MetaSolv Solution ™ 6.0

CORBA API
Developer’s Reference

Third Edition
June 2007

-
.
il

METASOLV®

SSSSSSSS

Copyright and Trademark Information

Copyright © 2007, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to
the extent required to obtain interoperability with other independently created software or as
specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation
and technical data delivered to U.S. Government customers are "commerical computer
software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle
license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-
19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all
appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any
damages caused by such use of the Programs.

Oracle and MetaSolv are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services
from third parties. Oracle is not responsible for the availability of, or any content provided on,
third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between
you and the third party. Oracle is not responsible for: (a) the quality of third-party products or
services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Document History

Edition Date Reason

First June 2004 General Availabilty

Second December 2004 | Corrections to sample code in Chapters 3, 6, 14,
15 and 16.

Third June 2007 Updated Copyrights, About this Guide chapter,
and customer portal references with Oracle.
Removed Appendix E: Contacting GCC because
info is covered in About this Guide.

Contents

Contents
Contents i

About this guide ... ———— iX
PrerE@qUISITES ..ot e oottt ennnnnes iX
0 Lo =Y Lo = O RESR ix
Additional information and help ... X
L0 =T (SIS U] o] o o] o (USRS X
MetaSolv Solution documentation Sete i Xi
1. The MetaSolv Solution Architecture ... 1
What does MetaSolv SoIUtION dO?ooiiiiiiiiiee e e 1
How do MetaSolv’s APIs work with the MetaSolv Solution?ccccccviiiiiiiiiie e 2
Overview of essential terminolOgYc..ooiiiiiiiiiiee e 4

F o o N1 (=Y = (o o PSPPI 6
MetaSolv Solution API technical OVEIVIEWcoccuiiiiiiiiiiiie e 7
UNderstanding @VENESoooiiiiiiiiii e e e e e e e 7
Synchronous and asynchronous invocation Modesccceveciiiiieiiiiiiee e 9
The transaction model used by the APISooovmimiiiiic e 10
Determining the role your application performsccccoiiiiiii e 11
Importing and exporting using the APIS ... 12
Responsibilities when developing with the APIS ... 12
Naming conventions in the APIS ... e 13
2. Developing Applications Using the APIsceicccciiiiiiiiiirrerreeeeeeeeanns 15
MetaSolv interface architeCtureoooiiiiiiiii e 15
[ToYSY o | I= T o a1 =T o3 (1 (= TP 16
Deployment arChit@CIUreccoooiiiiii e 17
Relationship of APIs, API server names, and IDL filesccccevviieiiiiiiiiciieee e, 17
MetaSolv APlIs require instance references to notification objectsccccccceeiiiiiiiiiiinnn, 18
ORB Initialization Issue with IONA's OrbixWeb 3.2 ... 19
Development eNVIFONMENToooiiiiiii e e e e e e e e e e e e e e eeeeaeeeeenees 19
Before compiling IDL fil€Scceoiiiiiieeee e 19
Determining which IDL files are required for a given APlcccveeeeeveiieiiiiiieiie 20
CORBA development—the big PICtUrecccuuiiiiiiii e 20
Implementation PAtternS ..o e 20
The basic APl setup pattern ... 21
The synchronous interaction pattern ... 26
The asynchronous interaction patternoeveiiiiiiiiii e 28
The CORBA client/Server Patterncccccuuiiiieiiiiceee e 36
The signal handling Pattern ... e 37
The error handling Patterne oo 48
Sample apPlICAIONScooiiee e e e e e ———————aaaas 52
HelloAPI: a sample application that exports datacoooviiiiiiciccc e, 52
HelloGateway: sample application that handles application and gateway events 53

CORBA API Developer’s Reference i

Contents

3. Common ArchiteCture ... s e 55
WDIROOE INEEITACEeiieiiiiiiie ettt e e et e e e e e e e e e e 57
Connection to the MetaSolv Solution Application Serverccccoociiieiiiiiieeie, 57
Connection to the CORBA daemONcooiiiiiiiiiiiiiee et 57
Connection to the root ODJECEeiiiiiiiiiieeie e 58
WDIMaNAGEr INTEITACEcceeiiiieeeee et e e e e e e e e e e s e e s raaeeeeas 59
API session interfaces (SESSION ProCeSSING) ..vvvvviiiieeeeieiiiiiciieee e e 60
WDITransaction interface (database transactions)ccccccceeeiiie s, 61
WDISignal interface (outbound signal processing)ceevveeeeeeiiiiiiiiiiiieiieeeee e, 61
WDIInSignal interface (inbound signal proCessing)ccevveeeeeeiieiiiiiiiiiieeieeireeee e 63
WDINotification interface (callback mechanism)cccccoiiiiiiiiiiiiiiice e, 64

4. The Infrastructure APIe s 67
Implementation CONCEPLSoiiiiiiiii e e e e e e e e e e e 67
Operational differences between the Infrastructure subsystem and API 67
Key MetaSolv Solution CONCEPLSeeiiiiiiiiiiie e 68
INFrastructure APLIlES e e e e e e 68
INfrastructure INtEeIfaceo 69
LT 1Y =T g = To = U O T PP PP 69
InfrastructureSession INterface ... 70
InfrastructureSession operation descriptions ... 72
NetworkLocationSUDSESSIONe i 76
NetworkLocationSubSession interface operations ... 77
NetworkLocationSubSession operation descriptions ... 80
ProCESS fIOWS ...ttt e ettt e et e e e e e e e e e e e e e e neeeeeaaeeannn 83
SOlICHEA MESSAGESeeeiiiiiiiiiie ettt e e e e s be e e e e abbeeeeeeaae 83
UNSOIICItEd MESSAGESueeiiiiiiiiiie e et 83

5. The Inventory and Capacity Management APIcccooiiirrrnnnneenen. 85
Key MetaSolv SOIUtioN CONCEPLSooeieiiiiiiiiieeee e 86
Equipment types, equipment specifications, and equipmentccccceeiiiiiiine e, 86
Equipment Network €lemMentsoveieiiiiiiii e 87
Equipment Name aliaSEsooooiiiiiiiiiiic e 87
Equipment installation in the MetaSolv Solutioncccoiiiiiiiii 88
MOUNLING POSITIONS ... e e e e e e e e e e e e e aanenes 88
Ports and port addreSSESccooiiiiiiiieeee e ——————— 89
Virtual POrt @dArESSESccoiiiieieeeeeeeeee ettt —————————— 89
Enabled ports and enabled port addreSSESuvuuuiiiiiiiiiiiiieie 89
Port address placeholdersooooooiiiiiiiee e 90
Port addreSs @lIASESoooiiiiiiiiiii e e e e 90
Nodes and NOAE adArESSESooiiiiiiiiiiie e e e e e e e e e e e e ennenes 90
Hard-wired CroSS-CONNECEScooiiiiiiiiieie e e e e 92
1070] aTe 11 o] WeTo o L= TSP 94

IP address management in the MetaSolv Solutionccccoviiiiiiiee e, 94
Overview of assigning IP addresses t0 POItScoocviiiiiiiiiieie i 95
Some common questions about equipment in the MetaSolv Solution 96
ICM APl implementation CONCEPLSeeiiiiiiiiiiiiiieeee e 97
Transaction management and the ICM APIoooiiiiiiiiiiie e 97

i MetaSolv Software, Inc.

Contents

Network inventory gateway events and the ICM API ... 97
DLR MASS MECONCIIEeiiiiiiieieiie ettt e e e e e e e e e e e e e e e e aanenes 98
1O o BT T {11 TSRS 98
101 o B (=Y g = o= PR 100
WDIMaNager iNtEIfACEeeeiiiiiiieee e a e 100
CircuitHierarchySession interfaceccc.ueeeeeiiiiiiiiiiicceeeee e 102
EquipmentSession interface operationsccccoooviiiiiiiiieiiicc e 104
SpecificationSubSession interface operationsccccoieeieiiiiiiiiiieee 105
SoftwareSpecSubSession interface operationsccccceeeeiiiiiiiiiiiiiiiiiee 105
InstallationSubSession interface operationsccccccccoeiiiiiiiiiiiiieieeee e, 106
CrossConnectSubSession interface operationscccccceeeieeiiiiiiiiiiiieieeeeeeeeeee, 109
NetworkElementSubSession interface operationscccccoiiiiiiiiei e, 112
DLRSession interface o0perationscoooiiiiiiiiiiiiiiiee e 113
PrOCESS TIOWS ...ttt e e et e e e et ae e e e e e bt te e e e e ennbee e e e e nnrbeeeeeeees 115
SOlICIHEA MESSAGESeeeiiiiiiiiiie ettt e e e e st e e e s s e e e s aneaeeaesannnaeeeeas 115
UNSOlICIHEA MESSAGES ...eeeiiiiiiiiiiiie ettt e e e e et e e e e e e e e e e e e 116

6. The Number Inventory API ... 119
Number Inventory APLINtEACESccc.uviiiiiiiiiie e e e 120
WDIMaNAGET INTEITACEuvviiiiiiiiie et a e e e e e e e s ereaaae s 120
NumberlnventorySession interface operationsccccccveveeeiiiiiiiciiiiieeee e 121
PrOCESS TIOW ..ttt e e e e e sttt e e e e an e e e e e nnbee e e e enees 123
UNSOIICHHEA MESSAGESceiii i e e e e et e e e e e as 123
IMPOrt NOLIfICAtIONS ...ociie e 124
Number Inventory APl date handlingeueeiiiiiiiiiii e 124

7. The Activation API ... e 125
107 0] a1 1= Tox 1] 1= USSR 125
Network system informationoooo i 126
L@ o (=T o] o Tt o T PP 126
SINGIE CONNECLION ..ot e e e 127
L= 1= = OSSR 127
Key MetaSolv Solution CONCEPLSeeiiiiiiiiiie i 127
ACHVALION APIIDL fIlES ...ttt e e e e e e e e e e e e e e e e e ennnnes 128
Activation API interface relationships ... 128
Activation APl operation desSCriplioNSocueiiiiiiiiiiiie e 129
8. The Plant API ... e 133
Plant implementation CONCEPLScccoiiiiiiii i 133
L@ o =Ty 0P TaT= To =Y 00T o | PRSI 133
Recommendations for assigning gateway events to provisioning plan tasks 134
Options for Modify Cable Pair Assignment preferencecccocceeeiviiieeeeiiiiieeeeeene 135
Transaction management and the Plant APl ..., 135
Associating separations route to plant transport ... 136
Consequential equipment assigNMENTScooiiiiiiiiiiiiiie e 136
Key MetaSolv SolUtioN CONCEPLSooeeiiiiiieeeeee e 136
PIant APTIDL filES ..iiiiiiiiiee ittt e et e e e st ee e e e e enn e e e e e ensreeeeeenes 137
Plant APl interface relationshipsc...euviiiiiiiiiii e 137

CORBA API Developer’s Reference iii

Contents

PlantSesSioN INTEITACEciuiiiie i e e e e e 138
Plant APl operation desCriptionScccooiiiiiiiiiii e 139
MetaSolv Solution API software and mediation server processescccccvveeeeeeeieeiicnnnns 142
Request for plant assignmeNnt ..o 143
Request for plant assignment Change ... 145
Request to cancel plant assignment ... 147
Request to disconnect plant assignment ... 148
Request to cancel plant diSCONNECEovvimiiiiiiiii e 149
Request for change to due datecoooiiiiiiiiiiiiie e 151
Request for plant assignment exceptionccccvieiiiciiiie e 152
Request to complete plant assignment ... 153
Import plant assignment failled ... 154
Obtain network location detailsooouiiiiiiiiiiii e 155
Query for network 10Cation IDcuiiiiiiii e 155
Query for plant specification IDccceeiiiiiiiiee e 156
Obtain valid values for plant import and exportcccoviiiiiiiiiiiiiceeeeee e, 156

9. The PSR End User Billing APl e s s 159
Essential terminNOIOQYoouurieiiiiiiiie i e e e e e e e et e —————— 159
PSREUBSESSION INTEITACEeeiiiiiiiiiie ittt 160
LT oY) i a1 1= = Lo S SRR 160
WDIMaNAGET INTEITACEuvviiiiiiieii et e e e e e e e e s e eaaae s 161
.. 161
PSREUBSession interface operationscccccuviiiiiiiiiie e 161
PrOCESS TIOWS ...ttt e e et e e e ettt e e e e e nn e e e e e nrbee e e e eees 162
Process flow for Send Bill Cust gateway eventcccoooiiiiiiiiiiiieeeeeee e, 162
Process flow for Send Bill Ord gateway eventcccccvvviiiiiiiei e, 163
Process flow for Customer Change Application Eventccccooviiiiiiiiiins 164
Viewing PSREUB API event errors in the MetaSolv Solutionccooeeeiiiiinnnen. 165

Yol 1) (=To l g g ToT 7= Lo [T PP PPPPPTP 166
Additional process flow informationcccovviiiiiiiiii 166
Implementation CONCEPLSooeviiieicieee e e e e e e e e e e e e e eeeeeeaees 167
PSR service item vs. the billing service instancecccccccceoiiiiiiiiiiieeeee e, 170
4 o3 o T R 170
Transfer of products between customer accountsccccccvvvieieeieee v 171
Using the ELEMENT, CONNECTOR, SYSTEM and PRDBUNDLE item types 171
10. The PSR ANcillary API ... 173
Taalo] (=10 g =Ta1 F=Yifo] g W eo] o= o TSR 173
Essential termiNOIOgYeueiiiiiiieiiiie e aaae e e 173
PSR ANcillary APLiINtErfacesooooiuiiiiiiiiiiiie e 174
E911Session interface operations ..o 174
CNAMSession interface operationsoocueeiiiiiiiiiiiiiiie e 175
LIDBSession interface 0perationsccceeeiiiiiiiie i 175
IMplementation CONCEPLSoiiiiiiiiie e 175
The PSR Ancillary APl and Smart Taskscccoiiuiiiiiiiiiie e 176
Field by field matching between extract row and response recordcccceeenneee. 176
RUIES Of OPEIatioNooiiiiiiie et e e 177

iv. MetaSolv Software, Inc.

Contents

11.

12.

13.

Extract and respond SCENAIOuuuuiiiiiiei i e e e e e e 179
Error 10gging ChanQEs ... et e e 179
PrOCESS FIOW ...ttt ettt e e e e e e e e e e eeeeeaaeaeeeanes 181
UNSOlICIHEA MESSAGES ...eeiiiiiiiiiiiie ettt e e e e e et ee e e e e e e e e e e 181
Sample unsolicited message process flOWoooiiiiiiiiiiiiiiiie e 182
AULO RESPON PrEfEIENCE ...coiiiiiiiiiiieeeeee et e e e e e e e e e e eeannes 183
Glossary of terms and abbreviations ..., 184
The PSR Order Entry API et 187
PSR Order Entry APHINTEITACES ..ot 188
WDIMaNAGET INTEITACEuvviiiiiiiiiie et a e e e e e e s e e eaaae s 188
PSRSession interface Operationscoooiiiiiiiiiiiiiiieieee e 190
PSRSession operation desCriptionSoooociiiiiiiiiiiiice e 194
Override default value on PSR API Import preferenceccccccoovvvcciiiiieieeiieeeeeeee, 194
PSRProductCatalogSession interface operationscccoeeeciiiiiiiiiiiie e, 194
PSRProductCatalogSession operation descriptionsccccecviiiiiiiiiieee e 195
PSRProvisioningSession interface operationsccccccvieiiiiiiiiciiiiiieeeeee e, 195
PrOCESS TIOW ...ttt e e et e e e et e e e e e enn e e e e e nnbee e e e enees 196
10 a1 Yol [Ted (o I g LT TS T [196
IMPOrt NOLIfICAtIONScoie e e 197
PSR APl date handlingccoooiiiiiiiiie e e e e e e 197
Batch operations in PSR APl €XPOITSccoiiiiiiiiiiieiie e 197
EXPOrt S€arCh Criteriaoooeeiiiiieee e e e e e e e e e e 198
MetaSolv rules, product specifications, and product catalogscccccvvivievieieeeieiiiins 198
L o [F o7 £ PP PPPPPPPPRR 198
ProducCt Catalogcoooeeiee e ———————————————— 199
1V o] =Y=T 0T U] i o] o o [F o £SO 199
= o3 e T =Y T 204
The Switch Provisioning Activation API ... 205
FUNCHONAIILY .t e e 205
Essential terminolOgYooiuiiiiiiiiii s 205
Switch Provisioning activation interfacecccociiiiiii e 206
DLRSESSION INTEITACES ...oeeeiieiiciieeee ettt e e e e e e e e e e e e e e e ananes 206
PrOCESS FIOWS .eeeiiiiieie ittt e e e e e e e e e e st e e e e e e e e e e ea e s nnsnrenneeeeeaaaeeeanns 206
SOlICIHEA MESSAGESeeeeiiiiiiiiie ettt e e s et e e e s re e e e s anneeeeeeas 206
UNSOIICItEd MESSAGESeveeiieiiiiiiie ettt e et e e et e e e e aneeee e e e enee 208
IMplementation CONCEPLSoiiiiiiiie e 209
What are network nodes and network node types? ..o 209
What are flow-through provisioning plans and commands?cccccovieiiiiniineeen. 210
What are design layout records (DLRS)?cooiiiiiiiiiiii e 211
What are tech translation sheets?ooo o 211
What are virtual layout records (VLRS)?cooo i 211
Software modules and subsystems used in flow-through provisioning 211
The flow-through provisioning ProCeSSccueiiiiiiiiiiiie it 213
Design CONSIAEratioNScooiuiiiiiiiiiiie e e e 215
The Transport Provisioning Activation API ... 217

CORBA API Developer’s Reference v

Contents

FUNCHONAIILY ..ottt e e e e e e e e e e e e e e e eaanes 217
Essential terminOIOgYeeeiiiiiiiiiiiie e e e 217
Transport provisioning activation interfacecccooecieiie i 218
DLRSESSION INTEITACESvviiiiiiiiiiiiee ettt e e e e e sne e e e s snreeeeeeennes 218
DLRSession interface operationccccoooiiiiiiiiiiiieeeeee e 218
PrOCESS FIOWS ...ttt e e e e e e e e e e eeeeaeaaaeeeaaes 218
SOlICIHEA MESSAGESeeeiiiiiiiiiie ettt st e e e e st e e e s s e e e s sneeeeaesannneeaean 219
UNSOlICIEEA MESSAGES ...eeiiiiiiiiiiiiie ettt e e et e e e e e e e e e e e aaas 220
IMmplementation CONCEPLSoovviiiiiceee e e e e e e e e e e e eaaees 221
What are network nodes and network node types?ccccvveiiiiiiiiiiiie e 221
What are flow-through provisioning plans and commands?cccccoviiiveevicinnennn. 222
What are design layout records (DLRS)?cooiiiiiiiieiiiiiiee e 222
What are tech translation Sheets?coo i 222
What are virtual layout records (VLRS)?oooiiiiiiiie it 223
Software modules and subsystems used in flow-through provisioning 223
The flow-through provisioning ProCESSccveiiieiiiiiiiiie e 225
Reference arChiteCtureocciiiiiiiiiiiie et 226
Design CcoNSIAEratioNScooiiiiiiiie et a e e e e 228
14. The Trouble Management API ... 231
LU o i) F= 111 PP 231
TroubleSesSioN INTEITACEcuuiiiiiiiiiiie e e e e ee e 232
LAY 1Y = T =T 1= PSP 232
TroubleSession interface Operationscccceveeiiiiieee i 233
Trouble Management APLIDL fil€Sccooiiiiieeeee e 245
PrOCESS TIOWS ...ttt e e et e e e et e e e e ettt e e e e e nraeeeeeeees 245
SOlICIEA MESSAYESeeeeiiiiiiiiiiie e e e e e e e e e e s e e e e aaaaeeaaaan 245
10 a 1Yo [Ted (=Yo I g LT TS T- T [247
Sample flows for bUSINESS taSKSc..euviiiiiiiiiiiieee e 247
Using the service item test button functionalitycccceiiiii e, 251
Implementation CONCEPLScooviiieie e 252
INtEraction life CYCIEccoiiie e e e e e e e 252
Session User ID can be used to verify workforce employeeccccccovvvevveenienneennn. 252
Date fIeld YPES ... aaaa e e 253
Details concerning use of the createTicket v3 operationccccccvveeiiviieeeeeeiieens 253
Setting or changing the affected service item on a trouble ticketccccceeeiiil. 258
Details concerning use of the updateTicket v2 operationcccccovvveeeeeieeeeeiiiieenns 262
Customer information and updating ticketsccoooiiiiiiiiie e 266
Details concerning use of the clearTicket Operationcccccoeeiciiiiiieiiieeee e, 268
Details concerning use of the closeTicket operationcccccoeecviiiiiiiiviiieeeee e, 269
Notifications for cleared and closed ticketscceiiiiiiiiiii i 271
Details concerning use of the cancelTicket operationcccccccvviviiiiiieieeeeeeiieees 271
Details concerning use of the getTickets v2 operationcccccovviiieeiiiiieeeeeeiieens 272
Details concerning use of the service item query operationsccccccceeeeiiiiiiicinnnns 275
Structure format criteria for the getTelephoneNumberServitem operation 276
Key MetaSolv Solution software CONCEPLSccoveiiiiiiiiiiiiiieeee e 277
Operational differences between the Trouble Management subsystem and the Trouble
Y =T E=To =Y o =T oY e 279

vi MetaSolv Software, Inc.

Contents

Repeat and chronic trouble ticket types ... 281
Effect of data errors in trouble reports on Trouble Management API processing 282

15. The Work Management APl ... 283
WMSESSION INTEIMTACESeeiiiiiiiiiie e s e e s enneeee s 284
L AT 1Y = T =T 1= PSP 284
WMSESSION INTEITACES ...ooiiieiiiiiei it 285
TaskGenerationSubSession iNterfaces ... 286
TaskViewingSubSession interface operationscccccccviiiiiiiiiei e 288
TaskCompletionSubSession interface operationscccccvveeiiiieiiiiiccccceeeeeee, 294
Work Management AP IDL fil€Sueieiiiiie i 296
PrOCESS TIOWS ...ttt e e et e e e et e e e e e enn e e e e e nnaeeaeeeees 296
SOlICIEA MESSAYESeveeiiiieiiiiiie et e e e e e e e e e e e e e e e aaaaeeaaan 296

10 a 1Yol [Ted (=T I g LT TS T [297
Enhanced off-net automation functionality and the Work Management API 298
Implementation CONCEPLSooeiiiieieeee e e e e e e e e e e e e eeeeeeeees 299
Overview of the MetaSolv Solution’s Work Management subsystem 299
Operational differences between the WM subsystem and the WM API 300
Tasks that cannot be completed through the Work Management API 302
Key MetaSolv Solution online Help topics relating to the WM subsystem 303
Work Management API support for NET DSGN taskcccceeeeiiiiiiiiiiiiiiiicciceeeeeee, 303
Work Management API support for date ready system taskscccoeecvvvviieeennnn.n. 303
Work Management API support for backdated and forward-dated tasks 303
AppendiX A: GIOSSArYccccccciiiiiiiniiirirrrrrrressssss s ananes 305
Appendix B: API Error Messages and Exceptionscccccceevvveeennnneee. 325
Appendix C: Tips and Techniquesccoooieecccccciiie e 327
Understanding IOR fil€Suuiiiiiiiiiiiee e 327
CORBA.INV_OBJREF and CORBA.OBJECT_NOT_EXIST Exceptions 327
CORBA.COMM_FAILURE EXCEPLIONeiiiiiiiiiiiie et e 327
Using the MetaSolv Solution APIs With Multi-Threaded Clientscccccceeeeiiiereeennnne. 328
D=y Y= FoT o g Yo I U EY o o [O PP 328
CH+ TroubleShOOtINGeeiiiiiiiei e e e e 328
Troubleshooting tips for APl deVEIOPEISuuiiiiiiiiieiieee e 329
UsiNg AP1 SEIVer I0GQING ...oooi oottt a e e e e e e e e e e e e e e aaanes 329
USING SQIL IOGGING --teetiitiiiiiiie ittt ettt e et e e st e e s abe e e sbeeesnbeeeesnneeens 330
USIiNG CONSOIE 10GGING -.eeiiiiiiiiiiiiie ettt e e e e e e e e e eeeaaaaeeeeaas 330
USING CORBA I0QQING .. .uttiiieeiiiiiieeeiiieiee e e ssiietee e e ssteeeeeesatteeeaesstaeeeaessbeeeeeesanseeeeeseanes 330
Appendix D: Transitioning from 4.2.1 to the Application Server 331
Who needs to use the Transition and Planning Guide?ccccoociiiiiiiieeen i, 332
ENVIFONMENT OVEIVIEW .ot e e e e e 332
SUMMArY Of CHANGESuviiiiiiiiiiiee e e e e e e e e s e e st reeeeaaae s 335
Architecture transition OVEIVIEWoeiiiiiiiiiiiii e 336
What hardware platform? ... 336
Can my existing API architecture work with the new application server? 337
How do you ensure perfOrmManCe?eeeiiiieeeeiiiii i e e e e e e e e e e e e 337

CORBA API Developer’s Reference vii

Contents

How do you enable scalability?cccooiiiiiiii e 337
How do you enable recoverability?oooiiiiiieiiiiie e 337
What are the installation considerations?cccccoveiiiiiiie i 337
What does the installation environment 00K [IKE?cocoviiiiiieiiiiiiiie e, 339
Transition project CoNSIAEratioNSooiiiiiiiiii e 340
0] [PR TP PPPRRURR 340
LIS GO 340
API COde tranSItIoNeeeeiiiiie e e e e e e e e 342
10 o 1T [y 0 T=1 { oo o RO PSR 343
= F=Ted (o | {01 o [P PPEPPRTPR 343
IOR bind method—sample COAEcooiiiiiiiiiieeee e 343
NameService bind Methodcc.oeiiiiii e 346
= F=Ted (o | {0 o [P PPRPRRTP 346
Binding to the NameServer with an IOR—sample codecccccceeviiiieeeiiiieee e, 347
Binding to the NameService with resolve_initial_references—sample code 349
URL bind method—sample COAEoooiiiiiiiiiiece e 350
Gateway events functionality Changescccciiiiiiiiiiii i 353
Middle-tier trgQEIINGooei it e e e e e e e e e e e 354
New binding MethOdS e 355
= F=Ted (o | {01 o [P PPEPRTTP 355
DefiNiNg @ GatEWAYccooiiiiiiie et e e e e a e eeeeane 356
IOR binding to third-party applicationsccciiiiiiiiiii e 359
NameService binding to third-party applicationsccccooeiiiieiiiiiiee e 360
NEW VENT SIGNAI ... ettt e e e e e e e e e e e e e e e e 361
g o =2 363

vii - Me

taSolv Software, Inc.

About this guide

This guide accompanies the application programming interfaces (APIs) that make up
the MetaSolv Solution interface architecture. Here you can find information about
how the MetaSolv Solution APIs work, high-level information about each API, and
instructions for using the MetaSolv Solution APIs to perform specific tasks.

Prerequisites

This document assumes you have a working knowledge of the Common Object Request
Broker Architecture (CORBA) standards, including an understanding of interface definition
language (IDL). For details about CORBA fundamentals and programming or IDL syntax,
refer to the documentation for your CORBA implementation. For information about specific
details of the IDL files distributed with the MetaSolv Solution APIs, see the CORBA API
Online Reference.

Audience

This guide is intended for CORBA developers who are developing applications that use the
MetaSolv Solution APIs.

This guide helps you develop:
¢ A high-level understanding of the general principles that govern the use of the APIs.
¢ Anunderstanding of the details of implementing an application that uses a specific API.

This guide is not intended as a training tool, nor does it address the installation or use of any
MetaSolv products.To fully integrate the MetaSolv Solution APIs with your product often
requires knowledge of a specific MetasSolv Solution functional area. For information about
training or consulting services, contact your MetaSolv Solution representative.

This guide contains:

¢ Key concepts
¢ Details about specific APIs
¢ Sample code that illustrates key concepts

For more information that will assist you in understanding how to use the MetaSolv APIs, see
the CORBA API Online Reference.

CORBA API Developer’s Reference ix

Chapter 2:

Additional information and help

To get additional information or help for MetaSolv Solution, refer to the following resources:

¢ Oracle E-Delivery—Provides access to product software and documentation.
+ Visit the E-Delivery Web site at http://edelivery.oracle.com.

+ Software and product documentation are contained in the Oracle Communications
MetaSolv Solution 6.0 Media Pack.

+ Developer documentation is contained in the Oracle Communications MetaSolv
Solution Developer Documentation Pack. Access to developer documentation
requires a password.

¢ Oracle MetaLink—Provides access to software patches and a searchable Knowledge
Base.

+ Visit the MetaLink Web site at https://metalink.oracle.com/, and log on using your
User Name and Password.

« Click the Patches & Updates tab to search for patches (efixes).

+ Click the Knowledge tab to search for technical bulletins, fixed issues, and additional
product information. To narrow your search, click the Communication Apps link
under Product Categories on the left side of the page.

Oracle Support

The preferred method of reporting service requests (SRs) is through MetaLink. MetaLink is
available 24 hours a day, 7 days a week.

Although it is Oracle’s preference that you use Metalink to log SRs electronically, you can
also contact Support by telephone. If you choose to contact Support by phone, a support
engineer will gather all the information regarding your technical issue into a new SR. After the
SR is assigned to a technical engineer, that person will contact you.

For urgent, Severity 1 technical issues, you can either use MetaLink or you can call Support.
Oracle Support can be reached locally in each country. To find the contact information for
your country, go to http://www.oracle.com/support/contact.html.

X

MetaSolv Software, Inc.

MetaSolv Solution documentation set

MetaSolv Solution documentation set

This guide is one book in a set of documents about the MetaSolv Solution. For this product,
API and system information is provided via electronic documents such as this one. End-user
documentation is provided in the online help.

MetaSolv Solution
v 6.0
Documentation Set

Initial installation Information for ongoing Tasks performed by

!) ; oStk A APls
and configuration system maintenance individuals using the
product
. Administration
Setup Guide Guide Online Help API| Reference
Security Windows APl Online
List Reference

Figure 1: MetaSolv Solution documentation set

MetaSolv Solution books are delivered in Portable Document Format (PDF). You can view a
book online using Adobe Acrobat Reader.

To view a document

Locate the document on the Oracle E-Delivery or Oracle MetaLink Web site and do one of the
following:

¢ Right-click the PDF file and select Open from the pop-up menu.
¢ Double-click the PDF file.

This action starts Acrobat Reader and opens the PDF document you selected. The following
figure shows how a document appears in Acrobat Reader:

CORBA API Developer’s Reference xi

Chapter 2:

r — — ..
B8 Acrobat Reader - [SetupGuide603_3ed.pdf] =13
EFile Edit Document Tools View Window Help - ax
|cBS @R (M)BREOLE 1« » M [« %[O QT B A

& sere - ® DE\@ 05 &«
B Bookmark =

D Contents J
] About this guide
1 Installation overview Click here to search for a specific topics
] MetaSalv Solution database setup or words in the document

] Preparing for the installation

{1 Installing and deploying MetaSoly Solution
1 Installing and deploying MetaSoly Solution wit

- Client workstation | i Setup Guide
D Post Installation tasks Click on topics in the Third Ecliticn

MetaSolv Solution ™ 6.0.3

Ll [~]

Bookmarks

FEHEEEEEEEEE

{1 Senice pack and EFix installation 11— Bookmarks tab to find e
] Setup maintenance and troubleshooting specific topics in the
[Appendix A Proxy semer setup document
] Appendix B: MetaSolv Solution Components M
=[] Appendix C: Planning warkshests ;
=] Appendix O: Field Operations Partal METASOIV®

EGFTWaARE

&[] Appendix E: Assigned configuration values

Thumkbrails

Figure 2: Finding information in a PDF document

In some instances, a user may want a document produced for an earlier version of MetaSolv
Solution. Those documents are available from the MetaSolv Software Web site referred to in
“Additional information and help” on page x.

Xxii MetaSolv Software, Inc.

The MetaSolv Solution Architecture

This chapter provides a general understanding of the MetaSolv Solution interface
architecture—a group of APIs that allow access to the data in the MetaSolv Solution database.
This chapter tells you how MetaSolv provides access to information and software
functionality to external applications.

What does MetaSolv Solution do?

MetaSolv Software Inc. is a leading provider of operations support system (OSS) solutions
and professional services for service providers in the local exchange, interexchange, wireless,
data, and Internet markets. The MetaSolv Solution enables service providers to automate and
manage their ordering, service activation, and service assurance (trouble management)
processes.

MetaSolv's product line is composed of a set of subsystems integrated by a common
repository—a database—of business data and processes. Each subsystem supports a critical
aspect of the service provider's business:

¢ Order Management—Enables the service provider to manage the end-to-end service
delivery process. This often involves more than one type of service request or transaction
within the organization, as well as transactions with other service or network providers.

¢ Service Provisioning—Facilitates delivery of a full spectrum of services, from simple
circuit assignments to complex circuit design and configuration. The integration of the
Service Provisioning subsystem with other MetaSolv Solution subsystems provides the
service provider with an accurate view of what their customer ordered and what their
network can support.

¢ Network Design—Brings together the geographical, physical, electrical, and logical
dimensions of the network into a single, cohesive view supported by a set of integrated
equipment administration and network design modules. This subsystem supports the
design of networks and fulfillment of services across multiple providers and technologies.

¢ Trouble Management—Supports the reporting, tracking, and resolution of trouble
associated with providing telecommunication products and services. This subsystem
tracks a reported problem from its initial identification to its resolution.

¢ Interface Management—Supports accurate, reliable, and timely exchange of information
between the MetaSolv Solution and the service provider's other systems and external
organizations.

MetaSolv Solution CORBA API Developer’s Reference 1

Chapter 1: The MetaSolv Solution Architecture

¢ Work Management—Enables work to flow electronically across the organization. This
subsystem provides the capability to manage provisioning plans, which are groups of tasks
needed to manage the flow of work and information required for the service fulfillment
process.

The MetaSolv Solution provides a flexible and open architecture. The MetaSolv Solution uses
an integrated database, where all data is collected and shared across all MetaSolv Solution
subsystems. This single database provides a "bird's eye view" of the customer's profile.

How do MetaSolv’s APIs work with the MetaSolv
Solution?

The MetaSolv Solution is developed on an open architecture that recognizes the need to
electronically exchange information with a wide array of systems such as the managed
network, other enterprise systems, and external trading or service partners and their operations
support systems. MetaSolv developed their APIs to permit a flow of data between the
MetaSolv Solution database and external applications.

Automatic and manual export event triggers exist within the MetaSolv Solution providing end
users with the capability to send work to the MetaSolv Solution Application Server or to third-
party gateways.

The MetaSolv interface architecture provides APIs that enable access to specific parts of data
in the MetaSolv Solution database. The following table describes the APIs available with the
MetaSolv Solution:

Table 1: MetaSolv Solution List Of APIs

API Description

End User Billing API | The End User Billing API publishes information needed for
exporting data from the MetaSolv Solution database to support
end-user billing from PSRs. This API integrates MetaSolv's
order management and provisioning information with billing
solutions, defines a standard end-user billing interface, and
allows generic support for any billing vendor.

Inventory and The ICM API provides beginning-to-end visibility of service
Capacity Management |and network assets, including facilities, equipment, and circuits.
(ICM) API

Product Service The PSR Ancillary API permits exposure of E911 and LIDB/
Request (PSR) CNAM information to database providers.

Ancillary API

2 MetaSolv Software, Inc.

How do MetaSolv’s APIs work with the MetaSolv Solution?

Table 1: MetaSolv Solution List Of APIs

API

Description

Product Service
Request (PSR) Order
Entry API

The PSR Order Entry API enables a customer or a customer's
third-party developer to insert customer account, service
location, and PSR order information into the MetaSolv Solution
database. This information is necessary for telecom products or
services to be provisioned through the MetaSolv Solution
software.

Switch Provisioning

The Switch Provisioning Activation API provides a vendor-

Activation API independent interface that enables the flow-through
provisioning of switch services such as POTS.

Transport Provisioning | The Transport Provisioning Activation API provides a vendor-

Activation API independent interface that enables the flow-through

provisioning of Frame Relay, ATM circuits, xDSL, and SONET.
Transport provisioning reduces service turn-up time, staffing
needs, and provisioning errors.

Trouble Management
API

The Trouble Management API provides a mechanism for
integrating the MetaSolv Solution Trouble Management
subsystem with a third-party network or fault management
system. This integration allows for the automatic creation of
trouble tickets in the MetaSolv Solution Trouble Management
subsystem from the fault management system.

Work Management
API

The Work Management API enables customers to generate tasks
for an order, view tasks in work queues, and complete tasks for
an order through a web interface.

Infrastructure API

The Infrastructure API provides operations for exporting lists of
information from the MetaSolv Solution database. The
Infrastructure API can export these types of information from
the database:

¢ Structure formats and structure format components

¢ Geographic areas and types

¢ Code categories and code category values, including
languages

¢ Network locations

CORBA API Developer’s Reference

3

Chapter 1: The MetaSolv Solution Architecture

Table 1: MetaSolv Solution List Of APIs

API Description

Number Inventory API| The Number Inventory API was created to more efficiently
handle the administration of telephone numbers and inventory
items in the MetaSolv Solution. Operations are provided in the
WDINLIDL that provide the following functionality:

Export Number Inventory

Import Number Inventory

Generate User ID

Generate User Password

Validate Password

Update Number Inventory Provisioning
Pre-assign Telephone Numbers
Remove Inventory Association

L 2K JBR JER 2R JER R 2N 4

The following operations provide lookup and export
functionality:

¢ cxportTopLevelDomains

& exportlnventoryTypes

¢ cxportlnventorySubTypes

¢ exportlnventoryStatus

¢ exportlnventoryRelationTypes

& exportlnventoryltem

¢ exportlnventoryltems

¢ exportlnventoryltemAssociation
¢ cxportTelephoneNumbers

¢ exportAccessTelephoneNumbers

The following operations provide import functionality:

¢ importNewInventoryltem
¢ importUpdatedInventoryltem
¢ importlnventoryAssociation

Overview of essential terminology

Some terminology in the software and telecommunications industries differs from one
provider to another. To eliminate confusion, this guide includes a glossary. However; as you
read the remainder of this documentation, it is important that you understand the distinctions
between the following sets of terms:

4 MetaSolv Software, Inc.

How do MetaSolv’s APIs work with the MetaSolv Solution?

Solicited messages vs. unsolicited messages

The point of reference for this guide is the M/5.2 product line. Therefore, when reading
material about messages, whether the API is the initiator of the request determines whether a
message is solicited or unsolicited. When the MetaSolv Solution initiates the request and your
software receives, that request is a "solicited message." When your application initiates the
request and the API receives the request, that request is called an "unsolicited message."

Where the documentation does not refer specifically to solicited or unsolicited messages, the
information applies to both solicited and unsolicited messages.

Events vs. signals

In the scope of the APIs, an "event" is the occurrence of something in the MetaSolv Solution
or in your application that is significant to the MetaSolv Solution user, such as:

¢ A request to export an LSR
¢ A request to send billing information
¢ A change in the status of the import of an LSC

A "signal" is a logical artifact that communicates information about an event.

Where appropriate or necessary, this documentation refers explicitly to "gateway events" or
"application events." If no such distinction is drawn, the information applies to either type of
event. For an explanation of the distinctions between application and gateway events,
“Understanding events” on page 7.

Inbound signals vs. outbound signals

The point of reference for this guide is the MetaSolv product line. Therefore, when reading
material about signals, the direction of the signal in relation to the MetaSolv Solution
determines whether it is an inbound or outbound signal. When the MetaSolv Solution sends
the signal, that signal is an "outbound signal." When the MetaSolv Solution receives the
signal, that signal is an "inbound signal." Where the documentation does not refer specifically
to inbound or outbound signals, the information applies to both types of signals.

Synchronous vs. asynchronous

In the scope of this documentation, "synchronous" operations are those where the application
that invokes the operation gets the results of the operation immediately upon the return of the
call. No callback mechanism is used in this method. "Asynchronous" operations are those
where control returns to the application that invokes the operation before the operation is acted
upon, and the results (if any) are returned to the calling application after the operation is
completed. The invoked application uses a callback mechanism to communicate the results to
the invoking application. For more information about the synchronous and asynchronous
modes of processing, see “Synchronous and asynchronous invocation modes” on page 9

CORBA API Developer’'s Reference 5

Chapter 1: The MetaSolv Solution Architecture

API integration

MetaSolv provides APIs that allow the importing and exporting of data, through the use of the
MetaSolv Solution Application Server, to the MetaSolv Solution database. This provides
support for interconnection with third-party and legacy applications and allows development
of customized interfaces to the MetaSolv database. The APIs are built on the CORBA
protocol. MetaSolv defines the interfaces in the APIs using CORBA's IDL.

To provide interconnection, a MetaSolv Solution API provides a data pipe mechanism
between your application and the MetaSolv Solution data model. This connection allows you
to import and export data without programming language or methodology restrictions. Your
software must implement an architecture that provides access to data and, if required, provides
a mechanism for updating MetaSolv Solution data.

In addition to importing and exporting data, the APIs ensure the integrity of data in the
MetaSolv Solution database by verifying that all imported data meets the MetaSolv Solution
data rules. Using an API, the MetaSolv Solution can be integrated into a customer's
environment. MetaSolv consultants, third-party consultants, or customers themselves can
complete the integration work.

Figure 3 shows the process by which the APIs communicate with client applications and other
server applications.

Rich Clients

— 4y Application Server (J2EE)

Web Server

Transaction Server -

Intranet Browser o =
MDatalyasesServer)s

Neutral Clients

[

APl Services
* Prof Is - CORBA

e bormatslDIESic

External Systems

Browser Neutral ystems

Figure 3: APl Communication Process Overview

6 MetaSolv Software, Inc.

MetaSolv Solution API technical overview

MetaSolv Solution API technical overview

MetaSolv's interface architecture provides APIs that enable access to specific information in
the MetaSolv Solution database. This architecture meets requirements for customers
connecting to the MetaSolv Solution. Using this architecture, you or third-party developers
can easily connect to the MetaSolv Solution, providing add-on products and custom solutions.

MetaSolv delivers the APIs in the form of IDL files that provide a blueprint for
communication between the MetaSolv Solution and your software. The third-party server
environment can be on any platform and operating system that supports CORBA.

The APIs are bi-directional—they send requests to other software and receive requests from
other software. To initiate processing, MetaSolv has defined an event mechanism that sends
out pre-defined signals, called application events, and signals defined by you or a third-party
developer, called gateway events. For more information, see “Understanding events” on
page 7.

The MetaSolv Solution event-signaling process is covered in detail in the online Help. For
more information about the MetaSolv product line, contact the MetaSolv Software
representative at the implementation site.

Understanding events

One of the most important tools provided by the APIs is the ability for your applications to
integrate with the Work Management subsystem. This integration is provided by the exchange
of events and signals between the APIs and your applications. An event is a significant
occurrence within the workflow of either the Work Management subsystem or your
application. A signal is the logical artifact used to communicate information about an event
between the MetaSolv Solution and your application.

Two types of events are implemented in the Work Management subsystem:

¢ Application events
¢ Gateway events

Application events are pre-defined within the MetaSolv Solution and occur at fixed points in
the workflow. Application events are always sent by the MetaSolv Solution to external
applications via an outbound signal that carries MetaSolv-defined data pertaining to the event.
The signal that represents an application event carries pre-defined data specific to that event.

Gateway events provide a powerful mechanism for you to insert hooks into the Work
Management subsystem. The signal that represents a gateway event can carry only generic
data such as a document reference for a document in the MetaSolv Solution database.

CORBA API Developer’s Reference 7

Chapter 1: The MetaSolv Solution Architecture

Except for the system-defined gateway events used by the PSR Ancillary API, all gateway
events are defined by your application and set up in the MetaSolv Solution database using the
user interface provided in the Work Management subsystem.

For more information about the system-defined gateway events supported by the PSR
Ancillary API, “The PSR Ancillary APl and Smart Tasks” on page 176.

Unlike application events, which can only occur within the MetaSolv Solution, gateway
events can occur within either the MetaSolv Solution or your application. Therefore, gateway
events must be defined in the MetaSolv Solution database as either outbound or inbound
events. Outbound gateway events occur within the MetaSolv Solution and are communicated
to your application via outbound signals. Inbound gateway events occur in your application
and are communicated to the MetaSolv Solution Application Server via inbound signals.

Y our application communicates the status of outbound gateway events to the MetaSolv
Solution database through the APIs. These statuses indicate changes in the state of the event.
The actual status values available for your use are defined in the event-signaling structure of
MetaSolv's IDL.

Gateway events must be tied to a task in a provisioning plan in the Work Management
subsystem. When that provisioning plan is associated with a new order, the plan ensures that
the Work Management subsystem sends or receives the gateway event at the point defined
within the provisioning plan.

Table 2 summarizes the differences between application events and gateway events.

Table 2: Differences Between Application Events and Gateway Events

Difference Application Events Gateway Events
How Defined Pre-defined in the Defined by you (or a third-party developer)
MetaSolv Solution and added to the MetaSolv Solution

database using the Work Management
subsystem's user interface

Association Tied to a specific Tied to a task in a provisioning plan in the
MetaSolv Solution Work Management subsystem

application event such as
a button click or menu

selection
Signal Direction | Always outbound Inbound or outbound as defined in the
MetaSolv Solution database
Content MetaSolv Solution - Only generic data such as a document
defined data specific to |reference
the event

8 MetaSolv Software, Inc.

MetaSolv Solution API technical overview

For more information about Work Management integration, contact the MetaSolv Software
representative at the implementation site.

Synchronous and asynchronous invocation modes
The MetaSolv interface architecture uses two invocation modes for operations:

¢ Synchronous
¢ Asynchronous

All external applications (those developed by you or a third party) that interact with the APIs
are required to handle both invocation modes.

Synchronous operations

In the scope of this documentation, synchronous operations are those where the application
that invokes the operation gets the results of the operation immediately upon the return of the
call.

The general rules for synchronous operations are as follows:

¢ All operations initiated by the MetaSolv Solution or API software against your application
are synchronous. This means your application is required to return the results of the
operation upon return of control.

¢ All operations your application invokes on an API server are synchronous, except for data
import and export operations, which are asynchronous.

Asynchronous operations

In the scope of this documentation, asynchronous operations are those where control returns to
the application immediately and the results (if any) are returned to the invoking application at
a later time. The APIs use a callback mechanism to implement this paradigm. The callback
mechanism works as follows:

1. Your application creates a unique callback object, then passes that object to the
appropriate API server along with the rest of the asynchronous operation's parameters.
Your application then awaits return of control.

2. The API server implements the operation and immediately returns the call. Results of the
operation are not returned at this time.

3. Control returns to your application, which now begins to listen to the callback object while
it waits on the results.

g If your application can handle multiple threads, the application can continue
generating threads, as long as it remains available to accept and process the
invocation of the callback object for each thread.

CORBA API Developer’s Reference 9

Chapter 1: The MetaSolv Solution Architecture

4. The asynchronous operation completes the requested task and returns the results to the
API server.

5. The API server invokes an operation on the callback object to return the results to your
application.

6. The callback object hands the results to your application

The general rule for asynchronous operations is that all operations involving movement of
data to and from the MetaSolv Solution database—data import and export—are asynchronous.

For more information about implementing synchronous and asynchronous operations,
“Synchronous operations” on page 9 and““Asynchronous operations” on page 9.

The transaction model used by the APlIs

The APIs use a transaction model; however, the APIs do not provide built-in support for
nested or linked transactions. With two exceptions, the API servers provide an operation that
external applications can invoke to generate a transaction object. The exception is the ICM
API and the End User Billing API. These two servers provide all required transaction
management functions internally.

Operations that involve movement of data into or out of the MetaSolv Solution database
require the external application to supply a transaction object. The transaction object must
support two operations:

¢ A commit operation that unconditionally applies all database changes that were performed
during that transaction

¢ A rollback operation that cancels all database changes made during that transaction

The responsibility of organizing and managing units of work using the commit and rollback
operations rests solely with external applications that use the APIs.

Transaction objects

Each API server maintains an internal table of all the transaction objects it generates. The
scope of a transaction object is ultimately limited to the lifetime of the API server process that
created it and the lifetime of the MetaSolv Solution database instance. Transaction objects are
re-useable but not portable. This means that the same transaction object may be used multiple
times while performing operations on the API server that generated it, subject to the
transaction lifespan limitations described earlier in this paragraph. You can only use a
transaction object on the API server from which it was generated.

10 MetaSolv Software, Inc.

Determining the role your application performs

Determining the role your application performs

When developing an application to run against any of the APIs, it is very important to
understand the roles that application will be performing. Applications can be developed
against the APIs to perform in one of the following roles:

¢ Client only
¢ Server only

& Both client and server

Because of the significant differences between developing for these roles, it is important that
you understand the differences between the roles. Before beginning development you should
determine which role your application will perform in relation to the APIs.

For synchronous transactions (explained on page 9), each application's role remains constant
throughout the transaction and is either the client role or the server role. The role each
application plays is determined by the application that requests the service:

& The application that requests a service is the client
¢ The application that supplies the service is the server

For example:

¢ When your application invokes synchronous operations on the API servers to update the
status of gateway events, your application is the client. In this case, your application
requests the service and the API server supplies the service.

¢ When the Work Management subsystem sends an outbound gateway event to your
application, your application is the server. The MetaSolv Solution requests the service (in
this case, WDISignal::eventOccurred) and your application supplies the service—in this
case, whatever the application does when it receives that particular gateway event.

For asynchronous operations (explained on page 9), the server role is also determined by
which application requests the service, but the role each application plays can change, so role
determination is not as simple as in synchronous operations. When invoking asynchronous
API operations, it is possible that your application will play any of the roles—client only,
server only, or both. This means that external applications that invoke asynchronous
operations against the APIs may have to be implemented with the capability to function as
CORBA servers.

For example, when your application invokes an operation on the API server, your application
is the client. However, when the API server invokes operations on a callback object that was
provided by your application, the API server plays the client role and your application plays
the server role.

“HelloAPI: a sample application that exports data” on page 52 is an example of an
external application that plays both the client and server roles.

CORBA API Developer’s Reference 11

Chapter 1: The MetaSolv Solution Architecture

Importing and exporting using the APIs
The major processes supported by the APIs are the import and export of data.

By providing access to specific MetaSolv Solution data, APIs enable you to implement any
required type of interface.

Two types of operations are provided by the APIs to enable external access to data stored in
the MetaSolv Solution database.

¢ Data export operations are read-only and allow your application to extract data out of the
database.
¢ Data import operations enable your applications to modify data stored inside the database.

The APIs provide operations that allow your application to obtain transaction handles to be
used in data export and import operations.

Responsibilities when developing with the APIs

An API provides a platform for integration, but it does not provide the complete functionality
required. As a developer of external applications intended to work with the APIs, you should
build in support for additional functionality as dictated by your application's unique
requirements. The APIs expect your application to perform the following tasks:

¢ Transaction management— You must start and destroy the transaction object. In most
cases, you must also define your own units of work and manage your application's
interactions with the APIs via the rollback and commit operations provided by the APIL

¢ Event handling—Design your applications to receive and process the application events
and gateway events that the MetaSolv Solution clients send to your applications.

Also, if you are developing a gateway application, you typically need to build in support for
service level agreement (SLA) functionality such as:

¢ Scheduling

¢ Field mapping/translation

¢ Defining protocols
L 2

Transmission functionality retries, resends, recovery, and alternative transmission
channels

12 MetaSolv Software, Inc.

Naming conventions in the APIs

Naming conventions in the APIs

MetaSolv delivers three types of IDL files for each API delivered. The IDL files define the
interfaces your application can use to communicate with the MetaSolv product line.

The types of IDL files produced by MetaSolv are:

¢ The WDIIDL file, a common API file distributed with each API. This file contains the
highest level interface structures and operations used by all APIs.

¢ A WDIapiname.IDL file, where apiname represents the specific API name. This file
contains the highest level application-specific interfaces and operations for the named
API.

¢ One or more WDIapinameTYPES files, where apiname represents the specific API name.
These files contain definitions of the data structures. There may be one
WDIapinameTYPES.IDL file that contains common access information or any number of
additional WDIapinameTYPESn.IDL files, where n represents the types file number.

g' The IDL types file for the Number Inventory API is named NITYPESE.IDL. IDL
types files for the PSR Order Entry APIs are named PSRTYPES.IDL,
PSRTYPES v2.IDL, and PSRTYPES v3.IDL.

See the CORBA API Online Reference for more information.

IDL versioning for the MetaSolv Solution

MetaSolv takes great effort to ensure the backward compatibility of the IDL. IDL is versioned
as needed to support new functionality or to correct issues, leaving the original IDL backward
compatible. However, in some cases we cannot provide this compatibility. Typically this
occurs if an old function cannot be mapped to the new functionality or in cases where the
original function signature was incomplete or unusable.

The syntax of the new versioned IDL files, API operations and structures includes a “ vX” at
the end of the old name, where X represents a numeral; for example, importPSROrder is
represented as importPSROrder v2 in the versioned form. For new development use the most
current version of an operation or structure. This means you would use operationname v3 or
structurename_v3 instead of operation or structurename v2.

CORBA API Developer’s Reference 13

Chapter 1: The MetaSolv Solution Architecture

14 MetaSolv Software, Inc.

Developing Applications Using the APIs

This chapter introduces you to the steps involved in developing external applications that
make use of the MetaSolv APIs. This chapter describes the various interaction paradigms and
shows code examples for each.

This chapter assumes that you are familiar with the technical concepts presented in“Common
Architecture” on page 55.

Due to the variety of CORBA implementations available and the multitude of programming
languages that a developer may use to do CORBA programming, it is not feasible to provide
sample code for all possible combinations. The examples in this guide use the following
environment:

¢ CORBA—IJBroker
¢ Language—Java J2EE

The basic principles and design patterns described in this guide remain valid regardless of the
actual development environment used.

MetaSolv Solution 6.0 uses jBroker 4.0.1, which includes a new version of CORBA 2.4. The
Corba Orb used for your applications that interface with the MetaSolv Solution API must
support this standard. Typically that will mean you will need to upgrade your Orb to a later
version and recompile your code. For most third party Orbs, this upgrade will not require code
changes. Refer to your Corba Orb vendors documentation to identify the steps required to
support Corba 2.4.

MetaSolv interface architecture

The APIs have been designed to meet two primary goals:

¢ To enable external applications to perform on-demand data export and import operations
on the database

¢ To allow external applications to tightly integrate with various modules and subsystems of
the MetaSolv Solution

The MetaSolv interface architecture is implemented on the Common Object Request Broker
Architecture (CORBA) standard and is designed to be open and language-neutral. This allows
you to develop your applications in any language that has CORBA bindings available and to
deploy your applications on any platform that has CORBA support.

MetaSolv Solution CORBA API Developer’s Reference 15

Chapter 2: Developing Applications Using the APls

Design architecture

Unlike traditional APIs, the MetaSolv Solution APIs are not packaged as object code or
libraries. Instead, the API is delivered as a set of CORBA Interface Definition Language (IDL)
files that are installed when the MetaSolv Solution Application Server is installed. CORBA
implementation vendors supply IDL compilers that use these IDL files to generate language
bindings for the desired implementation language (for example, Java or C++) and platform
(for example, Windows NT or Sun Solaris).

The API object architecture follows a layered, hierarchical approach. The interfaces at each
layer support operations that yield object references to interfaces in the immediate subordinate
layer (if any). This is diagrammed in Figure 4.

WDI Root

Operations
- connect
- disconnect

Layer 1

WDIManager
Operations

- start/destroy session

- start/destroy transaction
- start/destroy signal

Layer 2

™
- WDITransaction WDISignal WDIInSignal apinameSession
(] Operations Operations Operations Available operations differ for
> - commit - event occurred/terminated, - event occurred/terminated APIs that allow subsessions
3 - rollback - event status update - event status update and those that do not.
Operations for APIs that | Operations for APIs that
do not allow subsessions do allow subsessions
- data import | - create subsession
- data export 1 - destroy subsession
.. froee e
< . .
. subSession subSession
(4 Operations Operations
% - data import - data import
| - data export - data export

Figure 4: MetaSolv Solution API Design Architecture

The highest layer contains the Root interface—WDIRoot—which manages connections from
client applications.

The second layer contains the Manager interface—WDIManager—that provides operations
for session, transaction and signal management.

16 MetaSolv Software, Inc.

Deployment architecture

The third layer contains the various session interfaces. Typically, the operations that an
external application is interested in are in the session interfaces. For example, operations that
allow data export or import. However, some APIs are designed with a fourth layer. In these
APIs, the session interface in the third layer provides operations that yield object references to
interfaces in the fourth layer.

Deployment architecture

The MetaSolv Solution Application Server may be hosted on the same machine where your
application runs. However, in this case, the API class files must be loaded before any other
class files to prevent errors from occurring in the operation of the APIs.

Relationship of APIs, APl server names, and IDL files

This object architecture is reflected in the structure of all the API IDL files. This table lists the
APIs and their corresponding IDL files.

Table 3: Key IDL Files for MetaSolv Solution APIs

API Server Name Key IDL File

End User Billing API Determined by you and entered | WDIPSRBIL.IDL

in the MetaSolv Solution

database via the Gateway Events

window in the Work

Management subsystem.
Inventory and Capacity | DLRSERVER WDIDLR.IDL
Management API
LSR API LSRSERVER WDILSR.IDL
PSR Ancillary API PSRANCILLARYSERVER WDIPSRANCILLARY.IDL
PSR Order Entry API PSRSERVER WDIPSR.IDL
Switch Provisioning DLRSERVER WDIDLR.IDL
Activation API
Transport Provisioning | DLRSERVER WDIDLR.IDL
Activation API
Trouble Management TMSSERVER WDITROUBLE.IDL
API
Work Management API | WMSERVER WDIWM.IDL

CORBA API Developer’s Reference 17

Chapter 2: Developing Applications Using the APls

Table 3: Key IDL Files for MetaSolv Solution APIs

API Server Name Key IDL File

Infrastructure API INFRASTRUCTURESERVER | WDIINFRASTRUCTURE.IDL
WDINETWORKLOCATION.IDL

Number Inventory API | NUMBERINVENTORYSERVE | WDINLIDL
R

MetaSolv APIs require instance references to
notification objects

Version 4.2.2 and later versions of the MetaSolv APIs are written in Java and run under JDK
1.2. Due to JDK 1.2 requirements, the MetaSolv APIs require your client-side application to
pass an instance reference to the ORB, rather than a static reference. If your application passes
a static reference to an ORB, the MetaSolv APIs and the ORB cannot communicate.

g When a MetaSolv API attempts to communicate via a static ORB reference, the error
messages returned are often cryptic and unintuitive. For example, OrbixWeb raises a
security violation rather than returning an exception indicating the requested object was
not found.

Static ORB references are commonly passed because some IDL compilers' default behavior
includes an implicit connect operation in generated constructors that is based on a static ORB
reference. However, the notification object must connect via an instance ORB reference or
your client-side application and a server-side MetaSolv API cannot both use the notification
object.

Before compiling the IDL files for the MetaSolv APIs, you should determine whether your
IDL compiler's default behavior is to include an implicit connect operation in the generated
constructors. If so, refer to your IDL compiler documentation to determine how to suppress
inclusion of the connect operation in generated constructors. For example, pass lona's
OrbixWeb 3.2 IDL compiler the "-jNoC" parameter to direct the compiler to build generated
constructors for the TIE and ImplBase classes that do not implicitly call

_ CORBA.Orbix.connect().

Because the generated constructors intended for use with the MetaSolv APIs must be
compiled without a connect operation, your application must explicitly connect to each new
notification object after instantiating the object. Make this connection using the
ORB.connect(<notification instance reference>) operation.

18 MetaSolv Software, Inc.

ORSB Initialization Issue with IONA's OrbixWeb 3.2

ORSB Initialization Issue with IONA's OrbixWeb 3.2

This issue only impacts you if you use Iona’s OrbixWeb as the ORB for your application. The
MetaSolv APIs use JBroker as their ORB.

Initializing IONA's ORB by invoking the ORB.init() operation without parameters returns a
singleton ORB that has reduced functionality. Your client-side applications cannot
successfully interact with the MetaSolv APIs via this reduced-functionality ORB.

For client-side applications operating in [ONA's OrbixWeb environment to interact
successfully with the MetaSolv APIs, you must initialize the IONA ORB by calling the
ORB.init(Strings[] args, null) operation instead of ORB.init(). For information about valid
arguments for the args parameter, see the [IONA OrbixWeb documentation.

Development environment

In order to develop applications using the APIs you must have at a minimum these items
installed on your workstation:

¢ A CORBA development environment that includes an IDL compiler and supporting
classes and/or libraries, for example JBroker. The IDL compiler must be namespace aware
because the MetaSolv APIs use hierarchical naming conventions. Using an IDL compiler
that is not namespace-aware causes naming collisions.

¢ A programming environment that includes a language compiler, runtime support classes
and/or libraries and a debugger. This can be an integrated development environment (IDE)
or could be composed of individual language components. For example, Java’s J2EE, the
Sun JDK, and a C++ compiler.

When it is time to execute and test your applications, you must install the following:

¢ Your application and any software, resources, or services it requires

¢ The MetaSolv Solution client software with the API client components

¢ The MetaSolv Solution Application Server

¢ Oracle database server software and a MetaSolv Solution database that can be used for
testing

g A sample database is provided on the API installation CD.

Before compiling IDL files

Before compiling the IDL files for a given API, you should place all the IDL files required for
that API in the same folder, then execute your IDL compiler from within that folder.

CORBA API Developer’s Reference 19

Chapter 2: Developing Applications Using the APls

Determining which IDL files are required for a given API

1. Identify the key IDL file for the API by referring to the table in “Relationship of APIs,
API server names, and IDL files” on page 17.

2. Read the key IDL file and look for "#include" statements. These statements identify other
IDL files that the IDL compiler must include when compiling.

3. Check each included IDL file for additional "#include" statements.

CORBA development—the big picture

This section describes the basic steps involved in developing CORBA applications. The intent
of this section is to set the stage for the subsequent sections. The actual commands a user
invokes to accomplish these steps varies depending on the development environment. Refer to
your development environment's documentation for details.

The high-level steps involved in developing a CORBA application are as follows:
1. Compile the IDL.

Locate the required API IDL files and run them through your IDL compiler. The compiler
generates the following code in your language of choice:

¢ Client-side stub—This is support code that you use to build a CORBA client
application.

¢ Server-side skeleton—This is support code that you use to build a CORBA server
application.

Write code to implement the required IDL interface objects.
Write code to implement your client and server applications as applicable.

Compile your applications.

A

Register your CORBA server application with the ORB's implementation repository.

This step is essential in order for your server to start receiving CORBA calls from a
client application.

6. Run your applications.

Implementation patterns

This section introduces the basic patterns involved in developing external applications that
utilize the MetaSolv Solution APIs. Real-world applications usually involve a combination of
the basic patterns presented here.

Each implementation pattern is accompanied by a description that explains the purpose of the
pattern, where it is used, and includes code fragments and information on how to write code to
implement that pattern. The purpose of the code fragments is to illustrate the basic principles

20 MetaSolv Software, Inc.

Implementation patterns

involved without having to address the specific requirements of individual APIs.
Considerations for each API are provided in separate chapters later in this guide.

Each implementation pattern highlights a different concept; however, there is a considerable
amount of overlap between the following sections because no one pattern can work in
isolation from the rest.

The basic API setup pattern

Purpose

This pattern illustrates the basic steps involved in API interactions. The successful completion
of every operation invoked in this pattern is a precondition for working with the APIs.

When used

When your application initiates the interaction with the MetaSolv Solution Application Server,
as in a data export/import scenario, your application invokes the operations specified in the
basic pattern, and the applicaation server provides the implementation of these operations.

When the MetaSolv Solution initiates the interaction with your application, such as when
sending a gateway event to your application, the MetaSolv Solution invokes the operations
specified in this pattern. Your application provides the implementation of the interface and
operations supporting the basic setup pattern.

For information about working with specific APIs, see the individual chapter later in this
guide. For information about coordinating MetaSolv Solution database and API security.

Description

The following Java-language code sample shows a sample implementation of the basic setup
pattern. Reference numbers to the left of the code are keyed to Table 4 on page 25.

package SampleCode.sample;

import java.io.*;

import org.omg.CORBA.*;

import MetaSolv.CORBA.WDI.WDIExcCp;

import MetaSolv.CORBA.WDI.ConnectReq;
import MetaSolv.CORBA.WDI.WDITransaction;
import MetaSolv.CORBA.WDI.WDISignal;
import MetaSolv.CORBA.WDI.WDIInSignal;

import MetaSolv.CORBA.WDIDLR.*;

CORBA API Developer’s Reference 21

Chapter 2: Developing Applications Using the APls

import MetaSolv.CORBA.WDIDLRTypes v5.*;
/*x
* Hello API - Application Mainline
* Description: Sample client application that demonstrates data
* export operation.
*
*/
public class HelloAPI
{

private static final String DLR IOR FILE PROPERTY =

"TmsDlrIorFile";
private static ORB orb;

public static ORB getORB() {
return orb;
}
public static void main(String [] args)
{
System.out.println (System.getProperties () .toString());
(1) orb = ORB.init (args, null);
Utils.initORB (orb) ;
try {
int circuitId = 21; // (pk of design layout report)
int issueNo = 1;
DLR aDLR = getCircuitIssue(circuitId, issueNo) ;
if (aDLR != null)

System.out.println("Circuit ECCKT:" +

aDLR.dlrAdminInfo.ECCKT) ;
} catch (Throwable t) {

System.out.println ("Error: "+ t.toString()):;
}
System.out.println ("Exiting application");

System.exit (0); // Some ORBs start non-daemon threads
running.

}

public static DLR getCircuitIssue (int circuitId, int issueNo)
throws Exception

{

22 MetaSolv Software, Inc.

Implementation patterns

DLR aDLR = null;

// Connect to the DLR API Server and construct a proxy for
root object

String iorfile =
System.getProperties () .getProperty (DLR_IOR FILE PROPERTY) ;

// Set a system property on command line using -D (for Sun) or /

d: (for MS)
if (iorfile == null)
throw new Exception("'" + DLR IOR FILE PROPERTY +

system property not set on command line.");
(2) System.out.println ("IOR file="+iorfile);

String ior = Utils.readIOR(iorfile);
System.out.println ("DLR IOR="+ior);
org.omg.CORBA.Object obj = orb.string to object(ior);
WDIRoot aWDIRoot = (WDIRoot)WDIRootHelper.narrow (obj) ;

(3) MetaSolv.CORBA.WDI.ConnectReq req = new

MetaSolv.CORBA.WDI.ConnectReq() ;
reqg.userName = "";

req.passWord = "";

System.out.println ("Connecting to MetaSolv Solution API

Server...");
(4) WDIManager aWDIManager = aWDIRoot.connect (req);

try {
System.out.println("Starting transaction...");

(5) WDITransaction aWDITransaction =

aWDIManager.startTransaction () ;
try {

System.out.println("Starting session...");

(6) DLRSession aDLRSession = aWDIManager.startDLRSession();
try {
(7) WDIExampleNotificationImpl aWDINotificationImpl =

new WDIExampleNotificationImpl () ;
// Need to connect the NotificationImpl Object to the

ORB for callbacks.
MetaSolv.CORBA.WDIDLR.WDINotification aWDINotification

(MetaSolv.CORBA.WDIDLR.WDINotification)Utils.connect (aWDINotific

ationImpl) ;
(8) System.out.println ("Sending request...");
aDLRSession.getDLR_v5 (aWDITransaction,
aWDINotification,

new DLRRequest (circuitId, issueNo));

CORBA API Developer’s Reference 23

Chapter 2: Developing Applications Using the APls

System.out.println ("Sent request. Waiting on notify

callback ...");
aWDINotificationImpl.waitForResponse () ;

aDLR = aWDINotificationImpl.getDLR v5();

(9) // Do not need to commit for exporting data but to be

consistent
try {

aWDITransaction.commit () ;
} catch (Throwable t) {
System.out.println ("Error: " + t.toString());
}
if (aWDINotificationImpl.hasErrors())
aWDINotificationImpl.printErrors () ;
(10) // Need to disconnect to prevent memory leaks
Utils.disconnect (aWDINotification);
}
(11) catch (Throwable t)
{
System.out.println ("Error " + t.toString()):;
} finally {
aWDIManager.destroyDLRSession (aDLRSession) ;
}
(12) } catch (Throwable t) {
System.out.println ("Error " + t.toString()):
} finally {

aWDIManager.destroyTransaction (aWDITransaction) ;

}
(13) finally {

aWDIRoot.disconnect (aWDIManager) ;

}

return aDLR;

24 MetaSolv Software, Inc.

Implementation patterns

Table 4: Notes for Basic APl Setup Pattern Example Code

Key

Description

(M

Initialize the Object Request Broker (ORB). The actual call used to do so varies
depending on the ORB vendor.

2

Establish a CORBA connection with your server application. The sample code
connects to DLRSERVER that is running on a machine with TCP/IP host name
"MetaSolv Solutionapihost".

The bind operation is specific to the CORBA implementation.Information about
the ORB connections can be found in the Administration Guide.

3)

Create a connection object to use when obtaining an instance of the WDIManager
interface from DLRSERVER. This instance is actually a proxy object that is
created in the application's program space, and not the actual instance of the
interface that is created on the server. The proxy object simulates the real instance,
and forwards all operation invocations to the real instance using the CORBA
protocol. See the Administration Guide for security information.

“4)

Perform the connect operation to obtain an instance of the WDIManager interface.
This instance provides specialized operations provided by the MetaSolv Solution
Application Server—in this example, the DLR server.

(6))

Obtain a transaction handle from DLRSERVER.

This step is only required when the invoked operation requires a transaction
handle, as defined in the interface specification. For example, WDIDLR.IDL
requires transaction handles, and WDIPSRBIL.IDL does not.

(6)

Obtain an instance of the DLRSession interface. In most of the APIs, the session
interface supports all data export and import operations. .

(7

Instantiate a WDINotification object and tie it to the ORB so the calling server can
make notification callbacks.

®)

The core activity—the actual work—performed by your application is performed
at this point. All of the actual work to be performed must be done within this
section of the code.

)

Call the commit operation so the API commits your changes to the database.

CORBA API Developer’s Reference

25

Chapter 2: Developing Applications Using the APls

Table 4: Notes for Basic APl Setup Pattern Example Code

Key Description

(10) | Destroy the instance of the session interface.

This begins the process of tearing down the communications infrastructure built in
above Steps (2)—(6). Tearing down the infrastructure must be done in the reverse
order in which it was built.

(11) |Clean up the objects no longer used.

(12) | Destroy the transaction handle.

f You must always perform all transaction management steps, such as commit or
rollback, prior to destroying the transaction handle.

(13) | Destroy the instance of WDIManager interface.

A Establishing a connection with a CORBA server [performed above in Step (2)] is

an expensive operation in terms of performance. To keep this overhead to a
minimum, consider performing server connection operations only at application
startup time. However, your application’s design should be driven by your specific
requirements.

The synchronous interaction pattern

Purpose

This pattern illustrates synchronous interaction between your application and the MetaSolv
Solution. For a complete explanation of synchronous interaction, see “Synchronous
operations” on page 9

When used

All operations initiated by the MetaSolv Solution against your application are synchronous.
Except for data import and export operations, which are asynchronous.

26 MetaSolv Software, Inc.

Implementation patterns

Description

Many examples of synchronous operation invocations are provided in the discussion of “The
basic API setup pattern” on page 21. For instance, the following code fragment shows an
application invoking a synchronous operation startTransaction.

// Obtain a transaction handle from MetaSolv Solution API server.
try {

WDITransaction aWDITransaction =
aWDIManager.startTransaction();

}
catch (WDIExcp ex) {

System.err.println ("Error getting transaction handle: " +
ex.getMessage ()) ;

}

The result of the operation invocation—in this case, a transaction handle—is immediately
available to the caller upon completion of the operation. If the invocation fails, the API
immediately raises an exception and the result—the exception that indicates failure—is
immediately available to the caller upon return of control. For additional information, see
“The error handling pattern” on page 48.

In the scenario where the MetaSolv Solution client communicates a gateway event to your
application, the MetaSolv Solution client follows the steps in“The basic API setup pattern” on
page 21 with the exception of Step (5) of that pattern. In this scenario, your application
implements all the required operations in synchronous mode. Upon invoking a synchronous
operation on your software, the MetaSolv Solution client displays the hourglass icon to the
user and suspends user interaction until the call returns.

If your application fails to return the call to the MetaSolv Solution client as expected, that
failure causes the MetaSolv Solution to hang. The user must reboot.

“HelloGateway: sample application that handles application and gateway events” on page 53
is a complete working example of the synchronous interaction pattern.

CORBA API Developer’s Reference 27

Chapter 2: Developing Applications Using the APls

The asynchronous interaction pattern

Purpose

This pattern illustrates the asynchronous mode of interaction between your application and the
MetaSolv Solution. The MetaSolv Solution Application Server mandates the use of this
pattern by your application when invoking the import and export operations.

When used

The asynchronous mode of interaction is only used when your application interacts with the
APIs to request the export or import of data. All data export and import operations involving
the APIs are defined as asynchronous.

To determine from the IDL whether an operation is asynchronous, look at the operation
specification in the corresponding IDL file. If that specification defines one of the operation
parameters as type WDINotification, then the operation is asynchronous. For such operations,
the return type is void—that is, they do not return anything to the caller.

