

Custom Extensions

Developer’s Reference
Sixth Edition
August 2008

MetaSolv Solution ™ 6.0.12+

Copyright and Trademark Information
Copyright © 2008, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to
the extent required to obtain interoperability with other independently created software or as
specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation
and technical data delivered to U.S. Government customers are "commerical computer
software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle
license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-
19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all
appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any
damages caused by such use of the Programs.

Oracle and MetaSolv are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services
from third parties. Oracle is not responsible for the availability of, or any content provided on,
third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between
you and the third party. Oracle is not responsible for: (a) the quality of third-party products or
services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Document History

Edition Date Reason

First December 2006 Initial release of custom extension functionality.

Second January 2007 Re-wrote Chapter 4: Coding the extension logic. Completed
Appendix B: Extensions sample code.

Third March 2007 Added information regarding the three execution points that
were new with 6.0.13. Changes were made to Chapter 3:
Identifying an execution point, Appendix A: Supported
execution points, and Appendix B: Extensions sample code

Fourth June 2007 Updated Copyrights, About this Guide chapter, and customer
portal references with Oracle.

Fifth December 2007 Added information on new VCONDES Maintenance option.
Added sample SelectComponentForVirtual.

Sixth August 2008 Added information on new Email CLR/DLR/TCO option.

Contents
Contents
About this guide .. iii
Audience ... iii
Additional information and help ... iii
Oracle Support ..iv
MetaSolv Solution documentation set ...iv

1. Extensions overview .. 1
About custom extensions .. 1
Extensions ... 2
Execution points .. 2

Building block ... 2
Process point .. 2
Action type .. 2

Extension logic .. 3
Invocation methods ... 3

MetaSolv Solution GUI ... 5
XML API clients .. 5
CORBA API clients ... 5
Polling servers .. 5

2. Defining an extension .. 7
Defining an extension in the GUI .. 8

Type of extension ... 8
Name of extension .. 8
Execution Mode .. 8
Associating an execution point with an extension .. 9
Defining the extension parameters ... 9

Configuring an extension .. 10
Gateway.ini configuration ... 10
Additional configurations .. 10

Invoking an extension ... 11

3. Identifying an execution point .. 13
Component options ... 13

Building block options ... 14
Process point options ... 15
Action type options ... 16

Component combinations ... 17

4. Coding the extension logic ... 19
Inheriting from the extension framework ... 19
Accessing data passed from the execution point .. 20

Overview ... 20
Class details ... 20
MetaSolv Solution Developer’s Reference i

Contents
Appendix A: Supported execution points .. 23
Execution Points ... 26

Select Port Address .. 26
Select Component or Element for Physical Connection ... 29
Select Component or Element for Virtual Connection .. 32
Gateway Event Failure ... 35
Assign Queues ... 38
Assign Task Jeopardy .. 41
Change Task Completion Date .. 43
Complete Task ... 45
Generate Tasks .. 47
Late Task .. 49
Potentially Late Task .. 52
Provisioning Plan Default ... 54
Reject Task ... 56
System Task Failure ... 58
Email CLR/DLR/TCO .. 60

Appendix B: Extensions sample code ... 63
Using sample code as a reference for best practices ... 63

Exception handling ... 63
E-mail notification ... 63
CORBA API Invocation ... 63

Running the sample code ... 64
AssignWorkQueues .. 66
ProvPlanDefault .. 67
ExtensionFrameworkOneWayTest ... 68
SampleExtensionException .. 69
InvokeCorbaAPIExtension .. 70
SelectComponent ... 71
SelectPort ... 72
SelectComponentForVirtual ... 73
ii MetaSolv Software, Inc.

About this guide
This guide explains how to extend the MetaSolv Solution business logic layer with additional
logic specific to your organization.

Audience
This guide is for individuals who are responsible for developing software to integrate an
external application with MetaSolv Solution. This guide assumes the reader has a working
knowledge of Oracle 9i, Windows XP Professional, BEA WebLogic Platform 8.1, and Java
J2EE.

Additional information and help
To get additional information or help for MetaSolv Solution, refer to the following resources:

Oracle E-Delivery—Provides access to product software and documentation.
Visit the E-Delivery Web site at http://edelivery.oracle.com.
Software and product documentation are contained in the Oracle Communications
MetaSolv Solution 6.0 Media Pack.
Developer documentation is contained in the Oracle Communications MetaSolv
Solution Developer Documentation Pack. Access to developer documentation
requires a password.

Oracle MetaLink—Provides access to software patches and a searchable Knowledge
Base.

Visit the MetaLink Web site at https://metalink.oracle.com/, and log on using your
User Name and Password.
Click the Patches & Updates tab to search for patches (efixes).
Click the Knowledge tab to search for technical bulletins, fixed issues, and additional
product information. To narrow your search, click the Communication Apps link
under Product Categories on the left side of the page.
MetaSolv Solution Developer’s Reference iii

Oracle Support
The preferred method of reporting service requests (SRs) is through MetaLink. MetaLink is
available 24 hours a day, 7 days a week.

Although it is Oracle’s preference that you use MetaLink to log SRs electronically, you can
also contact Support by telephone. If you choose to contact Support by phone, a support
engineer will gather all the information regarding your technical issue into a new SR. After the
SR is assigned to a technical engineer, that person will contact you.

For urgent, Severity 1 technical issues, you can either use MetaLink or you can call Support.
Oracle Support can be reached locally in each country. To find the contact information for
your country, go to http://www.oracle.com/support/contact.html.

MetaSolv Solution documentation set
This guide is one book in a set of documents that helps you understand and use MetaSolv
Solution. Figure 1 shows the complete documentation set.

Figure 1: MetaSolv Solution documentation set

MetaSolv Solution books are delivered in Portable Document Format (PDF). You can view a
book online using Adobe Acrobat Reader.

MetaSolv Solution
Planning Guide

MetaSolv Solution
Setup Guide

LSR
Setup Guide

MetaSolv Solution
Documentation Set

MetaSolv Solution
Administration Guide Online Help CORBA API Developer’s

Reference

CORBA API
Online Reference

Flow-Through
Packages Guide

XML API
Developer’s Reference

Initial installation
and configuration

Information for ongoing
system maintenance

Tasks performed by
individuals using the

product

APIs, connectors,
cartridges, and cartridge

development

Custom Extensions
Developer’s Reference
iv MetaSolv Software, Inc.

MetaSolv Solution documentation set
To view a document

Locate the document on the Oracle E-Delivery or Oracle MetaLink Web site and do one of the
following:

Right-click the PDF file and select Open from the pop-up menu.
Double-click the PDF file.

This action starts Acrobat Reader and opens the PDF document you selected. The following
figure shows how a document appears in Acrobat Reader:

Figure 2: Finding information in a PDF document

Click here to search for a specific topics
or words in the document

Click on topics in the
Bookmarks tab to find
specific topics in the
document
MetaSolv Solution Developer’s Reference v

vi MetaSolv Software, Inc.

1

Extensions overview
This chapter provides basic information about custom extensions and how you can use them to
invoke API calls and send messages that support your organization’s business processes.

About custom extensions
A custom extension enables you to extend MetaSolv Solution functionality with additional
business logic specific to your organization. In other words, extensions provide the ability to
make calls to external systems and to send e-mail and JMS messages at predefined execution
points, over and above the functionality supported by the MetaSolv Solution application and
APIs. Beginning with MetaSolv Solution 6.0.12, there are ten supported execution points that
provide the ability to extend logic. Future releases will bring additional supported execution
points, which will allow you to extend logic from additional places.

You can develop custom extensions that simply send data to another system, or that both send
and receive data. An extension that sends data, and does not expect a response from an
external system, is defined as asynchronous. An example of an asynchronous extension is an
e-mail message. You might choose to develop an asynchronous extension to send an e-mail
when a particular process or event occurs in MetaSolv Solution.

An extension that sends data, and expects a response from an external system, is defined as
synchronous. An example of an execution point that can be used to develop a synchronous
extension is Assign Queues. You might choose to develop a synchronous extension that
executes a custom java class when a particular process occurs in MetaSolv Solution. The java
class executes as its own transaction, separate from the process that initiated it.

Developing a custom extension involves several tasks. These tasks, listed below, appear in a
conceptual order to help you understand extensions. In reality, these tasks would probably be
performed by different people, and at varying times.

1. Define the extension.

2. Identify execution points.

3. Code the extension logic.
MetaSolv Solution Developer’s Reference 1

Chapter 1: Extensions overview
Extensions
The first step in developing a custom extension is to define the extension in the GUI. The
extension name that you define is the name of the java class that will contain your custom
logic.

Execution points
The second step in developing a custom extension is to define the point at which you want the
custom extension logic to execute; that is, the process or action that will trigger the invocation
of your custom code. You define this execution point by identifying three key pieces of
information:

Building block
Process point
Action type

Building block
A building block type is a predefined item in MetaSolv Solution, such as a gateway event,
with which you can associate an extension. Building blocks further describe building block
types. For example, using the building block type of Gateway Event enables you to associate
an extension with a gateway event. You then further define this item by selecting the building
block of All Gateway Events. This means you can associate the extension with all gateway
events, as opposed to specific events.

Process point
A process point describes general processing that takes place in MetaSolv Solution, for
example, gateway event maintenance. To continue with the example used for building blocks,
you can associate a process point of GW (gateway) Event Maintenance with the extension.
This means the extension logic will be triggered when MetaSolv Solution processes some type
of gateway event maintenance.

Like building blocks, process points are predefined by MetaSolv.

Action type
An action type is a specific task or process that takes place in MetaSolv Solution. When you
associate an action type with an extension, you are identifying the specific action that triggers
the extension logic to execute for a particular extension. To conclude the previous example,
you can associate the action type of GW (gateway) Event Failed with the extension. This
means the extension logic will be triggered when MetaSolv Solution processes a gateway
event and it fails to successfully complete.

Like building blocks and process points, action types are predefined by MetaSolv.
2 MetaSolv Software, Inc.

