.1

	BPEL sensor
	
	Oracle BAM, 50.7

	BPEL XPath extension functions, 6.1.2, B.2
	
	examples, 6.1.2

	bpelx
	
	in assign activities, A.2.2

	bpelx extensions
	
	XML data manipulation, 6.14

	bpelx:append extension
	
	appending data to a node list, B.2.2
	description, 6.14.1

	bpelx:assert extension
	
	expressions not evaluating to an XML schema boolean type throw a fault, 11.12.5
	multiple assertions, 11.12.2
	throwing faults based on a condition, 11.12
	use of built-in and custom XPath functions and $variable references, 11.12.3
	use of faultName and message attributes, 11.12.1

	bpelx:copyList extension
	
	copying a node list or a node, B.2.3
	description, 6.14.6

	bpelx:exec extension
	
	built-in methods, 13.2.5
	embedding SDOs, 13.5

	bpelx:headerVariable extension
	
	description, 6.19

	bpelx:insertAfter extension
	
	description, 6.14.3

	bpelx:insertBefore extension
	
	description, 6.14.2

	bpelx:remove extension
	
	description, 6.14.4

	bpelx:rename extension
	
	description, 6.14.5

	bpelx:skipCondition extension
	
	bypassing activity execution, 10.4

	bpelx:timeout extension
	
	fault thrown during an activity timeout, 14.3.4

	bpelx:validate extension
	
	description, 6.15

	building expression with domain value map functions, 44.4.3
	build.properties file
	
	WebLogic Fusion Order Demo
	
	build.properties file, 3.5.6

	business events
	
	creating, 39.2
	definition, 39.1
	Event Delivery Network, 39.1
	local and remote boundaries, 39.1.1
	publishing, 39.3.4
	specifying callback classes, 28.3.14.1.2
	subscribing to, 39.3.1, 39.4.1

	business faults
	
	definition, 11.3, 11.3.1

	business rules
	
	action types, 28.3.7.2.3
	declarative components and task flows, 26.1
	fact types, 28.3.7.2.2
	OrderBookingComposite, used in, 3.4
	routing policies, 28.3.7
	service component, 25.4.2
	specifying advanced routing rules, 28.3.7.2
	specifying advanced routing rules with business rules, 28.3.7.2
	use case for data validation and constraint checks, 25.1.1
	use case for dynamic processing, 25.1.1
	use case for externalizing decision points in the process, 25.1.1
	use case for human workflow, 25.1.1
	use cases, 25.1.1
	using the business rules dictionary editor declarative component, 26.3
	using the declarative component, 26.2

	Business Rules design environment
	
	overview, 25.3

	Business Rules Designer
	
	introduction, 25.2

C

	calculated fields, 52.2.4
	calculations
	
	aggregate functions, 52.2.4
	datetime functions, 52.2.4
	expressions, 52.2.4
	string functions, 52.2.4

	callback classes
	
	specifying business events, 28.3.14.1.2
	specifying on task status, 28.3.14.1

	callbacks
	
	class loading, 32.4
	task routing and customization in BPEL callbacks, 28.3.15
	use with spring, 49.2.2
	viewing, 28.4.5.1

	case sensitivity
	
	human workflow, 32.5.5

	catch branch
	
	creating, A.2.19
	fault handling, 11.9

	channels
	
	email, 17.3.1
	IM, 17.3.2
	SMS, 17.3.3
	voice mail, 17.3.4

	class paths
	
	for clients using local Enterprise JavaBeans, 31.6
	for clients using remote Enterprise JavaBeans, 31.5
	for clients using SOAP, 31.4

	clearing data objects, 52.10
	clearTaskAssignees function
	
	description, B.5.1

	compare function
	
	description, B.1.4.1

	compare-ignore-case function
	
	description, B.1.4.2

	compensate activity
	
	capabilities, A.2.4
	definition, 11.10
	fault handling, 11.10

	compilation
	
	increasing memory to recover from errors, 41.9.4.6

	compile-deploy-all ant script, 3.5.6
	completionPersistPolicy property
	
	description, C.1.1

	complex type
	
	variables, 6.6

	Component Palette
	
	introduction, 2.1.2
	location of in Oracle JDeveloper, 4.1.1

	componentType file
	
	definition, 2.1.2

	composite sensors
	
	adding, 47.2
	adding a property, 47.2.4
	adding a variable, 47.2.2
	adding an expression, 47.2.3
	definition, 47.1
	monitoring during runtime, 47.3
	restrictions on use, 47.1.1

	composite test
	
	assertions overview, 42.1.4
	creating test suites, 42.3
	creating value asserts, 42.4.5.1
	definition, 42.1
	deploying test suites, 42.5
	emulating inbound messages, 42.4.1
	emulations overview, 42.1.3
	naming limitations on test suites and test cases, 42.3
	test case overview, 42.1.1
	test suite assertions, 42.2.3
	test suite components, 42.2
	test suite emulations, 42.2.2
	test suites overview, 42.1.2
	test suites process initiation, 42.2.1
	XML assert, 42.1.4

	composite.xml file
	
	definition, 2.1.2, 2.1.2
	deployment descriptors, C.1.1, C.1.1
	registering sensors and sensor actions, 18.2.5
	syntax, 2.5.2

	concat function
	
	description, 6.10

	conditional branching logic
	
	definition, 10
	use of XPath expressions, 10.1
	using switch activities, 10.2
	using while activities, 10.3

	conditional processing
	
	with xsl choose, 38.3.6.2
	with xsl if, 38.3.6.1

	configuration plans
	
	creating, 41.6.1.4
	creating with the WLST utility, 41.6.1.5
	definition, 41.6.1
	use cases, 41.6.1.3

	configuration properties
	
	deployment descriptors, C.1

	connection, Oracle BAM server, 51.3
	connections
	
	creating a SOA-MDS connection, 41.7.3.2.1
	creating an application server connection, 41.7.1.1.1
	Oracle BAM Server, 50.4

	constant values
	
	in transformations, 38.3.3

	copying security filters, 52.6.2
	copyList function
	
	description, B.2.3

	core XPath functions
	
	examples, 6.1.2

	correlation ID
	
	WS-Addressing, 8.2.2.5

	correlation sets
	
	associating with receive activities, 8.5.1.5
	creating, 8.5.1.4
	creating property aliases, 8.5.1.6

	correlations
	
	adding on an OnMessage branch of a pick activity, A.2.14

	Correlations tab
	
	in activities, A.2.1

	countNodes function, 6.16.3
	
	description, B.2.4

	create domain value maps, 44.2
	create entity activity
	
	capabilities, A.2.5

	create instance
	
	definition, 8.2.2.5
	in receive activities, 8.2.2.5

	create-delimited-string function
	
	description, B.1.4.3

	createInstance attribute, 8.2.2.6
	create-nodeset-from-delimited-string function
	
	description, B.4.1

	createWordMLDocument function
	
	description, B.5.2

	creating cross reference tables, 46.3.1
	creating folders for data objects, 52.5
	creating mediator component
	
	mediator files, 19.2

	CreditCardAuthorization project, 3.3.1
	cross reference table look up, 46.5
	
	xref
	
	lookupXRef function, 46.5.1

	cross reference tables, 46.1
	
	adding a column, 46.3.4
	creating, 46.3
	deleting values, 46.6
	looking up, 46.5
	modifying, 46.3
	populating columns, 46.4
	xref
	
	lookupXRef function, 46.5.1
	markForDelete function, 46.6
	populateXRefRow1M function, 46.4.2

	cross references
	
	creating, 46.3
	introduction, 46.1
	modifying, 46.3
	overview, 46.1

	current-date function
	
	description, B.1.2.2

	current-dateTime function
	
	description, B.1.2.3

	current-time function
	
	description, B.1.2.4

	custom classes
	
	adding to a SOA composite application, 13.3

	custom escalation function
	
	using, 32.3.3

	custom sensors
	
	publish type, 18.1

	customization
	
	creating a customized SOA composite application, 16.1.1
	of SOA composite applications, 16.1
	the customer SOA composite application, 16.1.3
	the vertical SOA composite application, 16.1.2
	upgrading the SOA composite application, 16.1.4

D

	data control, Oracle BAM
	
	about, 51.1
	aggregates, 51.5.8
	calculated fields, 51.5.4
	creating, 51.4.1
	field selection, sorting, 51.5.5
	filters, 51.5.6
	flat query, 51.5.1
	group query, 51.5.1
	groups, 51.5.7
	parameters, 51.5.2
	query type, 51.5
	time groups, 51.5.7.1

	data controls
	
	creating, 51.4.1
	displayed on the Data Controls panel, 51.4.2.1

	Data Controls panel
	
	icons defined, 51.4.2.1
	using to create a user interface, 51.5

	data manipulation
	
	accessing fields with complex type variables, 6.6
	assigning boolean values, 6.11
	assigning date or time, 6.12
	assigning literal strings, 6.9
	assigning numeric values, 6.7
	concatenating strings, 6.10
	converting from a string to a structured XML object type, 6.17
	copying data between variables, 6.5
	determining array sizes, 6.16.3
	dynamically indexing into a data sequence, 6.16.4
	generating array-equivalent functionality with the genEmptyElem function, 6.16.4.4
	initializing variables, 6.4
	manipulating arrays, 6.16
	manipulating attributes, 6.13
	mathematical calculations with XPath functions, 6.8
	statically indexing into a data sequence, 6.16.1
	with assign activities, 6.1.2, 6.5.1
	with XQuery and XSLT, 6.1.2

	data objects
	
	about, 52.1
	adding dimensions, 52.7
	calculated column, 52.2.4
	clearing contents, 52.10
	contents, 52.4.3
	creating folders, 52.5
	datetime column, 52.2.5
	defining, 52.2
	deleting, 52.11, 52.11
	dimensions, 52.7
	general information, 52.4.1
	indexes, 52.9
	layout, 52.4.2
	lookup column, 52.2.3
	moving, 52.8
	Oracle Data Integrator, 52.2.7
	organizing, 52.5
	permissions, 52.3
	
	folders, 52.5.3

	renaming, 52.8, 52.8
	security filters, 52.6
	system, 52.2.6
	viewing, 52.4

	data sequences
	
	dynamically indexing into, 6.16.4

	database
	
	sensor publish type, 18.1

	database adapter
	
	capabilities, A.3.6
	definition, 35.1.3.2

	database views
	
	human workflow, 32.7

	DataObjectDefinition web service, 56.3
	DataObjectOperations web service, 56.2
	date time stamp field, 52.2.5
	dates
	
	assigning, 6.12

	datetime functions in calculations, 52.2.4
	day-from-dateTime function
	
	description, B.1.2.5

	db.adminUser parameter, 3.5.3
	db.demoUser.tablespace parameter, 3.5.3
	declarative component
	
	using, 26.2
	using the business rules dictionary editor declarative component, 26.3

	declarative components
	
	definition, 26.1

	defining a fault handler, 11.5.1
	dehydration store, 8.2.2.7
	
	definition, 8.2.2.7

	deleting cross reference table value, 46.6
	
	xref
	
	markForDelete function, 46.6

	deleting data objects, 52.11
	deleting folders, 52.5.6
	deployment
	
	anatomy of a composite, 41.4
	common configuration plan issues to check, 41.9.4.2
	common deployment issues to check, 41.9.4.1
	creating an application server connection, 41.7.1.1.1
	customizing your application for the target environment, 41.6
	in a partition, 41.7.1.1.3
	managing deployed composites, 2.8.1
	of a single composite, 41.7.1
	of a task flow, 41.7.1.1.3
	of an existing archive, 41.7.4
	of multiple composites, 41.7.2
	of shared metadata across composites, 41.7.3
	of SOA composite applications, 2.8.1
	packaging of artifact files, 41.3
	postdeployment configuration, 41.8
	preparing the target environment, 41.5
	prerequisites, 41.2
	to a cluster, 41.7.7
	to a managed Oracle WebLogic Server, 41.9.4.3
	to a SAR, 41.7.1.1.3
	to a two-way, SSL-enabled Oracle WebLogic Server is not supported, 41.9.4.4
	to an application server, 41.7.1.1.3
	troubleshooting, 41.9.4
	with an unreachable proxy server, 41.9.4.5
	with the ant scripts, 41.7.5.2
	with the WLST utility, 41.7.5.1

	deployment descriptor file
	
	See web.xml file

	deployment descriptors
	
	composite.xml file, C.1.1, C.1.1
	configuration properties, C.1, C.1.1
	defining a configuration property, C.1.1
	deprecated, C.2
	overview of properties, K.1

	Designer window
	
	location of in Oracle JDeveloper, 4.1.1

	dictionaries
	
	in transformations, 38.3.10
	limitation on generating dictionaries that use functions, 38.3.11

	digital signatures, 32.1.10
	
	acting on tasks that require a signature, 30.4.4
	specifying, 28.3.12

	dimensions
	
	adding to data objects, 52.7
	data object, 52.7
	time, 52.7.2

	direct binding invocation API, 37.2
	direct binding service
	
	asynchronous direct binding invocation, 37.2.2
	capabilities, A.3.7
	definition, 1.5.2, 35.1.8
	direct binding invocation API, 37.2
	invoking Oracle Service Bus (OSB), 35.1.8, 37.3, A.3.7
	overview, 37.2
	samples using the invocation API, 37.4
	SOA direct address syntax, 37.2.3
	SOA transaction propagation, 37.2.4
	synchronous direct binding invocation, 37.2.1

	doc function
	
	description, B.2.5

	domain value maps
	
	add columns, 44.3.1
	add rows, 44.3.2
	committing changes at runtime with the SOA Composer, 45.5
	creation, 44.2
	dvm
	
	lookupValue function, 44.4.1.1
	lookupValue1M function, 44.4.1.2

	editing, 44.3
	editing at runtime with the SOA Composer, 45.1, 45.3
	features, 44.1.1, 44.1.1
	
	one-to-many mapping, 44.1.1.3
	qualifier order, 44.1.1.2
	qualifiers, 44.1.1.1

	one-to-many mapping, 44.1.1.3
	qualifier order, 44.1.1.2
	qualifiers, 44.1.1.1
	saving at runtime with the SOA Composer, 45.4
	using, 44.4
	using in a transformation, 44.4.2
	using lookupValue functions, 44.4.3
	viewing at runtime with the SOA Composer, 45.2

	domain value maps functions
	
	dvm
	
	lookupValue, 44.4.1.1
	lookupValue1M, 44.4.1.2

	domain value maps qualifiers, 44.1.1.1
	download filter, 33.1.4
	dvm
	
	lookupValue function, 44.4.1.1
	lookupValue1M function, 44.4.1.2

	dynamic assignment functions
	
	configuring, 32.3.1.2
	configuring display names, 32.3.1.3
	definition, 32.3.1
	implementing, 32.3.1.1

	dynamic partner links
	
	using, 8.3

	dynamic routing decision table
	
	using with two-layer business process management, 48.3

E

	EclipseLink O/X Mapper (OXM)
	
	See OXM

	edit domain value maps, 44.3
	
	add columns, 44.3.1
	add rows, 44.3.2

	EDN
	
	See Event Delivery Network

	elements
	
	ignoring in XSLT documents, 38.3.15

	email
	
	dynamically setting addresses, 17.3.5
	making emails actionable, 32.2.7
	notifications support, 17.1, 17.3.1

	email activity
	
	capabilities, A.2.6

	email attachments
	
	notifications support, 17.3.1.1

	email messages
	
	HTML content for message body, 17.3.1.2
	using dynamic HTML for message content requires a CDATA function, 17.3.1.3

	empty activity
	
	capabilities, A.2.7
	definition, 11.9.8
	fault handling, 11.9.8

	emulation tests
	
	overview, 42.1.3

	emulations
	
	emulating inbound messages, 42.4.1
	in BPEL test suites, 42.2.2

	enable.bam.sensors parameter, 3.5.6
	ending
	
	tasks, 28.3.9

	endpointURI
	
	property, K.3

	ends-with function
	
	description, B.1.4.4

	Enterprise JavaBeans
	
	capabilities in SOA composite applications, A.3.8
	creating an Enterprise JavaBeans service, 1.5.2, 35.1.7, 36.3, A.3.8
	integrating Java interfaces with SOA composite applications, 36.1.2
	interacting with SOA composite applications, 36.1, 36.1
	support in workflow services, 32.1.1

	enterprise message sources
	
	about, 53.1
	creating, 53.2
	datetime specification, 53.2.2
	defining, 53.2, 55.2
	XML formatting, 53.2.3

	entity variable
	
	binding key, 6.2.1.4
	creating, 6.2.1
	definition, 6.2
	samples, 6.2
	using, 6.2

	error assignee
	
	configuring, 28.3.7.4
	definition, 27.2.1.3

	errors
	
	invalid settings, A.6

	escalating
	
	tasks, 28.3.9

	escalation policy
	
	escalate after, 28.3.9.5
	overview, 28.3.9.1, 28.3.9.1
	specifying, 28.3.9.6

	evaluation time
	
	definition, 18.2.1

	Event Delivery Network
	
	business events published in, 39.1
	EDN-DB, 39.1
	EDN-JMS, 39.1
	implementations, 39.1

	evidence store service, 32.1.10
	
	definition, 32.1.10
	Enterprise JavaBeans, SOAP, and Java support, 32.1.1
	WSDL file location, 32.1.1

	Excel workbook
	
	MIME mapping, 33.1.4

	exceptions, 11.3
	EXM
	
	support in SOA composite applications, 49.5.1

	expiration policy
	
	expire after, 28.3.9.3
	never expire, 28.3.9.2
	overview, 28.3.9.1, 28.3.9.1
	renew after, 28.3.9.4

	export file sample
	
	ICommand, G.5

	expression builder dialog
	
	using domain value map functions, 44.4.3

	expression constants
	
	variable initialization, 6.4

	expressions in calculations, 52.2.4
	extended mapping (EXM)
	
	See EXM

	external data source
	
	about, 55.1
	creating, 55.2
	Oracle Data Integrator, 55.2.2

	external routing
	
	routing policy, 28.3.7.3

	ExternalLegacyPartnerSupplierEjb project
	
	described, 3.3.1

F

	fact types, 28.3.7.2.2
	fault bindings, 22.1.2
	fault handling, 11.5.1
	
	creating, 11, 11.5.1
	definition, 11.1
	fault policy, 11.4
	importing RuntimeFault.wsdl, 11.5.1
	modifying the WSDL files, 11.5.1
	returning external faults, 11.8, 11.8.2
	specifying an assertion condition, 11.12
	throwing internal faults, 11.7
	using catch branches, 11.9
	using compensate activities, 11.10
	using empty activities, 11.9.8
	using scope activities, 11.9
	using terminate activities, 11.11
	using the getFaultAsString function, 11.6
	using throw activities, 11.7

	fault management framework
	
	associating a fault policy with a fault policy binding, 11.4.1.3
	definition, 11.4
	designing, 11.4.1
	executing a fault policy, 11.4.2
	using a Java action fault policy, 11.4.3

	fault policy, 22.1.1
	
	actions, 22.1.1.2
	associating with a fault policy binding, 11.4.1.3
	component level, 22.1.2
	composite level, 22.1.2
	conditions, 22.1.1.1
	definition, 11.4
	designing, 11.4.1
	executing, 11.4.2
	sample file, 11.4.1.2
	using a Java action fault policy, 11.4.3

	fault policy bindings
	
	sample file, 11.4.1.4

	fault sensors
	
	definition, 18.1

	fault-bindings.xml, 22.4.2
	
	fault policy bindings file, 11.4

	fault-policies.xml, 22.4.1
	
	fault policy file, 11.4

	faults
	
	categories of faults in BPEL, 11.3
	Qname fault name, 11.3
	returning external faults, 11.8, 11.8.2
	standard faults, 11.2
	throwing internal faults, 11.7
	throwing with assertion conditions, 11.12

	fields
	
	calculated, 52.2.4
	lookup, 52.2.3
	timestamp, 52.2.5

	file adapter
	
	capabilities, A.3.9
	definition, 35.1.3.3

	filters
	
	adfBindings, 33.1.4
	adfdiExcelDownload, 33.1.4
	ADFLibraryFilter, 33.1.4
	bindings filter, 33.1.4
	copying, 52.6.2
	Oracle BAM security, 52.6

	fire and forget
	
	one-way message, 5.1

	flex fields
	
	using, 30.10
	values, 32.1.9

	flow activity
	
	capabilities, A.2.8
	creating a parallel flow, 9.2

	flowN activity
	
	capabilities, A.2.9
	customizing the number of flow activities, 9.3
	definition, 9.3

	fod.application.issoaenabled property, 3.5.4
	folder permissions, 52.5.3
	folders
	
	deleting, 52.5.6
	renaming, 52.5.5

	foreign.mds.type parameter, 3.5.6
	format function
	
	description, B.2.57.3

	formatDate function
	
	description, B.2.11

	format-dateTime function
	
	description, B.1.2.6

	format-string function
	
	description, B.1.4.5

	FTP adapter
	
	capabilities, A.3.10
	definition, 35.1.3.4

	functions
	
	abs, B.1.3.1
	add-dayTimeDuration-to-dateTime, B.1.2.1
	addQuotes, B.2.1
	advanced, B.4
	appendToList, B.2.2
	batchProcessActive, B.2.57.1
	batchProcessCompleted, B.2.57.2
	BPEL XPath extension, B.2
	chaining in transformations, 38.3.4.2
	clearTaskAssignees, B.5.1
	compare, B.1.4.1
	compare-ignore-case, B.1.4.2
	concat, 6.10
	copyList, B.2.3
	countNodes, 6.16.3, B.2.4
	create-delimited-string, B.1.4.3
	create-nodeset-from-delimited-string, B.4.1
	createWordMLDocument, B.5.2
	creating user-defined XPath extension functions, B.7
	current-date, B.1.2.2
	current-dateTime, B.1.2.3
	current-time, B.1.2.4
	day-from-dateTime, B.1.2.5
	descriptions, 38.3.4
	doc, B.2.5
	dynamically setting email addresses and telephone numbers, 17.3.5
	editing in transformations, 38.3.4.1
	editing XPath expressions in transformations, 38.3.5
	ends-with, B.1.4.4
	examples, 6.1.2
	format, B.2.57.3
	formatDate, B.2.11
	format-dateTime, B.1.2.6
	format-string, B.1.4.5
	functions prefixed with xp20 or orcl, 38.3.4
	genEmptyElem, 6.16.4.4, B.2.57.4
	generateGUID, B.2.12
	generate-guid, B.4.2
	getChildElement, B.2.57.5
	getContentAsString, B.2.20
	get-content-as-string, B.1.4.6
	getConversationId, B.2.21
	getCreator, B.2.22
	getCurrentDate, 6.12, B.2.23
	getCurrentDateTime, 6.12, B.2.24
	getCurrentTime, 6.12, B.2.25
	getDefaultRealmName, B.5.13.1
	getDomainId, B.2.26
	getElement, B.2.28
	getFaultAsString, 11.6
	getGroupIdsFromGroupAlias, B.2.31
	getGroupProperty, B.5.13.2
	getInstanceId, B.2.32
	getLinkStatus, B.2.56.1
	get-localized-string, B.1.4.8
	getManager, B.5.13.3
	getMessage, B.2.57.6
	getNodes, B.2.34
	getNodeValue, B.2.33
	getNotificationProperty, B.5.3
	getNumberOfTaskApprovals, B.5.4
	getPreference, B.2.37
	getPreviousTaskApprover, B.5.5
	getProcessId, B.2.38
	getProcessOwnerId, B.2.39
	getProcessURL, B.2.40
	getProcessVersion, B.2.41
	getReportees, B.5.13.4
	getTaskAttachmentByIndex, B.5.6
	getTaskAttachmentByName, B.5.7
	getTaskAttachmentContents, B.5.8
	getTaskAttachmentsCount, B.5.9
	getTaskResourceBindingString, B.5.10
	getUserAliasId, B.2.42
	getUserProperty, 17.3.5, B.5.13.6
	getUserRoles, B.5.13.7
	getUsersInGroup, B.5.13.8
	getVariableData, 17.3.5, B.2.56.2
	getVariableProperty, B.2.56.3
	hours-from-dateTime, B.1.2.7
	implicit-timezone, B.1.2.8
	in transformations, 38.3.4
	index-within-string, B.1.4.9
	integer, B.2.46
	isUserInRole, B.5.13.9
	last-index-within-string, B.1.4.10
	left-trim, B.1.4.11
	location of function descriptions, 6.1.2
	lookupGroup, B.5.13.10
	lookup-table, B.1.1.1
	lookupUser, B.5.13.11
	lookup-xml, B.4.8
	lower-case, B.1.4.12
	matches, B.1.4.13
	max-value-among-nodeset, B.2.57.7
	mediator XPath extension, B.3
	minutes-from-dateTime, B.1.2.9
	min-value-among-nodeset, B.2.57.8
	month-from-dateTime, B.1.2.10
	parseEscapedXML, 6.17, B.2.47
	position, 6.16.1
	prefixed with xp20 or orcl, 38.3.4
	processXQuery, B.2.49
	processXSLT, 17.3.1.2, B.2.50
	processXSQL, B.2.52
	query-database, B.1.1.2
	readBinaryFromFile, B.2.53
	readFile, B.2.54
	right-trim, B.1.4.14
	seconds-from-dateTime, B.1.2.11
	selecting an data sequence element, 6.16.1
	sequence-next-val, B.1.1.3
	SOA XPath extension, B.1
	square-root, B.2.57.9
	subtract-dayTimeDuration-from-dateTime, B.1.2.12
	timezone-from-dateTime, B.1.2.13
	translateFromNative, B.2.57.10
	translateToNative, B.2.57.11
	upper-case, B.1.4.15
	wfDynamicGroupAssign, B.5.11
	wfDynamicUserAssign, B.5.12
	workflow service, B.5
	writeBinaryToFile, B.2.55
	year-from-dateTime, B.1.2.14

	Fusion Order Demo
	
	deploying, 3.5
	deploying in a partition, 3.5.6
	installing schema, 3.5.3
	integration with spring, 49.4
	introduction, 3.1
	running, 3.6
	setting up, 3.2
	Store Front module, 3.1.1
	WebLogic Fusion Order Demo, 3.1.2
	
	introduction, 3.1.2

	Fusion Web Application (ADF) application template, 33.1.3
	FusionOrderDemo_R1PS2.zip, 3.2.2
	FYI assignee
	
	configuring, 28.3.6.4
	definition, 27.2.1.1.2, 28.3.6.4
	workflow participant type, 27.2.1.1.2, 28.3.6.4

G

	genEmptyElem function
	
	description, 6.16.4.4, B.2.57.4

	generateGUID function
	
	description, B.2.12

	generate-guid function
	
	description, B.4.2

	getChildElement function
	
	description, B.2.57.5

	getContentAsString function
	
	description, B.2.20

	get-content-as-string function
	
	description, B.1.4.6

	getConversationId function
	
	description, B.2.21

	getCreator function
	
	description, B.2.22

	getCurrentDate function
	
	description, 6.12, B.2.23

	getCurrentDateTime function
	
	description, 6.12, B.2.24

	getCurrentTime function
	
	description, 6.12, B.2.25

	getDefaultRealmName function
	
	description, B.5.13.1

	getDomainId function
	
	description, B.2.26

	getElement function
	
	description, B.2.28

	getFaultAsString function
	
	description, 11.6

	getGroupIdsFromGroupAlias function
	
	description, B.2.31

	getGroupProperty function
	
	description, B.5.13.2

	getInstanceId function
	
	description, B.2.32

	getLinkStatus function
	
	description, B.2.56.1

	get-localized-string function
	
	description, B.1.4.8

	getManager function
	
	description, B.5.13.3

	getMessage function
	
	description, B.2.57.6

	getNodes function
	
	description, B.2.34

	getNodeValue function
	
	description, B.2.33

	getNotificationProperty function
	
	description, B.5.3

	getNumberOfTaskApprovals function
	
	description, B.5.4

	getPreference function
	
	description, B.2.37

	getPreviousTaskApprover function
	
	description, B.5.5

	getProcessId function
	
	description, B.2.38

	getProcessOwnerId function
	
	description, B.2.39

	getProcessURL function
	
	description, B.2.40

	getProcessVersion function
	
	description, B.2.41

	getReportees function
	
	description, B.5.13.4

	getTaskAttachmentByIndex function
	
	description, B.5.6

	getTaskAttachmentByName function
	
	description, B.5.7

	getTaskAttachmentContents function
	
	description, B.5.8

	getTaskAttachmentsCount function
	
	description, B.5.9

	getTaskResourceBindingString function
	
	description, B.5.10

	getUserAliasId function
	
	description, B.2.42

	getUserProperty function
	
	description, B.5.13.6
	example, 17.3.5

	getUserRoles function
	
	description, B.5.13.7

	getUsersInGroup function
	
	description, B.5.13.8

	getVariableData function
	
	description, 6.10, B.2.56.2
	example, 17.3.5
	throws selectionFailure if result node set if size is greater than one, B.2.56.2.1
	using in mathematical calculations, 6.8

	getVariableProperty function
	
	description, B.2.56.3

	global task variable name
	
	specifying in human task activities, 28.4.4.1

	globalTxMaxRetry property
	
	description, C.1.1

	globalTxRetryInterval property
	
	description, C.1.1

	governance
	
	Oracle Enterprise Repository, A.5

	group vote
	
	configuring, 28.3.6.2
	consensus percentage, 28.3.6.2.1
	immediately triggering a voted outcome when a minimum percentage is met, 28.3.6.2.1
	specifying group voting details, 28.3.6.2.1
	waiting until all votes are in before triggering an outcome, 28.3.6.2.1

H

	headers
	
	normalized message header properties, H.1
	SOAP headers, 6.19

	Headers tab
	
	in activities, A.2.1

	heap size
	
	increasing, 38.4.2.1, 43.1.3.1

	History window
	
	location of in Oracle JDeveloper, 4.1.1

	hours-from-dateTime function
	
	description, B.1.2.7

	HTTP binding
	
	capabilities, A.3.11
	configuring with the HTTP Binding Wizard, 35.1.2.2
	creating your own schema, 35.1.2.2
	enabling basic authentication, 35.1.2.3
	in SOA composite applications, 35.1.2
	limitations in SOA composite applications, 35.1.2
	support for HTTPS in inbound and outbound directions, 35.1.2.2
	supported inbound and outbound interactions, 35.1.2.1
	supported operation types, 35.1.2.2
	supported XSD types, 35.1.2.1
	unsupported HTTP headers, 35.1.2.1

	HTTP headers
	
	unsupported, 35.1.2.1

	human task activity
	
	associating with a BPEL process, 28.4.1
	identification key, 28.4.4.3
	including the task history of other tasks, 28.4.4.6
	scope name and global task variable name, 28.4.4.1
	specifying a task initiator and task priority, 28.4.3.2
	specifying a task title, 28.4.3.1
	specifying task parameters, 28.4.3.3
	task owner, 28.4.4.2
	viewing BPEL callbacks, 28.4.5.1

	human task definition
	
	associating with a BPEL process, 28.2.2

	Human Task Editor
	
	abruptly completing a condition, 28.3.7.1.2
	accessing the sections of, 28.3.3
	actionable emails, 32.2.7
	allowing all participants to invite other participants, 28.3.7.1.1
	assigning task participants by name or expression, 28.3.6.1.1, 28.3.7.4
	bypassing task participants, 28.3.6.1.4, 28.3.6.2.5, 28.3.6.3.4
	configuring the error assignee, 28.3.7.4
	creating a human task, 28.3
	editing notification messages, 28.3.10.2
	escalate after policy, 28.3.9.5
	escalating, renewing, or ending a task, 28.3.9
	escalation and expiration policy overview, 28.3.9.1, 28.3.9.1
	escalation rules, 28.3.9.6
	expire after policy, 28.3.9.3
	FYI assignee task participant, 28.3.6.4, 28.3.6.4
	group voting details, 28.3.6.2.1
	inviting additional task participants, 28.3.6.1.3, 28.3.6.2.4, 28.3.6.3.3
	multilingual settings, 28.3.8.2, 32.2.6
	never expire policy, 28.3.9.2
	notification preferences, 28.3.10
	notifying recipients of changes to task status, 28.3.10.1
	parallel task participant, 28.3.6.2
	renew after policy, 28.3.9.4
	securing notifications, 32.2.10
	serial task participant, 28.3.6.3, 28.3.6.3
	setting up reminders, 28.3.10.3
	sharing attachments and comments with task participants, 28.3.6.2.1
	single approver task participant, 28.3.6.1
	specifying access policies, 28.3.11.1
	specifying business event callbacks, 28.3.14.1.2
	specifying callback classes, 28.3.14.1
	specifying digital signatures, 28.3.12
	task attachments with email notifications, 32.2.8
	task category, 28.3.4.5
	task outcome, 28.3.4.3
	task owner specification through the user directory, 28.3.4.6.1
	task owner specification through XPath expressions, 28.3.4.6.2
	task participants, 28.3.6
	task payload data structure, 28.3.5
	task priority, 28.3.4.4
	task routing and customization in BPEL callbacks, 28.3.15
	task title, 28.3.4.1
	time limits for acting on tasks, 28.3.6.1.2, 28.3.6.2.3, 28.3.6.3.2
	WordML style sheets in attachments, 28.3.8.1

	human tasks
	
	creating, 28.3
	designing a human task, 27.3.2

	human workflow
	
	access rules, 27.2.1.7.4
	application roles, 27.2.1.1.3
	case sensitivity, 32.5.5
	concepts, 27.2
	database views, 32.7
	definition, 27.1
	groups, 27.2.1.1.3
	integration with Oracle WebLogic Server, 32.6
	participant assignments, 27.2.1.1.3
	participant types, 27.2.1.1.2
	participants, 27.2.1.1.1
	routing policies, 28.3.7
	System MBean Browser properties, K.7.4
	task assignments, 27.2.1.2
	task deadlines, 27.2.1.4
	task stakeholders, 27.2.1.3
	use cases, 27.3.1
	users, 27.2.1.1.3

I

	ICommand
	
	clear, G.2.1
	command line, 58.4
	delete, G.2.2
	detailed command descriptions, G.2
	export, G.2.3
	
	sample, G.5

	general command and option syntax, 58.3
	import, G.2.4
	log, G.4
	operations, G.1
	regular expressions, G.6, G.6
	remote execution, 58.5
	rename, G.2.5
	running, 58.2
	sample export file, G.5
	summary of commands, G.1
	syntax, 58.3
	syntax, object names, 58.3.3
	XML file, G.3

	ICommand utility, 58
	ICommand web service, 56.5
	identification key
	
	specifying in human task activities, 28.4.4.3

	identity service
	
	definition, 27.4.1, 32.1.5
	determining a user's local language and time zone, 30.12, 30.12
	Enterprise JavaBeans, SOAP, and Java support, 32.1.1
	functions
	
	getDefaultRealmName, B.5.13.1
	getGroupProperty, B.5.13.2
	getManager, B.5.13.3
	getReportees, B.5.13.4
	getUserProperty, B.5.13.6
	getUserRoles, B.5.13.7
	getUsersInGroup, B.5.13.8
	isUserInRole, B.5.13.9
	lookupGroup, B.5.13.10
	lookupUser, B.5.13.11

	providers, 32.1.5.1, 32.1.5.1.1
	support for in workflows, 32.1.5
	supported task operations, 32.1.5
	use with JAZN, 32.1.5, 32.1.5.1
	use with LDAP, 32.1.5, 32.1.5.1
	WSDL file location, 32.1.1

	IM activity
	
	capabilities, A.2.10
	notifications support, 17.3.2

	implicit-timezone function
	
	description, B.1.2.8

	import
	
	source and target schemas into a transformation, 38.2.2

	indexes
	
	in data objects, 52.9

	indexing methods
	
	using XPath, 6.16.1

	index-within-string function
	
	description, B.1.4.9

	inMemoryOptimization property
	
	description, C.1.1

	instances
	
	starting new, 8.2.2.6

	integer function
	
	description, B.2.46

	integration
	
	of Java and WSDL-based components in the same composite, 36.1, 49.2, 49.3.1

	interaction patterns
	
	asynchronous interaction with a notification timer, 5.5
	asynchronous interaction with a timeout, 5.4
	asynchronous interactions, 5.3
	common patterns between a BPEL process and another application, 5, 24
	multiple interactions, 5.10
	one request, a mandatory response, and an optional response, 5.8
	one request, multiple responses, 5.6
	one request, one of two possible responses, 5.7
	one-way message, 5.1
	partial processing, 5.9
	synchronous interactions, 5.2

	Invalid Settings error message, A.6
	invoke activity
	
	adding to an asynchronous service, 8.2.1.2
	capabilities, A.2.11
	definition, 4.2, 7.1
	in asynchronous services, 8.2.1.2, 8.2.2.5
	in synchronous services, 7.1, 7.2.2.3
	throwing faults with assertion conditions, 11.12

	isUserInRole function
	
	description, B.5.13.9

J

	JAR
	
	See .JAR Files

	.JAR files
	
	adding custom classes and JAR files, 13.3
	adf-desktop-integration.jar, 33.1.4
	creating a JAR file for deployment, 41.7.1.1.3
	resourcebundle.jar file, 33.1.4
	wsclient.jar, 33.1.4

	Java
	
	support in workflow services, 32.1.1

	Java applications
	
	wrapped as SOAP services, 13.2.1

	Java Connector Architecture (JCA)
	
	definition, 1.4

	Java embedding
	
	bpelx:exec extension, 13.2.5
	example, 13.4
	in a BPEL process, 13
	using thread.sleep(), 13.4.2

	Java embedding activity
	
	capabilities, A.2.12
	using Java embedding in a BPEL process, 13.4

	Java interfaces
	
	creating Java interface integration with SOA composite applications, 36.3.2
	integrating Enterprise JavaBeans and SOA composite applications, 36.1, 36.1.2
	integration of Java and WSDL-based components in the same SOA composite application, 49.2
	using with spring service components, 49.2

	JavaDoc, Preface
	JAXB
	
	configuring the workflow client, 32.6.1.2.1
	support in SOA composite applications, 49.5

	JAZN
	
	storing a user's local language and time zone, 30.12
	use with identity service, 32.1.5, 32.1.5.1

	jdbc.port parameter, 3.5.3
	jdbc.sid parameter, 3.5.3
	jdbc.urlBase parameter, 3.5.3
	jdeveloper.home parameter, 3.5.3
	JMS
	
	definition, 1.4

	JMS adapter
	
	capabilities, A.3.12
	definition, 35.1.3.5
	sensor publish type, 18.1

	JMS queue
	
	sensor publish type, 18.1

	JMS topic
	
	sensor publish type, 18.1

K

	keepGlobalVariables property
	
	description, C.1.1

	knowledge module
	
	Oracle BAM, 54.2

L

	languages
	
	changing, 30.12.1
	preferences, 30.12
	setting in JAZN, 30.12
	setting in LDAP, 30.12

	large documents
	
	best practices for handling, 43.1
	importing large data sets in Oracle B2B, 43.2.8
	large numbers of mediators in composites, 43.2.7
	limitations on concurrent processing, 43.1.2
	opaque schema for processing large payloads, 43.1.2.1
	processing in Oracle B2B, 43.1.3.6
	setting a default JTA timeout for large documents, 43.1.3.1
	setting audit levels, 43.1.3.2
	streaming MTOM attachments, 43.1.2.2
	use cases for handling, 43.1.1
	using a flow with multiple sequences, 43.2.4
	using a flow with no sequence, 43.2.6
	using a flow with one sequence, 43.2.5
	using assign activities in BPEL and mediator, 43.1.3.3
	using large numbers of activities in BPEL processes (with FlowN), 43.2.3
	using large numbers of activities in BPEL processes (without FlowN), 43.2.2
	using XSLT transformations for repeating structures, 43.1.3.5
	using XSLT transformations on large payloads (for BPEL and mediator), 43.1.3.4

	last-index-within-string function
	
	description, B.1.4.10

	layouts, data object, 52.4.2
	LDAP
	
	storing a user's local language and time zone, 30.12
	used with identity service, 32.1.5, 32.1.5.1

	left-trim function
	
	description, B.1.4.11

	literal strings
	
	assigning, 6.9

	literal XML
	
	variable initialization, 6.4

	localization, worklist, 30.12
	Log window
	
	location of in Oracle JDeveloper, 4.1.1

	looking up cross reference tables, 46.5, 46.5
	
	xref
	
	lookupXRef function, 46.5.1

	lookup fields, 52.2.3
	lookupGroup function
	
	description, B.5.13.10

	lookup-table function
	
	description, B.1.1.1

	lookupUser function
	
	description, B.5.13.11

	lookupValue functions
	
	dvm
	
	lookupValue function, 44.4.1.1
	lookupValue1M function, 44.4.1.2

	lookup-xml function
	
	description, B.4.8

	lower-case function
	
	description, B.1.4.12

M

	managed.server parameter, 3.5.6
	managed.server.port parameter, 3.5.6
	management chains
	
	definition, 28.3.6.1.1
	participant lists, 28.3.6.1.1
	rule-based, 28.3.6.1.1

	ManualRuleFire web service, 56.4
	map parameters
	
	creating in transformations, 38.3.12

	map variables
	
	creating in transformations, 38.3.12

	master and detail processes
	
	creating, 15.2
	definition, 15.1
	receive signal activity, A.2.16
	signal activity, A.2.21

	matches function
	
	description, B.1.4.13

	maxOccurs attribute, 6.16, 6.16.1
	
	setting for transformations, 38.4.3

	max-value-among-nodeset function
	
	description, B.2.57.7

	mediator creation
	
	specifying operation or event subscription properties, 19.5

	mediator files
	
	.componentType, 19.2
	composite.xml, 19.2
	.mplan, 19.2
	.wsdl, 19.2

	mediator service component
	
	mediator files, 19.2

	mediator XPath extension functions, B.3
	message filtering, 60.4.4, 61.5.4
	message schemas
	
	updating, 2.3.3
	viewing, 2.3.3

	message source advanced formatting, 53.2.3
	message sources, 53.1
	MessageFilter, 60.4.4, 61.5.4
	MessageFilterFactory, 60.4.4, 61.5.4
	messages
	
	receiving, 60.4, 61.5
	rejecting, 60.4.4, 61.5.4

	MessagingClientFactory, 60.2.1
	MessagingClient.receive, 60.4.2, 61.5.2
	MessagingClient.registerAccessPoint, 60.4.1, 61.5.1
	MessagingClient.registerMessageFilter, 60.4.4, 61.5.4
	metadata
	
	service components, 25.4.2

	Metadata Service (MDS)
	
	creating a SOA-MDS connections, 41.7.3.2.1
	definition, 1.6

	MIME mapping
	
	Excel workbook, 33.1.4

	MinBPELWait property, 14.4.1
	minimum wait time
	
	MinBPELWait property, 14.4.1

	minOccurs attribute
	
	setting for transformations, 38.4.3

	minutes-from-dateTime function
	
	description, B.1.2.9

	min-value-among-nodeset function
	
	description, B.2.57.8

	modes
	
	xref
	
	populateXRefRow function, 46.4.1
	populateXRefRow1M function, 46.4.2

	modifying a mediator, 19.6
	
	modifying event subscriptions, 19.6.2
	modifying operations, 19.6.1

	modifying cross reference tables
	
	adding a column, 46.3.4

	modifying mediator event subscriptions, 19.6.2
	modifying mediator operations, 19.6.1
	month-from-dateTime function
	
	description, B.1.2.10

	MQ adapter
	
	capabilities, A.3.13
	definition, 35.1.3.6

	multilingual settings
	
	specifying in tasks, 28.3.8.2, 32.2.6

	myRole attribute
	
	definition, 8.2.2.3

N

	named templates
	
	creating, 38.3.4.3
	in functions, 38.3.4.3

	names and expressions
	
	definition, 28.3.6.1.1
	participant list, 28.3.6.1.1
	rule-based, 28.3.6.1.1

	naming conventions
	
	for BPEL projects, 4.1.1

	nonBlockingInvoke property
	
	description, C.1.1

	normalized message header properties
	
	Oracle BPEL Process Manager, H.2
	Oracle Web Services Addressing, H.3

	NOT operator, 52.2.4
	notification messages
	
	editing, 28.3.10.2

	notification services
	
	actionable emails, 32.2.7
	configuring the notification channel, 32.2.5
	custom notification headers, 32.2.14
	definition, 27.4.1
	error message support, 32.2.2
	multilingual settings, 32.2.6
	notification contents, 32.2.1
	reliability support, 32.2.3
	sending inbound and outbound attachments, 32.2.8
	sending inbound comments, 32.2.9
	sending reminders, 32.2.12
	sending secure notifications, 32.2.10
	setting automatic replies to unprocessed messages, 32.2.13
	specifying participant notification preferences, 28.3.10

	notifications
	
	allowing the end user to select the notification channels, 17.4
	configuring in Oracle JDeveloper, 17.3
	definition, 27.2.1.5
	dynamically setting email addresses and telephone numbers, 17.3.5
	email attachment support, 17.3.1.1
	email support, 17.1, 17.3.1
	formatting the email message body as HTML, 17.3.1.2
	IM support, 17.3.2
	selecting recipients by browsing the user directory, 17.3.6
	setting up, 17.2
	SMS support, 17.3.3
	voice mail support, 17.3.4

	notifications and reminders
	
	in tasks, 32.2

	numeric values
	
	assigning, 6.7

O

	onAlarm branch
	
	of pick activity, 14.2, A.2.14

	one-to-many mapping, 44.1.1.3
	one-way invocations
	
	introduction, 12.2

	oneWayDeliveryPolicy property
	
	description, C.1.1
	setting, 12.2

	one.way.returns.fault
	
	property, K.3

	onMessage branch
	
	of pick activity, 14.2, A.2.14

	operators
	
	AND operator, 52.2.4

	OR operator, 52.2.4
	Oracle Application Development Framework (ADF)
	
	binding component, 1.5.2

	Oracle Applications adapter
	
	capabilities, A.3.14
	definition, 35.1.3.7

	Oracle B2B
	
	capabilities, A.3.4
	definition, 1.5.2, 35.1.5
	properties, K.5

	Oracle BAM, 50.7
	
	definition, 1.5.2, 35.1.4
	See Oracle Business Activity Monitoring
	server connection, 51.3

	Oracle BAM Adapter, 50.1
	Oracle BAM knowledge modules, 54.2
	Oracle BAM Server
	
	creating a BPEL sensor, 50.7.1
	creating a BPEL sensor action, 50.7.2
	creating a connection to, 50.4.1

	Oracle BAM Server connection, 50.4
	Oracle BPEL Process Manager
	
	System MBean Browser properties, K.7.2

	Oracle BPM Worklist
	
	See worklist

	Oracle Business Activity Monitoring
	
	capabilities, A.3.5
	creating a BPEL sensor action for Oracle BAM Server, 50.7.2
	creating a BPEL sensor for Oracle BAM Server, 50.7.1
	creating a connection to Oracle BAM Server, 50.4.1
	definition
	integration with Oracle BPEL Process Manager sensors, 50.7
	message batching limitations, 50.7.2
	overview, 50.7

	Oracle Enterprise Manager Fusion Middleware Control Console
	
	properties, K.6

	Oracle Enterprise Repository
	
	design-time governance, A.5

	Oracle Internet Directory
	
	storing a user's local language and time zone, 30.12

	Oracle JDeveloper
	
	adapters, 4.5
	configuring notifications, 17.3
	creating sensors, 18.2
	location of Application Navigator, 4.1.1
	location of Component Palette, 4.1.1
	location of Designer window, 4.1.1
	location of History window, 4.1.1
	location of Log window, 4.1.1
	location of Process Activities, 4.1.1
	location of Property Inspector, 4.1.1
	location of Source window, 4.1.1
	location of Structure window, 4.1.1
	overview of design environment, 4.1.1
	overview of rules designer environment, 25.3.1
	transformations, 38.2

	Oracle JDeveloper project
	
	desktop integration, adding, 33.1.3

	Oracle Mediator
	
	define routing rules, 20.2
	definition, 19.1
	routing rules, 20.1
	System MBean Browser properties, K.7.3

	Oracle Mediator component creation
	
	mediator files, 19.2

	Oracle Mediator Editor, 19.2
	
	environment
	
	Application Navigator, 19.2
	History Window, 19.2
	Log Window, 19.2
	Oracle Mediator Editor, 19.2
	Property Inspector, 19.2
	Source View, 19.2
	Structure Window, 19.2

	Oracle Mediator error handling
	
	actions, 22.1.1.2
	conditions, 22.1.1.1
	fault bindings, 22.1.2
	fault policy, 22.1.1
	introduction, 22.1
	using, 22.2
	XML schema files, 22.4

	Oracle Service Bus (OSB)
	
	invocation by the direct binding service, 35.1.8, 37.3, A.3.7

	Oracle Service Registry
	
	configuring a SOA project to invoke a service from the registry, A.4.3
	configuring the inquiry URL, UDDI service key, and endpoint address for runtime, A.4.4
	creating a connection to, A.4.2
	dynamically resolving the SOAP endpoint location, A.4.3.1
	dynamically resolving the WSDL endpoint location, A.4.3.2
	publishing and browsing, A.4
	System MBean Browser properties, K.7.5

	Oracle SOA Suite
	
	definition, 1.3

	Oracle User Messaging Service (UMS)
	
	configuring, 59
	definition, 17.1

	oracle.composite.faultBindingFile
	
	property, 11.4, K.3

	oracle.composite.faultPolicyFile
	
	property, 11.4, K.3

	oracle.home parameter, 3.5.6
	oracle.webservices.local.optimization
	
	property, K.3

	OrderApprovalHumanTask project
	
	described, 3.3.1

	OrderBookingComposite composite
	
	business rules, used in, 3.4

	OrderBookingComposite project, 3.3.1
	
	flow described, 3.4

	OrderProcessor BPEL process, 3.4
	OrderSDOComposite project, 3.3.1
	organizing data objects, 52.5
	org.quartz.scheduler.idleWaitTime
	
	properties, K.4

	overview, 18.1
	OXM
	
	support in SOA composite applications, 49.5

P

	packaging
	
	of artifact files for deployment, 41.3

	parallel
	
	definition, 28.3.6.2
	workflow participant type, 28.3.6.2

	parallel blocks
	
	definition, 28.3.6

	parallel flows
	
	definition, 9

	parseEscapedXML function
	
	description, 6.17, B.2.47

	partial processing
	
	BPEL process as the client, 5.9
	BPEL process as the service, 5.9
	definition, 5.9

	participant assignments
	
	definition, 27.2.1.1.3

	participant lists
	
	rulesets, 28.3.6.1.1
	value-based management chains, 28.3.6.1.1
	value-based names and expressions, 28.3.6.1.1

	participant types
	
	FYI assignee, 27.2.1.1.2, 27.2.1.1.2, 28.3.6.4
	parallel, 27.2.1.1.2, 28.3.6.2
	serial, 27.2.1.1.2, 28.3.6.3
	single approver, 27.2.1.1.2, 28.3.6.1

	partitions
	
	ant scripts, 41.7.5.2.17
	cannot deploy the same composite with a human workflow into multiple partitions, 41.7.1.1.3, 41.7.5.2.4
	creating, 41.7.1.1.3
	default partition, 41.7.1.1.3
	deployment in, 41.7.1.1.3, 41.7.1.1.3
	in the Fusion Order Demo, 3.5.6
	selecting a partition during deployment, 41.7.1.1.3

	partner links
	
	adding to an asynchronous service, 8.2.1.1
	capabilities, A.3.1
	creating, 4.4
	definition, 4.3
	in asynchronous services, 8.2.1.1, 8.2.2.2, 8.2.2.3
	in synchronous services, 7.1
	Oracle BAM, 50.6.1
	overview, 4.3
	specifying a WSDL file, 4.3
	using a dynamic partner link at runtime, 8.3

	partnerLinkType
	
	definition, 8.2.2.2

	partnerRole attribute
	
	definition, 8.2.2.3

	PartnerSupplierComposite project, 3.3.1
	passThroughHeader
	
	property, K.3

	patterns
	
	of interaction between a BPEL process and another application, 5, 24

	permissions
	
	copying, 52.3.3
	data objects, 52.3
	setting on folders, 52.5.3

	phase activity
	
	BPEL scope creation, 48.2.2
	business rule service component creation, 48.2.2
	capabilities, A.2.13
	mediator service component creation, 48.2.2
	using with two-layer business process management, 48.2

	pick activity
	
	adding correlations on an OnMessage branch, A.2.14
	capabilities, A.2.14
	code example, 14.2.2
	condition branches, 14.2
	for timeouts, 14.1
	onAlarm branch, 14.2
	onMessage branch, 14.2
	throwing faults with assertion conditions, 11.12

	policies
	
	attaching, 40.2
	definition, 40.1
	overriding client property values, 40.2.2.1
	overriding policy configuration property values, 40.2.2
	overriding server property values, 40.2.2.2
	supported categories, 40.1

	populating cross reference tables, 46.4
	
	xref
	
	populateXRefRow1M function, 46.4.2

	portlets
	
	See task list portlets

	ports
	
	in synchronous services, 7.1

	portType
	
	definition, 8.2.2.1

	position function
	
	description, 6.16.1

	Process Activities
	
	location of in Oracle JDeveloper, 4.1.1

	process initiation
	
	in BPEL test suites, 42.2.1

	processes
	
	naming conventions, 4.1.1

	processXQuery function
	
	description, B.2.49

	processXSLT function
	
	description, B.2.50
	example, 17.3.1.2

	processXSQL function
	
	description, B.2.52

	projects
	
	naming conventions, 4.1.1
	ViewController, 33.1.3

	properties
	
	adapter rejected messages, K.4
	completionPersistPolicy, C.1.1, K.1
	composite.xml file properties, K.3
	cross references, K.6.5
	deployment descriptors overview, K.1
	endpointURI, K.3
	fault policy, K.4
	globalTxMaxRetry, C.1.1, K.1
	globalTxRetryInterval, C.1.1, K.1
	human workflow notifications, K.6.3
	human workflow System MBean Browser, K.7.4
	human workflow task service, K.6.3
	inMemoryOptimization, C.1.1, K.1
	JCA adapter normalized message header properties overview, K.2.1
	keepGlobalVariables, C.1.1, K.1
	nonBlockingInvoke, C.1.1, K.1
	normalized message header properties overview, K.2
	normalized message properties, H
	oneWayDeliveryPolicy, 12.2, C.1.1, K.1
	one.way.returns.fault, K.3
	Oracle B2B, K.5, K.6.6
	Oracle B2B normalized message header properties overview, K.2.3
	Oracle BPEL Process Manager, K.6.2
	Oracle BPEL Process Manager normalized message header properties overview, K.2.2
	Oracle BPEL Process Manager System MBean Browser, K.7.2
	Oracle Enterprise Manager Fusion Middleware Control Console, K.6
	Oracle Mediator, K.6.4
	Oracle Mediator System MBean Browser, K.7.3
	Oracle Service Registry, K.7.5
	Oracle Web Services Addressing normalized message header properties overview, K.2.2
	oracle.composite.faultBindingFile, 11.4, K.3
	oracle.composite.faultPolicyFile, 11.4, K.3
	oracle.webservices, K.3
	org.quartz.scheduler.idleWaitTime, K.4
	passThroughHeader, K.3
	retryCount, K.4
	retryInterval, K.4
	rolesAllowed, K.3
	sensorActionLocation, C.1.1, K.1
	sensorLocation, C.1.1, K.1
	service and reference binding components, K.6.7
	SOA Infrastructure, K.6.1
	SOA Infrastructure System MBean Browser, K.7.1
	streamIncomingAttachments, K.3
	streamOutgoingAttachments, K.3
	System MBean Browser, K.7
	transaction, 12.1.1, 12.1.1.1, 12.1.1.2, C.1.1, K.1
	uddiCacheLifetime, K.7.5
	validateXML, C.1.1, K.1

	Properties tab
	
	in activities, A.2.1

	property aliases
	
	creating for correlation sets, 8.5.1.6

	Property Inspector
	
	location of in Oracle JDeveloper, 4.1.1

	public views
	
	sensors, D.1, D.2

	publish types
	
	creating a custom publisher, 18.2.4
	custom, 18.1
	database, 18.1
	definition, 18.1
	JMS Adapter, 18.1
	JMS queue, 18.1
	JMS topic, 18.1

	purge script
	
	deleting instances and rejected messages, 43.3.1

Q

	Qname
	
	fault name, 11.3

	qualifier, 44.1.1.1
	
	qualifier order, 44.1.1.2

	qualifier order, 44.1.1.2
	query-database function
	
	description, B.1.1.2

R

	readBinaryFromFile function
	
	description, B.2.53

	readFile function
	
	description, B.2.54
	reading files from absolute directory paths, B.2.54

	receive activity
	
	adding to an asynchronous service, 8.2.1.3
	associating with correlation sets, 8.5.1.5
	capabilities, A.2.15
	create instance, 8.2.2.5
	creating new instances, 8.2.2.6
	in asynchronous services, 8.2.1.3, 8.2.2.5
	setting timeouts for request-response operations, 14.3
	throwing faults with assertion conditions, 11.12

	receive entity activity
	
	capabilities, A.2.17

	receive signal activity
	
	capabilities, A.2.16
	in master and detail processes, 15.2.1

	receiving a message, 60.4, 61.5
	references
	
	adding, 2.4.1
	definition, 1.5.2, 1.6, 2.3.2
	wiring, 2.5.2

	regular expressions
	
	ICommand, G.6

	rejecting messages, 60.4.4, 61.5.4
	reminders
	
	for task notifications, 32.2.12

	remoteFault
	
	definition, 11.3.2.2

	renaming data objects, 52.8
	renaming folders, 52.5.5
	renewing
	
	tasks, 28.3.9

	repeating elements
	
	in transformations, 38.3.6.3

	replayFault
	
	definition, 11.3.2.3

	reply activity
	
	capabilities, A.2.18

	reporting schema
	
	for database publish type of sensors, D.2.1

	reports
	
	correcting memory errors when generating for transformations, 38.4.2.1
	customizing sample XML generation for transformations, 38.4.3
	generating for transformations, 38.4.2
	worklist, 30.11.1

	resequencing
	
	BestEffort resequencer, 23.2.3
	configuring, 23.3
	configuring the strategy, 23.3.2
	definition, 23.1
	determining the level, 23.3.1
	FIFO resequencer, 23.2.2
	groups and sequence IDs, 23.1.1
	identification of groups and sequence IDs, 23.1.2
	limitations, 23.4
	order types, 23.2
	standard resequencer, 23.2.1

	resource bundles, 32.5
	
	class loading, 32.4
	for displaying tasks in different languages, 28.3.8.2, 32.2.6

	Resource Palette
	
	introduction, 2.1.2
	using, 2.3.2

	resourcebundle.jar file, 33.1.4
	retryCount
	
	properties, K.4

	retryInterval
	
	properties, K.4

	revisions
	
	activating, 2.8.1
	invoking the default revision, 2.4.4
	retiring, 2.8.1
	setting the default revision, 2.8.1, 2.8.1
	turning off, 2.8.1
	turning on, 2.8.1
	undeploying, 2.8.1

	right-trim function
	
	description, B.1.4.14

	roles
	
	for partner links in asynchronous services, 8.2.2.2

	rolesAllowed
	
	property, K.3

	routing policies
	
	available types, 28.3.7
	business rules, 28.3.7
	completing parent subtasks of early completing subtasks, 28.3.7.1.4
	enabling early completion in parallel subtasks, 28.3.7.1.3
	external routing, 28.3.7, 28.3.7.3
	routing a task to all participants in the order specified, 28.3.7
	selecting, 28.3.7

	routing rules, 20.1
	
	define, 20.2
	defining, 20.2
	filter expression, 20.2.2.7
	introduction, 20.1

	routing slip
	
	definition, 28.3.6.1.2

	RPC styles
	
	differences with document-literal styles in WSDL files, 6, 6.18

	rulesets
	
	management chains, 28.3.6.1.1
	names and expressions, 28.3.6.1.1
	participant lists, 28.3.6.1.1

	runtime config service
	
	definition, 27.4.1
	Enterprise JavaBeans, SOAP, and Java support, 32.1.1
	supported task operations, 32.1.9
	WSDL file location, 32.1.1

	runtime exceptions, 11.3
	runtime faults
	
	definition, 11.3, 11.3.2
	example, 11.5.1

	RuntimeFault.wsdl file
	
	importing into a process, 11.5.1

S

	samples
	
	business events, 39
	business rules, 25.7
	correlated events, 8.5
	cross references, 46.7
	data sequence manipulation, 6.16
	domain value maps, 44.6
	dynamic assignment functions, 32.3.1.3
	email notifications, 29.7.1
	entity variable, 6.2
	Hello World, 7
	human task, 27.3.3, 28.3.7.2.4, 28.3.14.1.2
	internationalization of attribute labels, 32.1.9.1
	iterative design, 28.3.7.2.4
	mediator, 44.5
	mediator asynchronous response, 20.4
	mediator routing messages, 20.3
	notifications, 17.3.1.1
	Oracle SOA Suite, 1.8
	transformations, 38.3.4.4
	two-layer business process management, 48.4
	workflow event callbacks, 28.3.14.1.2

	SAR file
	
	definition, 1.6.3, 41.3
	deploying, 41.7.1.1.2

	SCA See Service Component Architecture
	sca-build.properties file, 3.5.6
	schema files
	
	creating a transformation map file from imported schemas, 38.2.2
	replacing in the XSLT Mapper, 38.3.16

	schemas
	
	updating message schemas, 2.3.3
	viewing message schemas, 2.3.3

	scope activity
	
	adding descriptive notes and images, 11.9.2
	capabilities, A.2.19
	creating, 11.9.3
	fault handling, 11.9
	using a fault handler in a scope activity, 11.9.5

	scope name
	
	specifying in human task activities, 28.4.4.1

	SDO
	
	See Service Data Objects (SDO)

	seconds-from-dateTime function
	
	description, B.1.2.11

	security filters
	
	copying, 52.6.2
	on data objects, 52.6

	security model
	
	for workflow services, 32.1.2
	in SOAP web services, 32.1.2.1
	workflow context on behalf of a user, 32.1.2.2

	seed.bam.do parameter, 3.5.6
	seedBAMServerObjects ant script, 3.5.6, 3.5.6
	seedDemoUsers ant script, 3.5.6
	seedFodJmsResources ant script, 3.5.6
	sensor actions
	
	configuring, 18.2.2
	creating a BPEL sensor action for Oracle BAM Server monitoring, 50.7.2
	viewing metadata, 18.3
	XSD schema file, D.3

	sensor data
	
	persisting in a reporting schema, D.2.1

	sensorActionLocation property
	
	description, C.1.1

	sensorLocation property
	
	description, C.1.1

	sensors, 18.1, 50.7
	
	activity sensors, 18.1
	BPEL reporting schema, D.2.1
	configuring, 18.2.1
	creating a BPEL sensor for Oracle BAM Server to monitor, 50.7.1
	creating a connection to Oracle BAM Server, 50.4.1
	creating a custom publish type, 18.2.4
	creating in Oracle JDeveloper, 18.2
	definition, 18.1
	evaluation time, 18.2.1
	fault sensors, 18.1
	integration with Oracle Business Activity Monitoring, 50.7
	public views, D.1, D.2
	publish types, 18.1
	sensor actions XSD schema file, D.3
	variable sensors, 18.1
	viewing metadata, 18.3

	sequence activity
	
	capabilities, A.2.20

	sequence-next-val function
	
	description, B.1.1.3

	sequential blocks
	
	definition, 28.3.6

	sequential list of approvers
	
	configuring, 28.3.6.3

	serial
	
	definition, 28.3.6.3
	workflow participant type, 28.3.6.3

	server connection, Oracle BAM, 51.3
	server.password parameter, 3.5.6
	server-setup-seed-deploy-test ant script, 3.5.6
	server.targets parameter, 3.5.6
	server.user parameter, 3.5.6
	Service Component Architecture
	
	definition, 1.4
	described, 1.5

	service components
	
	adding, 2.2.1, 2.2.2
	available types, 1.5.1
	BPEL process, 1.5.1, 4.1
	business rules, 1.5.1, 25.4.2
	definition, 1.5.1
	deleting, 2.2.2
	editing, 2.2.3
	human task, 1.5.1, 28
	introduction, 2.2.1, 2.3.1, 2.4.1
	mediator, 1.5.1, 19.1
	metadata, 25.4.2
	spring, 1.5.1
	web service, 25.4.2
	wiring, 2.5.1, 2.5.2