Description

Asynchronous interaction is achieved via a callback mechanism. The caller of the operation—
your application—creates a unique callback object and passes it to the provider—the
MetaSolv Solution Application Server—along with the rest of the operation's parameters. To
return the result of the operation, the provider invokes operations on that callback object.

The crux of implementing code to handle asynchronous mode interactions is to develop a
robust mechanism to handle callback invocations from the API. The basic requirement here is
that you must provide an implementation of the WDINotification interface as defined by the
particular API’s IDL file. When an asynchronous operation on that API is invoked, the API
calls one of the operations defined in the WDINotification interface.

For example, if your application invokes the getDLR v5 asynchronous operation on the
DLRSERVER, you must provide an implementation of the WDINotification interface as
defined in the WDIDLR.IDL file. A fragment of this IDL file is reproduced below. In that
fragment, notice that the only operations that the DLRSERVER would invoke on your
application's callback object are: DLRGetSucceeded v5 and DLRGetFailed vS5.

28 MetaSolv Software, Inc.

Implementation patterns

Table 5: Notes for WDINotification Example IDL

Key Description
(1) Callback upon successful completion of the operation
) Callback to indicate failure of the operation

// CCM#40525

void

Table 6: WDIDLR.IDL fragment

Circuit Query API

getDLRsByQuerySucceeded v3(in
MetaSolv::CORBA: :WDIDLRQueryTypes v3::DLRQuery aDLRQuery,

in MetaSolv::CORBA: :WDIDLRQueryTypes v3::DLRResultSeq

aDLRResults)

void

in WDI::WDI

/// Deprecated - DLRGetSucceeded v2, DLRGetFailed v2 in future

release will

’

getDLRsByQueryFailed v3(in
MetaSolv::CORBA: :WDIDLRQueryTypes v3::DLRQuery aDLRQuery,

ErrSeq aWDIErrSeq);

be removed.

/// You should use the latest version of this method.

void

DLRGetSucceeded v2(in

MetaSolv::CORBA: :WDIDLRTypes vZ2::DLRRequest aDLRRequest,

in MetaSolv::CORBA::WDIDLRTypes v2::DLR aDLR);

void

DLRGetFailed v2(in

MetaSolv::CORBA: :WDIDLRTypes vZ2::DLRRequest aDLRRequest,

in WDI::WDI

// CCM#40030

void

ErrSeq aWDIErrSeq);

DLRGetSucceeded v3(in

MetaSolv::CORBA: :WDIDLRTypes v3::DLRRequest aDLRRequest,

void

in MetaSolv::CORBA::WDIDLRTypes v3::DLR aDLR);

DLRGetFailed v3(in

MetaSolv::CORBA: :WDIDLRTypes v3::DLRRequest aDLRRequest,

in WDI::WDI

// CCM#30450

ErrSeq aWDIErrSeq);

CORBA API Developer’s Reference

29

Chapter 2: Developing Applications Using the APls

Table 6: WDIDLR.IDL fragment
void DLRGetSucceeded v4 (in
MetaSolv::CORBA: :WDIDLRTypes v4::DLRRequest aDLRRequest,
in MetaSolv::CORBA::WDIDLRTypes v4::DLR aDLR);

void DLRGetFailed v4 (in
MetaSolv::CORBA: :WDIDLRTypes v4::DLRRequest aDLRRequest,

in WDI::WDIErrSeq aWDIErrSeq);
// CCM#43899

1 void DLRGetSucceeded v5(in
MetaSolv: :CORBA: :WDIDLRTypes v5::DLRRequest aDLRRequest,

in MetaSolv::CORBA: :WDIDLRTypes v5::DLR aDLR) ;

) void DLRGetFailed v5(in
MetaSolv: :CORBA: :WDIDLRTypes v5::DLRRequest aDLRRequest,

in WDI::WDIErrSeq aWDIErrSeq) ;

void switchGetSucceeded v2(in
MetaSolv::CORBA: :WDIDLRTypes vZ2::DLRRequest aDLRRequest,

in MetaSolv::CORBA::WDIDLRTypes v2::DLRSwitchTranslation
aDLRSwitchTranslation) ;

void switchGetFailed v2 (in
MetaSolv::CORBA: :WDIDLRTypes vZ2::DLRRequest aDLRRequest,

in WDI::WDIErrSeq aWDIErrSeq) ;

void
in MetaSolv::CORBA::WDIDLRTypes v2::DLRRequest aDLRRequest,
in

MetaSolv::CORBA: :WDIDLRTypes v2::DLREndUserSpecialTrunkTranslatio
n aDLREndUserSpecialTrunkTranslation) ;

void
in MetaSolv::CORBA::WDIDLRTypes v2::DLRRequest aDLRRequest,

in WDI::WDIErrSeq aWDIErrSeq);

Each asynchronous operation defined in an API’s session interface has two counterparts in the
WDINotification interface: one to callback upon successful completion of the operation and
the other to indicate failure. In short, although the basic rules of interaction are consistent
across the MetaSolv APIs, each specific API defines this interface differently.

30 MetaSolv Software, Inc.

Implementation patterns

The following Java-language code fragment illustrates how the callback mechanism can be
implemented. Reference numbers to the left of the code are keyed to Table 7 on page 34.

(1)

)

public class WDIExampleNotificationImpl extends
WDINotificationPOA

{

DLR aDLR = null;

WDIError[] aWDIErrSeq = null;
boolean done = false;

public WDIExampleNotificationImpl ()
{

super () ;

/**
* Gets the DLR object that was returned from the API
* @return DLR
*/
public DLR getDLR()
{

return aDLR;

/**
* Checks to see if any errors were returned by the API
* @return boolean true if there are errors, false otherwise
*/
public boolean hasErrors()
{

if (aWDIErrSeq == null)

return false;

return true;

/**
* Prints any errors to the console
*/

public void printErrors ()

CORBA API Developer’s Reference 31

Chapter 2: Developing Applications Using the APls

// Should use hasErrors to check if there are any errors
for(int 1 = 0; i < aWDIErrSeq.length; i++)

{

System.out.println("Code: " + aWDIErrSeq[i].code
+ " Reason: " + aWDIErrSeqg[i].reason);
}
}
(3) // Utility method: Force thread to wait on callback from
DLRSERVER

public synchronized void waitForResponse ()
{

try { if (!done) wait(); } catch (InterruptedException e) {}
}

4) // Interface methods: Implement all the operations defined in

the
// WDINotification interface as defined in WDIDLR.IDL file.

// Note: Provide trivial implementations for methods that the

server will not
// invoke in this scenario.

public int getMaximumReturnedRows ()
{

return O;
}

public void getDLRsByServiceRequestSucceeded v2 (int

documentNumber,
MetaSolv.CORBA.WDIDLRQueryTypes v2.DLRResult[] results)

public void getDLRsByServiceRequestFailed (int documentNumber,

MetaSolv.CORBA.WDI.WDIError[] aWDIErrSeq)

public void getDLRsByCircuitSucceeded v2 (int circuitId,

MetaSolv.CORBA.WDIDLRQueryTypes v2.DLRResult[] results)

}

public void getDLRsByCircuitFailed(int circuitId,
MetaSolv.CORBA.WDI.WDIError|[]

32 MetaSolv Software, Inc.

Implementation patterns

aWDIErrSeq)
{
}

public void
getDLRsByQuerySucceeded v3 (MetaSolv.CORBA.WDIDLRQueryTypes v3.DL

RQuery
aDLRQuery,

MetaSolv.CORBA.WDIDLRQueryTypes v3.DLRResult[] results)
{

}

public void
getDLRsByQueryFailed v3 (MetaSolv.CORBA.WDIDLRQueryTypes v3.DLRQu

ery aDLRQuery,
MetaSolv.CORBA.WDI.WDIError[] aWDIErrSeq)

{

}

// DLRSERVER callback for the case when getDLR operation is

successful
(5) public synchronized void
DLRGetSucceeded v5 (MetaSolv.CORBA.WDIDLRTypes v5.DLRRequest
aDLRRequest, MetaSolv.CORBA.WDIDLRTypes v5.DLR aDLR)

System.out.println ("DLRGetSucceeded notification called");
this.aDLR = aDLR;

this.aWDIErrSeq = null;

done = true;
try { notifyAll(); } catch (Throwable t) {}
}
(6) // DLRSERVER callback for the case when getDLR operation fails

public synchronized void
DLRGetFailed v5 (MetaSolv.CORBA.WDIDLRTypes v5.DLRRequest

aDLRRequest,
MetaSolv.CORBA.WDI.WDIError[] aWDIErrSeq)

System.out.println ("DLRGetFailed notification called");
this.aDLR = null;

this.aWDIErrSeq = aWDIErrSeq;

done = true;

try { notifyAll(); } catch (Throwable t) {}

CORBA API Developer’s Reference 33

Chapter 2: Developing Applications Using the APls

Table 7: Notes for Callback Mechanism Implementation Example Code

Key Description

(D) Support for server callback is implemented by extending (sub-classing) the
WDINotificationPOA class. The IDL compiler generates this class when it
compiles the WDIDLR.IDL file to create Java language bindings. The
specialized class (sub-class) is named WDIExampleNotificationlmpl. This class
implements all the operations specified in the DLRSession interface defined in
WDIDLR.IDL.

2) Since the class in this example is the one that receives the callback and the
results of the getDLR v5 operation from DLRSERVER, an accessor operation is
provided to enable the users of the class to retrieve the results.

3) This method may be called by users of the class to suspend activity in their
threads pending callback invocation from the API. Towards that end, this sample
code uses method synchronization mechanisms supported by the Java language.
Alternate synchronization mechanisms can be used to achieve the same effect.

4) This sample provides trivial implementations for operations that are defined in
the DLRSession interface, but will never be invoked by the DLRSERVER for
the export operation that this sample invokes. This is necessary because the Java
compiler requires these implementations since the compiler defines the base
class for this sample—WDINotificationPOA—as an abstract class.

(5) The code sample implements the DLRGetSucceeded v5 operation that the
DLRSERVER invokes if the getDLR v5 operation invocation is successful. The
server returns results in the second parameter of this operation via an object of
type WDIDLRTYPES v5.DLR. In the code sample, the results are stored in a
private attribute.

(6) The code sample implements the DLRGetFailed v5 operation invoked by the
DLRSERVER if the getDLR operation invocation resulted in failure. The
reasons for the failure are communicated to the class via the second parameter of
this operation—an object of type WDI.WDIError.

This example may easily be extended to provide support for other asynchronous
DLRSERVER operations by building in non-trivial implementations of the other callback
operations.

The following code fragment shows how an application might invoke an asynchronous
operation on an API . This fragment continues from the previous example. At this point in the
code, your application invokes the getDLR v5 operation on DLRSERVER. However, the

34 MetaSolv Software, Inc.

Implementation patterns

code must first obtain a transaction handle from DLRSERVER since the getDLR v5
operation requires that you supply one. Next, the code creates a proxy for the DLRSession

interface.
try {
WDITransaction aWDITransaction =
aWDIManager.startTransaction();
try {
DLRSession aDLRSession =
aWDIManager.startDLRSession () ;
try {
(1) WDIExampleNotificationImpl
aWDINotification = new
WDIExampleNotificationImpl () ;
) aDLRSession.getDLR V5 (aWDITransaction,
aWDINotification,
new DLRRequest (circuitId, issueNo));
System.out.println("Sent request to " + servername
+
", Waiting on notify callback ...");
(3) g Y
try {
aWDINotification.waitForResponse () ;
aDLR = aWDINotification.getDLR_V5 (),
}
catch (Exception ex) {
System.err.println("getDLR()_V5 failed: " +
ex) ;

Table 8: Notes for Extended Callback Mechanism Implementation Example Code

Key Description

(1) Create a new instance of the callback object that was implemented previously.

2) Invoke the getDLR_v5 operation, supplying the callback object along with the
other input parameters to the operation. The operation returns without the
results, as it should.

CORBA API Developer’s Reference 35

Chapter 2: Developing Applications Using the APls

Table 8: Notes for Extended Callback Mechanism Implementation Example Code

Key Description

3) Next, suspend activity to wait on response from DLRSERVER in the form of a
callback operation invocation.

A If the MetaSolv Solution Application Server terminates for any reason while a

callback is pending, the pending call back will never be satisfied unless your
application takes steps to clean up and retry the operation (if required) when the
server is restarted.

Your application that performs data import/export operations using an API could fire off a
number of requests in a burst, without waiting on the results. It would subsequently receive a
number of results via callback invocations. Your application would then perform the required
steps to collate the results.

The third-party application's developer must also compile the application code with the server-
side skeleton and implementation code.

The CORBA client/server pattern

Purpose

The intent of this section is to show, at a high level, what it takes to develop a CORBA client
and CORBA server and to highlight the differences between these two.

You should review the documentation provided by your ORB vendor for an in-depth
discussion on this topic as it relates to your ORB environment.

The MetaSolv interface architecture is built on the CORBA standard. As the developer of an
application developed to use the APIs, you must determine whether your application will be
required to play the roles of a CORBA client, a CORBA server, or both.

To define these roles in simple terms, the application that invokes an operation on a CORBA
interface is the client. The application that implements the invoked operation is the CORBA
server. For assistance in making this determination, see “Determining the role your application
performs” on page 11.

When the MetaSolv Solution initiates the interaction with your application, your application
plays the role of the server.

The client code and the server code do not have to run in separate program spaces.
The same application can play the role of a client and server.

36 MetaSolv Software, Inc.

Implementation patterns

When used

Your application plays the role of a client when it invokes operations on the MetaSolv
Solution Application Server, as in the following scenarios:

¢ When invoking data export/import operations
¢ When updating status of gateway events received from MetaSolv Solution clients

¢ When invoking operations to communicate inbound signals
Your application plays the role of a server in these scenarios:

¢ When handling outbound signals, whether the signals represent application events or
gateway events

¢ When handling callback operations from MetaSolv Solution Application Server

Your application plays both roles when it performs functionality for both of the scenarios
described above. In practice, such dual-mode applications are more common than pure client
or server applications. Common examples are:

¢ An application that invokes an asynchronous operation on an API

¢ An application that receives a gateway event from a MetaSolv Solution client and
subsequently updates the status of that event based on work performed outside the
MetaSolv Solution.

Using a CORBA naming service implementation avoids the necessity of hard-coding
the physical location of the MetaSolv Solution into external applications. The naming
service provides white pages functionality allowing clients to query, at runtime, the
location of servers they wish to use.

The signal handling pattern

Purpose

Events are the means by which external applications can integrate with the Work Management
subsystem. Signals are the mechanisms used to communicate events between the MetaSolv
Solution and the external applications. The signal-handling pattern describes how external
applications can implement signal handling.

The Trouble Management API uses the fundamental concepts of the signal handling
pattern that are implemented by the other APIs. However, the Trouble API requires a
different set of attribute values to uniquely identify an instance of an event within a
trouble ticket. Using this variation of the signaling mechanism enables the Trouble
Management API to support multiple concurrent events for a given trouble ticket.

CORBA API Developer’s Reference 37

Chapter 2: Developing Applications Using the APls

When used

MetaSolv Solution clients use outbound signals to communicate application events and
gateway events to external applications. External applications use inbound signals to
communicate external events to the MetaSolv Solution.

Description

A general observation to be made here is that all operations involved in handling signals are

synchronous. Because of the inherent difference between inbound and outbound signals and

between application and gateway events, the following section is divided as indicated below:
¢ Outbound Signals — Gateway Events

¢ Outbound Signals — Application Events

¢ Inbound Signals

The types of signaling supported by the various APIs can vary. Some APIs support one or
more kinds while there are some for which signaling is not applicable.

General remarks on outbound signals

Whenever your application handles outbound signals, it plays the role of a CORBA server. In
such a scenario, you should design your application to handle multiple incoming requests.
Remember that there may be any number of client machines in your environment that could
potentially communicate events to your application.

A MetaSolv Solution client only establishes connection with your application once—when the
first outbound signal is sent to your application. If your application were to terminate
subsequently, the client would get an error the next time it sends an outbound signal. This
requires a restart of the client. In other words, your application should be running during all of
the business hours when you expect clients to be active.

Outbound signals — gateway events

These signals originate from MetaSolv Solution clients and carry a standard data payload that
is bound for your application. The structure of this payload is defined in the WDIEvent data
structure in file WDIL.IDL, which is reproduced below.

struct WDIEvent
{
long eventVersion;

string eventName;

38 MetaSolv Software, Inc.

Implementation patterns

long documentNumber;
long taskNumber;
long servItemID;

string userID;
}i

The eventName field identifies the event. The value populated in this field is picked up from
the gateway event definition in the MetaSolv Solution database. The documentNumber field
is a database-generated sequence number that uniquely identifies a service request in the

database.

The example code on page 40 demonstrates how an application can handle outbound signals.
The goal of the sample code is to develop a CORBA server that handles all the operations that
a client may invoke on it in order to communicate gateway events. The first detail to be
worked out is what specific operations should be implemented out of the complete IDL file.
The operations in Table 9 are mandatory for all MetaSolv Solution APIs. The Trouble
Management API also requires implementation of the startSignal2 and destroySignal2

operations.

Table 9: Outbound Gateway Event Operations Required For All APIs

Interface Operations Remarks

WDIRoot connect Aclient requests to establish a connection.

WDIRoot disconnect The MetaSolv Solution requests to destroy the
connection.

WDIManager |startSignal The MetaSolv Solution indicates start of signal.
Your application generates a WDIEvent instance.

WDIManager |destroySignal The MetaSolv Solution software indicates end of
signal.

WDISignal eventOccurred The MetaSolv Solution indicates the occurrence of
an event within the Work Management subsystem
and passes the data payload.

WDISignal eventTerminated | The MetaSolv Solution indicates the user opted to

bypass processing for this event. This indicates that
your application is to stop processing this event.

CORBA API Developer’s Reference

39

Chapter 2: Developing Applications Using the APls

é' Your compiler may force you to supply placeholder implementations for the remaining

operations defined in the IDL files for these interfaces

The actual API used in the implementation would depend on how the gateway event is defined
in the MetaSolv Solution.

The other half of handling gateway events is the work of updating status of events in database.
It is your application’s responsibility to update event statuses, based on external activity that is
applicable to the situation.

The following list identifies the main steps in developing applications that update event
statuses:

1.

3.
4.

Write server mainline (see““The CORBA client/server pattern” on page 36 for sample
server mainline code).

Implement WDIRoot (see“The CORBA client/server pattern” on page 36 for sample
code).

Implement WDIManager and WDISignal interfaces (see page 40 for sample code).

Implement code to update event status (see page 43 for sample code).

The following Java-language code fragment shows a sample implementation of the
WDIManager and WDISignal interfaces. Reference numbers to the left of the code are keyed
to Table 10 on page 43.

(1

package SampleCode.sample;
import MetaSolv.CORBA.WDI.WDIExXcCp;

import MetaSolv.CORBA.WDI.ConnectReqg;
import MetaSolv.CORBA.WDI.WDITransaction;
import MetaSolv.CORBA.WDI.WDISignal;
import MetaSolv.CORBA.WDI.WDIInSignal;
import MetaSolv.CORBA.WDI.WDIEvent;
import MetaSolv.CORBA.WDI.WDIStatus;
import MetaSolv.CORBA.WDI.WDIError;
/xx

* Hello Gateway —-- Gateway Event Handler

* Description: This class implements the WDISignal interface as
defined in the WDI.IDL

* When a gateway event occurs, MetaSolv Solution client
invokes the following operations on
* this interface: eventOccurred, eventTerminated.

40 MetaSolv Software, Inc.

Implementation patterns

* @version 5.0.0
*/
public class WDIGatewaySignalImpl extends

MetaSolv.CORBA.WDI.WDISignalPOA
{

public WDIGatewaySignalImpl () {
super () ;
}

// This method is invoked when a MetaSolv Solution client

transmits a gateway
// event to our server.

Q) public void eventOccurred (WDIEvent aWDIEvent)

{
System.out.println ("WDIGatewaySignalImpl.eventOccurred") ;
// Start a new thread to handle this gateway event.
new RequestThread (aWDIEvent) .start();
// In practice, this method should not return until the
// event is successfully placed in persistent storage.

}

// This method is invoked when a MetaSolv Solution client

requests that a
// previously transmitted event be cancelled.

(3) public void eventTerminated (WDIEvent aWDIEvent)
{

System.out.println ("WDIGatewaySignalImpl.eventTerminated") ;

// In practice, this method should not return until the

request
// 1s safely persisted in a queue.

}

// NOTE: The following three operations on WDISignal interface

are
// implemented by the MetaSolv Solution API servers. However,

we need to
// provide trivial implementations to satisfy the compiler.

4) public WDIStatus eventInProgress (WDITransaction
aWDITransaction, WDIEvent aWDIEvent)
{

return null;
}

public WDIStatus eventCompleted (WDITransaction aWDITransaction,
WDIEvent aWDIEvent)
{

CORBA API Developer’s Reference 41

Chapter 2: Developing Applications Using the APls

return null;
}
public WDIStatus eventErrored(WDITransaction aWDITransaction,

WDIEvent aWDIEvent, WDIError[] aWDIErrorSeq)

return null;
}
/**
* @since 5.0.0
*/
public WDIStatus eventInProgress2 (WDIEvent aWDIEvent)
{
return null;
}
/**
* @since 5.0.0
*/
public WDIStatus eventCompleted2 (WDIEvent aWDIEvent)
{
return null;
}
/**
* @since 5.0.0
*/

public WDIStatus eventErrored2 (WDIEvent aWDIEvent, WDIError
aWDIError[])
{

return null;

42 MetaSolv Software, Inc.

Implementation patterns

Table 10: WDIManager and WDISignal Implementation Example Code Notes

Key Description

(1) |Extend the WDIManager interface. Subclass the WDISignalPOA class generated
by the IDL compiler to create the specialized class that provides implementations
of the required operations on WDIManager interface.

(2) |Implement WDISignal interface. Subclass the WDISignalPOA class generated by
the IDL compiler to create the specialized class that provides implementations of
the required operations on WDISignal interface.

Note: The sample code provides placeholder implementations for operations that
are not invoked in this scenario.

(3) |Implement eventOccurred operation. This is where you would want to store this
event in some form of persistent storage for future processing. It is recommended
that you return from this call only upon successful completion of the persistence
operation. The sample code starts a new thread instance to process this event.

(4) |Implement eventTerminated operation. This operation is invoked to indicate that
the user has chosen to bypass this gateway event. In practice, you would remove
the specified event from persistent storage and desist from further processing of
that event.

Note: The sample code provides placeholder implementations for operations that
are not invoked in this scenario.

The following sample code addresses the second part of this implementation—updating the
status of events.

String hostname = "MetaSolv Solutionapihost"; // machine name of
MetaSolv Solution API host

String servername = "DLRSERVER"; // MetaSolv Solution API CORBA
server name

try {

CORBA API Developer’s Reference 43

Chapter 2: Developing Applications Using the APls

(1)

)

WDIRoot aWDIRoot = WDIRootHelper.bind(":"+servername,
hostname) ;

}
catch (SystemException se) {
System.out.println ("Unable to bind to server: " + se);
}
ConnectReq req = new ConnectReq();
Reg.userName = "";
Reg.passWord = "";
WDIManager aWDIManager = null;
try f{
aWDIManager = aWDIRoot.connect (req);
}
catch (WDIExcp ex) {
System.err.println ("connect failed: " + ex.reason);
}
try f{

WDITransaction aWDITransaction =
aWDIManager.startTransaction () ;

try {
WDISignal aWDISignal = aWDIManager.startSignal();

try {
WDIStatus myStatus =

aWDISignal.eventInProgress (aWDITransaction,

aWDIEvent) ;

44 MetaSolv Software, Inc.

Implementation patterns

Table 11: Notes for WDIManager and WDISignal Implementation Example Code

Key Description

(1) |Connect to DLRSERVER, since the gateway event was defined to use the
Inventory and Capacity Management (ICM) API interface.

(2) | Set event status to "In Progress" to indicate that the external activity triggered by
this event is in progress. Following this, you can set the event status to
"Completed" or "Errored" using operations defined on the WDISignal interface.

See the “HelloGateway: sample application that handles application and gateway events”
on page 53 for a full implementation.

Outbound signals — application events

These signals occur in response to application events. They are dispatched from the MetaSolv
Solution client to your application. For the duration of processing of these signals, the client
behaves like a client of your application, invoking operations in the same manner as your
application might interact with the MetaSolv Solution Application Server.

Application events have significant differences from gateway events, as described in
“Understanding events” on page 7. Unlike gateway events, application events have no uniform
data payload structure and the operations involved differ from one API to the next. In order to
handle application events, your application must essentially mimic the behavior of the APIs in
terms of implementing the WDIRoot, WDIManager and APINameSession interfaces. For
details on working with specific APIs, see the chapter of this guide that describes that API.

CORBA API Developer’s Reference 45

Chapter 2: Developing Applications Using the APls

The following operations are mandatory for all APIs.

Table 12: Operations Related to Outbound Application Events

Interface Operations Remarks

WDIRoot connect MetaSolv Solution Application Server
requests a connection.

WDIRoot disconnect MetaSolv Solution Application Server
requests to destroy connection.

WDIManager startAPINameSession MetaSolv Solution Application Server
indicates start of signal. Your
application generates an instance of the
session interface.

WDIManager destroyAPINameSession | MetaSolv Solution Application Server
indicates end of signal.

APINameSession |As required by the No remarks.

application event

The operations that your application needs to implement for the APINameSession interface
will depend on the definition of the application event by the MetaSolv Solution Application
Server. This will be a subset of the operations defined in the API’s IDL file. In certain cases,

the session interface implementation may need to provide operations to generate object

references to sub-session interfaces. The sub-session interfaces would then support the lowest

level operations.

The following list identifies the main steps in implementing outbound signals for application

events:

1. Write server mainline (see““The CORBA client/server pattern” on page 36 for sample
server mainline code).

2. Implement WDIRoot (see““The CORBA client/server pattern” on page 36 for sample

code).

3. Implement WDIManager interface (see page 40 for sample code).

4. Implement APINameSession interface and operations as determined by the definition of

the application event.

5. Implement sub-session interfaces, if required.

g External applications are not required to perform any status updates for application

events.

46 MetaSolv Software, Inc.

Implementation patterns

Outbound signals for application events can be handled in the same manner as described in the
code sample on page 43.

g Although the steps described above cover the immediate task of handling application
event signals sent by the MetaSolv Solution Application Server, you should be aware that
the processing of application events usually has a broader scope that extends beyond the
signal-handling scenario. Typically, external applications will receive deferred
notifications from other external systems (for example, NPAC SMS) that need to be
communicated to the MetaSolv Solution via the MetaSolv Solution Application Server.

Inbound signals

The MetaSolv Solution allows you to define gateway events as inbound. Inbound signals are
the means by which the status of such gateway events may be updated by your application. In
contrast to the implementation for outbound signals—where your application is a CORBA
server—the implementation for handling inbound signals follows the CORBA client pattern.

The data payload carried by inbound signals is defined in WDI.IDL, reproduced below.

struct WDIInEvent

{
string gatewayName;
string eventName;
long documentNumber;
long servItemID;
char updateMany;
string userID;

bi

The signaling operations are defined in the WDIInSignal interface in WDI.IDL, reproduced
below.

interface WDIInSignal
{
WDIStatus eventInProgress (in WDITransaction aWDITransaction,
in WDIInEvent aWDIInEvent) ;
WDIStatus eventCompleted (in WDITransaction aWDITransaction,

in WDIInEvent aWDIInEvent);

CORBA API Developer’s Reference 47

Chapter 2: Developing Applications Using the APls

WDIStatus eventErrored (in WDITransaction aWDITransaction,
in WDIInEvent aWDIInEvent, in WDIErrSeq aWDIErrSeq);
i

Y our implementation for handling inbound signals is no different from the invocation of a
synchronous operation on the MetaSolv Solution Application Server.

The error handling pattern

Purpose

The APIs ensure that no data changes applied to the MetaSolv Solution database violate any of
the business rules. By the same token, your application should incorporate a robust error-
handling scheme to ensure it is in sync with MetaSolv Solution with regard to the status of
operations and the state of data in the MetaSolv Solution database.

When used

Any time an operation is invoked—whether the operation is invoked by your application or by
the MetaSolv Solution—error handling is involved. Specifically, your application should:

¢ Ensure that the status of all operations invoked on the APIs is captured and examined for
errors. This minimizes the possibility of these errors being propagated downstream.

¢ Ensure that meaningful status information is returned to the API in those instances where
the API initiates the interaction with your application.

Description

The data structures used to communicate the status of operations are defined in IDL file
WDILIDL. These are:

¢ WDIExcp—Exception
¢ WDIErrSeq—Error Array
¢ WDIStatus—Status

These are reproduced in the following paragraphs.

48 MetaSolv Software, Inc.

Implementation patterns

Exception
exception WDIExcp
{
long code;
string reason;
bi

Exceptions are the most commonly employed mechanism to indicate errors. The WDIExcp
exception object contains an error code and error description. Exceptions are used in the
following scenarios:

¢ All operations on WDIRoot, WDIManager and WDITransaction interfaces
& Most operations on APINameSession interface, except WDIPSRSession

The following code fragment shows how exceptions may be caught.
try {
aWDIManager = aWDIRoot.connect (req) ;
}
catch (WDIExcp ex) {

System.err.println ("connect failed [" + ex.code + "]: " +
ex.reason) ;

}

Error array
struct WDIError
{
long code;
string reason;
}i

typedef sequence<WDIError> WDIErrSeq;

The error array WDIErrSeq is defined as an array of error objects of type WDIError. Each
element of the array contains an error code and error description. The error array is also
contained in the status object WDIStatus. The error array is used to communicate errors in the
following scenarios:

CORBA API Developer’s Reference 49

Chapter 2: Developing Applications Using the APls

¢ For callback operations on the WDINotify interface that indicate failure
¢ When your application sets the status of gateway events to "Errored"

The following Java code fragment shows an example of how the error array is used by the
APIs. The DLRGetFailed v5 operation gets called back by DLRSERVER to indicate failure
of the getDLR_v5 operation.

public void
DLRGetFailed v5 (MetaSolv.CORBA.WDIDLRTypes v5.DLRRequest
aDLRRequest,

MetaSolv.CORBA.WDI.WDIError[] aWDIErrSeq)
{

// In practice, you may want to persist the error array
somewhere

// and indicate operation failure to the interested parties.
//
// This code displays all error messages on the console

System.err.println(“getDLR() v5 failed. Errors returned by
server:”);

for (int I=0; i<aWDIErrSeq.length; i++) {
System.err.println(“\tReason: “ + aWDIErrSeqg[i].reason +

“ [Code: “ + aWDIErrSeq[i].code + “]17);

Status

struct WDIStatus
{
boolean aResult;
WDIErrSeq aWDIErrSeqg;
}i
The WDIStatus object defines operation status. This object comprises a Boolean element

aResult that indicates success or failure and an error vector aWDIErrSeq. The status object is
used in the following scenarios:

¢ All inbound signaling operations (operations on WDIInSignal)
¢ Outbound signaling operations with the exception of eventOccurred and eventTerminated

50 MetaSolv Software, Inc.

Implementation patterns

This concept is illustrated with the following code fragment that shows use of WDIStatus in
signaling. The code fragment shows how an external application that updates status of
gateway events might handle error status returned by the MetaSolv Solution Application
Server.

try {

WDIStatus myStatus =
aWDISignal.eventInProgress (aWDITransaction, aWDIEvent);

if (myStatus.aResult == true) { // operation successful
aWDITransaction.commit () ;
}
else { // operation failed
aWDITransaction.rollback() ;
String msg = "Error updating event status: \n";
for (int i1=0; I<myStatus.aWDIErrSeq.length; i++) {

msg = msg + “\tReason: “ +
myStatus.aWDIErrSeq[i].reason +

“ [Code: “ + myStatus.aWDIErrSeq[i].code + “]\n”;

System.err.println (msqg) ;

It is your application's responsibility to capture, log and interpret all errors received from the
MetaSolv Solution. For more information about error messages that can be returned from the
APIs, see “Appendix B: API Error Messages and Exceptions” on page 325.

If required, the API administrator can configure the MetaSolv Solution Application Server to
send notifications of specific errors by e-mail and/or by pager e-mail to one or more e-mail or
pager addresses. Instructions for setting up notifications are provided in the Administration
Guide.

Your applications that communicate errors to the MetaSolv Solution must do so via the Error
Array and WDIStatus data structures. The MetaSolv Solution records and display these errors
for the user, but cannot interpret or act on third-party error messages directly.

CORBA API Developer’s Reference 51

Chapter 2: Developing Applications Using the APls

Sample applications

The following sections discuss two sample applications.

HelloAPI: a sample application that exports data
This section describes the development of a simple application—HelloAPIL.
HelloAPI builds upon several of the implementation patterns discussed earlier in this chapter:

¢ “The basic API setup pattern” on page 21

¢ “The asynchronous interaction pattern” on page 28
¢ “The CORBA client/server pattern” on page 36

¢ “The error handling pattern” on page 48

HelloAPI invokes the Inventory and Capacity Management (ICM) API to perform a simple
data export operation.

Once compiled for the customer's environment, an application of this sort may be used as
a starter template for building applications that interact with the APIs. Such an
application may also be useful as a simple diagnostic tool to determine whether the
development, test, or production environment is set up and configured correctly and has
all required applications running.

The HelloAPI consists of two files. The first file—HelloAPI.java—contains Java code that
performs mainline functions for the sample application. This application:

¢ Sets up a connection with DLRSERVER

¢ Invokes a data export operation on DLRSERVER

¢ Waits on a callback from DLRSERVER that returns the results of the export operation that
was requested

¢ Displays the results on the console, then exits
The second file—WDIExampleNotificationlmpl.java—contains Java code that implements

the callback interface required to support the asynchronous export operation performed in the
server mainline code.

The output from the application should resemble the sample below; however, actual data
values may vary.
Sent request to DLRSERVER. Waiting on notify callback ...
Circuit ECCKT: /HCG-/000026/ /MGCM/

Exiting application

52 MetaSolv Software, Inc.

Sample applications

Implementation notes

This example uses the object access serialization mechanisms supported by the Java language
to suspend thread activity pending callback invocation from the API server. Alternate
synchronization mechanisms that achieve the same effect can be used instead.

In the scenario used for this sample, the HelloAPI application is not registered with the ORB
and the application's host machine does not run the ORB daemon.

The code for this sample application can be modified to invoke operations on other API.
However, when invoking asynchronous operations on other APIs, the WDINotify interface
that is implemented must be the one defined in that specific API’s IDL file.

The HelloGateway sample application consists of these Java files:

¢ HelloAPI.java contains the application’s mainline code.
¢ WDIExampleNotificationImpl.java implements callback interfaces.
¢ Utils,java contains the code that connects to the ORB.

HelloGateway: sample application that handles application and
gateway events

This section describes the development of a Java application—HelloGateway—that handles
signals originated by MetaSolv Solution clients when gateway events occur.

HelloGateway builds upon all of the implementation patterns discussed earlier in this chapter:

“The basic API setup pattern” on page 21

“The synchronous interaction pattern” on page 26
“The asynchronous interaction pattern” on page 28
“The CORBA client/server pattern” on page 36
“The signal handling pattern” on page 37

L ZER ZER BN JER 2R 4

“The error handling pattern” on page 48

The HelloGateway sample application receives gateway events from MetaSolv Solution
clients. For the purpose of this sample, the application does not perform any external
processing based on the event. The application only receives the event, then updates the event
status to "In Progress" and then to "Completed".

The HelloGateway application consists of these Java files:

¢ HelloGatewayServer.java contains the server’s mainline code.

¢ WDIGatewayRootlmpl.java implements the WDIRoot interface.

¢ WDIGatewayManagerlmpl.java implements the WDIManager interface.
¢ WDIGatewaySignallmpl.java implements theWDISignal interface.

CORBA API Developer’s Reference 53

Chapter 2: Developing Applications Using the APls

¢ RequestThread.java implements a Java thread that processes a single event. All the thread
does is update the event status.

*

SendSignal.java sends gateway event signals to the MetaSolv Solution Application Server.
¢ Utils,java contains the code that connects to the ORB.

54 MetaSolv Software, Inc.

Common Architecture

Figure 5 shows the common interfaces of the MetaSolv Solution APIs.

WDIRoot
(1)

WDIManager
2

@)

Operations
connect
disconnect

Operations
startTransaction

destroy Transaction
startSignal
destroySignal
startinSignal
destroyinSignal
startapinameSession
destroyapinameSession

l

| WDIlapinameSession ||WDITransaction ||WDISignaI ||WDIInSignaI |

| Operations vary by ~Operations
| application commit

“) i rollback

| WDIlapinameSubSession

Operations vary by application

application

Operations Operations
eventOccurred eventInProgress
eventTerminated eventCompleted
eventinProgress eventErrored
eventCompleted

eventErrored

(5) WDINotification

Operations vary by

Figure 5: Common IDL Architecture Interfaces

MetaSolv Solution CORBA API Developer’s Reference

55

Chapter 3: Common Architecture

Table 13: Notes for Common IDL Architecture Interfaces

No. Architecture Description

@8 At the highest level is the WDIRoot interface, which enables connection
management. The WDIRoot layer provides services that are used throughout
the architecture and serve as the connection factory. For more information, see
“WDIRoot Interface” on page 57.

(2) The second level is the WDIManager interface, which enables session, signal,
and transaction management. The WDIManager object reference is obtained
from a successful connect to the WDIRoot. The connection operation of the
WDIRoot object returns an object reference to a WDIManager. WDIManager
provides services to start and destroy transaction objects, signal objects, and
session objects.

3) The third level contains the session, signal, and transaction interfaces, whose
object references are obtained from the WDIManager interface. For more
information, see "Figure 8: WDIManager Interface" on page 59.

4 The optional fourth level contains the more granular subSession object whose
object reference is obtained from the parent session interface. Refer to the
sample flows presented in each API chapter for examples.

(%) The API architecture defines a callback mechanism that is exposed by the
WDINotification interface.

The session or subSession enables access to business application operations. These operations
are detailed business objects that vary by the business functions exposed.

g Our APIs do not necessarily require every interface defined in this document.

56 MetaSolv Software, Inc.

WDIRoot interface

WDIRoot interface

The connect operation of the WDIRoot interface obtains the object reference to the
WDIManager.

Operations
connect
disconnect

WDIRoot

Figure 6: WDIRoot Interface

Connection to the MetaSolv Solution Application Server

To begin a connection, the third-party application must connect to the MetaSolv Solution
Application Server. This connection verifies the user ID and password, and returns the object
reference to the APIs WDIRoot. The connection operation returns a reference to a
WDIManager object.

Connection to the CORBA daemon

By default, all APIs perform an "impl is ready" connection to the daemon in order to register
the availability of its object references. The MetaSolv Solution API system administrator can
set the StrictOMG system parameter to #7ue in the MetaSolv Solution Application Server INI
file. The result is an OMG ORB connect on the WDIRoot object.

After performing the OMG ORB connection, the application server writes an OMG stringified
object reference for the WDIRoot object to a file, using the file name specified by the IORPath
system parameter in the application server INI file and the name of the API server.

CORBA API Developer’s Reference 57

Chapter 3: Common Architecture

Connection to the root object

Figure 7 illustrates the connection process.

\v

]
5

Client API Server

Figure 7: Connection Process
The WDIRoot interface exposes the operations shown in the following table.

Table 14: WDIRoot Interface Operations

Operation Name Description
connect Returns a reference to WDIManager
disconnect Terminates the connection

58 MetaSolv Software, Inc.

WDIManager interface

WDIManager interface

The object reference to the WDIManager is obtained by initiating the connect operation of the
WDIRoot interface, as shown in Figure 8.

Operations

WDIRoot

connect
disconnect

WDIManager [—

Operations

startTransaction
destroyTransaction
startSignal
destroySignal
startinSignal
destroyInSignal
startapiname Session
destroyapinameSession

Figure 8: WDIManager Interface

The WDIManager interface exposes the operations shown in the following table.

Table 15: WDIManager Interface Operations

Operation

Description

startapinameSession

Obtains the object reference of the apinameSession where
apiname designates the specific API, as in startLSRSession

destroyapinameSession

Terminates the established session, as in destroyLSRSession

startTransaction

Establishes a database connection using this process:

The Start operation makes the connection and establishes a
database transaction object.

The API returns a handle for that connection to the initiating
process. The term "handle" is synonymous with a
WDITransaction object reference.

destroyTransaction

Invalidates a database transaction object. Any pending
changes are lost when this function is called if it was not
preceded by a commit.

startSignal

Obtains the WDISignal object reference

CORBA API Developer’s Reference

59

Chapter 3: Common Architecture

Table 15: WDIManager Interface Operations

Operation Description
destroySignal Terminates the Signal
startInSignal Obtains the WDI Insignal object reference
destroyInSignal Terminates the Insignal

g Some APIs do not define startSignal, destroySignal, startinSignal, destroyInSignal,
startTransaction, or destroyTransaction. For details about a specific API, see the chapter

of this guide that describes that API.

API session interfaces (session processing)

The object reference to the apinameSession is obtained by initiating the startapinameSession

operation of the WDIManager, as shown in Figure 9.

WDIRoot

Session

Operations
vary by application

i

connect

i Operations
disconnect

WDIManager Operations

startTransaction
destroyTransaction
startSignal
destroySignal
startinSignal
destroylnSignal
startapinameSession
destroyapiname Session

Figure 9: Basic Session Interface

Operations in sessions and subsessions vary according to the API.

60 MetaSolv Software, Inc.

WDIManager interface

WDITransaction interface (database transactions)

The object reference to the WDITransaction is obtained by initiating the startTransaction
operation of the WDIManager interface. Third-parties can use the API to coordinate the
database transactions because no assumed paths or commit points are built into the API.
Commit and rollback are operations of the WDITransaction interface.

WDIRoot Operations
connect

disconnect

Operations
startTransaction
WDIManager destroyTransaction
startSignal
destroySignal
startinSignal
destroyinSignal
startapinameSession
destroyapinameSession

; Operations
WDITransaction commit

rollback

Figure 10: WDITransaction Interface

The commit operation uses a database handle and saves any pending changes to the database.
Once a commit has occurred, all database updates are applied to the database. After a commit,
the transaction object is still valid and can continue to be used.

The rollback operation uses a database handle and rolls back any pending changes to the
database. Once a rollback has occurred, any pending database changes are discarded. After a
rollback, the transaction object is no longer valid and cannot be used for further operations.

In APIs that use the commit and rollback operations, your application must specifically call
commit and rollback. However, some APIs do not use the WDITransaction interface. In these
cases, the MetaSolv Solution is responsible for database transaction management.

WDISignal interface (outbound signal processing)

The object reference to the WDISignal is obtained by initiating the startSignal operation of the
WDIManager interface.

If the signal is a gateway event signal, certain key data as defined in the WDIEvent structure
(in the IDL) is passed. If the signal is an application event signal, the data to be passed varies,
depending on the application.

CORBA API Developer’s Reference 61

Chapter 3: Common Architecture

The third party is responsible for implementing the eventOccurred and eventTerminated
operations of the WDISignal interface. MetaSolv is responsible for implementing the
remaining operations of the WDISignal interface.

Operations
WDIRoot connect

disconnect

Operations
WDIManager [— startTransaction
destroyTransaction
startSignal
destroySignal
startinSignal
destroylnSignal
startapiname Session
destroyapinameSession

Operations
WDISignal eventOccurred
eventTerminated
eventinProgress
eventCompleted
eventErrored

Figure 11: WDISignal Interfaces
Table 16: WDISignal Interface Operations

Operation Description

eventOccured The MetaSolv Solution initiates a signal indicating that a gateway
event of interest to the third-party software has occurred.

eventTerminated |The MetaSolv Solution terminates an event to notify the third-party
application that the MetaSolv Solution is no longer interested in
completing the event and is no longer interested in receiving status
updates for the event.

eventlnProgress | The third-party application sets the status of the gateway event to
"In Progress" when it has received and begun processing the signal.

eventCompleted | The third-party application sets the status of a gateway event to
"Completed" when it has successfully finished processing the event.

62 MetaSolv Software, Inc.

WDIManager interface

Table 16: WDISignal Interface Operations

Operation Description

eventErrored The third-party application sets the status of the gateway event to
"Error" when an error has occurred while processing the event. This
operation also provides a mechanism for error information to be
communicated to the APIL.

WDIInSignal interface (inbound signal processing)
The object reference to the WDIInSignal is obtained by initiating the startInSignal operation
of the WDIManager interface. The WDIInSignal interface allows the third-party application to
update statuses of unsolicited or inbound gateway events in the Work Management subsystem.
This is illustrated in Figure 12.

Operations
WDIRoot ‘— connect

disconnect

Operations
startTransaction
destroyTransaction

startSignal
WDIMa@ destroySignal
startinSignal
destroylnSignal
startapinameSession

destroyapinameSession

Operations
. eventInProgress
WDlinSignal eventCompleted
eventErrored

Figure 12: WDIInSignal Interfaces

Table 17: WDIInSignal Interface Operations

Operation Description

eventInProgress The third-party application sets the status of a gateway event to
"In Progress" when it has started processing an event.

eventCompleted The third-party application sets the status of a gateway event to
"Completed" when it has successfully finished processing an
event.

eventErrored The third-party application sets the status of a gateway event to

"Error" when an error has occurred while processing an event.

CORBA API Developer’s Reference 63

Chapter 3: Common Architecture

WDINoatification interface (callback mechanism)

Most operations implemented within the APIs require a WDINotification object reference as
the first input parameter. The third-party application instantiates a WDINotification object.

The WDINotification interface enables a callback mechanism to notify the third-party
application of the result of an operation invoked against it. The callback mechanism is used to
communicate the results of an asychronous operation.

g Operations of the WDINotification interface vary according to the application.

The MetaSolv Solution uses Novel Jbroker Orb version 4.0.1 to support the Corba API. This
software supports the 2.4 Corba Standard. This software is shipped as part of the MetaSolv
Solution product line and does not require you to purchase anything from a third party. This
ORB inter operates with all other ORBs in the marketplace.

The WDINotification interface has operations defined indicating the success or failure of an
invoked operation. The parameters of the WDINotification interface include a reference
(which varies by application, for example a document number for LSR-related callbacks) and
an error structure where appropriate. The third-party application is responsible for
implementing the operations in the WDINotification interface.

If an error is encountered during the processing of an API object implementation, a callback is
performed to the third-party application indicating that the operation has failed and why the
operation failed. The reasons for the failure are communicated by an error structure
(WDIErrSeq), which may contain multiple, detailed error messages. Different errors can be
encountered while attempting to process a given request, as shown in Figure 13.

64 MetaSolv Software, Inc.

WDIManager interface

Third-party application
invokes an import

Import API processes data
and validates against the
~ business rules

Data
inserted into

MetaSolv
Solution

MetaSolv Solution
invokes
succeeded
operation on
WDINotification
object

The MetaSolv Solution
failed operation of
WDINotification object

Third-party
application logs
detailed error
messages

Third-party
application may
update status of

WDIEvent to

Completed

Third-party
application may send
error status update to

(WDIEvent to Error)

Figure 13: Sample Flow for Successful and Error Conditions

Displaying errors is the responsibility of the third-party application because the third-party
application functionality and error processing differs among software package. The API
provides a mechanism for errors to be communicated back to the Work Management
subsystem through the eventErrored operation of the WDISignal interface.

For example, with a third-party application importing a local service request confirmation
(LSC) to the LSR API, the following processes can occur:

1. The third-party application invokes the importLSC operation with the appropriate data.

2. The importLSC operation processes the LSC data.

*

L 2

No detail error messages are generated.

During the processing, the LSC is validated against the MetaSolv Solution database
business rules for the LSC.

If all data is valid, it is inserted into the MetaSolv Solution, and the successful
operation is invoked on the notification interface.

CORBA API Developer’s Reference

65

Chapter 3: Common Architecture

If the import LSC process encounters an error or errors, the LSC is not inserted into the
MetaSolv Solution database. The error code structure is populated with detailed error message
information. Examples of these include "location code not in the database" and "NC/NCI
codes are invalid". The MetaSolv Solution invokes the failed operation of the
WDINotification interface.

The third-party application is responsible for logging the errors and making them available to
the user. Typically, this means the data displays to the user. The third-party application may
optionally communicate this error information back to the MetaSolv Solution through the
error status update for an event.

66 MetaSolv Software, Inc.

The Infrastructure API

Much of the underlying information in the database is managed by MetaSolv Solution’s
Infrastructure subsystem.

Specific operations for exporting lists of information from the database are provided by the
Infrastructure API. These lists of information include:

¢ Structured formats and structured format components

¢ Geographic areas and types

¢ Code categories and code category values, including languages

¢ Network locations

Additional operations are provided and used to manage end-user and network location

information. These operations are explained in further detail in the
"NetworkLocationSubSession" section of this chapter.

The CORBA server name used by the Infrastructure API is INFRASTRUCTURESERVER.

Implementation concepts

Operational differences between the Infrastructure subsystem
and API

Latitude and longitude fields are not calculated and validated

Unlike the Infrastructure subsytem in the MetaSolv Solution, the Infrastructure API does not
allow for calculation of the Latitude and Longitude fields if data is entered in the Vertical
and Horizontal fields of the associateLocationRelationships operation. Validation also does
not occur if data is entered into the Latitude and Longitude fields.

Switch network area field defaults to first switch network area

The Infrastructure API does not support the Switch Network Area field selection in the
queryNetworkLocations V2 operation.

If there is only one switch network area in the Switch Network Area field, the Switch
Network Area field is defaulted to it. If there are more than one switch network areas in the

MetaSolv Solution CORBA API Developer’s Reference 67

Chapter 4: The Infrastructure API

Switch Network Area ficld, the first switch network area listed in the database, populates that
field.

Query across all address formats

Unlike the Infrastructure subsystem in the MetaSolv Solution, the Infrastructure API does not
allow you to query for all address formats when using the queryNetworkLocation V2
operation.

Key MetaSolv Solution concepts

To understand the information made available through the Infrastructure API, you must
understand certain key concepts used in the MetaSolv Solution. In particular, you should
understand how the MetaSolv Solution uses these kinds of information:

¢ Code categories and code category values

Geographic areas and types

Network locations

Structured formats and structured format components

* 6 o o

Customized attributes (CAs) - CAs are what MetaSolv Solution users use to add an
attribute (or property, or value) to a building block. They offer a way to add company-
specific information to the MetaSolv Solution. They are custom because your company’s
unique business processes and technological practices dictate how CAs are used. Several
CAs are included in the data that comes with the MetaSolv Solution, and those CAs are
immediately available for association to building blocks. MetaSolv Solution users can
also create new CAs.

Building blocks are the only parts of the software with which CAs can be associated.
Templates, elements, connections, and connection allocations are the four building block
types from which MetaSolv Solution users can select building blocks for association with
a CA. Building block types are predefined and unchangeable.

Infrastructure API files

These IDL files are used in the Infrastructure API:

WDlIInfrastructure.idl
WDIInfrastructureTypes.idl
WDINetworkLocation.idl
WDINetworkLocationTypes.idl
WDINetworkLocationTypes_v2.idl
WDL.idl

WDIUtil.idl

L ZBK 2R BN R JEE 2N 4

68 MetaSolv Software, Inc.

Infrastructure interface

Infrastructure interface

Figure 14 shows the relationship of the interfaces within the Infrastructure API.

WDIRoot

WDIManager

WDlInfrastructure::
WDINotification | |nfrastructureSession

NetworkLocationSubSessi

WnDlInfrastructure.idl
WDINetworkLocation::
on WDINoatification
WDINetworkLocaton.idl

Figure 14: Infrastructure API Interfaces

WDIManager

The following table lists the operations available in the WDIManager interface of the

WDIInfrastructure.idl file.

Table 18: WDIManager Interface Operations in the Infrastructure API

Operation

Description

startInfrastructureSession

Obtains the object reference of the
InfrastructureSession

destroyInfrastructureSession

Terminates the InfrastructureSession

startTransaction commit
rollback
destroyTransaction Terminates the transaction

startNetworkLocationSubSession

Returns the NetworkLocationSubSession

destroyNetworkLocationSubsession

Destroys the NetworkLocationSubsession

g For complete details on the WDIManager interface, “WDIManager interface” on

page 59

CORBA API Developer’s Reference

69

Chapter 4: The Infrastructure API

InfrastructureSession interface

The following table lists the operations that comprise the InfrastructureSession in the

WDIInfrastructure.idl file.

Table 19: Infrastructure API InfrastructureSession Interface Operations

Operation

WDIlInfrastructure::WDINotification
Operations

getMaximumReturnedRows

Implemented by caller to return maximum number of
records for Infrastructure API server to return for
certain queries (0 = no limit).

getStructureTypes

getStructure TypesSucceeded
operationFailed

getStructureFormatsGivenType

getStructureFormatsGivenTypeSucceeded
operationFailed

getStructureFormatsGivenTypeAndArea

getStructureFormatsGivenTypeAndAreaSucceeded
operationFailed

getComponentsGivenStructureFormat

getComponentsGivenStructureFormatSucceeded
operationFailed

getValidValuesGivenStructureFormat
Component

getValidValuesGivenStructureFormatComponent
Succeeded
operationFailed

getGeoAreaTypes

getGeoAreaTypesSucceeded
operationFailed

getGeoAreaTypesGivenCountry

getGeoAreaTypesGivenCountrySucceeded
operationFailed

getGeoAreasGivenType

getGeoAreasGivenTypeSucceeded
operationFailed

getGeoAreasGivenTypeAndCountry

getGeoAreasGivenTypeAndCountrySucceeded
operationFailed

getRelatedGeoAreasGivenAreaAndType

getRelatedGeoAreasGivenAreaAndTypeSucceeded
operationFailed

70 MetaSolv Software, Inc.

Infrastructure interface

Table 19: Infrastructure API InfrastructureSession Interface Operations

WDIInfrastructure::WDINotification

PEIETET Operations

getLanguages getLanguagesSucceeded
operationFailed

getCodeCategories getCodeCategoriesSucceeded
operationFailed

getCodeCategory Values getCodeCategory ValuesSucceeded
operationFailed

queryConditionCode queryConditionCodeSucceeded
operationFailed

getConditionCode getConditionCodeSucceeded

operationFailed

getNetworkAreasGivenLocation

getNetworkAreasGivenLocationSucceeded
operationFailed

startNetworkLocationSubSession

Obtains the object reference of the
NetworkLocationSubSession

destroyNetworkLocationSubSession

Terminates the NetworkLocationSubSession

getCaUsageSetInfoFromServiceltem

getCaUsageSetInfoFromServiceltemSucceeded
operationFailed

getCaUsageSetInfoFromTemplate

getCaUsageSetInfoFromTemplateSucceeded
operationFailed

getCaUsageSetInfoFromElement

getCaUsageSetInfoFromElementSucceeded
operationFailed

getCaUsageSetInfoFromConnector

getCaUsageSetInfoFromConnectorSucceeded
operationFailed

getMultipleCaUsageSetInfo

getMultipleCaUsageSetInfoSucceeded
operationFailed

CORBA API Developer’s Reference

71

Chapter 4: The Infrastructure API

InfrastructureSession operation descriptions
This section describes the operations defined in the WDIInfrastructure.IDL file.

Query operation

*

queryConditionCode

Retrieves a list of condition codes that can be added to a mounting position or a port
address. Criteria for the search is passed in the ConditionCode structure. See the
ConditionCode structure in WDIInfrastructureTypes.idl for rules concerning the criteria.
A WDITransaction object is intentionally not passed for this operation and assumes
responsibility for transaction management.

Export operations

L 2

getStructure Types

Retrieves a list of all structure types in the database.
getStructureFormatsGivenType

Retrieves a list of active structure formats bound by the input structure type.
getStructureFormatsGivenTypeAndArea

Retrieves a list of active structure formats bound by the input structure type for a given
input geographic area identifier.

getComponentsGivenStructureFormat

Retrieves a list of active structured format components based on the input active structured
format.

getValid ValuesGivenStructureFormatComponent

Retrieves a list of active valid values based on the input structured format component
identifier.

getGeoAreaTypes

Retrieves a list of all geographic area types in the database.
getGeoAreaTypesGivenCountry

Retrieves a list of geographic area types used by the input country name.
getGeoAreasGivenType

Retrieves a list of the active geographic areas bound by the input geographic area type.

72 MetaSolv Software, Inc.

Infrastructure interface

getGeoAreasGivenTypeAndCountry

Retrieves a list of the active geographic areas used by the input country name and bound
by the input geographic area type.

getRelatedGeoAreasGivenAreaAndType

Retrieves a list of the active geographic areas related to the input geographic area and
bound by the input geographic area type.

getLanguages

Retrieves a list of all languages in the database.

getCodeCategories

Retrieves a list of code categories bound by the input language code.
getCodeCategoryValues

Retrieves a list of code category values bound by the input code category number and
language code. Only values with an effective from date on or before the current date, and
values with a populated effective to date after the current date are returned. A null value is
not returned.

getConditionCode

Retrieves the condition code, description, and warning type for a given condition code.
The conditionCode parameter is required, and must contain a valid condition code, or an
error is returned. This operation is intentionally not passed a WDITransaction object and
assumes responsibility for transaction management.

getNetworkAreasGivenLocation

Retrieves network areas based on the location ID passed in.
getNetworkAreasGivenLocation

Retrieves network areas based on the location ID passed in.
getCAUsageSetInfoFromServiceltem

Retrieves CA usages based on the service item id passed in.
getCAUsageSetInfoFromTempate

Retrieves CA usages based on the template id passed in.
getCAUsageSetInfoFromElement

Retrieves CA usages based on the element type passed in.
getCAUsageSetInfoFromConnector

Retrieves CA usages based on the connector id passed in.

CORBA API Developer’s Reference 73

Chapter 4: The Infrastructure API

¢ getMultipleCaUsageSetInfo
Retrieves CA usages for multiple items passed in.

Export Customized Attribute Process Point IDs

The export customized attribute (CA) operations require you to enter a value for the process
point ID. The following list describes the various process points in the application where CAs
may be exported or rendered for display or update. The process point IDs are:

Export Customize Attribute Process | Description
Operation Point ID

Used by Activation to request CAs for

Activation 69 the Activation Report.

Billing API 71 Used by the Billing API to request CAs.

Used during connection design change
to request CAs for Connections.

Used during connection design to
display CAs for Connections history.
Used during connection design for
disconnect to request CAs for
Connections.

Used by the GLR to show properties for
a Connection.

Used by Network Design to request CAs
for a Network System or Network
Element.

Used during connection design to
request CAs for New Connections.

Change Connection Design 60

Connection Design History 62

Disconnect Connection Design 61

GLR-Network Design Properties 58

Network Design - New 55

New Connection Design 59

Ordering - Change 51 Used by the Optimized Dialog to request
CAs for a Change Order for an existing
Network System, Network Element, or
Connection.

Used by the Optimized Dialog to request
CAs for a Change Order for a
disconnect of a Network System,
Network Element, or Connection.

Used by the Optimized Dialog to request
CAs for a New Network System, New
Network Element, or New Connection.

Ordering - Disconnect 52

Ordering - New 50

Figure 15: Process point IDs

74 MetaSolv Software, Inc.

Infrastructure interface

processPointld is an input for several Infrastructure export methods:

// R R S b I b b I 2E S db I S 2 I S b I SR S I S S b I b S IE e S b I Sh b S b R S b I b S S b S b S b S Sb S Sb b S b b Sh b S S b S

// getCaUsageSetInfoFromServiceltem- Retrieves ca usages based on the service
item id passed in.

//

R R R I b S b b b I S b S Sb b Sb b Sb b b SR S b b S b b 2b S dh b S b b S R S SR R S b I S b S 2b S b b 2 b S Sb b S db I Sb b b 2h b S Sb b S 2b I 2

void getCaUsageSetInfoFromServiceltem (
in MetaSolv::CORBA::WDI::WDITransaction aWDITransaction,
in WDINotification aWDINotification,
in long serviceltemId,
in long processPointId,
in long referenceNumber)
raises (MetaSolv::CORBA: :WDI: :WDIExcp) ;
//

Ak hkhkhk kA hhkhkhk Ak kA hhkhhkhkhkh bk hkhkdhhkhkhk Ak hkhkhhkhhkhkhkhhkhkhkhkhhkhhkdAhhkhkhhkrhkhkhhkrhkhkhkhhkhkkhkrxkhkxkxx

// getCaUsageSetInfoFromTemplate- Retrieves ca usages based on the template

// id passed in. //

Ak hkhkhkhk kA hhkhkhk Ak kA hhkhhkhkhkhk bk hkhkdhkhkhk kA hhkhkhhkhhkhkhhhkhhkhkhhkhhkdkhhkhkhhkrhkhkhkhkrhkhkhkhhkhkkhkrxkhkxkxx*x

void getCaUsageSetInfoFromTemplate (
in MetaSolv::CORBA::WDI::WDITransaction aWDITransaction,
in WDINotification aWDINotification,
in long templateld,
in long processPointId,
in long referenceNumber)
raises (MetaSolv::CORBA: :WDI::WDIExcp) ;
//

R R R R R R R R S R R R R R R R R R R R R R R b b b b b b b b b I i Y

// getCaUsageSetInfoFromElement- Retrieves ca usages based on the element
name passed in.

//

R R R R R R R S R R R R R R R R R R R R R b b b R b b b b b I i

void getCaUsageSetInfoFromElement (
in MetaSolv::CORBA::WDI::WDITransaction aWDITransaction,
in WDINotification aWDINotification,
in string elementType,
in long processPointId,

in long referenceNumber)

CORBA API Developer’s Reference 75

Chapter 4: The Infrastructure API

raises (MetaSolv::CORBA: :WDI::WDIExcp) ;
//

KA KA KA A AR A A I A A A AR A A A A A AR A A A A A A A Ak kA Kk

// getCaUsageSetInfoFromConnector—- Retrieves ca usages based on the connector
id passed in.

//

KA KA AR A A A A A A A A A I A A KA A AR A A I AR A AR A A A A A AR A A A A A A kA Ak

void getCaUsageSetInfoFromConnector (
in MetaSolv::CORBA::WDI::WDITransaction aWDITransaction,
in WDINotification aWDINotification,
in long connectorId,
in long processPointId,
in long referenceNumber)
raises (MetaSolv::CORBA: :WDI: :WDIExcp) ;
//

KA AR A AR AR A A R A A R AR A A A A A A A A A AR A AR A AR AR A AR AR A A A A A A A AR AR AR A AR AR A AR A AR A AR A ARk kK

// getMultpleCaUsageSetInfo- Retrieves ca usages for multiple items passed
in.
kA hkhkhk Ak hhkhkhkhhk kA hhkhkkhk bk hkkhkhkhhkhhkhkhhkh kA hkhkhkhkhkhk kA hk kA bk hhkhkhkhhkkhkhkhrhhkkhhkhrhkkhkhkhrhhkhkhhhkhk*x*x
void getMultipleCaUsageSetInfo (
in MetaSolv::CORBA::WDI::WDITransaction aWDITransaction,

in WDINotification aWDINotification,

in MetaSolv::CORBA::WDIInfrastructureTypes::CalnputltemSeq
items,

in long processPointId,
in long referenceNumber)

raises (MetaSolv::CORBA: :WDI::WDIExcp) ;

NetworkLocationSubSession

The NetworkLocationSubSession is a subsession in the Infrastructure API that manages
network location database transactions in the Infrastructure subsystem.

The NetworkLocationSubSession includes the following functionality described in detail in
later sections:

¢ Associate and disassociate location relationships with a network location

Associate and disassociate network areas from an end-user location

Associate and disassociate tandem types from a network location

Disassociate Secondary LSO’s from an end-user location.

* 6 o o

Query, create, update and delete end-user locations

76 MetaSolv Software, Inc.

Infrastructure interface

¢ Query, create, update and delete network locations
¢ Query network areas

The NetworkLocationSubSession interacts solely with the Infrastructure server which is
responsible for commit and rollback functionality. The WDITransaction parameter is not a
part of any operation used within this API. Prior operations that used the WDITransaction
parameter are deprecated and replaced with new versioned operations.

NetworkLocationSubSession interface operations

The following table lists the operations in the NetworkLocationSubSession of the
WDINetworkLocation.IDL file and their accompanying notification operations.

Table 20: Network Location Operations

Operation WDINotifications

queryNetworkLocations networkLocationQuerySucceeded — Deprecated

This operation has been deprecated from the networkLocationQueryFailed — Deprecated

WDIEquipment.IDL and is replaced by
queryNetworkLocations V2

getNetworkLocation networkLocationGetSucceeded — Deprecated

This operation has been deprecated from the networkLocationGetFailed — Deprecated

WDIEquipment.IDL and is replaced by

getLocation

queryNetworkLocations V2 queryNetworkLocationsSucceeded v2
(replaces networkLocationQuerySucceeded)
operationFailed
(replaces networkLocationQueryFailed)

queryEnduserLocations queryEnduserLocationSucceeded
operationFailed

queryNetworkAreas queryNetworkAreaSucceeded
operationFailed

getLocation getLocationSucceeded
(replaces networkLocationGetSucceeded)
operationFailed (replaces networkLocationGetFailed)

createLocation createLocationSucceeded

operationFailed

CORBA API Developer’s Reference 77

Chapter 4: The Infrastructure API

Table 20: Network Location Operations

Operation WDINotifications
updateLocation updateLocationSucceeded
operationFailed
deleteLocation deleteLocationSucceeded
operationFailed
getServingOfficeTypes getServingOfficeTypesSucceeded

operationFailed

getCentralOfficeExchangeAreas

getCentralOfficeExchangeAreasSucceeded
operationFailed

getNetworkLocationCategories

getNetworkLocationCategoriesSucceeded
operationFailed

getNetworkLocationTypes

getNetworkLocationTypesSucceeded
operationFailed

getNetworkLocationRelationshipTypes

getNetworkLocationRelationshipTypesSucceeded
operationFailed

getTandemTrafficCodes

getTandemTrafficCodesSucceeded
operationFailed

getLocationCodeFormats

getLocationCodeFormatsSucceeded

operationFailed
getTandemServices getTandemServicesSucceeded

operationFailed
getBuildingLocations getBuildingLocationsSucceeded

operationFailed

getAssociatedNetwork Areas

getAssociatedNetworkAreasSucceeded
operationFailed

getAvailableNetworkAreas

getAvailableNetworkAreasSucceeded
operationFailed

getTelephoneNumberSwitchLocations

getTelephoneNumberSwitchLocationsSucceeded
operationFailed

78 MetaSolv Software, Inc.

Infrastructure interface

Table 20: Network Location Operations

Operation

WDINotifications

getDataSwitchLocations

getDataSwitchLocationsSucceeded

operationFailed
getTandemLocations getTandemLocationsSucceeded

operationFailed
getIncorporatedCodes getIncorporatedCodesSucceeded

operationFailed

getMultipleAddressPatterns

getMultipleAddressPatternsSucceeded
operationFailed

associateLocationRelationships

associateLocationRelationshipsSucceeded
operationFailed

unassociateLocationRelationships

unassociateLocationRelationshipsSucceeded
operationFailed

associateTandemTypes

associateTandemTypesSucceeded
operationFailed

unassociateTandemTypes

unassociateTandemTypesSucceeded
operationFailed

associateNetworkAreas

associateNetworkAreasSucceeded
operationFailed

unassociateNetworkAreas

unassociateNetworkAreasSucceeded
operationFailed

unassociateSecondaryLSOs

unassociateSecondaryLSOsSucceeded
operationFailed

CORBA API Developer’s Reference

79

Chapter 4: The Infrastructure API

NetworkLocationSubSession operation descriptions
This section describes the operations defined in the WDINetworkLocation.IDL file.

Query operations

*

queryNetwork Locations (Deprecated from the WDIEquipment.IDL)
Requests and returns all network locations that match specific criteria.
queryNetworkLocations V2

Requests and returns network locations for specific criteria, limiting the number of records
returned.

queryEnduserLocations
Requests and returns end-user locations based on specific criteria.
queryNetworkAreas

Requests and returns network areas based on specific criteria.

Get operations

*

getNetworkLocation (Deprecated from the WDIEquipment.IDL)
Retrieves a specific network location based on its network location ID.
getLocation

Retrieves an existing network or end-user location, or end-user location with network
location alias.

getServingOfficeTypes

Retrieves servicing office types used with network location.
getCentralOfficeExchangeAreas

Retrieves central office exchange area values for use with network location.
getNetworkLocationCategories

Retrieves network location category values.

getNetworkLocationTypes

Retrieves types of network locations.
getNetworkLocationsRelationshipTypes

Retrieves types of network location relationships for use with network locations.

80 MetaSolv Software, Inc.

Infrastructure interface

getTandemTrafficCodes

Retrieves tandem traffic code values used with network locations.
getTandemServices

Retrieves tandem service values used in network locations.
getBuildingLocations

Retrieves location codes for locations that are in buildings.
getAssociatedNetworkAreas

Retrieves network area associated with a particular end-user location.
getAvailableNetworkAreas

Retrieves available network areas that can be associated with a particular end-user
location. This parameter is optional when creating an end-user location. This operation
requires that a TN switch is associated with the end-user location.

getTelephoneNumberSwitchLocations
Retrieves location codes for telephone number switches used in end-user locations.

The client application must specify a partial value that the API uses to filter values and
return location codes meeting this criteria. The telephoneNumberSwitchLocation
operation is optional when creating an end-user location. The user must specify at least a
partial value for the search. An end-user location can be created without a TN switch.

getLocationCodeFormats

Retrieves location code formats for network locations.
getDataSwitchLocations

Retrieves location codes for data switches used in end-user locations.

The client application must specify a partial value that the API uses to filter values and
return location codes for data switches meeting this criteria. The getDataSwitchLocations
operation is operational when creating an end-user location. You must specify at least a
partial value for the search. An end-user location can be created without the
getDataSwitchLocations operation.

getTandemLocations
Retrieves location code values for tandem locations for network locations.
getIncorporatedCodes

Retrieves incorporated codes (inside incorporated area, outside incorporated area, and
none) used to create a new end-user location.

CORBA API Developer’s Reference 81

Chapter 4: The Infrastructure API

¢ getMultipleAddressPatterns

Retrieves patterns (odd, even, or both) for a range of end-user locations. The user provides
the start and end range, and indicate if those within the range are odd numbered, even
numbered, or both.

Create operation
& createLocation

Creates a new network, end-user location, or end-user location with network location alias
and store it on the database.

Update operation
¢ updateLocation

Applies updates to a network, end-user location, or end-user location with network
location alias in the database.

Delete operation
& deleteLocation

Removes a network or end-user location from the database. If the location is an end-user
location with a network location alias, the user can choose to delete both the network and
end-user location entries, delete just the end-user location entry, or delete the network
location alias.

When network location type is B for an end-user location with a network location
code alias, the user can delete just the alias, delete just the end-user, or delete both
the end-user and network location entries.

Associate operations
¢ associateLocationRelationships
Associates location relationships to a network location.
¢ associateTandemTypes
Associates tandem types to a network location.
¢ associateNetworkAreas

Associates network areas with a new or existing end-user location. Association of network
areas to an end-user location can occur at the time the location is created. However, this
class provides a more direct path for this association process so that existing end-user
locations can have the association done without having to go through the update process.

82 MetaSolv Software, Inc.

Process flows

It assumes that a telephone number (TN) switch is specified for this end-user location. A
TN switch must be set for the end-user location or an error will occur.

Unassociate operations
¢ unassociateLocationRelationships
Removes location relationships from a network location.
¢ unassociateTandemTypes
Removes tandem types from a network location.
¢ unassociateNetworkAreas

Removes network area associations from an end-user location. The switch network area
will not be removed or disassociated through this process.

¢ unassociateSecondaryLLSOs

This operation unassociates secondary local servicing offices associated with an end-user
location. Since end-user location is a type of network location, address and related
formatting are identical to that of network location.

Process flows

This section contains sample process flows for each type of signal: solicited and unsolicited.
Use the sample flow as a template for developing your own process flows.

Solicited messages

A solicited message is a message initiated by the MetaSolv Solution API servers. The
Infrastructure API does not support solicited messages at this time.

Unsolicited messages

An unsolicited message is a message initiated by the third-party software. The Infrastructure
API plays the role of the server, and a third-party application plays the role of the client with
the exception of the callback processing.

CORBA API Developer’s Reference 83

Chapter 4: The Infrastructure API

Sample unsolicited message process flow for exporting
infrastructure information

The overall process flow for exporting infrastructure information is as follows:

1.

The third-party application binds to the MetaSolv Solution Application Server to get a
WDIRoot object reference.

The third-party application invokes the connect operation of the WDIRoot interface,
which yields a WDIManager object reference.

The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference and starts a database transaction.

The third-party application invokes the startinfrastructureSession operation of the
WDIManager interface to get an InfrastructureSession object reference.

The third-party application instantiates a third-party implementation of a WDINotification
object.

The third-party application invokes the desired operation of the InfrastructureSession
object, passing the WDINotification object.

The Infrastucture server either returns the requested data structure asynchronously via
invocation of the appropriate Succeeded operation of the WDINotification object, or
returns exception information via invocation of the operationFailed operation of the
WDINotification object.

The third-party application invokes the destroyinfrastructureSession operation of the
WDIManager interface.

The third-party application invokes the destroyTransaction operation of the WDIManager
interface.