Extension logic
Extension logic
The next step in developing a custom extension is to code a free-form java class that provides
additional functionality to support your business processes. As examples, you can code a java
class to:

Make calls to external systems
Send e-mail notifications
Send JMS messages
Invoke other MetaSolv Solution API calls

Invocation methods
This section is not listed as a step in the “About custom extensions” section of this chapter
because identifying the execution points is what defines the invocation method(s). Therefore,
this is not actually a step that you need to perform. However, it is important to understand the
information contained in this section, therefore, it is included in the overview because it
addresses, at a high level, how custom extension logic is invoked. Specific information
regarding invocations for supported execution points is included in “Appendix A: Supported
execution points”.

After you define the extension, associate the execution point, and code the logic for your
custom extension, it will be invoked from one or more of the places listed below. The
invocations are dependent upon the execution points associated with your extension.

MetaSolv Solution graphical user interface (GUI)
XML API clients
CORBA API clients
Polling servers running on the appserver
MetaSolv Solution Developer’s Reference 3

Chapter 1: Extensions overview
The following diagram shows the architecture of MetaSolv Solution and how the various
system components interact to support custom extension functionality.

Figure 3: Architecture supporting extension functionality

PB GUI

PB To Java Framework

Java Server Side
(WebLogic Bea 8.1)

Corba API

XML-API

Corba Framework

Xml-Api Framework

 Apserver

PEP2

PEP1

DB

Extension_1

External
Systems

Contains
Free Form Code:

1. Invoke external System
2. Send Email
3. Send JMS messages
4. Invoke Other Business Logic

Methods

Extension_3

Polling Server

PEP3

Extension_2 SYS1

Client Side:
PowerBuilder, Browser,
Xml-Api Client,
Corba-Api CLient
4 MetaSolv Software, Inc.

Invocation methods
MetaSolv Solution GUI
You can invoke extension logic through the GUI when the specified action, defined by an
execution point (combination of building block, process point, and action type), occurs. For
example, a user assigning a jeopardy code to a task is a specific action that can invoke an
extension, if that action is defined as an execution point. Specifically, you would choose the
execution point combines the building block type of Task Type, process point of Task
Maintenance, and action type of Assign Jeopardy.

XML API clients
You can invoke extension logic through a call to an XML API method when the specified
action, defined by an execution point (combination of building block, process point, and action
type), occurs. For example, a third party calling the addTaskJeopardyRequest method to
assign a jeopardy code to a task is a specific action that can invoke an extension, if that action
is defined as an execution point. Specifically, you would choose the execution point that
combines the building block type of Task Type, process point of Task Maintenance, and
action type of Assign Jeopardy.

CORBA API clients
You can invoke extension logic through a call to a CORBA API method when the specified
action, defined by an execution point (combination of building block, process point, and action
type), occurs. For example, a third party calling the deleteTaskJeopardy method to remove a
jeopardy code from a task is a specific action that can invoke an extension, if that action is
defined as an execution point. Specifically, you would choose the execution point that
combines the building block type of Task Type, process point of Task Maintenance, and
action type of Assign Jeopardy.

Polling servers
You can invoke extension logic through polling servers as well. These servers, which need to
be configured in the gateway.ini file, are listed on the following page. For detailed information
regarding these configurations, refer to the section “Additional configurations” in Chapter 2.

Polling servers can invoke extension logic if the action of the polling server is defined as an
execution point. For example, a task that is defined as a system task with a task execution
point of Ready, will automatically be picked up by the System Task Server when the task
status becomes Ready. If the task completion logic that runs on the server fails, extension logic
can be invoked if it defines that as an execution point. Specifically, you would choose the
execution point that combines the building block type of Task Type, process point of Task
Maintenance, and action type of System Task Failure.
MetaSolv Solution Developer’s Reference 5

Chapter 1: Extensions overview
Polling servers and supported execution points
The following polling servers can invoke an extension that is defined with the specified
execution point(s). For specific information regarding the supported execution points
mentioned here, refer to “Appendix A: Supported execution points”.

Background Processor*
System Task Failure

Gateway Event Server
Gateway Event Failure

Integration Server
Gateway Event Failure
Late Task
Potentially Late Task

System Task Server
System Task Failure

*The Background Processor is not a Java based polling server. Rather, it is a PowerBuilder
application that runs in the background.
6 MetaSolv Software, Inc.

2

Defining an extension
This chapter explains how to define a custom extension in the GUI. Online Help for defining
an extension is available in the form of the help topics listed below.

Open the online Help and type the following window or procedure names in the Search field:
Extensions window
Extension Summary window
Extension Parameters window
Opening the Extension Summary window
Creating a new Extension
Editing an existing Extension
Deleting an existing Extension
Associating an Execution Point to an Extension
Disassociating an Execution Point from an Extension
Editing an Extension Parameter
Filtering the Extensions list
MetaSolv Solution Developer’s Reference 7

Chapter 2: Defining an extension
Defining an extension in the GUI
For specific GUI instructions on how to define the extension, refer to the online Help
procedures Creating a new Extension, Associating a Process Point to an Extension, and
Editing an Extension Parameter.

Type of extension
When defining an extension, you must select the Type from a drop-down. The following types
display in the drop-down, which is defaulted to Logic.

Logic

Logic is the only type of extension that is supported at this time. Logic extensions define
associated execution points that, when triggered, invoke the custom extension logic java
class defined by the extension name.

Viewable

Viewable extensions are not supported at this time.

Name of extension
When defining an extension, you must define the name of the extension. The name of the
extension is the name of the java class that will be invoked when an associated execution point
is triggered. When naming your extension, be sure to follow java class naming standards such
as starting with an upper case letter, using upper and lower case letters to distinguish words, no
spaces, etc. Also, do not include the .java file type extension in the name of the extension. For
example, if you are defining an extension to call the java class MySpecificLogic.java, name
the extension MySpecificLogic.

Execution Mode
When defining an extension, you must select the Execution Mode from a drop-down. The
following execution modes display in the drop-down, which is defaulted to Synchronous.

Synchronous

A synchronous extension will execute and return specified data. The calling process must
wait for the extension to finish before continuing.

Asynchronous

An asynchronous extension will execute and not return any data, allowing processing to
continue without waiting for the extension to finish.
8 MetaSolv Software, Inc.

Defining an extension in the GUI
Associating an execution point with an extension
When defining an extension, you must associate one or more execution points with the
extension. Execution points are predefined combinations of a building block, process
point, and action type. These execution points have "hooks" in the code that, when
triggered, invoke the extension java class. Refer to Chapter 3 for more details on execution
points.

Defining the extension parameters
When defining an extension, the parameter IDs and their corresponding default names are
displayed on the Extension Parameters window. The types of extension parameters are
predefined for each execution point, such as String, int, etc. The corresponding default
parameter names may be edited so that is has meaning to your particular usage of it.
MetaSolv Solution Developer’s Reference 9

Chapter 2: Defining an extension
Configuring an extension

Gateway.ini configuration
To enable custom extensions, the following changes must be made in the gateway.ini file,
located in the <MSLV_HOME>/<SERVER_NAME>/appserver/gateway directory.
Specifying the CLASSPATH tells the framework where to find your custom extension java
class, which must reside in the path specified in the gateway.ini.

1. Save a copy of the gateway.ini file.

2. Open the original gateway.ini file for editing.

3. Add the following line at the end of [Custom] section within the file. (If your gateway.ini
file does not have the [Custom] section, you will need to add it.)

For Windows operating systems

CLASSPATH=<MSLV_HOME>/<SERVER_NAME>/appserver/samples/
customExtension;

For Unix operating systems

CLASSPATH=<MSLV_HOME>//<SERVER_NAME>//appserver//samples//
customExtension;

Additional configurations
Additional information regarding configuration requirements for using custom extensions can
be found in the MetaSolv Solution Setup Guide. Look for the following note located in
"Chapter 5: Upgrading MetaSolv Solution" of the Setup Guide, which will guide you to the
section that covers these minor configuration changes.

Custom Extensions are new with 6.0.12. If you have performed a full installation of 6.0.12,
these configurations are already in place. The configurations covered in the Setup Guide only
need to be set up if you have upgraded from a previous release. (Note: Regarding step 3 above,
a full installation will put the classpath for custom extesnions in the gateway.ini file, but you
will still need to specify the correct path to your server. For an upgrade, you will need to add
the classpath for custom extensions to gateway.ini file as welll as specify the correct path to
your server.)

You will need to manually modify the loggingconfig.xml file and integration.xml file or
you will receive an error on your appserver console. Additionally, if using Custom
Extensions, you will need to manually modify the gateway.ini file. Detailed information
regarding the changes to these files is located in "Appendix H: Configuration Files". For
information on Custom Extensions, refer to the Custom Extensions Developer’s
Reference.
10 MetaSolv Software, Inc.

Invoking an extension
Invoking an extension
Certain execution points are invoked by polling servers, as covered in section “Polling servers
and supported execution points” located in Chapter 1. Three of these servers are Java based
servers that need to run as part of the appserver. This is accomplished by configuring the
gateway.ini file to define the appropriate servers within the [Servers] section as follows:

Gateway Event Server

EVENTPROC=MetaSolv.eventServer.S3Startup

Integration Server

INTEGRATIONSERVER=com.mslv.integration.integrationServer.S3Startup

System Task Server

SYSTEMTASKSERVERPROC=com.mslv.core.api.internal.WM.systemTaskServer.S
ystemTaskServer

The remaining server, the Background Processor, is not part of the appserver and, therefore, is
not configured through the gateway.ini file. To start the background processor, execute the
jmaster.exe located in the MSS directory.
MetaSolv Solution Developer’s Reference 11

Chapter 2: Defining an extension
12 MetaSolv Software, Inc.

3

Identifying an execution point
This chapter explains how to identify an execution point. Once identified, execution points are
then associated with an extension, as covered in the previous chapter. Online Help for
identifying execution points is available in the form of the help topics listed below.

