Oracle Communications IP Service Activator™
Version 5.2.4

SDK Service Cartridge
Developer Guide

Second Edition
December 2008

ORACLE

Copyright © 1997, 2008, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use
and disclosure and are also protected by copyright, patent, and other intellectual and
industrial property laws. Reverse engineering, disassembly, or decompilation of the
Programs, except to the extent required to obtain interoperability with other independently
created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing. This
document is not warranted to be error-free. Except as may be expressly permitted in your
license agreement for these Programs, no part of these Programs may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the programs are delivered to the United States Government or anyone licensing or
using the Programs on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related
documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations.
As such, use, duplication, disclosure, modification, and adaptation of the Programs,
including documentation and technical data, shall be subject to the licensing restrictions
set forth in the applicable Oracle license agreement, and, to the extent applicable, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted
Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or
other inherently dangerous applications. It shall be the licensee’s responsibility to take all
appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of
such applications if the Programs are used for such purposes, and we disclaim liability for
any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services
from third parties. Oracle is not responsible for the availability of, or any content provided
on, third-party Web sites. You bear all risks associated with the use of such content. If you
choose to purchase any products or services from a third party, the relationship is directly
between you and the third party. Oracle is not responsible for: (a) the quality of third-party
products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to
purchased products or services. Oracle is not responsible for any loss or damage of any
sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/
or its affiliates. Other names may be trademarks of their respective owners.

SDK Service Cartridge Developer Guide — Second Edition Contents

Contents

Preface ..iiieecccccccssssssssssssssssssssnnnssssnnnsnnnsssnsnnnnnnnnsnsnnnnnnnnnnnnnnnnnn Vil

AbOUL this dOCUMENT L. e vii
Before contacting Oracle Global Customer Support (GCS) ...ccvvvvviviiiiiiniieninnns vii
Contacting Oracle Global Customer Support (GCS) ...viiiiiiiiiiiiiie e viii
Downloading products and documentationcccoiiiiiiii i viii
Downloading @ media Packcviiiiiiii i viii
Service Activator publicationscoiiviiiii i e iX
Chapter 1 OVEerVIieWcciiciicriessessessesssssnssnssnssnssnssnssnssnssnssnssnssnssnsnnnsns 1
Developing service cartridges with the SDK ... 1
100 o = of= o g (o o =1 P 1
V4= o o] gl ot= g e [=T3S 1
SDK INSTAllatioN oiueiiii i 2
Additional documentationoiiiiiii e 2
Chapter 2 Building service cartridgescccivicmircnismmsssssnsssansnnas 3
General procedure to build a service cartridgecccoiiiiiiiiiiiii e 4
Creating a service cartridge source directory and skeleton properties file 4
Defining the service and customizing the properties filec.ccoviiiiennnt. 4
About Java based service cartridgesocoiuiieiiiiiiiiii e 5
About Alcatel service Cartridgas ...oouiiiiiiiii i e 5
Generating the cartridge source filescooiiiiiiiiiii e, 5
Customizing the cartridge source filesccoiiiiiiiiiiii e 5
Compiling and packaging the cartridge ... 6
Performing UNit teSES ..oviiiiii e 6
Performing end-to-end testSoociiiiiiii e 6
About the provided sample service cartridgescoovviiiiiiiiiiiiii i s 7
Sample XQuery-based service cartridge — ciscoBannerccovvivviinnnnn. 8

Service Activator 5.2.4 iii

Contents SDK Service Cartridge Developer Guide — Second Edition

Sample XQuery-based service cartridge — ciscoMartiniccoviiiinn, 9
Sample XQuery-based service cartridge — ciscoStaticRoute 10
Sample Java-based service cartridge — alcatelSamStaticRoute 10
Sample Java-based service cartridge — ciscoBannerJavaccccvvivvinnn. 11
Creating a service cartridge source directory and properties filecooeiis 12
Defining the service and customizing the skeleton properties file 13
Generating the cartridge source filesciiiiiiiiiiiiii i 14
Generating the sample ciscoBanner service cartridge source files 14
Generating your service cartridge source filesc.coiiiiiiiiiiiiiiiiiiiien 15
Troubleshooting service cartridge generationc.ccoiiiiiiiiiiiiin i, 16
Completing your custom service cartridge source filescccooviiiiiiiiiiiiiiiiinn 18
Device model (DM) schema definitionccoooviiiiiiiiiiiiii e 18
Service model (SM) to device model transform ..o 18
DM validation ..o i 18
Annotated DM to CLI transformoviiiiiiiiiii i ae s 18
Service cartridge registry — Extension.xml ..o 19
Message pattern definitions ... 20
Completing the sample service cartridge source filescooevviiiiiiiiiiiiiiiinnnn, 20
Using options in the ciscoStaticRoute samplecccoiiiiiiiiiiiiiiiic i, 21
Building the service cartridgecoviiiiiiiii i e 24
Troubleshooting service cartridge buildingccooiiiiiiiiiis 25
Manifest file oo e 25
Implementing pre- and post-checkscooiiiiiiiiiiiiii 25
Testing in a standalone enviroNmMeNnt ..o 25
Deploying service Cartridges ..ouiiiiiiiii i i i e e e 27
AUt trail [0ggiNg covviiii i 29
Device Model UPGradesovviiiiiiiiiii i e e s e e e e s e e 29
AU o e 29
Uninstalling service Cartridgesoviiiiiiiiiiiii i i e 30
Appendix A Service Cartridge generation propertiescccecrviernnnnss 31
1 L 32
Naming and PacKagingcoueieiiiiie it 32

iv Service Activator 5.2.4

SDK Service Cartridge Developer Guide — Second Edition Contents

Device type identificationccoiiiiiiiiiii i i 33
Device Model SChema ..o e 34

1] U] 51T o 0] o (o] o FRN PP 34
OPLioNS SChEMA oo 38
Appendix B Generated Skeleton Service Cartridge Source Files 39
About the generated skeleton service cartridge source filesccoceennne. 39
Generated skeleton service cartridge source files details.c.ccovviiinin. 41
Appendix C Building Alcatel SAM service cartridgesccceccvvvncnnnnns 47
Overview of Alcatel service cartridgesccovieiieiiiiiii i e 47
Alcatel SAM ID Mapper - AlcatelSamIdMappercooiiiiiiiiiiiiiiic i 49
Command Document SErUCLUIEviiviiiii i e ee e e 51

(o] an] aaT=]ale] o g'=] o o Tel=t=T=T o] ol PP 53
Device Model BeSt PracCtiCeScivviiiiiiiii i iiesieriesae i sane e enneseannssneannens 55

I a1 59

Service Activator 5.2.4 1%

Contents SDK Service Cartridge Developer Guide — Second Edition

vi Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Preface

Preface

About this document

The SDK Service Cartridge Developer Guide explains how to use the Service
Activator SDK to create service cartridges.

It consists of the following chapters:

m Chapter 1: Overview This chapter provides a brief overview of the concepts
involved in creating service cartridges with the SDK.

m Chapter 2: Building service cartridges This chapter discusses service cartridge
concepts and explains how to use the SDK to create service cartridges, and
integrate them with configuration policies.

m Appendix A: Service Cartridge generation properties This Appendix provides
details on the parameters you can configure in the skeleton.properties file used
to generate service cartridge source files.

m Appendix B: Generated Skeleton Service Cartridge Source Files This appendix
describes generated service cartridge source files.

Before contacting Oracle Global Customer Support
(GCS)

If you have an issue or question, Oracle recommends reviewing the product
documentation and articles on MetalLink in the Top Technical Documents section to
see if you can find a solution. Metalink is located at http://metalink.oracle.com.

In addition to Metalink, product documentation can also be found on the product
CDs and in the product set on Oracle E-Delivery.

Within the product documentation, the following publications may contain problem
resolutions, work-arounds and troubleshooting information:

— Release Notes
— Oracle Installation and User's Guide
— README files

Service Activator 5.2.4 vii

http://metalink.oracle.com

Contacting Oracle Global Customer Support (GCS) SDK Service Cartridge Developer Guide — Second

Contacting Oracle Global Customer Support (GCS)

You can submit, update, and review service requests (SRs) of all severities on
MetalLink, which is available 24 hours a day, 7 days a week. For technical issues of
an urgent nature, you may call Oracle Global Customer Support (GCS) directly.

Oracle prefers that you use MetaLink to log your SR electronically, but if you need to
contact GCS by telephone regarding a new SR, a support engineer will take down
the information about your technical issue and then assign the SR to a technical
engineer. A technical support representative for the Oracle and/or former MetaSolv
products will then contact you.

Note that logging a new SR in a language other than English is only supported
during your local country business hours. Outside of your local country business
hours, technical issues are supported in English only. All SRs not logged in English
outside of your local country business hours will be received the next business day.
For broader access to skilled technical support, Oracle recommends logging new SRs
in English.

Oracle GCS can be reached locally in each country. Refer to the Oracle website for
the support contact information in your country. The Oracle support website is
located at http://www.oracle.com/support/contact.html.

Downloading products and documentation

To download the Oracle and/or former MetaSolv products and documentation, go to
the Oracle E-Delivery site, located at http://edelivery.oracle.com.

You can purchase a hard copy of Oracle product documentation on the Oracle store
site, located at http://oraclestore.oracle.com.

For a complete selection of Oracle documentation, go to the Oracle documentation
site, located at http://www.oracle.com/technology/documentation.

Downloading a media pack

To download a media pack from Oracle E-Delivery
1. Go to http://edelivery.oracle.com.
2. Select the appropriate language and click Continue.

3. Enter the appropriate Export Validation information, accept the license
agreements and click Continue.

4. For Product Pack, select Oracle Communications Applications.

For Platform, select the appropriate platform for your installation.

viii

Service Activator 5.2.4

http://www.oracle.com/support/contact.html
http://edelivery.oracle.com
http://oraclestore.oracle.com
http://www.oracle.com/technology/documentation
http://edelivery.oracle.com

SDK Service Cartridge Developer Guide - Second Edition Service Activator publications

Click Go.
Select the appropriate media pack and click Continue.

Click Download for the items you wish to download.

o ® N

Follow the installation documentation for each component you wish to install.

Service Activator publications

The Service Activator documentation suite includes a full range of publications.
Refer to the Service Activator Release Notes for more information.

Service Activator schema online documentation

An online reference is provided containing schema documentation which outlines
how to populate and read XML instance documents used by the Service Activator
network processor. Configuration policy documentation is included as well.

It is accessed through:
<ServiceActivatorHome>\ipsaSDK\doc\schemaDoc\index.html

More information about accessing the schemaDoc files is provided in the SDK
Installation and Setup Guide.

Service Activator 5.2.4 ix

Service Activator publications SDK Service Cartridge Developer Guide — Second Edition

X Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Overview

Chapter 1

Overview

This chapter provides a brief overview of the concepts involved in creating service
cartridges with the SDK.