10. The third-party application invokes the disconnect operation of the WDIRoot interface.

84 MetaSolv Software, Inc.

The Inventory and Capacity Management API

The Inventory and Capacity Management (ICM) API provides the IDL for importing
equipment and exporting circuits and equipment. The ICM API provides beginning-to-end
visibility of service and network assets, including facilities, equipment, and circuits. By
exposing equipment specifications and installed locations, as well as circuit, trunk, and facility
capacity, the ICM API enables you to query for your capacity on facilities, trunks, PVCs, and
SONET networks.

The ICM API also allows you to query for all equipment located at a network location,
including all associated port information, hard-wired cross-connect information, and software
cross-connect information.

The ICM API also enables you to take these actions in the MetaSolv Solution database:

¢ Assign and unassign [P addresses
Create, update, and delete network elements

Create and destroy hard-wired cross-connects

L 2BK 2R 4

Create, update, and delete condition codes and comments for one or more physical port
addresses or equipment mounting positions on a piece of equipment

Install, update, move, copy, uninstall, and delete equipment
Query for condition codes

Query for IP addresses

Query for network elements

Query for network element types

L ZBK JER BN JER 2R 4

Validate network element type references

The CORBA-registered name for the API server process used by the ICM API is
DLRSERVER.

g The ICM API does not include the getSwitchActivation V5 and
getTransportProvisioning_ V5 operations that are described in the IDL files used by the
ICM API The getSwitchActivation V5 operations is enabled only if you have purchased
a license for the Switch Provisioning Activation API. The getTransportProvisioning V5
operation is enabled only if you have purchased a license for the Transport Provisioning
Activation API.

MetaSolv Solution CORBA API Developer’s Reference 85

Chapter 5: The Inventory and Capacity Management API

Key MetaSolv Solution concepts

This section of the chapter identifies and describes key concepts used in the MetaSolv
Solution that are also used by the ICM API.

Equipment types, equipment specifications, and equipment

In order to understand how the MetaSolv Solution represents your equipment inventory in its
database, you must understand the distinction between equipment types, equipment
specifications, and individual pieces of equipment.

An equipment type is a broad categorization of the different kinds of equipment used in a
telecommunications network, such as the types RELAY RACK, CHANNEL BANK, and
CARD. All relay racks are categorized as type RELAY RACK, regardless of the manufacturer
or part number. Details that differentiate one relay rack from another are defined in the
equipment specifications for those pieces of equipment. Equipment type is a property of an
equipment specification.

An equipment specification is a reusable definition of a specific kind of equipment. Equipment
specifications identify the basic characteristics of a piece of equipment that are shared with
other pieces of the same model of equipment, including:

Equipment type

Manufacturer

Model number

Number of physical mounting positions

Number of logical port addresses

L ZER JER NN JER 2R 4

Number of port address placeholders for each mounting position
¢ Transmission rates for each port address and port address placeholder

A piece of equipment is an instance of an equipment specification. An individual piece of
equipment is a single, concrete piece of equipment that performs a function—such as a
channel card, provides a service to other equipment—such as a jack panel, or houses other
pieces of equipment—such as a relay rack. Information that is specific to a specific piece of
equipment, such as serial number, is stored in the database record for that piece of equipment.

Typically, the smallest piece of equipment tracked in the MetaSolv Solution database is a card,
such as a channel card. The individual electronic components that make up a card, such as
buttons, fuses, transistors, capacitors, and diodes, are not normally included in the MetaSolv
Solution's equipment inventory. The physical connection ports on a piece of equipment are
discussed later in this chapter.

In the MetaSolv Solution, the cables, wires, and fiber strands that are also part of your network
are not part of your equipment inventory. Instead, those items are part of your plant inventory.
Plant inventory information and operations are available in the MetaSolv Solution's Plant API.
For more information, see “The Plant API” on page 133

86 MetaSolv Software, Inc.

Key MetaSolv Solution concepts

Equipment network elements

Network elements represent intelligent devices that make up a telephony or data network and
allow communication and transmission between different types of networks. A network
element can be composed of a system with many shelves, such as a switch or digital cross-
connect system (DCS), or it can be a SONET node. SONET nodes are defined in the the
MetaSolv Solution's SONET network design module. Network elements are defined in the
MetaSolv Solution's Equipment Administration module.

Network elements can also be defined as gateway network elements (GNE3s), allowing them to
be communicated with locally, remotely, and via other network devices, such as a Network
Management System (NMS). Defining a network element as a gateway network element
allows you to log into that element, enabling communication and exchange transactions, such
as software cross-connect commands. Defining remote access information is optional for
network elements, but it is required for GNEs. GNEs must have one of the following fields or
field combinations defined on the MetaSolv Solution's Network Element Properties window -
Node tab.

¢ The IP Addr, Port, and Shelf fields
¢ The Dial Up field
¢ The Other field

Target identifiers (TIDs) can be associated with multiple shelves through the network element,
eliminating the need for separate identifiers at the shelf level when all the shelves are part of
the same system, such as in the case of a switch or a DCS. TIDs are displayed on the CLR/
DLR when an assignment is made to a card that is installed in a shelf that is associated with the
element. TIDs are also displayed on the CLR/DLR when an assignment involves equipment
that is associated with a node, whether it be through a physical assignment or an enabled port
assignment. This also applies to network route assignments, network assignments, facility
assignments, and equipment assignments.

Equipment name aliases

You can use an equipment name alias to give a second name to a piece of equipment. This
allows you to refer to that piece of equipment by either name.

You might need to use equipment name aliases if a company you share data with uses a
different naming convention than you do. For example, equipment or circuits that you do not
own might be inventoried as part of your network. This might be required if equipment is
located in a co-located environment, such as an associated Local Exchange Carrier’s (LEC’s)
or Inter-Exchange Carrier’s (IXC’s) building, where different names are used for equipment.

Equipment name aliases are displayed on the CLR/DLR in the Notes section, but can be
suppressed when the associated design lines are suppressed.

CORBA API Developer’s Reference 87

Chapter 5: The Inventory and Capacity Management API

Equipment installation in the MetaSolv Solution

Equipment installation is the process of selecting an equipment specification and associating it
with a specific network location.

g When importing equipment via the ICM API, you must import only one piece of
equipment at a time. You cannot import an entire hierarchy of equipment with a single
operation.

When you install a piece of equipment in the MetaSolv Solution, you must:
¢ Indicate which equipment specification you want to use as the basis for the piece of
equipment you are installing

& Specify additional details about the piece of equipment you are installing to distinguish it
from other pieces of equipment installed at the same network location from the same
equipment specification

If the equipment has defined mounting positions, you can install other pieces of equipment in
those mounting positions.

In addition to installing equipment, you can:
¢ Move equipment between mounting positions at the same network location

¢ Move equipment between network locations

¢ Uninstall equipment (move equipment from the installed equipment hierarchy to the spare
equipment hierarchy at a network location)

L 4

Copy equipment definitions to additional mounting positions or to other locations

L 4

Delete equipment from a network location

¢ Specify hard-wired cross-connects between port addresses on two pieces of equipment at
the same network location

¢ Specify condition codes for any physical port addresses and mounting positions on an
installed or spare piece of equipment

¢ Assign and unassign IP addresses to physical and virtual port addresses

Mounting positions

A mounting position is a physical place on a piece of equipment where other equipment can be
fastened or installed. For example, the mounting positions on a relay rack are a series of
boltholes, while the mounting positions in a channel bank are a series of card slots. Other
pieces of equipment can be fastened or installed in those mounting positions.

g The presence of a mounting position does not imply programmed or engineered capability
to recognize, process or forward transmissions.

Mounting positions are only specified for equipment that has one or more places where other
equipment is fastened or installed. For example, a D4 channel bank has 48 mounting positions.

88 MetaSolv Software, Inc.

Key MetaSolv Solution concepts

Therefore, the equipment specification for the D4 channel bank card indicates that it has 48
mounting positions. The channel cards, which occupy the D4 channel bank's 48 mounting
positions, have no mounting positions. Therefore, the equipment specifications for the channel
card indicate that they do not have mounting positions.

Ports and port addresses

Physical ports—also referred to as port addresses—usually provide the means to connect
equipment in a network by using a plug and socket connection. A physical port is a physical
location on a piece of equipment where signals enter or leave.

Because signals enter or exit, ports are assigned a rate code. The rate code assigned to a port
implies the ability to attach a circuit with a rate code of equal value.

Virtual port addresses

Virtual ports are conceptual ports that do not physically exist on a piece of equipment. Virtual
ports allow you to work with digital loop carrier (DLC) systems, where the capacity of the
system is greater than the transport channels available. Virtual ports also allow you to assign
an IP address to a piece of equipment rather than to a specific physical port.

You can only assign circuits to the lowest level virtual ports. Once you assign a circuit to the
lowest level (child) virtual port, the status of the parent-level virtual port remains
"Unassigned" and the the status of the child-level virtual port changes as follows:

& Ifthe circuit is associated with a service request, the circuit goes into “Pending” status
immediatedly, and then into “In Service” status when the service request’s Due Date task
is completed.

¢ If the circuit is not associated with a service request, the circuit goes directly into “In
Service” status.

Enabled ports and enabled port addresses

Unlike ordinary ports, an enabled port is not a physical place on a piece of equipment. Instead,
it is a port that the equipment creates through its internal software. For example, a DCS is used
to cross-connect channels from one facility to another. This connection is accomplished
digitally through enabled ports. A DCS with two physical DS1 ports may have no mounting
positions, but can still enable—via software—24 ports for each DS1. The software-enabled
ports are then used to cross-connect DSO channels riding the DS1s.

The rate code for an enabled port address cannot exceed the rate code for the primary port
address. The DCS in the example has two primary port addresses with DS1 transmission rates.
Therefore, the DCS can enable only a DS1 or DS0 transmission rate port.

CORBA API Developer’s Reference 89

Chapter 5: The Inventory and Capacity Management API

Port address placeholders

As a rule, mounting positions do not provide physical ports for attaching circuits. A port
address placeholder is a construct in the MetaSolv Solution database that allows you to assign
logical ports to mounting positions where equipment with physical ports is scheduled to be
installed. In short, port address placeholders allow circuit design work to continue when
equipment is not yet installed.

For example, you want to cross-connect a jack panel to a shelf before the shelf's cards are
installed. However, at this point there are no port addresses to cross-connect to, because the
port addresses are on the cards and the cards are not installed. The solution is to define
placeholders for the shelf's mounting positions (the potential number of port addresses
available once a card is installed in the mounting position). As a result, you can cross-connect
to the port address placeholders before a card is installed. When you install a card, its port
addresses are automatically associated with the mounting position's port address placeholders.

The act of installing equipment in a mounting position that has port address placeholders does
associate the circuits as directed by the placeholders, but does not remove the underlying
placeholders themselves. This allows you to move cards in and out of a mounting position
without removing the underlying cross-connects. When the equipment is removed, the port
address placeholder remains—awaiting the next equipment installed in that mounting position.

When you specify port address placeholders for a mounting position, verify that the number of
port address placeholders match the number of ports on the equipment that is to be installed in
those mounting positions. Also, the rate code assigned to the port address placeholders must
match the rate code of the ports on the equipment you install.

Port address aliases

You can use a port address alias to give a second node address to a port. This allows you to
refer to that port address by either node address.

You may need to use port address aliases if a company you share data with uses a different
addressing format than the one you use. In a co-located environment, equipment or circuits
that you do not own may be inventoried as part of your network.

Port aliases are included on the CLR/DLR in the Notes section, but can be suppressed when
the associated design lines are suppressed. Notes in the Notes section of the CLR/DLR include
port aliases to which circuits have been assigned or those that have been cross-connected to a
port address. If the cross-connected port address has an alias, both aliases display.

Nodes and node addresses

A node is a piece of equipment on a network with the ability to recognize, process, or forward
signals to other equipment. For example, a node can be a router in a token ring or an OC12
terminal in a SONET network.

90 MetaSolv Software, Inc.

Key MetaSolv Solution concepts

A node is aware of other nodes on the network and is capable of receiving transmissions from
or forwarding transmissions to other nodes. Like a letter delivered to its recipient through a
series of postal centers, a communications signal travels across a network among nodes to
reach its destination.

A node address is an identifier that is unique to each node, distinguishing one node from
another. The MetaSolv Solution can base node addresses on a hierarchy of the physical
components comprising the node: rack, shelf, and card. You can manually replace or alter—
override—this hierarchical (or concatenated) node address by using hard and soft node
address overrides on individual ports. You can also define a sequential numbering scheme for
mounting positions on an equipment specification in order to automatically number ports
sequentially across cards in a shelf.

g For examples of each of these methods, see "Figure 16: Example of sequential
numbering of port addresses" on page 92 and the "Concatenated Equipment Node
Addresses Example" and "Hard and Soft Node Address Override Overview" topics in the
MetaSolv Solution's online Help.

Sequential port address numbering

You can define a sequential numbering scheme for mounting positions on an equipment
specification in order to number ports sequentially across cards in a shelf. You can use this
automated numbering method, instead of hard and soft node address overrides, when working
with multiple shelves of a DCS system where sequential numbering is applied to all ports of a
given rate code. As with hard and soft node address overrides, the sequential numbering
scheme you define replaces the concatenated node address.

Each shelf using sequential numbering is identified by a unique combination of unit number,
unit extension, and network element location ID. The unit number identifies a piece or
multiple pieces of equipment that contain cards. Every unit associated with a network element
has a unique unit number and unit extension identifier. If the unit contains one shelf, that shelf
has a unique unit number and a unit extension of zero.

For example, each of the 16 shelves in a Lucent DACSII Capacity Expansion Frame has a
unique unit number between one and 16 and has a unit extension of zero. If the unit contains a
group of shelves, each shelf in the group has the same unit number with a unique unit
extension. This means that each of the four ATM shelves in a Lucent DACSII Single Bay has
the same unit number with a unique unit extension. The first shelf is unit number one, unit
extension one. The second shelf is unit number one, unit extension two, and so on.

The numbering sequence for card ports installed in a shelf’s mounting positions is independent
of the bay in which the unit is installed and independent of the order in which the units are
installed. Thus, you can install Unit 5 in Bay 1 before you install Unit 4 in Bay 3 without
affecting the numbering of the ports. Figure 16 illustrates sequential numbering of port
addresses for DSPU cards in a Lucent DACSII.

CORBA API Developer’s Reference 91

Chapter 5: The Inventory and Capacity Management API

Bay 6 Bay 4 Bay 1 Bay 3 Bay 5
Unit 14 Unit 8 Unit 2 Unit 4 Unit 10
2081 1121 0161 0481 1441
to to to to to
2222 1262 0302 0622 1582
Unit 13 Unit 7 Unit 1 Unit 3 Unit 9
1921 0961 0001 . 0321 1281

Switch Bay
to to to to to
2062 1102 0142 0462 1422
Unit 11 Unit 5 Unit 6 Unit 12
1601 0641 0801 1761
to to to to
1742 0782 0942 1902

Figure 16: Example of sequential numbering of port addresses

The sequential numbering scheme for a DCS shelf is defined on the equipment specification.
You can create a variety of sequential numbering schemes, including straight sequention (with
or without channel assignments) and sequential with augmentation. Upon installation of the
shelf, you can disable numbering for selected ports by checking the Disable PA checkbox on
the MetaSolv Solution’s Equipment window - Mounting Positions tab to create a sequential
with skipped numbers scheme. Once the shelfis installed and a unit number and unit extension
are defined, you cannot edit the sequential numbering scheme unless you uninstall the shelf. If
a shelf is installed without a unit number and unit extension, and you add a numbering scheme
to the equipment specification, the numbering scheme is not copied to the installed shelf
unless you assign a unit number and unit extension and associate the shelf with a network
element.

You can use the same specification to accommodate both sequential port numbering and
hierarchical port numbering schemes. If you want to use a concatenated hierarchical port
numbering scheme for a DCS systems, disable the numbering defined in the specification for
each shelf in the DCS by unchecking the Seq Port Numbering checkbox on the MetaSolv
Solution’s Equipment window - Mounting Positions tab.

Hard-wired cross-connects

To a field engineer, a hard-wired cross-connect—also referred to as cabling—is the wiring of
one equipment port to another. The hard-wired cross-connects you create in the MetaSolv
Solution database represent the actual hard-wired cross-connects between equipment ports. An
example of a hard-wired cross-connect is the cabling between a shelf and a DSX jack panel.

Hard-wired cross-connects remain intact as circuits are assigned or unassigned to cross-
connected ports. In other words, an equipment port is dedicated to another equipment port so
that when you assign a circuit to the first equipment port, through Circuit Design, the other
equipment port is also included on the DLR/CLR for that circuit. When the circuit is
disconnected, the hard-wired cross-connect remains—awaiting the next circuit assignment.

92 MetaSolv Software, Inc.

Key MetaSolv Solution concepts

You can create cross-connects in the MetaSolv Solution database to represent physical cross-
connects that exist in your equipment inventory. You can make cross-connects between ports
on a single piece of equipment or between ports on two separate pieces of equipment. You can
also create cross-connects between a port address placeholder and a port address or port
address placeholder. However, just as it is physically impossible to connect a given port
address to itself, you cannot cross-connect port addresses and port address placeholders to
themselves.

It is possible to cross-connect two pieces of equipment that have different Network Locations,
allowing you to cross-connect equipment in two different locations. For example, in a co-
located environment, you might want to cross-connect two pieces of equipment that are
physically located in the same place but have different Network Location code assignments.
When you use the MetaSolv Solution to cross-connect equipment in two different locations, an
informational message reminds the user that the locations are different.

The MetaSolv Solution's cross-connect functionality allows you to create cross-connects for
enabled port addresses. This functionality allows you to cross-connect equipment software to
equipment hardware internally.

Several scenarios exist in which cross-connecting equipment is not allowed. Most of these
scenarios relate to the existence of circuit assignments to one or both of the ports involved in
the cross-connect.

The following scenarios describe instances when you cannot cross-connect equipment due to
the existence of circuits that are already assigned to the port addresses being cross-connected.

¢ You cannot cross-connect a physical port address to an enabled port address if the physical
port address has an assigned circuit and the enabled port address is already mapped.

¢ You cannot cross-connect a physical port address to an enabled port address if the physical
port address has a circuit assignment and the enabled port address was not mapped.

¢ You cannot cross-connect a physical port address to another physical port address if both
of the port addresses have different assigned circuits.

¢ You cannot cross-connect a physical port address that has a circuit assignment to a cross-
connect chain that contains a mappable port.

¢ You cannot cross-connect an enabled port address to another enabled port address if both
enabled port addresses are mapped to the same circuit and different circuit assignments
exist for each enabled port address being cross-connected.

¢ You cannot cross-connect a physical port address to another physical port address if the
port addresses have different pending assignments.

In the ICM API, an additional condition applies: if there is a “Blocked” condition code
anywhere in the entire chain of circuits that would be created by a cross-connect, the ICM API
does not create the requested cross-connect.

CORBA API Developer’s Reference 93

Chapter 5: The Inventory and Capacity Management API

Condition codes

Condition codes identify the condition of certain mounting positions, port addresses, or cable
pairs. Using condition codes helps you prevent inventory from being used or better defines its
capabilities. For example, if you wanted to mark a cable pair to no longer be in service, you
could give it a condition code of "Bad". A "Local Assignment" condition code could denote
that a port address has already been used on a local order. You can assign the type of warning
that is given when an assignment is made to a circuit position, port address or cable pair with a
certain condition code.

Circuit positions, mounting positions, and port addresses with condition codes are labeled
"[Information]" or "[Blocked]" when you view them in the Equipment Install window or the
Circuit Hierarchy window, depending on the condition code type.

IP address management in the MetaSolv Solution

The MetaSolv Solution’s Infrastructure module includes an IP Address Management function
that inventories all IP addresses owned by an ISP. IP addresses are unique numbers that
identify a computer or device on a network. Public IP addresses are part of a standardized plan
for identifying machines connected to the Internet. Using the I[P Address Management
function, you can keep track of IP addresses. The IP Address Management function lets you:
Define base networks in your inventory

Create subnets or pools from base networks

Divide a subnet into more subnets

View host IP addresses within a subnet

Track the status of an IP address

Query for existing IP addresses

Combine subnets

Create IP pools

Delete subnets, IP pools, and base networks

L ZBR 2K JER JEE JEE JEE JER R 2N 4

Recall IP addresses for reuse

The American Registry for Internet Numbers (ARIN) or your upstream ISP allocates base
networks to you.

An IP address can be expressed as four decimal numbers separated by dots. Each number can
have a value of zero to 255. An example of an Internet address is 130.5.5.171.

The size of base networks, which can be displayed as an IP address followed by a network
prefix length (130.5.5.25/24). For example, a /24 network block has 256 IP addresses, where
the first address is the subnet network address, the last address is the broadcast address and the
remaining 254 addresses are host addresses. A network prefix can also be displayed as a
subnet mask. For example, /24 is the same as a 255.255.255.0 submask.

94 MetaSolv Software, Inc.

Key MetaSolv Solution concepts

In the MetaSolv Solution, you can define your base network in one of two ways:

¢ You can divide your base network into two or more subnets of the same size.

¢ You can leave your base network as a pool of available addresses from which you can
create subnets of varying sizes as you need them.

If you divide your base network into subnets and then divide any of the initial subnets into
multiple smaller subnets, you can reverse this process by combining subnets to create a single
larger subnet. You can delete a subnet as long as it is not assigned and none of its host
addresses are assigned. When you delete a subnet, its unassigned addresses become "pooled"
addresses. Pooled addresses are not available for assignment. To be available for assignment,
IP addresses must be part of a subnet.

When you define the base network, you can divide the IP address blocks into subnets or IP
pools based on your business needs. Your specific business needs determine the number of
subnets required and the size of each.

Overview of assigning IP addresses to ports

You can assign an IP address to either a physical or virtual port. A physical port is a physical
location on a piece of equipment where you can connect the equipment to a network by using
a plug and socket connection. A virtual port is a conceptual port that does not physically exist
on a piece of equipment. Virtual ports allow you to assign IP address generically to a piece of
equipment, rather than to a specific physical port. You can assign to either a physical or a
virtual port, depending on the situation. For example, if you are working with a router, you
must assign an IP address to a specific serial (or physical) port. If you are working with a Web
server, you assign the IP address for the customer's domain to the Web server and not to a
specific port on that server.

The following rules apply to assigning IP addresses to port addresses:

¢ You can only assign one host number to a physical port.
¢ You can assign any number of subnets and/or host IP addresses to a virtual port address.

¢ You cannot assign [P addresses to a physical enabled port address or to a virtual enabled
port address.

& Ifasubnet is assigned to a virtual port address, it must be at the lowest subnet level. The
subnet cannot have any subnets defined below it.

¢ You cannot individually unassign host number IP addresses from a virtual port address
once the subnet is assigned. You can only unassign the subnet.

¢ If you unassign the subnet from a virtual port address, all of the host numbers are also
unassigned.

& A port address or its related equipment and an IP address may be associated with one or
more network areas. The network area associated with a port address and its related
equipment does not have to be the same as the network area associated with the IP
address.

CORBA API Developer’s Reference 95

Chapter 5: The Inventory and Capacity Management API

¢ Equipment connected by the same circuit must have IP addresses from the same subnet.
¢ You cannot assign the same circuit to more than two pieces of equipment with P
addresses.

An IP Address assigned to a physical port displays on the MetaSolv Solution’s Equipment
Install window at the port address level. If a circuit is also assigned to the port address, the IP
address displays before the Circuit ID. For example:

(STS1 -In Service), 123.123.123.123, 1515 /ST01l /PLANTXXA

L /PLANTXXB (In Service)

An IP Address assigned to a virtual port also displays on the MetaSolv Solution’s Equipment
Install window at the port address level. Since multiple subnets and/or host numbers can be
associated with the virtual port address, an IP address displays followed by a "(...)" symbol to
indicate that more might exist. If a circuit is also assigned to the port address, the IP address
displays before the Circuit ID. For example:

(STS1 —-In Service), 123.123.123.123 (...), 1515 /STO1l /PLANTXXA

L /PLANTXXB (In Service)

Some common questions about equipment in the MetaSolv
Solution

This section identifies a number of questions MetaSolv Solution users commonly ask when
first implementing the Equipment Administration module.

¢ How can I more quickly install equipment with the same configuration?

If you have certain pieces of equipment that you install the same way repeatedly, create a
“template” Network Location and copy the equipment from the template to real Network
Locations.

For more information, see the "Copying Equipment Between Mounting Positions at
Different Locations Overview" topic in the MetaSolv Solution's online Help.

¢ Can I inventory equipment that is stored in my warehouse?

You can maintain a warehouse location that is used to inventory spare equipment. Make
up a warehouse Network Location in which to “install” the equipment, then as the
equipment is physically installed in its working location, move the equipment from the
warehouse location to the working location.

For more information, see the "Equipment Installation Overview" topic in the
MetaSolv Solution's online Help.

¢ When I copy equipment, are associated condition codes also copied?

No. When you copy equipment from one location to another, condition codes assigned to
equipment positions are not copied.

96 MetaSolv Software, Inc.

ICM API implementation concepts

¢ Should I define Slot Node and Port Addresses on equipment specs or during installation?

Several scenarios exist that determine at what point you want to define slot node addresses
and port addresses:

¢ Ifthe node address for an equipment type will always be the same, regardless of where
it is installed, define the node address on the equipment specification.

¢ Ifasingle or common address exists for a specific piece of equipment, add the
addresses to the shelf into which the equipment is installed.

¢ If multiple ports exist on a card, and the address is always the same, add port
addresses on the card’s equipment specification.

¢ If the node address for any type of equipment is determined when the equipment is
installed in an office, add the slot node address or port address to each piece of
equipment when it is installed.

ICM API implementation concepts

This section identifies key concepts you must know and key issues you must consider when
devoloping applications that utilize the ICM API.

Transaction management and the ICM API

The ICM API manages transaction processing on behalf of your application. That is, the ICM
API handles all commits and rollbacks to the MetaSolv Solution database instead of requiring
your application to explicitly commit or rollback transactions. When an operation you
requested succeeds, the ICM API immediately commits the results of the operation, then
notifies you of the success of the operation. When an operation you requested fails, the ICM
API immediately rolls back the results of the operation, then notifies you of the failure.

g Some of the older ICM API export operations still require you to supply a valid
WDITransaction object reference. In these cases, you should still call the commit
operation when using these export operations in order to release the read locks the
database places on the exported records. Also in these cases, you must call the
destroyTransaction operation in order to free the allocated resource.

Network inventory gateway events and the ICM API

The ICM API and the MetaSolv Solution's Network Management module support the use of
gateway events for network inventory. Network inventory gateway events signal a third party
that significant additions, deletions, or changes have occurred in the network inventory.

CORBA API Developer’s Reference 97

Chapter 5: The Inventory and Capacity Management API

Network inventory gateway events are generated automatically based upon the settings of the
rules/behaviors functionality in the MetaSolv Solution's Work Management module. The
actions in the Network Inventory module that can trigger evaluation of rules are:

¢ Installing or uninstalling equipment

Copying equipment to a new location

Modifying installed equipment

* ¢ o

Modifying condition codes for equipment mounting positions or port addresses
individually

Modifying condition codes for equipment mounting positions or port addresses by range
Modifying virtual ports for equipment

Moving equipment to an empty mounting position

Assigning or unassigning an [P Address to equipment

Assigning or unassigning a circuit to equipment

Modifying hard-wired cross connects on equipment

Modifying equipment specifications

L ZBK JER 2R 2R JER JER 2N 4

Modifying network elements on equipment

The actions listed above only trigger an equipment gateway event when the Work
Management subsystem’s rules and behaviors functionality is configured to do so.

Deleting equipment cannot trigger gateway events. When you delete installed equipment, the
result of the deletion is that the equipment ID is removed from the MetaSolv Solution
database. No equipment event can be sent in this case, because there is no equipment ID to
pass. Therefore, MetaSolv recommends that you uninstall the equipment to move it to “Spare”
status—which can generate an equipment event—then delete the equipment.

DLR mass reconcile

When you edit equipment or equipment specifications, modify network elements , or move
equipment with assigned circuits, the design layout reports (DLRs) for those circuits are
reconciled to reflect the change—including pending assignments. The ICM API sends these
reconciliations to the Background Processor utility. The ICM API does not support printing of
design lines during DLR mass reconcile.

ICM API IDL files

The ICM API is described in these IDL files:

¢ WDLidl

¢ WDICircuit.idl

¢ WDICircuitTypes.idl

¢ WDICircuitTypes v2.idl

98 MetaSolv Software, Inc.

ICM API implementation concepts

L 2EE ZEE 2NN K JEE JEE JEE JER N JEK JEE JER SR SR 2N 4

WDICircuitTypes v3.idl
WDIDLR.IDL
WDIDLRQueryTypes.idl
WDIDLRQueryTypes v2.idl
WDIDLRQueryTypes_v3.idl
WDIDLRTypes.idl
WDIDLRTypes v2.idl
WDIDLRTypes_v3.idl
WDIDLRTypes_v4.idl
WDIDLRTypes_v5.idl
WDIEquipment.idl
WDIEquipmentTypes.idl
WDIEquipmentTypes v2.idl
WDIEquipmentTypes_v3.idl
WDIVLRTypes.idl
WDIVLRTypes v2.idl

The WDIPlant.idl and WDIPIlantTypes.idl files are also included in the ICM API. For a
complete description of the operations in these files, “The Plant API” on page 133

CORBA API Developer’s Reference

99

Chapter 5: The Inventory and Capacity Management API

ICM API interfaces

Figure 17 shows the relationships of the modules and interfaces in the ICM API.

WDIRoot

L WDI::
WDIManager e WDITransaction

, WDIDLR::
— DLRSession - WDINotification
— - WDICircuit::
— CircuitHierarchySession |------wmmeeeeeeeens WDINotification
| - — WDIEquipment::
EquipmentSession WDINotification

—— CrossConnectSubSession |

| InstallationSubSession |

——{ NetworkElementSubSession |

| SoftwareSpecSubSession |

—— SpecificationSubSession |

Figure 17: ICM API Interfaces

WDIManager interface

The following table lists the operations available in the WDIManager interface of the
WDIDLR.idI file.

Table 21: WDIManager Interface Operations

Operation Description
destroyCircuitHierarchySession Terminates the Circuit HierarchySession
destroyDLRSession Terminates the DLRSession
destroyEquipmentSession Terminates the EquipmentSession
destroyInSignal Terminates the InSignal
destroyPlantSession Terminates the PlantSession
destroySignal Terminates the Signal
destroySignal2 Terminates the Signal2

100 MetaSolv Software, Inc.

ICM APl interfaces

Table 21: WDIManager Interface Operations

Operation Description

destroyTransaction Terminates the Transaction

startCircuitHierarchySession Obtains the object reference for the Circuit
HierarchySession

startDL.RSession Obtains the object reference for the DLRSession

startEquipmentSession Obtains the object reference for the
EquipmentSession

startInSignal eventInProgress
eventCompleted
eventErrored

startPlantSession Obtains the object reference for the PlantSession

startSignal eventOccurred
eventTerminated
eventInProgress
eventCompleted
eventErrored

startSignal2 eventOccurred
eventTerminated
eventInProgress
eventCompleted
eventErrored

startTransaction Obtains a handle to a database transaction

g Refer to “Common Architecture” on page 55 for a complete description of the operations
described in the table above.

CORBA API Developer’s Reference 101

Chapter 5: The Inventory and Capacity Management API

CircuitHierarchySession interface

The following table lists the operations available in the CircuitHierarchySession interface of
the WDICircuit.idl file.

Table 22: CircuitHierarchySession WDINotification Operations

Operation WDINotification

getBandwidthCircuits getBandwidthCircuitsSucceeded
getBandwidthCircuitsFailed

getCircuitPositionConditionCodes getCircuitPositionConditionCodesSucceeded
getCircuitPositionConditionCodesFailed

getCircuitPositionHierarchy getCircuitPositionHierarchySucceeded
getCircuitPositionHierarchyFailed

getCircuitPositionHierarchy v3 getCircuitPositionHierarchySucceeded v3
getCircuitPositionHierarchyFailed v3

getCircuitPositionPending getCircuitPositionPendingSucceeded
getCircuitPositionPendingFailed

getCircuitPositionPrevious getCircuitPositionPreviousSucceeded
getCircuitPositionPreviousFailed

getNetworkRouteSegments v2 getNetworkRouteSegmentsSucceeded v2
getNetworkRouteSegmentsFailed

getNetworkSegmentCircuits_v2 getNetworkSegmentCircuitsSucceeded v2
getNetworkSegmentCircuitsFailed v2

getNetworkSegmentCircuits_v3 getNetworkSegmentCircuitsSucceeded_v3
getNetworkSegmentCircuitsFailed v3

getTrunkGroup v2 trunkGroupGetSucceeded v2
trunkGroupGetFailed
queryNetworkRoutes v2 queryNetworkRoutesSucceeded v2

queryNetworkRoutesFailed v2

queryTrunkGroups_v2 trunkGroupQuerySucceeded v2
trunkGroupQueryFailed v2

Implemented by DLRSERVER, returns a value—getTrunkGroupQueryValidValues v2

102 MetaSolv Software, Inc.

ICM APl interfaces

Table 22: CircuitHierarchySession WDINotification Operations

Operation WDINotification

getMaximumReturnedRows—This operation is implemented by the caller and returns a long. This
allows the server to return maximum number of records for certain queries (0 = no limit.)

Comments concerning specific CircuitHierarchySession operations

The following list contains a description of the operations available in the
CircuitHierarchySession interface:

¢ getNetworkSegmentCircuits_ v2

g In the MetaSolv Solution, when a SONET path-switched ring is built, two SONET
routes are created. For example, for a 4 node ring, A-B-C-D, if the circuit requires
entrance at node A and exit at node B, then there are two paths that can be traversed.
These are A-B and A-D-C-B. Because of the rules surrounding a path-switched ring,
the MetaSolv Solution displays only one route, but combines the mileage and the
connecting facilities under one segment tree item. This feature occurs on the display,
even though both SONET routes are extracted from the database. However, the ICM
API provides all of the SONET routes, with the ability to query each route
individually. The assumption in the API is that, in the case of path-switched rings,
the client program can combine the mileage and circuits for display purposes.

¢ getCircuitPositionHierarchy
g Since hierarchy operations can return substantial amounts of data, a oneLevelOnly

parameter is provided in the request structure to limit results to the first level of data
directly beneath the request item for tree-structured data.

CORBA API Developer’s Reference 103

Chapter 5: The Inventory and Capacity Management API

¢ getTrunkGroupQueryValidValues_v2

If you pass empty criteria, the operation returns all valid values. If you pass match criteria
for a field, the operation will return one QueryField full of matches for that field.

¢ getMaximumReturnedRows

Implemented by caller, returns a long value. This operations allows the API server to
return the maximum number of records for certain queries (0 = no limit.)

EquipmentSession interface operations

The following table lists the operations available in the EquipmentSession interface of the
WDIEquipment.idl file:

Table 23: EquipmentSession WDINotification Operations

Operation Description
destroyCrossConnectSubSession Terminates the CrossConnectSubSession.
destroyInstallationSubSession Terminates the InstallationSubSession.

destroyNetworkElementSubSession | Terminates the NetworkElementSubSession.

destroySoftwareSpecSubSession Terminates the SoftwareSpecSubSession.
destroySpecificationSubSession Terminates the SpecificationSubSession.
startCrossConnectSubSession Obtains the CrossConnectSubSession object reference.
startInstallationSubSession Obtains the InstallSubSession object reference.
startNetworkElementSubSession Obtains the NetworkElementSubSession object reference.
startSoftwareSpecSubSession Obtains the SoftwareSpecSubSession object reference.
startSpecificationSubSession Obtains the SpecificationSubSession object reference.

104 MetaSolv Software, Inc.

ICM APl interfaces

SpecificationSubSession interface operations

The SpecificationSubSession interface exposes operations for querying equipment
specifications. Table 24 lists the operations available in the SpecificationSubSession interface
of the WDIEquipment.idl file and their corresponding WDINotification operations. These
operations reproduce the same type of functionality as the corresponding function of the
MetaSolv Solution software.

g All failed operations in the SpecificationSubSession interface are reported via the
generic operationFailed notification.

Table 24: SpecificationSubSession and WDINotification Operations

Operation WDINotification
Implemented on DLRSERVER, returns a value—getEquipSpecQueryValidValues v2
getEquipSpec v2 getEquipSpecSucceeded v2
getEquipType v3 getEquipTypeSucceeded v3
getUsageReport v2 getUsageReportSucceeded v2
queryEquipSpec v2 queryEquipSpecSucceeded v2
getEquipSpec_v3 getEquipSpecSucceeded v3

SoftwareSpecSubSession interface operations

The SoftwareSpecSubSession interface exposes operations for querying software
specifications. Table 25 lists the operations available in the SoftwareSpecSubSession interface
of the WDIEquipment.idl file and their corresponding WDINotification operations. These
operations reproduce the same type of functionality as the corresponding function of the
MetaSolv Solution software. All failed operations in the SoftwareSpecSubSession interface
are reported via the generic operationFailed notification.

Table 25: SoftwareSpecSubSession and WDINotification Operations

Operation WDINotification
getSoftwareSpec getSoftwareSpecSucceeded
querySoftwareSpec querySoftwareSpecSucceeded

CORBA API Developer’s Reference 105

Chapter 5: The Inventory and Capacity Management API

InstallationSubSession interface operations

The InstallationSubSession interface exposes operations for installing equipment and querying
on installed equipment. Table 26 lists the operations available in the InstallationSubSession
interface of the WDIEquipment.idl file and their corresponding WDINotification operations.
These operations reproduce the same type of functionality as the corresponding function of the
MetaSolv Solution software. All failed operations in the InstallationSubSession interface are
reported via the generic operationFailed notification.

Table 26: InstallationSubSession and WDINotification Operations

Operation

WDINotification

addMountPosConditionCode

addMountPosConditionCodeSucceeded

addPortAddressConditionCode

addPortAddressConditionCodeSucceeded

assignIPAddress assignIPAddressSucceeded
copyEquipment copyEquipmentSucceeded
deleteEquipment deleteEquipmentSucceeded

deleteMountPosConditionCode

deleteMountPosConditionCodeSucceeded

deletePortAddressConditionCode

deletePortAddressConditionCodeSucceeded

getEquiplnstall v2

getEquiplnstallSucceeded v2

getEquiplnstall v3

getEquiplnstallSucceeded v3

getEquiplnstallMaint_v2

getEquipInstallMaintSucceeded v2

getMountingPositionConditionCodes_v2

getMountingPositionConditionCodesSucceeded v2

getPortAddressConditionCodes v2

getPortAddressConditionCodesSucceeded v2

getPortAddressinstall v2

getPortAddressinstallSucceeded v2

getPortAddressinstall v3

getPortAddressinstallSucceeded v3

getPortAddressIPAddress

getPortAddressIPAddressSucceeded

getPortAddressIPAddress v2

getPortAddressIPAddressSucceeded v2

installEquipment

installEquipmentSucceeded

moveEquipment

moveEquipmentSucceeded

106 MetaSolv Software, Inc.

ICM APl interfaces

Table 26: InstallationSubSession and WDINotification Operations

Operation WDINotification
queryEquiplInstall v2 queryEquipInstallSucceeded v2
searchEquiplnstall v2 searchEquiplnstallSucceeded v2
unassignIPAddress unassignIPAddressSucceeded
uninstallEquipment uninstallEquipmentSucceeded
updateEquipment updateEquipmentSucceeded
updateMountPosConditionCode updateMountPosConditionCodeSucceeded
updatePortAddressConditionCode updatePortAddressConditionCodeSucceeded
validateNetworkElementMatch validateNetworkElementMatchSucceeded

Implemented on DLRSERVER, returns a value—getEquipInstallQueryValidValues v2

Comments concerning specific InstallationSubSession operations

The ICM API does not support creation of equipment specifications. In order to install a piece
of equipment, the equipment specification must already be defined in the MetaSolv Solution
database.

Operations in the InstallationSubSession interface provide functionality equivalent to what
exists in the MetaSolv Solution to:
¢ Install a piece of equipment at a network location, including installing spare equipment
¢ Edit a piece of equipment at a network location
¢ Copy a piece of equipment, including:

+ Copying base equipment to a different location

+ Copying any equipment to or from spare

« Copying non-base equipment to a different parent

+ Copying non-base equipment to different mounting positions within the same parent
¢ Move a piece of equipment, including:

+ Moving base equipment to a different location

+ Moving any equipment to or from spare

+ Moving non-base equipment to a different parent

+ Moving non-base equipment to different mounting positions within the same parent

CORBA API Developer’s Reference 107

Chapter 5: The Inventory and Capacity Management API

L 4
*

Uninstall a piece of equipment from a network location
Delete a piece of equipment from a network location

You can use the InstallationSubSession interface operations listed below to perform the
indicated functions:

*

L BK ZBR 2R B JER 2R 4

*

L 2R 4

L 2R 4

The queryEquiplnstall_v2 operation queries first level equipment.

The searchEquiplnstall_v2 operation searches for a specific piece of installed equipment.
The searchEquiplnstall v3 operation searches for a specific piece of installed equipment.
The getEquiplnstall v2 operation returns the equipment tree for a piece of equipment.
The getEquipInstall_v3 operation returns the equipment tree for a piece of equipment.
The getPortAddresslnstall v2 operation returns port addresses for a piece of equipment.
The getPortAddresslnstall v3 operation returns port addresses for a piece of equipment.

The getEquipInstallMaint_v2 operation returns miscellaneous information for a piece of
equipment.

The getMountingPositionConditionCodes v2 operation returns mounting position
condition codes for a mounting position.

The getPortAddressConditionCodes_v2 operation returns port address condition codes for
a port address.

The installEquipment operation installs a new piece of equipment.
The updateEquipment operation updates information on an existing piece of equipment.

The copyEquipment operation copies a piece of equipment to another location or
mounting position.

The moveEquipment operation moves a piece of equipment to another location or
mounting position.

The deleteEquipment operation deletes a piece of equipment.
The uninstallEquipment operation move a piece of equipment to spare.

The addMountPosConditionCode operation adds one or more condition codes to one or
more mounting positions of a piece of equipment.

The addPortAddressConditionCode operation adds one or more condition codes to one or
more port addresses of a piece of equipment.

The deleteMountPosConditionCode operation deletes one or more condition codes from
one or more mounting positions of a piece of equipment.

The deletePortAddressConditionCode operation deletes one or more condition codes from
one or more port addresses of a piece of equipment.

The updateMountPosConditionCode operation updates the comment for one or more
condition codes on one or more mounting positions of a piece of equipment.

The updatePortAddressConditionCode operation updates the comment for one or more
condition codes for one or more port addresses of a piece of equipment.

108 MetaSolv Software, Inc.

ICM APl interfaces

¢ The validateNetworkElementMatch operation validates that the network element type
associated to the input equipment specification is the same as the network element type
associated to the input network element.

& The assignIPAddress operation assigns input ip addresses to the input equipment port
address.

¢ The getPortAddressIPAddress operation retrieves ip addresses associated to the input
equipment port address.

¢ The unassignlPAddress operation unassigns input ip addresses from the input equipment
port address.

CrossConnectSubSession interface operations

The CrossConnectSubSession interface exposes operations for installing and querying on
hardwired and software cross connects. Table 27 lists the operations available in the
CrossConnectSubSession interface of the WDICircuit.idl file and their corresponding
WDINotification operations. These operations reproduce the same type of functionality as the
corresponding function of the MetaSolv Solution software. All failed operations in the
CrossConnectSubSession interface are reported via the generic operationFailed notification.

Table 27: CrossConnectSubSession and WDINotification Operations

Operation WDINotification

getHardwiredCrossConnects v2 | getHardwiredCrossConnectSucceeded v2

getSoftwareCrossConnects_v2 | getSoftwareCrossConnectSucceeded v2

hwccRequest hweccRequestSucceeded

For the most part, the CrossConnectSubSession interface operations duplicate the
functionality of the MetaSolv Solution client. However, the API operations remove some of
the restrictions the client imposes on making cross connects.

Any given piece of equipment can have four different type of port addresses:

¢ Port Addresses (PA)

¢ Enabled Port Addresses (EPA)

¢ Port Address Placeholders (PAPH)

¢ Virtual Enabled Port Addresses (VEPA)

In the CrossConnectSubSession, each of those four types of port addresses is considered a
section. Hard-wired cross connections are made only for the ports belonging to a section at a

time. The ICM API requires that all ports in the sequence be of the same type—PA, EPA,
VEPA, or PAPH. Each section can repeat more than once, but intermingling of ports from

CORBA API Developer’s Reference 109

Chapter 5: The Inventory and Capacity Management API

different sections is not allowed. However, the FROM side port address type can be different
from the TO side port address type.

For example, for two sets of starting port address numbers for cross connection on the FROM
side, you specify [32, 20] and [102, 50]. For the corresponding TO side port addresses for
connection, you specify [76, 20] and [210, 50]. The cross-connection process builds a FROM
side list of 20 assignable ports for cross-connection starting from port 32, in ascending port
order sequence, then builds a TO side list of 20 assignable ports starting from port number 76.
Once both the FROM and TO lists are ready, the ICM API attempts the requested cross-
connects.

Formats for specifying FROM side port addresses

FROM port addresses for hardwired cross-connects are specified in one of three formats. The
FROM and TO side formats are independent, and any format on the FROM side can be
combined with format case on the TO side.

¢ All ports format

The request is for cross-connecting all the ports on the FROM side equipment, starting
from the first port on the FROM side. In this case the PortAddrSeqFrom has no entry.

¢ Specified range format

The request is for cross-connecting a range of ports on the FROM side equipment. In this
case, PortAddrSeqFrom has the range of ports for cross-connection. portAddrSeqStart
contains the value of first port address of the range. nbrOfPorts specifies the number of
ports to be cross-connected, starting from the port identified in portAddrSeqStart. For
example, to cross-connect 100 ports from port number 132, specify [132,100]. To cross-
connect an additional range of 50 ports starting from port number 760, follow the entry of
[132,100] with a second entry of [760, 50].

g In the example, if you specify “0” as the brOfPorts—that is, you specify [132,0]—the
operation connects all ports starting with port number 132.

The range of specified ports cannot span across sections. To illustrate this using the
preceding preceding example, assume that port number 132 is an Enabled Port Address
(EPA). If port number 150 is NOT an EPA, the API gives a validation error. For all ports in
a range to be cross-connected, all of the ports must be in the same section.

¢ Specified list of ports format

The request is for cross-connecting a list of ports on the FROM side equipment. This
situation can be treated as a special situation of the specified range format. In this case, the
PortAddrSeqFrom has the list of ports for cross-connection. Each portAddrSeqStart
contains the value of the port address to be cross-connected and the nbrOfPorts has a
value of 1.

110 MetaSolv Software, Inc.

ICM APl interfaces

Formats for specifying TO-side port addresses

TO port addresses for hardwired cross-connects are specified in one of three formats. The
FROM and TO side formats are independent, and any format on the FROM side can be
combined with format case on the TO side.

*

All ports format

The request is for cross-connecting all the specified ports from the FROM side equipment
to the TO side equipment, starting from the first port on the TO side. In this case, the
PortAddrSeqTo has no entry.

Specified range format

The request is for cross-connecting all the specified ports from the FROM side equipment
to the specified range of ports on the TO side equipment. In this case, the PortAddrSeqTo
has the range of ports for cross-connection. Each portAddrSeqStart contains the value of
the first port address of the range. The nbrOfPorts specifies the number of ports for cross-
connection starting from the portAddrSeqStart. For example, to cross-connect 20 ports
starting from port number 432, specify [432, 20]. To cross-connect an additional range of
75 ports starting from port number 320, the first entry of [432, 20] is followed by a second
entry of [320, 75]. The range of specified ports can span across sections.

Specified list of ports format

The request is for cross-connecting all the specified ports from the FROM side equipment
to the specified list of ports on the TO side equipment. This can be treated as a special
situation of the specified range format. In this case, the PortAddrSeqTo has a list of ports
for cross-connection. Each portAddrSeqStart contains the value of the port address to be
cross-connected to, and nbrOfPorts has a value of 1.

Comments concerning specific CrossConnectSubSession
operations

Operations available in the CrossConnectSubSession interface:

*

getHardwiredCrossConnects_v2

Queries for hard-wired cross-connects.
hwccRequest

Requests creation of new hard-wired cross-connects.
getSoftwareCrossConnects v2

Queries for software cross-connects.

CORBA API Developer’s Reference 111

Chapter 5: The Inventory and Capacity Management API

NetworkElementSubSession interface operations

Table 28 lists the operations available in the NetworkElementSubSession interface of the
WDIEquipment.idl file and their corresponding WDINotification operations. These operations
reproduce the same type of functionality as the corresponding function of the MetaSolv
Solution software. All failed operations in the NetworkElementSubSession interface are

reported via the generic operationFailed notification.

Table 28: NetworkElementSubSession and WDINotification Operations

Operation

WDINotification

createNetworkElement

createNetworkElementSucceeded

createNetworkElement v2

createNetworkElementSucceeded v2

deleteNetworkElement

deleteNetworkElementSucceeded

getNetworkElement

getNetworkElementSucceeded

getNetworkElement v2

getNetworkElementSucceeded v2

getNetworkElementType

getNetworkElementTypeSucceeded

queryNetworkElement

queryNetworkElementSucceeded

queryNetworkElement v2

queryNetworkElementSucceeded v2

queryNetworkElementType

queryNetworkElementTypeSucceeded

updateNetworkElement

updateNetworkElementSucceeded

updateNetworkElement v2

updateNetworkElementSucceeded v2

Comments concerning specific NetworkElementSubSession

operations

You can use the InstallationSubSession interface operations listed below to perform the

indicated functions:

¢ The createNetworkElement operation creates a network element.

The createNetworkElement v2 operation creates a network element.

L 4
¢ The deleteNetworkElement operation deletes a network element.
L 2

The getNetworkElement operation retrieves the network element for the specified network

node ID.

112 MetaSolv Software, Inc.

ICM APl interfaces

L 4

The getNetworkElement v2 operation retrieves the network element for the specified
network node ID.

The queryNetworkElement operation queries for a network element.
The queryNetworkElement v2 operation queries for a network element.

The updateNetworkElement operation updates the specified network element.

* 6 o o

The updateNetworkElement v2 operation updates the specified network element.

DLRSession interface operations

Table 29 lists the operations available in the DLRSession interface of the WDIDLR.idl file.
These operations reproduce the same type of functionality as the corresponding function of the
MetaSolv Solution software.

Table 29: DLRSession WDINotification Operations

Operation WDINotification

getCircuitByWDIEvent getCircuitByWDIEventSucceeded
getCircuitByWDIEventFailed

getCircuitDLRs v2 getDLRsByCircuitSucceeded v2
getDLRsByCircuitFailed

getDLR v2 DLRGetSucceeded v2 (Deprecated)
DLRGetFailed v2 (Deprecated)

getDLR v3 DLRGetSucceeded v3
DLRGetFailed v3

getDLR v4 DLRGetSucceeded v4
DLRGetFailed v4

getDLR _v5 DLRGetSucceeded v5
DLRGetFailed v5

getDLRQueryOptionValues This is a synchronous method so no notification
method exists

getEndUserSpecial TrunkActivation_v2 endUserSpecial TrunkActivationGetSucceeded v2
endUserSpecial TrunkActivationGetFailed

getEndUserSpecial TrunkActiviation_v4 | endUserSpecial TrunkActivationGetSucceeded v4
endUserSpecial TrunkActivationGetFailed v4

CORBA API Developer’s Reference 113

Chapter 5: The Inventory and Capacity Management API

Table 29: DLRSession WDINotification Operations

Operation

WDINotification

getEndUserSpecial TrunkActiviation v5

endUserSpecial TrunkActivationGetSucceeded v5
endUserSpecial TrunkActivationGetFailed v5

getEndUserSpecial Trunk Translation v2

endUserSpecial Trunk TranslationGetSucceeded v2
endUserSpecial Trunk TranslationGetFailed v2

getFlowThrough v2

flowThroughGetSucceeded v2
flowThroughGetFailed v2

getQueryCircuits .

getQueryCircuitsSucceeded .
getQueryCircuitsFailed

getQueryCircuits_v2

getQueryCircuitsSucceeded v2
getQueryCircuitsFailed v2

getQueryDLRs v2.

getDLRsByQuerySucceeded v2.
getDLRsByQueryFailed v2.

getQueryDLRs v3

getDLRsByQuerySucceeded v3
getDLRsByQueryFailed v3

getServiceRequestDLRs v2

getDLRsByServiceRequestSucceeded v2
getDLRsByServiceRequestFailed

getSwitchActivation v2

switchActivationGetSucceeded v2
switchActivationGetFailed v2

getSwitchActivation v4

switchActivationGetSucceeded v4
switchActivationGetFailed v4

getSwitchActivation v5

switchActivationGetSucceeded v5
switchActivationGetFailed v5

getSwitchTranslation v2

switchGetSucceeded v2
switchGetFailed v2

getTransportProvisioning v2

transportProvisioningGetSucceeded v2
transportProvisioningGetFailed

getTransportProvisioning_ v4

transportProvisioningGetSucceeded v4
transportProvisioningGetFailed v4

getTransportProvisioning_v5

transportProvisioningGetSucceeded v5
transportProvisioningGetFailed v5

114 MetaSolv Software, Inc.

Process flows

Table 29: DLRSession WDINotification Operations

Operation

WDINotification

getVLR v2

VLRGetSucceeded v2
VLRGetFailed v2

Implemented by DLRSERVER, returns a value—getDLRQueryOptionValues v2

Implemented by DLRSERVER, returns a value—getMaskLocationCodes

getMaximumReturnedRows—This operation is implemented by the caller and returns a long. This
allows the server to return maximum number of records for certain queries (0 = no limit.)

The ICM API does not have a generic query operation. However, you can use the getDLR v5
query for most generic query purposes.

Process flows

This section contains sample process flows for solicited and unsolicited messages. Use the
sample flow as a template for developing your own process flows.

Solicited messages

A solicited message is a message initiated by the MetaSolv Solution. The MetaSolv Solution
plays the role of the client and the third-party activation server plays the role of the server.

Sample solicited message process flow

When the MetaSolv Solution is the client, the overall process flows as follows:

1. The client binds to the third-party server to get a WDIRoot object reference.

2. The client invokes the connect operation of the WDIRoot interface, and the connect
operation yields a WDIManager object reference.

3. The client invokes the startSignal operation of the WDIManager interface to get a

WDISignal object reference.

4. The client invokes the eventOccurred operation of the WDISignal interface to notify the
third-party vendor that an event registered to them has occurred within the MetaSolv

Solution.

CORBA API Developer’s Reference 115

Chapter 5: The Inventory and Capacity Management API

5.
6.

The client invokes the destroySignal operation of the WDIManager interface.

The client invokes the disconnect operation of the WDIRoot interface.

If the third-party application encounters an error, it throws a WDIExcp as defined by the IDL.
The client handles CORBA system exceptions and WDIExcp exceptions.

Unsolicited messages

An unsolicited message is a message initiated by the third-party application. The MetaSolv
Solution plays the role of the server, and a third-party application plays the role of the client
with the exception of the callback processing.

Sample unsolicited message process flow for exporting

The overall process flow for exporting a DLR follows:

1.
2.

The third-party application binds to the API server to get a WDIRoot object reference.

The third-party application invokes the connect operation of the WDIRoot interface,
which then yields a WDIManager object reference.

The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference and to start a database transaction.

The third-party application invokes the startDLRSession operation of the WDIManager
interface to get a DLRSession object reference.

The third-party application instantiates a third-party implementation of a WDINotification
object. The internal state of the client-supplied WDINotification object can be initialized,
so the getMaximumReturnedRows function, when called by the server, returns the
maximum number of entries to the client. If the function returns "0", entries for all objects
matching the query criteria are returned.

The third-party application instantiates and populates a DLRQuery object. If necessary,
the third party invokes the getDLRQueryOptionValues to obtain valid values to populate
the DLRQuery object.

The third-party application then invokes the appropriate query operation on the
DLRSession interface. In this example, DLRQuery, WDITransaction, and
WDINotification are supplied as input parameters.

The API server invokes the operation DLRSession. The appropriate callback operation of
the input WDINotification is called upon completion of the invocation of the DLRSession.
In this example, the operations are getDLRsByQuerySucceeded and
getDLRsByQueryFailed. The third party determines which circuit DLR to retrieve from
the returned DLRResults.

The third-party application instantiates another WDINotification object and a
DLRRequest structure, populated with the desired circuit and issue.

116 MetaSolv Software, Inc.

Process flows

10.

I1.

12.

13.

14.

The third-party application invokes the getDLR operation of the DLRSession object,
passing the DLRRequest and WDINotification object.

The DLR data structure is returned asynchronously via invocation of the
DLRGetSucceeded/Failed operation of the WDINotification object.

The third-party application invokes the destroyDLRSession operation of the WDIManager
interface.

The third-party application invokes the destroyTransaction operation on the WDIManager
interface.

The third-party application invokes the disconnect operation of the WDIRoot interface.

CORBA API Developer’s Reference 117

Chapter 5: The Inventory and Capacity Management API

118 MetaSolv Software, Inc.

The Number Inventory API

The Number Inventory API was created to more efficiently handle the administration of
telephone numbers and inventory items in the MetaSolv Solution. Operations are provided in
the WDINLIDL that provide the following functionality:

¢ Export Number Inventory

Generate User ID

Generate User Password

Import Number Inventory

Pre-assign Telephone Numbers

Remove Inventory Association

Update Number Inventory Provisioning

® 6 6 & O 0 o

Validate Password
The following operations provide lookup and export functionality:

exportAccessTelephoneNumbers
exportlnventoryltem
exportlnventoryltemAssociation
exportlnventoryltems
exportlnventoryRelationTypes
exportlnventoryStatus
exportlnventorySubTypes
exportlnventory Types
exportTelephoneNumbers

L ZBR 2K JER JER JEE JEE JER 2R 2N 4

exportTopLevelDomains
The following operations provide import functionality:

¢ importlnventoryAssociation
¢ importNewlInventoryltem
¢ importUpdatedInventoryltem

MetaSolv Solution CORBA API Developer’s Reference 119

Chapter 6: The Number Inventory API

The WDINLIDL file contains structures to support a flexible query. Fields on which you can
specify search criteria include:

¢ Inventory Type Code

Inventory Subtype Code

Inventory Status Code

Network Area City

Network Area State

Identify Text

Identify Text Suffix.

L JER K BN JER 2N 4

Number Inventory API interfaces

Figure 18 shows the relationship of the interfaces in the Number Inventory API.

WDIRoot

WDIManager

) WDINI::
NumberinventoryS
umberinventorysession WDINotification

Figure 18: Number Inventory API Session Interfaces

WDIManager interface

Figure 30 describes the operations in the WDIManager interface of the WDINI.IDL file.

Table 30: Number Inventory WDIManager Operations

Operation Description

startNumberInventorySession Obtains the object reference of the NumberInventory Session

destroyNumberInventorySession | Terminates the NumberInventorySession

startTransaction commit
rollback
destroyTransaction Terminates the Transaction

120 MetaSolv Software, Inc.

Number Inventory APl interfaces

Table 30: Number Inventory WDIManager Operations

Operation

Description

startSignal

eventOccurred
eventTerminated
eventInProgress
eventCompleted
eventErrored

destroySignal

Terminates the Signal

startInSignal

eventInProgress
eventCompleted
eventErrored

destroyInSignal

Terminates the Insignal

NumberlnventorySession interface operations

Figure 31 lists the operations in the NumberInventorySession and their notification operations.

Table 31: NumberinventorySession Interface Operations

Operation WDINotification
exportNumberInventory exportNumberInventorySucceeded
exportNumberInventoryFailed
importNumberInventory importNumberInventorySucceeded
importNumberInventoryFailed
generateUserld generateUserldSucceeded
generateUserldFailed
generateUserPassword generateUserPasswordSucceeded
generateUserPasswordFailed
validatePassword validatePasswordSucceeded
validatePasswordFailed

CORBA API Developer’s Reference 121

Chapter 6: The Number Inventory API

Table 31: NumberinventorySession Interface Operations

Operation WDINotification

updateNumberInventoryProvisioning updateNumberInventoryProvisioningSucceeded

updateNumberlnventoryProvisioningFailed

exportTopLevelDomains exportTopLevelDomainsSucceeded
exportFailed

exportInventoryTypes exportlnventoryTypesSucceeded
exportFailed

exportlnventorySubTypes exportlnventorysubTypesSucceeded
exportFailed

exportlnventoryStatus exportlnventoryStatusSucceeded
exportFailed

exportlnventoryRelationTypes exportlnventoryRelationTypesSucceeded
exportFailed

exportlnventoryltem exportlnventoryltemSucceeded
exportFailed

exportInventoryltems exportlnventoryltemSucceeded

This operation uses the same succeeded exportFailed

operation as exportlnventoryltem

exportInventoryltemAssociation exportlnventoryRelationSucceeded
exportFailed

importNewInventoryltem importInventoryltemSucceeded
importFailed

importUpdatedInventoryltem importInventoryltemSucceeded
importFailed

importlnventoryAssociation importInventoryAssociationSucceeded

importInventoryAssociationFailed

removelnventoryAssociation removelnventoryAssociationSucceeded
removelnventoryAssociationFailed

122 MetaSolv Software, Inc.

Process flow

Table 31: NumberinventorySession Interface Operations

Operation WDINotification

exportTelephoneNumbers exportTelephoneNumbersSucceeded
exportTelephoneNumbersFailed *

* The operation returns a failed notification and and
WDIError structure with an error when no data is
found for a certain criteria.

preAssignTelephoneNumber preAssignTelephoneNumberSucceeded
preAssignTelephoneNumberFailed

exportAccessTelephoneNumbers exportAccessTelephoneNumbersSucceeded
exportAccessTelephoneNumbersFailed

Process flow

The section that follows contains a sample process flow for unsolicited messages. Use the
sample flow as a template when you develop your own process flows.

Unsolicited messages

When the message is initiated by the third party (unsolicited), the MetaSolv Solution plays the
role of the server, and the third-party application plays the role of the client. Unsolicited
messages are processed asynchronously, meaning a callback mechanism is used to report back
the results of an operation invoked by the third-party application.

Sample unsolicited process flow for importing a customer

The overall process flow for importing a customer is as follows:

1. The third-party application binds to the MetaSolv Solution Application Server to get a
WDIRoot object reference.

2. The third-party application invokes the startNumberInventorySession operation of the
WDIManager interface to get a NumberInventorySession object reference.

3. The third-party application invokes the connect operation of the WDIRoot interface,
which yields a WDIManager object reference.

4. The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference.

CORBA API Developer’s Reference 123

Chapter 6: The Number Inventory API

5. The third-party application instantiates a WDINotification object.

6. The third-party application invokes the importNewCustomer operation on the
NumberInventorySession interface, providing WDITransaction, WDINotification, and
NumberInventory CustomerAccount objects.

7. The MetaSolv Solution Application Server processes the invoked operation of the
Numberlnventory Session and invokes the appropriate callback operation on the input
WDINotification. In this example, the operations are NumberinventoryExportSucceeded
or NumberlInventoryExportFailed for exporting, and NumberinventorylmportSucceeded
or NumberlInventorylmportFailed for imports.

8. If the NumberinventorylmportSucceeded operation is invoked, the third-party application
invokes the commit operation of the WDITransaction interface. If the
NumberInventoryExportFailed operation is invoked, a WDIError sequence describing the
error is returned to the third-party application. The third-party application then performs
the appropriate error handling routine. In the case of an import failing, the third-party
application should rollback the transaction.

9. The third-party application invokes the destroyNumberinventorySession operation of the
WDIManager interface.

10. The third-party application invokes the destroyTransaction operation on the WDIManager
interface.

11. The third-party application invokes the disconnect operation of the WDIRoot interface.

Import notifications

When the import of a new object succeeds, the document number is populated with the ID of
the new record.

Number Inventory API date handling

To indicate that a date should be considered null, send "0" for the day, "0" for the month, and
"0" for the year. If you supply a year that is less than four digits, 1900 is added to the value to
determine the year. If four digits are provided, it is assumed that this is the exact year.

For example, if you provide 1/1/99, It is interpreted as January 1, 1999. If you provide 1/1/101,
it is interpreted as January 1, 2001. If you provide 1/1/1, it is interpreted as January 1, 1901. If
you provide 1/1/2001, it is interpreted as January 1, 2001.

124 MetaSolv Software, Inc.

The Activation API

The Activation API supports auto-activation for networks and connections. You must activate
these networks or connections after designing, ordering, and provisioning them. Technologies
include:

ATM (Asynchronous Transfer Mode)

DSL (Digital Subscriber Line)

DSL with POTS (Plain Old Telephone Service)

Ethernet

Frame Relay

MPLS (Multiple Protocol Label Switching)

Traditional POTS

VLAN

VoATM

VoDSL (Voice over DSL)

*

® 6 6 6 6 6 O 0

The export design provides the raw data that a third party's system needs to automatically
activate a previously provisioned network or connection. The data includes information about
system activation, activation of physical and virtual connections, and the elements which the
connections link.

Connections

The export presents connection information by grouping connection and port address
information under Network Elements. Connections represent the elements tied together
because connections cannot exist without elements or ports. For the VLAN type of network,
no connections exist like other systems, except for PortAddress assignments on the
NetworkElements that make up the system. For this case, the port address assignments are
shown on the NetworkElements separate from the individual and group connections on the
element.

MetaSolv Solution CORBA API Developer’s Reference 125

Chapter 7: The Activation API

Network system information

The NetworkSystem structure is returned in the NetworkSystems sequence on the Activation
structure when a system is part of an order or the non-order specifies a network system. In the
case of an order, if no elements or connections are ordered with the system, only the system
information, including custom attributes, are returned. If elements or connections are ordered
with it, they are returned with the system. In the non-order scenario, all elements and
connections related to the system are retrieved to show a complete view of the entire system.

Order processing

Auto-activation provides the export of data necessary for activation and provides data for the
Activation Report presented to a user online. The processing for the Network System
Connection Export is predicated on gateway event processing. As part of the provisioning
plan, an activation gateway event fires. This event includes information identifying activated
networks or connections. In the case of processing by an order, the gateway event includes the
WDIEvent, which has the order number as part of its data.

If this is a non-order activation, then the gateway event uses WDIEvent2 with the first key
specifying the type of item and the second key specifying the item. The third key is used for
the issue number where necessary.

The first key values are:

¢ 1 =virtual connections
¢ 2 =physical connections

& 3 =service items
The second key contains:

¢ For virtual connections, the design ID

¢ For physical connections, the circuit design ID

& For service items, the service item ID

The third key holds the issue number for the design in the case of virtuals and for the circuit
design ID for physicals. When the first key indicates the request is for a physical connection,

the third key representing the issue number is ignored because issue numbers are not
applicable to such connections in this release.

126 MetaSolv Software, Inc.

Single connection

Single connection

Processing outside the context of an order can occur. A typical scenario involves a network
already provisioned, active, and is reproduced within the MetaSolv Solution as inventory. If
the calling application knows the network system ID or the connection in question, then export
of the data for activation can occur. The calling application sends the WDIEvent2 structure
passed to it by the gateway event and echoes it back to the API if:

¢ The type (first key on WDIEvent2) is virtual, the second key on the WDIEvent?2 is the
design ID of the virtual connection and the third key is the issue number.

¢ The type is physical, the second key on the WDIEvent?2 is the circuit design ID of the
physical connection and the third key is the issue number (ignored in this release).

& The type is service item, the second key is the service item ID and the third key is ignored.

Retrieval

In an order activation scenario, the order number passed in through the WDIEvent object
drives the process. The document number is used to retrieve all level one service items for the
order and the types are evaluated. If the type is System, the child service items for that level
one are retrieved and those types are evaluated. If the type is Connector or Element, the
information for those items is retrieved. Connectors are represented by the elements which the
connections bring together. All elements and any connectors grouped with those elements,
associated with the network system, are returned. If the level one item is Element or Connector
type, those Element structures are grouped on the Activation structure in the
NonSystemSpecificElementsAndConnections sequence because connections are grouped
under the elements they tie together. Switch Translation information is retrieved, if any exists
for the order, and returned in the SwitchTranslations sequence on the Activation structure.
Internet translation information, which appears on the Activation Report, is not included on
the export.

Key MetaSolv Solution concepts

In order to understand the information made available through the Activation API, you must
understand certain key concepts. These concepts include:

MetaSolv Solution Work Management subsystem

MetaSolv Solution Gateway Event Server

Gateway events and the Activation API

Exporting data using the Activation API

Reference architecture

L ZBK JER NN JER 2N 4

Design considerations

CORBA API Developer’s Reference 127

Chapter 7: The Activation API

Activation API IDL files

The Activation API consists of the following IDL files:
WDIACTIVATIONTYPES.IDL

*

*
L 4
L 4

WDILIDL
WDIUTIL.IDL
WDIDLR.IDL

Activation API interface relationships

Figure 19 illustrates the relationship of the Activation API interfaces.

WDIRoot
WDIDLR.IDL

WDIManager
WDIDLR.IDL

DLRSession
WDIDLR.IDL

WDINotification

circuitHierarchySession
WDICIRCUIT.IDL

WDINotification

equipmentSession
WDIEQUIPMENT.IDL

WDINotification

plantSession
WDIPLANT.IDL

WDINotification

ActivationSubSession
WDIDLR.IDL

WDINotification

Al

Figure 19: Activation API Interface Relationships

128 MetaSolv Software, Inc.

Activation API operation descriptions

Activation API operation descriptions

The following IDL operations support the exporting of an activation assignment using the
Activation API.

Only physical connections that have been completely designed are included in the Activation
Report. Additionally, if the equipment used by a designed physical connection does not have

an element association, the physical connection information for that element is not included on
the Activation Report. The same is true for virtual connections with port addresses.

¢ getActivationInformationForOrder

This operation drives the processing for the retrieval of the activation information using
the data sent into the constructor. The operation performs the following tasks:

L 2

* 6 o o

*

Retrieves the level one service item information for the document number. Evaluates
the type for each of the service items. Processes items that have the type:

+ SYSTEM

+ PRDBUNDLE

Retrieves SwitchTranslation information for the document number if any is available.
Retrieves InternetTranslation information for the document number.

Retrieves all of the notes for the document number.

Retrieves the order information for the document number and populates the
OrderInformationData using the information retrieved.

If the type is System, the operation retrieves the activation information for the network
by performing the following tasks:

+ Obtains the Network System ID using the servItemld.
+ Retrieves the NetworkSystemData.
+ Retrieves the child service items for the system service item ID.

+ If child type is Connector, uses the circuit design ID from the service item record
to retrieve a vector of NetworkElementData containers representing the
connection.

+ If the child type is Element, retrieves the ID for the element. Retrieves the
Network ElementData container for that element.

If the type is Product Bundle, the operation retrieves the activation information for the

bundle by performing the following tasks:

« Retrieves the child service items for the product bundle's service item ID and
processes each one.

« If the child type is Connector, uses the circuit design ID from the service item
record to retrieve a vector of NetworkElementData containers representing the
connection.

« If the child type is Element, retrieves the ID for the element. Retrieves the
NetworkElementData container for that element.

CORBA API Developer’s Reference 129

Chapter 7: The Activation API

L 2R 4

getActivationInformationForVirtual Connection

+ Retrieves the NetworkElementData containers representing the virtual connection that
includes allocated physical connections and allocated port addresses.

+ Adds NetworkElementData containers obtained to the
NonSystemSpecificElementsAndConnections vector on the ActivationData container,
which is translated before being sent back to the calling application.

getActivationInformationForPhysicalConnection
+ Retrieves the NetworkElementData containers representing the physical connection.

+ Adds NetworkElementData containers obtained to the
NonSystemSpecificElementsAndConnections vector on the ActivationData container,
which will be translated before being sent back to the calling application.

getActivationInformationForServitem
Retrieves the service item record for the service item ID passed.

If the service item is a physical connection, data retrieved is the same as calling
getActivationlnformationForPhysicalConnection.

If the service item is a virtual connection, data retrieved is the same as calling
getActivationlnformationForVirtualConnection. The issue number used for the virtual
connection is the most recent pending issue, or if no pending issue exists, the most recent
current issue.

If the type is SYSTEM, obtain the network system ID using the service item ID.
« Retrieves the NetworkSystemData for the network system ID.

+ Obtains the related virtual connection IDs and obtains the NetworkElementData
containers representing those connections.

+ Obtains the physical connection IDs for any physical connections that do not have
virtual allocations made to them. For each of these connections, obtains the
NetworkElementData containers representing the appropriate element.

+ Obtains any remaining network element IDs. For each element ID, obtains the
NetworkElement information by invoking the getNetworkElementInformation.

+ Adds the NetworkElementData containers for the elements and the connections. Adds
them to the NetworkElements vector on the NetworkSystemData container.

+ Adds the NetworkSystemData container to the ActivationData container.

130 MetaSolv Software, Inc.

Activation API operation descriptions

& Ifthe type is Product Bundle, obtains the product bundle components by performing
the following tasks:

*

Retrieves the child service items for the product bundle's service item ID and
processes each one.

If the child type is Connector, uses the circuit design ID from the service item
record to retrieve a vector of NetworkElementData containers representing the
connection.

If the child type is Element, retrieves the ID for the element. Retrieves the
NetworkElementData container for that element.

¢ Ifthe type is ELEMENT, obtains the element ID.

*

*

Obtains the NetworkElementData container.

Adds the NetworkElementData container to the
NonSystemSpecificElementsAndConnections on the ActivationData container.

Returns the ActivationData container to be translated and returned to the calling
application.

¢ getActivationInformationForServitemWithOrderHeader

Retrieves all of the data under the getActivationInformationForServitem heading. In
addition:

¢ Retrieves SwitchTranslation information for the document number if any is available.