Open the online Help and type the following window or procedure names in the Search field:
Execution Point Search and Results window
Execution Points window
Searching for an Execution Point
Toggling between Execution Point Search and Results
Filtering the Execution Points list

Component options
As you recall from the overview in Chapter 1, an execution point is defined by a combination
of three components—its building block, process point, and action type. MetaSolv predefined
a number of options for each of these components, along with the combinations of options that
represent valid execution points. This section describes the options that are available for each
component, as well as the first MetaSolv Solution release in which they are supported.
MetaSolv Solution Developer’s Reference 13

Chapter 3: Identifying an execution point
Building block options
Building blocks are grouped into building block types. Both building blocks and building
block types are MetaSolv defined data. The following table lists building block types in the
order that they appear in the drop-down list on the Execution Point Search window.

Table 1: Building block type options

The following table lists the building blocks defined by MetaSolv that can be used with
extensions. The building blocks available for selection depend on the building block type
chosen. The building block ID, an Oracle generated number, is included in the information
because it is part of the data that will be passed from an execution point to an extension java
class.

*Specific task types are user defined data stored on the TASK_TYPE table. To support the
Complete Task execution point for individual task types in M6.0.13, the building block id field
(ms_bb_id) was added to the TASK_TYPE table. A row is inserted into the TASK_TYPE

In M6.0.12 and M6.0.13, the building block type drop-down list includes Network
Element, Equipment, and Order, which are not listed in following table because they are
not applicable to custom extensions. Execution points created from building block types
Network Element, Equipment or Order are not allowed to be associated with an
extension. To avoid confusion, in M6.0.14 the building block types of Network Element,
Equipment, and Order were removed from the drop-down list.

Building block type Supported
release

Connection M6.0.13

Task Type M6.0.12

Gateway Event M6.0.12

Table 2: Building block options

Building block Building block ID Supported
release

All Task Types 1001 M6.0.12

All Gateway Events 1002 M6.0.12

[specific task type*] [depends on task type*] M6.0.13

All Connections 409 M6.0.13
14 MetaSolv Software, Inc.

Component options
table when a new task type is created in Work Management. However, the ms_bb_id field is
not populated with the row insertion, rather, it is populated when the task is selected from the
Name dropdown field on the Execution Point Search window. Note that the Name dropdown
field will list all task types when Task Type is selected in the Building Block Type dropdown.

This docucment does not provide the building block ids for each task type because they are
based on user data. Building block ids are not displayed in the application, therefore, they must
be manually looked up on the TASK_TYPE table.

Process point options
The following table lists the process points defined by MetaSolv that can be used with
extensions. The process points available for selection depend on the building block chosen.
The process point ID, an Oracle generated number, is included in the information because it is
part of the data that will be passed from an execution point to an extension java class.

Table 3: Process point options

Process point Process point ID Supported
release

Task Generation 1 M6.0.12

Task Maintenance 101 M6.0.12

GW Event Maintenance 102 M6.0.12

PCONDES Maintenance 103 M6.0.13

VCONDES Maintenance 105 M6.0.15
MetaSolv Solution Developer’s Reference 15

Chapter 3: Identifying an execution point
Action type options
The following table lists the action types defined by MetaSolv that can be used with
extensions. The action types available for selection depend on the process point chosen.The
action type ID, an Oracle generated number, is included in the information because it is part of
the data that will be passed from an execution point to an extension java class.

Table 4: Action type options

Action type Action type ID Supported
release

Generate 32 M6.0.12

Assign Jeopardy 41 M6.0.12

Reject 42 M6.0.12

Assign Queues 43 M6.0.12

Change Completion Date 44 M6.0.12

System Task Failure 45 M6.0.12

Late 46 M6.0.12

Potentially Late 47 M6.0.12

GW Event Failed 51 M6.0.12

Provision Plan Default 52 M6.0.12

Complete 53 M6.0.13

Select Component or Element 54 M6.0.13

Select Port Address 55 M6.0.13
16 MetaSolv Software, Inc.

Component combinations
Component combinations
As explained in each of the previous component sections, there are dependencies between the
components. Specifically, action types are dependent on process points, which are dependent
on building blocks, which are dependent on building block types.

The following table shows the valid combinations that result from these dependencies. For
example, if you choose a building block type of Task Type, your only choice of building block
is All Task Types. (This will change in future releases. Currently, the building block type and
the building block components happen to have a one-for-one relationship. However, this will
change when more specific building blocks such as DD or DLRD are defined.) If you then
choose the process point of Task Generation, your only action type choices will be Generate or
Provision Plan Default.

Table 5: Valid Combinations

Building block
type Building block Process point Action type Supported

release

Task Type All Task Types Task Generation Generate M6.0.12

Provision Plan Default M6.0.12

Task Maintenance Assign Jeopardy M6.0.12

Reject M6.0.12

Assign Queues M6.0.12

Change Completion Date M6.0.12

System Task Failure M6.0.12

Late M6.0.12

Potentially Late M6.0.12

Complete M6.0.13

[specific task type] Task Maintenance Complete M6.0.13

Gateway Event All Gateway Events GW Event Maintenance GW Event Failed M6.0.12
MetaSolv Solution Developer’s Reference 17

Chapter 3: Identifying an execution point
Connections All Connections PCONDES Maintenance Select Component or
Element

M6.0.13

Select Port Address M6.0.13

VCONDES
Maintenance

Select Component or
Element

M6.0.15

Building block
type Building block Process point Action type Supported

release
18 MetaSolv Software, Inc.

4

Coding the extension logic
This chapter covers information regarding coding the extension java class. Sample code,
which is provided with your installation of M6.0.12 or higher, has concrete code examples of
extension java classes. Refer to “Appendix B: Extensions sample code” for detailed
information about the sample code.

Inheriting from the extension framework
All extension java classes must extend the extension framework through the class
ExtensionRoot, located in the package com.metasolv.custom.common.extension. Extending
the extension framework is necessary to access the data passed from the execution point.
Therefore, all new extension java classes should contain the following lines of code, or some
derivation of them:

import com.metasolv.custom.common.extension.ExtensionRoot

public class MyExtension extends ExtensionRoot

A derivation of the code could be that the extension java class directly, or indirectly, extends
ExtensionRoot. For example, all of the sample source code extends SampleExtensionRoot
rather than ExtensionRoot. That is because SampleExtensionRoot extends ExtensionRoot,
adding a middle layer to the inheritance that provides common functionality used by all the
sample classes. You may wish to create a similar class, or even use the SampleExtensionRoot
class, depending on what you are developing.

Note that all of the sample source code implements the class Extension. This is really not
necessary because ExtensionRoot implements Extension. Therefore, by inheritance, any class
that extends ExtensionRoot implements Extension.
MetaSolv Solution Developer’s Reference 19

Chapter 4: Coding the extension logic
Accessing data passed from the execution point

Overview
Extension java classes cannot define input parameters. Rather, data passed from the execution
point can be accessed by the extension java class through the extension framework.
Specifically, the class ExtensionRoot defines the following methods:

protected final Policy getPolicy()

protected final Entity[] getParameter()

Note that while these methods are defined as protected, they are available to the extension java
class because it inherits from the class in which the methods are defined (ExtensionRoot).
From these two methods, the following data can be retrieved:

Execution mode

The execution mode tells you if the execution point that invoked the extension class is
defined as synchronous or asynchronous. This information was entered in the GUI when
defining the extension.

Execution point

The execution point tells you the point at which the extension class was invoked. This
information is passed in the form of building block ID, process point ID, and action type
ID. The unique combination defines a specific execution point such as Assign Queues or
Reject Task.

Execution point data

The execution point data is the specific data that is associated with each supported
execution point. This information is passed in the form of a name/value pair array. Refer to
“Appendix A: Supported execution points” for the specific data that is passed from each
execution point.

Class details

Policy class
As mentioned in the overview section above, the method getPolicy() returns Policy. However,
it actually returns an instance of the class PlugInPolicy, which extends Policy. Therefore, you
can caste the returned Policy to PlugInPolicy, which makes an instance of the class
PlugInPolicy available to the extension java class.

The class PlugInPolicy defines the following methods:
public String getExecutionMode();

public PlugInExecutionPoint getExecutionPoint();
20 MetaSolv Software, Inc.

Accessing data passed from the execution point
Calling the method getExecutionMode() from the extension java class returns a String that
indicates if the execution mode is synchronous or asynchronous. Calling the method
getExecutionPoint() returns an instance of the class PlugInExecutionPoint.

The class PlugInExecutionPoint defines the following methods:

int getBuildingBlock();

int getProcessPoint();

int getActionType();

Calling these methods returns the combination of building block ID, process point ID, and
action type ID that defines an execution point, as described in “Appendix A: Supported
execution points”.

Entity class
As mentioned in the overview section above, the method getParameter() returns an Array of
Entity classes. Another class, ExtensionData, extends the class Entity. Since ExtensionData is
a child of Entity, Entity can be casted to ExtensionData. Casting Entity to ExtensionData
makes the Array of ExtensionData available to the extension java class.

The class ExtensionData defines the following method:
public NameValuePair[] getNameValuePairs()

Calling this method from the extension java class returns an Array of NameValuePair classes.
The name/value pairs represent the specific data that is defined for each supported execution
point, as described in “Appendix A: Supported execution points”.

Finally, the class NameValuePair defines the following methods:
public String getName();

public String[] getValue();

Calling these methods returns the String name and the String values. It is important to note that
all value data is of type String.
MetaSolv Solution Developer’s Reference 21

Chapter 4: Coding the extension logic
22 MetaSolv Software, Inc.

A

Appendix A: Supported execution points
The preceding chapters described what custom extensions are and how to create them. As
mentioned earlier, MetaSolv predefined the components used to define execution points—the
building blocks, process points, and action types. This means there are specific execution
points that are available for your use.

In addition to predefining “Component combinations” associated with each execution point,
MetaSolv developed functionality that supports the invocation of a custom extension java
class for each valid combination. This functionality includes:

"Hooks" that are triggered by an execution point. These "hooks" call the extension
framework, which determines what extension class to invoke based on which extensions
the execution point is associated with.
Parameters for each execution point. The parameters are used to pass data that is pertinent
to the execution point to the extension class. This data is then available to the extension
class and can be used to code your specific business logic.

