

Oracle® Fusion Middleware
Introducing WebLogic Web Services for Oracle WebLogic
Server

11g Release 1 (10.3.3)

E13759-02

April 2010

This document provides an introduction to WebLogic Web
services for Oracle WebLogic Server, including
interoperability and standards information.

Oracle Fusion Middleware Introducing WebLogic Web Services for Oracle WebLogic Server, 11g Release 1
(10.3.3)

E13759-02

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... v

Documentation Accessibility ... v
Conventions ... v

1 Overview of WebLogic Web Services

1.1 What Are Web Services? .. 1-1
1.2 Why Use Web Services?... 1-2
1.3 Anatomy of a WebLogic Web Service.. 1-2
1.3.1 The Programming Model—Metadata Annotations.. 1-2
1.3.2 The Development Model—Bottom-up and Top-down.. 1-3
1.3.2.1 Bottom-up Approach: Starting from Java ... 1-3
1.3.2.2 Top-down Approach: Starting from WSDL ... 1-4
1.4 How Do I Choose Between JAX-WS and JAX-RPC? ... 1-4
1.5 Roadmap for Implementing WebLogic Web Services... 1-6
1.6 Using Oracle IDEs to Build Web Services ... 1-7
1.7 New and Changed Features in this Release.. 1-8

2 Samples and Related Information

2.1 Samples for WebLogic Web Service Developers.. 2-1
2.1.1 Web Services Samples in the WebLogic Server Distribution .. 2-1
2.1.2 Avitek Medical Records Application (MedRec) and Tutorials..................................... 2-1
2.1.3 Additional Web Services Samples Available for Download... 2-2
2.2 WebLogic Web Services Documentation Set .. 2-2
2.3 Related Documentation—WebLogic Server Application Development 2-2

3 Interoperability with Microsoft WCF/.NET

3.1 Basic Data Types Interoperability Guidelines .. 3-2
3.2 Basic Profile 1.1 Interoperability Guidelines... 3-2
3.3 WS-Security Interoperability Guidelines... 3-2
3.4 WS-SecurityPolicy Interoperability Guidelines.. 3-3
3.5 WS-SecureConversation Interoperability Guidelines.. 3-3
3.6 WS-ReliableMessaging Interoperability Guidelines.. 3-3
3.7 WS-Trust Interoperability Guidelines.. 3-4
3.7.1 Configuring Microsoft .NET STS for WS-Trust... 3-4
3.7.2 Configuring WebLogic Web Service... 3-5

iv

3.7.3 Configuring the Microsoft .NET Client .. 3-5
3.7.4 Using SAML Assertions Referenced from SignedInfo... 3-6

4 Standards Supported by WebLogic Web Services

4.1 A Note About JAX-WS 2.1 RI/JDK 6.0 Extensions .. 4-4
4.2 Apache XMLBeans 2.0.. 4-4
4.3 Java API for XML Registries (JAXR) 1.0 .. 4-5
4.4 Java API for XML-based RPC (JAX-RPC) 1.1 ... 4-5
4.5 Java API for XML-based Web Services (JAX-WS) 2.1.. 4-5
4.6 Java Architecture for XML Binding (JAXB) 2.1 .. 4-5
4.7 JSR 109: Implementing Enterprise Web Services 1.2 ... 4-6
4.8 Security Assertion Markup Language (SAML) 2.0 and 1.1 .. 4-6
4.9 Security Assertion Markup Language (SAML) Token Profile 1.1 and 1.0 4-6
4.10 Simple Object Access Protocol (SOAP) 1.1 and 1.2 .. 4-6
4.11 SOAP with Attachments API for Java (SAAJ) 1.3 .. 4-7
4.12 Web Services Addressing (WS-Addressing) 1.0... 4-7
4.13 Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.2, 1.1, and 1.0..... 4-8
4.14 Web Services Coordination (WS-Coordination) Version 1.2, 1.1, and 1.0 4-8
4.15 Web Services Description Language (WSDL) 1.1 .. 4-8
4.16 Web Services Metadata for the Java Platform 2.0 (JSR-181) ... 4-9
4.17 Web Services Policy Attachment (WS-Policy Attachment) 1.5 and 1.2 4-10
4.18 Web Services Policy Framework (WS-Policy) 1.5 and 1.2.. 4-10
4.19 Web Services Reliable Messaging (WS-ReliableMessaging) 1.1 4-10
4.20 Web Services Reliable Messaging Policy Assertion (WS-RM Policy) 1.1 4-11
4.21 Web Services Secure Conversation Language (WS-SecureConversation) 1.3 4-11
4.22 Web Services Security (WS-Security) 1.1 and 1.0 .. 4-11
4.23 Web Services Security Policy (WS-SecurityPolicy) 1.2 ... 4-12
4.24 Web Services Trust Language (WS-Trust) 1.3 ... 4-12
4.25 Universal Description, Discovery, and Integration (UDDI) 2.0 .. 4-12
4.26 Additional Specifications Supported by WebLogic Web Services 4-13

v

Preface

This preface describes the document accessibility features and conventions used in this
guide—Introducing WebLogic Web Services for Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

vi

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Overview of WebLogic Web Services 1-1

1Overview of WebLogic Web Services

The following sections provide an overview of WebLogic Web services as
implemented by WebLogic Server:

■ Section 1.1, "What Are Web Services?"

■ Section 1.2, "Why Use Web Services?"

■ Section 1.3, "Anatomy of a WebLogic Web Service"

■ Section 1.4, "How Do I Choose Between JAX-WS and JAX-RPC?"

■ Section 1.5, "Roadmap for Implementing WebLogic Web Services"

■ Section 1.6, "Using Oracle IDEs to Build Web Services"

■ Section 1.7, "New and Changed Features in this Release"

1.1 What Are Web Services?
A Web service is a set of functions packaged into a single application that is available
to other systems on a network. The network can be a corporate intranet or the Internet.
Because Web services rely on basic, standard technologies which most systems
provide, they are an excellent means for connecting distributed systems together. They
can be shared by and used as a component of distributed Web-based applications.
Other systems, such as customer relationship management systems, order-processing
systems, and other existing back-end applications, can call a Web service function to
request data or perform an operation.

Traditionally, software application architecture tended to fall into two categories:
monolithic systems such as those that ran on mainframes or client-server applications
running on desktops. Although these architectures worked well for the purpose the
applications were built to address, they were closed and their functionality could not
be incorporated easily into new applications.

As a result, the software industry has evolved toward loosely coupled service-oriented
applications that interact dynamically over the Web. The applications break down the
larger software system into smaller modular components, or shared services. These
services can reside on different computers and can be implemented by vastly different
technologies, but they are packaged and accessible using standard Web protocols, such
as XML and HTTP, thus making them easily accessible by any user on the Web.

This concept of services is not new—RMI, COM, and CORBA are all service-oriented
technologies. However, applications based on these technologies required them to use
that particular technology, often from a particular vendor. This requirement typically
hinders widespread integration of the application's functionality into other services on

Why Use Web Services?

1-2 Introducing WebLogic Web Services for Oracle WebLogic Server

the network. To solve this problem, Web services are defined to share the following
properties that make them easily accessible from heterogeneous environments:

■ Web services are accessed using widely supported Web protocols such as HTTP.

■ Web services describe themselves using an XML-based description language.

■ Web services communicate with clients (both end-user applications or other Web
services) through simple XML messages that can be produced or parsed by
virtually any programming environment or even by a person, if necessary.

1.2 Why Use Web Services?
Major benefits of Web services include:

■ Interoperability among distributed applications that span diverse hardware and
software platforms

■ Easy, widespread access to applications through firewalls using Web protocols

■ A cross-platform, cross-language data model (XML) that facilitates developing
heterogeneous distributed applications

Because you access Web services using standard Web protocols such as XML and
HTTP, the diverse and heterogeneous applications on the Web (which typically already
understand XML and HTTP) can automatically access Web services and communicate
with each other.

These different systems can be Microsoft SOAP ToolKit clients, Java Platform,
Enterprise Edition (Java EE) Version 5 applications, legacy applications, and so on.
They are written in Java, C++, Perl, and other programming languages. Application
interoperability is the goal of Web services and depends upon the service provider's
adherence to published industry standards.

1.3 Anatomy of a WebLogic Web Service
WebLogic Web services are implemented according to the JSR 109: Implementing
Enterprise Web Services specification
(http://www.jcp.org/en/jsr/detail?id=109), which defines the standard
Java EE runtime architecture for implementing Web services in Java. The specification
also describes a standard Java EE Web service packaging format, deployment model,
and runtime services, all of which are implemented by WebLogic Web services.

The following sections describe:

■ Section 1.3.1, "The Programming Model—Metadata Annotations"

■ Section 1.3.2, "The Development Model—Bottom-up and Top-down"

1.3.1 The Programming Model—Metadata Annotations
The JSR 109: Implementing Enterprise Web Services specification
(http://www.jcp.org/en/jsr/detail?id=109) describes that a Java EE Web
service is implemented by one of the following components:

■ A Java class running in the Web container.

■ A stateless session EJB running in the EJB container.

The code in the Java class or EJB implements the business logic of your Web service.
Oracle recommends that, instead of coding the raw Java class or EJB directly, you use

Anatomy of a WebLogic Web Service

Overview of WebLogic Web Services 1-3

the JWS annotations programming model, which makes programming a WebLogic
Web service much easier.