Developing service cartridges with the SDK

A base cartridge provides a framework to allow the network processor to perform
basic communication functions with a device. These functions include logging in and
out of the device, sending commands or configlets, performing audits, and
interpreting responses from the device as successes, warnings, or failures. Refer to
the Base Cartridge Developer Guide for details.

Base cartridges do not contain implementations of services. Additional services
targeting specific vendor device types are added through integrated service
cartridges.

Configuration policies are implemented in conjunction with supporting service
cartridges. For additional information on creating configuration policies, refer to the
Configuration Policy Extension Developer Guide.

Core cartridges

Note that Service Activator legacy cartridges, known as ‘core’ cartridges, included
the functions provided by both a base and service cartridges all in the same
package.

The base cartridge with separate related service cartridges is the preferred method
of supporting new services to maximize scalability and flexibility.

Vendor cartridges

A base or core cartridge can be combined with a humber of service cartridges to
create a vendor cartridge, which contains the functionality to connect to a specific
device type, and apply the services provided by the service cartridges.

Service Activator 5.2.4 1

SDK installation SDK Service Cartridge Developer Guide - Second Edition

SDK installation

For SDK installation and configuration instructions, refer to the Software
Development Kit Installation and Setup Guide.

Additional documentation

Additional documentation is available on the SDK, its concepts and documents, and
how to create cartridges and configuration policies.

Refer to Next steps in learning about the SDK in the SDK Overview and Setup Guide.

2 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

Chapter 2

Building service cartridges

This chapter discusses service cartridge concepts and explains how to use the SDK
to create service cartridges, and integrate them with configuration policies.

References are made to sample service cartridge components packaged with the
SDK.

Note: Refer to the Appendix A for details on all properties in the properties file.
This guide assumes:

m that Service Activator is deployed to a directory which will be referred to as
<ServiceActivatorHome>. This directory is typically
C:\Program Files\Oracle Communications\IP Service Activator

m that you have successfully installed the SDK to a directory which will be referred
to as <SDKHome>.

m that the required versions of additional 3rd party tools to support the SDK are
installed correctly

m that you have set up the required environment variables to support the SDK
functions.

For details on installing the SDK and the 3rd party tool versions, see the SDK
Overview and Setup Guide.

Service Activator 5.2.4 3

General procedure to build a service cartridge SDK Service Cartridge Developer Guide — Second Edition

General procedure to build a service cartridge

This section lists the steps required to build a service cartridge. A brief introduction
to these steps follows. After that, each step is covered in detail.

The steps to build an XQuery-based service cartridge are:

Creating a service cartridge source directory and skeleton properties file
Defining the service and customizing the properties file

Generating the cartridge source files

Customizing the cartridge source files

Compiling and packaging the cartridge

Performing unit tests

Performing end-to-end tests

The steps to build a Java-based service cartridge are:

Note: Service cartridges which use java-based transforms do not make use of the
skeleton.properties file, or the source code generation capabilities of the SDK.
Instead, sample source code is provided for you to base your project on.

Copy one of the sets of sample source files to support your new development
Customizing the cartridge source files

Compiling and packaging the cartridge

Performing unit tests

Performing end-to-end tests

Creating a service cartridge source directory and skeleton
properties file

To begin creating an XQuery-based service cartridge, you will need to establish a
directory structure for the source files, and create the skeleton properties file that
will be used to generate the starting source files.

Defining the service and customizing the properties file

This step involves determining the specific details of the service to be created and
specifying the information needed to apply the desired configuration to the device.

You will need to select at least one modeled service, or configuration policy to be
implemented by the service cartridge. As a starting point, you can specify one
modeled service or one configuration policy as a subscription in the cartridge

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

skeleton properties file. This file is then used by the SDK service cartridge generator
tool to generate a set of source files as a starting point for your service cartridge.
The generated source files can be customized to add any additional subscriptions if
the service cartridge will implement more than one modeled service and/or more
than one configuration policy.

Each cartridge you create with the SDK will have a skeleton properties file. In this
file, you will customize the property values that control the generation of the
cartridge source files. For complete details on all properties, refer to Appendix A,
Service Cartridge generation properties on page 31.

About Java based service cartridges

There are some special considerations to consider when creating service cartridges
which use Java-based transforms as opposed to XQuery-based transforms. They do
not make use of the skeleton.properties file, or the source code generation
capabilities of the SDK. Instead, sample source code is provided for you to base your
project on.

The parts of the procedures in this chapter dealing with XQuery, the
skeleton.properties file, and generating and customizing XQuery cartridge source
files in particular, do not directly apply to Java-based service cartridge development.

About Alcatel service cartridges

There are some special considerations to consider when creating service cartridges
for Alcatel devices. In general terms, the concepts and procedures described in this
guide apply, but certain you will have to take additional things into consideration for
Alcatel service cartridges. Alcatel service cartridges should use Java-based
transforms. (See About Java based service cartridges above.)

For details on building Alcatel service cartridges, refer to Appendix C, Building
Alcatel SAM service cartridges on page 47.

Generating the cartridge source files

This step uses the SDK tools to read the skeleton properties file and create the
skeleton cartridge source files.

Customizing the cartridge source files

This step is where the majority of your development work takes place for XQuery-
based service cartridges. Some of the key cartridge components you need to create
are:

m Device Model (DM) schema definition
m Service Model (SM) to DM transform

Service Activator 5.2.4 5

General procedure to build a service cartridge SDK Service Cartridge Developer Guide — Second Edition

m Annotated DM to CLI transform
m message (success/warning/error) pattern definitions
There are many other source file components you may need to create or modify
including files that support audit services, options, capabilities, and pre- and post-
checks. These are described later in this chapter.

Compiling and packaging the cartridge

Use the included script to compile and package the cartridge.

Performing unit tests

Unit tests are provided as part of the generated source files.

Performing end-to-end tests

Deploy the cartridge into a test Service Activator environment as an extension to a
base or core cartridge to perform end-to-end testing.

6 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

About the provided sample service cartridges
The SDK includes a number of sample service cartridges.
XQuery-based sample service cartridges:

m ciscoBanner
m ciscoMartini
m ciscoStaticRoute

Java-based sample service cartridges:

m alcatelSamStaticRoute

m ciscoBannerlava

Purpose of the samples

You can use the samples in a variety of ways:

m you can inspect generated source files to see how a simple, working, service
cartridge is constructed.

m you can complete, compile and package the pre-generated, customized sample
source files into a working service cartridge and deploy it in a test system as an
extension to the cisco base cartridge sample.

m you can take a copy of a provided skeleton properties file, relocate and rename
it, and use it as the starting point to generate your own skeleton cartridge
source files.

Included with each Cisco XQuery-based sample are:

m a skeleton.properties file

This file is used to generate the source files for its sample service cartridge. See
Generating the cartridge source files on page 14.

= pre-generated, customized sample service cartridge source files - these
provided source files demonstrate the edits required to the generated source
files to produce a working service cartridge.

As an example, the source files provided with the ciscoBanner sample include:

m ... \audit\auditTemplate.xml

m ...\messages\successMessages.xml, errorMessages.xml,
warningMessags.xml: message patterns

n ...\schema\devicemodel.xsd

...\test\TransformUnitTests.java

Service Activator 5.2.4 7

About the provided sample service cartridges SDK Service Cartridge Developer Guide — Second Edition

m ... \transforms\sm2dm.xq, annotated-dm2cli.xq, dm-validation.xq

m ...\xquerylib\ dm2cli-banner.xq, dm2cli-cisco.xq, dm-version.xq,
sm2dm-banner.xq

Note that the provided ciscoBanner sample source files are located in:

<SDKHome>\samples\serviceCartridge\ciscoBanner\...

while the pre-generated ciscoBanner sample cartridge source files are placed in:

<SDKHome>\serviceCartridges\ciscoBanner\. ..

Note: The other XQuery-based service cartridge sample files are organized in a
similar fashion.

Sample XQuery-based service cartridge — ciscoBanner

Note: The details following details on the ciscoBanner service cartridge sample
apply in a similar fashion to the other XQuery-based samples — ciscoMartini, and
ciscoStaticRoute.

The ciscoBanner (and ciscoStaticRoute) sample cartridges illustrates the
following concepts:

m filling out the skeleton properties for a service cartridge
m subscribing to configuration policies

m managing basic capabilities for configuration policies

m architecting the device model schema

m creating the cartridge Extension registry

m transformations (SM2DM and annotatedDM-CLI) that appropriately pass on the
various IDs

m Device Model instance validation

m providing data so the network processor can recognize and correctly act on
router responses

m providing command information to correctly enable NP audits for these services

m use of XQuery modules to improve compartmentalization, maintainability and
readability of XQuery code

The ciscoBanner sample service cartridge implements the service modelled by the
bannerSample sample configuration policy. The ciscoBanner sample contains a
schema for a consolidated banner configuration policy that allows you to configure a
sequence of one or more of five possible banner commands. It is assumed that only
one occurrence of each banner type can exist on a device.

8 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

For details on the bannerSample configuration policy and its parameters and
options, refer to the Configuration Policy Extension Developer Guide.

Process

To complete the ciscoBanner sample, you can copy the provided files over their
generated counterparts; or you can edit the generated files.

You will need to create the source files for the corresponding configuration policies
which implement the sample cisco services. See the Configuration Policy Extension
Developer Guide for details.

ciscoBanner sample properties file

The sample skeleton properties file that is used to create the source files for the
ciscoBanner sample service cartridge is called:

<SDKHome>\samples\serviceCartridge\ciscoBanner\skeleton.properties

This properties file is pre-populated with the information needed to construct the
source files for the ciscoBanner sample service cartridge.

Some of the generated source files will require editing or you can overwrite them
with the provided source files.

As you read through the service cartridge creation steps, instructions are given on
how to use the ciscoBanner sample to test some of the SDK tools and commands.

Refer to Appendix A for details on all the properties implemented in the sample
properties files which create the source files for the samples.

Sample XQuery-based service cartridge — ciscoMartini

The ciscoMartini sample service cartridge implements a Martini layer two VPN
service.

About the ciscoMartini sample

This service cartridge is written using XQuery-based transforms and illustrates how
to implement a modeled Service Activator service using a service cartridge.

The provided set of pre-generated source files in the sample are based on the output
of the supplied skeleton.properties file, but are pre-configured with some of the
specific service configuration knowledge required for the service.

Key concepts illustrated are:

m filling out the skeleton.properties for a modeled service cartridge

m subscribing to a modeled service

Service Activator 5.2.4 9

About the provided sample service cartridges SDK Service Cartridge Developer Guide — Second Edition

m managing capabilities for a modeled service

m transformations (SM2DM and annotatedDM-CLI) that appropriately pass on
various IDs

Note: this service cartridge does not implement a full-functional, or completed
Martini service. It is intended only to demonstrate some of the concepts required
when implementing such a service in a service cartridge.

Sample XQuery-based service cartridge — ciscoStaticRoute

The ciscoStaticRoute implements the service modelled by the sample static route
configuration policy. It allows you to configure one or more static routes.

The ciscoStaticRoute sample cartridges illustrates the same concepts listed
in Sample XQuery-based service cartridge — ciscoBanner plus the following
concepts:

m specification of options schema
m use of options to influence transformations

m use of type-1 pre-check (to ensure a new static route service does not have a
pre-existing conflicting static route on the router)

m use of type-2A pre-check (to ensure the next-hop address in the static route is
reachable from the device - traps case when the network of next-hop is not
reachable)

m use of type-2B pre-check (to ensure the next-hop address in the static route is
reachable from the device - traps case when subnet is not reachable)

use of post-check (to ensure that a provisioned static route has correctly
updated the routing table)

For details on the ciscoStaticRoute configuration policy and its parameters and
options, refer to the Configuration Policy Extension Developer Guide.

Sample Java-based service cartridge — alcatelSamStaticRoute

The Alcatel sample alcatelSamStaticRoute is a service cartridge to implement a
static route service. The provided sample is pre-compiled.

Similar key concepts to those illustrated by the ciscoBannerJava sample are
illustrated by this sample, with the inclusion of Alcatel SAM specific implementation
details. (See Building Alcatel SAM service cartridges on page 47 for more details.)

Included with the Alcatel sample are:

m sample service cartridge source files - these provided source files
demonstrate content required to produce a working service cartridge. The
sample alcatelSamStaticRoute source files include:

10

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

m ... \audit\auditTemplate.xml

...\javalib*.java: java source code demonstrating various actions

m ...\messages\successMessages.xml, errorMessages.xml,
warningMessags.xml: message patterns

] ...\schema\devicemodel.xsd

...\transforms\: key map xml file, Sm2dm, DmValidation and
AnnotatedDm2Cli java source files

Sample Java-based service cartridge — ciscoBannerJava

The ciscoBannerJava sample service cartridge re-implements the bannerSample
configuration policy for Cisco I0S and is similar to the ciscoBanner sample, except
that it uses Java for model transformations instead of XQuery.

The provided sample is pre-compiled. Service cartridges with Java-based transforms
do not make use of the generated XQuery source files, so no customization step for
these files is needed.

The ciscoBannerJava sample implements the service modelled by the bannerSample
configuration policy. The ciscoBannerJlava sample contains a schema for a
consolidated banner configuration policy that allows you to configure a sequence of
one or more of five possible banner commands. It is assumed that only one
occurrence of each banner type can exist on a device.

Key concepts illustrated are:

m file and directory structure for Java-based cartridges (since skeleton generation
cannot be used)

m ant build scripting

m synonyms

m extension registry

m registry customization in the field

m use of options in Java transforms

m Java-based SM-DM and annotatedDM-CLI transforms
m Device Model upgrade transformation

m unit test harnesses for Java cartridges

m Java-based Device Model instance validation

For details on the bannerSample configuration policy and its parameters and
options, refer to the Configuration Policy Extension Developer Guide.

Service Activator 5.2.4 11

Creating a service cartridge source directory and properties file SDK Service Cartridge Developer Guide -

Creating a service cartridge source directory and
properties file

Process

To create your own XQuery-based service cartridge, you will need to establish a
directory structure for the source files, and create a skeleton properties file to
generate the starting source files. (For Java-based service cartridges, use one of the
provides samples as a starting point and add your own Java code from there. None
of the steps around creating and customizing XQuery files are required.)

Note: When deciding upon a directory structure for a new base cartridge or service
cartridge care must be taken to choose a unique base directory name. If the path of
a file in the new cartridge is the same as the path of a file in a deployed cartridge,
undesirable behavior could occur.

The simplest method is to copy one of the sample skeleton.properties files and then
edit it for your own use.

1. Create a meaningful name for your new service cartridge. This name will be
referred to as this_service_name.

2. Create a new directory for your cartridge source files:
<SDKHome>\serviceCartridges\this _service name
3. Copy a skeleton.properties file from one of the sample service cartridges into it:

copy
<SDKHome>\samples\serviceCartridge\ciscoBanner\skeleton.properties

<SDKHome>\serviceCartridges\this_service_name

4. Edit your skeleton.properties file to change the sample cartridge name to
target_service_name in the following entries:

service cartridge name

sdk_global cartridgeName=¢this _service _name

packaging structure

sdk_global_package=com.metasolv.serviceactivator.cartridges. this_se
rvice_name

12

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

Defining the service and customizing the skeleton
properties file

This step involves determining the specific details of the service to be created and
specifying the information needed to apply the desired configuration to the device.

The service may require application across multiple OSs or device types. In this
case, you will need to create multiple service cartridges.

This can affect the definition of the service and/or require separate services to be
defined to achieve the desired end goal.

If your service requires an HTML-based GUI input form, you will also need to create
a corresponding configuration policy. Note that a single configuration policy to
implement a generic type of service may be subscribed to by multiple service
cartridges, each implementing the service on a specific vendor’s device.

You must edit the properties file to match the requirements of your service
cartridge. Assuming you have used one of the supplied sample skeleton.properties
files as a starting point, you will have to edit or remove properties that are not
applicable to your service cartridge, and otherwise supply appropriate values for
properties for your particular needs. Refer to Appendix A for details on the
properties in the skeleton properties file.

Service Activator 5.2.4 13

Generating the cartridge source files SDK Service Cartridge Developer Guide — Second Edition

Generating the cartridge source files

The SDK provides a tool for generating the service cartridge source files from the
skeleton properties file. Once the source files are generated, you will need to edit
them to complete your service cartridge.

Note: Ensure that you save copies of any cartridge source files you alter prior to re-
generating from the skeleton.properties file to ensure that you do not lose
customization work. Alternatively, modify the skeleton.properties file so that a new
target directory name is used. In either case, you will need to manually merge any
alterations you made in the previous iteration if you want those changes to persist.

Generating the sample ciscoBanner service cartridge source

files

The file
<SDKHome>\samples\serviceCartridge\ciscoBanner\skeleton.properties is
fully populated and can be used to construct the skeleton source files for the sample
ciscoBanner service cartridge. You can use these files for reference, or as a starting
point for your own service cartridge. The generated source files do not contain all
the necessary modifications to complete the service. See the provided sample
source files for the changes needed.

For the ciscoMartini service cartridge, you also have to modify the Extension.xml to
point to the default_caps.xml file instead of the empty_caps.xml file.

Set the cartridge version string variable. If the cartridge version is 1.0, on a
Windows host, type the command:

set VERSION_STRING=1.0

To generate the ciscoBanner sample service cartridge source files using the data
from the skeleton properties file, go to the SDK directory:

cd <SDKHome>
and then either run the included batch file to run the cartridge generator script:
gensc samples\serviceCartridge\ciscoBanner\skeleton.properties
or type in the command to run the cartridge generator script:

ant -DtemplateType=serviceCartridge -
DpropFile=<SDKHome>\samples\serviceCartridge\ciscoBanner\skeleton.p
roperties

Note that to use the batch file, you must first add <SDKHome>\bin to your PATH
variable where <SDKHome> is the SDK directory.

14

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

Result of generation process

The directory structure you created previously (see Creating a service cartridge
source directory and properties file on page 12) has been extended by using the
<sdk _global cartridgeName> value from the skeleton properties file. The cartridge
source files generated under

<SDKHome>\serviceCartridges\<sdk_global cartridgeName>\ include:

m build.xml - ant build file to build the service cartridge

m src\synonyms.xml - used by the audit process

m src\...\audit\auditTemplate.xml - stub file for audit commands

m src\...\capabilities\empty_caps.xml - stub file for capabilities information

m src\...\messages\ - contains .xml files with success, error and warning
message patterns

m src\...\options\options.xsd - stub .xsd file for cartridge options

m src\...\schema\devicemodel.xsd - contains the stub service cartridge device
model schema

m src\...\test\ - resources for testing the service cartridge

m src\...\transforms\ - transforms including pre- and post-check, SM to DM,
annotated DM to CLI, and DM validation

m src\...\xquerylib\ - additional xqueries for DM to CLI, migration, validation,
and version checking

m src\...\cisco\Extension.xml - identifies the service cartridge instance
m src\...\cisco\Customization.xml - can be used to override Extension.xml

A log file is also created within the logs directory:

<SDKHome>\1logs\generator.log - log file from skeleton generation process.

To continue working with the sample ciscoBanner service cartridge, go to

Completing the sample service cartridge source files on page 20.
Generating your service cartridge source files

When you create your own service cartridge, the cartridge name and the root folder
for the generated source are based on the <sdk_global_cartridgeName> property
value in the service cartridge skeleton properties file. It is incorporated into the
cartridge source files in place of <sdk _global cartridgeName> as shown below.

Set the cartridge version string variable. If the cartridge version is 1.0, on a
Windows host, type the command:

set VERSION_STRING=1.0

Service Activator 5.2.4 15

Generating the cartridge source files SDK Service Cartridge Developer Guide — Second Edition

To generate your skeleton service cartridge source files using your customized
skeleton properties file, go to the SDK directory:

cd <SDKHome>
and then either run the included batch file to run the cartridge generator script:

gensc
\serviceCartridges\<sdk_global_cartridgeName>\skeleton.properties

or type in the command to run the cartridge generator script:

ant -DtemplateType=serviceCartridge -

DpropFile=<SDKHome>\serviceCartridges\<sdk_global_cartridgeName>\sk
eleton.properties

Note that to use the batch file, you must first add <SDkHome>\bin to your PATH
variable where <SDKHome> is the directory where the SDK was installed.

Result of generation process

This extends the SDK directory structure in a similar manner to what was described
in Generating the sample ciscoBanner service cartridge source files on page 14.

Note: It's possible to use a different name for the skeleton properties file. If you
choose to do this, supply the new name instead of skeleton.properties in the ant
commands.

Troubleshooting service cartridge generation

This section discusses where to find information to help you resolve service cartridge
generation issues.

Access to jar files

The service cartridge needs to have access to the XMLbeans jar files. It must get
these from the ipsaSDK/3rdparty/1lib as shown in the setting of
cartridge.build.path in ipsaSDK/build/cartridge_build_imports.xml. The
use of this is shown in the ciscoBannerJava sample service cartridge's build.xml
file.

In addition, if the service cartridge implements an SDK generated configuration
policy, then the service cartridge will need access to the configuration policy's jar file
as well. As an example, see how the build.xml file for ciscoBanner]ava references
the bannerSample configuration policy jar.

Using an alternate directory structure

If you are not using the standard directory structure to layout all the configuration
policies, base cartridges and service cartridges being developed using the SDK, then

16 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

you must modify the Java sample build.xml file to ensure that all instances of
"sdkDir" are replaced with valid paths to the respective files. The preferred way to
do this is to set "sdkDir" to the top level directory for all the SDK-based artifacts.

Service cartridge generator message logging

The logging level of the cartridge generator can be controlled by editing the settings
in the <SDkHome>\config\logging.properties file.

The default is to log debug level messages. Output is sent to both stdout and a
logging file: <SDKHome>\1ogs\generator.log.

For details on troubleshooting property file attributes, see the Base Cartridge
Developer Guide.

Service Activator 5.2.4 17

Completing your custom service cartridge source files SDK Service Cartridge Developer Guide — Second

Completing your custom service cartridge source files

When creating your service cartridges, you will need to make appropriate edits to
the skeleton source files to support the particular functionality you want to
implement for your service.

This section outlines the key source files you will need to edit to implement your
service.

Device model (DM) schema definition

The service cartridge device model (deviceModel.xsd) extends the network
processor’'s DM schema. It adds validation rules so that the new service(s) which the
cartridge enables can be fully described between it and the network processor’s
Device Model.

Service model (SM) to device model transform

This XQuery or java source transform transforms the device-independent service
model to a device-specific device model.

It is essential that the service model Definition IDs, which identify policy definitions,
and Association IDs, which identify the links between defined policies and their
target objects and their representative concretes in Service Activator, flow through
from the service model to the device model.

DM validation

If the cartridge entry <dmValidation> contains a dmValidation entry, the network
processor will invoke this function to validate the transformed device model. This
would capture logical faults as opposed to syntax faults that would be caught by the
device model validation using deviceMode.xsd.

Annotated DM to CLI transform

The network processor compares the target device model with the last device model
that was persisted to the database after the last successful push to the device. The
network processor annotates the target device model. For each policy object, the
annotation includes the smld, a dmld that is generated by the network processor
and a changeType which indicates whether configuration is being added, deleted or
modified on the device.

The data from the annotated device model is transformed into a CLI document
which contains the required device specific commands.

18

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

Service cartridge registry — Extension.xml

The service cartridge registry identifies the service model definitions to which the
service cartridge subscribes and defines the transforms, audits, capabilities, options
and messages of the service cartridge.

When the service cartridge is deployed, the service cartridge jar file will be deployed
into the serviceCartridges sub-directory, the parent of which is the directory in which
a base or core cartridge is already installed. Aspects of the service cartridge registry
can be overridden after deployment by using a customization registry file.

The layout of the service cartridge registry file, Extension.xml, is defined by the
schema cartridge.xsd. The service cartridge registry file is the first service
cartridge file read by the network processor. It defines all of the important entry
points into the service cartridge.

When you create a service cartridge, you must customize Extension.xml
appropriately for your implementation.

The parameters specified in the service cartridge registry include:

m name - the name of the service cartridge. This must be unique across all service
cartridges.

m smToDm - the service model to device model transform file
s dmValidation - the device model validation file
m dmToCli- the device model to CLI transform file

m dmMigration - the device model migration file. This is used to perform device
model upgrades.

m success - the success message patterns file. These patterns are used to identify
success messages sent by a device.

m warning - the warning message patterns file. These patterns are used to identify
warning messages sent by a device.

m error - the error message patterns file. These patterns are used to identify error
messages sent by a device.

m auditTemplateFile - the audit template file. It is used by the audit process for
devices provisioned using a CLI.

m auditQueryFile - the audit query file. This file is used by the audit process for
devices provisioned using an XML interface. Different audit template files can be
specified for different device types and OS versions.

m optionsEntry - the options file. This file specifies the options file that will be
passed to both the SM2DM and DM2CLI XQuery transforms. Different option
files can be specified for different device types and OS versions.

Service Activator 5.2.4 19

Completing the sample service cartridge source files SDK Service Cartridge Developer Guide — Second

m capsEntry - the capability file. This file specifies the capabilities that are
supported by the service cartridge. Different capability files can be specified for
different device types and OS versions. Capabilities for different service
cartridges are ORed together by the network processor during a policy server
caps fetch.

m subscriptions - specify the parts of the service model that the service cartridge is
interested in.

For details on registry operations, refer to the SDK Overview and Setup Guide.

For information on customizing the registry, refer to Customizing the registry -
Registry.xml in the Base Cartridge Developer Guide.

Message pattern definitions

Success, warning and error message pattern files can be defined for service
cartridges in the same way as for base cartridges. (For example, device responses
for commands sent by a service cartridge are analyzed and patterns are created in
the message pattern files for that service cartridge. The difference is that for a base
cartridge, the messages files are referenced from the Registry.xml file, and for a
service cartridge, the messages files are reference from the Extension.xml file.) For
an overview of the concepts behind message files, refer to the SDK Overview and
Setup Guide.

For complete details on defining message patterns, refer to the Base Cartridge
Developer Guide.

Completing the sample service cartridge source files

The generated sample cartridge source files are located in:
<SDKHome>\serviceCartridge\ciscoBanner\

To complete the sample, you must copy the files provided in
<SDKHome>\samples\serviceCartridge\ciscoBanner\ over their
counterparts in the generated source directory or you can edit the generated sample
source files to complete their content development. The provided files demonstrate
the modifications required to complete the generated sample source to produce a
working sample service cartridge. You can examine the contents of the sample files
and by highlighting in some manner (change bars, etc.), you can observe what was
added, or modified to complete the sample.

The files to be copied or edited are:

m <SDKHome>\samples\serviceCartridge\ciscoBanner\src\...\audit\auditTem
plate.xml

20

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

m <SDKHome>\samples\serviceCartridge\ciscoBanner\src\...\messages*

m <SDKHome>\samples\serviceCartridge\ciscoBanner\src\...\schema\devicem
odel.xsd

m <SDKHome>\samples\serviceCartridge\ciscoBanner\src\...\transforms*

Using options in the ciscoStaticRoute sample

Given a cartridge which supports a particular service on Cisco devices, here is an
example of how to add an option to support a variation in a configuration command
for certain device type(s) and OS version(s).

options.xsd file

In this case, the example adds an option for the ciscostaticRoute sample service
cartridge supplied with the SDK to add the parameter permanent to the static route
command for certain devices which require this.

Edit the options schema file options.xsd (based on the generated sample
cartridge source file) and add the following statement to define support for a new
boolean option type for this cartridge called
cartridge.ciscoStaticRoute.permanentOption:

<xs:element name="cartridge.ciscoStaticRoute.permanentOption"
type="opt:BooleanValue" minOccurs="0" default="false"/>

Note that the default value is false.

options.xml file

Create the options.xml file. It specifies which options apply for the device types
and device OS variants that this cartridge supports.

Create an entry using the data type defined in the options.xsd file -
cartridge.ciscoStaticRoute.permanentOption.

The options.xml file follows:

<?xml version="1.0" encoding="UTF-8"7?>

<base:options

xsi:type="CartridgeOptions"
xmlns="http://www.metasolv.com/serviceactivator/cisco/staticroute/
options"
xmlns:base="http://www.metasolv.com/serviceactivator/options"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<!-- options for ciscoStaticRoute service cartridge -->

Service Activator 5.2.4 21

Completing the sample service cartridge source files SDK Service Cartridge Developer Guide — Second

<cartridge.ciscoStaticRoute.permanentOption>true
</cartridge.ciscoStaticRoute.permanentOption>
<!-- additional options could go here -->
</base:options>

xquerylib\dm2cli-staticroute.xq file

Now that the option has been defined, edit the annotated DM to CLI transform to
implement it.

The first statment imports a standard library file of common XQuery functions
(options-common.xq) to provide the ability to recognize and process ‘if’ clauses.

The if statement causes triggers the option evaluation and action.

import module namespace options = "options-common-functions" at
"resource://metasolvcom/metasolv/serviceactivator/networkprocessor/
xquerylib/options-common.xq";

if
(options:getBooleanOption("cartridge.ciscoStaticRoute.permanentOption”
,false()) = true()) then

" permanent"
else ())

When the annotated DM to CLI transform is run, an XQuery command to read the
boolean option ‘cartridge.ciscoStaticRoute.permanentOption’ from the loaded
Extension.xml file is run.

A check is made to see if there is an options file specified that matches the device
type and OS variant for the target device the static route is being configured on.

In this case, there is an entry in the Extension.xml file to match devices of type
‘Cisco.*" and OS **.’. The file options.xml is specified for devices matching these
characteristics. Because of the wildcards, the target device for the static route
matches.

Next, the specified options file (options.xm1l) is searched for an entry matching the
passed option (cartridge.ciscoStaticRoute.permanentOption). The entry exists,
and the value associated with it is true.

This true value is returned back up to the if statement in the transform XQuery
which initiated the option lookup:

if
(options:getBooleanOption("cartridge.ciscoStaticRoute.permanentOption”
,false()) = true()) then

22

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

" permanent"

and the string * permanent” is added to the output CLI. The static route command
for this target device, which is handled by this cartridge, will have * permanent”
appended to it.

Extension.xml file

Edit the Extension.xml file for the cartridge to specify that the cartridge uses
options, and to give the name of the options file (options.xml).

In addition, supply regular expressions to specify the device types and OS versions
that this options file applies to. In this case, it applies to all Cisco device types, and
all OS versions.

<options>
<optionsEntry>
<optionsFile>com/metasolv/serviceactivator/cartridges/
ciscostaticroute/options/options.xml</optionsFile>
<appliesTo>
<deviceTypes useRegex="true">Cisco.*</deviceTypes>
<osVersions useRegex="true">.*</osVersions>
</appliesTo>
</optionsEntry>
</options>

Service Activator 5.2.4 23

Building the service cartridge SDK Service Cartridge Developer Guide - Second Edition

Building the service cartridge

Note: an existing CLASSPATH environment variable may interfere with the
CLASSPATH required by the SDK. It is therefore recommended that the CLASSPATH
environment variable be unset in the session where the SDK is being used. For
example:

set CLASSPATH=
Service cartridge source files are compiled using ant. The compilation process
creates the required XML beans for the cartridge and packages them into a .zip file.
If not already set, set the cartridge version string variable. For example:

set VERSION_STRING=1.0

Compiling the ciscoBanner sample source files

Compile the ciscoBanner sample service cartridge source files with the command:

ant package -f<SDKHome>\serviceCartridges\ciscoBanner\build.xml

Compiling your custom service cartridge source files

Once you have customized your service cartridge source files, compile the service
cartridge with the command:

ant package -
f<SDKHome>\serviceCartridges\<sdk global cartridgeName>\build.xml

This results in the following additions to the service cartridge directory structure:

<SDKHome>\serviceCartridges\<sdk global cartridgeName>\
build.xml
AuditTrailsReports
beansrc
classes
l1ib
<sdk_global cartridgeName>.jar
<sdk_global cartridgeName>tests.jar
package

<sdk_global cartridgeName>-serviceCartridge-
${env.VERSION_STRING}.zip

<sdk_global_cartridgeName>-serviceCartridge-
${env.VERSION_STRING}.manifest

24 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

Troubleshooting service cartridge building

Compilation issues

Compilation problems will be caused by schema or XQuery errors. To debug these
problems, load the schema into an XML schema aware editor. This will make it much
easier to find and correct problems in the schema.

Manifest file

When a service cartridge is built, a manifest file is created listing all of the files that
are packaged into the service cartridge zip file. Installation of the service cartridge
places the manifest in the uninstall directory of the Service Activator installation.

Implementing pre- and post-checks

Pre- and post-checks provide the ability verify information on a device when the
annotated DM to CLI transform executes, before the general configuration is sent.
This allows you to confirm that pre-requisites to the configuration are met.

After configuration is sent, you have the opportunity to have a post-check invoked to
verify some aspect of the commands that were sent to the device.

For further information on pre- and post-checks, see Pre-and post-checks in the
SDK Overview and Setup Guide.

Testing in a standalone environment

Test scripts are created as part of the cartridge skeleton generation process. (See
Generating the cartridge source files on page 14).

Unit tests

The unit test is generated with the skeleton service cartridge source files. After you
have compiled the service cartridge, run unit tests with the command:

ant unittests
against
<SDKHome>\serviceCartridges\<sdk_global_cartridgeName>\build.xml
For example:

ant unittests -f=<SDKHome>\serviceCartridges\
<sdk_global_cartridgeName>\build.xml

Service Activator 5.2.4 25

Testing in a standalone environment SDK Service Cartridge Developer Guide — Second Edition

This runs tests which are intended to prove that the main transform stages of the
cartridge (i.e. service model to device model and annotated device model to CLI)
will generate the output documents correctly.

26 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

Deploying service cartridges
Service cartridges are deployed as extensions to either base or core cartridges.

Core and base cartridges are deployed as jar files, along with their
MIPSA registry.xml / Registry.xml files, to the following subdirectory:

<ServiceActivatorHome>\1ib\java-lib\cartridges\<vendor>

Service cartridges are placed below this:

<ServiceActivatorHome>\1ib\java-
lib\cartridges\ <vendor>\ServiceCartridges

The Extension.xml file of each service cartridge must be placed at the root level in
the service cartridge .jar file.

When an ant build is successfully completed from the service cartridge skeleton
directory a service cartridge .zip file is produced in the skeleton package directory.
The service cartrdige can then be installed into Service Activator by unzipping it to
the <ServiceActivatorHome> directory. Upon restart of the network processor, the
service cartridge is loaded. A notification appears in the Service Activator GUI fault
pane to confirm that the service cartridge has been loaded.

To deploy the service cartridge in a Service Activator environment:

m unzip the cartridge file <sdk_global_cartridgeName>-serviceCartridge-
${env.VERSION_STRING}.zip to the runtime environment of the network
processor <NetworkProcessorHome> .

m Restart the network processor to load <sdk_global cartridgeName>.jar

To observe cartridge loading operation see:

m <ServiceActivatorHome>\logs\networkProcessor.log

m <ServiceActivatorHome>\AuditTrails\np<sdk_global_cartridgeName>.lo
g

Verification of deployment

Once the network processor has started, it will raise information faults in the system
indicating each cartridge registered. The new service cartridge should be indicated.
If this does not happen, check the network processor log — it will contain the details
on why the cartridge was not loaded. If the log does not indicate the problem, check
that the cartridge was deployed to the correct location.

Deploying the sample service cartridge

Once you have compiled the ciscoBanner sample service cartridge, it can be
deployed along with the sample configuration policy - bannerSample. (See the

Service Activator 5.2.4 27

Deploying service cartridges SDK Service Cartridge Developer Guide - Second Edition

Configuration Policy Extension Developer Guide for details on creating the
bannerSample sample configuration policy.)

Deploy the service cartridge as described above.

Create and deploy the bannerSample configuration policy following the procedure in
the Configuration Policy Extension Developer Guide.

28

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building service cartridges

Audit trail logging

Audit trail logging records the commands sent to devices by the base cartridge, and
any service cartridges that extend the services of the base cartridge.

Each network processor maintains one current networkprocessor.log file and one
current audit trail log file per base or core cartridge. Audit trail logging for a service
cartridge is written to the audit trail log file for the base or core cartridge that the
service cartridge extends. The network processor logging facilities are based on the
log4j utility.

For more information on network processor logging, please refer to Chapter 7 of the
Service Activator Administrator’s Guide.

For details on setting audit trail logging properties, refer to Audit trail logging in the
Base Cartridge Developer Guide.

Device model upgrades

Once a cartridge is constructed and deployed, it will carry with it a device model
version identifier (e.g 1.0). If a subsequent release of the cartridge is constructed
which involves a non-trivial device model change, then the device model version
would be incremented to 2.0, as an example, to distinguish it from the predecessor
cartridge.

For further details on device model upgrades, refer to the Base Cartridge Developer
Guide.

Audit

Audit functionality is controlled by an audit template and an audit query file. The
names of these files are specified in the Extension.xml file.

The audit template file is used by the audit process for devices provisioned using a
command line interface (CLI).

The audit query file is used by the audit process for devices provisioned using an
XML interface. Different audit template and audit query files can be specified for
different device types and OS versions.

For complete details on audit, refer to the SDK Overview and Setup Guide.

Service Activator 5.2.4 29

Uninstalling service cartridges SDK Service Cartridge Developer Guide - Second Edition

Uninstalling service cartridges

Service cartridges are uninstalled using the uninstallCartridge.sh script, which
resides in the bin directory of the Service Activator installation. This script takes the
name of the manifest file, which contains a list of all installed service cartridge files,
as a parameter., and uses its contents to uninstall the service cartridge. (See
Manifest file on page 25.)

You can include the base directory or the Service Activator installation as a
parameter to the script. If you do not, the script queries the ORCHcore package to
locate the base directory of the Service Activator installation.

The uninstallCartridge.sh script sorts the manifest file in reverse order, then
deletes files, and then directories. Only empty directories are removed — this
ensures that the script will not remove directories used by other cartridges.

Note: you can use a relative path to specify the manifest file, but it must be relative
to the current directory (i.e. where you are running the uninstall script from). You
can also use an absolute path. To verify that the manifest file is in the directory, use
the command "Is<manifest>" using the same value that is provided to the script.

The command is:

uninstallCartridge <manifest_file> [<ServiceActivatorHome>] [-kK | -
vl

Use the -k option to leave empty directories. The -v (verbose) option produces extra
output from the script.

Note: You must restart the network processor after the service cartridge is
uninstalled.

Note: uninstalling a cartridge or configuration policy developed using the SDK does
not remove the network processor's device model entries that reference this
cartridge or configuration policy. This information is maintained because it is
unknown whether you are uninstalling the cartridge or configuration policy to
remove it or to upgrade it.

Removing a service cartridge from the SDK

To remove a generated service cartridge from the SDK installation, delete all
contents under and including:

<SDKHome>\serviceCartridges\<sdk global cartridgeName>

Uninstalling the SDK

To uninstall the SDK, delete all contents under <SDAkHome>.

30 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Service Cartridge generation properties

Appendix A

Service Cartridge generation
properties

This Appendix provides details on the parameters you can configure in the
skeleton.properties file used to generate service cartridge source files.

This file contains a number of properties that customize the generated service
cartridge source.

Property names are of the form sdk_ <context>_<type> and are composed of three
parts:

m sdk - indicates an sdk variable
m <context> - describes of the context in which the variable applies

m <type> - indicates how the variable is being used, and may imply a restriction
on the possible values:

m If "supported" appears in the <type>, a boolean value should be entered.

m If "pattern" appears in the <type>, a regular expression (regex) pattern
should be entered.

m If "prompt" appears in the <type>, a device response should be entered in
the form of a regex pattern.

m If "cmd" appears in the <type>, a device specific command should be
entered.

Boolean variables are validated to ensure that the values conform to boolean values
(i.e. ‘true’, or ‘false’).

Regex patterns are validated to ensure that they can be compiled.

Note: Be aware that for certain regular expressions in the skeleton.properties file, it
maybe necessary to use an escape character to precede certain special characters in
order for them to be translated to the generated source code correctly. This is
dependent on whether you are using XQuery or Java based transforms.

Service Activator 5.2.4 31

Service Cartridge generation properties

SDK Service Cartridge Developer Guide — Second Edition

Audit
Property Description Example
sdk_audit_supported Command sent to the device to determine | true
if device is supported.
Optional
Naming and packaging
Property Description Example

sdk_global_cartridgeName

This is the cartridge name. This variable is
used throughout the cartridge code in
generating file names and source code
variable names.

ciscoBanner

Mandatory.
sdk_global_baseCartridgeNa | The base or core cartridge that this service | cisco
me cartridge extends to provide support for a

specific service for a specific vendor.

Mandatory.
sdk_global_cartridgeVersion | This is the cartridge version that is being 1.0

developed. It is used at run time to verify
that a device model is still valid in the
event of an upgrade of the cartridge.

sdk_global_package

This is the cartridge path in dotted
notation used for packaging. Its value is
translated to a directory structure for
source code path generation. The value is
used in build scripts, java source code and
support files.

The generated files are placed under:

<SDKHome>\serviceCartridges\<sdk_gl
obal_cartridgeName>\src\<sdk_global
_package>

Mandatory.

com.metasolv.serviceactiv
ator.ciscoBanner would
become
com\metasolv\serviceacti
vator\ciscoBanner

32

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition

Service Cartridge generation properties

Device type identification

These properties are used in the JUnit test environment.

Property

Description

Example

sdk_global_deviceName

Specify the device name that the base
cartridge, that this service cartridge
extends, was constructed for. This is used
in the sample service model used by the
junit tests for this service cartridge.

Mandatory.

Cisco

sdk_global_deviceDescriptio
n

Device description. This is used in the
sample service model used by the junit
tests for this service cartridge.

Cisco Internetwork
Operating System
Software IOS (tm) RSP
Software (RSP-PV-M),
Version 12.2(8)T,

RELEASE SOFTWARE (fc2)
TAC
sdk_global_deviceModel Device model. This is used in the sample 2611
service model used by the junit tests for
this service cartridge.
sdk_global_deviceVersion Device version. This is used in the sample | 12.2(11)T8
service model by the junit tests for this
service cartridge.
Service Activator 5.2.4 33

Service Cartridge generation properties

SDK Service Cartridge Developer Guide — Second Edition

Device Model schema

Property

Description

Example

sdk_deviceModel_namespac
e

Target namespace of the device model
schema for this service cartridge.

Mandatory.

http://
www.metasolv.com/
serviceactivator/
devicemodel/ciscobanner

sdk_deviceModel_namespac
eAbbr

Abbreviation of the target namespace of
the device model schema for this service
cartridge. This is used as a namespace
prefix.

Mandatory.

dmbanner

sdk_deviceModel_prefix

A complex type with the name
<sdk_deviceModel_prefix>Device which
extends BaseDevice will be generated in
the deviceModel schema for this service
cartridge.

Mandatory.

CiscoBanner would
become
“CiscoBannerDevice”

Subscription

Subscriptions - properties which manage subscription to a configuration policy or
modeled service definition.

Note that although a service cartridge can subscribe to more than one modeled
service definition type and/or more than one configuration policy, the skeleton
generator allows you to specify only one subscription. More subscriptions can be
added by editing the generated file Extension.xml after the file generation step.

Note: Only one of sdk_subscription_configPolicy_supported and
sdk_subscription_serviceDefinition_supported can be set to true.

34

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition

Service Cartridge generation properties

Property

Description

Example

sdk_subscription_configPolic
y_supported

Boolean value to indicate whether or not
this service cartridge implements a
configuration policy. When set to true, the
value of
sdk_subscription_configPolicyName
identifies the configuration policy.

Mandatory.

true

sdk_subscription_configPolic
yName

Configuration policy subscription.

Specify either a core configuration policy
content type, or, for configuration policies
created using the SDK, specify the
configuration policy name that is

registered in ConfigPolicyRegistry.xml.

bannerSample

Service Activator 5.2.4

35

Service Cartridge generation properties SDK Service Cartridge Developer Guide — Second Edition

Property Description Example
sdk_subscription_serviceDefi | Boolean value to indicate whether or not false
nition_supported this service cartridge implements a

modeled service definition. When set to
true, the value of
sdk_subscription_serviceDefinitionName
idenitifies the modeled service definition.

Mandatory.
sdk_subscription_serviceDefi | Modeled service definition subscription. ParameterSetDefinitionTy
nitionName Specify a core definition type from: pe

m ParameterSetDefinitionType
m MqcDefinitionType

m AccessRuleDefinitionType

m GenericRuleDefinitionType

m ServiceRuleDefinitionType

m PolicingRuleDefinitionType

m PhbGroupType

m [BgpBaseDefinitionType

m IBgpNeighbourDefinitionType
m VrfTableDefinitionType

m MartiniDefinitionType

m CccDefinitionType

m L[2InterfaceCreationDefinitionType
m TlIsDefinitionType

m SAADefinitionType

36 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition

Service Cartridge generation properties

Valid core configuration policy content types

Valid core configuration policy content types for the
sdk_subscription_configPolicyName property include the following:

atmSublnterfaceData
frSubInterfaceData
plSeriallnterfaceData
plPosInterfaceData
dslInterfaceData
loopbackInterfaceData
ciscoUniversallnterface
multilinkInterface
pppMultilink
virtualTemplatelnterface
dialerInterface

ipPools
prefixListEntries
staticRoutes

banners
netflowParameters
collectorParameters
staticNats
snmpCommunities
snmpHosts

saveConfig
gosCosAttachment
juniperQosCosAttachment
ciscoQosPfcTxPortQueues
vlanAccessPort
vlanTrunkPort
vlanDefinitions
vlanInterface
portCharacteristics
customerIPsec
publicIPsec

rate-limit

hsrp
vlanSublnterfaceData
keyChains

multicastInterface
multicastVrf
multicastDevice
multicastBootstrapRouter
multicastAutoRp
vrfRoutePolicy
bgpRoutePolicy
userData
userAuth
dialerList
ipsecmodule

stmi1Controller
t3Controller
elController
e3Controller
tiController
stmi1ChannelizedSeriallnterface
t3ChannelizedSeriallnterface
elChannelizedSeriallnterface
e3ChannelizedSeriallnterface
t1ChannelizedSeriallnterface
basicRatelnterfaceData
sgbp
schedule
atmPvcVcClass
atmVcClass
bgpCE
extendedAcl
backUpInterfacePolicy
vrfCustomNaming
vrfExportRouteFilter
diswDevice
diswEthernetInterface
dlswTokenRingInterface
alcatelSRL3Interface

Service Activator 5.2.4

37

Service Cartridge generation properties

SDK Service Cartridge Developer Guide — Second Edition

Options schema

Property

Description

Example

sdk_options_namespace

Target namespace of the options schema
for this service cartridge.

Mandatory.

http://
www.metasolv.com/
serviceactivator/options

sdk_options_namespaceAbb
r

Abbreviation of the target namespace of
the options schema for this service
cartridge. This is used as a namespace
prefix.

Mandatory.

cisopt

38

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second EditionGenerated Skeleton Service Cartridge Source Files

Appendix B

Generated Skeleton Service Cartridge Source
Files

This appendix describes generated service cartridge source files.

About the generated skeleton service cartridge source files

The file
<SDKHome>\samples\serviceCartridge\ciscoBanner\skeleton.properties is
fully populated and can be used to construct the skeleton source files for the sample
ciscoBanner service cartridge. You can use these files for reference, or as a starting
point for your own service cartridge. The generated source files do not contain all
the necessary modifications to complete the service. See the provided sample
source files for the changes needed.

To generate the ciscoBanner sample service cartridge source files using the data
from the skeleton properties file, go to the SDK directory:

cd <SDKHome>
and then either run the included batch file to run the cartridge generator script:

gensc samples\serviceCartridge\ciscoBanner\skeleton.properties

or type in the command to run the cartridge generator script:

ant -DtemplateType=serviceCartridge -
DpropFile=<SDKHome>\samples\serviceCartridge\ciscoBanner\skeleton.p
roperties

Note that to use the batch file, you must first add <SDkHome>\bin to your PATH
variable where <SDKHome> is the SDK directory.

This results in the following directory structure, which is a skeleton ciscoBanner
service cartridge:

<SDKHome>

Service Activator 5.2.4 39

Generated Skeleton Service Cartridge Source Files SDK Service Cartridge Developer Guide — Second

logs
generator.log
serviceCartridges
<sdk_global_cartridgeName>
build.xml
src
synonyms . xml
<sdk_global_package>(com)
<sdk_global_package>(.metasolv)
<sdk_global_package>(..serviceactivator)
<sdk_global_package>(...cartridges)
<sdk_global_package>(....ciscobanner)
audit
auditTemplate.xml
capabilities
empty_caps.xml
messages
errorMessages.xml
successMessages.xml
warningMessages.xml
options
options.xsd
schema
devicemodel.xsd
test
models
upgradeFrom
sampleDeviceModel.xml
sampleServiceModel.xml
DmUpgradeTests.java
TransformUnitTests.java
transforms
annotated-dm2cli.xq
dm2cli-postcheck.xq
dm2cli-precheck.xq

40 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second EditionGenerated Skeleton Service Cartridge Source Files

dm-validation.xq
sm2dm. xq
xquerylib
dm-migration.xq
DmUpgrade.xq
dm-validation.xq
dm-version.xq
Customization.xml

Extension.xml

Generated skeleton service cartridge source files details.

The following table describes the functionalities of the component files of the
skeleton service cartridge.

Component file Description

synonyms.xml This file can be used to specify audit synonyms
for commands delivered by this service
cartridge. Audit synonyms can improve the
success rate of a device audit, for devices that
display some commands differently than how
Service Activator sent them.

auditTemplate.xml This file is an audit template. Audit templates
define filter patterns to be applied to commands
to identify configuration of interest, to affect
their inclusion in the audit report, and to set
attributes on the command results, which, when
viewed using a stylesheet will affect how they
are displayed to the Service Activator user.

Service Activator 5.2.4 41

Generated Skeleton Service Cartridge Source Files

SDK Service Cartridge Developer Guide — Second

Component file

Description

Extension.xml

The service cartridge registry is defined by the
schema cartridge.xsd. The service cartridge
registry file is the first service cartridge file read
by the network processor. It defines all of the
important entry points for the service cartridge.
The name of the service cartridge registry file is
Extension.xml.

The parameters controlled by the service
cartridge registry are:

name—defines the name of the service
cartridge. This must be unique across all
service cartridges.
smToDmQuery—defines the service model
to device model transform XQuery
dmValidation—defines the device model
validation XQuery

dmToCliQuery—defines the device model to
CLI transform XQuery
dmMigration—defines the device model
migration XQuery. This is used for device
model upgrades.

success—defines success messages sent by
a device

warning—defines warning messages sent
by a device

error—defines error messages sent by a
device

auditTemplateFile—used by the audit
process for devices provisioned using a CLI.
Different audit template files can be specified
for different device types and OS versions.
subscriptions—specifies the parts of the
service model that the service cartridge is
interested in.

42

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second EditionGenerated Skeleton Service Cartridge Source Files

Component file Description

Extension.xml (continued) auditQueryFile—used by the audit process for
devices provisioned using an XML interface.
Different audit template files can be specified for
different device types and OS versions.

optionsEntry—specifies the options file that is

passed to both the SM2DM and DM2CLI XQuery
transforms. Different option files can be specified
for different device types and OS versions.

capsEntry—specifies the capabilities that are
supported by the service cartridge. Different
capability files can be specified for different
device types and OS versions.

Customization.xml This is used to customize the registry file. When
packaged in the zip file, it will be named
<sdk_global_cartridgeName>.xml.

empty_caps.xml Capabilities provide privileges to the device and
its subordinate interfaces to support various
policies. The empty_caps.xml is a sample
capabilities file. The sample, being empty, will
provide no capabilities to the device and it
subordinate interfaces. The user needs to
provide capability entries in order to provide
privileges to the device during the Service
Activator device discovery process.

errorMessages.xml This file contains error patterns for commands
generated by the service cartridge. If the
response from the device matches one of the
known error patterns, then a fault (Error) is
raised against the device itself, all the concretes
affected by that transaction are rejected and the
partially implemented configuration is rolled
back.

Service Activator 5.2.4 43

Generated Skeleton Service Cartridge Source Files SDK Service Cartridge Developer Guide — Second

Component file

Description

warningMessages.xml

This file contains warning patterns (blocking or
non-blocking) for commands generated by the
service cartridge. If the response from the
device matches a non-blocking warning pattern,
a fault (Warning) is raised. If the response from
the device matches a blocking warning pattern, a
fault is raised, and all concretes affected by that
transaction are rejected and the partially
implemented configuration is rolled back.

successMessages.xml

This file contains success patterns for commands
generated by the service cartridge. If the device
response (to sending a command) matches a
success pattern, or there is no response at all
(only a prompt), then the command is
considered successful.

options.xml

This is an XML schema file containing the
configuration options that are required to define
the cartridge jar file.

deviceModel.xsd

This file is used to validate the device model
created during the service model to device model
transformation. The base_devicemodel is
owned by the network processor framework. The
deviceModel is owned by the cartridge and can
be extended as needed to support various
polices and commands.

sampleDeviceModel.xml

This sample device model is used by
DMUpgradeTests.java.

sampleServiceModel.xml

This sample service model is used for junit
testing by TransformUnitTesting.java.

44

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second EditionGenerated Skeleton Service Cartridge Source Files

Component file

Description

TransformUnitTests.java

m method
testBasicServiceModelToDeviceModelTra
nsform: tests the ability to transform the
sampleServiceModel to a proper deviceModel

s method
testBasicDeviceModelToCommandDocument
AddTransform: tests the ability to transform
the deviceModel to a proper cliDocument
which is adding cmds to the device

= method
testBasicDeviceModelToCommandDocument
DeleteTransform: tests the ability to
transform the deviceModel to a proper
clibocument which is deleting cmds from the

device
DMUpgradeTests.java This file is used for testing cartridge upgrade
scenarios.
sm2dm.xq This is the XQuery source code that transforms a

service model to a device model.

annotated-dm2cli.xq

This is the XQuery source code that transforms a
device model to a CLI document.

dm2cli-postcheck.xq

This is the XQuery source code that performs the
post-check functionality which is used by the
annotatedDM2C1li.xq.

dm2cli-precheck.xq

This is the XQuery source code that performs
pre-check functionality, which is used by the
annotatedDM2C1i . xq.

dm-validation.xq

This is the XQuery source code providing the
ability to raise fault to the system console.

dm-migration.xq

This is the XQuery source code used to support
device model upgrades.

DmUpgrade.xq

This is the XQuery source code used to support
executing a DM upgrade if cartridge DM has been
enhanced.

Service Activator 5.2.4

45

Generated Skeleton Service Cartridge Source Files SDK Service Cartridge Developer Guide — Second

Component file

Description

dm-version.xq

This is the XQuery source code used to identify
which cartridge version is in use.

dm-validation.xq

This file has the XQuery source code used for
additional validation of the device model.

46

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building Alcatel SAM service cartridges

Appendix C

Building Alcatel SAM service
cartridges

This chapter discusses Alcatel service cartridge concepts and explains how to use
the SDK to create service cartridges for Alcatel devices.

This guide assumes:

m that Service Activator is deployed to a directory which will be referred to as
<ServiceActivatorHome>. This directory is typically
C:\Program Files\Oracle Communications\Service Activator

m that you have successfully installed the SDK to a directory which will be referred
to as <SDKHome>.

m that the required versions of additional 3rd party tools to support the SDK are
installed correctly

m that you have set up the required environment variables to support the SDK
functions.

For details on installing the SDK and the 3rd party tool versions, see the SDK
Overview and Setup Guide.

Overview of Alcatel service cartridges

The information in this guide builds on the concepts, details, and procedures
contained in the Service Cartridge Developer Guide.

In general, the concepts and procedures described in the Service Cartridge
Developer Guide apply. However, Alcatel service cartridges have some differences
from typical service cartridges. This guide explains the additional things you need to
know to develop Alcatel service cartridges.

As you refer to the procedures in the Service Cartridge Developer Guide keep the
contents of this guide in mind, adapting as necessary to take into account the
particular attributes of Alcatel service cartridges.

Service Activator 5.2.4 47

SDK Service Cartridge Developer Guide — Second Edition

The following guidelines apply to Alcatel service cartridges:

Alcatel service cartridges work in conjunction with the Alcatel 5620 SAM
Cartridge. This base cartridge provides interface capabilities between the
network processor and the Alcatel-Lucent 5620 Service Aware Manager (SAM).
Refer to the Alcatel 5620 SAM Cartridge Guide for details.

transforms created for Alcatel service cartridge should be implemented using
Java instead of XQuery. The XQuery transform files created by the cartridge
generation process must be replaced with your own Java code. The parts of the
procedures in Chapter 2 dealing with XQuery, generating and customizing
cartridge source files in particular, do not directly apply to Java-based service
cartridge development.

the Alcatel base cartridge does not communicate directly with Alcatel devices,
but communicates through SAM-0, an open interface on the SAM through which
an OSS client application can perform tasks such as configuring network
management information in the SAM database and modifying managed objects.

References are made to sample service cartridge components packaged with the
SDK.

Note: Refer to Appendix A in the Service Cartridge Developer Guide for details on all
properties in the properties file.

48

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building Alcatel SAM service cartridges

Alcatel SAM ID Mapper - AlcatelSamIdMapper

The Alcatel SAM maintains its own set of unique IDs for the objects it manages.
These IDs need to be referenced when modifying or deleting objects. The
AlctatelSAMIdMapper acts as a transient cache of object IDs and a proxy, allowing
the Alcatel Cartridge to query the SAM based on service specific data.

The ID Mapper generates its own set of keys based on the attributes of objects that
can uniquely identify them in the SAM. For example, a subscr.Subscriber (Customer)
object in the SAM can be uniquely identified by its subscriberName attribute.
However, in order to uniquely identify a vprn.Vprn object you will need to refer to
both its customerName and globalServiceName attributes. Note that the
customerName and the subscriberName attributes refer to the same data (Service
Activator Customer Name) and as a result the ID Mapper tries to normalize these
differences through the use of a key map.

The ID Mapper Key Map document describes the various SAM objects and how to
generate a unique key based on their attributes. A Key Map document contains a
number of Type Definitions which describe the various SAM objects including their
type name, the attributes that uniquely define a type and a “normalizing” key to
identify each of these attributes in a consistent manner. Your Key Map XML file
should be placed in the same directory that your sm2dm and annotatedDm2Cli
transforms are in.

The following is an example of a Type as it would be defined in your Key Map XML
document:

<tns:typeDefinition>
<tns:name>rtr.VirtualRouter</tns:name>
<tns:keySet>
<tns:keyMap order="0">
<tns:type>rtr.VirtualRouterl</tns:type>
<tns:key>siteld</tns:key>
</tns:keyMap>
<tns:keyMap order="1">
<tns:type>rtr.VirtualRouter2</tns:type>
<tns:key>routerId</tns:key>
</tns:keyMap>
</tns:keySet>
</tns:typeDefinition>

The <typeDefnintion> has the following elements.

m <name> — name of the SAM schema element to create a key map for. This
name can only occur once within all Alcatel core and service cartridges.

m <keyMap> — These elements list the composite identifiers that uniquely identify
the object in SAM. Each keyMap in the typeDefinition must have a unique order

Service Activator 5.2.4 49

Alcatel SAM ID Mapper - AlcatelSamIdMapper SDK Service Cartridge Developer Guide - Second Edition

number and must run in sequence starting from 0. The <type> element is used
to uniquely identify your keyMap entry within the typeDefinition. The <key>
element is the actual name of the element in the SAM API. One use of the Key
Map Document is to help the Command Executor find an object in SAM.

Below is an excerpt from a network processor log file showing how the above
typeDefinition is used to get the objectFullName of a rtr.VirtualRouter.

<find xmlns="xmlapi_1.0">
<fullClassName>rtr.VirtualRouter</fullClassName>
<filter>
<and>
<equal name="siteld" value="10.1.1.53"/>
<equal name="routerId" value="1"/>
</and>
</filter>
<resultFilter>
<attribute>objectFullName</attribute>
<children/>
</resultFilter>
</find>

Service Activator Service cartridges can define their own Key Map documents and
further populate the existing AlcatelSAMIdMapper with service specific definitions.

The following example is an excerpt of java code that you would use in your sm2dm
or annotatedDm2Cli java file showing how a service cartridge lists a Key Map file:

AlcatelSAMIdMapper mapper = AlcatelSAMIdMapper.getInstance();
mapper.populateTypeMap("alcatelSamSampleKeyMap.xml",
AnnotatedDm2Cli.class);

The Alcatel[SAMIdMapper operates as an MRU (most recently used) cache
maintaining object mappings for a user-definable number of objects. If the cache
grows beyond the defined size, the least referenced object will be discarded. The
cache size can be defined in the AlcatelSAMHosts.properties file.

Another element that can be optionally defined in the Key Map Document is
CommandPreProcessors. The value of the <preCommandValidation> is the name of
a class that implements a Command Document pre-processor.

The following is an example from a Key Map XML file showing a
CommandPreProcessor registration:

<tns:preCommandValidation>com.metasolv.serviceactivator.cartridges.alc
atelSam.commandExecutor.VprnCommandPreProcessor</
tns:preCommandValidation>

50

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building Alcatel SAM service cartridges

Implementation of a CommandPreProcessor is described in CommandPreProcessor
on page 53.

Command Document Structure

Some specific guidelines must be followed when you create the Java transform (i.e.
the annotatedDm2CLI) in your Alcatel service cartridge which creates the Command
Document.

For generation of the Command Document, the Alcatel SAM cartridge uses
<commandXML> instead of <commandString>. You should not use nested
commands in the CommandSession Document.

The Alcatel SAM Cartridge Command Executor requires that a specific structure be
used inside the commandXML. The command must contain the SAM configuration
document wrapped in a samCommand document containing extra information
required by the Command Executor to create the correct SOAP wrapper to send to
SAM.

Below is an excerpt from a network processor log file showing a command
that the annotatedDm2Cli would create:

<command dmId="15,16,17,18" xmlns:sam="http://www.oracle.com/
SAMCartridgeCommand">
<assoc_id>4105</assoc_id>
<assoc_id>14032</assoc_id>
<commandXML>
<sam:samCommand>
<sam:command>
<xa:generic.GenericObject.configureChildInstance>
<xa:deployer>ignored</xa:deployer>
<xa:synchronousDeploy>true</xa:synchronousDeploy>
<xa:clearOnDeployFailure>true</xa:clearOnDeployFailure>
<xa:distinguishedName>subscr.Subscriber_ # acme_: vprn.Vprn_ # vrfName_ :
vprn.Site# 10.1.1.53</xa:distinguishedName>
<xa:childConfigInfo>
<xa:svt.Cloud>
<xa:circuitTransport>ldp</xa:circuitTransport>
<xa:actionMask>
<xa:bit>create</xa:bit>
<xa:bit>modify</xa:bit>
</xa:actionMask>
</xa:svt.Cloud>
</xa:childConfigInfo>
</xa:generic.GenericObject.configureChildInstance>

Service Activator 5.2.4 51

Command Document Structure SDK Service Cartridge Developer Guide — Second Edition

</sam:command>
<sam:samType>subscr.Subscriber_# acme_: vprn.Vprn_# vrfName_: vprn.Sit
e # 10.1.1.53_: svt.Cloud</sam:samType>

<sam:samParentType>subscr.Subscriber_#_acme_:_vprn.Vprn_#_ vrfName_:_vp
rn.Site_#_10.1.1.53</sam:samParentType>
</sam:samCommand>
</commandXML>
</command>

Within the commandXML, an element called <samCommand> will be created. This
element has three child elements.

m <command> — This element contains the SAM configure document from the SAM
API.

m <samType> — This element contains the ID Mapper value of the element being
executed.

m <samParentType> — This element contains the ID Mapper value of the elements
parent. This element is optional for SAM root elements.

When creating the <xa:distinguishedName> or <xa:objectFullName> elements in
the SAM configure command, you should use the ID Mapper value instead of the real
SAM values during transform. These values in the command will be replaced by the
real SAM values during command execution of the command preprocessor.

52

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building Alcatel SAM service cartridges

CommandPreProcessor

As an extension, the ID Mapper can reference a command preprocess or
prevalidation step. During the execution of the Command Document, each command
can optionally also have preprocessing done on the command. This allow
modification to the Command before it is executed by the Command Executor.

An example of such a use is the replacement of placeholder values in the command
with values retrieved from SAM. During the SM2DM and AnnotatedDm2CLI
transformations, there might be unpersisted data or IDs that you want to put into
your command.

To minimize the communication between Service Activator and SAM during
transformation, it is best to put SAM queries in the command preprocessor. Such a
technique is already used for populating <xa:distinguishedName> and
<xa:objectFullName>. These are unique keys that SAM uses to configure objects.
These keys are generated by SAM when objects are created. In the cartridge device
model, the cartridge stores a cartridge representation of the key that the pre-
processor will replace during command execution. This prevents the transform from
querying SAM for keys of every object, but instead will only query SAM for keys
object objects that are in the command document.

To use the command preprocessor, you must create a new class that extends
BaseCommandPreProcessor and registers the preprocessor in the ID mapper file.
Two methods will needed to be implemented for the preprocessor class.

The first method is testCommand (). The Command Executor will run this method for
each command in the Command Document to see if the command will be passed to
your pre-processor. The example below show a simple but typical implementation of
the method. The example first calls a method called isMyCommand (), which checks if
the Command is for the SAM element of interest. The method also calls isDelete(),
which checks if the SAM command is to be deleted.

Note: The isMyCommand () and isDelete() implementations are not shown and
would be implemented as part of the custom preprocessor.

public synchronized boolean testCommand(Command command) throws
Exception {

boolean myCommand = isMyCommand(command) ;
return((myCommand) && (!isDelete(command)));

}

If no pre-processor class returns true, then the command will be passed to the
GenericCommandPreProcessor which will replace the ID mapper values for the
<xa:distinguishedName> and <xa:objectFullName> elements with real SAM IDs
retrieved from SAM.

Service Activator 5.2.4 53

CommandPreProcessor SDK Service Cartridge Developer Guide — Second Edition

The second method is processCommand (). This method in the preprocessor will be
called if the testCommand () method returned true. The Command from the
Command Document will be passed in for processing. At this point the method can
modify the Command or perform validation tasks against the SAM that you do not
want to perform at transform time. There are two different ways that the
processCommand () can return. The following are examples of the two options.

The first implementation is to perform some Command modification or validation
and then tell the CommandExecutor to also run the GenericCommandPreProcessor
when complete. If the Command includes <xa:distinguishedName> or
<xa:objectFullName> that has ID Mapper values that need processing and this
method did not do the substitution, then the method must return to the
CommandExecutor to run the GenericCommandPreProcessor. For example:

public CommandProcessorResultCode processCommand(Command command)
throws Exception{

// Perform my validation or modification here.

return new
CommandProcessorResultCode (CommandProcessorResultCode.RUN_GENERIC) ;

}

The second implementation is to perform some Command modification or validation
and then tell the CommandExecutor to not run the GenericCommandPreProcessor
when complete. If the Command does not include <xa:distinguishedName> or
<xa:objectFullName> that has ID Mapper values which need processing or this
method is doing the substitution, then the method must return to the
CommandExecutor such that the GenericCommandPreProcessor is not run. For
example:

public CommandProcessorResultCode processCommand(Command command)
throws Exception{

// Perform my validation or modification here.

return new
CommandProcessorResultCode (CommandProcessorResultCode.NO_RUN_GENERIC);

}

54 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building Alcatel SAM service cartridges

Device Model Best Practices

The following are best practices to assist in efficient creation of a device model.

The Alcatel SAM uses a hierarchical based schema that can be reflected in a
device model. This same structure makes it very simple to create a device
model. The first item is to make each SAM object a Changeable element in the
device model. Since a Changeable element in the device model is supposed to
represent a command, this holds true for SAM. The following example shows the
declaration of a Changeable type for Epipe.

<xs:complexType name="ChangeableEpipe">
<xs:complexContent>
<xs:extension base="lib:Changeable">
<Xs:sequence>
</xs:sequence>
</xs:extension>
</xs:complexContent>
/xs:complexType>

Create a container element for each SAM element. Between each layer in the
device model, add a container which will assist in grouping and the addition of
identifiable keys (described below). The following is an example of creating a
container:

<xs:complexType name="Epipe.Container">
<xs:complexContent>
<xs:extension base="lib:Container">
<Xs:sequence>
<xs:element name="epipe" type="dm:ChangeableEpipe"
minOccurs="1" max0Occurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Each SAM Changeable will contain the three different types of children:
— reference to the SAM schema for object data

<xs:element ref="sam:epipe.Epipe" minOccurs="1" maxOccurs="1"/>
— one or more containers for other SAM Changeable child elements

<xs:element name="epipe.Site.Container"
type="dm:Epipe.Site.Container" minOccurs="0" maxOccurs="1"/>

m Optionally, an element that represents the identity. You should only need to
add this element if the SAM reference object does not contain an element
that is used as its unique identity in your device model.

Service Activator 5.2.4 55

Device Model Best Practices SDK Service Cartridge Developer Guide — Second Edition

<xs:element name="name" type="xs:string" minOccurs="1"
maxOccurs="1"/>

m Each Changeable should also be Identifiable. To have more efficient commands
being sent to the SAM, it is best to give each SAM Changeable and Identifiable
key. Without the Identifiable, the annotation of the device model would cause
your element to be deleted and re-added in the SAM instead of being
implemented with the more efficient modify command. This also means that if
there is no identity, any change to any element in the SAM referenced object
would cause a delete and re-add.

If you have a SAM element for which you will never want to issue a modify
command, then do not add the Identifiable key. The following is an example of
setting the epipe.Site Identifiable key during the declaration of the
epipe.Site parent Container.

<xs:element name="epipe.Site.Container"
type="dm:Epipe.Site.Container"” minOccurs="0" maxOccurs="1">
<xs:key name="epipeSiteKey">
<xs:selector xpath="dm:epipe.Site"/>
<xs:field xpath="sam:epipe.Site/sam:siteld"/>
</xs:key>
</xs:element>

The following example implements all the best practices listed above. It shows how
to use the repeatable pattern of Container/Changeable for an Epipe service. You
would repeat the same pattern at each layer such as epipe.Epipe->epipe.Site,
then epipe.Site->v11l.L2AccessInterface and so on.

<xs:complexType name="Epipe.Container">
<xs:complexContent>
<xs:extension base="1lib:Container">
<Xs:sequence>
<xs:element name="epipe" type="dm:ChangeableEpipe" minOccurs="1"
maxOccurs="unbounded"/>
</Xxs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ChangeableEpipe">
<xs:complexContent>
<xs:extension base="lib:Changeable">
<Xs:sequence>
<xs:element name="name" type="xs:string" minOccurs="1"
maxOccurs="1"/>
<xs:element ref="sam:epipe.Epipe" minOccurs="1" maxOccurs="1"/>

56

Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition Building Alcatel SAM service cartridges

<xs:element name="epipe.Site.Container"
type="dm:Epipe.Site.Container" minOccurs="0" maxOccurs="1">
<xs:key name="epipeSiteKey">
<xs:selector xpath="dm:epipe.Site"/>
<xs:field xpath="sam:epipe.Site/sam:siteld"/>
</xs:key>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Epipe.Site.Container">
<xs:complexContent>
<xs:extension base="1lib:Container">
<Xs:sequence>
<xs:element name="epipe.Site" type="dm:ChangeableEpipeSite"
minOccurs="1" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Service Activator 5.2.4

57

Device Model Best Practices SDK Service Cartridge Developer Guide — Second Edition

58 Service Activator 5.2.4

SDK Service Cartridge Developer Guide - Second Edition

Index

Index

B
base cartridge files 39

C
customer support vii

D

documentation
downloading viii
Service Activator ix

F
files, base cartridge 39

P

products
downloading viii

properties 31

S
skeleton.properties 31
support

customer vii

Service Activator 5.2.4

59

	Contents
	Preface
	About this document
	Before contacting Oracle Global Customer Support (GCS)
	Contacting Oracle Global Customer Support (GCS)
	Downloading products and documentation
	Downloading a media pack

	Service Activator publications
	Service Activator schema online documentation

	Overview
	Developing service cartridges with the SDK
	Core cartridges
	Vendor cartridges

	SDK installation
	Additional documentation

	Building service cartridges
	General procedure to build a service cartridge
	The steps to build an XQuery-based service cartridge are:
	The steps to build a Java-based service cartridge are:
	Creating a service cartridge source directory and skeleton properties file
	Defining the service and customizing the properties file
	About Java based service cartridges
	About Alcatel service cartridges
	Generating the cartridge source files
	Customizing the cartridge source files
	Compiling and packaging the cartridge
	Performing unit tests
	Performing end-to-end tests

	About the provided sample service cartridges
	Purpose of the samples
	Included with each Cisco XQuery-based sample are:
	Sample XQuery-based service cartridge - ciscoBanner
	Process
	ciscoBanner sample properties file

	Sample XQuery-based service cartridge - ciscoMartini
	About the ciscoMartini sample

	Sample XQuery-based service cartridge - ciscoStaticRoute
	Sample Java-based service cartridge - alcatelSamStaticRoute
	Sample Java-based service cartridge - ciscoBannerJava

	Creating a service cartridge source directory and properties file
	Process

	Defining the service and customizing the skeleton properties file
	Generating the cartridge source files
	Generating the sample ciscoBanner service cartridge source files
	Result of generation process

	Generating your service cartridge source files
	Result of generation process

	Troubleshooting service cartridge generation
	Access to jar files
	Using an alternate directory structure
	Service cartridge generator message logging

	Completing your custom service cartridge source files
	Device model (DM) schema definition
	Service model (SM) to device model transform
	DM validation
	Annotated DM to CLI transform
	Service cartridge registry - Extension.xml
	Message pattern definitions

	Completing the sample service cartridge source files
	Using options in the ciscoStaticRoute sample
	options.xsd file
	options.xml file
	xquerylib\dm2cli-staticroute.xq file
	Extension.xml file

	Building the service cartridge
	Compiling the ciscoBanner sample source files
	Compiling your custom service cartridge source files
	Troubleshooting service cartridge building
	Compilation issues

	Manifest file
	Implementing pre- and post-checks

	Testing in a standalone environment
	Unit tests

	Deploying service cartridges
	Verification of deployment
	Deploying the sample service cartridge

	Audit trail logging
	Device model upgrades
	Audit
	Uninstalling service cartridges
	Removing a service cartridge from the SDK
	Uninstalling the SDK

	Service Cartridge generation properties
	Audit
	Naming and packaging
	Device type identification
	Device Model schema
	Subscription
	Valid core configuration policy content types

	Options schema

	Generated Skeleton Service Cartridge Source Files
	About the generated skeleton service cartridge source files
	Generated skeleton service cartridge source files details.

	Building Alcatel SAM service cartridges
	Overview of Alcatel service cartridges
	Alcatel SAM ID Mapper - AlcatelSamIdMapper
	Command Document Structure
	CommandPreProcessor
	Device Model Best Practices

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