The supported execution points are listed in the following table. The execution points are
grouped by building block, and ordered alphabetically. The number of supported execution
points correlates to the number of valid component combinations, and the execution point
names correlate to the action type of each valid combination.
MetaSolv Solution Developer’s Reference 23

Table 6: Supported Execution Points

Building block Execution Point Supported
release

Connections Select Port Address M6.0.13

Select Component or Element for
Physical Connection

M6.0.13

Select Component or Element for
Virtual Connection

M6.0.15

Gateway Events Gateway Event Failure M6.0.12

Tasks Assign Queues M6.0.12

Assign Task Jeopardy M6.0.12

Change Task Completion Date M6.0.12

Complete Task M6.0.13

Generate Tasks M6.0.12

Late Task M6.0.12

Potentially Late Task M6.0.12

Provisioning Plan Default M6.0.12

Reject Task M6.0.12

System Task Failure M6.0.12
24 MetaSolv Software, Inc.

This appendix provides detailed information for each supported execution point, which
includes:

A brief description of the execution point.
A business example of how you might use the execution point.
The options you should choose when searching for the execution point to associate it with
an extension.
The data that is sent from the execution point to the extension java class, and, in the case
of a synchronous call, the data that is returned from the extension java class to the
execution point.*
How the extension java class is invoked by the execution point, whether it is by the GUI,
XML APIs, CORBA APIs, or polling servers.

* The data is housed in an Array of name/value pairs. All value data in the name/value pair is
of type String.
MetaSolv Solution Developer’s Reference 25

Execution Points

Select Port Address
MetaSolv Solution provides the ability to automatically design physical connections through
the PCONDES task. This execution point enables you to extend logic that is triggered when
the PCONDES task is executed, either manually from the gui or automatically from the
System Task Server. The extension logic enables you to select the appropriate port address to
use in the physical design of the connection. It executes prior to the existing PCONDES auto-
provisioning logic. If a port address is successfully selected by the extension logic, the existing
PCONDES auto-provisioning logic is bypassed. If a port address is not selected by the
extension logic, the existing PCONDES auto-provisioning logic still executes.

Business example
You enter a PSR order and assign a provisioning plan that defines the PCONDES task as a
system task. The PCONDES task is used to automatically design physical connections. When
the status of the PCONDES task becomes Ready, the System Task Server processes the task.
The extension logic executes and, based on the selection logic in the extension and the
information on the order, the appropriate port address is selected for the design of the physical
connection.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 7: Select Port Address execution point

Field name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point PCONDES Maintenance(103)

Action Type Select Port Address Element(55)
26 MetaSolv Software, Inc.

Execution Points
Data passed / Data returned
This is a recommended synchronous call, therefore data should be returned from the extension
java class.

The data that is passed to the extension java class includes:

* Pass nsCompId and nsId, or pass an Array of nsCompKeys; do not pass both sets of data. If
the input data is comprised of the Array of nsCompKeys, custom logic can be written to select
which component id will be used. Having this option of input data allows for you to customize
your extension code to account for things like load balancing between different elements. For
example, if there are three valid elements from which to choose, custom code can select the
element which has the most or least capacity available, depending on your specific business
requirements.

Table 8: Select Port Address name/value pair input data

Data name Data value

Document number documentNumber

Circuit design ID circuitDesignId

Service item ID servItemId

End user location ID endUserLocationId

Rate code rateCode

Network system
component ID

nsCompId*

Network system ID nsId*

Network system component
key Array

nsCompKey*
(String Array comprised of
nsCompId and nsId)
MetaSolv Solution Developer’s Reference 27

The data that is returned by the extension java class is as follows:

GUI invocation
From the Work Queue window within Work Management, select a PCONDES task, right-
click and select Auto Provision from the pop-up menu. The extension logic executes prior to
the existing PCONDES auto provision logic. If a port address is successfully selected by the
extension logic, then the existing PCONDES auto provision logic is bypassed. However, if a
port address is not selected by the extension logic, the existing PCONDES auto provision logic
still executes.

XML API invocation
The Select Port Address execution point is not triggered by the XML API.

CORBA API invocation
The Select Port Address execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
PCONDES task is defined as a System Task.

For this to occur, the System Task Server must be configured to run on the appserver.
Refer to the section “Invoking an extension” located in Chapter 2 for specific
configuration information.

Table 9: Select Port Address name/value pair return data

Data name Data value

Equipment ID equipmentId

Port Address Sequence portAddrSeq
28 MetaSolv Software, Inc.

Execution Points
Select Component or Element for Physical Connection
MetaSolv Solution provides the ability to automatically design physical connections through
the PCONDES task. This execution point enables you to extend logic that is triggered when
the PCONDES task is executed, either manually from the GUI or automatically from the
System Task Server. The extension logic enables you to select the appropriate component or
element to use in the physical design of the connection. It executes prior to the existing
PCONDES auto-provisioning logic. If a component or element is successfully selected by the
extension logic, the existing PCONDES auto-provisioning logic is bypassed. If a component
or element is not selected by the extension logic, the existing PCONDES auto-provisioning
logic still executes.

Business example
You enter a PSR order and assign a provisioning plan that defines the PCONDES task as a
system task. The PCONDES task is used to automatically design physical connections. When
the status of the PCONDES task becomes Ready, the System Task Server processes the task.
The extension logic executes and, based on the selection logic in the extension and the
information on the order, the appropriate component or element is selected for the design of
the physical connection.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 10: Select Component or Element execution point

Field name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point PCONDES Maintenance(103)

Action Type Select Component or Element(54)
MetaSolv Solution Developer’s Reference 29

Data passed / Data returned
This is a recommended synchronous call, therefore data should be returned from the extension
java class.

The data that is passed to the extension java class includes:

The data that is returned by the extension java class is as follows:

Table 11: Select Component or Element name/value pair input data

Data name Data value

Document number documentNumber

Circuit design ID circuitDesignId

Service item ID servItemId

End user location ID endUserLocationId

Table 12: Select Component or Element name/value pair return data

Data name Data value

Network system component
key Array

nsCompKey
(String Array comprised of
nsCompId and nsId)
30 MetaSolv Software, Inc.

Execution Points
GUI invocation
From the Work Queue window within Work Management, select a PCONDES task, right-
click and select Auto Provision from the pop-up menu. The extension logic executes prior to
the existing PCONDES auto provision logic. If a component or element is successfully
selected by the extension logic, then the existing PCONDES auto provision logic is bypassed.
However, if a component or element is not selected by the extension logic, the existing
PCONDES auto provision logic still executes.

XML API invocation
The Select Component or Element execution point is not triggered by the XML API.

CORBA API invocation
The Select Component or Element execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
PCONDES task is defined as a System Task.

For this to occur, the System Task Server must be configured to run on the appserver.
Refer to the section “Invoking an extension” located in Chapter 2 for specific
configuration information.
MetaSolv Solution Developer’s Reference 31

Select Component or Element for Virtual Connection
MetaSolv Solution provides the ability to automatically design virtual connections through the
VCONDES task. This execution point enables you to extend logic that is triggered when the
VCONDES task is executed, either manually from the GUI or automatically from the System
Task Server. The extension logic enables you to select the appropriate component or element
to use in the virtual design of the connection. It executes prior to the existing VCONDES auto-
provisioning logic. If a component or element is successfully selected by the extension logic,
the existing VCONDES auto-provisioning logic is bypassed. If a component or element is not
selected by the extension logic, the existing VCONDES auto-provisioning logic still executes.

Business example
You enter a PSR order and assign a provisioning plan that defines the VCONDES task as a
system task. The VCONDES task is used to automatically design virtual connections. When
the status of the VCONDES task becomes Ready, the System Task Server processes the task.
The extension logic executes and, based on the selection logic in the extension and the
information on the order, the appropriate component or element is selected for the design of
the virtual connection.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 13: Select Component or Element execution point

Field name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point VCONDES Maintenance (105)

Action Type Select Component or Element
(54)
32 MetaSolv Software, Inc.

Execution Points
Data passed / Data returned
This is a recommended synchronous call, therefore data should be returned from the extension
java class.

The data that is passed to the extension java class includes:

The data that is returned by the extension java class is as follows:

Table 14: Select Component or Element name/value pair input data

Data name Data value

Document number documentNumber

Circuit design ID circuitDesignId

Service item ID servItemId

Connection Spec nstCompTypeConId

Network Configuration
Type

nstConfigTypeId

Component Type networkComponentType

Table 15: Select Component or Element name/value pair return data

Data name Data value

Network system component
key Array

nsCompKey
(String Array comprised of
nsCompId and nsId)
MetaSolv Solution Developer’s Reference 33

Returned data validation
The data returned by the VCONDES Maintenance - Select Component custom extension must
adhere to certain rules. All components (NS_ID/NS_COMP_ID combination) must pass the
following validation logic:

The NS_COMP_ID must exist in the database.
The component type of the returned NS_COMP_ID must match the
networkComponentType input parameter.
The NS_ID must exist in the database.
The network configuration type of the returned NS_ID must match the nstConfigTypeId
input parameter.

GUI invocation
From the Work Queue window within Work Management, open the Service Request Virtual
Connections window by double-clicking a VCONDES task and then select Auto Provision
from the Options menu. The extension logic executes prior to the existing VCONDES auto
provision logic. If a component or element is successfully selected by the extension logic, then
the existing VCONDES auto provision logic is bypassed. However, if a component or element
is not selected by the extension logic, the existing VCONDES auto provision logic still
executes.

XML API invocation
The Select Component or Element execution point is not triggered by the XML API.

CORBA API invocation
The Select Component or Element execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
VCONDES task is defined as a System Task. For this to occur, the System Task Server must
be configured to run on the appserver. Refer to the section “Invoking an extension” located in
Chapter 2 for specific configuration information.
34 MetaSolv Software, Inc.

Execution Points
Gateway Event Failure
MetaSolv Solution provides the ability to change the status of a gateway event to Error. This
execution point enables you to extend logic that will execute after the gateway event status
change has completed. This execution point is asynchronous so the continuation of the
Gateway Event Server process will not be jeopardized.