This programing model takes advantage of the new JDK 5.0 metadata annotations
feature (described at
http://java.sun.com/developer/technicalArticles/releases/j2se15/
) in which you create an annotated Java file and then use Ant tasks to compile the file
into a Java class and generate all the associated artifacts. The Java Web Service (JWS)
annotated file is the core of your Web service. It contains the Java code that determines
how your Web service behaves. A JWS file is an ordinary Java class file that uses
annotations to specify the shape and characteristics of the Web service. The JWS
annotations you can use in a JWS file include the standard ones defined by the Web
Services Metadata for the Java Platform specification
(http://www.jcp.org/en/jsr/detail?id=181) as well as a set of other
standard or WebLogic-specific annotations, depending on the type of Web service you
are creating.

This release of WebLogic Server supports both Java API for XML-Based Web services
2.1 (JAX-WS) Web services, described at
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.htm
l, and Java API for XML-Based RPC 1.1 (JAX-RPC) Web services, described at
https://jax-rpc.dev.java.net/. JAX-RPC, an older specification, defined APIs
and conventions for supporting XML Web services in the Java Platform as well
support for the WS-I Basic Profile 1.0 to improve interoperability between JAX-RPC
implementations. JAX-WS is a follow up to JAX-RPC 1.1. For more information, see
Section 1.4, "How Do I Choose Between JAX-WS and JAX-RPC?."

Once you have coded the basic WebLogic Web service, you can program and configure
additional advanced features. For example, you can specify that the SOAP messages
be digitally signed and encrypted (as specified by the WS-Security specification at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss).
You configure these more advanced features of WebLogic Web services using
WS-Policy files, which is an XML file that adheres to the WS-Policy specification and
contains security-specific or Web service reliable messaging-specific XML elements
that describe the security and reliable-messaging configuration, respectively. For
information about the WS-Policy specification, see Section 4.18, "Web Services Policy
Framework (WS-Policy) 1.5 and 1.2."

1.3.2 The Development Model—Bottom-up and Top-down
There are two approaches to Web service development: bottom-up and top-down.
Each approach is described in the following sections.

1.3.2.1 Bottom-up Approach: Starting from Java
In the bottom-up approach, you develop your the JWS file from scratch. After you
create the JWS file, you use the jwsc WebLogic Web service Ant task to compile the
JWS file, as described by the JSR 109: Implementing Enterprise Web Services specification,
described in Section 4.7, "JSR 109: Implementing Enterprise Web Services 1.2."

The jwsc Ant task always compiles the JWS file into a plain Java class; the only time it
implements a stateless session EJB is if you implement a stateless session EJB in your
JWS file. The jwsc Ant task also generates all the supporting artifacts for the Web
service, packages everything into an archive file, and creates an Enterprise Application
that you can then deploy to WebLogic Server.

By default, the jwsc Ant task packages the Web service in a standard Web application
WAR file with all the standard WAR artifacts. The WAR file, however, contains

How Do I Choose Between JAX-WS and JAX-RPC?

1-4 Introducing WebLogic Web Services for Oracle WebLogic Server

additional artifacts to indicate that it is also a Web service; these additional artifacts
include deployment descriptor files, the WSDL file that describes the public contract of
the Web service, and so on. If you execute jwsc against more than one JWS file, you
can choose whether jwsc packages the Web services in a single WAR file or each Web
service in a separate WAR file. In either case, jwsc generates a single Enterprise
Application.

If you implement a stateless session EJB in your JWS file, then the jwsc Ant task
packages the Web service in a standard EJB JAR file with all the usual artifacts, such as
the ejb-jar.xml and weblogic-ejb.jar.xml deployment descriptor files. The
EJB JAR file also contains additional Web service-specific artifacts, as described in the
preceding paragraph, to indicate that it is a Web service. Similarly, you can choose
whether multiple JWS files are packaged in a single or multiple EJB JAR files.

For more information about the bottom-up approach, see the following sections:

■ "Developing WebLogic Web Services Starting From Java: Main Steps" in Getting
Started With JAX-WS Web Services for Oracle WebLogic Server.

■ "Developing WebLogic Web Services Starting From Java: Main Steps" in Getting
Started With JAX-RPC Web Services for Oracle WebLogic Server.

1.3.2.2 Top-down Approach: Starting from WSDL
In the top-down approach, you create the Web service from a WSDL file. You can use
the wsdlc Ant task to generate a partial implementation of the Web service described
by the WSDL file. The wsdlc Ant task generates he JWS service endpoint interface
(SEI), the stubbed-out JWS class file, JavaBeans that represent the XML Schema data
types, and so on, into output directories.

After running the wsdlc Ant task, (which typically you only do once) you update the
generated JWS implementation file, for example, to add Java code to the methods so
that they function as defined by your business requirements. The generated JWS
implementation file does not initially contain any business logic because the wsdlc
Ant task does not know how you want your Web service to function, although it does
know the shape of the Web service, based on the WSDL file.

The wsdlc Ant task packages the JWS SEI and data binding artifacts together into a
JAR file that you later specify to the jwsc Ant task. You never need to update this JAR
file; the only file you update is the JWS implementation class.

For more information about the top-down approach, see the following sections:

■ "Developing WebLogic Web Services Starting From a WSDL File: Main Steps" in
Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

■ "Developing WebLogic Web Services Starting From a WSDL File: Main Steps" in
Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

1.4 How Do I Choose Between JAX-WS and JAX-RPC?
As noted previously, this release of WebLogic Server supports the following Web
services:

■ Java API for XML-based Web Services 2.1 (JAX-WS), described in Section 4.5, "Java
API for XML-based Web Services (JAX-WS) 2.1"

■ Java API for XML-Based RPC 1.1 (JAX-RPC), described in Section 4.4, "Java API
for XML-based RPC (JAX-RPC) 1.1"

How Do I Choose Between JAX-WS and JAX-RPC?

Overview of WebLogic Web Services 1-5

Because JAX-WS is the successor to the JAX-RPC and it implements many of the new
features in Java EE 5, Oracle recommends that you develop Web services with
JAX-WS. JAX-RPC is considered legacy and the specification is no longer evolving.

The following table summarizes the benefits of choosing JAX-WS over JAX-RPC.
There may be reasons to continue developing JAX-RPC Web services, which you can
weigh against the benefits listed below. For additional documentation and examples
about programming the features described in the following sections in a JAX-WS Web
service, see the JAX-WS documentation available at
https://jax-ws.dev.java.net. See also Chapter 4, "Standards Supported by
WebLogic Web Services" for a comparison of the standards that are supported for
JAX-WS and JAX-RPC.

Table 1–1 Benefits of JAX-WS

Benefit Description

Data Binding Using JAXB 2.1 JAX-WS 2.1 fully supports the Java Architecture for XML Binding (JAXB) 2.1
specification (http://jcp.org/en/jsr/detail?id=222) and provides
full XML Schema support. JAXB provides a convenient way to bind an XML
schema to a representation in Java code. This makes it easy for you to
incorporate XML data and processing functions in applications based on Java
technology without having to know much about XML itself. For more
information, see "Using JAXB Data Binding" in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server.

By contrast, the built-in and user-defined data types you can use in a
JAX-RPC-style Web service, although extensive, is limited to those described
in "Understanding Data Binding" in Getting Started With JAX-RPC Web Services
for Oracle WebLogic Server.

Document Attachments Using
Streaming MTOM

Using MTOM and the javax.activation.DataHandler and
com.sun.xml.ws.developer.StreamingDataHandler APIs you can
specify that a Web service use a streaming API when reading inbound SOAP
messages that include attachments, rather than the default behavior in which
the service reads the entire message into memory. This feature increases the
performance of Web services whose SOAP messages are particular large. For
more information, see "Streaming SOAP Attachments" in Programming
Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

Operate on messages at the XML
level

The JAX-WS javax.xml.ws.Provider and javax.xml.ws.Dispatch
APIs enable the Web service to operate at the XML message level, accessing
the XML payloads directly

Web Service Annotations The JAX-WS 2.1 programming model is very similar to JAX-RPC 1.1 Web
services in that it uses metadata annotations described in the JSR 181:Web
Services Metadata for the Java Platform specification
(http://jcp.org/en/jsr/detail?id=181) and then Ant tasks to
compile the annotated Java file into a deployable enterprise application (EAR)
file. However, the JAX-WS 2.1 programming model is more robust because it
defines additional annotations, listed in the JAX-WS 2.1 specification, that you
can use to customize the mapping from Java to XML schema/WSDL and to
map Web service operation parameter names to meaningful part/element
names in the WSDL file.

For a comparison of the Web service annotation support for JAX-WS and
JAX-RPC, see "Web Service Annotation Support" in WebLogic Web Services
Reference.

Roadmap for Implementing WebLogic Web Services

1-6 Introducing WebLogic Web Services for Oracle WebLogic Server

1.5 Roadmap for Implementing WebLogic Web Services
The following table provides a roadmap of common tasks for creating, deploying, and
invoking WebLogic Web services.

XML-based Customizations The JAX-WS 2.1 specification defines standard and portable XML-based
customizations. These customizations, or binding declarations, can customize
almost all WSDL components that can be mapped to Java, such as the service
endpoint interface class, method name, parameter name, exception class, etc.
Using binding declarations you can also control certain features, such as
asynchrony, provider, wrapper style, and additional headers.

Logical and Protocol Handlers JAX-WS 2.1 defines two types of handlers: logical and protocol handlers.
While protocol handlers have access to an entire message such as a SOAP
message, logical handlers deal only with the payload of a message and are
independent of the protocol being used. Handler chains can now be
configured on a per-port, per-protocol, or per-service basis. A new framework
of context objects has been added to allow client code to share information
easily with handlers.