	Service Data Objects (SDO), 6.2
	
	creating Enterprise JavaBeans integration with SOA composite applications, 36.3.1
	definition, 1.4
	
	converting from XML to SDO, 6.3.2
	declaring SDO-based variables, 6.3.1

	embedding with bpelx
	
	exec, 13.5

	entity variable support, 6.2.1
	passing parameters between Enterprise JavaBeans and SOA composite applications, 36.1, 36.1.1
	using in Enterprise JavaBeans Java interfaces
	
	using in an Enterprise JavaBeans application, 36.2

	using standalone SDO-based variables, 6.3

	service engines
	
	definition, 1.6
	described, 1.6.2
	human workflow, 27.4.3

	Service Infrastructure
	
	definition, 1.6

	service names
	
	in adapters, 4.5

	Service-Oriented Architecture (SOA)
	
	definition, 1.1

	services
	
	adding, 2.3.1, 2.3.5
	ADF-BC, 1.5.2, 35.1.6, A.3.2
	AQ adapter, A.3.3
	automatically exposing as a SOAP service, 2.3.1
	database adapter, A.3.6
	definition, 1.2, 1.5.2, 1.6, 2.3.2
	deleting, 2.3.5
	direct binding service, 35.1.8, 37, A.3.7
	EJB, 35.1.7
	Enterprise JavaBeans (EJB) service, A.3.8
	file adapter, A.3.9
	FTP adapter, A.3.10
	HTTP binding, 35.1.2, A.3.11
	JMS adapter, A.3.12
	MQ adapter, A.3.13
	Oracle Applications adapter, A.3.14
	Oracle B2B, A.3.4
	Oracle Business Activity Monitoring, A.3.5
	overview, A.3
	partner link, A.3.1
	selecting a WSDL, 2.3.2
	socket adapter, A.3.15
	third party adapter, A.3.16
	web service, A.3.17
	wiring, 2.5.1

	servlet
	
	adfdiRemote, 33.1.4

	setDomainEnv.cmd file, 3.2.3
	setDomainEnv.sh file, 3.2.3
	setting folder permissions, 52.5.3
	setting up, 32.2.7
	signal activity
	
	capabilities, A.2.21
	in master and detail processes, 15.2.1

	single approver
	
	configuring, 28.3.6.1
	definition, 28.3.6.1
	workflow participant type, 28.3.6.1

	Skip Condition tab
	
	bypassing execution of activities, 10.4.1
	in activities, A.2.1

	SMS activity
	
	capabilities, A.2.22
	notifications support, 17.3.3

	SOA Composer
	
	accessing, 45.1.1
	committing changes at runtime, 45.5
	definition, 45.1
	detecting conflicts among concurrent users, 45.6
	editing domain value maps at runtime, 45.3
	saving domain value maps at runtime, 45.4
	SOADesigner role required to access metadata, 45.1.1
	viewing domain value maps at runtime, 45.2

	SOA composite applications
	
	activating, 2.8.1
	customizing, 16.1
	deploying a single composite, 41.7.1
	deploying an existing archive, 41.7.4
	deploying multiple composites, 41.7.2
	deploying shared metadata across composites, 41.7.3
	deployment, 2.8.1
	interacting with Enterprise JavaBeans, 36.1, 36.1
	invoking other composites, 2.7.1
	invoking the default revision, 2.4.4
	retiring, 2.8.1
	setting as the default revision, 2.8.1
	shutting down, 2.8.1
	starting up, 2.8.1
	testing, 2.8
	undeploying, 2.8.1

	SOA Governance
	
	Oracle Enterprise Repository, A.5

	SOA Infrastructure
	
	properties, K.6.1
	System MBean Browser properties, K.7.1

	SOA XPath extension functions, B.1
	soa.only.deployment parameter, 3.5.6
	SOAP
	
	definition, 1.4
	security in SOAP web services, 32.1.2.1
	support in workflow services, 32.1.1
	using MIME/DIME attachments, 6.20

	SOAP headers, 6.19
	
	receiving in BPEL, 6.19.1
	sending in BPEL, 6.19.2

	SOAP services
	
	performance issues, 13.2.1
	using Java code, 13.2.1

	SOAP-encoded arrays, 6.16.2
	soa.server.oracle.home parameter, 3.5.6
	socket adapter
	
	capabilities, A.3.15
	definition, 35.1.3.8

	Source window
	
	location of in Oracle JDeveloper, 4.1.1

	sources
	
	message, 53.1

	specifying operation or event subscription properties, 19.5
	
	validate syntax (XSD), 19.5

	spring
	
	contents of componentType file, 49.3.1
	contents of spring context file, 49.3.1
	creating a spring service component in Oracle JDeveloper, 49.3
	EXM files, 49.5.1
	in Fusion Order Demo, 3.3.1, 49.4
	integration
	
	of Java and WSDL-based components in the same composite, 49.2

	introduction, 49.1
	JAXB and OXM support, 49.5
	use of callbacks, 49.2.2

	square-root function
	
	description, B.2.57.9

	stages
	
	definition, 28.3.6

	standard faults
	
	definition, 11.2

	Store Front module
	
	deploying, 3.5.5
	fod.application.issoaenabled property, 3.5.4
	placing orders, 3.6

	StoreFront module
	
	StoreFrontService project, 3.1.1
	StoreFrontUI project, 3.1.1

	StoreFrontService project, 3.1.1
	StoreFrontUI project, 3.1.1
	streamIncomingAttachments
	
	property, K.3

	streamOutgoingAttachments
	
	property, K.3

	string functions in calculations, 52.2.4
	strings
	
	concatenating, 6.10
	converting to an XML element, 6.17

	Structure window
	
	location of in Oracle JDeveloper, 4.1.1

	subtract-dayTimeDuration-from-dateTime function
	
	description, B.1.2.12

	switch activity
	
	capabilities, A.2.23
	in conditional branching logic, 10.2

	synchronous callbacks, 7
	
	operational concepts, 7.2
	SyncMaxWaitTime property, 7.3

	synchronous interactions
	
	BPEL process as the client, 5.2
	BPEL process as the service, 5.2
	definition, 5.2
	returning faults, 11.8

	synchronous processes
	
	calling a one-way mediator, 7.4

	synchronous receiving, 60.4.2, 61.5.2
	synchronous requests
	
	not timing out, 7.3.2

	synchronous services
	
	callbacks with the partner link and invoke activity, 7.1
	calling, 7.2
	invoke activities, 7.2.2.3
	ports, 7.1

	SyncMaxWaitTime property
	
	in synchronous callbacks, 7.3
	synchronous requests not timing out, 7.3.2

	System MBean Browser
	
	properties, K.7

T

	task action time limits
	
	specifying, 28.3.6.1.2, 28.3.6.2.3, 28.3.6.3.2

	task admin
	
	definition, 27.2.1.3

	task assignments
	
	dynamic, 27.2.1.2
	restricting, 28.3.13
	rule-based, 27.2.1.2
	static, 27.2.1.2

	task category
	
	specifying, 28.3.4.5

	task conditions
	
	abruptly completing a condition, 28.3.7.1.2

	task deadlines
	
	definition, 27.2.1.4

	task display form
	
	creating, 29.4, 29.4.4, 29.4.5
	definition, 28.2.3, 29.1
	deploying, 29.8, 29.8.2
	displaying, 29.9

	.task file
	
	associating with a BPEL process, 28.2.2, 28.4.1
	definition, 28.2.1, 28.3.2

	task flow
	
	ADF
	
	task display form for human tasks, 29.3

	deploying, 41.7.1.1.3

	task history
	
	specifying in human task activities, 28.4.4.6

	task initiator
	
	definition, 27.2.1.3
	specifying, 28.4.3.2

	task instance attributes, 32.1.11
	task list portlets
	
	assignment filter constraints, 34.4.1
	configuring EJB identity propagation, 34.2.3.2
	configuring the identity store, 34.2.3.3
	connecting the task list producer to the remote SOA server, 34.2.3
	creating a portlet consumer application for embedding the task list portlet, 34.3
	defining the foreign JNDI provider, 34.2.3.1
	deploying the task list producer application on a portlet server, 34.2
	deployment prerequisites, 34.2.1
	example of file containing all column constraints, 34.4.2
	introduction, 34.1
	passing worklist portlet parameters, 34.4
	securing the task list portlet producer application, 34.2.4
	specifying the inbound security policy, 34.2.5

	task metadata service
	
	definition, 27.4.1
	Enterprise JavaBeans, SOAP, and Java support, 32.1.1
	supported task operations, 32.1.6
	WSDL file location, 32.1.1

	task notification
	
	editing notification messages, 28.3.10.2
	making email actionable, 32.2.7
	notifying recipients of changes to task status, 28.3.10.1
	overview, 28.3.10
	reminders, 32.2.12
	securing notifications, 32.2.10
	setting up reminders, 28.3.10.3
	task attachments with email notifications, 32.2.8

	task outcome
	
	specifying, 28.3.4.3

	task owner
	
	definition, 27.2.1.3
	specifying by browsing the user directory, 28.3.4.6.1
	specifying in human task activities, 28.4.4.2
	specifying through XPath expressions, 28.3.4.6.2

	task parameters
	
	specifying, 28.4.3.3

	task participants
	
	allowing all participants to invite other participants, 28.3.7.1.1
	assigning task participants by name or expression, 28.3.6.1.1, 28.3.7.4
	bypassing, 28.3.6.1.4, 28.3.6.2.5, 28.3.6.3.4
	dynamically assigning with the assignment service, 32.3.2
	inviting additional task participants, 28.3.6.1.3, 28.3.6.2.4, 28.3.6.3.3
	sharing attachments and comments, 28.3.6.2.1
	specifying, 28.3.6

	task payload data structure
	
	specifying, 28.3.5

	task priority
	
	specifying, 28.3.4.4, 28.4.3.2

	task query service
	
	definition, 27.4.1
	Enterprise JavaBeans, SOAP, and Java support, 32.1.1
	supported task operations, 32.1.4
	WSDL file location, 32.1.1

	task reminders
	
	setting up, 28.3.10.3

	task report service
	
	Enterprise JavaBeans, SOAP, and Java support, 32.1.1
	supported task operations, 32.1.8
	WSDL file location, 32.1.1

	task reviewer
	
	definition, 27.2.1.3

	task routing service
	
	definition, 27.4.1

	task service
	
	definition, 27.4.1
	Enterprise JavaBeans, SOAP, and Java support, 32.1.1
	supported task operations, 32.1.3
	WSDL file location, 32.1.1

	task stages
	
	definition, 27.2.1.7.3

	task title
	
	specifying, 28.4.3.1

	tasks
	
	escalating, renewing, or ending a task, 28.3.9
	notifications and reminders, 32.2

	TCP tunneling
	
	setting up a TCP listener for asynchronous services, 8.4.1.1.2
	setting up a TCP listener for synchronous services, 8.4.1.1.1

	terminate activity
	
	capabilities, A.2.24
	definition, 11.11
	fault handling, 11.11

	test suites
	
	components, 42.2
	creating, 42.3
	definition, 42.1.2
	limitations on multibyte character names, 42.3

	third party adapter
	
	capabilities, A.3.16
	definition, 35.1.3.9

	thread.sleep()
	
	using in a Java embedding activity, 13.4.2

	throw activity
	
	capabilities, A.2.25
	throwing internal faults, 11.7

	time
	
	assigning with a function, 6.12

	time dimensions, 52.7.2
	time duration format, 14.2
	time stamp field, 52.2.5
	time zones, changing, 30.12.4
	Timeout tab
	
	in activities, 14.3, A.2.1
	setting for request-response operations in receive activities, 14.3

	timeout values
	
	specifying, 7.3

	timeouts
	
	event added to the audit trail during a timeout, 14.3.5
	increasing the JTA transaction timeout value, 43.1.3.1
	of BPEL processes, 14.1
	recoverable timeout activities during a server restart, 14.3.6
	setting for request-response operations in receive activities, 14.3, 14.3.7
	setting relative from when the activity is invoked, 14.3.1
	settings as an absolute date time, 14.3.2
	settings computed dynamically with an XPath expression, 14.3.3
	SyncMaxWaitTime property, 7.3
	using pick activities, 14.1
	using the wait activity, 14.4

	timezone-from-dateTime function
	
	description, B.1.2.13

	title
	
	specifying in a human task, 28.3.4.1

	top-down design approach, 1.7
	trackable fields
	
	composite sensors, 47.1

	transaction property
	
	description, C.1.1
	setting, 12.1.1, 12.1.1.1, 12.1.1.2

	transaction semantics
	
	in BPEL processes, 12.1

	transaction timeouts
	
	increasing the JTA transaction timeout value, 43.1.3.1

	transform activity
	
	capabilities, A.2.26
	creating, 38.2

	transformations
	
	adding XSLT constructs, 38.3.6
	auto mapping, 38.3.7
	auto mapping with confirmation, 38.3.7.1
	chaining functions, 38.3.4.2
	correcting memory errors, 38.4.2.1
	creating, 38.2
	creating a map file from imported schemas, 38.2.2
	creating a new map file, 38.2.1
	creating an XSL map from an XSL style sheet, 38.2
	customizing sample XML generation, 38.4.3
	dictionaries, 38.3.10
	editing functions, 38.3.4.1
	editing XPath expressions, 38.3.5
	error when mapping duplicate elements, 38.1.2
	functions, 38.3.4
	functions prefixed with xp20 or orcl, 38.3.4
	generating optional elements, 38.4.3
	generating reports, 38.4.2
	ignoring elements, 38.3.15
	linking source target nodes, 38.3.2
	map parameter and variable creation, 38.3.12
	named templates in functions, 38.3.4.3
	repeating elements, 38.3.6.3
	replacing schemas, 38.3.16
	rules, 38.1.2
	searching source and target nodes, 38.3.13
	setting constant values, 38.3.3
	setting the maximum depth, 38.4.3
	setting the number of repeating elements, 38.4.3
	testing the map file, 38.4
	using arrays, 38.3.6.3
	using the XSLT Mapper, 38.3
	using XQuery and XSLT, 6.1.2
	viewing unmapped target nodes, 38.3.9
	xsl choose conditional processing, 38.3.6.2
	xsl if conditional processing, 38.3.6.1

	translateFromNative function
	
	description, B.2.57.10

	translateToNative function
	
	description, B.2.57.11

	troubleshooting
	
	deployment, 41.9.4

	tuning
	
	general recommendations, 43.1.3

	two-layer business process management
	
	definition, 48
	dynamic routing decision table, 48.3
	phase activity, 48.2
	use case, 48.4

U

	UDDI See Oracle Service Registry
	uddiCacheLifetime
	
	property, K.7.5

	undeployment
	
	SOA composite applications, 2.8.1

	Unicode support, 2.1.1
	upper-case function
	
	description, B.1.4.15

	user directory
	
	selecting notification recipients by browsing the directory, 17.3.6

	user metadata service
	
	definition, 27.4.1
	Enterprise JavaBeans, SOAP, and Java support, 32.1.1
	supported task operations, 32.1.7
	WSDL file location, 32.1.1

	user notification activity
	
	capabilities, A.2.27

	user notifications
	
	definition, 17.4

	using domain value maps, 44.4
	using domain value maps a transformation, 44.4.2
	using error handling, 22.2
	using lookupValue functions, 44.4.3
	using Oracle Mediator error handling, 22.2

V

	validate activity
	
	capabilities, A.2.28

	validate syntax (XSD), 19.5
	validate syntax (XSD) property, 19.5
	validateXML property
	
	description, C.1.1

	validation
	
	of XML data with bpelx
	
	validate, 6.15

	when loading a process diagram, A.6

	variable sensors
	
	definition, 18.1

	variables
	
	complex type, 6.6
	copying data between, 6.5
	initializing with expression constants, 6.4
	initializing with literal XML, 6.4

	ViewController project, 33.1.3
	voice activity
	
	capabilities, A.2.29

	voice mail
	
	dynamically setting telephone numbers, 17.3.5
	notifications support, 17.3.4

W

	wait activity
	
	capabilities, A.2.30
	definition, 14.4
	setting an expiration time, 14.4

	web service
	
	capabilities, A.3.17
	connecting with SOAP over HTTP, 1.5.2
	DataObjectDefinition, 56.3
	DataObjectOperations, 56.2
	ICommand, 56.5
	ManualRuleFire, 56.4
	service component, 25.4.2
	WS-Atomic transactions support, 35.1.1.1
	WSDL files, 25.4.2

	WebLogic Fusion Order Demo application
	
	B2BX12OrderGateway project, 3.3.1
	bin project, 3.3.1
	composite.xml file, 3.3.2
	CreditCardAuthorization project, 3.3.1
	deploying, 3.5.6, 3.5.6
	ExternalLegacyPartnerSupplierEjb project, 3.3.1
	OrderApprovalHumanTask project, 3.3.1
	OrderBookingComposite project, 3.3.1
	OrderSDOComposite project, 3.3.1
	overview, 3.3
	PartnerSupplierComposite project, 3.3.1
	processing described, 3.4
	projects in, 3.3.1
	setting up, 3.2
	viewing in Oracle JDeveloper, 3.3

	web.xml file, 33.1.4, 33.1.4
	wfDynamicGroupAssign function
	
	description, B.5.11

	wfDynamicUserAssign function
	
	description, B.5.12

	while activity
	
	capabilities, A.2.31
	in conditional branching logic, 10.3

	wires
	
	definition, 1.5.3
	deleting, 2.5.3
	using, 2.5.1
	wiring a service component and reference, 2.5.2

	WLST utility
	
	creating a configuration plan, 41.6.1.5
	deployment with, 41.7.5.1

	WordML style sheets
	
	using for attachments, 28.3.8.1

	workflow context
	
	creating on behalf of a user, 32.1.2.2

	workflow functions
	
	overview, 32.1

	workflow service clients, 31.3
	
	interface, 31.3.1

	workflow services
	
	abruptly completing a condition, 28.3.7.1.2
	actionable emails, 32.2.7
	allowing all participants to invite other participants, 28.3.7.1.1
	assigning task participants by name or expression, 28.3.6.1.1, 28.3.7.4
	assignment service configuration, 32.3
	associating the human task activity with a BPEL process, 28.4.1
	associating the human task definition with a BPEL process, 28.2.2
	bypassing task participants, 28.3.6.1.4, 28.3.6.2.5, 28.3.6.3.4
	editing notification messages, 28.3.10.2
	Enterprise JavaBeans references, 31.7
	Enterprise JavaBeans support, 32.1.1
	escalate after policy, 28.3.9.5
	escalating, renewing, or ending a task, 28.3.9
	escalation and expiration policy overview, 28.3.9.1, 28.3.9.1
	escalation rules, 28.3.9.6
	expire after policy, 28.3.9.3
	functions, B.5
	
	clearTaskAssignees, B.5.1
	createWordMLDocument, B.5.2
	getNotificationProperty, B.5.3
	getNumberOfTaskApprovals, B.5.4
	getPreviousTaskApprover, B.5.5
	getTaskAttachmentByIndex, B.5.6
	getTaskAttachmentByName, B.5.7
	getTaskAttachmentContents, B.5.8
	getTaskAttachmentsCount, B.5.9
	getTaskResourceBindingString, B.5.10
	wfDynamicGroupAssign, B.5.11
	wfDynamicUserAssign, B.5.12

	FYI assignee task participant, 28.3.6.4, 28.3.6.4
	group voting details, 28.3.6.2.1
	identification key, 28.4.4.3
	identity service, 27.4.1
	including the task history of other tasks, 28.4.4.6
	inviting additional task participants, 28.3.6.1.3, 28.3.6.2.4, 28.3.6.3.3
	Java support, 32.1.1
	multilingual settings, 28.3.8.2, 32.2.6
	never expire policy, 28.3.9.2
	notification contents, 32.2.1
	notification preferences, 28.3.10
	notification service, 27.4.1, 32.2.5
	notifications, 32.2
	notifying recipients of changes to task status, 28.3.10.1
	overview, 32.1
	parallel task participant, 28.3.6.2
	renew after policy, 28.3.9.4
	routing slip
	
	definition, 28.3.6.1.2

	runtime config service, 27.4.1
	scope name and global task variable name, 28.4.4.1
	securing notifications, 32.2.10
	security model, 32.1.2, 32.1.2.1
	serial task participant, 28.3.6.3, 28.3.6.3
	setting up reminders, 28.3.10.3
	sharing attachments and comments with task participants, 28.3.6.2.1
	single approver task participant, 28.3.6.1
	SOAP support, 32.1.1
	specifying a task initiator and task priority, 28.4.3.2
	specifying a task title, 28.4.3.1
	specifying callback classes, 28.3.14.1
	specifying task parameters, 28.4.3.3
	support for identity service, 32.1.5
	task attachments with email notifications, 32.2.8
	task category, 28.3.4.5
	task display form, 28.2.3, 29.1
	.task file
	
	definition, 28.2.1, 28.3.2

	task metadata service, 27.4.1
	task notifications, 32.2
	task outcome, 28.3.4.3
	task owner, 28.4.4.2
	task owner specification through the user directory, 28.3.4.6.1
	task owner specification through XPath expressions, 28.3.4.6.2
	task participants, 28.3.6
	task payload data structure, 28.3.5
	task priority, 28.3.4.4
	task query service, 27.4.1
	task routing and customization in BPEL callbacks, 28.3.15
	task routing service, 27.4.1
	task service, 27.4.1
	task title, 28.3.4.1
	time limits for acting on tasks, 28.3.6.1.2, 28.3.6.2.3, 28.3.6.3.2
	user metadata service, 27.4.1
	viewing BPEL callbacks, 28.4.5.1
	WordML style sheets in attachments, 28.3.8.1

	worklist
	
	acting on tasks, 30.4.3
	acting on tasks that require a digital signature, 30.4.4
	administration functions, 30.8
	approving tasks, 30.5
	assignment rules for tasks with multiple assignees, 30.7.3
	changing the display, 30.8.2
	creating a subtask, 30.3.5
	creating a ToDo list, 30.3.4
	creating and customizing worklist views, 30.3.2
	creating group rules, 30.7.2
	creating user rules, 30.7.1
	customizing the task status chart, 30.3.3
	definition, 30.1
	filtering tasks, 30.3.1
	logging in, 30.2
	managing messaging channels, 30.9.3
	managing messaging filters, 30.9.4
	managing rules, 30.8.1
	mapping flex fields, 30.10.1
	messaging filter rules, 30.9.1
	reports, 30.11, 30.11.1
	rule actions, 30.9.2
	setting a vacation period, 30.6
	setting rules, 30.7
	specifying notification settings, 30.9
	system actions, 30.4.1
	Task Details page, acting on tasks, 30.4
	task history, 30.4.2
	Task Listing page contents, 30.2.2
	Task Listing page, customizing, 30.3
	using flex fields, 30.10

	worklist clients
	
	building for workflow services, 31.1
	class paths for clients using local Enterprise JavaBeans, 31.6
	class paths for clients using remote Enterprise JavaBeans, 31.5
	class paths for clients using SOAP, 31.4
	customizing, 31.1
	packages and classes for, 31.2

	writeBinaryToFile function
	
	description, B.2.55

	WS-Addressing
	
	sending correlation IDs, 8.2.2.5

	WS-Atomic transactions
	
	composite.xml file syntax, 35.1.1.1
	support in SOA composite applications, 35.1.1.1

	wsclient.jar file, 33.1.4
	WSDL files
	
	adding for a web service, 2.3.2
	definition, 1.4
	differences between document-literal styles and RPC styles, 6, 6.18
	editing in Source View is not supported, 2.3.2
	integration of Java and WSDL-based components in the same SOA composite application, 49.2
	invoking the default revision, 2.4.4
	location for evidence store service, 32.1.1
	location for identity service, 32.1.1
	location for runtime config service, 32.1.1
	location for task metadata service, 32.1.1
	location for task query service, 32.1.1
	location for task report service, 32.1.1
	location for task service, 32.1.1
	location for user metadata service, 32.1.1
	modifying to generate a fault, 11.5.1
	references, 2.4.3
	selecting, 2.3.2
	service component metadata, 25.4.2
	specifying when creating a partner link, 4.3
	updating message schemas, 2.3.3
	using an existing WSDL file, 2.3.2
	viewing message schemas, 2.3.3

X

	XML assert
	
	overview, 42.1.4

	XML data in BPEL, 6.1.1
	XML data manipulation
	
	bpelx:append extension, 6.14.1
	bpelx:copyList extension, 6.14.6
	bpelx:insertAfter extension, 6.14.3
	bpelx:insertBefore extension, 6.14.2
	bpelx:remove extension, 6.14.4
	bpelx:rename extension, 6.14.5
	bpelx:validate extension, 6.15

	XML documents
	
	manipulating, 6.1.2, 6.1.2
	overview, 6.1.2, 6.1.2

	XML facades
	
	definition, 13.2.4
	Java embedding, 13.2.4

	XML schema files
	
	error handling, 22.4
	fault-bindings.xml, 22.4.2
	fault-policies.xml, 22.4.1

	XML schemas
	
	message types and variable types, 6

	XPath Building Assistant
	
	starting, B.6.2
	using, B.6
	using in the XSLT Mapper, B.6.4

	XPath expressions
	
	assigning numeric values, 6.7
	boolean expressions in switch activities, 10.2.1
	dynamically creating another XPath expression, 6.16.4
	dynamically setting email addresses and telephone numbers, 17.3.5
	editing in transformations, 38.3.5
	examples, 6.1.2
	fetching a data sequence element, 6.16.4
	in conditional branching logic, 10.1
	specifying a task owner, 28.3.4.6.2

	XPath extension functions
	
	creating user-defined functions, B.7
	dvm
	
	lookupValue function, 44.4.1.1
	lookupValue1M function, 44.4.1.2

	XPath functions
	
	in transformations, 38.3.4
	indexing methods, 6.16.1
	mathematical calculations, 6.8

	XPath queries
	
	copying data, 6.6
	examples, 6.1.2

	XQuery, 6.1.2, 6.1.2
	xref
	
	lookupXRef function, 46.5.1
	
	exception reasons, 46.5.1
	parameters, 46.5.1

	lookupXRef1M function
	
	exception reasons, 46.5.2, 46.5.3
	parameters, 46.5.2, 46.5.3

	markForDelete function, 46.6
	
	exception reasons, 46.6
	parameters, 46.6

	populateXRefRow function
	
	modes, 46.4.1
	parameters, 46.4.1

	populateXRefRow1M function, 46.4.2
	
	modes, 46.4.2
	parameters, 46.4.2

	xsl choose
	
	conditional processing, 38.3.6.2

	xsl if
	
	conditional processing, 38.3.6.1

	XSL map
	
	creating from an XSL style sheet, 38.2

	XSL style sheet
	
	creating an XSL map, 38.2

	XSL transformations
	
	definition, 1.4

	XSLT, 6.1.2, 6.1.2
	XSLT constructs
	
	adding in transformations, 38.3.6

	XSLT Mapper
	
	adding XSLT constructs, 38.3.6
	auto mapping, 38.3.7
	auto mapping with confirmation, 38.3.7.1
	chaining functions, 38.3.4.2
	correcting memory errors when generating reports, 38.4.2.1
	creating a map file, 38.1
	creating a map file from imported schemas, 38.2.2
	creating a new map file, 38.2.1
	creating a transform activity, 38.2
	creating an XSL map from an XSL style sheet, 38.2
	customizing sample XML generation for transformations, 38.4.3
	dictionaries, 38.3.10
	editing functions, 38.3.4.1
	editing XPath expressions, 38.3.5
	error when mapping duplicate elements, 38.1.2
	functions, 38.3.4
	functions prefixed with xp20 or orcl, 38.3.4
	generating optional elements, 38.4.3
	generating reports, 38.4.2
	ignoring elements, 38.3.15
	layout in Oracle JDeveloper, 38.1
	linking source and target nodes, 38.3.2
	map parameter and variable creation, 38.3.12
	named templates in functions, 38.3.4.3
	repeating elements, 38.3.6.3
	replacing schemas, 38.3.16
	rules, 38.1.2
	searching source and target nodes, 38.3.13
	setting constant values, 38.3.3
	setting the maximum depth, 38.4.3
	setting the number of repeating elements, 38.4.3
	testing the map file, 38.4
	using, 20.3.1.5, 38.3
	using arrays, 38.3.6.3
	viewing unmapped target nodes, 38.3.9
	xsl choose conditional processing, 38.3.6.2
	xsl if conditional processing, 38.3.6.1

Y

	year-from-dateTime function
	
	description, B.1.2.14

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/bp_phasemedrule.gif
Name: [Phase_VedRul]

Descrpton

Input and Output Yariables: X &3
Drecton Nae e

it Varlnputs cntiprocess

output VarOutputs clintiprocessResponse

[comamernis

el

OEBPS/img/addmybeanconfigxml_tf.gif
DIBQ\@F XER OO 8- ABda- > 8-

B meim]

P — |
i — |
(0 et s o ot .

e ==l

OEBPS/img/ns_image23.gif
Expression

Expression Builder X

o a0

bpns: getvariableData(' inputvariable’, ‘payload’, ' /client:process/client:to)|

A Insert Into Expression

BPEL Variables

Functions

Variables
£ du Process
& (30 Variables
() inputvariable
& payioas
-4 clientprocess
)
<> chentsubjec®
<> clientbody
(%) owtpurvariable
Notification 1

8

7 (Advansrncion

wopendTolist
pr—
pachmacessactve
tchrrocesscompiete

copyList

create-nodeset-from-delimited-string

OEBPS/img/med_exbuild1.gif
@ Expression Builder

Expression

LI |

A Insert Ito Expressian

variables

E-(n
&) Customer
£ impl:Customer

> Name
<@ Description

<@ Profie

<@ Adkdress

<o ShippingAddess
<@ Contacts

<

Functions

(iooea uncins 3

B counts
[Frose
Sloreoter

55 avoter cauals

ess

Content Preview:

Description

$in.Customerfimpt:Customer/CustomerId

An ¥Peth expression of the varisble

OEBPS/img/fod_editbus.gif
© Edit Business Components Configuration

Business Component Configuration Narte:

‘Applcation Module

Pooling and Scalabiity

StoreserviceAMLocalvieh

Properties

Property.
lActvatesharedDatatandle
‘Applcationiiame.
‘Appicationpath
‘AppModuendiare
(Connectiontlode:
(ConnestionPort
IDeployPlatform
Factory-Substitution-List

HandieNiame
Hosthame.

lsLazyLosdingTrue

javanaming factory.intial
fava.naming.secrity.credentials
javanaming securty princpal
fbo.323.compatile:
fo.03.compatile:

jbo.abstract base.check
fbo.ampoalconnectionstrateqyclass
b -

vae
fabe
oracle.fodem.starefrant.store.servie.S.

oracle.fodem.starefrant.store.servie.S.

7101
LocaL

true
oracle.jbo.common, holnitalCantextFactory

fake
fabe
true

oracle.joo.common.armpool.DefaultCone.

fod.appication ssoaenabled
Press F9 to sort table by property nare.

Cew)

P

e

o] [el |

OEBPS/img/bp_sensor_custom.gif
& Create Sensor Action

Neme:

Publih Type:

Publih Terget:

Eiter:

Myaction

Custom

loanflow MyPublisher|

Enable

OEBPS/img/bp_async6.gif
Name: [request

Tywe
£ O simple Type.
2]) Message Type

> O gement

[Entity Variable

oanServicelLoanServiceRequestessage

g e

OEBPS/img/bp_expandht.gif

OEBPS/img/bp_tdf_header_dets1.gif
= @ v

assigness
Crestor
Crested
Updsted

#{...displayName}
#{...creator.inputValue}

#{...createdDate.inputvalue}
#{...updatedDate.inputvalue}

Expiration Date.
Acired By
Due Date
Outeome

...expirationDate.inputvalue}
.acquiredBy.inputValue}
.dueDate.inputValue}
.outcome.inputvalue}

Tesk Number 4., taskNumber.inputValue}
Prirty | sue)

Stte #L..}

OEBPS/img/sca_spring10.gif
Exposed Services Components External References

R ® s G ® £

scaservt scareft

OEBPS/img/options.gif
— Service Camoanents
£ BPELProcess

< Business Rule:

& Humn Task

<& edator

9 Spring Context

— Servie Adaoters
(8] AoF-5C service:
& AQ Adapter
Rioz

i) BAM Adapter

{ Database Adapter
43 Drect Binding

3 38 Servce:

i Fie Adapter

OEBPS/img/bp_ht_advanced.gif
Create Human Task

Scope Nare:

[ApprovalHumanTask,_t

lobal Task Veriable Neme: [BpprovaHumanTask_i_globalvariable

Ouner

Idertication Key:

Ideniity Context:

‘Applcation Context:

] N

parareters.

This verisbl contains a system variables and

frooper

=3

G

Optional value such as purchase order rurber

Clear ofd payload and recreate

OEBPS/img/gs_soa_021_0.gif
Newordersubmited

Wb et Ruin
Sarsfont Ul Fota

2

;rf

Emai

e =
e
evtpan e
| : o ot
= @ BT
e T

I ‘_T,_

&
Scope_ RetieveCumiomenorOrder StoreFrontSenvce
3 CrodiCoranutorizaton
e |
§ e
A T

E—

Fulfimertgatch
‘dapier

G

= S
S T A
P
= 5
‘Scope_SelectPreferredSuppiier Ordarhpprovatoat]
% ItermaarehouseSenvice

‘Scope_Fulfiorder

53

: &

Fulfinser

Scope_UpdateStatusToComplete

&3

‘Scope_NotifyCustomerOfCompleton. seviee ¥
ussssnmnt
3
Z O S8 At
catoaciion

Crase BAM Adapter

'BAM Server

OEBPS/img/ns_parlayx010.gif
3 C:\Orade\viddieware JDEVBETA_5203_NOV12th\ideveloper\communications\modules\orade sdp.cient_11. 1. sdodient ar v 9

03 orade.sdp.dient_11.1.1
23 commons-codec-1.3.gar
@2 commons-httpdient-3. 1.jar
€2 contactmanagement jar
£ messagenotification.war
@2 messagenotificationlistener jar
3 parlayx.jar
@2 presencenotification.war
8 presencenotificationlistener jar
82 presencerules.jar
8 resourceist jar

@3 sdpparlayxnotfication.zp

@3 xdme.jar

@3 xdmewscient.jar
oradie.sdp.messaging.ejb_11.1.1

oradle.sdp.messaging_11.1.1

Directory name: |

=]

OEBPS/img/bp_ht_standalone.gif

OEBPS/img/med_xrefim_ucexref2.gif
&

Specify Stored Procedure

Enter astored procedure, or a functon. The procedure's package name can be incuded, for exarmple,

EMPLOYEE. GET_NAME, where th package name is EMPLOYEE and the pracedure is GET_NANE. IF the procedure
does not belang i a package, enter the procedure's name. You can also brawse and search For a procedure. The.
term procedure'is used to mean both stored procedures as wel as functions

Schema [scorT

Procedure [POPLLATE_APP_INSTANCE 1M

Arguments
ame Type Injout Posiion
X_APP_INSTANCE VARCHARZ ™ 1

X ORDER_ID1 VARCHARZ ™ 2

X ORDER JD2 VARCHARZ ™ 3

X ORDER_PRICRITY VARCHARZ ™ 4

X ORDER_STATUS VARCHARZ ™ s

'X_OPERATION TYPE VARCHARZ ™ 6

X ORDER_TYPE VARCHARZ ™ 7

X apP_ID1 VARCHARZ our s

X_aPPID2 VARCHARZ our s

He <gack | text> Cancel

OEBPS/img/fod_refcomposite.gif
ofcomposte !
LEASL-R JORN-S §=1 5]

Exposed Services

[C]
Composie: OrderBookingComposite

Components External References

ndCusomer
ndcusoma

getOrdeinto.
cresteOrder
updateOrder
deleteOrderl
mergeOrden
fndOrderinfo... [

OEBPS/img/ns_email13.gif
(& application Navigator

endEmaitithttachment. . v

ropes @@ V-
Dl

23 Business Rules
off compostenl

@] wotfcatonservie.usd 1

2 NotFationservice xsd
% Sendematwehattachmer

b Sendemaiwihatzachmer

@ sencemaivithatactmer
b Senditessage.componien

© Applcation Resources
1 Data Controls @y

1 Recently Opened Files

Stuctwe | Thumbnal

3

van +7%

rEmalWithattachments bpel
Partner Liks

Variables

(3 Corrlation Sets

=23 [Activities|

v Q D500 (-

(2 |eficompostecml | SendEmailwithattachments.bpel | (clsendessagepp Over (00)E) @B Component Palette | [iRe.

(éha eoer (@8 monior [

)@ | e

o

\
|

EmalParamshssian

|
@

InvokeNiatficatianservice

iy

5P Bz Pries

 brEL Actvties and Componerts
~ Activtiss snd Comoorents —
A BPEL process

9 business rule

S Homan Task

< Hedisor

— BPEL Activies

B osn
R

& conpensate

B
e

Emai_2 - [processsequence/scopel 1]

Zoom [100f) ————s

@ o

Design | source | Hstory.

(EleveL-Log

BPEL

N
G Fon

OEBPS/img/bp_switchcondition4.gif
b4
Chaase the Loan with the Lawer APR

| |
-] @

selectUitedloan selectstarloan

OEBPS/img/med_mep4.gif
Gllent

Invoke

One-Way Target

Request-
Callback
Mediator

o
Calback Component
e
E—
—
—
ke JR—
i
g . .
ot e

OEBPS/img/bp_tdf_hwtaskflow.gif
@applcation Navigator | £ pplication Servers N

HOR_op

= propats GEY
HoRConposts

= son Cotare

22 desiner

s

o composte i
£33 HDRHumanTask.componentType
- HORHumenTesk task
s HORProcess.bpel

8o Humontasietosk
HORTastelon

=23 Appcaion sources

@ roRmanTssk

@ heston

@ htason pagedefs

Jrs———
) hotasiiowam

= Resources
Emalbage spx

5 £ Web Contet

OEBPS/img/bp_wl_unattend_rpt2.gif
Reports

Unattended Tasks Repart

Assianed ta aroup(s) Task Name. Number of Unattended Tasks.
caomna DncumentRevew 5

Suporssor DocumsntRevew 7

Loaregerion DocumentReviw 1

Unattended Tasks

Boccuneneien

Numiser of Unattended Tasks

Gt Teanagentori
Supenisor

OEBPS/img/bp_edit_dec_rt_tab.gif
ContractOfferingRules

[— O L) +Ex

= ContractofferingPoM

<nsetton>

oset pttern>

Curcpten[POM o contact ffening] showowk

(for each case where) CaseSample i 3 CaseSample [Eree-fom Expresssion

XDt HHRO

Conditions]

CaseSanple.channel ~ Inemnet

CaseSanple roducType ~ Prvate Loan

Casesonple fronPhase. ~ Accoptance customer request

CaseSanple customerhe ~ o9 (0.45)

Casesample anAmount ~ (25000.0..50000.0) (15000,0.25000.0)
Actions

Mody Casesangle (channel7 custo..., ‘Ttenetloanrocess,, L Barkshoplose,

OEBPS/img/med_dvm_usecasedvm3.gif
Exposed Services Components

S
Rimgorders

External References

OEBPS/img/soase007.gif
Master Process

Signal Activity

label=vstartDetailprocess®
to="details*

!

Detail Process

Invoke Activity
parinerlink="Detailprocess®

bpelxinvokeAsDetail="true"

Receive Signal Activity

¥

Receive Signal Activity.

CompleteDetailProcess®
details

|] label

Signal Activity

“CompleteDetailProcess®
‘mascert

OEBPS/img/bp_sensor4.gif
& Create Fault Sensor

Nome: [IdentityServiceFault

Fault QName.

°

Namespace: |http:ffxmins.cracke.comfpebpelIdentiyserviceflocal

LocalPart: [1dertityServiceFault

Sensor Actions

H s %

OEBPS/img/bp_mdc2.gif
signal

Nome: [contactDetaiProcess

Label; [completeDetaiProcess

OEBPS/img/med_dynarr3.gif
R

RSB Smcoies | @)
]

etk
g
e ocaos 601 s

FomamRtersnes CrdaRoueedlio Sate DyamRaearcs xR et Sase [Dyandelerence Crieradeotaie sxecte’

OEBPS/img/bp_hwf_rules2.gif
T POProcessoiParticpantRule v []Titeror iew: [(F/HEN Tk

-J+-X uf

5 ¥ Ruet
<ente desuiption

= % Rue2
onte deciptons
*
Takpaylaad purhssedrde ordernfo orcaprice > 200000
it s
o

Al Craabsbnagament el SHC1KerS R, QUUES 1L AEOTIeS i el 2, FH <l reprnsee T/ < Respir < Ty RE2) FRED, rlelone "Rule 7", i ¢ 1

OEBPS/img/excel_chs_pg_def.gif
) L
Home | tnsert

Page Layout

Formulas Data

Review

View

& ot [- wiap Text General - A0%01_Reado,
Paste oy A <8 ;98| Conditional Fc it
S ot rainer ||| B2 8 -] [e e~ | 8~ %00 18] | Conamora ot [ormal
Clipboard 5 Font 5 Alignment 5 Number 5 Styles
- fo
5 c o e S W . S X T N

Page Definition

Choose a Page Defiiton

expenserepotiaskfiow_taskDetals1PageDel
expenserepaitiaskfow_EvcelContiokPageDef
expensereportiaskiow_dummyPageDel
expenserepoitiaskfiow_LoginPagePageDel
expenserepoitiaskfiow_LoginPagePageDelt

OEBPS/img/fod_appservcon1.gif
WeblogicFusionOrderDemo

) @start Page

 Projects

B@Rv-=

~ Applcation Resources
{23 Connections
{2 Descriptors

1 Data Controls
1 Recently Opened Fles

WebLogicFusionOrderDemo. jws - Struc,

e Broject,

gen Project

Close Appiication
% Delete Application
Rename Appliation.

Find Applicaton Files
Show Overvien
Eiter Applcaton,
Deploy »

Reformat
Organize Inparts

CuArL

cumaro

Yersion Agplicaton.
Compare With »
Replace with »

applcatian Propertes

OEBPS/img/bp_portlets2.gif
‘Web Services Manager Authentication Providers
Vou can configure the login modues and keystore for Web Services Manager authentication.

Login Modules
The Following table st al configured ogin moduies For Web Services Manager. Lise this st ta create, confiure o deete a login madie.

[Create. Edt »
Name Class Control Flag Descripl
samilogimodue oracle.secrity.fos.nternal.jaas. modue.sam. JpsSAMLLoginModus Required SAMLL
bs.loginmodue comsun secuty. auth.modue. KrbSLoginModue Required Kerber
digest.authenticator og oracle.secrity.fos.nternal.jaas. module. digest. DigestLoginWodule Required Digest
certficate,authenticator oracle.secrity.jos.nternal.jaas.modue. X509, S03LoginModue. Required ¥509.C
wss.digest ogimodue oracle.secrity. jos.nternal.jaas. modue. digest WSSDigestLoginM: Required wssD
User.authentication logi_oracle.securty.jps.nternal.jsas. modue. authentication JpsUserA. Required User &
user.assertion.Joginmadhoracle.secrity.jos.nternal.jaas. modue. assertian. JpsUserfssertic Required User &

ikeystore

Use ths section to specfy the keystore used to store public and prvate keys for al secure conmections within the. Configure.
Weblogic Domain,

OEBPS/img/soase023.gif
BPEL Process Human Task Service Client
Wanager Component Applications.
to Task Definition
Oracee
eceive > BPM
T 2 =] Workist
5l Roles
{5 S A, ot
ssignments
invoke Y Portals
I g
Service . Ciient
Greats| | | ntertace| Bl Interiace
Task Eocalat Email &
e scalations Emal
o Tt Clients
fuman| Compiete
—|—I—|— I Phone and
Presentation O)5ieee
ol ito] Notication
invoke | [invoke 25 Chamnels
Identity Directo

(LA or sxampe)

OEBPS/img/sca_plink6.gif
[Publshed: |
OnTaskAssigned|

OEBPS/img/bp_ht_arp.gif
g General

@ oas

B assignment
@ presentation
B Deadines
8 Notficaton
e Access

P Events

i A v /e R Tsskwil g from strtingto sl particant /.

Staget
1

& | st pstants

)

OEBPS/img/bp_wl_cyctime_rpt.gif
Tasks Dy T Report
Task a0 varags Oy i
Decumsriravow Thmeos
Veatorseiro Lhasmets
Task Cycle Time Report
s
T
E soe L]
L
H
2o
o
e oY

OEBPS/img/bam_ar_ems_date.gif
Source Value Formattin

¥ DateTime Specification
Pattern (Java SimpleDateFormat):

Yy MU.OdG 't Hrimmissz v
Locale (Optonal)

Language:

Country (Optional):

Variant (Optional):

OEBPS/img/bp_java4.gif
Neme:

Java Version;

Code Srippet:

[ava_Embedding_1

15

try ¢

Object homeOb) = Lookup (“e3b/session/CreditRating”) ;
Class cls = Class. forflame(
"con. otn. samples. sessionbean. CreditRatingderviceHome”) ;
CreditRatingServiceHone ratingHome = (CreditRatingServiceHome]
PortableRenoteObject. narrou (homeob3, c1s) ;
if (ravingHome == mull) {
addhudi tTrailEntry(“Failed to Lookup 'ejb.session.CreditRating'”
+ . Ensure that the bean has been”
+ 7 successfully deployed”);

return;
)

CreditRatingservice ratingservice

ratingHone. create(]

/7 Retrieve ssn from scope
Eleent sen
(Elenent) getVariableData(“input”, “payload”,"/ssn’) ;

int raving = ravingService.getRaving| ssn.getliodeValue());
addAuditTrailEntry ("Rating is: © + rating);

setVariableData(“output”, “payload”,
“/tns:rating”, new Integer (rating));
cateh (NauingExcention nel

apply |[ok [cancel

OEBPS/img/ns_newjava_11.gif
Fle Edt Vew Hstory Bookmerks Tooks Help

G- @ G [rmstaons.us orace.coms 7001 usermessagngsanple-schofsp |+ | b

UMS Sample App: Access Point Registration

Two Way Messaging Test redquires the following steps

1. Click on "Register/Unregister Access Points"

2. Eter address of access point, and opfionaly a keyword.
For example, Mmyserver@example. com.
For Demo - IM:<ServerJabberID>

3. Click on Submit

4. Using your IM client send a message to your buddy (ServerJabberID). IFa keyword was specified, the first token of the
message must match the keyword.

5. The sample application will receive the message and echo it back to you

Use this form to registerfunregister access point addresses for this Sample App

Enter an Address EMAIL mysener@example.com
[e.9_"IM:sender@example. com”

or "EMAIL:sender@example. com’]
Enter a keyword (optional)

Action ©Register
O Unregister

Subrmit

OEBPS/img/ns_channel_edit.gif
ORACLE' User Messaging Preferences Home. | Help | Settings

Messaging Channels a Lagged in s weblogic

My Messaging Channels
Configure chennels to receive your notfications and dets.

View~ [@ Create L Edt 9@ Delete [Detach
[Name - (Modiify Channel

[0 Business Email *Type FEMALL Tv
[Busesshoble | * Adbess [john@mn.com

& ousiness Phone et [Jsetascefak charre
Dot s thichannel for BPEL User Nofiation o Huran Workio
it sored i the entty mansgement s and ik work,

ok | cancel

Fistes. Al

OEBPS/img/bp_ex_empty.gif
Empty x
[/ Genersl[(anotaions ke Condien |

s Empty [

Concel

OEBPS/img/bam_ar_ems_map.gif
Source to Data Object Field Mapping

Key | Tag/Attr name

=

Data Object Field | Ac

Remove

FempleTae Subcategory V.
Subcatecor
— DES(HDQ

Year

OEBPS/img/soa_createejb.gif
& Create EJB Service [
E3B Service {?2
Create an EJ8 servie
Heme: Servicez

Type: Reference ¥
Ietsce O 208 ©WBDL

DI Name:

00 e Q

wanL

WSDLURL

Port Type:)

Calback Port Type:)

ok

OEBPS/img/bp_tdf_email6.gif
= Common
ot ool v
Rendared: [<defaut> (rue) =
bl [<ot st =-
vaign: [<defaut> (mcde) =1
Layouts [<defat> (cafa) =-

ppearance

Style and Theme

Annotations

OEBPS/img/bp_tdf_simpwiz2.gif
Header

Name and Defirtion Select Header cantents and arder.

© Header

Rowt Columnl

Include intilebar System actions menu] Custom outcomes (butons)]

T Body Display in|
(o

Summary.

acqured;

¥

@
[&]

B4

OEBPS/img/bp_ruleset.gif
beel <pOracleRules_CustomerRouterBPELProcess_CustomerRoutingPhase_l.rules | [10)~
v HE B0 % @

Qracts
Rutser 1 +x
% Functions
() Globals ¥ & DecisionTable_1 <erfer descripfion>
7 Bucketsets P Riav B i-RBBEER
DLinks = Conditions R1 R2 Ra Ra
B Deceion Functions || C1 1NPUPhaseVarname otherwise | intl W | Cisco
Rulesets + R
 Ruleset_1

X Conflict Resolution

OEBPS/img/bpmdg015.gif
nt BPEL Process

Call
service
<invoke>

a1

l

<receive>

L2

<invoke>

¥

<receive>

aa]

{

wsDL
ParnerLink

—

Service BPEL Process

<receive>

!

<receive>

L2

<invoke>

L2

<receive>

l

<receive>

OEBPS/img/bp_while2.gif
4

Expression

by gecvaciablebatal @tame) < o

OEBPS/img/bp_ex_actcomp.gif
B Componert Palette
[erer

BPA Bl Prints
BPEL Actvities and Companents

~ Actvites and Comoonents ————

i BPEL process
< businessRule
& Hman Task
<& Mediator

OEBPS/img/rules_soa5.gif
(@ application Navigator () offdcomposite.xml | [Elorderapprovalapp.jws offfcomposite.xml | offcomposite.ml | offfcompositeanl | ()

[Hodrmwoaie -[H | v FrMBXO | BEBED Compeste: SOACompositet
7 Projects [§] @) V- & |
ordenagproval Exposed Services Components External References
& 504 Content
[classes
B3 testsutes
E-Cxsd
2, OrackRules1_Decisic
&, order.xsd
Bl
] Business Rules
o composte.xl
@] oradeRulest_Deciionse
£ OracleRulest .component,
[OradeRulest decs

calfuncionsial
o ncioncia

N ss—— >

1 Applcaton Resources

1 Data Controls

1 Recently Opened Files <

OEBPS/img/sca_deploytaskflow.gif
Task flow deployment

Ear Profile Name: [Projects-AdForm ~

ment &

Sk D
Deplov Configuration) [C] Append composite revision to name
91 Task flow deployme{

Select Server [] overwrite EAR

[7] Add generated profiles o application

S summary

Optional:Select WAR profiles. Uncheck projects to exclude from deployment
Deployable Tastklow Projects
[] Projects WAR Profiles App Context Root

Composite: Project1.

[] Projects-AdtFormjpr [Projects-AdfFarm] workflow/Projects-Adr.

=]

OEBPS/img/med_sws_login2.gif
ORACLE" SOA Composer @ Bookmariable Link O

Logout
Logged i 2 weblogic

OEBPS/img/bp_wl_reuse_rule_my.gif
~IRules My Rule

Name * [LUser Rule
DJuse as vacation rule
@ vacation Period (Disabled)

7 My Rules Apply iy to task typels) Q
Hser Ruie
© J [Execute rule only between these dates:
Start Date &
End Date. &
13
acd Condiion |Stert Date v
THEN
OReassion o Q
Obskegate o Q
(@ Take no action

Reassigned task access is determined accarding ta new assigne rights.
Delegated task.sccess s determined according to right of originaluser who delegtes.
Take o action s used o create exception rues that override a more geneic Ul

OEBPS/img/bp_wl_search5.gif
E Worklist Views
[Tnbox]
My Work Quees
Standerd Views
& wy Views
myvient
= @ Prowy viork Queues
Shared Views

OEBPS/img/bam_odi_eds_master.gif
View|EditiDelete|Create

Type: J05C

External Data Source lame:

[oor vaster

fTs External Data Source comnects to the ODI metadata repository, and s used
loy the External Data Objects i /System/0DI/
Ipo not remove 1

[orade.jdbe arver.OraceDrver

save

dbcioracertin

Cancel

OEBPS/img/bp_ht_vacreq12.gif
 Task Parameters

From

Type: [Varizble

Vartles
5 Process
Varisles
() inputvariable

payload

ationReque:
<> nslicreator
<> nstiframDate

<> nsttoDate
<> nstireason
() output¥ariable
(5 Scope - UserTask_t

[how Detalld o Information

#Path; [/nsL: VacationRequestProcessRequest

OEBPS/img/med_async_uc8.gif
Create Copy Operation

From To
Type: [varible Type: [varible

Variatles Variatles
ERS 5 Process

B 553 varisbles

inputvariable () inputvariable
& pavioad &[] povioad
<> et vl Prazssacesaeaes

554> client:ServerBPEL ProcessProcessReaues!
<> clentinput
£)-(2) outputvariable

=-[E] payioad
5542 clent:ServerBPELProcessProcessRespont

<> dlentiresut

<> clentinput
£)-(2) outputvariable

=-[E] payioad
5542 clent:ServerBPELProcessProcessRespont

<> dlentiresut

[T

[how Detalld e Information

|

K1
[]Show Detalled Node Information

¥Path: [/cLient: ServerBPELProcessProcessRequest]

o J e]

OEBPS/img/chooseruledictdcjars1_dict.gif
Locations (] Clwobideii1.1.1:3.0 100126 200 553 devlpercosiod...~| @ (0 (9 B £

e rane: pAiEauIaRERAOC]

Fil type: (159 Tag Library Descriptor (*.d, *.Jar) 3

teb [open Gl |

OEBPS/img/bp_entityvar4.gif
Key QName-

Key Local part Ordertd

Key Nemespace URI

Key value:

=]

©

Jorecleffodernojstorefrontstorefqueriesfcommon/

bpwsigetvariableData(inputVariabl’, payload, fclert processiclent orderld)

ok

=

OEBPS/img/bam_dc_calcgroupdia.gif
Group by,

Select filds for graup by

OEBPS/img/bp_wl_evid_search.gif
Admin Evidence Search

Search Evidence Store
Match @Al O any
Sianer [jten 0 Sioned after Sf8/2009

© Advanced

& Signed before 513112009

® ®

Sinsture Pocy (Digtal Sgnature erfied Date & TIErED
stas TeskNunber
vadate
SonatrePoley | aner Erm GrestionDte | _SinedDate

OEBPS/img/med_trg_srv.gif
Target Services

EE
BPEL Processes

& (1 vediators
£ edator2

548 hedstore
B insert
2 delete
2 update
£ updateid
Human Tasks
53 business Ruks
@
53 References

OEBPS/img/bp_ht_taskowner2.gif
Category: [By Expression_~ |]

e @

Ourer:

+/ %

OEBPS/img/bam_ar_ems_start.gif
Start when BAM Server starts: Yes v

e . WY

315 Password (Optional):

OEBPS/img/sca_scpolicies.gif
Configure SOA WS Policies

50A Component W Poli

Configure teb Services companert polies
Enable or disable each poicy status by checking the bos on the left side:

Security + X

Management + X

Help

OEBPS/img/med_rs_trigger.gif
Target Type x|
Shoukd this routing e ivoke
service o triggeran event?

(oo J[om]

OEBPS/img/ns_image7.gif
@appication Navigator |

[SendMiessagefipp Overview |sfficompostxml

Senditessagefpp -]

 Projects
@ (G sendvlessageProj

1 Applcaton Resources
» Data Controls
1 Recently Opened Fles

S ePELProcess! bpel
23
Yaw

QR V-E-

RY I

v-R-D-$-00 @

Partner Links

Partner

E
1 BPA Blue Prints
= BPEL Actvites and Comp.

~ Activtiss snd Comosrets
A oL process
P busness rule
& Hnan Task
< Hedistor
oPeL Activies

@

calbackClent

e]

£ Portner Links
-

OEBPS/img/bp_ht_ers.gif
Use External Routing, |

Class Name:

o x
"

= e

OEBPS/img/javacallout1.gif
< Mediator

[—
WOLURL Pt @)
pat e Resd st

= g Routing Rules:

@ Operations BR
=0 pesd oty [[uakdstesmextesn) o v - R
Colo To oo medator ol somple HedotorCaloungl.
Rkt e -
& [<erherBpresson> 7 = [Fisow R
B —
p——]
1L F—
= Readz pionty [+ [Jveidsesymacosn) & v 4 R
Calot To <va Clou Clae>> 8
Statc Routing
& < Bpressin>> 7 = [Fisouiwnte & [semetl]

OEBPS/img/bp_mpr_sample5.gif
Source: po.xsd %5LT File: invaice, xsd

a 2 <SOUFCESS <target= 2 Bl
[% DiscontinuedList Delimitedlist &2
- 43 tns: DiscontinusdLisk trs1 :Tnvoice <es-=]
: Producthlame i InvoiceDate ﬁ

B} 43 tns:PurchaseOrder tnsl:Comment ¢ey
B OrderDate Data ked
<23 ID

<> tns:Customer Contacts

<e» Comment g — Ttems <o F]
= o ~
<e» Attachments For-each &-F
3} <choice > W& B
- <ep [tems Ttem @Z&-E1

roduckhame <s
Quankity <o
riceCharged <>

OEBPS/img/bp_wl_view_new2.gif
| Create User View O
(B oisslay
Column Tt wouid atway's be present and would be frstin the task table.

Select View Columns

* Available Selected
I strtose 5 2 e
I Teskefnton ame Vove | purber
I urerle ® |Ceey _
I Upceted Date Moveal | Assnees =
I Composte versin s -
I crestor S Do M
I FromUser Renove | Expres =
I percentage conpete &
I uer o o
I Endate ~ i

Sorty Coum sortorder

[eates

[Ascending =]

OEBPS/img/bp_wl_admin_rules3.gif
Other Rules

E]
[Ger =] [iten ® Lol

Rules v &

5 isteins Group Rules

@ Loansnalyticaroup
& westermRegon
@ supervisor

@ eastermRegon

OEBPS/img/bp_funct_desc.gif
& Description for Function: lower-case

Returns the value of inputString after translating every character
1o its lower-case correspondent.

Usage: xp20lower-case(inputString as string)

Exarnple: sp20lower-case('4BcID') returns ‘el d'

For more information please refer to this page

OEBPS/img/bp_ht_vacreq9.gif
T — U] flaimaniban bl K. 7 Mot mdasbl s ot

facatiorRequest Y@ e Q@ $ @ik

Create Human Task

e A A, O - It 0000000000000

) omar @ e

Task Defirition: (nane)

Select a task d
this activity.

nition to be used by

Or create a task d which will
close this dialog and launch the Human
Task Editor. You will then be able to
supply such details as task approvers
and task parameters.

Partner Links

B
 epa s prets
© epeL Actvies
— Acttes s
& BPEL Process
< Business Rule
T
<& Mediator
— o Acites
) o

| Esreney
[compansats
) creao oty

EEY
Dy

49 Flow

By rown

OEBPS/img/med_exbuild2.gif
@ Expression Builder B

Expression:]
§in. zequest/inpl: Custoner /CustonerTd
A Insert Ino Expression
Variables Functions
&-()n
&) reuest
<o inpt:Customer
« 1
oo Name.
< Description
o rrtls 2] restercauols
<o adess A (@) tess
<@ Shippingiddress 9 @. . 4
Contert Preview: Descrpton
] [an xpath expression of the variatle: <]

$in.request/inp1:Customer/Customerd

OEBPS/img/med_xrefim_ucexref1.gif
Select a procedure, When searching for one the % widcard can be used.

Search

Schema

scotr
[St procedures | rauments | Source.

B, POPULATE_APP_INSTANCE
ame. Type Infout Postion

EMPOPULATE APP_INSTANCE 1M bt APP INSTAN. VARGHARE e
&, POPULATE_5AP_INSTANCE R
XORDERJDZ VARCHARZ 1IN
X_ORDER PRL... VARCHARZ 1N
X_ORDER STA.. VARCHARZ 1N
X_OPERATION... VARCHARZ 1N
XLORDER_TYPE VARCHARZ 1IN
WAPPIDI VARCHARZ OLT
WAPPIDZ VARCHARZ OUT

OEBPS/img/bp_synchpl.gif
Edit Partner Link

(Gorere

Nome: [CrediCardAuthorizationservice

Brocess: [OrderProcessor

Qam @
WSDL URL: CreditCardAuthorizationService. wsdl
by Roe: &

ot specfied

OEBPS/img/ns_email14.gif
= | Ssexenawinicmen oo (SR (]
vilosa® @& 0 Hwm0

v ~E
assign %
(({General | Copy Operation [/Sensors. | Annotatons
+/XE 3
om T
sting(textjntn; charset=UTF-§) varlotifcatorRea/EmeiPayioad/E... |
() Variable

B Expression
S e

3. Expression () Variable
jisigetvarizbleData(inputiariab... varNotficationRea/EmaiPaylozd|/E.

Variable XPath

jtring(Notification{ varNotificationReg/EmaiPayload)/EmaiPayloadins1:Content/ns 1 ContentSo

(5L Expression) Vaniable L
sring(message2) varhotfcationReq/EmaiPayioad...

[————————d > _ | i
Coie=))

<
Jscopejsequence/assign

OEBPS/img/bp_ht_notifmess.gif
& Edit Notification Message

Notfication Message:

Task <htasktaskjtasktie® > requires your aftention. lease access the task from | (2]
the workis: ppltcation.

Applies to Voice, 51, Pager, Emall nd Fax, Email and Fax message wil o incude the
worklist sk detal

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware
Developer's Guide for
Oracle SOA Suite, 119
Release 1 (11.1.1)

OEBPS/img/med_dvm_usecasedvm4.gif
Exposed Services Components.

e
Readorders

External References

OEBPS/img/med_targ_mltprt.gif
& Request Transformation Map

Transformation from reguest message requesttessage to message reguestitessage.