Retrieves InternetTranslation information for the document number.

L 2
& Retrieves all of the notes for the document number.
L 2

Retrieves the order information for the document number and populates the
OrderInformationData using the information retrieved.

¢ getNetworkSystemInformation

+ Obtains the service item ID for the Network System ID.

+ Using the service item, invokes the getActivationInformationForServitem operation.

+ Returns the NetworkSystemData container from the ActivationData container.

CORBA API Developer’s Reference 131

Chapter 7: The Activation API

132 MetaSolv Software, Inc.

The Plant API

The telecommunications industry uses the term plant to describe two different environments
within the context of network inventory management and network provisioning. These
environments are outside plant (OSP) and inside plant (ISP). A company's inside plant
investment is sometimes referred to as central office equipment (COE) or simply equipment.

The purpose of the Plant API is to enable the integration between an OSP system and the
MetaSolv Solution. The primary intent is for the OSP to maintain plant inventory while the
MetaSolv database retains assignment information.

The integration is achieved via gateway events, which are associated with tasks in a
provisioning plan.

Plant implementation concepts

This section describes issues you must be familiar with when building an application that
interfaces with the Plant API.

Order management

The MetaSolv Solution Work Management module assists MetaSolv Solution users in
managing the flow of work and information from service requests to provisioning ordered
services. Tasks are generated in the Order Management subsystem when the MetaSolv
Solution user selects a provisioning plan upon completion of the order entry activities. A
provisioning plan is a list of tasks required for each order type to be considered complete. Each
task has a time interval and an assigned work group, responsible for completing the task.

The MetaSolv Solution Infrastructure module provides the MetaSolv Solution user with the
ability to build and customize provisioning plans specific to their needs. The samples are
primarily meant to reflect the sequential relationships between the PA, RID/DLRD, DD, and
PAC tasks.

Associating the plant assignment gateway event with the PA task instead of the RID/DLRD
task provides several advantages. The DLR/CLR lines do not show the correct plant
assignments until the gateway event is complete. If the gateway event is associated with the
RID/DLRD task, a MetaSolv Solution user opening the DLR/CLR prior to the completion of
the plant assignment gateway event is presented with incomplete plant assignments. The user
can avoid confusion if the gateway event is separated from the RID/DLRD task. Keeping the

MetaSolv Solution CORBA API Developer’s Reference 133

Chapter 8: The Plant API

gateway event task (the PA task) separate from the RID/DLRD task enables smoother problem
resolution if gateway event errors exist.

A provisioning plan sample for a new or change PSR order can include the following tasks:

& APP—to process the order application from customer
CKTID—to identify circuit assignments and locations
PA—to send gateway event for auto-assignment of plant
RID—to complete the circuit design

PTD—to perform plant test activities

DD—to indicate the circuit is in service

L JER K JER JER 2NN 4

PAC—to send gateway event to indicate the plant is in service

¢ BILLING—to perform billing activities

A provisioning plan sample for an ASR or PSR disconnect order can include the following
tasks:

¢ PA—to send gateway event for plant disassociation

¢ RID/DLRD— to disassociate plant from circuit and to complete other circuit disconnect
activities

DD—to indicate the circuit is disconnected

PAC—to send gateway event to indicate plant is disconnected

BILLING—to perform billing activities

provisioning plan sample for an ISR may include the following tasks:
PA—to send gateway event for auto-assignment of plant
RID—to complete the circuit design
PTD—to perform plant test activities

DD—to indicate the circuit is in service

® & ¢ 6 6 > 0 00

PAC—to send gateway event to indicate the plant is in service

Recommendations for assigning gateway events to provisioning
plan tasks

Before you can associate gateway events with a provisioning plan task, the MetaSolv Solution
user must first define the gateway and gateway event in the MetaSolv Solution Work
Management Gateway module. While developing a provisioning plan, the MetaSolv Solution
user can associate gateway events to specific provisioning plan tasks.

When creating a gateway event, the MetaSolv Solution user must negotiate with the
mediation server vendor to define appropriate gateway event names and platform-
related information.

134

MetaSolv Software, Inc.

Plant implementation concepts

You cannot associate gateway events with orders that already have provisioning plans applied.
Therefore, you should add gateway events to any task that might be used for an electronic
interface in the future. After task generation, a MetaSolv Solution user can bypass a gateway
event or reactivate a bypassed gateway event for a task that has not completed. The MetaSolv
Solution user can also reopen a task, and then reactivate the gateway event for completed
tasks.

You can assign multiple gateway events to a single task. You can also assign a gateway event
to multiple tasks. When you assign a gateway event to a task, the task cannot be completed
until the gateway event is complete.

Provisioning plan tasks can be defined as system tasks. System tasks do not require any action
by the MetaSolv Solution user.

The plant assignment and inventory interface can be accomplished with only two different
gateway events: Plant assignment and plant assignment complete. According to the
provisioning plan samples illustrated above, the plant assignment gateway event is associated
with the PA task, and the plant assignment complete gateway event is associated with the PAC
task.

When defining these events, the following parameters are recommended. You should check
the Force Reopen checkbox so that the gateway event can be resubmitted in the event that a
task is reopened due to a supplement to the order prior to completing the order. For the event
level, select Order Level so that a single gateway event signal is sent for all of the circuits
requiring plant assignment. Specify the Direction as outbound. You should associate the
gateway events with all three of the activity groups: new, change and disconnect. Check the
Provisioning checkbox for the event type.

Options for Modify Cable Pair Assignment preference

The Plant API requires you to set the value for the system preference Options for Modify
Cable Pair Assignment to Create Pending Assignment. The four options presented in this
preference dictate how MetaSolv is to manage the assignment if the requested plant element is
already assigned to another circuit. The Plant API assumes a tight integration with the OSP
system. It assumes that assignment statuses are synchronized between the OSP system and
MetaSolv Solution. Therefore, the Plant API always attempts to create pending assignments
when plant elements are reassigned for future-use circuits. Plant API and Plant Administration
software options are mutually exclusive.

Transaction management and the Plant API

The Plant API manages transaction processing on behalf of your application. That is, the Plant
API handles all commits and rollbacks to the MetaSolv Solution database instead of requiring
your application to explicitly commit or rollback transactions. When you request an operation
that succeeds, the Plant API immediately commits the results of the operation, then notifies

you of its success. When a requested operation fails, the Plant API immediately rolls back the

CORBA API Developer’s Reference 135

Chapter 8: The Plant API

results of the operation, then notifies you of the failure. The Plant API's
importPlantAssignment operation, which allows processing of multiple circuits, performs the
commit or rollback separately for each circuit as the import succeeds or fails, prior to notifying
you of the result. If it fails, the importPlantAssignmentFailed notification returns the list of
circuits that were successfully updated prior to the failure.

Associating separations route to plant transport

Plant API does not allow for the association of a separations route to the plant transport (cable
complement). In MetaSolv Solution, you can specify a separations route for a given
complement. The application uses the mileage in the separations route to validate the length of
the plant element properties.

Consequential equipment assignments

The Plant API does not offer the ability to import equipment to assign along with the plant
element assignments. Typically, a plant element terminates at the CO by a piece of line
equipment or a fiber distribution panel. When the OSP sends the plant assignment
information, it might know the line equipment on which the plant element terminates. The
Plant API does not offer the capability to import, assign, and build DLR blocks for line
terminating equipment. You can create the hard-wired cross-connect between the equipment
you want to use for the assignment and the line-terminating equipment and manually assign
the line equipment. Otherwise, the process of selecting and assigning the line-terminating
equipment is manual.

Key MetaSolv Solution concepts

In order to understand the information made available through the Plant API, you must
understand certain key concepts. These concepts include:

MetaSolv Solution Work Management subsystem

MetaSolv Solution Gateway Event Server

MetaSolv Solution Infrastructure API Server

Gateway events and the Plant API

Exporting data via the Plant API

Importing data via the Plant API

Reference architecture

Design considerations

Transaction management

L ZBK 2K 2R R JEE JEE JEE 2R 2NN 4

Structured formats

136 MetaSolv Software, Inc.

Plant API IDL files

Plant API IDL files

The Plant API consists of the following IDL files:

¢ WDIPlant.idl
¢ WDIPlantTypes.idl
¢ WDLidl

¢ WDIUtil.idl

Plant API interface relationships

Figure 20 illustrates the relationship of the Plant API interfaces.

WDIRoot
WDIDLR.IDL

WDIManager
WDIDLR.IDL

DLRSession
WDIDLR.IDL

WDINotification

circuitHierarchySession
WDICircuit.IDL

WDINotification

equipmentSession
WDIEquipment.IDL

WDINotification

plantSession
WDIPlant.IDL

WDINotification

i

Figure 20: Plant API Interface Relationships

CORBA API Developer’s Reference 137

Chapter 8: The Plant API

PlantSession interface

Table 32 lists the operations that comprise the PlantSession interface.

Table 32: Plant API Interface Operations

Operation WDINotification Operations
getFunctionCodes getFunctionCodesSucceeded
operationFailed
getLoadingTypes getLoadingTypesSucceeded

operationFailed

getPlantTransportClasses

getPlantTransportClassesSucceeded

operationFailed

queryPlantTransportPhysical
CompositionSpec

queryPlantTransportPhysical CompositionSpec
Succeeded

operationFailed

getPlantElementAssignment

Statuses

getPlantElementAssignmentStatusesSucceeded

operationFailed

exportServiceRequestDetail

exportServiceRequestDetailSucceeded

operationFailed
exportPlantAssignment exportPlantAssignmentSucceeded

operationFailed
importPlantAssignment importPlantAssignmentSucceeded

importPlantAssignmentFailed

138 MetaSolv Software, Inc.

Plant API operation descriptions

Plant API operation descriptions

The following IDL operations support the importing of a plant assignment using the Plant API.
¢ getFunctionCodes

Retrieves a list of valid function codes for use with a plant assignment. The
referenceNumber argument is generated by the operation's client, allowing it to match the
asynchronous request to the corresponding result. The notification argument is the
callback reference necessary for the API to complete the request in an asynchronous
environment.

Function codes represent the uses for a plant element assigned to a circuit. You get the list
of valid function codes from a static list. The list is as follows:

T = Transmit

R = Receive

S1 = Side One

S2 = Side Two

X2 =Two Wire

X4 = Four Wire

¢ getLoadingTypes

L ZBK JER BN JER 2N 4

Obtains a list of valid loading types to use to query for a plant transport physical
composition spec. The referenceNumber argument is the number that generates by the
client of the operation, allowing the client to match the asynchronous request to the
corresponding result. The notification argument is the callback reference necessary for the
API to complete the request in an asynchronous environment.

Loading types represent the possible ways in which a plant element amplifies to
counteract signal loss. This list is user-definable and dynamic. The data provided as base
data to a new customer is as follows:
¢ DO66: D indicates 4500 feet between load points with 66mh (millihenry).
¢ HS88: H indicates 6000 feet between load points with 88mh (millihenry).
¢ NL: Non-loaded refers to cable pairs without load coils attached to them.
¢ L: Loaded refers to cable pairs with load coils attached to them.

¢ getPlantTransportClasses
Obtains a list of valid classes to use to query for a plant transport physical composition
specification. The referenceNumber argument is the number that generates by the client of
the operation, allowing the client to match the asynchronous request to the corresponding

result. The notification argument is the callback reference necessary for the API to
complete the request in an asynchronous environment.

Plant transport classes represent the medium of the plant transport. This static list has the
following values:

CORBA API Developer’s Reference 139

Chapter 8: The Plant API

COPPER

FIBER

MICROWAVE

SATELLITE

COAX

¢ queryPlantTransportPhysical CompositionSpec

L 2BR JER JEE R 2

A success notification operation that corresponds to the
queryPlantTransportPhysical CompositionSpec operation. The referenceNumber
argument is the number that generates by the client of the operation which allows the
client to match the asynchronous request to the corresponding result. The
plantTransportPhysical CompositionSpecList is the list of plant transport physical
composition specs returned based on the query criteria you provide to the
queryPlantTransportPhysical CompositionSpec operation.

The plant transport physical composition specifications describe the possible gauge,
loading type, medium, and frequency combinations you can use to describe the physical
aspects of a plant transport. This query equates to the Cable Pair Properties Query you can
find in the Infrastructure module. A new generic query name now exists so that you can
represent all mediums of plant transports (cables) without a bias toward one specific
medium.

& getPlantElementAssignmentStatuses

A success notification operation that corresponds to the
PlantSession::getPlantElementAssignmentStatuses operation. The referenceNumber
argument is the number that generates by the client of the operation, allowing the client to
match the asynchronous request to the corresponding result. The assignmentStatusList
argument is the list of valid plant element assignment statuses.

Plant element statuses represent the possible list of statuses that a plant element (pair) can
have. The possible values from this static list are:

1 = Unassigned

2 = Pending

3 =InService

4 = Pending Discount

6 = Reserved

* 6 6 0 0 o

7 = Reserved Capacity
& exportServiceRequestDetail

Obtains a service request detail to determine how to process the gateway event signal. The
third-party server receives a generic notification from the gateway event server and needs
to determine the service request activity in order to decide whether to obtain new
connection information from the OSP system to pass to the MetaSolv Plant API or to

140 MetaSolv Software, Inc.

Plant API operation descriptions

disconnect the existing connection on the OSP system. Additionally, this operation obtains
the absolute originating and terminating locations for a circuit on an order, not only the
end point but also the local serving offices, if appropriate. Given these two endpoints, the
client must use the Infrastructure API to gather the location details for the location
identifiers supplied.

Using these location details, the client must match the location with the same location in
the integrated third-party database. Once this work is complete, the client must find the
associated plant and location details to pass to the MetaSolv Plant API. If the client
requires additional locations to complete the connection, the client must once again use
the MetaSolv Infrastructure API to find query for the internal MetaSolv location identifier
which passes to the Plant API along with the other plant assignment information. The
referenceNumber argument is the number that generates by the client of the operation
which allows the client to match the asynchronous request to the corresponding result. The
notification argument is the callback reference necessary for the API to complete the
request in an asynchronous environment. The documentNumber argument is the key to the
service request.

You can obtain the document number from the

MetaSolv:: WDI:: WDIEvent.documentNumber member. The WDIEvent is sent as a data
payload from the gateway event server to the third-party server. If you are using this
operation to obtain the list of circuits associated with an order, and the request to do so did
not generate by the gateway event server, you must find the document number in the
MetaSolv database by matching service request details from the OSP to service request
details in the MetaSolv database, with the query yielding a MetaSolv document number
for the service request. You can either query using an existing API, such as PSR orders, or
via a direct database SQL call.

exportPlantAssignment

Obtains the plant element assignment information and plant transports used for designing
a given circuit. The referenceNumber argument is the number that generates by the client
of the operation, allowing the client to match the asynchronous request to the
corresponding result. The notification argument is the callback reference necessary for the
API to complete the request in an asynchronous environment. The circuitDesignldentifiers
argument references the internal circuit design ID for the MetaSolv Solution. You must
retain this information on the OSP system for reconciliation purposes. The third-party
server can pass more than one circuit design identifier in order to retrieve the plant
transport assignment data for multiple circuits.

importPlantAssignment

Imports the plant assignment data that passes from the client (the third-party mediation
server). The concept is that an OSP system, other than MetaSolv Solution, maintains plant
inventory. The OSP decides the appropriate plant data to use to complete the physical
connection between the originating and terminating locations for the circuit, and provides
that information to the MetaSolv Plant API by means of the importPlantAssignment

CORBA API Developer’s Reference 141

Chapter 8: The Plant API

operation. The referenceNumber argument is the number that is generated by the client of
the operation, allowing the client to match the asynchronous request to the corresponding
result. The notification argument is the callback reference necessary for the API to
complete the request in an asynchronous environment. The documentNumber argument is
the key to the service request. You can obtain the document number from the

MetaSolv:: WDI:: WDIEvent.documentNumber member or as output from the
exportServiceRequestDetail IDL operation.

The circuitDesignlD argument represents one of the provisionable circuits that appear on
the service request represented by the document number argument. The list of
provisionable circuits can be determined using the exportServiceRequestDetail operation.
The circuitPlantTransportList argument is the list of plant transport details necessary to
complete the physical connection between the two endpoints of the circuit. The list can
contain the connection details for an unlimited number of circuits.

g The Plant API commits each circuit individually to avoid any problems with filling
rollback segments on the MetaSolv database.

In the event of an error (importPlantAssignmentFailed is called), the Plant API notifies the
third-party server with the failed circuit design identifier.

Using that information, the third-party server can determine the success and failure of all
of the circuits. Also, the importPlantAssignmentFailed notification returns a list of all the
circuits designed successfully. This information can be useful for resetting statuses on the
OSP system. If the third-party server does not want to handle the difficulties inherent in
working with large sets of data, the server can choose to call the IDL operation, once for
each circuit found on the service request.

g The Plant API does not offer the ability to restart processing where it failed when the
gateway event restarts. Because Plant API does not have a way of knowing if the OSP
wants to change its allocation, the mediation server can resend all the circuits with the
original assignment information or send only those that had not processed at the point of
failure.

MetaSolv Solution API software and mediation
server processes

An essential advantage of MetaSolv's API architecture is the integration between the OSS
Gateways and the MetaSolv Solution Work Management subsystem. This integration is
enabled by gateway events. Gateway events are inbound or outbound signals between the
Work Management subsystem and a third-party gateway vendor. As tasks are started or
completed, gateway event signals are initiated to notify the third party vendor. Once notified,
the third party software application can take appropriate action based on the event.

The mediation server is responsible for implementing the MetaSolv Solution API operations.
Upon receipt of a gateway event signal, the mediation server takes appropriate action. To

142 MetaSolv Software, Inc.

MetaSolv Solution API software and mediation server processes

support the MetaSolv Solution Plant API interface, the mediation server is responsible for
responding to two different gateway events: plant assignment and plant assignment complete.

The following process flows illustrate sample interactions between the MetaSolv Solution
gateway event server, the Plant API server, the Infrastructure API server, the third-party
mediation server, and to some extent, the external Plant inventory application. The integrator
is ultimately responsible for designing, developing and implementing the interface. The
process flows are intended to present important concepts, which should be considered by the
integrator when developing the interface. The flows are not intended to dictate how to
implement the interface.

Request for plant assignment

Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal a plant
assignment request, and the user has associated the gateway event with the appropriate work
management task. The gateway event name must be coordinated between the system
integrator and the MetaSolv Solution user. The work management task must be placed after
the circuit identification task or activity and before the circuit design task or activity. The
name of the work management task is user defined; however, the example process flow refers
to it as the PA task.

Processing prerequisite: The MetaSolv user has placed an order for a new circuit. The
MetaSolv Solution Work Management module places the PA task into a Ready status,
determines if the gateway event rules are satisfied, and sends the signal to the gateway event
server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to notify
the third-party mediation server that plant assignment activity is required for a specific
service order. One gateway event signal is sent for the entire service order even if it
includes multiple circuit items.

2. The third-party mediation server sends an event/nProgress2 operation to the MetaSolv
Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to the
MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server with
the list of transmission circuits, which require plant assignment action, and the activity
code, which indicates the plant assignment action to take.

5. The activity code returned from the exportServiceRequestDetail operation is equal to New
when a new circuit is ordered and plant facilities must be assigned to fulfill the order.

6. The third-party mediation server performs a process to obtain network location details, if
necessary. For more information on this process, see “Obtain network location details” on
page 155 The exportServiceRequestDetailSucceeded operation provides the internal

CORBA API Developer’s Reference 143

Chapter 8: The Plant API

10.

I1.

12.

13.

MetaSolv Solution location IDs for the absolute endpoints of a circuit. The third-party
mediation server might need to obtain the physical address attributes of each endpoint
location to synchronize the network locations between the integrated systems.

The third-party mediation server presents the request for new plant assignment to the
external plant inventory application.

The external plant inventory user assigns the appropriate plant inventory and network
locations required for each transmission circuit.

The third-party mediation server or the external plant inventory application associates the
assigned plant inventory with the MetaSolv Solution circuit ID for future reference and
data synchronization processing. It places the plant inventory into a pending assignment
status.

The third-party mediation server performs a query for the network location ID, if
necessary. For more information on this query, see “Query for network location ID” on
page 155 The exportServiceRequestDetailSucceeded operation provides the absolute
endpoints of a circuit; however, the plant engineer can select a path, which requires
additional locations to complete the assignment. The internal MetaSolv Solution location
IDs are required for the importPlantAssignment operation.

The third-party mediation server performs a query to obtain physical plant specifications,
if necessary. For more information on this query, see “Query for plant specification ID” on
page 156 The internal MetaSolv Solution plant specification IDs are required for the
importPlantAssignment operation.

The third-party mediation server performs a query to obtain valid values for plant
assignment, if necessary. For more information on this query, see “Obtain valid values for
plant import and export” on page 156 The valid values for specific fields are dynamic,
depending on table entries maintained by the MetaSolv Solution user. You can obtain
these values by executing the operations described in this process.

The third-party mediation server sends the importPlantAssignment operation for each
circuit on the order that requires plant assignments. Plant assignments are required for
base circuits; however, they are not required for transmission circuits that ride base
circuits. The import operation includes the physical details about the plant transport
medium and the network and terminal locations involved in each circuit assignment.

g The plant assignment change process might not require a change in cable pair

14.

assignments. The third-party plan inventory system must determine whether to assign the
same or different cable pair to the circuit based on the status of the cable pair. If plant
assignment changes are not required for a circuit, the importPlantAssignment operation is
not required for the circuit.

The MetaSolv Solution Plant API server assigns the plant inventory to the ordered
circuits.

144 MetaSolv Software, Inc.

MetaSolv Solution API software and mediation server processes

15. The third-party mediation server sends an eventCompleted? operation to the MetaSolv
Solution gateway event server after plant assignments are complete for all of the ordered
circuit items.

16. The Work Management module changes the PA task to complete. This automatic activity
relies on the user to correctly define the PA task and plant assignment gateway event.

Request for plant assignment change

Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal a plant
assignment request, and the user has associated the gateway event with the appropriate work
management task. The gateway event name must be coordinated between the system
integrator and the MetaSolv Solution user. The work management task must be placed after
the circuit identification task or activity and before the circuit design task or activity. The
name of the work management task is user defined; however, the example process flow refers
to it as the PA task.

Processing prerequisite: The MetaSolv Solution user has placed a change order for an in-
service circuit. The MetaSolv Solution Work Management module places the PA task into
"Ready" status, determines if the gateway event rules are satisfied, and sends the signal to the
gateway event server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to notify
the third-party mediation server that plant assignment activity is required for a specific
service order. One gateway event signal is sent for the entire service order, even if it
includes multiple circuit items.

2. The third-party mediation server sends an event/nProgress2 operation to the MetaSolv
Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to the
MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API Server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server with
the list of transmission circuits, which require plant assignment action, and the activity
code, which indicates the plant assignment action to take.

5. The activity code returned from the exportServiceRequestDetail operation is equal to
change when modifying an existing circuit. The change order within the MetaSolv
Solution may not require a change to plant facilities. If problems exist with the assigned
plant (bad cable pair), the plant inventory assigned to the circuit should be returned to
inventory and new plant should be obtained from available inventory.

6. The third-party mediation server performs a query for network location details, if
necessary. For more information on this query, see “Obtain network location details” on
page 155 The exportServiceRequestDetailSucceeded operation provides the internal
MetaSolv Solution location IDs for the absolute endpoints of a circuit. The third-party

CORBA API Developer’s Reference 145

Chapter 8: The Plant API

10.

I1.

12.

13.

14.

mediation server might require the physical address attributes of each endpoint location to
synchronize the network locations between the integrated systems.

The third-party mediation server presents the currently assigned plant for each of the
circuits on the change order to the external plant inventory application.

The external plant inventory user determines if a change in plant inventory and network
locations is required.

If a change in plant inventory is not required, the third-party mediation server skips to step
14.

The third-party mediation server or the external plant inventory application associates the
assigned plant inventory with the MetaSolv Solution circuit ID for future reference and
data synchronization processing. It places the plant inventory into a pending assignment
status.

The third-party mediation server performs a query for the network location ID, if
necessary. For more information on this query, see “Query for network location ID”” on
page 155 The exportServiceRequestDetailSucceeded operation provides the absolute end
points of a circuit; however, the plant engineer might select a path, which requires
additional locations to complete the assignment. The internal MetaSolv Solution location
IDs are required for the importPlantAssignment operation.

The third-party mediation server performs a query for physical plant specifications, if
necessary. For more information on this query, see “Query for plant specification ID” on
page 156 The internal MetaSolv Solution plant specification IDs are required for the
importPlantAssignment operation.

The third-party mediation server performs a query for valid values, if necessary. For more
information, see “Obtain valid values for plant import and export” The valid values for
specific fields are dynamic, depending on table entries maintained by the MetaSolv
Solution user. You can obtain these values by executing the operations described in this
process.

The third-party mediation server sends the importPlantAssignment operation for each
circuit on the order that requires plant assignments. Plant assignments are required for
base circuits; however, they are not required for transmission circuits that ride base
circuits. The import operation includes the physical details about the plant transport
medium and the network and terminal locations involved in each circuit assignment.

g For the plant assignment change process, a change in cable pair assignments might be

15.

required. The third-party plant inventory system must determine if the same or different
cable pair should be assigned to the circuit based on the status of the cable pair. If plant
assignment changes are not required for a circuit, the importPlantAssignment operation is
not required for the circuit.

The MetaSolv Solution Plant API server assigns the plant inventory to the ordered
circuits.

146 MetaSolv Software, Inc.

MetaSolv Solution API software and mediation server processes

16. The third-party mediation server sends an eventCompleted? operation to the MetaSolv
Solution gateway event server after plant assignments are complete for all of the ordered
circuit items.

17. The Work Management module changes the PA task to complete. This automatic activity
relies on the user to correctly define the PA task and plant assignment gateway event.

Request to cancel plant assignment

Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal a plant
assignment request, and the user has associated the gateway event with the appropriate work
management task. The gateway event name must be coordinated between the system
integrator and the MetaSolv Solution user. The work management task must be placed after
the circuit identification task or activity and before the circuit design task or activity. The
name of the work management task is user defined; however, the example process flow refers
to it as the PA task.

Processing prerequisite: The MetaSolv Solution user has placed an order for a new circuit, has
completed the initial plant assignment task on the provisioning plan, and has canceled the
order. The MetaSolv Solution Work Management module places the PA task into "Ready"
status, determines if the gateway event rules are satisfied, and sends the signal to the gateway
event server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to notify
the third-party mediation server that plant assignment activity is required for a specific
service order. One gateway event signal is sent for the entire service order even if it
includes multiple circuit items.

2. The third-party mediation server sends an eventlnProgress2 operation to the MetaSolv
Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to the
MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server with
the list of transmission circuits, which require plant assignment action, and the activity
code, which indicates the plant assignment action to take.

5. The activity code returned from the exportServiceRequestDetail operation is equal to
Cancel when a new or changed order has been placed, plant assignment activity has
started, and the MetaSolv Solution user has cancelled the order. This process occurs after
the new or change process is complete and before the confirmation process is started.

6. The third-party mediation server identifies all of the outside plant elements related to the
circuit or circuits provided in the exportServiceRequestDetailSucceeded operation. The
third-party mediation server uses the internal MetaSolv Solution circuit ID for each circuit
on the order to synchronize the plant elements between the integrated systems.

CORBA API Developer’s Reference 147

Chapter 8: The Plant API

7. The third-party mediation server presents the currently assigned plant for each of the
circuits on the cancel order to the external plant inventory application.

8. The external plant inventory user restores the plant assignments to their previous state
prior to the new plant order or change plant order.

9. The third-party mediation server or the external plant inventory application disassociates
the assigned plant inventory with the MetaSolv Solution circuit ID and updates the plant
inventory status.

10. The third-party mediation server sends an eventCompleted? operation to the MetaSolv
Solution gateway event server after plant assignments are complete for all of the ordered
circuit items.

11. The Work Management module changes the PA task to complete. This automatic activity
relies on the user to correctly define the PA task and plant assignment gateway event.

Request to disconnect plant assignment

Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal a plant
assignment request, and the user has associated the gateway event with the appropriate work
management task. The gateway event name must be coordinated between the system
integrator and the MetaSolv Solution user. The work management task must be placed after
the circuit identification task or activity and before the circuit design task or activity. The
name of the work management task is user defined; however, the example process flow refers
to it as the PA task.

Processing prerequisite: The MetaSolv Solution user has placed an order to disconnect service
on a circuit. The MetaSolv Solution Work Management module places the PA task into
"Ready" status, determines if the gateway event rules are satisfied, and sends the signal to the
gateway event server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to notify
the third-party mediation server that plant assignment activity is required for a specific
service order. One gateway event signal is sent for the entire service order even if it
includes multiple circuit items.

2. The third-party mediation server sends an eventlnProgress2 operation to the MetaSolv
Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to the
MetaSolv Solution Plant API server for the order.

148 MetaSolv Software, Inc.

MetaSolv Solution API software and mediation server processes

4. The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server with
the list of transmission circuits, which require plant assignment action, and the activity
code, which indicates the plant assignment action to take.

The activity code returned from the exportServiceRequestDetail operation is equal to
disconnect when the MetaSolv Solution user places an order to disconnect a circuit.

5. The third-party mediation server identifies all of the outside plant elements related to the
circuit or circuits provided in the exportServiceRequestDetailSucceeded operation. The
third-party mediation server uses the internal MetaSolv Solution circuit ID for each circuit
on the order to synchronize the plant elements between the integrated systems.

6. The third-party mediation server presents the currently assigned plant for each of the
circuits on the cancel order to the external plant inventory application.

7. The external plant inventory user removes the plant assignments and returns them to
available inventory.

8. The third-party mediation server or the external plant inventory application places the
plant inventory into a pending disconnect status.

9. The third-party mediation server sends an eventCompleted?2 operation to the MetaSolv
Solution gateway event server after plant assignments are complete for all of the ordered
circuit items.

10. The Work Management module changes the PA task to complete. This automatic activity
relies on the user to correctly define the PA task and Plant assignment gateway event.

Request to cancel plant disconnect

Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal a plant
assignment request, and the user has associated the gateway event with the appropriate work
management task. The gateway event name must be coordinated between the system
integrator and the MetaSolv Solution user. The work management task must be placed after
the circuit identification task or activity and before the circuit design task or activity. The
name of the work management task is user defined; however, the example process flow refers
to it as the PA task.

CORBA API Developer’s Reference 149

Chapter 8: The Plant API

Processing prerequisite: The MetaSolv Solution user has placed an order to disconnect
service on a circuit, has completed the plant assignment task on the provisioning plan, and has
canceled the disconnect order. The MetaSolv Solution Work Management module places the
PA task into a Ready status, determines if the gateway event rules are satisfied, and sends the
signal to the gateway event server.

1.

10.

The MetaSolv Solution gateway event server sends the eventOccurred operation to notify
the third-party mediation server that plant assignment activity is required for a specific
service order. One gateway event signal is sent for the entire service order even if it
includes multiple circuit items.

The third-party mediation server sends an eventlnProgress2 operation to the MetaSolv
Solution gateway event server.

The third-party mediation server sends a exportServiceRequestDetail operation to the
MetaSolv Solution Plant API server for the order.

The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server with
the list of transmission circuits, which require plant assignment action, and the activity
code, which indicates the plant assignment action to take.

The activity code returned from the exportServiceRequestDetail operation is equal to
Cancel when a disconnect order is placed, plant assignment activity has started, and the
MetaSolv Solution user has cancelled the disconnect order. This process occurs after the
disconnect process is complete and before the confirmation process is started.

The third-party mediation server identifies all of the outside plant elements related to the
circuit or circuits provided in the exportServiceRequestDetailSucceeded operation. The
third-party mediation server uses the internal MetaSolv Solution circuit ID for each circuit
on the order to synchronize the plant elements between the integrated systems.

The third-party mediation server presents the currently assigned plant for each of the
circuits on the cancel disconnect order to the external plant inventory application.

The external plant inventory user restores the plant assignments to their previous state
prior to the disconnect plant order.

The third-party mediation server or the external plant inventory application restores the
assigned plant inventory with the MetaSolv Solution circuit ID for future reference and
data synchronization processing. It places the plant inventory into the previous state prior
to the disconnect order.

The third-party mediation server sends an eventCompleted? operation to the MetaSolv
Solution gateway event server after plant assignments are complete for all of the ordered
circuit items.

The Work Management module changes the PA task to complete. This automatic activity
relies on the user to correctly define the PA task and plant assignment gateway event.

150 MetaSolv Software, Inc.

MetaSolv Solution API software and mediation server processes

Request for change to due date

Setup prerequisite: The MetaSolv Solution user created a gateway event to signal a plant
assignment request, and the user has associated the gateway event with the appropriate Work
Management task. The gateway event name must be coordinated between the system
integrator and the MetaSolv Solution user. The Work Management task must be placed after
the circuit identification task or activity and before the circuit design task or activity. The
name of the Work Management task is user defined; however, the example process flow refers
to it as the PA task.

Processing prerequisite: The MetaSolv Solution user has placed an order, has completed the
plant assignment task on the provisioning plan, and has changed the due date on the order. The
MetaSolv Solution Work Management module places the PA task into a Ready status,
determines if the gateway event rules are satisfied, and sends the signal to the gateway event
server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to notify
the third-party mediation server that plant assignment activity is required for a specific
service order. One gateway event signal is sent for the entire service order even if it
includes multiple circuit items.

2. The third-party mediation server sends an eventInProgress2 operation to the MetaSolv
Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to the
MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server with
the list of transmission circuits, which require plant assignment action, and the activity
code, which indicates the plant assignment action to take.

The activity code returned from the exportServiceRequestDetail operation is equal to Due
Date Change when the MetaSolv Solution user places a new, change, or disconnect order,
plant assignment activity has started, and the MetaSolv Solution user has modified the due
date for the order. This process occurs after the new, change, or disconnect process is
complete and before the confirmation process is started.

5. The third-party mediation server identifies all of the outside plant elements related to the
circuit or circuits provided in the exportServiceRequestDetailSucceeded operation. The
third-party mediation server uses the internal MetaSolv Solution circuit ID for each circuit
on the order to synchronize the plant elements between the integrated systems.

6. The third-party mediation server presents the currently assigned plant for each of the
circuits on the due date change order to the external plant inventory application.

7. The external plant inventory user updates the planned due date for the pending plant
assignments or plant disconnect.

CORBA API Developer’s Reference 151

Chapter 8: The Plant API

10.

The third-party mediation server or the external plant inventory application updates the
planned due date.

The third-party mediation server sends an eventCompleted? operation to the MetaSolv
Solution gateway event server after plant assignments are complete for all of the ordered
circuit items.

The Work Management module changes the PA task to complete. This automatic activity
relies on the user to correctly define the PA task and plant assignment gateway event.

Request for plant assignment exception

Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal a plant
assignment request, and the user has associated the gateway event with the appropriate work
management task. The gateway event name must be coordinated between the system
integrator and the MetaSolv Solution user. The work management task must be placed after
the circuit identification task or activity and before the circuit design task or activity. The
name of the work management task is user defined; however, the example process flow refers
to it as the PA task.

Processing prerequisite: The MetaSolv Solution Work Management module places the PA
task into "Ready" status, determines if the gateway event rules are satisfied, and sends the
signal to the gateway event server.

1.

The MetaSolv Solution gateway event server sends the eventOccurred operation to notify
the third-party mediation server that plant assignment activity is required for a specific
service order. One gateway event signal is sent for the entire service order even if it
includes multiple circuit items.

The third-party mediation server sends an eventlnProgress2 operation to the MetaSolv
Solution gateway event server.

The third-party mediation server sends a exportServiceRequestDetail operation to the
MetaSolv Solution Plant API server for the order.

The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server with
the list of transmission circuits, which require plant assignment action, and the activity
code, which indicates the plant assignment action to take.

The activity code returned from the exportServiceRequestDetail operation is equal to "No
Activity" when the MetaSolv Solution user has placed a new, change, or disconnect order;
however, analysis of the requested circuit or circuits indicates no plant inventory is
required to fulfill the order.

This order activity code should not occur in normal situations; however, the third-party
mediation server should prepare for it. If this order activity is received for a circuit, no
action is required for the specific circuit item.

152 MetaSolv Software, Inc.

MetaSolv Solution API software and mediation server processes

5. The third-party mediation server determines that no plant assignment activity is required.

6. The third-party mediation server sends an eventCompleted? operation to the MetaSolv
Solution gateway event server after plant assignments are complete for all of the ordered
circuit items.

7. The Work Management module changes the PA task to complete. This automatic activity
relies on the user to correctly define the PA task and plant assignment gateway event.

Request to complete plant assignment

Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal the due
date task is complete. The user has also associated the gateway event with the appropriate
work management task. The gateway event name must be coordinated between the system
integrator and the MetaSolv Solution user. The work management task must be placed after
the due date task. The name of the work management task is user defined; however, the
example process flow refers to it as the plant assignment complete task.

Processing prerequisite: The MetaSolv Solution user has placed an order and has completed
all work management tasks through the due date task. The MetaSolv Solution Work
Management module places the PAC task into "Ready" status, determines if the gateway event
rules are satisfied, and sends the signal to the gateway event server.

This gateway event is sent to the mediation server when the plant assignments are complete,
all other equipment and facility assignments are complete, and the circuit items are either in
service or disconnect as requested by the order.

This gateway event should not be sent when the MetaSolv Solution user cancels the original
order. However, gateway event signals are largely user-controlled, so the third-party
mediation server should be prepared for such an event.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to notify
the third-party mediation server that plant assignment activity is required for a specific
service order. One gateway event signal is sent for the entire service order even if it
includes multiple circuit items.

2. The third-party mediation server sends an event/nProgress2 operation to the MetaSolv
Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to the
MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API Server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server with
the list of transmission circuits, which require plant assignment action, and the activity
code, which indicates the plant assignment action to take.

5. The third-party mediation server identifies all of the outside plant elements related to the
circuit or circuits provided in the exportServiceRequestDetailSucceeded operation. The

CORBA API Developer’s Reference 153

Chapter 8: The Plant API

10.

I1.

12.

third-party mediation server uses the internal MetaSolv Solution circuit ID for each circuit
on the order to synchronize the plant elements between the integrated systems.

The third-party mediation server sends the exportPlantAssignment operation to the
MetaSolv Solution Plant API server for each circuit to confirm the plant assignments on
the external plant inventory application are consistent with the plant assignment in the
MetaSolv Solution application. This is an important step because MetaSolv Solution users
have the option to reject the plant assignments made with the importPlantAssignment
operation.

The MetaSolv Solution Plant API server returns the exportPlantAssignmentSucceeded
operation to the third-party mediation server with the list of transmission circuits and the
actual plant assignments.

The third-party mediation server presents the pending plant assignments or pending plant
disconnects for each of the circuits on the order to the external plant inventory application.

The external plant inventory user completes the assignment or disconnect actions.

The third-party mediation server or the external plant inventory application updates the
plant inventory status.

The third-party mediation server sends an eventCompleted? operation to the MetaSolv
Solution gateway event server.

The Work Management module changes the PAC task to complete. This automatic activity
relies on the user to correctly define the PAC task and plant assignment complete gateway
event.

Import plant assignment failed

Depending on the activities required by the external plant inventory application or the
interaction between the third-party mediation server and the external plant inventory
application, it might not be possible for the third-party mediation server to successfully import
plant assignment information for all of the circuits requested. If this situation occurs, the third-
party mediation server can implement the following process.

L.

The MetaSolv Solution gateway event server sends the eventOccurred operation to notify
the third-party mediation server that plant assignment activity is required for a specific
service order. One gateway event signal is sent for the entire service order even if it
includes multiple circuit items.

The third-party mediation server sends an eventlnProgress2 operation to the MetaSolv
Solution gateway event server.

The third-party mediation server sends a exportServiceRequestDetail operation to the
MetaSolv Solution Plant API server for the order.

The MetaSolv Solution Plant API Server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server with

154 MetaSolv Software, Inc.

MetaSolv Solution API software and mediation server processes

the list of transmission circuits, which require plant assignment action, and the activity
code, which indicates the plant assignment action to take.

The third-party mediation server sends the importPlantAssignment operation for each
circuit on the order that requires plant assignments.

The MetaSolv Solution Plant API server returns the importPlantAssignmentFailed
operation with an error operation and a list of circuits, for which the import was
successful.

The third-party mediation server, the external plant inventory application, and/or the
external plant inventory application user are unable to resolve the import error.

The third-party mediation server sends the eventFailed2 operation to the MetaSolv
Solution gateway event server.

Obtain network location details

The process provides the ability to obtain details about a specific network location based on
the internal MetaSolv Solution location ID.

L.

The third-party mediation server sends a getLocation operation to the MetaSolv Solution
Infrastructure API server to obtain the physical address related to the specific internal
MetaSolv Solution location ID.

The MetaSolv Solution Infrastructure API server returns getLocationSucceeded operation
with the physical addresses and other network location data.

Query for network location ID

This process provides the ability to query for and derive the internal MetaSolv Solution
location ID for a specific network location based on the physical address or other defining
attributes.

1.

The third-party mediation server prepares to send the queryNetworkLocations v2
operation to the MetaSolv Solution Infrastructure server to obtain the internal MetaSolv
Solution network location ID based on one or more physical address components.

A data structure is provided with this operation to specify search criteria. Knowledge of
The MetaSolv Solution structure formats is critical to specifying physical address search
criteria. Name and value pairs for physical address components are user-defined. The
names of the physical address components must be coordinated between the MetaSolv
Solution user and the systems integrator.

The third-party mediation server, optionally, sends the getNetworkLocationTypes
operation to the MetaSolv Solution Infrastructure server to obtain the list of network
location types, which can be used as search criteria for the queryNetworkLocations v2
operation.

CORBA API Developer’s Reference 155

Chapter 8: The Plant API

The MetaSolv Solution Infrastructure server returns the
getNetworkLocationTypesSucceeded operation with the list of internal MetaSolv Solution
network location type IDs along with their descriptions.

The third-party mediation server, optionally, sends the getNetworkLocationCategories
operation to the MetaSolv Solution Infrastructure server to obtain the list of network
location categories, which can be used as search criteria for the
queryNetworkLocations v2 operation.

The MetaSolv Solution Infrastructure server returns the
getNetworkLocationTypesSucceeded operation with the list of internal MetaSolv Solution
network location category IDs along with their descriptions.

The third-party mediation server sends the queryNetworkLocations v2 operation to the
MetaSolv Solution Infrastructure server to obtain the internal MetaSolv Solution network
location ID based on one or more physical address components provided in the search
criteria.

The MetaSolv Solution Infrastructure server sends the queryNetworkLocationsSucceeded
operation to the third-party mediation server with the internal MetaSolv Solution network
location ID.

Query for plant specification ID

This process provides the ability to query for and derive the internal MetaSolv Solution plant
specification ID for a specific type of outside plant transport facilities.

L.

The third-party mediation server sends queryPlantTransportPhysical CompositionSpec
operation to obtain the internal MetaSolv Solution plant transport physical composition
specification code. In the query operation, one or more query values can be specific to
limit the size of the result set.

The MetaSolv Solution Plant API server returns the

queryPlantTransportPhysical CompositionSpecSucceeded operation with all of the plant
transport specifications, which meet the query criteria. The plant element specifications
identify the physical properties of a plant transport medium such as cable, fiber, or air.

Obtain valid values for plant import and export

For specific fields used in the plant import process, the valid values are dynamic. The
operations included in this process provide the ability to export the valid values. There are
many different ways to implement these operations. An integrator can choose to export the
valid values each time he prepares the data for the import operation. An integrator may also
choose to export the valid values at fixed intervals or during the server start-up routine and
store the values for later reference.

156 MetaSolv Software, Inc.

MetaSolv Solution API software and mediation server processes

The third-party mediation server sends the getFunctionCodes operation to the MetaSolv
Solution Plant API server to obtain a list of valid function codes. Examples of function
codes include transmit and receive.

The MetaSolv Solution Plant API server returns the getFunctionCodesSucceeded
operation with the valid function codes.

The getLoadingTypes operation can be used to obtain a list of valid loading types. One of
these loading types (NL for non-loading) can be passed in the
queryPlantTransportPhysical CompositionSpec operation to limit the list of plant transport
physical composition specifications to a specific loading type.

The MetaSolv Solution Plant API Server returns the getLoading TypesSucceeded operation
with the valid loading types.

You can use the getPlantTransportClasses operation to obtain a list of valid classes. One
of these classes (copper, fiber, microwave, or satellite) can be passed in the
queryPlantTransportPhysical CompositionSpec operation to limit the list of plant transport
physical composition specifications to a specific class.

The MetaSolv Solution Plant API Server returns the getPlantTransportClassesSucceeded
operation with the valid transport classes.

The getPlantElementAssignmentStatuses operation can be used to obtain a list of cable
pair or fiber status codes.

The MetaSolv Solution Plant API server returns the
getPlantElementAssignmentStatusesSucceeded operation with the status codes and
definitions.

CORBA API Developer’s Reference 157

Chapter 8: The Plant API

158 MetaSolv Software, Inc.

The PSR End User Billing API

The PSR End User Billing (PSREUB) API provides a mechanism for exporting data from the
MetaSolv Solution database to support end-user billing from product service requests (PSRs).
This API defines a standard end-user billing interface which allows you to develop
applications that act as a mediation layer to third-party billing systems. The MetaSolv Solution
facilitates integration with third-party billing applications by notifying the billing application
when:

¢ Gateway events associated with end user billing are initiated

¢ An existing customer account is modified

Implementing an third-party billing server requires a detailed understanding of the PSREUB
API as well the data communication and translation protocols involved in communicating with
the billing system. The scope of this documentation is confined to a discussion of how to
implement the interfaces required to integrate with the PSREUB API.

g Before the PSREUB API can export any account or order information, a considerable
amount of information must be set up correctly in the MetaSolv Solution database.

Essential terminology

The terms in the following table identify concepts and information that are required to understand the
PSREUB API.

Table 33: MetaSolv Solution Concept Terms and Information

Term Definition
Billing interface A status code housed in the MetaSolv Solution database but
code maintained by the third-party billing server. This code indicates

whether the customer account information has been
communicated to the billing system. Actual values used can vary
depending on the billing system used.

MetaSolv Solution CORBA API Developer’s Reference 159

Chapter 9: The PSR End User Billing API

Table 33: MetaSolv Solution Concept Terms and Information

Term Definition
System-defined These are gateway events used by the PSREUB API. These events
gateway event are pre-defined in the MetaSolv Solution. Users can view these

events on the MetaSolv Solution Gateway Maintenance window,
but cannot modify event attributes.

third-party billing An application developed by you or a third party that allows the
server MetaSolv Solution to communicate end user billing data to a
third-party billing system.

PSREUBSession interface

The PSREUBSession interface is defined in the WDIManager interface located in the
WDIPSREUB.IDL file.

WDIRoot

[
WDIManager

' _ WDIPSREUB::
PSREUBSession WDINotification

Figure 21: PSREUB Interfaces

WDIRoot interface

The following table lists the operations available in the WDIRoot interface of the
WDIPSRBIL.IDL file.

Table 34: PSREUB API WDIRoot Interface Operations

Operations Description
connect Returns a reference object to the WDIManager interface.
disconnect Terminates the connection.

160 MetaSolv Software, Inc.

PSREUBSession interface

WDIManager interface

The following table lists the operations available in the WDIManager interface of the
WDIPSRBIL.IDL file.

Table 35: WDIManager Interface Operations

Operations Description

startPSREUBSession Start/destroy the PSREUBSession.

destroyPSREUBSession

startSignal Start/destroy the WDISignal interface.
destroySignal

startInSignal Start/destroy the WDIInSignal interface.
destroyInSignal

PSREUBSession interface operations

The following table lists the operations and the accompanying notifications available in the
PSREUBSession interface of the WDIPSREUB.IDL file.

Table 36: PSREUBSession Interface Operations

Operation WDINotiication

exportCustomer exportCustomerSucceeded
operationFailed

exportCustomer v2 exportCustomerSucceeded v2
operationFailed

exportOrder exportOrderSucceeded
operationFailed

exportOrder v2 exportOrderSucceeded v2
operationFailed

exportCustomerChange exportCustomerChangeSucceeded
operationFailed

CORBA API Developer’s Reference 161

Chapter 9: The PSR End User Billing API

Table 36: PSREUBSession Interface Operations

Operation WDINotiication
exportCustomerChange v2 exportCustomerChangeSucceeded v2
operationFailed
setBillingInterfaceCode v2 setBillingInterfaceCodeSucceeded v2
operationFailed

Process flows

This section describes business process flows associated with the PSREUB API. A third-party
billing server should be designed to handle these process flows.

Process flow for Send Bill Cust gateway event

L.

The EventServer is running and polling the MetaSolv Solution database for gateway
events in "Sending" status.

A new customer is created.

A new order is placed on that account and the SBC gateway event is initiated. This sets the
gateway event status to "Sending".

The EventServer picks up the gateway event and processes it. This process includes
binding to the WDIRoot interface, connecting to WDIManager interface, and starting a
session on the third-party billing server based on the Work Management gateway
definition for PSRBilling.

The EventServer calls the eventOccured operation on the third-party billing server passing
in the parameter structure WDIEvent. The WDIEvent structure includes among other
fields the document number and the gateway event name. The eventOccured operation
must be written as part of the third-party server development.

The signal handler module on the third-party billing server activates the request handler
module and updates the gateway event status to /n Progress.

The third-party billing server gets the root, connects to the manager, and starts the session
for the PSREUB server.

The third-party billing server gets the root, connects to the manager, and starts the session
for the PSR server.

The third-party billing server calls the exportCustomer v2 operation on the PSREUB
server, which returns the cust acct id based on the documentNumber.

162 MetaSolv Software, Inc.

Process flows

10.

I1.

12.

13.

14.

The third-party billing server calls the exportCustomerAccount v2 operation on the PSR
server, which returns all the customer account data as defined in PSRCustomerAccount
structure in the WDIPSRTypes_v3.IDL file.

The third-party billing server imports the data into the billing system’s database using the
facilities provided by or supported by the billing system, such as an API, SQL, or an
ODBC interface. To determine what facilities are provided by or supported by your billing
system, and for information on how to use those features, see your billing system’s
documentation.

Depending on the success or failure of Step 11, the signal handler module on the third-
party billing server activates the request handler module and updates the gateway event
status to "Completed" or "Error".

Depending on the success or failure of Step 12, the third-party billing server calls the
setBillingInterfaceCode v2 operation on the PSREUB server. The successful call results
in the update of the customer account billing interface code from "N", meaning "New", to
"A", meaning "Accepted". This code should be left as is in the case of a failure.

The third-party billing server destroys the session and disconnects from the manager for
both servers with which it is interfaced.

Process flow for Send Bill Ord gateway event

1.

The EventServer is up and running polling the MetaSolv Solution database for a gateway
event status of "Sending".

A new order is placed and the SBO gateway event is initiated. This sets the gateway event
status to "Sending".

The EventServer picks up the gateway event and processes it. This process includes
getting the root, connecting to the manager and starting the session of the third-party
billing server based on the Work Management gateway definition for PSRBilling.

The EventServer calls the eventOccured operation on the third-party billing server passing
in the WDIEvent parameter structure. This structure includes among other fields the
document number and gateway event name. The eventOccured operation must be written
as part of the third-party server development.

The signal handler module on the third-party billing server activates the request handler
module and updates the gateway event status to "In Progress".

The third-party billing server gets the root, connects to the manager and starts the session
for the PSREUB server.

Based on the gateway event name of Send Bill Ord, the third-party billing server calls the
exportOrder v2 operation on the PSREUB server. This call returns all the information in
the Order structure as defined in the PSREUBTYPES V2.IDL file.

The third-party billing server sends the billing information to billing system’s database.

CORBA API Developer’s Reference 163

Chapter 9: The PSR End User Billing API

9. Depending on the success or failure of Step 8, the signal handler module on the third-party
billing server activates the request handler module and updates the gateway event status to
"Completed" or "Error".

10. The third-party billing server destroys the session and disconnects from the manager for
the PSREUB server.

Process flow for Customer Change Application Event

The process flow is for an application event, not a gateway event. The application event is
initiated by clicking the OK button on the Customer Maintenance window for a customer who
was previously sent to billing. The billing interface code for the customer must be "A",
meaning "Accepted", or "E for "Error. If it is "A," PSR will set the code to "C", meaning
"Change", which is what invokes this interface point. If the billing interface code is E, then it
has been sent to billing but something was wrong, and the user must change the information
setting it back to "C", so it will get resent to billing.

If the billing interrface code for the customer is "N", meaning "New", the PSR module does
not set the code to "C" because this would result in an attempt to update a customer that has
not yet been sent to the billing system. Therefore, the PSR module only sets the billing
interface code from "A" to "C", not from "N" to "C". Any changes made to a customer with a
billing interface code of "N" are sent to the billing system via the Send Bill Cust gateway
event.

1. The Event2Server is up and running polling the MetaSolv Solution database for a billing
interface code "C", meaning "Change".

2. An existing account is updated on the Customer Maintenance window in the MetaSolv
Solution. The Customer Change Application Event is initiated only if the customer was
previously added to the billing system’s database. In other words only if the billing
interface code is "A", meaning "Accepted" or "E" , meaning "Error."

3. When the OK button is clicked on the Customer Maintenance window in the MetaSolv
Solution the client updates the billing interface code from "A" or "E" to "C".

4. The Event2Server picks up the application event and processes it. This processing
includes getting the root, connecting to the manager, and starting the session of the third-
party billing server. Since this is not a gateway event, determination of the server is not
based on the Work Management gateway definition for PSRBilling, it assumes the
PSRBilling gateway definition.

5. The Event2Server calls the eventOccured operation on the third-party billing server,
passing in the WDIEvent parameter structure. The eventOccured operation must be
written as part of the third-party billing server development.

6. The third-party billing server gets the root, connects to the manager, and starts the session
for the PSREUB server.

164 MetaSolv Software, Inc.

Process flows

7. The third-party billing server gets the root, connects to the manager, and starts the session
for the PSR server.

8. The third-party billing server calls the exportCustomerChange_v2 operation on the
PSREUB server. This call returns the customer account ID based on the given document
number.

9. The third-party billing server calls the exportCustomerAccount v2 operation on the PSR
server, which returns the PSRCustomerAccount structure’s information as defined in the
WDIPSRTYPES V3.IDL file.

10. The third-party billing server sends the information to the billing system’s database.

11. Based on the success or failure of Step 10, the third-party billing server calls the
setBillingInterfaceCd operation on the PSREUB server, which updates the customer
account billing interface code from "C" to "A" if successful. In the case of a failure the
billing interface code should not be changed.

12. If there is anything wrong then the billing interface code should be updated to “E” for
error.

13. The third-party billing server destroys the session and disconnects from the manager for
both servers with which it is connected.

Viewing PSREUB API event errors in the MetaSolv Solution

You can view errors for SBC and SBO gateway event on the MetaSolv Solution's Work Queue
Manager Window - Gateway Events Tab. For more information, see the "Viewing Gateway
Event Error Status" topic in the MetaSolv Solution Online help.

Errors for Customer Change Application Events can be viewed on the MetaSolv Solution's
Billing Discrepancies window. To open this window, select Infrastructure> List>
Interfaces> Billing Discrepancies from the MetaSolv Solution's main menu. The Billing
Discrepancies window displays the error reported by the third-party billing server for that
Customer Change Application Event.

g The PSREUB API does not provide a persistence layer that the third-party billing server
can use to update errors reported for Customer Change Application Events.

CORBA API Developer’s Reference 165

Chapter 9: The PSR End User Billing API

Solicited messages

A solicited message is a message initiated by the MetaSolv Solution. The MetaSolv Solution
plays the role of the client, and the third-party application plays the role of the server. The
third-party application must use the IDL files provided with the PSR Order Entry API to
implement the interfaces and operations shown in the following table:

Additional process flow information

MetaSolv Solution
Account Account
> Order > Tasks > SBC > SBO
Info Entered Generated Event Event Info
Entered Updated
Account | Order Updated
PSREUB API Info Info Acct. Info
Interface Point 1 Point 2 Point 3
Out to Third-Party Billing Server

Figure 22: PSREUB API Processing Flow Diagram

As shown in Figure 22, the PSREUB API passes information to the third-party billing server at
a SBC (Send Bill Cust) event, SBO (Send Bill Ord) event, and at an account information
update, which is also referred to as a Customer Change Application Event.

Interface point 1: SBC event

The PSREUB API enables account information to cross the interface at the SBC event to
accomplish the following:

1. To avoid having an account established in a billing system that did not request service, and
therefore would never bill.

2. To allow for pre-payments or deposits to be established on an account in a billing system
before the order has been due-date completed in the MetaSolv Solution.

Information passed to the server

The PSREUB API passes customer information. PSR account-level information that is passed
to the server depends on the type of account. The product service request defines three types of
accounts: customer accounts, billing accounts, and internal accounts.

Customer account information includes name, address, and contact information. Billing
account information includes the same information plus bill cycle, tax exemptions, credit

166 MetaSolv Software, Inc.

Implementation concepts

rating, auto payment information, and special handling codes. Internal account information is
a name and a number, as internal accounts are used for departmental billing. Account
information can be inserted, updated, and disconnected by the MetaSolv Solution.

Interface point 2: SBO event

The PSREUB API sends order information to the third-party billing server at the completion
of the SBO event. Users must select a provisioning plan that includes a task with the SBO
event when the PSREUB API software option is enabled.

Information passed to the server

Order information passed to the third-party server from the PSREUB server includes products,
services, features, and options, as well as the associated pricing, and customized attributes
associated with the PSREUB API process points. Users must define products, services,
features, and options as item types on the Product Specifications window. Item types are then
grouped together as product offerings on the Product Catalog window. Product offerings,
comprised of item types, are selected for an order. For each instance of an item type on an
order, the product service request generates a unique service item ID. Every order can process
New, Changed, Disconnect, Transfer Add, and Transfer Delete service items.

Implementation concepts

The MetaSolv Solution utilizes system-defined gateway events as well as an application event
to notify the third-party billing server at specified points in the PSR workflow as shown in
Figure 22.

The gateway events used by the PSREUB API are:

¢ Send Bill Customer (SBC)
¢ Send Bill Order (SBO)

The SBC gateway event communicates information about a new customer account to the
third-party billing server. This allows the third-party billing server to add the customer account
to the billing system (see Interface Point 1 in figure 22, “PSREUB API Processing Flow Diagram,”
on page 166). The SBO gateway event communicates order information to the third-party
billing server. This allows order information to be added to the billing system.

CORBA API Developer’s Reference 167

Chapter 9: The PSR End User Billing API

Within the Work Management subsystem, the SBC event should always precede the SBO
event.

A Warning! Both the SBC and SBO events must be completed before completion of the
Due Date (DD) task. If you invoke SBC or SBO events after the service request is due
date completed, and the third-party billing server reports an error—for example, "Invalid
data"—the MetaSolv Solution does not allow you to supp the original service request to
send the SBO or SBC again. This results in the data in the two systems being out of sync,
and someone must manually change the data in one system to synchronize the data.

The MetaSolv Solution client uses the Customer Change Application Event to notify the third-
party billing server, through the Event2Server, when a customer account is modified after it
was successfully sent to the billing server.

In order to interact successfully with the PSREUB API, your application must implement three
major functions:

¢ A ssignal handler

¢ A request handler

¢ A response handler

The design you use when implementing these functions is entirely up to you. However, this
documentation refers to the code that handles these functions as modules.

Signal handler module design

The signal handler module implements the interfaces required to handle the SBC and SBO
gateway events as well as the Customer Change Application Event. This module is also
responsible for updating gateway event status to "In Progress", "Completed", or "Error".

A WDIEvent data parameter structure is passed in. The following table contrasts the values of
several fields for the SBC and SBO gateway events, and Customer Change Application

Events.,
Table 37: SBC, SBO, and Customer Change Events
Event eventName on documentNumber
WDIEvent on WDIEvent
SBC "Send Bill Cust" Nnon-zero
SBO "Send Bill Ord" non-zero
Customer Change Application Event "CCAE" 0 (zero)

Upon receiving a signal from the client, the signalhandler module activates the request handler
module. For all types of events, the signal handler module is expected to return a WDIStatus

168 MetaSolv Software, Inc.

Implementation concepts

data structure. In order to avoid locking up the MetaSolv Solution, it is recommended that the
signal handler return a status immediately upon activating the request handler module.

Request handler module design

The request handler module addresses the functionality that the third-party billing server
should implement to handle the information communicated by the client. Upon receiving
event information from the signal handler, the request handler should perform the following
steps:

1. Extract customer information (as applicable) by calling the exportCustomerAccount
operation on the PSRSERVER.

2. Retrieve and examine the billing interface code before sending information to the billing
system.

g' This step is essential because events may be initiated from the MetaSolv Solution
regardless of the value of the billing interface code. For example, new customer
information needs to be sent to the billing system only if it has not already been sent.
If the billing interface code indicates that it was successfully sent to the billing system,
(status ="A", meaning "Accepted"), then no information needs to be sent to the billing
system and event status may be set to "C", meaning "Completed", or "B", meaning
"Bypassed".

3. After data extraction and necessary conversions, the account information is passed to the
billing system for processing. The UserPreference data structure received from the server
contains user preference information that may be used by the third-party billing server. For
example, user login information may be used to connect to the billing system.

Response handler module design

The response handler module handles responses received from the billing system. The design
of this module depends on factors such as the online/batch and synchronous/asynchronous
nature of the interaction with the billing application.

Upon receiving a response from the billing system, the response handler module performs the
necessary reverse translation/formatting using the formatting/translation module and then
determines the operation's status. Based on the success or failure determination, this module
should then:

1. Use the setBillinglnterfaceCode operation in the PSREUBSession interface to update the
billing interface code as applicable for the billing system used.

2. Record billing errors as applicable for the billing system used.

3. Update event status to "Completed" or "Error".

CORBA API Developer’s Reference 169

Chapter 9: The PSR End User Billing API

Transaction handling

Units of work in the third-party billing server should be carefully designed using the “all-or-
nothing” principle. This is necessary so the billing system’s database and the MetaSolv
Solution database do not get out of sync.

PSR service item vs. the billing service instance

The PSREUB API does not process every service item in the same way. Instead, service items
are interrogated to determine whether they are a service instance. Not every service item in a
PSR is a service instance. Only service items that are service instances are determined to be
equipment. This determination is based on the definition of the item type on the Product
Specifications window.

Each service item that is determined to be a service instance is further interrogated to
determine the Usage Guide Key for the service instance. The usage guide key for the service
instance is also based on the definition of the item type on the Product Specifications window.

The PSREUB API processes a service instance usage guide key as one of the following:

Authorization code
Auxiliary line
Circuit ID
Domain/Userid

Tel Nbr/Auth Cd
Telephone number

Travel card number

L ZBK 2ER 2R 2R JER JER 2N 4

Universal

Pricing
Pricing can be associated with all service items. Each price associated with an item is
interrogated and processed accordingly. Prices are based on type (recurring, non-recurring,
usage) and level (account-level, service instance level). These price characteristics are defined
on the Product Catalog window. The PSREUB API processes a service item price in PSR in
one of five ways:
¢ Account level recurring charge

Service instance level recurring charge

Account level non-recurring charge

Service instance level non-recurring charge

* 6 o o

Service instance level usage charge

170 MetaSolv Software, Inc.

Implementation concepts

Transfer of products between customer accounts

Beginning in version M/5.1, the PSR module and the PSR API allow transfer of designated
service items between customer accounts. When a transfer order is entered in PSR the order is
associated with the recipient customer account. These enhancements required corresponding
updates to the PSREUB API.

For transfer PSRs, the donor customer account is the customer account from which the service
items are being transferred, and the recipient customer account is the customer account to
which the service items are being transferred.

A transfer PSR for a new customer (no previous service requests) has an order-level activity
code of "N", meaning "New". A transfer PSR for an existing customer (any previous service
requests) has an order-level activity code of "C", meaning "Changed". When service items are
transferred, each transferred service item must be deleted from the donor customer account
and added to the recipient customer account.

From a provisioning point of view, these services are not actually disconnected and added,
because the service itself continues to be available; it just belongs to a different customer
account. However, from a billing point of view the pricing associated with these services is
disconnected for the donor customer account and added for the recipient customer account. In
other words the service itself remains uninterrupted or unchanged, only the account that pays
for the service changes.

Using the ELEMENT, CONNECTOR, SYSTEM and
PRDBUNDLE item types

The ELEMENT, CONNECTOR, SYSTEM, and PRDBUNDLE item types were introduced in
version M/5.1, and the PSREUB API was enhanced to support the new item types.

If a service item of type ELEMENT, CONNECTOR, SYSTEM, or PRDBUNDLE has custom
attributes, the PSREUB passes the custom attributes. The structure that houses custom
attribute information is defined in PSREUBTYPES V2.IDL. The CustomAttribute structure
itself is defined in WDIUTILS.IDL.

Items of type ELEMENT, SYSTEM, and PRDBUNDLE are never defined as billing service
instances and therefore never have guide-to information. Items of type CONNECTOR are
always defined as a billing service instance and therefore always have guide-to information.
The usage guiding key for the CONNECTOR item type is always "Universal".

Items of type ELEMENT, SYSTEM, or PRDBUNDLE never have PRILOC or SECLOC
information. Items of type CONNECTOR always have either a PRILOC, a SECLOC, or both.

CORBA API Developer’s Reference 171

Chapter 9: The PSR End User Billing API

172 MetaSolv Software, Inc.

10

The PSR Ancillary API

The PSR Ancillary API provides a bi-directional interface for LIDB/CNAM information and
E911 data in National Emergency Numbering Association (NENA) format for transfer to the
area E911 provider. All fields needed for NENA 2.1 compliancy are provided by this API.

Implementation concepts

The PSR Ancillary API only supports batch-mode interaction. Two types of operations are
provided for this purpose: extract and respond. The extract operation performs a data export
and the respond operation performs data import. The only minor variation is the appearance of
operations of the form extract{Function} Empty in the WDINotification interface. Such
notification callback operations are invoked by PSRAncillaryServer to indicate the absence of
candidate extract records for that day.

Essential terminology

The terms in the following table identify information and concepts that are required to
understand the PSR Ancillary API.

Table 38: PSR Ancillary APl Essential Terminology

Term Definition
CNAM A telephone service used to display the name and telephone number of
the caller.
E911 A telephone service used to provide emergency (911) operators with the

caller's telephone number and location.

LIDB A telephone service used to verify a telephone number for toll service and
third-party billing, such as for validation of calling card numbers.

MetaSolv Solution CORBA API Developer’s Reference 173

Chapter 10: The PSR Ancillary API

PSR Ancillary API interfaces

Figure 23 illustrates the relationship of the interfaces in the PSR Ancillary APIL.

WDIRoot
[
WDIPSRAnNcillary::
WDIManager WDINotification
— E911Session
— CNAMSession
- LIDBSession

Figure 23: PSR Ancillary API Interfaces

E911Session interface operations

The following table lists the operations available in the E911Session of the
PSRANCILLARY.IDL file.

Table 39: E911Session Interfacer Operations

Operation WDINotification

extract extractE911Succeeded
extractE911Failed
extractE911Empty

respond respondE911Succeeded
respondE911Failed

174 MetaSolv Software, Inc.

Implementation concepts

CNAMSession interface operations

The following table lists the operations available in the CNAMSession of the
PSRANCILLARY.IDL file

Table 40: CNAMSession Interface Operations

Operation WDINotification

extract extractCNAMSucceeded
extractCNAMPFailed
extractCNAMEmpty

respond respondCNAMSucceeded
respondCNAMFailed

LIDBSession interface operations

The following table lists the operations available in the LIDBSession of the
PSRANCILLARY.IDL file

Table 41: LIDBSession Interface Operations

Operation WDINotification

extract extractLIDBSucceeded
extractLIDBFailed
extractLIDBEmpty

respond respondLIDBSucceeded
respondLIDBFailed

Implementation concepts

All interfaces and operations for the PSR Ancillary API are defined in
WDIPSRANCILLARY.IDL. Some interfaces and operations are implemented in the PSR
Ancillary API server—PSRAncillaryServer—and the others must be implemented in your
application.

The PSR Ancillary API supports only batch-mode interaction. Two types of operations are
provided for this purpose: extract and respond. The extract performs a data export and the
respond operation performs data import. The only minor variation is the appearance of
operations of the form extract{Function} Empty in the WDINotification interface. Such
notification callback operations are invoked by PSRAncillaryServer to indicate that there were
no candidate extract records for that day.

CORBA API Developer’s Reference 175

Chapter 10: The PSR Ancillary API

The PSR Ancillary APl and Smart Tasks

The PSRAncillary server E911 functionality does not use the Gateway Event Model. An E911
Smart Task is used to create the row data and determine function codes. The PSR Ancillary
server is now responsible for extracting the row data with the PSRAncillary extract method
and matching the extract data row to the response records returned in the respond method call.
The WDISignal interface is no longer used. E911 Gateway Events still show up in the GUI
and need to be removed from the provisioning plans by whoever is responsible for modifying
provisioning plans.

g Do not use Gateway Events for E911.

Field by field matching between extract row and response
record

The telephone number data in the database, which was sent out in the E911ExtRecord, is
matched to the data sent back for every calling telephone number (CTN)
(E911RespRecord.ctn) in the respond method call. Every field sent back in the
E911RespRecord must exactly match the row data in the MetaSolv Solution database for any
record marked Complete (E911RespRecord.sti = ‘C’.) If a match does not occur the E911
response code is changed to error and any mismatched fields are displayed in the GUL

Since this is a database matching system, the PSR Ancillary server considers any data field
changes an error, but a succeeded notification is sent back to the gateway vendor so the errors
can be seen, corrected, and resent using the MetaSolv Solution GUI. Since the CTN is the key
field triggering matching, if any CTN cannot be matched to a record in Sending status for an
extractSeq, a failed notification is sent back to the gateway vendor with error messages for all
CTN fields not matched to a Sending telephone number in the database.

The gateway vendor is responsible for removing the offending calling telephone numbers and
calling another respond method. It is impossible for the PSR Ancillary server to determine if
the database information is correct without matching a telephone number in Sending status to
a valid CTN. It is the gateway vendor’s responsibility to contact the appropriate party (either
the customer or the third-party provider) to correct any discrepancies between a CTN and the
telephone numbers in the MetaSolv Solution database.

176 MetaSolv Software, Inc.

Implementation concepts

Rules of operation

1. Each extract and respond operation has an extractID parameter. This extractID is
generated by the third-party application and is transferred back to your application as a
parameter on the succeeded, failed and empty notifications for the extract and respond.
The extractID provides the third-party application with a mechanism to match a
notification with the corresponding extract or respond request.

2. When an extract operation is invoked by your application, the MetaSolv Solution
generates and returns a unique sequence number in the notify callback. This sequence
number is passed in the extractSeq parameter. When your application sends the response
for the extract, the extractSeq in the response structure must be the same as the extractSeq
sent in the corresponding extract structure. The extractSeq provides the APIs with a
mechanism to match an extract with a response. The third-party application is responsible
for managing database transaction processing. This means the third-party application
establishes the MetaSolv Solution database connection via the WDITransaction interface
of the API and controls commit and rollback processing.

Each extract and respond structure has an extractSeq parameter. The extractSeq is generated
by the MetaSolv Solution and sent to the third-party application via the extract operation.
When the third-party application sends the respond for the extractSeq, in the MetaSolv
Solution 5.2.3 E911 Update respond structure it must be the same as the extractSeq sent in the
corresponding extract.

The extractSeq provides a mechanism to match an extract with a response.

1. There is an extractID parameter for each extract and respond operation. This extractID is
generated by the third-party application and is transferred back to your application as a
parameter on the successful, failed, and empty notifications for the extract and respond.
The extractID provides the third-party application with a mechanism to match a
notification with the corresponding extract or respond request.

2. When an extract operation is invoked by your application, the MetaSolv Solution
generates and returns a unique sequence number in the notify callback. This sequence
number is passed in the extractSeq parameter. When your application sends the response
for the extract, the extractSeq in the response structure must be the same as the extractSeq
sent in the corresponding extract structure. The extractSeq provides the APIs with a
mechanism to match an extract with a response.

The PSR Ancillary API defines the interfaces between the MetaSolv Solution and a third-party
gateway. This API facilitates the sharing of E911, CNAM, and LIDB information between the
MetaSolv Solution and the appropriate database provider.

The third-party application is responsible for managing database transaction processing. This
means the third-party application establishes the MetaSolv Solution database connection via
the WDITransaction interface of the API and controls commit and rollback processing.

There is an extractID parameter for each extract and respond operation. This extractID is
generated by the third-party application, then transferred back to the third-party application as

CORBA API Developer’s Reference 177

Chapter 10: The PSR Ancillary API

a parameter on the succeeded, failed, and empty notifications for the extract and respond. The
extractID provides the third-party vendor with a mechanism to match a notification with the
corresponding extract or respond request.

There is an extractSeq parameter within each extract and respond structure (extractE911,
respondE911, extractCNAM, respondCNAM, extractLIDB, and respondLIDB). The
extractSeq is generated by the MetaSolv Solution and sent to the third-party application via the
extract operation. When the third-party application sends the respond for the extractSeq, in the
respond structure, it must be the same as the extractSeq sent in the corresponding extract. The
extractSeq provides a mechanism to match an extract with a response.