EJB 3.0 Support JAX-WS supports EJB 3.0. JAX-RPC supports EJB 2.1 only.

Note: The JAX-WS implementation in Oracle WebLogic Server is
extended from the JAX-WS Reference Implementation (RI) developed
by the Glassfish Community (see
https://jax-ws.dev.java.net/). All features defined in the
JAX-WS specification (JSR-224) are fully supported by Oracle
WebLogic Server.

The JAX-WS RI also contains a variety of extensions, provided by
Glassfish contributors. Unless specifically documented, JAX-WS RI
extensions are not supported for use in Oracle WebLogic Server.

Table 1–2 Roadmap for Implementing WebLogic Web Services

Major Task Subtasks and Additional Information

Review supported standards Chapter 4, "Standards Supported by WebLogic Web
Services"

Run samples ■ Section 2.1, "Samples for WebLogic Web Service
Developers"

■ JAX-WS Use Cases and Examples

■ JAX-RPC Use Cases and Examples

Table 1–1 (Cont.) Benefits of JAX-WS

Benefit Description

Using Oracle IDEs to Build Web Services

Overview of WebLogic Web Services 1-7

1.6 Using Oracle IDEs to Build Web Services
The following Oracle IDE tools are available to build Web services:

■ Oracle JDeveloper—Oracle's full-featured Java IDE, can be used for end-to-end
development of Web services. Developers can build Java classes or EJBs, expose
them as Web services, automatically deploy them to an instance of Oracle
WebLogic Server, and immediately test the running Web service. Alternatively,
JDeveloper can be used to drive the creation of Web services from WSDL

Develop Web services using
JAX-WS

■ Getting Started With JAX-WS Web Services for Oracle
WebLogic Server

■ Use Cases and Examples

■ Invoking a Web Service Using Asynchronous
Request-Response

■ Publishing a Web Service Endpoint

■ Using Callbacks

■ Optimizing Binary Data Transmission Using
MTOM/XOP

■ Creating Dynamic Proxy Classes

■ Using XML Catalogs

■ Creating and Using SOAP Message Handlers

■ Programming RESTful Web Services

■ Publishing and Finding Web Services Using UDDI

Develop Web services using
JAX-RPC

■ Getting Started With JAX-RPC Web Services for Oracle
WebLogic Server

■ Use Cases and Examples

■ Invoking a Web Service Using Asynchronous
Request-Response

■ Using Web Services Reliable Messaging

■ Creating Conversational Web Services

■ Using the Asynchronous Features Together

■ Using Callbacks to Notify Clients of Events

■ Sending Binary Data Using MTOM/XOP

■ Creating Buffered Web Services

■ Using JMS Transport as the Connection Protocol

■ Creating and Using SOAP Message Handlers

■ Using Database Web Services

■ Publishing and Finding Web Services Using UDDI

Secure the Web Service ■ Configuring Message-Level Security

■ Configuring Transport-Level Security

■ Configuring Access Control Security (JAX-RPC Only)

Upgrade ■ JAX-WS: No steps are required to upgrade JAX-WS to
10.3.1.

■ JAX-RPC: Upgrading WebLogic Web services From
Previous Releases to 10.3.1

Table 1–2 (Cont.) Roadmap for Implementing WebLogic Web Services

Major Task Subtasks and Additional Information

New and Changed Features in this Release

1-8 Introducing WebLogic Web Services for Oracle WebLogic Server

descriptions. JDeveloper also is Ant-aware. You can use this tool to build and run
Ant scripts for assembling the client and for assembling and deploying the service.
For more information, see the Oracle JDeveloper online help. For information
about installing JDeveloper, see Oracle Fusion Middleware Installation Guide for
Oracle JDeveloper.

■ Oracle Enterprise Pack for Eclipse (OEPE)—Provides a collection of plug-ins to
the Eclipse IDE platform that facilitate development of WebLogic Web services.
For more information, see the Eclipse IDE platform online help.

1.7 New and Changed Features in this Release
For a comprehensive listing of the new WebLogic Server Web service features
introduced in this release, see "Web Services" in What's New in Oracle WebLogic Server.

2

Samples and Related Information 2-1

2Samples and Related Information

The following sections describe the samples and related information that is available
to assist you in learning more about WebLogic Web services.

■ Section 2.1, "Samples for WebLogic Web Service Developers"

■ Section 2.2, "WebLogic Web Services Documentation Set"

■ Section 2.3, "Related Documentation—WebLogic Server Application
Development"

2.1 Samples for WebLogic Web Service Developers
In addition to this document, Oracle provides a variety of code samples for Web
services developers. The samples and tutorials illustrate WebLogic Web services in
action, and provide practical instructions on how to perform key Web service
development tasks.

Oracle recommends that you run the Web service samples before programming your
own application that use Web services.

2.1.1 Web Services Samples in the WebLogic Server Distribution
WebLogic Server optionally installs API code samples in WL_
HOME\samples\server\examples\src\examples\webservices, where WL_
HOME is the top-level directory of your WebLogic Server installation. You can start the
samples server, and obtain information about the samples and how to run them from
the WebLogic Server Start menu.

2.1.2 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
Oracle-recommended best practices. MedRec is included in the WebLogic Server
distribution, and can be accessed from the Start menu on Windows machines. For
Linux and other platforms, you can start MedRec from the WL_
HOME\samples\domains\medrec directory, where WL_HOME is the top-level
installation directory for WebLogic Server. A Spring version of the application is
accessible from the WL_HOME\samples\domains\medrec-spring directory.

WebLogic Web Services Documentation Set

2-2 Introducing WebLogic Web Services for Oracle WebLogic Server

2.1.3 Additional Web Services Samples Available for Download
Additional API samples for download can be found at
https://codesamples.samplecode.oracle.com/. These samples include
Oracle-certified ones, as well as samples submitted by fellow developers.

2.2 WebLogic Web Services Documentation Set
This document is part of a larger WebLogic Web services documentation set that
covers a comprehensive list of Web services topics. The full documentation set
includes the documents summarized in the following table.

2.3 Related Documentation—WebLogic Server Application Development
For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, refer to the documents summarized in the following table.

Table 2–1 WebLogic Web Services Documentation Set

This document . . . Describes . . .

Introducing WebLogic Web Services
for Oracle WebLogic Server (This
Document)

An introduction to WebLogic Web services, the standards
that are supported, interoperability information, and
relevant samples and documentation.

Getting Started With JAX-WS Web
Services for Oracle WebLogic Server

The basic knowledge and tasks required to program a
simple WebLogic Web service using JAX-WS. The guide
includes use cases and examples, iterative development
procedures, typical JWS programming steps, data type
information, and how to invoke a Web service.

Programming Advanced Features of
JAX-WS Web Services for Oracle
WebLogic Server

How to program more advanced features using JAX-WS,
such as callbacks, XML Catalog, and SOAP message
handlers.

Getting Started With JAX-RPC Web
Services for Oracle WebLogic Server

The basic knowledge and tasks required to program a
simple WebLogic Web service using JAX-RPC. The guide
includes use cases and examples, iterative development
procedures, typical JWS programming steps, data type
information, and how to invoke a Web service.

Programming Advanced Features of
JAX-RPC Web Services for Oracle
WebLogic Server

How to program more advanced features using JAX-RPC,
such as Web service reliable messaging, callbacks,
conversational Web services, use of JMS transport to invoke
a Web service, and SOAP message handlers.

Securing WebLogic Web Services for
Oracle WebLogic Server

How to program and configure message-level (digital
signatures and encryption), transport-level, and access
control security for a Web service.

WebLogic Web Services Reference for
Oracle WebLogic Server

Reference information on JWS annotations, Ant tasks,
reliable messaging WS-Policy assertions, security
WS-Policy assertions, and deployment descriptors.

Table 2–2 Related Documentation—WebLogic Server Application Development

Review this document . . . To learn how to . . .

Introducing Web Services Develop Web services for Oracle Fusion Middleware 11g.

Security and Administrator’s
Guide for Web Services

Administer Web services for Oracle Fusion Middleware 11g.

Developing Applications for
Oracle WebLogic Server

Develop WebLogic Server components (such as Web applications
and EJBs) and applications.

Related Documentation—WebLogic Server Application Development

Samples and Related Information 2-3

Developing Web
Applications, Servlets, and
JSPs for Oracle WebLogic
Server

Develop Web applications, including servlets and JSPs, that are
deployed and run on WebLogic Server.

Programming WebLogic
Enterprise JavaBeans for
Oracle WebLogic Server

Develop EJBs that are deployed and run on WebLogic Server.

Programming XML for
Oracle WebLogic Server

Design and develop applications that include XML processing.

Deploying Applications to
Oracle WebLogic Server

Deploy WebLogic Server applications. Use this guide for both
development and production deployment of your applications.

"Configuring Applications
for Production
Deployment" in Deploying
Applications to Oracle
WebLogic Server

Configure your applications for deployment to a production
WebLogic Server environment.

Performance and Tuning for
Oracle WebLogic Server

Monitor and improve the performance of WebLogic Server
applications.

"Overview of WebLogic
Server System
Administration" in
Introduction to Oracle
WebLogic Server

Administer WebLogic Server and its deployed applications.

Table 2–2 (Cont.) Related Documentation—WebLogic Server Application Development

Review this document . . . To learn how to . . .

Related Documentation—WebLogic Server Application Development

2-4 Introducing WebLogic Web Services for Oracle WebLogic Server

3

Interoperability with Microsoft WCF/.NET 3-1

3Interoperability with Microsoft WCF/.NET

In conjunction with Microsoft, Oracle has performed interoperability testing to ensure
that the Web services created using WebLogic Server can access and consume Web
services created using Microsoft Windows Communication Foundation (WCF)/.NET
3.0 and 3.5 Framework and vice versa. For more information, see
http://msdn2.microsoft.com/en-us/netframework/default.aspx.

Interoperability tests were completed on JAX-WS and JAX-RPC Web services in the
following areas:

In addition, the following combined features were tested:

■ MTOM and WS-Security

■ WS-ReliableMessaging and MTOM (JAX-RPC only)

■ WS-ReliableMessaging 1.1 and WS-Addressing 0.9 and 1.0 (JAX-RPC only)

Table 3–1 Completed Interoperability Tests

Area Interoperability Guidelines

Basic and complex data types Section 3.1, "Basic Data Types Interoperability Guidelines"

WS-I Basic Profile 1.1 Section 3.2, "Basic Profile 1.1 Interoperability Guidelines"

Web Services Security
(WS-Security) 1.0 and 1.1

Section 3.3, "WS-Security Interoperability Guidelines"

Web Services Security Policy
(WS-SecurityPolicy) 1.2

Section 3.4, "WS-SecurityPolicy Interoperability
Guidelines"

Web Services Secure Conversation
Language
(WS-SecureConversation) 1.3

Section 3.5, "WS-SecureConversation Interoperability
Guidelines"

Web Services Policy Framework
(WS-Policy) 1.5

No interoperability guidelines provided.

Web Services Addressing
(WS-Addressing) 0.9 and 1.0

N/A

Message Transmission
Optimization Mechanism
(MTOM)

N/A

Web Services Reliable Messaging
(WS-ReliableMessaging) 1.0 and
1.1

Section 3.6, "WS-ReliableMessaging Interoperability
Guidelines"

Note: Tested for JAX-RPC only.

Web Services Trust (WS-Trust) 1.3 Section 3.7, "WS-Trust Interoperability Guidelines"

Basic Data Types Interoperability Guidelines

3-2 Introducing WebLogic Web Services for Oracle WebLogic Server

■ WS-ReliableMessaging 1.0 and WS-Addressing 0.9 and 1.0 (JAX-RPC only)

■ WS-ReliableMessaging 1.1 and WS-SecureConversation 1.3 (JAX-RPC only)

■ WS-ReliableMessaging 1.0 and WS-SecureConversation 1.3 (JAX-RPC only)

■ WS-Policy 1.5 and WS-SecurityPolicy 1.2

The following sections describe the interoperability issues and guidelines that were
identified during the testing.

3.1 Basic Data Types Interoperability Guidelines
When using the anyType class with Microsoft .NET 3.0/3.5 the Java data type
returned cannot be guaranteed. If a specific Java data type is required, avoid using
anyType.

3.2 Basic Profile 1.1 Interoperability Guidelines
JAX-WS 2.0 enforces strict WS-I Basic Profile 1.1 compliance. Microsoft .NET 3.0/3.5
framework does not enforce string Basic Profile 1.1 semantics for the use case
described on the Sun Java Web site at:
http://java.sun.com/webservices/reference/tutorials/wsit/doc/Dat
aBinding7.html

3.3 WS-Security Interoperability Guidelines
The following lists interoperability guidelines for WS-Security:

■ Use of <sp:Strict> layout assertions (shown below) cannot be guaranteed.

<sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
</sp:Layout>

Instead, you should define your policy as follows:

<sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
</sp:Layout>

■ The following assertions are not supported by Microsoft .NET 3.0/3.5:

– Digest password in UsernameToken

– <sp:EncryptedSupportingTokens>

– Element-level signature

– Element-level encryption

■ Support of asymmetric binding for WS-Security 1.1 cannot be guaranteed on
Microsoft .NET 3.0/3.5.

WS-ReliableMessaging Interoperability Guidelines

Interoperability with Microsoft WCF/.NET 3-3

3.4 WS-SecurityPolicy Interoperability Guidelines
In this release, WebLogic Server and Microsoft .NET 3.5 support Web Services Security
Policy (WS-SecurityPolicy) 1.2. Microsoft .NET 3.0 supports the December 2005 draft
version of the WS-SecurityPolicy specification.

In the December 2005 draft version of the specification, the
<sp:SignedEncryptedSupportingTokens> policy assertion is not supported. As
a result, Microsoft .NET 3.0 encrypts the UsernameToken in the
<sp:SignedSupportingTokens> policy assertion. If you use the
<sp:SignedSupportingTokens> policy assertion without encrypting the
UsernameToken, the WebLogic Server and Microsoft .NET Web services will not
interoperate.

3.5 WS-SecureConversation Interoperability Guidelines
The following lists interoperability guidelines for WS-SecureConversation:

■ Use of WS-SecureConversation token for HTTPS authentication (in
<sp:EndorsingSupportingTokens>) is not supported.

■ Oracle recommends that you do not use <sp:EncryptBeforeSigning/> unless
there is a security requirement. Instead, use <sp:SignBeforeEncrypt> (the
default).

■ Although WebLogic Server Web services support cookie mode conversations, this
feature is a Microsoft proprietary implementation, and may not be supported by
other vendors.

■ When using <sp:BootstrapPolicy> policy assertion, you should refer to the
guidelines defined in Section 3.3, "WS-Security Interoperability Guidelines."

■ There is no standard method of supporting cancel and renew of
WS-SecureConversation defined in the WS-SecurityPolicy or
WS-SecureConversation specifications. The method used by Microsoft .NET to
support cancel and renew of WS-SecureConversation is not compatible with
WebLogic Server 10.x. As a result:

– For a Microsoft .NET client to interoperate with a WebLogic Server Web
service, the Compatibility flag must be set on the server side via the Web
service Security MBean using the
setCompatibilityPreference("msft") method.

– For a WebLogic Server Web service client to interoperate with a WebLogic
Server Web service that has the Compatibility flag set, the client must set
this flag as well, as follows:

stub._setProperty(WLStub.POLICY_COMPATIBILITY_PREFERENCE,"msft");

3.6 WS-ReliableMessaging Interoperability Guidelines
The following lists interoperability guidelines for WS-ReliableMessaging:

■ Anonymous request/response is not defined in the WS-ReliableMessaging
specification
(http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-o
s-01.pdf) and is, consequently, not supported by WebLogic Server.

WS-Trust Interoperability Guidelines

3-4 Introducing WebLogic Web Services for Oracle WebLogic Server

■ For WS-ReliableMessaging security, you must use WS-SecureConversation as per
the guidelines in the WS-I Reliable Secure Profile Version 1.0 Working Group Draft
specification at
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0.html.

■ Asynchronous reliable messaging plus WS-SecureConversation or WS-Trust is not
supported for WebLogic Web service clients and Microsoft .NET services.

3.7 WS-Trust Interoperability Guidelines
WebLogic Server does not interoperate with Microsoft .NET according to the Microsoft
.NET interoperability scenarios that use both SAML and WS-Trust, as defined in the
following documents on the Microsoft .NET Web Services Interoperability Plug-Fest
Web site at http://mssoapinterop.org/ilab/:

■ WS-SX Scenarios Document at
http://mssoapinterop.org/ilab/Trust13/WCFInteropPlugFest_
WSTrust13.doc

■ WCF (Indigo) Interoperability Lab: WS-Trust10 Scenarios at
http://mssoapinterop.org/ilab/Trust10/WCFInteropPlugFest_
WSTrust10.doc

With the proper configuration, however, WebLogic Server can interoperate with
Microsoft .NET. For example, with proper configuration on STS and Microsoft .NET
client, it can interoperate with WebLogic server with SAML 1.1 Token Profile 1.0 in
accordance with WS-Security 1.0. More details are provided in the following sections:

■ Section 3.7.1, "Configuring Microsoft .NET STS for WS-Trust"

■ Section 3.7.2, "Configuring WebLogic Web Service"

■ Section 3.7.3, "Configuring the Microsoft .NET Client"

■ Section 3.7.4, "Using SAML Assertions Referenced from SignedInfo"

3.7.1 Configuring Microsoft .NET STS for WS-Trust
Microsoft .NET requires a Security Token Service (STS) to generate a SAML Assertion
and supports WS-Security SAML 1.1 Token Profile for WS-Security 1.0. Microsoft .NET
favors symmetric bindings for WS-Security and SAML holder-of-key confirmation
methods. Oracle WebLogic, on the other hand, performs better using asymmetric
bindings and SAML sender-vouches confirmation methods, using X.509 certificates to
sign the message and bind the SAML assertion.

On the WebLogic Server side, the inbound policy is WS-Security SAML 1.1 Token
Profile for WS-Security 1.0 and the outbound policy ensures that the message is signed
by the Web service. This is required because Microsoft .NET expects that an endpoint
that is protected using WS-Security will secure the response as well. To support this
configuration, the WebLogic Server Security realm needs to be configured to consume
and validate SAML Assertions as well as configure Public/Private Key pairs and
corresponding trust stores for the message signature operations dictated by the
WS-Security policies.

The flow is as follows:

1. The Microsoft .NET client calls the STS.

2. The STS generates a SAML Assertion signed by the STS that contains the name of
the user as the Subject.

WS-Trust Interoperability Guidelines

Interoperability with Microsoft WCF/.NET 3-5

The SAML Assertion uses the sender-vouches confirmation method.

3. The SAML Assertion is added to the WS-Security Header, and the message is
signed by the invoking service.

4. The message is sent to WebLogic Server where the SAML Assertion is verified
along with the message signature.

5. Once the message is processed, the return message is signed by the WebLogic
server's identity.

6. The signature is validated by the Microsoft .NET client to ensure that the message
has not been tampered and was sent by the WebLogic server.

STS needs to be configured, as follows:

■ Use X509RawCertificate format for WSS1.0 instead of SHA1 Thumbprint.

■ Use Sender-Vouches confirmation method instead of Holder of Key.

■ Sign the assertion with the private key of the issuer, not the encrypted key. Use of
the unencrypted asymmetric keys over symmetric encrypted keys improves
performance.

■ Include an AuthenticationStatement in the SAML Assertion. WebLogic uses this
statement to access the user's identity.

■ Add a wsu:Id to the saml:Assertion. Otherwise the Microsoft .NET client cannot
use it as an IssuedToken with an asymmetric binding.

3.7.2 Configuring WebLogic Web Service
For the WebLogic Web service, use the predefined
Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.0.xml to enforce SAML 1.1
sender-vouches authentication with WS-Security 1.0 for message binding.

3.7.3 Configuring the Microsoft .NET Client
Configure the Microsoft .NET client as shown below. The SAML token is retrieved
from the STS, so the Microsoft .NET client needs to be configured to communicate
with STS. Authentication using a token retrieved from an STS is called an IssuedToken.

?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
 >
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
 sp:IncludeToken=
"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRe
cipient">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>

WS-Trust Interoperability Guidelines

3-6 Introducing WebLogic Web Services for Oracle WebLogic Server

 <sp:X509Token
 sp:IncludeToken=
"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken
 sp:IncludeToken=
"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRe
cipient">
 <wsp:Policy>
 <sp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
</wsp:Policy>

3.7.4 Using SAML Assertions Referenced from SignedInfo
When the SAML assertion is referenced in the <ds:SignedInfo> element of a
<ds:Signature> element in a <wsee:Security> header, Microsoft .NET does not
support a SAML assertion that is referenced from
<wsse:SecurityTokenReference>. Use of <wsse:SecurityTokenReference> is
defined as a best practice in the WS-Security specification, described at
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1
-spec-os-SAMLTokenProfile.pdf.

For compatibility with Microsoft .NET, you must set the WLStub.POLICY_
COMPATIBILITY_PREFERENCE flag to WLStub.POLICY_COMPATIBILITY_MSFT
flag in Web service client code. When the flag is set, the SAML assertion will be signed
with direct reference, rather than using a SecurityTokenReference.

WS-Trust Interoperability Guidelines

Interoperability with Microsoft WCF/.NET 3-7

The following provides an example of how to set the Microsoft .NET compatibility flag
for a JAX-WS Web service client:

Example 3–1 Setting the Microsoft .NET Compatibility Flag in a JAX-WS Web Service Client

. . .
import weblogic.wsee.jaxrpc.WLStub;
. . .
public String test(String hello) throws Exception {
 . . .
 BindingProvider provider = (BindingProvider)port;
 Map context = provider.getRequestContext();
 . . .
 . . .
 context.put(WLStub.POLICY_COMPATIBILITY_PREFERENCE, WLStub.POLICY_COMPATIBILITY_MSFT);
 try {
 String result = port.getName(hello);
 System.out.println("MSFT Result was: " + result);
 return result;
 } catch (Exception e) {
 throw new RuntimeException (e);
 }
}

The following provides an example of how to set the Microsoft .NET compatibility flag
for a JAX-RPC Web service client:

Example 3–2 Setting the Microsoft .NET Compatibility Flag in a JAX-RPC Web Service Client

. . .

. . .
import weblogic.wsee.jaxrpc.WLStub;
. . .

@WebMethod()
public String callSamlHelloSV_WSS10_MSFT(String input) {
 try {
 System.out.println("Calling sayHello(" + input + ") with MSFT Ways");
 ((Stub)port)._setProperty(WLStub.POLICY_COMPATIBILITY_PREFERENCE,
 WLStub.POLICY_COMPATIBILITY_MSFT);
 String result = port.sayHelloSV_WSS10(input);
 System.out.println("MSFT Result was: " + result);
 return result;
 }
 catch (RemoteException e) {
 throw new RuntimeException(e);
 }
}

WS-Trust Interoperability Guidelines

3-8 Introducing WebLogic Web Services for Oracle WebLogic Server

4

Standards Supported by WebLogic Web Services 4-1

4Standards Supported by WebLogic Web
Services

Many specifications that define Web service standards are written so as to allow for
broad use of the specification throughout the industry. The Oracle implementation of a
particular specification might not cover all possible usage scenarios covered by the
specification.

Oracle considers interoperability of Web service platforms to be more important than
providing support for all possible edge cases of the Web service specifications. Oracle
complies with the following specifications from the Web Services Interoperability
Organization and considers them to be the baseline for Web services interoperability:

■ Basic Profile 1.1:
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

■ Basic Security Profile 1.1:
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html

This guide does not necessarily document all of the Basic Profile 1.1 and Basic Security
Profile 1.1 requirements. This guide does, however, document features that are beyond
the requirements of the Basic Profile 1.1 and Basic Security Profile 1.1.

The following table summarizes the Web service specifications that are part of the
Oracle implementation, organized by high-level feature.

Table 4–1 Oracle Implementation of Web Service Specifications

Feature Specification JAX-WS JAX-RPC

Programming model
(based on metadata
annotations) and
runtime architecture

JSR 109: Implementing Enterprise Web Services
1.2—Programming model and runtime architecture for
implementing Web services in Java that run on a Java EE
application server, such as WebLogic Server. See Section 4.7,
"JSR 109: Implementing Enterprise Web Services 1.2."

Version 1.2 Version 1.2

Programming model
(based on metadata
annotations) and
runtime architecture

Web Services Metadata for the Java Platform 2.0
(JSR-181)—Standard annotations that you can use in your
Java Web service (JWS) file to facilitate the programming of
Web services. See Section 4.16, "Web Services Metadata for
the Java Platform 2.0 (JSR-181)."

Supports Supports

Programming APIs Java API for XML-based Web Services (JAX-WS)
2.1—Standards-based API for coding, assembling, and
deploying Java Web services. The integrated stack includes
JAX-WS 2.1, JAXB 2.1, and SAAJ 1.3. See Section 4.5, "Java
API for XML-based Web Services (JAX-WS) 2.1."

Version 2.1 N/A

4-2 Introducing WebLogic Web Services for Oracle WebLogic Server

Programming APIs Java API for XML-based RPC (JAX-RPC) 1.1—Java APIs
for making XML-based remote procedure calls (RPC). See
Section 4.4, "Java API for XML-based RPC (JAX-RPC) 1.1."

N/A Version 1.1

Data binding Java Architecture for XML Binding (JAXB)
2.1—Implementation used to bind an XML schema to a
representation in Java code. JAXB is supported by JAX-WS
Web services only. See Section 4.6, "Java Architecture for
XML Binding (JAXB) 2.1."

Version 2.1 N/A

Data binding Apache XMLBeans 2.0—A technology for binding XML
schema to Java types and for accessing XML data in a
variety of ways. XMLBeans is the default binding
technology for JAX-RPC Web services. See Section 4.2,
"Apache XMLBeans 2.0."

N/A 2.0

Web service description Web Services Description Language (WSDL)
1.1—XML-based specification that describes a Web service.
See Section 4.15, "Web Services Description Language
(WSDL) 1.1."

Version 1.1 Version 1.1

Web service description Web Services Policy Framework (WS-Policy) 1.5 and
1.2—General purpose model and corresponding syntax to
describe and communicate the policies of a Web service. See
Section 4.18, "Web Services Policy Framework (WS-Policy)
1.5 and 1.2."

Versions 1.5
and 1.2

Versions 1.5
and 1.2

Web service description Web Services Policy Attachment (WS-PolicyAttachment)
1.5 and 1.2—Abstract model and an XML-based expression
grammar for policies. See Section 4.17, "Web Services Policy
Attachment (WS-Policy Attachment) 1.5 and 1.2."

Versions 1.5
and 1.2

Versions 1.5
and 1.2

Data exchange between
Web service and
requesting client

Simple Object Access Protocol (SOAP) 1.1 and
1.2—Lightweight XML-based protocol used to exchange
information in a decentralized, distributed environment.
See Section 4.10, "Simple Object Access Protocol (SOAP) 1.1
and 1.2."

Versions 1.1
and 1.2

Versions 1.1
and 1.2

Data exchange between
Web service and
requesting client

SOAP with Attachments API for Java (SAAJ)
1.3—Implementation that developers can use to produce
and consume messages conforming to the SOAP 1.1
specification and SOAP with Attachments notes. See
Section 4.11, "SOAP with Attachments API for Java (SAAJ)
1.3."

Version 1.3 Version 1.3

Security Web Services Security (WS-Security) 1.1 and
1.0—Standard set of SOAP [SOAP11, SOAP12] extensions
that can be used when building secure Web services to
implement message content integrity and confidentiality.
See Section 4.22, "Web Services Security (WS-Security) 1.1
and 1.0."

Versions 1.1
and 1.0

Versions 1.1
and 1.0

Security Web Services Security Policy (WS-SecurityPolicy) 1.2—Set
of security policy assertions for use with the WS-Policy
framework. See Section 4.23, "Web Services Security Policy
(WS-SecurityPolicy) 1.2."

Version 1.2 Version 1.2

Security Security Assertion Markup Language (SAML) 2.0 and
1.1—XML standard for exchanging authentication and
authorization data between security domains. See
Section 4.8, "Security Assertion Markup Language (SAML)
2.0 and 1.1."

Versions 2.0
and 1.1

Versions 2.0
and 1.1

Table 4–1 (Cont.) Oracle Implementation of Web Service Specifications

Feature Specification JAX-WS JAX-RPC

Standards Supported by WebLogic Web Services 4-3

Security Security Assertion Markup Language (SAML) Token
Profile 1.1 and 1.0—Set of SOAP extensions that implement
SOAP message authentication and encryption. See
Section 4.9, "Security Assertion Markup Language (SAML)
Token Profile 1.1 and 1.0."

Versions 1.1
and 1.0

Versions 1.1
and 1.0

Reliable
communication

Web Services Addressing (WS-Addressing)
1.0—Transport-neutral mechanisms to address Web services
and messages. See Section 4.12, "Web Services Addressing
(WS-Addressing) 1.0."

Version 1.0 Version 1.0

Reliable
communication

Web Services Reliable Messaging
(WS-ReliableMessaging) 1.1—Implementation that enables
two Web services running on different WebLogic Server
instances to communicate reliably in the presence of failures
in software components, systems, or networks. This
specification is supported for JAX-RPC only. See
Section 4.19, "Web Services Reliable Messaging
(WS-ReliableMessaging) 1.1."

N/A Version 1.1

Reliable
communication

Web Services Reliable Messaging Policy Assertion
(WS-RM Policy) 1.1—Domain-specific policy assertion for
reliable messaging for use with WS-Policy and
WS-ReliableMessaging. See Section 4.20, "Web Services
Reliable Messaging Policy Assertion (WS-RM Policy) 1.1."

N/A Version 1.1

Reliable
communication

Web Services Trust Language (WS-Trust) 1.3—Extensions
that build on Web Services Security (WS-Security) 1.1 to
secure asynchronous communication. See Section 4.24,
"Web Services Trust Language (WS-Trust) 1.3."

Version 1.3 Version 1.3

Reliable
communication

Web Services Secure Conversation Language
(WS-SecureConversation) 1.3—Extensions that build on
Web Services Security (WS-Security) 1.1 and Web Services Trust
Language (WS-Trust) 1.3 to secure asynchronous
communication. See Section 4.21, "Web Services Secure
Conversation Language (WS-SecureConversation) 1.3."

Version 1.3 Version 1.3

Atomic transactions Web Services Atomic Transaction—Defines the Atomic
Transaction coordination type that is to be used with the
extensible coordination framework described in the Web
Services Coordination specification. The
WS-AtomicTransaction and WS-Coordination specifications
define an extensible framework for coordinating distributed
activities among a set of participants. See Section 4.13, "Web
Services Atomic Transaction (WS-AtomicTransaction)
Version 1.2, 1.1, and 1.0".

Versions 1.2,
1.1, and 1.0

N/A

Table 4–1 (Cont.) Oracle Implementation of Web Service Specifications

Feature Specification JAX-WS JAX-RPC

A Note About JAX-WS 2.1 RI/JDK 6.0 Extensions

4-4 Introducing WebLogic Web Services for Oracle WebLogic Server

The following sections describe the specifications in more detail. Specifications are
listed in alphabetical order. Additional specifications that WebLogic Web services
support are listed in Section 4.26, "Additional Specifications Supported by WebLogic
Web Services."

4.1 A Note About JAX-WS 2.1 RI/JDK 6.0 Extensions
A subset of the APIs described in this document (such as
com.sun.xml.ws.developer APIs described at
https://jax-ws-architecture-document.dev.java.net/nonav/doc/com/
sun/xml/ws/developer/package-summary.html) are supported as an extension
to the JDK 6.0 or JAX-WS 2.1 Reference Implementation (RI), provided by Sun
Microsystems. Because the APIs are not provided as part of the JDK 6.0 or WebLogic
Server software, they are subject to change. The APIs include, but are not limited to:

com.sun.xml.ws.api.server.AsyncProvider
com.sun.xml.ws.client.BindingProviderProperties
com.sun.xml.ws.developer.JAXWSProperties
com.sun.xml.ws.developer.SchemaValidation
com.sun.xml.ws.developer.SchemaValidationFeature
com.sun.xml.ws.developer.StreamingAttachment
com.sun.xml.ws.developer.StreamingAttachmentFeature
com.sun.xml.ws.developer.StreamingDataHandler

4.2 Apache XMLBeans 2.0
Apache XMLBeans 2.0, described at http://xmlbeans.apache.org, provides a
technology for binding XML schema to Java types and for accessing XML data in a
variety of ways. XMLBeans uses XML Schema to compile Java interfaces and classes
that use to access and modify XML instance data. XMLBeans is the default binding
technology for JAX-RPC Web services.

Atomic transactions Web Services Coordination—Defines an extensible
framework for providing protocols that coordinate the
actions of distributed applications. The
WS-AtomicTransaction and WS-Coordination specifications
define an extensible framework for coordinating distributed
activities among a set of participants. See Section 4.14, "Web
Services Coordination (WS-Coordination) Version 1.2, 1.1,
and 1.0".

Versions 1.2,
1.1, and 1.0

N/A

Advertisement
(registration and
discovery)

Universal Description, Discovery, and Integration (UDDI)
2.0—Standard for describing a Web service; registering a
Web service in a well-known registry; and discovering other
registered Web services. See Section 4.25, "Universal
Description, Discovery, and Integration (UDDI) 2.0."

Version 2.0 Version 2.0

Advertisement
(registration and
discovery)

Java API for XML Registries (JAXR) 1.0—Uniform and
standard Java API for accessing different kinds of XML
Registries. See Section 4.3, "Java API for XML Registries
(JAXR) 1.0."

Version 1.0 Version 1.0

Table 4–1 (Cont.) Oracle Implementation of Web Service Specifications

Feature Specification JAX-WS JAX-RPC

Java Architecture for XML Binding (JAXB) 2.1

Standards Supported by WebLogic Web Services 4-5

4.3 Java API for XML Registries (JAXR) 1.0
The Java API for XML Registries (JAXR) specification, described at
http://java.sun.com/webservices/jaxr, provides a uniform and standard
Java API for accessing different kinds of XML Registries. An XML registry is an
enabling infrastructure for building, deploying, and discovering Web services.

Currently there are a variety of specifications for XML registries including, most
notably, the ebXML Registry and Repository standard, which is being developed by
OASIS and U.N./CEFACT, and the UDDI specification, which is being developed by a
vendor consortium.

JAXR enables Java software programmers to use a single, easy-to-use abstraction API
to access a variety of XML registries. Simplicity and ease of use are facilitated within
JAXR by a unified JAXR information model, which describes content and metadata
within XML registries.

4.4 Java API for XML-based RPC (JAX-RPC) 1.1
Namespace: http://java.sun.com/xml/ns/jax-rpc

The Java API for XML-based RPC (JAX-RPC) specification, described at
https://jax-rpc.dev.java.net/, is a Sun Microsystems specification that
defines the Java APIs for making XML-based remote procedure calls (RPC). In
particular, these APIs are used to invoke and get a response from a Web service using
SOAP 1.1, and XML-based protocol for exchange of information in a decentralized and
distributed environment.

WebLogic Server implements all required features of the JAX-RPC Version 1.1
specification. Additionally, WebLogic Server implements optional data type support,
as described in "Understanding Data Binding" in Getting Started With WebLogic Web
Services Using JAX-RPC. WebLogic Server does not implement optional features of the
JAX-RPC specification, other than what is described in this chapter.

4.5 Java API for XML-based Web Services (JAX-WS) 2.1
Namespace: http://java.sun.com/xml/ns/jaxws

The Java API for XML-based Web Services (JAX-WS) specification, described at
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.htm
l, is a standards-based API for coding, assembling, and deploying Java Web services.
The "integrated stack" includes JAX-WS 2.1, Java Architecture for XML Binding (JAXB)
2.1 and SOAP with Attachments API for Java (SAAJ) 1.3. JAX-WS is designed to take
the place of JAX-RPC in Web services and Web applications.

4.6 Java Architecture for XML Binding (JAXB) 2.1
Namespace: http://java.sun.com/xml/ns/jaxb

The Java Architecture for XML Binding (JAXB) specification, described at
http://jcp.org/en/jsr/detail?id=222, provides a convenient way to bind an
XML schema to a representation in Java code. This makes it easy for you to incorporate
XML data and processing functions in applications based on Java technology without
having to know much about XML itself.

Note: JAXB cannot be used with JAX-RPC.

JSR 109: Implementing Enterprise Web Services 1.2

4-6 Introducing WebLogic Web Services for Oracle WebLogic Server

4.7 JSR 109: Implementing Enterprise Web Services 1.2
The JSR 109: Implementing Enterprise Web Services specification, described at
http://www.jcp.org/en/jsr/detail?id=109, defines the programming model
and runtime architecture for implementing Web services in Java that run on a Java EE
application server, such as WebLogic Server. In particular, it specifies that
programmers implement Java EE Web services using one of two components:

■ Java class running in the Web container

■ Stateless session EJB running in the EJB container

The specification also describes a standard Java EE Web services packaging format,
deployment model, and runtime services, all of which are implemented by WebLogic
Web services.

4.8 Security Assertion Markup Language (SAML) 2.0 and 1.1
Namespaces:

urn:oasis:names:tc:SAML:2.0:assertion

urn:oasis:names:tc:SAML:2.0:protocol

The Security Assertion Markup Language (SAML) specification provides an XML
standard for exchanging authentication and authorization data between security
domains. For more information, see:

■ http://www.oasis-open.org/specs/index.php#samlv2.0

■ http://www.oasis-open.org/specs/index.php#samlv1.1

4.9 Security Assertion Markup Language (SAML) Token Profile 1.1 and
1.0

Namespace: urn:oasis:names:tc:SAML:1.0:assertion

The Web Services Security: SAML Token Profile 1.1 specification defines a set of SOAP
extensions that implement SOAP message authentication and encryption. For more
information, see: .

■ http://www.oasis-open.org/committees/download.php/16768/wss-v1.
1-spec-os-SAMLTokenProfile.pdf

■ http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0
.pdf

4.10 Simple Object Access Protocol (SOAP) 1.1 and 1.2
Namespace: http://schemas.xmlsoap.org/wsdl/soap

Simple Object Access Protocol (SOAP), described at http://www.w3.org/TR/SOAP, is
a lightweight XML-based protocol used to exchange information in a decentralized,
distributed environment. WebLogic Server includes its own implementation of
versions 1.1 and 1.2 of the SOAP specification. The protocol consists of:

■ An envelope that describes the SOAP message. The envelope contains the body of
the message, identifies who should process it, and describes how to process it.

■ A set of encoding rules for expressing instances of application-specific data types.

■ A convention for representing remote procedure calls and responses.

Web Services Addressing (WS-Addressing) 1.0

Standards Supported by WebLogic Web Services 4-7

This information is embedded in a Multipurpose Internet Mail Extensions
(MIME)-encoded package that can be transmitted over HTTP, HTTPs, or other Web
protocols. MIME is a specification for formatting non-ASCII messages so that they can
be sent over the Internet.

The following example shows a SOAP 1.1 request for stock trading information
embedded inside an HTTP request:

POST /StockQuote HTTP/1.1
Host: www.sample.com:7001
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastStockQuote xmlns:m="Some-URI">
 <symbol>ORCL</symbol>
 </m:GetLastStockQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

By default, WebLogic Web services use version 1.1 of SOAP; if you want your Web
services to use version 1.2, you must specify the binding type in the JWS file that
implements your service.

4.11 SOAP with Attachments API for Java (SAAJ) 1.3
The SOAP with Attachments API for Java (SAAJ) specification, described at
https://saaj.dev.java.net, describes how developers can produce and
consume messages conforming to the SOAP 1.1 specification and SOAP with
Attachments notes.

The single package in the API, javax.xml.soap, provides the primary abstraction
for SOAP messages with MIME attachments. Attachments may be entire XML
documents, XML fragments, images, text documents, or any other content with a valid
MIME type. In addition, the package provides a simple client-side view of a
request-response style of interaction with a Web service.

4.12 Web Services Addressing (WS-Addressing) 1.0
Namespace: http://www.w3.org/2005/08/addressing

The Web Services Addressing (WS-Addressing) specification, described at
http://www.w3.org/TR/ws-addr-core, provides transport-neutral mechanisms
to address Web services and messages. In particular, the specification defines a
number of XML elements used to identify Web service endpoints and to secure
end-to-end endpoint identification in messages.

Note: In addition, the current release supports Web Services
Addressing (August 2004 Member Submission), described at
http://www.w3.org/Submission/2004/SUBM-ws-addressing
-20040810.

Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.2, 1.1, and 1.0

4-8 Introducing WebLogic Web Services for Oracle WebLogic Server

4.13 Web Services Atomic Transaction (WS-AtomicTransaction) Version
1.2, 1.1, and 1.0

The Web Services Atomic Transaction (WS-AtomicTransaction) specification, described at
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-w
sat-1.2-spec-cs-01.html, defines the Atomic Transaction coordination type that
is to be used with the extensible coordination framework described in the Web
Services Coordination specification. The WS-AtomicTransaction and WS-Coordination
specifications define an extensible framework for coordinating distributed activities
among a set of participants.

4.14 Web Services Coordination (WS-Coordination) Version 1.2, 1.1, and
1.0

The Web Services Coordination (WS-Coordination) specification, described at
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx
-wscoor-1.2-spec-cs-01.html, defines an extensible framework for providing
protocols that coordinate the actions of distributed applications. The
WS-AtomicTransaction and WS-Coordination specifications define an extensible
framework for coordinating distributed activities among a set of participants.

4.15 Web Services Description Language (WSDL) 1.1
Namespace: http://schemas.xmlsoap.org/wsdl

Web Services Description Language (WSDL), described at
http://www.w3.org/TR/wsdl, is an XML-based specification that describes a Web
service. A WSDL document describes Web services operations, input and output
parameters, and how a client application connects to the Web service.

Developers of WebLogic Web services do not need to create the WSDL files; you
generate these files automatically as part of the WebLogic Web services development
process.

The following example, for informational purposes only, shows a WSDL file that
describes the stock trading Web services StockQuoteService that contains the method
GetLastStockQuote:

<?xml version="1.0"?>
 <definitions name="StockQuote"
 targetNamespace="http://sample.com/stockquote.wsdl"
 xmlns:tns="http://sample.com/stockquote.wsdl"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns:xsd1="http://sample.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <message name="GetStockPriceInput">
 <part name="symbol" element="xsd:string"/>
 </message>
 <message name="GetStockPriceOutput">
 <part name="result" type="xsd:float"/>
 </message>
 <portType name="StockQuotePortType">
 <operation name="GetLastStockQuote">
 <input message="tns:GetStockPriceInput"/>
 <output message="tns:GetStockPriceOutput"/>
 </operation>
 </portType>

Web Services Metadata for the Java Platform 2.0 (JSR-181)

Standards Supported by WebLogic Web Services 4-9

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastStockQuote">
 <soap:operation soapAction="http://sample.com/GetLastStockQuote"/>
 <input>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>>
 </binding>
 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://sample.com/stockquote"/>
 </port>
 </service>
 </definitions>

The WSDL specification includes optional extension elements that specify different
types of bindings that can be used when invoking the Web service. The WebLogic Web
services runtime:

■ Fully supports SOAP bindings, which means that if a WSDL file includes a SOAP
binding, the WebLogic Web services will use SOAP as the format and protocol of
the messages used to invoke the Web service.

■ Ignores HTTP GET and POST bindings, which means that if a WSDL file includes
this extension, the WebLogic Web services runtime skips over the element when
parsing the WSDL.

■ Partially supports MIME bindings, which means that if a WSDL file includes this
extension, the WebLogic Web services runtime parses the element, but does not
actually create MIME bindings when constructing a message due to a Web service
invoke.

4.16 Web Services Metadata for the Java Platform 2.0 (JSR-181)
Oracle recommends that you take advantage of the metadata annotations feature,
described at
http://java.sun.com/javase/6/docs/technotes/guides/language/anno
tations.html, and use a programming model in which you create an annotated
Java file and then use Ant tasks to convert the file into the Java source code of a
standard Java class or EJB and automatically generate all the associated artifacts.

The Java Web Service (JWS) annotated file (called a JWS file for simplicity) is the core of
your Web service. It contains the Java code that determines how your Web service
behaves. A JWS file is an ordinary Java class file that uses JDK 5.0 metadata
annotations to specify the shape and characteristics of the Web service. The JWS
annotations you can use in a JWS file include the standard ones defined by the Web
Services Metadata for the Java Platform specification (JSR-181), described at
http://www.jcp.org/en/jsr/detail?id=181, as well as a set of other standard
or WebLogic-specific ones, depending on the type of Web service you are creating.

Web Services Policy Attachment (WS-Policy Attachment) 1.5 and 1.2

4-10 Introducing WebLogic Web Services for Oracle WebLogic Server

4.17 Web Services Policy Attachment (WS-Policy Attachment) 1.5 and 1.2
Namespaces:

WS-Policy Attachment 1.5: http://www.w3.org/ns/ws-policy

WS-PolicyAttachment 1.2: http://schemas.xmlsoap.org/ws/2004/09/policy

The Web Services Policy Attachment (WS-Policy Attachment) specification defines an
abstract model and an XML-based expression grammar for policies. The specification
defines two general-purpose mechanisms for associating such policies with the
subjects to which they apply. This specification also defines how these general-purpose
mechanisms can be used to associate WS-Policy with WSDL and UDDI descriptions.

For more information, see:

■ Web Services Policy 1.5 - Attachment (Recommendation):
http://www.w3.org/TR/ws-policy-attach/

■ Web Services Policy 1.2 - Attachment (WS-PolicyAttachment) (Member Submission):
http://www.w3.org/Submission/WS-PolicyAttachment

4.18 Web Services Policy Framework (WS-Policy) 1.5 and 1.2
Namespaces:

WS-Policy Framework 1.5: http://www.w3.org/ns/ws-policy

WS-Policy 1.2: http://schemas.xmlsoap.org/ws/2004/09/policy

The WS-Policy Framework (WS-Policy) specification provides a general purpose
model and corresponding syntax to describe and communicate the policies of a Web
service. WS-Policy defines a base set of constructs that can be used and extended by
other Web services specifications to describe a broad range of service requirements,
preferences, and capabilities.

For more information, see:

■ Web Services Policy 1.5 - Framework (Recommendation):
http://www.w3.org/TR/ws-policy

■ Web Services Policy 1.2 - Framework (WS-Policy) (Member Submission):
http://www.w3.org/Submission/WS-Policy

4.19 Web Services Reliable Messaging (WS-ReliableMessaging) 1.1
Namespace: http://docs.oasis-open.org/ws-rx/wsrm/200702

The Web Services Reliable Messaging (WS-ReliableMessaging) specification, described at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01
.pdf, describes how two Web services running on different WebLogic Server instances
can communicate reliably in the presence of failures in software components, systems,
or networks. In particular, the specification provides for an interoperable protocol in

Note: As an alternative to using a JWS annotated file, you can
program a WebLogic Web service manually by coding the standard
Java class or EJB from scratch and generating its associated artifacts by
hand (deployment descriptor files, WSDL, data binding artifacts for
user-defined data types, and so on). However, the entire process can
be difficult and tedious and is not recommended.

Web Services Security (WS-Security) 1.1 and 1.0

Standards Supported by WebLogic Web Services 4-11

which a message sent from a source endpoint to a destination endpoint is guaranteed
either to be delivered or to raise an error.

4.20 Web Services Reliable Messaging Policy Assertion (WS-RM Policy)
1.1

Namespace: http://docs.oasis-open.org/ws-rx/wsrmp/200702

The Web Services Reliable Messaging Policy Assertion (WS-RM Policy) Version 1.1
specification, described at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-
01.pdf, defines a domain-specific policy assertion for reliable messaging for use with
WS-Policy and WS-ReliableMessaging. This specification enables an RM Destination
and an RM Source to describe their requirements for a given sequence.

4.21 Web Services Secure Conversation Language
(WS-SecureConversation) 1.3

Namespace:
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512

The Web Services Secure Conversation Language (WS-SecureConversation) specification,
described at
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws
-secureconversation-1.3-os.html, defines extensions that build on Web
Services Security (WS-Security) 1.1 and 1.0 and Web Services Trust Language
(WS-Trust) 1.3 to provide secure communication across one or more messages.
Specifically, this specification defines mechanisms for establishing and sharing security
contexts, and deriving keys from established security contexts (or any shared secret).

4.22 Web Services Security (WS-Security) 1.1 and 1.0
Namespaces:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri
tysecext-1.0.xsd,
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri
tyutility-1.0.xsd,
http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.x
sd

The following description of Web Services Security is taken directly from the OASIS
standard 1.1 specification, titled Web Services Security: SOAP Message Security, dated
February 2006:

This specification proposes a standard set of SOAP [SOAP11, SOAP12] extensions that can be
used when building secure Web services to implement message content integrity and
confidentiality. This specification refers to this set of extensions and modules as the "Web
Services Security: SOAP Message Security" or "WSS: SOAP Message Security".

This specification is flexible and is designed to be used as the basis for securing Web services
within a wide variety of security models including PKI, Kerberos, and SSL. Specifically, this

Note: The WS-ReliableMessaging 1.0 specification is supported for
backward compatibility. However, a WS-ReliableMessaging 1.1 client
cannot communicate with a WS-ReliableMessaging 1.0 server.

Web Services Security Policy (WS-SecurityPolicy) 1.2

4-12 Introducing WebLogic Web Services for Oracle WebLogic Server

specification provides support for multiple security token formats, multiple trust domains,
multiple signature formats, and multiple encryption technologies. The token formats and
semantics for using these are defined in the associated profile documents.

This specification provides three main mechanisms: ability to send security tokens as part of a
message, message integrity, and message confidentiality. These mechanisms by themselves do
not provide a complete security solution for Web services. Instead, this specification is a
building block that can be used in conjunction with other Web service extensions and
higher-level application-specific protocols to accommodate a wide variety of security models and
security technologies.

These mechanisms can be used independently (for example, to pass a security token) or in a
tightly coupled manner (for example, signing and encrypting a message or part of a message
and providing a security token or token path associated with the keys used for signing and
encryption).

WebLogic Web services also implement the following token profiles:

■ Web Services Security: SOAP Message Security

■ Web Services Security: Username Token Profile

■ Web Services Security: X.509 Certificate Token Profile

■ Web Services Security: SAML Token Profile

For more information, see the OASIS Web Service Security Web page at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

4.23 Web Services Security Policy (WS-SecurityPolicy) 1.2
Namespace:
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

The Web Services Security Policy (WS-SecurityPolicy) specification, described at
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-sec
uritypolicy-1.2-spec-os.html, defines a set of security policy assertions for
use with the WS-Policy framework to describe how messages are to be secured in the
context of WS-Security, WS-Trust and WS-SecureConversation.

All the asynchronous features of WebLogic Web services (callbacks, conversations, and
Web service reliable messaging) use addressing in their implementation, but Web
service programmers can also use the APIs that conform to this specification
stand-alone if additional addressing functionality is needed.

4.24 Web Services Trust Language (WS-Trust) 1.3
Namespace: http://schemas.xmlsoap.org/ws/2005/02/trust

The Web Services Trust Language (WS-Trust) specification, described at
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf, defines
extensions that build on Web Services Security (WS-Security) 1.1 and 1.0 to provide a
framework for requesting and issuing security tokens, and to broker trust
relationships.

4.25 Universal Description, Discovery, and Integration (UDDI) 2.0

Note: This feature is deprecated.

Additional Specifications Supported by WebLogic Web Services

Standards Supported by WebLogic Web Services 4-13

Namespace: urn:uddi-org:api_v2

The Universal Description, Discovery, and Integration (UDDI) specification, described
at http://uddi.xml.org, defines a standard for describing a Web service;
registering a Web service in a well-known registry; and discovering other registered
Web services.

4.26 Additional Specifications Supported by WebLogic Web Services
■ XML Schema Part 1: Structures described at

http://www.w3.org/TR/xmlschema-1

■ XML Schema Part 2: Data Types described at
http://www.w3.org/TR/xmlschema-2

Additional Specifications Supported by WebLogic Web Services

4-14 Introducing WebLogic Web Services for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Overview of WebLogic Web Services
	1.1 What Are Web Services?
	1.2 Why Use Web Services?
	1.3 Anatomy of a WebLogic Web Service
	1.3.1 The Programming Model-Metadata Annotations
	1.3.2 The Development Model-Bottom-up and Top-down
	1.3.2.1 Bottom-up Approach: Starting from Java
	1.3.2.2 Top-down Approach: Starting from WSDL

	1.4 How Do I Choose Between JAX-WS and JAX-RPC?
	1.5 Roadmap for Implementing WebLogic Web Services
	1.6 Using Oracle IDEs to Build Web Services
	1.7 New and Changed Features in this Release

	2 Samples and Related Information
	2.1 Samples for WebLogic Web Service Developers
	2.1.1 Web Services Samples in the WebLogic Server Distribution
	2.1.2 Avitek Medical Records Application (MedRec) and Tutorials
	2.1.3 Additional Web Services Samples Available for Download

	2.2 WebLogic Web Services Documentation Set
	2.3 Related Documentation-WebLogic Server Application Development

	3 Interoperability with Microsoft WCF/.NET
	3.1 Basic Data Types Interoperability Guidelines
	3.2 Basic Profile 1.1 Interoperability Guidelines
	3.3 WS-Security Interoperability Guidelines
	3.4 WS-SecurityPolicy Interoperability Guidelines
	3.5 WS-SecureConversation Interoperability Guidelines
	3.6 WS-ReliableMessaging Interoperability Guidelines
	3.7 WS-Trust Interoperability Guidelines
	3.7.1 Configuring Microsoft .NET STS for WS-Trust
	3.7.2 Configuring WebLogic Web Service
	3.7.3 Configuring the Microsoft .NET Client
	3.7.4 Using SAML Assertions Referenced from SignedInfo

	4 Standards Supported by WebLogic Web Services
	4.1 A Note About JAX-WS 2.1 RI/JDK 6.0 Extensions
	4.2 Apache XMLBeans 2.0
	4.3 Java API for XML Registries (JAXR) 1.0
	4.4 Java API for XML-based RPC (JAX-RPC) 1.1
	4.5 Java API for XML-based Web Services (JAX-WS) 2.1
	4.6 Java Architecture for XML Binding (JAXB) 2.1
	4.7 JSR 109: Implementing Enterprise Web Services 1.2
	4.8 Security Assertion Markup Language (SAML) 2.0 and 1.1
	4.9 Security Assertion Markup Language (SAML) Token Profile 1.1 and 1.0
	4.10 Simple Object Access Protocol (SOAP) 1.1 and 1.2
	4.11 SOAP with Attachments API for Java (SAAJ) 1.3
	4.12 Web Services Addressing (WS-Addressing) 1.0
	4.13 Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.2, 1.1, and 1.0
	4.14 Web Services Coordination (WS-Coordination) Version 1.2, 1.1, and 1.0
	4.15 Web Services Description Language (WSDL) 1.1
	4.16 Web Services Metadata for the Java Platform 2.0 (JSR-181)
	4.17 Web Services Policy Attachment (WS-Policy Attachment) 1.5 and 1.2
	4.18 Web Services Policy Framework (WS-Policy) 1.5 and 1.2
	4.19 Web Services Reliable Messaging (WS-ReliableMessaging) 1.1
	4.20 Web Services Reliable Messaging Policy Assertion (WS-RM Policy) 1.1
	4.21 Web Services Secure Conversation Language (WS-SecureConversation) 1.3
	4.22 Web Services Security (WS-Security) 1.1 and 1.0
	4.23 Web Services Security Policy (WS-SecurityPolicy) 1.2
	4.24 Web Services Trust Language (WS-Trust) 1.3
	4.25 Universal Description, Discovery, and Integration (UDDI) 2.0
	4.26 Additional Specifications Supported by WebLogic Web Services