Trrsfomatontopart: requesPanz
(%) Use Existing Mapper File: | xsljrequestMessage_To_singleString_2.xsl
O Croats Now iagpe i

Transformation topart: requestparts
) Use Existing Mapper Fie:
@ reate New Mapper e requestiessage_To_snglestiing 3,15

Trorstormationtopart: reqesatt
) s Exting Mappes Fe:
) reatetew apper Fie:

T

OEBPS/img/ruleset_editor.gif
'ORACLE SOA Composer

@ soomstatietrk Logat O

oo weblogc

e

-]
ey [E] Pescre B

[Corescasenree) 1 ¢ Op ¢ @ %
[Customer” s [Gatomer Hoee 0@ %
(oo e aQ
P [nspedts Q [T E] 502, 209 41155 A 0T o9 0, 2000 Z18c44 T @)

0

ws o)
aalalel

OEBPS/img/ns_parlayx011.gif

OEBPS/img/bp_wl_rep1.gif
=

[E1 Standard Reports
[E] Unattended Tasks Report

e Time Report
[E] Tasks Productiity Report
[Tasks Time Distribution Report.

OEBPS/img/fod_appservcon2.gif
& Create Application Server Connection - Step 1 of 5

Name & Type

Name & Type

Configuration

Test

2

7‘, ttertcston
T

!

Specify 3 unique name and typs for the connection. The name must be & vali Java dentier

Greate connection
Appliaton e B Resource palete

Connection Name:

yappserverConnector]

Connection Type:

weblogic 10.3

L

OEBPS/img/bp_hwf_rules1.gif
& Facts

& Functons

*-X BEREC

POProcessorPartcpantRule ¥ [Fteron Ve | Q) IFTHEN s

E ¥ Rule_t

(eazts <enter descrption>

 bucketsats -

D uiks Task paylad purchaseOnder rderifo,crderPrice > 100000
<nsart >

THEN

B Decson Functons

Rulesets + X
call CreateResourceList{ users : "jstein” , groups : null, approles : null, responseType : ResponseType.REQUIRED , ruleName : "Rule_1" lists : Lists
© Hodfcationuls
<isart scton>
© substtuioniuls

© PoProcessorpartic

OEBPS/img/bam_mon_create_struc.gif
SBPELProcesstbpe.. | Thumbnal ()

o5

BPELPracess1 Moritor
=23 Monitoring Objects

O counters | & E %

x

Sensors
Sensor Actions

OEBPS/img/bp_tdf1.gif
(@start Page | effcomposite.xanl

S General

B oss Tite: Plan Text___] Foncat(itringtApprova Requred fo Order 1d:), Jraskitaskftask payloadftaskcorderld)
@ rssorment || pescrption

@ Presentation

B Deadines Outcomes: [APPROVE REECT

8 nottcaton | | prioty: s (o) <)

& Access Category

oy oressn <)

tvens oner

er <) o (st~

Applcation Context:

OEBPS/img/bam_alert_param_expr.gif
Rule Expression (click an underlined value to edit it)

Frequency Constraint

Delete this expression

e Sty danges, rn 25 reces e e
[F——————
Cickhere t 2dd anothercondtion andor acton

OEBPS/img/soase024.gif
Worklist application

BrEL process Web appication o search
Service Campanent fortaske viw fasks, and
St ontaske
Task Sarvice Task Query Sorvice
Providestask persistence Queris asks or & vser

and exposes operations
10 update a task, complete:
a task, escalate and
reassign tasks,

andsoon

based on keyword,
category, status,
business process,
attribute values,

task history information,
and o on

User Motadata Service
Manages metadata related|
to workflow (user work
queuss, preferences,
vacation, and delegation

Task Assignment Service
Offers services to route,
escalate, and reassign

b
¥

rules)

in the task service runtime

environment
Evidence Store Service

Captures digital signatures.

and checkpoints for

digially signed tasks Identity Service

user / group / role lookup
user authentication
authorization
organization hierarchy

User Directory
(one o)
Policy Store|
Contains
e JAZN Loap, | [information
et XML Custom | [about
Directory [application
roles and
pemnissions

OEBPS/img/med_xref_ucfinal.gif
Exposed Services Components External References

o &
sBL
“Operations:
seL

e &
EBS
“Operations:
e5s

iBe
sap

e @
Logger
“Opersions:
ite

OEBPS/img/rules_soa6.gif
offdcomposie sl rderapprovalapp.iws |ofdcomposte.sml | oradeRulest.ries | sfcomposteoml (F)E)
Qv I HEE DO & @
L % BREOAv
e Functions
0 Goba
{2 Budketsets
Dnks
6l Decsion Functions
Rulesets G X

© Ruleset_t

@ Ruleset 1 ¥ []Ekeron iew

To create a Rule or Decision Table, please click the plus sign above.

e < i ———]

Desian

Dictonary - OracleRules1 rules 7] Display New Warnings First

Message Dictionary Object o
) RUL-05163: The Fact type "CustomerOrder” is not used in any ruleset c... OracleRules1/Dats Model/Decsion Function,
&) RUL-DS164: The Fact type "OrderApproval"is referenced, but is not .. OracleRules1 Data Model/Decision Function.

SOK Warrings: 2 Last valdtion Teme: 27544 AW POT
e Feedback | Business Rule Validation [0D0G]

OEBPS/img/med_mep5.gif
Cllent ||

Request-
Reply-
Callback
Wediator

Invoke
Null
Fesponse
No
Callback

Invoke
Roply o
Glent
No
Callback

Invoke
Nl
Reply

Callback

to Client

Invoke
Reply and
Callback
to Client
Faull Fwg

One-Way Target

> Referenceor
Component
Request Response
[™| Torget Reference
] orComponent
Asynahronous
> RequestCalback
le] Targetrelerence
or Component
L+ RequestResponse.
. FaullTargel Reference

or Component

OEBPS/img/bp_ts_assertleaf.gif
(@ dssert Input (O dssert Calback

Assert Target: |LoanBrokerRequestessage.payload|st loanApplcation/st loanAmount [sromse

Compare By: [string <

Assert Value: | 750.00]

Description 7]

OEBPS/img/bpel_skipcondition.gif
Assign x

4

Skip Condition
bpus: gecvariableData ' inpuciariable’, ‘payload’, '
/client:process/client:input' | > 10

OEBPS/img/creatingproj.gif
& Create Generic Application - Step 2 of 3

Broject Name: fuseRulesdC
Orscto: [ClaachlonatenmworkusohuesoChgplusees |_oromse... |

AOF Facesackds very hioh qualty corponents, a dilog framencr, 2 wel 25
perscnaizaton an skining capabies, ADF Faces features cke: e upload
5uppor, chrksid vakdaion, partil rendeig of 2 page (A sty) dota tabes, .

o>] [gnsh] [cance] |

OEBPS/img/bam_mon_metric.gif
*IR

Metrics:
Name Data Type *path
L2
& Metric.
Hame:
Data Type: [decimal b
path: lbpws:getvarisbleData(inputLength)

s |5

OEBPS/img/bp_edn9.gif
Subscrbed: >
NevOrderSub.

OEBPS/img/bp_tdf_drophandlers99.gif
Creats
Forms »

] Conplete Task nth Pyiosd

Maser-Detais S b | 5] Conplete Tack without Payload
Wl Selections b |5 Task detaisfor emal
Navigation » |88 Teskeader

Sigle selections b | {8 Task Actn

Tables » |88 Taskstory

Trees » |8 Tesk Comment and ateachmert

Cancel

OEBPS/img/soa_createejbjava.gif
& Create EJB Service

E3B Service

Create an EJ5 service,

Neme:
Type:
Interface:

DI Name:

JAVA Interface:

Servicel

O Oust

ok

OEBPS/img/xbuild2.gif
& Create Copy Operation

From

To

Type: [Expression Type: [varizble

Expression:

@ [Dvarsbes

5 Process
0 variables

T Press Ctr + Space for Invoking KPath Builing Assistant.

OEBPS/img/bp_ht_seqlist.gif
Label: [stage1 Particpanti

Type:

A seril

Participant List

Buid a st of participants using: [Names and expressions

Speciy atrbutes using: () Yalus-based () Rule-based

erticpant Names

+- X

dertication Type Data Type vae

advanced (2)

[i alocated duration o

] Allow this partcpant to invite okher participants
] pecty skip ruls

OEBPS/img/ns_email20.gif
te.xm | 2 sendEmailtithAttachments.xsd (IO

Y-R-9-s-a %

(C—)

v

P o
Assign %
Genaral | Copy Oparation | Senaore | Aevatators’|

/R
o ™
string(textjntn; charset=UTF-§) varNiotiicationRea/EmaiPayload/E...
[EL Expression (x) variable
{rng(NotfcatonAtiachment) varotfcatorReq Emaipayioad
Expression (x) variable
Ipws:getvariableData(inputvariabl... varNotificationReq/EmaiPayload//E. 1
(x) variable (x) variable
putvariable payload/fcient:proce... varNotificationReq/EmaiPayload//E.
(x) variable (x) variable
putvariable payload/fcient:proce... varNotificationReq/EmailPayload//E.
[Expression {7 variable
g
o (e
< —————] >
Jscope/sequence/assign Zoom:| 1005 ——CF—m @

Desian | Source | History

OEBPS/img/bp_ts_emul2.gif
Service!

Operstion: [intiate.

Message: Message Parts

Parti[payload

Value:

Enter Value:

@ Enter Manualy O Losd From Fie

Generate Sample

<loanfpplication xulns:

<SSH>111222333</SSH>

="http: //ww. autoloan. con/x

OEBPS/img/med_dynarr4.gif
< Meditor

e p——
PN e —
e seates

bkt Ty calbsd st

= e Routing ks
© Opmaters B
3 crease oty (] wssesmacosn) o v - %
B —
romcRaeng
s Canpent: rodnlsxdoseds it ®
seven Croie xdrogdt sl s
[
P e ——

OEBPS/img/bp_ex_receive.gif
Receive

Nome: [Receive_InternalWarehouse

Interaction Type: [(3 Partner Lk~

My Role Web Service Interface.

Partrer Link: [InernalWarehoussService

Operation: [@ processRespanse.

Variable

Variable: [InternatwarchouseResponsetariable

*Q

[Create nstance

OEBPS/img/addsoacomptmplt_tf.gif
Add Archive or Directory
ot (3 Clipoi1.1.150_ 100126 240559 evepersosmdiedmadesoscon...<| (3

Ly
»

5 oo s gt 1111
® Qe soatan 1111

3 oo snaspal 1111

3 crade o comnn.adgtors 1111
S 23 orade. s conposer 1111

OEBPS/img/bp_mpr_sample6.gif
5) ¢o» tns:ShipToContact
gy ContactID
- <8 tnsiInternationaladdress

=} sae <sEqUEnCE>

42y Street2

: <e¥ City

[} e <sequencer
Loqay Region

<a5 PostalCode
<oy PostOffice
<& Country

rmerk

tns1:Comment gey -
Drata E‘A’]

ID <oy
ShippedTa <[
Recipient
Street
Streetz
Ciky
Region
PostCode
Caountry

for-each &1

OEBPS/img/rulescomplibinpalette.gif
‘Component Paletts E)X)

[aoF Faces |

[ExpBulder
e

e

ulevaldationTatle
[aldatorTable

I Components
T CarouselTtem
@ Choose Color
(] choose Dote
B column

(& Context Info
Dialog

[EE P

 Layout
3 Decorative Box
[—

(1 1nlne Frame

(42 Navigation Pane
[panel Accordion
(e Border Layout
] panelgox

Panel Colection

anel Dshboard
[PeneiFormLayout
2 panel roup Layout

Operstions

OEBPS/img/bp_wl_search4.gif
assignee [My aGrow 5]
‘Add Condition [Start Date =l
Match O Al Any
TaskType Q

Shareview O Definton only @ Data

Save as vew Search

OEBPS/img/ns_newjava_10.gif
Ele Edt Vew Hgtory Bookmarks Toos Help

B N I EL T ————

UMS Samples

* Sample for Two Way Messaging
Perform the following steps

1. Click on "Registerfunregister Access Points".
2. Eater address of access point.
For example, Mmyserver @example.com.
3. Click on Submit
Using your client send a message to the access point.
5. The sample application will receive the message and echo it back to you

IS

Register/Unregister Access Points

OEBPS/img/bp_ht_general.gif
Human Task R

| General | Advanced | Sensors | Annctations

Tesk Deition: ApprovaumanTask 7

Task Title; | getvariableData(inputvariable', payload fcentprocessicent:orderld)%>) | [

E.g., Vacation Request for <%bpsigetiarisbleData(...}%>

Tntitor: [>CrerisResponseinssiresukjnstiLasttianees]| (B, erirty: [3 ~]

Task Parame... EFEL Variable

t5!

[(nep | apply Concel

OEBPS/img/expressionbuilder.gif
‘Expression Buikder L

A it eessan

pev Desoton:

OEBPS/img/soase008.gif
Sales Order 1

Header

Customer Information
Ship-To Address

Line ftems.
tem Names
tem Number
Price
Quantty

Sales Order 2

Master BPEL Header
¢ Validates Header | Process | Validates Header Customer Information
Ship-To Adaress
Completes Headsr Line ltoms
Valdation and
Signals Detail ftom Names
Process to o s
Srocaes ompletes. ~Price
LineValidation ~Quanty
and Signals

Master
Process

Dotall BPEL
Process 1

Completes Completes
Header Line Validation
Vacation and| | and Signais
Signals Detai | | Master
Process (o Process
Continue

Detall BPEL

Process 2

Validates Line ltems

OEBPS/img/bp_compsen1.gif
YIFNBRBX ||

OEBPS/img/bp_tdf2a.gif
Human Task

Tesk Deition: ApprovaumanTask 7

Task Tile: [Order approval for order (<%bpwsigetiarisbleData(‘nputvarisbl' payload,

E.g., Vacation Request for <%bpsigetiarisbleData(...}%>

Initiator: [fOCreriaResponsejnséiresutinsdilastiame)%e>| [, priorty: (3

Task Perame... BPEL Vericble
ordertd Jns#iorderlnfoV0SDO/ns4:Orderld (9]

Concel

OEBPS/img/javacallout2.gif
erioty [7]] vadate syt (450)

R

= Resd

Caflout To [or] =

oo
Statc R4 @ ovace.medator [Sequeni]
= [<<Fit(@ oracle.medistor.callout

I fpams 20 g

forsirn
|® crac.rls.calout -

OEBPS/img/med_dvm_usecasedvm.gif
£ Domain Value Map(DVM)

Mame: UnitsOfeasure

Descrpion:

ep Table: */%
Sebel Common TradngPartrer StandrdCode

s Each

e Eaxh oas

e Eaxh A.Clitworks w

ko Eaxh seCine w

OEBPS/img/med_sws_uicomm1.gif
Name multvalue
Description Thisis a mult value dvm

Confirm

‘The document is currently opened for editing by user workspace1
Do you want to start editing the document anyway?

Hyderabad
Trivuvanathapuram

OEBPS/img/bp_sensor5.gif
& _Edit Sensor Action - SensorAction_1

Neme: BAvFeed

Publih Type: M5 Quev -

45 Connection Factory: [weblogicms.ConnectionFactory.

Publih Terget: imsjbamTopic

Eiter

Enable

OEBPS/img/bp_ts_open.gif
=0 testsuites
= [logicTest.
=[] componenttests
& feList xrl
=-£3 includes
& feList xrl
=-[messages
& fltist xnl
=l tests
& fetist xrl
& Ty
Rt R
T T

OEBPS/img/bp_assignoutputvar.gif
& Create Copy Operation

From

To

Type: [Variable

Type: [Variable

Variables
= éa Process
&2 Variables
(x) inputvariable
() outputvariable
() InputPhasevar
©-() OutputPhasevar
4> nsL:Customer
4> nstname

<>[nsListatus]

Variables
= éa Process
523 variables
(x) inputvariable
- (=) outputvariable
& payload
<> clientyprocessResponse
<>[dlient.result]
(%) InputPhasevar
() DutputPhasevar

("] Show Detailed Node Information

("] Show Detailed Node Information

XPath: [/ms1: Custoner /ns1: status

XPath: [/elientiprocessResponse/client: result

Lo]

OEBPS/img/bpmdg016.gif
BPEL Process A
Buyer

<invoke>
B

¥

<receive>
c

wspL
PartnerLink
a1
a3]
wsoL
Partnertink
BPEL Process C
Shipper
<receive>
BC
<invoke>
A

BPEL Process B

Seller
<receive>
— A
<invoke>
c
a2]
wspL
Partnertink

OEBPS/img/med_async_uc9.gif
Partner

wew @

v
’e
y

calbackClint

°

Partner Links

OEBPS/img/ns_image24.gif
>|

Expression @ &0
bpes: getVariabeData(inputvariante’, 'payload’, ' /C11ent: process/client: subject ')
A nsertimo Expression
BPEL Variables Functions
Varibies 7| (Advancad Funeions 3
5 Process

E(x) inputvariable
&-[payload
<[]
(%) outputvariable
et tion 1

wopendTolist

OEBPS/img/bp_ht_exit.gif
pHramantastask

OEBPS/img/bp_wl_claim.gif
Vacation Request for jcooper

Elcontent:

Gtistory
o) Tosk snapatot | (2] Fuwe Partcpents [Pl task sctions
¥ Pertpart action Updated oy cton Date
m 5 [defat
L1 & e hasined worfawsystem e 16, 2005 2:16 P
e & jcooper, jlondon Reassigned stein. Mar 16, 2009 2:58 PM

OEBPS/img/bp_wl_attach1.gif
[Add Attachment

Note: Make sure that ol previous updates to task are saved before uplosding fe.
Attachment Type @ Deskiop Fie O URL

e Empotstin |

o | cancel

OEBPS/img/sca_spring11.gif

OEBPS/img/bp_flow4.gif
bes @

ot

&

b5 @

Drop Activity
Here

Drop Activity
Here

oo

|

OEBPS/img/med_assignvalues.gif
+/X

From o

OEBPS/img/excel_dt_ctl_new_jv_cls.gif
FDIExpenseReportapp

= Projects @7

ExpenseReponCompast
5] ExpenseReporTaskeion
=23 Appcaion sources
® ExpenseeportTask
@ expensereporttasion
Dataiings.cpx
DataControls. dix

Bty Open
i expen: Exclude Project Content
23 meTa-] 3 Erase from Disk
i oracle.
- Eespen
o] s D> &on
Update Make
[CaWebCortd Rl
pebug

Find Usages,

Reformat
Organize Inparts
Refctor

Compare With
Replace With
1 Applcaton Resource

1 Data Controls

» Recentiy Opened Fi

Create Web Service

Cusary

Cushintra
Ashifra

CuArL
cumaro

OEBPS/img/addingtaskflowjar_tf.gif
& Add Archive or Directory

Lot (Gl 1130 10125 50 S5 rsppndisicad oa .

53 crode, s compser.webogp_11.1.1
5 (0 e somessde 1111

& Cwodesoaex LI

&3 crce.sonfe_i11.1

$ @oubmaretir i1

E 23 orade.soa.res_dct_dc.webapp_11.1.1
e
P
b
b= fcenvorianrol
& & NSV
b
8 cremiomdraoc
bt
it -

@ (13 orace.s0a.rues_edtor_dc.webapp_t1.1.1

) o]

OEBPS/img/bp_tdf_simpwiz3.gif
Body

Name and Defirtion

Header

© Body

Rowt Columnt.
Footer

Summary.

Panel ttl

Specify the number of rows and columns for the bady of your form

Ront L Column

OEBPS/img/med_mep2.gif
Gllent

Invoke

One-Way Target

Ll T
o Component
e I S,
fivos i
A — S

Reques

finnd

Tenoe
e P—
Callback [—%] Request-Callback
e Esias
o s
e Ll petrisporse
Nicel e
e e

Fud

OEBPS/img/sca_plink4.gif

OEBPS/img/bp_notif10.gif
User Notification xR

Header Name

T e =

==n

OEBPS/img/bp_sensor2.gif
& Create Activity Sensor,

Heme: Credatingsensor
Activity Name: |calbackCient. °
Configuration
Eushaton Tine: (A1 €
Activity Variable Sensors
H s %
Variatle weath Output Nemespace
() inputvericble Sinputtericble itpxmins.oracle..

Sensor Actions

+/ %

OEBPS/img/bc_http3.gif
HTIP Binding Wizard - Step 5 of 6.

Messages

Specify the schema that defines the payload of the Hitp message. Speciy the Schem Fils location and select the
Schema Element that defines the message. Use the Browss button to find an existing schema defintion or use the
Define Schema button to define a schema For name-value palrs.

Request Message Schems

UL

Q (gl

Schema Element g b
Define Schema For HEtp Binding

Reply Message scherma.

UL

Schema Element

OEBPS/img/fod_projects.gif
| Weblogrusonorderpems e
~ Projects BRV-=
281 ZOnderGatenay

bin

reditCardAuthorzation
ExtemallegacyPartnerSupplierEjb
rderapprovalumanTask

rdrsDOCompasie.
ertnerSupplerComposie

OEBPS/img/med_mult_clbk.gif
fle Edit View Application Refactor Search Navigate Build Run Versigning Tools Window Help

EDIE HOXNEE OO F- bt da- > %4 @)

Exposed Services Components External References

Operations:

Read

Operations.
wite

ades(0)] 7 Edting

OEBPS/img/soase005.gif
SOA Composite Application

ADF BC Application
Using
$DO-Formed
Data

SD0
Binding

Component(+)
Service

A5\ Wire

BPEL
Process Service
Component

OEBPS/img/bp_mdc4.gif
Receive Signal

Nome: [WaitForContactFromMasterProcess

Label; [begretaiProcess

OEBPS/img/med_xref_ucexref19.gif
= et prorty [1[3] [lvaidstesymtox(0) o+ d %

= [<iter Expressin>> v [< [seauenmil <]

Valdate semantic
Using Trensformtion | Inputparameters : xs]COMMON_TO_SBL_1

Assion Values |

Synchranaus Reply =0 [Loggert e b

Using Transformaton Outputparameters : GlS6L_TO_COMMON,
sion Values | Bl

OEBPS/img/bp_ht_stage2.gif
—

nepproval Staget
1 1

8 Unesppraval Particpentl <t Panicpant>
T T

OEBPS/img/med_create_event.gif
Exposed Services

Components

Subscrbert
CreateCustomer

External References

OEBPS/img/bam_mon_add.gif
Indicatar

OEBPS/img/bp_adapter_service.gif
WSDL Settings:

Qaff

WDL LR T D veloperimyworkiRuesRUs{Crediefing Savie

OEBPS/img/bp_wl_admin11.gif
Home | Administration | Repor

[YTETTEUT RN vidence Search | Approval Groups | Task Configuration

Administration Application Preferences
Application Preferences

Publc Fiex Fieds

OEBPS/img/bp_ex_creatent.gif
Create Entity

Neme:
Entity Variabe:

Erom:

MyCreateEniity

VarEnt

OEBPS/img/soa_createejb2.gif
& Create EJB Service

E3B Service

Create an EJ5 service,

Neme:
Type:
Interface:
Service I;
JAVA Interface:

wanL.
WSDLURL

Port Type:

Calback Port Type:

ervice2

Service
Omva G wsol|

ervice2

ok

OEBPS/img/bp_votedoutcomes.gif
Yote Outcome-

A Voted outcome willoverrds the default autcame I the reauired percentage i reached.

Outcomes wil be evaluated inthe order sted n the tabl,

A v R

Voted Outcomes Outcome Type

Jeoerove |

vae

El

OEBPS/img/bp_transform8.gif
® Sort Edit Dialog

Select sort options below as needed:

[tonuage coeio

[ort according to dtartype:

[sek sat rger o

[[] Fortext srtset case rder to

(Default st ab A B)

Cee] o J e)

OEBPS/img/bp_invokesync.gif
Invoke.

Nome: fInvokecheckCredtCard

Interaction Ty | 3 Partner ik~

Partner Role Wieb Service Interface

Parter Link:

(CredtCardhuthorizationgervice

ogerations [3
Varisles
ot [CrdtCardipt +Q
oups [Gredtcadoum +Q
options

Conversation ID:

[Tnvoke As Detail

Concel

OEBPS/img/sca_ejb.gif
‘package sdo.ejb.employee;

import

@stateless(nane
GRenote
@UebService (portiiane = “SessionEJBBeanservicePort”, endpointlnterface = “sdo.ejb.employee.S5essionEIE")
public class SessionEJBBean inplenents SessionEJB (
© pulic SessionEdBBean() (
try (

aefineschena("/", “employee.xsd”);

Systen. ont.println(“Successfully initialized!");

} catch (Exception e) {

e.printstackTrace () ;

“5ess10nETB", mappediiame = "sdo-ejb-SessionEIE"]

)
public EmployeeResponse getEmployeeInfo (Eployee emp) (
Systen. ont.printin("Eup SSH -->" +emp.getEmp (] .getssH(});
EnployesDetails eupDetails = eup.getEup();
EnployeeResponse response = (EuployesResponse) DataFactory. INSTANCE. create (EuployesResponse. class) ;
empDetails. setEuployeeType ("Full Tine"):
empDetails. setssll(enp. getEup (). qetsSH ()] :
response. setResult (empDetails) ;
return response;

)

private static list defineSchema(§tring resourceloc, String resourcelame] throws IOException (

Classloader cl = Thread.currentThread(] .getContextClassloader () ;
URL url = cl.getResource resourcelos + resourceliane) ;
if furl == mul)
throw new I0Exception("Can't read " + resourceloc + resourcellame) ;

InputStreamReader reader = new InputStreamReader (url.openStrean(]]:
Streamfource source = new StreamSource (reader);
return {(SDOXSDHelper) XSDHelper. INSTANCE) . define [source, mull);

OEBPS/img/fod_wire.gif

OEBPS/img/bp_wl_rep2.gif
nattended Tasks Report
Provides an analyss of tasks sssigned to users roups or reportees’ groups that need attenton because they have not yet been acquired
assgnee [My 8.Grow 2]

Greation
et @

Expiraton @ o ®

Date:

&

Task

sz [any E

prioity [Any =

OEBPS/img/med_create_wsdl.gif
@ Create WSDL

Specify WSDL message schema(s)

Reauest |(Reply | Faul | Calbask |

Define Schema for Netive Format

e sdjsingleString.xsd °

Schema Element [zinglestring

Operation Name: [execute

Port Type Name:[execute_ptt

Nemespace: [fitp/forack.comscajmeditor CustApplcation/CustomerProject/CustomerDatar|

File Name: | CustomerDataRouter wsdl

e

OEBPS/img/newjspxpage_dict.gif
& New Gallery.

[shon A gesretins

sopications
Convections
Oeployment Descrpors
Oeployment Profies
Dagans
e
projcts

SoaTer
S ebTer

) 57 Decwatwe Conponent
@ sreage
Lounchosthe Crese 57 Page o, n hih you e a o seeon
Sovosrver oces (o) e

o enabl s cpton, you must select project o a e with a proectn the.
Appkation aviater,

(68 35 Page Fow e Conburation ces-config o)
25 PageFragmert
5125 Page Tenlate

OEBPS/img/rules_adv_task_6.gif
Configure Assignment
[Routing | Assgnent

Use External Routing

Particpants and routing defined by external service

Routing service:

=

OEBPS/img/bp_ts_emul3.gif
® Edit Emulate

O Emulate Output

(@ Emete Faulf
Fault NegativeCredit ~
Fault Message: [{httpfservices.otn,com}CreditRetingServiceFaulflessage
Message Parts
Part: [payioad ~
value:
@ Enter Manualy O Losd From Fie
Enter Value:

Generate Sample

<oml-fragnent xulns:

er="http: //services. otn. con’ />

Duration: [0 ws [0

#ens [0 |pays [0 |rs [0

Mins [0 Secs

OEBPS/img/bp_ts_inbound.gif
5 il

R o

s @ 3

3

e Sl

OEBPS/img/bp_ht_client.gif

OEBPS/img/bam_mon_bisnapact.gif
*7 R

Snapshos:
Activiy Name Evaluation Events

el 5 copyTruncatedinputzoutout o [cancal |

|=) getInputiength | e ——
|- niinpuengthThreshold

OEBPS/img/bam_mon_select.gif
& Select Business Indicators.

Select the existing indicators you want to add to the activiy,

OEBPS/img/creatingapp.gif
& Create Generic Application - Step 1 of 2

Name your application

Epphcation ame:
AR popkcationrime | | ol
& ot tame

orecory:
Gl cpmratrenimorineR oo

Agpcaion Package Prfix.
[
Spplcaion Templte:

(Generic Application

Creates an pplcation whichnchles s project, Th project s ot

preconfiured with oeveloper techoges, b can be customzed toncude sy
techndoges.

Fuscn Web Appiation (A0F)

reates dtabound ADF web applcation. The pplcaton conssts o o profect
forthe vie and cortroler camponents ADF Faces d ADF Task Fions), and
arceherproject fo the dta model (ADF Busess Conpenerts).

5 33v3Desho Agpication

reatesan aplcstoncorfiured for bukdnga generc ava pplcation. T e
applcation wil ckd a prject the s preconfgred to se Java, Swng, and

OEBPS/img/med_mult_edtr.gif
< vectator

s s @
R

bk e ittt

= de oo ides
@ s ae
3 aare. oy [{ Owssesmaosn & v e R
ot <t s]
ot R
E\me-klvi\mm 15 [soaumntal =]
S T N |
Tindcn 0 [t gt J =L

Vs (s s = e ST ol

OEBPS/img/obe_busevent3.gif
& Event Definition Creation

Event Definition Creation =
The Event Defintion Creation dilog allows you to create a Event metadats defition e,

Event Defintion name: [orderE0

Directory: Fles/Ci/1run] CompositeServices/OrderBookingCampositel

Nemespace httpjschemasoracle. comjeventsfedorderE0

Events: + /7 x

Name Type
Newordersubmitted {/oracke/fodemojstorefront/entitiesfeventsjschema/OrderEO}iewOrdersubmittedinfo

OEBPS/img/med_alltargets.gif
< Mediator

Name: CustomerRouter
WSDLURL: ResdCustwsd @)
Port Type: Readfie it

= 4 Rouing Rules
G Operations Lk
= Readsie eioty 1] Dlwshdstesymantsn) o v - R
ol To [<<oava Clout Gz =]
stacRoutng
= i bodyfmpt CutamerdatalCountry = U5 | = [UsCstamersrerie @ (Gementl o]

— 38

OEBPS/img/bam_ar_ems_links.gif
TestRefreshMetrics

Enterprise Message Sources

OEBPS/img/bp_ts_emulout.gif
(@ Emulat Outpu]

O Emlete Faut
Output Message: [{httpservices.otn.com}CredtRatingServiceResponseessage
Message Parts
Part: [payioad ~
value:
@ Enter Manualy O Losd From Fie
Enter Value: Generate Sample
<xnd-ragnent />
ouraton: [0_J s [0 Jwons [o_Joays [0 Jrs [o_|mins [o_]sess|?]

OEBPS/img/ns_image5.gif
Mame:
Namespace
Template

Service Name:

SendMessage

it/ fxmins.oracle.com /SendMessageApp/SendMes sageProj/BPELProcess1

(28 Asynchronous BPEL Process Je

bpelprocess1_client

Expose as a SOAP service

Input: [{hmtp://xmins.aracle.com /SendMessageApp/SendMessagePral BPELPracess]

L p

QutpUt: [(http://xmins oracle. com /SendMiessageApp/SendMessagePro) /BPELProcess]

OEBPS/img/ns_filters.gif
ORACLE' User Messaging Preferences

[TN Messaging Filters
My Messaging Filters

‘Configure rules o fiter your notfication and alert messages.

Vew~ [BCreate P Ec R Dekie [fiDetach

Description

Fiker Name.
o' Fiter

TravelFiter

Recelve important messages from my boss

Hending messages during my travel

R——

OEBPS/img/chooseruledictdcjars3_dict.gif
Project Source Paths
ADF Model

ADF View

ant

Business Components
Compier
Dependencies
Deployment

ETB Mode
Extension

Javadac

Java EE Applcation

35 isua Edtor
Libraries and Classpath
Resource Bunde
RunjoebugiProfie
Technology Scope:

15P Tag Libraries

Ontrbuted rarks
5 ADF Dsts isuslzstion 1.1
13 20F Foces Components 11

et |
o3 oxbuer 1.0
5 globalsEditor 1.0
o3 5% core 1.2
o3 5 v 1.2
3 reDitonaryEdor 1.0
3 resedir 1.0
3 revaldstiontabe 1.0
3 valdstonTabe 1.0
3 Locl trares
(3 Tag e raries

& Project Properties - C:\scratch\asuraj\system\myworkuseRuleDictDC... [X]

L0 Fie:
SetEdtarDC.jar JMETA-INF/bucketsetEdtar.

Library Version: 1.0 Required 5P Version: 2.

uar
. orecle comjbpeljrusfbucketseteditor

Libraries (separated by semi-colons)
developerjadfibBucketsetEdtorDC jar Jbrary

Display Nape:
ucketsetEdtor

Brefi
bse

] Execute Tags in J5P Visual Editor

how Tag Library in Paette

OEBPS/img/bp_mpr_sample7.gif
&2 <sources>

E1- 48 Discontinuedl
<> tns:DiscontinuedList

E3- <e» tns:PurchaseCrder

L EH OrderDate

@I

<@ tns:CustomerContacts

i+ ¢@> CustomerID

2@ <Element Substitution >
- &8 tns:Conkack
[=- (@ <a3 tns:ShipToContact

o <ey ContactlD

<y Comment
<> Attathments
(%) <choice>
o Tteris
g8 Tem
o BB Parthum
48> Producthlame
<o Quantity
<oy Price
¢ Currency
&e3 tns:Comment.
- ke¥ DateAvailable

<o ts:Internationaladdre|

L]

E

<target> (2

DelimitedList & -
trsL:Invoice -2
InvoiceDate BB
.
tnsLiComment @ o -]

Data Kedl-=]

Recipient
Shrest
Strest2
City
Region
PastCode
Country

Productiame <>
Quantity <o
PriceCharged s>

OEBPS/img/excel_select_component.gif
W Fomulas Data Redew View Addns

MERMIT S| S wiap Text General - B | soroireso.. oo aec.. | =
BER RS erge & Center = | [$-- 8 53] | Conaional_Fomat 8ad Insert Delete Format
55] Bl Merge & Center - |18 -2 Fomatting~ a5 Taple - Lo et Pelste o

Font 5 Alignment 5 Number 5 Stytes cells

f

[H 1 J K L Document Actions.

et Coulpnt (&) Oracle ADF 11g Desktop Integration
Select acellin the worksheet t nsert a binding or com

Selectthe component o create.
Bindings omponents

Page Definton: expensereporttaskfion_ExcelCort

Avaable Bincngs:
[version (attributetialues)

i tack trec)

(i updatedeyt (ree)

[APPROVE (methodaction)

5 REECT (methodiction)

[Creator (attributevales)

[Expenserd (attribuevalues)

[} Crestecbate (attrbuteialues)
[Stetus (atrbutealues)

[Purpose (atributevales)

[ReimbCurency (attribukevalues)
A CostCenter (atrbutevaluss)
83 Createlnsert2 (action)

483 Delete action)

[tem (rec)

[expenseltemstist (ist)

(] retrieveTasksForiser (nethodaction)
[toskid (attributetalues)

[} toskumbert (atrbutevals)
[toskTite (attributetalues)

OEBPS/img/excel_jdev_deply_app2.gif
Fi

File Edit Vi
BoE8g 90 Xam 0 -0 5
(Zlapplication Navigator | | Applcation Server Navigator

w Search Navigate Build Run

Refactor

Versi

ing Tools Window Help

hidda- D@ A
(5]

FDIExpenseReportapp

= Projecs
enseReportComposte
enseReportTaskFom
23 Appcation Sources
-3 Web Content
3 images
(3 wes v
[acfcconfig sl
(6] addichentregitry.xnl
faces-confg.xnl
(o] wiidac-confg.xri
B webl
5 weblogicxnl
23 Poge Flows
iy e
[c——
[ExpenseeportTask TaskFlw.sml
B ExpenseReportask isx
2] ExpenseReportTeskcd s
- tognpage.p
[~

R&®v-=

1 Applcaton Resources
 Data Controls

Hew roject,

tew,

Open Project.

Close Application

R Delot= Application
Rename Appication.

cun

Find Applicaton Files
Show Overvien
Eiker Applcation,

ExpenseReportComposite
ExpenseReportTF

Reformat CuArL
Organize Inparts cuaro

Yersion Agplication. toEAR fle
Compare With »

Replace With »

ADF Security Polces

applcatian Propertes.

OEBPS/img/bp_mdc1.gif
signal

Nome: [contactDetaiProcess

Label; |begnDetaiProcess

OEBPS/img/storefront.gif
Tpod Video 306>

b

Price 249.99
Price 140,95 ‘Audio and Video

Zune 3060

Price 225.99
‘Audio and Video

Treo 650
Phone/PDA

8

Price 29939
el Phones

Bluetooth Phone.
Headset

M)

Tpod Video 606>

1

Price 39999
‘Audio and Video

Tungsten € PDA

e
Price 195.99
‘Audio and Video

Ipod Speakers

i

Price 149,95
‘Audio and Viceo

Plasma HD Television

Ipod Shuffe 16b

Price 199,95
‘Audio and Video

Playstation 2 Video
Game

7 MegapixelDigtal
Camera

OEBPS/img/bp_wl_home1.gif
ORACLE' BPM Worklist

Hy Tasks GUAZAE

& Worklist Views (Z[=I#]| | actonsv | @) | assones [y s Grop =] status [Assgned =] search Advanced
(] inbox] |Titie [Number __ [Priority _|Assignees State. (Created [Expires
2 @ vy ok Queues @ o o005 1 Fen@) Assoned ar s, 2009 6387
=l Smade V\esws [E] Helo desk request for wfauk 0008 3 sstein (U) Assigned Mar 23, 2008 3:24PM Mar 24, 2008 3:34P
Boes (5] Heb desk recuestfor ik nos 3 men) assgned Vr 23, 2008 $22PM Mar 24, 2008 432
Mo [He desk request for wiaulk 2000 3 Jstein (1) Assigned. Mar 24, 2009 11:09 AM _Mar 25, 2008 11:19

B My Views

MyNewview R0 e SRR

(5 @ procy Work Queves

‘Shared Views. Help desk request for wfaulk Task Actions v | RESOLVED 'UNRESOLVED
o ot

assignees Expration date Mer 25, 2009 11:19 AM State Assigned
Creator Acqured By
Crested Mar 24,2009 1103 AM TaskNumber 200030
Updsted Mar 24, 2008 11:08 AM pririty [3

ElContents

Locaton Cifornia
Type Herduare

! 5| sesenescome nse rovotpesrsen
[Task Status Severity |2
Assigned [< Status | Created
Compieted [N Requester ik
Suspenced First N - Wiliam
s T e
e Email user1@us.oracle.com
oot ot =
plerted Resolution
info Comment None
Requested Resolved By None
o
Stale ElHistory.
Tou M || [oyros s | e s ks
—— e e
K» © Esteget

Y & ssien hesered var 24, 2008 1109 A

OEBPS/img/sca_spring9.gif
& Update Reference

E3B Service

Update an €38 service,

Neme:
DI Name:

JAVA Interface:

scaref 1_eib_ep

fexternal bean mylnterface

OEBPS/img/med_specf_expr.gif
€in. requestPart2/chL singlestring/chL dnput

A et Tto Exression

Variables

=on
& B reqespatz
[E
B
B reqespaa
- osngestren
e
& Bl eaespatt
= lsngesig
o s

ContertPrevien:

Desartion

S requespar2ichlangestrnsichlinget

5 path xceessionof th varitle

o J[ems)

OEBPS/img/importxsd.gif
3k @

nport Schema e
) profect schema Fies
) Project WL Fies

OEBPS/img/bp_switchcondition2.gif
Label

Description

Condion:

OEBPS/img/rules_df2.gif
Exposed Services Components External References

Functonstat.
FunctionStat.

OEBPS/img/bp_completed_phase_in_jdev.gif
- o) References

receivelnput

2 i @

Phase.

Assign_L - fprocessfsequenceassign zoom: [100[3] =—T—— &

Desin | Source | rstory

OEBPS/img/ns_image25.gif
e ExpressionBuilder ___________________}J
Expression @ &0

bpws: getvariahlebata(inputvariable’, 'payload’, ' /client: process/c1ient:body ")l

I

A Insert Into Expression

BPEL Variables

Functions

Variabies
S process
Varisbles
E(x) inputvariable
& [payload
5> clentprocess
> clenito
© clintsubiect

< fienton]

() owtputvariable

7 (Advansrncion

ot
prw——

batchProcessActive

batchProcess Completed

opyList

reate-nodeset-from-delimited-string

OEBPS/img/bp_wl_search2a.gif
[Advanced Search
Definition (I

I save Search as View

assgnee [My 8Grow (5]
dd Conditon [EETTETCNNG——

Match € Al @ Any
TaskType [Q

OEBPS/img/sca_spirng3.gif
Exposed Services. Components Externa.

® wimeot

OEBPS/img/bp_wl_savedmapping.gif
Admin

[Administration

Applcation Preferences
5] Flex Field Mapping
Public Fles Fields

Flex Field Mapping : Public

Cancel

View existng lex ied mappings (.. task sttribute Isbels). Create additionsl flex fisld abels and map these to task attributes.
The abelswil be displaye to the end users, and should be user-friendly terms for the task atributes

Oerowse all mappings
(@Edit mappings by task type:

Paylosd Attrbute

location

HelpDeskRequestSCAADD HelpDeskRequestc

Flex Fild Labels

to myField (Textattribute?)

®

OEBPS/img/bam_mainlist.gif
ACLE' BAM Architect

Dot Objects
[Data Objects

ay
lerts

[External Data sources Layout of Dat

OEBPS/img/ns_email12.gif
teoml | g SendEmailithAttachments.xsd

@

femalthatta.

p (U0)]

Design [Source

~
e Notficationservic
s 2
oo
5 v
[
; eneis
o
clbctcion
>
Zoom:| o[e——xlEl—xu @&
S

OEBPS/img/bp_createsource.gif
& Add Source.

Name.

Localtme:[cusT]
[] set anamespace

To reference a parameter in XPath, use the name entered prefixed by §
(Example: gname, $prefixiname)

Source Schema

(oo] s

[l | eement

OEBPS/img/med_validation1.gif
+/%

part Valdation e Type
CustomerData schvalsimple.sch schematron

OEBPS/img/bp_flow5.gif
s @

e

Drop Activity
Here

OEBPS/img/bp_tdf_commattach.gif
ElComments

#..updatedDate) ~ #..updatedBy.id}
[#(-comment)

ElAttachments + X
Eo) o,

..updatedDate) A..updatedBy.id) #{_name)

#..comment #(.name)

#(...updatedDate} ipdatedBy.id) #(..name }

" comment)

OEBPS/img/med_dvm_create.gif
@ Create Dom:

Value Map(DVM)

il Name:

CityCodes.dvn

Directory Name:

Ci\DevelapermyworkiDVMApplcation|DVMCtyCades Browse,

Description

Mappings of ciy names and ciy codes

Initial DVM Entries

Domain Name: |CityCode Domain Value: [0

Domain Name: [Cityame. Domain Value: [Boston

el Cancel

OEBPS/img/med_dvm_usecasedvm10.gif
Source: ReadOrders.wsdl
2 <sauces>
5 <o mpistorordsr
=48 impt:order
[erh
= impiibaseData
[
<o mpandard
<o mptsunkOfessre
o imptdate
& impLipricingData
< ek
<o mptprcngpate
< mptaamnt

)

#SLT File: WriteCommonOrder. wsl|
<target:
impiistoforder <
for-each & &
impt:order 5
impt:id <o
impi:baseDat <01
implitp o>
impiistandard @
impt:uniOfteasure <o
impi:date -
imp:pricingData <>
impfreightamount. <o
imp:pricigDate <e>-
imptaxAmount <o

OEBPS/img/med_automap1.gif
& Auto Map Preferences x|

] Conirm Auto ap Resuts
romt or Preferences before Auto Map

During Auto Har

Watch Elments wth SerNanes
O Mtch Elmeks i ExsctNames

od

[[] e Hements wih Exec Types
(£ Hements Considerng thet Ancesto anes

st ttamerts:
Gt

O Forcptosi odes wthrequred chen
O rorscptendodes

Show Ditonaries >>

7] Enable Autoin

OEBPS/img/bpmdg017.gif
condition 1 Boolean XPATH Expression
ey
brscane l

i Q

[N 1
[setect]1i[select |
1| unitedloan | 11| startoan |
1| ssigns | 11| <assigns |

OEBPS/img/storeprojects.gif
(@application Navigator

Projects
StoreFrantservice
StoreFrantll

UnitTests

OEBPS/img/med_createmed_noinfc.gif
@ Create Mediator

Mediator Component '@
Creste a mediator component to perform routing, fitering, and transformations.

Neme:

Template: | {53 Define Intetface Later R

OEBPS/img/bp_ht_taskcontent.gif
8o General

@ oas

B assioment
@ Presentation
B Deadines
8 Notficaton
& Access

F events

 Cartent |(Ackana1]

et access levels for each content tem: (3) Coarse arained O Fine arained

@reset

APPROVERS ASSIGNEES |CREATOR OWNER
Read e e e

Read Read Read Read

Read e e e

REVIEWERS
wiite i

Read

OEBPS/img/bp_ts_create2.gif
~ Projects

OEBPS/img/bp_wl_reassign4.gif
Reassign Task

Reassign tsks to one o more users
This i transfer ownerstip of the task and remove i from your workist
(® Reassign (transfer task to anather user or group)
O Delegate (allow specfied user to act on my behalf)

G] [Search | | Reset
[pe—n— .
Available Selected
Causten > feooper
Csen Hove ondn
Diverne. » =
ove Al N
Q -
Remove v
«
Remove Al
E Details
Nome JackLonden frm——
WarkPhone 100000008 Reportezs
Collphone 300000008 Roles QATeam
Fax Groups LosnagentGrous
el fonden@emsiExarplecom Comrahegon N
Tl Lon Agent 1
ok

Cancel

OEBPS/img/med_readfiletomediator.gif
< CustomerDataRouter.mplan

Exposed Services Components External References

@ = Readr e

ReadFie

< >
Design | Source | History

OEBPS/img/bp_ht_stage1.gif
B eke el A [dr+| £ Edt 3 kil go from starting o finsl particpant

Sequentislpartiipant block
Paralkl partiipant block
Sequential stage

nefpproval

1

& |ossopovpatapats

OEBPS/img/bp_sourcepanel.gif
| nomappings.xsi

Design | ource ristory |

(22 <source-
-8 cusT
<o customer
& <o Hecer

< customerld
< customerhiame

<@ ShipTo

<@ Bl

< Creditinio

<® purchaseOrder

[
o (22
nstinvoice @ 5
InvoiceDate BE
tnst:Comment ko3
Customed <>
choose 8
Srppetems <

OEBPS/img/bp_switchcondition3.gif
Gt a1}

Label: [choose the Loan with the Lower APL

Descripton: [y chooses the loan offer with the ower APL.

Condion:

bpws:getvariableDate(loanOffer L,
payload loanCfer APR) >
bpws:getVariableData(loanOfferz,
payload loanOfer APR)

OEBPS/img/med_mep3.gif
Gllent

Invoke

One-Way Target

Clent

el i
o Component
Erepionss
o
Invoke Request-Response.
Reply to Target Reference.
Client <+ or Component
Eroptonas
Request- Faut
Response
%
[DA—
o
J—
cabac L e
Tt
N e
Responso
Ercopons
(s
[AR -
Pivcet Fa g e
s e oot

OEBPS/img/ns_parlayx003.gif
e JDeveloper 11g Development Build - usermessagingsample-parlayx.

Fle Edit View Search Navigate Buid Run

Boag 9o xam o -0

sermessagngsanpe parap
= Projects Q@ V-=- |
R usermessagingsample-pariayx web|
&0 Applcaton Sources
B orade.sdp.messaging
sampe
E@ parlayx
B confioservietjova
{8l Receivemanagerservet o]
& Recevesenietisia
& sencservetisva
B3 vieb Content
-8 wes v
B b
@] ndechi
8] man il
igh stfesheet.css

Refactor Versioning Tools Window Help.

IEAAE - T L RAl g e

sample-parlayx-

(@iResource Palette (=]
PR r—)

P My Catalogs.
= 108 Connectons
@ soviceton sener

Edting

OEBPS/img/bp_ht_routepol.gif
Configure Assignment

((Routing | Assignment

[Foutetaskto alpartcpats, i ordr specied

Task il go rom starting to final particpant
(7] Alow al particpants toinvie other prtipents

(7] Complete task when a participant chooses: <outcomes> /7

OEBPS/img/bp_ht_esc.gif
Task Duration Settings:

Custom Escalation Java Class:

Eproster <]

Foedburstion] 0oy

o e

e

b

7] e B Sl

OEBPS/img/ruledictdcinpalette_dict.gif
ff Component palette @3

[0F Faces |

v
bse
bse
R
fulesedor
Fulsicatotatle
eicatotatle

by Companerts
“C Carousel Ttem
8 chooss cokr
& choose Dtz
& colann

18 contest Info
Dialog

] Facet ref

l Fom

@ Go Button

& cotmage Lk
yre

& coenuttam
Sien

ary s

OEBPS/img/sca_genconfigplan3.gif
<7xml version="1.0" encoding="UTF-8"7>
E] <S0AConfigPlan xulns: joa="http: //platforn. integration. oracle/blocks/aday
Bl <composite name="Projectl”
E <1--Add search and replace rules for the import section of a comp:
Exanple:
<searchReplace>
<searchERLLp: //uy-dev-servers/search
<replace>huep: //uy-test-server</replace>
<searchReplace>
<searchReplace>
<search>8888</search>
<replace»888ac/replace>
<searchReplace>-->
E <import>
= <searchReplace>
<search/>
<replace/>
</searchReplace>
</import>
<service nane="bpelprocessl_client_ep">
binding type="us">
<attribute name="port™>
<replacehtep: //xulns. oracle. con/Nyhpp/Projectl/BPELProct
</attribute>
</binding
</service>
E <1--Add search and replace rules for the component propervies
For components and service/reference bindings, vou can add polic

oo

OEBPS/img/bp_wl_search2.gif
Advanced Search (]
Definition (A

I Save Search as View

assgnee [My aGrow 5]
Add Conditon [StartDate — =

esgrees
IO name
|Owner Role Qa
Cpdated ate
e
(Composte verson
e
o e
Percentage Conolte
e
O cain
B
oy
o
(Conposie
B
e
Composte istnqushed Nare
sk Diloy IR
Updted 2y
oucare
esermesoace
oprovers
ooicaton Context
s e
e
Eiores
—
Senmeas,

TaskType

OEBPS/img/bp_portlets3.gif
Keystore Configuration o | | Cancel

Akeystore is key database that contains both public and prvate keys. Keystore needs to be configured only a the WebLogic Domain evel. You wil
need o provide the keystore name, path, password and nformation about dsfaul identity certicates.

onfigure Keystors Management
@ TIP Toremove keystore configuration, uncherk Configure Keystore Management checkbox above and clck OK.

Keystore Type XS
* Keystore Path |, jmyproducer ks
* passward

* Canfirm Passward

Identity Certificates

Specify the default identity certicates (signature and encryption keys) fo ths keystore. Web Services that are configured to uss this
Keystare wil use these idertity certficates.

Signature Key Encryption Key
* Key Ales | producercert * Crypt Ales | producercert

* Signature Password * Crypt Password

* Canfirm Passward * Canfirm Passward

OEBPS/img/fod_bpelcomposite.gif
Exposed Services Components External References

e

orderprocesso...

process
processRespon.

OEBPS/img/bpel_assertcondition2.gif
| Popetes [Hesders |
assertions: i R

Hame Exresson FaukName | Messoge
B negativeCredt $rOuiput pay Negative Credt

OEBPS/img/ns_channels.gif
ORACLE' User Messaging Preferences

Home | Help | Settings
Messaging Channels

Looged n 2s weblogic
My Messaging Channels

Configure chanel o receive your notfiations and derts
view~ [@create et Rekte [Detach
e dess
L
L
s

Name

) John Persanal Emal

ohn@gnai.com
) Business Emal

] Business b

) Busiess Phone.

john doe@oracle.com

16505066789
voIce 16505061234

P —

OEBPS/img/soase006.gif
SOA Composite Application

BpeL
Procoss Sorvico
Componont
g aniy
Variable)
S50 Binding |- [A0F BC Appication
I s~ Componant Usha
(M) Fererence 500 Foshed
Sata
Pass keyto

fetch data

OEBPS/img/excel_jdv_adf_rd_only_frm.gif
(lapplication | | application Serve,

(2)start Page | [l ExcelControls.fspx.

FDIExpenseReportapp

@~ how- [Fullsreen sze ~] @

= Projects M@ V-

e e
23 Applcaton sources
53 Web Content
£ sges
3 wes v
3 Page Fows
cammy e
[Excelcontrolsjspx
L] ExpenseReportTask_Taskrlow.smi
) ExpenseReportTack dox
131 ExpenseReportTaskedt
5] ExpenseReportTaskedt lsx-org
Logrpage sp
ket o
. Applcation Resources
 Dats Controls
= ExpenseReportTaslon_ExpensaRepertTack
23 Operstions
& (5] getTeskDetali(trng, Sring, Sting)
3 Paramters
& retum
&

[A&

Create.
Forms

Master-Datals b | 8] Comple Tack wihout Payload
Wil Selections b | Task detaisfor emal
Navigation » |88 Teskeader

Single selections b |8 Task Actions

Tables » |88 Teskstory

Trees » |8 Tesk Comments and ateachmets
Cancel

OEBPS/img/bp_sensor3.gif
& Create Variable Sensor

tame: [Loanipplcationsensor

Target: [$inputipayloadjautorloanapplication

4

Configuration

Output Namespace: [hitp:fjaws autoloan.com/autoloan

Output Datatype: [loanapplication

Sensor Actions

+/ %

OEBPS/img/bp_ht_taskowner.gif
Category:

2
By expression_~]

e

Ourer:

laroup
|appication Role

OEBPS/img/ns_image32.gif
SendMessagePr

)/ ppius
-

Iofg composite xim

Q- ®- & @8

e BPELFrocessLbpel

B PELProcess xsd

[aGHE

[x:

) o @

& (3 50 Comter
3 testu
e

2 e
G
. Applicaion Resours
J._Data Conrols.
. Recently Opencd il

1= Senaessageprs

(5 new.
it Project Source Paths.
% Delete roject
@8 Eind Project Files
Show Overview
dh Make Sendessageproljor
88 Rebuila Sendessageprojor

cn

wre @

cui-rs
An-Fa

1
)

receivelnput

i

Natificationservi.

SBRARE” 8 [z

D> Run Project

W Debug

13 Reformat
organize Imports

Version SendMessageProlpr.
Compare With
Replace With

I

Curan-L
Cuiean-o

o[

BETAS

toJaR @) oeTAshis

callbackClient

) stoeais-beras
@ stoezls-manag

New Connection

IR

OEBPS/img/bp_wl_subtask1.gif
“TaskTitle
Category

prioity

Percentage Complete
Due Date

StartDate

ssten

L EE

L

OEBPS/img/bam_mon_bi_icon.gif
@

calbackclient

OEBPS/img/bp_mdc3.gif
Receive Signal %

Nome: [waitForDetalProcess

Label; [compltedDetaiProcess

[Cmep] aoply|[_ok [cancel

OEBPS/img/bp_assert_value.gif
% Wire Actions

Operations | Wire Actons For Operation <intiate>

hesarts | Eiltes |

+/%

assert Typs Assert Target
jAssert Input LoanBrokerRequestiessage.payload

OEBPS/img/bam_dc_parampass.gif
 Data Controls.
=B
El query
& (=] setparameters(sting)
& (3 Parameters
@ myParemeter

OEBPS/img/excel_mthd_actn_bndng.gif
Pagelayout Fomulas Data Review View Adddns

Catiri Slu A Shiwrap Text General - om0 Reado... | soro1 Tabec... | 5. Eal
[[O A B Merge & Center + s <38 %8| | Conditional Format | Normal Bad Insert Delete Fo

e e e e | B beae & v | o)| Fomating - as T L™ -
Font B Atgnment 5l wmbe 6 sties cens

[£
| T

cor: ey Inscrt Component: ADF Button

—

‘Add values forthe propertes and press OK to save your changes. Oracle ADF 11g Desktop Integration
Select acel i the worksheet ta insert a binding

[Bndgs | Componems |

ClckhctionSet Page Definton: expensereporttaskfion_E>
H Data

Refresh Task List el

2 version (attributetalues)

& Design
Amnotation @task (ree)
(& pdatedy1 Cree)
& Layout (5] APPROVE (methodctor)
LowerRighComer 5] REJECT (methodction)

Posiion Crestor (attrbutealues)

xpenseld (attributevalues)
CreatedDate (attributeValues)
tatus (attributeValues)

urpose (attributeValues)
ReimbCurrency (attributeValues)
CostCenter (attributeValues)
& Createtnsenz (acton)

3 eete2 (acton)
Label (@ em Cree)
The label displayed when this button is rendered. xpenseltemsList (list)

skl (attrbutevalues)
asktiumbert (ttrbutevalues)
raskTitle (attributevalues)

OEBPS/img/bp_ht_taskaction.gif
T —

@ oot

B assignment Check action boxes to permit access: (3) Coarse grained () Fine grained @ Reset

@presentation [acions ADMIN_ APPROVERS ASSIGNEES |CREATOR | OWNER REVIEWERS

B Deadines appROVE =] O B

& Nofcston perec o o

& Access acquiRe O O

F Events ADHOC R [m] (=] (=]
DELEGATE O O o |

OEBPS/img/rules_df3.gif
& Update Interface.

Component: OracleRulest
Service: DF_2
WSDLURL: DF_2.wsdl

Port Type: IDecisionservice

(Operation Type
calFunctonstateless input

calFunctonstateless output
calFunctionstateless FaultioperatianEnaredFaul
calFunctonstateful input

calFunctonstateful output

calFunctionstateful FaultioperatianEnoredFaul

Message
calFunctionstatelesshiessage
calFunctonstatelessDecisionMessage
deckianserviceError
calFunctonstatefulblessage
calFunctonstatefulDecisiontiessage
deckianserviceError

part
payload
payload
payload
payload
payload
payload

Type
element
element
element
element
element
element

Qiame. Schema Location
calFunctionstateless OF_z.wsdl
calFunctonstatelessDeci.. DF _2.wsdl
enorinfo OF _2wsdl
calFunctonstateful OF _2wsdl
calFunctonstatefulDecision DF _2.wsdl
enorinfo OF _2wsdl

] show Detals

[Create Compost Service with 504P bindings

e

OEBPS/img/obe_busevent4.gif
& Create Mediator

Mediator Component

Creste a mediator component to perform routing, fitering, and transformations.

X)

Neme:

Template;

Crdependngevent
& subsaetovverts Je

RS
et ConsstoncyRumssRies_[Fher

NewOrderSu...ane and anly ane $publsher

OEBPS/img/ns_image26.gif
ppjws | oficomposite xm! 4 BPELProcesslxsd (U0I)

LA A T G 9 BpEL-
' user Notication x|
(General |(Advanced | Sensers

s

[——— Y RN

Subject

WarisbleDatainputvariae parload; fclientprocessjclent subiect =] (2]

Notification Message:

getvariableData(inputvariable’,

ayload elientpracess/clentbody %] [

S .
< ———— k3
zoom:[100 ———— @

OEBPS/img/fod_manageconf.gif
Manage Configurations

Javanaming factory.intial
bo.ampoo.intpoolsize

s roperties
StoreserviceAtiLocal Property. value

Appioduendiiame oradle.fodema.starefrart.store.servic
StoreFrontservice Appicationtiame. oradle.fodemo,storefront store.servc

DeployPlatform LocaL

DECHame Fop

fod.appication ssoaenabled fabe

oracle.jbo.common. oolritalContextr.
1

o g e ot
o ot Streronisrves
ame StreseniceAMocatie
[vewe] [om | [t | [oo | [vewswed.. |

OEBPS/img/bp_tdf_simpwiz1.gif
Name and Definition

(—c———¢

Body

Rowt Columnl
Footer

Summary.

This wizerd wil allow you to define the content and ayout of yaur business form.

Form Name:

© Advanced:

Task Flaw Name:

OEBPS/img/bam_dc_wiz_name.gif
& Create B Data Control. -Step 1 of 6

Name

13, Name.

Parameters

Groups

Aamrecates

%

Fiters

Calcuated Fieds

BAM data control runs a query against a specfic BAM data object.

1t reads and surfaces the intial snapshot of data. It ko fires data change events when the
BAM data cbiect cantent in the cantext of the query changes.

BAM Data Control Name:
Directory Name:

Data Obiect:

Query type:
@ Group Query
O Pt Query

Fil_sales

frojectt

Browse.

Jsamples{Fim 5ales @ BAMServerConnectiont

] Collpsed

OEBPS/img/med_xref_ucexref18.gif
‘Source: SBL.wsdl 5L File: Looger wsd|

- <souces> <target> (3-8
£ ol customers droupuparameters -5
<> npt:Customers b 4D ko &
- dOutpaneters I st

ke dbix_app_ID

OEBPS/img/med_create_newgallery.gif
| Current roject Techndloges

This st i Fitered accarding ta the current projects selected technologies.

(&)
Categories: Items: [Show AllDescriptions
- General s BPEL Process
- dppications
Connections @ Business Rules
- Deploymert Descrtars
Event Defiriton
‘Deployment Profiles [
- projects & Human Task
5508 Ter
‘ <& Mediator
e Creates anew mediator
Alltems To enable tisopton, you must select a SOR prcject o il wihin a SOA

project in the Applicaton Navigator.

OEBPS/img/med_allwindows.gif
Application Navigator Mediator Editor

Navaste. Run Debug Refactor Versgnng Took Wedom ey
GoEe 9q KGR O -0 F- Attda- > & -@Y
e
[comommsoon

aviee bbeé
=

© B S0 ot o [r——
P
B o s
@ = I:sma Port Type: ReadFile_ptt
& @
g [
b —
£ CustomerDataRaer conpanentType
<& CustonerDataRouterplon = g Routing Rules
[ReadFie_fie.ica
- R @ oo %
5 e
(@] wikeFie.wsdl =0 ReadFie Briority 15: []yaldate Schema o v o 3¢

5 (3 warongs (1)
53 Gerraedy rac50...

= © T

source [Desin 0C

spensd

(16 Ssved noces(s) | i serting e edtor | Seb e ecator Deson Edtre

Property
Inspector

OEBPS/img/sca_genconfigplan2.gif
& Composite Configuration Plan Generator

This willgenerate a SOA composite configuration plan under the folder
Citrunlsamples_hwFiYacatiorRequestApplidevapp|SOAPra),
Specify the file name (<l for the configuration plan.

S0AProj_cFgplan.xl

[] Overarite existingFle

OEBPS/img/bp_ts_create.gif
=-ofg MyProject
opELprocesses

et st

iies

B create Test sue.