Extract sequence matching

The E911Extract.extractSeq sent in the succeeded notification must be returned in the
E911Response.extractSeq in the respond method call. The extractSeq field allows database
rows in a Sending status to be matched to records in the E911RespRecords array (see Field by
Field Matching Between Extract Row and Response Record.) The MetaSolv Solution 5.2.3
E911 Update extactSeq field allows multiple respond methods to be processed simultaneously
(as long as the extractSeq are different.) The respond method can be made any time after the
extract method is called, and can contain a partial set of records. The response does not have to
contain every record extracted previously as long as those records contain the correct
extractSeq. This allows the PSR Ancillary server to match records using unordered extract and
respond method calls.

Extract method calls and/or respond method calls can be done daily, in any amount, in any
order. There are restrictions enforced by the PSR Ancillary server as to how the method calls
are processed. If an extract method call has not finished processing before another extract
method call is received, the second (and subsequent) extract method calls wait until the first
has finished processing before being allowed to do further processing. If a respond method call
for an extractSeq is not finished processing before another respond method call using the same
extractSeq is received, the second (and subsequent) respond method calls with the same
extractSeq wait until the first has finished processing before being allowed to do any further
processing.

The previous restriction of a twenty-four hour turn around time using one extract method
call followed by one respond method call containing every record extracted is no longer
required.

178 MetaSolv Software, Inc.

Extract and respond scenario

Extract and respond scenario

Rules for extract and response scenarios are summarized in the following list:

¢ Extractseq matching on extract and respond is strictly enforced.
¢ Extract and respond does not need a 24-hour turn around.

¢ Respond does not have to follow extract (which means multiple extracts can be done
before a respond is sent back.

L 4

Respond does not have to contain all the records extracted for the extractSeq on the

L 4

extract.

¢ Respond cannot contain telephone numbers (matched by CTN) that were not sent in the
extract or were previously processed by another respond with the same extractSeq (no
unmatched, if a telephone number is sent in the response that cannot be matched to a
telephone number in sending status, the respond method fails until the CTN is removed).

¢ Extract cannot have telephone numbers differing only by suffix (the CTN would be the
same which makes matching the CTN on the respond impossible), the CTNs are errored
but the extract still occurs with the offending telephone numbers removed.

¢ All fields are strictly matched in the respond, if any field sent in the extract has changed,
the record is errored but the respond is still considered a success.

Previously customers set the exd field, which is stamped on the extract record. This field
should not be modified. The only supported function codes are C or E Matching for STI
(status indicator or response code).

Error logging changes

PSRAncillary server E911 errors are now logged to the E911.log file. If the error is related to a
data issue and can be corrected in the GUI, the error also appears in the PSR Ancillary
Maintenance window. Errors displaying in the GUI include NENA errors returned in the
response, data integrity errors that can be corrected in the GUI, or in the determination of the
ordering of extract records. Errors written only to the E911.log file are fatal server errors
needing immediate attention. These errors cannot be fixed using the GUI alone.

Any server error appearing in the PSRAncillary Maintenance window also appears in the
E911.1og file, but not all errors written to the E911.1og file appear in the PSRAncillary
Maintenance window. Both the E911.log file and the PSR Ancillary Maintenance window
must be used to monitor errors logged by the server.

CORBA API Developer’s Reference 179

Chapter 10: The PSR Ancillary API

Key changes to the PSRAncillary E911 error logging with 5.2.3 include:

*

*

Logging the PSR Ancillary server errors to the E911.log file in the path set up in the
gateway.ini file. Any previous log files used by the PSRAncillary server (Metasolv
Solution.log/appserver.log, WDI.log, EventServer.log, and PSR Ancillary.log) no longer
contain any E911 related error logging (although CNAM and LIDB information is still
logged to these log files.)

Errors written to both the E911.1log file and the MetaSolv Solution database E911 error
table (writing to the error table allows the errors to be seen in the PSR Ancillary
Maintenance window.) Scenarios where this is most likely to occur include but are not
limited to:

+ Duplication of telephone numbers differing only by suffix on the extract database
table with an extract indicator set to “Y”.

+ Respond record returning with an ‘E’ in the sti field, indicating a NENA error. The
NENA error returned is written to the E911 error table with a pre-pended ‘NENA
Error:” stamp on the error message.

+ Respond record returning with a ‘C’ in the sti field and the record does not pass field
matching criteria. An error is written for each field that does not match up with a pre-
pended ‘MSLV Error:” stamp on the error message.

+ Updating an extract database row while the E911 record is in ‘Sending’ status.

All E911 error rows are cleared when the gateway provider calls the extract method on the
PSRAncillary server. If the PSRAncillary server is not used as part of the E911 solution,
the E911 rows are never deleted from the database.

If the System Queue is used to complete the task, errors can be written to the WM_TskSv.log
file and to the SERVER LOG database table. An error written to the SERVER LOG table is
displayed in the GUI. The PSR Ancillary server logging occurs independent of System Queue
logging. Therefore, errors occurring in the PSR Ancillary server are logged by the
PSRAncillary server and they can also be logged by the System Queue. As a general rule, if an
error occurs on the PSR Ancillary server, it is logged normally by the PSR Ancillary server and
then picked up by the System Queue and logged on the SERVER _LOG table so it can be
displayed in the GUI. If the error is not written to the E911.log, then the error most likely
occurred due to functional issues on the System Queue, and is logged in the WM_ TskSv.log
file and possibly the SERVER LOG table (if the error is of a nature that needs to be displayed
by the GUL.)

180 MetaSolv Software, Inc.

Process flow

Process flow

This section contains a sample process flow for an unsolicited message. Use the sample flow
as a template for developing your own process flows.

Unsolicited messages

When the message is initiated by the third party (unsolicited), the MetaSolv Solution plays the
role of the server, and the third-party application plays the role of the client. Unsolicited
messages are processed asynchronously, meaning a callback mechanism is used to report back

the results of an operation invoked by the third-party application.

The MetaSolv Solution uses IDL files provided with the PSR Ancillary API to implement the
interfaces and operations defined in the following table:

Table 42: PSR Ancillary API Operations

Interface

Operations

WDIRoot

connect
disconnect

WDIManager

startE911Session
startCNAMSession
startLIDBSession
destroyE911Session
destroyCNAMSession
destroyLIDBSesion
startTransaction
destroyTransaction
startSignal
destroySignal

E911Session

extract
respond

CNAMSession

extract
respond

LIDBSession

extract
respond

CORBA API Developer’s Reference 181

Chapter 10: The PSR Ancillary API

Your application is responsible for implementing the interfaces and operations defined in the
following table:

Table 43: PSR Ancillary API Notification Operations

Interface Operations

WDINotification extractE911Succeeded

extractE911Failed
extractE911Empty
respondE911Succeeded
respondE911Failed
extractCNAMSucceeded
extractCNAMFailed
extractCNAMEmpty
respondCNAMSucceeded
respondCNAMFailed
extractLIDBSucceeded
extractLIDBFailed
extractLIDBEmpty
respondLIDBSucceeded
respondLIDBFailed

Sample unsolicited message process flow

L.

The third-party application binds to the PSR Ancillary server to get a WDIRoot object
reference.

The third-party application invokes the connect operation of the WDIRoot interface,
which yields a WDIManager object reference.

The third-party application invokes the startE911Session, startCNAMSession or
startLIDBSession operation of the WDIManager interface to get an E911Session,
CNAMSession, or LIDBSession object reference, respectively.

The third-party application instantiates a WDINotification object.

The third-party application invokes the startTransaction operation of the WDIManager
interface, which yields a WDITransaction object reference. This object reference passes as
a parameter on subsequent operations and is used by the third-party application upon
completion of processing to initiate the commit or rollback operation.

The third-party application invokes the appropriate operation on the session object
reference returned in step 3 (that is, extract or respond). The WDINotification and
WDITransaction object references are passed as parameters.

182 MetaSolv Software, Inc.

Auto Respond preference

7. The PSR Ancillary server processes the invoked operation of the session object and
invokes the appropriate failed, succeeded, or empty operation of the input
WDINotification upon completion. The empty notification is used only for the extract
operations.

8. [If the failed operation was invoked in step 7, the third-party application initiates the
rollback operation of the WDITransaction interface.

9. [If the succeeded or empty operations were invoked in step 7, the third-party application
initiates the commit operation of the WDITransaction interface.

10. The third-party application invokes the appropriate destroy session operation of the
WDIManager interface (destroyE911Session, destroyCNAMSession or
destroyLIDBSession).

11. The third-party application invokes the destroyTransaction operation of the
WDITransaction interface.

12. The third-party application invokes the disconnect operation of the WDIRoot interface.

Auto Respond preference

The auto respond functionality is now available to those who want to receive responses from a
third-party provider in a format other than the electronic respond method provided by the
PSR Ancillary server. If a customer receives an error from a third-party provider, in the form of
a fax, email, letter, or other method, the PSR Ancillary Maintenance window is used to adjust
the record and resend it to the gateway vendor. The respond method cannot be used by the
gateway vendor to respond to records after the extract method is called, this causes a failed
notification to be sent to the gateway vendor. The third-party provider must be informed to
send ALL NENA errors directly to the customer.

When this preference is turned on, all records sent to the gateway vendor are immediately
marked as Complete as if a successful electronic response was received. The auto respond
preference is not a mix and match preference. The preference is either turned on and no
electronic responses are received using the respond method call, or the preference is turned off
and all records need to receive an electronic response using the MetaSolv Solution 5.2.3 E911
Update PSRAncillary server respond method. The server must be restarted after the new lines
below are added to the gateway.ini file. This registers the new preference with the

PSR Ancillary server. Add the following lines to the gateway.ini exactly as they appear below
to turn the preference on:

[PSRAncillary]

AutoRespond=true

CORBA API Developer’s Reference 183

Chapter 10: The PSR Ancillary API

Glossary of terms and abbreviations

*

L 2BR JER 2R 2

*

ALI — Automatic Location Identification; automatic display at the PSAP of the caller’s
telephone number, the address/location of the telephone, and supplementary emergency
services information. (See also: NENA Master Glossary of 9-1-1 Terminology)

ALI database — The set of ALI records residing on a computer system. (See also: NENA
Master Glossary of 9-1-1 Terminology)
E911 — Used to refer to emergency 9-1-1.

E911 information — Any data that is captured by the MetaSolv Solution and sent to the
E911 Service Provider by the gateway vendor. This data is any information in the
MetaSolv Solution that needs to be formatted into a NENA specific transfer protocol in
order to be put into an ALI database. (See also: E911 record)

E911 record —Collectively refers to any data passed from the MetaSolv Solution through
the gateway vendor to the E911 service provider. The data can be in the form of a database
row, a JAVA object or a NENA specified transfer format The data representation may be
different but the E911 information remains consistent unless a valid modification by a
system occurs. (See also: E911 information)

E911 Service Provider — System responsible for storing and maintaining E911 records on
an ALI database and makes the information available to the PSAPs. The gateway vendor
forwards the E911 records to the E911 service provider, any reference to the E911 service
provider should be considered a System as defined by the UML specification.

E911 Smart Task — The task on a provisioning plan giving the user control of the
information that is sent to the E911 service provider. Gateway Vendor — The system using
the PSR Ancillary server to obtain E911 information. The gateway vendor is responsible
for taking the E911 information and formatting it into the appropriate NENA transfer
protocol and passing the E911 information to the appropriate E911 service provider. Any
reference should be considered an actor to the MetaSolv Solution as defined by UML
specifications. In this case, the actor is also a system.

MetaSolv Solution E911 Administrator — The person responsible for working E911 related
issues in the MetaSolv Solution. This person has domain knowledge about NENA,
emergency 9-1-1 processing, use of the MetaSolv Solution to work E911 related issues
and tasks. Any reference should be considered an actor to the MetaSolv Solution as
defined by UML specifications. The MetaSolv Solution E911 administrator can be
considered a more specialized role than that of the MetaSolv Solution user.

MetaSolv Solution Database — Database used to persist information for the MetaSolv
Solution.

MetaSolv Solution User — The person using the MetaSolv Solution to do order entry or
location/customer maintenance. This person is not expected to know specific E911 related
information other than the very basics needed in an order entry capacity.

NENA — National Emergency Number Association; organization responsible for
standardizing emergency 9-1-1 procedures. (http://www.nena9-1-1.org/)

184 MetaSolv Software, Inc.

Glossary of terms and abbreviations

*

*

*

NENA Master Glossary of 9-1-1 Terminology — The glossary of terms for NENA. (http://
www.nena9-1-1.org/9-1-1TechStandards/nena_recommended_standards.htm)

PSAP — Public Safety Answering Point; a facility equipped and staffed to receive 9-1-1
calls. (See also: NENA Master Glossary of 9-1-1 Terminology)

PSRAncillary server — The MetaSolv Solution API server handling the E911 processing
methods of the WDIPSRAncillary IDL interface. This term is used when referring to the
server portion of the MetaSolv Solution.

CORBA API Developer’s Reference 185

Chapter 10: The PSR Ancillary API

186 MetaSolv Software, Inc.

11

The PSR Order Entry API

The Product Service Request (PSR) module integrates telephone number administration,
product catalog, and customer management with an ordering engine. It captures and stores
information required to reference and provision a service request. Other modules in the
MetaSolv Solution rely upon the information in the PSR module to enable fulfillment of an
order for a product or service for a specific customer. The service request itself initiates
several other processes, such as service design and provisioning, telephone number
assignment, directory services, LIDB/CNAM, and E911. The PSR module is an ordering
engine that allows you to order and provision telephone and non-telephone products including
dial tone services, centrex, ISDN-BRI, ISDN-PRI, private line circuits, ATM/frame services,
travel cards, customer premise equipment, etc. Any product you define in the product catalog
can be ordered via the PSR module.

The PSR Order Entry API provides access to necessary data and business rules underlying the
order management functionality in the PSR module, which allows orders to be provisioned.
The PSR Order Entry API enables users to enter order information in other systems, bypassing
the data entry and data management functionality of the PSR module. The other system is
responsible for order entry and validation of information that allows products to be
provisioned. The other system is also responsible for the initiation of the mediation layer and/
or API. The API inserts into the MetaSolv Solution database the customer account, service
location and product service request information necessary for any telecom products or
services that are provisioned. The functionality of the other MetaSolv Solution modules
remains intact and references the service request information in the same way as is done for a
service request that is entered through the PSR GUIL

The PSR Order Entry API provides IDL for PSR ordering, enabling, retrieval, creation,
updating, and deletion of PSR orders. The structure of the PSR API architecture is based on
the following assumptions:

¢ Your application is responsible for following MetaSolv Solution business rules. These
business rules include:

« All static values are defined in the IDL files as ENUM types. MetaSolv does not
provide valid values for user-defined values.

+ Any customer can be exported from the database. The status is not checked when
exporting customers.

+ Customers can be exported based on the customer ID.

MetaSolv Solution CORBA API Developer’s Reference 187

Chapter 11: The PSR Order Entry API

« If an error is encountered at any point, the individual operation fails but the process
can continue.

+ Import of an updated customer can be performed only on a customer that currently
exists in the database.

¢ The third-party application is responsible for managing all database transactions,
including commit and rollback processing.

PSR Order Entry API interfaces

Figure 24 shows the relationship of the interfaces in the PSR Order Entry API.

WDIRoot

[
WDIManager

— PSRSession WDIPSR::WDINotification
. WDIPSR::
—| PSRProductCatalogSession WDIProductCatalogNotificatio
o : WDIPSR::
—|_ PSRProvisioningSession WDIProvisioningNotification

Figure 24: PSR API Session Interfaces

WDIManager interface

The following table lists the operations in the WDIManager interface of the WDIPSR.IDL file
and their accompanying description or notification operations.

Table 44: PSR Order Entry APl WDIManager Interface Operations

Operation Description
startPSRSession Obtains the object reference of the PSR Session
destroyPSRSession Terminates the PSR Session
startPSRSession2 Obtains the object reference of the PSRSession2
destroyPSRSession2 Terminates the PSRSession2
startPSRProductCatalogSession Obtains the object reference of the

PSRProductCatalogSession
destroyPSRProductCatalogSession | Terminates the PSRProductCatalogSession

188 MetaSolv Software, Inc.

PSR Order Entry APl interfaces

Table 44: PSR Order Entry APl WDIManager Interface Operations

Operation

Description

startPSRProvisioningSession

Obtains the object reference of the
PSRProvisioningSession

destroyPSRProvisioningSession

Terminates the PSRProvisioningSession

startInfrastructureSession

Obtains the object reference of the
InfrastructureSession

destroyInfrastructureSession

Terminates the InfrastructureSession

startTransaction commit
rollback
destroyTransaction Terminates the Transaction
startSignal eventOccurred
eventTerminated
eventInProgress
eventCompleted
eventErrored
destroySignal Terminates the Signal
startInSignal eventInProgress
eventCompleted
eventErrored
destroyInSignal Terminates the Insignal

CORBA API Developer’s Reference

189

Chapter 11: The PSR Order Entry API

PSRSession interface operations

The following table lists the operations in the PSRSession of the WDIPSR.IDL file and their
accompanying notification operations.

Table 45: PSRSession Interface Operations

Operation WDINotification

assignCFA v2 assignCFASucceeded v2
assignCFAFailed v2

exportAccountProvisioningData v2 accountProvisioningDataExportSucceeded v2
accountProvisioningDataExportFailed

exportAccountServerDataPSR _v2 accountServerDataPSRExportSucceeded v2
accountServerDataPSRExportFailed

exportAllServiceLocations v2— PSRExportFailed
Deprecated. Use the corresponding
Infrastructure API operation instead.

exportCFAInfo_v2 exportCFAInfoSucceeded v2
exportCFAlnfoFailed v2

exportCLLILocation v2—Deprecated. Use |exportCLLILocationSucceeded v2
the corresponding Infrastructure API exportCLLILocationFailed
operation instead.

exportCPNIConsents_v2 PSRexportCPNIConsentsSucceeded v2
PSRexportCPNIConsentsFailed

exportCreditCardAuthorizationData v2 creditCardAuthorizationDataExportSucceeded v2
creditCardAuthorizationDataExportFailed

exportCustomerAccount_v2 PSRCustomerExportSucceeded v2
PSRExportFailed

exportCustomerAccount v3 PSRCustomerExportSucceeded v3
PSRExportFailed

exportCustomerAccounts v2 PSRCustomerExportSucceeded
PSRExportFailed

exportCustomerAccounts_v3 PSRCustomerExportSucceeded
PSRExportFailed

190 MetaSolv Software, Inc.

PSR Order Entry APl interfaces

Table 45: PSRSession Interface Operations

Operation WDINotification

exportCustomerOrders v2—Deprecated. PSRExportCustomerOrdersSucceeded v2

exportCustomerOrders_v3 PSRExportCustomerOrdersSucceeded v3

exportCustServiceLocations_v2 PSRExportFailed

exportDomainNameRegistrationData v2 domainNameRegistrationDataExportSucceeded v
2

domainNameRegistrationDataExportFailed

exportEMailProvisioningData v2 emailProvisioningDataExportSucceeded v2
emailProvisioningDataExportFailed

exportEMailServerDataPSR_v2 emailServerDataPSRExportSucceeded v2
emailServerDataPSRExportFailed v2
exportFTPServerDataPSR_v2 FTPServerDataPSRExportSucceeded
FTPServerDataPSRExportFailed v2
exportNGNPSR exportNGNPSRSucceeded
exportNGNPSRNoDataFound
exportNGNPSRFailed
exportNGNServitem exportNGNServItemSucceeded
exportNGNServIltemFailed
exportOrder_v2—Deprecated. PSRExportOrderSucceeded v2
exportOrder_v3 PSRExportOrderSucceeded v3
exportOrderValues v2 PSROrderValuesExportSucceeded v2
exportProvisioningData v2 provisioningDataExportSucceeded v2

provisioningDataExportFailed

exportPSR_v2—Deprecated. exportPSRSucceeded v2
exportPSRFailed
exportPSR_v3 exportPSRSucceeded v3

exportPSRNoDataFound v3
exportPSRFailed v3

CORBA API Developer’s Reference 191

Chapter 11: The PSR Order Entry API

Table 45: PSRSession Interface Operations

Operation WDINotification

exportServiceLocations v2—Deprecated. | PSRSvcLocationExportSucceeded v2
Use the corresponding Infrastructure API PSRExportFailed
operation instead.

exportServitem v2—Deprecated. PSRServitemSucceeded v2
PSRExportFailed

exportServitem v3 PSRServitemSucceeded v3
PSRExportFailed

exportWebHostingProvisioningData_v2 webHostingProvisioningDataExportSucceeded v2
webHostingProvisioningDataExportFailed

exportWebHostingServerDataPSR_v2 webHostingServerDataPSRExportSucceeded
webHostingServerDataPSRExportFailed v2

getOrderStatus_v2 getOrderStatusSucceeded v2
getOrderStatusFailed v2

importCPNIConsent v2 PSRImportCPNIconsentSucceeded
PSRImportCPNIconsentFailed

importNewCustomerAccount v2 PSRImportSucceeded
PSRImportFailed

ImportNewCustomerAccount v3 PSRImportSucceeded
PSRImportFailed

importNewServiceLocation v2— PSRImportSucceeded

Deprecated. Use the corresponding PSRImportFailed

Infrastructure API operation instead.

importNGNPSR importPSROrderSucceeded
importPSROrderFailed

importPSR_v3 importPSROrderSucceeded v3
importPSROrderFailed v3

importPSROrder v2—Deprecated. importPSROrderSucceeded
importPSROrderFailed

importUpdatedCustomerAccount_v2 PSRImportSucceeded
PSRImportFailed

192 MetaSolv Software, Inc.

PSR Order Entry APl interfaces

Table 45: PSRSession Interface Operations

Operation WDINotification
ImportUpdatedCustomerAccount v3 PSRImportSucceeded
PSRImportFailed
importUpdatedServiceLocation v2— PSRImportSucceeded
Deprecated. Use the corresponding PSRImportFailed

Infrastructure API operation instead.

processBillingTelephoneNumber v2

processBillingTelephoneNumberSucceeded v2
processBillingTelephoneNumberFailed

searchMsag_v2

searchMsagSucceeded v2
searchMsagFailed

surveyUpdate v2

surveyUpdatelmpactSucceeded v2
surveyUpdatelmpactFailed

unassignCFA v2

unassignCFASucceeded v2
unassignCFAFailed v2

updateDomainProvisioning_v2

updateDomainProvisioningSucceeded v2
updateDomainProvisioningFailed

validateCustomerAccount v2

validateCustomerAccountSucceeded v2
validateCustomerAccountFailed

validateCustomerAccount_v3

validateCustomerAccountSucceeded v3
validateCustomerAccountFailed

verifySvcLoc_v2—Deprecated. Use the
corresponding Infrastructure API operation
instead.

verifySvcLocSucceeded
verifySvcLocFailed

CORBA API Developer’s Reference

193

Chapter 11: The PSR Order Entry API

PSRSession operation descriptions
This section describes the operations defined in the WDIPSR.IDL file.
¢ importNGNPSR

Enables import of orders with template-based service items (those with item types of
System, Element, Connector, or Equipment) and nontemplate-based service items.

¢ exportNGNPSR

Enables export of orders with template-based and nontemplate-based service items. This
export includes header information, such as customer identification information.

¢ exportNGNServitem

Enables export of template-based and nontemplate-based service items. This export
includes service items only; no header information is exported. Using this operation, you
can export all service items for a customer.

Override default value on PSR API Import preference

A allows you to overwrite the default values for the importNGNPSR and importPSR_v3
methods before making the API call when the PSROrderltemValue2 structure is populated.
You do not have to populate the value structure with the default value and an activity code for
delete. You can populate it with the preferred value and an activity code of New.

When the preference is set to No (default), you must populate the default values and an
activity code for delete.

Access the Override default value on PSR API Import when Label exists on Import
Structure preference from the MetaSolv Solution interface, by selecting Home on the
navigation bar, and clicking My Preferences

PSRProductCatalogSession interface operations

The following table lists the operations in the PSRProductCatalogSession of the WDIPSR.IDL
file and their accompanying notification operations.

Table 46: PSRProductCatalogSession Interface Operations

Operation WDIProductCatalogNotification
exportProductCatalog_v2— exportProductCatalogSucceeded v2
Deprecated exportProductCatalogFailed
exportProductCatalog_v3 exportProductCatalogSucceeded v3

exportProductCatalogFailed

194 MetaSolv Software, Inc.

PSR Order Entry APl interfaces

Table 46: PSRProductCatalogSession Interface Operations

Operation WDIProductCatalogNotification
exportProductGroups PSRExportProductGroupsSucceeded
PSRExportProductGroupsFailed
exportProductCatalogWith PSRExportProductCatalogWithTemplatesSucceeded
Templates exportProductCatalogFailed

PSRProductCatalogSession operation descriptions
This section describes the operations defined in the WDIPSR.IDL file.
¢ exportProductCatalogWithTemplates

Enables export of product catalog information for template-based products (those with an
item type of System, Element, Connector, or Equipment).

PSRProvisioningSession interface operations

The following table lists the operations in the PSRProvisioningSession of the WDIPSR.IDL
file and their accompanying notification operations.

Table 47: PSRProvisioningSession Interface Operations

Operation WDIProvisioningNotification

executeFinishOrder executeFinishOrderSucceeded
executeFinishOrderFailed

executeCLSCktIDAssignment executeCKTIDAssignmentSucceeded
executeCKTIDAssignmentFailed

exportCktltems exportCktltemsSucceeded
exportCktltemsFailed

exportLSOCIli exportCktLSOCIliSucceeded

exportCktLSOClIliFailed

CORBA API Developer’s Reference 195

Chapter 11: The PSR Order Entry API

Process flow

The section that follows contains a sample process flow for unsolicited messages. Use the
sample flow as a template when you develop your own process flows.

Unsolicited messages

When the message is initiated by the third party (unsolicited), the MetaSolv Solution plays the
role of the server, and the third-party application plays the role of the client. Unsolicited
messages are processed asynchronously, meaning a callback mechanism is used to report back
the results of an operation invoked by the third-party application.

Sample unsolicited process flow for importing a customer

The overall process flow for importing a customer is as follows:

1.

The third-party application binds to the MetaSolv Solution Application Server to get a
WDIRoot object reference.

The third-party application invokes the startPSRSession operation of the WDIManager
interface to get a PSRSession object reference.

The third-party application invokes the connect operation of the WDIRoot interface,
which yields a WDIManager object reference.

The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference.

The third-party application instantiates a WDINotification object.

The third-party application invokes the importNewCustomer operation on the PSRSession
interface, providing WDITransaction, WDINotification, and PSRCustomerAccount
objects.

MetaSolv’s Application Server processes the invoked PSRSession operation and invokes
the appropriate callback operation on the input WDINotification. In this example, the
operations are PSRCustomerExportSucceeded or PSRExportFailed for exporting, and
PSRImportSucceeded or PSRImportFailed for imports.

If the PSRImportSucceeded operation is invoked, the third-party application invokes the
commit operation of the WDITransaction interface. If the PSRExportFailed operation is
invoked, a WDIError sequence describing the error is returned to the third-party
application. The third-party application then performs the appropriate error handling
routine. In the case of an import failing, the third-party application should rollback the
transaction.

The third-party application invokes the destroyPSRSession operation of the WDIManager
interface.

196 MetaSolv Software, Inc.

Process flow

10. The third-party application invokes the destroyTransaction operation on the WDIManager
interface.

11. The third-party application invokes the disconnect operation of the WDIRoot interface.

Import notifications

When the import of a new object succeeds, the document number is populated with the ID of
the new record. For PSRCustomerAccount imports, it is custAcctID. For PSRServiceOrder
imports, it is documentNumber. For PSRSvcLocation imports, it is endUserLocationlD,
endUserLocationType is whatever was provided during the import.

The documentNumber field will never pass back a value other than 0 on any of the failed
notification operations. The success notification operations will return a value of 0, except in
the following situations:

¢ An existing PSR API operation has passed any unique integer value that would allow the
client to uniquely identify the success notification operation. This is usually an API
operation method using a specific customer account ID or order (document) number to
export/import data.

¢ A new (not versioned v2 or v3) operation is added to the PSR API which can correctly
implement the field for the client to send the documentNumber to the server.

PSR API date handling

To indicate that a date should be considered null, send "0" for the day, "0" for the month, and
"0" for the year. If you supply a year that is fewer than four digits, 1900 is added to the value
to determine the year. If four digits are provided, it is assumed that this is the exact year. The
following table shows how dates are interpreted.

Table 48: How Dates Are Interpreted

If you provide... the date is interpreted as...
1/1/99 January 1, 1999
1/1/101 January 1, 2001
1/1/1 January 1, 1901
1/1/2001 January 1, 2001

Batch operations in PSR API exports

The failure of one item in an export of multiple items does not cause the failure of the entire
export. Instead, the items that succeed are returned, as well as a sequence of error messages
describing the failed operations. When the client requests an operation that can result in

CORBA API Developer’s Reference 197

Chapter 11: The PSR Order Entry API

multiple items being returned, both the exportSucceeded and exportFailed operations can be
called. The exportSucceeded operation is always called, even if all items failed export, in
which case the returned sequence is empty. Although the exportFailed operation is generally
called first, it cannot be guaranteed in multi-threaded environments.

The export of items such as Telephone Number Inventory Export result in a large amount of
data, which can be difficult to manage. Therefore, this operation was broken into a series of
exports. Groups of 100 telephone numbers at a time, minus failed retrievals, are sent to the
notification object with the PSRTelNbrBatchSucceeded operation. After all such operations
have finished, the notification object is sent with the PSRTelNbrExportComplete operation.

Export search criteria

The PSR API provides a means to export data based on specific search criteria. You can
perform the search using the specifications identified in the SearchableField enumerated type
in the WDIPSR.IDL file. Additionally, there are specific operations available to specify the
criteria, such as EQUAL, LIKE, and so on. These are defined in the SearchOperation
enumerated type.

Finally, the SearchCriteria struct contains one SearchableField reference, one SearchOperation
reference, and a string value to search for. Note that all fields that can be searched are not
necessarily strings; in the cases of numeric values, a string representation of the value is
expected. In the case of enumerated values, a string representation of the numeric value of the
enumerated type is expected. It is possible to provide multiple SearchCriteria for an operation,
which means that the resulting values must meet all of the specified criteria (an AND
operation).

MetaSolv rules, product specifications, and product
catalogs

Products
There are three product levels in the MetaSolv Solution:

& Item Types
¢ Product Specifications
¢ Product Catalog

Item types

Think of item types as the MetaSolv rules. These are items and relationships that MetaSolv has
predefined for products and services. Examples include line products, which can have
attributes such as lines, system options, and features. These attributes allow the MetaSolv
Solution code to determine what kind of service a product is and ensure certain data is

198 MetaSolv Software, Inc.

MetaSolv rules, product specifications, and product catalogs

collected and specific processing occurs. For example, circuits are built (in the background)
for dial tone lines so they can be designed later.

Product specifications

Product specifications are engineering rules defined by technical staff in conjunction with
product management. These specifications are supported by engineers and network designers
for specific implementations. Using the item type examples above (line products, with
attributes of lines, system options, and features), a customer could create a product
specification for dial tone (POTS) service as a line product with lines that have a system
option of Hunt Groups. Each line may have several features such as call waiting, call
forwarding, caller identification, three way conferencing, and so on. These specifications are
building blocks that have pre-defined relationships designed so that a product catalog can be
built using these building blocks. People creating the product catalog need not be worried
about the provisioning/designing aspects of a product.

Product catalog

The product catalog is the marketing rules defined by product management. The product
catalog addresses three primary marketing issues: 1) Product availability (by location or by
business/market segment), 2) Pricing and 3) Packaging. Again, continuing our earlier
example, a residential dial tone product, a basic business dial tone product and an enhanced
business dial tone product could all be built from the product specification example. Each
product may have different pricing, market segments, etc. Mulitple product catalogs can be
built from one product specification.

More about products

An item is the generic name for products and options. Setting up products and options is a two-
step process. First, the product specifications and the rules for relationships between product
specifications must be defined. The next step is creating the product catalog and designing
how the items will be sold. The product catalogs must follow the rules set up in the first step.
When setting up product catalogs, the marketing item is the level one item. Usually products
are the level one items in the product catalog. The highest level in the hierarchy of items is
defined as a level one item.

More about product specifications

Figure 25 "Standard Item Setup" on page 200 describes the basic process flow for setting up
product specifications.

CORBA API Developer’s Reference 199

Chapter 11: The PSR Order Entry API

Review preloaded Item
Types

Standard Item Setup

Define the standard
relationships that the

Are needed item types Define standard oes standard item type

esina? - - 5
Missing? service items. have valid values? standard items may have/
/Y YES /Y
Create new ltem
Types. Define the valid
values defined
window label.
v A
4
Add new item Define the window
relationship types. labels to be used
when collecting the
valid values.

Figure 25: Standard Item Setup

g All references to standard item in this flow refer to product specifications. References to
item types refer to the MetaSolv-defined item types

Standard Item Setup ltem Type
Data Model
<L Superior
Describes Sumrdi%
Item Rel Type
Std Item Value Label Std Item
[May Need
Describes
May have Superior
Subordinate
Key:
- Crows feet indicate "many"
Std Item Valid Value Std Item Rel Circles indicate "optional”

Straight lines indicate "one"
Triangles indicate "identified by and many"

Figure 26: Standard Item Setup Data Model

g All entities with standard_item in the name hold the product specification information.
Entities with item_type in the name store MetaSolv-defined items.

200 MetaSolv Software, Inc.

MetaSolv rules, product specifications, and product catalogs

The item type and item relationship type entities are preloaded by MetaSolv. These two
entities define the common characteristics that are handled in the application. An item type
and its characteristics are pre-defined. Characteristics might include an item category (such as
product, option, line, trunk, etc.), whether the item type must have a premise, and the item
type’s processing path. (The processing path defines the processing that must take place for an

item type.)

Table 49: Item Type Processing Path

Processing Path

Acronym

Description

Local Telephone Line Service

LTLS

The item will have a premise and will have lines.

Local Telephone Trunk Service |LTTS The item will have a premise and trunks.

Non-Premise Service NPS Indicates the item will not have a service location
and the billing address will be used for the service
location.

Non Switched Services NSS Product catalogs that fall in this path will require

circuit assignments and two locations.

For instance, a type of item might be “line product,” which would be characterized as a
product. Another type might be “line”, which would be characterized as a physical item
(meaning a circuit will be created for design purposes) with a premise. The relationship
between these two item types would be defined in the item type relationship table with line
product being the superior item and line being the subordinate item.

When users define the product specifications, they delineate the actual items that can be sold.
For instance, a product specification of basic business line might be set up with a type of line
product. Some rules of use are defined here. For example, if you want a disconnect reason to
be entered when this item is disconnected, you could set that here. Line types are another
product specification that can be set up with a basic business line. The rules that can be defined
for this item include the disconnect reason must be entered, and when the item is ordered the
question “how many do you want?” must be asked.

CORBA API Developer’s Reference 201

Chapter 11: The PSR Order Entry API

If the Arbor/BP billing system or flow through provisioning are used with PSR, a few other
characteristics must be defined. Following is a list of these characteristics and their use.

Table 50: Standard Items

Table Column Description
standard | Arbor EMF Ind Indicates that the item translates to a service instance in the
Item (called Service billing system. These columns may be used for any billing
Instance on the interface, not just the Kenan Arbor billing system.
window)

standard | Arbor Usage Guiding | If the Arbor EMF Ind is set on, a usage guiding key is
Item Key (called Guiding |necessary. These columns may be used for any billing
Key on the window) |interface, not just the Kenan Arbor billing system.

standard | Flow Through The command recognized by the FTP Gateway for a PSR
Item Provisioning Nm item. Ifthis column has a value, it can be used in the flow-
through provisioning process.

standard | Switch Provisioning |Indicates that the product specification will be used for
Item Ind switch provisioning. In an installation where the FTP
Gateway is used this indicator directs the item to be used
in the flow through provisioning process. If the FTP
Gateway is not used, this indicator directs the item to be
part of a report to be used to perform the switch
provisioning.

standard | Circuit Design Ind Indicates that the product specification will be used in the
Item circuit design process.

g Note: The standard item table is referring to product specifications

Next the standard item relationship must be defined. If basic business is set up as the highest
item in the hierarchy (a product), it would be defined in this table with basic business having
no superior item. Basic business line would be set up as a subordinate to basic business. Valid
values may also be specified during the product specification setup process. If you have an
item that requires one or more values to be collected, a name (label) is setup for each value
collected and a list or range of valid values defined. A default value may also be defined. An
example illustrating this feature might be an item called Start Type. A product specification of
Start Type would have a label of “Type” and a value list of “ground” or “loop.”

202 MetaSolv Software, Inc.

MetaSolv rules, product specifications, and product catalogs

More about product catalogs

Figure 27 describes the basic process flow for setting up product catalogs (things to sell). All
references to specifications in this flow refer to product catalogs. References to items refer to

product specifications.

Choose the level one item for
e . this Specification.
Specification Setup s Spectication

Do you need more
items for
this specification?

4 A

Select the item that is
currently in the
Choose the new item. (4 specification with which
to associate the new
item.

Done

Figure 27: Specification Setup

CORBA API Developer’s Reference 203

Chapter 11: The PSR Order Entry API

Item Specifications Level One Item Default Value
Data Model

Describes

Has properties of
72 NPA NXX

Std Item Relationship Item Specification Item Availability

A—Allows‘oﬂf m IS available

Superior

Subordinate

Key:

Crows Feet indcates "many"

Circle indiates "optional”

Straight Line indicates "one"

Triangle indcates "identified by and many"

Specification Relationship

Figure 28: Item Specification Data Model

g Entities with specification in the name store the product catalog information.

When creating a product catalog for a product, choose the product you want to set up from a
list of standard items. The relationship (product specifications) of these items must have no
superior items, for example, basic business. Once you have chosen the level one item, the next
level of items may be selected from a list of standard items whose relationship has basic
business as the superior item. In our example, basic business lines may be selected. This
process sets up the product catalog relationship. For level one items there is other information
that needs to be collected such as type of service, offering type (wholesale, resell, and retail),
taxing information, and tariff information. A product catalog name may be entered. Other
information may be specified about any item including information describing the availability
of the item (by Network Area), the from and to effective dates, and whether or not it is
required or standard. Pricing information may also be entered at this time (see the pricing area
of this document for specifics).

Packages

Defining a package is the same as defining a product. Currently the MetaSolv Solution allows
packages to be set up within a product for example packages of features for a line. the
MetaSolv Solution does not currently support packages across products (for example,
packaging lines and trunk groups together).

204 MetaSolv Software, Inc.

12

The Switch Provisioning Activation API

The Switch Provisioning Activation API provides the IDL for switch provisioning activation.
The Switch Provisioning Activation API retrieves Design Layout Records (DLRs), switch
translation, and flow-through information for a given WDIEvent.

Your application is responsible for managing all database transactions, including commit and
rollback processing.

Functionality

The Switch Provisioning Activation API facilitates flow-through provisioning for switched
orders initiated from the PSR module of the Order Management subsystem, and enables flow-
through provisioning of dialtone orders. The Switch Provisioning Activation API is directly
involved with the MetaSolv Solution and invokes the same rules.

Essential terminology

The terms in this table identify concepts and information that are required to understand flow-
through provisioning using the APIs.

Table 51: Switch Provisioning Terminology

Term Definition

Activation product | A network management sysstem (NMS), such as Lucent
Technology’s ACTIVEVIEW product line.

Activation server An application developed by you or a third party that integrates
with the MetaSolv Solution to export provisioning data and
communicate the data to one or more activation products.

MetaSolv Solution CORBA API Developer’s Reference 205

Chapter 12: The Switch Provisioning Activation AP/

Switch Provisioning activation interface

DLRSession interfaces

The following table lists the operations available in the DLRSession of the WDIDLR.IDL file
that is used by the Switch Provisioning Activation API.

Table 52: DLRSession Interface Operations

Operations WDINotification

getSwitchActivation v2 switchActivationGetSucceeded v2
switchActivationGetFailed

getSwitchActivation_v4 SwitchActivationGetSucceeded v4
SwitchActivationGetFailed v4

getSwitchActivation_v5 SwitchActivationGetSucceeded v5
SwitchActivationGetFailed v5

DLSRSession interface operations

The following list contains the DLRSession operations of the WDIDLR.IDL file that relate to
switch provisioning activation:

¢ getSwitchActivation v2, get SwitchActivation_v4, and get switch Activation v5

Process flows

This section contains sample process flows for each type of message: solicited and unsolicited.
Use the sample flow as a template for developing your own process flows.

Solicited messages

A solicited message is a message initiated by the MetaSolv Solution. The MetaSolv Solution
plays the role of the client, and the third-party activation server plays the role of the server.

206 MetaSolv Software, Inc.

Process flows

The third-party application must use the IDL file provided with the DLR API to implement the
interfaces and operations for the following structures:

Table 53: Switch Provisioning API Interfaces Solicited Messages Operations

Interface For Implementing These Operations
WDIRoot connect
disconnect
WDIManager startTransaction
destroyTransaction

WDITransaction N/A

WDISignal eventOccurred
eventTerminated
WDIInSignal N/A

Sample solicited message process flow

When the MetaSolv Solution is the client, the overall process flows as follows:

1.
2.

The API client binds to the third-party server to get a WDIRoot object reference.

The API client invokes the connect operation of the WDIRoot interface, and the connect
operation yields a WDIManager object reference.

The API client invokes the startSignal operation of the WDIManager interface to get a
WDISignal object reference.

The API client invokes the eventOccurred operation of the WDISignal interface to notify
the third-party application that an event registered to them has occurred within the
MetaSolv Solution.

The API client invokes the destroySignal operation of the WDIManager interface.
The API client invokes the disconnect operation of the WDIRoot interface.

Once the third-party server completes processing, possibly involving additional
unsolicited messages to the MetaSolv Solution, the third party performs a bind to the
MetaSolv Solution Application Server and follows the same process described above for
the client with the exception that the eventCompleted/Errored operations are invoked
passing the original WDIEvent structure.

If the third-party application encounters an error, it throws a WDIExcp as defined by the IDL.
The client handles CORBA system exceptions and WDIExcp exceptions.

CORBA API Developer’s Reference 207

Chapter 12: The Switch Provisioning Activation AP/

Unsolicited messages

An unsolicited message is a message initiated by the third-party application. The MetaSolv
Solution plays the role of the server and a third-party application plays the role of the client
with the exception of the callback processing.

The MetaSolv Solution uses the IDL files provided with the Switch Provisioning Activation
API to implement the interfaces and operations defined in the following table:

Table 54: Switch Provisioning Interfaces Unsolicited Messages Operations

Interface For Implementing These Operations
WDIRoot connect
disconnect
WDIManager startTransaction
destroyTransaction
WDITransaction commit
rollback
DLRSession getSwitchActivation v5

The third-party application is responsible for implementing the interfaces and operations for:

Table 55: Switch Provisioning Third-party Application Interfaces and Operations

Interface For Implementing These Operations

WDINotification switchActivationGetSucceeded v5
switchActivationGetFailed v5

208 MetaSolv Software, Inc.

Implementation concepts

Process flow for exporting switch provisioning activation
information

The overall process flow for exporting a DLR follows:

1. The third-party application binds to the MetaSolv Solution Aplication Server to get a
WDIRoot object reference.

2. The third-party application invokes the connect operation of the WDIRoot interface,
which yields a WDIManager object reference.

3. The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference and start a database transaction.

4. The third-party application invokes the startDLRSession operation of the WDIManager
interface to get a DLRSession object reference.

5. The third-party application instantiates a third-party implementation of a WDINotification
object.

6. The third-party application invokes the getSwitchActivation operation of the DLRSession
object, passing the WDINotification object.

7. The SwitchActivation data structure is returned asynchronously via invocation of the
switchActivationGetSucceeded/Failed) operation of the WDINotification object.

8. The third-party application invokes the destroyDLRSession operation of the WDIManager
interface.

9. The third-party application invokes the destroyTransaction operation of the WDIManager
interface.

10. The third-party application invokes the disconnect operation of the WDIRoot interface.

Implementation concepts

This section describes the issues that you must be familiar with when building a mediation
server application for flow-through provisioning.

What are network nodes and network node types?

Network nodes are the equipment that manages the circuits in the network. They are identified
by a unique target identifier (TID). TIDs are used to search for devices on the network.
Commands are sent to the network node for flow-through provisioning. For example, a user
might designate one network node as the host network element that communicates with the
network management system. Essentially, a network node is any device that can be
provisioned through software. Network nodes can contain one or more pieces of equipment,
and can be directly associated with flow-through provisioning plans on the Network Node
Type window in the Infrastructure module.

CORBA API Developer’s Reference 209

Chapter 12: The Switch Provisioning Activation AP/

If flow-through plans are used, the flow-through provisioning process cannot occur without
network nodes. Network node types are used in the flow-through provisioning process to
categorize network nodes into groups. Network node types represent the activation vendor's
requirements for activating the network element, and they are used in the flow-through
provisioning process to limit the number of flow-through provisioning plans required.

What are flow-through provisioning plans and commands?

Flow-through provisioning plans and flow-through provisioning commands are MetaSolv
concepts that define optional additional parameters used in the flow-through provisioning
process that are not a part of the MetaSolv Solution. Below are examples of some of the types
of flow-through provisioning plans and commands that can be created:

¢ Plan
Activate a DACS

¢ Command

¢ Config Port A

+ Config Port B
¢ Parameters

« Direction: 1 way

+ Direction: 2 way

+ Alarming
The number of flow-through provisioning plans, commands, and parameters that are created
will vary according to the requirements of the activation product used for the flow-through
provisioning process. The nature of flow-through provisioning plans and commands is to
allow the MetaSolv Solution to work with any selected activation product. That is, the
MetaSolv Solution only captures TID, port addresses, and cross-connects for flow-through

provisioning. Flow-through provisioning plans and commands provide the ability to capture
all the information the activation vendor requires.

g If the selected activation product only requires the defaults for flow-through provisioning,

then it is not necessary to use the PSR module in the flow-through provisioning process at
all.

210 MetaSolv Software, Inc.

Implementation concepts

What are design layout records (DLRs)?

A design layout record (DLR) is a document that contains the technical information that
describes the physical layout of a circuit at a given location.

What are tech translation sheets?

The tech translation sheet defines the items required to provision the service in the switch. For
switch provisioning activation, once the order is entered, the product and options ordered are
the basis for the tech translation sheet.

What are virtual layout records (VLRs)?

A virtual layout record (VLR) is a MetaSolv-defined document that contains the technical
information that describes the layout of the physical components of an ATM or Frame Relay
virtual circuit, and the relationship of the physical components to the logical components (the
"cloud") of that circuit.

Software modules and subsystems used in flow-through

provisioning
The Switched Provisioning Activation and Transport Provisioning Activation APIs use the
following modules and subsystems in the to complete the flow-through provisioning process:
¢ Equipment Administration module

Infrastructure module

Product Service Request (PSR) module

Service Provisioning subsystem

* 6 o o

Work Management subsystem

The equipment administration module

The flow-through provisioning process uses the Equipment Administration module to define
the following:
¢ Target identifier (TID) that the activation vendor recognizes
¢ Network node with which the equipment is associated
A network node must be associated with every piece of equipment (or at a higher level in

the equipment hierarchy) used for flow-through provisioning. A network node type must
be associated with every network node used for flow-through provisioning.

CORBA API Developer’s Reference 211

Chapter 12: The Switch Provisioning Activation AP/

The infrastructure module
The Infrastructure module is used in the flow-through provisioning process to:

¢ Define new network node types

¢ Associate network node types with flow-through provisioning plans and rate codes

Additionally, the user can access the PSR module's Product Catalog function through the
Infrastructure module. The user will only use the Infrastructure module for flow-through
provisioning if they need to specify additional data for a network node.

The product service request module

The Product Service Request (PSR) module is used in the flow-through provisioning process
to:

¢ Set up flow-through provisioning plans and commands
¢ Enter a service request

¢ Provide service request information related to flow-through provisioning on the tech
translation sheet for switch translations

More specifically, the PSR module's Product Catalog function is used in the flow-through
provisioning process to define the features that appear on the PSR, as well as the options on
those features. Options on the service request used for the flow-through provisioning process
include flow-through provisioning plans and commands. These options often have default
values, and when a PSR is entered with these options, the service request includes the required
default values (also referred to as parameters). The MetaSolv Solution user can use the
Product Specifications window to determine if the values or parameters appear on the tech
translation sheet.

g All parameters necessary to the flow-through provisioning process (except equipment
parameters) are defined in the Product Catalog function.

The service provisioning subsystem

The flow-through provisioning process uses the Service Provisioning subsystem to:

¢ Design the circuit(s) on the PSR used for flow-through provisioning

¢ Verify and modify the flow-through provisioning parameters that are set up in the PSR
module

The Service Provisioning subsystem also provides the flow-through provisioning information
(such as network node type and network node address) that appears on the CLR, DLR, VLR,
and tech translation sheet.

212 MetaSolv Software, Inc.

Implementation concepts

The work management subsystem

The Work Management subsystem is used in the flow-through provisioning process to:

¢ Associate a gateway event with a provisioning plan task
¢ Initiate a gateway event

& Verify the gateway event is complete

Gateway events define when the MetaSolv Solution should send flow-through provisioning
information to the activation application for processing.

The flow-through provisioning process
The flow-through provisioning process is used in the MetaSolv Solution to:

¢ Order and provision services associated with the line side of a switch

¢ Engineer a service request and provision it without re-entering activation information

g Line side activation includes provisioning dialtone services through a switch. The
activation process occurs outside of the MetaSolv Solution.

The procedure that the user follows to perform the flow-through provisioning process is
described in detail in the MetaSolv Solution online Help.

g See "The Flow-Through Provisioning Process Overview" in the MetaSolv Solution online
Help.

Signal handler

The signal handler module implements the interfaces required to handle standard gateway
events from MetaSolv Solution clients. This module is also responsible for updating gateway
event status to “In Progress”.

The outbound signals sent by the client to your activation server are the flow-through
provisioning gateway events. These events are defined at the service item level. Each service
item (for example, a phone line, a WATS line, or an ATM/Frame circuit) on the order will
have the flow-through provisioning gateway event associated with it. As a result, when an
order is processed by the Work Management subsystem, your activation server can potentially
receive as many gateway events as there are service items in the order. For example, if a
transport provisioning order for ASR equipment comprises six special access circuits, your
activation server receives six separate gateway events from the client.

Each gateway event associated with a service item in a service request can be processed
independently of the gateway events for any other service item.

Implementation should conform to the pattern described in “Outbound signals — gateway
events” on page 38. The signal handler module should implement a WDIDLR module with all
the interfaces and operations specified in Table 9, “Outbound Gateway Event Operations
Required For All APIs,” on page 39. Event status updates are performed via DLRSERVER.

CORBA API Developer’s Reference 213

Chapter 12: The Switch Provisioning Activation AP/

Upon receiving an outbound signal conveying gateway event information from the client, the
signal handler module activates the request handler module and hands off the event
information that was received. In order to avoid locking up the client, it is recommended that
the signal handler should return control to the client immediately upon activating the request
handler module and updating the event status.

Request handler

The request handler module retrieves activation data from the MetaSolv Solution database by
invoking the operation getSwitchActivation on DLRSERVER to retrieve switch activation
data.

The operation is a standard data export operation that conforms to “The asynchronous
interaction pattern” on page 28. This provisioning operation accepts a WDIEvent parameter.
This allows the request handler to retrieve provisioning data from the database in a single
step.The request handler passes the gateway event structure that was received from the client,
and DLRSERVER retrieves the required provisioning data.

It is important to understand the data types that are involved in the two operations listed above.
Data type definitions can be found in file WDIDLRTYPES v5.IDL. The following Switch
Activation data structure is returned to the caller (via callback invocation):

struct SwitchActivation {

DLR dlr;
DLRSwitchTranslation switchtranslation;
ActivationCommandPlanSeq activationCommandPlans

Figure 29: Switch Provisioning Data Structure Example

The ActivationCommandPlanSeq data type delivers the FTP Plan for this service item.

Formatting/translation module

The formatting/translation module handles two-way data translation and format conversion
required for communicating with the activation product. This module's services are used by
the other modules.

214 MetaSolv Software, Inc.

Implementation concepts

Response handler

The response handler module handles responses received from the activation product. It
performs the necessary reverse translation/formatting using the formatting/translation module
and then determines the operation status. Based on the success or failure determination, this
module updates gateway event status to “Completed” or “Errored”. Design of this module
depends upon factors such as the synchronous/asynchronous and online/batch nature of the
interaction with activation product.

Date/time format

Dates are returned using the MetaSolv:CORBA:WDIUtil:MSVDate structure, which stores
the date and time information as a string of the form YYYYMMDDHHMMSS.

CORBA substructures

The CORBA specification does not allow uninitialized values for structures or types embedded within
other structures. In the case of no data, a sequence of length "0" is returned.

Design considerations

To obtain the full benefit of the automated flow-through capabilities of these APIs, gateway
events must be associated with tasks in Work Management provisioning plans. The MetaSolv
Solution is pre-configured with gateway templates and gateway event templates for Switch
Provisioning.

g For detailed instructions on this process, see "The Flow-Through Provisioning Process
Overview" in the MetaSolv Solution online Help.

In order to ensure that the provisioning information provided by the Switched Provisioning
Activation API is sufficiently completed to be used by your network management system, care
must be used when ordering the service.

The PSR module captures default values for items that have pick lists. With flow-through
provisioning, defaults are also needed for editable fields. If defaults are not provided, a user
would be required to manually enter the same value on every line for an order. Providing a
default value in the product catalog for product specifications that are required for flow-
through provisioning streamlines the ordering process.

For transport provisioning activation, the network node target identifier (TID) and the
equipment port address assignment identifier (AID) in the database identify the equipment and
port address. These items should either be used directly by your application or your
application should maintain a cross-reference between the identifiers used by your application
and the MetaSolv Solution-supplied TID and AID.

Just as the provisioning of switch features requires additional parameters, the provisioning of
transport equipment requires additional parameters as well. The transport equipment for

CORBA API Developer’s Reference 215

Chapter 12: The Switch Provisioning Activation AP/

dialtone lines is usually digital loop carrier. The MetaSolv Solution CLR represents the
provisioning information for this type of equipment. The CLR captures the TID and the AID
for the DLC equipment, which is part of the information that is required for activating the
service. The TID is determined by identifying the Network Node to which the equipment
belongs. The AID is determined using the assignment information that is gathered on the CLR.
To provision transport equipment, additional parameters are usually required. These
parameters will vary by type of equipment, by transmission rate, and by activation vendor.

216 MetaSolv Software, Inc.

13

The Transport Provisioning Activation API

The Transport Provisioning Activation API supports flow-through provisioning of different
kinds of circuit designs. This API enables third-party network management systems to export
provisioning information from the MetaSolv Solution database and use that information to
physically implement the design.

The Transport Provisioning Activation API:

¢ Provides a vendor-independent interface to enable flow-through provisioning of Frame
Relay and ATM circuits.

¢ Provides flow-through information about any transport equipment assigned to a DLR (for
example: SONET and DACS).

¢ Exposes the VLR through an API so customers can write Web applications that display the
VLR through a thin client.

Functionality

The Transport Provisioning Activation API provides the IDL for retrieving DLR, VLR and
flow-through information for a given WDIEvent. If the value for the returned “Type” data
element is V, VLR information exists for the circuit; otherwise DLR information exists.

The third-party application is responsible for managing all database transactions, including
commit and rollback processing.

Essential terminology

The terms in this table identify concepts and information that are required to understand flow-
through provisioning using the APIs.

Table 56: Transport Provisioning API Terminology

Term

Definition

Activation product

A network management system (NMS), such as Lucent
Technology’s ACTIVEVIEW product line.

MetaSolv Solution CORBA API Developer’s Reference ~ 217

Chapter 13: The Transport Provisioning Activation AP/

Table 56: Transport Provisioning API Terminology

Term Definition

Activation server An application developed by you or a third party that integrates
with the MetaSolv Solution to export provisioning data and
communicate the data to one or more activation products.

Transport provisioning activation interface

DLRSession Interfaces

The following table lists the operations available in the DLRSession of the WDIDLR.IDL file
that are used by the Transport Provisioning Activation API.

Table 57: DLR Session WDINotification Operations

Operations WDINotification

getTransportProvisioning_v2 transportProvisioningGetSucceeded v2
transportProvisioningGetFailed

getTransportProvisioning_v4 transportProvisioningGetSucceeded v4
transportProvisioningGetFailed v4

getTransportProvisioning_v5 transportProvisioningGetSucceeded v5
transportProvisioningGetFailed 5

DLRSession interface operation
The following list contains the operation used in the DLRSession of the WDIDLR.IDL file:

¢ getTransportProvisioning_v2,getTransportProvisioning_v4, and
getTransportProvisionin_v5

¢ getVLR v2

This operation replaces the getVLR operation from earlier releases.

Process flows

This section contains sample process flows for each type of signal: solicited and unsolicited.
Use the sample flow as a template for developing your own process flows.

218 MetaSolv Software, Inc.

Process flows

Solicited messages

A solicited message is a message initiated by the MetaSolv Solution. With this scenario, the
MetaSolv Solution plays the role of the client, and the third-party activation server plays the
role of the server. The third-party application must use the IDL file provided with the DLR
API to implement the interfaces and operations for the following:

Table 58: Transport Provisioning API Interfaces Solicited Messages Operations

Interface Operations
WDIRoot connect
disconnect
WDIManager startTransaction
destroyTransaction

WDITransaction N/A

WDISignal eventOccurred
eventTerminated
WDIInSignal N/A

Sample solicited message process flow

When the MetaSolv Solution is the client, the overall process flows as follows:

1.
2.

The API client binds to the third-party server to get a WDIRoot object reference.

The API client invokes the connect operation of the WDIRoot interface, and the connect
operation yields a WDIManager object reference.

The API client invokes the startSignal operation of the WDIManager interface to get a
WDISignal object reference.

The API client invokes the eventOccurred operation of the WDISignal interface passing a
WDIEvent structure to notify the third-party vendor that an event registered to them has
occurred within the MetaSolv Solution.

The API client invokes the destroySignal operation of the WDIManager interface.
The API client invokes the disconnect operation of the WDIRoot interface.

Once the third-party server completes processing, possibly involving additional
unsolicited messages to the MetaSolv Solution Application Server, the third party binds to
the application server and follows the same process described above for the MetaSolv
Solution client with the exception that the eventCompleted/Errored operations are invoked
passing the original WDIEvent structure.

CORBA API Developer’s Reference 219

Chapter 13: The Transport Provisioning Activation AP/

If the third-party application encounters an error, it throws a WDIExcp as defined by the IDL.
The client handles CORBA system exceptions and WDIExcp exceptions.

Unsolicited messages

An unsolicited message is a message initiated by the third-party software. The MetaSolv
Solution plays the role of the server, and a third-party application plays the role of the client
with the exception of the callback processing.

The MetaSolv Solution uses the IDL files provided with the Transport Provisioning Activation
API to implement the interfaces and operations defined in the following table:

Table 59: Transport Provisioning API Interfaces Unsolicited Messages Operations

Interface Operations
WDIRoot connect
disconnect
WDIManager startTransaction
destroyTransaction
WDITransaction commit
rollback
DLRSession getTransportProvisioning

The third-party application is responsible for implementing the interfaces and operations for:

Table 60: Transport Provisioning API Third-party Interfaces and Operations

Interface For Implementing These Operations

WDINotification transportProvisioningGetSucceeded v5
transportProvisioningGetFailed v5

Sample unsolicited message process flow for exporting transport
provisioning activation information
The overall process flow for exporting Transport Provisioning Activation is as follows:

1. The third-party application binds to the MetaSolv Solution Application Server to get a
WDIRoot object reference.

2. The third-party application invokes the connect operation of the WDIRoot interface,
which yields a WDIManager object reference.

220 MetaSolv Software, Inc.

Implementation concepts

3. The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference and starts a database transaction.

4. The third-party application invokes the startDLRSession operation of the WDIManager
interface to get a DLRSession object reference.

5. The third-party application instantiates a third-party implementation of a WDINotification
object.

6. The third-party application invokes the getTransportProvisioning operation of the
DLRSession object, passing the WDINotification object.

7. The TransportProvisioning data structure is returned asynchronously via invocation of the
transportProvisioningGetSucceeded/Failed operation of the WDINotification object.

8. The third-party application invokes the destroyDLRSession operation of the WDIManager
interface.

9. The third-party application invokes the destroyTransaction operation of the WDIManager
interface.

10. The third-party application invokes the disconnect operation of the WDIRoot interface.

Implementation concepts

This section describes the issues that you must be familiar with when building a mediation
server application for flow-through provisioning.

What are network nodes and network node types?

Network nodes are the equipment that manages the circuits in the network. They are identified
by a unique target identifier (TID). TIDs are used to search for devices on the network.
Commands are sent to the network node for flow-through provisioning. For example, a user
might designate one network node as the host network element that communicates with the
network management system. Essentially, a network node is any device that can be
provisioned through software. Network nodes can contain one or more pieces of equipment,
and can be directly associated with flow-through provisioning plans on the Network Node
Type window in the Infrastructure module.

If flow-through plans are used, the flow-through provisioning process cannot occur without
network nodes. Network node types are used in the flow-through provisioning process to
categorize network nodes into groups. Network node types represent the activation vendor's
requirements for activating the network element, and they are used in the flow-through
provisioning process to limit the number of flow-through provisioning plans required.

CORBA API Developer’s Reference 221

Chapter 13: The Transport Provisioning Activation AP/

What are flow-through provisioning plans and commands?

Flow-through provisioning plans and flow-through provisioning commands are MetaSolv
concepts that define optional additional parameters used in the flow-through provisioning
process that are not a part of the MetaSolv Solution. Below are examples of some of the types
of flow-through provisioning plans and commands that can be created:
¢ Plan

+ Activate a DACS
¢ Command

+ Config Port A

+ Config Port B
& Parameters

+ Direction: 1 way

« Direction: 2 way

+ Alarming
The number of flow-through provisioning plans, commands, and parameters that are created
will vary according to the requirements of the activation product used for the flow-through
provisioning process. The nature of flow-through provisioning plans and commands is to
allow the MetaSolv Solution to work with any selected activation product. That is, the
MetaSolv Solution only captures TID, port addresses, and cross-connects for flow-through

provisioning. Flow-through provisioning plans and commands provide the ability to capture
all the information the activation vendor requires.

g If the selected activation product only requires what the defaults for flow-through
provisioning, then it is not necessary to use the PSR module in the flow-through
provisioning process at all.

What are design layout records (DLRs)?

A design layout record (DLR) is a document that contains the technical information that
describes the physical layout of a circuit at a given location.

What are tech translation sheets?

The tech translation sheet defines the items required to provision the service in the switch. For
switch provisioning activation, once the order is entered, the product and options ordered are
the basis for the tech translation sheet.

222 MetaSolv Software, Inc.

Implementation concepts

What are virtual layout records (VLRs)?

A virtual layout record (VLR) is a MetaSolv-defined document that contains the technical
information that describes the layout of the physical components of an ATM or Frame Relay
virtual circuit, and the relationship of the physical components to the logical components (the
"cloud") of that circuit.

Software modules and subsystems used in flow-through
provisioning
The Transport Provisioning Activation API uses the following modules and subsystems to
complete the flow-through provisioning process:
¢ Equipment Administration module
Infrastructure module
Product Service Request (PSR) module

Service Provisioning subsystem

* 6 o o

Work Management subsystem

The Equipment Administration module

The flow-through provisioning process uses the Equipment Administration module to define
the following:

& Target identifier (TID) that the activation vendor recognizes

¢ Network node with which the equipment is associated

g' A network node must be associated with every piece of equipment (or at a higher
level in the equipment hierarchy) used for flow-through provisioning. A network
node type must be associated with every network node used for flow-through
provisioning.

The Infrastructure module

The Infrastructure module is used in the flow-through provisioning process to:

¢ Define new network node types
¢ Associate network node types with flow-through provisioning plans and rate codes
Additionally, the user can access the PSR module's Product Catalog function through the

Infrastructure module. The user will only use the Infrastructure module for flow-through
provisioning if they need to specify additional data for a network node.

CORBA API Developer’s Reference 223

Chapter 13: The Transport Provisioning Activation AP/

The Product Service Request module

The Product Service Request (PSR) module is used in the flow-through provisioning process

to:

¢ Set up flow-through provisioning plans and commands

¢ Enter a service request

¢ Provide service request information related to flow-through provisioning on the tech
translation sheet for switch translations

More specifically, the PSR module's Product Catalog function is used in the flow-through
provisioning process to define the features that appear on the PSR, as well as the options on
those features. Options on the service request used for the flow-through provisioning process
include flow-through provisioning plans and commands. These options often have default
values, and when a PSR is entered with these options, the service request includes the required
default values (also referred to as parameters). The user can use the Product Specifications
window to determine if the values or parameters appear on the tech translation sheet.

é' All parameters necessary to the flow-through provisioning process (except equipment
parameters) are defined in the Product Catalog function.

The Service Provisioning subsystem

The flow-through provisioning process uses the Service Provisioning subsystem to:

¢ Design the circuit(s) on the PSR used for flow-through provisioning
¢ Verify and modify the flow-through provisioning parameters that are set up in the PSR
module

The Service Provisioning subsystem also provides the flow-through provisioning information
(such as network node type and network node address) that appears on the CLR, DLR, VLR,
and tech translation sheet.

The Work Management subsystem

The Work Management subsystem is used in the flow-through provisioning process to:

¢ Associate a gateway event with a provisioning plan task
¢ Initiate a gateway event
& Verify the gateway event is complete

Gateway events define when the MetaSolv Solution should send flow-through provisioning
information to the activation application for processing.

224 MetaSolv Software, Inc.

Implementation concepts

The flow-through provisioning process
The flow-through provisioning process is used in the MetaSolv Solution client software to:

¢ Order and provision services associated with the line side of a switch
¢ Engineer a service request and provision it without re-entering activation information

Line side activation includes provisioning dialtone services through a switch. The
activation process occurs outside of the MetaSolv Solution.

The process that the user follows to perform flow-through provisioning process is described in
detail in the MetaSolv Solution online Help.

See "The Flow-Through Provisioning Process Overview" in the MetaSolv Solution online
Help.

For flow-through provisioning, the Transport Provisioning API calculates and provides the
physical/logical port values for both the "A" side equipment and "Z" side of the equipment.

IDL changes made for the M/5 version of the API provide the API user with physical/logical
port values and a list of circuit positions ridden for each bandwidth circuit that supports the
PVC.

CORBA API Developer’s Reference 225

Chapter 13: The Transport Provisioning Activation AP/

When multiple circuit positions are ridden by a bandwidth circuit, the API throws an exception
if all of the circuit positions are not associated with the same logical port.

The API assumes the port calculations do not change when the physical ports are in a virtual
path.

Reference architecture

The intent of the reference architecture is to provide a logical framework to describe the
various implementation concepts. It is not intended to suggest any particular application

design.
| | [] Third-Party Activation Server
| Activation | Signal Reauest Activation
I Hander Handlor >
| Signal I L Request
| | Formatting Thlrd'Party
i . | Module Activation
| TBS Client Workstation | Product
: A | Response ‘ReSP()nse
e |
| HanM
| |
| |
| | ORB | Runtime
| |
| U U U U U [U U N S U U U ———
]
OrbixWeb Runtime
Y \J \

@7—> DLRSERVER

TBS Database

TBS API Server Machine
— — — TBS Software - — — — — — — — — — — — |

Figure 30: Reference Architecture for Flow-Through Provisioning

Gateway events are utilized to allow your activation server to integrate with the Work
Management subsystem.

226 MetaSolv Software, Inc.

Implementation concepts

Signal handler

The signal handler module implements the interfaces required to handle standard gateway
events from MetaSolv Solution clients. This module is also responsible for updating gateway
event status to “In Progress”.

The outbound signals sent by the MetaSolv Solution client to your activation server are the
flow-through provisioning gateway events. These events are defined at the service item level.
Each service item (for example, a phone line, a WATS line, or an ATM/Frame circuit) on the
order will have the flow-through provisioning gateway event associated with it. As a result,
when an order is processed by the Work Management subsystem, your activation server can
potentially receive as many gateway events as there are service items in the order. For
example, if a transport provisioning order for ASR equipment comprises six special access
circuits, your activation server receives six separate gateway events from the client.

Each gateway event associated with a service item in a service request can be processed
independently of the gateway events for any other service item.

Implementation should conform to the "Outbound Signals — Gateway Events" pattern on page
36. The signal handler module should implement a WDIDLR module with all the interfaces
and operations specified in the table on page 36. Event status updates are performed via
DLRSERVER.

Upon receiving an outbound signal conveying gateway event information from the MetaSolv
Solution client, the signal handler module activates the request handler module and hands off
the event information that was received. In order to avoid locking up the client, it is
recommended that the signal handler should return control to the client immediately upon
activating the request handler module and updating the event status.

Request handler

The request handler module retrieves activation data from the MetaSolv Solution database by
invoking the getTransportProvisioning operation on DLRSERVER to retrieve transport
provisioning data

The operations are standard data export operations for more information see “The synchronous
interaction pattern” on page 26. This provisioning operation accepts a WDIEvent parameter that
allows the request handler to retrieve provisioning data from the database in a single step. The
request handler passes in the gateway event structure that was received from the client and
DLRSERVER retrieves the required provisioning data.

CORBA API Developer’s Reference 227

Chapter 13: The Transport Provisioning Activation AP/

It is important to understand the data types that are involved in the operation listed above. Data
type definitions can be found in file WDIDLRTYPES v5.IDL. The following Transport
Provisioning data structure is returned to the caller (via callback invocation):

typedef sequence<DLR> DLRSeq;

typedef sequence<MetaSolv::CORBA::WDIVLRTypes::VLR> VLRSeq;

struct TransportProvisioning {

char type; // CIRCUIT.TYPE CHAR (1)

DLRSeq dlr;

VLRSeq vlir;

ActivationCommandPlanSeq activationCommandPlans

Figure 31: Transport Provisioning Data Structure Example

The ActivationCommandPlanSeq data type delivers the FTP Plan for this service item.

Formatting/translation module

The formatting/translation module handles two-way data translation and format conversion
required for communicating with the activation product. This module's services are used by
the other modules.

Response handler

The response handler module handles responses received from the activation product. It
performs the necessary reverse translation/formatting using the formatting/translation module
and then determines the operation status. Based on the success or failure determination, this
module updates gateway event status to “Completed” or “Errored”. Design of this module
depends upon factors such as the synchronous/asynchronous and online/batch nature of the
interaction with activation product.

Design considerations

To obtain the full benefit of the automated flow-through capabilities of this API, gateway
events must be associated with tasks in Work Management provisioning plans. The MetaSolv
Solution is pre-configured with gateway templates and gateway event templates for Transport
Provisioning.

é' For detailed instructions on this process, see "The Flow-Through Provisioning Process
Overview" in the MetaSolv Solution online Help.

In order to ensure that the provisioning information provided by the Transport Provisioning
Activation API is sufficiently completed to be used by your network management system, care
must be used when ordering the service.

228 MetaSolv Software, Inc.

Implementation concepts

The PSR module captures default values for items that have pick lists. With flow-through
provisioning, defaults are also needed for editable fields. If defaults are not provided, a user
would be required to manually enter the same value on every line for an order. Providing a
default value in the product catalog for product specifications that are required for flow-
through provisioning streamlines the ordering process.

For transport provisioning activation, the network node target identifier (TID) and the
equipment port address assignment identifier (AID) in the database identify the equipment and
port address. These items should either be used directly by your application or your
application should maintain a cross-reference between the identifiers used by your application
and the MetaSolv Solution-supplied TID and AID.

Just as the provisioning of switch features requires additional parameters, the provisioning of
transport equipment requires additional parameters as well. The transport equipment for
dialtone lines is usually digital loop carrier. The CLR represents the provisioning information
for this type of equipment. The CLR captures the TID and the AID for the DLC equipment,
which is part of the information that is required for activating the service. The TID is
determined by identifying the Network Node to which the equipment belongs. The AID is
determined using the assignment information that is gathered on the CLR. To provision
transport equipment, additional parameters are usually required. These parameters will vary
by type of equipment, by transmission rate, and by activation vendor.

CORBA API Developer’s Reference 229

Chapter 13: The Transport Provisioning Activation AP/

230 MetaSolv Software, Inc.

14

The Trouble Management API

The Trouble Management API exposes Trouble Management subsystem functions and
information that an external (third-party) application can use to:

¢ Create, update, and change the state of trouble tickets in the Trouble Management
subsystem

¢ Query for trouble tickets using criteria similar to the Trouble Management subsystem’s
Ticket Search window

¢ Query to retrieve the service item identifier for a ticket to facilitate triggering of automatic
testing through gateway events

¢ Query to retrieve various service items, customer information, and other information such
as could be used to populate dropdowns in a client application

The Trouble Management API is designed to support development of applications that
integrate existing network management systems and the Trouble Management subsystem. For
example, when a piece of network equipment signals an alarm, your application could use the
Trouble Management API to create a trouble ticket in the Trouble Management subsystem.
Periodically, or on an as-needed basis, your application could query the Trouble Management
API to determine whether a trouble ticket has cleared. Until the initial trouble ticket has
cleared, your application can ignore additional alarms from the faulty equipment.

The CORBA servername used by the Trouble Management API is TMSSERVER.

Functionality

Major functions for which you can use the Trouble Management API include:

Creating new trouble tickets

Clearing, closing, and canceling existing trouble tickets
Creating log entries for a given trouble ticket

Updating attributes on an existing ticket

Querying for information about a trouble ticket

L JER JER BN JER 2R 4

Querying for tickets

Once a trouble ticket is created via the Trouble Management API, that ticket can be processed
in the Trouble Management subsystem as if it was created using the Trouble Management
subsystem. For example, Trouble Management subsystem users can refer an API-generated

MetaSolv Solution CORBA API Developer’s Reference ~ 231

Chapter 14: The Trouble Management API

ticket to multiple organizations, just as if the ticket was entered using the Trouble
Management subsystem.