Business example
You entered an order and assigned a provisioning plan with a task that has an auto-complete
gateway event associated with it. When the task becomes Ready, the gateway event
automatically fires, but fails. The gateway event status is set to "Error", and the extension logic
executes and sends an e-mail notification to the appropriate person regarding the failed
gateway event.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 16: Gateway Event Failure execution point

Field name Option

Execution Mode Asynchronous

Building Block All Gateway Events (1002)

Process Point GW Event Maintenance (102)

Action Type GW Event Failed (51)
MetaSolv Solution Developer’s Reference 35

Data passed
This is required to be an asynchronous call. Data cannot be returned from the extension java
class.

The data passed to the Gateway Event Failure extension depends on the gateway event type.
There are four types of gateway events listed below. Table 17 shows all the data inputs, but
these will vary based on gateway event type.

Service Request or Order Type
Service Item or Item Level Type
Equipment Type
Design Type

The data passed to the extension java class includes:

Table 17: Gateway Event Failure data value input by event type

data value Order Type Item Level
Type

Equipment
Type Design Type

documentNumber yes yes no no

taskId yes yes no no

taskType yes yes no no

gatewayName yes yes yes yes

gatewayEventType yes yes yes yes

gatewayEventId yes yes yes yes

gatewayEventName yes yes yes yes

gatewayEventVersion yes yes yes yes

serviceItemId yes yes no no

errorText yes, if exists yes, if exists yes, if exists yes, if exists
36 MetaSolv Software, Inc.

Execution Points
GUI invocation
The Gateway Event Failure execution is not triggered by the GUI.

XML API invocation
The XML API method through which the java class extension is invoked is:

Order Management > updateOrderManagementRequest*

*The updateOrderManagementRequest method defines several choices of input structures.
The invocation is applicable only when the input structure chosen is TaskGWEventValue.

CORBA API invocation
The CORBA API method through which the java class extension is invoked is:

Work Management > updateGWEvent

Additional invocations
This execution point is triggered by the Gateway Event Server.

For this to occur, the Gateway Event Server must be configured to run on the
appserver. Refer to the section “Invoking an extension” located in Chapter 2 for
specific configuration information.

This execution point is triggered by the Integration Server.

For this to occur, the Integration Server must be configured to run on the appserver.
Refer to the section “Invoking an extension” located in Chapter 2 for specific
configuration information.
MetaSolv Solution Developer’s Reference 37

Assign Queues
MetaSolv Solution provides the ability to assign a provisioning plan to an order. A
provisioning plan defines tasks, and assigns work queues to the tasks within the provisioning
plan. This execution point enables you to extend logic in the way the work queues are assigned
to tasks within a provisioning plan when tasks are generated for an order.

Business example
You built provisioning plans and assigned default work queues to the tasks in every plan.
However, for a specific task type, you would like to do the following:

Assign it to the ABC queue at certain hours of the day, depending on the workload.
Assign it to the XYZ queue at certain hours of the day, depending on the workload.
Send an e-mail notification to notify the owner of each work queue when a task is assigned
to them.

You can use the assign queues execution point to extend logic to accomplish those tasks.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 18: Assign Queues execution point

Field name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Assign Queues (43)
38 MetaSolv Software, Inc.

Execution Points
Data passed / Data returned
This is a recommended synchronous call, therefore data should be returned from the extension
java class.

The data that is passed to the extension java class includes:

The data that is returned by the extension java class is as follows:

*The work queue ID Array is returned in the same order as the input Arrays of task types and
corresponding task numbers.

GUI invocation
After you assign a provisioning plan to an order, you click the Queues button to assign the
tasks to the appropriate work queues. The execution point is triggered when you click the
Queues button on the Task List tab of the Tasks window.

When you click the Queues button, the task list is sent to the extension. The data received back
populates the Work Queue field for each task. This logic overrides the default work queues
that were assigned to the provisioning plan when it was established. However, you can still
select a different work queue for any or all tasks, should you need to do so after the extension
logic executes.

Table 19: Assign Queues name/value pair input data

Data name Data value

Document number documentNumber

Task type Array taskType

Task number Array taskId

Table 20: Assign Queues name/value pair return data

Data name Data value

Work queue ID Array* workQueueId
MetaSolv Solution Developer’s Reference 39

XML API invocation
The XML API method through which the java class extension is invoked is:

OrderManagement - > assignProvisionPlanProcedureRequest

CORBA API invocation
The CORBA API method through which the java class extension is invoked is:

WorkManagement -> generateAndSaveTasks
40 MetaSolv Software, Inc.

Execution Points
Assign Task Jeopardy
MetaSolv Solution provides the ability to add, change, and delete jeopardy information for
tasks. This execution point enables you to extend logic that will execute when jeopardy
information on a task changes (in the form of add, change, or delete).

Business example
You assigned a provisioning plan and, from your Work Queue, set up a jeopardy code on a
task. The task ends up going into jeopardy. When the jeopardy status changes, the extension
logic executes and sends an e-mail notification to the appropriate person regarding the task
jeopardy status.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 21: Assign Task Jeopardy execution point

Field name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Assign Jeopardy (41)
MetaSolv Solution Developer’s Reference 41

Data passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension java class.

The data passed to the extension java class includes:

GUI invocation
From the Work Queue, select a task, right-click, and select Jeopardy Status from the pop-up
menu. This opens the Task Jeopardy Codes window where jeopardy codes can be added,
changed, or deleted. Click OK or the Apply button to trigger the Task Jeopardy execution
point.

XML API invocation
The XML API method through which the java class extension is invoked is:

OrderManagement > addTaskJeopardyRequest

CORBA API invocation
The CORBA API methods through which the java class extension is invoked are:

Work Management > addTaskJeopardy
Work Management > deleteTaskJeopardy
Work Management > updateTaskJeopardy

Table 22: Assign Task Jeopardy name/value pair input data

Data name Data value

Document number documentNumber

Task type taskType

Task number taskId

Work Queue ID workQueueId
42 MetaSolv Software, Inc.

Execution Points
Change Task Completion Date
MetaSolv Solution provides the ability to change a task due date. This execution point enables
you to extend logic that will execute when a task due date is changed.

Business example
You entered an order, assigned a provisioning plan, and then supplemented the order to
change the due date. The extension logic executes and sends an e-mail notification to the
appropriate person regarding the task due date change.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 23: Change Task Completion Date execution point

Field name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Change Completion Date (44)
MetaSolv Solution Developer’s Reference 43

Data passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension java class.

The data passed to the extension java class includes:

GUI invocation
From the Work Queue, select a task, right-click, and select Service Request Tasks from the
pop-up menu. This opens the Tasks window > Task List tab where task due dates can be
changed. Click OK or the Apply button to trigger the Task Due Date Change execution point,
which only executes if any task due dates were actually changed.

Additionally, you can supplement an order to bring up the Tasks window where task due dates
can be changed.

XML API invocation
The XML API method through which the java class extension is invoked is:

Order Management > processSuppOrder

CORBA API invocation
The Change Task Completion Date execution point is not triggered by the CORBA
API.

Table 24: Change Task Completion Date name/value pair input data

Data name Data value

Document number documentNumber

Task Type taskType

Task number taskId

Work Queue ID workQueueId

New revised completion date newRevisedCompletionDate
44 MetaSolv Software, Inc.

Execution Points
Complete Task
MetaSolv Solution provides the ability to complete a task assigned to an order. This execution
point enables you to extend logic that will execute when a task completes, either manually
from the gui or automatically from the System Task Server.

Business example
You entered a PSR order and assigned a provisioning plan comprised of three tasks. The
second task is defined as an execution point and associated to an extension. When the task
completes, the extension logic executes and sends an e-mail notification to the appropriate
person regarding the task completion.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Data passed
This is required to be a synchronous call because existing logic must know if the extension
logic executed successfully before continuing. While no task related data needs to be returned
from the extension java class, it must indicate success or failure.

Table 25: Complete Task execution point

Field name Option

Execution Mode Synchronous

Building Block All Task Types (1001)
-- or --
[specific task type]
(dynamic)

Process Point Task Maintenance (101)

Action Type Complete (53)
MetaSolv Solution Developer’s Reference 45

The data passed to the extension java class includes:

GUI invocation
From the Work Queue window within Work Management, select a task, right-click and select
Complete from the pop-up menu. The extension logic will execute after the task completion
logic runs successfully, but before the commit. If the task completion logic fails, the extension
logic will not execute. If the extension logic fails, the task will not complete and a rollback
will occur.

XML API invocation
The XML API method through which the java class extension is invoked is:

Order Management > updateOrderManagementRequest*

*The updateOrderManagementRequest method defines a choice of input structures. To
complete a task, use the input structure CompleteTaskProcedureValue.

CORBA API invocation
The CORBA API methods through which the java class extension is invoked are:

Work Management > completeTask

Work Management > completeTaskOnDate

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
task is defined as a System Task.

For this to occur, the System Task Server must be configured to run on the appserver.
Refer to the section “Invoking an extension” located in Chapter 2 for specific
configuration information.

Table 26: Complete Task name/value pair input data

Data name Data value

Document number documentNumber

Task number taskId
46 MetaSolv Software, Inc.

Execution Points
Generate Tasks
MetaSolv Solution provides the ability to generate tasks for an order. This execution point
enables you to extend logic that will execute after tasks are generated. Order management also
provides the ability to split a PSR order, a process that also generates tasks for the new order
created as a result of the split. This execution point also enables you to extend logic that will
execute after tasks are generated as a result of a split.

Business example
You entered a PSR order and assigned a provisioning plan. Two of the service items on the
order are delayed, and you split the order so the remaining items can be completed. When the
order is split, tasks are generated for the new order that is created as a result of the split. The
extension logic executes and sends an e-mail notification to the appropriate person regarding
the tasks being generated due to the split. Both the original order and the split order
information is made available to the extension.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 27: Generate execution point

Field name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Generation (1)

Action Type Generate (32)
MetaSolv Solution Developer’s Reference 47

Data passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension java class.