OEBPS/img/excel_update_workbook.gif
—J] File Edt View [Insert Format Tools Data Window Help Tvpea
e B I BEV o s oo
o sesao s

Login. A A

Logaut.
s For User: 200001 Load Task Details

-0 <|B Z U

Clear allData
Edit Options,
About

Upload
[

Task Details Asprove)[Reiect_J(Uodate) Susoend

Dovrrioad

Tile: Expense Report Filed By wfaulk
Priority 3
Expense Id 102
Status

Purpose: travel

ReimbCurrency Dollrs

Costcenter. R

Expense Items

tem 1 100 typet
tem 2 200 type 2
w itom3 a0

9 [NEW Ttem
]

OEBPS/img/bp_ex_partnerlink.gif
Edit Partner Link

=y |

Neme: [CredtCardauthorzationgervice

Process: | OrderProcessor

WSDL Settings

Qaz @

WSDL URL: CreditCardAuthorizationService wsdl
Partner Link Type: [§” CrediCardauthorizationserviee)
Patner kol (@ CredtAuthorastionprt <
Hy Role: [hot pectied 3

OEBPS/img/bp_ht_ed.gif
@ General

Gow e o

[concat(strina(pproval Required for Order 1), taskitaskitaskipayloadjtaskiorderld)

W assament | pescrpton
@ presentation

@ Deadines Oucomes [APPROVE REECT
B totfcson | oty (e)
& - T 2

evems

Ourer:

User

Ea

Applcation Context:

OEBPS/img/med_create_subevent1.gif
JiEvent Chooser

Event Definition: | C:11Developerlmywork|Customer|CustomerEvents.ed| °

Event;

Type: {http:fjsempl.oracle comCustomerAccount} Custorers

—

OEBPS/img/bp_ex_assign.gif
Assign

G Copy operation

Anmotstions | Skp Condon |

*I/RED

From

() Variable
orderInfoVariablenstiorderints

B Expression
4

B Expression
i

B Expression

False()
B Expression
False()

To
() Variable
FindCustomerlnfo_Inputaricblefp
() variable
FindCustomerlnfo_Inputarcblefp
() variable
FindCustomerlnfo_Inputarcblefp
() variable
FindCustomerlnfo_Inputarcblefp
() variable
FindCustomerlnfo_Inputarcblefp

apply |[ok [cancel

OEBPS/img/bp_receive.gif

OEBPS/img/ns_email11.gif
Erom Account: [pefault
Io fable' payload: fdient:processidient:ta), mai%>| A [l
2 QR
e QB
Reply To QR
Subjecti [putvariabe) payload, Jelentiprocessjcentisubiect) %> (B,
iz Cnputvariable!,payload, feent:processclent:body %>
B ——
Message bady can be plain textor HTHL

Muipart message [1 attachments

™ oy) o (e

OEBPS/img/createuserulesdcpage.gif
& Create ISF Page

Entertha rane drctoy, ard choos typFor the 5 Page. Optoly rference aPace.
Tengat o nclod £ conten 1 page, o appy 3 ik St Loyt to o nd configure
st of ot conpanents.

o ane: [

19 Page Loyst and Coont

Osrtrore

5Poge Inpementaton (1 corprents e ot exposed i managed ber)

OEBPS/img/med_xrefim_ucfinal.gif
Exposed Services

@e

sap

Components

External References

e @
EBS
Operatons:

Operations:
Wit

OEBPS/img/bp_portlets6.gif
Available Policies

Search |Policy Category (¥

Policy Name

oracie/wsaddr_policy

‘oradle/log_policy

oraciefwsmtom_policy

‘oracle binding_authorization_denyall_policy

Category.
WS-Addres...

MTOM Atta...

Yes
Yes

Yes

‘This policy causes the platfor|
This policy causes the

This Message Transmission
This policy is a special case of

OEBPS/img/bp_wl_cert_upload.gif
Upload Certificate

@ Brouse for Certfcate

Certificate fie type € PKCS7
@ Prcsiz

Select CerticsteFle [Browse.

Certficate Password

© Type or Paste Certficate Contents

Resst | | Woad

OEBPS/img/bp_fault2.gif
Be
Wediator_FP_ep

OEBPS/img/bp_wl_rules_my.gif
Adimi

ORACLE' BPM Worklis!

@ Vacation erod (Enabled)
12 My Rules Name = [User e
& ser e I Use o5 vacaton e
‘Apply orly to task type(s) a

I Execte rule only between these dates:

StartDate
EndDate

THEN
€ Resssgn o | Q
© Delegate tor a
@ Set outcome to:

@ Take no acton
Reassigned task access is determined according to new assignes rights.

Delegated task sccess s determined according to ights of riginal user who delegtes.
Take no acton s used to create excepton rus that override a more generic U,

OEBPS/img/sca_genconfigplan4.gif
A validation report illbe generated in the following ie:

Virun|Composteservices|OrderBoskingCompastelSCA-INFidlas
estorderbooking_deployment_plan_report.Jog

OEBPS/img/chooserulesdcjars2.gif
Listof available 15P tag braries compatible with
eb Application versian: Serviet 2.5\15P 2.1 (Java EE 1.5)
excluding aready used ibraries

03 ADF Dats Visuslztions Core 1.1
3 ADF Dynanic Componerts 1.2

3 ADF Faces Databinding 1.0

o3 1L core 1.2

o3 3510 Formt 1.2

3 3510 Functons 1.2

3 3510 Permited Tagibs 1.2

o3 3510 st ree 1.2

o3 s saL 1.2

o3 1w 12

3 Orade ADF DataTsgbrary 1.0

W3 Struts Bean (Backwards Compatbiity) 1.2

[ookte || dearceche |

|

OEBPS/img/soadg013.gif
Layert @] Phasel || Phasell [Prasom

o ™ Lo of T

Layer I ok

el ol I o

Task Task Task
O PO O T35 PO O 53

OEBPS/img/ns_email7.gif
Erom Account: [pefault
To: QB
o QB
Bec QB
Repy To Qe
Sbject 2

Body: B

Wessage body can be plain et or TV
[tlpart messoge. atachments

OEBPS/img/sca_clientpolover.gif
Security.

*R7

oraclefuss_hitp_token_dient_polcy
oraclefuss_hitp_token_over_sl_clent_policy
oraclefuss_oam_token_dient_poicy
oraclefwss_sam_token_bearer_over_ssl_clent_policy
oraclefwss_sam_token_over_ss|_cient_poliy

Management

+x7

oradlefiog_polcy

OEBPS/img/creatingproj_dict.gif
& Create Generic Application - Step 2 of 3

3

govens nteracton etwenth rest o th sppication and the data stredinthe

(<o) tent>] [Eren] [Corcs] |

OEBPS/img/bp_ht_addtaskp2.gif
Type Chooser

. Type Exlrer
=) 0L schema S Types

normalizedstring
token

byte

unsignedsyte
baseGdBinary
hexBinary

integer
positivelnteger
negativelnteger
nonNegativelnteger
nonPositivelnteger
int

unsignedint

long

unsignediong
short
unsignedshort

(0 OO O OO OO OO OO OO EEmE

Type: [{httpifjoman.w3.org]2001 /XML 5chemajstring

[5how Detalld ot Information

OEBPS/img/bp_ht_idserv2.gif
i 1de:

‘applcation Server:

ity Lookup

AppCann (Resaurce Paette Cannectian)

o P
semchttoms [F e
SearchUser
& caors

fak

= jstein

0 ooper

ros wopotees J(_pem [<<

Selected User

OEBPS/img/med_creat_mapp.gif
Source: muli_part.wsdl
= i <o
£ Bnreqestrats
& w lsndesung
= @ nseqestrrtt
R ——
= e htandestes
el

ptid @
i fae
it Akress o3
il cperaton &3

OEBPS/img/bp_tdf_email_notif.gif
Subject: Action Required Help desk request for wfaulk
From: ton@mnsprac-pe.com
To: dhiai@maprao-pe com

Task Help desk request For wFaulk requires your attentian.
Please access the task n the Workist Appication ortake drect action using the inks below:

Actions: RESOLVED UNRESOLVED

= & Help desk request for wfaulk

TaskNumber 200011

State hssigned
Oucome Asdgned
Proity 3
Gested Mar 16, 2009 6114 P11
Updeted Mar 16, 20096114 P10
Exgiraton Date. Mar 16, 2009 6:24 P
Assgnees jtein
= contents
Locaton Calforria
Type Harduare
Problem Descripton Linabl ta reboc the system
Severty 2
Status Greated
Requester
D wauk

First Name Wilam
Last Hame Faulkner

Emsl useri@us.orad.com
Phone 2222220222
Resolution

Commert None
Resolved By None

= comments

Norows avalable

OEBPS/img/med_xref_ucexref9.gif
& Edit Function - lookupXRef ki

Define function parameters below:
Mote: Parameters can also be set through drag and drop from tree rodes)

haetlocation “oustoner.xeet” o

referenceColmeiiane " 5P_01")

referencevalue /top: Sap0LCollection/ top: Sap0l/copiid [Movewp
[ove pown

courrtiame “Comon” o

needException true()

Examples: §varl, §phxiparami, ‘b, "abc”
Press Ctl + Space for Invoking 4Path Bulding Assistan.

Function Descripton

Look up the column value in the cross reference table(XREF) where the reference column has the

reference value.

1If no value is found, an exception is thrown if needFxception is true.

s il

OEBPS/img/bp_ex_wait.gif
4

Nome: [wait_30_5ec

For

O Time: [F_|s [_|Mons [o_|Days p_|trs [p_|tins [0 secsg

O Expression;

urti

@ Time (MMddlyyyy HHmm:ss): 01/23/2010 10:17:47 [3]

O Expression:

Concel

OEBPS/img/fod_wscomposite.gif
offgcomposite.xml ®
LEASL-R JORN-S §=1 5] Composie: OrderBookingComposite

Exposed Services Components External References

process
processRespon.

OEBPS/img/med_sws_selectdvm.gif
ORACLE" SOA Composer & Bockmerkatie Lk O

Logout
Logged i a5 weblogic.

Open a document to ecit

Select a VM to open

show [EXMIMNININ =] (Search composite

Composite
MultvalueProj_revio
SmpleDVMProj_revL0
HerarchicalValue _rev1.0

o e
multvalue.dvm
smpleDVM.dvm
UnitsOfteasure.dvm

pen ||_cancel

OEBPS/img/bp_wl_reuse_apppref.gif
Administration Application Preferences swe | _concel

{Application Preferences
/

Lagin page reain label | LABEL_LOGIN_REALI
lobal branding con | fmagesbranding.af
Resource bundle | oracle.bpel worklstapp.resource. WorkistResourcBundie

Use language settings of O Browser @ Identity Provider

OEBPS/img/bp_mpr_params2.gif
® Test XSL Map

Input Auto Layout

‘Source XL Fie: Enabe Auto Layout

Csharedtestoaseskems_groupuble_tminomappings-Source s Browse.
Source | Target
Generate Source XML File. HML HML
Show Source X Fis
L Map
Parameters Wi Schera
Generste Fie Hame Elmert Fie Name Browse
cust custorer Csharedtestoase. Browse
XSL Map ml
Source| Target
Parameters Wit Scher: HL | XL
Specity vatue | Name Tyve Valie Defau Type | Defaut Valie
O ascout Nomber 00
Souree
HL
xsL
Map | Taget
Output L
Target XML File:
Source
sharedtestoaseskems_orouppuble_pimiomappings-Target xmi Browse. L
L
Show Target XL Fie Taget | Mep

OEBPS/img/bam_mon_config.gif
(Slapplication | (2 Database Navigator

= Projects

Projectt
500 50A content

£ dasses

0 estsutes

Sxsd

Dl

3 Business s

& BPELProcesst bpel

4G SPeLProcesst componentType

68 sPeLprocesst monior

@] epetprocesstwsd

OEBPS/img/rules_dict2.gif
& Add Input Variable.

® W

Varsles
5 Process

& Toggle Display Details

@@ search
@ e varas

[Show Detalld o Information

OEBPS/img/bp_wl_route1.gif
Help Desk request for wfaulk Task Actions v| | | RESOLVED
Details. Jation. .
Request Informaion
ElContents N
Locstion Calforna Reassign.
Type Harduare Eaie
Problem Descripton Unable ta reboat the system
Severty [2 Excalte
Status | Created Suspend
Requester Renew
o wak
FrstName Wilam
swve

Last Name Faulkner

OEBPS/img/med_bpelevnt7.gif
Invoke ®
& resis LN

s ok]

Interaction Ty | 3 Partner ik

Partner Role Wieb Service Interface

Parter Link:

Ogeration: [

Variables

Input:

Output

Options:

Conversation ID:

Concel

OEBPS/img/bpel_assertcondition1.gif
Nome: egativeCredit

Message: Negative Credt

Expressian: [§crOutput payloadjins:rating > 0

Fauk Qiame

Nemespace URI

Localpart;

OEBPS/img/sca_deployshare7.gif
504 Bundle Deployment Profile Properties

General Specify dependancies on other SAR]MAR.deployment profies.

Java EE Modles:
= (5] 50ADemoComposts. jpr

5] somvemocomposte

K33

OEBPS/img/med_assignvalue2n.gif
© Assign Value

From

Type: [constant

expression

Constan:

9

Expression

sout. request.

OEBPS/img/bp_notif9.gif
User Notification

To:

jooper

Use commas to separate muliple names.

Subject:

acation Reauest

Notfication essage:

Plesse approve the vacation request

Apples to Voice, 5M5, Email and .

OEBPS/img/fod_bpelpart1.gif
Partner Links

wew @

recelvelnput

a
AL

\
[0}

Partner

inks

OEBPS/img/med_sws_login.gif
“passvard

OEBPS/img/bp_validateact.gif
Validate
x

Variables: Hz x

Hame e Qlame
() inputaricble MessageType clientBPELProcesst

] how Namespace LRIs

o e g g

OEBPS/img/ns_image27.gif
ppws __|offf composite.xmt SbPELProcessLxsd (O

V-A-2-&-ad (e 9 BpEL-

ure @

1
@
‘@

&’
|

<

zZaom:

Desin [EEOEETEE)

OEBPS/img/sca_wireref.gif
Exposed Services Components External References

OEBPS/img/med_expxreffunctions.gif
Expressin: @ &0

OEBPS/img/med_xref_ucexref2.gif
£3

Specify Stored Procedure

Enter astored procedure, or a functon. The procedure's package name can be incuded, for exarmple,

EMPLOYEE. GET_NAME, where the package name is EMPLOYEE and the pracedure i GET_NANE. IF the procedure
does not belang i a package, enter the pracedure's name, You can aso brawse and search For a procedure. The,
term procedure'is used to mean both stored procedures as wel as functions

shems [scom]

Procedure | POPLLATE_APP_INSTANCE

Arguments
ame Type Injout Postion
'X_APP_INSTANCE VARCHARZ ™ 1
X_CUSTOMER_ID VARCHARZ ™ 2
X CUSTOMER_NAME VARCHARZ ™ 3
X_CUSTOMER_ADDRESS VARCHARZ ™ 4
'X_OPERATION_TYPE VARCHARZ ™ s
X_APP_ID VARCHARZ our 6

OEBPS/img/bam_dc_menu_create.gif
pplication Navigator | (7 Database Navigator

Appications

b Projests
~ Applcation Resources
&£ Connections

5 @B an
& B Bavservercomectont
23 bemos
03 somples

] collcant

Employee:

[Fimsskes
Goumet Food
] s S
Procc Sees
B3 system

OEBPS/img/bp_addcatch2.gif
I
l «
a8 \ \

l bpws:selectionFaire ns2iInvaldCredt

=] | a8 |

OEBPS/img/bp_ht_configpol.gif
8o Gereral

Bowe actions
B assignment Check action boxes to permit access: () Coarse grained () Fine grained @ Reset
@rrowrtoion | frions v permovs AaErs crearonowEn | revEws
@ Deadines
8 Notfcation
s Access ACQUIRE
events /ADHOC R,

DELEGATE .

Sgnature pocy:

Speciy Restricted Assignment | _Configure Restricted Assignments,

OEBPS/img/bam_mon_create_menu.gif
#aBPELProcess1.bpel
nable Monitoring (7] B

Partner Links

EI Y

) reervas

@) sensors,
2, Sensor Actions.

OEBPS/img/sca_dragplink.gif
Scompositeml | ficomposie.xml |offcomposite.xml | 4 OrderProcessor.bpel | g OrderProcessorbpel | (U0)) [EfcomponentPa.. |@ ()
v-A-o-S-0@ % (@) (o) @renrer) (3 @ |[pe -
Partner Links = Partner Links ||| @8 Q
T . BPEL Actviiesand Components
= B = oL seves

crderprocessor cl.. '
derprocessor_cl.. |

@

¢
=

calbackClent

— Partner Lk

 LinkjAdapts

— servie Adsoters
& Aor-ec servie
G 40 Adapter
s

<5 B Adapter

| Database adepter

4 Ovect Binding

2 £ service

3 il Adspter

3 F1P Adspter

3 HTTF Sindng

8 5 adspter

G Adeper

2 rade Appcations
@ socket Adspter
4 i Pty Adspter
5 web serice

OEBPS/img/bp_ts_asserts2.gif
® Wire Actions

Operations | Wire Actons For Operation <intiate>

hesarts | Eiltes |

+/%

assert Typs Assert Target
fAssert Input LoanBrokerRequestiessage.payload]st loanapplicationst foanamount

OEBPS/img/bp_tdf_form1.gif
[ApprovaliumanTask_TaskFlow.xml | effcomposite.xnl | SaApprovaliumanTask.task | 5]taskD:

@ - st [l cemms =) O] [ere o e < B2 B 1 UIEE
oo
e —— T | (oaa] (D) (e
o e
[vt 3 poraots | TesNambe $Lisoamee it
o e et

G . crosor V) scaiedoy B meunBy. |

Created #{...crestedDate inputvalue} inputvalue} e #}

e o o) OvoDste B btoiputvake)

Outcome. #{..outcome nputvalue}

E/0rder Information

P,

Order 4| #..orderid inputValue)

Ordardetats:
OrderStatusCoce. #(.OrderStatusCode nptvalue}
OrderTotal #(..OrderTotal nputvaue)
ShipToNiame. #(ShipToName nput e}
ShipToPhonehiumber #(.StipToPhoneNumher inputvalue)
Aciresst #{Addresst inputvalue}
Aciress2 #{ Address2inputvalue}

City #(..Chy inputValue)

PostaiCorte. #(PostalCode nputvalue}
StateProvince #(. StateProvince iputalie}
Countryid #(..Courtryid input Value}

ik o set ursor aiter Spacer =20} @ @

Order Histary

View o Format + [Freeze £iDetach | ol Whan
Procuctiame Quartty nitPrce.

#(_Productame) _|#(..Quantity) #{ UniPrice}

#(_Produciame) _#(..Quantiy) #{_UnitPrice)

#(_Productiame) #(..Quantity) #UniPrice)

OEBPS/img/bp_wl_info1.gif
actions ~ | Assignee My@Group v status | Assigned v search advanced
T Number | Priorty | _Assignees State Geated Expres
[E] Vacstion Request for cosper w03 3 men(y) Assgned Mar 16, 2009 2:16 PH1

Vacation Request for jcooper

TaskActors] | Reject

Request Informtion.
Reassign.

assignees
Creator
Created Mar 16, 2009 2116 PH
Updsted Mar 16, 2009 2:28 PM

Elcontents

Expiration date
Acquied By
Task Number 200208
prioiy [2

State Assigned

Escalate
Suspend

save

ap

OEBPS/img/med_trans_initial.gif
Source: SBL.wsdl 5L File: Looger wsd|

5 (2 wores> <target> (2.9
- initial.Customers dbiOutputParameters <e>- =l
[5h-<e» inp1:Customers. dbix_APP_ID ko3
548 inp1:Customer
il
koS inp1iName

Ko3 inp1:Address
ke inp1:0peration
5-<o» db:OutputPerameters
Ko3 dbie_aPP_ID

OEBPS/img/bp_ht_vacreq16.gif
) Create Application Server Connection - Step 4 of 5

Test

Click Test Connection to determine I the information specied successfull establshes @
connection withthe appication server,

Status:

OEBPS/img/ns_image12.gif
pp.jws

|efcomposie.xmi | J BPELProcessLbpel [ShBPELProcessixsd (0D
: (X)) i

kol version="1.0" encoding="UTF-8"%>
El <schema attributeFornDefault="unguali fied"
elenentFornDefaul t="guali fied
targethanespace="http: //xn1ns. oracle. con/Sendessaged

XnTns="hTTp: /. 3. 0rg/2001 /XML Schema">
E <element nae="process">
E <complexType>
e <sequence>
<element nane="input" type:
</sequence>
</conplexType>
</elenent>
E <elenent nane="processResponse”>
= <complexType>
5 <sequence>
<element nane="result" typ:
</sequence>
</conplexType>
</elenent>

sasclpn |

BT Y] IR e e —
[E15PEL - Lo

OEBPS/img/sca_soabundle.gif
Create Deployment Profi

Click OK to create your new deployment profile and immediately open it to see its configur.

Archive Type:
50A Bundle <

Name:
myS0ABunde]

Description

Creates a SOA Bundle for deploying multiple SOA Composites as one archive file. The.
output archive file (Zip) contains ane or more Composite archives. (SARS).

=

OEBPS/img/bam_mon_bimetric.gif
Metrics: *7R
Name

Ell o et

[boclean
ldateTime.
tring
Snapshos: Irteger *I%
Activiy Name [double =5
P calbackclient ldateTime.

Ei——

OEBPS/img/bp_ts_emulate.gif
Operations | Wire Actons For Operation <process>

hesarts | Eiltes |

+/%

Assert Typs Assert Target

OEBPS/img/ns_newpojo_1.gif
Open Application(s)

Location

B3 /scrateh/idothari/Oratome jdevps2stages/miacievare e ~| @ (3 (9§ B

dist

usermessagingsam ple-app

‘ usermessagingsample-web

Eile name:

File type:

jusermessagingsam ple jws

[Application files (*jws)

OEBPS/img/bam_dc_connection_update2.gif
B

S|
=

<AdapterDataControl

<Source>
<BRDatacontrol

i

InplDef="oracle. tip. tools.ide.ban.dc. dt. adapter.Definition
SupportsTransactions="false"
false” SupportsResetState

Ealse”

SupportssortCollectio
SupportsRangesize="false" SupportsFindiiode="ralse"
SupportsUpdates="ralse"
Definition="datacontrol.ban. Filn Sales”
BeanClass="datacontrol.ban. Filn_Sales”

Btep: //xnlns. oracle. con/adfn/datacontrol >

smlns

¥mlns="heep: //xulns. oracle. con/ban/datacontrol”
connection="BANServerComnectionl™>

OEBPS/img/bp_xformsmed3.gif
Reply Transformation

Map

Transformtion from reply message StoreFrontService_getOrderInfoYOSDOResponse to message
StoreFrontservice _updateOrderInfov0SDO,

Transformtion ta pat

parameters

(@) Lse Existing Mapper i

slfgetOrderInfoVOSDOResponse._To_updeteOrderInfo¥0SDO. sl

O Create New Mapper ik

QU7

o

Cancel

OEBPS/img/rules_soa1.gif
offfcomposteml | FElorderapprovalapp.jws | ofScompositesml | efScomposteoml | & au ([0S [Efcen. | @

YF\RBXO BXBE®D Composie: SOAComposite1

Exposed Services Components External Refere

50 =

& Human Task
<& Mediator

- servie Adsoters
& sorecservie
G 40 acepter
|@iszs

<& 6 Adspter
5 Datsbase Adspter
G £ service

i

To begin creating a SOA composite application,
drag-and-drop a Service Component o an Adapter
from the Component Palette

Design | Source | Hitory.

OEBPS/img/bp_pick2.gif
ssssssssss

OEBPS/img/sca_customize2.gif
) Edit with Folwing Customization Context

Value.

 Conmm e (Commicalune) T

arth Aerics (Hart

o layer

SRS RS e

OEBPS/img/bpmdg051.gif
AssignTaskAttributes
Captures the user-defined aributes of the task
such s fitle, payload, creator, priority, and s on

AssignSystemTaskAtiributes
Caplures the system task attributes such as
process Id, process version, and 5o on

InitiateTask
Initates the task by invoking the task service

ReceiveCompletedTask
Receives the completed task from the task service

OEBPS/img/bp_ht_resource.gif
® Resource Detai

Resource Name

Resource Location

LoanapplcationResourceundie

For example: expenseApplicationResourcefnds

LoanappResourceundie.2p

For bundes in JAR or 20 fes

OEBPS/img/excel_jdv_adf_rd_only_frm2.gif
(Zlapplication Navigator

(&) [web.xml

(ElExcelcontrols.jspx | | 2JExcelControlsPageDef xml

=] FoExpenseReportAp

L))

ErpenseReportcamposte
ExpenseReportTaskFiow
* Apicaion Resariss
* Dats Controls
& ErpenseReportTask
5 TaskoRetrever
23 construcors
=+ (] retrieveTasksForUser(String, String)
23 Paramters
e-&
" m tasad
——
- e
22 Operstions

» Recently Opened Fies

xcelControls fspx - Structure.

2
iy afmessages
-l fifom

Tables
Single Selectons
Trees »
Navigation »

Cancel le.hints.Iabel)

Ly —

<ol version='1.0' encoding='vindous-1252'7>

[El <3spiroot xulns:jsp="htep://java. sun. con/I5E/Page” versior
¥mlns:he"heep: //java. sun. con/ IS /heul”

“http: //3ava. sun. con/3sE/core”

smlns!

¥mlns: af="hetp: //xulns. oracle. con/ad/faces/£ich”
<jsp:directive.page contentType="text/htul ;charset=uindon
B <fiview
B <af:document>
<af:messages />

= <af: form>

& <af:commandButton actionListener="#(bindings.retrie
text="retrieveTasksForlser"
disabled="#(!bindings. retrieveTas

& <af:panelFormLayout>

E <af:imputText value="f(bindings. taskId. inputialue

Label="# (bindings. taskld. hints. Labe

required="# (bindings. taskld. hints.u

coluuns="#(bindings. taskId.hints. di

naximunLength=" (bindings. task1d. hi

<f:validator binding="#{bindings. taskId. validar
</af:inputText>

e <af:imputText value="f(bindings. caskiumber. inpucy

Label="# (bindings. taskliumber . hints.

required="# (bindings. taskiiuber . hin

coluuns="#(bindings. taskliumber. hint

e imunLength=" (bindings. askliube

<f:validator binding="#{bindings. casklimber. val
</af:inputText>

= <af:imputText value="f (bindings. taskTitle. inputis
Label="# (bindings. taskTitle.hints. 1
required="# (bindings. taskTitle.hint

coluuns="§{bindings. taskTitle.hints

e imunLength=" (bindings. taskTitle

<f:validator binding="#{bindings. taskTitle.vali
</af:inputText>

fsuraot fview > af.documert » af-form » afpenelformiayout > atinpultext >

OEBPS/img/bam_dc_paramname.gif
Parameters:

Name:

Type:

fyparamete]

javalang Integer

OEBPS/img/bp_wl_details97.gif
Help desk request for wfaulk

& oeis

ElContents

Locaton Calfornia

Type Harduare

Problem Description Unable t reboot the system

Requester
I
FirstName.
LastName:
Emal
Phone
Resolution

severity [2

status [Crested

whauk
Viiiam

Faukner
user1@us.orad.com
w

Comment None

Resolved By

EHistory

Noe

19] Task Snapshot. | P! Future Partcpants

T~ Full task actions

& Faridpant

Tacton

Tacton Date

A 5 [staget.

e

& jstein

jassigned

Var 5, 2008 3:33 P

e

& jeooper

[RESOLVED, Outcome Updated

Var 5, 2008 6:32PM

13

& jsten

[RESOLVED, Outcome Updated

Var 6, 2008 6:53P

1a

& demoacmin

RESOLVED, Alerted

Var 6, 2008 6:53P

15

& caifornia

[RESOLVED, Outcome Updated

Var 6, 2008 7:04PM

3

& jeooper

[RESOLVED, Outcome Updated

Var 6, 2008 7:08 P

17

& jsten

[RESOLVED, Outcome Updated

Var 6, 2008 7:11PM

2

& jstein

[ResoLvED, Completed

Var 6, 2008 7:11PM

ElComments

Har 6, 2009 3:41PH _jstein
[T nesd more info on tis
[Mar6,2009 6:19 PH wiaulk
[t have attached a fie

Mar 6, 2009 632 P jcooper
[am Ok with this
[Mar6,2009 6:53 PH jstein
|6roup Vote Comment

ElAttachments.

OEBPS/img/sca_plink2.gif

OEBPS/img/bp_ht_idserv3.gif
jcooper Detail information

Name: James Cooper
GUID: jcooper

Til: Loan Agert 1

Manager: jtein

Emil jcooper@emsiExarmple.com
Wark Phane: 10000000
CellPhone: 300000006

Country: US

OEBPS/img/med_cmp_plt.gif
[Component Palette | < jResources (-]

s0n g

@® [>}
- Servi Conganents
& BPEL Process

< business rule

& Hman Task

<& Mediator

8, Spring Contert

- servie Adsoters
[Aor-ecservie
G5 20 Adapter
5z

4§ BAM Adapter

5 Database Adspter
4 OvectBinding

G £ service

3 il Adspter

3 F1P Adspter

3 HTTF Sindng

8, 5 Adspter

G 10 Adapter

2 rade Appcations
@ socket Adspter
4 hid Pty Adspter

OEBPS/img/excel_crt_jsf_jsp_page.gif
indow Help

File Edit View Search Navigate Run Debug Refactor Versigning Tools Wi

RoEd 9 Xm0 0 5 - ailde- > - &-@WHE
Ippication Navigator 0 Bwebonl
(o8- (1))

Bl <filter-mapping>
<filter-name>trinidads/filter-nane>

»

&l ForExpenseReportap

~ Projects
penseReportComposte
ExpenseReportTaskFlon

enseRep: Create JSF Page

Enter the name, directory, and chooss a type for the J5F Page,

e Name:

Drectory;
D:DataljdevProjectsiFDIExpenseReportApplExpenseReport TaskFlonpube_html

= Ppplation Resolrces Use Page Template: (Do not use a templte.

{23 Connections
) Descriptors

Browse,

Create as XML Dacument (*)

7] Renderin ke Device:
Page Implementation (LI components are not exposed in managed bean)

OEBPS/img/ns_newjava_1.gif
= R T Yy T = X

Location: [scratch/Kkottai/araci/mdceware/developer/communicatons/samples/uzer.. ~) @ G (9 i B2

dist
usermessagingelient-ejb

usermessagingsample-app
usermessagingsam ple-web

ﬁ] usermeszagingsample os

Eile name: [userm essagingsam ple jws

File type: [Application files (*jws) e

OEBPS/img/bam_mon_menu.gif
©

(e | (8 oo |

= @
Change to Monitor view 1.

OEBPS/img/creatingproj_tf.gif
& Create Generic Application - Step 2 of 3

P e e e s |

507 Foces o very i sy conponerts, o o rmeverk, ool s]
perscnatatn ond shanng capabiies, ADF Faces e ndoer e upload
Siper,cen s valdotn, parilrendeing o 8 age (A st daa tables, .

(<o | test>] [Een | [[Goncs]

OEBPS/img/bp_sensor1.gif
Yo +7 %

Schemas
ieh Services
Activity Structure
Properties
Property Alases
Sensor Actions

Ncrovsenso]

=3 variable

Ay VariableSensor_1
N

OEBPS/img/bp_tdf_non1.gif
ORACLE WeblLogic Server® Administration Console

Fr—— B boms Logout Prefrences [Recerd Hob
e Ve »Summary of Desoments

Cotiqutin cdtingis s, Pt summary of Deployments

b ol

sl S e s Contrl | rire

Domain Structure

sodinfra This page displays a st of Java EE applcations and stand-alone applcation modes that have been instaled o this dan
(redeployed), or deleted from the domain by Fst seecting the appiication name and using the controls o this page.

To install 2 ew applicaton or mochle for deployment to targets in tis domain, cck the Insall button,

P Customize this table

Deployments

Lty [U] [| (St | (St

[|Name & State
[| iy crace.comain(10,11.1.1.1.0) aatve
ac racle domain. webapp(1.0, 11.1.1.1.0) e
How do =] | ||B]® i
acpdapter active
« nstallon Enterpise pplcation 0@
« Configure an Enterpise pplcation 0| @ pgpetui Instaled
« Update redaploy) an Enterpise pplcation 0| o P
« Start and top a deployed Enterprise
applcstion [| © ppefaukTeDoTaskrlon active
« Monkorthe mackes o an Enterprise)
applcation | © oM appcation (11.1.1.1.0) active
« Deply E36 modules
« Installa Web appcaton 1| ® papocumentfevionTastrion active
00| gFieasepeer active
System Status] .
Fepadapter active
Heakh of Runing Srvers Bil)

[—— nstall | [Update | [Defee || [Start~ | [Ston~.

e

OEBPS/img/med_xref_ucexref8.gif
© 4% Routing Rules

&3 Operations Y-

=0 receive prioriy [4[3] [veldate Syntax (x5D) . w o

=/ olectionjtop:Sap0i ftopoperati

NSERT S = [CommonjCommensinsert <+ [Sequentil ~

4

Valdte semantic |

Using Transfornation |Custaers: xlsAP_T0_COMMON INSERT v -

®
=

Asign vakes |

OEBPS/img/med_bpelevnt10.gif
Receive R
A Erors: 3

e Receve 1
Interaction Ty [Partner ik~
Hy Role Wb Service nace

P[] Q

4

operstion: [5

Variable

yarisbe +Q

[Create nstance

OEBPS/img/bp_xformsmed.gif
= 4 Routing Rules

& Event subsarptions @)

¥ ordsupatesien:

oty [[y sy)

L1
- v $- R

allout To [<<Java Calout Clss>> =]
Static Rotting
& | <<Fier Expression>> 7 & storeFrontService: igetOrderInfoti0SDO 5 [sequential v

aldate Semantic

v B
Transform Usng parameters x/OrderUpdakeEvert_To_getorderinfov0s0055] Bl
Aesin Vs 98
Synchronous Reply = | StoreFrontService: updateOrderInfo0SDO @
Transform Using [parameters : xslfgetOrderInfovOSDOResponse_To_updateord... v | B
Aesin Vaes ol]
Fauks + %
Faul [serviceEscepton <<Targe Operation>>

Transform Using

Assign Valuss

OEBPS/img/bp_xformmed2.gif
A

Tonsfomaton from requet messageexpense_equest 0 message e requet.

cxpenses
s EtingMapper s | 1®
O reteen per e

T —
) s Exsting Mapper Fe: | 1%
[Sre—

e —
(& s Bistng Mapper Fl: | I'®
O greate Nowtspper Fi:

OEBPS/img/med_dvm1_ucmultival3.gif
Exposed Services Components External References

e [

writeFile

OEBPS/img/chooserulesdcjars3.gif
© Project Properties - C:\scratch\asuraj\system\myworkluseRulesDCAp... X\

15P Tag Libraries

ProjectSource Paths Distiuted ibraries D e

ADF Model W5 ADF Data Visualzation 1.1 SetEdtorDC.ja | META-INFbucketsetEdior.t
ADF Yiew W3 ADF Faces Components 11 Library Version: 1.0 Required J5P Version: 2
an \Edtor |

Business Companents W3 exotuder 1.0 B

Conpler W3 35 Core 1.2 i, oracle.combpeljrules/bucketsetEditor
Dependenties o SFHTML L2 Libraries (separated by semi-colons)
Deployment 03 rlesEdtor 1.0 developerfadHibbucketsetEdtorDC.jor lbrery
E28 Mode W3 ruevaicationTable 1.0
Extension 03 vaidatonTable 1.0
Javadac Local laries

Jova € Appcaton 1 3 raatie oraes e
e

Display Nape:
ucketsetEdtor

35 visua Edtor] Execute Tags in J5P Visual Editor
Libraries and Classpath

Resource Bunde
RunjoebugiProfie

how Tag Lbrary in Plette
Technclogy cope ey

OEBPS/img/bp_entityvar1.gif
& _Edit Variable - gOrderlnfoVariable

Nome: [gOrderInfovariable

Type

O singl Type

O Message Type.

(@ ement [{foradeffodemo/storefront/store/aueriesfcom|

Entity Varisble

Pater Lk [BtoreFrontservice

(1500 Capable

e)

OEBPS/img/med_defineservice.gif
Define Service

WSDLURL
Port Type:)
Calback Port Type: 3

OEBPS/img/rules_dict1.gif
@ Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nflusnce the behavor of your business

Create Ditionary O Ipart Dictonary

Specifythe name and package for the dictionary that wil be created.

Nome: [GetCredtRating

Package: [autoloancomposte

Profect; [CIDeveloperlmywork|AutoLaonApplication| AutoloanCompositelAutoLoanComposite. Jor

=Xt

Input and Output Varisbles:

Direction Name

Reset session

OEBPS/img/bam_dc_calcexp.gif

OEBPS/img/bp_ht_selapprole.gif
Select an Application Role

— 97 %

avalable Selected

'50AOperator
SoAMaritor
SoARuEAdIn
SoRAuiEwer
EPMworkflowAdnin
EPMWorkflonCstoize
EPMAGATIn
BPHOrganizationAdnin
‘SOADesigner

AN X

Name:
SoAadrin

Description

502 spplication adrin ole, has Full privlege for performing any operations ncluding securty relsted

OEBPS/img/rules_adv_task_5.gif
s AutoLoanProcess.bpel | SgLoanpproval.task

@ racs

S Functions

@ Ruleset 1 v [JAkeron Vew - X TER& S

5 v Rulet

(x) variables

- bucketsats I
et st

D s e

B DecsonFunctons | | <isert acton>

Rule:

| Ruleset_t

OEBPS/img/bp_wl_not_filters.gif
My Messaging Filters
‘Configure rules to fiter your notfication and slert messages.

vens [@creste Leit Rosem Fiven

OEBPS/img/bp_ht_nsvb.gif
Participant List

Buid a st of particpants sing:

Speciy attrbutes using:

(N andsspresons <

S oerbased. O Rule-based

erticpant Names

dertication Type
ser

Data Type Ve
By Name. tein

OEBPS/img/med_bpelevnt6.gif
Subscribed Events.
hd RS

Event. Consistency. Run a5 publsher Fiter

OEBPS/img/med_exp_build_hd.gif
& Expression Builder

Epression @ a0
§n. header.nsl_HelloUorLdProcessRequest /sl Hel LoorLdProcessRequest/nsLinput.

A et o Boressen
T —— |
[create-nodeset. from- delimited-string |

(@ oeneratc-oud
1o etcompanentinstanceld

Varables

@9

5(5) I hesdercs1_Helowrdprocesecusst

et HeloorkerocessRacuest
P

getComponentNome
folgetcompositeinstancetd o

Cantet Prvion: ezt
[T 51 [an3path expression of thevariable 3]

(=) [

OEBPS/img/bp_ht_listofparts2.gif
Edit Participant Type

s 50 <] e[S iz

Participant List

uld st of partcpantsusng: [Names nd sgressions +]

[Management Chain
Specify attributes using: (3) Y{Rule-based

aticpan Naes + %
enticaton Type Daatype Ve

OEBPS/img/bp_sensor_customdp.gif
[MyPublisher.java;

package loanlow;
import. con.oracle.bpel. sensor.Databublisher;

import. con.oracle.bpel. sensor. schenas. ITHeader Info;
import con.oracle.bpel. sensor. schenas. ITSensoraction;
import con.oracle.bpel. sensor. schenas. ITSensorActiondata;
import com.oracle.bpel. sensor. schenas. ITSensorData;

import. org.u3c. don.Elenent;

public class MyPublisher implerents DataPublisher
¢
public HyPublisher ()
«
)

public void publish(ITSensorAction action,
ITsensorhctionData actionData,
Element xul) throws Exception

ITHeaderTnfo header
ITsensorbata data

actionData. getHeader () ;
sctionData. getPayload()

rint information on who fired the sensor
Systen.out.println("Sensor ” + header. getSensox (). getdensoriiane() +
“ fired for BPEL process * + header,getProcessiiame());

/7 Print the sensor data to the console
Systen.out.println("Sensor data: ” + xul.teString()):

OEBPS/img/soase019.gif
EJB
Application
linvokes.
an EJB)

Invoke with
SDO
Parameters

Exposed SOA Composite External
Service ‘Application References.
Service

Parameters,
Reference '_;

Invoke with
S0

EsB
Application

OEBPS/img/bp_ht_params.gif
= @ pata 7R

o emertor Type Edvable
adetd Tttt nd-crg/2001 RMSihemarsting

OEBPS/img/bp_notif3.gif
et

Erom Account: Default
Io feriaResponse/ns6 resultjnsé:Confirmedemaie>| O (B
2 QB
e QB
Reply To: QB
Subject: [iable','fns4:orderInfovOSDO/ns4:Orderld')% > shipped! | [T,
Body: IS4 isthlame’)% >, Babx0Ayour order has been shipped. | [,
¢)
Wessage by can beplain et or HTML
[Mutipart message attachments

Concel

OEBPS/img/bp_ht_vacreq10.gif
Create Human Task

Advanced

[E3

Task T e
.9, Vacaton Request Fo <%bpusigetariableDatal,.. %>

Initstor [B riorty ~

[TaskPara... ErEL varible

acations. T

OEBPS/img/bp_tdf_pay3.gif
= § v

assioness 4., displayName) Expirstin D= 4{._.expirationDate.inputValue} Taskluriber 4., taskNumber.inputvalue} Actions v Reject | | Approv
Creator #{...creator.inputValue} scquired By 4., acquiredBy.inputValue} Priorty [slue} e
Created #...createdDate.inputvalue} DusDste #{...dueDate.inputValue} Stete 4.3
Upcted 4{...updatedDate.inputValue} Cucare #{...outcome.inputvalue}

#{_crestort _Isbel} #{..crestor! inputValu}
#..fromDate. Jabel} #{..iromDate inputValue}
#..toDste. label} #(. toDate putvalue}

SHistory
Elcomments &} Elattachments. + X
o) o,
..updatedDate) _A..updatedBy.id) #{_name)
#1..comment #(.name)
#(..updatedDate} #..updatedBy.id) #(..name }
- comment)
#..updatedDate) ~ #..updatedBy.id}
[commenty

OEBPS/img/bp_transform7.gif
& Edit XPath Expression

KPath Expression

‘/pa: Furchazedzder/|

Element

Element

Element

po:UserContact Element

G B oG

Orderitems Element

OEBPS/img/med_xrefim_uc1.gif
59 Cross Reference(AREF)

e

Description

order

End Systems;

+x

ame
5ap_05
85175
icommon

OEBPS/img/edit_wl_appl_xml.gif
Fod 35
<7xml version = '1.0" encoding = 'windows-1252°7>
S <weblogic-application >mlns:xsi="http://wns.u3. org/2001/ ML chena-instance”
xsi: schemaLocation="http: //win. bea. con/ns/weblogic/webl
smlns="http: //www. bes. com/ns/weblogic/weblogic-applicat

& <listener>
<listener-classoracle.adf.share.weblogic.listeners. ADFApplicationlifecyc
</Listener>

& <listener>
<listener-class>oracle.nds.lom.weblogic.WLLi fecycleTistener</listener-cla
</listener>

& <library-ref>

<library-name>adf.oracle.domain</library-name>

</library-ref>

OEBPS/img/bp_addcatch3.gif
catch

| General [Annotations

Fault QName.

Nemespace URI

Localpart;

Q

{fschemas.xmisoap.orgjws{ 200303 business-process|

selectonFaiure

Fauk yarizble:

+Q

Cancel

OEBPS/img/bp_notif8.gif
(st |

To: abberlzooper@ecampleiv.com

B

Enter comma-separated IM ddresses

Body: (1M essage Bady

Message body should be plsin text.

Concel

OEBPS/img/creatingapp_tf.gif
& Create Generic Application - Step 1 of 2

Name your application

Applcation Neme:.
. Aoplcationome | { e
. oot Nome.

orecory:
(CoacpmratenimwoRiseReOR a3

Bagication Package Prefix.
[
Sppcation Tenplt

] Generic Application
Creates an ppication which ncudes a sing projct. Theproject i ot
preconfigured with JDeveloper techndloges, but can be custorized t ncude any.
technaloges.

55 Fusion web Applicaton (ADF)
Creates databound ADF web applcation. The spplcation conssts o one project
Forthe view and controle companents (ADF Faces and ADF Task Fions), and
nather project forthe data model(ADF Business Companents).

3ava Destop Agpication

reates an aplcstonconfioured for bukdnga generc Java pplcation. Th e
applcation wil Icud a prject the s preconfred to se Java, Swng, and

e e T

OEBPS/img/bp_ht_vacreq15.gif
Exposed Services Components

e

vacationreque..

OEBPS/img/bp_transform6.gif
Target

Mapping Candidates

Source.

OEBPS/img/soase018.gif
WebApp

Wire

Service,

Composite

Service
Component

Wire

Composite BigBank

Service Component
‘Account

binding.ws.
BPEL

Service Component
AccountRule

bi

Reference

inding.ws

inding.rmi

Senvice
Component

OEBPS/img/med_xref_ucexref3.gif
Exposed Services

@Be

AP

EupEemns ﬂ

Components

External References

Operations:
EBS

OEBPS/img/bp_ex_scope.gif
Scope

Neme:

[Scope_Rerieveorder

(7] garisle Access Srifeable

[

apply

Cancel

OEBPS/img/importxsd2.gif
& Type Chooser

[Type Explorer
5123 Projert Scherma Files
& & CustomerData.xsd
<[Customer]

(21 Project WSDL Files

Type: [{htip://xmins cracle.com/mediator/customer} Customer
("] Show Detailed Node Information

e [ox [caneel]

OEBPS/img/soase_jd_ss_005.gif
LT r—

[Eotea] et

Right Swim Component

Components.

Toben creating 3 SOA composie appcaton,
o ar0p a Service Component o an Adapter
from the Camponent Palete

perty Inspector

Log Window

Resource

OEBPS/img/bam_mon_intconfig.gif
& Interval

sart vty
Start Activty: 1] getinputLength - Q

Evaluation Events
O Activate

@ Complete
Oetry

e Acty
End activiy: [calbackient - Q

Evaluation Events
@ Activate

O Complete
Oetry

assodiated Indiators:

[npucet

OEBPS/img/med_create_syncmeded.gif
< Mediator

Name CustomerpataRouter
wsbL Fie ER———— ')
ot Type e

Calback Port Type:

© 6 Routing Rules

3 Operations

B execute Priority |4 5] [validate Syntax (xSD)

LoL=]

avdX

OEBPS/img/soa_spring3.gif
Insert Service

© torget *

type *

fcaservi

=

OEBPS/img/med_designconsole1.gif
‘Source: ReadCust.wsdl
=2 <source>
[—
< Customentd
o> Customertiame
< Tye
<o Desrption
< acress
way
< state
[Brey
<o Country
<o hone
< status
<o Credthating
< iscout
o Terms
< Emoloste
<o Losordervate
< cutency
<o Contactiame
< ContacTitle
<o Contactphone
< BccounRep
<o Capgrating
<> Referedsy

Target: USCustomer wsd

<trget> (2.9
nptCutomer -5

Custonerd

Custonatans

s

o

stte

zwv

Country

e

Contotiane

Contattere

ConvctEnal

Webaddess

¢eeeeeeeeesst

OEBPS/img/bp_http2.gif
& Create Schema

Specify the parameters of the Htp binding reauest

Namespace: itpy[Targetiamespace.comihttp

Roat Element: oot

+ X
Parameters
Narme [Tyne Min Occurs [Max Occurs
option | string 1 1
model | string 1 1

Schema Fie: purchaseRequest] 1.xsd

OEBPS/img/sca_spring22.gif
7
package con.otn. sample. fod. soa. externalps;

import .

public interface IExternalPartnersupplierService
R
8 e
Get the quote for a set of order lines
@param porderLines the order lines via wityped vestor, the perfect case
o use java for mediation
@return a sonevhat “complex” PriceQuote ohject
@throws ExternalsupplierException in case an wnknown object has been
passed

s
public Pricequote getQuoteForTtens
‘throws ExternalSupplierException:

¥ porderlines)

OEBPS/img/bp_xslt_overview2.gif
HsampleMap.xsl |

&

Source: po.xsd
& (22 <sources>
& <o trpuncheseorder
i Orcrdate
D
& shipTo
& < Neme
<o st
<ol
<o addess
< i
5 tnsiComment
{3} <choice>
& tems
& <o Hohpriontytems
S8 en
- mmpartum
<o roductiiame
o> quantiy
<o Usprice
% tosComment
e shipDate

<o LowPriorityTtems

YU s oo
<rget> (2.9
nstinvocs &
Invocebae Bk
tst:Comment K%
o
ShippedTo <> (]
e
s o
stedopeeart
Shippeditems <> (]
for-cach 5
Ttem &8 =1
Poduttane o
Quantty -
rcecharged <o
Unshippeditens <>

OEBPS/img/ns_app_text_2.gif
From 36

Type: [Expresson | Tape: [varatle -
Varsles

Expression &

S 5 Process

string(‘basesd’) C B varables

(%) input¥ariable
(%) outputvarisble
&-(Z) scope -Emai 2

-3 Variables

= (x) varhiotificationReq

& ElEnarabod
() varhlotificationRespanse
() NotficationserviceF aultiariable.

[how Detalld o Information

#Path: part/ns1:Bodypart[2]/nsL: ContentEncodins

)|

[[]

OEBPS/img/bp_wl_reuse_createapp.gif
= Create Fusion Web Application (ADF) - Step 1 of 5

Narme your application

oo
\ ‘Applcation Name:
ApplicationName. | 1. iotTaskFomsample
Protect 1 Name
Drectory;
PR | eveloperlmyworkiTaskUstTaskFlonSample Browse,

. Profect 2 ame
)

O Project 2 Java settings

‘Applcation Package Prefi

Applcation Template:

Generic Application

Creates an appiation which ncues a singl project. The project i not
preconfigured with Joeveloper techndogies but can be customized o nclude sy
techndloges.

Fusion Web Application (ADF)
Creates a databound ADF web appication. The appliction consiss o one project
for the view and controler components (ADF Faces and ADF Task Fions), and
another brofect For the dta model (ADF Business Camponents).

Java Deskiop Application
Creates an applcation configured or bulding a generic Java spplcaton. The ne
appication il nclude a project that & preconfiqu' o use Java, Swing, and
JavaBians technclogies 4

<Back

OEBPS/img/med_dvm_ui1.gif
WLS Container

MDS repository

» Shared artifacts

Composite artifacts

>

DVM = DVM taskflow + DVM SDK.
Rules = Rules taskflow + Rules SDK.

OEBPS/img/bp_wl_grp_rules.gif
[Groun (=] [weblogl

& Group Rukes
& & weblogc
& (Group Rule|

Group Rules

Neme = [Group Ruke

Appiy only o task type(s)

I Exectte rule only between these date

StartDate

EndDate

dd Conditon [StartDate =

© assign to member vis:
€ assgnto
@ Take no acton

Reassigned task acc
Delegated task cces

[Leastbusy

= |

determined according to new assignes rights,

s determined according to rights of riginaluser who delegtes.

OEBPS/img/ns_email8.gif
Expression:

1ds: getUserProperty (bpws
‘nail')

A Insert Into Expression

BPEL Variables.

< dient:subject
< cient:body
< cientiattachmenthiame
< dientiattachmentiineType
< clentiattachmentURT

(%) outputvariable

4] Scope - Email_1

Functions

[sdenty Servee Funcoons

setdetautRecimtame
‘getGroupProperty

e m—
setReportees
getsupportedeaimames
e

Content Prevew:

Desripton

bpusigetVarisbleData(inputvariable', payload!, [dient:process/clent:to)

Variable XPath expression

Heb

o o)

OEBPS/img/rules_soa2.gif
@ Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nfluence the behaviar of your business

(@ greate Dictionary O Import Ditonary

Specifythe name and package for the dictionary that wil be created.

Nome: [OracleRulest

package: [orderapproval

Project: | C:1Developerlmywork\OrderApprovalApp|OrderApprovallOrderApproval.jpr

InputsfOutputs:
Direction

OEBPS/img/ns_parlayx005.gif
@ Project Properties aj\PARLAY 2\usermessagingsample-parlayx\usermessagingsample-parlayx-.... [

Uibraiesand Glasspath

Project Source Paths O Use Custom Settings

ADF Mocel © Lse Project Sattngs
ADF View

ant Jova SE Verson:
Business Components 16:0_10 Defaut)

Compier
Dependencies pespeii sy

e Export Description
E38 Moce O w2

Extenson O W2
J5P Runtine

Javadoc
Java EE Applcation
359 Tag Lbraries
35P Visual Edtor

Resource Bunde
Run/DebugfProfie
soa

Technology Scope

(e

OEBPS/img/bam_dc_connection_update.gif
|Application Navigator

rderBockingBAMApD
Projects CEYZE

rderBookingBAM

=-(0 Application Sources

1@ datacontrol.bam

1 datacontrol.bam Film_Sales
£ @ orderbookingbam

mﬁu
=771 META-INF

OEBPS/img/bp_wl_info2.gif
[Request More Information

1 Request info from @ Pastapprovers w| Oothers
Push task back to previous assignes and then to me

Commerts:

eapproval needed (retrace approval chian f applicable)

ok

Cancel

OEBPS/img/sca_appsnav2.gif
(Elrgpication Navigator__[]Application server Navigator

wIx
e épaph(atmn Servers
IneatedeblogicServer (domain unconfgures
& MyConnection ‘ o)
3 Clusters
{23 Deployments
[servers
ER=ES
& 22 s0a servert
& 3] defaut
off project1 [1.0]
off projectt [2.0)
o Project! [Default 2.0]
off smplesgproval[1.0]
o simpleapproval [Default 1.0]
{23 web Services

OEBPS/img/bp_wl_reuse_rule_vaca.gif
Rules Vacation Period :

Remove yoursel from automatic ask assignment by ensbling 3 vacation date range.
Optionally, more specfic vacation rules can be created Under "My Rues'.

‘3 Vacation Period (Disabled) |
My Rules
CJenable vacation period

Start Date &

End Date &

OEBPS/img/sca_appsnav.gif
B appication avigetor
X

©-¢3] Appcstion servers
] IntegratedvebLogicServer (domain unconfigured)
& Mycomecton

B clsters

3 beplyments

D servers

Sl application Server Navigator

{23 web Services

OEBPS/img/bp_ht_stage3.gif
-

+
nefpproval

&) ressorovs ity

+
Staget
1
<Edit Particpant>]
I
+
Stage2
1
<Edit Particpant>]
I

OEBPS/img/sca_uddi.gif
& UDDI Deployment Options

Oracle SOA Suite enables dynamic resolution of WSDL and SOAP
endpoint locations a runtime using the but n Oracle Service
Registry LIDDI protocol. Check the baxes below that match your
requiements. T you check nothing, the locations willbe set when
vou deploy the compost application

[Dynamically resolve the SOAP endpaint location at runtine]
] Dynamically resolve the concrete WSDL location at untime

Note: To enable at runtine, you must frst configure an Oracle
Service Redistry LIDDI server connection Using the SOA Enterprise:
Manager console as documented in the SO Adnmiistration Guide

e oK

OEBPS/img/fod_createref.gif
Web Service

Create a web service for services external to the SO compaste.

Neme:
Type:
WSDLURL

Port Type:

Calbackpor Type:

StoreFrantservice

StoreFrantserviceRef.wsdl

e

o Calback -

7] comy s cependent artacts ko the roc,

Note: Keeping a copy of & WSDL may result n synchronization ssues I the remote WSDL is updated. Tt s
recormmended not make local copies - this should be reserved for siuations such as offie designing.

OEBPS/img/soase003.gif
s i i
= e | || }Mmm
e[| [][s | e e
SR
— F—
[l eanead
s
oy
Es

GHE® Q . @ e

OEBPS/img/sca_plink1.gif
Dorabmntd

OEBPS/img/sca_deployshare6.gif
& Application Propertie:

I

Appication Content

Resource Bundies
Run
W Polcy Store

\IDeveloper\mywork\SOADemoApp\SOADemoApp. jws

)| Deployment

(O Use Custom Settings
(@) Use Applcation setings

Deployment Profes:

Create Deployment Profile

Clck OF to create your new deployment profil and immediately open I o see s configuration.

archive Type:
508 Bunde

Nome:
sharedirtFactBunde

Descripton

Creates a 50 Bundle for deploying multiple SOA CompositesfMetadata Archives as one archive.
file. The output archive file (2p) contains one or more Camposite archives (SARs) andfar one or
more Metadata Archives (MARS).

OEBPS/img/bam_alert_para_cfg_nm.gif
2 Report Parameter Edit - Webpage Dialog, [

myprompt

OEBPS/img/med_designconsole.gif
Source: ReadCust wsdl
=2 <source>
& mpticustomernata
< Customentd
o> ustomertiame
< Tye
<o Desrption
< acress
way
< state
(e
<o Country
<o hone
< status
<o Credthating
< iscout
o Terms
< Emoloste
<o Losordervate
< cutency
<o Contactiame
< ContacTitle
<o Contactphone
< BccounRep
<o Capgrating
<> Referedsy

Target: USCustomer.wsd

<trget> (2.9
nptCutomer -5

Custonerd

Custonetans

s

o

stte

zwv

County

e

Contatiane

Contattere

ConvctEnal

Webaddess

¢eeeeeeeeesst

OEBPS/img/rules_df1.gif
Exposed Services Components External References

calFunctonstat

OEBPS/img/excel_tst_upld_success.gif
=

DEEHRINIATE S DB

Eile Edt Wiew

Insert

Format - Tools Data iindow Help

Type a que

AOF Destop ntegration ~ |

El

819 B

Title:
Priority
Expense Id
Status
Purpose:
ReimbCurrency
Costcenter.

Expense Items

%

Task Details
Expense Report Fled By wiauk.
3
102
travel
Dollars
R

Row inserted successiull

Assigned Tasks For User:) *mmmm

Asprove

JReiect)("Udate [Susoend

tem 1 100 typet
tem 2 200 type 2
itom3 a0

NEW Ttem

OEBPS/img/bp_portlets5.gif
Web Service Details
]nd.ml Web Service Endpoints
Name PaNvg
= WSRP _v2 Service

™ anagement_...
WSRP_v2_ServiceDescription_S...
WSRP_v2_Registration_Service

= WSRP_v1_Service

WSRPServiceDescriptionService
WSRPRegistrationService
WSRPBaseService
WSRPPortletManagementService

Endpoint Enabled

Enabled
Enabled
Enabled
Enabled

Enabled
Enabled
Enabled
Enabled

i
ololole |ololole [

OEBPS/img/med_markfordelete1.gif
| Edit Function - markForDelete

Function Parameters:

ixefLocation] "custoner xref”

(calumnilame| "5AP_01"

\ohe | /Top:SapOlCollection/cap: sap0l /coprid | e

el

String Lierals should be enclosed within or”, (Example: b’ r "abe”

Function Descripton

IMark the column value for deletion in the cross reference table(XREF). This function returns (

true if the delete succesds; otherwise returns false.

Usage: srefmarkF orDelete(sreflocation as string, columnName as string, value as string

De— T

OEBPS/img/med_mep1.gif
Gllent

One-Way
Mediator

Invoke

Invoke
Reply
Fwd

Invoke
Callback
Fud

Invoke
Response/
Fault
Fud

s
One-Way Target
Reference or
Component
Request Response
[™| Torget Reference
] orComponent
Asynahronous
> RequestCalback
e Targetreference
or Component
L+ RequestResponse.
. FaullTargel Reference
or Component
f—

OEBPS/img/bp_cs_pl.gif
FrstReceiverL.

@

SecondReceverL.

@

ThirdReceivePL

OEBPS/img/bp_tdf_datacontrols1a.gif
~ Data Controls RY

=3 Operatons
48 conme
2 rolback
=[] getTaskDetails(String, String, String)
S p—

& & rerun
& Tk
" am appicatoncontest
= oy
- conctiontd
o restor
- duenate
p———
- am dentyContext
m spublc
- ownersrop
m ounerrle
[rperhing
e —
- printy
m tatoate
- am subcategory
m tasetmtontd
. am tskDefitontRl
= tosoiplytr
e
m teResourcekey
= pavioad

OEBPS/img/sca_selectsoap.gif
frwmn Y

Creste e srvice for serices externato the SOA compasite

ame psirocess_ciersp1]

e Reterence]

FL1055-1675-475-9ne5-74007eb20ek peiprocessl_chent_spTWGoL |

oL
[ey -
Sommeronipe (o cg)

OEBPS/img/med_bpelevnt9.gif
D
~[eventBPELPr...

%) 4|

Subscrbed: | |
OrderReceivedt ||}
b!

OEBPS/img/bp_tdf_pay2.gif
 Projects R@Rv-E-

taskDetaistPageDef.xil
i

1 Applcaton Resources
~ Data Cantroks

o seatDate
- takefntiontd
8 tasDefirtonLRI
e
8 teResourceKey
-] Payioad
ER=]
- creator
s fromDate
- resson
o toDate
£ Operations
B Operations

3 aor Form
Gontts

Gauges. € Trinidad Form.
Geographic Map ¥ | €» Trinidad Read-only Form.
araphs

Master-Detals
Mulile Selections
Navigation

Single Selectons
Tables

Thematic Map.
Trees »

Cancel

OEBPS/img/med_dynarr1.gif
e Catabnge,

<& Medator
e p—
[T —
Pt esates

Calback ot Ty caback gt

6 Routing Rules
@ Operstions a9
T exeare. ooy [Clusdmesmacosn « v (4%

ol To [<aova Colont >

OEBPS/img/bp_notif4.gif
Voice xR

v G

Telphons Nurber; (12003456760 Q@
sod
= Testing Voice Message B

Message body can be plin text or VAL

[Ceeb] apply

el

OEBPS/img/bp_ht_mcvb.gif
Participant List

Buid a st of participants using: [Management Chain

Specy atrbutes using: (3 Yaus-based () Rule-based

tarting Participant;

dentification Type Data Type Value

e |

Narber of Lovl: (5 Marber]

OEBPS/img/med_xref_ucexref20.gif
=0 insert

pririy

] validats Syt (450)

avdR

E

<<Fier Expression>>

Y

SBLisEL

< [sequential ~]

Valdate Semantic
Using Transformation

Assign Valuss

-4
Inputparameters : xs{COMMON_T0 56l 1.] (K
[F—— | .

Synchranaus Reply

Using Transformation

Assign Valuss:

=0 [Logger: e

k-]

OutputParameters ; xsljS8L_TO_COMMON_... v | B

e

concat(INSERT-"$in.0,

<<Fier Expression>>

Y

2

EBsiERS

< [seent ~

Valdate Semantic
Using Transformation

Assign Valuss

—— |

[Ioputparameters : xlCOMMON_T0_EB5 1

|8

Synchranaus Reply

Using Transformation

Assign Valuss

=0 [Loggers e

I3

[ouputparanetars 3E83_T0_commion... =]

[e ritere

concat(INSERT-'$in.0.