TroubleSession interface

g The Trouble Management API and the Trouble Management subsystem are separately
licensed components of the MetaSolv Solution product line. The Trouble Management
API requires you have the Trouble Management subsystem installed. To acquire licenses
to use these products, contact your MetaSolv Software representative.

WDIManager

The following table lists the operations available in the WDIManager interface of the

WDITROUBLE.IDL file.
Table 61: Trouble Management API WDIManager Interface Operations
Operation Description
startTroubleSession Obtains the object reference for the
TroubleSession
destroyTroubleSession Terminates the TroubleSession
startTransaction commit
rollback
destroyTransaction Terminates the Transaction
startSignal2 eventCompleted
eventErrored
eventInProgress
eventOccurred
eventTerminated
destroySignal2 Terminates the Signal2

The Trouble Management API uses the fundamental concepts of the signal handling pattern
implemented by the other APIs. However, the Trouble Management API requires a different
set of attribute values to uniquely identify an instance of an event within a trouble ticket. Using
this variation of the signaling mechanism enables the Trouble Management API to support
multiple concurrent events for a given trouble ticket.

For more information about WDIManager, see “Common Architecture” on page 55.

232 MetaSolv Software, Inc.

TroubleSession interface

TroubleSession interface operations

The following table lists the operations available in the TroubleSession interface of the

WDITROUBLE.IDL file.

Table 62: Trouble Management API TroubleSession Interface Operations

Operation WDINotification Operations
getPartyByPartyName getPartyByPartyNameSucceeded
getPartyByPartyNameFailed
getCauseCodes getCauseCodesSucceeded
getCauseCodesFailed
getTroubleFoundCodes getTroubleFoundCodesSucceeded
getTroubleFoundCodesFailed
getClearedCodes getClearedCodesSucceeded

getClearedCodesFailed

getServiceltemTypeCodes

getServiceltemTypeCodesSucceeded
getServiceltemTypeCodesFailed

getTroubleTypeCodes?2

getTroubleTypeCodes2Succeeded
getTroubleTypeCodes2Failed

getlnitiatingModeCodes2

getlnitiatingModeCodes2Succeeded
getlnitiatingModeCodes2Failed

getTicketStatusCodes2

getTicketStatusCodes2Succeeded
getTicketStatusCodes2Failed

getParties2 getParties2Succeeded
getParties2Failed
getTicketTypeCodes2 getTicketTypeCodes2Succeeded
getTicketTypeCodes2Failed
createLogEntry createLogEntrySucceeded
createLogEntryFailed
getTicketServiceltem getTicketServiceltemSucceeded

getTicketServiceltemFailed

CORBA API Developer’s Reference

233

Chapter 14: The Trouble Management API

Table 62: Trouble Management API TroubleSession Interface Operations

Operation

WDINotification Operations

updateTicket--Deprecated.
Replaced by updateTicket v2

updateTicketSucceeded--Deprecated. Replaced by
updateTicketSucceeded v2
operationFailed

updateTicket v2

updateTicketSucceeded v2
operationFailed

getTicketForUpdate--
Deprecated. Replaced by
getTicketForUpdate v2.

getTicketForUpdateSucceeded--Deprecated. Replace
by getTicketForUpdateSucceeded v2.
operationFailed

getTicketForUpdate v2

getTicketForUpdateSucceeded v2
operationFailed

getMsgTrnkGrpServitem

getMsgTrnkGrpServitemNoDataFound
getMsgTrnkGrpServitemSucceeded
operationFailed

getEUSpecial TrnkGrpServitem

getEUSpecial TrnkGrpServitemNoDataFound
getEUSpecial TrnkGrpServitemSucceeded
operationFailed

getDSLServItem--Deprecated.
This functionality is supported
by the getQueryCircuits v2
operation method in the DLR
APL.

getDSLServitemNoDataFound--Deprecated.
getDSLServitemSucceeded--Deprecated.
operationFailed

getInternetCircuitServitem--
Deprecated. This functionality is
supported by the
getQueryCircuits_v2 operation
in the DLR APL.

getInternetCircuitServitemNoDataFound--
Deprecated.
getlnternetCircuitServitemSucceeded--Deprecated.
operationFailed

getInternetDialupServitem

getInternetDialupServitemNoDataFound
getInternetDialupServitemSucceeded
operationFailed

getTelephoneNumberServitem

getTelephoneNumberServitemNoDataFound
getTelephoneNumberServitemSucceeded
operationFailed

234 MetaSolv Software, Inc.

TroubleSession interface

Table 62: Trouble Management API TroubleSession Interface Operations

Operation

WDINotification Operations

getCustomers

getCustomersNoDataFound
getCustomersSucceeded
operationFailed

getTicketForClearClose

getTicketForClearCloseSucceeded

operationFailed
clearTicket clearTicketSucceeded

operationFailed
closeTicket closeTicketSucceeded

operationFailed
cancelTicket cancelTicketSucceeded

operationFailed

getTickets v2

getTicketsNoDataFound v2
getTicketsSucceeded v2
operationFailed

getTicketReport v2

getTicketReportSucceeded v2
operationFailed

getParties v3

getPartiesSucceeded v3

getPartiesFailed
getCustomerAddresses getCustomerAddressesSucceeded

operationFailed
getAssignedToParties getAssignedToPartiesSucceeded

operationFailed
getEscalationMethods getEscalationMethodsSucceeded

operationFailed

createTicket v2--Deprecated.

Replaced by createTicket v3

createTicketSucceeded v2--Deprecated. Replaced by
createTicketSucceeded v3.
operationFailed

createTicket v3

createTicketSucceeded v3
operationFailed

CORBA API Developer’s Reference

235

Chapter 14: The Trouble Management API

Table 62: Trouble Management API TroubleSession Interface Operations

Operation WDINotification Operations

getNetworkElementServitem getNetworkElementServitemNoDataFound

getNetworkElementServitemSucceeded
operationFailed

getNetworkSystemServitem getNetworkSystemServitemNoDataFound

getNetworkSystemServitemSucceeded
operationFailed

TroubleSession operation descriptions

The following list contains a description of the operations available in the TroubleSession
interface:

*

getPartyByPartyName

Given a Party Name and a Party Role as arguments, the getPartyByPartyName operation
retrieves information for an active party. This operation may be used to get the party IDs
for the Customer role (partyRole = "CUST"), Responsible Org (partyRole =
'RESP_ORG"), and Administrative Org (partyRole ='ADMIN_ORG') to pass as
arguments in the createTicket v3 operation. It returns successfully only if the party and its
associated party role are still active.

If the party is an individual, the Party Name must be formatted as "Last Name, First
Name". The party name is stored in upper case in the MetaSolv Solution database, so the
API converts the value passed to upper case before performing the search.

If the operation is called to get the Party ID for a customer (partyRole = 'CUST"), it is
possible that multiple customers may exist in the database with the same Party Name.

The MetaSolv Solution does not allow multiple Responsible Organizations or
Administrative Organizations to have the same name.

If multiple party records are found for a given customer name, this operation returns an
error. If this occurs, it is recommended that the customerPartyID not be passed when the
createTicket v3 operation is called. If a service item is included, the Trouble Management
API automatically identifies the customer associated with the service item. The customer
name can also be included in the logNotes attribute.

236 MetaSolv Software, Inc.

TroubleSession interface

¢ getCauseCodes

The getCauseCodes operation retrieves a list of cause codes defined in the MetaSolv
Solution’s Infrastructure subsystem. This operation could be used to populate a drop-down
list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list should
contain only those codes that are currently listed in the database as active codes. Only
active codes should be included in drop-downs used on interfaces where the code is
updated for a ticket. Both active and inactive codes are retrieved for drop-downs on query
interfaces like the Ticket Query.

The currentCauseCode parameter is used to return a given inactive code along with all
the active values when the activeOnly parameter is true. This parameter is optional. It
allows you to populate a dropdown field on a ticket that includes all the active codes along
with the ticket’s current value, even if that code was inactivated after it was set on the
ticket. Since both active and inactive codes are returned when the activeOnly parameter is
false, the currentCauseCode parameter is ignored if the activeOnly parameter is false.

¢ getTroubleFoundCodes

The getTroubleFoundCodes operation retrieves a list of trouble found codes defined in the
Trouble Management subsystem for a given cause code. This operation could be used to
populate a drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list should
contain only those codes that are currently listed in the database as active codes. Only
active codes should be included in drop-downs used on interfaces where the code is
updated for a ticket. Both active and inactive codes should be retrieved for drop-downs on
query interfaces like the Ticket Query.

The currentTroubleFoundID parameter is used to return a given inactive code along
with all the active values when the activeOnly parameter is true. This parameter is
optional. It allows you to populate a dropdown field on a ticket that includes all the active
codes along with the ticket’s current value, even if that code was inactivated after it was
set on the ticket. If passed, the currentTroubleFoundID must be passed as a numeric
value. Since both active and inactive codes are returned when the activeOnly parameter is
false, the currentTroubleFoundID parameter is ignored if the activeOnly parameter is
false.

The causeCode parameter limits the trouble found codes that are returned to only those
that are related to this cause code. If activeOnly is passed as true, the cause code is
required and must be a valid active or inactive cause code in the Trouble Management
subsystem.

CORBA API Developer’s Reference 237

Chapter 14: The Trouble Management API

¢ getClearedCodes

The getClearedCodes operation retrieves a list of cleared codes and could be used to
populate a drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list should
contain only those codes that are currently listed in the database as active codes. Only
active codes should be included in drop-downs used on interfaces where the code is
updated for a ticket. Both active and inactive codes should be retrieved for drop-downs on
query interfaces like the Ticket Query.

The currentClearedCode parameter is used to return a given inactive code along with all
the active values when the activeOnly parameter is true. This parameter is optional. It
allows you to populate a dropdown field on a ticket that includes all the active codes along
with the ticket’s current value, even if that code was inactivated after it was set on the
ticket. Since both active and inactive codes are returned when the activeOnly parameter is
false, the currentClearedCode parameter is ignored if the activeOnly parameter is false.

¢ getServiceltemTypeCodes

The getServiceltemTypeCodes operation retrieves a list of service item type codes
supported by the Trouble Management subsystem. This operation could be used to
populate a drop-down list in a user interface. The set returned will depend on the
migration. Refer to Table 66, “Service Item Type and Service Item Identifier,” on
page 259.

¢ getTroubleTypeCodes2

The getTroubleTypeCodes2 operation retrieves a list of trouble type codes defined in the
Trouble Management subsystem. This operation could be used to populate a drop-down
list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list should
contain only those codes that are currently listed in the database as active codes. Only
active codes should be included in drop-downs used on interfaces where the code is
updated for a ticket. Both active and inactive codes should be retrieved for drop-downs on
query interfaces like the Ticket Query.

The currentTroubleTypelD parameter is used to return a given inactive code along with
all the active values when the activeOnly parameter is true. This parameter is optional. It
allows you to populate a dropdown field on a ticket that includes all the active codes along
with the ticket’s current value, even if that code was inactivated after it was set on the
ticket. If passed, the currentTroubleTypelD must be passed as a numeric value. Since
both active and inactive codes are returned when the activeOnly parameter is false, the
currentTroubleTypelD parameter is ignored if the activeOnly parameter is false.

238 MetaSolv Software, Inc.

TroubleSession interface

¢ getlnitiatingModeCodes2

The getlnitiatingModeCodes2 operation retrieves a list of initiating mode codes defined in
the Trouble Management subsystem. This operation could be used to populate a drop-
down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list should
contain only those codes that are currently listed in the database as active codes. Only
active codes should be included in drop-downs used on interfaces where the code is
updated for a ticket. Both active and inactive codes should be retrieved for drop-downs on
query interfaces like the Ticket Query.

The currentInitiatingModelD parameter is used to return a given inactive code along
with all the active values when the activeOnly parameter is true. This parameter is
optional. It allows you to populate a dropdown field on a ticket that includes all the active
codes along with the ticket’s current value, even if that code was inactivated after it was
set on the ticket. If passed, the currentInitiatingModeID must be passed as a numeric
value. Since both active and inactive codes are returned when the activeOnly parameter is
false, the currentInitiatingModelD parameter is ignored if the activeOnly parameter is
false.

¢ getTicketTypeCodes2

The getTicketTypeCodes2 operation retrieves a list of ticket type codes defined in the
Trouble Management subsystem. This operation could be used to populate a drop-down
list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list should
contain only those codes that are currently listed in the database as active codes. Only
active codes should be included in drop-downs used on interfaces where the code is
updated for a ticket. Both active and inactive codes should be retrieved for drop-downs on
query interfaces like the Ticket Query.

The currentTicketTypeCode parameter is used to return a given inactive code along with
all the active values when the activeOnly parameter is true. This parameter is optional. It
allows you to populate a dropdown field on a ticket that includes all the active codes along
with the ticket’s current value, even if that code was inactivated after it was set on the
ticket. Since both active and inactive codes are returned when the activeOnly parameter is
false, the currentTicketTypeCode parameter is ignored if the activeOnly parameter is
false.

CORBA API Developer’s Reference 239

Chapter 14: The Trouble Management API

¢ getTicketStatusCodes2

The getTicketStatusCodes?2 operation retrieves a list of Ticket Status Codes defined in the
MetaSolv Solution Infrastructure subsystem. This operation could be used to populate a
drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list should
contain only those codes that are currently listed in the database as active codes. Only
active codes should be included in drop-downs used on interfaces where the code is
updated for a ticket. Both active and inactive codes should be retrieved for drop-downs on
query interfaces like the Ticket Query.

The currentTicketStatusID parameter is used to return a given inactive code along with
all the active values when the activeOnly parameter is true. This parameter is optional. It
allows you to populate a dropdown field on a ticket that includes all the active codes along
with the ticket’s current value, even if that code was inactivated after it was set on the
ticket. If passed, the currentTicketStatusID must be passed as a numeric value. Since
both active and inactive codes are returned when the activeOnly parameter is false, the
currentTicketStatusID parameter is ignored if the activeOnly parameter is false.

The ticketStateCode parameter is used to return only ticket status codes that are related to
the given ticket state code. If activeOnly is passed as true, this parameter is required and
must be a valid ticket state code in the MetaSolv Solution. If activeOnly is passed as false,
the ticketStateCode value is ignored. Valid ticket state codes include "openActive",
"deferred", "extreferred", "cleared", "closed" and "canceled".

& createLogEntry

The createLogEntry operation creates a log entry for a ticket. It is passed a sequence of log
note strings (of no more than 2000 characters each) and creates a single log entry for the
ticket. At least one log note string that does not equal spaces is required.

Either the ticketID or documentNumber values are required as input key values. If the
documentNumber is not valid, and no valid ticketID is passed, the Trouble Management
API returns an exception via the createLogEntryFailed operation.

¢ getTicketServiceltem

The getTicketServiceltem operation returns the ticket ID, current state code, current status
ID, for a given ticket document number along with the service item type code, service item
ID, and service item description if there is a service item assigned to the ticket. This query
is intended to be called in response to a gateway event that is triggered when a user
initiates a test of the service item on the ticket.

240 MetaSolv Software, Inc.

TroubleSession interface

updateTicket
Deprecated. Replaced by updateTicket v2.
updateTicket v2

This operation updates attributes for an existing trouble ticket. This new version of the
operation contains support for the new service item types of Network Element, Network
System, and Circuit/Connection that were introduced in M/5.1. For more information, see
“Details concerning use of the updateTicket v2 operation” on page 262

getTicketForUpdate
Deprecated. Replaced by getTicketForUpdate v2.
getTicketForUpdate v2

This operation gets information for a ticket so that an update can be requested. It returns a
structure of updateable ticket fields that may be modified and passed to the
updateTicket v2 operation. It also returns the date and time of the report, which must be
passed to the updateTicket v2 operation in order to verify that the ticket has not changed
since the information was retrieved.

getMsgTrnkGrpServitem

This operation returns a list of message trunk groups. The information returned includes a
circuit ID, which is the identifier passed for a message trunk group service item in the
createTicket v3 and updateTicket v2 operations.

getEUSpecial TrnkGrpServitem

This operation returns a list of end-user special trunk groups. The information returned
includes a two-six-code, which is the identifier passed for an end-user special trunk group
service item in the createTicket v3 and updateTicket v2 operations.

getDSLServitem

Deprecated. Replaced by getQueryCircuits v2 in the DLR APL
getInternetCircuitServitem

Deprecated. Replaced by getQueryCircuits v2 in the DLR APIL.
getInternetDialupServIitem

This operation returns a list of Internet dial-ups. The information returned includes a user
ID, which is the identifier passed for an Internet dial-up service item in the
createTicket v3 and updateTicket v2 operations.

CORBA API Developer’s Reference 241

Chapter 14: The Trouble Management API

¢ getTelephoneNumberServitem

This operation returns a list of telephone numbers. The information returned includes an
unformatted telephone number and a telephone number inventory id either of which can
be passed as the identifier for a telephone number service item in the the createTicket v3
and updateTicket v2 operations.

¢ getCustomers

This operation gets a list of customers matching the criteria given by the caller. The
information returned includes a party id and party address sequence which can be passed
for the customer and customer address in the createTicket v3 and updateTicket v2
operations.

¢ getTicketForClearClose

This operation retrieves clear/close information for a ticket so that a clearTicket or
closeTicket operation can be requested.

& clearTicket

This operation clears an existing trouble ticket. For more information, see “Details
concerning use of the clearTicket operation” on page 268

& closeTicket

This operation closes an existing trouble ticket. For more information, see “Details
concerning use of the closeTicket operation” on page 269

& cancelTicket

This operation cancels an existing trouble ticket. For more information, see “Details
concerning use of the cancelTicket operation” on page 271

& getTickets v2

This operation allows you to search for a trouble ticket or a collection of tickets based on a
set of criteria, similar to the Ticket Search window in the MetaSolv Solution. For more
information, see “Details concerning use of the getTickets v2 operation” on page 272

¢ getTicketReport v2

This operation returns a ticket report. You must pass the operation either a valid document
number or ticket ID. If a document number is passed, ticket ID is ignored.

242 MetaSolv Software, Inc.

TroubleSession interface

¢ getParties v3

The getParties v3 operation retrieves a list of parties that have a given role type. This
operation could be used to populate a drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list should
contain only those codes that are currently listed in the database as active codes. Only
active codes should be included in drop-downs used on interfaces where the party is
updated for a ticket. Both active and inactive parties should be retrieved for drop-downs
on query interfaces like the Ticket Query.

The currentPartyID parameter is used to return a given inactive party along with all the
active parties when the activeOnly parameter is true. This parameter is optional. It allows
you to populate a dropdown field on a ticket that includes all the active parties along with
the ticket’s current value, even if that party was inactivated after it was set on the ticket. If
passed, the currentPartylD must be passed as a numeric value. Since both active and
inactive parties are returned when the activeOnly parameter is false, the currentPartylD
parameter is ignored if the activeOnly parameter is false.

The partyRole parameter is used to return only parties that have been assigned that role
type. This parameter is always required.

The enumerated type definition used for the partyRole parameter includes an option for
CUST (Customer). However, the CUST value is not supported by the GetParties v3
query, and results in an error if passed.

¢ getCustomerAddresses

The getCustomerAddresses operation retrieves a list of active addresses for a given
customer. This operation may be used to populate a drop-down list of addresses for a
customer on a ticket. A customer address sequence number is returned with each address.
The sequence number is passed along with the customer party ID to the createTicket v3 or
updateTicket v2 operations to set the customer address on a ticket.

The customerPartyID parameter is the party ID that identifies the customer whose
addresses are to be retrieved. This is a required parameter. The customerAddressSeq
parameter is used return a given address along with all the active addresses. This
parameter is optional. It allows you to populate a dropdown field on a ticket that includes
all the active customer addresses along with the current address set on the ticket, even if
that address was inactivated after it was set on the ticket. If passed, the
customerAddressSeq must be passed as a numeric value.

CORBA API Developer’s Reference 243

Chapter 14: The Trouble Management API

& getAssignedToParties

The getAssignedToParties operation retrieves a list of active employees that are associated
with either a responsible organization or an administrative organization. This operation
may be used to populate a drop-down list of Resposible Organization Assigned To parties
or Administrative Organization Assigned To parties on a ticket.

The orgPartyID parameter is the party ID that identifies the responsible organization or
administrative organization whose employees are to be retrieved. This is a required
parameter. The assignedToPartyID parameter is used return a specific Assigned To party
along with all the active employees. This parameter is optional. It allows you to populate a
dropdown field on a ticket that includes all the active employees along with the current
Assigned To party on the ticket, even if that party was inactivated after it was set on the
ticket.

¢ getEscalationMethods

The getEscalationMethods operation retrieves a list of escalation methods defined in the
Trouble Management subsystem. This operation could be used to populate a drop-down
list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the operation
should retrieve only active escalation methods. Only active values should be included in
drop-downs used on interfaces where the field is updated for a ticket. Both active and
inactive values should be retrieved for drop-downs on query interfaces like the Ticket

Query.

The escalationMethodID parameter is used to return a given inactive escalation method
along with all the active values when the activeOnly parameter is true. This parameter is
optional. It allows you to populate a dropdown field on a ticket that includes all the active
escalation methods along with the ticket’s current value, even if that value was inactivated
after it was set on the ticket. If passed, the escalationMethodID must be passed as a
numeric value. Since both active and inactive escalation methods are returned when the
activeOnly parameter is false, the escalationMethodID parameter is ignored if the
activeOnly parameter is false.

¢ createTicket v2
Deprecated. Replaced by createTicket v3.
¢ createTicket v3

This is the operation that creates a ticket. The createTicket v3 operation contains support
for the new service item types of Network Element, Network System, and Circuit/
Connection that were introduced in M/5.1. For more information, see “Details concerning
use of the createTicket v3 operation” on page 253

244 MetaSolv Software, Inc.

Trouble Management API IDL files

¢ getNetworkElementServitem

This operation returns a list of network elements. The information returned includes a a
service item ID and name, which are the identifiers passed for a network element service
item in the createTicket v3 and updateTicket v2 operations.

& getNetworkSystemServitem

This operation returns a list of network systems. The information includes a service item
ID and name, which are the identifiers passed for a network system service item in the
createTicket v3 and updateTicket v2 operations.

Trouble Management API IDL files

The IDL files that describe the operations and data structures that comprise the Trouble
Management API are:

WDITROUBLE.IDL

WDITROUBLETYPES.IDL

WDITROUBLETYPES2.IDL

WDITROUBLETYPES v3.IDL

WDITROUBLETYPES v4.IDL

WDILIDL

WDIUTIL.IDL

L ZBK ZBR 2NN R JER 2R 4

Process flows

This section contains a sample process flow for a solicited message. Use the sample flow as a
template for developing your own process flows.

Refer to the next section for the process flow used when the Trouble Management API is the
client.

Solicited messages

A solicited message is a message initiated by the MetaSolv Solution. In this case, the Trouble
Management API plays the role of the client, and your application plays the role of the server.
Your application must use the IDL files provided with the Trouble API to implement the
interfaces and operations shown in Table 63.

CORBA API Developer’s Reference 245

Chapter 14: The Trouble Management API

Table 63: Trouble Management API Solicited Message Operations

Interface For Implementing These Operations
WDIRoot connect
disconnect
WDIManager startTransaction
destroyTransaction

WDITransaction N/A

WDISignal eventOccurred
eventTerminated
WDIInSignal N/A

Sample: solicited message process flow

When the Trouble Management API is the client, the overall process flows as follows:

1. The Trouble Management API requests a WDIRoot object reference from your
application. The request is routed through the ORB.

2. Your application instantiates a WDIRoot and returns a WDIRoot object

3. The Trouble Management API invokes the connect operation of the WDIRoot interface,
which yields a WDIManager object reference.

4. The Trouble Management API invokes the startSignal2 operation of the WDIManager
interface to get a WDISignal2 object reference.

5. The Trouble Management API invokes the eventOccurred operation of the WDISignal2
interface, passing a WDIEvent2 structure to notify your application that an event
registered to them has occurred within the MetaSolv Solution.

6. The Trouble Management API invokes the destroySignal? operation of the WDIManager
interface.

7. The Trouble Management API invokes the disconnect operation of the WDIRoot
interface.

8. Once your application completes processing, possibly involving additional unsolicited
messages to the APIs, your application connects to the MetaSolv Solution Application
Server and follows the same process described above for the API client with the exception
that the eventCompleted/Errored operations are invoked passing the original WDIEvent2
structure.

246 MetaSolv Software, Inc.

Process flows

If your application encounters an error, it throws a WDIExcp as defined by the IDL. The
Trouble Management API handles CORBA system exceptions and WDIExcp exceptions.

Unsolicited messages

An unsolicited message is a message initiated by your application. In this case, the Trouble
Management API plays the role of the server and your application plays the role of the client
with the exception of the callback processing.

The Trouble Management API implements the interfaces and operations defined in the

following table:
Table 64: Trouble Management API Unsolicited Message Operations
Interface Implemented Operations

WDIRoot connect
disconnect

WDIManager startTransaction
destroyTransaction

WDITransaction commit
rollback

Sample flows for business tasks

Process flow for updating a trouble ticket

This process flow demonstrates how your client application and the Trouble Management API
server must interact to update a trouble ticket.

1. The client calls the getTicketForUpdate operation to retrieve trouble ticket information.

2. The server calls the getTicketForUpdateSucceeded operation to return a
TicketInfoForUpdate structure, which includes one structure of attributes that are
updateable and another structure of attributes that are read-only. The structure also
includes the date and time of the export.

CORBA API Developer’s Reference 247

Chapter 14: The Trouble Management API

3. The client makes modifications to the updateable data and calls the updateTicket
operation, passing it the modified UpdateableTicketInfo structure. In addition to the
WDITransaction and WDINotification objects, the updateTicket operation is passed the
following parameters:

+ The TicketlmportInfo structure. This structure includes the ticket’s document number
and ticket ID.

You must pass either document number or ticket ID. If document number is passed,
ticket ID is ignored. If you pass neither, an exception is returned.

+ The UpdateableTicketInfo structure with any modifications.

+ A ServiceltemSeq sequence, which is populated only if the service item is changed.
Only one Serviceltem structure can be passed. If more than one structure is passed, an
exception is returned.

+ A LogNotelnfoSeq sequence, which is included if the update includes log notes.

+ A duplicateTicketAllowed Boolean that indicates whether a change to the service item
is allowed if another open ticket is found for the same service item. Both the ticket
found and the ticket being updated have a ticket type that identifies repeat and chronic
trouble (as defined for the ticket type in the MetaSolv Solution Infrastructure). If it is
set to false, an exception is returned if another open ticket exists. The client can
initially set it to false, and if an exception is returned, present a message to the user
asking if they wish to create the ticket anyway (similar to the functionality in the
MetaSolv Solution). If so, the UpdateTicket operation can be called again with
duplicateTicketAllowed set to true.

+ The export date and time that was returned from the export. The Trouble Management
API server uses this date and time to throw an exception if the ticket was updated by
some other process since the ticket information was first exported.

4. The Trouble Management API server processes the update and indicates success or failure
by calling either the updateTicketSucceeded operation or the operationFailed operation on
WDINotification object.

5. Upon the successful update of the ticket, the client application should refresh its user
interface by again retrieving the ticket attributes using the getTicketForUpdate operation.
This action resets the export date and time.

248 MetaSolv Software, Inc.

Process flows

Figure 32 illustrates the process flow for updating a trouble ticket.

Client Server

Call API to export getTicketForUpdate(...documentNumber) o

and display ticket
data to user |«

Retrieve and
export ticket data

getTicketForUpdateSucceeded

(ticketDetail, ticketContactSeq,exportDateTime)
h 4

Change ticket datd updateTicket(ticketimportinfo, exportDateTime, referenceNumbgr Update ticket

and submit for information in

update < updateTicketSucceeded (ref erenceNumber database

)
y

Call API to export getTicketForUpdate(...documentNumber)

A\ 4

Retrieve and

and redisplay export ticket data

ticket data to user

A

getTicketForUpdateSucceeded

(ticketDetall, ticketContactSeq, exportDateTime)

Figure 32: Process flow for updating a trouble ticket

Process flow for clearing a trouble ticket

This process flow demonstrates how your client application and the Trouble Management API
server must interact to clear a trouble ticket. Clearing a ticket is done when the trouble has
been resolved, and you are waiting for the customer to verify that the service has been restored
so the ticket may be closed.

1. The client calls the getTicketForClearClose operation to retrieve trouble ticket
information.

2. The server calls the getTicketForClearCloseSucceeded operation to return a
clearCloseTicketExportInfo structure, which includes a structure of attributes that are
updateable, the ticket’s document number, and the ticket’s unique Trouble Management
subsystem ID.

3. The client populates the ClearCloseTicketlmportInfo structure, then calls the clearTicket
operation. In addition to the WDITransaction and WDINotification objects, the
clearTicket operation is passed the following parameters:

+ The ClearCloseTicketImportInfo structure. This structure includes the ticket’s
document number and ticket ID.

You must pass either document number or ticket ID. If document number is
passed, ticket ID is ignored. If you pass neither, an exception is returned.

+ The export date and time that was returned from the export. The Trouble Management
API server uses this date and time to throw an exception if the ticket was updated by
some other process since the ticket information was first exported.

CORBA API Developer’s Reference 249

Chapter 14: The Trouble Management API

« An arbitrary reference number supplied by your client application that identifies the
transaction. If the clearTicket operation is successful, the Trouble Management API
returns this reference number via the clearTicketSucceeded notification.

The Trouble Management API server processes the operation and indicates success or
failure by calling either the clearTicketSucceeded operation or the clearTicketFailed
operation on WDINotification object.

Process flow for closing a trouble ticket

This process flow demonstrates how your client application and the Trouble Management API
server must interact to close a trouble ticket. Closing a ticket occurs when the trouble is
resolved and the customer verifies the service is restored.

1.

The client calls the getTicketForClearClose operation to retrieve trouble ticket
information.

The server calls the getTicketForClearCloseSucceeded operation to return a
clearCloseTicketExportInfo structure, which includes a structure of updateable attributes,
the ticket’s document number, and the ticket’s unique Trouble Management subsystem ID.

If the ticket is a parent (that is, ParentChildInd = "Y"), the client should prompt the user
to determine whether the child tickets should be closed with the parent. If so, the
processChildTickets field on the ClearCloseTicketImportInfo structure should be passed
as TRUE.

The client populates the ClearCloseTicketimportInfo structure then calls the closeTicket
operation. In addition to the WDITransaction and WDINotification objects, the
closeTicket operation is passed the following parameters:

+ The ClearCloseTicketImportInfo structure. This structure includes the ticket’s
document number and ticket ID.

You must pass either document number or ticket ID. If document number is
passed, ticket ID is ignored. If you pass neither, an exception is returned.

+ The export date and time that was returned from the export. The Trouble Management
API server uses this date and time to throw an exception if the ticket has been updated
by some other process since the ticket information was exported.

+ An arbitrary reference number supplied by your client application that identifies the
transaction. If the closeTicket operation is successful, the Trouble Management API
returns this reference number via the closeTicketSucceeded notification.

The Trouble Management API server processes the operation and indicates success or
failure by calling either the closeTicketSucceeded operation or the closeTicketFailed
operation on WDINotification object.

250 MetaSolv Software, Inc.

Process flows

Process flow for canceling a trouble ticket

1.

This process flow demonstrates how your client application and the Trouble Management
API server must interact to cancel a trouble ticket. The cancelTicket operation changes the
ticket's state to "Canceled."

Your client application populates the CancelTicketImportInfo structure then calls the
cancelTicket operation.

Y ou must pass either document number or ticket ID. If document number is passed,
ticket ID is ignored. If you pass neither, an exception is returned.

The server processes the cancellation of the ticket. If the cancellation fails, the server calls
the operationFailed operation on the WDINotification object. If the operation is
successful, the server calls the cancelTicketSucceeded operation. In this case the server
also creates a log entry with an audit note for each attribute changed when canceling the
ticket, similar to the notes generated by the Trouble Management subsystem.

g If the cancellation is successful, and the ticket is a parent ticket (that is, the ticket's
ParentChildInd ='Y"), then the associated child tickets are also automatically
canceled along with the parent ticket. Because of the potential impact of
inadvertently canceling many child tickets, you may wish to have your client
application display a warning that all child tickets will also be canceled and request
that your user confirm the action.

Using the service item test button functionality

The service item test button functionality of the Trouble Management subsystem requires that
your external application follow a particular sequence of events once it receives a signal that
indicates that the Test SI button has been clicked within the Trouble Management subsystem.
In order to use the service item test button functionality:

1.

Your external application must receive the gateway event signal that indicates that the
Test SI button has been clicked. The gateway event signal contains the trouble ticket’s
document number.

Your application must use the getTicketServiceltem operation to retrieve the service item
ID on the trouble ticket.

Your application may be able to make use of other API operations that can return the
TID, AID, or other identifier that uniquely identifies the service item.

Once the test is completed, your application should update the status of the gateway event
to "Completed". You can also have your application use the createLogEntry operation to
write a trouble ticket log entry that describes the results of the test.

CORBA API Developer’s Reference 251

Chapter 14: The Trouble Management API

Implementation concepts

Development using the Trouble Management API requires a thorough understanding of the
concepts and procedures described in “Developing Applications Using the APIs” on page 15. The
“HelloAPI: a sample application that exports data” on page 52 is particularly useful in gaining the
required level of understanding.

Interaction life cycle

1. The external application sends a message to the Trouble Management API via the
CORBA implementation. The message consists of the operation requested, the data
required by the operation's parameters, and a WDINotification object.

2. The Trouble Management API executes the requested operation.

3. Based on the result of the operation, the Trouble Management API determines the
appropriate response to return to the external application then:

+ If the operation was successful, the Trouble Management API invokes the
corresponding "succeeded" operation on the WDINotification object. The parameters
passed with the invocation include any data that is appropriate for the response.

» If the operation was successful but the database contains no records that match the
criteria you specified, and the notification operations for that query include a
"NoData" operation, the Trouble Management API invokes the "NoData" operation
on the WDINotification object.

« If the operation was unsuccessful, the Trouble Management API invokes the
corresponding "failed" operation on the WDINotification object. The parameters that
the Trouble Management API passes when invoking the operation include appropriate
error messages.

Session User ID can be used to verify workforce employee

When your client application calls the connect operation on the WDIManager object, the
ConnectReq structure must contain a valid User ID or the connect operation fails. For the
Trouble Management API, that User ID must be the workforce User ID for a valid workforce
employee. Workforce employees are set up through the MetaSolv Solution's Workforce
Employee window. This is a different process than setting up an employee with a MetaSolv
Solution User ID, and an employee's MetaSolv Solution User ID can be different from their
workforce User ID.

g The WDIManager object is a common object used by all the MetaSolv Solution APIs, and
the ConnectReq structure was designed to support MetaSolv Solution User IDs and
passwords. Unlike MetaSolv Solution User IDs, the Trouble Management subsystem’s
workforce User IDs do not have a password. Therefore, when populating the ConnectReq
structure for use with the Trouble Management API, you can populate the Password field
with an empty string,

252 MetaSolv Software, Inc.

Process flows

For certain Trouble Management operations where an audit trail is desirable, the Trouble
Management API uses this session User ID instead of the global User ID that is specified in
the MetaSolv Solution Application Server's GATEWAY.INI file. The session User ID
identifies the workforce user who made the changes to the ticket.

The Trouble Management API operations that require the session User ID are:

cancelTicket
clearTicket
closeTicket
createLogEntry
createTicket v3

L 2
L 4
L 2
L 2
L 4
¢ updateTicket v2

When your client application successfully calls one of these TroubleSession interface
operations, the API stores the session User ID (workforce User ID) in the audit notes. The
User ID identifies the user who made the changes to the ticket. This mechanism permits you to
build client applications that implicitly verify that the requesting user is authorized to perform
the critical trouble management actions shown in the list above. If you prefer not to use this
verification approach, you should pass a session User ID that is known to be set up in the
Trouble Management subsystem as a workforce employee.

Date field types

Date fields of type UTCDate are in Coordinated Universal Time (UTC) which can be
considered equivalent to GMT. Date fields of type MSVDate are in database server time.

Details concerning use of the createTicket v3 operation

Import ticket attributes

The createTicket v3 and updateTicket v3 operations share the structure
UpdateableTicketInfo. Upon successful completion of the createTicket v3 operation, the
ticket ID and the document number are returned with the notification
createTicketSucceeded v3.

The createTicket v3 operation also accepts an unlimited sequence of log notes. Each note can
be up to 2,000 characters long. The Trouble Management subsystem displays these log notes
as "API Additional Info" log notes. This replaces the AdditionalTroubleInfo sequence in the
previous release.

The createTicket v3 operation contains support for the new service item types of Network
Element, Network System, and Circuit/Connection that were introduced in M/5.1.

CORBA API Developer’s Reference ~ 253

Chapter 14: The Trouble Management API

Required fields in createTicket v3 request

The following fields within the UpdateableTicketInfo structure must be populated when any
create ticket is requested:

® 6 6 6 6 0 O 0

Trouble Detection Date (troubleDetectionDate)

Ticket Type Code (ticketTypeCode)

Initiating Mode ID (initiatingModelD)

Ticket Status ID (ticketStatusID)

Priority Level ID (priorityLevellD)

Responsible Org Party ID (responsibleOrgPartylD)
Administrative Org Party ID (administrativeOrgPartyID)
Intrusive Testing Authorized Indicator (intrusiveTestingAuthInd)
Billing Type Code (billTypeCd)

Business rules in processing createticket _v3 request

The following items list business rules used in validating and processing the createTicket v3
request:

*

* 6 ¢ o o

L 4

All code and ID fields must exist and be active.

The Trouble Detection Date must be on or before the ticket open date.
The Ticket Status ID must be valid for the “openActive” ticket state.
Priority Level values are 0, 1, 2, and 3.

Severity Level values are 0, 1, 2, and 3.

Reported By and Ticket Contact Access Numbers are now taken as a string, instead of in
the previous release’s TelephoneNumber structure.

Reported By and Ticket Contact Access Numbers can only contain numeric characters if
the MetaSolv Solution's Enable NPA/NXX Contact Telephone Number Formatting
preference is “Yes.” If this preference is “Yes” and the access number is not numeric, the
access number is not stored with the contact. Instead, a log note is added to provide the
telephone number information.

The Reported By and Ticket Contact Access Numbers are only stored when a contact
name is given. If the contact name is not given, a log note indicates that the contact access
number could not be stored. The log not includes the imported access number.

The Customer Address Sequence can only be specified when the Customer Party ID is
specified.

Responsible Org Assigned To Accepted Indicator must be populated with Y or N if the
Responsible Org Assigned To Party ID is populated.

Administrative Org Assigned To Accepted Indicator must be populated with Y or N if the
Administrative Org Assigned To Party ID

254 MetaSolv Software, Inc.

Process flows

& Office Network Location must be a valid location.

*

Billing Type Code valid values are “bill” and “nonBill.”

¢ The Next Customer Status Date cannot be prior to the current date (time is not
considered).

¢ The Service Item Sequence (ServiceltemSeq) within the TicketImportInfo structure can
either contain O or 1 instances of the Serviceltem structure.

¢ The Log Note Information Sequence (LogNotelnfoSeq) can contain any number of
entries. The log note text can only contain a maximum of 2000 character each.

¢ These fields, if populated, are required to be numeric:

*

*

*

*

*

Responsible Org ID (responsibleOrgPartylD)

Responsible Org Assigned To ID (respOrgAssignedToPartylD)
Administrative Org Party ID (administrativeOrgPartyID)
Administrative Org Assigned To Party ID (adminOrgAssignedToPartyID)
Customer Party ID (customerPartylD)

Escalation Method ID (escalationMethodID)

Initiating Mode ID (initiatingModelD)

Ticket Status ID (ticketStatusID)

Trouble Found ID (troubleFoundID)

Trouble Type ID (troubleTypelD)

Customer Status Minutes (customerStatusMinutes)

ETTR (ettrSeconds)

Priority Level (priorityLevellD)

SeverityLevel (severityLevellD)

For more information, see “Operational differences between the Trouble Management subsystem and
the Trouble Management API” on page 279

Notifications upon ticket creation

When the createTicket v3 operation is used to change the Responsible Org, Administrative
Org, Resp Org Assigned To, or Admin Org Assigned To change, all appropriate
notifications are generated, just as if the change had been made from within the MetaSolv
Solution's Trouble Management subsystem.

CORBA API Developer’s Reference 255

Chapter 14: The Trouble Management API

Escalation levels for createTicket v3 request

The createTicket v3 operation does not support input for escalation levels for the Responsible
Org and Administrative Org. It also does not support the input of other escalation
organizations on a ticket.

If the input Responsible Org and/or Administrative Org have an escalation profile defined
for the input Escalation Method (defined in the organization’s escalation profile in
Infrastructure), the initial escalation level for the organization is defaulted on the new ticket by
the API. If the input Escalation Method has a default escalation organization defined in
Infrastructure, that escalation organization and its initial escalation level is defaulted on the
new ticket by the APIL.

Ticket linkage

Creating a parent-child relationship with another ticket through the Trouble Management API
is not supported in M/5.2.

Creating duplicate tickets

The duplicateTicketAllowed Boolean field in the TicketImportInfo structure determines
whether the API allows setting the service item on a ticket if an open ticket already exists on
the that service item, and both tickets have a ticket type that identifies repeat and chronic
trouble.

Customer must be passed as a party ID

In the Trouble Management subsystem, users optionally enter the customer name directly
instead of selecting the customer from the Customer Search window. If the customer is not
found, the Trouble Management subsystem displays an error when the ticket is saved. The
createTicket v3 operation requires that the customer be passed in the form of a party ID if a
customer is being specified. A client may still allow the user to enter the customer name
directly and determine the ID by calling the getPartyByPartyName operation. That operation
returns a party ID which can then be passed to the createTicket v3 operation.

Customer is defaulted based on the service item

If the service item is changed, and there is no customer on the ticket, the API defaults the
customer to the customer associated in the MetaSolv Solution database with the service item.
If the defaulted customer has only one billing address, the address is also defaulted.

256 MetaSolv Software, Inc.

Process flows

Non-inventoried service items are not created

A non-inventoried service item is not created if the service item on a ticket cannot be found in
inventory. If the service item cannot be found, the new service item type is set on the ticket,
but the service item description is set to null. A log note is created stating that the service item
could not be found. The log note includes the service item identifier information passed in the
Serviceltem structure.

Certain codes are passed as ID values

Changes to the following codes on a ticket are passed in the form of their numeric ID values,
not the code directly. Trouble Management API queries that return the numeric ID and the
code are available for each. This allows you to populate dropdown fields on the client
application.

¢ Escalation Method ID

Initiating Mode ID

Ticket Status ID

Trouble Found ID

Trouble Type ID

* 6 o o

Ticket dates and times are imported in GMT

The Trouble Management API assumes that all dates imported via the createTicket v3
operation are in GMT. It is the responsibility of the client application to convert any imported
dates from local time to GMT.

The Telcordia preference and the Trouble Management API

The MetaSolv Solution uses its Telcordia preference to determine if circuit identifier fields
should be formatted according to Telcordia specifications (for example, having the proper
number of spaces between virgules). The setting of the Telcordia preference has no effect
when you use the Trouble Management API to specify a circuit for the createTicket v2,
createTicket v3, updateTicket, or updateTicket v2 operations, and the service item type is
one of the types shown in Table 65. In such a case, the Trouble Management API searches the
database for the value in the corresponding field as a formatted circuit. If the API does not find

CORBA API Developer’s Reference 257

Chapter 14: The Trouble Management API

that value as a formatted circuit, the API searches again for that value as an unformatted circuit
using the input provided in the operation's parameters.

Table 65: Field Formatting

Service item type Field name
Circuit/Connection CircuitConnectionID
Internet Circuit InternetCircuitldent
Internet DSL DSLCircuitldent
Message Trunk Group |MsgTrunkGroupldent

Setting or changing the affected service item on a trouble ticket

The service item on a ticket may be set or changed via the createTicket v3 or updateTicket v2
operations by passing a single Serviceltem structure in the ServiceltemSeq sequence. If no
change is to be made to the service item, no structure should be sent. Only one structure may
be passed in the sequence.

If the API finds the service item in the MetaSolv Solution inventory, the service item type and
appropriate service item description are set on the ticket. If the service item cannot be found,

the API processes the ticket creation or update without an error, but sets only the service item
type on the ticket and writes a log note indicating that the service item could not be found. The
log note includes the service item information passed for the service item type. The API does
not create non-inventoried service items.

Passing the service item type and service item identifier

The Serviceltem structure includes a service item type attribute and a set of service item
identifier attributes. The service item type is an enumerated attribute that categorizes the
service items supported by the Trouble Management System. The API uses the service item
type to determine which service item identifier to use in attempting to find the service item.
Only the appropriate service item identifier is used, and all other information passed is
ignored. The service item type values and their corresponding service item identifiers from the

258 MetaSolv Software, Inc.

Process flows

Serviceltem structure are listed below. One exception to this is the serviceltemlID field. It can

be used to specify any one of the following service item types..

Table 66: Service Item Type and Service Item Identifier

Service item type

Enumerated value

Service item identifier

Equipment EQUIPMENT See “Identifying an Equipment service item
type” on page 260
Circuit/Connection | CIRCUIT See “Identifying a Circuit/Connection

service item type” on page 259

Message Trunk
Group

MSG_TRNKGRP

msgTrunkGroupldent - This is the circuit
ID of the message trunk group.

End User Special EUS TRNKGRP |eusTrunkGroupldent - This is the two six

Trunk Group code of the end user special trunk group

Telephone Number | TELNBR See “Identifying a Telephone Number
service item type” on page 262

Internet Dial-Up INTRNTDLP InternetDialupldent - This is the user ID of
the internet dial up service

Internet Circuit INTRNTCKT InternetCircuitldent - This is the circuit ID
of the internet circuit. After migration to the
new M/5.1 graphical format, this service
item type moves to the Circuit/Connection
service item type.

Internet DSL BWCKT DSLCircuitldent - This is the circuit ID of

the Digital Subscriber Line bandwidth
circuit. After migration to the new M/5.1
graphical format, this service item type
moves to the Circuit/Connection service item

type.

Identifying a Circuit/Connection service item type

When a Trouble Management subsystem user creates a trouble ticket on a service item that has
a service item type of CIRCUIT, it allows you to identify the faulty circuit by using the circuit
ID. The Trouble Management API also allows you to use the circuit ID to identify the faulty

circuit.You can use the serviceltemld field to specify a circuit or a connection, in addition to

CORBA API Developer’s Reference 259

Chapter 14: The Trouble Management API

the fields in the CircuitConnectionlInfo structure, which was previously called CircuitInfo.The
circuit ID can be retrieved from the getQueryCircuits_v2 operation in the DLR APL

In addition, the Trouble Management API allows you to identify the faulty circuit by using
port information that is associated with the circuit's port address. The port address information
includes:

¢ Target Identifier (TID)—The TID identifies a group of equipment associated as part of a
system or network element. In the MetaSolv Solution, the TID information is maintained
on the Node tab of the Network Element Properties window.

¢ Access Identifier (AID)—The AID identifies the port address on a piece of equipment
within the network element identified by the TID. In the MetaSolv Solution, the AID
information is stored as the concatenated node address for the port address to which the
circuit is assigned.

Using port address information allows you to create a trouble ticket on a circuit when an alarm
is triggered on a port address monitored by a fault management product.

Using port address information for Circuit/Connection service items enables you to use
the Outage report to identify all customers affected by the outage and contact the
customers proactively to advise them of the trouble. You can generate the Outage report
from the Active Ticket Queue window in the Trouble Management subsystem.

Identifying an Equipment service item type

When you use the Trouble Management API to create a trouble ticket on a service item that
has a service item type of EQUIPMENT, the Trouble Management API allows you to use one
of four methods to identify the faulty equipment:

¢ Equipment ID—The equipment ID for an installed piece of equipment. The equipment ID
is retrieved from the queryEquiplnstall_v2 operation in WDIEquipment.

¢ Equipment Name—The equipment name for an installed piece of equipment. The
equipment name is maintained in the Name field on the Equipment tab of the Equipment
window.

¢ Serial Number—The serial number for an installed piece of equipment. The serial number
is maintained in the Serial Number field on the Equipment tab of the Equipment window.

¢ Serial Number and COMMON LANGUAGE Equipment Identifier (CLEI) Code—If
serial numbers are not unique among the vendors of your installed equipment, you can
pass the serial number and CLEI code for the faulty equipment. Uniqueness of CLEI
codes is enforced by Telcordia Technologies (formerly Bellcore). However, the CLEI code
alone does not sufficiently identify a single piece of equipment. The CLEI code is

260 MetaSolv Software, Inc.

Process flows

maintained in the CLEI code field on the Equipment Spec tab of the Equipment Spec
window.

A Warning! The Trouble Management API can use these methods to identify a specific
piece of equipment only if you maintain a unique equipment name or unique serial
number values for each installed piece of equipment. The Name and Serial Number
fields on the Equipment Maintenance window and the CLEI code field on the
Equipment Spec tab of the Equipment Spec window are not required fields. Also, the
MetaSolv Solution does not enforce any validation on the Name and Serial Number
fields to ensure that they are unique.

Neither the Trouble Management subsystem nor the Trouble Management API support
creating a trouble ticket on equipment that has a service item type of EQUIPMENT at the port
address level. The lowest level at which you can create a trouble ticket for Equipment service
items is the card on which the port address resides. If you need to create trouble tickets for
Equipment service items at a lower level than the card, a work-around method is to create the
ticket with a service item type of CIRCUIT instead of EQUIPMENT and pass the TID and
AID associated with the port address.

Identifying an Network Element service item type

You can specify a Network Element service item type by specifying the service item type as
Element in the servitemType field. You can then specify the specific element by either
populating the networkElementName field with the network element name, or you can use
the serviceltemld field. The serviceltemld field is preferred, because the
networkElementName field can refer to more than one element. Both fields are returned by
the getNetworkElementServitem query operation.

Identifying a Network System service item type

You can specify a Network System service item type by specifying the service item type as
System in the servIitemType field. You can then specify the specific system by either
populating the networkSystemShortName field with the unique network system short name,
or you can use the serviceltemld field. Both fields are returned by the
getNetworkSystemServitem query operation.

CORBA API Developer’s Reference 261

Chapter 14: The Trouble Management API

Identifying a Telephone Number service item type

When you use the Trouble Management API to create a trouble ticket on a service item that
has a service item type of Telephone Number, the Trouble Management API allows you to use
one of two methods to identify the appropriate number:

¢ UnformattedTelephoneNumber —The telephone number in a single string format,
without containing any formatting characters (that is, it should be all numeric characters)
for a telephone number.

¢ TelephoneNbrInvld —The number inventory ID for telephone number. The number

inventory ID is retrieved from the operation within the Trouble API.

Clearing the service item from a ticket

A service item may be cleared from an existing ticket by passing a Serviceltem structure with
the service item type set to “none”. No service item identifiers need to be populated in that
case. The API clears both the service item type and the service item description from the
ticket.

Details concerning use of the updateTicket v2 operation

Updateable ticket attributes

When executed successfully, the getTicketForUpdate v2 operation returns a
TicketInfoForUpdate structure which contains an UpdateableTicketInfo structure and a
ReadOnlyTicketInfo structure. The trouble ticket attributes you can change through the
updateTicket v2 operation are contained in the UpdateableTicketInfo structure. For each
ticket attribute that is changed, a log entry is created with an audit note.

The updateTicket v2 operation also accepts an unlimited sequence of log notes. Each note can
be up to 2,000 characters long. The Trouble Management subsystem displays log notes along
with any audit notes that are generated by the Trouble Management API.

g In the Trouble Management subsystem, when the Responsible Org, Resp Org Assigned
To, Administrative Org, or Admin Org Assigned To are changed on a ticket, a log note
is required. The Trouble Management API does not require a log note when these fields
are changed via the updateTicket v2 operation. If necessary, this may be enforced by the
client.

262 MetaSolv Software, Inc.

Process flows

ExportDateTime field is used to check concurrency

The export date and time (aExportDateTime) returned by the getTicketForUpdate v2
succeeded notification (getTicketForUpdateSucceeded)is in the database server’s time zone.
You passed this information back unchanged in the updateTicket v2 operation and the API
uses it to verify that the ticket has not been updated since the read operation in the
getTicketForUpdate v2. If the ticket has been updated after the getTicketForUpdate v2 read,
then an exception is returned.

Required fields in updateTicket request

The following fields within the updateableTicketInfo structure must be populated when any
update is requested:

Trouble Detection Date (troubleDetectionDate)

Ticket Type Code (ticketTypeCode)

Initiating Mode Id (initiatingModeID)

Ticket Status Id (ticketStatusID)

Priority Level Id (priorityLevellD)

Responsible Org Party Id (responsibleOrgPartyID)
Administrative Org Party Id (administrativeOrgPartyID)
Intrusive Testing Authorized Indicator (intrusiveTestingAuthInd)
Billing Type Code (billTypeCd)

L JBE JEK 2R JER JEE JEE JER JER 42

Business rules in processing updateTicket v2 request

The following items list business rules used in validating and processing the updateTicket v2
request:

Closed tickets may not be edited.

All code and id fields must exist and be active.

The Trouble Detection Date must be on or before the ticket open date.

The Ticket Status Id must be valid for the current ticket state.

Priority Level values are 0, 1, 2, and 3.

Severity Level values are 0, 1, 2, and 3.

L JBE K NN JER JER JER 2

Contact Access Numbers can only contain numeric characters if the “Enable NPA/NXX
Contact Telephone Number Formatting” preference is Yes. Also, this can only be stored
when a contact name is given.

¢ The Customer Address Sequence can only be specified when the Customer Party Id is
specified.

CORBA API Developer’s Reference 263

Chapter 14

. The Trouble Management API

L ZBE 2R 2N R JEE JER SN 2 *

L 4

Responsible Org Assigned To Accepted Indicator must be populated with Y or N if the
Responsible Org Assigned To Party Id is populated.

Administrative Org Assigned To Accepted Indicator must be populated with Y or N if the
Administrative Org Assigned To Party Id

Office Network Location must be a valid location.

Billing Type Code valid values are “bill” and “nonBill.”

Cause Code field is required if the ticket is in a “cleared” state.

Trouble Found Id field is required if the ticket is in a “cleared” state.

If Trouble Found Id field is populated then the Cause Code must be populated.
The Trouble Found id field must be associated to the Cause Code.

Cleared Code is required if the ticket is in a “cleared” state.

The Defer Until Date may be changed only if the ticket is in a Deferred state, and this date
cannot be prior to the current date (time is not considered).

The Next Customer Status Date cannot be prior to the current date (time is not
considered).

The Service Item Sequence (ServiceltemSeq) within the TicketlmportInfo structure can
either contain 0 or 1 instances of the Serviceltem structure. If the Service Item Sequence is
not given, then it is assumed that it has not changed.

The Log Note Information Sequence (LogNoteInfoSeq) can contain any number of
entries. The log note text can only contain a maximum of 2000 character each.

These fields, if populated, are required to be numeric:

+ Responsible Org Id (responsibleOrgPartylD)

+ Responsible Org Assigned To Id (respOrgAssignedToPartyID)
+ Administrative Org Party Id (administrativeOrgPartylD)

+ Administrative Org Assigned To Party Id (adminOrgAssignedToPartyID)
+ Customer Party Id (customerPartyID)

« Escalation Method Id (escalationMethodID)

+ Initiating Mode Id (initiatingModelD)

» Ticket Status Id (ticketStatusID)

+ Trouble Found Id (troubleFoundID)

+ Trouble Type Id (troubleTypelD)

+ Customer Status Minutes (customerStatusMinutes)

« ETTR (ettrSeconds)

+ Priority Level (priorityLevellD)

+ SeverityLevel (severityLevellD)

For more information, see “Operational differences between the Trouble Management subsystem and
the Trouble Management API” on page 279

264 MetaSolv Software, Inc.

Process flows

Notifications upon ticket update

When the updateTicket v2 operation is used to change the Responsible Org, Administrative
Org, Resp Org Assigned To, or Admin Org Assigned To change, all appropriate
notifications are generated, just as if the change had been made from within the MetaSolv
Solution's Trouble Management subsystem.

Ticket linkage and ticket update

If the updated ticket is linked in a common cause relationship as a parent ticket, the
updateTicket v2 operation synchronizes the child ticket(s) with the parent ticket. The Trouble
Management API does not include functionality to link or unlink tickets. It only keeps the
parent and child tickets synchronized when the parent ticket changes.

Attributes on a child ticket cannot be explicitly altered by an updateTicket v2 request on the
child ticket itself. These updates must be made to the parent ticket. These child ticket attributes
are automatically updated when the corresponding attribute changes on the parent ticket:
Ticket Status

Responsible Organization

Administrative Organization

Office Network Location

Priority Level

Severity Level

ETTR

Trouble Description

Trouble Detection Date

Admin Org Assigned To

Responsible Org Assigned To

Administrative Org Assigned To Acceptance Indicator

Responsible Org Assigned To Acceptance Indicator

Defer Until Date

Cause Code

Trouble Found

Cleared Code

These child ticket DMOQ attributes are updated only when closing ticket:
¢ TTR (Total Time to Repair)

L ZBE 2R JBR JER JEE JER JEE JER JER JEK R JEE JER 2K 2R JEK 2

¢ Total Customer Time
¢ Total Duration
¢ ETTR Provided Within 30 Mins of Ticket Open

CORBA API Developer’s Reference 265

Chapter 14: The Trouble Management API

Service Restored Within 30 Minutes of ETTR

Number Statuses Over 30 Minutes After Previous Status
Number of Statuses Given

Circuit In Service Date/Time

Circuit In Service Within 30 Days of Ticket Open
Circuit In Service Within 60 Days of Ticket Open

L JER R NN JER 2R 4

Updating duplicate tickets

The duplicateTicketAllowed Boolean field in the TicketImportInfo structure determines
whether the API allows a change to the service item on a ticket if an open ticket already exists
on the new service item, and both tickets have a ticket type that identifies repeat and chronic
trouble.

Customer information and updating tickets

Customer must be passed as a party ID

In the Trouble Management subsystem, users can optionally enter the Customer Name directly
instead of selecting the customer from the Customer Search window. If the customer is not
found, the Trouble Management subsystem displays an error when the ticket is saved. The
updateTicket v2 operation requires that the customer be passed in the form of a party ID if a
customer is being specified. A client may still allow the user to enter the customer name
directly and determine the ID by calling the getPartyByPartyName operation. That operation
returns a party ID which can then be passed to the updateTicket v2 operation.

Customer is defaulted based on the service item

If the service item is changed, and there is no customer on the ticket, the API defaults the
customer to the customer associated in the MetaSolv Solution database with the service item.
The customer billing address is also defaulted. The API writes a log note indicating that the
customer was defaulted by the API.

Non-inventoried service items are not created

A non-inventoried service item is not created if the service item on a ticket cannot be found in
the MetaSolv Solution inventory. If the service item cannot be found, the new service item
type is set on the ticket, but the service item description is set to null. A log note is created
stating that the service item could not be found. The log note includes the service item
identifier information passed in the Serviceltem structure.

266 MetaSolv Software, Inc.

Process flows

Certain codes are passed as ID values

Changes to the following codes on a ticket are passed in the form of their numeric ID values,
not the code directly. Trouble Management API queries that return the numeric ID and the
code are available for each. This allows you to populate dropdown fields on the client
application.

¢ Escalation Method ID

Initiating Mode ID

Ticket Status ID

Trouble Found ID

Trouble Type ID

* 6 o o

Ticket dates and times are exported and imported in GMT

All dates exported by the getTicketForUpdate v2 operation are exported in GMT. All dates
imported in the updateTicket v2 operation are assumed to be in GMT. It is the responsibility
of the client to convert the exported dates to local time and the imported dates to GMT.

The export date and time returned by the getTicketForUpdate v2 and getTicketReport
operations are in the database server's time zone. The export date and time is passed back
unchanged in the updateTicket operation and compared to the ticket's last modified date,
which is stored in the database server's time zone.

Audit note date/time display

In the Trouble Management subsystem, the display of the date/time is determined by the
setting on the client workstation and therefore varies depending on the user's individual
settings. For the Trouble Management API, the standard format of "mm/dd/yyyy hh:mm:ss
am/pm (GMT)" is used when giving details about date/time fields that have been updated, and
these times are in GMT.

The Telcordia preference and the Trouble Management API

The MetaSolv Solution uses its Telcordia preference to determine if circuit identifier fields
should be formatted according to Telcordia specifications (for example, having the proper
number of spaces between virgules). The setting of the Telcordia preference has no effect
when you use the Trouble Management API to specify a circuit for the createTicket v2,
createTicket v3, updateTicket, or updateTicket v2 operations, and the service item type is
one of the types shown in Table 67. In such a case, the Trouble Management API searches the
database for the value in the corresponding field as a formatted circuit. If the API does not find

CORBA API Developer’s Reference 267

Chapter 14: The Trouble Management API

that value as a formatted circuit, the API searches again for that value as an unformatted circuit
using the input provided in the operation's parameters.

Table 67: Field Formatting

Service item type Field name
Circuit/Connection CircuitConnectionID
Internet Circuit InternetCircuitldent
Internet DSL DSLCircuitldent
Message Trunk Group |MsgTrunkGroupldent

Details concerning use of the clearTicket operation

The clearTicket operation clears the designated ticket. That is, it changes the state of the ticket
to 'Cleared'. This operation cannot be called on a ticket that is already in a cleared, closed or
canceled ticket state. In addition, it cannot be called on a ticket that is an externally referred
ticket state. You must first close (that is, verify) all the open external referrals through the
MetaSolv Solution.

A valid document number or ticket ID is required when a ticket is cleared. If both are passed,
the ticket ID is ignored.

The following attributes are also required. These attributes may have already been set through
the ticket update process prior to being cleared:

¢ Cause Code

¢ Trouble Found ID

¢ Cleared Code

& Ticket Status ID

Cleared Comment is an optional field.

The Trouble Found ID is the numeric ID associated with the trouble found code, and must be
passed as a valid numeric value. The numeric ID values are returned with the trouble found
codes in the getTroubleFoundCodes operation. The Trouble Found ID must be associated with
the Cause Code as defined in MetaSolv Solution infrastructure.

Likewise, the Ticket Status ID is the numeric ID associated with the ticket status code, and
must be passed as a valid numeric value. The numeric ID values are returned with the ticket
status codes in the getTicketStatusCodes2 operation. The Ticket Status ID must be associated
with the Canceled ticket state as defined in MetaSolv Solution infrastructure.

The above information is passed to the clearTicket operation in the UpdateableClearCloselnfo
structure. Since this structure is also used by the closeTicket operation, it contains attributes

268 MetaSolv Software, Inc.

Process flows

for closing a ticket, including close contact first and last name, close contact access number,
and close comment. These fields are ignored by the clearTicket operation. If you wish to clear
and close a ticket at the same time, you can call the closeTicket operation.

You can also pass the clearTicket operation a sequence of log notes. These notes are displayed
in the Clear Ticket event log entry along with the audit notes that are generated for each
attribute that is changed. The log notes are not meant to replace the Cleared Comment.

Ticket linkage and clear ticket

If the ticket being cleared is linked in a common cause relationship as a parent ticket, and the
processChildTickets attribute is set to TRUE, the clearTicket operation automatically clears
any child tickets that have not been cleared. You can determine whether the ticket is a parent
or child by the ParentChildInd attribute returned by the getTicketForClearClose operation.
The attribute is "P" if it is a parent, "C" if it is a child, and blank if it is not linked. If the ticket
is a parent, the user should be prompt to ask if they wish to clear all child tickets with the
parent.

All of the input information is applied to the child tickets that are cleared with the parent. The
Cause Code, Trouble Found ID, and Cleared Code is applied to all child tickets that have not
been closed or canceled, regardless of whether they are cleared with the parent.

If the ticket is a child ticket, the Cause Code, Trouble Found ID, and Cleared Code cannot be
changed if they are already populated on the parent ticket.

Details concerning use of the closeTicket operation

The closeTicket operation closes the designated ticket. That is, it changes the state of the ticket
to 'Closed'. This operation cannot be called on a ticket that is already in a cleared, closed or
canceled ticket state. In addition, it cannot be called on a ticket that is an externally referred
ticket state. You must first close (i.e., verify) all the open external referrals through MetaSolv
Solution.

A valid document number or ticket ID is required when a ticket is cleared. If both are passed,
the ticket ID is ignored.

The following attributes are required, with the exception of Cleared Comment. These
attributes may have already been set through the ticket update process prior to being cleared or
when the ticket was cleared:

¢ Ticket Status ID

Cause Code

Trouble Found ID

Cleared Code

Cleared Comment

* 6 o o

CORBA API Developer’s Reference 269

Chapter 14: The Trouble Management API

The Trouble Found ID is the numeric ID associated with the trouble found code, and must be
passed as a valid numeric value. The numeric ID values are returned with the trouble found
codes in the getTroubleFoundCodes operation. The Trouble Found ID must be associated with
the Cause Code as defined in MetaSolv Solution infrastructure.

Likewise, the Ticket Status ID is the numeric ID associated with the ticket status code, and
must be passed as a valid numeric value. The numeric ID values are returned with the ticket
status codes in the getTicketStatusCodes2 operation. The Ticket Status ID must be associated
with the Canceled ticket state as defined in MetaSolv Solution infrastructure.

With the exception of Close Contact Access Number, the following attributes are required
when the state is changed to 'closed":

¢ Close Contact Last Name

4 Close Contact First Name

¢ Close Contact Access Number
¢ Closed Comment

The API accepts a blank close contact first name or blank close contact last name, as long as
one is provided.

If Close Contact Access Number is provided, it must be accompanied by the close contact first
and/or last name. The close contact access number should be a telephone number, and can
only contain numeric characters if the “Enable NPA/NXX Contact Telephone Number
Formatting” preference in MetaSolv Solution is “Yes.” This preference determines whether or
not edit masks are used for contact phone numbers in MetaSolv Solution. If a telephone
number is stored with formatting, it does not appear correctly when displayed in a field with an
edit mask. If this preference is “Yes” and the access number is not numeric, an error is
returned.

You can also pass the closeTicket operation a sequence of log notes. These notes are displayed
in the Close Ticket event log entry along with the audit notes that are generated for each
attribute that is changed. The log notes are not meant to replace the Closed Comment.

Ticket linkage and close ticket

If the ticket being closed is linked in a common cause relationship as a parent ticket, and the
processChildTickets attribute is set to TRUE, the closeTicket operation automatically closes
any child tickets that have not been closed or canceled. You can determine whether the ticket
is a parent or child by the ParentChildInd attribute returned by the getTicketForClearClose
operation. The attribute is "P" if it is a parent, "C" if it is a child, and blank if it is not linked. If
the ticket is a parent, the user should be prompt to ask if they wish to close all child tickets
with the parent.

All of the input information is applied to the child tickets that are closed with the parent. The
Cause Code, Trouble Found ID, and Cleared Code is applied to all child tickets that have not
been closed or canceled, regardless of whether they are closed with the parent.

270 MetaSolv Software, Inc.

Process flows

If the ticket is a child ticket, the Cause Code, Trouble Found ID, and Cleared Code cannot be
changed if they are already populated on the parent ticket.

Closing an "Open/Active" trouble ticket

As designed, the normal status lifecycle of a trouble ticket proceeds from "Open/Active" at
ticket creation, to "Cleared" when the trouble has been resolved but the customer has not yet
verified that the service is restored, to "Closed" when the customer has verified that the service
is working again.

g As designed, the optional states "Externally Referred" and "Deferred" are temporary
diversions from that normal status lifecycle. The optional "Canceled" state indicates a
permanent closure of the ticket.

You can call the closeTicket operation on an "Open/Active" ticket, and the Trouble
Management API can successfully clear and close the ticket at the same time. In this case, you
must populate both the required fields for clearing a ticket and the required fields for closing
the ticket. From the standpoint of both the Trouble Management subsystem and the Trouble
Management API, there is no difference between calling closeTicket on an "Open/Active"
ticket and calling clearTicket and closeTicket separately on the ticket.

Notifications for cleared and closed tickets

When a ticket is cleared or closed via the Trouble Management API, the API sends a cleared
or closed ticket notification to all escalation levels to which that ticket had been escalated, just
as if the ticket had been cleared or closed in the Trouble Management subsystem. For tickets
that were in the "Cleared" state when closed, the notification process is not called, because the
notification process would have already been called when the ticket was cleared.

Details concerning use of the cancelTicket operation

The cancelTicket operation cancels the designated ticket. That is, it changes the state of the
ticket to 'Canceled'. This operation cannot be called on a ticket that is already closed or
canceled.

A valid document number or ticket ID is required. If both are passed, the ticket ID is ignored.

With the exception of Close Contact Access Number, the following attributes are required
when a ticket is canceled:

¢ Closed Comment

Close Contact First Name

Close Contact Last Name

Close Contact Access Number

Ticket Status ID

* 6 o o

CORBA API Developer’s Reference 271

Chapter 14: The Trouble Management API

The API accepts a blank close contact first name or blank close contact last name, as long as
one is provided.

If Close Contact Access Number is provided, it must be accompanied by the close contact first
and/or last name. The close contact access number must be a telephone number, and can only
contain numeric characters if the Enable NPA/NXX Contact Telephone Number Formatting
preference in MetaSolv Solution is “Yes.” This preference determines whether or not edit
masks are used for contact phone numbers in MetaSolv Solution. If a telephone number is
stored with formatting, it does not appear correctly when displayed in a field with an edit
mask. If this preference is “Yes” and the access number is not numeric, an error is returned.

The Ticket Status ID is the numeric ID associated with the ticket status code, and must be
passed as a valid numeric value. The numeric ID values are returned with the ticket status
codes in the getTicketStatusCodes2 operation. The Ticket Status ID must be associated with
the Canceled ticket state as defined in MetaSolv Solution infrastructure.

You can also pass the cancelTicket operation a sequence of log notes. These notes are
displayed in the Cancel Ticket event log entry along with the audit notes that are generated for
each attribute that is changed. The log notes are not meant to replace the Closed Comment.

Ticket linkage and cancel ticket

If the ticket being canceled is linked in a common cause relationship as a parent ticket, the
cancelTicket operation automatically cancels any child tickets that have not been closed. All
of the input information is applied to the child tickets.

If the ticket being canceled is a child ticket, it is automatically unlinked from the parent ticket.

Details concerning use of the getTickets v2 operation

This operation allows you to query for a trouble ticket or a collection of tickets based on an
optional set of criteria and a required sequence of ticket states. This functionality is similar to
the MetaSolv Solution’s Ticket Search window.

The search criteria are passed in the form of a sequence of TicketQueryCriteria structures and
a sequence of TicketStateEnum values. The TicketQueryCriteria structures are used to pass all
of the searchable criteria that a ticket must meet to be returned by the query. The

272 MetaSolv Software, Inc.

Process flows

TicketStateEnum values are used to pass all of the possible ticket states that a ticket may be in
to be returned by the query.

g When calling the getTickets v2 operation, query criteria are optional. However, you must
pass at least one ticket state—represented by a TicketStateEnum value—in the
TicketStateQuerySeq structure.

If you pass no criteria but do pass a valid state, the response contains all trouble tickets of
that state. However, you should exercise caution when doing so to avoid excessive
processing time.

If you do not pass at least one valid state, the query fails regardless of the number of
criteria you pass.

The TicketQueryCriteria structure includes three attributes: TicketSearchableField, which is
the field the criteria value must match against; TicketSearchOperation, which is the operator
used in the search comparison, and a string value used to compare against the searchable field.
(See WDITroubleTypes v3.idl for the enumerated values for TicketSearchableFields and
TicketSearchOperation values).

Use the maxRecords parameter to limit the number of records the query returns. The
operation limits the number of records returned to the lesser of the maxRecords parameter and
the MetaSolv Solution’s Query Retrieval Limit preference. The operation returns the
WDISearchResultsInfo structure which includes the limit used in the query and a Boolean
indicating whether the matching records in the database exceeded the limit.

If no data is found given the query criteria, this operation returns the
getTicketsNoDataFound v2 operation on the Notification object.

The following rules apply to the search criteria:
1. The following searchable fields must be passed as numeric values:

+ InitiatingModelID

+ TicketStatusID

+ TroubleTypelD

+ TroubleFoundID

+ PriorityLevellD

+ SeverityLevellD

+ ResponsibleOrgPartylD

+ AdministrativeOrgPartylD

+ RespOrgAssingedToPartylD

+ AdminOrgAssignedToPartyID

CORBA API Developer’s Reference 273

Chapter 14: The Trouble Management API

2. The valid values for ServiceltemTypeCode include:

+ EQUIPMENT (used for Equipment)
+ CIRCUIT (used for Circuit)
+ MSG _TRNKGRP (used for Message Trunk Group)
+ EUS _TRUNKGRP (used for End User Special Trunk Group)
+ TELNBR (used for Telephone Number)
+ INTRNTDLP (used for Internet Dial-Up)
« INTRNTCKT (used for Internet Circuit)
+ BWCKT (used used Digital Subscriber Line)
3. The value passed for ServiceltemDescription is compared against the service item

description on the trouble ticket. If ServiceltemDescription is passed, it must be
accompanied by a ServiceltemTypeCode.

4. The valid values for PriorityLevellD must be 0, 1, 2, or 3, where these values have the
following definitions:
+ 0 - Undefined
+ 1 -Minor
+ 2 -Major
« 3 - Serious
5. The valid values for SeverityLevellD must be 0, 1, 2, or 3, where these values have the
following definitions:
+ 0-Out of Service
« 1 -Backin Service
+ 2 - Service Impairment
+ 3 -Non Service Affecting Trouble
6. The DateRangeType identifies which date field to apply the DateRangeFromDate and
DateRangeToDate criteria to. Valid values include:
+ OPEN DATE
« TROUBLE DETECTION DATE
+« CLEARED DATE
+ CLOSE DATE

7. 1If DateRangeFromDate and DateRangeToDate criteria are passed, then DateRangeType
must also be passed.

8. If either DateRangeFromDate or DateRangeToDate criteria are passed, both must be
passed.

274 MetaSolv Software, Inc.

Process flows

9. The values for DateRangeFromDate and DateRangeToDate must be valid dates and time
passed int the format of “YYYYMMDDHHMMSS” with the hours in 24-hour notation—
sometimes referred to as "military time". The date and time values are expected to be
passed in the GMT time zone. The previous getTickets version expected only the date
portion.

10. If passed, the DateRangeToDate cannot be a date and time prior to DateRangeFromDate.

11. The TicketSearchableField values listed below may be used with all of the
TicketSearchOperation operators. All other ticket searchable fields may only be used with
the EQUAL operator.

+ DocumentNumber

+ TicketID

+ CustTroubleTicketNum (Customer Trouble Ticket Number)
+ ServiceltemDescripton

+ CustomerName

« ExtRefTicketNum (External Referral Ticket Number)

The causeCode parameter limits the trouble found codes that are returned to only those that are
related to this cause code. If activeOnly is passed as true, the cause code is required and must
be a valid active or inactive cause code in the Trouble Management subsystem.

Details concerning use of the service item query operations

The Trouble Management subsystem provides a Service Item query window which may be
accessed when editing a trouble ticket in order to find a service item to associate to the ticket.
This window presents a different query for each service item type. Query operations that
provide similar functionality are availble in the Trouble Management API and ICM APL.
These queries can be used to retrieve the service item identifier that is passed to the
createTicket v3 and updateTicket v2 operations.

The service item queries for the "Circuit" and "Equipment" service item types are not located
in the Trouble Management API. To query for circuits, you may use the getQueryCircuits
operation located in the ICM API (WDIEquipment.idl). To query for equipment, use the
queryEquipInstall v2 operation, also located in the ICM API (WDIEquipment.idl). For more
information about these queries, see “The Inventory and Capacity Management API” on page 85

CORBA API Developer’s Reference 275

Chapter 14: The Trouble Management API

The service item query operations for the remaining service item types, are located in the
Trouble Management API. These operations include:

getMsgTrnkGrpServitem (message trunk groups)

getEUSpecial TrnkGrpServitem (end user special trunk groups)
getTelephoneNumberServitem (telephone numbers)

getInternetCircuitServitem (Internet circuits)

* 6 6 o o

getlnternetDialupServitem (Internet dial-ups)
¢ getDSLServitem (digital subscriber lines)

In each of these operations in the Trouble Management API, with the exception of
getTelephoneNumberServitem, the criteria are passed as a sequence of structures, where the
structure includes:

¢ An enumerated field indicating the field to be searched. The enumerated values for this
field correspond to the criteria fields on the query window in the Trouble Management
subsystem. Only one structure may be passed for a given searchable field.

¢ An enumerated field representing the operator used in the search comparison. For
example, EQUAL or LIKE.

¢ A string value which is compared against the field being searched

Each service item query operation in the Trouble Management API is also passed a
maxRecords parameter to limit the number of records the query returns. The operation limits
the number of records returned to the lesser of the maxRecords parameter and the Query
Retrieval Limit preference in MetaSolv Solution. Along with the query results, each operation
returns the WDISearchResultsInfo structure which includes the limit used in the query and a
Boolean indicating whether the matching records in the database exceeded the limit.

If no data is found given the query criteria, these operations return a “NoDataFound” operation
on the Notification object. For example, getDSLServitemNoDataFound.

Structure format criteria for the getTelephoneNumberServitem
operation

To use the getTelephoneNumberServitem operation, you must identify the structure format
that applies to the telephone number(s) you are searching for. The structure format defines the
components that make up a telephone number. The criteria input for this operation is passed in
the StructureFormat structure, which consists of the following attributes:

¢ Structure Type—For this operation, the type must be set to “TN” (Telephone Number)

¢ Structure Name—This identifies the structure format that applies to the telephone
number(s) for which you are searching. For example, “TN-US”. You can call the
getStructureFormatsGivenType operation in the Infrastructure API to get a list of valid
telephone number structure formats.

276 MetaSolv Software, Inc.

Process flows

¢ Components - This is a sequence component structures you want to include as criteria.
You can get the component details needed to fill out this structure by calling the
getComponentsGivenStructureFormat operation in the Infrastructure API with the
structure name. The following attributes are included in the SFComponent structure:

+ Component ID—This is an internal unique identifier for the component.

+ Component Name—This is name of the telephone number component. For example,
‘GNPA’,‘

+ Component Type—This is a categorization of the component. For example, “T” (table
driven).

+ Component Value—This is the component criteria value to be used in the search.

The component ID, name and type must be valid for the structure name, or an error is returned.
Only one SFComponent structure may be passed for a given component. A structure format
may contain components that are required as criteria in a search. These components can be
identified via the output of the getComponentsGivenStructureFormat operation in the
Infrastructure API. The requiredIndicator attribute equals “Y” if the component must be
included as criteria.

Key MetaSolv Solution software concepts

Overview of the Trouble Management subsystem

Successful development using the Trouble Management API requires an understanding of the
Trouble Management subsystem. You should review the sections of the MetaSolv Solution
online Help found on the Contents tab under the heading "Managing Trouble". The online
Help is available from your API administrator.

The Trouble Management subsystem tracks a reported problem from its initial identification to
its resolution. The Trouble Management subsystem maintains information such as contacts,
trouble codes, cause codes, and priority and escalation levels. The Trouble Management
subsystem records the information necessary to allow the creation of various reports, including
DMOQ reports for trouble tickets.

Trouble tickets can be associated with existing circuits, telephone numbers, trunk groups, and
customers. The Trouble Management subsystem tracks all activities associated with resolving
a ticket and monitors the ticket's state, status and responsible and administrative organizations
throughout the ticket's lifecycle.

CORBA API Developer’s Reference 277

Chapter 14: The Trouble Management API

Permitted trouble ticket state changes

MetaSolv Solution users can change the ticket state of trouble tickets through menu selections
within the Trouble Management subsystem. The rules that govern ticket state changes through
the Trouble Management subsystem—depicted graphically in Figure 33—are listed below:

*

L 2BR JER JER 2R 2

Tickets are created in the "Open/Active" state.

"Open Active" tickets can be changed to any ticket state except "Open Active".
"Deferred" tickets can be changed to any ticket state except "Cleared".
"Externally Referred" tickets can be changed to any ticket state.

"Cleared" tickets can be changed to any ticket state except "Deferred".
"Closed" and "Canceled" tickets cannot change state.

g Closed and canceled are terminal states. Once a trouble ticket is placed in one of these

states, the ticket state can never be changed again. Non-reporting details for a closed or
canceled trouble ticket can be added or edited. Reportable details cannot be added or
edited, except as permitted by the setting of the Allow Editing of Task Completion Date
Within the Grace Period preference.

Y STOP

Deferred \ > Closed

"\ Terminal State ,
T!'ouble START Open/Active
Ticket .
) Initial State
Creation
Y

A
Externally | Canceled
Referred "\ Terminal State

A A

N\
N\

Cleared

Figure 33: Ticket State Changes Permitted By The Trouble Management Subsystem

The Trouble Management API allows you to use the updateTicket v2 operation to change
trouble ticket statuses, but only for a subset of the status changes possible through the
MetaSolv Solution. The rules that govern ticket state changes through the Trouble
Management API—depicted graphically in Figure 34—are listed below:

¢ Tickets are created in the "Open/Active" state using the createTicket v3 operation.

L 4
*

"Open Active" tickets can be changed to "Cleared", "Closed", and "Canceled".
"Deferred" and "Externally Referred" tickets an only be changed to "Canceled".

278 MetaSolv Software, Inc.

Process flows

¢ "Cleared" tickets can be changed to "Closed" and "Canceled".

¢ "Closed" and "Canceled" tickets cannot change state The updateTicket operation does not
permit changes to closed or canceled tickets.

STOP

Closed

Deferred Terminal State

Trouble START
Ticket
Creation

Open/Active
Initial State
STOP
Externally Canceled
Referred Termnal State

A

U

Figure 34: Ticket State Changes Permitted by The Trouble Management Api

Operational differences between the Trouble Management
subsystem and the Trouble Management API

Escalation organizations and levels and the Trouble Management
API

The Trouble Management API does not accept import of the information that fills these
editable fields on the Escalations tab of the Trouble Management subsystem's New Ticket
window. The Trouble Management API defaults these values when a trouble ticket is created:
Admin Org to Notify - Level

Admin Org to Notify - Notify Ind

Other Org to Notify - Level

Other Org to Notify - Notify Ind

Other Orgs to Notify - Org

Resp Org to Notify - Level

Resp Org to Notify - Notify Ind

The Trouble Management API defaults these values when a ticket is created or when the

Adminstrative Organization, Responsible Organization, or Escalation Method is updated on a
ticket.

® 6 6 ¢ 6 0 o

CORBA API Developer’s Reference 279

Chapter 14: The Trouble Management API

External referrals and the Trouble Management API

The Trouble Management subsystem allows a ticket to be externally referred to multiple
maintenance center organizations.

The Trouble Management API does not support the creation or mainenance of external
referrals. If a ticket has been externally referred, it may be updated using the updateTicket v2
operation, and it may be canceled using the cancelTicket operation. However, an externally
referred ticket cannot be cleared or closed through the Trouble Management API.

User-required optional Trouble Management subsystem fields and
the Trouble Management API

The Trouble Management subsystem allows users to require entries for fields that the Trouble
Management subsystem defines as optional.

The Trouble Management API does not enforce user-defined requirement of optional Trouble
Management subsystem fields when you submit a trouble ticket via the Trouble Management
API. Instead, the Trouble Management subsystem requires the first user who updates that
trouble ticket in the Trouble Management subsystem to enter the information for the user-
required Trouble Management subsystem fields.

User-defined fields and the Trouble Management API

The Trouble Management subsystem allows users to create user-defined fields and to require
entries in those fields on a trouble ticket.

The Trouble Management API does not support import of information for user-defined fields,
and user-defined fields are not returned by the getTicketReport v2 operation.

If a user-defined field is required, the Trouble Management subsystem requires the first user
who updates that trouble ticket in the Trouble Management subsystem to enter the information
for the field.

Certain field values not defaulted

In the Trouble Management subsystem, the Customer Status Minutes field and the
corresponding Next Customer Status Date and Time field are defaulted in the window display.
In earlier releases of the Trouble Management API, the createTicket operation defaulted these
field values. Beginning with version M/5, these values are now available in the IDL for the
Trouble Management API, which permits your client application to set these values as desired.

When you use the updateTicket v2 operation to change the Customer Status Minutes field,
the updateTicket v2 operation does not automatically calculate and set the Next Customer
Status Date/Time field. Likewise, when you use the updateTicket v2 operation to clear the

280 MetaSolv Software, Inc.

Process flows

Customer Status Minutes field, the updateTicket v2 operation does not automatically clear the
Next Customer Status Date/Time field.

No default of ETTR, priority level or customer status minutes for a
circuit service item

In the Trouble Management subsystem, users can set up defaults for the Estimated Time To
Restore (ETTR), Priority Level or Customer Status Minutes ficlds, based on the service
type code, service type category, and trouble type for a circuit service item. The
updateTicket v2 operation does not default these fields when an inventoried circuit is set on a
ticket.

Repeat and chronic trouble ticket types

Trouble tickets can either represent real service issues—such as service outages and
equipment failures—or can be informational in nature. Whether a given trouble ticket is
informational or represents a real service issue is determined by the setting of the Identifies
Repeat and Chronic Trouble Indicator checkbox on the Trouble Management subsystem's
Ticket Type window for the ticket's trouble ticket type.

¢ Ifthe Identifies Repeat and Chronic Trouble Indicator checkbox is checked, the
trouble ticket represents a real service issue.

¢ Ifthe Identifies Repeat and Chronic Trouble Indicator checkbox is unchecked, the
trouble ticket is informational.

Whenever a new trouble ticket is entered into the database, whether via the Trouble
Management subsystem or the Trouble Management API, the ticket is evaluated to determine
whether it could constitute an instance of repeat trouble, chronic trouble, or both. In order for a
trouble ticket to represent an instance of repeat or chronic trouble, the trouble ticket type's
Identifies Repeat and Chronic Trouble Indicator checkbox must be checked, and the
appropriate condition below must be met:

¢ For repeat trouble, at a minimum one trouble ticket that represents a real service issue
must have been entered for that service item within the past 30, 60, 90, or greater than 90
days.

& For chronic trouble, the service item must have had a minimum number of trouble tickets
that represent real service issues within a maximum number of days in the past. These
minimum and maximum values are determined by the setting of the Trouble Management
subsystem's Chronic Trouble Number of Tickets and Number of Days preference.

A given service item can have multiple informational trouble tickets in an open ticket state
at the same time. However, while a given service item has a trouble ticket that represents a
real service issue that is in a ticket state other than Closed or Canceled:

CORBA API Developer’s Reference 281

Chapter 14: The Trouble Management API

¢ The Trouble Management API cannot accept additional trouble tickets that represent a real
service issue for that service item.

¢ The Trouble Management subsystem warns users who enter a trouble ticket that represents
a real service issue for that service item that the open ticket exists and asks the user if they
want to create the new ticket anyway.

Effect of data errors in trouble reports on Trouble Management
API processing

If your application submits, to the Trouble Management API, a trouble ticket that omits non-
critical information or has a non-critical error, the Trouble Management API creates the
trouble ticket and adds log notes to the trouble ticket that identify the missing information or
data errors. For example, a contact phone number was given, but no contact name was
supplied.

If your application submits to the Trouble Management API a trouble ticket that omits critical
information or has a critical error, the Trouble Management API rejects the trouble report with
an explanation, for example the ticket type code that is passed does not exist in the database.

282 MetaSolv Software, Inc.

15

The Work Management API

The Work Management API exposes certain functions of the MetaSolv Solution Work
Management subsystem and certain information in the database that the Work Management
subsystem uses.

L 2

Implementation of external applications that use the Work Management API follows the
pattern described in “The asynchronous interaction pattern” on page 28.

The Work Management API can be used to provide limited access to Work Management
subsystem functions and information from remote and local locations for both field personnel
and other users of the MetaSolv Solution. Possible examples of applications that can be
developed using the Work Management API are:

L 2

An application that electronically generates tasks for service requests that are received
electronically, which eliminates the need to generate tasks for these service requests
manually.

A Web interface or application that monitors a work queue, reports new tasks in that queue
to the user (an individual or work group), and reports completion of specific tasks and
gateway events by that user back to the Work Management API. For example, if the credit
department must complete a credit check task prior to order completion, the credit
department could use an application that notifies them when credit check tasks have been
assigned to them. As the assigned tasks are completed, the credit department could use this
application to report completion of the tasks.

A thin client or Web interface for field personnel that displays their work queue, displays
the service request for which the task is performed, displays the relationships and
dependencies between tasks, and allows users to report task completion and the reason
that tasks were completed late. This type of application could be used in situations where
it is difficult or impossible to run the entire MetaSolv Solution application remotely.

The CORBA servername used by the Work Management API is WMSERVER.

MetaSolv Solution CORBA API Developer’s Reference 283

Chapter 15: The Work Management API

WMSession interfaces

Figure 35 shows the relationship of the interfaces within the Work Management API.

WDIRoot
[
WDIManager
[
WDISession

TaskGenerationSubSession

TaskViewingSubSession

TaskCompletionSubSession

MetaSolv::CORBA::
WM::WDINotification

Figure 35: WMSession Interfaces

WDIManager
The following table lists the operations available in the WDIManager interface of the
WDIWMLIDL file.
Table 68: WDIManager Interface Operations in Work Management API
Operation Description
startWMSession Obtains the object reference of the WMSession
destroyWMSession Terminates the WMSession
startTransaction commit
rollback
destroyTransaction Terminates the transaction
startSignal eventOccurred
eventTerminated
eventInProgress
eventCompleted
eventErrored

284 MetaSolv Software, Inc.

WMSession interfaces

Table 68: WDIManager Interface Operations in Work Management API

Operation Description
destroySignal Terminates the signal
startInSignal eventInProgress

eventCompleted
eventErrored
destroyInSignal Terminates the InSignal

g For complete details on the WDIManager interface, “Common Architecture” on page 55

WMSession interfaces

The following table lists the three operations that comprise the WMSession in the

WDIWMLIDL file.

Table 69: Work Management API WMSession Interface Operations

Operation

Description

startTaskGenerationSubSession

Obtains the object reference for the
TaskGenerationSubSession

destroyTaskGenerationSubSession

Triggers destruction of the
TaskGenerationSubSession object

startTask ViewingSubSession

Obtains the object reference for the
TaskViewingSubSession

destroyTask ViewingSubSession

Triggers destruction of the
TaskViewingSubSession object

startTaskCompletionSubSession

Obtains the object reference for the
TaskCompletionSubSession

destroyTaskCompletionSubSession

Triggers destruction of the
TaskCompletionSubSession object

CORBA API Developer’s Reference

285

Chapter 15: The Work Management API

WMSession interface operation descriptions
¢ startTaskGenerationSubSession

Obtains the object reference for the TaskGenerationSubSession
¢ destroyTaskGenerationSubSession

Triggers destruction of the TaskGenerationSubSession object
¢ startTaskViewingSubSession

Obtains the object reference for the TaskViewingSubSession
¢ destroyTaskViewingSubSession

Triggers destruction of the TaskViewingSubSession object
¢ startTaskCompletionSubSession

Obtains the object reference for the TaskCompletionSubSession
¢ destroyTaskCompletionSubSession

Triggers destruction of the TaskCompletionSubSession object

The requestID parameter used by many of the operations in the Work Management API is an
arbitrary, user-defined number that provides a means of relating requests and notifications
when performing asynchronous operations. The Work Management operations do not make
use of this parameter. Instead, they return it unchanged and unevaluated when executing the
notification method.

Many of the descriptions of the operations in the Work Management API state that the
operation returns a value or values. In such cases, remember that the operation returns that
value by invoking the appropriate response operation on the notification object.

TaskGenerationSubSession interfaces

The following table lists the operations available in the TaskGenerationSubSession session of
the WDIWM.IDL file.

Table 70: Work Management API TaskGenerationSubSession Interface Operations

Operation WDINotification Operations

generateAndSaveTasks generateAndSaveTaskSucceeded
generateAndSaveTaskFailed

getAllQueues getAllQueuesSucceeded
getAllQueuesFailed

286 MetaSolv Software, Inc.

WMSession interfaces

Table 70: Work Management API TaskGenerationSubSession Interface Operations

Operation WDINotification Operations

getAllProvPlans getAllProvPlansSucceeded
getAllProvPlansFailed

getPlanID getPlanIDSucceeded
getPlanIDFailed

getAutoPlanID getAutoPlanIDSucceeded
getAutoPlanIDFailed

TaskGenerationSubSession interface operation descriptions
¢ generateAndSaveTasks

Given an order (document_number), a provisioning plan ID, and the time zone of the
client, this operation generates tasks for that order along with completion dates for each
task. A sequence of tasks with their dates are returned along with a sequence that contains
the relationship between these tasks and a status. generateAndSaveTasks supports the
MetaSolv Solution rules and behaviors functionality when generating tasks.

¢ getAllQueues

This operation provides the functionality to return a sequence of all available work queues
in the MetaSolv Solution database if the work queues are to be manually assigned.

¢ getAllProvPlans

This operation provides the functionality to return a sequence of all available provisioning
plans in the MetaSolv Solution database if the provisioning plan is to be assigned
manually.

¢ getPlanlD

This operation provides the functionality to return a specific provisioning plan name
specified by the third party developer. This operation returns the ID of the plan using a
plan name. This is an alternative method to choosing a default provisioning plan for
internet services.

¢ getAutoPlanID

This operation provides the functionality to automatically pick a provisioning plan based
on predefined third-party criteria. This operation returns the first plan ID which is defined

CORBA API Developer’s Reference 287

Chapter 15: The Work Management API

under the organization, jurisdiction, and the service group of the given order
(document_number.)

TaskViewingSubSession interface operations

The following table lists the operations available in the TaskViewingSubSession:

Table 71: TaskViewingSubSession Interface Operations

Operation WDINotification Operations
getUserWorkQueue getUserWorkQueueSucceeded
getUserWorkQueueFailed
getWorkGroupWorkQueue getWorkGroupWorkQueueSucceeded
getWorkGroupWorkQueueFailed
getTasks getTasksSucceeded
getTasksFailed
getPredecessorTasks getPredecessorTasksSucceeded

getPredecessorTasksFailed

getFollowerTasks getFollowerTasksSucceeded
getFollowerTasksFailed

getTaskCircuits getTaskCircuitsSucceeded
getTaskCircuitsFailed
getTaskChecklist getTaskChecklistSucceeded
getTaskChecklistFailed
getTaskGWEvent getTaskGWEventSucceeded
getTaskGWEventFailed
updateChecklist updateChecklistSucceeded
updateChecklistFailed
updateGWEvent updateGWEventSucceeded
updateGWEventFailed
getServReqTasks getServReqTasksFailed
getServReqTasksSucceeded
acceptTask acceptTaskFailed
acceptTaskSucceeded

288 MetaSolv Software, Inc.

WMSession interfaces

Table 71: TaskViewingSubSession Interface Operations

Operation WDINotification Operations
updateEstCompDate updateEstCompDateFailed
updateEstCompDateSucceeded
transferTask transferTaskFailed
transferTaskSucceeded
rejectTask rejectTaskFailed
rejectTaskSucceeded
searchWorkQueue searchWorkQueueFailed
searchWorkQueueSucceeded
getTaskDetail getTaskDetailFailed
getTaskDetailSucceeded
getServReqDetail getServReqDetailFailed
getServReqDetailSucceeded
getServReqNotes getServReqNotesFailed
getServReqNotesSucceeded
addServReqNote addServReqNoteFailed
addServReqNoteSucceeded
getTaskJeopardy getTaskJeopardyFailed

getTaskJeopardySucceeded

getTaskJeopardyDetail

getTaskJeopardyDetailFailed
getTaskJeopardyDetailSucceeded

addTaskJeopardy addTaskJeopardyFailed
addTaskJeopardySucceeded
updateTaskJeopardy updateTaskJeopardyFailed
updateTaskJeopardySucceeded
deleteTaskJeopardy deleteTaskJeopardyFailed
deleteTaskJeopardySucceeded
getJeopardyCode getJeopardyCodeFailed

getJeopardyCodeSucceeded

CORBA API Developer’s Reference

289

Chapter 15: The Work Management API

TaskViewingSubSession interface operation descriptions

L 2

getUserWorkQueue

This operation provides the functionality to return all work queues owned by the user ID
passed in to the operation. This process uses some of the existing functionality and SQL
used in the Work Management subsystem to build a list of personal work queues.

getWorkGroup WorkQueue

This operation provides the functionality to return all work queues except those owned by
the user ID passed in to the operation. This process uses some of the existing functionality
and SQL used in the Work Management subsystem to build a list of work queues.

getTasks

This operation provides the functionality to return task information for the work queue
passed in to the operation. Date/time fields are converted to local time using the local time
zone that is passed in. Task information returned includes task type, task status,

revised completion_date, queue_status, type of sr (type of service request) pon,
first_ecckt id, document number, and task_number.

getPredecessorTasks

This operation provides the functionality to return the task information of predecessor
tasks for a given task. Predecessor task information includes task type, task status,
scheduled completion_date, actual release date, revised_completion_date,

estimated completion_date, work queue id, actual completion_date,

task critical date ind (critical task ind), task status date, document number,

task _number, first jeopardy_id (jeopardy ind), and auto_comp_ind (auto completion ind.)

getFollowerTasks

This operation provides the functionality to return follower task information for a given
task. Follower task information includes task type, task status,

scheduled completion_date, actual release date, revised_completion_date,

estimated completion date, work queue id, actual completion_date,

task critical date ind (critical task ind), task status date, document number,

task number, first jeopardy id (jeopardy ind), and auto_comp_ind (auto completion ind.)

getTaskCircuits

This operation provides the functionality to return circuit information as it relates to a
given task. Task circuit information includes ecckt (circuit ID), act comp_date (circuit
completion date), jeopardy ind, ckt design id, complete ind (circuit completion ind)
and, notes_ind (circuit notes ind.)

290 MetaSolv Software, Inc.

WMSession interfaces

getTaskChecklist

This operation provides the functionality to return the checklist items for a given task.
Task checklist information includes check code (checklist identifier code),

check comp_date (checklist completion date), check seq, check desc (checklist
description), and complete ind (checklist completion ind.)

getTaskGWEvent

This operation provides the functionality to return the gateway events for a given
work queue id. Task gateway event information includes event_id, event nm (event
name), task type, task type pre (predecessor task to gateway event’s task),

force reopen_ind, status_cd, version, signal_ind, in_out_cd, event_detail,
document_number, task_number, task number pre, and serv_item_id.

updateChecklist

This operation updates the MetaSolv Solution database when the user changes the
Completion Indicator field. The completion date for the checklist item is set to null if the
completion indicator is set to "N," or it is set to the current date and time if the completion
indicator is set to "Y".

updateGWEvent

This operation provides the functionality to update the Status field in the gateway events
tables.

getServReqTasks

This operation returns task information for a given document number (service request).
This operation is oriented more toward the view of the service request than the getTasks
method is. Date and time information is stored in the MetaSolv Solution database in
Greenwich Mean Time (GMT). The Work Management API converts dates and times
between the time zone identified by the timezone parameter and the GMT equivalent. This
allows coordination of tasks that will be performed in different time zones.

acceptTask

In the Work Management subsystem, users acknowledge tasks that have been placed in
their work queue by accepting them. This operation allows you to acknowledge a task that
has been placed in a work queue.

updateEstCompDate

This operation updates the estimated completion date for a specified task. Date and time
information is stored in the database in Greenwich Mean Time (GMT). The Work
Management API converts dates and times between the time zone identified by the
timezone parameter and the GMT equivalent. This allows coordination of tasks that will
be performed in different time zones.

CORBA API Developer’s Reference 291

Chapter 15: The Work Management API

& transferTask

This operation transfers the specified task from the work queue identified by the current
WorkQueue parameter to work queue identified by the newWorkQueue parameter.

¢ rejectTask

This operation rejects a completed predecessor task. You reject a task to return it to the
work queue of the person who completed that task so they can rework the task.

When you use the rejectTask method, the Work Management API changes the rejected task's reject
status to “R” (Rejected) and the task’s status to “Ready”. The API also changes the reject status of all
completed follower tasks to "R" and sets their status to "Pending".

gYou can find a task's reject status in the rejectStatus field in the predFollow
structure and the taskRejectStatus field in the taskView structure.

You can find a task's status in the taskStatus field in the predFollow structure and
the taskStatus field in the taskView structure.
¢ searchWorkQueue

This operation takes a string or partial string passed in through the searchKey parameter
and tries to match it to existing work queues in the MetaSolv Solution database. The
operation returns a sequence of all work queues that match the search criteria. The type of
search is determined by the searchType parameter—a value of “B” requests a “Begins
with” search, and a value of “C” requests a “Contains” search.

¢ getTaskDetail

This operation returns task detail information for a given document number and task
number. Date and time information is stored in the MetaSolv Solution database in
Greenwich Mean Time (GMT). The Work Management API converts dates and times
between the time zone identified by the timezone parameter and the GMT equivalent. This
allows coordination of tasks that will be performed in different time zones.

¢ getServReqDetail

This operation returns basic service request information for a given document number.
Date/time information is returned using the timezone you specify in the timezone
parameter. Service request detail information includes type of service request, service
request status, responsible party, purchase order number, order number, desired due date,
supplement type, and CCNA.

¢ getServReqNotes

This operation returns a sequence of all notes that have been entered for the designated
service request.

¢ addServReqNote

This operation adds a service request note for the designated service request.

292 MetaSolv Software, Inc.

WMSession interfaces

getTaskJeopardy

This operation returns a sequence of task jeopardy information for the document number/
task number passed in to the method. Jeopardy information is used to identify why a task
is or was in jeopardy of being completed late. Date and time information is stored in the
MetaSolv Solution database in Greenwich Mean Time (GMT). The Work Management
API converts dates and times between the time zone identified by the timezone parameter
and the GMT equivalent. This allows coordination of tasks that will be performed in
different time zones.

getTaskJeopardyDetail

This operation returns task jeopardy information for a single jeopardy ID passed in to the
method. Jeopardy information is used to identify why a task is or was in jeopardy of being
completed late. Date and time information is stored in the MetaSolv Solution database in
Greenwich Mean Time (GMT). The Work Management API converts dates and times
between the time zone identified by the timezone parameter and the GMT equivalent. This
allows coordination of tasks that will be performed in different time zones.

addTaskJeopardy

This operation adds task jeopardy information for the task number you designate. Date
and time information is stored in the MetaSolv Solution database in Greenwich Mean
Time (GMT). The Work Management API converts dates and times between the time zone
identified by the timezone parameter and the GMT equivalent. This allows coordination of
tasks that will be performed in different time zones.

updateTaskJeopardy

This operation updates task jeopardy information for the task number you designate. Date
and time information is stored in the MetaSolv Solution database in Greenwich Mean
Time (GMT). The Work Management API converts dates and times between the time zone
identified by the timezone parameter and the GMT equivalent. This allows coordination of
tasks that will be performed in different time zones.

deleteTaskJeopardy
This operation deletes jeopardy information for a given task on a given service request.
getJeopardyCode

This operation returns a sequence of all available jeopardy codes in the MetaSolv Solution
database.

CORBA API Developer’s Reference 293

Chapter 15: The Work Management API

TaskCompletionSubSession interface operations

The following table lists the operations available in the TaskCompletionSubSession.

Table 72: TaskCompletionSubSession Interface Operations

Operation WDINotification Operations

getOrganization getOrganizationSucceeded
getOrganizationFailed

getWhyMissCode getWhyMissCodeSucceeded
getWhyMissCodeFailed

completeTask completeTaskSucceeded
completeTaskFailed

completeTaskOnDate completeTaskSucceeded
completeTaskFailed

reopenTask reopenTaskFailed
reopenTaskSucceeded

validateEditActCompDate validateEditActCompDateFailed

validateEditActCompDateSucceeded

searchCompletedTasks searchCompletedTasksFailed
searchCompletedTasksSucceeded

TaskCompletionSubSession interface operation descriptions
¢ getOrganization

This operation returns a sequence of all available organization IDs for the organization
type defined in MetaSolv Solution’s Jeopardy Code Organization Type preference.

¢ getWhyMissCode

This operation provides the functionality to return a sequence of whymissed codes used
when selecting a whymissed code in the task completion process.

294 MetaSolv Software, Inc.

WMSession interfaces

*

*

completeTask

Given a document number and task number, this operation validates the task to ensure it is
ready to be completed. If it passes validation, and is on time, the task is completed. If the
task is being completed late, a whymissed code is assigned before completing the task.

completeTaskOnDate

This operation completes the task represented by the passed document number and task
number, and sets the revised completion date to the passed completionDate if the following
conditions are true: The task is late, but not beyond its grace period, and the Allow Edit of
Task Completion within Grace Period preference is set to "Y". Otherwise, the passed
completionDate is ignored.

L 2

g The completeTaskOnDate operation uses the same return codes as the
completeTask operation.

validateEditActCompDate
This operation validates whether or not a task's actual completion date can be edited.
reopenTask

Reopens the completed task that you identify by document number and task number.

A Warning! Reopening tasks is not recommended for the following reasons:
There is no notification, to the owner of a queue, that a task is a reopened task,
and no indication in the status column that the status is "Reopened".

If the reopened task has any associated gateway events, those gateway events
must be reactivated.

If the reopened task is a precondition for a gateway event on another task, that
gateway event must be reactivated.

If there are any completed follower tasks to the one you want to reopen, you must
reopen the follower tasks first. If the follower tasks are not in your own work
queue, they reappear, when reopened, in their original work queues with a status
of "Pending". The original queue's owner does not receive notification of
reopened tasks in their queue.

searchCompletedTasks

This operation returns a sequence of completed tasks that meet the passed search criteria.
Date and time information is stored in the MetaSolv Solution database in Greenwich Mean
Time (GMT). The Work Management API converts dates and times between the time zone
identified by the timezone parameter and the GMT equivalent. This allows coordination of
tasks performed in different time zones.

CORBA API Developer’s Reference 295

Chapter 15: The Work Management API

Work Management API IDL files

The following IDL files are included in the Work Management API:

¢ WDIWM.IDL
¢ WDIWMTYPES.IDL
¢ WDIWMTYPES V2.IDL

Process flows

This section contains a sample process flow for a solicited message. Use the sample flows as
templates for developing your own process flows.

For the process flow used when the Work Management API is the client, see “Unsolicited
messages” on page 83.

Solicited messages

A solicited message is a message initiated by the MetaSolv Solution. The API plays the role of
the client, and the third party application plays the role of the server. The third-party
application must use the IDL files provided with the Work Management API to implement the
interfaces and operations for the following structures:

Table 73: Work Management API Solicited Message Operations

Interface For Implementing These Operations
WDIRoot connect
disconnect
WDIManager startTransaction
destroyTransaction

WDITransaction N/A

WDISignal eventOccurred
eventTerminated
WDIInSignal N/A

296 MetaSolv Software, Inc.

Process flows

Sample solicited message process flow

When the Work Management API is the client, the overall process flows as follows:

1.
2.

The API client binds to the third-party server to get a WDIRoot object reference.

The API client invokes the connect operation of the WDIRoot interface, which yields a
WDIManager object reference.

The API client invokes the startSignal operation of the WDIManager interface to get a
WDISignal object reference.

The API client invokes the eventOccurred operation of the WDISignal interface passing a
WDIEvent structure to notify the third-party application that an event registered to them
has occurred within the database.

The API client invokes the destroySignal operation of the WDIManager interface.
The API client invokes the disconnect operation of the WDIRoot interface.

Once the third-party server completes processing, possibly involving additional
unsolicited messages to the MetaSolv Solution Application Server, the third party server
binds to the application server and follows the same process described above for the
MetaSolv Solution client with the exception that the eventCompleted/Errored operations
are invoked passing the original WDIEvent structure.

If the third-party application encounters an error, it throws a WDIExcp as defined by the IDL.
The client handles CORBA system exceptions and WDIExcp exceptions.

Unsolicited messages

An unsolicited message is a message initiated by the third-party application. For an unsolicited
message, the Work Management API plays the role of the server and the third-party
application plays the role of the server with the exception of callback processing.

For the process flow used when the Work Management API is the client, see “Solicited
messages” on page 83.

The Work Management API server (DLRSERVER) uses the IDL files provided with the Work
Management API to implement the interfaces and operations defined in the following table.

CORBA API Developer’s Reference 297

Chapter 15: The Work Management API

Enhanced off-net automation functionality and the Work

Table 74: Work Management API Unsolicited Message Operations

Interface For Implementing Only These Operations
WDIRoot connect
disconnect
WDIManager startTransaction
destroyTransaction
WDITransaction commit
rollback
WMSession getWMSession

Management API

In version M/5 of the MetaSolv Solution, a pair of related enhancements were added to the
Work Management subsystem that together provide enhanced automation of off-net orders:

¢ Provisioning plan templates can define relationships between tasks on PSRs and tasks on
child LSRs. At task generation, when the defined conditions exist for the orders, the Work
Management subsystem automatically creates the relationships between the tasks.

¢ During the CONF or RCONF task, the due date for the DD task and due dates for
predecessor or child tasks can be adjusted automatically based on the FOC date received
from an external provider of an LSR or ASR child order.

The Work Management API supports the operation of both of these features. When tasks are
generated via the Work Management API, and the defined conditions exist for the orders, the
Work Management subsystem automatically creates the relationships between the tasks. When
you use the Work Management API to complete a CONF task, and the appropriate conditions
exist, the Work Management API automatically adjusts the Due Dates for the order and its
tasks as appropriate.

Before you can use these automated features of the MetaSolv Solution, you must use the
MetaSolv Solution to set up the relationships between the provisioning plans and to identify
for each ICSC whether automatic date adjustment is permitted. For information about how to
set up these features in the MetaSolv Solution, see the "Provisioning Plan Window—Related
Plans Tab" and "Automatically Updating Task Dates at Order Confirmation" topics, and the
"Adjust Dates Checkbox" popup on the "Interexchange Customer Service (ICSC) Window"
topic in the MetaSolv Solution online Help.

298 MetaSolv Software, Inc.

Implementation concepts

Implementation concepts

Overview of the MetaSolv Solution’s Work Management
subsystem
To successfully develop applications using the Work Management API, you must first have a
thorough understanding of the MetaSolv Solution’s Work Management subsystem. This
overview provides a beginning level of understanding. You should also read the online Help

topics identified in “Key MetaSolv Solution online Help topics relating to the WM subsystem” on
page 303. Also review the related topics that you can reach from those key topics.

The Work Management subsystem provides users with the tools needed to complete these

activities:

¢ Define a variety of provisioning plans, which are generic templates of tasks needed to
fulfill specific types of service requests

¢ Define rules under which the MetaSolv Solution can dynamically change a provisioning
plan at the time it applies the plan to a specific service request

Apply a provisioning plan to a specific service request and:

Generate and modify the specific set of tasks needed to fulfill a service request
Define and modify the dependency relationships between tasks

Define and modify the due dates for tasks

Electronically schedule and assign tasks to individuals and work groups such as
departments and field offices across the organization

* 6 6 o o

¢ Track and report on task completion
¢ Report why a task was completed late

After each service request is entered, a user generates the tasks for that service request. During
task generation, the user can add or remove tasks, change task due dates, adjust the
dependency relationships between tasks, and determine the work queue to which each task is
assigned.

After any needed adjustments are made to the tasks, and the work queues are selected, the
Work Management subsystem dispatches the tasks to the specific work queues.

In the Work Management subsystem, after a given task is completed:

¢ The completed task's predecessor tasks and immediate follower tasks can no longer be
added to or removed from the service request

¢ The dependency relationships between the completed task and its predecessor tasks and

immediate follower tasks can no longer be changed

After a worker is assigned to a task, the worker can use the Work Management subsystem to
monitor the status of the tasks assigned to them. When a task reaches "Ready" status, the
worker performs the work and changes the status of the task to "Completed". The Work

CORBA API Developer’s Reference 299

Chapter 15: The Work Management API

Management subsystem then changes the status of any follower tasks that directly depend on
the task just completed from "Pending" to "Ready".

Operational differences between the WM subsystem and the
WM API

The following table shows key similarities and differences between the operation of the Work
Management API and the Work Management subsystem.

Table 75: Work Management Subsystem and Work Management API Differences

Key Work Management Function WM WM API
Subsystem

Define provisioning plans Yes No
Define rules and behaviors by which the MetaSolv Solution | Yes No
can dynamically change a provisioning plan
Apply previously defined provisioning plans to service Yes Yes
requests
Add tasks to, copy tasks within, or remove tasks from a Yes No
service request after the provisioning plan has been applied
Mark a task "Required" or "Not Required" Yes No
Define the dependency relationships among the tasks on a Yes No
provisioning plan
Accept a task Yes Yes
Add, remove, or modify the dependency relationships Yes No
between the tasks assigned to a service request
Define the default due dates and duration for tasks Yes No
Modify the due date for tasks at the time of task generation | Yes No
Change the estimated completion date for a task Yes Yes
Display task due times that are adjusted for the user's local Yes Yes
time
Assign tasks to the default work queues defined in the Yes Yes
selected provisioning plan

300 MetaSolv Software, Inc.

Implementation concepts

Table 75: Work Management Subsystem and Work Management API Differences

Key Work Management Function WM WM API
Subsystem

Override the default work queue assignments for one or more | Yes Yes

tasks at the time of task generation

Dispatch tasks into work queues Yes Yes

Track information for one or more of the tasks assignedtoa | Yes Yes

specified service request, including each task's current status,

due date, dependency relationships, and the work queue to

which it has been assigned

Track the tasks in a specified work queue Yes Yes

Transfer tasks from one work queue to another Yes Yes

Set a task’s status to "Complete" using the current date/time | Yes Yes, except
tasks listed
on page 303

Set a task’s status to "Complete" using an earlier date/time Yes Yes, except
tasks listed
on page 303

Auto-complete tasks marked as auto-completable when their | Yes Yes

follower task is completed

Auto-complete tasks marked as auto-completable at the time | Yes No

of task generation when the task has no follower task

Re-open a completed task Yes Yes

Reject a task that was completed earlier and return the Yes Yes

rejected task to the work queue of the employee or work

group that initially completed the task, along with the reason

for the rejection

View task detail information for a given task Yes Yes

Assign jeopardy codes to tasks or to circuits associated with a | Yes Yes

task

Assign notes to an order or to circuits on a task Yes Yes

CORBA API Developer’s Reference 301

Chapter 15: The Work Management API

Table 75: Work Management Subsystem and Work Management API Differences

Key Work Management Function Sul:)sv yl\s/{em WM API
Report why a task was completed late Yes Yes
View the service request detail Yes Yes
View notes that have been added to the service request Yes Yes

Tasks that cannot be completed through the Work Management

API

The Work Management API cannot complete any tasks that are in "Pending" status.

When the tasks from the following list are in "Ready" status, they cannot be completed
through the Work Management API even though they can be completed through the Work
Management subsystem:

L 4
*
L 4

L 2
L 2

CAD——Carrier Access Billing System (CABS) Acknowledgment Date task
CID—CABS Issue Date task
DD—Due Date task
When configured to do so, the MetaSolv Solution’s System Task server can
automatically complete DD tasks. However, the Work Management API does not

handle the completion of the DD task. If you attempt to complete a DD task through
the Work Management API, the API returns an exception.

EUAD—End User Billing Acknowledgement Date task
EUID—End User Billing Issue Date task

All other MetaSolv-defined tasks in "Ready" status and all customer-defined tasks in "Ready"
status can be completed through the Work Management API.

302 MetaSolv Software, Inc.

Implementation concepts

Key MetaSolv Solution online Help topics relating to the WM
subsystem

Use the Index tab of the online Help to locate the index entries listed below. You may also
wish to familiarize yourself with the topics that are related to those entries.

¢ Provisioning plans
¢ Task generation
¢ Gateway events
¢ GMT overview

gThe online Help topics referenced above refer to smart tasks. Smart tasks are tasks that
can activate a MetaSolv Solution window or process when double-clicked in a MetaSolv
Solution window. When your application uses the Work Management API to add a
smart task to a service request, users can double-click that task within the MetaSolv
Solution and trigger the appropriate smart task action. However, your application cannot
trigger smart task actions via the Work Management API.

Work Management API support for NET DSGN task

The Work Management API supports the new NET DSGN (Network Design) task type that
was added in M/5.1. API users are able to accept, complete, transfer, and reject NET DSGN
tasks when the tasks are included in a provisioning plan just as if they were using the
MetaSolv Solution's GUIL

Work Management API support for date ready system tasks

The Work Management API supports the date ready system task feature in the MetaSolv
Solution’s Work Management subsystem.

When API users use the Work Management API to generate and assign a task that the
provisioning plan identifies as a date ready system task, the System Task Server does not
process that task until its scheduled start date, just as if the task had been generated and
assigned using the MetaSolv Solution's windows.

Work Management API support for backdated and forward-
dated tasks

The Work Management API supports the backdated and forward-dated task features in the
MetaSolv Solution’s Work Management subsystem.

When an access service request (ASR) or local service request (LSR) is created, the due date
(DD) task must be scheduled before the order recipient confirms the order. Backdating and
forward-dating means that the tasks after the CONF or RCONF task are rolled forward or
backward to accommodate the confirmed dates. For more information about these features,
see the MetaSolv Solution Online help.

CORBA API Developer’s Reference ~ 303

Chapter 15: The Work Management API

304 MetaSolv Software, Inc.

Appendix A: Glossary

The following list contains definitions of MetaSolv Solution API terms as they relate to
MetaSolv Software documentation:

Access Carrier Name Abbreviation (ACNA)

A three-character abbreviation assigned by Telcordia to each Interexchange Carrier (IXC) and
listed in the Local Exchange Routing Guide (LERG).

This abbreviation represents the access customer name to which the exchange carrier renders
the access bill.

Access Customer Terminal Location (ACTL)

The COMMON LANGUAGE Location Identifier (CLLI) code of the Inter-Local Access
Transport Area (InterLATA) facility terminal location of the access customer providing
service.

ACNA (Access Carrier Name Abbreviation)

A three-character abbreviation assigned by Telcordia to each Interexchange Carrier (IXC) and
listed in the Local Exchange Routing Guide (LERG).

This abbreviation represents the access customer name to which the exchange carrier renders
the access bill.

ACTL (Access Customer Terminal Location)

The COMMON LANGUAGE Location Identifier (CLLI) code of the Inter-Local Access
Transport Area (InterLATA) facility terminal location of the access customer providing
service.

AID (Access Identifier)

Identifies the port address on a piece of equipment within the network element identified by
the target identifier (TID). In the MetaSolv Solution database, the AID information is stored as
the concatenated node address for the port address to which the circuit is assigned.

MetaSolv Solution CORBA API Developer’s Reference 305

Chapter A:

API (Application Programming Interface)

Software that permits other applications to access a specific area of data in the MetaSolv
Solution database.

Application Programming Interface (API)

Software that permits other applications to access a specific area of data in the MetaSolv
Solution database.

asynchronous operations

Operations in which control returns to the invoking application before the operation is acted
upon. The invoked application returns the results to the calling application via a callback
mechanism after the operation has been completed.

Asynchronous Transfer Mode (ATM)

A high bandwidth, low delay, packet-like switching and multiplexing technique.

ATM (Asynchronous Transfer Mode)

A high bandwidth, low delay, packet-like switching and multiplexing technique.

backup

The hardware and software resources available to recover data after a degradation or failure of
one or more system components.

A copy of computer data on an external storage modem, such as floppy disk or tape.

bandwidth

A term used in various areas of the telecommunications industry (such as with facilities,
SONET, Frame Relay, and ATM). In a channelized environment, (such as with facilities and
SONET), the circuit positions used in the MetaSolv Solution act as the discrete means of
providing “bandwidth.” The term “allocation of bandwidth” is also used in the industry. In the
MetaSolv Solution, “bandwidth” refers to a virtual circuit being “allocated” to bandwidth
circuits through the Bandwidth Allocation table based on bit rates of each circuit rather than
by a specific number of circuit positions (such as channels).

306 MetaSolv Software, Inc.

bandwidth circuits

In PVC (Permanent Virtual Circuit), bandwidth circuits are circuits that have virtual circuits
assigned to them and have allocated capacity based on the digital bit rate as opposed to the
method of using a distinct number of circuit positions (channels).

batch processing

A mode of computer operation in which a complete program or set of instructions is carried
out from start to finish without any intervention from a user. Batch processing is a highly
efficient way of using computer resources, but it does not allow for any input while the batch
is running, or any corrections in the event of a flaw in the program or a system failure. For
these reasons, it is primarily used for CPU-intensive tasks that are well established and can run
reliably without supervision, often at night or on weekends when other demands on the system
are low.

CAB (Carrier Access Billing)

A system that bills Interexchange Carriers (IXCs) for access time and hardware purchases.

carrier

A company that provides communications circuits. There are two types of carriers: private and
common. Private carriers are not regulated and they can refuse to provide you service.
Common carriers are regulated and they cannot refuse to provide you service. Most carriers
(for example, MCI, AT&T, and Sprint) are common carriers.

Carrier Access Billing (CAB)

A system that bills Interexchange Carriers (IXCs) for access time and hardware purchases.

CCNA (Customer Carrier Name Abbreviation)

A Telcordia-maintained industry-standard code used to identify access customers (for
example, AT&T and MCI).

Cell Relay Service (CRS)

An asynchronous transfer mode (ATM) term; a carrier service which supports the receipt and
transmission of ATM cells between end-users in compliance with ATM standards and
implementation specifications.

CORBA API Developer’s Reference 307

Chapter A:

CLEI (Common Language Equipment Identifier)

Codes assigned by Telcordia (formerly Bellcore) to provide a standard method of identifying
telecommunications equipment in a uniform, feature-oriented language. The code is a text/
barcode label on the front of all equipment installed at Regional Bell Operating Company
(RBOC) facilities that facilitates inventory, maintenance, planning, investment tracking, and
circuit maintenance processes. Suppliers of telecommunication equipment give Telcordia
technical data on their equipment, and Telcordia assigns a CLEI code to that specific product.

CNAM

CNAM is an acronym for:

Call Name Database (Sprint)

Calling Name (Caller ID)

Class Calling Name Delivery (Telcordia)

CBP (Convergent Billing Platform)

Allows for the bundling of services, such as long distance, cellular, paging, and cable, together
onto a single monthly invoice.

COM (COMbined file)

A combined file used by the ASR/ISI Gateway for transporting multiple types of files. A COM
file may contain various combinations of ASR Response files and ASR Error files.

commit

The final step in the successful completion of a previously started database change. The
commit saves any pending changes to the database.

Common Language Equipment Identifier (CLEI)

Codes assigned by Telcordia (formerly Bellcore) to provide a standard method of identifying
telecommunications equipment in a uniform, feature-oriented language. The code is a text/
barcode label on the front of all equipment installed at Regional Bell Operating Company
(RBOC) facilities that facilitates inventory, maintenance, planning, investment tracking, and
circuit maintenance processes. Suppliers of telecommunication equipment give Telcordia
technical data on their equipment, and Telcordia assigns a CLEI code to that specific product.

308 MetaSolv Software, Inc.

Common Object Request Broker Architecture (CORBA)

A standard architecture that allows different applications to communicate and exchange
commands and data.

A central element in CORBA is the Object Request Broker (ORB). An ORB makes it possible
for a client object to make a server request without having to know where in a network the
server object or component is located and exactly what its interfaces are.

Concatenate

To allocate contiguous bandwidth for transport of a payload associated with a “super- rate
service.” The set of bits in the payload is treated as a single entity, as opposed to being treated
as separate bits, bytes or time slots. The payload, therefore, is accepted, multiplexed, switched,
transported and delivered as a single, contiguous “chunk” of payload data.

Convergent Billing Platform (CBP)

Allows for the bundling of services, such as long distance, cellular, paging, and cable, together
onto a single monthly invoice.

CORBA (Common Object Request Broker Architecture)

A standard architecture that allows different applications to communicate and exchange
commands and data.

A central element in CORBA is the Object Request Broker (ORB). An ORB makes it possible
for a client object to make a server request without having to know where in a network the
server object or component is located and exactly what its interfaces are.

cross-connect

A way of connecting two objects together. Cross-connects may be hard-wired or software
based. Hard-wired cross-connects are used to connect two pieces of equipment using a
physical media. Software cross-connects represent the connections made within a network
node. The software cross-connect determines how a circuit is connected through an intelligent
network element.

CRS (Cell Relay Service)

An asynchronous transfer mode (ATM) term; a carrier service which supports the receipt and
transmission of ATM cells between end-users in compliance with ATM standards and
implementation specifications.

CORBA API Developer’s Reference 309

Chapter A:

Customer Carrier Name Abbreviation (CCNA)

A Telcordia-maintained industry-standard code used to identify access customers (for
example, AT&T and MCI).

DACS (Digital Access and Cross-Connect Systems)

AT&T’s proprietary digital cross-connect system (DCS) product. DCS is a type of switching/
multiplexing equipment that permits per-channel DSO electronic cross-connects from one T1
transmission facility to another, directly from the DS1 signal. That is, the DCS allows the 24
DSO0 channels in one T1 line to be distributed among any of the other T1 lines connected to the
DCS, without requiring external cross-connects.

daemon

A program that runs continuously and exists for the purpose of handling periodic service
requests that a computer system expects to receive. The daemon program forwards the
requests to other programs (or processes) as appropriate.

dedicated plant

Describes a method used to build a telephone company’s facilities. It is used when designated
equipment, cables, and cable pairs are to be connected specifically to other pieces of
equipment or locations. Once those connections are made they are seldom changed.

Design Layout Report (DLR)

A form designed according to the Industry Support Interface (ISI) standard originated by the
Ordering and Billing Forum (OBF) committee. This form contains pertinent technical
information sent to the access customer for review to ensure that the appropriate design has
been provided and for the recording of its contents for future circuit activities. For the
MetaSolv Solution, this entity type and its dependents are used to record when the DLR was
issued and to make the necessary changes to defaulted ASR values.

Digital Access and Cross-Connect Systems (DACS)

AT&T’s proprietary digital cross-connect system (DCS) product. DCS is a type of switching/
multiplexing equipment that permits per-channel DSO electronic cross-connects from one T1
transmission facility to another, directly from the DS1 signal. That is, the DCS allows the 24
DSO0 channels in one T1 line to be distributed among any of the other T1 lines connected to the
DCS, without requiring external cross-connects.

310 MetaSolv Software, Inc.

DLR (Design Layout Report)

A form designed according to the Industry Support Interface (ISI) standard originated by the
Ordering and Billing Forum (OBF) committee. This form contains pertinent technical
information sent to the access customer for review to ensure that the appropriate design has
been provided and for the recording of its contents for future circuit activities. For the
MetaSolv Solution, this entity type and its dependents are used to record when the DLR was
issued and to make the necessary changes to defaulted ASR values.

EC (exchange carrier)

A company providing telecommunication in a licensed area.

ECCKT (Exchange Carrier Circuit Identification)

An AP Circuit ID or multiple circuit Ids.

end user

A customer who uses (rather than provides) telecommunications services.
end user location

The terminating location of telephone services for residential and business customers.

equipment specs

Documents that identify the properties and functionality of a piece of hardware. Equipment
Specs are limited to items relevant to the operation of a circuit, such as channel banks, channel
units, VF equipment, switches, cards, and so on.

escalation

The process of elevating a trouble ticket and making the appropriate parties aware that the
resolution of the ticket is not progressing as well as expected and that assistance may be
needed.

escalation method

The type of outage that has prompted a trouble ticket.

event

In the scope of the MetaSolv Solution APIs, an event represents the occurrence of something
in the MetaSolv Solution or in a third-party application that is of significance to the gateway
user.

CORBA API Developer’s Reference 311

Chapter A:

Exchange Carrier (EC)

A company providing telecommunication in a licensed area.

Exchange Carrier Circuit Identification (ECCKT)

An AP Circuit ID or multiple circuit Ids.

facility

Any one of the elements of a physical telephone plant required to provide service (for
example, a phone or data line, switching system, or cables and microwave radio transmission
systems).

fault management

Detects, isolates, and corrects network faults. It is also one of five categories of network
management defined by the ISO (International Standards Union).

fixed length records

A set of data records all having the same number of characters.

flow-through provisioning

The automating of the "activation" process used to remotely communicate with the equipment
in the field through Work Management tasks. The MetaSolv Solution itself can act as the
"Service Management Layer" (SML) that sends commands to the "Network Management
Layer" (NML) where the commands are non-vendor specific. The NML then passes these
commands and translates them into vendor "terms" and communicates these to the specific
Network Element (NE), which is the actual equipment in the field. Examples of Network
Elements are C.O. switch, Digital Loop Carrier (DLC), SONET node, and Digital Cross-
connect System (DCS). The MetaSolv Solution may also serve as the NML.

FOC (Form Order Confirmation)

A form the Local Exchange Carrier (LEC) submits to the Interexchange Carrier (IXC) to
indicate the date when they will install ordered circuits.

Form Order Confirmation (FOC)

A form the Local Exchange Carrier (LEC) submits to the Interexchange Carrier (IXC) to
indicate the date when they will install ordered circuits.

312 MetaSolv Software, Inc.

frame relay

A telecommunication service designed for cost-efficient data transmission for intermittent
traffic between local area networks (LANs) and between end-points in a wide area network
(WAN).

header record

The portion of a message containing information that guides the message to the correct
destination. The header includes the sender’s address, the receiver’s address, the precedence
level, routing instructions, synchronization pulses, etc.

ICSC (Interexchange Customer Service Center)

The telephone company's primary point of contact for handling the service needs of all long
distance carriers. This center is responsible for outlining, configuring, and installing basic
service upon customer request.

IDL (Interface Definition Language)

A programming language that helps define interfaces. IDL is inherently object oriented in
nature.

IFR (Interface Repository)

A component of ORB that provides persistent storage of the interface definitions, acting as an
online database and managing and providing access to a collection of object definitions.

INI file

An application-specific file that contains information about the initial configuration of the
application.

interconnection interface

Using an API, the MetaSolv Solution can be tightly integrated with a customer's proprietary
software via software developed by third-party vendors like TMForum Common
Interconnection Gateway Platform (CIGP).

Interexchange Customer Service Center (ICSC)

The telephone company's primary point of contact for handling the service needs of all long
distance carriers. This center is responsible for outlining, configuring, and installing basic
service upon customer request.

CORBA API Developer’s Reference 313

Chapter A:

interface

A mechanical or electrical link connecting two or more pieces of equipment. An interface
allows an independent system to interact with the MetaSolv Solution product family.

In this guide, the term interface refers to the CORBA IDL interface that describes the
operations the interface object supports in a distributed application. These IDL definitions
provide the information needed by clients for accessing objects across a network.

interface architecture

The collection of APIs and gateway integration software produced by MetaSolv Software to
permit access to the MetaSolv Solution database.

Interface Definition Language (IDL)

A programming language that helps define interfaces. IDL is inherently object oriented in
nature.

Interface Repository (IFR)

A component of ORB that provides persistent storage of the interface definitions, acting as an
online database and managing and providing access to a collection of object definitions.

International Standards Organization (ISO)

An international standards-setting organization.

Internet Service Provider (ISP)

A company that provides individuals and other companies access to the Internet and other
related services such as web site building and hosting.

ISO (International Standards Organization)

An international standards-setting organization.

ISP (Internet Service Provider)

A company that provides individuals and other companies access to the Internet and other
related services such as web site building and hosting.

314 MetaSolv Software, Inc.

item types

Predefined types which can be used to build product specifications. Relationships between the
item types are also predefined; the item types and relationships together are commonly called
the "MetaSolv Rules." MetaSolv Solution only allows product specifications to be built that
follow the "MetaSolv Rules." These rules allow specific processing to be applied to item

types.

Java Database Connectivity (JDBC)

An application program interface (API) specification for connecting programs written in Java
to the data in popular databases.

JDBC (Java Database Connectivity)

An application program interface (API) specification for connecting programs written in Java
to the data in popular databases.

LATA (Local Access Transport Area)

One of 161 geographical areas in the United States within which a local telephone company
may offer local or long distance telecommunications service.

The LATA identifies which exchange carrier or Interexchange Carrier (IXC) may provide
service in a defined area.

LIDB (Line Information Database)

A service that provides customers the ability to query Access Provider (AP) databases to
determine whether a:

Caller is the authorized user of a valid AP calling card

Particular telephone number can accept collect or third-party billed calls before transmitting
any call

Line Information Database (LIDB)

A service that provides customers the ability to query Access Provider (AP) databases to
determine whether a:

Caller is the authorized user of a valid AP calling card

Particular telephone number can accept collect or third-party billed calls before transmitting
any call

CORBA API Developer’s Reference 315

Chapter A:

LNP (Local Number Portability)

A circuit-switched network capability that allows an end user to change service providers
without having to change telephone numbers.

Local Access Transport Area (LATA)

One of 161 geographical areas in the United States within which a local telephone company
may offer local or long distance telecommunications service.

The LATA identifies which exchange carrier or Interexchange Carrier (IXC) may provide
service in a defined area.

Local Number Portability (LNP)

A circuit-switched network capability that allows an end user to change service providers
without having to change telephone numbers.

Local Service Ordering Guidelines (LSOG)

A standardized set of guidelines used for ordering various local services. The local service
request (LSR) is the administrative form that must accompany any local service request. This
type of service request is used in a local competition environment to order unbundled elements
such as loop service, number portability, and loop service with number portability. The local
service provider sends a LSR to the network service provider when the local service provider
cannot fill the requirements of an end user from owned resources.

Local Service Request (LSR)

The type of service request used in a local competition environment to order unbundled
elements such as loop service, number portability, and loop service with number portability.
An LSR is sent by the local service provider to the network service provider when the local
service provider cannot fill the requirements of an end user from owned resources.

location

A physical location that is of interest for equipment inventory purposes. This location may
have a Telcordia CLLI, a location identifier that is not a CLLI code, or may simply be
identified by a street address. Circuit Design creates an entry in network location for End User
PRILOCs and SECLOC:s if it does not exist. Network location is a supertype of locations.
Subtypes of locations include CLLI locations, end user locations, or terminal locations.

316 MetaSolv Software, Inc.

LSOG (Local Service Ordering Guidelines)

A standardized set of guidelines used for ordering various local services. The local service
request (LSR) is the administrative form that must accompany any local service request. This
type of service request is used in a local competition environment to order unbundled elements
such as loop service, number portability, and loop service with number portability. The local
service provider sends a LSR to the network service provider when the local service provider
cannot fill the requirements of an end user from owned resources.

LSR (Local Service Request)

The type of service request used in a local competition environment to order unbundled
elements such as loop service, number portability, and loop service with number portability.
An LSR is sent by the local service provider to the network service provider when the local
service provider cannot fill the requirements of an end user from owned resources.

mapping

The process of associating each bit transmitted by a service into the SONET payload structure
that carries the service. For example, mapping a DS1 service into a SONET VT1.5 associates
each bit of the DS1 with a location in the VT1.5.

network

The interconnection of equipment and outside plant components designed to provide an
infrastructure fabric of facilities to support the transport of circuits. Each component of the
network (Facilities, Equipment, Plant, and TFC Networks) may stand alone in the individual
circuit design/assignment process. Alternatively, the components of the network may be
combined to facilitate the designing process by allowing one assignment to encompass many
network components together.

network element

A system such as a switch or Digital Cross-connect System (DCS) or a single shelf such as an
Add-Drop Multiplexer (ADM). Another type of network element is a Digital Loop Carrier
(DLO).

network node

Maintains information on an intelligent network element that makes up a telecommunications
facility network.

CORBA API Developer’s Reference 317

Chapter A:

NPAC SMS (Number Portability Administration Center and Service
Management System)

Assists in administering Local Number Portability (LNP).

OBF (Ordering and Billing Forum)

A subcommittee of the Exchange Carriers Standards Association (ECSA). This forum
discusses operational ordering, provisioning, billing, and presubscription.

Object Management Group (OMG)

Formed in 1989 by a group of vendors for the purpose of creating a standard architecture for
distributed objects (also known as components) in networks. The architecture that resulted is
the Common Object Request Broker Architecture (CORBA).

Object Request Broker (ORB)

The programming that acts as a broker between a client request for a service from a distributed
object or component and the completion of that request. Having ORB support in a network
means that a client program can request a service without having to understand where the
server is in a distributed network or exactly what the interface to the server program looks like.
Components can find out about each other and exchange interface information as they are
running.

OMG (Object Management Group)

Formed in 1989 by a group of vendors for the purpose of creating a standard architecture for
distributed objects (also known as components) in networks. The architecture that resulted is
the Common Object Request Broker Architecture (CORBA).

ORB (Object Request Broker)

The programming that acts as a broker between a client request for a service from a distributed
object or component and the completion of that request. Having ORB support in a network
means that a client program can request a service without having to understand where the
server is in a distributed network or exactly what the interface to the server program looks like.
Components can find out about each other and exchange interface information as they are
running.

318 MetaSolv Software, Inc.

Ordering and Billing Forum (OBF)

A subcommittee of the Exchange Carriers Standards Association (ECSA). This forum
discusses operational ordering, provisioning, billing, and presubscription.

Packet Internet Groper (PING)

A program used to test whether a particular network destination on the Internet is online.

password

A word or string or characters recognized by automatic means, permitting a user access to a
place or to protected storage, files, or input/output devices.

ping (Packet Internet Groper)

A program used to test whether a particular network destination on the Internet is online.

port address

Maintains information on an equipment's assignable ports for transmission purposes. These
ports can be either physical or virtual as in the relationship with the circuit positions associated
with virtual (ST or VT) facilities. Port addresses can be either physical or "enabled" by the
physical, as in the relationship with the circuit positions associated with facilities.

The port address can also be identified with a node address used for assignment selection.
Other information can be maintained specific to the properties of the port, such as whether the
port is line or drop, or identified as east or west.

Product Service Request (PSR)

An order request for end user products provided by a LEC. End user products include local
dialtone services such as business lines and residential lines.

provisioning

The process of accomplishing the physical work necessary to implement the activity requested
on an order.

This normally includes the design and the activation processes. For an install of a circuit, this
would typically involve Circuit Design in MetaSolv Solution (making assignments) and
activating the circuit.

CORBA API Developer’s Reference 319

Chapter A:

PSR (Product Service Request)

An order request for end user products provided by a LEC. End user products include local
dialtone services such as business lines and residential lines.

rate code

Identifies the bit rate associated with a circuit, facility, or equipment. For example, DS0, DS1,
or DS3.

repeat trouble

Trouble reported on a service item two or more times within a specific period.

rollback

The undoing of partly completed database changes when a database transaction has failed.

SBO (Send Bill Ord)

A gateway event which must be associated with a task in the provisioning plan assigned to the
service request.

scripts

The APIs use SQL (Structured Query Language) script. A script is a program or sequence of
instructions that is interpreted or carried out by another program rather than by the computer
processor (as a compiled program is).

Send Bill Ord (SBO)

A gateway event which must be associated with a task in the provisioning plan assigned to the
service request.

service bureau

A data processing center that does work for others.

service category

Identifies the class of cell relay service for the Permanent Virtual Circuit (PVC). This
information is identified in both directions of the PVC to support asymmetrical virtual
services.

320 MetaSolv Software, Inc.

service item

A specific instance of a product or service. For example, a telephone line.

signal

An artifact that communicates information about an event. The point of reference for the API
documentation is the MetaSolv Solution product line. Therefore, when reading material about
signals, the direction of the signal in relation to the MetaSolv Solution determines whether it is
an inbound or outbound signal. When the MetaSolv Solution sends the signal, that signal is
called an "outbound signal". When the MetaSolv Solution receives the signal, that signal is
called an "inbound signal".

solicited message

A message issued by the MetaSolv Solution acting as a client to another vendor.

SONET (Synchronous Optical NETwork)

An optical interface standard that allows interworking of transmission products from multiple
vendors. It is a family of fiber-optic transmission rates from 51.84 Mbps to 13.22 Gbps,
created to provide the flexibility needed to transport many digital signals with different
capacities, and to provide a standard from which manufacturers can design.

staging tables

A set of interim database tables used by the ASR/ISI gateway when processing access service
request (ASR) files.

synchronous operations

An operation in which the invoking application gets the results of the operation immediately
upon the return of the call. The receiver of the operation acts upon that operation and returns
the results. No callback mechanism is used.

Synchronous Optical Network (SONET)

An optical interface standard that allows interworking of transmission products from multiple
vendors. It is a family of fiber-optic transmission rates from 51.84 Mbps to 13.22 Gbps,
created to provide the flexibility needed to transport many digital signals with different
capacities, and to provide a standard from which manufacturers can design.

CORBA API Developer’s Reference 321

Chapter A:

Target Identifier (TID)

Identifies a group of equipment associated as part of a system or network element. In the
MetaSolv Solution, the TID information is maintained on the Node tab of the Network
Element Properties window.

third-party

Describes developers who write interfaces to the MetaSolv APIs for MetaSolv customers,
allowing customers to access specific areas of the MetaSolv Solution database.

TID (Target Identifier)

Identifies a group of equipment associated as part of a system or network element. In the
MetaSolv Solution, the TID information is maintained on the Node tab of the Network
Element Properties window.

transmission rate

The bit rates associated with a circuit, facility, or equipment. For example, DS0, DS1, DS3, N/
A etc.

trouble

Any cause that may lead to or contribute to an end-user perceiving a failure or degradation on
the quality of service of a telecommunications service.

VCI (Virtual Circuit Identifier)

The part of the logical connection address on the ATM switch port where the physical NNI or
UNI circuit terminates. The PVC may be assigned one VCI per physical circuit. The VCI will
accompany the virtual path identifier (VPI) if the PVC Connection Type is "Channel"; it will
not be used if the type is "Path". In a combined identification, the two will be displayed as
VPI/VCL

virtual

A term that has been used in various areas of the telecommunications industry such as with
SONET, Frame Relay, and ATM. In a SONET environment, the MetaSolv Solution uses
"virtual" facilities the identify SONET auto-built ST and VT facilities as virtual facilities
because the Virtual Indicator on the Transmission Facility Circuit table. In the MetaSolv
Solution SONET application, the "virtual" facilities are used to transport other signals such as
DS3 and DS1 circuits. In Frame Relay and ATM, the MetaSolv Solution has used the "virtual"
term for the permanent virtual circuit (PVC). In the MetaSolv Solution, therefore, a "Virtual

322 MetaSolv Software, Inc.

Facility" is used in the realm of SONET auto-built STS and VT facilities and "Virtual Circuit"
is used when referring to the Frame Relay or ATM PVC.

Virtual Circuit Identifier (VCI)

The part of the logical connection address on the ATM switch port where the physical NNI or
UNI circuit terminates. The permanent virtual circuit (PVC) may be assigned one VCI per
physical circuit. The VCI will accompany the virtual path identifier (VPI) if the PVC
Connection Type is "Channel"; it will not be used if the type is "Path". In a combined
identification, the two will be displayed as VPI/VCI.

Virtual Path Identifier (VPI)

The logical connection address on the ATM switch port where the physical NNI or UNI circuit
terminates. The permanent virtual circuit (PVC) may be assigned one VPI per physical circuit.
The VPI will be accompanied by the virtual circuit identifier (VCI) if the PVC Connection
Type is "Channel"; the VPI alone will be used if the type is "Path". In a combined
identification, the two will be displayed as VPI/VCL

VPI (Virtual Path Identifier)

The logical connection address on the ATM switch port where the physical NNI or UNI circuit
terminates. The permanent virtual circuit (PVC) may be assigned one VPI per physical circuit.
The VPI will be accompanied by the virtual circuit identifier (VCI) if the PVC Connection
Type is "Channel"; the VPI alone will be used if the type is "Path". In a combined
identification, the two will be displayed as VPI/VCI.

work queue

A collection place for tasks associated with a service request. There are two types of work
queues—child (individual) and parent (group). A child work queue is, typically, set up for one
person. A parent work queue is most often set up for a group, department, or someone
responsible for managing task assignments.

CORBA API Developer’s Reference ~ 323

Chapter A:

324 MetaSolv Software, Inc.

Appendix B: API Error Messages and
Exceptions

The APIs return error messages by raising exceptions that use the WDIExcp or WDIError
structures. The error number identifies the general area in which the error occurred, as shown
in the following table.

Table 76: Error Number Ranges and Related Areas

Error Range Impacted Area

10000 to 19999 | System errors that can occur in all APIs.

20000 to 29999 |LSR API

30000 to 39999 |PSR API

40000 to 49999 | PSR Ancillary API

60000 to 69999 |Internet Services APIs

70000 to 79999 | Trouble Management API

80000 to 89999 | Work Management API

90000 to 99999 |Miscellaneous errors. These are not necessarily system related but
could be encountered by multiple applications.

The reason field in the WDIError and WDIExcp structures provides a text description of the
error condition.

MetaSolv Solution CORBA API Developer’s Reference 325

Chapter B:

326 MetaSolv Software, Inc.

Appendix C: Tips and Techniques

Understanding IOR files

The APIs can be configured to use IOR files to route events to external applications. Your API
System Administrator can tell you whether the APIs use IOR files in your environment.

IOR files are either created or overwritten if they already exist when the MetaSolv Solution
Application Server is brought up. IOR files contain a stringified object reference that encodes
the IP address of the server that hosts the object and additional information specific to the
ORB vendor that identifies the object reference.

CORBA.INV_OBJREF and CORBA.OBJECT_NOT_EXIST
Exceptions

A CORBA client can receive CORBA.INV_OBJREF or CORBA.OBJECT NOT EXIST
exceptions when it attempts to use a stringified IOR object reference or any other remote
object reference in any of the following cases:

¢ The CORBA server that hosts the object has been brought down

¢ The CORBA client has already called a destructor method in the IDL that destroys that
object

& The CORBA server times out

A typical situation where this might occur is where the server is re-configured to write [OR
files to a new location, but the client is still reading old IOR files from the original location.

CORBA.COMM_FAILURE Exception

The most common cause of a CORBA.COMM_FAILURE exception is the remote ORB
daemon being down, in addition to a server termination during a client operation. A newly-
obtained remote reference is generally not validated during the string_to_object or narrow()
operations. Instead, for the sake of efficiency, creation of a physical connection to the remote
host is delayed until the the first IDL operation is actually invoked. This is the point at which
most remote exceptions occur. For Java ORBs, NullPointerExceptions during these initial
connection operations can be the result of invalid mixed stub class and orb class types or
versions, as well as an attempt to marshal a structure (that is, to pass a parameter to a remote
object) that contains a null string or other null element.

MetaSolv Solution CORBA API Developer’s Reference 327

Chapter C:

For a full list of standard CORBA exceptions that are implemented by all CORBA-compliant
ORBs, see "The Common Object Request Broker: Architecture and Specification", section
3.17, available from the Object Management Group (OMPG) website. The OMG website is
located at http://www.omg.org.

Using the MetaSolv Solution APIs With Multi-
Threaded Clients

To use the API in a synchronous application such as a Web page, a multi-threaded client may
use a mechanism (such as Java's Object.wait) in the calling method and Object.notify or
Object.notifyAll in the notification object's result methods, which can be called by the ORB in
a separate thread. When the result is returned, the calling thread wakes up, gets the data from
the notification object, and continues processing. The notification object itself can be used as
the monitor object.

Developing Using C++

When your application is developed in C++, the general principles remain the same. You must
develop code to implement the callback object, and when linking object files to create an
executable, must link in both the client and server libraries provided by the ORB
vendor.Synchronization Primitives and C++

The C++ language does not provide synchronization primitives. If you use C++, you must use
primitives supplied by the host operating system (for example, semaphores) to achieve the
desired result.

C++ Troubleshooting
If you are using C++ as your implementation language:

¢ You must use a compiler version that supports the namespace feature.

¢ You may encounter a problem while compiling the MetaSolv IDL-generated source in
C++ where CORBA primitive types are not found.

This can be traced to a problem with the IDL generator. C++ namespace resolution
assumes that a CORBA::type, such as CORBA::char will be defined within the
MetaSolv::CORBA namespace. The MetaSolv Solution API naming conventions and
Java-based development do not permit this.

If you encounter this problem you must completely scope CORBA::types. For example, if
the generated code is:

typedef CORBA::char null;
You should change the code to:
typedef ::CORBA::char null;

328 MetaSolv Software, Inc.

Troubleshooting tips for API developers

Troubleshooting tips for APl developers

1.
2.
3.

Review the documentation.
Confirm that you have used appropriate development techniques:

Design application and exception logging and stack tracing into your application. Make
sure you have exception logging for all these cases:

+ CORBA exceptions

+ API exceptions

« Logic exceptions

+ Control logging using .ini or command line parameters.
Dump structure traces before and after export or import.
Use existing logging capabilities:

+ API server logging

« SQL logging

+ Console logging

+ CORBA logging

Using API server logging

There is one log file per API server. For example, LSR.LOG.

1.
2.
3.

Check the appropriate server’s error log.
If required, set the GATEWAY.INI LoggingOn parameter to "True".
If required, set the GATEWAY.INI TraceLevel parameter to the desired value:

+ 0= High level logging. Only error information.
« 1 =More detailed logging includes error information and some system information.
+ 2= Most detailed logging. Includes much more system information.

g Only use high trace levels when debugging, because these options generate significant
amounts of information.

Log returned data.

If required, set GATEWAY.INI PrintExportObjects parameter to "True". This logs the
values in objects in IDL structure format.

g This option generates significant amounts of information.

CORBA API Developer’s Reference 329

Chapter C:

Using SQL logging
1. Log SQL statements.
2. Ifrequired, set the GATEWAY.INI SQLLogging parameter to "True".

3. Verify database related issues.

g This option generates significant amounts of information.

Using console logging

For system errors, use BEA Administration Console logging. This option reports extreme
exception cases. For more information, see the BEA documentation.

Using CORBA logging
1. Use CORBA diagnostics provided by the ORB.
Know your ORB Tracing mechanisms.

Check CORBA diagnostics:

2
3
4. Determine the source of connections.
5. Determine the methods invoked.

6

Diagnose connection information.

For more information, see your ORB's documentation.

330 MetaSolv Software, Inc.

Appendix D: Transitioning from 4.2.1 to the
Application Server

After Release 4.2.1. the MetaSolv Solution Application Server replaced the individual API
servers used in earlier versions of the MetaSolv software. The Application Server introduced
new functionality in the MetaSolv Solution based on a distributed architecture. The business
logic and database access objects allow you to build different client graphical user interfaces
(GUISs) utilizing the same business logic code base and provide access to the business and
database objects through the use of CORBA interfaces. This allows our customers and
partners to extend the application server environment to meet internal needs. The following
picture shows a high-level overview of the new architecture:

MetaSolv Solution

Rich Clients
i MetaSolv Solution
Application Server (J2EE)

HTTP Server
Transaction Server

“html Senviet

Intranet Browser
Neutral Clients

External Systems

Browser Neutral rporate Systems

Figure 36: MetaSolv Solution Application Server Overview

This document is intended to show MetaSolv’s existing customers and partners how to
implement the new MetaSolv Solution Application Server. This document is specifically
targeted for users of the API architecture.

MetaSolv Solution CORBA API Developer’s Reference ~ 331

Chapter D:

Who needs to use the Transition and Planning Guide?

If you are upgrading from TBS v4.2.1 to v4.2.2 or M/5 this document is intended to provide
valuable information regarding the transition to MetaSolv’s new application server

environment.
Use
T iti .

M/4.2.1 rér;?é;on Application Server

API Server » M/4.2.2, M/4.3,

M/4.4, or M/4.5
Transition
Guide not
Use relevant

Transition
Guide

Application Server
M/5 or M/5.1

Figure 37: Who Needs to use this Document

Environment overview
The MetaSolv Solution API server architecture consisted of three platforms:
¢ Client: This platform is on the end-user’s machine. A Windows NT operating system is
recommended. It executes the GUI portion of the application.

¢ Database Server: This platform contains the database. It can be any type of platform
supported by Oracle. Typically, this platform is either Windows NT or UNIX.
& NT Server: This platform executes the processes of the background processor and the

MetaSolv Solution APIs. The background processor and the APIs can exist on the same
machine or on different machines.

332 MetaSolv Software, Inc.

Figure 38 shows the current two-tier architecture:

MetaSolv
Solution
Client

Database Server

SS——

Although this architecture proved robust, MetaSolv recognized the need to upgrade the

NT Server

Other
Interfaces

MetaSolv
Solution
Database

\/

CORBA
API

Third-Party
Systems

Vs
Z=

MetaSolv
Solution
Background
Processor

EAI
Software

Figure 38: Architecture Overview

architecture to allow for more scalability and better performance. The upgrade consists of
development of the MetaSolv Solution Application Server. The MetaSolv Solution

Application Server has a J2EE environment. The Application Server contains the API
products and provides additional thin-client functionality.

CORBA API Developer’s Reference

333

Chapter D:

Figure 39 illustrates the new architecture:

Other
Interfaces

Database Server Application Server

MetaSolv
Solution

MetaSolv
. Systems
Client Solution y
Datanlw/

< CORBA Third-Party

\L

\
h]

\/ | EAl
\& Field Software
MetaSolv Operations
Solution Portal
Background
Processor
NT Server Fiel.d
Operations
Portal Client

Figure 39: Three-Tier Architecture

The new architecture provides many benefits over the old environment. These benefits
include:

*

*

L 4
L 4

Open Standards-Based Architecture: A standard based architecture provides more
flexibility for both MetaSolv and its customers.

Scalability: The Application Server allows our customers to add additional capacity by
clustering application servers.

Performance: Better performance can be achieved by moving business processing onto the
application server, reducing network traffic, and saving database resources.

Recoverability: Automatic fail-over processing is achieved by clustering the application
servers.

Management: Better management tools exist in the new application server.

Platforms: Customers have a choice of platforms on which to run the Application Server.
Platforms supported are Windows NT 4.0, Windows 2000, HP-UX, and Sun Solaris.

The Application Server is the backbone of the MetaSolv Solution software suite. The initial
phase of the application migration involves the API products. This enables the customers to
start migrating to the Application Server by replacing the existing API architecture.

334 MetaSolv Software, Inc.

MetaSolv recommends:

*

Customers who have implemented the API architecture in TBS 2000 v4.2.2 or a prior
release move to the MetaSolv Solution Application Server. Old releases are supported
through MetaSolv Software’s Global Customer Care department.

Customers planning to implement the new API architecture should begin with the
MetaSolv Solution Application Server. By first implementing the new Application Server,
a future transition is avoided.

This document details changes required to implement the new Application Server architecture
and use the new versions of the APIs as well as detailing environment differences, interface
differences, and planning steps.

Summary of changes

Significant changes were made to create the MetaSolv Solution Application Server. These
changes are required to support a move to the J2EE coding standard. Each of these changes are
discussed in more detail later in this guide. These changes include:

*

*

New Architecture: The API architecture is a lightweight application server developed by
MetaSolv. It is a robust environment, but lacks the feature richness of a complete
application server. As a result, a commercially available J2EE application server is
replacing the API architecture. The vendor chosen by MetaSolv is SilverStream Software,
Inc. The application server software is shipped as part of the MetaSolv Solution product
line and does not require you to purchase anything from a third party. The new
architecture provides the option of supporting UNIX platforms.

New CORBA Vendor: MetaSolv has chosen new CORBA software to replace IONA’s
Orbix Web software shipped with the old API architecture. The software is SilverStream’s
JBroker. This software was chosen because it is integrated into the application server and
has enhanced performance capabilities. This software is shipped as part of the MetaSolv
Solution product line and does not require you to purchase anything from a third party.
This ORB inter operates with all other ORBs in the marketplace. Therefore, it does not
change your development environment. However, coding changes may be required if a
non-OMG (Object Management Group) binding approach was used to bind to the API
servers. An example of this is the IONA proprietary bind statement. To facilitate this
change, the application server supports the standard OMG binding options of
NameService and IOR publishing. This document details code changes required to make
this transition.

New Java VM: MetaSolv has moved to a Java 2 VM. This new Java VM replaces the
Microsoft VM formerly used in the API architecture. This software ships with the
MetaSolv Solution product and does not require the customer to purchase any software
from a third party. If you are a Java development shop, you can continue to use whatever
Java environment is in use with the API architecture. No upgrade is necessary. Your
current code executes in your VM and the communication between processes is provided
by CORBA.

CORBA API Developer’s Reference 335

Chapter D:

¢ New JDBC Driver: MetaSolv ships a new JDBC driver with the application server. This
JDBC driver replaces the Sequelink JDBC driver previously used. This software is
shipped as part of the application server and does not require any additional software
purchase. After you move to the application server environment, the Sequelink driver can
be uninstalled.

¢ Gateway Event Binding: To fully support the OMG standards, MetaSolv is changing the
binding options supported by the gateway event architecture. This is different from item
two above because the gateway event architecture initiates the bind to a third-party server.
MetaSolv has changed this software to support additional binding options, NameService
and IOR binding. In the past, only IONA proprietary binding was supported.

¢ Client Desktop Software: Since the IONA ORB is being retired as a component of the
product, the desktop software installed on a client desktop changes. This software is
known as the API client. A new version of the API client software replaces the software
used today.

Architecture transition overview

MetaSolv is releasing two environments for use in M/4.2.2, M/4.3, M/4/4, and M/4.5: the API
architecture and Application Server architecture. The API architecture ensures a customer can
transition to TBS 2000 v4.2.2 without making changes necessary to move to the MetaSolv
Solution Application Server. However, MetaSolv is retiring the API architecture. As a result,
you must implement the MetaSolv Solution Application Server before or as part of moving to
M/5 or later.

To implement the MetaSolv Solution Application Server some planning is required. Although
the two environments are functionally equivalent, the new Application Server enables choices
not available in previous releases. These choices are detailed in the following sections.

What hardware platform?

The API architecture can only be executed in a Microsoft NT/2000 environment. The new
Application Server supports Microsoft NT 4.0/2000, Sun Solaris, and HP-UX environments.
The customer must decide on what platform the application server executes. The new
application server is functionally equivalent on all three platforms.

Depending on what platform is chosen and the existing hardware inventory, you might require
additional machines, CPUs, or memory.

336 MetaSolv Software, Inc.

Architecture transition overview

Can my existing API architecture work with the new application
server?

This depends on what you want to do with it. However, if you are currently using the API
architecture, meet the recommended technical requirements in TBS 2000 v4.2.1, do not plan
to change the amount of work that is accomplished, and do not want to change the operating
system, you should be able to continue to use the API server box. However, this does not
address any new capabilities, such as recoverability and increased performance, and does not
address increased activity due to new functionality.

How do you ensure performance?

Performance is a complex question. The answer depends on many factors. MetaSolv has
developed a technical requirements and sizing guide to help you through this process.

How do you enable scalability?

As users and volume are added to the application, how do I ensure the environment will scale?
The new Application Server has several different scalability options such as clustering
additional hardware and expanding existing hardware capability. When setting up this
environment you must ensure a scalable technical environment is established. This could mean
choosing hardware configurations that are different than existing strategies. The scaling guide
covers options that exist for this category.

How do you enable recoverability?

One of the major new benefits the new Application Server has over the API architecture is its
support of automatic recovery. As with scalability, this needs to be designed into the hardware
architecture. The new MetaSolv Solution software has several different options to enable
recoverability. These are covered in the technical requirements.

What are the installation considerations?

As documented in the overview section, there are many changes that make up the new
Application Server. The main changes include the transition to new supporting software. For
the most part, these supporting software packages are installed and configured for you. The
following list details each package and any special steps.

¢ New Platform: This software is installed and configured through the install wizard. Once
this environment is installed and operational, the API architecture can be retired.

¢ New CORBA Vendor: This software is installed and configured through the install wizard.
By removing the API architecture, the old CORBA vendor’s software is removed.

¢ New Java VM: This software is installed and configured through the install wizard. If your
hardware platform is Microsoft NT or Windows 2000, the Microsoft VM is no longer

CORBA API Developer’s Reference ~ 337

Chapter D:

used. However, this software is not uninstalled when the API architecture is removed.
MetaSolv recommends you do not uninstall the Microsoft Java VM.

¢ New JDBC Driver: This software is installed and configured through the install wizard.
There are no additional installation and configuration steps as with the API architecture.
The new JDBC driver sits on top of the standard Oracle client. As a result, if the database
can be reached using a standard Oracle process, such as SQLPlus, then the JDBC driver is
configured. After the API architecture is removed, the Merant Sequel link server can be
uninstalled from the database server. These drivers can exist on any platform supported by
Merant. The new JDBC driver does not have an equivalent of the Merant server.

¢ Gateway Event Binding: No installation considerations.

Client Desktop Software: The client desktop software has been upgraded in this release. Each
client that has the “MetaSolv Solution API Client” installed must upgrade to the new software
version. This installation removes the existing version of the software and re-deploys the new
version. Perform this installation on each machine that has the “MetaSolv Solution API
Client” installed.

338 MetaSolv Software, Inc.

Architecture transition overview

What does the installation environment look like?

Figure 40 shows a typical installation:

Other
Interfaces
Database Server Application Server
MetaSolv 4 CORBA Third-Party
MetaSolv SolL_Jtlon = APl Systems
Solution Client
Database
- EAl
N Field Software
Operations
Portal
New JDBC Drive MetaSolv Solution Client
(Uses Oracle (new v ersion)
SQL*Net Connection)
Field
Operations
Portal Client

New Platform,
New CORBA,
New Java VM

Figure 40: Communication Diagram

CORBA API Developer’s Reference 339

Chapter D:

Transition project considerations

Define project to facilitate the transition of the API server to the new Application Server. This
project involves multiple parties in a customer organization and involves multiple tasks. This
section details some of the considerations for this project.

Roles

Account for the following roles in this transition. Depending on the size of the project this may
be one person or many. The following section details the skill sets necessary to complete the
transition.

*

Tasks

DBA: The DBA is responsible for configuring the Oracle connection to the database. The
DBA needs to uninstall the old JDBC drivers. Your DBA will also be involved in the
installation of the new Application Server.

Platform/Hardware Architect: This individual is involved in planning the appropriate
hardware configurations required for the new Application Server. This person must
consider performance, scaling, and recovery in their hardware configuration plan.

Application Developer: This individual is responsible for making the code changes
described in this document. As identified in previous sections, the coding changes are
required to move to standard OMG binding. A third-party software vendor could provide
this if the software being changed is an after-market product.

Tester: This individual is responsible for testing the MetaSolv Solution Application Server
at the customer site. This individual is responsible for certifying the deployment before
installation.

Installation Expert: This individual is responsible for installing the software for both the
new Application Server and the MetaSolv Solution client.

Project Manager: This individual manages the multiple tasks required for a successful
transition.

The following is a task list for consideration before starting this transition. This list offers
suggestions; additional tasks may be required. This plan assumes the API architecture is in
place and in use. If this is a totally new install, this plan gives you a good start on project
planning.

*

Environment Planning

Hardware Planning: The new Application Server has many more options in terms of
platforms, scalability, and recovery than existed in the API architecture. In addition, its
hardware requirements are different. The customer needs to determine the necessary
hardware environment. The individuals involved in this process are the DBA, platform/
hardware expert, and the installation expert. This task should take about a week.

340 MetaSolv Software, Inc.

Transition project considerations

¢ Installation Planning: The installation planners should consider key milestones required
for the installation of the Application Server. This task must identify the key milestones.
All dependencies must be identified including hardware acquisition, development, and
testing. The project manager must own this task. This task should take about a week.

¢ Database Planning: The hardware-planning task identifies the supported configurations.
The DBA is responsible for this role. This task should take about a week.

Work with Software Vendors: For purchased software the customer must coordinate with
the vendor to get a release of the software that supports the Application Server. The
project manager and installation experts are typically involved with this step. The duration
of this task varies.

¢ Development

*

Impact Assessment: As identified in the previous sections, coding changes are
required to existing applications to fully implement the Application Server. A
customer must review where the API server is used today. For each of these locations
the binding is impacted. This document details the impact. The application developer
and project manager are usually involved with this task. This task should take about a
week.

Establish an Install Test Environment: A test environment must be established to
complete development and testing. The installation expert is usually involved with
this task. This task should take about a week.

Develop Software: For custom developed applications, the customer must make the
coding changes detailed in this document for each impacted area. It takes about a
week to make the changes to each impacted area when transitioning the code to the
new structure. This time estimate does not apply to new development. The application
developer is usually involved with this task.

Unit Testing: For custom-developed applications, the changes made in the previous

task must be tested. It should take about two days to fully test the changed code; new
code takes longer. The application developer is usually involved with this task.

& Pre-Production

*

Upgrade Testing: Upgrade testing involves testing the upgrade steps. This task
involves performing data upgrades, installing new software, and verifying installation
steps. This step ensures the actual upgrade is successful. The individuals typically
involved are hardware/platform expert, DBA, and installation expert. The time
required to do this testing varies depending on the environments complexity.

Business Scenario Testing: Business Scenario testing should be conducted against the
environment built in the previous step. This testing should verify the supported
production business scenarios. The testing should ensure all interfaces from the
Application Server to the other applications work in the production environment.
Include testing for all interfaces, both custom developed, and commercially available
products. Without this testing you cannot be sure of a fully functioning production

CORBA API Developer’s Reference 341

Chapter D:

environment. Individuals typically involved are the tester, application developer, and
installation expert.

+ Environment Testing: This task should test any performance and fail-over
configurations. This testing ensures the deployed environment works in the
production environment. Individuals typically involved are the hardware/platform
expert, DBA, and installation expert.

& Production

+ Install and Configure Hardware: Install the hardware required. Individuals typically
involved are the hardware/platform expert, DBA, and installation expert.

+ Deploy Software to Middle-Tier: Execute the deployment process. This may involve
upgrading both the MetaSolv Solution software and other applications. Individuals
typically involved are the hardware/platform expert, DBA, and installation expert.

+ Upgrade Client Machines: Upgrade the API client installation on each user’s desktop.
The installation expert performs this task.

API code transition

The transition to the MetaSolv Solution Application Server architecture requires changes to
existing applications using the API architecture. These changes are fairly mild and involve the
CORBA binding process, but they are required for the code to execute against the new
environment.

The binding process is the function of connecting a CORBA client and server together. The
client initiates the process. To complete the process, a client must obtain an object reference of
the server and connect to it. The CORBA standard provides two ways of accomplishing this:

¢ Use an IOR of a server that has been provided as a string to obtain the object reference of
the server.

¢ Use a NameService to obtain the object reference of the server.

IONA Technologies supported a proprietary method of getting the object reference, the bind
statement.

One of the main changes occurring with the introduction of the new Application Server is the
move to support OMG standards for the binding process. This move enables our customers to
select the vendor of choice for the CORBA software. Prior to this release we supported two
types of binding: IONA’s proprietary bind and IOR binding. The API architecture supports
both of these binding types. However, the new Application Server only supports NameService
and IOR binding. Vendor proprietary methods are not supported. This means to move to the
new Application Server, vendor applications and custom development applications must move
to one of these two binding types. This section describes the changes necessary to implement
this functionality.

342 MetaSolv Software, Inc.

IOR bind method

IOR bind method
Background

The API architecture and the MetaSolv Solution Application Server architecture both support
IOR binding. This type of binding is supported by the server processes creating a flat file
containing the stringified object reference. A client can read this object reference from the file,
convert it to a real object reference using a CORBA function, and connect to the server.

To create IOR files, the .INI parameters are changed in the GATEWAY.INI file. These
parameters are the StrictOMG (API only) and IORPath settings. In the API architecture, the
StrictOMG parameter needs to be set to true. In the Application Server platform, this
parameter is ignored and the IOR is always produced. The IOR is written to the location
specified in the IORPath statement. These files are named using the server name with an
extension of IOR. These files are produced when the server is initialized. For the exact names
of the server see the API Developer’s Guide. This guide explains how the CORBA servers are
named.

The server writes the IOR file to disk. Client machines that want to use this mechanism must
access this file. There are two ways to accomplish this; distribute the IOR file to the client
machine or have the client and server access a shared-drive location. Distributing the IOR can
be very problematic because the IOR file is recreated every time the server is restarted. The
distribution process must account for this condition. The shared-drive method avoids this
problem because both the client and the server access the same drive location. MetaSolv
recommends using the shared-drive approach to access the IOR file.

IOR bind method—sample code

This code example illustrates how to use the IOR binding mechanism as opposed to the IONA
binding process. The “Hello API” sample application code provided with the MetaSolv APIs
uses the IOR binding mechanism. The following steps are required to set up the IOR bind
mechanism:

1. First set Gateway.INI parameters in order for the MetaSolv Solution to create an IOR file:
[System]
StrictOMG=true
IORPath=<directoryname>
2. Locate the bind code. The code should look something like this.
ORB.init (args, null);

String hostname = "MetaSolv Solutionapihost"; // machine name
of API host

CORBA API Developer’s Reference 343

Chapter D:

String servername = "DLRSERVER"; // MetaSolv Solution API
CORBA

//server name

try |

WDIRoot aWDIRoot = WDIRootHelper.bind(":"+servername,

hostname) ;

}

catch (SystemException se) {

System.out.println ("Unable to bind to server: " + se);

)

MetaSolv.CORBA.WDI.ConnectReqg reqg = new
MetaSolv.CORBA.WDI.ConnectReq() ;

Reg.userName = "";
Reg.passWord = "";
WDIManager aWDIManager = aWDIRoot.connect (req);

The “.bind” function is IONA’s proprietary way of binding to the server.

Change the code found in item two to read the IOR from a file, convert it to an object, and
narrow the scope of the object. After the object is narrowed, then processing can continue
as usual. This logic is not placed in program order. For the exact code, reference the
sample applications.

orb = ORB.init (args, null);

// Connect to the DLR API Server and construct a proxy for
the

// root object.

String iorfile =

System.getProperties () .getProperty (DLR IOR FILE PROPERTY);

// Set a system property on command line using -D (for Sun)
or /d: (for MS)

// Block A J///////TTTTTTTTTTTT 7T

if (iorfile == null)
throw new Exception("'" + DLR IOR FILE PROPERTY + "' system
property not set on command line.");

System.out.println ("IOR file="+iorfile);
String ior = readIOR(iorfile);

System.out.println ("DLR IOR="+ior);

344 MetaSolv Software, Inc.

IOR bind method

L1177 77 7777777777777 777777777777

The block of code above marked Block A shows the changes required. Through standard Java
file operations, the IOR string produced by the server is inserted. The name of the file is
passed in from a command line parameter. Remember, the client must have access to the IOR
file produced by the server. The best way to do this is by accessing a shared drive. The data is
read using the readlOR function below.

Here is an extract of the readIOR function. This contains standard Java code to read a file:

private static String readIOR(String fileName) throws
IOException

{
byte[] iorBytes = new byte[5000];

int size = 0;

FileInputStream fs = new FilelInputStream (fileName) ;
try |

size = fs.read(iorBytes);

} finally {
fs.close();

}

return new String(iorBytes, 0, size);}

//Block B//////////171/7 177777777777 77777
org.omg.CORBA.Object obj = orb.string to object (ior);
WDIRoot aWDIRoot = (WDIRoot)WDIRootHelper.narrow(obj);
L1777 777 7777777777777 7777777777 777777777
The block of code marked Block B above converts the string read from the file into an object
reference. This is done using the string_to_object reference. The narrow function takes that
object reference and casts it to the correct object type. Once this is done, the remaining code is
the same. The code captured below shows how the object reference is used to access other
methods. This is the same code used in the bind method without any additional changes.
MetaSolv.CORBA.WDI.ConnectReqg reqg = new
MetaSolv.CORBA.WDI.ConnectReq() ;

reg.userName

mwiw .,
I4

reqg.passWord = "";

WDIManager aWDIManager = aWDIRoot.connect (req);

CORBA API Developer’s Reference 345

Chapter D:

NameService bind method

Background

A CORBA NameService is a mechanism defined in the CORBA standard for connecting
clients and servers. The NameService provides an “index” of available servers to which it can
connect. Each of these servers are found through the use of a name.

The MetaSolv Solution Application Server enables a NameService to facilitate this binding
method. There are three methods used to locate the NameService: the IOR file method, the
Resolvelnitial Context method, and the URL method.

The IOR method of finding the NameService is similar to the process described in the
previous section, a file is read that contains the IOR. The IOR is then converted to an object
reference for use by the NameService. Sample code is shown later in this section for this bind
mechanism.

The resolve initial references method of finding the NameService is also available. The
resolve initial references method is an OMG standard for identifying the NameService. The
configuration parameters used by various CORBA vendor’s software to find the NameServer
varies. For example, IONA Technologies uses parameters in a configuration file. Review the
documentation provided by your CORBA vendor for details on how the NameService is
found. Sample code is shown later in this section for this bind mechanism.

The third method a third party can use to bind to an API running in the MetaSolv Solution
Application Server is the URL Bind Method. With this method, an HTTP can be used to get
the stringified IOR from the NameService. This type of binding is only supported in the new
Application Server architecture.

1. Your first step is to locate the bind code. The code should look something like this:
ORB.init (args, null);

String hostname = "MetaSolv Solutionapihost"; // machine name
of MetaSolv //Solution API host

String servername = "DLRSERVER"; // MetaSolv Solution API
//CORBA server name

try {

//Block C//////////////77/777/7/7/77777777/7777777

WDIRoot aWDIRoot = WDIRootHelper.bind(":"+servername,

hostname) ;
[11777
}

catch (SystemException se) {

System.out.println ("Unable to bind to server: " + se);

346 MetaSolv Software, Inc.

NameService bind method

)

MetaSolv.CORBA.WDI.ConnectReqg reqg = new
MetaSolv.CORBA.WDI.ConnectReq() ;

Reg.userName = "";
Reg.passWord = "";
WDIManager aWDIManager = aWDIRoot.connect (req);

g The “.bind” function is IONA’s proprietary way of binding to the server.

2. The next step is to replace it with one of the following two methods:

Binding to the NameServer with an IOR—sample code
//BLock D ///////1111]111]111]1]1]1]11111111]/

org.omg.CosNaming.NameComponent[] name;

L1177 7 7777777777777 7777777777 77777777777777

// Connect to the NameService using the IOR. Published by the
// MetaSolv Solution Application Server

// get the command line parameter

String iorfile =
System.getProperties () .getProperty (NS IOR FILE PROPERTY);
// Set a system property on command line using -D (for Sun)
or /d: (for MS)

if (iorfile == null)

throw new Exception

(""" 4+ NS IOR FILE PROPERTY + "' system property not set on
command line.");

The previous block of code defines the name component variable. The first line of the sample
code is an OMG standard variable used for the lookup in the NameService. This variable is
used later. The rest of this code obtains the location of the NameService IOR file. The location
is passed in as a parameter on the command line of the program. The NameService IOR is
written to the location specified in the IORPath statement of the GATEWAY .INI file. This
NameService IOR file is named NAMESERVICE.IOR. The best way to locate the file is to
have the client and server access a shared-directory location.

System.out.println ("IOR file="+iorfile);
String ior = readIOR(iorfile); //read the IOR
System.out.println ("NS IOR="+ior);

CORBA API Developer’s Reference 347

Chapter D:

org.omg.CORBA.Object obj = orb.string to object (ior); //
convert to object ref

org.omg.CosNaming.NamingContext rootContext =
org.omg.CosNaming.NamingContextHelper.narrow (obj); //narrow
the object

System.out.println("loaded orb
class:"+orb.getClass () .getName ()) ;

The previous block of code reads the IOR contained in the file. It converts the IOR to an object
reference and narrows the object reference to a CosNaming object. After these steps are
completed, the program has the reference to the NameService that is running on the
Application Server. The program can now use the NameService to look up the CORBA server
it is using.

//populate the name component for lookup

(block A)

name = new org.omg.CosNaming.NameComponent[1l];

name[0] = new org.omg.CosNaming.NameComponent ("DLRSERVER",
ll");

// "lookup DLR Server";
(block B)

org.omg.CORBA.Object dlrobj = rootContext.resolve (name) ;

// narrow the object ref for dlr server

WDIRoot aWDIRoot = (WDIRoot)WDIRootHelper.narrow(dlrobj) ;

The next step in the process is to look for the actual CORBA server you want to bind to and
obtain its object reference from the NameServer. This process is shown in the previous block
of code (code block A).

Create the objects used to query the NameService. The Application Server uses a single level
of naming. The GATEWAY .INI file controls these names. The “servers” section connects the
name in the NameService to the object. For example:

DLRSERVER=MetaSolv.CORBA.WDIDLR.WDIRoot,MetaSolv.WDIDLR.WDIRO
otImpl

The name “DLRSERVER?” is registered in the NameService for the object on the right side of
the "equals" sign. In the previous code fragment, “DLRSERVER” was used as the name.

348 MetaSolv Software, Inc.

NameService bind method

The resolve method is used to look up the object in the NameService (code block B). The
resolve method returns a standard CORBA object. This object then needs to be further refined
using the CORBA narrow method. After using this command, the root object reference is
obtained and the other methods on the server are used. The code fragment below shows this
functionality:

MetaSolv.CORBA.WDI.ConnectReqg reqg = new
MetaSolv.CORBA.WDI.ConnectReq() ;

reg.userName = "";

reqg.passWord = "";

System.out.println ("Connecting to MetaSolv Solution API
Server...");

WDIManager aWDIManager = aWDIRoot.connect (req);

Binding to the NameService with resolve initial_references—
sample code

This method of finding the NameService relies on the CORBA standard of

resolve initial references. This method is available once the ORB has been initialized and
provides the object reference of the NameService. Although this method is a CORBA
standard, each CORBA vendor implements a different way to locate the NameService. Most
of the time configuration parameters such as .INI files are used. Refer to your CORBA
vendor’s documentation for more details. The following code sample shows how to use this
method to connect to the NameService. This code assumes the configuration parameters are
set to identify the location of the NameService:

org.omg.CosNaming.NameComponent[] name;

org.omg.CORBA.Object obj =
orb.resolve initial references ("NameService");

org.omg.CosNaming.NamingContext rootContext =

org.omg.CosNaming.NamingContextHelper.narrow (obj); //narrow
the object

System.out.println ("loaded orb
class:"+torb.getClass () .getName ()) ;

The previous block of code defines the name component variable. This variable is an OMG
standard variable used to do the look up in the NameService. It is used later. Next, the object
reference of the NameService is obtained and stored in a CORBA object. This is done using
the resolve initial referenences method passing in the service name. The CORBA standard
for the NameService service is the string “NameService.” To be useful, cast it into a

CORBA API Developer’s Reference 349

Chapter D:

CosNaming object. This is accomplished using the narrow method. The program can now use
the NameService to look up the CORBA server it is using.

//populate the name component for lookup

name = new org.omg.CosNaming.NameComponent[1l];

name [0] = new org.omg.CosNaming.NameComponent ("DLRSERVER",

"");

// "lookup DLR Server";

org.omg.CORBA.Object dlrobj = rootContext.resolve (name);

// narrow the object ref for dlr server

WDIRoot aWDIRoot = (WDIRoot)WDIRootHelper.narrow (dlrobj);
The next step in the process is to look for the actual CORBA server you want to bind to and
obtain its object reference from the nameserver. This process is shown in the previous block of
sample code. Now create the objects used to query the NameService. The Application Server

uses a single level of naming. The GATEWAY .INI file controls these names. The “servers”
section connects the name in the NameService to the object. For example:

DLRSERVER=MetaSolv.CORBA.WDIDLR.WDIRoot,MetaSolv.WDIDLR.WDIRootImpl

The name “DLRSERVER?” is registered in the NameService for the object on the right side of
the "equals" sign. In the previous code fragment, “DLRSERVER” was used as the name.

To look up the object in the NameService, the resolve initial references method is used. The
resolve method returns a standard CORBA object. This object is refined further using the
CORBA narrow method. After using this command, the root object reference is obtained and
the other methods on the server are used. The code fragment below shows this process:

MetaSolv.CORBA.WDI.ConnectReqg reqg = new
MetaSolv.CORBA.WDI.ConnectReq() ;
reg.userName = "";

reqg.passWord = "";

System.out.println ("Connecting to MetaSolv Solution API
Server...");

WDIManager aWDIManager = aWDIRoot.connect (req);

URL bind method—sample code

The third method used to bind to an API running in the MetaSolv Solution Application Server
is the URL Bind Method. With this method an HTTP can be used to get the stringified IOR
from the NameService. This type of binding is only supported in the new Application Server
architecture.

To use this method of obtaining the IOR, an .INI parameter is enabled in the GATEWAY.INI
file. This parameter is the URLNamingServicePort settings. This parameter is located in the

350 MetaSolv Software, Inc.

URL bind method—sample code

system section of the GATEWAY.INI file. By default this parameter is commented. To
uncomment it, remove the semicolon and restart the machine.

Once the parameter is enabled, a standard URL request can be used to return the IOR
reference. The reference returned is to the API server. So you must format the URL request in
the following way:

http://<hostname>:15000/DLRSERVER

hostname: The hostname contains either the IP address or host name of the machine running
the API architecture.

15000: The port defined in the GATEWAY .INI file for the URLNamingServicePort
parameter. By default the value is 15000.

DLRSERVER: The name of the desired server object. This is defined in the GATEWAY.INI
file in the "servers" section.

When this request is complete the IOR is returned. This method can be tested using any
browser by typing the URL address in the location field. The browser returns the IOR. After
the IOR is returned the same code used in the IOR bind method section is used. The only
difference in the procedure is the file access to read the IOR can be omitted.

Sample code

1. eSet GATEWAY.INI parameters to activate this processing in the MetaSolv Solution
Application Server. This activation is done by uncommenting the line in the .INI file:

[System]
URLNamingServicePort=15000

2. Locate the bind code. This bind code should look something like this.
ORB.init (args, null);

String hostname = "MetaSolv Solutionapihost"; // machine name
of MetaSolv //Solution API host

String servername = "DLRSERVER"; // MetaSolv Solution API
//CORBA server name

try |

WDIRoot aWDIRoot = WDIRootHelper.bind(":"+servername,

hostname) ;

}

catch (SystemException se) {

System.out.println ("Unable to bind to server: " + se);

)

CORBA API Developer’s Reference ~ 351

Chapter D:

MetaSolv.CORBA.WDI.ConnectReq reqg = new
MetaSolv.CORBA.WDI.ConnectReq() ;

Reg.userName = "";
Reg.passWord = "";
WDIManager aWDIManager = aWDIRoot.connect (req);

g' The “.bind” function is IONA’s proprietary way of binding to the server.

3. Change the code found in item two to read the IOR from the naming service URL, convert
it to an object, and narrow the scope of the object. After the object is narrowed the
processing can continue as usual.

orb = ORB.init (args, null);

// Connect to the DLR API Server and construct a proxy for
// root object.

String URLref =
System.getProperties () .getProperty (URL IOR FILE PROPERTY);

// Set a system property on command line using -D (for Sun)
or /d: (for MS)

//Block E //////// /1777777777700
URL url = new URL (URLref);

URLConnection conn = url.openConnection();

int len = conn.getContentLength();

if (len == -1) throw new IOException ("URL not found:
["+SUrl+"] ") ,.

InputStream in = (InputStream)conn.getContent(); // get the

data from the request

byte[] bior = new byte[len];

in.read(bior);// read IOR from input stream
String ior = new String(bior);// convert to string

L1777 7777777777777 7777777777777 777777777777777

The block of code marked Block E above shows the required changes. The URL to connect to
is passed in from a command line parameter.

org.omg.CORBA.Object obj = orb.string to object (ior);
WDIRoot aWDIRoot = (WDIRoot)WDIRootHelper.narrow(obj);

352 MetaSolv Software, Inc.

Gateway events functionality changes

The block of code above converts the string retrieved from the URL into an object reference.
This is done using the string_to_object reference. The narrow function takes that object
reference and casts it to the correct object type. Once this is done the remaining code is the
same. The code captured below shows how the object reference is used to access other
methods. This is the same code used in the bind method:

MetaSolv.CORBA.WDI.ConnectReqg reqg = new
MetaSolv.CORBA.WDI.ConnectReq() ;
reg.userName = "";

req.passWord = "";

WDIManager aWDIManager = aWDIRoot.connect (req);

Gateway events functionality changes

The MetaSolv Solution gateway event functionality is also changing for this release. The
changes are being made to allow for better integration with the new Application Server and to
provide additional functionality. Unlike the changes described in previous sections, these
change impact both the API architecture and the MetaSolv Solution Application Server
architecture.

Gateway events provide a mechanism for the MetaSolv Solution to notify a third-party
application to start an activity. The third-party application receives this event via a CORBA
method call. In this case, the MetaSolv Solution software is the client and the third-party
application is the server. After receiving the call, the third-party application performs the
appropriate actions. There are three types of gateway events in previous releases. The gateway
events are:

¢ Standard Gateway Event: The standard gateway event is an event defined by a third party.
When the event is invoked, the third party is notified the event has occurred and key
related data is passed to the third party. These events can be related to both work plans,
PSRs, and trouble tickets.

¢ Billing Gateway Events: The two billing gateway events send billing information to the
third party. These two events are Send Billing Customer (SBC) and Send Billing Order
(SBO). These events differ from the standard gateway event because they contain billing
data and are not defined by the third party.

¢ SOA Gateway Events: The SOA application contains many gateway events and is used to
interact with a third-party LSOA application. These events differ from a standard gateway
event due to the type of data they send and the fact they are tightly coupled to the
MetaSolv Solution. These events are not defined by the third party.

For more detailed information on gateway events see “The signal handling pattern” on page 37

CORBA API Developer’s Reference ~ 353

Chapter D:

Middle-tier triggering

The main architectural change for the MetaSolv Solution M/5 release is the ability to trigger
standard gateway events from the middle-tier server. This behavior occurs in both the API and
Application Server environments. This change was made to enable a more robust triggering
method. In previous releases, the triggering occurred on the MetaSolv Solution client
application. By moving the triggering to the middle tier, fewer connections are maintained to
the third party, automatic retries are enabled, and less client configuration is necessary.

To enable this functionality, two new statuses were added to the gateway events. These
statuses indicate the intermediate state between the user asking for a triggering event and the
event actually being sent to the third-party applications. A user sees these states in the gateway
event status windows located in the work management queue, the PSR order window, and the
Trouble report window. These states are:

¢ Sending: An event in "Pending" status has been triggered by the user or auto-signaled. The
status of the event has changed, but not picked up by the middle-tier triggering server and
communicated to the third-party application. When the middle-tier triggering server
receives the event and communicates it to a third-party application, the event status
changes to "Waiting". If the event cannot be communicated to the third-party application,
the status of the event changes to "Error".

¢ Terminating: An event in "Waiting" or "In-progress" status has been “reactivated” by the
user using the GUI. These two statuses indicate the third-party application is processing
the event. The fact the user has terminated the event must be communicated to the third-
party application. The terminating state is the transition state before the event is returned
to "Pending" status and indicates the third-party application was not notified of the status
canceling. Once the middle-tier server can communicate this status, the event is changed
to "Pending".

No third-party coding changes are required to support this new processing. The middle-tier
server sending the events uses the same CORBA methods used in the past. The only impact
you see is a reduced number of connections. However, some additional parameters are
captured when a gateway is defined. This process is described in the next section.

This change only applies to the standard gateway events. The billing and SOA events are not
yet converted to this architecture. These events are still invoked directly from the client to the
third-party application. This transition will be made in a later release.

354 MetaSolv Software, Inc.

New binding methods

New binding methods

Background

As with the MetaSolv Solution Application Server, the MetaSolv Solution gateway event
architecture is moving to an OMG standard for binding the client to the server. The reason for
this change is to enable the choice of open technologies for our customers and MetaSolv In
previous releases, the gateway event architecture supported only the IONA bind method. This
meant you could only send gateway events to a server running under an IONA ORB. In this
release, the IONA bind, IOR binding, and NameService binding are supported.

To enable this support the method of defining gateways in the MetaSolv Solution has changed.
Additional parameters are defined. Changes are required in the third-party applications to
allow the CORBA standard binding. These changes are standard CORBA coding techniques
and detailed later in this section.

CORBA API Developer’s Reference 355

Chapter D:

Defining a gateway

The way a gateway is defined changed with the release of TBS 2000 v4.2.2. These changes
enable the triggering of events from the middle-tier server, the definition of multiple bind

locations, and better restart capabilities. The new gateway window is shown next. .
Ble Edt W= st Opbons Wirdow el

T & B o@D B OF B OB O@H O OE

Guidieks Castlure Exgusiing Fhat Eznprent IWfmessaine Woakliger Rusotiv] Swbgrowd Pl =

m & F OB X

Tdone FhwEvew: Kam Bindis B Diadak
[Gatewsy =10]
— Gale
22TESTGATEWAY-DLR = H i [Fies Gl Telret
o] ‘::TEETEA.E.\U}E\YLSR -1 -4 e alevasy Lielmson
51 422TESTGATEWRY-PSR Lo [+ DIDLR =]
=] A22TESTINTEGRATION Mumber of Rsties: |5
H AE GATEWAY Fiely Irhered bocst I:__[_—
5] AMINY GATE o
=] fadbercaion
] Becky's LSH Gatesay
=M ?:'_"'3;5” Lger |0 [DEFAOLT
[i o Moo
o] Creit Cand Yalidaton e [rore ﬂi— ------------------------
1= -ft ED'FER Bilig
=] GaidEavek Second Tes
| GanFavekTest
= -fi1 Inbounds

=l g teenat Serdcas —
ol Kimz PSR BEiling

=l m L=snst Dat=may

=l % Lucent Activev G ateray

i Hary PSR Biling

b
¥ SAVG
§ Pt Afsrptansantan, ior
35 event2
F-i7 FSR ancllay
& B8 PSR Anclan armiber ol =

1] | x

Figure 41: New Gateway Window

New fields are added that control processing of the middle-tier server. The field names and
associated functionality are:

¢ Number of Retries: When a standard gateway event is in "Sending" status, the middle-
tier event server attempts to trigger the event to the third-party application. If the event
cannot trigger, a retry process is started. This field indicates how many times a triggering
event is retried before the event is marked in error. The default is five.

¢ Retry Interval (secs): This field indicates the delay before trying to resend an event. This
time interval is designed to enable the third-party application time to recover. The default
is 30 seconds.

356 MetaSolv Software, Inc.

New binding methods

*

User ID: This field is required to connect to the third-party application. This field allows
one user ID for all connections to the third-party application. This User ID field was
added because the middle-tier event server does not have the user ID and password of the
user who initiated the event or the definition of every MetaSolv Solution user in the third-
party application. The only impact to third-party applications is if they used this user ID
for identification of the person initiating the event, this user ID needs to change to the user
ID contained within the WDIEvent occurred structure sent with the event (see below).
This user ID contains the identification of the actual user who initiated the event. See the
code sample below:

struct WDIEvent

{

long

string

long

long

long

string

}i

*

* 6 o o

eventVersion;

eventName;

documentNumber; /// An oracle generated sequence that uniquely
/// identifies a Service Request in the MetaSolv
/// Solution database.

taskNumber; /// An oracle generated sequence that uniquely
/// identifies a task in the MetaSolv Solution
/// database.

servIitemID; /// An oracle generated sequence that uniquely
/// identifies a service item in the MetaSolv
/// Solution database.
/// Note this value is only supplied for an
/// item level gateway event.

userlD; /// A MetaSolv Solution user ID.

Password: The Password field is required to connect to the third-party application. This
field allows one password to be used for all connections to the third-party application.
This was done because the middle tier event server does not have the user ID and
password of the user who initiated the event or the definition of every MetaSolv Solution
user in the third-party application.

During the upgrade new data is created and the values are used as defaults. If the defaults
need to change, each gateway can be edited using the gateway window shown above. The
defaults are:

Number of Retries: 5

Retry Interval (secs): 30

UserID: Default

Password: Default

The second change made to gateway maintenance is to enable the definition of multiple
binding locations and type of binding to use for each gateway binding location. The type of
binding allows the identification of the connection to that gateway. The options are [ONA,
IOR, and NameService. Another change is functionality that allows gateways to have multiple

CORBA API Developer’s Reference 357

Chapter D:

bind locations defined. This enables the MetaSolv Solution event architecture to try different
locations if it cannot bind to a server. Figure 42 illustrates binding options:

* Telecam Busingss Solutlon - Dev422 - Backoround Servers: FIRST AVAILABLE _ =8|

q_ﬁdh-‘:%mrhﬁ?@mﬂﬁ

Cucilikk: CastOue Esgiwctig Fhet Eqoprest bfmcosies Wokbiont Rspotiv] Swhgrowd Frafwcese Sop

%iﬁ{?ﬂx

-~ Fhm Evir: Kom Bindis B Diadaks

Bl Edt Wew List Opbons Window Hela

S22TES TEATEWT-DLR = Bundirg Tops
AZITESTEATEWEYLSR

i 1 422 TEE TGRATEWAY PSR mm) :,:

[-fT1 22TESTINTEGRATION ==

H §“—: RATEwAAT [0 -

1= {1 AHDY GATE !

=] fadbercaion - Bi -

= Becky'z LSR Gatesay E“j‘?g

i i Biing 12 Locaton: |

= Chuis Gale Servios BHame: 1

o] Creit Cand Validaton

= -fit E0 PSR Biling (31

= % Gairavek Sacand Tes! st Hame: Bpgur;

o] GanFauekT et

- —— Seivel Hame. [EveniSeen

F ftaingl Sersas |—

o] % Kims PSR Biling

1= ﬂ L=snss Gat=may

Fl Lucant Activew Galeray
Mary PSR Biling

Bl 3 Mike PSF Biling
H Bew Gatereay Detndion
B bipliireginsior
¥ HEE
IF bt/ s aanitan ior
£ o2
=511 PSR aSncliay
= FER Anclan [arother ol =|

1] |]

Figure 42: MetaSolv Solution Gateway Binding Window

The treeview on the left now has the binding information defined. The multi-color lightning
bolt represents a binding option. For each binding option, detail information is captured. This
is shown on the right side of the window. The following list details the information:

¢ Binding Type: Indicates what binding mechanism to use for this binding location. The
options are IONA, IOR, and NameService.

¢ Binding Location: Indicates the path to locate the IOR for binding. This path is used for
IOR and NameService binding. This can be expressed as a standard windows path
(C:\ior\files) or a URL (http://srvg/ns.ior).

¢ Binding Service Name: This field indicates the name of the service to request to obtain the
WDIRoot reference if using NameService binding.

358 MetaSolv Software, Inc.

IOR binding to third-party applications

¢ IONA Host Name: This field was once detailed at the gateway level and is used by the
IONA Bind process to find the host name of the binding server to bind to. This field
applies to [IONA binding only.

¢ IONA Server Name: This field was once detailed at the gateway level and is used by the
IONA bind process to find the binding server to bind to. This field applies to IONA
binding only.

When multiple binding locations are defined, the bind process attempts to connect them in the

order defined in the tree view on the left. Each bind location can use a different binding

approach.

During the upgrade, a binding location is created. This binding location has the same host and
server name used for previous release. Only one binding location is created.

A Warning! There is no immediate impact to third-party applications by these changes.
However, when a customer migrates from the API architecture to the MetaSolv Solution
Application Server, the binding process should be changed to CORBA standard binding.
In future releases, the IONA bind method will no longer be supported. That means the
third-party application must transition to either IOR binding or NameService binding as
detailed below.

IOR binding to third-party applications

IOR binding requires the third-party application to produce an IOR read as a text file. The
gateway event application locates that file and connects to the server. The IOR produced needs
to represent the WDIRoot object of the server.

Ensure IOR published is the IOR of the WDIRoot object. This object reference is available
after the object is connected to the ORB. This object is then converted to a string and written
to a file. The following code shows this and is taken from the hello gateway server sample
code shipped with the documentation. This code fragment is often placed in the main class:

orb = ORB.init (args, null);

IE.IONA.OrbixWeb. CORBA.Orbix.impl is ready (GATEWAY SERVER N
AME, 0); // This command is ORB-specific (needs to happen
before WDIRoot object creation for IONA)

WDIRoot aWDIRoot = new WDIGatewayRootImpl ()

orb.connect (aWDIRoot); // Some ORBs (e.g. JBroker) require
an explicit connect

The previous block of code creates the server and registers it to the ORB. The variable tring
iorfile = System.getProperties().getProperty(GATEWAY IOR FILE PROPERTY);

// Set a system property on command line using -D (for Sun)
or /d: (for MS)

CORBA API Developer’s Reference 359

Chapter D:

if (iorfile == null) {

System.out.println("'" + GATEWAY IOR FILE PROPERTY +
system property not set on command line.");

mwa

return;
}

The previous block of code determines where to write the IOR file. For this sample program,
the location is passed to the program by a command line parameter. This location must be
accessible by both the middle-tier event server and the server that produces it. These
requirements are detailed in the following section.

writeIOR(orb.object to string(aWDIRoot), iorfile);

The previous block of code calls a function to create the file. The object to_string function
converts the object reference to a string. This string can then be written to a file. The client that
calls this server can then use this IOR to connect to the server. For details on how this works,
see the API Code Transition section of this document or your CORBA documentation.

NameService binding to third-party applications

NameService binding provides another method of locating the server. To use this type of
binding the third-party application must support a NameService. To accomplish this, the
NameService process must run in the ORB and the third-party application must have
registered its process in the NameService. For details on how to accomplish this, refer to
programming documentation provided by your CORBA vendor.

At this time, the gateway event architecture does not support the resolve initial references
process of finding the NameService of the third-party application. An IOR of the NameService
is required. As a result, the third-party application must capture the IOR of the NameService
and write this IOR to the file system. The following code fragement shows how to capture the
IOR of the NameService. This code must be exectuted immediately when a third-party
environment is activated. It is not required for every server since the NameService is global.
Typically, this is done during a global start-up process.

org.omg.CORBA.Object obj =

orb.resolve initial references ("NameService");
org.omg.CosNaming.NamingContext rootContext =
org.omg.CosNaming.NamingContextHelper.narrow (obj); //narrow

the object

The previous block of code connects to the NameService. The object reference of the
NameService is captured in the obj variable.

String iorfile =
System.getProperties () .getProperty (GATEWAY IOR FILE PROPERTY
) ;

360 MetaSolv Software, Inc.

New event signal

// Set a system property on command line using -D (for Sun)
or /d: (for MS)

if (iorfile == null) {

System.out.println("'" + GATEWAY IOR FILE PROPERTY +
system property not set on command line.");

mwa

return;
}

The previous block of code determines where to write the IOR file. For this sample program,
the location is passed to the program by a command line parameter. This location must be
accessible by both the middle-tier event server and the server that produces it. These
requirements are detailed in this section.

writeIOR(orb.object to string(obj), iorfile);

The previous block of code calls a function to create the file. The object to_string function
converts the object reference to a string. This string is then written to a file. The client that
calls this server can then use this IOR to connect to the NameService. For more detailed
information, see the API Code Transition section of this document or your CORBA
documentation.

New event signal

Beginning with the release of TBS 2000 v4.2.2 a new event signal is supported. This server is
used to support trouble events in TBS 2000 v4.2.2 and other events in future releases. All
event processing from previous releases continue to use the same IDL methods used in
previous releases. There should be no transition steps to maintain existing functionality.

CORBA API Developer’s Reference 361

Chapter D:

362 MetaSolv Software, Inc.

Index

Index

A

Activation APT ..o
Activation Reportccceeveeirieieieieieieeeesese e
Administrator, E911cccccooiiviiiiiiinn,
ALI — Automatic Location Identification
ALI databaseccccoeeeveveneneninenceieiene
ALL NENA EITOTS ...cuveuiiieienienienienieeiteieeeeieneeseenee e
asynchronous interaction patterncccoceevereerennes
AESCTIPLION .vvevieeieeienieieieeieee et ee e e aens
PUIPOSE .ttt ettt ettt eb et see e enen
WHEN USEA ..o
asynchronous operations pattern
INVOCAtION SOUICE COAR ...c.eevirviiiriinienienienienieneeieeieeneans 35
SOUTCE COUR ..vvinriniiriniiniinieniieeet ettt 28
ATM (Asynchronous Transfer Mode)c.ccoecvveenncnnne 125
auto respond preferencecoveieveceecieieriesiesesesenene 183
AULO-ACHIVALION .eoveeeeeiienieieieecie et 125, 126

B

backward compatibility

IDL e 13
DAtCh PIrOCESSESeevveuieiieieieniesierieeieeeteitete e 175
business application Operationsc.cceceeveeverereereeeennen 56

C

callbackcooeovveevieieeiicieeee,
callback mechanism source code ..
CITCUILS .veieeiiiietiieeiee et ettt ettt ete e et e e v e e eaaeeeaeeennees
Client Desktop SOftwarecccceeeeeeeeieienienienenienee 336
CNAM e
COMUIMIL vttt ettt et e e e et e teeveeereennean
commit points
connections
connector type
CUStOM ATIDULES ...ccvveiieiiiiiieccie e 126

DACS ..ot 217
daemon CONNECLIONc.cceeruiecreeiieiieieeeie e eie e 57
database

MetaSolv Solution database rules for LSC 65

TOIIDACK ..vviniiieiiiectcccc e
third-party location details
updatescocevereeieieeeieennn
design layout records (DLRs)
DLR e

DLRSERVER ...
document NUMDETc.ccovevveirieiieeee e
documentNumber field

DSL (Digital Subscriber Line)cccceeevceeiecveceeienennnn 125
DSL with POTS (Plain Old Telephone Service) 125

E

EOTT e 2,177
TECOTA ettt 184
Service Providerccccoecveveveneinecneniecneecneenn 184
Smart Task ...cooeeevieiiiiiiie e 184

E911 error loggingccoevveeeiienenenenienieeeececeeeeenen 180

ClEMENE LYPE .euveviririieiieiietctctereee e 127

CQUIPIMEIE .vvvieeieeieieteieeteeteeteereeaeeessessessessessessessessasseens 85

Equipment Administration modulec..cccceeee 211,223

equipment SPECIfiCationsceeceeveeerienierierienierenenene 85

error
error code structure ...
loggingccccevvveeenene
StAtUS UPAALE ..ovvevvereieieriieiieeieeieete e

CITOT AITAY SOUICE COUC ..vivivirrrerierieeeieieieiesieeteeeeeeeeeens 49

€ITOr €XCEePtion SOUICE COAEcevruirieierieinieirieneeiinieeenene 49

error handling patternc.coccooeeeeiiiienieneneneneneseeee
AESCTIPLION ..ottt
PUIPOSE ettt ettt et b et ae st ebe e senes
when used ...

error status source code ...

Ethernetccccoevenvecnene.

export data for activationc.cceceeceverereneneeceieneene. 127

exports
PSR API batch operationscccceceeeeereeriereneneencne 197

F

FACIIIEIES ..
failure of operation source code
Force REOpencoceeierienieniinicicicceenececeeeeene
Frame Relayccooveiiiiiiiiiiieccccee

CORBA API Developer’s Reference 363

Index

G

gateway
eVentOCCUITEdc.oouerieuiiiiiiiicercirecee e 62
gateway event Signalccoceverienienenienienineeeeeens 61
gateway event status updatec..cocecevvererenieninenens 63
gateway eventccocceeeeeeeeeennn.
Gateway Event Binding
gateway event names
getSWItChACHVALION ..o.eiiiiiiiiiiiieiieeeeeeeeeee e

H

handlecoeveivieiic s 59
hard-wired cross-connect informationc.c.cceccccvveuennee 85
HelloAPI sample applicationcccceceveverenenenenenene 52

IMplementation NOEScccevverererererenereneeeeeeens 53
HelloGateway sample applicationcccceeveveereenenne. 53

inbound SigNalsccceveieiieiinieniene e
data payload source code
signaling operation source code

Infrastructure modulec....... .

installed [0CAtIONSccevvveereeirieireniecree e

T0na O1b oo

TOR bindingccceeveieniiiiiininieeieeeceeeeee e

J

JDBC dArIVET vttt 336

L

LIDB ..ot 177
LIDB/CNAM ..ottt 2
LOZGING CTTOTS ...vovveevenienienieieereeteereeteeeeeeeseeeseessesaensensenseeens 66

MEIAtION SEIVEToveueeuiieiieteieieeteeeeeeee e 142
MetaSolv API clientcccoeeivevineneineeencceeene 336
MetaSolv Application Serverccoceeeevevrerrerereniens 331
MPLS (Multiple Protocol Label Switching) 125

N

NAMESEIVICE ..vvivvieiieiieiiiceie ettt

Naming CONVENTIONScc.erverueerieierieieienienieniesieriesiesenenne
NC/NCI COACS ...t
NENA oo

Network Elements
NetworkSystem structure
NON-0rder aCtIVALIONcceevuiervieriieieeie e e

(0

OMG Standardsc.coceeeeeerieenieninienieienieereeeeeeeeee 336
onelLevelOnly parameterococcevvevereeeeeeeeeeeennennes 103
Open Standards Based Architecturec.ccecceveevenennee. 334
operations by common interface

WDINotification (Also see individual APIs) 64

WDIROOL ..ottt 57

WDISIZNAL ...eooeieiiieieeiee e 63
ORB daemonc.ccoeeevinieiinieinieinieenieereeee e 53
order ManagEMENtccveruereeruerueriereeneereereeeeeeeeneennas 133
OTdEr NMUMDET ...t 127
OSP SYSIEIM ..cuveviiiiieiieiieieieie et 133
outbound signal Processingc.ccoceeererereneeereecreneanens 61
outbound signals

APPLlICAION EVENTS ...eovveviiieieeiieiiereveieee e siesee e 45

GALEWAY EVENLS ...ttt 38

general informationcocceceevierieneneneneneneneeeeene 38

P

PASSWOIAS ..evveiiiieieeiieieeeeeee ettt te e ere e s eneens 57
patterns
asynchronous interactioncecceceeveervevierenenenenenne
error handling ...
signal handlingcccocoveiiennineee e
Synchronous interactioncceceeverrerreresesreeeenennes
Plant APT ..o
plant assignment gateway event
plant import and export values
plant request
QISCONNECE ...ttt 148
plant requests
ASSIZNIMENL ..evievieereeieerenieieiesteseseeseesee e eseeseeseesseneennas
assignment Changecccoeeveenenicineinecinenenene
assignment exception ...
cancel assignment
cancel disconnect
change due datecceoeveneninininenrececeee
complete assignment

364 MetaSolv Software, Inc.

Index

import assignment failedcoeeerenniniininnen.
obtain network location details
query for network location ID
query for plant specification ID
PlantSession interfacec..cccoeevveneinennenccnenene
process flow
exporting LSRc.ccoiiiniininicneccceene
Process Point IDSccooveiiieiieneniiineneseeeeeeeceeieeene
Process point IDSccceoueierieiienenineneneseeeseee e
Product Service Request (PSR) module 212, 224
provisioning plan
provisioning plan tasks ...
PSAP o 185
PSR Ancillary APTccooiiiiiiiiieiieieeeeeeeiee 177
PVC Capacityccceoeeeerieieieseieseeeeeeeeeeeetete e 85

Q

querying for trouble ticketsoceveevievieiieiierenereee 273

R

1eCONCIIATION ...ocviiiiiciiiciieciecee et 141
returned error status source Codecoevevierrievnreereennnn. 51
TOIIDACK ..viiiieiiieeeecc e 61, 142

S

SBO @VENL ..ottt 167
SCCUTILY 1evvevverrenterestessesteeseeteeseesaeaeseesessessessessessessessessesneens 57
SEQUELINK ..oviiieiieieieeeee e 336
service instance, End User Billing APIccccoceee. 170
Service Provisioning subsystemc..cccceceeueeee. 212, 224
SESSION ODJECES .euvuieinieiiieiieieieteeet ettt 56
signal handling patternoceevevvevvereriereseseseeeeenenens 37

description

PUIPOSE ..cvvvneenannee

when used
software cross-connect informationccocevceverenenncee 85
SONET ..t 217
SONET network capacityccccceeeevererereseseresennnnens 85
StrictOMG System parametercooceeerereererervenenens 57
SUDSESSION ODJECT ..vevvieiiiiiieiieiieieiee e 56
Switch Provisioning Activation API205
switch translationc..ccceeevenenennn. .. 127
synchronous interaction patternc.cecceeeeeererereneenns 26

ESCIIPLION ..ot 27

PUIPOSE eeeeeieeieeeiieeeeetcete et et et et eeeesaeeseeeneenteeneeeneens 26

WHEN USEd ..ot 26

T

tech translation Sheetsc.cccceeeeviniecnenincnencns 211, 222
Traditional POTS ..o 125
transaction ManagemMentcoeecerereererenereeeeeeneennes 135
Trouble Management API

interaction life cycle
Trouble Management subsystem
Chronic Trouble Number of Tickets and Number of Days

PIETETENCE ..ot 281
OVETVIEW .eviuiiiteieteneenieieceteseescete s se e se e s b seeneenens 277
trouble tickets, QUETYINGcccovverervereerierieeeereeeeenenns 273
UNK CAPACILY veveeeeeierieiieiieieiete ettt enens 85

Vv

virtual layout records (VLRS)ccccceriiieenininiienns 211, 223
VLAN e e 125
VOATM it 125
VoDSL (Voice over DSL)cceiiviiiieiieceieeene 125

w

WDI Manager and WDISignal
SOUICE COAC KEY vvvvveiiiiiiiieiieieeieceieie e
WDIACTIVATIONTYPES.IDL
WDIEITSEQ .veveeveeuieieieienienieeieeieetee et
WDIEXCP ovveieiieeiieiieint ettt
WDIManagercccceeveveennenne.
destroy { APIName} Session
start{ APIName}Session
WDIPlantTypes.idlccccceveeneninenieinencicneecnecene
WDIROOE .t
COMMECT wuvtiieiietetetesteatetesietestest et eseebe e s e et ebe e seseeaeeean
dISCONNECE ...
WDISHATUS .ot
Work Management Gateway modulecccoevverennee. 134
Work Management Subsystemcceceeeveveuennne 213, 224

CORBA API Developer’s Reference 365

Index

366 MetaSolv Software, Inc.

	About this guide
	Prerequisites
	Audience
	Additional information and help
	Oracle Support
	MetaSolv Solution documentation set

	The MetaSolv Solution Architecture
	What does MetaSolv Solution do?
	How do MetaSolv’s APIs work with the MetaSolv Solution?
	Overview of essential terminology
	API integration

	MetaSolv Solution API technical overview
	Understanding events
	Synchronous and asynchronous invocation modes
	The transaction model used by the APIs

	Determining the role your application performs
	Importing and exporting using the APIs
	Responsibilities when developing with the APIs
	Naming conventions in the APIs

	Developing Applications Using the APIs
	MetaSolv interface architecture
	Design architecture
	Deployment architecture
	Relationship of APIs, API server names, and IDL files
	MetaSolv APIs require instance references to notification objects
	ORB Initialization Issue with IONA's OrbixWeb 3.2
	Development environment
	Before compiling IDL files
	Determining which IDL files are required for a given API

	CORBA development-the big picture
	Implementation patterns
	The basic API setup pattern
	The synchronous interaction pattern
	The asynchronous interaction pattern
	The CORBA client/server pattern
	The signal handling pattern
	The error handling pattern

	Sample applications
	HelloAPI: a sample application that exports data
	HelloGateway: sample application that handles application and gateway events

	Common Architecture
	WDIRoot interface
	Connection to the MetaSolv Solution Application Server
	Connection to the CORBA daemon
	Connection to the root object

	WDIManager interface
	API session interfaces (session processing)
	WDITransaction interface (database transactions)
	WDISignal interface (outbound signal processing)
	WDIInSignal interface (inbound signal processing)
	WDINotification interface (callback mechanism)

	The Infrastructure API
	Implementation concepts
	Operational differences between the Infrastructure subsystem and API

	Key MetaSolv Solution concepts
	Infrastructure API files
	Infrastructure interface
	WDIManager
	InfrastructureSession interface
	InfrastructureSession operation descriptions
	NetworkLocationSubSession
	NetworkLocationSubSession interface operations
	NetworkLocationSubSession operation descriptions

	Process flows
	Solicited messages
	Unsolicited messages

	The Inventory and Capacity Management API
	Key MetaSolv Solution concepts
	Equipment types, equipment specifications, and equipment
	Equipment network elements
	Equipment name aliases
	Equipment installation in the MetaSolv Solution
	Mounting positions
	Ports and port addresses
	Virtual port addresses
	Enabled ports and enabled port addresses
	Port address placeholders
	Port address aliases
	Nodes and node addresses
	Hard-wired cross-connects
	Condition codes
	IP address management in the MetaSolv Solution
	Overview of assigning IP addresses to ports
	Some common questions about equipment in the MetaSolv Solution

	ICM API implementation concepts
	Transaction management and the ICM API
	Network inventory gateway events and the ICM API
	DLR mass reconcile
	ICM API IDL files

	ICM API interfaces
	WDIManager interface
	CircuitHierarchySession interface
	EquipmentSession interface operations
	SpecificationSubSession interface operations
	SoftwareSpecSubSession interface operations
	InstallationSubSession interface operations
	CrossConnectSubSession interface operations
	NetworkElementSubSession interface operations
	DLRSession interface operations

	Process flows
	Solicited messages
	Unsolicited messages

	The Number Inventory API
	Number Inventory API interfaces
	WDIManager interface
	NumberInventorySession interface operations

	Process flow
	Unsolicited messages
	Import notifications
	Number Inventory API date handling

	The Activation API
	Connections
	Network system information
	Order processing
	Single connection
	Retrieval
	Key MetaSolv Solution concepts
	Activation API IDL files
	Activation API interface relationships
	Activation API operation descriptions

	The Plant API
	Plant implementation concepts
	Order management
	Recommendations for assigning gateway events to provisioning plan tasks
	Options for Modify Cable Pair Assignment preference
	Transaction management and the Plant API
	Associating separations route to plant transport
	Consequential equipment assignments

	Key MetaSolv Solution concepts
	Plant API IDL files
	Plant API interface relationships
	PlantSession interface
	Plant API operation descriptions
	MetaSolv Solution API software and mediation server processes
	Request for plant assignment
	Request for plant assignment change
	Request to cancel plant assignment
	Request to disconnect plant assignment
	Request to cancel plant disconnect
	Request for change to due date
	Request for plant assignment exception
	Request to complete plant assignment
	Import plant assignment failed
	Obtain network location details
	Query for network location ID
	Query for plant specification ID
	Obtain valid values for plant import and export

	The PSR End User Billing API
	Essential terminology
	PSREUBSession interface
	WDIRoot interface
	WDIManager interface
	PSREUBSession interface operations

	Process flows
	Process flow for Send Bill Cust gateway event
	Process flow for Send Bill Ord gateway event
	Process flow for Customer Change Application Event
	Viewing PSREUB API event errors in the MetaSolv Solution
	Solicited messages
	Additional process flow information

	Implementation concepts
	PSR service item vs. the billing service instance
	Pricing
	Transfer of products between customer accounts
	Using the ELEMENT, CONNECTOR, SYSTEM and PRDBUNDLE item types

	The PSR Ancillary API
	Implementation concepts
	Essential terminology
	PSR Ancillary API interfaces
	E911Session interface operations
	CNAMSession interface operations
	LIDBSession interface operations

	Implementation concepts
	The PSR Ancillary API and Smart Tasks
	Field by field matching between extract row and response record
	Rules of operation

	Extract and respond scenario
	Error logging changes
	Process flow
	Unsolicited messages
	Sample unsolicited message process flow

	Auto Respond preference
	Glossary of terms and abbreviations

	The PSR Order Entry API
	PSR Order Entry API interfaces
	WDIManager interface
	PSRSession interface operations
	PSRSession operation descriptions
	Override default value on PSR API Import preference
	PSRProductCatalogSession interface operations
	PSRProductCatalogSession operation descriptions
	PSRProvisioningSession interface operations

	Process flow
	Unsolicited messages
	Import notifications
	PSR API date handling
	Batch operations in PSR API exports
	Export search criteria

	MetaSolv rules, product specifications, and product catalogs
	Products
	Product catalog
	More about products
	Packages

	The Switch Provisioning Activation API
	Functionality
	Essential terminology
	Switch Provisioning activation interface
	DLRSession interfaces

	Process flows
	Solicited messages
	Unsolicited messages

	Implementation concepts
	What are network nodes and network node types?
	What are flow-through provisioning plans and commands?
	What are design layout records (DLRs)?
	What are tech translation sheets?
	What are virtual layout records (VLRs)?
	Software modules and subsystems used in flow-through provisioning
	The flow-through provisioning process
	Design considerations

	The Transport Provisioning Activation API
	Functionality
	Essential terminology
	Transport provisioning activation interface
	DLRSession Interfaces
	DLRSession interface operation

	Process flows
	Solicited messages
	Unsolicited messages

	Implementation concepts
	What are network nodes and network node types?
	What are flow-through provisioning plans and commands?
	What are design layout records (DLRs)?
	What are tech translation sheets?
	What are virtual layout records (VLRs)?
	Software modules and subsystems used in flow-through provisioning
	The flow-through provisioning process
	Reference architecture
	Design considerations

	The Trouble Management API
	Functionality
	TroubleSession interface
	WDIManager
	TroubleSession interface operations

	Trouble Management API IDL files
	Process flows
	Solicited messages
	Unsolicited messages
	Sample flows for business tasks
	Using the service item test button functionality
	Implementation concepts
	Interaction life cycle
	Session User ID can be used to verify workforce employee
	Date field types
	Details concerning use of the createTicket_v3 operation
	Setting or changing the affected service item on a trouble ticket
	Details concerning use of the updateTicket_v2 operation
	Customer information and updating tickets
	Details concerning use of the clearTicket operation
	Details concerning use of the closeTicket operation
	Notifications for cleared and closed tickets
	Details concerning use of the cancelTicket operation
	Details concerning use of the getTickets_v2 operation
	Details concerning use of the service item query operations
	Structure format criteria for the getTelephoneNumberServItem operation
	Key MetaSolv Solution software concepts
	Operational differences between the Trouble Management subsystem and the Trouble Management API
	Repeat and chronic trouble ticket types
	Effect of data errors in trouble reports on Trouble Management API processing

	The Work Management API
	WMSession interfaces
	WDIManager
	WMSession interfaces
	TaskGenerationSubSession interfaces
	TaskViewingSubSession interface operations
	TaskCompletionSubSession interface operations

	Work Management API IDL files
	Process flows
	Solicited messages
	Unsolicited messages
	Enhanced off-net automation functionality and the Work Management API

	Implementation concepts
	Overview of the MetaSolv Solution’s Work Management subsystem
	Operational differences between the WM subsystem and the WM API
	Tasks that cannot be completed through the Work Management API
	Key MetaSolv Solution online Help topics relating to the WM subsystem
	Work Management API support for NET DSGN task
	Work Management API support for date ready system tasks
	Work Management API support for backdated and forward- dated tasks

	Appendix A: Glossary
	Appendix B: API Error Messages and Exceptions
	Appendix C: Tips and Techniques
	Understanding IOR files
	CORBA.INV_OBJREF and CORBA.OBJECT_NOT_EXIST Exceptions
	CORBA.COMM_FAILURE Exception

	Using the MetaSolv Solution APIs With Multi- Threaded Clients
	Developing Using C++
	C++ Troubleshooting

	Troubleshooting tips for API developers
	Using API server logging
	Using SQL logging
	Using console logging
	Using CORBA logging

	Appendix D: Transitioning from 4.2.1 to the Application Server
	Who needs to use the Transition and Planning Guide?
	Environment overview
	Summary of changes
	Architecture transition overview
	What hardware platform?
	Can my existing API architecture work with the new application server?
	How do you ensure performance?
	How do you enable scalability?
	How do you enable recoverability?
	What are the installation considerations?
	What does the installation environment look like?

	Transition project considerations
	Roles
	Tasks

	API code transition
	IOR bind method
	Background
	IOR bind method-sample code

	NameService bind method
	Background
	Binding to the NameServer with an IOR-sample code
	Binding to the NameService with resolve_initial_references- sample code

	URL bind method-sample code
	Gateway events functionality changes
	Middle-tier triggering

	New binding methods
	Background
	Defining a gateway

	IOR binding to third-party applications
	NameService binding to third-party applications
	New event signal

	Index