The data passed to the extension java class includes:

Note that the document will always be passed to the extension java class, but the split
document number may or may not be passed, depending on what triggered the task generation.
If a split order triggered the task generation, then the split document number, in addition to the
document number, will be passed to the extension java class.

GUI invocation
From the Product Service Request window within Order Management, select Options from the
menu bar, and then select Task Generation Maintenance from the pop-up menu. This opens
the Tasks window > Plan Selection tab. Select a provisioning plan from the drop-down list.
Click the Task List tab, and select work queues for each task. Click OK or the Apply button to
trigger the Generate execution point, which happens immediately following the creation of the
tasks for the order.

XML API invocation
The Generate Tasks execution point is not triggered by the XML API.

CORBA API invocation
The Generate Tasks execution point is not triggered by the CORBA API.

Table 28: Generate Tasks name/value pair input data

Data name Data value

Document number documentNumber

Split document number splitDocumentNumber
48 MetaSolv Software, Inc.

Execution Points
Late Task
MetaSolv Solution considers a task late when the current GMT date is greater than the revised
completion date on the task. This execution point enables you to extend logic that will execute
when a task becomes late.

This execution point enables you to extend logic that will execute when a task becomes late.
Note that this execution point will be triggered only once when the task is determined to be
late. It may be triggered again if the revised completion date is updated on the task. There are
new fields on the Task table that indicate if an extension has been invoked.

At the point you define this extension, there could be a large number of late tasks already
existing in the database. Invoking this extension for each of these tasks can affect system
perofrmance. You can manage the system load by modifying the setup values in the
integration.xml file. The maxThreads should always be set to 1. However, the
queueMaxCapacity can be lowered and the dbPollingInterval increased to allow breaks in the
system processing so the late task extensions can be invoked. The following excerpt from the
integeration.xml file illustrates this concept:
<LateTaskExtensionEvent event_name="LateTaskExtensionEvent">

<maxThreads>1</maxThreads>

<queueMaxCapacity>100</queueMaxCapacity>

<dbPollingInterval>5</dbPollingInterval>

</LateTaskExtensionEvent>

Business example
You entered an order and assigned a provisioning plan. One of the tasks becomes late. The
extension logic executes and sends an e-mail notification to the appropriate person regarding
the late task.
MetaSolv Solution Developer’s Reference 49

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Data passed
This is required to be a synchronous call because existing logic must know if the extension
logic executed successfully before continuing. While no task related data needs to be returned
from the extension java class, it must indicate success or failure.

The data passed to the extension java class includes:

Table 29: Late Task execution point

Field name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Late (46)

Table 30: Late Task name/value pair input data

Data name Data value

Document number documentNumber

Task number or identifier taskId

Task type taskType

Work queue identifier workQueueId

Organization for employee organizationName

Employee name employeeName

Error text for failure errorText
50 MetaSolv Software, Inc.

Execution Points
GUI invocation
The Late Task execution point is not triggered by the GUI.

XML API invocation
The Late Task execution point is not triggered by the XML API.

CORBA API invocation
The Late Task execution point is not triggered by the CORBA API.

Additional invocations
This execution point is triggered by the Integration Server.

For this to occur, the Integration Server must be configured to run on the appserver.
Refer to the section “Invoking an extension” located in Chapter 2 for specific
configuration information.
MetaSolv Solution Developer’s Reference 51

Potentially Late Task
MetaSolv Solution provides the ability to define the potentially late window of time for each
task type. MetaSolv Solution considers a task potentially late when the revised completion
date on the task, minus the time defined as the potentially late window, is less than the current
GMT date. This comparison will take into account the calendar that is set up by the
organization. The calendar relationship is determined from the task's work queue, which is
then associated with an employee, and each employee is associated with organization. For an
organization, the calendar may reflect non-work days, which would be considered in
determining if a task was potentially late.

This execution point enables you to extend logic that will execute when a task becomes
potentially late. Note the following regarding the Potentially Late Task execution point:

This execution point will be triggered only once when the task is determined to be
potentially late. It may be triggered again if the revised completion date is updated on the
task. There are new fields on the Task table that indicate if an extension has been invoked.
If the potentially late server event is disabled during the window of time for a potentially
late task, and the task passes from a potentially late task to a late task, the potentially late
execution point trigger will not execute. When the server event is enabled, and the task is
now late, then the Late Task execution point will be triggered.

Business example
You entered an order and assigned a provisioning plan with a task that defines a potentially
late window. The task becomes potentially late. The extension logic executes and sends an
e-mail notification to the appropriate person regarding the potentially late task.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 31: Potentially Late Task execution point

Field name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Potentially Late (47)
52 MetaSolv Software, Inc.

Execution Points
Data passed
This is required to be a synchronous call because existing logic must know if the extension
logic executed successfully before continuing. While no task related data needs to be returned
from the extension java class, it must indicate success or failure.

The data passed to the extension java class includes:

GUI invocation
The Potentially Late Task execution point is not triggered by the GUI.

XML API invocation
The Potentially Late Task execution point is not triggered by the XML API.

CORBA API invocation
The Potentially Late Task execution point is not triggered by the CORBA API.

Additional invocations
This execution point is triggered by the Integration Server.

For this to occur, the Integration Server must be configured to run on the appserver.
Refer to the section “Invoking an extension” located in Chapter 2 for specific
configuration information.

Table 32: Potentially Late Task name/value pair input data

Data name Data value

Document number documentNumber

Task number or identifier taskId

Task type taskType

Work queue identifier workQueueId

Organization for employee organizationName

Employee name employeeName

Error text for failure errorText
MetaSolv Solution Developer’s Reference 53

Provisioning Plan Default
MetaSolv Solution provides the ability to assign a provisioning plan to an order. This
execution point enables you to extend logic to default the appropriate provisioning plan to an
order, rather than having to specify a particular provisioning plan.

Business example
You built provisioning plans and assigned default work queues to the tasks in every plan. An
extension could be added for defaulting a provisioning plan, allowing you to put logic around
the default. For example, you can reduce the number of errors that are made in assigning a
provisioning plan to an order by basing the assignment on specific data. Additionally, when
the extension logic executes, you can send an e-mail notification to the appropriate person
regarding the defaulted provisioning plan.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 33: Provision Plan Default execution point

Field name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Generation (1)

Action Type Provision Plan Default (52)
54 MetaSolv Software, Inc.

Execution Points
Data passed / Data returned
This is a recommended synchronous call, therefore data should be returned from the extension
java class.

The data passed to the extension java class includes:

The data returned by the extension java class is as follows:

GUI invocation
From a Service Request window (ISR, PSR, etc.) within Order Management, select Options
from the menu bar, and then select Task Generation Maintenance from the pop-up menu. This
opens the Tasks window > Plan Selection tab. The Provisioning Plan Default execution point
will be triggered just prior to the Tasks window being displayed. If custom logic is executed,
and a valid provisioning plan is returned from the extension, that plan will automatically be
populated in the drop-down list and the display will proceed to the Task Gantt tab. The user
may return to the Plan Selection tab to change the selected plan.

XML API invocation
The Provisioning Plan Default execution point is not triggered by the XML API.

CORBA API invocation
The Provisioning Plan Default execution point is not triggered by the CORBA API.

Table 34: Provisioning Plan Default name/value pair input data

Data name Data value

Document number documentNumber

Organization organization

Jurisdiction jurisdiction

Service type group serviceTypeGroup

Order status status

Table 35: Provisioning Plan Default name/value pair return data

Data name Data value

Provision plan ID provisionPlanId
MetaSolv Solution Developer’s Reference 55

Reject Task
MetaSolv Solution provides the ability to reject a task. This execution point enables you to
extend logic that will execute when a specified task is rejected.

Business example
You assigned a provisioning plan and, from your Work Queue, reject a task. The extension
logic executes and sends an e-mail notification to the appropriate person regarding the rejected
task.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 36: Reject Task execution point

Field name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Reject (42)
56 MetaSolv Software, Inc.

Execution Points
Data passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension java class.

The data passed to the extension java class includes:

GUI invocation
From the Work Queue, select a task, right-click, and select Reject Task from the pop-up menu.
This opens the Reject Task window where you select, from a list of predecessor tasks, the task
that will be set back to Ready status. All tasks between the initial selection and this second
selection (tasks in that provisioning plan for that order) will be set back to Pending status.
Click OK to trigger the Reject Task execution point. A list of affected tasks will be sent to the
extension.

XML API invocation
The Reject Task execution point is not triggered by the XML API.

CORBA API invocation
The CORBA API method through which the java class extension is invoked is:

Work Management > rejectTask

Table 37: Reject Task name/value pair input data

Data name Data value

Document number documentNumber

Task type taskType

Task number taskId

Work Queue ID workQueueId

Previous task status priorTaskStatus

Reject reason note
MetaSolv Solution Developer’s Reference 57

System Task Failure
MetaSolv Solution provides the ability to define a task as a system task. This indicates that the
task’s completion logic will automatically run on the System Task Server when the task
becomes Ready or when the task start date is reached. However, the system task’s completion
logic may fail. When a system task cannot be completed, the System Task Server rolls back
the transaction, transfers the task to the Exception queue, and logs information to the Server
Log table. The server log entries associated with a task can be viewed from the work queue by
selecting the task, and then clicking the Server Log tab. Tasks are not completed if a gateway
event is in error or if a why-missed code cannot be defaulted.

This execution point enables you to extend logic that will execute when a system task fails to
complete. This execution point is asynchronous so that the continuation of the System Task
Server process will not be jeopardized.

Business example
You entered an order and assigned a provisioning plan with a system task. The task becomes
Ready, the System Task Server picks up the task and attempts to complete it, but fails. The
extension logic executes and sends an e-mail notification to the appropriate person regarding
the failed system task.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options when searching for an execution point to associate with the extension:

Table 38: System Task Failure execution point

Field name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type System Task Failure (45)
58 MetaSolv Software, Inc.

Execution Points
Data passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension java class.