Bl
B

OEBPS/img/bp_pick4.gif
OnMessage Branch

Interaction Types [3 Partner ik

Parter Link:
Operation

Variable:

fbpelprocess2_clent

@ process

[OniMessage._process_Inputvariable

OEBPS/img/bp_sensor_fltr.gif
& _Edit Sensor Action - SensorAction_1

Neme: BigHoneyBAMACtion

Publih Type: M5 Quev -

45 Connection Factory: [weblogicms.ConnectionFactory.

Publih Terget: msjbighoney Queue

Eiter datafautoloanloanAmount > 100000)

Enable

OEBPS/img/excel_edt_wkbk_props.gif
C:
&)

Home | Inset Pagelajout Fomuas Data Review View Addins
% cut

5 | oot e, _soror
43 Copy
B2 ufE[o- A

Contional Format Bad
5 Fomat painter Formatting - as Table -
Cipboara 5 Font 5 Aignment 5 Number stytes

AL -~ fo

Caor A

Shwapren General -

8 Merge & Center - | [$-=1%-» 58

:

:

4 S|

2 Tenae

&l Data

7 Brandingltems NameValuePairl] Array
2 hitp://stanf01.us.oracle.com: workflow/ExpensoRteport
11 Annotation

15 B Security

£

D ‘WebAppRoot

21 The root URL for the target web application.

2

z

2

OEBPS/img/bp_entityvar2.gif
Bind Entity

Neme:

Entity Variabe:

Uniaue Keys:

Findorderyid

orderntovarable Q

*+7%

Key Qiiame.

Hjoracleffodemostor... bps:getiariableDatalimputvariabl! payloat

Value Expression

=

appty|[_ok [cancel

OEBPS/img/ns_parlayx020.gif
mple - Mozilla Firefox
Hle Edt Vew Hgtry Booknarks Tooks Hep

@~ - @) (3} [0 ntiostacs.us.orack.com:24754husermessagingsample-parlayximain html

User Messaging Parlay X Chat

Configure | Manage | Chat | Help

To:

Sent Messages:

[to: IM:paul@oraclecom] this is a test

Received Messages: [Refresh]

[from: IM:paul@oraclecom, to: IM:ask@oracle.com]
test back

OEBPS/img/bp_ex_removent.gif
Remove Entity

Neme:

Entity Variabe:

RemaveEntity_1

VarEntity

=

ampty ||

E3

) [cancel

OEBPS/img/bpmdg037.gif
‘Assign Task
pEL ssign Tash

Process
«{TaskCompiete

«—

Workflow
Services

o

LoAP

OEBPS/img/fod_storeservices.gif
BRv-E
toreFrontService
StoreFrantll
UniTests

1 Applcaton Resources
» Data Controls

» Recently Opened Files

New roet
3 tew
cpenpropc
Close Application
€ Dskete Aplcaton
Rename Application.
esin Appcatin.

@ Find Applcaton Fies
Show Oyervien
7 Eiter Applcation.

R pelete

Secure

Reformat
Organize Inparts

Compare With
Replace With

applcatian Propertes.

CuArL
cumaro

StoreFrantilode,
StoreFrantService_SDOServices,
metadatal,

OEBPS/img/med_xref_ucexref7.gif
@ Edit Function - populateXRefRow.

Define function parameters below:
{Mote: Parameters can also be set trough drag and drop from tree rodes)

g “oustoner.xeet” S

referenceColmeiiane " 5P_01")

referencevalue /top: Sap0LCollection/ top: Sap0l/copiid [moews |
= |

courrtiame Connon

e orelsgenerate-muial)

o =R

Examples: §vard, §phxiparami, ‘b, "abe”
Press Ctl + Space for Invoking 4Path Bulding Assistan.

Function Descripton

Populate the column value in the cross reference table XREF) where the reference column has the

reference value.

Depending on the mode, the reference value may also be populate.

s e |

OEBPS/img/bp_tdf_jspx3.gif
(@startpage |sfcomposte.xml

| Byapprovalumantask.task | approvalumanTask_TastFlow.

@ - shon [l e 5o] O] [hene ~[oetaut

e B HPBIUEEEE

itlet.inputvalue!

777833IGNEES?7?

#..cisplayName} 777 #(_expirationDate.

EXPRATION DATE??? inpitvalue)

77ICREATOR??? #(.creator nputVakie} 797ACQURED_BY?77 #..cccpiredBy.

277 #..crestedDate npLtvalue)
CREATE_DATE??? inpifValue) 777DUE_DATE??? #.cueDete.
277 #..updetedDete. nptValue)

UPDATE DATE??? inpidvalle) 7270UTCONET?? #(._outcome,
npLtvaiue)

Bl | raskacToNsT? .|| U0 [grciamnn

TASK_NUVBER???
27PRIORITY?77

7rSTATET??

777ACKNOWLEDGE?? | | 777RESUME???

#{_taskiumber
npLtvalue}

ae)
)

E/0rder Information

Ordardetats:
OrderStatusCade.
OrderTotal
ShipToName
ShipToPhonehtmber
Addresst
Address2

cy

PostaiCade.
StateProvince
Courtryid

#
#
#
#
#
#
#
#
#
#

[[OrderLines) Order istory
retosibmadiy

Order 4 [#..orderid inputValue)

OrderStatusCode inputValue)
OrderTotalinputvalue}
ShigToliame nptValue)
ShigToPhaneNimber inputvalue)
Addresst inputvalue}
Address2inputvalue}

Gy nputvalue}

PostalCode inputValie}
StateProvince Inputvalue)
Countryidinputvalue)

View o Format +
Procuctiame Quartty nitPrce.

#(_Productame) _|#(..Quantty) #{UniPrice)
1. Productieme)#{..Querd #1. UniPrice!

[Freeze (2 Detoch | ol Wrep

o0t v » Frview v afidocument v) af form) af panelgrouplayout#pgil v > aFipaneheader#pht

Ffacet

Design | Source | Bindings | Preview | History

OEBPS/img/med_xref_optimize2.gif
59 Cross Reference(AREF)

e

Description

optinize:

Table Name:

[Customer

Cross reference of customer derifiers

Faef _Customer

Generate Table DL

End Systems;

+ %

ame
i
s

OEBPS/img/bp_addcatch1.gif
\dd Catch Eranch

OEBPS/img/bp_trans_newmap.gif
Source: po.xsd Target: invoice xsd

& (32 <source> <target> (3 5
& <o trPurcheseonder stitnvoie @ &
B8 OrcerDste InviceDate
D tnst:Comment §53
< shigTo o
< i Shippecto <>
o trscomment edToccount <o
{3} <choice> Shippedtems <e>
< tems Unshippeditems <o

OEBPS/img/med_dvm1_ucmultival2.gif
Exposed Services Components External References

OEBPS/img/bp_portlets8.gif
& Register WSRP Portlet Producer - Step 1 of 5 [X]
‘Specify Producer Name.

Provide 3 uniue namefor the WSRP prtie proccer regilraton,

Croste Cornacten n: AoplcationResources () Resaurce Paite

Teget o [emcertrler D]

e Rogsttin on: TSN

OEBPS/img/med_type_chooser.gif
%

Type Explrer
2 rofec schema s
D Froject WSDL Fies

Type:

OEBPS/img/bp_ht_vacreq11.gif
& Create Human Task X

Task Tie: o
E.g., Vacation Request for <%bpsigetiarisbleData(...}%>

priorty: (3

Inkiator

TaskPara... L varsble
acatonk 1,

. o P—

OEBPS/img/bp_wl_product_rpt.gif
User/Group Name. Task State Number of Tasks

Calforia asiared 16
Lowdgentron assiared 11
S.penisor asiared
ieoop asiared 2
ieoop Completer 2
miwn Complet=r
steven Completer 11
Productivity Report
«
2
2
e Wasines
H Dcompletec
H
s
Glforns Sipavsor wan

[reen

OEBPS/img/med_refresh_wsdl.gif
@ Refresh wSDL

WSDL Fil:
Port Type:

Calback Port Type:

execte_ptt

Refresh il delete mediator aperations:

freatecustomer

Refresh wil add medator aperations:

pdatecustomer
deletecstomer

s

OEBPS/img/bam_mon_countconfig.gif
& Counter

Snapshos:
Activiy Name Evaluation Events
P receivelnput [activate]

OEBPS/img/bpmdg009.gif
Client BPEL Process.

C:
ervice
<invoke>

a1

¥

Gt
response

wsbL
ParnerLink

—

Service BPEL Process

<receive>

¥

<invoke>

OEBPS/img/ns_email5.gif
SendEmaiihAtiachmentsazn 7
m® Y- E-
‘SendEmailWithAttachmentsproj
553 50A Content
22 dasses
22 testsuites
2B xsd
&

Bl
off composite i
- SendEmailithAttachments.bpel

b SencEmailithatiachments.componer
N S———— .]
J Appicaton Resources
} Data Contrls
b Recenty Opened Fies

OEBPS/img/mapper_xsltconstuct.gif
@ Component Patte_ (Resources

General

 Conversion Functions
 Date Functions

1 Logical Functions

» Mathematical Functions
1 Node-set Functions

1 String Functions

= LT Constructs

& choose

& copy-of

B for-each

&

& otherwise

ot

8 varizble

& when

(5]

©

OEBPS/img/sca_spring20.gif
Service: Medatorl

Interface:
http: s oracle. com Appicationd/Project1 Mediator #wsdl.interface(xecute,_pit)
Medatortaed T s

OEBPS/img/bp_ht_callback.gif
& General

@ oas

B assiomert
@ presentation
B Deadines
8 Ntficton
e Access

P Events

State Change CalBacs:

state Java Clss
(Onassigned orgmycompany.task Workfion
onipdated

lonConpleted

(OnstageCampeted

(OnsubtaskUpdated

Trigger Workflow Event

ooooo

7] Ao task and routing customizaton i BPEL callacks

OEBPS/img/bp_transform5.gif
> Auto Map Preferences

] Confirm Auto Hap Results
Erompt for Preferences before Auto Mep.

oge: [Basic

During Auto Map:
@) Match Elements with Simiar Names
O Match Elements with Exact Names

[Motch Elements with Exact Types
atch Elements Considerng their Ancestor Names

Insert xslf statements:

O For optianal nodes with required chiren
O Far all optional nades

Show Dictionaries >>

Enable Auto Map

Cancel

ok

[l

OEBPS/img/bp_ht_vacreq14.gif
Partner Links Partner Links

wew @

,
s)

recelvelnput

@

ﬂ‘

) VacationRequestTask_i

vacationvequestpr.

&

taskSwih

callbackclient

OEBPS/img/soase_jd_ss_004.gif
Application

Component
Navigator

Designer Palette

P!

Partner Link

| ons s
[Ereyeir—
B — -
L
Sounssru
= Snenesrie e
o cnpeseam s
 ordepocsocton Ry
B oo comorsties

Source History
Window Window.

o 33 vostles
5 33 onelstonsets

B0 v |

[SEST T

e)

[R @9

Structure Log
Window Window

OEBPS/img/bp_wl_flexfields2.gif
Inkiated T

[Administration

Adri

TUIACTN Administration W

Applcation Preferences
IE) Flex Field Mapping
Public Flex Fields

Flex Field Mapping : Public

@growse all mappings
OEdit mappings by task type:

Shaw: (Al trbutes

View existng lex ied mappings (.. task sttrbute Isbels). Create additionsl flex fsld abels and map thess to task attributes.
The labels wil be isplaye to the end users, and should be user-friendly terms for the task atributes

®

Label

Bitrbute

Details

myFild
testField

Texthttrbute2
Texthttrbutel

Please select a label ta ee s Usagels).

OEBPS/img/rules_dict3.gif
& Create Variable.

Neme: [RatingReaues]

Type

@ Eement

] ity varisbe

Partner Lnk:

OEBPS/img/bp_wl_details95.gif
Help desk request for wfaulk

8 @ ot
s P R T
e caressy
Concs dre,zor a5 Tasmse 008
Updated Apr 6, 2009 4:43PM Priority [3
Scoments
e cans
e ratnae
tenerpion e freboctpeysten
e [z
e (ot
Reguester
o ek

FrstName Viliam
LastName Feulkner
Emal useriGus.orade.com
rhone [0

Comment None
Resolvedsy None

Eistory
6] Task Snapshot | P Future Partpants T Ful task actons.

& Esteger
& sten (rssgned [for 5, 2008 #2370

OEBPS/img/bp_ex_compen.gif
Compensate

Neme:

Scope:

(Compensateck

fssoncrl

OEBPS/img/xbuild21b.gif
KPath Expression

concati(String) as String Function
<@ contains(String inputstring String searchstring) as boolean Function
V| countinode-set inputNodeSet) as number Function

OEBPS/img/bp_tdf_router5.gif
|applc_acftaskfiow_wr_4_12.jws |offfcomposteml | [vacationRequestTask_TaskFlow.xml

so- AT B 60 @

f Task Flow

P

EmaiPage

9P

PageRouter

default

CloseTaskFlo

taskDetails1_jspc taskRetum

OEBPS/img/bp_mpr1.gif
(2] | Orderpendingevent.mplan

“ Projects

[504 Content
T3 adfmsrc
Db
[services
[testsutes
Dwsd

20l
B etorderInfovosDOResponse_To_u

B NewOrderSubmited_To_Orderfroce |

[——]

. Applcation Resources

beta Conrds

* Recenty Opened Fies

mposie. il - Structure.

5
5 Ganeraed by racke S0A Modelr versn 103
34 composite
@ mport
@ mport
@ mport
@ mport
@ mport
@ mport

<9 import
@S irnort

Source: OrderEO xsd

| 5 <sarces

E5-<o» NewOrderSubrittedinf
<@ Ordertd

(EleveL-Log

Bewordersubmitted_To_OrderProcessorlnput.xs!

Searching For Types: Transform, Valdate

cientiprocess
clentiorderld <>

hord (O0)E) g compo.

45U e Ordrprocessr sl
<trget> (28

&
General
@ r

e
1 Conversion Functions
1 Date Functions

1 Logical Functions

» Methematical Functions
1 Node-set Functions

~ String Functions:

.
.-
8 conce:

.
.
.
.

6 seconontacsvvg
8 s ezt g
-
| [Cpee———

R

Name

wPath

Type

1=l mabchac
b 48LT Constructs

OEBPS/img/crt_mynlspref_tf.gif
Create Java Class X
e the ot o you s

o
O ——
P T —

.

pom—— ——
o © <>
O pctagepoected O shanat
Ot
Conrctes o Supercss
nclonen: AivactHethods:
]t ethod

[| ——

OEBPS/img/bam_dc_calcrename.gif
Rename Calculated Field

New name: [y Calcltior]

OEBPS/img/bp_tdf_binding0.gif
Select 3 data collction and the acton you want: your controltointiate. The control ntiates the action
on the data objects o the selected coliction

Data Callecton:

[m—— < e
Operaion etTasketals(String Sting, Srng)
[gl to ol terstors in page defintion
Parameters
value opton

Name Type

pnordsConto e ng g | —
SoWorTadad fovadng s | —
ST vl S | —1

o
)

OEBPS/img/bp_wl_id1.gif
Identity Browser

Users | [jcooper search | | Reset
First name, Lastname, 10 -
Searched Items
cooper
EIDetails
Name James Cooper Manager jsten
ark Phane 100000006 Reportees
CellPhone 300000006 Roles
Fax Groups Calfornia
Emall jtooper@emaiExample.com Supervisor
Tite Loan Agent 1 LaanAgentGroup

o

Cancel

OEBPS/img/bam_ws_proxy_def.gif
'Application Navigator

Ordersackingeanazn
~ puoecs D@ v
=2 Ordersookangaar
=23 Appcaion sources
=1 orderbookingbam. proxy
@, DotaObjectDefinionProxy.

OEBPS/img/refjdev.gif
Exposed Services. Components External References

OEBPS/img/rules_advancedpanel.gif
v 2 [Rue2 Bxed

et

effectvecate [Ty =]

pronty g s] R hcive P i I Treeoce

(oreaheasevhers) =] (O e @ X O &

Customer 5o [Gmome S o B W@ X O O
T ([cstomertome @ [matdes =l [asco Q nd -
[[CustomerRegsteredDs @ [Sbemmeen 5] Sep 22, 2009 4:18:55 AMSGT and Sep 30, 2009 2:19:44 AM CDT @,) =
y e
Inenrest
THen oo

I [ethen 5] [oomer 5] (Repsteredoteisen 18, 2009 51856 AMEET) B (4|

OEBPS/img/sca_customize4.gif
Ve vitheut Clstoniatons

) Edit with folowing Custorizebion Contert
T by

vauz

Commurications (communicaiors)
___W

wuskoriization Conbext : rdustryfcavnicatios, site /NorthAmerica

OEBPS/img/med_xref_ucexref4.gif
“Operations: |
L

(D)

AP

EupEemns ﬂ

EBS
“Operations: |
EBS

OEBPS/img/rules_soa3.gif
& Creat & Type Chooser

Type Bplrer
) ot Schea s

& Import Schema File

Files{CsTemporder xsd

Type:

[5how Detald e Information

b

OEBPS/img/bp_ex_terminate.gif
Q®

CopyPayloadFromiTask. CopyPayloadFromiTask. CopyPayloadFromTask

| |
]]

Terminate_5 Terminate_6.

OEBPS/img/bp_wl_views.gif
My Tasks

worklist Views(2] (=]
2 @ ty work Queues
B Standerd Views
Fih Prioity Tesks
Due Soon
New Tasks
Wy iews
2@ procy vork Quees
Shared views

OEBPS/img/fod_bpelprocess.gif
& Create BPEL Process

BPEL Process =}

A BPEL process i a service orchestration, used to describe/execute a business process (or large arained
service), which s implemented a5 a stateful servie,

Neme: (Orderprocessor

Nemespace: it fwww.gobalcompany.example.comins/Or derBookingservice

Templte: (G Asynchronous BPEL Process o

Serice Name: [orderprocessor_clent

xpose a5 a SOAP service

Input: [{itp:fjsmn.gobalcompany.<xample comins/OrderBookingservicelprocess Q

Qutputi [{htffoww globakompany.exanmple.cominsfOrderBackingServielprocessResponse.| O

[eob) o e

OEBPS/img/mapper_xsltconstruct2.gif
Expand Al

Collspse Al
acd Variable.
for-sach
Show Substtuion Hods Icons ;“W'“f
Show Matches. choose
) Unda NewLink cuz
™

OEBPS/img/bp_flow5a.gif
wes @

et

&3]

ssign_InternatwarehouseReauest

v

Invoke_Internatiarehouse

v

Q-

Receive_Internatiarehouse

&3]

Assign_InterWHResponse

w5 @

et

&3]

Assign_PartnerRequest

Invoke_PartnerSuppler

v
2y
v

Recelve_PartnerRespanse

&3]

Assign_PartnerWHResponse

OEBPS/img/ns_newfilter.gif
ORACLE' User Messaging Preferences

Vour Reference System
Tine:

* Fier Hame:

Messaging Filters

Wednesday, January 14, 2009 10:30:12 Al
psT

Travel Fiter

Description

Hending messages during my travel

Home | Help

Loggedin

Condition

Matching:

dd Fiter Condian:

Al of the following condiions
Subject

[itrbute
ate.

Contains

Operator

Customer

subject

Vae
Between

+

(0sj0s/2008
Contains

Va2 (F requred

Customer

1012812008

Action
Messaging Option:

Sendto the Fist Avalable Channel

dd Natfication Channel:

[Channel

v B

I susiess bl

Address
16505066783

2 Business Email

john doe@oracle.com

it @ 2005,

OEBPS/img/ns_email6.gif
| Fsendemailvithattachments.xsd | gy SendEmailviithattachments.bpel | (0]

PR 1L —1

wew @

®-c

toc

: K
E——— > .
v

calbackClent

@ .

Zoom: [100[3]

OEBPS/img/bam_alert_param_dialog.gif
2 Alert Action Parameter Creation and Edit - Webpage Dialog,

Action Parameter Values

Specify the user, dlert deivery method, and the report to be sent when the event occurs. The user,
method and report can be specfied by selecting a Data Object Field

ValuefFeld Source.

User Oradesystemiser selectFeld Select User

Delvery [Emai selectFeld Emal

Report barchart & | SelectField Select Report

Report Parameter Values

Ifthe report selected above contains any report parameter, specfy the parameter name and s
corresponding value belon.

Brew [/ (R

Parameter Name

myPrompt

OEBPS/img/med_xref_ucexref6.gif
Exposed Services Components External References

e [
Logger
“Opersions:
ite

o &
sBL
“Operations
seL

iBe
sAp

e ES)
EBS
“Operations:
e5s

OEBPS/img/med_replytrans.gif
@ Reply Transformation Map

Transformetion rom reply message args_out_msg to message OutputParameters_msq.

Transformetion to part: OutputPerameters

() Use Existing Mapper Fie: A\ W4

@ Create New Mapper Fi:| [Outputparameters_To_OutputParameters sl

[nclude Reguest nthe Reply Payioad

OEBPS/img/bam_dc_query_expanded.gif
Appicationd
b Projects R@®v-E-
1 Applcaton Resources

~ Data Cantrols

m v sses
&8 regon
m
am vk
m v _saes
o8 s
mm
am vk
am v _sses
=[] executeWithParams(String)
-0 parameters
@ Parameter1.

OEBPS/img/med_bpelevnt8.gif
Invoke ®
& eress (N

s [ublahordarpendngeven]

Ja—
Event: Q
variable: $Q

Concel

OEBPS/img/choosetaglibs.gif
Choose Tag Libraries

st of avalable J5P tag braries compatible with
Wieh Applcation version: Serviet 2.5115P 2.1 (Java EE 15)
excluding aeady used lbrans.

Brome

Etension
83 ADF Dsta Viuslzakion 1.1

5 A0F s Visuskstons Core 1.1
83 40F Oynaric Components 1.2

3 ADF Faces Databinding 1.0
& 5T Core 1.2
3 5T Fomat 1.2
5 3510 Funcions 1.2
3 5T Pemited Togks 1.2
3 257 St Free 1.2
saz
T 12
5 orade A0F DatsTag brary 1.0
3 Struts Bean (Backwards Compatibiy) 1.2
3 suusbean 1.2
W Struts HTML (Backwards Compatibiy) 1.2

5 struts HTML 1.2
Cear Cache_|
o (ot

OEBPS/img/bp_notif5.gif
x
[EEs e
Erom Number: 18003687001 &
Tolhone Nurber: (6003667660 Qan
Subject: Testing 5MS. &
Body: SMS Body Message. &

Message body should be plain text

Concel

OEBPS/img/sca_updateif.gif
Be

el
B
orderpracesso... T— P
Do ervice:sdaracesear et
rocess Interface
oo e spon... | Htpf . obacompany.example.cominsfOrdarBookigservice# s nerface(Orderprocesso)
[rocsssFaut Callback Interface:

etpif o, globalcompany.example.comjns/OrderBaokingServicei#wsd nterface(OrderProcessorCalback)

Ea—_—

OEBPS/img/bp_pick3.gif
OnAlarm Branch R

4

For

O eoresson B
Uil

O Time (MMjddfyyyy Hrtmmiss): 04/08/2009 17:38:35 5]
O expresson B

OEBPS/img/bp_tdf_pay1.gif
#{_crestort _isbel} #{..crestor! inputValu}
#..ironDate..Iabel) #..fromDate.nputvalue}
#..toDste. Jabel} #(. toDate putvalue}

OEBPS/img/fod_createws.gif
‘Web Service

Create a web service for services external to the SO compasie.

Neme:
Type:

WSDLURL
Port Type:

Calback Port Type:

forderprocessor_ent_ep

Service

(OrderBookingProcessor wsdl

[orderprocessor

[orderProcessorCalback

7] comy s cependent artacts ko the o,

Note: Keeping a copy of & WSDL may result n synchronization ssues I the remote WSDL is updated. Tt s
recommended not make local copies - this should be reserved for siuations such as offine designing.

Transaction Partcpation

NEvER

OEBPS/img/bp_portlets7.gif
New Gallery X

(BRTRRBGREN] ront ot Taceoais |

This it itred sccorcing the curren oject’s zslaced tctrlage,

Cotagores o] Show Al psscrpeins.

Comnactions i Mansge Potet Enves of T
Deploymert Desrpors
Ot e % Orack POK-Java Prodhce Ragetration
Digrans 3 WSRP Producer Registration
Externs plcations This wizard il you regster 3 WSRP portiet producer.
v i
Proects
e

SoATer

5 e Ter
Aol
HINL

[T =

OEBPS/img/med_dynarr2.gif

OEBPS/img/xbuild20.gif
| s BPELProcess3.bpel

| Emranstormation_t x5!

| L=

B Components |

fod}

Torget OrderBookngp
“trget> (2.9
sopuchasorder -5

POICUSHID. [T <o

poD
poishipT
posilTo
poiUserContact
poiOrderltems
po:Supplerinfo
porOrdernfo

@

@
@
@
@
@
@

dvanced Fanctons
o=

B ot
s
"
.

m@

v 4O

PR/ BOE

OEBPS/img/bpmdg008.gif
nt BPEL Process

<invoke>

a1

wsDL
PartnerLink

—

Service BPEL Process

<receive>

OEBPS/img/soase_jd_050.gif
IinternalPartner-
Supplier

SpringPartnerSuppl

rMediator Spring Service Component

‘SpringPartnerSupplierMediator Spring Context

Bean
Inject the external IExtemalPartnerSupplier

nemalPartner. | parnet suppier bean Servce (mplemens the
*’O—‘Supn\\smeﬂmoy broperty name: EJB intertace)

Quotes >
20008
223000

IinternalPartner-
SupplierSimple

(scaservi

Quotes >
3000

(scaiservi

4 SR

(scaireference)
Inject the quote writer

property name= WriteQuoteRequest
quoteWriter =

(scaireference)
Bean

IntemalPartner | iricctthe quote
SupplierMediator- writer property.
Simple. name= quoteWiter

e)

Inject the external partner
supplier bean

property name=
extemalPartnerSupplier

[ExtemalPartnerSuppiierServiceMock
(implements the EJB interface)

External
References.

IExternalPartner-
SupplierService
(EJ8)

WriteQuote-
Request
(fle)

OEBPS/img/soa_springpojo5.gif
package cou.otn. sauple. fod. sos. internalsupplier;

import ..

public class InternalSupplierupl inplenents TTnternalSupplier
8¢
SR
* Get an instance of the partner supplier injected
s
public IExternalPartnerSupplierService externalPartnerSuplier = null;

8 e
* Get a quote for a list of items
* Gparam pOrderItens the list of orderltems
* Greturn the price for the list
s
public dowle getQuoteForOrder (List <Orderitem> porderltems)
S
double price = 0.0;
if (pOrderTtens
return price;

L)

for (Orderitem item : pOrderItems)
¢

price = price + (item.getPrice() * item.getQuantity());
)

return price;

OEBPS/img/bam_dc_paramdefault.gif
[Enable Default Value

OEBPS/img/bp_mpr_params.gif
Add Parameter

Name.

Local tme: [dscount
[set anamespace

To reference a parameter in XPath, use the name entered prefixed by §
(Example: gname, $prefixiname)

W

OEBPS/img/med_dvm_eb.gif
Expression

w a0

tvn: LookupValue (' citynap. v, 'CityCodes' ,§ in. Custoner/inpl: Custoner /Address/City, ' Cityllanes ', 'NotFound'

A Insert Into Expressian

variables

e Name
<@ Description
<@ Profie
5o Addess
o THe
<@ Strestaddress

[
<@ Country

Functions

o Punctons e

2 lookup¥alue 1M

Content Preview:

Description

dvmilookupialue()

Laok up the target. column valus in the domain value mep(DVM) where
the sarce column has the source value and the qualfier column(s)
have the qualfier value(s),

1 o vakue is found, the default valus i returned

Usage: dvlookupYalue(dvmLocation s string, sourceColurriame.
as string, sourceValue as string, targetColumnilame as string,
defaultValue as string, (aualfierColumnName s String, qualfiervalus.

el

o)]

OEBPS/img/med_dvm1_ucmultival1.gif
Exposed Services Components External References

OEBPS/img/ns_parlayx008.gif
& Add Library.

OEBPS/img/sca_comptocomp2.gif
SOA Resource Browser.

(@ resoucaraeis

& inearszdWebLogiseer
e MyCamnection
ERSECY
5 28 soa_sarvert
(3] defae
© ofg Proect (101

OEBPS/img/bp_ht_rulset.gif
e

Type:

~| Label: [staget Particpantt

Particpant List

Buid a st of participants using: [Names and expressions

Speciy attrbutes using:

List Ruleset:

e.0., Approval Manager

valuerbased (&) Rule-based

ApprovalGraupRule

OEBPS/img/bp_hwf_rules3.gif
Type:

@l sinde

Label

Stage!. Partcpart

Particpant List

e.0., Approval Manager

List Ruleset:

Genericrule

OEBPS/img/addingsomebeantofacesconfig.gif
Create Managed Bean

Beonflame: bomeean
Class Name: [sometean [growse.
Package: fuserulesdc [eromse.
Extends: fjavaang.Object [eravse.

7] Gonerae o I 1 Do ot it

e o Gance

OEBPS/img/fod_bpelpart.gif
nks

Partner Links

Partner

- ©
J
@

recelvelnput
l

calbackClent

\
[6)

wew @

StoreFrontservice

OEBPS/img/bam_alertrule_normal.gif

OEBPS/img/rules_soa4.gif
@ Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nflusnce the behavor of your business

) Create Dictonary () Import Dictonary

Specifythe name and package for the dictionary that wil be created.

Nome: [OracleRulest

package: [orderapproval

Project: | C:1Developerlmywork\OrderApprovalApp|OrderApprovallOrderApproval.jpr

Inputs/Outputs; +Xav
Directon e Tre

Input. CustomerOrder {http: fuws. customer .comnsfcu.
(Output Orderapproval {http: fuwws. customer .comnsfcu.

&=l P

OEBPS/img/ns_channel_edit_idm.gif
ORACLE' User Messaging Preferences

Messaging Channels

My Messaging Channels
Configure chennels to receive your notficatons and dets.

vew~ [create LEdt R oete A Detach

2 John Persanal Emal

Modify Channel

2 Johris Publec Emal

(] Business Habie

Name. [giessEnal
B -

Address [john. doe@oracle.com

) Business Phone.

This adchess can be changed orly through identity management system.
Default

R——

OEBPS/img/fod_componentpal.gif
ofcomposice. (&) | component Pa.

CEI\BBXRO BHBRD Composte: OrderBookingComposite
Exposed Services ‘Components External Refere“

— Service Comoonents

< busnessRule
& Hman Task
<5 Hedisor

Ry Spring Context

OEBPS/img/bam_sens_struct.gif
Tl sonsor et l

OEBPS/img/bp_wl_chart.gif
| Chart Display States (%]

Show: - 7} Assigned
¥ Completed
[V suspended
¥ withdrawn
¥ Expired
¥ Errored
¥ lerted
[V Info Requested
¥ Deleted
W stale

T

OEBPS/img/bpmdg007.gif
BPEL Process

Call
service
<invoke>

a1

wsbL
Client
ParerLink

«—
or

BPEL Process.

<receive>

<reply>

OEBPS/img/med_usecasetargetsvc.gif
@ Target Services.

5 o CustomerRouterProfet
GPEL Processes

edators

Human Tasks

Business Rukes

&-C3 References

5 UsCustomer

gifuricerile |

@ Cansdacustomer

sca

[5how Detalld ot Information

o[cml]

OEBPS/img/bam_ar_ems_advanced.gif
XML Formatting

¥ pre-processing

ag ,aniﬁd formatiing options

OEBPS/img/bp_scopes.gif
©

Drop Activity
Here

Voo | B (g [B By (57

OEBPS/img/rules_dict4.gif
@ Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nflusnce the behavor of your business

® Create Dictionary O Import Dictionary.

Specifythe name and package for the dictionary that wil be created.

Nome: [GetCredtRating

Package: [autoloancomposte

Profect; [CIDeveloperlmywork|AutoLaonApplication| AutoloanCompositelAutoLoanComposite. Jor

X * @

Input and Output Varisbles:
Direction Name Type

fnput RetingRequest nstratingrequest
output Reting nstirating

Reset session

OEBPS/img/med_exp_edit_icons.gif
@) Undo Last Edit
) Redo Last Edit

(1) Cloar Expression Box

OEBPS/img/excel_verify_adf_sec.gif
& Web Application Deployment Descriptor

)| Login configuration

- ADF Remote web Applcation Login Authentication:
ExcalTaskDetalls
- Servet Mappings
MIVE Mappings (O HTTP Basic Authertication (RFC 2617)
- TagLibraries
5P Property Groups
- vielcome Fie Lists
Locals Encoding Mapping i |
- Messags Destinations
Message Destinstion Refs
- Resaurce Envronment Refe

O tione

) HTTP Digest Authenticaton (RFC 2617)

5) Eorm-Based Authentication

Loin Page: [LoginPage Jsp

Resource References.
5 Security Constraints Error Page: [LoginPage Jsp
Constraint

) HTTPS Cllnt Authenticaton (PublicKey Certiicate)

Securiy Roles
- Enviranment Entries

ETB References
- E3 Local References
Preview L

b

i T

OEBPS/img/bpmdg020.gif
WS-Addressing Header:

BPEL Process cailback tocaion
A e e tesTo)
wsot
toangr LoanService %gz ;@:‘;ﬁ’
2. P e
Trate |
i] e e I
invoke>
o = e
ot ey
ot Peserr
=
Wi o
Catback Por
i | o[@
Soonve -« I
1! [——

~correlation id (relatesTo)
Note 1: the correlation id allows
the BPEL server to know which
instance of the process is
waiting for this callback
messages.

Note 2: The alternative
approach is 1o use
content-based correlation
using <correlationSet>

OEBPS/img/soase016.gif
PartnerSupplierMediator

wsbL

BPEL
Process.

ow>

|

Senience | ! sssauences

ni
service service
<invoke> <invoke>
‘Wait for ‘Wait for
callback callback
<receive> <receive>

wsbL

InternalWarchouseService:

OEBPS/img/fod_resource_pal2.gif
[Component Palstte

.y Catdogs
= 10 Connections
- @ Appcation Sever

@ imegratecmtscomecton

OEBPS/img/sca_jdevresource.gif
& SOA Resource Browser

(@ Resouce paete S

3 usiness Entities
53 Business servies
& @y Accountservics
5@y AddCustomerservice
5 @y BlPaymentService
5@y checkordarservie
5@y Customeniticationservice
5@y DrectDepostAdvanceservics
5@ HecronicFommsSenice
& @, Enployeelist
5 @, oldy request sevce 1
fR Y.
5@y MonataryTransactionzenvice
5@y Notficationservice
R y—
5@y Steservice
5@y Stoppaymentserice
@y support
@ Transrrundssanvice <]

OEBPS/img/bp_ht_idserv1.gif
2 1dentity Lookup X
Realn: -
seachpatem: [+ [usrvame @

Search User

x| ooy | wporens | oo

Selected User

OEBPS/img/bp_ht_vacreq13.gif
Create Human Task

ToskTee 2

E.g., Vacation Request for <%bpsigetiarisbleData(...}%>

Inkiator B rioriy: [3 -]

Task Parameters BPEL Variable

nstvacstorRequestrocesRequest (1]

OEBPS/img/bp_wl_comm_attach.gif
ElComments and Attachments
Comments

Attachments

Gx

OEBPS/img/bp_wl_admin_rules4.gif
Other Rules

T o

IR —

Delegate Expense Report

(& s Rues
[5) Delegate Eipense Report
[3) Auto-Approve Vacation Request
[5) Resssion creck Agp] et e only between b and %
[3) vacation Rule For Aprl
(& i Group Rues
5@ Losnanlvicaronp
[3) rioritize Gold Request
[3) rioritze Siver Request
& & westrRegon
[Wester Regan e . .
@ supervior Erpration Dt
[y -

Apply rules orly to the Fallowing task type(s): ®

Match

Ay 1| of these conditons:

%) [

Cressinto
Codeto e

@Take no action

Reassigned task access is determined accarding ta new assigne rights.
Delegated task.sccess s determined according to rights of originaluser who delegtes.
Take no action s used to create exception ruls that override a more geneic U,

OEBPS/img/fod_buildprop.gif
|Application Navigator

] Weblogsrusonorderema

=R

[—
= Elbin
23 Appcation Sources
= (0 Resources
£ templtes
3 bomseed
I p—
0 esteverts
[B=]
G buldcnl
G common-scstookxrl
CrediCanduhorization
e ——————
OrderagprovabmanTask
&8 orderssckingconposte
522 508 Contant
Eatem
= &bn

 Projects R®V-E-

OEBPS/img/med_exbuild5.gif
N

Expression
§in. request/inpL: Custoner,/Custonerld = 1001

A Insert Into Expressian

Variables Functions
5-()in
&-E] request
3 b
[
e [areoter cauats
<@ Shippingadress 3 @I . 14

Desaripton
Returs true f the 2 parameters are equal, Returns false_ 0|

Content Preview:

[<]

OEBPS/img/bp_ht_singleapprove.gif
single ~| Label: [staget Particpantt

Type:

Participant List

Buid a st of participants using: [Names and expressions

Speciy attrbutes using:

erticpant Names

+- X

dertication Type Data Type vae

advanced (2)

[i alocated duration o

] Allow this partcpant to invite okher participants
] pecty skip ruls

OEBPS/img/sca_customize3.gif
A . ‘

callbackClient

OEBPS/img/soa_spring1.gif
 Create Spring,
Spring Context Component &
Create a spring contet component.

Nome: [ySpring

® reate New Contert; [yspringomd

O s xisting Cotext

OEBPS/img/bp_wl_digsig1.gif
Digital Signature Task Details

Back To Hitory
Approve Order

son

Task Number: 200002
State: Assianed
Outcome
priaiy: [3

Crestor jtein
Crested Date: 51509 6:56:47 Al
Updated Date 5/15/09 6:56:47 Al

Expiation Date:

assignees
Acquied By:

Jeooper

Customer Information
st 10
2
Street
=
State
7
Country
Next

OEBPS/img/med_xref_ucexref5.gif
Exposed Services Components External References

e [
Logger
“Opersions:
ite

D)

AP

o @

SBL

Operations:

e @
EBS
“Operations:
E

OEBPS/img/datebrowser.gif
Set Date and Time. L]

@ wteralDate [Sep 22, 2509 3155 4 B (TC+09:0) Sgspore
€ onepressen N

o] _cancel |

OEBPS/img/bp_ts_assertpage.gif
Operations | Wire Actons For Operation <intiate>

hesarts | Eiltes |

+/%

Assert Typs Assert Target

OEBPS/img/bp_wl_todo1.gif
“TaskTitle
Category

prioity

Percentage Complete
Due Date

StartDate

El

ssten

L EE

B
L

OEBPS/img/med_async_uc1.gif
Exposed Services Components External Referenc

OEBPS/img/sca_spring4.gif
Exposed Services Components Externa

® uys?,ﬂm ®

OEBPS/img/sca_introbc.gif
Components. External References i had s
- Servie Comgenents -

& BPEL Process

< business rule

& Homan Task

<& Mediotor

8, Spring Context

- Servie Adsnters —

& Aor-ec servie

G 40 acepter

s

<& BAM adapter

5 Database Adspter

4 OvectBinding

3 £ service

3 i Adspter

3 F1P Adspter

3 HTTF Sindng

&, 5 Adspter

% 10 Adapter

2 radke Appcations

@ socket Adspter

5 hid Pty Adspter

OEBPS/img/bp_ht_fyi.gif
Type:

i1 Label: [stage1 Particpanti

Participant List

Buid a st of participants using: [Names and expressions

Speciy attrbutes using: jlue-based () Rule-based

erticpant Names

dertication Type Data Type vae

OEBPS/img/med_xrefim_ucexref13.gif
Exposed Services Components External References

“Operations:
eBs

iBe
sAp

e @
Logger
“Opersions:
wte

OEBPS/img/chooserulesdcjars.gif
& Open

Locabon: (23 Ceworkdev11.1,1.3.0_100126. 2540 5599\ develperiosinod... <] @ 20 19
B obtucoteisoncy
5] sdbesgoutderoCjor
5] sdtruesocjor
work ||] ciuevadtionTabeD o
‘ {5 adfibvaldationTableDC.jar
Home
e nane: [sFbRdetsaE R0
i type: (150 To Uvery Deseptor (.0,) =
Help

OEBPS/img/med_event_chooser.gif
Event Chooser

EventDefinton: [4operimywork|CompleteApplSOACompostes\OrderEvent.ed | &, &
Event:

Productsoldilert
Type: {pttp: s mycompeny. comjsforder} PurchaseOrder

=

OEBPS/img/med_dvm_dialog1m.gif
| Edit Function - lookupValueiM E

Define function parameters below:
{Mote: Parameters can also be set trough drag and drop from tree rodes)

dvmLocation “orands: /SCADVHLookup LI/ PaynentTerns. dva”

@@

‘aurceColumnilame| "PaymentTerns™ Remove

eentTemns, iupl PeynencTera, Gnane fovoll \
[rorepomn |

saurcevalue. imp

targetColumnilame | "DiscountPercentage”

targetColumniiame | "DiscountPeriod”

targetColumntiame | “NetCreditPeriod”

elglle

Examples: §varl, §phxiparami, ‘b, "abc”
Press Ctl + Space for Invoking 4Path Bulding Assistan.

Function Descripton

Look up the target colurnn values in the domain value map(DVM) where the source column has the
source value. The function returns an xml document fragment, containing the muliple vaues (
Usage: dvmiookupValuelM(dvmLocation s string, sourceColumriName as siring, sourceVahue as

string, (targetColumnNarme as string)+)

Famnle durninskamahie MO - g "Oracls Swstet MTISY SAP Sustern®

Cwe] ol

OEBPS/img/ns_email3.gif
Composite Name:
SendEmaitithattachmentsPro)

Composite Template:

[Empty Composite

(Composite Vith Business Rule:
(Composite With Human Task
(Composite With Mediator

(Composite From Orace 8PA Blusprint

OEBPS/img/sca_spring17.gif
Exposed Services (Components

OEBPS/img/xbuild21.gif
()
iy
iy
iy
iy
iy
()

4 spath Expression

boolean(any input) as boolean
bpws:getLinkStatus(String linkName) as node-set

bpws:getVariableData(String variableName,String partName,String ...

bpws:getVariableData(String variableName) as node-set

bpws:getVariableData(String variableName,String partName) as no...

bpws:getVariableData(String variableName,String absoluteLocation.
bpws:getVariableProperty(String variableName,String propertyNam..

.

Function
Function
Function
Function
Function
Function

Function

OEBPS/img/sca_secpolicies2.gif
Configure SOA WS Poli

S0A Server WS Policies

Configure Web Services server polcies to request bindings
Enable or disable each poicy status by checking the box on the left side:

Select Request Binding

W ¢ {https/jxmins.oacke.com/Application2s_jw{Project1 BPELProcess1 bpelprocess1_dient_ep : B... 7|

wiom + %
Relabiey + %
Addressing + %
Security +x/

oraclefbinding_permission_authorization_policy

Management

+x/

[et al | [oabenl

P

OEBPS/img/bp_mpr2link.gif
53 <sources> <target> (-5

<o tns:PurchaseOrder tnstlnvoice <021
i OrderDate. InvoiceDate BE.
e ID tnst:Comment ke¥
<o ShipTo
ER ShippedTo -]
< Fist Neme <o
@ Last Address <2

[-<e> Address country B8

OEBPS/img/bp_portlets14.gif
portiet!

PartialTriggers:

£l Appearance

OEBPS/img/med_create_onewaymeded.gif
< Mediator

Name CustomerpataRouter
wsbL Fie Customerpatarouter wsd @)
ot Type e

Calback Port Type:

© 6 Routing Rules

3 Operations

=0 exeate prorty [+[2]] vaidate Syntas (x30)

LoLE]

avdX

OEBPS/img/bpmdg039.gif
BPEL
Process

<] +—)

Workfiow Services

-

OEBPS/img/med_xref_ucdbadapter.gif
&

Logical Delete

Specify the field that should be updated to logically delets the row, and the value to nsertinthe el to ndicate that
the ron has been read. You can aso optionally speciy values that indicate I 2 o s Unread or Reserved.

Logica Delete Fied: [LOGICAL DEL 5
Read Value: v

Urvead value N

Reserved Vale:

OEBPS/img/med_xrefim_ucexref9.gif
Source: Common.wsdl #SLT File: EBS.wsdl

(2 wores> rget> (2
& ergotionder dhtmpuparanetes -5
inp1:Order Ib:X_APP_INSTANCE = EBS ... [TIKeS-
<o inplild db:X_ORDER _ID1 ke
Ko inp1:Order_Priority db:X_ORDER_IDZ ke
k3 inp:Order_Status db:X_ORDER_PRIORITY K3
Ke3 inp1:Order_Type. db:X_ORDER_STATUS ke

k3 inp1:Operation. dbiX_OPERATION_TYPE Ke$
dbiX_ORDER,_TYPE ke

OEBPS/img/crt_mymetdtdtls_tf.gif
Create Java Class

Eter the ot o you v s E

o
e —

i a
e
e +x

et e

p—

Onsic © <>

O pctagepoected Oatant
Otea

e] [|

OEBPS/img/bam_mon_struct.gif
S BPELProcess1.bpel - Structure

BPELPracess1 Moritor

Business Indicators
Intervals
Counters

Sensors

Sensor Actions

OEBPS/img/sca_deployshare3.gif
Edi

3R Options
5 e Groups
5 Project Output

;

Fiers

Profile Dependencies

R Deployment Profile Properties

Contributors
[Project Output Directory

(] Praject HTML. RoctDiectory
[Project Source Path

[Project Adtional Classpeth
[Project Dependencies

Order of Contributors:

g
=1

Wave L

[rooom]

-

OEBPS/img/bp_wl_filters2.gif
Actons~ | () | Assgnes MyBGrow v Status Assioned v search advanced

Tite Number_| Priorty | _Assigness State Created

[E] Vacation Request for cosper w003 3 o) Assigned Mar 16, 2009 2:16 PH

OEBPS/img/bp_wl_vacrules.gif
ORACLE’ BPM Worklist

Hy Rules Notfication

TRuks va 2| o R

= B | vacation period : weblogic
“* Vacation Period (Disabled)| Remove yourself from automatic task assignment by enabing a vacation date range.
Wy Rues

Optonally, more specificvacation rules can be created Under My Rules'.

I Enabe vacaton period

StartDate

EndDate

& &

OEBPS/img/ns_parlayx009.gif

OEBPS/img/sca_customize.gif
@ note that addtional configurations can be edited manualy inthe source,

EICustomization Configuration: Match Pat

Use the follwing editor or caseg

& _Edit Customization Class

Customization Classes

To search, enter the name you want to match, Use & question mark () to match
any single character, or an asterisk (*) o match any number of characters.

Match Class or Package Name:

Matching Classes and packages

) Applcatian10 - Custamization § ‘SampleEnterpriseCustomizationClass (oace.tp.toolsde.Fabrc.custom)
‘SamplelndustryCustomizationClass oracle.tp tools. e fabric custom)
SampleOrganizationCustorizationClass (oracle.tip.tools.de.fabrc.custom
‘SamplesiteCustomizationClass oracle.tp.tools. e fabriccustom).

‘SamplelserCustormizationcClass oracle.tp tools.idefabric custom)

(&) View vithout Clstomizaions

Edit with folowing Custonizd

Doomo)

—c—

OEBPS/img/sca_compsen1.gif
& Select XPath Expression

varisles:
5 varbles
= (n
5B request
5o ptiupdateOnderstatus

<@ npt orderstatus

Expression:

$in.request/ip1supdateOrderstatusfinpiorderd

OEBPS/img/ns_settings.gif
ORACLE' User Messaging Preferences Home | Help

Lagged in as weblogic

Accessbiy © Standard
Mode O Screen Reader

Locale Source @ From Identity Store
O From Your Browser

NOTE: Changes mads to the settings are effective automaticaly and wil belost upan lagaing out or cosing
the browser.

le andjor ts afliates. Al

OEBPS/img/servicejdev.gif
Exposed Services. Components External References

OEBPS/img/bp_wl_not_filters_add.gif
ORACLE' BPM Worklist

Natification

Messaging Filters,

Vour Reference System Tine: Thursday, April9, 2009 6:21:14 PH PDT
* Fier Name:

Home

Description

Condition
Matching: | Al f the follwing conditions [

#dd Fiter Condion: | status v] [sEqual

+

Preferences | Help | La

Loggedin =

ol

out

(=)

[itrbute (Operator

Value? (F required)

Action
Messaqing Option: | Send No Messages

Addtfiction Chanmels | Insant Hessaang [v]

[Channel Address

OEBPS/img/bp_mpr_testresults.gif
[elPo-sourcexml | [o] Pozinvoicehutsre-Source-CusTxml (D)) |] Pozinveiceultsre-Target. xml G

(@ X)) TE (- X)) =
P ———————E ol veraion = 110" encoaing = ie-s| |
5 <PurchaseOrdor xalnsrxes="heep: //aw.v3. 5 <tas1:Tnvoice uins:ehde-"hecp: /o, ore
> o= TDST /DS “tns1: Coment> Counent70</tns 1+ Coment
5 <Shipto ratne=""> < msTe >
[ER 5 <Suipeato>
Firsts Firesas First> e Hame< fanes
Last>Tastss< Last> 5 <Radress country="U5">
< Hane> <Street>Streetidc Street>
5 chadress comerys"s L <cityCioyee/city L
sourco [y < . > 100 so.ree [F] >
Bpozinvolcetutsres! | g
sorce poxsd YU s w5
~ 5B <sources> arget> (2.3 ~
& cust tnsLilnvoice <o
& avan InvoiceDate BE-
o tnsPuchaseorder) tnstComment ko5
B OrderDate 1D <e>
@ ID ShippedTo <> (]
o sioTo Nare o>
s Adress &
K93 tnsiComment Us (T
4 w3} <chnires. Chract o |4

Design | Source | History

OEBPS/img/bp_tdf_non5.gif
[| igserace.soa.morkfon(11.1.1,11.1.1) active Ubrary
07 yorace son workdst(11.1.1,11.1.1) active Lbrery
01| dyoracewam seccpolces(11. 1., 1.1.1) active Lbrery
1 g Oreconppsaapter Insaled Resource adapter
11 g Orocomadapter Insaled Resource Adapter

OEBPS/img/bp_ht_groupvote.gif
Type: | Porallel Label: [Stage1 Particpantt

e.0., Approval Manager

Vate Outzame.
A Voted outcome willoverrds the default autcame I the reauired percentage i reached.
Outcomes wil be evaluated inthe order sted n the tabl,

a v R

Voted Outcames. Outcome Type vae
jany By Percentage EY

Default Outcome:

) Immediately trigger voted outcome when minimum percentage s met
) Walt until o votes are in before triggering outcome

[hore sttachments and comments

Particpant List

Buid a st of particpants using: [Names and expressions v

Specify atrbutes using: () Yalue-based () Rule-based

erticpant Names

dertication Type Data Type vae

OEBPS/img/bp_invokeasdetail.gif
Options

Conversation ID:

invoke As Detai

OEBPS/img/bp_ht_abrupt.gif
& Abrupt Completion Details

Specify outzomes or condtians that wil result n the task completing early,

Avalable: Selected
DEFER REIECT
RPPROVE

RETECT

Routing Condtion:

OEBPS/img/excel_project_prop_dialog.gif
& Project Properties - D:\DataljdevProjects\0fficeDemo\FDIExpenseReportApp\ExpenseReportTaskFlow).

Technology Scope

Profect Source aths ©) e Custon setings
ADF Model (&) Use Project Settings
A0F iew

ant | Frojec Technologes | Generated Companents | Assodated Lraris
usiness Componets e

Deployment ADF Faces

£ Modde ADF Page Flow
Extension OF Swing 159 and Servlets
Javado Jant

3ava EE Applcation Database (0ffine)

35P Tag Libreres =3

35P VisualEdtor Davateans

Libreres and Classpeth 5P for Business Components
Resource Bundie Mobile

RunjoebugiProfie 508
struts

Technology Descripton
ADF Deskiop Integration with Microsoft Offce.

OEBPS/img/bp_ht_esc2.gif
Task Duration Se.

Fixed Duration v

vour [0 [2] wnutes

Maxinum Renewals: [0

Custom Escalation Java Class:

[¥]Use Due Date [By Duration_~] Day

o0] tinses o

OEBPS/img/med_reseq11.gif
Resequence [FIFQ Resequence Options-

Grow: [<<Group Expression>> | &

OEBPS/img/bp_ht_vacreq2.gif
Create BPEL Process

BPEL Process =}

ABPEL process i aservice orchestraton used o describe/execute 2 business pocess (orlrge rained ()
Serice), whic s mplemented s a stateulservice.

Neme: VacationRequestProcess

Nemespace: | tp:/{xmins.oraclecom/VacationRequestjVacatiorRequest VacationRequestProcess

Templte: (38 Asyrchvonous BPEL Process Je

Service Name: [vacationrequestprocess_clent

xpose as a SOAP service

Input:[{itp: i, orack, comVacationRequest}VacationRequestProcessReauest Q

QUEPLE: [t i, rack.comfVacatonRequest VacatioRequestProcessResponse 2

OEBPS/img/fod_lookup1.gif
& SOA Resource Browser

s

Locaton: (2 Orcrookingconposte MEIE[ET] S

File ame: [OrderProcessorwsdl

File Type: [WSDL Fils (*.wsd) b

OEBPS/img/xba3.gif
Expression:

conca ()

)] booleantany input) as boolean
[0 bows:getLinkStatus(String linkName) as node-set

Function

Function

[{l] bows:yetvariableData(string variableName,String partName,String
[f0)| bpws:getvariableData(String variableName) as node-set
[f)] bpws:getvariableData(String variableName,String partName) as nod.

Function
Function

Function

OEBPS/img/med_xref_createpage.gif
59 Cross Reference(AREF)

e [Customer

Description
Cross reference of customer derifiers

optinize: [jo_~]

End Systems: %
ame

e

e85

OEBPS/img/bp_flown0.gif
 Index=1

setHotelld

[
vekottale

receivelnput

getrotelsh

© Index=2

InvakeHotelDe.

e, S

[
vt
[
nvoketotloe

OEBPS/img/soa_springpojo4.gif
class="con.otn. sample. fod. soa. internalsupplier. InternalSupplierTupl>
roperty nae="externalPortnersuplier ref"Excernalrarcnersupplics/> N
<mean>
<scarreterence type="con.otn. ssaple. £od. soa. externalps. IExternalParterSupplierService™
nane="ExcernalPaztnersupplier”/>

/heans>

OEBPS/img/bp_ex_catch.gif
<

Drop Activity
Here

OEBPS/img/rules_decisiontable.gif
S Rows o Coams |

Rules
R2 x I w
'ACHE Corporation
<=5 5.1
yesh reh
(2000.4..3000]
Actions
callpnt o g
message:Object w w
Asserten 0 o

OEBPS/img/ns_image38.gif
BPM Worklist

Preferences | Help
dina:

Natification

Messaging Channels

My Messaging Channels
Configure chennels to receive your notficatons and dets.

vews [Qereate Leir R {#ivetach

e Delvery Type[adeess Defat
(50 Buingss Emal L mai@oracle.com <
] Business Mable 5 Lesusssssss

3 Business Phone voIce Lesusssssss

5 Home Phone voICE 16505555555

OEBPS/img/bp_xslt_overview.gif
File Edit View Search Navigate Run Debug Refactor Versi

BoHa 90 XEG Q-0 18- hiddm- p- &

Bldsampletap.xs!

G]

source: po.sad
= <souces>
& tpurchaseorder
e i
[
= siTo
= <e> Name
< Fist

@ilTo
o3 tnsiComment
{3} <choice>
ER=
E5-<o» HighProrityttems
&8 Ttem
- mB Partium
<@ Productiiame.
o> Quantity
<@ Usprice
- Kef tns:Comment.
&o3 ShipDate
<@ LowPriorityltems

YU s oo
<trget> (2.9
nstinvocs &
Invocebae Bk
tst:Comment K%
o
ShippedTo <> (]
e
s o
stedopeeart
Shippeditems o> (]
Ttem &8 =
Poduttane @ |
Quantty o>
Prcecharged <
Unshipedtens <>

Design | Source | History

OEBPS/img/bp_ht_notif.gif
& General
oo

B assiomert
@ prosentation
9 Deadines

8 notiication

8. pecess

D Events

Task Status
assign
Complete

Enor

Recipient.
Assignees
Inkfator

Ouner

Notfication Header

4
4
4

+ %

OEBPS/img/bc_ws_at.gif
® Create Web Service X
Web Service
Heme: Serviel
WSDLURL Loanservice wsdl
part Type: inte_ptt s

[copy wsdland s dependent artifctsnto the project

Note: Keeping a copy of & WSDL may result n synchronization ssues I the remote WSDL is updated. Tt s
recommended not make local copies - this should be reserved for siuations such as offine designing.

Transaction Partcpation

OEBPS/img/med_xslxreffunctions.gif
offfcomposite. s | Ffcustomer xref | < Medistor1.mplsn BHIEBS_TO_COMMON_DELETE_L.xsl| < Mukipartited.mplan | <& (I0)) [component Palette | (). (L)
S twsd [#5LT i Looger_twsd | (advanced -
& (3 <somces> <target> 3 5
5 @ do:outpuparameters doupupsmeters o> & |8 [
- Ked dork_aep_ID. @‘ dbix_app_ID ko8 & b Advanced Functions.
5 Databese Fnctons.

OV Functions
= JREF Functions

8 lokuppopuaedColurns
8 looupiRef
A looupiefin

OEBPS/img/bp_mpr_replacesch.gif
= Type Chooser

Select new schema to replace source schema
Existing Schema

il IC:fidev11_0515fidevimywork{Appicationt simplefpo.xsd

Element: | {http:fjwiw.cracle.comipchpelipo}PurchaseOrder

Source

L Avalsble Shemas
D Profec Schema s
D Froject WSDL Fies

OEBPS/img/med_xref_ucexref21.gif
Source: Common. wsdl
o2 <aources>
[—
(=48 inp1:Customer
"o mprad
o tame
o ptacress
ohptparation

LT File: SBL.wsd|
<trget> (29
dtmpuparanetes -5
db:x_APP_INSTANCE Ke3
db:x_CUSTOMER_ID ke
db:_CUSTOMER_NAME ko3
db:_CUSTOMER_ADDRESS Ke3
db:_OPERATION_TYPE ko3

OEBPS/img/ns_arch.gif
Vi ConterPacay X
W Sevices Chent

sospmTT

SOARI it

Rancte BB

I

s Missaging Saver

OEBPS/img/bp_transform3.gif
® Generate Report

e Nae:

ing]

Directory Name:

Cisharedtestcasesemo_groupipublc Browse.

Input

Source XL Fie:

Cisharedtestcasesemo_grouppublc_Htnomappings-Source i Browse.

Generate Source XML File

Parameters With Schema:
Generste Fie Neme Eemert File Neme Browse

cust customer Csharedtesteases. Browse

Parameters Without Schems:

Specity Value Neme Type Value Defau Type | Defaut Value
[m] discount Murber [

(] Open Report

[st To Project

OEBPS/img/bp_ht_blank.gif
Human Task x

| General | Advanced | Sensors | Annctations

Task Defintion: ApprovaliumanTask

Task Tite: | getvariableDatal nputvarisbl!, payload, fcientiprocessicientiorderld)s>)

E.g., Vacation Request for <%bpsigetiarisbleData(...}%>

Initstor G prioriy: [3 -]

Task Parame... EFEL Variable

Cancel

OEBPS/img/bp_mpr3.gif
S0urce: po.xsd
B[4 csources>

() Empty Text

(@) Text:

#5LT File: invoics. xse
<target> [(2F

Discount Applied|

Disable Escape

OEBPS/img/ns_setasdefault.gif

OEBPS/img/taskflowjarinpalette_tf.gif
‘Component pakett @) &)

[RDF Data Visualzations
JADF Faces

by Companerts
T Carousel Ttem
8 chooss cobr
& choose Dtz

& cobann

18 contesxt Info.
Dialog

] Facet ref

B Fom

@ Go Button

P cotmage Lk
yre

& o e ttam
Sien

(3 ——

OEBPS/img/bp_wl_label_create.gif
Iniiated T:

Administration Tasks LT R

[concel |

[administration
Applcation Preferences
51 Fiex Fied Mapping

Public Flex Fields

Flex Field Mapping : Public

View existng lex ied mappings (.. task sttrbute Isbels). Create sddtionsl flex el abels and map thess to task attributes.
The labels wil be splaye to the end users, and should be user-friendly terms for the task atributes.