The data passed to the extension java class includes:

GUI invocation
The System Task Failure execution point is not triggered by the GUI.

XML API invocation
The System Task Failure execution point is not triggered by the XML API.

CORBA API invocation
The System Task Failure execution point is not triggered by the CORBA API.

Additional invocations
This execution point is triggered by the System Task Server.

For this to occur, the System Task Server must be configured to run on the appserver.
Refer to the section “Invoking an extension” located in Chapter 2 for specific
configuration information.

This execution point is triggered by the Background Processor.

For this to occur, the Background Processor must be running. Refer to the section
“Invoking an extension” located in Chapter 2 for specific information on how to run
the Background Processor.

Table 39: System Task Failure name/value pair input data

Data name Data value

Document number documentNumber

Task number or identifier taskId

Task type taskType

Work queue identifier workQueueId

Error text for failure errorText or note
MetaSolv Solution Developer’s Reference 59

Email CLR/DLR/TCO
MetaSolv Solution provides the ability to perform a process from the connection print
window. This execution point enables you to extend logic that activates upon clicking of the
OK button on the print window after closing the email recipient's window. In order to open the
email recipient's window, in the Preference window, set the "Enable HTML Email" option to
true and select the Email option in the Print window.

You can modify the sample code to fit the email protocol used at a customer site. The sample
extension uses the ByteArrayDataSource method available in the mailapi.jar. The mailapi.jar
is from JAVAMail4.1by Sun Microsystems. The sample email extension exists in the
SendEmailAttachment folder.

If required, download the mailapi.jar from Sun Microsystems website. After downloading,
you can include the jar in the CLASSPATH of the appserver environment.

Business example
You can use this custom extension in several ways. One possible use of this extension is to
retrieve the saved HTML files from the database and email the files to the appropriate
recipients. Other possibilities include displaying the HTML files on an Intranet or providing
access to the HTML files from other applications. The HTML attachment exists as a CLOB in
the Email_Job_Attachment table.

Execution point definition
When defining the extension in the MetaSolv Solution application, choose the following
options while searching for an execution point to associate with the extension:

Select Component or Element execution point

Table 40:

Field name Option

Execution Mode Asynchronous

Building Block All Task Types (409)

Process Point Task Maintenance (104)

Action Type Email(56))
60 MetaSolv Software, Inc.

Execution Points
Data passed / Data returned
As this is an asynchronous call, therefore extension java class does not return data.

The data that is passed to the extension java class includes:

Email input data

Table 41:

GUI invocation
From the Connection print window, select the Email checkbox and click OK. The
execution occurs on the Print window but the logic will wait till the user clicks OK on
the Recipient window and the Recipient window closes. If the user clicks Cancel on
the Recipients window, the extension does not execute.

XML API invocation
The Email execution point is not triggered by the XML API.

CORBA API invocation
The Email execution point is not triggered by the CORBA API.

Additional invocations
This execution point is not triggered anywhere else.

Data Name Data Value

Job Id jobid
MetaSolv Solution Developer’s Reference 61

62 MetaSolv Software, Inc.

B

Appendix B: Extensions sample code

This appendix covers information regarding sample code that is provided with your
installation of M6.0.12 or higher.

Using sample code as a reference for best practices
This section covers information regarding best practices for writing java classes to extend the
MetaSolv Solution application logic. The best practices are covered in the form of referencing
the provided sample code. The sample code demonstrates how to throw an exception, send an
e-mail notification, and call a CORBA API method from an extension class.

Exception handling
The mss_ext_samples.jar contains the class SampleExtensionException.java. This class
provides sample code that throws an exception from an extension class. The result of an
extension class throwing an exception is an entry in the appserverlog.xml file that shows the
error text provided by the extension class. No error is shown to the user.

Below is a sample of the message text logged to the appserverlog.xml when this class
executes:

PlugInReturn object returned from Extension contained errors:

Testing Extension Exception - Sample Error Message

processPoint 101 ActionType 46 BuildingBlock 1001 Caller USER.

E-mail notification
The mss_ext_samples.jar contains the class ExtensionFrameworkOneWayTest.java. This
class provides sample code that sends an e-mail notification from an extension class.

CORBA API Invocation
The mss_ext_samples.jar contains the class InvokeCorbaAPIExtension.java. This class
provides sample code that invokes a CORBA API method from an extension class. The
sample code calls the CORBA API method getOrganization, which is defined in the
TaskCompletionSubsession of the Work Management CORBA API.
MetaSolv Solution Developer’s Reference 63

Running the sample code
The extensions sample code provides concrete examples of how to code specific logic in the
extension java class such as error handling, sending an e-mail notification, and making an API
call. When executed, the sample code also provides concrete examples of the outcome of these
actions. You can define any of the sample classes as an extension in the GUI, associate an
execution point with the extension, and then trigger the execution point to invoke the sample
class extension and see the outcome.

The extension sample code provided with your installation of MetaSolv Solution is listed
below, including the first release in which it’s supported. All sample code related files are
located in the mss_ext_samples.jar file. The installer copies the mss_ext_samples.jar file to
your <M6Home>/appserver/samples directory.

For a full installation, the mss_ext_samples.jar contents are extracted into the appropriate
path under your <M6Home> directory. The appropriate path for each file is identified by
the path specified in the .jar file.
For an upgrade, you must manually extract the contents of the mss_ext_samples.jar into
the appropriate path under your <M6Home> directory. The appropriate path for each file
can be identified by the path specified in the .jar file.

Table 42: Sample code

For each sample, you will find the following file types in the mss_ext_samples.jar file. (The
only exception is the InvokeCorbaAPIExtension sample, which does not have a supporting
.xml file because there is no input data needed for this sample.)

.java—the extension java source file

.class—the corresponding compiled java class file

.xml—the supporting xml file that defines sample input data and sample configuration
data that is passed to the extension logic

Sample code Supported
release

AssignWorkQueues M6.0.12

ProvPlanDefault M6.0.12

ExtensionFrameworkOneWayTest M6.0.12

SampleExtensionException M6.0.12

InvokeCorbaAPIExtension M6.0.12
64 MetaSolv Software, Inc.

Running the sample code
For example, you will find the following three files that support the AssignWorkQueues
sample in the mss_ext_samples.jar file:

AssignWorkQueues.java
AssignWorkQueues.class
AssignWorkQueues.xml
MetaSolv Solution Developer’s Reference 65

AssignWorkQueues
The AssignWorkQueues sample is provided to show extension logic that assigns specific work
queues, and uses a synchronous example. The sample logic shows how to return the specific
data that the Assign Queues execution point is expecting. When the sample code is executed, it
also shows the outcome of this action. Specifically, the data that was passed back to the
execution point will be logged for your viewing.

Perform the following steps to run the AssignWorkQueues sample code:

1. Through the GUI, define a synchronous extension with the name AssignWorkQueues.

2. Through the GUI, associate the Assign Queues execution point with the extension by
searching for the following criteria:

Building Block—All Task Types
Process Point—Task Maintenance
Action Type—Assign Queues

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct location
of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure the logging level is set correctly by checking the loggingconfig.xml file, located in
the <MSLV_HOME>/<SERVER_NAME>/appserver/config directory.

5. Look at the AssignWorkQueues.xml file to understand what the expected results should be
in step 7. Specifically, the AssignQueues.xml file defines four tasks and the corresponding
work queues to which the tasks will be assigned. The work queues will be returned by the
AssignWorkQueues extension logic.

6. Through the GUI, trigger the execution point by assigning work queues.

7. Verify the outcome by looking in the GUI, and by looking in the appserserverlog.xml file,
located in the <MSLV_HOME>/<SERVER_NAME>/appserver/logs directory.
66 MetaSolv Software, Inc.

Running the sample code
ProvPlanDefault
The ProvPlanDefault sample is provided to show extension logic that defaults a provisioning
plan, and uses a synchronous example. The sample logic shows how to return the specific data
that the Provisioning Plan Default execution point is expecting. When the sample code is
executed, it also shows the outcome of this action. Specifically, the data that was passed back
to the execution point will be logged for your viewing.

Perform the following steps to run the ProvPlanDefault sample code:

1. Through the GUI, define a synchronous extension with the name ProvPlanDefault.

2. Through the GUI, associate the Provisioning Plan Default execution point with the
extension by searching for the following criteria:

Building Block—All Task Types
Process Point—Task Generation
Action Type—Provision Plan Default

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct location
of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml file,
located in the <MSLV_HOME>/<SERVER_NAME>/appserver/config directory.

5. Look at the ProvPlanDefault.xml file to understand what the expected results should be in
step 7. Specifically, the ProvPlanDefault.xml file defines a specific provisioning plan ID
that will be returned by the ProvPlanDefault extension logic.

6. Through the GUI, trigger the execution point by assigning a provisioning plan to an order.

7. Verify the outcome by looking in the GUI, and by looking in the appserserverlog.xml file,
located in the <MSLV_HOME>/<SERVER_NAME>/appserver/logs directory.
MetaSolv Solution Developer’s Reference 67

ExtensionFrameworkOneWayTest
The ExtensionFrameworkOneWayTest sample is provided to show extension logic that sends
an e-mail notification. When the sample code is executed, it shows the outcome of this action,
and the notification will be logged for your viewing. This sample also shows:

How to read an XML file and determine what execution point invoked it.
How to send an e-mail notification.
How to read the input name/value pair Array and put that data into an e-mail.

Perform the following steps to run the ExtensionFrameworkOneWayTest sample code:

1. Through the GUI, define an extension with the name ExtensionFrameworkOneWayTest.

2. Through the GUI, associate an execution point with the extension by searching for criteria
such as:

Building Block—All Task Types
Process Point—Task Maintenance
Action Type—Assign Jeopardy

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct location
of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml file,
located in the <MSLV_HOME>/<SERVER_NAME>/appserver/config directory.

5. Look at the ExtensionFrameworkOneWayTest.xml file to understand what the expected
results should be in step 7. Modify the data, such that the e-mail recipient is a valid address
that can check for the mail notification, and the SmtpServerKey value is valid for your
location.

6. Through the GUI, trigger the execution point that was selected in step 2.

7. Verify the outcome by looking in designated e-mail inbox, and by looking in the
appserserverlog.xml file, located in the <MSLV_HOME>/<SERVER_NAME>/
appserver/logs directory.
68 MetaSolv Software, Inc.

Running the sample code
SampleExtensionException
The SampleExtensionException sample is provided to show extension logic that sends an e-
mail notification and throws an exception. The code will always throw an exception. When the
sample code is executed, it shows the outcome of this action in the form of the e-mail
notificaiton, and in the form of a logged error if the extension is defined as synchronous. Note
the following:

If the extension is defined as asynchronous, the extension framework will not log an error,
and only the e-mail notification will occur.
If the extension is defined as synchronous, the extension framework will log an error to
the log file, in addition to the e-mail notificaiton being sent.

Perform the following steps to run the SampleExtensionException sample code:

1. Through the GUI, define a synchronous extension with the name
SampleExtensionException.

2. Through the GUI, associate an execution point with the extension by searching for criteria
such as:

Building Block—All Task Types
Process Point—Task Maintenance
Action Type—Assign Jeopardy

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct location
of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml file,
located in the <MSLV_HOME>/<SERVER_NAME>/appserver/config directory.

5. Look at the SampleExtensionException.xml file to understand what the expected results
should be in step 7. Modify the data, such that the e-mail recipient is a valid address that
can check for the exception notification, and the SmtpServerKey value is valid for your
location.

6. Through the GUI, trigger the execution point that was selected in step 2.

7. Verify the outcome by looking in the appserserverlog.xml file, located in the
<MSLV_HOME>/<SERVER_NAME>/appserver/logs directory.
MetaSolv Solution Developer’s Reference 69

InvokeCorbaAPIExtension
The InvokeCorbaAPIExtension sample is provided to show how to code CORBA API calls in
the extension logic. When the sample code is executed, it also shows the outcome of this
action. Specifically, the sample calls the CORBA API mehtod getOrganization(), so the
organization will be logged for your viewing.

Perform the following steps to run the InvokeCorbaAPIExtension sample code:

1. Through the GUI, define an extension with the name InvokeCorbaAPIExtension.

2. Through the GUI, associate an execution point with the extension by searching for criteria
such as:

Building Block—All Task Types
Process Point—Task Maintenance
Action Type—Assign Jeopardy

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct location
of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml file,
located in the <MSLV_HOME>/<SERVER_NAME>/appserver/config directory.

5. Through the GUI, trigger the execution point that was selected in step 2.

6. Verify the outcome by looking in the appserserverlog.xml file, located in the
<MSLV_HOME>/<SERVER_NAME>/appserver/logs directory.
70 MetaSolv Software, Inc.

Running the sample code
SelectComponent
The SelectComponent sample is provided to show extension logic that selects a component or
element, and uses a synchronous example. The sample logic shows how to return the specific
data that the Select Component or Element execution point is expecting. When the sample
code is executed, it also shows the outcome of this action. Specifically, the data that was
passed back to the execution point will be logged for your viewing.

This sample is different from the others in that it is very specific in its function. Other samples
are open-ended and can apply to several execution points. This sample code calls specific
methods to accomplish the component selection. Java documentation is provided in the sample
code to give you additional information about the methods that the sample code calls.

Perform the following steps to run the SelectComponent sample code:

1. Through the GUI, define a synchronous extension with the name SelectComponent.

2. Through the GUI, associate the Select Component or Element execution point with the
extension by searching for the following criteria:

Building Block—All Connections
Process Point—PCONDES Maintenance
Action Type—Select Component or Element

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct location
of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure the logging level is set correctly by checking the loggingconfig.xml file, located in
the <MSLV_HOME>/<SERVER_NAME>/appserver/config directory.

5. Through the GUI:

Set up a DSLAM network location.
Add a network element of type DSL Multiplexer to the DLSLAM network location.
Add a DSL card with an available port matching the rate code of the ordered service to
the DSL Multiplexer.
Enter a PSR order with an end user location that has the same zip code as the DSLAM
network location.
On the PSR order, add a service to the end user location that can be auto provisioned.
Assign a provisioning plan to the order that defines the PCONDES task.

6. Through the GUI, trigger the execution point by completing the PCONDES task.

7. Verify the outcome by looking in the GUI, and by looking in the appserserverlog.xml file,
located in the <MSLV_HOME>/<SERVER_NAME>/appserver/logs directory.
MetaSolv Solution Developer’s Reference 71

SelectPort
The SelectPort sample is provided to show extension logic that selects a port address, and uses
a synchronous example. The sample logic shows how to return the specific data that the Select
Port Address execution point is expecting. When the sample code is executed, it also shows
the outcome of this action. Specifically, the data that was passed back to the execution point
will be logged for your viewing.

This sample is different from the others in that it is very specific in its function. Other samples
are open-ended and can apply to several execution points. This sample code calls specific
methods to accomplish the port selection. Java documentation is provided in the sample code
to give you additional information about the methods that the sample code calls.

Perform the following steps to run the SelectComponent sample code:

1. Through the GUI, define a synchronous extension with the name SelectPort.

2. Through the GUI, associate the Select Port Address execution point with the extension by
searching for the following criteria:

Building Block—All Connections
Process Point—PCONDES Maintenance
Action Type—Select Port Address

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct location
of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure the logging level is set correctly by checking the loggingconfig.xml file, located in
the <MSLV_HOME>/<SERVER_NAME>/appserver/config directory.

5. Through the GUI:

Set up a DSLAM network location.
Add a network element of type DSL Multiplexer to the DLSLAM network location.
Add a DSL card with an available port matching the rate code of the ordered service to
the DSL Multiplexer.
Enter a PSR order with an end user location that has the same zip code as the DSLAM
network location.
On the PSR order, add a service to the end user location that can be auto provisioned.
Assign a provisioning plan to the order that defines the PCONDES task.

6. Through the GUI, trigger the execution point by completing the PCONDES task.

7. Verify the outcome by looking in the GUI, and by looking in the appserserverlog.xml file,
located in the <MSLV_HOME>/<SERVER_NAME>/appserver/logs directory.
72 MetaSolv Software, Inc.

Running the sample code
SelectComponentForVirtual
The SelectComponentForVirtual sample is provided to show extension logic that selects a
component or element for a virtual connection using a synchronous call. The sample logic
reads the expected values (NS_ID and NS_COMP_ID) from the corresponding XML file, but
shows how to return the data that the Select Component or Element execution point is
expecting. When the sample code is executed, it shows the outcome of this action by logging
the input parameters to the console.

The SelectComponentForVirtual sample is provided to show extension logic that selects a
component or element for a virtual connection using a synchronous call. The sample logic
reads the values (NS_ID and NS_COMP_ID) from the corresponding XML file. Even though
the sample logic uses values from an XML file instead of performing actual logic to retrieve
those values, it does demonstrate how to format the return data as required by the calling
method. When the sample code is executed, it shows the outcome of this action by logging the
input parameters to the console.

Perform the following steps to run the SelectComponentForVirtual sample code:

1. Through the GUI, define a synchronous extension with the name
SelectComponentForVirtual.

2. Through the GUI, associate the Select Component or Element execution point with your
newly created extension by searching for the following criteria:

Building Block-All Connections
Process Point-VCONDES Maintenance
Action Type-Select Component or Element

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct location
of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectComponentForVirtual.xml file in the <MSLV_HOME>/
<SERVER_NAME>/ appserver/samples/customExtension/xml directory. The keys in this
file represent the desired Network System (NS_ID) and Component (NS_COMP_ID) for
the virtual connection to be provisioned to. This file will be read by the custom extension
in Step 6 and therefore you must modify these key values to represent the actual
corresponding data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file, located in
the <MSLV_HOME>/<SERVER_NAME>/appserver/config directory.

6. Through the GUI:

Enter a PSR order with one or more virtual connections.
Assign a provisioning plan to the order that defines the VCONDES task.
Open the Service Request Virtual Circuits window by opening the VCONDES task.
MetaSolv Solution Developer’s Reference 73

Select one or more connections and then select Auto Provision from the Options
menu.
Verify the outcome by looking in the GUI, and by looking in the
<SERVER_NAME>.mss.xml file, located in the <MSLV_HOME>/
<SERVER_NAME>/appserver/logs directory.
74 MetaSolv Software, Inc.

	Contents
	About this guide
	Audience
	Additional information and help
	Oracle Support
	MetaSolv Solution documentation set

	Extensions overview
	About custom extensions
	Extensions
	Execution points
	Building block
	Process point
	Action type

	Extension logic
	Invocation methods
	MetaSolv Solution GUI
	XML API clients
	CORBA API clients
	Polling servers

	Defining an extension
	Defining an extension in the GUI
	Type of extension
	Name of extension
	Execution Mode
	Associating an execution point with an extension
	Defining the extension parameters

	Configuring an extension
	Gateway.ini configuration
	Additional configurations

	Invoking an extension

	Identifying an execution point
	Component options
	Building block options
	Process point options
	Action type options

	Component combinations

	Coding the extension logic
	Inheriting from the extension framework
	Accessing data passed from the execution point
	Overview
	Class details

	Appendix A: Supported execution points
	Execution Points
	Select Port Address
	Select Component or Element for Physical Connection
	Select Component or Element for Virtual Connection
	Gateway Event Failure
	Assign Queues
	Assign Task Jeopardy
	Change Task Completion Date
	Complete Task
	Generate Tasks
	Late Task
	Potentially Late Task
	Provisioning Plan Default
	Reject Task
	System Task Failure
	Email CLR/DLR/TCO

	Appendix B: Extensions sample code
	Using sample code as a reference for best practices
	Exception handling
	E-mail notification
	CORBA API Invocation

	Running the sample code
	AssignWorkQueues
	ProvPlanDefault
	ExtensionFrameworkOneWayTest
	SampleExtensionException
	InvokeCorbaAPIExtension
	SelectComponent
	SelectPort
	SelectComponentForVirtual