@erose llmappings
et moppings by tsk e T
Create Label

Show: [allatrbutes v
Label Bitrbute Atribute Type: | Text
myFild Texthtirbute2

estField TextAttributel Task Attribute: | Textattributed

Label Name: [labeliame

s || cancel

OEBPS/img/sca_deployshare2.gif
Edit JAR Deployment Profile Properties. |

2R e,
5 Fie Groups
5 Project Output Amyworkl50ADemoApp1SOADemoComposteldeployishered._archive jor | [Browse,
- Contributors
Fiers] Compress Avchive

Profile Dependenciss] nclude Merifest File (ETA-TNF/MANIFEST.MF)

Main Class:

Browse,

‘Addtional ManiFest Fles ta Merge it MANIFEST.MF

KIE3]

OEBPS/img/med_xrefpopulatexrefrow.gif
@ Edit Function - populateXRefRow:

Function Parameters:

refLocation |

referenceColumniame| |

e [oo
[Horepown |

columniame O ————

[

mode |

String Literals should be enclosed Wit or ", (Example: ‘e or "abe’

Function Descripton

Populate the cofumn value in the cross reference table(XREF) where the reference colurn has the
reference value. [
Depending on the mode, the reference value may also be populated

Usage: sref populateXRefR ow(srefLocation as string, referenceColumriName as siring, referenceValue
i s s e s st e as

o [cma]

OEBPS/img/med_extn_func.gif
o

<ol vezsion < 11.0° encoting - UTT-8'2>
< Geneatad by Drcle SOA Modelex version 1.0 At (4/5/03 544 A).-->
5 Fediator name-"Testled” xalng:xsio"heep: /. 3. 02/ 00 LSchena- nstance” wadiTaxgeclomespace-"hecp: / ains. oracle. con/me Echo MedEcho TestHed
Sl ecp: plns oacle.con/sca/L. D/uediotor”
Salns: rplahetp: ralns ozacle.con/sunglesring”
lns:apep-hecp: / weroracie. con/iSL Teans ora) Java mppackage MyPunctiontLass™
coperation neaa"execues” Ge1iveryPoliey-ALIOTorhing" PILGTACTL" " validacaSchenar Ealse>
case execuionType-"dicecc” nase:
contition lengiage-"ypuh>
Cespressionupip: reverseseeing (e ing (¢in. requese inp
<eondition>
Cactions
<assian>
comy tacgece"sout. eply/inpi s singleScring AmpLsdnpuc
pressions"ipip:ceversSering(steing (Fan.requestsnpl: ingleseeing ey
Lna: gL "Rep: /AL OFACLS coB/3ingIeSE 0"

e, xecuas

CEET

singlestring/mplsimpun))« caee < expression

LT

)

s P e/ /. oL acLe. con/ XS Transtora)Java/apackage. NyRunctionClass” >
<assigns
Cecrors
<action
<scases
<ot

OEBPS/img/bpmdg001.gif
BPEL

Process l
niiate
service
<nvoke>
<pick> l
Wait for Time out
callback in 1M
<onMessage>| | <onAlarm>
[Logic ! “Logic !
| st Post
i

j———n
ol

wspL

star
Loan

OEBPS/img/bp_ht_dynamicowner.gif
% Expression Builder

Expression

A Insert Into Expressian

Schema Functions

il /C:Developer mywork{ityAppiySCAProj/xsdiyHumantaskwo| 1dentity Service Functions

[{] setoefauitresimname

[—
[0 setsuppotedieatmvames

Content Preview:
ids:getDefaultReainame()

Description

Gets the default reaim name. The signature of this function s
ids:getDefaultReainame()

OEBPS/img/bp_ht_erroras.gif
Configure Assignment

(Routing | Assignment

Reviemers

Error Assigness

weblogic

=

OEBPS/img/sca_genconfigplan.gif
(&4 L-F
< Projets
myFitComposke
& £ 50A Content
3 testutes |
=P |
=
o BPELProcesstdidsaca.bpel
s BELProcessidschadsa,comporentType,
@] eperprocesstscsadsansd
- off composte s
T
5 omotyBPEL cof Excude Project Contert
[e] emptyepeLwg X
@l receensd

E
sewvice2

Operations:
excate

Elrvened | efomat
<G valdate 3L
I Data Controls ke CtileShiftFa
 Recently Opened Fies Rebuid Awsninro
B> run chiF11

= composite i - Structure | Depug
2 Compare it y

) Generated by Oracle S Replace With »

- composte
< import
Q) import

Valdate Config Plan a

OEBPS/img/fod_componentpal3.gif
offfcomposite.xml |, OrderProcessor.bpel &

YFIVERXO aka@d Composte: OrderBookingComposite
~ e

- Servic Conganents

J BPEL Process

< business rule

& Hnan Task

<5 Mediator

8 Spring Context

- servie Adsoters

& Aor-ec servie

G 40 acepter

e

Exposed Services Components External References

Sl
Be
et adapter
orderprocesso. pme
e 8 Database Adspter
pocess 4 Ovect Binding
processRospon G 3 servee

3 i Adspter
5 F1P Adspter

3 HTTF Sindng

& 5 adspter

G M Adeper

5 rade Appcations
@ socket Adspter

5 hid Pty Adspter

OEBPS/img/ns_image39.gif
504 Infrastructure Home > Human Workflow Engine Home: Logged in as weblogic | stbcz15.us.oracle.com (Host)
@ soarinfra (orack 504 Infra) ® Page Refreshed Oct 27, 2008 2:13:28 P POT ()

82 Human Workflow Engine (service Engine) RelatedLinks v
Dashboard | Statistis | Instances | Fauks | Deployed Components | Notification Management

(@) Outgoing notfications aresent o usrs rom Human WorkFlow and EPEL processes. Incoming ntficaions are responses to actionable notfications. This page. 4/
enables you to manage and troubleshaat bath types of notfications

Send Test Notfication.
El0utgoing Notifications

®search

Selectv Viewv | Resend || Resend Al Smilar Notfications | 3@

Saurce 1D Source Type Channel Recipient Status Tine
BPEL Emal mall@orackSent Oct 27, 2008 2:15:21 PM A
BPEL Emai mall@orack Sent Oct 27, 2008 12:55:17 P
BPEL E 16505555855 | Urmor oct 27, 2008 12:00:52 PM
BPEL Emsi mall@orack Sent Oct 24, 2008 6:42:08PM
BPEL Emal paulo angulo <pao Sent Oct 24, 2008 6:35:00 PM
BPEL E lesozesT2 Sent Oct 24, 2008 6:32:04 PM

Slincoming Notifications

Hsearch

OEBPS/img/bp_portlets13.gif
[Poret Content Wi Appear Here]

OEBPS/img/bp_ht_notif2.gif
&g General

@ oas

B assioment
@ presentaion
B Deadines
8 Notification
e Access

P Events

[General | Advanced

[Noreminders

Encading:

] Make notfications secure (exclude detais)

] Make notfication actonable

] Send tesk attachments with email nofiations
5 Notficaton header attrbutes

e value

OEBPS/img/med_dvm1_ucmultival7.gif
Source: readFie.wsdl
= <souces>
- mptivcct cment
(=48 imp1:Details
i —

XSLT File: writeFle.wsd
<trget> (2
oot clment > &
for-cach 8
ns2:Details & =1
rs2tongnane <
detalls 8
wishtnane <
sz tanguage |
nzCaptal >

OEBPS/img/bam_mon_icon.gif
getinputtength |
L

OEBPS/img/bpmdg038.gif
BPEL
Process.

Workflow Service

<« A Approvais

Complete

-—

2
27" g

2R

Various
Routing
Patterns

OEBPS/img/bp_ht_groupvote2.gif
advanced (2)

it allocated duration to

osy [2 o [0 2] waruees [0 2

al task il never expie,
llow this particpant to nvte other participants

Specify skip ule

Skip group vote I condition is satisfied.

OEBPS/img/bam_alertrule_broken.gif
e

OEBPS/img/bam_mon_create_act.gif
km
ess I
[pusi

) rtervl

90 sensor

OEBPS/img/bp_tdf_simpwiz8.gif
[approvaltumenTask TaskFlow.xml | [E]taskDetailstjspx | sfcomposte.xml

T~ Show - [Ful screen 5207 B 2|

~BRHLBIUEE

msscactonsor. Il e | raconLecen? |

777ACGUIRED_BY777 #{..acauiredBy InputValue)
777ASSIGNEES?7? #(. displayhlame)
777CREATE_DATE??? #(..crestedDete nputvalue)
777CREATOR??? #..creator InputValue)
777DLIE DATE??? #4..cueDate nputValue)
777EXPIRATION DATE??? #{..cxpiratianDate InputValue)
7770UTCOME??? #{..autcame InputValue)
PPPRIORITY?77 i)
PISTATEN?? #..)
777TASK_NUMEER??7 #{..taskNumber InputValue)
777LPDATE_DATE??? #{..updatecDate input Value)

ordertt: [#(_.ordertdinputvalue}

ordertd: | #(_.orderidinputvalue}

~[222ATTACHMENTS 222 + X

#ouly]
#{_name)
#(name)
#(_name}

OEBPS/img/bam_dc_paramadd.gif
© Edit BAM Data Control - Step 2 0f 5

Parameters

. rewEza %%

OEBPS/img/ns_image29.gif
5% Name and Type

1
7
|

Authentication
Configuration
Test

Finsh

Specify 3 unique name and typs for the connection. The name must be & vali Java dentier

Create connectionn: Resaurce Palette

Connection Name:

508 mensged_serverl

Connection Type:

weblogic 10.3

OEBPS/img/bam_alert_param_name.gif
2 select Names - Webpage Dialog,

Select from list

OEBPS/img/med_dvm_usecasedvm9.gif
& Edit Function - lookup¥alue

Define function parameters below:
{Hote: Parameters can also be set through crag and drop from tree nodes)

B “Tnits0flieasure. dvu” R[]
corcecolmtane |“Fiebel” ol |
sourcevaie |/impLs ist0r0rder,/impliordes /inpLrbasebare/iuplunivork || Mevels |
hergetColumame ["Common” il iad
defoutiaie | “Wo_value_Fouma {
e Cobmrtane| “Stanaaratods” S
ufervaie | /impLs 115t00rder /inplsorder,/iapLbasebase/impl: sandar
e Cobmotiane| Trsdingpazner” ~
ufervsoe | /impLi1i5t0r0rder /inpliorder /aplibasebare/impli > ||

Examples: §vard, §phxiparami, b, "abe”
Press Ctrl + Space for Invoking 4Path Bulding Assistan.

Function Descripton

Look up the target colurnn value in the domain value map(DVIM) where the source column has the ||
source value and the qualifier coturn(s) have the gualifier valus(s).
1f o vaue s found, the defaul value i refumed

i o el

OEBPS/img/bam_mon_globalenable.gif
4 BPELProcess1.bpel
Enable vontoring (£ B -

OEBPS/img/addrldiceditcompshrdlib.gif
(@ Add Library

L
] s 3ava Conpler R
) Oracke JXRPC Clnt
0 Orachs S Clert
] rad eC
] recke SDL
] racie Page Templates

] Crade S8
] rack UODI

) Orace XML Parser v2.

o race L 5L Uty
] rad KQuery

] oWt Polcy b

1l POK Struts Rustime.

] Plcehokde DataCartrcl
] Portt Devecpment

] Resourc Catalg Servee
] Rescurce Ctabg Viwer
] Serve: runtime

(e JCaosde,) e |
(| o Carcdl]

OEBPS/img/bp_portlets9.gif
& Register WSRP Portlet Producer - Step 2 of 5 [

Specify Connection Details

Pravde efcrmation t enabe sgplcatonsto connect to the WSRP pertetproducar,
UL Epcpoint

[Fe150500018.15.cck.com 7777 Tkt TaskFioprtietsverp27Weok |

7)o Proyfor Contacting Proccer
Prosy Detals

Prosy Hosk [groy.us.orace.con

procyport: [0

Py T |

OEBPS/img/ns_email4.gif
BPEL Process. a
ABPEL process s a service orchestration, used to describe/execute a business process (or large grained [l B
service), whih is implemented as a tatef servie,

Neme Sendemaivithatadments
Namespace: | rade.com/SendEmailWithAttachmentsApp/SendEmailWithAttachmentsProj/SendEmailWithAttachments
Templter (38 Asynahvonous PEL Process Je

Seryice Name: [sendemaiiithatischments._dent

xpose 25 2 SOAP service

Input: | hAttachmentsApp/SendEmallithAttachmentsProj/SendEmalWithAttachmentsjprocess

PP

Qutput [2ntsApp/SendEmailithAtischmentsProy/SendEmailithAtischmentsJprocessResponse

OEBPS/img/direct3.gif
& Create Direct Binding
Direct Binding
Create a Direct Binding.

WSDLURL:

PortType:

alback Port Type:

Ous

Reference Binding Detais
Address: [b//dadvmb0097.com: 702 test-soazsb.

Provider URL: [t5://5ta00286.com: 700 1/defaultProject1/Service L

7] comy s cependent arfacts it the roect

Note: Keeping a copy of @ WSDL may resultin synchvorization ssues i the remote WSDL is updated. Itis:
recommended not make local copies - this shouid be reserved for situatons such as offine designing.

(e (et |

OEBPS/img/bp_ht_esc3.gif
Task Duration Se. e

Hour

Foedbustion~] ooy o

05 e

Maxinum Escalation Levels [0

Highest Approver Tite:

Custom Escalation Java Class:

e sy orsion <)ooy [5 15 b |

o e

OEBPS/img/sca_sardepend2.gif
Edit JAR Dej

SAR Dependancies
Specify dependencies on other JAR deployment profies

[ava EE Modules:

=[G Frstcomposte
firstComposite
5 B secondComposie or
SecondComposite
= [ThiraCompositejor

[E] Thirdc

T

OEBPS/img/bp_wl_reuse_tasklist.gif
LA WOy T —) e
5 T T — T =
Bt R =y v
- pry Ban | lmga e e sewom
Bt R v

e e

OEBPS/img/bam_ws_proxy.gif
'Application Navigator =
OrderBookingaepR

- proeas Sav-
-] ordersookngea
=23 Appcaion sources
=1 orderbookingbam. proxy
@, Dotaobjectoperationsay DProxy.

OEBPS/img/xba4.gif
({[String variableName, String partiiame, String absoluteLocationPath
String variableName
tring variableName, String pariName

£ String variableName, Siring absoluteLocationPath

concat (bpus: getVariablebata(} |

inputvariable _Variable
< inputvariable Variable

Variable
Variable

OEBPS/img/sca_compsen2.gif
& Create Composite Sensor]

Name:

Service Configuration

Service: [UpdateOrderstatus_ep

Operatios [xecue s
Expresson]
Fiter:]

Composite Sensor Actions

DBSensaraction

o

OEBPS/img/bp_mpr_sub1.gif
HSLT File: purchaseOrderSubstiore. xsd

exportCode B
<sequence> o

<sequences w0

inorcomment @4
poctherComment %63
tems <o>-

OEBPS/img/bpel_mon_actconfig.gif
| daBPELProcessLbpel |

vl orkara (2], @ -

OEBPS/img/med_create_soaproj.gif
& Create SOA Application - Step 3 of 3

Configure SOA settings

oicio:

Application Name.
Protect Name

© Project S0A Setting:

Composie Nae:

rojectt

Composie Template:

Empty Composte
(Composite With BPEL Process
(Composite With Business Rule

(Composte With Human Task
(Composte With Spring Context
(Composite From Oracke BPA Husprint

[zt

OEBPS/img/med_bpelevnt5.gif
Receive R
A Errors: 3

Name: [OrderPendngEvent

Ftersction ypes
Event: Q
variable: 4 Q

4

[Create nstance

OEBPS/img/bp_wl_route3.gif
Route Task

RESOLVED | and route o

{5} single Approver
O aroup vate
© chain of single Appravers

Commerts:

Gowps v Search | | Reset
First mame, Lastname, 10 I

available Selected
>
Mave
P =
Move Al ~
< =
Remave k4
K
Remave Al

ElDetails

Please select an fem to see s detalls

ok

Cancel

OEBPS/img/bucketset_editor.gif
B
[
[
[
[FrdDrve” [FardDrve 4
[emory™ [Memory 14
[erow [crom 4

OEBPS/img/bam_mon_countact.gif
& Counter

flinputs

Snapshots:

Activiy Name

Evaluation Events

OEBPS/img/med_history.gif
Revison Fiter: Yo Ftd BB

Description

Date. Revision

CustomerDateRouter.mplan (View-Orly)
Sl version = '1.0' encoding = 'UT

--Generated by Oracle SCA Modeler

|ediator nane="CustonerbataRouter”

<operation name="execute” deliver

Mediator>

EalE] st |

o

Flle an Disk - CustomerDataRouter.mplan (Edtable)
Sl version = '1.0' encoding = 'U1
--Generated by Oracle SCA Modeler
|ediator nane="CustonerbataRouter”
<operation name-"execute” deliver

Mediator>

OEBPS/img/bp_mpr17.gif
Transform

A erorsi 1

4

*/R &

Souree;
variatle part
inputvarisble payload

Target Variable:

E

Target Part

Mapper File: [Transformation_{

Az

=

L

OEBPS/img/med_xrefpopulatexrefrow1.gif
@ Edit Function - populateXRefRow:

Function Parameters:

xrefLocation "customer.xref” D)
referenceColumniiame " SAP" D)
[ot
[efeercetaie|/copSapoiColLection/cop: Sap0l/coprid [toew |
ove

columniiame: COMMON" D) ‘7
value. orcl:generate-guid()

mode "ADD" D)

String Literals should be enclosed Wit or ", (Example: ‘e or "abe’

Function Descripton

Populate the cofumn value in the cross reference table(XREF) where the reference colurn has the
reference value. [
Depending on the mode, the reference value may also be populated

Usage: sref populateXRefR ow(srefLocation as string, referenceColumriName as siring, referenceValue
i s s e s st e as

o[coel]

OEBPS/img/bp_ts_asserts.gif
& Create Asses

rt

@ Assert Iput

O Assert Calback

Assert Targe:

LoanrokerRequestitessage payload

Compare By:

rl-dentical

Assert Value:

Enter Value:

@ Enter Manualy O Losd From Fie

Generate Sample

<aml-fragnent />

Description

e

OEBPS/img/bp_transform2.gif
& Edit XPath Expression

KPath Expression

Examples: §varl, §pfxiparam1, ‘abe,, "abc”
Press Ctl + Space for Invoking 4Path Bulding Assistan.

OEBPS/img/med_xref_ucexref22.gif
=0 delete

prioriy [4[2] [veidate Syntax (x5D) & w o

=) [<<Fiker Expression>>

¢ R

o [seertil <]

Vaate semartic |

Using Transformaton inputFarsmetars : xe{COMMON_TO

Assion Values |

Synchranaus Reply

=

Logger :Write

Usig Transformaton [Outputfarsmetars - < /56L_T0_COM.

AasgnVohes ca e Fiehame

OEBPS/img/bam_alert_param_msg.gif
2 hlert Message - Webpage Dialog,

‘Subject (if email)
bcategory change i barchart report

Hessage Text
[change nas detected n barchart Subcategory feld.
(Send Parameters Report Lk

Insert a specal feld into the

Send message as a hyperiink to a reportor a eb site
message. =X =

Insert nto subject LookIn [MyReports
[@ Sebrodert

| msetiotext | CR | | g swroeer

H ot] barchart
g st 2] colamer
o 53 || & comee
g Year B v

8 pescroton

EES]

8 subcategory 3

Send Parameters Repor
Send Report Neme

< I

OEBPS/img/bp_transf_xslmap.gif
Create XS Map File

il Name:

untited sl

Directory Name:

Ciproduct|10.1.3.1\0racleA5_2bpelisamples|demos|yLMapperipublc_hiri

[growse

Source

&8

Target

&

valsle Shemas
56 Project Schema Fles
2\ Countrylfo.xsd
5 Fatcountrylno
3 nvoce.xsd
& & possd
<> Comment
a <> PurchaseOrder
paTotds.xsd
€ Project WSDL Fies

Jess

Avalsle Shemas
5§ Project Schem s
& Countrylnfo.xsd
2 FlatCountrylnfo.ssd
B o inveice.xsd
> Comment
Rad Invoice]
% po.xsd
poTotds.xsd
€ Project WSDL Fies

Jess

[how Detalld e Information

(] show Detaled tode Information

OEBPS/img/bp_xformmed.gif
‘Source: medRRFCOZ.wsdl
=3 <souce>
8 inHoustonstoreproductz
e ———
& inoustonstoreproduct
R ep————
 intaLexpense3
R y—
. 8 intialexpense
[yh—
- intaLexpense?
-0 nptiespense
&< ou:HoustontoreProckct
<> Prodhame
o Prodid
< Prodbesc

> Prodine
<@ Procprice
> ProdDiscount
<@ ProdTargetLocation
[#-<o» ProdRolloutinfo

OEBPS/img/soa_springpojo3.gif
= <sca:service name="InternalSupplierService” target="InternalSupplierBean”
type="con. otn. sauple. fod. soa. internalsupplier. IInternalSupplier”
¥mlns="Hetp: / /v, springfranevork. ory/schena/soa’ />

B <bean nane="InternalSupplierBean” scope="prototype”

“conotn.sample. fod. soa. internaloupplicr. Internalsupplicrlapl”/>

OEBPS/img/bp_ht_vacreq1.gif
© Type Chooser

=) Project Schema Files

&2, VacatiorRequestProcess.sd
& 2 eoreantoad
) project wDL Files

OEBPS/img/med_reseq12.gif
Resequence Resequence Options:

G <o Bpresson> | & Fart

ID: [<<D Expresaion>> & Dmea

OEBPS/img/bp_mpr_find.gif
Rttt Target: invoice.xsd

2[5 <souce> e

2R s Purchias=o tnstlnvoice <021
B OrderDate. InvoiceDate BE
e ID tnst:Comment ko3
<o ShipTo

End
sowtrn [T3]

Options. Direction

[] Search Annotation
[Match Case
] hole Word Oriy

Forward
Backard

Scope

) Gbal
From Selection
Subtree

OEBPS/img/propertiesbrowser.gif
e i i
s [—Y "
i E— o
o Ll

Sep 15, 2009 415:56 AN EET @

OEBPS/img/bp_tdf_non6.gif
Heme »Summary of Deployments >Summary of Foreign JNDI Providers
Create a Foreign JNDI Provider

0K || cancel

Foreign JNDI Provider Properties

“The folloing propertes wil be used to identify your new Foreign JNDI Provicer
*Inicates required filds

What woud you like to name your new Foreign INDI Provider?

ForeignJNDIProvider-SOA|

OEBPS/img/bp_scopes1.gif
8 g

Assign_Creditcheckinput
@

= InvekeCheckCredtCerd

!
®

bpwsigetvariable

|
]

Thraw_Fault_CC_Derled

<

E

e

bpws:selectionFaire

Assign_noCChumber

v

Throw_NoCredtCard

N d

ns2iInvaldCredt

Assign_TnvaldcredtFaul

v

Throw_OrderProcessingFault

OEBPS/img/rules_if.gif
(oreachcasewhere) (=] ¢ O e @ X & &

[Gmomer s [Gmomer [l oad G 0 B X OO
[[Customer e Q [matches = [aseo Q wd Lt
Sep 22, 2009 4:18:55 AM SGT Eon
[Customer Regateredda O [betmeen [x] and sep 30, 2008 20uss A Q)
o
P

Insert Test

OEBPS/img/sca_spring19.gif
Reference: Medatorl Mediatorl
Interface:
mediatort project1 applicationd.com. orace.xins. Execute_ptt

OEBPS/img/bp_mpr4.gif
| tpage |offcomposte

|fcompeste xrl

| s Sayrielo.bpel

Sourcerpo xsd
(22 ssources>
& <o trpincheseonder
i OrcerDate
D
& shpTo
& Neme
<o st
<ol
<o Acdess
el country
<o street
oty
<o state
@z
< i
5 tnsiComment
{3} <choice>
<o tems

Barranstormetion_2st (00)5)
45U e o5
<rget> (2.9
nstitniocs @&
Invocebae B
tst:Comment K%
o
ShippedTo <> (]
e
adess 5
couny B

reet -

oncat(Fret,Last)

rag and Drop tres nodes to functon o double-cick to et

Zp @
BiledToceount <>

Shippeditems <>
Unshippeditems <>

Homore.. | @

[conera

(]

1 Conversion Functions
» Date Functions

1 Logical Functions

» Methematical Functions
1 Node-set Functions
~ string Functions

»
.
(1 coce:

.
:
-
.

OEBPS/img/med_dvm1_ucmultival6.gif
@ Edit Function - lookup¥alueiM

Define function parameters below:
Mote: Parameters can also be set trough drag and drop from tree rodes)

[tocsion [mutsivatue.ova” Q|[_ax
ourceColumitane] " Longnane” Q) | e
sowcsvie | /iupLiRoot-Elenent/iupliDetails/iupl: Longnaue [Moveun
horgecolumane "oz tmane™ q { Lutrerepom
horgt o [engaage” q
targetColumntiame | "Capital” Y

Examples: §vard, §phxiparami, abe, "abe”
Press Ctl + Space for Invoking 4Path Bulding Assistan.

Function Descripton

Look up the target colurnn values in the domain value map(DVM) where the source column has the source
value. The function returns an xml document fragment, containing the muliple vaues (
Usage: dvmiookupValuelM(dvmLocation s string, sourceColumniName as string, sourceValue as string,
(targetColumriName as string)+)

Farnnte: o nciamnVahe MO tr-code dum®_"Mrarls Sustera® '[IS" USAP Sustera® RM

o][el]

OEBPS/img/excel_login_jsp_file.gif
lew Search Navigate Run Debug Source Refactor

DDIE e XRED O .'\ii E1-E L SAl Rk B "JI(I\IIP I m®

O Ewebmi | Cesceicontrobpagedet s

@ dpication vigator | Elescsicontot s

FolEspenseRepotagy v
= progas gav-E 5/ <1DOCTIFE AW PUBLIC *-//VaC//DTD TS 4.01 Transitional//Eu"
1 oracle.bpel services 3 "http: / /wnw. w3, org/TR/htuld/loose. drd">
{E] ExpenseReportTaskxnl <40 page contentType="text/htul;charset-vindovs-1252">
] htasklow sl 5 <htmi>
(] Updsteablecolection.xmi B <hea>
-3 Web Content <meta hetp-equiv="Content-Type” content="text/htul; charset-windows-1252"/>
[0 Page Flows. <title>LoginPage</title>
= weB-INF </head>
{3 adfe-config.xml B <body>
@8 Faces-configaxm El <form method="POST" action-"j_security check"
p——— Bl <table cellspacing="3" cellpadding="2" horder="0" width="100%">
o] rinidad-confg.xml B <t
1% web.xm] <t widen-"120">
) bookt s b style-"uhitespace:novrap“>User Nane:
ExcelControls.jspx <t
[ExpensereportTask_TaskFlo] <ta
) ExpenseReportTask s Cimput type-"text” name="j_usernane” />
LoginPage.jsp <t
e—— </
T — B an
1 bt Contos B <t wiaener120%
1 Recerty Opened s worassvord:s <>
s
LoginPage.jsp - Structure & <
<AnUL cype"passuord" name=")_passuord/>
>
A <>
-\ <1DOCTYPE HTML PUBLIC ™ [jW3C 1l B <t
9 page 5} <t widen="120">
=49 html
g
& fom <input cype="text” name-"realuname”/>
- table. </t
e <>
= B et~ body » form » table» (= (4> b= use.
Design | Source | Bindings | Fistory |
[ElMessages - Log
Source | Design. ‘Messages | Extensions |Feedback |

OEBPS/img/bpmdg010.gif
Client BPEL Process.

l

Call
service |—{at
<invoke>

<pick> l

B B o m—

wsoL
Partnertink

‘Wat for Time out
callback in 1M
<onMessage>| <onAlarm>

i

T "Logic
1
L

Post

Callback |

Service BPEL Process

<receive>

<invoke>

OEBPS/img/bp_transform1.gif
‘Source: OrderBookingPO.xsd
= <souces>

& ppurchaseorder

< poicusD
@D

3 passhipto
3 posilte
o ptsercortact
o posondertems
3 porSuppleinio
3 pororderif

XSLT File: OrderBookingRules.xsd | (advanced

<trget> (2.9
soovs o 5
e <
o |
somovaReaured <

]
@ 5}

= Advanced Functions

acas ot from-delmte
% semert-svaiabe

() rction vt

(@ oonratout

@ qneraterd

(& tookupxmi

B srtemropery

[0 nparsedentiy-usi

(Fod xpttespresson

OEBPS/img/bp_wl_selectinglabel.gif
Administration

[administration

Applcation Preferences
51 Fiex Field Mapping
Public Flex Fields

Flex Field Mapping : Public

View existng lex ied mappings (.. task sttrbute lsbels). Create sdditional flex el labels and map these to ta
The labels wil be splaye to the end users, and should be user-friendly terms for the task atributes

Oerowse all mappings

[Map Payload Attributes

JestSCARppIHelpDeskReauestC.
£l ip/Hell ! °

Details

myField (Textattrbute2) is being used in

| [t Bitrbute

| e Texthttrbute2
| frestrid Texthttrbute]
| Concel | | createlobel | | select

OEBPS/img/bp_wl_todo3.gif
RESOLVED
UNRESOLVED

(8 @ 1y viork Queves
B Standard Viens

(2] Due Soon
(5] righ Prioity Delegate.
(& New Tasks Reass.
& wy Views
[Myvenvien

Suspend
Renen
Escalate

(5 @ procy Work Queves
Shared Views

Create TODO Task

Create subTask

OEBPS/img/ns_parlayx019.gif
mple - Mozilla Firefox
Bl Edt Vew Hgtory Booknarks Tooks Hep

G- @ G} [hewiisads us.orace com:24754jsemessagnosampie parleyfeceivemanager

User Messaging Parlay X Chat

Configure | Manage | Chat | Help

Register an address at which to receive messages

Registration ID: |test_IM

‘Stop receiving on a previously registered address:
Registration ID:

OEBPS/img/bp_ht_intro.gif
——

wiark Comment

£3 I

Performers Manager
I

e/
+

Revien

OEBPS/img/med_createmed_wsdlinfc.gif
& createmediator |

Creste a mediator component to perform routing, fitering, and transformations.

Nome: [Mediatort

Template: 78] nteface Defntion from WDL Je

reste Composits Service with SOAP Bindings

WSDLURL

Port Type:

Calback Port Type:

OEBPS/img/bp_wl_reuse_comppal.gif
omponent Palette | (ijRes. (8]

[ecbTaskiscTasiFion jor)
@ 5}

 TaskFons
= Regins
[E S ———

[sporovaboups tascfon-defiion
[conicates-ask iow-defntion

[vidence-searchtascfon-defiion
[fefedstascfon-definion

[reports-tskHow-dafnion

[s tasefon-defirion

[taskconigflon-defrion

() tesdstreponts-ask ow-defntion
[tosist-taskfom-defintion

OEBPS/img/ns_image2.gif
& Create SOA Application - Step 1 of 3

Narme your application

_ ‘Applcation Name:
© applicationName | 70 S

Protect Name
Drectory;

< PO SOR SRS (e TDeveloperlmyworkiSendHiessageApp

Browse,

‘Applcation Package Prefi

OEBPS/img/bp_tdf_mark_activ.gif
Insert before router - PageRouter
Insert nside rauter - PageRauter
Insert after router - PageRouter

Comvert
Surround With,

o o
oy cune
W aste v
X pokte pette
@ Toggle Breakpoint s
ke [—
Rebuid AshinFa
> rin cern
B vebug

Unmark Activity
Tron
ul B Convert ToLnbounded sk Fow

OEBPS/img/bpmdg002.gif
wsbL BPEL

Process
= [<receives
-«
wspL
pr— Negative
Pe Credit
propare
erin :
<assign> ' Credit
Rating
Service
can]

service.
<invoke>

Read
crout
<assign>

<scope>

creditto
-1000
<assign>

a2)-| <reply>

OEBPS/img/bam_architect_menu_eds.gif

OEBPS/img/bp_wl_outcomes.gif
Heb | L

Loggedinas:

Bores

Mar

003 11:09 AM Mar

RESOLVED

OEBPS/img/bp_ht_vacreq3.gif
Exposed Services Components

o
vacationreque...

process
processRespon.

External References

OEBPS/img/sca_spring2.gif

OEBPS/img/med_create_asyncmeded.gif
< Mediator

Name:
WSDL Fil:

Port Type:

Calback Port Type:

CustomerpataRouter
Customerpatarouter wsd @)

exectte pit

calback st

© 6 Routing Rules

3 Operations

R execute

proiy [+[5] [valdate Synta (50)

LoLE]

avdX

OEBPS/img/bp_ht_blank2.gif
Create Human Task [E3

(General | Advanced
Tesk Definton:

firone)

[2pprovalumant:

Select
this activity.

Or create a task definition, which will

close this dialog and launch the Human

Task Editor. You will then be able to

supply such details as task approvers
nd task parameters.

OEBPS/img/bam_alerts_table.gif
=l Alert Rules

[Activate [Aert Name.

Doserts

[Cepacity Exceeded

OEBPS/img/bam_dc_calcinsert.gif
[msertField |

[Corwwer.]

OEBPS/img/bp_ht_idserv4.gif
LI

dentity Lookup

Applcation Server: [AppConn (Resource Palette Connection)

Realm: Jszn.com

seachpaten: [+ [Cser e

s

s

earch User

fachist
cdickens
doyle
demaacinin
eheing
flafha
fstone
justen

gelect | Herarchy | Beportees | [

Detal

<<

elected User

OEBPS/img/xbuild23.gif
String firstString, String secondString,

concaty

OEBPS/img/bp_wl_consensus.gif
[y

[—

a3 [0]8

S

P gtz vt Jefaul

OEBPS/img/addingtaskflow_tf.gif
s bourvid task fow refrencos pa fragmants. Cxag o anoter
fow it errces poge agners o st s o cl st ks

W

20 action="#(HyBesn.
21 partialsubmie=re:

2 </ffacets

OEBPS/img/bp_tdf_email1.gif
EmaiPage |

m
c\nseT:skF\l |

taskDetails1_jspc taskRetum

OEBPS/img/sca_secpolicies.gif
& Select Server Security Policies

Select Securty polces from the st

foraclefbinding_atthorization_denyal_polcy Bl
(raclefbinding_authorization_permital_polcy
(oraclefbinding_permission_authorization_polcy
(oraclefuss_http_token_over_ssl_service_polcy
(raclefuss_http_token_service_policy

(oraclefss_oam_token_service_policy
(raclefss_sam_token_bearer_over_ssl_service_policy
(raclefss_sam_token_aver_ssl_service_policy
(raclefss_username_token_aver_ssl_service poliy
(raclefss_username_token_service_polcy |

OEBPS/img/bam_mon_eventchooser.gif
Evaluation Event Chooser.

hetiate 7]
omplte
[JRetry

] Compensate
[Fat ol

OEBPS/img/bp_edn1.gif
CENBRBXO |

Event Defintion Craatian

OEBPS/img/bp_tdf_create.gif
(@startpage |ofcomposte.xml [ApprovalHumantask_Taskelow.xrl

Auto-Generate Task Form

Launch Task Farm Wizard

dyvacs Pl Text
B nssignment Description
@ presentation
@ oeadines | | Outeomes Q
8 ttfcation | prory 5 (ornal)
Q,,:Heis Category: By expression_~|
owrer = <)ot (s
Agplcation Context

OEBPS/img/med_xrefim_ucexref11.gif
= 4§ Routing Rules

3 Operations

=0 insert

oty [(e sy)

Lol
- v $- R

Callout To [<<Java Callut Class>>

Static Routing:

=) [<<Fiker Expression>>

¥ & [emsuens

@ [somema e

v

aldate Semantic
Transform Using

Assign Valuss

InputParameters : xl{COMMON,_TO_EBS_INSERT.xs|

‘

3
]
=

Synchranaus Reply

=

Transform Using

Assign Valuss

Logger :Write

body : xslfEB5_T0_COMMON_INSERT xs!

E® &

OEBPS/img/excel_tst_att_to_eml.gif
Ele Edt Vew Iwset Fomat ook Actions Hep

EIRAIIER A RR A |

From: askdemo@usunnbez.us.oracle.com Sent:
To: rashmimenon@oracle.com
o

Subject: Expense Report Filed By jtein

Attachments:

Task Expense Report Filed By jstein requires your attention. Please access the task from the worklist application.

Action Links: REJECT APPROVE Worklist Application

-
Task Number 200002 Creator jstein
State: Assigned Created Date: $/27/07 11255 PMAssignees: oc4jadmin [U]
Outcome Updated Date 8/27/07 1:12:55 PMAcquired By:
Priority: g Expiration Date:
Creator stein

Expenseld [121
CreatedDate [Error - null
Status [Pending
Purpose [Travel
ReimbCurrencyfDollars
CostCenter [HR

itemName itemType partmum price Quantity

Full History

OEBPS/img/ns_image28.gif
(Al Techniologies | Current Project Technologies

This list is filtered accarding to the current project's selected technoloies.

(@ D
Categories tems] Show Al eserptions
& Genera

@ Avpication server Connection)
A G S G GG)

guides you In the creation of a new connection to andalone OC4],

applications

-~ Deployment Descriptors BEA WebLogic, etc.
Deployment Frofies
This option is always enable.
“Projects. G ik
=-s0a Tier s Connecrion

-Enterprise Scheduler Metadata
Service Components

Transtormations & cvs comnection
Allems

& 5PA Connection

OEBPS/img/soa_springpojo2.gif

OEBPS/img/bp_wl_reuse_cert.gif
Upload Certificate

@Browse for Certficats

Certficate file type QPKCS7
@prcsiz

Select Certficate Fle Browse.

Centficate Password

(O Type or Pasts Certiicate Contents

Reset | Upload

OEBPS/img/med_usecaseexpbuilder.gif
FENE pe——y——]

|

Cotentprevien:
$ibody 1 CustamerDatalCouetry 5 th egression o thevaritle

o

OEBPS/img/ns_newpojo_3.gif
Project Properties - /scratch/kkothari/OraHome/jdevps2stage3/middleware/jdeveloper/communications g3

Project Source Paths

ADF Model

ADF View

Ant

Business Components

Compiler.

Dependencies

- Deployment
£ Module
Extension

- Javadoc

- Java €E Application
15PTag Libraries

- J5P Visual Editor

TEH @8

- Resource Bundle
Run/Debug/Profile
Technology Scope

Libraries and Classpath

© Use Custom Settings
() Use Project Settings

Custam

[ava sE Version

[L6.0_14 (efaut)

Change

Classpath Entries:

Export Description

O ez
0 a@smie

5P Ruriime
M Jeva e 15471

race sdp messaging
107 it

Add JAR/Directory.

—cr— T

OEBPS/img/bp_sync2.gif
Assign_Creditcheckinput
InvokeCheckCredtCard

"

Switch_EvaluateCCResult

CredtCarduthar,

OEBPS/img/bam_dc_calcdefault.gif

OEBPS/img/med_defaultrr_mplan.gif
(DstartPage |ofcomposie.xml | <& Inviediator.mplan |« workerMediator.mplan | [isystems.xref

@-rnd @)

Doulooo

DonUoom

Dooom

<zl version = '1.0' encoding = 'UTF-8'7>

|<!--Generated by Oracle S04 Modeler version 1.0 at [1/20/10 §:53 P].-->

|<teaiator name="UorkerMediator” xmlns:xsi="heep: //um. u3. ory/2001 MULSchena-instance” usdlTarges
<operation name="insert” deliveryPolicy="AllOrNothing” priority="4" validateSchema="false™

<switeh>
<case executionType="direct” name="Filelrite.Urite” defaultRule="true"
<action>
<transform>
<part name="out.body”
function="xsLt (xsL/input_To_output.xsl, §in.request]”/>
</transform>
<invoke reference="Filelirite” operation="Hrite”/>
</action>
</case>
</switen>
</operation>
<operation name="lockup” deliveryPolicy="AllOrNothing” priority="4" validateSchema="false™
<switeh>
<case executionType="direct” name="Filelrite.Urite 2"
<action>
<transform>
<part name="out.body”
function="xsLt (xsL/input_To_output_lookup.xsL, §in.request]”/>
</transform>
<invoke reference="Filelirite” operation="Hrite”/>
</action>
</case>
</switen>
</operation>
<operation name="delete” deliveryPolicy="AllOrNothing” priority="4" validateSchema="false™
<switeh>
<case executionType="direct” name="Filelrite.lrite 3"
<action>
<transform>

Desion | source [Fietory [J 3

OEBPS/img/mapper_addsource.gif
[<sources>

Expand Al
Collspse Al

Add Parameter,

T —

Shaw Substton ads Icons

A %28

Find.

Replace Schema.

OEBPS/img/bam_alert_para_cfg_sel.gif
2 Report Parameter Edit -- Webpage Dialog, [

Name [myprompt

Valve [Lsubcatecors]

OEBPS/img/bp_tdf_button1.gif
Actians + Reject | | approve Distiss. Resume

OEBPS/img/bp_portlets16.gif
<executables>
<variableIterator id-"varisbles">
<variable Heme="Worklistl I_showVievsPenel” Type="java.lany.Object”/>
<variable Name="liorklisti_L_showTaskDetailsPanel”
Type="java. lang. Object”/>
' LCIXID” Type

variabl
variable

OEBPS/img/med_dvm1_ucmultival.gif
£ Domain Value Map(DVM)

e

Description

el

Map Table;

*7%

Karnataka KA
Taminady ™
andhvapradesh a
Kerala “

Language
Kannada
Tamil
Telugy
Halayalam

Capical
Bangalore
Chennai
Hyderabad
Trivandhum

OEBPS/img/bp_ts_struct.gif
'~ Projects. @l v e
MyProject

5 £ 50A Content
& B testutes
6] ewsemd
Cesd
Dl
- BPELProcess1.bpel
4G SPeLProcesst componentType
@] evetrocesst wsd
off composte.sml

1 Applcaton Resources
» Data Controls
1 Recently Opened Files

composte.xm - Structure

5

= of§ MyProject
BPEL Processes

OEBPS/img/globals_editor.gif
o oot ©
Lo 2 weblogc

ORACLE" SOA Composer & oo
vadse @ fo

rdergoolng s

() clovls
© ntases
Roesets

@ Ruesers
Doz

OEBPS/img/med_xref_ucexref23.gif
= delete priorky [4[3] [veidstesymtsx (650) o & o %

& [<bor Eprosions> ¥ & [

< [sequentil ~]
-3

Parameters : l{COMMON_TO_... | B

vaate semartic |

Using Transformetion [1nput

Assion Values |

Synchranaus Reply

= [Logger:virte &

Using Transformaton (Ot putPeraeters x58L_T0_ oM. <] B

Assion Vaes[ia.fi

. Fletiame (= concaty(

<<Fiter Exgression>> v 2

EBsiERS

Vaiate semanic |

Using Transformaton Inputparsmetars : xs{COMMON_T0

Assion Values |

Synchranaus Reply

=

Logger :Write

Using Trnsformaton (Ot putPeraeters 3E55_70.COM... < B

AasgnVohes cafe.FleName

concat(DELETE

OEBPS/img/ns_email2.gif
Broject Name: [SencEmailtithattachmentsPro)

Directory: [endEmailithAttachmentsApp\SendEmailithAttachmentsProj

Brose...

Technology Descripton:
[SOA i the Service Oriented Architecture to buld composite applcations.

[CEnish] [cancel |

OEBPS/img/med_echo_2.gif
© 4k Routing Rules

& Operatons S
B ecate prorty [175] [Jusidatesyntax (i) & v dp- R
Static Routing
= [<<iter Exprossin>> ¥ P [l Calertexeateioutout [Sequentil <]

Valdte semantc |

@

4

Transform sng [reply <<Transformation Hap>> -1
=]

esin vaes |

OEBPS/img/ns_newjava_5.gif
Fe Edt Vew Hstory Bookmerks Tooks Help

@0 @ (G D wiseons ooy usemessagnasanpeissnpie. e -

UMS Sample: Send Message

Enter Sender Addresses (optional): AL wemeoracie com
0.3 "M sender@example con’

Separate multple addresses sing somma.

ot you enter sender addreses ey wil iso fe
gisterd 28 aucess points with the UMS. Replies sent
by the rsipient 1 one of these addresses wil be
outed & this appliation. bt this sawple, here is an
option 12 pol the receiving queus f rtieve such
mceived essages. (s aseunes that the andedying
essaing Diver used Is capable of and somigured
fortwoway wessaging)

Enter Recipient Addresses:
9. "IMiresipient@sxampla. o BMAL: Joren dvetoracte.con
Separate multple addresses using comma.

Enter 3 Subject (optional) netlo

Channel specific payiosd 1

Select Delhvery Types:
EMAIL
VOICE =
TWO_WAY_PAGER ¥
Content Type: fetplain; chaset=uT)

Message Cantant; Tis 1= 2 enple message

OEBPS/img/bpel_timeouttab.gif
Ao (N
o
© Tie: [1]rs [o]ons 0 Jows Jres [o]ies o] secss]
O Boresson B
o
O Time (MMjddfyyyy HHimm:ss): 02/18/2010 16:27:31 [
O Expresson B

OEBPS/img/xba1.gif
From

Type: [Expression

e a g

E

T2 Press Ctr + Space for Invoking KPath Builing Assistant.

R

OEBPS/img/bp_switch3.gif
<candtion>

Drop Activity Drop Activity
Here Here

L

OEBPS/img/med_event_filter.gif
@ Expression Builder ke

® a0

Expression
/be:business-event /be: content/ns0:

ustoners/ns0: Custoner /ns0: Operation

‘update’

A Insert Into Expression

Business Event

A7 bebusiness-event
© 40 bescontent
@ nsDiCustomers
588 nsbiCustomer
<> ns:1d
ko8 nsDiNiame
Ke¥ nsiaddress.

Functions

[LogeaiFuncions

([———

[Q]tess

Content Preview:

Description

Joe:business-eventjbe:content]ns0;CustomersjnsD: Customer/ns0:Oper]

This represents an KPath expression of the business event

<g

OEBPS/img/sca_deployshare5.gif
3R Options
5 Fle Groups

5 Project Output

- Contributars

Profile Dependencies

&0 e
[]Ca veTate

& [¥] €3 50ADemaCompostte

[]C3 dasses

€3 scAINE

[]E3 testsuites
sad

[E) Demoprocess.xsd

B quote.xsd

) vacationRequest xsd

O

] composite.xml
“-[]) s0ADemoComposite.jor

&

5-[¥] £ Merged Contents of This il Group's Contributors

[one ook]

Expand All Nodes

Collspse AllNodes

o] [ool

OEBPS/img/med_bpelevnt2.gif
[~ Event Chooser |

Event Defintion Fil:

Event:

Type:

[eveloper\myworkiApplication2|Projectz|OrderEvent 1 edl

ProductSaldilert

Fhttp: s mycompany cominsforder}: urchaseOrder

Q #

'

OEBPS/img/bp_tdf_header1.gif
= @ oo

Assionees #(. displayName} Expirtion #(_.expirationDate Task Nmier 4. taskidumber inputValue)
Crestor #{..creator iputvalie) Dete nputValue) Prioty | slue)
Crestedt #{_creatorDate inputvaluey ACCHreH By #(. acquiredBy inpuaValue) state #.}
Updsted #(upditedDate inputvalue} DueDate #..dueDate.nptalue)

Outcome. #{..outcome nputvalue}

OEBPS/img/bp_gsinvoke.gif
Invoke. xR

Nome: fInvokeFindCustomer

Interaction Ty | 3 Partner ik~

Partner Role Wieb Service Interface

Parner ks BtoreFrontSenvice
ogerations [

Varisles

It [FrdCustomerinfo_Inputvarible +Q
oupi [pEustomerriovaabe +Q
options

Conversation ID:

[Tnvoke As Detail

Concel

OEBPS/img/med_dvm_comppal.gif
[l Component Palette | 1) []
e]
@® 5}
. Advanced Fnctons

1 Database Functions
~ DVM Functons.

2 lookupvaue
8 lookuptiabieth

. 4REF Functions
1 Medistor Functions

OEBPS/img/bp_ex_reply.gif
Reply ®
Y

Nome: feplyOutput

Interaction Ty [3 Partner ik

My Role WebService Interface

Partrer Link: [bpelprocess1_client Q

Operation 5
yarisble: [outputvariable % Q
Fauk Qiiame

Nemespace URI

Localpart;

Concel

OEBPS/img/bp_ts_callouts.gif
® Create Emulate

(@ Emulate Calbad

Calback Operation: [onResut

Calback Message:

{http:fjsemples otn. com}LoanBrokerResultMessage

Message Parts
Part: [payioad ~
value:
@ Enter Manualy O Losd From Fie
Enter Value:

Generate Sample

<aml-fragnent />

Duration: [0 ws [0

Mons [0 |Days [0

tes [0 |mins [0 |secs!

OEBPS/img/med_lookupxref.gif
@ Edit Function - lookupXRef

Function Parameters:

efLocation

referenceColumnhiame D)

referencevalue Move L
Mave Down

‘columniiame D)

needException D)

String Literals should be enclosed Wt or”, (Example: b o "abe’)

Function Descripton

Laok up the column value in the cross reference table(XREF) where the reference column has the

reference value.

If no value is found, an exception is thrown if needFxception is true.

OEBPS/img/bp_mpr16.gif
|

ecsre [BES
 swi
RemEs
(2§ eow
B rersom
=S
v
@ e

calbackClent ranstomehice

wew @

clent

OEBPS/img/ns_email19.gif
 Edit Copy Operation

From To
Type: [Expression ~| Tupe: [varizble ~

o [V 3
Bxression (5 process

ora: readFile (bpus: getVarishleData(
'inputyarieble’,'payload’,'/client
/client:attachnentURT' |}

Varisbles
Scope - Email_2
Variables
- (x) varNotificationReq
EmsiPayload

-4 EmaiPaylosd

< nstiFromAccountiiame

<> nstiTo

< nst ReplyToaddress

< nstiSubject

-4 nstiContent

< nstibimeType
<>{nsTiContentBady]
< st iContentEncoding
<> st iEmaiteaders
<> nstice
<> stiBec
<2 nstiNotficationContext
(x) varNotificationResponse
() NotificationServiceFaultvariable

7] Shon Detaied Noce infamation

N T ———

OEBPS/img/bp_trans_addvar.gif
& Add Variable

Name.

Local Hame: [

[set anamespace

To reference a variable in ¥Path, use the name entered prefixed by §
(Example: gname, $prefix:name)

[[] Set content for variable:

[wep |

OEBPS/img/conditionbrowser.gif
x| _coes |

OEBPS/img/sca_scalookup2.gif
& SOA Resource Browser.

(@ Reosorco Patte

P
-8l Mycomecton
&

25 s0a serverl
& 3] defaut
5 off Project1 (1.0]
(8] bpelprocess2_clit_ep (ws)
(@] Dservices (drect)
(8] Fieservic Gcs)
(@] Meditor1_ep (ws)
ofg Project 20
&-off Project1 [Default 2.0]
(8] bpelprocess2_clent_ep (ws)
(@] Dservices (drect)
(8] Fieservic Gcs)
(@] Meditor1_ep (ws)
5 ofg Smpleagproval[1.0]
(@] client (ws)
& off SimpleApproval [Default 1.0]
(@] client (ws)

OEBPS/img/bpmdg052.gif
AssignTaskAttributes
Captures the user-defined aributes of the task
such s fitle, payload, creator, priority, and s on

AssignSystemTaskAtiributes
Caplures the system task attributes such as
process Id, process version, and 5o on

InitiateTask
Initates the task by invoking the task service

AssignWorkflowContext
Assigns the workflow Gontext to use for
interactions with the workflow service

!

' While the task is not
completed/expired/errored

Receive Receive Recelve Receive
onTaskCompleted | | onTaskassigned | | onTaskUpdated | | onSubTaskupdate
message message message message

user user User User
customizations customizations customizations customizations

OEBPS/img/bp_ex_pick.gif

OEBPS/img/sca_depsoaarch.gif
& Deploy SOA Archive

Choose the target 50A server(s) and corresponding partitions to which you want to deploy this
archive,

508 Server: Parttion Stotus: Server LRL
88 soa_serverl [default ~ RunNING hetpifsta

Specify SO archive il name that you wank to deplay. Optionally you can ala specky SOA
canfiguration plan that you wart to apply ta the compaste(s) n the archive, SO archive can be a
4R Archive (jar) or 508 Bundie Archive (.2) il

508 rchive:

[orowse

Configuration Plan (Optional)

[orowse

terk composit revision as defaul.

[Overnrice any existing compostes wihthe sam reviion ID.

[rep) (e]

OEBPS/img/bp_scopesdoc.gif
Scope_RetrieveCustomerForOrder

}

@ T g el e
[0 e r—
Scope_AaboracrediCad| oo i,
oy
cro cord e, nd the
St
oo v

Qorderinfovariable to
local variable
ICrediCardinput or the
scope,

#ssign_DefauktiotRequiresipproval

OEBPS/img/bp_substitute_type.gif
Substitute Element or Type

(O Substitute an element rom the substiution group with head element pocontact
() Substtute type derived from com:Adcess'

Select globaltype derived from ‘om:Address"

comiUSAddress

OEBPS/img/bp_flown2.gif
x
=&

|
@

assignid

|
@

Assignoutput

OEBPS/img/bp_ht_listofparts.gif
[Edit Participant Type

Type: [[@s0ae Ll [Stage1 Partpancz

Partcpant Lis

Specky atributes using: () Value-based () Rule-based

aticpan Naes + %
enticaton Type Duatype Ve

m
K

OEBPS/img/med_markfordelete.gif
| Edit Function - markForDelete

Function Parameters:

aefLocation 2

calumniiame

e Mave L
Mave Down

String Literals should be enclosed Wt or”, (Example: ‘e or "abe’

Function Descripton

Usage: sref markF orDelete(srefLocation as string, columnNarme as string, value as string)
Exarnple: srefmarkF orDelete("C arefs\customer-id xref?, *Oracle System”, "ORCL_100%)
This function takes 3 parameter(s

OEBPS/img/sca_mdsconnection.gif
Create SOA-MDS Connection

Create a Fle-hased or a Datahase-based connection n the Resaurce Palette to conniect to a MetaData
Servie (MDS) Server

Create connectionin: () Agaton oo () IDE Connections

Connection Name:

MDSConnectiont

Connection Type:

0B Based DS |

Chaase a database cannectian.

Conneton;

User Name:
Driver
Connet String:

Select MDS partiton:

[
Test Connection

Status

OEBPS/img/med_async_uc2.gif
5 o Aoyneveditorsonple
53 9L processes
© dh ServerspELProcess

54 serverbpeprocess_dent
iz
ocesshesponse

2 Mostas -
S mnroks
20 Business Rules:
O
5 Rt

e Cancel

OEBPS/img/sca_spring18.gif
Interface Conversion,

o Thedwafie
1) Cieveopermpmerkiappicationt projecrcimedatortprojectappicationsconloradelhninsxeute_pit fova
was generated based on porttype execute_pit in Mediator . wsd

3

OEBPS/img/mapper_test2.gif
‘Source: sample.xsd. LT File: sample xsd

(2 <wores> <trget> (2.9
& o sanpenent cxanplginent -
o et et <>

o testz test2 <05

OEBPS/img/sca_approf2.gif
& Project Propertie:

\IDeveloper\mywork\WyApp\Project1\Projectl. jpr,

)| Deployment

ADF Model
ADF View

ant

Business Components
Compier
Dependencies

ET6 Mode.
- Extension

Javadac

- Java EE Applcation
35 Tag Lbraries

- 35 visua Edtor
Libraries and Classpath

- Resource Bunde

RunjoebugiProfie

Technology Scope

Project Source Paths

O tse Custom settings
(@ Use Project Settings

Deployment Profes:

Projectt (S0A-5AR Fie)
- [E sart (50548 File)

et

Cancel

OEBPS/img/sca_deployshare4.gif
=

| Directory or archive: Bromse... |

-3

Profile Dl Location: | [C:\IDeveloperimyworkiSOADemoApp
WedisyAgn
Myapp,
MySOAAppication
s SOAfirst-compasite
S0AappAsynch
50AappSynch
Home

af
50ADemoConposite
SoADemcProject
VacationRequest
Developerl

[Teveloper2

OEBPS/img/bp_wl_history1a.gif
EHistory

51 sk Snopsnot | _[¥] Future Perticpents L] Ful taskactons

n Particpart action Updated cton Date

1 © [E5taset

e & jsten Assigned workflowsystem Mar 25, 2009 12:35 PM
12 @ pien Information Requested_|cdckens ver 25, 2009 12:91 P00
13 3 cdickens

i

tein

I

tein

.

cdickens

!

OEBPS/dcommon/oracle.gif

OEBPS/img/med_usecasefinal.gif
Exposed Services Components External Reference

O = uscusomer
waeie

&= canstacust.
e

OEBPS/img/bam_mon_countstruc.gif
S BPELProcess1.bpel - Structure

23
@

=2 Monitoring Objects
=2 Counters
& WA
=23 Snapshots
P receivelnput

OEBPS/img/sca_appmenu.gif
CompositeTestipp .

“roms 8@ 9 5 il e A

i
ComposteTest EL:
&[22 508 Content pen Project.
£ public_pel Close Appication
3 testtes
Baxd
=P
- & AutoloanTypes,
423 po precncet con @) Find Applcation Fies
Show Overview

Rename Appication
Remove Appication from IDE
Erase Applcation Fe from Disk.

v —

OEBPS/img/bp_mpr5.gif
& Edit Functi

n - concat

Define function parameters below:
{Mote: Parameters can also be set though drag and drop from tree rodes)

1] /tns: Purchaseorder/shipTo/Nane /Fixst

2

add

Remove

ook Purchase0rast /hipTotane /Last vl
ove pon

i

Examples: §varl, §phxiparami, ‘b, "abc”
Press Ctl + Space for Invoking 4Path Bulding Assistan.

Function Descripton

Returns the concatenation of is string parameters
Usage: concat(string1 as string, string2 as string, ..}
Exarnple: concat(first!' !, 'name’) returns ‘first name!

This function takes a minirmum of 2 parameter(s) and has no limit on the maximum
ther of naramets

OEBPS/img/ns_newjava_3.gif
= [T

(@ o

t Properties

/scratch/kkothari/oracle/r

Project Source Paths
ADF Model
ADF View
Ant
Business Components
Compiler.
Dependencies
- Deployment
£8 Module
- Extension
Javadoc
- Java EE Application
ISP Tag Libraries
- J5P Visual Editor

- Resource Bundle
Run/Debug/Profile
- soa
Technology Scope.

develc

ddleware/

Libraries and Classpath

O Use Custom Settings
() Use Project Settings

[ava sE Version
16.0_07 (Defaul)

Classpath Entries:

Export Descrpton
0 2
5]

sTL12

5P Ruine
M Jova £ 15 271

OEBPS/img/ns_image3.gif
Broject Name:

Directory,

SeniessageProj

/scratch/aimel fideveloper /mywork/SendMessageApp

Ciroms

(Project Techmotogies | Gansrated Comporents” | Assoiated braries |

Available

Selected

Thchinalngy Descrintig.

OEBPS/img/med_xrefim_ucexref8.gif
5§ Routing Rules

&) Operations B
= receive prorty [175] [Jusidatesyntax () & v dp- R
allout To [<<Java Calout Clss>> =]
Static Routing
= | ectionjtop:Sap0S/top:operation = TNSERT | ¢ == |Common/Common: insert G [Sequential v
Valdate Semantic —
Transform Using [request : xslfSAP_TO_COMMON_INSERT. xs| - H

Assign Valuss Bl

= [lectiontop:ap0Stop:operation = ‘UPDATE' | ¢ == | Commen/Common::update. G [Sequential v

Valdate Semantic B
Transform Using [request xs//54P_TO_COMIMON_UPDATE sl Bl
Assign Values 8

OEBPS/img/med_createmed_subsevt.gif
@ Create Mediator

Mediator Component _@
Creste a mediator component to perform routing, fitering, and transformations.

Nome: [Meditort

°
Y+ X

Event. Consitency RunasRoles Fiter

OEBPS/img/addsomebean_dict.gif
Create Managed Bean

Beonflame: bomeean
Class Name: [sometean [growse.
Package: [useruledictd [eromse.
Estends: [javalang.Object [browse.

7] Gonerae o I 1 Do ot it

e o Gance

OEBPS/img/med_xrefim_ucexref12.gif
= g proty [1[3] Cvaidsesymscton) o v d- R
Callout To [<<Java Callout Class>> [}
Statc Routing
@ [<Phor Eprosaons> @ & [esiees @ (oami
Validats Semantic <) &
Tarsform g IputParameters xsCOMHON_TO_E85 LPOATE ol _~] B
Assign Values Bl
Syrcvonous Reply =

Transform Using

Assign Valuss

Logger :Write

body : xslfEB5_T0_COMMON_UPDATE x5l

OEBPS/img/ns_delete.gif

OEBPS/img/bp_wl_reuse_flex.gif
Administration Flex Field Mapping : Public
Fex Fed Happing

Public Flex Fields
* | View existing lex feld mappings (1. task.sttribute lsbels). Create sdditional flex el bels and map thess to task attributes.
The abels wil be displaye to the end users, and should be User-friendly terms for the task atributes

@ browse all mappings
(OEdt mappings by task type:

Show: [All Atrbutes v

=

Label [atbute Desarption ¥/ petails

Please select a label ta see s Usagels).

OEBPS/img/sca_deploycon1.gif
of Create BPEL Process X

BPEL Process Q
A BPEL process is 3 service orchestration. usedto describe fexecute a business orocess (oG8
Iarge grained service “Type Chooser

Name: Shareds|

Type Explorer
Project Schema Files
Project WSDL Files

Namespace: ~[xmins.of

Tempiae: (32 synd

Service Name: [shareds| = OAR B x
Sl (@ Resource Parete s
Input
T s0A-ws
Qutput WRL: =
mySOAMDS
[Copy| ps
soADemoComposite
&
& Demorocess xsd
2 HumantasiaPaylosd.xsd
2 HumantaskLWorflowTssk xsd
- TaskEvidenceservicexsd
2 TaskSequenceChanges.xsd
& TaskStateMachine xsd
2 VacationRequest xsd
FE— & WorkflowCommon.xsd
8] Demoprocess wsdi
™ & HumantasicLtask
deployed-composites
soa

OEBPS/img/med_xref_ucdbadapter1.gif
Exposed Services

EopEemns

Components

External References

OEBPS/img/bp_ht_vacreq4.gif
Exposed Services Components

e

vacationrequ

process
processRespon.

External References

OEBPS/img/bp_portlets15.gif
o vexaions'10" encoding= xindovs- 12521 7>
5 Iopiront xalns:3ep="heep: /2avo. oun. con/ ISP Foge” versions"2.
“hecps /160, o, con/ 128 core”
Sp——y—
racle.con/as faces ricw
racie.con/ade /faces portiec™s
et s ehasetevindons- 1252 />

B cotidacment i
o 1871

ortict value="4 hindings. Vorklistl 1) 3d-"porcletl”
custanizationld ozl

<jatitom
</at:docuent>

Aot

@ oo —
sorce ,
Rersty ,
Tt 5

R o

& oo oue
0 eose. cuv

s | Soace [Gedngs ety < [T

[Elessozs- oo e cunsnnra

S 13, 2009 3:10:00 14 oxacie. semuesey. gpe.ueal it ekl ey

OEBPS/img/bp_ex_flown.gif
FlowN

Neme:
N

Index Varisble:

FlowhiCRz

2

FlawhiCR2_varizble

4

OEBPS/img/med_xref_ucexref1.gif
Select a procedure. When searching for one the % widcard can be used.

Search

Schema

scort

[Storedprocedures

Argumerts | Souree |

ame Type
'X_APP_INSTAN... VARCHARZ
'X_CUSTOMER_ID VARCHARZ
X CUSTOMER_... VARCHARZ
X CUSTOMER_... VARCHARZ
'X_OPERATION. .. VARCHARZ
X_APP_ID VARCHARZ

Injout Posiion
™
™
™
™
™
our

s

OEBPS/img/excel_jdev_dt_ctl_plt.gif
Iapplication Navigator

=] ForExpenseReportagp

b Projects @ v-E-
1 Applcaton Resources
~ Data Cantrols

= TastsRetrever
23 construcors
=+ (] retrieveTasksForUser(String, String)
2 Paramters
& sskobiect

OEBPS/img/ns_email1.gif
Name your application

Application Name:
© Application tlame

SendemailtithAtiachmentsipn
. Bsastians

Directory:

C: UDevelper myworkiSendEmalviha =

Bronse...

Applcation Package Prefix:

OEBPS/img/med_xref_ucexref24.gif
=0 update

prioriy [+[3] [veldate Syntax (x50) @ o

=) [<<Fiker Expression>>

¢ R

o [seertil <]

Vaate semartic |

Using Transformaton inputFarsmetars : xe{COMMON_TO

Assion Values |

Synchranaus Reply

=0 [Loggers e

Using Transformaton [Outputfarsmetars - x58L_T0_CO

AasgnVohes ca e Fiehame

m... v) B

OEBPS/img/xbuild24.gif
XPath Expression

/p0: Purchase0rder /po: ShipTo/po; Cedl

S © (28 Node of Name "poiCty” not Found
Lt || Plase Check the Speling and Try Again

OEBPS/img/val_panel.gif
[octonary ot

RUL-DS3S1: Th deceion tabie has rvesalved confics
& RuL0852: The decson tabe s gaos.

& RuL05711: The exaression camot be bank.
a

RUL0S712:Tre velve Targt”of “Acton”cannotbe blrk, Select a vae.

Kin

OrderBooking Rulese!_iDecsion Tabe(Contet .|
rcerBoking Ruleset_iDecsion Tabe(Cantet ..
OrcesBoking Reset_DecsionTable_3{Condss...
rcerBooking Rdeset_iDecsonTable_4/Acton(Z]

|

2

OEBPS/img/bp_terminate1.gif
!
]

Terminate_2

OEBPS/img/bp_ht_htcreate.gif
=Gl Myapp
&£ 508 Content:
0 testsutes.
&0
2 yHumanTaskeaylad xsd
2 MyHumanTaskiWorkflonTack 5
L TeskEvidenceService x5
2 TeskSequenceChanges.xsd
L TeskotateMachine.x5d
2 WorkflowCommen xsd
B2l
off composte.sal
& MyHumanTas tesk

b Applcation Resources
b Data Controls
b Recently Opened Fies

Structure (

Tost sotes
Humen Tasks
& MyHumanTask

OEBPS/img/med_echo_1.gif
86 Routing Rules.

@ Operations

B oo erocty [415] (1] yadate Sy (450)
Target Type. 53]

Should s routng e invoke sevice tigoe a7
event o echoaesponss back o the ki collr?

e T | e | |

OEBPS/img/rule_sample.gif
ORACLE" SOA Composer @ Bookmarkable Link Logout O

Logged n 25 weblogic

e @ info

¥ Rudeset_t vew [FrenRies & @X

B T— T TS
B S T T Y
> ¥ [Rue 1 EXeL

OEBPS/img/med_reseq4.gif
<€ Mediator

Name -
wsb UL mitcpwsd @
ot Type e

Resequence Level

Resequence Mod: Resequence Options-
Group: [<<Group Expression>> | & gart[{ 5 Omeaursfp (2,

ID: [<<ID Expression>> & Ioenent B
1

OEBPS/img/med_validation.gif
@ Add validation

part; [CustomerData

Bt [schvalsimple.sch

Type: schematron

OEBPS/img/xba2.gif
on Server il el

Type: [Expression Tupe: [Variabl

astry - Proces
v

jetVariableData(String variableName) as node-set Function |~

:getVariableData(String variableName,String partName) as nod... Function

[f{)] bws:getvariableData(String variableName,String absoluteLocation... Function

[f0] bpws:getvariableProperty(String variableName,String propertyNam... Function
[T] ceiingtnumber inputhumber) as number Function

concat(st

ng) as String Function

OEBPS/img/bp_wl_selectingtasktype.gif
Inkiated T:

Administration

Applcation Preferences
151 Flex Field Mapping

Flex Field Mapping : Public Cancel

View existng lex ied mappings (.. task sttrbute Isbels). Create additionsl flex feld abels and map these to task attributes,
The labels wil be splaye to the end users, and should be user-friendly terms for the task atributes.

[Task Type Browser

- Search

| Tope I Frocess e] vetais
BeproveOrder OrderBockingappiOrderfrocessingli

Tek: Agproverder
HelpDeskRequestTask HeDesRequestsCasgp e Desiei| | ' 1
VacationRequestTask VacationRequestApp/VacationReques, escription:

Outcomes: APPROVEREJECT

OEBPS/img/med_usecaseall1.gif
Exposed Services Components External Reference

WiteFile

o wtin
ReacFie

WiteFile

OEBPS/img/bpel_processmonitor.gif
|offgcompositexml | J BPELProcesszbpel | JiBPELProcessibpel | & (D))
0w # (@- Ol dea [@renie] (50) @
,

Change to Monitor view

OEBPS/img/soa_springpojo1.gif
Create EJB Service
E3B Service

Create an EJ5 service,

Interface; @ 2vA O WeDL
JAYA Intetface: [com.otn.sample,fod.soa.externalpsIExternalPartnersupplierservice Q@

OEBPS/img/bp_tdf_non4.gif
Heme >Summary of Deployments

Install Application Assistant

st | g i |

Optional Settings

Vou can modfy thess settings or accept the defauls

General

What do you want to name this deplayment?

Name: oracle.soaworkllow

Security

What security model 60 you want to use with this spplication?
(® DD Only: Use only roles and policies that are defined in the deployment descriptors.
(O Custom Roles: Use roles that are defined in the Administration Console; use policies that are defined in the deployment descriptor.

O Custom Roles and Poll

fes: Use only roles and pols

fes that are defined in the Administration Console.

(O Advanced: Use a custom model that you have configured on the realm's configuration page.
Source accessibiity

How should the saurce Fes be mads accessble?

(@ Use the defaults defined by the deployment's targets

Recommended selectian.

(O Copy this application onto every target for me

During deployment, the files will be copied automaticaly to the managed servers to which the application s targeted.

O T will make the deployment accessible from the following location

OEBPS/img/ns_newjava_4.gif
Ele Edt Vew Hgtory Bookmarks Toos Help

%@ O ([0 e m——

UMS Samples

* Messaging Samples
Demonstrates several key Messaging feaures

© Sending a miltipart message with channel-specific content to mu
© Staius reporting for al recipients of a sent message.
© Retrieve and display received messages via poling.

Send sample message

* Miscellaneous Messaging Features

o Get supported delivery types - this tool uses the MessagingClient
supported by the Messaging Server.

OEBPS/img/ns_newpojo_2.gif
B Oracle JDeveloper 11g Release 1 - usermessagingsample.jws : usermes:
le Edit View Application Refactor Search Navigate Build Run Versi

gsample-web.jpr -0x
g Tools Window Help

BoEgd 90 XEE QO -O 1%- hiddu- > -&- AW -)

@application Navigator

(@lResource et

Bl usermessagingsampie] P
Projects m® V& My Catalogs
& @ usermessagingsampie-ven IDE Connections
=3 Application Sources - Application Server
-1 oracle.ucs.messaging
=@ sample

[l sampleConstamsjava
(8] sampleReceiveservietava
{8l samplesenaservietava
(8] samplestatussenvietava
(& samplevtis,ava
B3 Web Coment
& Cimages
@03 WEB-INF
] ausp
18] indextmt
@ sampie.rumi
Igh sytesheev.css
Applicston Resources
Dsta Controls
Recently Opened Files

OEBPS/img/med_assignvalue1.gif
© Assign Value

From

To

Type: [property. =

Tupe: [property.

operty:

Property:

b2b. conversationid

|o2b documentDefintontieme
|o2b documentprotocohiame
|o2b documentProtocolersion
|o2b documentTypeiame:
|o2b fromTradingPartnertd
|o2b fromTradingpartnertdType
|o2b messageld

|o2b messageType

|o2b replyTottessagetd

|o2b toTradingpartnertd

|o2b toTradingpartnertdType
bpel.calbackpayloadkef

|opel conversationtd

|opel expraton-date:

|opel nstencetndext

|opel nstenceindexc

|opel nstenceindexa

el nvoketessageGiid

b2b. conversationld
Ib2b. documentDefintontlame:
lb2b. documentProtacoliame:
lb2b. documentProtacoltersian
lb2b.documentTypetiame

lb2b fromTradingPartnerld

lb2b fromTradingPartnerldType
lb2b messageld
bb2b.messageType
lb2b.replyTobessageld

bb2b toTradingpartnerid

bbb toTradingpartnertdType
lpel.calbackPayloadkef
lopel.conversationld
lopel.expiation-date.
bpel.instancelndext
bpelnstancelndex2

el nstancelndex3
bpst.nvokeMessaqequid

=]

I

Cancel

OEBPS/img/sca_spring1.gif
IExtornalPartn...

‘SpringPartn...

OEBPS/img/med_dvm_usecasedvm7.gif
Source: ReadOrders.wsdl
2 <sauces>
5 <o mpistororder
=48 impt:order
[erh
= impiibasepata
[
<o mpandard
<o mptsunkOfessre
o imptdate
& impLipricngData
< e
<o imprprchgpate
< mp st

HSLT Fill: WriteCommonOrder wsdl
<target>
impistofOrder <
for-each &5
imptzorder 45
impt:id <o
impi:baseDets <01
impitp <>
impistandard @
impt:uniOfteasure <o
impi:date -
imp:pricingData <>
impfreightamount. <>
impi:pricigDate <e>-
impi taxAmount <o

OEBPS/img/bp_tdf_taskdetails1_jspx.gif
Bounded Task Flaw

closeTaskFlow

retunCal

taskDetails1_jspc

OEBPS/img/bp_ht_addtaskp.gif
Edit Task Parameter |

Define this parameter' type:

(] Oltype: | [httpilimm.ws.org/2001schemalstring Q

Includs standerd sinple XL types and types found i project schemas

< O gement: Q

Define type by reference to elements faund n project schemas

Parameter Name: [orderid

[Edtable via workist

OEBPS/img/rules_bp1.gif
(oL sonpplcationus | fconposteonl | dyAutoLoanProcessibpel) g conponent paetts | (. &

- -5 @8 Y eowe @ | e 4
Partner Links 5 Partner Links /| @ ©
 BPEL Activties and Companents
] ~ Activis and Compenents
v B EPEL Process
@ business Rule
® e
veceivelnput s
&) — gPEL Actives
e 5 oo
= || G onaznry U
@ B,
calbackClint [create entity
Benai
| Dewer
O &9 Flow
&y Fown

zoom:| 100[3]

Design | Source | History

OEBPS/img/creatingsomebean.gif
Create Java Class
e the st o you v s

po——

e s
QL © aure>
O padage provctd Ounn:
Ot
[CT R —
Sl n—
Cltonimbod
o] [|

OEBPS/img/bam_alertrule_stale.gif

OEBPS/img/bp_ht_types.gif
B8 Edit Participant Type

OEBPS/img/med_add_val1.gif
© Add Validation

requestPartz ~
requestpartz.
Select a wsdl message part to validate.

part:

Eie:

C o]

OEBPS/img/bp_createglobvar2.gif
Neme:

Tywe
£ O simple Type.
2]) Message Type

> O gement

[Entity Variable

{http:ffmins.orace. comfLoanServiceLad

g e

OEBPS/img/bp_notif_attach.gif
Assign ®

o e

/R &I

From To
G Expression () Variable
string(Defaul) varttficationRegEmaiPeyload)
G Expression () Variable

sring(") vartotficationRegEmaiPeyload)
G Expression () Variable
sring(") vartotficationRegEmaiPeyload)
G Expression () Variable
sring(") vartficationReg/EmaiPayload) |
(. Expression () Variable
concat{string(Order with d), bpw... varNokficationReq/EmaiPayload)
(G Expression () Variable
- frmimry

il el ol

OEBPS/img/med_exp_build1.gif
& Expression Builder
Expression wal
or

§in. CustonerData/iupL: CustonerData/Countr

A Insert Into Expression

Variables Functions

Variables

@n

[riraes

e

generate-guid

Tookup-sml
Content Preview: Description
erclcreate-nodeset from-delimited-string() Create a node-set from a delmited string. Node names are defined by

qame and the deiimited string i delmitedstring delmited by delmiter
Usage: crclcreate-nodeset-from-delimted-string(aname as string,
delimitedstring 2 string, delmiter a5 string)

OEBPS/img/med_bpelevnt3.gif
13" vibee
&)

OEBPS/img/bam_mon_evalbrowse.gif
Evaluation Events
[activate]

OEBPS/img/bp_ht_taskparam.gif
& Task Parameters |

From

Type: [varizble

Variables

Variables
() inputvariable
(x) outputvariable
() ApprovaltiumanTask_1_globalvariable
& (x) gOrderInfovariable
£ 40> nsdiorderlnfaOSD0
] ordertd
|
<> nstiOrderbate
> nstiOrdershippecbete
> nstiOrderstatusCode
<> nstiOrderTotal
<> nstiCustomerld
> nstiShipToName
> nstiShipToPhaneumber
<> nstiacdressid
<> nstiaddress1
<> nstiaddress2
<> sty
> nst:PostalCods
] show Detalled Node Information

xpath: [/ns

rderInfov0sD0/ns

o)]

OEBPS/img/med_dvm1_ucmultival5.gif
Source: readrile.wsdl
= <souces>
- mptivcct cment
(=48 imp1:Details
i —

¥SLT il writeFle. wsdl
<trget> (2
oot clment > &
for-cach 8
ns2:Details & =1
rs2tongnane <
detalls 8
wishtnane <
sz tanguage |
nzCaptal >

OEBPS/img/ns_newpojo_8.gif
Open Application(s) x

Location

/scrateh/Kkothari/OraHome /jdevps2stage3/middievare ja.. ~| @ 3 (9 I B

‘ [usermessagingsample-ccho-app

(5 usermessagingsample-echo-web

B userm.

Eile name: [userm essagingsam ple-echo jws

Filetype: [Application fies ¢jws)

elp

OEBPS/img/bp_ht_vacreq5.gif
Tie:

& Add Task Paramet¢

0 Owes

< (& gement:

Parameter Name:

Define this parameter's

& Type Chooser

X Typs Evplrer
5@ Project Schema Fles
& TaskEvdenceservice xsd
2 TasksequenceChanges xsd
2 TaskstateMachine.xsd
& vacatiorRequest xsd
¥V acationRequestProcessRequest
> VacationRequestProcessResponse
5 & VacatiorRequestTakPaylad xsd
> payload
2 vacationRequestTaskWorkonTask,xsd
2 WorkflwConmen.ssd

Tyne: [{httpi/fxmins.oracle. comVacationRequestj VacatiorRequestProcessRequest

[5how Detalld ot Information

o]

OEBPS/img/bp_mpr14.gif
Target: invoice xsd
| <souce> <> 25¢
& tns1:po_parameter1 tnst:Invoice <> =)
= tpurchaseorder IvokceDate B
i OrderDate tnstsCommert ko3
g s
- hpTo e -5
= e . Name <>
st o adress -5
o last courry B8
o Acress reet
B country City <o>-
o srent sate <o
wcry ps
e i
w2 cumanter >
ER =N ool <>
= e Generate Report ippedtens -5
st Generste Dty e 8815
Lot e e
=-<e> Address Completion Status Quantity o>
ety AutaagPreferences -
osmest | @ idonentk | 2| Unshppeditens @ &
<ty 4 Tem 8815
ozwe || 3 pdee PRR TR
w2 gt Quntty @
e tns:Comment ————————————— leCharged <&
-8) <chore>
S -
« y « >
e Temoee TrrT

OEBPS/img/sca_deplconfig3.gif
Select Server

Deploy Project2

Deployment Action

Select Server

50A Servers

"
A
/?\
9

O summar

Deplov Confiquration)

Application Servers

51200135
w2003
dadvmboog7

OEBPS/img/med_lookupxref1.gif
| Edit Function - lookupXRef

Function Parameters:

e “oustoner rer” o
eferenceclummiane| "5A7_01" S

eferncavshe et popelateRe Rov "ousvomer. ret", 5AP_01", /uapisapord |0l

columniame: " COMMON") Mave Down
hecdexcepton [Faloe 1 S

String Lierals should be enclosed witin or*, (Example: b or "abe”

Function Descripton

Lok up the column value in the cross reference table(XREF) where the reference column has the | |

reference value.

If no value is found, an exception is thrown if needFxception is true. i

OEBPS/img/bp_portlets10.gif
@ Register WSRP Portlet Producer - Step 3 of 5 [

‘Specify Additional Registration Details

Provide addtonal egsiraton deta

£ pplcable.
Defoul Timsout Tntrval (econds): 309

The WSRP e produce doesrct dfine addtional egitratinprperte.

OEBPS/img/addruleseditorcompsharedlib.gif
& Add Library

OEBPS/img/bam_em_adf_conn.gif
BAM Connection

Specily properties for bam connection.

User Name

passwerd |
A Server Host

A Server Pt |
Webkir Sever Host

webkir Serverpart |
A Webkir Protocol

Cancel

OEBPS/img/bp_wl_browseall.gif
Adri

[Administration

Applcation Preferences
5] Flex Field Mapping
PublcFlex Filds

Flex Field Mapping

T [e]

View existing lex ied mappings (.. task sttribute Isbels). Create additionsl flex field abels and map thess to task attributes.
The abels wil be displaye to the end users, and should be user-friendly terms for the task atributes

@growse all mappings
OEdit mappings by task type:

Show:

Al Atributes

[Label

Bitrbute

1®

Details

Please select a label ta see s Usagels).

OEBPS/img/bp_tdf_non9.gif
Home >Summary of Deployments >Summary of Foreign JNDI Providers >ForeignINDIProvider-50A >Summary of Foreign JNDL
Providers >ForeignINDIProvider-S0A

Create a Foreign JNDI Link
ok ||| Cancel

Foreign INDI Link Properties

“The following properties wil be used to identify your new Foreign INDI Lirk,
* Indicates required fields
What would you like to name your new Foreign JNDI Link?

*Name: RuntimeConfigService

Specify aditional properties for this ik

Local INDI Name: RuntimeConfigService

Remote INDI Name: RuntimeConfigService|

ok ||| cancel

OEBPS/img/med_dvm_flow.gif
Step3

Step2

Step 1

 CityCode=KN_USA

Country=Canada, CityCode=KN_USA

State=Arkansas, Country=

anada, CityCode=KN_USA

Level of
Generalization

Level of
Customization

OEBPS/img/med_dvm_usecasedvm4one.gif
Exposed Services

B
ReadOrders

Components

External References

OEBPS/img/bp_portal_page14.gif
> Register WSRP Portlet Producer - Step 5 of 5

Specify Key Store

Specify the location of the Key Store that contains the private key used to sign the security assertions, Select the signature
key alias that corresponds to the private key to be used for signing.

Store Path:
Ci\idprotestingconsumer. jks Browse:
Store Passward: seeveses
Store Type: JKS
Signature Key Alias: consumer -

Signature Key Password: | eesseses

Encryption Key Alias: consumer -

Encryption Key Password: |eesesses

OEBPS/img/bp_ht_parentsub.gif
T —

provelines ovetteaders

1 1
AppraveLines Particpant]

£3

Appravereaders. Partcpart
£3
ApproveLines Particpantz

£3

Appravereaders Partidpantz
£3

©0| G G0

AppraveLines Particpants

Appravereaders Partidpants
I

OEBPS/img/bp_tdf_email3.gif
fgcomposteanl || IHDRHumanTask_TaskFlowxml | () [component palette (¢
stow~ (1} 4 7 (2843 1 o @]|[A0r Taskrion
(]

» Source Elemerts

 Components

~ acivkies
(=] Method Call

taskDatalls 9 Router

) ave Pin Restore
Tk Fow Call

Tk FowRetun

] URLview

vew

-~ ContolFow

EmailPage = Control Flow Case

[wideard Control Fow Rul

g Gefault

PageRouter

OEBPS/img/med_xref_ucexref10.gif
olctionftop:5ap0 ftopioperation=TNSERT | §p =0

Common/Commonsinsert

< [soquentil ~

Valdte smantc |

Using Transfornation Custamers: xalSAP_T0_COMMON INSERT.xs

s vaoes |

&
B

liectionjtop:5ap0 ftopioperation=UPDATE | Y =

Common/Common:update.

5 [somema e

Valdte semantc |

Using Trasformation |Custamers: xlsAP_T0_COMMON_LPDATE 5

esin vaes |

4
L]

OEBPS/img/sca_selectwsdl.gif
Createa web servic for seces extema 1o e SOA composte

Hame: peprocessiclem_epr |
.

OEBPS/img/med_dvm1_ucmultival5a.gif
Source: readrile.wsdl
= <souces>
- mptivcct cment
(=48 imp1:Details
i —

¥SLT il writeFle. wsdl
<trget> (2
oot clment > &
for-cach 8
ns2:Details & =1
rs2tongnane <
detalls 8
wishtnane <
sz tanguage |
nzCaptal >

OEBPS/img/ns_email17.gif
 Edit Copy Operation

From

To

Type: [Varizble

Type: (bl

Varibles
5 Process
5 £ Veristes
- (x) inputvariable
payioad
-4 diert:process
© denito
> clentisubject
< dienbody
<{clentiattachmenttiame]
> dentiattachmenthimeType
< dienattachmentURT
(%) output¥ariable
(& Scope - Email_2

[Varibles
5 Process
Varisles
Scope -Email_2
Varisles
& (2) varNotificationRea
emaipayload
<> EmaiPayioad
< st FromAccountiame
@ meiiTo
< st ReplyToacress
< st iSubject
5 st iContent
© sttimeType
<>[nstiContentBody]
< sl ContentEncading
5 st Emibeaders
@ miice
@ sttt
< st otcationContext
(%) varNotificationResponse
(%) NotificationServiceFaultvariable

(] Show Detald Node Information

7] Shon Detaied Noce infamation

¥Path: [/cLient:process/client: attachuentiiane

xath: [eipare/nol:BoayPare(2]/nsl :BodyPar cliane|

OEBPS/img/med_async_ucfinaln.gif
Exposed Services Componerts. Extemnal Reterences

OEBPS/img/bpmdg012.gif
Client BPEL Process

Call
service
<invoke>

a1

uence>

<recelve>

a2]

03]

Isequence>

wspL
Client
Pariertink

-

Service BPEL Process

<receive>

<invoke>

<invoke>

<invoke>

<Isequence>

OEBPS/img/mapper_test1.gif
Source: sample.xsd
= <souces>
- exanpletemert
et
ez

¥SLT File: sample.xsd
<trget> (2.9
cxanplginent -
et
-2 o

/nsb:exampleElement/nsoitest2

OEBPS/img/med_multifault2.gif
B execute priorty [4[3] [] yalidate Syntax (x5D)

Callout To [<<Java Callut Class>>

Static Routing

Eore

<<Fiter Expression>> 7 T [mulbFaultjmulbiFaulsexecute

vaiate Semantic |

Transfomn sng |request | <<Transformation Hap>>

Assion Vaoes |

Synchronous Reply =0 [#Intial Callr*:rexecuteratpt @

Transform sing [reply <<Transformation Hap>> -l
Assign Values |

Fats +

Fauk skl -l

o [Fioki ColertefoutL

Assion Vaoes |

Fault [efaultt. ~| = [fieFauts: wirte

Trarstorm g [cpaquers <<Transformaton ag>> <]

H
=
x
@
Transform sing [Faulk s <<Transfomatonveps> <] B
]
&
Ll
B

Assign Valoes |

OEBPS/img/xba6.gif
Expression:

concat (bpus: getVariableData('inputVariable', 'payload’, ' /nsL: PurchaseOrder /nsL: OrderInto/nsl
+DrderComments') , ', Selected: Select Mamufacturing')

OEBPS/img/bp_mpr6.gif
tPage |offcomposie.xmi
source: posad
(% <souces>

& tnspurchaseorder

B OrderDate
@D
<o ShipTo
<o Name
< First
@ Last
5-<o» Addess
B country
< Strest
ey
@ state
@z
@il

5 tosComment
{3} <choice>
<o Thems.

|efcomposite. <l

| fasayrelo.bpel | Bl Transformation_2.xst | (U0

¥SLT Fllt invoice.xsd
<targe,
tnstlnveice
InvoiceDate -
tnst:Comment ks5
D o
ShippedTo <>
Name o>
Address <o

country B

rlright:trim{orclefttrim
rag and Drop tree riodes

(ncaFist L)

o functian or double-clickto ed
e e

2Zp <o
BiledTonccourt <>

Shippediters <>
Unshippeditems <e»-

OEBPS/img/bp_throw1.gif
Throw

Nome: [Throw_Faut_CC_Denied

Fauk Qiiame

Nemespace URI

Localpart;

Q

hdobalcompany.example.com/ns{OrderBockingservice

[OrderPracessorFaul

Fauk yarizble:

*Q

=

Cancel

OEBPS/img/ns_parlayx014.gif
User Messaging Parlay X Sample - Mozilla Firefox

e Edt Vew Hsory Gookmarks Toos Hep

P N EL e ——

User Messaging Parlay X Chat

Configure | Manage | Chat | Help

This sample application allows you to send and receive messages to multple channels using Parlay X web senvices. To use it, perform the following steps:

1. Click on the "Configure” link above.

2. Update and save correct web service endpoints and security credentials.

3. Click on the "Manage" link above.

4. Enter an address at which to receive messages, and a unique string to identify this registration and click "Start".
5. Click on the "Chat" link above.
6.
7
8.
9.

Use the form to send messages to any recipient address

Refresh the "Received Messages" area to display any newly-received messages

Click on "Start/Stop Receiving Messages

o stop receiving messages at a given address, enter the registration ID corresponding to that address (from Step 4), and click "Stop".

OEBPS/img/creatingapp_dict.gif
& Create Generic Application - Step 1 of 2

Name your appiication

- Eppication tame:
SR popkctionrime | (5
2 Poiettome e

CloaacpmratsrenimorineROROA

Aapication Package Prefix.
[
Apicaon Tenplate:
= Generic Application
Creates an sppcation which ncdes sl poject, Th project s nok
preconfigured with Teveloper technloges, bu can b customzed to ncude ny.
technolais.
Fusion Web Applaton (ADF)
Creates a databound ADF web applation. The appication constsof one prject

or the view andcotrolr components ADF Faces and ADF Task o), and
arctherprject fo the data model (ADF Busness Conponerts).

5 33v3 Deshtop pplcation

‘Creates an applcaton corfioued for budinga genrc Javs ppleaton. The e
pplcation il Ickde prject tha s preconfred o use Jave, Swng, and

[C<eed --{E

OEBPS/img/excel_tst_assgnd_tsks_wkbk.gif
& Microsoft Excel

s

B) Ee & Yew Dot Foms Dok Die Wndow b
RN REWEIPe L2 AR W e I)
P

516 a ~

N I I < D E F B H

1 |Assigned Tasks For User: 200001 Load Task Detale Fefesh

xpenseReportTas

Task Details (Avorove)(Reieet (" Undate) Susoend

Title: Expense Report Filed By wfaulk
Priority 3
Expense Id 102
Status

Purpose: travel

ReimbCurrency Dollrs

Costcenter. R

Expense Items

tem 1 100 typet
tem 2 200 type 2

OEBPS/img/rgs3.gif
Dictonary - OracleRules1 rules
Facts
Functions
Giobals

Decision Functions
= [53 Rulesets.

OEBPS/img/sca_error.gif

OEBPS/img/bam_alerthistmsg.gif
ORACLE' BAM Active Studio

a ;
J Alerts Histor
tory
Aertliame Message
Aert12 v Emais

Aert12) K Error

FreRu

Aert11 k Error caing

Aert1o Error caling W

Aertt k Error o the e

K Eror o

|/ Emai 0

 Error

k Error

| Emai

K Eror o i laundhing ta

b fog s om0

OEBPS/img/bam_ar_ems_create.gif
RACLE' BAM Architect

e

Hessage Sources

OEBPS/img/bp_mpr_sample1.gif
;,, ProcessPOZImvoice. bpel ﬂlﬂPnZInvnite.xsl

Source! po.xsd
= 3 <50UrCES >
- & DiscontinuedList
e tns: DiscontinuedList
- <@ tns:PurchaseOrder
L BE OrderDate
<e 10
<2y tns; CustomerContacts
<& Comment
e Attachments
{8} «choice>

<oy Items

=

¥ELT File: invoice. xsd

<target > z-El
tnsl:Invaice <a»-E1

IrwvoiceDate ﬁ

trsT:Comment ¢ab

OEBPS/img/med_xref_ucexref25.gif
= update priorky [4[3] [vaidstesymtax (650) o & o %

@ [<bor Eprosions> ¥ & [

< [sequentia ~]

Parameters : ljCOMMON_TO_... | B

Vaate semartic |

Using Transformetion [1oput

Assion Values |

Synchranaus Reply

=0 [Logger: e

Usig Transformaton [Outputparameters <l 56L.

Assion Vakes[ia.fi

e, Fletiame

(= [<<Fiter Expression>> v 2

EBsiERS

Vaiate Semantic |

Using Transformaton [InputParaneters 1 /COMON_T0_. = B

Assion Values |

Synchranaus Reply

=

Logger :Write

Using Transformaton (Ot putPerameters xE55_70.COM... < B

AasgnVohes cafeFieName

concat(LPDATE:

OEBPS/img/med_xref.gif
Transform
SAP system
value to
Common value

Em-< zozzoo

Transform
Common value
1o Sisbel System

Transform
Siebel System
valuo to
Common value

T
— 4

Transform
Common value to

Oraclo E-Business
Suite System value

Oracle

Transform Oracle

E-Business Suite
System value to
Common value

E-Business
Suite System

OEBPS/img/bp_hwf_rule3.gif
=¥ Rule3
Complete taskif irst assignee rejects request

[
PreviousOutcome.outcame

REEECT" and
PreviousOutcome logicalParticipant == "Assignes

THEN
call COMPLETE()

OEBPS/img/med_createmed_asyncinfc.gif
@ Create Mediator i

Mediator Component

Creste a mediator component to perform routing, fitering, and transformations.

<4

Nome: [Mediatort

Templote: [Asynchronous Interface

reste Composits Service with SOAP Bindings

Input:

{http:{fins.oracle.comfsingleString}singlestring

Qutput

{http:ffins.oracle.comfsingleStrng}singlestring

OEBPS/img/ns_image4.gif
Application Name.
Protect Name

(@ Project SOA Setting:

Composke Nae:
[Senditessagepro
Composie Template:
fEmpty Composte

(Composite With Business Rule:
(Composite With Mediator

(Composite With Human Task
(Composite With Spring Context
\Composits From Oracle BPA Blusprint

OEBPS/img/sca_compsen4.gif
elected Lperation:

execute

Select Message Type:

[$in

Select Propety From List:

ca.ma, Inbound, MQMD, Report, Generate. Msgld

Jea.ma,MQHD. AccountingToken

Jea.mg,MQHD. ApplidentityData

Jea.mg,MQHD. ApploriginData

Jea.mg, MQHD. BackoutCount

Jea.mg, MQHD. CodedCharsetid

Jea.mg, MQHD. Correlid

Jea.mg, MQHD. EncodingDecinal

Jea.mg,MQMHD. Encoding Float

Jea.mg, MQHD. Encoding.Integer

Je2.ma, MQHD. Expiry

Jea.ma,MQHD. Feedback

a.ma, MQMD. Feedback ApplcationDefined
MOMD. Entmat

Selected Praperty:

Help

OEBPS/img/bp_mpr_sub3.gif
[labstavoiceToPasubstMore2.xs!
YT il purchaseOndersubsyre.sed

exportCode -
<sequence> o

<seances
poscomment Qs
pootherConment s
o o1

OEBPS/img/med_reseq1.gif
7xm] version="1.0" encoding="uTF-3"7>
U:customerpata
xmins :CU="FtTp: //xmlns. oracle. con/Esb/Customerpata”
mns :xs1="hTtp: //www. w3. 0rg/2001 /~MLS Chema~i nstance">
<Customer T4>1</CustonerTd>
<CuSTomer Name>Group</CusTaner Nane>
<TypesGold</Type>
<DescriptisnyAccounting outsourcing partner</pescriptions
<Address>3228 Massilon Blvd</Addresss
<city>Juniser</city>
<State>Massachusetts</states
<2ip>01854 /2 1p>
<Colrtry>Us</Country>
<Phone>877-555-9876< /Phone>
<Status>Actives/status>
<Creditrating>s/CrecitRating>
<Di scount »0</Di scount>
<Terms>30nd</Terms>
<Enrollpate>01/1/01</EnroTlvates
<Lastorderdata>05/05/05/</Lastor derpates
<Currency>ISp</Currency>
<ContactName>Jan Forester</Contactames
<CONTactTitle>Ve Finance</ContactTitles
<ContactpPhane>877-555-5000</Cont actPhone>
<AccountRep>Geoff Seattle</AccountRep>
<CampaignRIting>2</CampaignRating>
<ReferedBy>Housten America Taxco</Referedey>
ustomerbatas

</cl

OEBPS/img/sca_spring14.gif
Components External References

OEBPS/img/bam_ar_ems_xmlform.gif
XML Formatting
I™ pre-processing

Hessage Specification
Hessage Element Name:

™ Namespace Qualfied
™ Message 8atching

Column Value
 Element Tag
 Attribute

OEBPS/img/bp_ts_anav.gif
 Projects a®Qv-E-
£ designer
D orace
3 e bl
3 scadie
&) testtes
= £ ogictest
& £ compenenttests
6] et
& £ ks
6] et
B2 messages
6] et
= tests
5] et
oS TestDelvery.xml
& et
' Applcation Resources
1 Data Contrls
 Recently Opened Fies

TestDelvery.xm - Structure.

> 5

T Tesvery ant

OEBPS/img/bp_hwf_callevents.gif
Event Defintion

Event;

Type:

“integrationlsecdisoalsharedyworkfioniHumanTestEvent.cd | O, &

(OnTaskCompleted
(OnstageCompleted
OnsubTaskupdated
OnTaskpdated

oradle.comjbpeljworkfow/taskServie taskassigneditessage

-

OEBPS/img/sca_deployerror.gif
e G
(03:58:25
(03:58:268
3ava.net
(03:58:26
(03:58:268

AIE pending iuternsl:deployment descripbor
) Sending archive - sca_validacionForts_revz.3. jar
M) Error sending deployment request to server soa:
UnknownHostException: eneacache.uk.oracle. con

M) #8988 Deploynenc incomplece. #888

M) Error deploying archive file:/C:/po/CredicCardValidacion/validacionForCC/

erverl [silverback:8001]

(oracle.tip.tools.ide. fabric. deploy. comnon. SORReoteDeployer)

OEBPS/img/xbuild16.gif
Body:

‘ L
-
TE You can Intersperse Valid XPath Expressions Within the Text by Enclosing them Within = <2% * and "%,

For e.g. <obpwsigetyarisbleData(input’%>,

Within the Delriters, Press Ctr + Space for Invoking 4Path Buding Assistan.

OEBPS/img/sca_plink9.gif

OEBPS/img/med_xref_uctransform1.gif
Source: SAP.wsdl
= <sources>
- topsaptnCollction
=88 rpisapnt
"o topid
PR —

o topcusomeraddress
3 topoperaton
0 topref1d
o3 topiogiaDel

5L File: Common. wsdl
<trget> (29
ot:Customers @&
Tor-cach 8
inp:Customer &8
ot <>
inp1:Name Ko¥ .
otiaddres o
ot:Operaton ko

OEBPS/img/med_xrefim_ucexref5.gif
4 Routing Rules

3 Operations

=0 receive

oty [(e sy)

Lol
a v $- R

Callout To [<<Java Callut Class>>

Static Routing:

= [Hecton/top:5ap05/top:operation

INSERT| = [Common/Conmons st

@ [omema e

Valdate Semantic -
Transform Using [request : xsl/SAP_TO_COMMON INSERT 5! -

Assign Valuss 3

OEBPS/img/bp_wl_prio_rpt.gif
Assigned to groun(s) Assigned to user(s) Priority Number of Tasks

Calfnnia Normal 16
steven Kol =
Supervior Norml 16
ieoop Normal E
Loanag=ntGroun Normal 16
Task Priorities Report
u
@
1
z
3
Y Whormal
H
£
E
®
N

Gaitemia Sz Loangenar
e Jeosper

OEBPS/img/ns_emailb.gif
Ele Edit View Search Navigate B

Boag 9® xE

Bun Refactor Versioning Tools Wind
Q-9 - hiddm- >-&

O @startpage | duSencEmailiithattachment

YFRTX0

(@] notfcationservice.nsd

- Notficatonservice xsd

2 SencEmailithattachmy

N T Bo———

b Application Resources
 Data Contrls

. Recenty Opened Fies

L——

Sencensivithattachmentseroy
&£ S0A Content 3 new o

£ cosses it roject source Pt

0 estsutes % Delte roject

=h 8 Eraprosectries

=

Show Overview
ol composie i

dh Vete SendEmallithatiachmentsProyor Cotrs
38 Rebuid SendEmailithatiachmentsProj or _ AIFS

B RunProject Fi1
& pebug
oAl
Organize Imports P

OEBPS/img/rules_bp2.gif
[ElautoLaonpplication.jws | efcomposite.xml | & AutoloanProcess.bpel (=) [component Palette | () [s]
- R DS @) boreLe (@) [[BPEL
Partner Links 5 Partner Links |/ | @@ [>]

 BPEL Activiies and Components
ER) - Activtiss snd Comosrets
i BPEL process

@ AT

<2 Wediator
{g receivelnput. |~ BPEL Activities.
5 on
= | sz I

(& compensate.

& ooty

.

sutoloanprocess._

By Fown

S

Zoom: | 100

—g— q ™.
5 BPEL Services

acian [T

OEBPS/img/xbuild25.gif
Bady:
concat (string('Hello, your telephone mumber']

OEBPS/img/sca_clientpolover2.gif
Config Override Properties

Edit Overrde Values

Name

Ve

Overrde Value

=
il ssuer.name
ser.roles.nclude

basi credential
. oracle.com
fabe

true

ok

OEBPS/img/direct1.gif
An external Direct AP client invokes a SOA Composite via Direct Service
and
receives areply synchronously

Payload

<asl:gefDepiFlemens
<ns deping=10

e “<has degtae>

<nslgefDentElement>

1
: .

=

Request

SOA Composite

External

OEBPS/img/soa_spring9.gif
Sattyspring i X[\l iconposte.rl

)

ding="uindous-1252" 7>
J. Springranevork. ory/schena /beans’
e e amenoek oo e hema /1

OEBPS/img/bam_dc_calcgroup.gif
5um

+ /R

Insert Field

Insert Expr

Group By.

nig

OEBPS/img/bp_wl_view_cust1.gif
B
match @ Al C Ay
TaskType Q
sssgnees [cauas =10 S}

Shareview Defiiton only @ Data

Assignees Q

OEBPS/img/obe_busevent1.gif
Type Chooser

Type Explorer
5 Project Schema Fles
2 credtauthorization xsd
5 & ordE0xsd
PN Neuwordersubmittedinfol

<> OrderCompletedinfo

<> OrderFaultedinfo
&, CustomerIfa05D0 x5
2 Orderifa0500,xsd
2. OrdertemsInfov0sD0.xsd
2 StoreFrontservic. xsd
2 Warehouse.xsd
2. ApprovalHumanTaskPayload xsd
2 ApprovalumanTaskworklowTask xsd
2. Evaluateprefenedsupperiule_OradeRues! DecisianServie_iTypes.ssd
2. Inemawarehouse.xsd
2 LegacyOrderBackingpO.xsd
2. OrderBookingRules.xsd
2 Orderprocessor xsd
2 Requireshpprovaiule_OrackeRues1_Deisonservice_ITypes.xsd

Type: | foracleffodemostorefront/entitissfevents/schemajOrderEO}enOrderSubmitedinfo

[5how Detalld ot Information

| o el

OEBPS/img/med_dvm_usecasedvm6.gif
Source: ReadOrders.wsdl
o2 <aources>
- mptizofonder
=48 impt:order
[erh
= impiibaseData
[
<o mpandard
<o mptsuneofies
o imptdate
& impLipricingData
< et
<o gt pricngDte|
< mptsamn

HSLT Fill: WriteCommonOrder wsd|
<target:
impiistoforder <
for-each & &
imptzorder 5
impt:id <o
impi:baseDet <01
implitp <>
impistandard @
impt:uniOfteasure <o
impi:date -
imp:pricingData <>
impfreightamount. <o
imp:pricigDate <e>-
imptaxAmount <o

OEBPS/img/med_xref_ucexref17.gif
Source: Common. wsdl

= <sources>
[g—
(=48 inp1:Customer
"o mprad
o tame
o ptacress
ohptparation

HSLT File: SBL.wsdl
<> %3
for-cach 8.5

trpararanetrs <2
bk _AoP_IHSTANCE k53
bk CUTOMER_ID 3
X CUSTOMER NAVE 3
dbiX_CUSTOMER_ADDRESS 5
i _OPERATION_TYPE €3

OEBPS/img/excel_jdev_pg_df_tsk_actns.gif
(Eapplication Navigator “yweboxml |] ExcelContre JexcelControlsPageDef.xml

(&8 $4)

. Ttesbinding-"taskIterator” 1a-"APPROVE
= B Bxpen: RequiresUpdateNodel="true” Action="invokelethod"
-2 fpplca MethodName="APPROVE" IsViewObjectMethod="false"
@6 DataControl="ExpenseReportTask"”
Instancellane-"bindings. taskICeLator. currentRo. dataRrovides”

IslocalObjectReference="true"/>
<methodfiction IterBinding="taskIterator” id="REJECT"
Requirestpdateliodel="true" Action="invokelethod"
Hethodiane="FEJECT" IsVieu0bjectiethod="false"
DataControl="ExpenseReportTask”
InstanceNane="bindings. taskIterator. currentRou. dataProvider”
IslocalObjectReference="true"/>

<methodfiction IterBindin update”
Requirestpdateliodel="true" Action="invokelethod"
Hethodiane="update" IsVieu0h]ectethor
DataControl="ExpenseReportTask”
InstanceNane="bindings. taskIterator. currentRou. dataProvider”
IslocalObjectReference="true"/>

<methodfiction IterBinding="taskIterator” id="Suspend”
Requirestpdateliodel="true" Action="invokelethod"
Hethodliane="Suspend"” IsVieu0bjectiethod:
DataControl="ExpenseReportTask”
InstanceNane="bindings. taskIterator. currentRou. dataProvider”

O

"taskIterator” i

False”

ction.xmi

False”
ol

OEBPS/img/bp_wl_reassign3.gif
TaskActions v| Reject Ap

Request Informtion.

Agsion

Escalate
Suspend

save

OEBPS/img/sampleapp.gif
== Ve [P HEx & [[ERE
V¥ [Thsisrde 1 3%
¥ [
I [OrderdnfoType.ordersta @, [matches =] [weroved” Q o #]-]|
P ovort [dseseanty Q[E s, Untedsuter, w Q) [v]|
THEN (Y
v e SRR
[al = —— L S
velReez BXe$

(oreahcasenhers) =] ((b W @ %X G &

(e es e E e L@ OO
R r— LY wa tlo]
[regssios Q [Foemem 5 wmosacemsssmimosonnnear Q)+l o]
Y e

et Test

OEBPS/img/ns_newjava_7.gif
) UMS Sample: Send Message - Mozilla Firefox
Fle Edt Vew Hgory fookmatks ook el

G @ (3 [0 rtistapnso: 001 fusermessagingsample/samplesend

UMS Sample to Send Messages

Sending message:

Sent massage vith id = 1624333698446 4A00EMbETONSAT A

Checking Status: Refresh

UMS: Message Status

Status for message d: £2423353894954440081be301347 Tbfa

Resipient #1: EMAIL ohn dos@@oracle.com

OEBPS/img/sca_spring7.gif
Components. Ex

- Servic Conganents
 BPEL Process

< business Rule

& Hnan Task

<5 pedistor

OEBPS/img/med_dvm_lookup1minit.gif
| Edit Function - lookupValueiM

Function Parameters:

dvmLocstion o[aw

sourceColumniame | |

bz [tovew |
[#ove pown

String Literals should be enclosed Wit or ", (Example: ‘e or "abe’

Function Descripton

Look up the target colurnn values in the domain value map(DVM) where the source colurmn has the
source value. The function returns an xml document fragment, containing the muliple vaiues

Usage: dvmiookupValuelM(dvmLocation s string, sourceCohumriName as siring, sourceVahue as
string, (targetColumnNarme as string)+)

Famnle durninskamahie MO -y "Oracls Swsternt IS ISAD

b

o[coel]

OEBPS/img/rgs4.gif
2] Dicianary - OrackeRules1 rus 7] Display New Warnings First

Message Dictonary Object Property.

SOK Warrings: 0 Last valdtion Tane: 7338117 AW POT
essages | Business Rule vaidation)

OEBPS/img/createuserulesdcpage_dict.gif
& Create JSF Page

Ente the e, drecory, s chasseatype orth D5 Page. Optondly refrence aPage
Tenglate o ncde £5 conert it pas,oraply & Quick St Loy 0 994 an coroee n
ikt o syt cononents.

[Tp——
] enderin e Dovice

ki Page Loy and Content

@ trkpage

O boce Tersiste

O gickatioyost

5Poge Inglmentation (U1 conponents re ot exposed i mansged besr)

) (e |

OEBPS/img/bp_wl_reuse_clspth.gif
® Project Properties - C:\JDeveloper\mywork\TaskListTaskFlowSampleWiewControlleri¥iewController. jpr

(@)| Libraries and Classpath
Project Source Paths O Use Custom Settings
AOF Model (@ Use Project Settings
AOF iew
e Java SE Versio
Business Companents L6017 (oefaut) [chense J
;”’"V“:' Classpath Entres:
[Broiivivg Exgort. Descrption [adduirary I
Y] Wl ADF Cortraler Runtine
E38 Module ADF Contraller Schema
- Extension] ADF Faces Rurtine 11 |
Javadac ADF Commen Runtime R —
- Java EE Applcation Wl 20 vieb Rurkine
159 Tag Lbraries] oS Runtime
- 25p Vsl Eor] M5 Runkine Dependencies
] Commans Beanutis 1.6
- Resource Eunde Commons Logging 1.0.4
RuniDebug/Profle il Commans Colections 3.1
Technclogy Scope ADF DUT Faces Runtime
] ADF DT Faces Databinding Rurkine

OEBPS/img/bp_sensor_pub1.gif
 Project Properties - C:UDeveloper\mywork\Application13\Project1\Project1.jpr X

(@)| Libraries and Classpath
& Project Source Paths (O Use Custom Settings Settings
- ADF Mode! (@) Use Project Settings
ADF View
- At Java SE Version
- Business Companents 1.6.0_17 (Defaul) [Change. |
- Compier

Classpath Entries:

Dependencies
. Deployment Export Description Add Ubrary.

€35 Hodde = i i 3R Diectory
Estenson

L fva“;;n - Mediator Rurtime
J5P TagLibraries n =

' Resourc bund [e)
Runfoebugrotie [oeoom)

Technology Scope:

OEBPS/img/bp_hwf_rule2.gif
Y Rule2
Pushback to previous assigee on rejection of request

[
PreviousOutcome.outcame

REEECT" and
PreviousOutcome logicalParticipant = *Assignee1’

THEN
call PUSHBACK()

OEBPS/img/med_xref_uc1.gif
59 Cross Reference(AREF)

Nome: [customer

Description

End Systems;
5ap_01
85776
878
icommon

OEBPS/img/bp_ht_approval.gif
He Edt Vew Insert Fomat Options Took Hel

o5 ow 00

Send | Contacts Spel Attach Secuity Save

Ftom: | Cherles Dickens <cdickents@mycompany.com> - Cherles Dickens|

v To:

2] workfow.actions@mycompany.com
v To| 5

Subject: | Action Required:Contract Approval for Jet Engine
FAABIU

Add comments by edifing the text between the brackets below.
Comments: [This coniract has been approved based on aftached information.]

You can also add attachments to the task by aftaching them to this email
Do not edi below this line--—--

Approve : [[NID]] : 8Senzw] 2K yT YLKTs+bTITUaxWSIC96bAHR vEXKKTo8 OgkopT1 QQuDallI7wvq0Tq3D 7D YCRCsC 1bol GMXGHCIUU T AOQudsRat VaXs
[(IR1]

OEBPS/img/med_xref_ucexref11.gif
@ Edit Function - populateXRefRow.

Define function parameters below:
Mote: Parameters can also be set though drag and drop from tree rodes)

y— “eustomer. weef” o

veferenceColumniane| "SA_01" =

e 7top: Sap0LCoLLection/ top: Sap0L/top: refld [movews |
[Crovepom |

p— g

ke toptSap01Callection) taps Sap0l/cop: 1

Inoce “URATE" o

Examples: §varl, §phxiparami, ‘b, "abc”
Press Ctl + Space for Invoking 4Path Bulding Assistant.

Function Descripton

Populate the column value in the cross reference table XREF) where the reference column has the

reference value.

Depending on the mode, the reference value may also be populater.

s ol

OEBPS/img/sca_deplconfig2.gif
Deploy Gonfiguration

Deploy Project]

Deployment Action

(A proett |

5\, Deploy Configuratior| -~ Composte Revision 1D 504 Configuraton Plan
Select Server Project) Do ot atach
Projectt -

Summary.

Select a configuration plan from the lst,

Current Revisian ID
fo

New Revisian ID
Lo

BPEL Monitor

lgnore BPEL Moritor deployment errors

ek composterevision a5 dfaul
[Overnrice any existing compostes wihthe sam reviion ID.

[[]Use the follwing S0 configuration plan for ol compostes;

Erowse

OEBPS/img/bp_mpr13.gif
otherwise g3

o> Ttems
E5-<o» HighProrityttems Accountiumber o>
ERCal AmountInDollars <>
5 Parttium Shippeditems <> =1
<> Producthlame. for-each &2
<@ Quantity Ttem B8 51
o UsPrice Productlame >
Kes ts:Comment Quantity <>
koS shipDate PriceCharged >

UnshippedItems <e>-

<o LowPriorityltems

OEBPS/img/bp_ht_vacreq6.gif
Staget
I

<Edit Partichant>

!

OEBPS/img/med_fileadap7.gif
&

Messages

Define the message for the Read Fl operation. Specy the Schema Flle Location and selectthe Schema Element
that defines the messages nthe incoring fils. Use the Bromse button tofind an existing schem defintion. If you
check Schems is Opaque, then you do not need to specy a Scherma.

Message Schema.
L] Netive Formt translation s ot required (Schemais Opague)

oy

URL

Sthema Element CustomerData b

OEBPS/img/bpmdg011.gif
BPEL Process.

<scope>

call
service
<invoke>

a1

‘Wat for
Callback
<receive>

a2]

wsbL
PartnerLink

—

Service BPEL Process

<receive>

<invoke>

OEBPS/img/bp_mpr7.gif
{5 <sources>

<target>
<o tns:PurchaseOrder

tnstnveice >

i OrderDate. InvoiceDate BE
e ID tnst:Comment ke¥
<o ShipTo D

ER ShippedTo -1

< First Neme <o
elast Address <o

=< Address - country BE-

i country Strest <o
<@ Strest Gy <o
ey State <o
@ state 7p <o

@ p

BiledToAccount <> 21

OEBPS/img/bam_alert_para_cfg_cr.gif
Report Parameter Values
If the report selected above contains any report parameter, spedify
corresponding value belon.

Brey [/

Paramets Name Value

OEBPS/img/ns_image34.gif
tner Links Partner Links "%

i

Natificationservi.

ure @

!
@

receivelnput

i

3
zoom:[100fF] ———T—= @

Design | Source | Histary

Deploynent started. - Oct 27, 2008 1:55:46 PH

Target placforn is (Weblogic 10.3).
Running dependency analysis...
Building. ..
Deploying profile...
=

Wrote Sk Fita 1o /bcratch/atnet gdevel ’%sageApp/sEnd
Deploying sca_SendMessageProj_revz.0.jar DERlOyment messagesic1 e, con:;
et s deptoyes the ardmron, Fedpanse Code ¢ 200

Elapsed tine for deploynent: 14 seconds
- oct 27, 2008 1:56:00 PH

Deploynent finished.

e Erensians [FeeaBak] vepioymers [ESORIIISI 5T @0

OEBPS/img/bc_http.gif
HTTP Binding Wizard - Step 4 of 6

HTTP Binding Configuration

The HTTP Binding Adapter supports two peration types. There is one-way operation typs that sends o receives
messages from an HTTP(s) endpaint, and a request-response operation type that sends and receives input and
output messages to and from an HITR(s) endpont

Type: Service

Operation Type: (3) One-way © Request-Response:

Operation Name: [5end

Vert

Paylosd Tvpe: [urkencoded

OEBPS/img/soase010.gif
O s Etsare: b e s

Upload Certifcate: One time upioading 1
of each user's cerlfcate and private key
(user action)

Certificate upload

by using their private key to digitally sign
atask update

Browser

Task

Private Key | + [oTask

= Signature H

Validate: Human workflow validates the
cerlficate used for evidence creation with
the Certiicate Revocation List (CRL)
Issued by the Cerlifying Authorities (CAs)

CA, CRL | o]

Nonrepudiation: Prove that the user
generated the signature by creating
he content from the user certiicate
and signature

[Workiist Application Admin Scroen|

Storea |, [_Storea
Cerificale Signature

=| TaskContent

Human
Workflow

OEBPS/img/bp_ht_advrules.gif
Configure Assignment

Task wil be rauted ta particpants using external res

Rules Ditionary: HumantaskiRules 7

Creste a ules dictionary to store advanced
s,

Rules should nat be created unti the
parameters section s dfined.

OEBPS/img/sca_compsen3.gif
& Composite Sensors: mybpelprocess_client_ep [x]

+/7%

Composite Sensors

Help oK

OEBPS/img/ns_createdevice.gif
ORACLE' User Messaging Preferences

Messaging Channels

My Messaging Channels

Configure channes to receive your notfications and dlets.

Name

vew~ [@create LEdt RDoete A Detach

) John Persanal Emal

) Business Emal

(] Business b

) Busiess Phone.

‘Add Channel

*Hame. | Johnis Public Emall
*Type [EMAL v

* address [john@msn.com

Defaut [set as default channel

D it use this chanel or BPEL Liser Notfication or Human Workflow;
itis ot stored in the dentity management system and wilnot work.

ok | cancel

OEBPS/img/bp_mpr_sub2.gif
B abstnvoiceToPosubstMorez.xs!

*aLTFie
a5 comment.
<@ CustomerD
£ < StippedTo
= sitype
B exportCode
sws <sequence>
sws <sequence>
<@ Shippedtems

OEBPS/img/med_xref_ucexref26.gif
=0 updateid

[vaidate syntax (50) o = b %

E

<<Fiter Expression>>

¢ Rl

< [seauentil <]

Vaiate semanic |

Using Transformaton InputFarsmetars : xs{COMMON_TO

Assion Values |

3
Ik

Synchranaus Reply

=0 [Loggers e

k=3

Using Transformation OutputParaneters

AasgnVohes cafe.FieName

xsliseL_To_com... | B

ncat(UPDATEL

OEBPS/img/med_reseq2.gif
< Mediator

Name -
wsb UL mitcpwsd @
ot Type e

Resequence Level: [oporations 7]

OEBPS/img/fod_wire2.gif
Bo
arderprocesso..

process

OEBPS/img/bp_mpr_sample2.gif
[<2 ALEaChments
7 {3} <chaice>
[=h- 4@ Ttems

=8 m Ikem

& Parthum

£ Quantity
<ay Price
<er Currency

Fand ey

<@ Productham||

E‘A‘] tns: Cnmmer]

M

Leerns <e>-{=|
For-each @E!
Ttem @ =

ProductMame e
Quantity <o
PriceCharged <o

OEBPS/img/sca_approf4.gif
Deploy Project2

Deployment Action

5\ Deployment Action | Selecta deployment action from the list below.

Deplov Confiquration)

S summary Deploy to SAR

Deploy this archive to SOA configured Application server(s)

OEBPS/img/bam_mon_intstruc.gif
PELProcess1.bpel - Structure

+7%
BPELProcess! Montor
-3 Monitoring Objects
{23 Business Indicators

253 Intervals

I

[Counters

OEBPS/img/xba5.gif
Expression: v

concat (bpws: getVariableData('inputVariable', 'payload','/nsl: PurchaseOrder/nsl: OrderInfo/nsl
Sordertommencel 1)

OEBPS/img/med_xrefim_ucexref10.gif
‘Source: EBS.wsdl
= <souces>
2 ial.request.

&
<@ npt:Order
<o dbiOutputPerameters

Ko3 doie_aPP_ID1

Ko3 dbie_APP_ID2

)-8

=

LT File: Logger wsd|
<trget> (23
doupuparaneters © &
dbix_APP_ID1 Ke¥-1
pattr)
dbix_APP_IDZ Ko%=
pattrey

OEBPS/img/bp_invoke.gif

OEBPS/img/med_xref_ucexref16.gif
olectonftop5apO1topioperation=TNSERT | §P =2 CommanCommans inert Sequential ~
valdate Semantic 8
Using Transformation | Customers : xsj54P_TO_COMMON, (1]
Assign Vaes B
lectionjtop:apt toproperation=UPDATE | ¢ = [CommonjCommontiupdate Sequential ~
valdate Semantic 8
Using Transformation | Customers : xsj54P_TO_COMMON, (1]
Assign Vaes B
sctontop:5ap01 opicperation=UPDATEID!| P = CommoniConmon: updateid Sequential ~
valdate Semantic 8
Using Transformation | Customers : xsl/SAP_TO_COMMON. 1]
Assign Vaes B
olectonftopi5apOtopioperation="DELETE'| §P = Common/Common dekete Sequential ~

Valdate Semantc
Using Transformation

Assign Valuss:

Custormers : sl/54P_T0_COMMON.

OEBPS/img/bp_ts_partsection.gif
® Select Assert Target |

Select Assert Target:

EpErrTr—

<o stiloanApplication
e stissn
@ stiemal
e sticustamertiame.
<@ stiloanamaunt
- slicarbiodel
<@ sticarfear
<@ sticrediRating

Selected Assert Target:

LoanrokerRequestitessage payload

OEBPS/img/bp_ht_humantask.gif
® Create Human Task

Scope Nare: [ApprovalHumanTask.

Gobal Task Varisbl Neme: [Fumantaski_1_gobalvariable

This verisbl contains a system variables and

parameters

ourer 2

entication ke &
Optional valu such aspurchese orcer e

dentry Context B

Applcation Context 3

(5 Cloar o pfond and recrests

O se exsting payiosd

OEBPS/img/med_async_uc5.gif
ColAsyncMedator.jws__|ofcomposte.xml | <G Medator.mplon | ifilsinglestring Toprocessxst | 0 0~

Source:Medtor s ST e sevegPELProcesz sl
& (2 <sorces> adwoet> 35
Ea—— dentprocess o> 5

@ coriput dntinput o>

OEBPS/img/med_xrefim_ucexref6.gif
@ Edit Function - lookupXRef

Define function parameters below:
Mote: Parameters can also be set trough drag and drop from tree rodes)

refLocation |order.xres” Q|
referenceColumnilame| "SAP_05" Q]

[cferenctoie |/vop: ap0SCol Lestion; vop: 3ap05/cop: id tioveu
resdbcopton £adae)

Examples: §varl, §phxiparami, ‘b, "abc”
Press Ctl + Space for Invoking 4Path Bulding Assistan.

Function Descripton

Look up the column value in the cross reference table(XREF) where the reference column has the
reference value. (

1f no value is found, an exception s thrown if needException is true.

Usage: sreflookup KR ef(refLocation s string, referenceColumnNarme as string, referenceValue as
s ranh i Fccentinn as hacl

[| o [cma]

OEBPS/img/ns_newjava_6.gif
UMS Sample to Send Messages

Sending message:

Sent massage vith id = 1622440098446 44008 b E395 2855t

Checking Status: Refresh

UMS: Message Status

Status for message d: £22494438995444008be305 32e5afa

Recipient #1: EMAIL john dos@@oracle.com

OEBPS/img/direct2.gif
1. An external Direct AP client invokes a SOA Composite via Direct Service
and
2. receives a reply asynchronously

Header
<wsaMessageID>
<wsaBeplyTo>
Payloat
<ns1:gstDeptElamant>
<as] deptno>10
<ins1 deptno>

SOA Composite

OEBPS/img/compedit.gif
File Edit View Application Refactor Search Navigate Build Run Versioning Tools

GoEag 90 XER Q-0 'H- Adm- > -&-14

ol &

WeblogiFusenOrderDena

~poeds @@ VB |

atn ~

D estutes

B2

=

£ taskedior

30 Busness Rules

-5 ApprovalmanTask,cor
g ApprovabumenTesk ta5

-] BAM_OrderDO_bam.jca
(&l Ban_orderpO.wsd!

BAM_ProcessTimeDoO_t

BAM_processTimeDO_EC

(@] BAM_ProcessTmeDO.ws
ol composte.sl

- [e] CredeCardauthorization
(@] Evaustemreterredsuppl

G EvaluatePrefertedsuppl
(o] Evaustemreferredsuppl

- Fuimentsatch jns ca
(&l Fufimentatch.wsd

5 Fuliorder.componertTy

o sasee | Ed

1 Appcation Resources

1 Data Controls avi

. Recently Opened Fies

(5]

Iappication

omposite.xm - Structure

=9} OrderBookingComposite
£ BPEL Processes

Business Rukes

edators

Human Tasks

Servces

Refarences

£ Test sutes

[oEcomposieami |

Window Help

=

YIVHBXO | aXkIEDd

Composte: OrderBookingComposite

e
PartnerSupp!

| Subscribed: |22

orderprocesso...

process
processRespon
processFaul

Publshert
OnTask Assigned

Operations:

process
processRespon.

e
NotificationSer.
Operations:

sencllNtifation
sencF axlotifca.
sendoicehlotf.
sendSHISNoifc.
sencPagerhioif
sendEmailotfi,
sendllatifcation
sendlotifcation

Operations:

Wit

Operations:

Produce_lessa,

s

OEBPS/img/ns_email18.gif
ite.xm__| 5% sendEmailvithAttachments.xsd W

v-R-o-s-a % 3 tamE @)
v
Assign ®)
Lttt 38 34
o ™
string(textjntn; charset=UTF-§) varNotifcatiorRea/EmeiPayioad/E... |
B, Expression (%) Variable
{rng(NotcatonAtiachment) varotfcatorReq Emipayioad
[B, Expression (%) Variable
ipws:getvariableData(inputvariabl... varNotificationReq/EmaiPayload//E. 1
(x) variable (x) variable
putvariable payload/fdient:proce... varNotificationReq/EmailPayload//E.
() Variable () Variable
putvariable payload/fcient:proce... varNotificationReq/EmailPayload/E... | |
& Expression {7 variable
oot a |
Variable Xath
varotfcatonReq/EnalpayioadEmaiPeylad s Contents :ContentBody,

< S ———] 5
Jscope sequencefassin Zoom: | 100 ——F——— @

OEBPS/img/bam_dc_calcadd.gif
Calculated Fields

ame %

dd

Parameters

© Calculated Fields

OEBPS/img/fod_scaproper.gif
|Applcation Navigator

WebLogiFusinorderbeno
= Projecs Sav-
B2EX120rderGateway
b
CrediCanduthorization
o ————————
Orderapprovaktmanask
= (5] ordergoskingComposke
=3 50A Content
Eatem
& bin
£ dataobets
3 templtes
G buld_sca_conposte.smi
[orderbooking_deployment_plan.
scobuld properties
£ testsutes
Sxsd

OEBPS/img/rules_bp3.gif
| ffcomposte.

wutoLaonigpication jus autoLoanProcess.bpel |

wew @
—

recelvelnput

}

Business Rule

ooy (D —cd &

GetCreditRating

Select a dictionary which contains decison services to be used in tis activty, or
create adictionary which wil launch the Business Rule Designer. You wilthen be.
able to start authoring ules.

main - fprocess/sequence

Design | Source | History

OEBPS/img/ns_emaila.gif
|ofdcomposite.xml |
(@hpplcation Navigator | (8] s SendEmaiwithattachments.bpel | [2lSendvessageapp Overview | ffgeon ()=
o ———

= projects _ av-E-|
= 3
5 Busness Rules
off composte.sml
- [e] Neticstionservce.wsd
2 NotFcationservice xsd
By Sendemalwithattachments. bpel
& SendEmaiWihattachments.comp

£ sencessage.componentType
R ——F
. Applcation Resaurces

 Data Contrels av !
1 Recently Opened Fes

composite i - tructure

,E

5 off SendemailwithattachmentsProj
3 BPEL Processes.

OEBPS/img/sca_clientpolover3.gif
Security *R7

oradlefbinding_authorization_denyall_polcy
oraclefbinding_authorization_permital_polcy
jbinding_per ation_poli

oraclefuss_hitp_token_over_ssl_servie_polcy.
oraclefuss_hitp_token_service_policy

Management +x7

oradlefiog_polcy

OEBPS/img/bp_ht_assocht.gif
Human Task

S

o«@

'y

m man

recelvelnput

callbackClient

OEBPS/img/med_dvm1_ucfinal.gif
Exposed Services Components External References

.

OEBPS/img/sca_spring8.gif
Update Service [
E3B Service {02
Updete an %8 service.

Neme:

JNDIName: [scaservi_efb_ep

JAVA Interface: orace.mypackage myinterface Q@

OEBPS/img/soase020.gif
Oracle BPM Worklist Workfiow Services

Work ltems| >
Complote Task

>o>o>o
!

Get Weekly ‘Task Details

Productivity iston
oductly and History

(&0

OEBPS/img/ns_create.gif

OEBPS/img/bam_mon_bistruc.gif
EBPELProcess1.bpel - Structure

o5

BPELPracess1 Moritor
=23 Monitoring Objects
& E5[Business Indicators

& ToputkPt
=23 metrics
InputLength
=23 Snapshots
calbackclient

Intervals
Counters
Sensors
[sensor Actions

OEBPS/img/bp_tdf_simpwizmenu1.gif
Expand
(%) variables.

48 Partner Links.

& add Catch Branch

& dd Catchall Branch

% Add OnMessage Branch
6§ add Onalarm Branch

4§ add Compensation Handler
& Auto-Generate Task Form.

48 Open Component Editor,

OEBPS/img/med_createmed_onewayinfc.gif
@ Create Mediator 4

Mediator Component '@
Creste a mediator component to perform routing, fitering, and transformations.
Nome: [Mediatort
Template: y Interface Je

reste Composits Service with SOAP Bindings

Input: [{bttps/fxmins.orack,com/singlestring}singlestring ®

OEBPS/img/xbuild26.gif
cat (string{ 'Hello, your telephone mmber')<)

OEBPS/img/obe_busevent2.gif
Add an Event

Define this evert's type:

<e> Element [{joracleffodernojstorefrontjentiies/events/schema/Or derEOHNewOrderSubmitedinfo | @

Name [NewOrdersubmited

OEBPS/img/ns_newpojo_9.gif
sample-echo-web.jpr [uipd

ndow Help

>| Oracle JDeveloper 11g Release 1 - usermessa ple-echo.jws : usermessaging
File Edit View Application Refactor Search Navigate Build Run Versioning Tools

BeEg 90 XEm0 O 8- &siddm- > -&-14

Elappication Navigator

(@Resource Falette
@-(a@
Wy Caralogs
IDE Connections
& Applicaton Server

) usermessagingsample-echo

rojects =@
8
=03 Applicaton Sources
- oracle.ucs.messaging
=@ sample
[Accessroimegistrationservie
=63 Web Comtent
& Cawes-ine
B webxml
B weblogic.xmi
8] ap.umi
@] indexumi
B stlesheetcss

Appication Resources
Dara Controls R 7
Recenty Opened Fies

usermessagingsam ple-echo-web pr - 5. (5]

OEBPS/img/bp_ts_assertarg.gif
% Select Assert Target

Select Assert Target:

[ET toanservceRequesttessae
=] payload
5o trstoanpplcation
o sy
<o tnsiemai
e tszcustomertiame

> tnsicarModel
<@ tnsicarvear
<@ tnsicredtRating

Selected Assert Target:

LoanericeRequestessage.payload|tns oanApplication/tns:oesnAmount

OEBPS/img/sampleapp_dict.gif
(x) Globals. (%) Globals
{2 Bucketsets.
Ruesets s s i e I
0 T thangess M
[ty | C—) @
B reset3 § |0 s Gz G mes @

L e [oeonsry Object [prperty T
B8 oo smadton, tfudrst, R NGt AT ToRTIT Voo
B rurco720,deatpe memathfortest s S =i tesfRueset_3fRl_S{CustomefTea(2YEseesson Vaue
| & RUL05711: The epression camt o blork. tosRueset 3Rl JOncerTes(ZYExgresson{s)
| & RUL0S711: The expression cannot be bk, test/Ruleset_3{Rule_3{Order/Test{2YExpression(2]
& RUOSTLL The epresan comotbe bk, tesfRueset_3fDecsonTabl 2{Condton(3]
) RULOS712: The value "Target”of "Acion” canmot be blank, Slect & vabe. testRuleset_3{DecisionTable_2/Acton(2] Target
B & Rurcs711:The sgressio cannt o ok i avesh kg rdeset namefde_{Patar
|8 ruvos7us:The coressin camet o . o' o resl bng s nonef_Paters

OEBPS/img/ns_email15.gif
& Edit

From To
Dype: v 3| | e e 3

Variatles [varibles -
5 process 5 process

B3 varisbles Variables

() inputvariable 5) Scope - Email_2
payload Varables
5> clentiprocess () varNotificationReq
© dentto EmaiPayioad

> clentisubject
< dienbody
< dietiattachmenttiane
<]
< dieaftachmertURT

(%) output¥ariable

(& Scope - Email_2

-4 EmaiPaylosd
< stiFromAccountiiame
<> nstiTo
< nst ReplyToaddress
< nstiSubject
-4 nstiContent
< nstibimeType
<>{nsTiContentBady]
<> st iContentEncoding
<> st iEmaiteaders
<> nstice
<> stiBec
<> nstiNotficationContext
(x) varNotificationResponse
() NotificationServiceFaultvariable |

(] Show Detald Node Information

(] how Detaled ot Information

wath

/client:process/client: attachnentiiineTy]

wath

OEBPS/img/soase021.gif
'
S ween s)
1
)/ Task !
/ Metadata Store. '
Sorice sorvice [| 1
V[portal
1
User Identit H
e whie | 53 sy
Process Workflow Service 1| | Oracle BPM
Sorvico [~ | Sorvices Workist
component [4—] -
Task Task. N
Service Query H =
s ||| =
| |Emait clgnt
|
Vuicacaa tosc | [vatteatn] | 1
DS Assignment | | “Service” | | 1
task Metadata Sarvico N
bl \ '
] 3 i
dentity Notiication
Management Channels
oD E-mail
oap Voce
s SUS
Other user I
drectones

OEBPS/img/bam_mon_biconfig.gif
& Business Indicator,

]

Metrics:

+/%

Name
InputLength

Data Type
decinal

*Path
bpwsigetvarisbleData(’

Snapshos:

+*/%

Activiy Name
P calbackclient

Evaluation Events
[activate]

OEBPS/img/sca_spring6.gif
[}

Service Type Option

Shauld service be expased a5
 ieb Service or an EJ5

Service?

web Service

OEBPS/img/bam_odi_eds.gif

OEBPS/img/bp_portlets12.gif
R@v-E-|

g% oracle_wsrp_v1_types.xsd
& oracle_wsrp_v2_types.xsd
wsrp_v1_bindings.wsdl
[@] wsrp_v1_interfaces.wsdl

(@] wsrp_v1_service.wsdl

V1_types.xsd

=[] Connections
=1 & WSRP Producer
=)@ WsrpPortletProducerd
= 1iorkist |

OEBPS/img/sca_deployshare1.gif
\UDeveloper\mywork\SOADemoProject\SOADemoComposi

ProjectSource Paths (O Use Custom Settings Customize Settings
ADF Hode! (©) se Project Settngs
ADF View
poud Deployment Profes
Business Components
Compier
Dependencies
! m & Create Deployment Profile
£28 Mode:
vt Click OK to create your new deployment profile and immeclately open i to see s configuraion.
Javadac archive Type:
- JavaEE Appication | (14 Fie
35P Tag Libreres
- 35P visual Editor Hame:

Libraries and Classpat| |shared_archive

- Madue Configuration

Rosoucotunde || 25PN

= 2P e,

Technology Scope:

- RunjDebugiProfie Creates a profie for deplaying a simple archive to the fl system. The JAR file cansists of & JAR o

=

OEBPS/img/bp_ex_sequence.gif
L

Drop Activity
Here

b5 @

OEBPS/img/ns_image21.gif
peiws |fScompositexml | & 8PELProcesstbpel | g

<schema>

targetNamespare

it fxrmins.oracle.com/SendMessag

brocess S

processResponse

subject
@

string

OEBPS/img/fod_componentpal2.gif
LEANT-R JORN-§ §-1 &1

Exposed Services

Components

Composie: OrderBookingComposite

External R

508,

@

- Servie Comporents —
& BPEL Process
< business rule
& Hman Task
<& Mediotor

5 Spring Context
- servie Adsoters
& Aor-ec servie
G 40 acepter
6z

<& b adspter
5 Database Adspter
4 OvectBinding

G £ service

3 il Adspter

5 F1P Adspter
HITP Binding

4, 5 adspter
G M Adeper

2 rade Appcations
@ socket Adspter

5 hid Pty Adspter

OEBPS/img/bp_ht_vacreq7.gif
Specify attributes using:

() Yalue-based

(O Rule-based

erticpant Names

Idertication Type

OEBPS/img/bp_mpr_sub5.gif
[HlsubstTestMore.xst

KSLT File: purchaseOrderSubstitore. xsd

5 (3 <source <targer> (3 |
£ o poipurchaseorder <&
= orderDate B2
@ salesares ® o>
=@ shipTo @ <o>-
- billTo @ <o>-

for-each &=
i sort &

OEBPS/img/med_xref_ucexref27.gif
=0 updateid priorky [4[3] [vaidste symtsx (650) o & o %

= [<iter Expressin>> v [o [seentil <]

TS
Using Transormetion Inpuparameters s sliCOMMON_T0_... +] B0
[e |- |

Valdate Semantic

Synchranaus Reply =0 [Logger e k)

Using Transformation OutputParameters : xslfs6L_T0_CoM... v | B

Rasin Vakes ica e Fieame i concat(UPDATEL..._~) (5]

& [<ebor Eprosions> v R 3 ey

Valdate Semantc

Using Transformaton Inputparsmetars : xs{COMMON_TO

Assign Valuss

Synchranaus Reply =0 [Logger e k=3

Using Trnsformaton (Ot putPeraeters 3E55_70.COM... < B

AasgnVohes cafe.Flehame

OEBPS/img/bp_assign.gif

OEBPS/img/bp_hwf_rule1.gif
=¥ Rule1
Allowearly approval of low-cost expense requests
[
Task payload.expenseRequestamount < 100 and

PreviousOutcome.outcame PPROVE"

THEN
call COMPLETE()

OEBPS/img/ns_newjava_9.gif
opment Build - userm

gingsamp

ho.jws : usermessagingsample

fle Edit View Application
B=ma " | ¥
Elapplication Navigator

] usermessagingsample-echo

Projects @ V-
G usermessagingclient-ejo

Application Resources
{23 Connections
1 Descriptors

Data Contrals
Recently Opened Files

sermessagingsam ple-echo ju

Search Navigate Build Run Vers

i DB AR

Dl usermessagingsample-echo-cjb
[l usermessagingsample-echo-web

Eldtessages - Log

ing Tools Window Help

Resou =]
@-(8 @)
My Catalogs
1DE Connecti
@ Application se1

Feedback [DE]
1)

c

OEBPS/img/sca_compsen6.gif
orderprocesso...

process
processRespon
processFault

OEBPS/img/bp_mpr12.gif
(g3 <sources>

<target> [
& <o trPuncheseorder stitnvoie @ &
B8 OrcerDste InviceDate
D trst:Comment £53
& shpTo o
5o Name Shippeco <> &
<o st Name <o
oLt advess 21
<o addess o3 country bt
B courtry sheet >
<o street ciy o
oty state <>
<o state 2p o
wn iledToRccount >
& @i choase 8 &
<ot when 8-
<o addess Accounttimber <>
o tosComment othernise 8 &
{8} <choice> Accounthiumber <e>
&< Hoccount AmauntirDolers <>
<o Accountfiber Shippeciens > 21
&< Branchiccount tem 28
<o Accountfiber Unshippeditems <o
<o Tiams

OEBPS/img/bp_wl_vacrules2.gif
ORACLE' BPM Worklist

Hy Rules
© Rules > a [F y 5
Vacation Period
“Vacation Period (Enabled)| Remove yourselffrom automati task assignment by enablng a v
Hy Rules Optionaly, more spefic vacaton rles can be reated under "My Ru

[Enable vacation period

StartDate. [iar 21, 2009

&

EndDste [var 27, 2008

OEBPS/img/excel_jdev_vfy_wkbk_wb_cnt.gif
File Edit View Search Navigate Build Run Refactor Versioning Tools Window Help

BoEg 90 Xah 0 -0 5 - sddw- > -&-14

@ application Navigator | [“Jagplcaton server Navigator

(5]

FDIExpenseReportapp

&

 projects
ExpenseReportConposte
ExpenseReportTaskFlow
23 Appcation Sources
-3 Web Content
3 images
(3 wes v
[acfcconfig sl
o P ——
faces-confg.xnl
o] nidad-confgol
B webl

B weblogcxmi

[c——
[ExpenseeportTask_TaskFlw.srl

2] ExpenseReportTaskcd s

& Logipage i
[~

i Applcation Resaurces

= Data Cantrols

= Recently Opened Fies
e
p—

(2 wetlogc il

1) ExpenseReportTask TaskFowocnl

<>

.o

| & ExpenseReportTask task

INFfweblogic xm

i /D Data/ devProjects{OfficeDermojFDIEXperiseR =porApp ExpenseR eportTaskFIon]pubic_HemifWEB-

|

T pning dependency analesiz

OEBPS/img/bp_tdf_binding.gif
Select a data collction and the acton you want your controltointiate. The control ntiates the action
onthe data objects o the selected coliction

Data Collction:
5[Projectl_approvalhiumentask
&-[E] getTaskDetaik(string, String, String)
=& retun
=B

Select an Iterator: [tasklterator ~] [tew

Operation jpdateActon(iring)

[l o o kerators n page defition

Parameters

Name Type value option

acin fovedag g —

ox_

OEBPS/img/rgs1.gif
& Create By

usiness Rules

Business Rule

A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nfluence the behaviar of your business

34

O geae

Ditionary) Import Dictinary

Specifythe name and package for the dictionary that wil be created.

Neme:

Package:

projectt

Project

Ci\TDevelopermywork| Test2 project 1 Project Jpr

InputsfOutputs:

Direction

OEBPS/img/bp_tdf_email8.gif
£ Common

o1d pall

Rendered: [<default> (true)

Halign: [<default> (start)

vagn: [<cefault> (ricde)

Layout: [<dafault> (default)

EAppearance
Helign: [<defaul> (start)
valign: [<defaul> (middle)

Layout: [<defaul> (defaul)

Shartpesc;

Rendered: [<defaul> (trus)

EiStyle and Theme.

Theme:

Styleclass:

Ininestyle

[NENEIES

Coor:

Font:

Sie:

B

It

Bold:

Horizantal Algn

Decoratian:

Vertica Algn:

e

EBehavior

PartialTriggers:

EAdvanced

Binding:

ClentComponent; <default> (fabe)

AttributeChangelistener:

OEBPS/img/bp_ht_exp.gif
Task Duratian Settings: =

FxedDuatin] 0oy [0 3] tour [0 [2] s [0 [2]

Maxinum Escalation Levels [0

Highest Approver Tite:

oo Bt v s
s 0t g] 0[5 e o 5] s [0 5

OEBPS/img/med_svcmedconnect.gif
Exposed Services

@ = Readcum

ReadFie

Components

External Reference

WiteFile

WiteFile

OEBPS/img/excel_create_adf_task_flow.gif
& Oracle JDeveloper 11g Development Build - FDIExpenseReportApp. jws : ExpenseReportComposite. jpr

le Edit View Search Navigate Run Debug Refactor Versioning Tools Window Help
BoEg 90 Xam 0 0 % - Ailde- > - d-@FEE@ PIBT
ppiication Navigator =]

&= FotExpenseReportapp ~&E-
= proecs GEY2
d
L) Bl expenserepartiasiion
5 22 ppleston Sources
(=1l ExpenseReportTask.
loacData_Data_actionType_custamactions C
loacData Data._actionType_systemction
(5] loadDats_Dats_actionType.xml
loacDsta_Daa._atachmentType_stachment
(] losdDats_Data_sttachmentType.xml
loacData Data._calbackType.calbeck Opera
(] losdDats_Data_calbackType.xml
loacData Data_commentType_userComment
(] losdDats_Data_commentTyps xml
loacData_Data_dspleyIfoType.dipleyifo.
(] losdDats_Dats_displayInfaType.xml
loacData Data EvidenceType_eddence_Ope
(] losdDats_Data_EvidenceType xml
loacData_Date_ExperseltemsType Expense. | [ElMessages Log
(] loadDats_Dats_ExpenseltemsType.xml
loacData Data derttyType._essigneeGroups
(] loadDats_Dats_identityTyps_assignees_Ope

loacData Data denttyType._essigneelcers_

OEBPS/img/bp_wl_reuse_report.gif
Reports Unattended Tasks Report
Provides an analyss of tasks sssgned to users roups or reportess’ groups tha need attention

s because they have nat yet been acauired

£] nattended Taske ReparE

(] Tsks Prionty Report pesignes (e s Group ¥
(5] Tasks Cyck Time Report

Greston
[E] Tasks Productivity Report Date @ to [£Y
@ o T Dstibon Fepot

s E &

Tk
State | AT -

prioity [y v

—

OEBPS/img/med_mep6.gif
Gllent

Invoke
Null Reply.

One-Way Target

R ol
Sempionas
e
e s
| et
|| Reply-
o
Da—
e [
Nuil Reply phaemonous
S i
S s— e
Exception as or Component
Cd
incka
oy SR (S —
e [s
s e e

OEBPS/img/bp_wl_history2b.gif
Eistory

o) T Snepshot | [l Future Particpants (V] Fulltask actions

0 Particant action Updated By action Date

i & [Staget

e 3 jstein Assigned workflowsystem Mar 25, 2009 12:35 PM
12 3 cdekens Reassigned e Mar 25, 2009 12140 P
1 3 cdekens Comment aced cdckens Mar 25, 2009 12:41 P
14 B sen Information Requested__|cdckens Mar 25, 2009 12:41 P
15 3 cdekens

i

ten

I

cdickens

I

cdickens

I

ten

.

caickens

OEBPS/img/bp_tdf_simpwiz7.gif
Summary

T
T
T
T
I
:

Hame and Defriton
Header

Body

Rowt Column
Rowz Columni
Foter

Summary

Header

acquiredsy
assigness
createdDate
creator
dueDate
exprationDate
autcome
pririy
state
taskiumber
updatedpate.

Body

orderld

orderld

Footer

attachments

et >

OEBPS/img/med_xref_ucexref12.gif
& Edit Function - lookupXRef ki

Define function parameters below:
Mote: Parameters can also be set through drag and drop from tree rodes)

efLocation “custoner.xret” o

referenceColumniiame| "SAP_01"

Examples: §varl, §phxiparami, ‘b, "abe”
Press Ctl + Space for Invoking 4Path Bulding Assistan.

Function Descripton

Laok up the column value in the cross reference table(XREF) where the reference column has the

reference value.

1f no value is found, an exception is thrown if needFxception is true.

P il

OEBPS/img/ns_parlayx015.gif
mple - Mozilla Firefox
Bl Edt Vew Hgtry Booknarks Tooks Hep

G- - @ 0 G [hewiistadas us orace com:24754jsemessagnosanpie parlaylconfiy

User Messaging Parlay X Chat

Confiqure | Manage | Chat | Help

Update Web Senice Endpoints and Credentials:

‘Send endpoint: [http/localhost 800 /sdpmessaging/parlayx/SendMessageSenice
Receive endpoint: ttp://localhost 8001/sdpmessaging/parlayx/ReceiveMessageSenice

Ihttp:/localhost 800 1/sdpmessaging/parlayx/ReceiveMessageManagerSenice

- test.usert

OEBPS/img/excel_login_page.gif
Fle Edt Vew Inert Fomat Toos Dats Wndow tel
RN A BRI BON e G e 3*\4'\;‘42'2HM@E§
D25 - A
A
Assigned Tasks For User:

User Name:

ocdjadmin

Password:

Task Detaill

Realm: [jazn.com

Title:
Priority
Expense Id
Status
Purpose:
ReimbCurrency
Costcenter.

Expense Items

OEBPS/img/med_createmed_syncinfc.gif
@ Create Mediator i

Mediator Component

Creste a mediator component to perform routing, fitering, and transformations.

<4

Nome: [Mediatort

°

reste Composits Service with SOAP Bindings

Input:

{http:{fins.oracle.comfsingleString}singlestring

Qutput

{http:{jins.oracle.comfsingleString}singlestring

OEBPS/img/soase009.gif
Oracle BPEL
Process Manager

Identity Service

Provider Plug-ins

i

Tigiom
i Crach
XL TRREY| | oEme | | oatavase
Sirsciory
Trace
Loap et
Sireciory
X Database

I
o5

=

Repository

OEBPS/img/med_xref_ucexref15.gif
Source: SAP.wsdl
=% <sources>
® & commonm
= opiSapDiCllction
=@ topiSap01
< topid
[s ——
o opicustomerdiress
e tepoperation
0 topref1d
ke tepogiede

5L File: Common.wsd!
<torget> (B3
it Cstomers -
Tor-each 8 &
inp1:Customer &1
il [
t1d <o
ot 5
inp1:Address ko3
i Operation £

OEBPS/img/bp_tdf_email.gif
Task Nurbser. #(taskNrber nputalie} Crestor #(.creator inputvalue} ssionees: #(I]
stte #.) Crested Date: #(..crestedDate nputvaue} Acouired By #(..acquiredBy nptValue)
Outcore #(..oucome inputvalue) Updated Date #(__updatecDate.
npivalue]

Priorty [
W |y Expiration #{.. expirationDate.
Date: npitvalue)

#3020} | Locaton nputale}
#bints et} g type inputvalue)
#5021} | #(_problemDescripton npuae),
FIS 020 |8 severty nputvalie)

it Jabel) [_status iputvelue)

it bel (31, Dpvabe)
F(.its 6021 [_Frsiame indVatie)
F(.its 6021 [Lasiame rudVatie)
F(.its b2 [1_Emalinpatvalie)

#. i Iebel) [#¢_phone inptvalue)

OEBPS/img/bp_adapter_servicename.gif
Adapter Configuration Wizard - Step 2 of 4

Service Name

Enter a Service Name,

Service Type: Flle Adapter

Service N [Readrie]

e Eish

OEBPS/img/med_rr_icons.gif
CEv EQ

oo SUMMMI L €

Add Filter Expression

Specity Transforma
Validation

Rssign Values
Event

Browse for Target Service Operation
One-way Operation

Request-Reply Oper:

Request-Reply- Fault Operation
Request-Reply-Callback Operation
Request-Reply- Fault- Callback Operation
Synchronous Echo

Asynchronous Echo

Set a Default Routing Rule

OEBPS/img/med_multifault1.gif
B execute proty [+ Clusidatesyntax0s) & v dbv R

Callout To [<<Java Calout Clss>> =]
Static Rotting
& [<<Fier Expression>> ¢ B [mubFaultjmutFaul execute & [sequential

Valdate Semantic

Transform Using.[request ; <<Transformation Map>>

Assign Values

Synchranaus Reply =

il Calertoc oo @
Trarsforn Usng repy s <<transfortonag>>] B

Assign Valuss B

Fauts

[Rad ancther Fa o
Fauk [sfaultt =

= [*Inital Callr* sefautL

Transform Using.[Faul

<Transfomaton ap>>]

Assign Values Bl

OEBPS/img/bp_wl_search7.gif
TaskType Q

StartDate [on = e]

OEBPS/img/med_xrefim_ucexref3.gif
Exposed Services Components External References

63
sap

“Operations:
e6s

e @
Logger
“Opersions:
e

OEBPS/img/sca_spring12.gif

OEBPS/img/xbuild27.gif
el cat(string(‘Hello, your telephone mmber')<sh

hoolean(any input) as hoolean Function
bpws:getLinkStatus(String linkName) as node-set Function
bpws:getVariableData(String variableName,String partName,String .. Function
bpws:getVariableData(String variableName) as node-set Function
bpws:getVariableData(String variableName,String partName) as nod... Function
bpws:getVariableData(String variableName,String absoluteLocation... Function
bpws:getVariableProperty(String variableName,String propertyNam... Function

HEEEEEE

ceiling(number inputNumber) as number Function

OEBPS/img/sca_servicekey.gif
Bo
s
| oussase swrer
@ nsenice
Jracis bservices crarsetEncoting @ Freacer
et @i

@ soceadur
2 websevice :

S Genera

ane ||
et Tipe [

Ccubackimertace: [|

OEBPS/img/bp_tdf_simpwiz4.gif
Row1 Column1

Name and Defirtion

Select content to be added to the indicated body section

Header

Body.

Row! Columni Payload

0 ordertd

03 Payioad
Ron2 Coumnt

Footer

T
I
T
1
T

Summary.

OEBPS/img/sca_clientpolover4.gif
& Config Override Properties

Edit Overtde Values: oraclejbinding_permission_authorizaton_policy

Overtde Value
ermision-dfferent-class

OEBPS/img/bp_ht_stage.gif
Stage Name:

ftaget

OEBPS/img/nestedcondition.gif
mc [YYE R

[Costomer sfme Hw B GRXO O
I'(\omusm Q [matches’ =l [asco and
O (G reswedts Q [ihemen F] SR ERASSMSTnSoN 10 Q4

T ([Costomeraddessctyk @ [l fan

T [AE Q

»

LL:

<
T T T

s

OEBPS/img/bp_tdf_non7.gif
Save

A foreign JNDI provider represents a JNDI tree that can reside cutside of a WebLogic Server. This could be a JNDI tree in a different

server environment o within an external Java program. By setting up a foreign INDI provider you can lookup and use an obect that

xists ouitside of the WebLogic server erironment with the same ease that you would use an object bound in your WebLooic server
instance. Use this page to configure a forsign INDI provider.

Name: ForsignINDIProvider-SOA The user-specified name of this MB=an
instance. More Info,

] Initial Context Factory: The it context factory to use to connect, This
clss rame clepencs on the JNDI provider nd the
vendor that are being Lsed. The value corresponds
to the standardl INDI praperty,

Javanaming factory it More Info.

‘The foreign jncl pravider url. This value corresponds
to the standard INDI property,
java.naming.provider.Lil - More Info.

A user: The remote server's user name. - More Info
&5 password: The remote server's user password. More Info.

4] Confirm Password:

] Properties: Ay ackitionsl properties that must be set for the
X INDI provider. These properties wil be passed
diectly to the constructor for the JNDI provider's
TnitialContext class, - More Info

OEBPS/img/rules_rd1.gif
\pplication Navigator [2) toLaonAppication.jws | fcomposite.xml | & AutoloanProcess.bpel |<DGetCreditRating.rules ((0))
AutoLaonAgplcation Jfav 9ea a0 *)

 projects ENZE @ res
= %utaman(amvuswte P Ruleset_1 ¥ [Jrkeron Yiew [+-%X w@m®
-2 508 Content £ Functions et
0 dasses (%) Gibats
3 testuites To create a Rule or Decision Table, please click the plus sign above.
- & Bucketsets
& AutoloanTypes.xsd Dinks

&2, CreditRatingServiceTypes.xsc
2 CrediRatingTypes xsd
B3l Rulesets & X
£ Busness Rules @ ruteser 1
- AutoLoanProcess.bpel =
4G AutoLosnProces. compenentType:
@] AuoLoarprocessusd
off composte.sml
- [e] CredRatingservicewsdl
4 GetCrediRatig.componentType
o] Getcredthating.decs

A ecison Functons.

P —]

b Applcation Resources
b Data Controls

b Recently Opened Fies e L S
Design

OEBPS/img/bp_sensor6.gif
& Edit Sensor Action - PersistingAction

Neme: PersistingAction

Publih Type:

Eiter

Enable

OEBPS/img/bp_ht_attachments.gif
e

ContractDetais s

OEBPS/img/bp_decision_rules_fx.gif
Rules Designer Window

cnpostosml | DRoasesbomoraRiloes c]
Qv @8 ®

LI
R T e e

FE N ———
+ XAV H-H-R @ETBE
e w w

(oL sporepre | < prce 1 pRICE

P

i

feaqugufugud|

Oty R}
@ Qs

20 Furctns
Rape
= D owcatees
Qe
(=22 owsison unafes
& Cruesats

Closmrvenwamngsrun

Thopery

ot Vo T 35443 T FOT

Foebok |omoemrueviidaten [@)

Structure Log
Window Window

OEBPS/img/med_typechooser1.gif
@ Type Chooser

O Type Explrer
1 rofec Schema s
D Froject WSDL Fies
500 Inported Schemss
2 LegacyCustomer xsd
P Customerpata
&) CustomerDataType

Type: [{httpiffumins.oracle. comfEsbiCustomerData} CustomerData

[how Detalld o Information

OEBPS/img/bp_ts_xml.gif
£ testsuites
&0 g
23 compnentests
S ncudes
Dmessages
= tests
] leust i
o2 testshippingConsiered. i

OEBPS/img/sca_deplconfig4.gif
SOA Servers

Deploy Project2

49 SOA Servers

}

ploy Configuration)

Summary.

Choose the target SOA server(s) and corresponding parttions to which you want to

deploy this archive.

SoA server Fartion Satus Server URL
oonsenert g VRUNING hupi/joc

OEBPS/img/soase_jd_030.gif
Oracle WebLogic Server Oracle WebLogic Server

(Portet Server) (SOA Server)
Remote EJB Calls
Managed Server with Oracle Managed Server with Oracle
WebCenter Installed access the task ist SOA Sulte Installed
(Domain A) —_—— (omain B)

fe—————]
Task List ortet TaskList
(WSRP porit retrieva or Task st
Producer Appiiation) loggedin user

‘Consumes the task ist
portet after registering
with the porlet server

T o v

Ve T G

e e @ | e (g
Portet Consumer i s
‘Applcation Guonio
) ca custamer 2002

@ e amones x

OEBPS/img/rules_then.gif
THEN T

[[asserthew [+] |cCustomer

[=] (RegsteredDate:sep 18, 2009 4:18:56 AMEET) P 4] =/

OEBPS/img/sca_bcpolicies.gif
& Configure SOA WS Policies.

S0A Server WS Policies

Configure Web Services server polcies to request bindings
Enable or disabl each poicy status by checking the box on the left side:

Select Request Binding

W5 : {http:/{xmins. oracle.com/WebLogicFusionOrderDemojOrderBookingComposite/UpdateOrderSta. .. ¥
o + %
Reliabity + X
addressing + X
Securty +X/
Management *X/
[Enable Al [Dsableal] [(Removerl |
[e o

OEBPS/img/bp_tdf_simpwiz6.gif
Footer

Select Facter contents and crder,

ey incons

Panel ttl

camments

EEEE)

OEBPS/img/bp_portlets11.gif
> Register WSRP Portlet Producer - Step 4 of §

Configure Security Attributes

If the producer supports secure identity propagation using WS-Security, configure the security attributes,

Token Profile: |SAML Token with Message Integrity -
Enforces message-level integrity protection and SAML-based authentication For inbound SOAP
requests,

Configuration: () Default (%) Custom

Select this option to override the default Oracle Platform Security for Java configuration values
with custom values.

Default User: | Fnwadimin |

Tssuer Name; |

OEBPS/img/bp_funct_complete.gif
& Completion Status X

Click on an unmapped target nade ta have I selected n the target tree. Clck on the table headers to sort

Unmapped Target Hade.

po:Orderttemsifor-each
po:Orderitemsifor-sachipoTtemipoiProductiiame
po:Orderitemsifor-eachfpoTtemfpoitenType.
po:Orderttemsifor-sachipoTtemjpo:partnum
po:Orderitemsfor-eachfporTtemfporprice
po:rderitemsifor-sachipo; Ttemfpo:Quantity

Requred
v

Recquired unmapped target nodes: 1 (0% completed)
Total unmapped target nodes: 6 (0% completed)

b

OEBPS/img/bp_mpr_sub4.gif
BsubstTestrore.xst

@ poicomment
£® <Element Substitutions>
ko8 ipaatherComment

(E] @[

@ tems

LT Pl purct

3

OEBPS/img/bp_phase_in_bpel_designer.gif

OEBPS/img/bam_dc_calcfield.gif
nsebr_|

Group By.

OEBPS/img/med_dvm_usecasedvm2.gif
Exposed Services Components External References

Bl
ReadOrders

Operations:
Read

OEBPS/img/sca_compsen5.gif
& _Expression Builder

Expression: ®a0

433 getilanager (/task: task/task: payload/nsL: VacationRequestProcessRequest/nsL: creator]

OEBPS/img/sca_deplconfig.gif
& Deploy Project]

Deploy Configuration

Oetomentacin | [ofgPropett |
o) Deploy Configuratior Conposte Revisn 1D |~ 50A Corfiguaton Flan
Sy

) Project (3 Danot attach

[rojectt (O Select a configuration plan from the st

Current Revisian ID
fo

New Revisian ID
Lo

BPEL Monitor

Ignore BPEL Moritor deployment errors

[]Use the follwing S0 configuration plan for ol compostes;

Erowse,

OEBPS/img/med_modify_es.gif
Component; CustomerDataRouter

Vi x

Event. Consistency. Run as Roles Fiter
(CreateCustomer oneandonlyone publsher

OEBPS/img/bp_ht_busevents.gif
& General

@ oas

B assioment
@ presentaion
B Deadines
8 Notficaton
e Access

P Events

State Change CalBacs:

state Java Clss
(Onassigned

onipdated

lonConpleted

(OnstageCampeted

(OnsubtaskUpdated

Trigger Workflow Event

[m]
[m]
[m]
[m]

[Alow task o routing cstomiationin BPL calbacks

OEBPS/img/xbuild12.gif
Expression:

bpus: getVariableData(' inputVariable, 'payload’, ' /nsl: PurchaseOrder |

© (66): Enpected)

OEBPS/img/soase022.gif
Client BPEL Process.

<scope>

call
service
<invoke>

‘Wait for
Callback
<receive Msg B> |

<onMessage A>

Notity User,
of Delay.

a1

Wsg A

|(maybe)|

Msg B

Service BPEL Process

wsoL l
ParmerLink

- <receive>

— T T

Delay?

3

s §
e

<otherwise>

1 When
| product |
| ships

l

— <invokes>
Msg B

OEBPS/img/ns_image22.gif
User Notification

To:

Use commas to separate muliple names.

Subject:

Notfication essage:

Apples to Voice, 5M5, Email and .

Concel

OEBPS/img/bam_alert_para_cfg_fld.gif
2 Field Selection - Webpage Dialog,

Select 2 Data Object Field o be used i the rue
Fields

erand

€ cost

€ Descripton

© Quarter
€ sdes
 Subcategory
€ vear

OEBPS/img/sampleapp_tf.gif
Toggltode Swekt SweDetbo e Vakdse

(x) Globals.
£ Buets

8 Rueset 1
@ 2
@ e 3
@ et

o s

e = T T — -
0 e 5 b =
® Gz 2 = g
() dobas Colodr ptntance) i 2
e o g
@ s i T Bl
Gt e et a

OEBPS/img/bp_tdf_datacontrols2.gif
~ Projects RNV =-
- BPELProcessL bpel
4G 8PeLProcess1 componentType
{&] ereLprocessLwsal
off composite xmi
5 HumanasiccomponentType
S Humantasid task
3 web Cortent
Project2 i
» Applcation Resources
~ Dats Controls

B

@ eeresn

di Definition

OEBPS/img/bp_assign_inputvar.gif
& Create Copy Operation

<> nsLiCustomer
(%) outputvariable
() InputPhasevar
() DutputPhasevar

From
Type: [Variable
[variables [variables
= da Process = da Process
£ variables £ variables
- (x) inputvariable
&[] payload

<> nsLiCustomer
(%) outputvariable
() InputPhasevar
() DutputPhasevar

[show Detailed Node Information
XPath

(o]

OEBPS/img/sca_spring5.gif

OEBPS/img/med_xref_create.gif
& Create Cross Reference(XREF) File x|

A cross-reference (1REF) is @ mapping of entiy dentiiers among diferent end @
systems

il Name:

(Customer.xref

Directory Name:

[C:ATDeveloperimywork|CustomerDataiCustorer Browse,

Description

Cross reference of customer dentiers

Inifal XREF Entres

End system: 547

end systen: 65|

OEBPS/img/bam_ar_ems_form.gif
MName:

Initial Context Factory:

INDI Service Provider URL:
Topic/Queue Connection Factory lame:
Topic/Queue Name:

INDI Username:

INDI Password:

IS Hessage Type:

Durable Subscriber Name (Optional):
Message Selector (Optional):

Data Object Name:

Operation:

Batching:

Transaction:

Start when BAM Server starts:

IS Username (Optional):

315 Password (Optional):

fieblogic ndi WinitalContextaciory

[5://st200861:7001

ms/QueueConnectonFactory.

ms/demoQueve

Textessage v

Brouse

Insert v

No v

No v

Yes v

OEBPS/img/bp_tdf_header1a.gif
Actians + Refect| |Approve |G| |Dismiss | |Resume
iy Reject]

OEBPS/img/bp_wl_rpt_inputs.gif
Assigned to group(s) Assigned to user(s) Priority Number of Tasks
jsten Nomal 3

Task Priorities Report
a5
a0
25
20

Womal
15

Naber of Tasks

10

0s

00
tein

Report Inputs

Assignee My+Group
Creation

Ended Date

OEBPS/img/sca_bpelprocess.gif
& Create BPEL Process

BPEL Process

A BPEL process i a service orchestration, used to describe/execute a business process (or large arained
service), which s implemented as a stateful servie,

Neme:
Nemespace:
Template;

Service Name:

(OrderPracessor

it s globalcompany example comjns{OrderBoskingservice

&2 Asynchronous BPEL Process

forderprocessor_cient

Expose 25 2 50AP service

Fhttp: . globalcompany xample comjns{OrderBoskingServicehprocess

Fttp: v globalcompany example.comjns{OrderBoskingServicelprocessRespanse.

OEBPS/img/med_dvm_appnav.gif
cayaep
~ Proecs

=3 son Contant
& D tesates
) fleustn
B2
B
1 scame

off composte. sl

1 Applcaton Resources
» Data Controls
1 Recently Opened Fles

OEBPS/img/med_xref_ucexref13.gif
olectonjtop:52pO1 opioperation=TNSERT |

=0 [Common/Commoninsert

s [soquentil ~

Valdate Semantic
Using Transformation

Assign Valuss:

Customers : sl/53P_T0_COMMON_INSERT xs!

sllction/top:Sap01 jtop:operation="UPDATE'| §¢ =0 | Common/Common: :update [sequential ~
valdate Semantic 8
Using Transformation | Customers : xsl/5AP_TO_COMMON_UPDATE xs| (1]
Assion Values B

sctiontop:5ap01 ftop:operation="UPDATEID' | ¢ =2 | Comman/Common: updateid [sequential ~

Valdate Semantic
Using Transformation

Assign Valuss

Custormers : sl/53P_T0_COMMON_UPDATEID. sl

OEBPS/img/bp_ts_close.gif
YFVBEXORH ake®d>
Return ta SOA composts dagram

OEBPS/img/bp_sensors_bam.gif
& Create Sensor Action

action Name: Enable

A BAM sensor acton must be associated with a variable sensor ar with an activiy sensor
cantaining ane sensor variable. The varizble could ether be an XML element or must have exactly
e message part. The schema defintian of the variable must came From an X3D fil (Iline YSDL
schetna defintions are ot supportec) . Please selectthe sensor below:

Sensor:

The BAM sensor acton needs to transFor the BFEL variable inko a deta objectin the BAM
server. Specy the BAM server data object,

qQ

BAM Operation and Keys

Avalable Keys: Selected Keys:
o keys availble 5| okeys sclected
®
<
K3
3p File: [pamiSensorhction_t.xl Qg2

Clcking ‘Create Mapping" or ‘i Mapping’ will save the sensor action, close this dialog and open
the mapper in IDE main window.

Eiter

BAM Connection Factory JNDI: [esfbamimi

OEBPS/img/selrulshrdlibinwls.gif
@ Home Logout Prefeences (E Recrd Hep | Q| Wekcome, weblogic| Cannecedo: Defaultpomain
i

pr—————

) 75]

BRI R R s

St e e gt st e aolcpton oo ey, e e, exiod s ey, o soicaton o cesr o
o want i . o cn 895 e o o4 of 8 splon eciy of B o Pt F.

Notes Oy vl e ptns e cape bl 1 o cant i your deployment e, ioad yr) anlor o st your
ehcaton contas e depoyrint s,

patc [C workideA1 1.3 0_100125 2340 5588 deeloparisoamodesaracke s 1 1 Teves o]
Recently Used ath: ki (111301013 250 55t o Vosipossrad s 1111
Comentocation: 1270011 vk e 1.1.1.30_10026 250,559 o 1o e e e, 1.1

O O sorsasar
© O joroa_obrjar
O O reporteriar
© 0 nior

O O amsior
® O rtesiar
O O rlesdiasor

T T

OEBPS/img/ns_email16.gif
v-Rlro-S-a%

el | & senEnaaacentsod_ g (101

(Cl—)

v

~m
= -
(i [
%23

sring(texthtm; charset=UTF-5)
[Expression

(B4 Expression
jwsigetiarableData(inputyaribl
() Variable
putariable/payoad/dientiproce,

{tring(Notficatonattachment L htm) varNotficationRea/EmaiPayload/.

To
varlitificationReq/EmaiPayload ... |
() Variable

() Variable

varNotiicatonReq/EmsiPayload)E.
() Variable

variotiicatonReq/EmsiPayload)E.

st

Variable XPath

vanotficationReq/EmaiPayload)fEmaiPayloadjns 1:Contentjns :Contentgody/n

Codie=))

Jscope/sequencefessign

< S—————————

Zoom: [10

Design | Source | History

OEBPS/img/bp_adapter_type.gif
& Configure Service or Adapter

& poroc e S
s 20 Adapter

& oz

i) BAM Adapter

3 Database Adspter

5 OrectBinding

@ £ service

8 F1P Adspter

18 Fie Adapter
r1n e V]

OEBPS/img/med_async_clientbpelproc.gif
Partner

Partner Links 5
a
H v
'e
ServerBPELProcess
receivelnput
) a
g v

o
o
o

AssignRequest

v
= .
i InvokeMediator
v

ReceiveFromMediator

|
&

calbackClint

°

OEBPS/img/direct.gif
Direct Binding

Create a Direct Binding,

Neme: Servicel

Type: Service

Reference Taret: [Grac som Comporte]

WSDLURL (rderubisherusd
Port Type: Mot Specified -
Calback Port Type: [~ fo Calback — S

0] e 5ot For ol

Reference Binding Detals

address

Provider LRL

] copy sl and s dependent artfacts nto the project

Note: Keeping a copy of & WSDL may result n synchronization ssues I the remote WSDL is updated. Tt s
recommended not make local copies - this should be reserved for siuations such as offine designing.

ok

OEBPS/img/bp_tdf_adf3.gif
& New Gallery 3

Al Technalogies

(@ e A eroaes

5 Database Ter
Database Fils
- Database Objects
Offine Database Obiects
55508 Tier
Service Components
- Transformations
=5 Web Tier
- Applet
Facelets
HT

=R

Servits
stnts
Al Ttems

(Categories: Items:] Show All Descriptions
AOF Swing () A0F Tesk Flow
- Extension Development
Saing/AWT & ADF Task Flow Based on Human Task

Creates data controls and an ADF task flow based on an existing SOA human
task,

First you il be asked to select 3 human task definton from the S04
Resource Chaoser. This will generate a so of data controls, and then launch
the ADF task Flow creation wizard,

To enable this option, you must select 3 project or a il witin a project in 1
the Appication Navigator.

[, ADF Task Flow Template

% 57 Declrative Componert

157 page

J5F Page Flow and Configuration (faces-config. xmi)

& 35 Page ragrent

b

:

Cancel

OEBPS/img/bpmdg056.gif
BPEL
Process

L

Human
Workflow
Task

‘Web Services

Interface
WSIF binding) Oracle User
Messaging
Service
Emal Server
SIS Server
Voice Gatoway
Java W Server
intertace

OEBPS/img/med_multifault3.gif
B exece

erorty [415] [uslate syntax (¢50)

R

Callut To

<<3ava Calout Class>>

Static Routing:

= [<<Fiker Expression>>

v ®

multFaultjmultFaut exerute

Valdate Semantic

Transform Using

Assign Values:

request : <<Transformetion Mep>>

Synchranous Reply

Faults

=

Transform Using.

Assign Valuss:

“Initil Collr™

ecuteioutput

reply : <<Transformation Map=>

Fault [efaultt

il Caller*oFaultl

Transform Using

Assign Values:

Faul : <<Transformation Map>

Fauk [ofaukl

= [FleFauls: e

Transform Using

Assign Values.

opsque ; <<Transformation Map>>

OEBPS/img/bp_mpr11.gif
53 <sources>

<target> [}
& tpurchaseorder

tnstlnvoice <021

i OrderDate. InvoiceDate BE
e ID tnst:Comment ke¥
<o ShipTo D

ER ShippedTo -1

< First

—n e
W E =

elast Address <o
=< Address country BE-

B courtry sheet >
<o street ciy o
oty state <>
<o state 2p o
wn ildToRccount >
& @i W
< Nome Accounttimber >
<o addess Amauntinbolers <>
e tns:Comment Shippeditems <e>-
{8} <choice> UnShippedtems <e>

E5-<o» HQAccount
<@ Accountiiumber
<@ Branchaccaunt
<o Ttems

OEBPS/img/bpmdg013.gif
' BPEL Process

l

Call
service
<invoke>

a1

<pick> l

B B e m—

<onessage A>| | <onMessage B>

wsoL
Partnertink

Service BPEL Process

|

<receive>

e E———— —

Mom in stock? [| <otherwise>

OEBPS/img/bp_wl_view_new1a.gif
T
oefon QN

@ Create View © Use Publc View

=Name [userVient

assgnee [y .Grow 5]
‘Add Condition [Start Date 1
Match O AIG Any
Task Type a

Shareview Defiiton only @ Data

OEBPS/img/bp_sensor7.gif
Create Sensor Action,

Neme:
Publih Type:

45 Connection Narme:
Publih Terget:

Eiter

BAvFeed

5 Adepter

weblogi.jis ConnectionFactory.

JavaiconplresourcefojmsdemojQueues/a]

Enable

o J[o

OEBPS/img/bam_mon_counticon.gif
@

receivelnput

OEBPS/img/med_reseq10.gif
Resequence [pestEffort Resequence Options-

row:

i

[<<Group Expression>>

Y

waxRows: 5[]

[<<ID Expression>>

Y

oot []

OEBPS/img/addingoraclerules.gif
Add Library

OEBPS/img/med_xrefim_uctransform1.gif
Source: SAP.wsdl
= <souces>
- topsaptscolection
=88 wpisepos
o topid
DA —
o toprderstatis
0 topoperaton
o Ty
e topiogiaDel

¥SLT Files Common wsdl
<target> (2.
Potiorder &
inp1:Order &
ot
ot prorty €5
inp1:Order_Status ko3
otiorder Ty ke
‘ot:operaton ko

OEBPS/img/bp_monitorview2.gif
[JEnable Monitoring (2] R~ (& 159 '@ | [J~ @9~ og (@@~ %5 Monitor

Partner Links

Partner Links

El

wew @

[cower
[E—
[rterval,

OEBPS/img/fod_soaeditor2.gif
|pplication Navigator

WeblogicFusionOrderDemo

 Projects R®RV-E-

= (5] OrderBockingCamposie
& £ 50A Content

3 csses

3 tostutes

Sxsd

Dl

53 Business Rules

off compostel

1 Applcaton Resources
» Data Controls
. Recently Opened Files

WebLogicFusionOrderDem s - Stuc,

eblogicFusionOrderDemo.jws | o3 composite. <l

Show: OrderBoskingComposte

File Summary: Totsk 2 ()

504 Companerts
Status e
& composteoml

Guided Steps | Tutorils | Detaied Help

Al Compornents ~

@
@ndvioryi 1 Lokt T

ML Files

stous | Nome
@ compostesnl
@ fietstont

Cus Cards | Tutorals | Detaied Help

() (iResource Palette.

w-(@
1 o
sy

OEBPS/img/ns_newjava_12.gif
Fle Edt Vew Hstory Bookmerks Tooks Help

G @ Y (D rmstaons.us orace.coms 7001 usermessagngsaple-scho | + | b

UMS Sample: Access Point Registration

Registering access point

ENAIL :myserver@example. con

Registered

OEBPS/img/med_async_uc7.gif
@ create Copy Operation

From To

Type: [varibe = || Tipe [variae
Variatles Variatles

5 Process 5 Process

ercbles
(x) input¥ariable
() outputvariable
() mediatorRequest
() mediatorResponse
() bpelRequest
() bpelResponse
() InvokeMediator_execute_Input¥ariable
() InvokeMediator_execute_Input¥ariable.
55 Scope - CallMediator
Varizbles

Varizbles
(x) input¥ariable
() outputvariable
() mediatorRequest
() mediatorResponse
() bpelRequest
() bpelResponse
() InvokeMediator_execute_Input¥ariable
() InvokeMediator_execute_Input¥ariable.
55 Scope - CallMediator
Varizbles

[LIT———————————_
Show Detaied Node Informetion

[LIT———————————_
Show Detaied Node Informetion

o J e]

OEBPS/img/bp_wl_search6.gif
ke £
(R owsor

(Column ! would ahways be present and would be first i the task tabl.

Select View Columns.

* Available Selected
I strtose 5 2 e
I TaskDefrson Name Move |Finumber
I Ouner Rdle ® Doty _
I Upceted Date Moveal |[Assanees =
I Conposte verson Isate -
I crestor ¢ T M
I From User Renove | xpres =
I Percentage Conpiete &
I Ouner crowp

Remove 4
I Enapate 5
SortBy Cotamn sortorder

[Cemtes

[Ascendng =]

OEBPS/img/sca_spring13.gif
Exposed Services Components

OEBPS/img/med_targetserviceex.gif
= 4 Routing Rules

&3 Operations B

=0 receive priorty [+[5] [validate Syntax (150) o = o R
(= [Vlectiontop:52p01ftoptaperation = INSERT'| §P =2 |Commany Comman insert Gt [sequential .
Valdate Semantic -4
Using Transformation [Customers ; xsl/5AP_TO_COMMON_INSERT x| ~| B
assign Vales =
= ection/top:Sap01/topoperation = LPDATE'| ¢ =2 [Common/Commonupdate. Gt [sequentia +.
valdate Semantic ~a
Using Transformation [Customers : xsl/5AP_TO_COMMON_LPDATE xs| ~ |
assign Vaes Bl
(= [fHonftopi5ap01topiaperation = UPDATEID'| P =2 |CommenComman: updateid & [seauential ~
Valdate Semantic ~a
Using Transformation [Customers : xsj54P_TO_COMMON_UPDATEID.xsl v B
Assign Values B
= lectionjtop:5ap01 top:peration = DELETE'| §p =2 [Common/Commen: delete Sequential ~
Valdate Semantic -8
Using Transformaton (Customers : xal/5#P_TO_COMMON DELETE N6l v B
Assign Vaes Bl

OEBPS/img/bp_ts_wire.gif
& il

T 008 Oumima—

. &

g 3 St
T

OEBPS/img/med_xref_ucexref14.gif
| Edit Function - markForDelete

Define function parameters below:
{Hote: Parameters can also be set through crag and drop from tree nodes)

ixefLocation] "custoner xref”

(alumnilame| "5AP_01"

%)
B

value /top: Sap01CoLLection/top:

ap0L/top: id

[ot

Move

Examples: §varl, §pfxiparami, ‘b, "abc”
Press Ctl + Space for Invoking 4Path Bulding Assistant.

Function Descripton

true if the delete succesds; otherwise returns false.

IMark the column value for deletion in the cross reference table(XREF). This function returns (

el

Usage: srefmarkF orDelete(srefLocation as string, columnName as string, value s string

ool

OEBPS/img/bp_mpr9.gif
Source;

Target:

Jpoiorderttems

Mapping Candidates

SelectSource.

po:Orderltems{po TtemjpoitenType. poiltemipoiitemType
po:OrderTtems{poTtemipo:partnum poiltemipoipartnum
poiOrderltems{poTtemfpoiprice poiltemipoiprice

po:OnderTtems{po;Trem{po:Quantity poiltemipo:Quantity

SofSsldod
— —

OEBPS/img/bp_wl_view_cust2.gif
= show Columns Available Columns Selected Columns
I strtose 5 2 e
I TaskDefrison Name Move |Finumber
I Ouner Rdle ® Doty
I Upssted oate o |Tssinees
I Composte verson IMsate
I Creator ¢ M e
I Fom User Renove | expres
I percentage Compete &
I Ouner crowp
D orrer e | Remores

sortorder [ascendng <]

Number of tasks per fetch [z [2]

sertey Coon [Gomed =]

Use language settings of ' Browser @ Identity Provider

O —— o

R

OEBPS/img/bp_tdf_drophand2.gif
ppplication Sources
(@ projectt
(@ Project1_approvalHumanTask
&8 actionType_customActions_Operations.xl
&8 actionType_restrictedictions_Operations.xl
&8 actionType_systemActions_Operations.xl
& actionType il
- attachmentType._attachment_Operationsxi
& attachmentType
- calbackType_calback_Cperations.
& calbackType.nl
8 colectionTargetType_colectionTarget_Gperations.xmi
& colectionTargetType i

= p—
= Data Controls av
o EE
" m sphcatonconcext
m category
- am comelstontd
m restor
- am duepate
p————
- denttyContet

Create.
@ Carousel

Eorm »
Gantt »
Gauge

Geographic Map
Graph,

Hierarchy Viewer.

8 Complete Task with Payload

Master-Detail » | 88 Complete Task without Payload
Mltiple Selection > | #8] Task details for email
Navigation »| 889 Task Header

Single Selection » | 88 Task Action

Table » | 88 Task History

Tree » |#8 Task Comment and Attachment

Cancel

OEBPS/img/bp_wl_not_channels.gif
ORACLE" BPM Worklis!

Preferences | Hep | Logout

Loggedin

My Messaging Channels
Configure channels to receve your notficatons and dets.

ven~ [Boese Lt Roeee Hivetscn

0 Busiess Enai fEman [stengemaitxanple.com

] Business Mabie s 300000004

§ Busiess Phone vorce 10000000+

& Instant Messaging ™ ebberbsten @exampleM com

OEBPS/img/med_xref_createdbcon.gif
Create Database Connection: Xl

Chaase Application Resources to create database connection anned by and deployed wth the
current applcation (TestApp). Choose IDE Connections to create & connection that can be added to
any applcation,

Create Connection In: () pplicaton Resources (3) IDE Connections

Connection Name: [Connection
Comnecton Type: [oradeO0B) 7]

Username: s Role: [5Y5DA B
Password: Save Password

- Oracke (108C) settings

[[] Enter Custom JDBC URL

Driver thin P
Host Narme: focahost JoBC Port: [1521
[OE™ frel

O Service Name: |-

Test Connection

Success!

ox_

OEBPS/img/bp_tdf_non8.gif
Home >Summary of Deployments Summary of Foreign JNDI Providers >ForeignINDIProvider-SOA >Summary of Foreign INDI
Providers >ForeignINDIProvider-S0A

Settings for ForeignINDIProvider-50A

Configuration Notss

General | Links

“This page lsts existing ForeignINDILinks associated with this ForeignINDIProvider.

P Customize this table

Foreign INDI Links

New | [Clane | [Delete Showing 0 to 0 of 0 Previcus | Next
[|Name & Local INDI Name Remote INDI Name
There are no items to display
New | [Clane | [Delete Showing 0 to 0 of 0 Previous | Next

OEBPS/img/bp_gs_pl.gif

OEBPS/img/sca_deplconfig5.gif
Deploy soabundlel

Summary
S Deployment Action
Depley Confiauraiior| Deployment Summary

)
1
T

Task flow depl

50A Servers

© Summary

=-SOA Deployment Summary
-~Global Configuration Plan: none
Mark Composite Revision as Default: Yes
-~ Overwrite Existing Composites: Yes
£-50A Bundle: soabundieL zip
-Shared Metadata Archive: archived. jar [ProjectLjpr]
Shared Metadata Archive: archive jar [Projectd jor]
£-SOA Archive: sca_Projectl_rev2.9 jar
Composite Name: Project1
Revision ID: 2.9 (unchanged)
Configuration Plan: Project1_cfgplan2 xm!
£-SOA Archive: sca_Project?_rev4 o jar
Composite Name: Project2
~Revision ID: 4.0 (unchanged)
Configuration Plan: none
£-SOA Archive: sca_Project3_revL. 2 jar
Composite Name: Project3
~Revision ID: 1.2 (previously 1.1)
Configuration Plan: Project3_cfgplan.xm
& Taskflow Deployment Summary.
& EAR ProjectS-AdfForm with following WARS will be deployed.
- Composite Projectl
WAR: Projects-AdfForm
5 SOA Server Target(s)
£-S0A Server: soa_serverl
- Panition: default
Status: RUNNING
~-Server URL: http://
Platform: Weblogic 10.3

(=] 1o) (o] [Ganee]

OEBPS/img/fod_lookup2.gif
& Create WSDL

Specify WSDL message schema(s),

URL
Schema Element
Operation Narre:

Port Type Name:

bdjsinglsiring.xsd

Q

sngesiring

fexecte

fexectte gt

Nemespace: [cefebLogicFusionOrderDemo/OrderBookingComposte/or derprocessor _clent_op

Bl Name: [orderpracessor_clert_ep.wsdl

OEBPS/img/bp_ht_vacreq8.gif
s

Expression

433 getilanager (/task: task/task: payload/nsL: VacationRequestProcessRequest/nsL: creator]

OEBPS/img/bpel_mon_actdialog.gif
& Activity Monitoring Configuration

Enable Actviy Moritoring

iy

OEBPS/img/sca_buildfiles.gif
& SOAProj SR
= £ 508 Content

£ dasses

3 estsutes

B

Dl

0 Business s

b ropertes

G bl

o8 composite.xml

OEBPS/img/bp_tdf_datacontrols3.gif
» Application Resources.

~ Data Comolz @ rarameters
Name Gement or Type
Fayioadl 1 e/ fowin o7/ 2001 LS chemalstring
Payioad e

B ass(] RefreshDataControl x

“This wil efresh the Data Control to the current state of Human Task definition

Recently Opened Files

HumantaskLtask - Structure o

= BT [———

OEBPS/img/med_xrefim_ucexref4.gif
& Edit Function - populateXRefRow1M

Define function parameters below:
Mote: Parameters can also be set trough drag and drop from tree rodes)

refLocation "Order.xref” Q|
[cferonctoie |/5op: ap0SColLestion; cop: 3ap05 /5007 |utiovet
value. orcl:generate-guid()

- 3

Examples: §varl, §phxiparami, ‘b, "abc”
Press Ctl + Space for Invoking 4Path Bulding Assistan.

Function Descripton

has the reference value.

Depending on the mode, the reference value may also be populated.

Usage: sref populateXRefRow I M(srefLocation as string, referenceColumnNarme as string,
i e s st ran i e 2s st e as st

Populate the cofumn multiple values in the cross reference table(XREF) where the reference cofumn (

o][el]

OEBPS/img/bp_ht_singleapproveadv.gif
advanced (2

Lt allocated duration to:

allow this particpant to nvte other particpants

Specify skip ule

OEBPS/img/rightoperandbrowser.gif
Right Operand L
“Customer Registered Date betneen”

Operandt sep 22, 2009 ss1sis5 M saT @ and [£][=]
Operandz Sep 30, 209 21944 MCOT R, [*][)

v | o] cac

OEBPS/img/chooseruledictdcjars2_dict.gif
Listof available 15P tag braries compatible with
eb Application versian: Serviet 2.5\15P 2.1 (Java EE 1.5)
excluding aready used ibraries

naryEdtar 1.0

03 ADF Dats Visuslzstions Core 1.1
3 ADF Dynanic Componerts 1.2
3 ADF Faces Databinding 1.0

o3 1L core 1.2

o3 3510 Formt 1.2

03 3510 Functons 1.2

3 510 Permited Tagbs 1.2

03 35T st ree 1.2

o3 150 1.2

o5 1w 1.2

=

|

OEBPS/img/excel_completed_workbook.gif
L B ExpenseReportTask-dt.xlsx - Microsoft Excel

3
Bl = oo oo oo mo oo s

; e Cattor T~ (= ShwapTen General B e

o

Paste 4rn:’.:mva-mu (B U (][O A | 5 Merge & Center ~]| conatonat_romat | oo ra
Gipboars Font 5 grment 5 styies

821

_« TN o £ P s "

1 Assigned Tasks For User: rewevecTasicst Rehesh Task it) Losd Selected Task

2 |

3|

4| Expense Report T =

5 |Title: = ondngs.tie)

6 |Creator: =it cestor)

7 |created Date: {indngs createddate)

8 |priority: = indngs proity}

3 [state: = indngs st}

10|

1

2 Expense items

NENTS _DEG_STATUS_COL_LABEL])

u‘

6|
u|
18|
|
)

a]

OEBPS/img/bp_wl_password.gif
Vacation Request for jcooper

Eicontents
Crestor | jeooper

From Date. [Mar 15, 2009 5:00 PM
ToDate | Mar 21, 2009 5:00 P
Reason [Vearly vacation

Cistory
o) Tock et | [Future particpants] ulltesk ctions
n Feriipart acton
1 5 [defaut
L1 3 en pesined

[Enter Password

3

Cancel

OEBPS/img/add_useruledictjspx_tf.gif
& Create JSF Page

Ente the name, drectory, and choose ype for the J5 Page. Optonsl reference apage Teglate to ncude
25 ontantnthi page, o appy Quik Start Lol o and conigure an il s oflyoutcomponarts.

i Nave: R 7

Orectry: ClahlasaasstenlmwortlisR D Tad ondopl ek debetTastFonlpele Jim || _erowse.._|
[CI T ——

(] RenderinMobie Devics

1080l PageLayoutand Contert
©Blrkpoge

Opsge Tempate

O gk start Layout

5Page Inplmertaton (U1 corponents arenotexposed n anaged ber).

OEBPS/img/bp_ht_outcomes.gif
Outcomes Dialog,

Select one or more outcomes:

[Joerer
Oves
Dok
APPROVE

[accerr
REECT

[Ino

OEBPS/img/med_request_trans.gif
@ Request Transformation Map.

Transformetion rom request message CustomerData_msg to message Customer_msg.

Transformationtopart: Custoner
(5) Lise Existing Mapper File:| ®Z

O reate Now apper Fi:

