

XML API Integration
Developer’s Reference

Eleventh Edition
August 2008

MetaSolv Solution ™ 6.0

Copyright and Trademark Information
Copyright © 2008, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to
the extent required to obtain interoperability with other independently created software or as
specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation
and technical data delivered to U.S. Government customers are "commerical computer
software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle
license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-
19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all
appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any
damages caused by such use of the Programs.

Oracle and MetaSolv are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services
from third parties. Oracle is not responsible for the availability of, or any content provided on,
third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between
you and the third party. Oracle is not responsible for: (a) the quality of third-party products or
services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Document History

Edition Date Reason

First March 2005 FCS

Second March 2005 (FCS) Incorrect procedure sequence for workflow

Third June 2005 Listing of methods, parameters, and return values

Fourth October 2005 Addition of LSR XML API and the Performance chapter.

Fifth December 2005 Addition of methods for CNAM and LIBD

Sixth April 2006 Addition of SOA XML API and new methods for existing
XML APIs

Seventh September 2006 Addition of new XML API methods. Also, the format of the
appendix that contains the XML API method information has
been changed.

Eighth December 2006 Addition of new Appendix: Navigating the XSD. Removed
sections that were covered by Setup Guide.

Ninth March 2007 Added explaination of the three levels of xsds.

Tenth June 2007 Updated Copyrights, About this Guide chapter, and customer
portal references with Oracle.

Added information on MSLVwliPool to Chapter 1. Added
new control methods under Inventory Management and
LSR10 to Chapter 2 and Appendix B. Added information
regarding special characters to Chapter 1.

Eleventh August 2008 Appended new workflow Billing Telephone Number in
Appendix D and XML API Annotated Schemes in
02_IntegrationOverview chapter.

Contents
Contents
About this guide ... v
Audience ... v
Additional information and help ... v
Oracle Support ..vi
MetaSolv Solution documentation set ...vi
Additional documentation resources ... viii

1. Setting up .. 1
Technical requirements and installation instructions ... 1
About the development database ... 1
Recommended deployment configurations ... 2
JMS messaging requirements ... 4
 .. 5

2. Integration Overview .. 7
About the MetaSolv Integration and Portal Toolkit .. 8
Controls ... 8

WebLogic controls .. 9
MetaSolv Solution controls ... 10

MetaSolv Solution schema .. 14
WebLogic Platform 8.1 .. 17
Basic integration steps .. 18
Special characters ... 19

3. Developing an integration application ... 21
Planning the application .. 24
Creating a new application in Workshop ... 24
Adding the MetaSolv Solution controls to Workshop .. 27
Creating data transformations ... 28

Request transformation control .. 28
Response transformation control .. 33

Building the workflow .. 34
Step 1: Creating the workflow process file .. 34
Step 2. Adding controls to the Workshop Data Palette .. 36
Step 3. Specifying how the request is invoked ... 38
Step 4. Adding a group to the workflow .. 40
Step 5. Adding the request transformation method .. 41
Step 6. Adding the method to process the request .. 44
Step 7. Adding the response transformation method ... 46
Step 8. Setting up exception handling .. 50

Testing the application in Workshop ... 61
Creating a build ... 63

4. Post Development Tasks ... 65
Updating the production database .. 65
MetaSolv Solution XML API Integration Developer’s Reference i

Contents
Creating the SQL script .. 65
Running the SQL script .. 66

Setting up gateway events .. 67
Creating a gateway event ... 67
Configuring the gateway.ini file ... 68

5. Troubleshooting ... 71
6. Performance ... 77

Setting up to precompile workflows ... 77

Appendix A: XML API sample code ... 81
Where to find the sample files ... 81
Setting up the sample code ... 82
Upgrading sample files .. 84
Viewing the samples in Workshop .. 86
Composite sample .. 88

Appendix B: Control interfaces ... 89
Appendix C: Navigating the XSD .. 105

Example 1: importCustomerAccount .. 107
Example 2: getCustomerAccountByKey ... 114
Example 3: createEntityByValueRequest ... 121

Appendix D: XML API methods ... 127
Customer Management API .. 128

importCustomerAccount ... 128
getCustomerAccountByKey .. 129
deleteCustomerRequest ... 130

Order Management API .. 131
queryOrderManagementRequest ... 132
startOrderByKeyRequest .. 133
updateOrderManagementRequest ... 134
getOrderByKeyRequest .. 135
createOrderByValueRequest .. 135
assignProvisionPlanProcedureRequest ... 136
getActivationDataByKeyRequest .. 136
transferTaskRequest .. 137
updateE911DataRequest ... 137
getE911DataRequest ... 138
updateEstimationCompletedDateRequest ... 138
addTaskJeopardyRequest .. 139
getTaskDetailRequest .. 139
TaskJeopardyRequest .. 140
getPSROrderByTN ... 140
processSuppOrder ... 141
getCNAMDataRequest ... 142
getLidbDataRequest ... 142
ii MetaSolv Software, Inc.

Contents
updateCNAMDataRequest ... 143
updateLidbDataRequest ... 143
reopenTaskRequest ... 144
createAttachmentRequest .. 144
createOrderRelationshipRequest ... 145
processBillingTelephoneNumber .. 146

Inventory Management API ... 147
createEntityByValueRequest .. 147
getServiceRequestDLRsValue ... 148
getEntityByKeyRequest .. 148
updateEntityByValueRequest ... 149
queryInventoryManagementRequest ... 150
updateTNRequest .. 150
tnRecall ... 151
tnValidationRequest ... 151
auditTrailRecording .. 152
getNetworkAreasByGeoAreaRequest .. 152
getNetworkComponentsRequest .. 153
getIpAddressesRequest ... 153
createInventoryAssociationRequest ... 154
createNewInventoryItemRequest ... 154
queryNetworkLocation .. 155
queryEndUserLocation ... 155
getLocationRequest .. 156
deleteLocationRequest ... 156
updateLocationRequest .. 157
createLocationRequest ... 157
getAvailablePhysicalPortsRequest ... 158

Service Order Activation API ... 159
createSOAMessageRequest .. 159
getSoaTnsForOrderRequest .. 159
getSoaDefaultsRequest .. 160
getSoaInformationRequest ... 160
getSoaMessageToSendRequest .. 161
setTnSoaCompleteRequest ... 161
MetaSolv Solution XML API Integration Developer’s Reference iii

Contents
iv MetaSolv Software, Inc.

About this guide
This guide explains how to use the MetaSolv Integration and Portal Toolkit to integrate
MetaSolv Solution with other MetaSolv Products and with external applications. The toolkit
provides a workspace and other tools for the integration development and testing.

Audience
This guide is for individuals who are responsible for using the MetaSolv Integration and Portal
Toolkit in a development environment and developing software to integrate an external
application or another MetaSolv product with MetaSolv Solution. This guide assumes the
reader has a working knowledge of Oracle 9i, Windows XP Professional, BEA WebLogic
Platform 8.1, and Java J2EE.

Additional information and help
To get additional information or help for MetaSolv Solution, refer to the following resources:

Oracle E-Delivery—Provides access to product software and documentation.
Visit the E-Delivery Web site at http://edelivery.oracle.com.
Software and product documentation are contained in the Oracle Communications
MetaSolv Solution 6.0 Media Pack.
Developer documentation is contained in the Oracle Communications MetaSolv
Solution Developer Documentation Pack. Access to developer documentation
requires a password.

Oracle MetaLink—Provides access to software patches and a searchable Knowledge
Base.

Visit the MetaLink Web site at https://metalink.oracle.com/, and log on using your
User Name and Password.
Click the Patches & Updates tab to search for patches (efixes).
Click the Knowledge tab to search for technical bulletins, fixed issues, and additional
product information. To narrow your search, click the Communication Apps link
under Product Categories on the left side of the page.
MetaSolv Solution XML API Integration Developer’s Reference v

Oracle Support
The preferred method of reporting service requests (SRs) is through MetaLink. MetaLink is
available 24 hours a day, 7 days a week.

Although it is Oracle’s preference that you use MetaLink to log SRs electronically, you can
also contact Support by telephone. If you choose to contact Support by phone, a support
engineer will gather all the information regarding your technical issue into a new SR. After the
SR is assigned to a technical engineer, that person will contact you.

For urgent, Severity 1 technical issues, you can either use MetaLink or you can call Support.
Oracle Support can be reached locally in each country. To find the contact information for
your country, go to http://www.oracle.com/support/contact.html.

MetaSolv Solution documentation set
This guide is one book in a set of documents that helps you understand and use MetaSolv
Solution. Figure 1 shows the complete documentation set.

Figure 1: MetaSolv Solution documentation set

MetaSolv Solution books are delivered in Portable Document Format (PDF). You can view a
book online using Adobe Acrobat Reader.

MetaSolv Solution
Developer's
Reference

CORBA API
Developer's Guide

APIs, connectors,
cartridges, and cartridge

development

Information for ongoing
system maintenance

Initial installation
and configuration

Administration
Guide

Online Help

Tasks performed by
individuals using the

product

MetaSolv Solution
Documentation Set

CORBA API Online
Reference

MetaSolv Solution
Planning Guide

MetaSolv Solution
Setup Guide

MetaSolv Solution

Flow-Through
Packages GuideLSR Setup Guide
vi MetaSolv Software, Inc.

MetaSolv Solution documentation set
To view a document

Locate the document on the Oracle E-Delivery or Oracle MetaLink Web site and do one of the
following:

Right-click the PDF file and select Open from the pop-up menu.
Double-click the PDF file.

This action starts Acrobat Reader and opens the PDF document you selected. The following
figure shows how a document appears in Acrobat Reader:

Figure 2: Finding information in a PDF document

Click here to search for a specific topics
or words in the document

Click on topics in the
Bookmarks tab to find
specific topics in the
document
MetaSolv Solution XML API Integration Developer’s Reference vii

Additional documentation resources
You can obtain additional information about the XML APIs used to integrate MetaSolv
Solution with other applications from the following resources:

XML Schema—The XML schema used in integration for MetaSolv Solution have
documentation included directly in the schema.
Sample code—The sample code is installed with the MetaSolv Solution installation on
the workstation if you have the XML API option.
viii MetaSolv Software, Inc.

1

Setting up
This chapter contains general information on getting ready to develop an integration
application. It does not contain installation instructions for MetaSolv Solution.

Technical requirements and installation instructions
See the technical requirements for the MetaSolv Solution application and client in the
MetaSolv Solution 6.0 Planning Guide.
To find complete installation instructions for the MetaSolv Solution Integration and Portal
Toolkit, see the chapter entitled "Installing MetaSolv Solution with the XML API option"
in the MetaSolv Solution 6.0.3 (or higher) Setup Guide XML API Option. Regarding the
installation, note the following:

Single server installation is required for development.

Clustered server installation is not available for development. The installation
program for MetaSolv Solution is the same for production and development. The BEA
configuration is different only in the selection of Production or Development mode.

The connection pool MSLVwliPool must be established.

Connection pooling is a technique used for sharing server resources among requesting
clients. This allows for multiple clients to share a cached set of connection objects that
provide access to a database. The MSLVwliPool is used by calls generated from the
XML APIs and is mapped to the username APP_INT. This means that any records
created or updated in the M6.0.x database that resulted from a XML API call will have
the last_modified_userid field set to APP_INT.

About the development database
BEA allows you to accept a default PointBase database when you configure the domain.
MetaSolv recommends that you use a test Oracle database. A tool is provided that allows you
to create an SQL script file that can be run against your production database to re-create any
new tables created in the development database. For information on the tool, see “Updating
the production database” on page 65.
MetaSolv Solution XML API Integration Developer’s Reference 1

Chapter 1: Setting up
Recommended deployment configurations
All of the development components can be installed and run on a single machine. Components
of the development environment include:

WebLogic Integration—WebLogic Server with the WebLogic Integration extensions
included.

WebLogic Workshop IDE—An integrated development environment used to develop and
test customer integration and Web GUI applications.

MetaSolv Solution with the XML API option—This application has a minimum
deployment of the MetaSolv Solution and its client. The client is used to set up gateway events
in the MetaSolv Solution application, and it requires a Windows environment.

The following figure shows a Windows development environment.

Figure 3: Windows developer workstation environment

In a Windows environment, all WebLogic components and the MetaSolv Solution core and
client can be installed on the same developer workstation. The XML API controls are included
in the MetaSolv Solution installation.

MetaSolv
Solution

Client

Development
DB

(Oracle)

WebLogic Integration Server

Developer workstation

Custom
application
work area

Custom
application
work area

MetaSolv Solution
Core Application

XML
API

Controls

WebLogic Workshop
IDE
2 MetaSolv Software, Inc.

Recommended deployment configurations
The following figure shows a UNIX development environment.

Figure 4: UNIX developer workstation environment

The MetaSolv Solution client requires a Windows environment so it must be loaded onto a
separate machine in a UNIX development environment.

MetaSolv
Solution

Client

Development
DB

(Oracle)

WebLogic Integration Server

Developer
workstation

Custom
application
work area

Custom
application
work area

MetaSolv Solution
Core Application

XML
API

Controls

WebLogic Workshop
IDE
MetaSolv Solution XML API Integration Developer’s Reference 3

Chapter 1: Setting up
JMS messaging requirements
The MetaSolv Solution installation program sets up a paging store for each JMS server. The
paging store is used exclusively for paging out non-persistent messages for the JMS
server and its destinations.
The installation program also sets the Enable Store option to true. This setting is for persistent
messages, which are necessary for a guaranteed message delivery system. If you create
additional JMS destinations (queues/topics) after installation, you must set the Enable Store
option to true for these destinations manually.

The following figure shows the Enable Store setting in WebLogic Console.

Set Enable Store to
true for each JMS
server
4 MetaSolv Software, Inc.

MetaSolv Solution XML API Integration Developer’s Reference 5

Chapter 1: Setting up
6 MetaSolv Software, Inc.

2

Integration Overview
This chapter provides basic information about the MetaSolv Integration and Portal Toolkit and
how you can use it to integrate with MetaSolv Solution.

High Level Overview
The figure below represents a high level overview of the MetaSolv Integration. At it’s core is
the Application Business Logic, which is grouped by functional area such as Location, Order,
Work, etc. The Application Business Logic is used by both the GUI Services and the XML
API Services. GUI Services supports the application presentation layer to the client over
HTTP. The XML API Services supports integration with third party systems using XML over
HTTP or JMS. JMS is the recommended choice because it is a more reliable messaging
service. Collectively, the MetaSolv Application Server runs on a BEA WebLogic Server.

Figure 5: MetaSolv Solution Integration Overview

Application Business Logic

Lo
ca

tio
n

Lo
ca

tio
n

O
rd

er
O

rd
er

W
or

k
W

or
k

Ph
ys

ic
al

 R
es

ou
rc

e
Ph

ys
ic

al
 R

es
ou

rc
e

Lo
gi

ca
l R

es
ou

rc
e

Lo
gi

ca
l R

es
ou

rc
e

Se
rv

ic
e

Se
rv

ic
e

A
ss

ig
nm

en
t

A
ss

ig
nm

en
t

Pl
an

Pl
an

Pr
oj

ec
t

Pr
oj

ec
t

Application Business Logic

Lo
ca

tio
n

Lo
ca

tio
n

O
rd

er
O

rd
er

W
or

k
W

or
k

Ph
ys

ic
al

 R
es

ou
rc

e
Ph

ys
ic

al
 R

es
ou

rc
e

Lo
gi

ca
l R

es
ou

rc
e

Lo
gi

ca
l R

es
ou

rc
e

Se
rv

ic
e

Se
rv

ic
e

A
ss

ig
nm

en
t

A
ss

ig
nm

en
t

Pl
an

Pl
an

Pr
oj

ec
t

Pr
oj

ec
t

Transaction ServicesTransaction Services

B
E
A

B
E
A

MetaSolv Application Server

GUI ServicesGUI Services XML API Services

Interoperable Systems

J2EE .NET

XML over
HTTP/JMS

HTTP

Oracle
DB

GUI Services
supports the
application

presentation
layer.

XML API
Services
supports

integration
with third party

systems.

Client
MetaSolv Solution XML API Integration Developer’s Reference 7

Chapter 2: Integration Overview
The figure below includes information regarding tools utilized by the MetaSolv Solution
Integration, and standards that it followed.

Figure 6: MetaSolv Solution Integration Tools and Standards

About the MetaSolv Integration and Portal Toolkit
The MetaSolv Integration and Portal Toolkit is a package that allows you to integrate a third-
party software product with MetaSolv Solution using XML APIs. The toolkit includes:

Controls
Schema
WebLogic Platform 8.1 SP5

This is a third-party software product that can be purchased as an option with MetaSolv
Solution. It provides an integration environment, transformation mapping, and a high-
level interface that represents code elements visually in the work area in WebLogic
Workshop.

The following sections describe the components of the Integration and Portal Toolkit.

Controls
A Java control is code that forms a reusable component that can be used anywhere within a
platform application. The MetaSolv Solution controls referred to in this document are
individual applications that expose XML APIs for integration purposes.

WebLogic Workshop, a component of WebLogic Platform, provides Java controls that you
can use to encapsulate business logic and to access enterprise resources such as databases,
legacy applications, and web services.

APIs

Metasolv Controls in Weblogic Integration

XML APIs over JMS/HTTP

Reference Integration Sample Code to provide
Business Level XML APIs for OSS Integrations

APIs

Metasolv Controls in Weblogic Integration

XML APIs over JMS/HTTP

Reference Integration Sample Code to provide
Business Level XML APIs for OSS Integrations

Interoperability Model

XML Schema

OSS to OSS Integration

Based on Industry Standards

OSS through Java

Leverages BEA Tools

WebLogic Integration

WebLogic Workshop

MetaSolv Application Server

XML API Services

Application Business Logic

Transaction ServicesTransaction Services

B
E
A

GUI Services

MetaSolv Application Server

XML API Services

Application Business Logic

Transaction ServicesTransaction Services

B
E
A

GUI Services
8 MetaSolv Software, Inc.

Controls
WebLogic controls
WebLogic allows the use of three different types of Java controls:

Built-in controls

Built-in controls, included in the WebLogic Workshop, provide easy access to enterprise
resources. For example, the Database control makes it easy to connect to a database and
perform operations on the data using simple SQL statements, while the EJB control lets
you easily access an EJB. Built-in controls provide simple properties and methods for
customizing their behavior, and in many cases you can add methods and callbacks to
further customize a control.

For more information on BEA built-in controls, see the BEA documentation at http://e-
docs.bea.com.

Portal controls

A portal control is a type of built-in Java control designed for the portal environment. If
you are building a portal, you can use portal controls to expose tracking and
personalization functions in multi-page portlets.

Custom controls

You can also build a custom Java control from scratch. A custom control can act as the
nerve center of a piece of functionality, implementing the desired overall behavior and
delegating subtasks to built-in Java controls (and/or other custom Java controls). This use
of a custom Java control ensures modularity and encapsulation. Web services, JSP pages,
or other custom Java controls can simply use the custom Java control to obtain the desired
functionality, and changes that may become necessary can be implemented in one
software component instead of many.

The MetaSolv Solution XML API controls were developed in WebLogic’s integration
environment as custom controls. The controls contain code that transforms the XML input
into the proper format for MetaSolv Solution and transforms the response that returns
from MetaSolv Solution into the proper format for the third-party application.
MetaSolv Solution XML API Integration Developer’s Reference 9

Chapter 2: Integration Overview
MetaSolv Solution controls
Each control works with a specific portion of the MetaSolv Solution functionality. The
MetaSolv Solution controls in the Integration and Portal Toolkit include:

Customer Management
Order Management
Inventory Management
LSR Management
Service Order Activation
Event Management

The controls correspond to XML APIs. When you add a control into WebLogic Workshop to
begin integration development, the methods under each control become available to use on the
Workshop work area. You can drag the methods to the Workshop work area to create nodes in
the workflow. You can then define the necessary values for sending and receiving data using
the method.

The following XML API methods are exposed by each control. The methods are listed in the
order that appear in java file that defines the controls.

Customer Management API

This XML API requires MetaSolv Solution 6.0.3 or higher.

importCustomerAccount
getCustomerAccountByKey
deleteCustomerRequest

Order Management API

This XML API requires MetaSolv Solution 6.0.3 or higher.

queryOrderManagementRequest
startOrderByKeyRequest
updateOrderManagementRequest
getOrderByKeyRequest
createOrderByValueRequest
assignProvisionPlanProcedureRequest
getActivationDataByKeyRequest
transferTaskRequest (M6.0.7+)
updateE911DataRequest (M6.0.6+)
getE911DataRequest (M6.0.6+)
updateEstimationCompletedDateRequest (M6.0.8+)
addTaskJeopardyRequest (M6.0.8+)
10 MetaSolv Software, Inc.

Controls
getTaskDetailRequest (M6.0.8+)
taskJeopardyRequest (M6.0.8+)
getPSROrderByTN (M6.0.8+)
processSuppOrder (M6.0.8+)
getCNAMDataRequest (M6.0.7+)
getLIBDDataRequest (M6.0.7+)
updateCNAMDataRequest (M6.0.7+)
updateLIBDDataRequest (M6.0.7+)
reopenTaskRequest
createAttachment
createOrderRelationshipRequest (M6.0.8+)
processBillingTelephoneNumber

Inventory Management API

This XML API requires MetaSolv Solution 6.0.3 or higher.

createEntityByValueRequest
getServiceRequestDLRsValue
getEntityByKeyRequest
updateEntityByValueRequest
queryInventoryManagementRequest
updateTNRequest (M6.0.8+)
tnRecall (M6.0.8+)
tnValidationRequest
auditTrailRecording
getNetworkAreasByGeoAreaRequest
getNetworkComponentRequest
getIpAddressesRequest
inventoryAssociationRequest
createNewInventoryItemRequest
queryNetworkLocation (M6.0.14+)
queryEndUserLocation (M6.0.14+)
getLocationRequest (M6.0.14+)
deleteLocationRequest (M6.0.14+)
updateLocationRequest (M6.0.14+)
createLocationRequest (M6.0.14)
MetaSolv Solution XML API Integration Developer’s Reference 11

Chapter 2: Integration Overview
Network Resource Management API

This XML API requires MetaSolv Solution 6.0.11 or higher.

getAvailablePhysicalPortsRequest

Service Order Activation API

This XML API requires MetaSolv Solution 6.0.8 or higher.

createSOAMessageRequest
getSoaTnsForOrderRequest
getSoaDefaultsRequest
getSoaInformationRequest
getSoaMessageToSendRequest
setTnSoaCompleteRequest

LSR Management API

This XML API requires LSR 6.10 or higher, LSR 9.2 or higher, or LSR 10.0 or higher.

getLRByKeyRequest
getDLByKeyRequest
getLSRByKeyRequest
getLSRCMByKeyRequest
createDSCNByValueRequest
createDSREDByValueRequest
createLRByValueRequest
createLSRCMByValueRequest
createNPLSRByValueRequest
queryCCNARequest
queryLSRRequest
queryLSRForPONCCNAVERRequest
queryPONSForCCNARequest
createLSROrderByValueRequest (6.0.8+)

Event Management API

updateInboundEventStatus
getEventStatus
updateOutboundEventStatus

For more information on the control interfaces, see “Appendix B: Control interfaces” on
page 89.
12 MetaSolv Software, Inc.

Controls
The following figure shows how a control and the methods that the control exposes for the
corresponding XML API displays in WebLogic Workshop.

Figure 7: How controls display in Workshop

Each control has corresponding XSDs that define the XML format that can be received by
MetaSolv Solution and show the data fields.The XSDs are constructed using the MetaSolv
Information Model (MIM), a dictionary of terms used to standardize data being imported to or
exported from MetaSolv Solution using XML.

For a description of the MetaSolv Solution XML API methods, see “Appendix D: XML API
methods” on page 127.

Customer Management control

Customer Management
API XML methods that
work with the control
MetaSolv Solution XML API Integration Developer’s Reference 13

Chapter 2: Integration Overview
MetaSolv Solution schema
Schema, also known as XSDs, are documents that define how XML must be formatted when it
is sent to MetaSolv Solution as data input. Where applicable, it also defines how XML will be
formatted when MetaSolv returns data. MetaSolv Solution XSDs contain documentation that
explains what values are expected, where a value appears in the MetaSolv Solution user
interface (where applicable), and the purpose of fields included in the XSDs.

The schema files are housed in two JAR files:

MetaSolvSchemas.jar

This file contains the XSD files that define the MetaSolv Solution schema. This file must
be pulled into your workspace, as described in “Adding the MetaSolv Solution controls to
Workshop”. This file is located in <INSTALLATION_DIRECTORY/mss_samples/
APP-INF/lib> folder.

Annotated_XML_API_Schemas.jar

This file contains the same XSD files as MetaSolvSchemas.jar, but these XSD files
include annotations that describe the fields in the schema and their corresponding values.
This file is used for reference purpose only. This file is located under the Metasolv
Solution Developer Documentation Pack in the MetaSolv Solution 6.0 Developer
Reference CD.

The MetaSolv Solution schema files are grouped by function. For example, Customer
Management, Order Management, Inventory Management, etc. Each functional group defines
three separate XSD files. For example, the Customer Management XML API defines the
following three files:

XmlMetaSolvCustomerManagementAPI.xsd
XmlMetaSolvCustomerManagementEntities.xsd
XmlMetaSolvCustomerManagementData.xsd

Similarly, the Order Management XML API defines the following three files:

XmlMetaSolvOrderManagementAPI.xsd
XmlMetaSolvOrderManagementEntities.xsd
XmlMetaSolvOrderManagementData.xsd

Each of the files define a specific type of information:

The *API.xsd files define the requests and responses that correspond to the defined
control methods covered in the previous section of this chapter.
The *Entities.xsd files define the data structures that are input to requests or output from
responses.
14 MetaSolv Software, Inc.

MetaSolv Solution schema
The *Data.xsd files define various data structures that group data together so the data can
be referenced as a complex group, rather than by each individual data element. These data
structures are commonly referenced from within an entity data structure. Think of the data
structures defined in these files as sub-structures; specifically, the data structures defined
in these files are not input to requests or output from responses.

For detailed information on navigating the XSD files, refer to “Appendix C: Navigating the
XSD”.

The following figure shows the Customer Management schema displayed in an XML editor.
Notice the listing of elements in the window.

Figure 8: Customer Management API methods displayed in an XML editor (XMLSpy)

Customer
Management API XSD
viewed in an XML
editor

Elements within the
API schema contain
the XML input format
for specific API code
MetaSolv Solution XML API Integration Developer’s Reference 15

Chapter 2: Integration Overview
The following figure shows getCustomerAccountByKeyRequest opened and displayed on the
screen.

Figure 9: Graphical view of the schema for a method in XMLSpy

The schema include documentation on the information they contain. The following figure
shows the graphical representation of an element’s schema with documentation highlighted.

Figure 10: Schema documentation shown in a graphical view in XMLSpy

Documentation
16 MetaSolv Software, Inc.

WebLogic Platform 8.1
WebLogic Platform 8.1
WebLogic Platform 8.1 SP5 provides the environment for the MetaSolv Solution integration
process. WebLogic Platform is a powerful software application that has many uses beyond the
scope of this document. This document documents only those portions of WebLogic Platform
and its software components that relate directly to accomplishing a task in the integration of
MetaSolv Solution. BEA Software provides a large body of information on WebLogic
Platform at http://e-docs.bea.com.

WebLogic Platform contains a full-featured integrated development environment (IDE) that
you can use to create and debug your application. WebLogic Workshop provides the tools to
automate much of the coding that is required for development. The following figure shows a
Workshop workflow, which is the graphical representation of steps that combine methods and
data transformations to accomplish a task in MetaSolv Solution.

Figure 11: A WebLogic Workshop workflow for exporting customer information
MetaSolv Solution XML API Integration Developer’s Reference 17

Chapter 2: Integration Overview
To integrate MetaSolv Solution with another application, you must use the following
WebLogic Platform components:

WebLogic Workshop

This component provides an integrated development, deployment, and run-time
environment for building applications. The procedures for developing a workflow and the
MetaSolv Solution samples will be described using Workshop in this document.

WebLogic Integration

This component provides a framework for developing and integrating applications and
business processes from within and across an enterprise.

Basic integration steps
The following steps show the high level process for integrating MetaSolv Solution with a
third-party application. Some steps can be performed in a different order, but the order shown
here is recommended by MetaSolv as a best practice.

1. Layout the steps in your project to determine any data mapping that must be done between
your schemas and the MetaSolv Solution schemas.

This means identifying the nodes, or building blocks, in what will become the workflow
for the application.

2. Identify the sources and targets for all data mapping that you identify between the
schemas.

This step includes both requests into MetaSolv Solution and the responses that are
returned to your external system.

3. Build the transformations in WebLogic Workshop.

4. Build the workflow for the application in WebLogic Workshop.

5. Build the framework.

This step is optional. It includes setting up logging and error handling.

6. Test the workflow.

Some basic test capabilities are included in WebLogic Workshop. You can also use the
connector included in the mss_samples.jar file to simulate receiving and processing data
from an external application in WebLogic Workshop.

7. Create an ear file that contains the application and deploy it with MetaSolv Solution.
18 MetaSolv Software, Inc.

Special characters
Special characters
The XML API supports the special characters listed in the table below. The first five rows
show special characters that are recognized by the API as an entity other than the special
character itself. The remaining rows list special characters that are recognized by the API in
the same manner as the GUI.

Table 1: Special characters supported by the XML API

Special character API GUI

’ ' ’

" " The " must be last character.

& & &

< < <

> > >

~ ~ ~

! ! !

@ @ @

#

$ $ $

% % %

^ ^ ^

* * *

(((

)))

{ { {

} } }

[[[

]]]
MetaSolv Solution XML API Integration Developer’s Reference 19

Chapter 2: Integration Overview
20 MetaSolv Software, Inc.

3

Developing an integration application
This chapter provides information to help get you started developing applications using the
MetaSolv Integration and Portal Toolkit. The information indicates through a simple example
how to use the tools in the toolkit. When you understand the tools, and you have a clear
determination of what you want to accomplish, you are ready to begin developing
applications.

You will be shown how to accomplish the major steps in creating and deploying a MetaSolv
Solution integration application using the GetCustomer sample included in mss_samples.jar.
The sections in this chapter follow the basic steps for creating an application for MetaSolv
Solution. To create an application for MetaSolv Solution in WebLogic Workshop, you must:

1. Plan the application.

2. Create a new (empty) application in WebLogic Workshop.

3. Import the appropriate MetaSolv Solution controls into the new workflow in Workshop.

4. Create data transformation controls for your incoming XML data and for the outgoing data
you expect to receive in response.

5. Create the workflow using MetaSolv Solution controls, the transformation controls you
created, and generic controls inside Workshop.

6. Set up logging and exception handling for the application.

7. Test the workflow.

8. Create and deploy the application .ear file.

All of the steps listed are explained in the following sections. The sections describe the process
for creating the GetCustomer example included in mss_samples.jar. For information on how
to locate the samples file, see “Appendix A: XML API sample code” on page 81. The
GetCustomer example is simple and easy to understand, but it contains processes that illustrate
how controls are used to integrate MetaSolv Solution with another system.

The input for the GetCustomer example comes from the Cim_customer.xsd also included in
Samples.jar. The details of the example in this chapter may vary slightly from the
GetCustomer example in the mss_samples.jar file. When that is true, it is done to simplify the
example in this chapter for illustration purposes.
MetaSolv Solution XML API Integration Developer’s Reference 21

Chapter 3: Developing an integration application
This figure shows where the GetCustomer .jpd file (getCustomerHttpSample) is located inside
the mss_samples directory. For more information on the samples in the directory, see
“Appendix A: XML API sample code” on page 81.

Figure 12: Directory structure for mss_samples

When you open GetCustomerHttpSample in Workshop, the following workflow appears on
the Workshop canvas.

File for the GetCustomer
workflow example
22 MetaSolv Software, Inc.

.

Figure 13: Workflow for getCustomerHttpSample.jpd

The following figure shows a graphical view of the schema for Cim_Customer, which
provides the format for the incoming XML for the GetCustomer example shown in this
chapter.

Figure 14: Schema for the incoming request XML

This method defines how the
application is invoked

This method processes the
incoming request for customer
information

This group handles any
exceptions that arise in the
group that it is pointing to

This is the data
element from the
incoming XML that
represents the
customer account
identifier
MetaSolv Solution XML API Integration Developer’s Reference 23

Chapter 3: Developing an integration application
Planning the application
This section describes how to plan for your application. MetaSolv recommends as a best
practice that you list out the information you need before you begin work on the application in
Workshop. The information you need includes:

The BEA domain to which the application will be assigned in Workshop. You can use an
existing domain or create a new domain.
MetaSolv Solution controls you will require.
A list of the data that needs to be transformed from your XML format to the MetaSolv
Solution MIM format.

Here is the information needed for the GetCustomer example used in this chapter.

MetaSolv Solution controls required:

MetaSolv Customer Management API

Transformations required:

Incoming XML: customer account identifier

Outgoing XML: customer account identifier, customer’s company name

The output was limited to two data items to keep the example simple. Although this
example uses simple inputs and outputs, the transformations for a normal integration effort
can become complex and therefore requires careful planning. The problem of knowing
which data from your XML maps into which data in the MetaSolv Solution schema is
eased by the documentation in the MetaSolv Solution schema. See “MetaSolv Solution
schema” on page 14 for more information about the MetaSolv Solution schemas.

Creating a new application in Workshop
To create a new application

1. Start WebLogic Workshop by doing one of the following:

Windows:

From the Start menu, select Start>Programs>BEA WebLogic Platform 8.1>WebLogic
Workshop 8.1.

UNIX:

$BEA_HOME/weblogic81/workshop/Workshop.sh.

If this is the first time starting WebLogic Workshop, or if Workshop was previously open
on an application from another WebLogic domain, you might see a warning about fixing
the domain. If so, click Continue to ignore the warning, then close the open application.

2. Select File>New>Application.
24 MetaSolv Software, Inc.

Creating a new application in Workshop
The New Application window appears.

3. Complete the following information on the window and click Create:

a. Select Process Application in the list box.

b. Accept the default directory location for the application or click Browse to select
another directory.

c. Type a name for the new application in the Name field (for example,
M6_Sample_App).

d. Select the domain directory in the Server field.

When you click Create, the new application is created in Workshop.

4. In the Workshop menu bar, select Tools>Application Properties.
MetaSolv Solution XML API Integration Developer’s Reference 25

Chapter 3: Developing an integration application
The Application Properties window appears.

5. Complete the following tasks on the Application Properties window and click OK:

Check to make sure the server name directory is the domain directory.
In the Settings section of the Application properties, change the Hostname from
localhost to the name of the machine running Workshop.

When the connection is made to the adapter’s domain server, a green light shows on the
status bar with a note indicating the server is running.
26 MetaSolv Software, Inc.

Adding the MetaSolv Solution controls to Workshop
Adding the MetaSolv Solution controls to Workshop
To add the MetaSolv Solution controls

1. In the left pane treeview, right-click Libraries, then click Add Libraries.

The Add Library dialog box appears for the selection of the files whose contents can be
imported into Workshop

2. In the dialog box, navigate to the directory that contains the MetaSolv Solution controls.

For example, the controls are included in the mss_samples.jar file. Locate the directory
where you unjarred the mss_samples file and look for the following directory:

<INSTALLATION_DIRECTORY/mss_samples>/APP-INF/lib

3. Select MetaSolvInterfaces.jar and MetaSolvSchemas.jar, and click Open.

This action makes the MetaSolv Solution controls available to be used in Workshop.
MetaSolv Solution XML API Integration Developer’s Reference 27

Chapter 3: Developing an integration application
Creating data transformations
The next step in creating an application is the creation of controls for transforming data. The
GetCustomer example has data transformations for the request data (incoming) and the
response data (outgoing). A transformation file for each set of data must be created. the
following figure shows a simple example of the process.

Figure 15: Transforming XML input and output files

The following procedure shows the steps used to create a transformation file for the
Cim_Customer example XSD.

Request transformation control
To create a transformation file for the incoming data

1. Select a location for the file in the treeview on the left pane.

You can create a directory or place the file in an existing directory.

2. In the treeview, right-click on the directory where the transformation file is to reside and
select New>Transformation file.

For example, in the GetCustomer example, the file will reside in the following directory:
sample/com/metasolv/api/test/converter. See the figure on page 22 for information on the
directory structure.

The following New File dialog box appears.

XML input
for request
is received
from an
external
system

Request data is
transformed into

MetaSolv Solution
MIM format

MetaSolv Solution
processes the

request

Response
data is

transformed from
MIM format into

external
system’s
format

XML output
for response
is sent
to the
external
system

XML input
for request
is received
from an
external
system

Request data is
transformed into

MetaSolv Solution
MIM format

MetaSolv Solution
processes the

request

Response
data is

transformed from
MIM format into

external
system’s
format

XML output
for response
is sent
to the
external
system
28 MetaSolv Software, Inc.

Creating data transformations
3. In the dialog box, complete the following actions:

a. Select Processes in the list on the left, and Transformation file in the list on the right.

b. Type a name for the file that indicates it purpose.

For example, CustomerRequestConverter.dtf.

c. Accept the default location for the file or click Browse to find another directory
location.

d. Click Create.

The following Transformation window appears.

4. Right-click in the transformation window and select Add transformation method from
the popup menu that appears.

A new method appears listed in the left side of the window.

5. Type the method name in the text field below the method, where the cursor appears.

For example, makeGetCustRequest.

6. Right-click on the new method, and select Configure XQuery transformation method.
MetaSolv Solution XML API Integration Developer’s Reference 29

Chapter 3: Developing an integration application
The Configure XQuery Transformation Method window appears.

This window contains four panes that allow you to define the source and the target XML
transformation files.

7. In the Available Source Types pane, select the XML option as the source type, then locate
the schema for the XML input that will be received by the integration layer, and click Add
to display the schema on the right side.

8. In the Available Target Types pane, select the XML option as the source type, then locate
the schema for the MIM XML format you want to transform the input into, and click Add
to display the schema on the right side.
30 MetaSolv Software, Inc.

Creating data transformations
The following figure shows the window with the schemas displayed.

9. Click Create Transformation.

The mapping window appears.
MetaSolv Solution XML API Integration Developer’s Reference 31

Chapter 3: Developing an integration application
10. Drag the data element to be mapped from the Source list and drop it on the target element
you want it mapped to.

The preceding figure shows the only data element to be mapped for the incoming XML for
the GetCustomer example. Only the customer account number is required to export
customer information in this example.

11. In the Target list, set a value for the data element type by right-clicking on the element and
selecting Create constant. In the dialog box that appears, type "" in the Constant value
field and click OK.

Some data elements require a value. If no incoming value is mapped to the data elements
from the source XML file, you must create a constant value for the data element. In the
target schema shown in the previous figure, the data element type requires a value.

You can hover the cursor over a data element to see documentation on the element and
determine whether a value must be assigned. As a best practice, this information should be
determined beforehand from the schema using an XML editor. The following figure
shows the data element type with the documentation for the element.

12. Click Save and close the mapping window.
32 MetaSolv Software, Inc.

Creating data transformations
Response transformation control
The response transformation for the GetCustomer example is created in the same manner as
the request transformation. A new file is created, and the associated method is named
makeGetCustResponse. The following figure shows the mapping for the response
transformation.

Two elements are mapped for the response: customer account number and company name.
MetaSolv Solution XML API Integration Developer’s Reference 33

Chapter 3: Developing an integration application
Building the workflow
This section describes how to create a workflow in Workshop. The workflow contains all of
the control and transformation methods necessary to complete the integration tasks you
require. Workshop gives you the ability to construct the workflow graphically and generate the
code automatically.

Step 1: Creating the workflow process file
Each workflow has a .jpd process file. This section explains how to create the process file and
the workflow in Workshop.

To create a workflow

1. Select a location for the .jpd process file in the treeview on the left pane.

You can create a directory or place the file in an existing directory.

2. In the treeview, right-click on the directory where the workflow file is to reside and select
New>Process file.

The following New File dialog box appears.

3. In the dialog box, complete the following actions:

a. Select Processes in the list on the left, and Process file in the list on the right.

b. Type a name for the file that indicates it purpose.

For example, GetCustomer.jpd
34 MetaSolv Software, Inc.

Building the workflow
c. Accept the default location for the file or click Browse to find another directory
location.

d. Click Create.

An empty workflow appears on the Workshop canvas. The following figure shows the
new GetCustomer workflow.

Once an empty workflow is created, you can add the controls to be used in the workflow
to the Data Palette.
MetaSolv Solution XML API Integration Developer’s Reference 35

Chapter 3: Developing an integration application
Step 2. Adding controls to the Workshop Data Palette
This section explains how to add controls to the Workshop Data Palette for use in a workflow.
The Customer Management control and the data transformation controls shown in “Creating
data transformations” on page 28 are added to the Data Palette.

Adding the Customer Management control
To a control to the data palette

1. In the Controls section of the Data Palette on the right side of the Workshop window, click
Add and select MetaSolv Customer Management from the MetaSolv menu.

2. In the dialog box that appears, type a name for the control and click OK.

Select MetaSolv Customer Management
from the Metasolv menu
36 MetaSolv Software, Inc.

Building the workflow
For example, you can type MetaSolvCustomerManagement. The control and its methods
appear in the Data Palette pane where they are available for the Workshop canvas.

Adding a data transformation control
This section shows how to add customerRequestConverter and customerResponseConverter
to the Data Palette. These controls were built in Workshop to transform data.

To display transformation controls in the Data Palette

On the left pane treeview, select the .dtf files you created for transformations and drag
them to the Control section of the Data Palette and drop them.

The following figure shows the two transformation files created for GetCustomer as controls
in the Data palette.

Controls created for data
transformations of input and
output XML files
MetaSolv Solution XML API Integration Developer’s Reference 37

Chapter 3: Developing an integration application
Step 3. Specifying how the request is invoked
To specify how the request is invoked

1. Double-click the Starting Event node.

The following dialog box appears.

2. Select the Invoked via a Client Request option and close the dialog box.

The Client Request node appears in the workflow.

3. Double-click the Client Request node.

The Client Request dialog box appears. Double-clicking any node on the Workshop
canvas causes its properties dialog box to appear. This dialog box allows you to name the
method the node represents and to provide the information necessary for the method to be
successfully executed.

4. Complete the following information in the dialog box:

a. On the General Settings tab, click Add and select the XML option, select the correct
XSD for the incoming XML file, and type a variable name for the incoming XML file.

In the GetCustomer example, the variable name assigned is requestCim.
38 MetaSolv Software, Inc.

Building the workflow
The following figure shows the General Settings tab for the GetCustomer example.

b. Select the Receive Data tab, then in the Select Variables to Assign list, select Create
New Variable.

The Create Variable dialog box appears. The Receive Data tab allows you to define
variables that will be used for the incoming data.

c. Type the variable name, select the XML option, and select the appropriate XSD from
the available list, just as you did on the General Settings tab, then click OK.

d. Close the Client Request dialog box.
MetaSolv Solution XML API Integration Developer’s Reference 39

Chapter 3: Developing an integration application
Step 4. Adding a group to the workflow
The name for the group in the GetCustomer example is GetCustomerGroup. The group box
allows you to pull nodes that have a process in common together. In this example, the group
box holds nodes that share the same exception processing.

In this example, the group will contain three methods to accomplish the following tasks:

Transform incoming data from the requestor’s format into the MIM format understood by
MetaSolv Solution
Process the request to export customer information
Transform data from the MIM format into the requestor’s XML format

To add a group to the workflow

From the Palette on the left side of the Workshop canvas, drag Group from the list and
drop it on the workflow below the Client Request node.

Type the name of the group on the canvas in the appropriate text box.

Group box
40 MetaSolv Software, Inc.

Building the workflow
Step 5. Adding the request transformation method
This step adds the method to transform the data from the requestor’s XML format into the
MIM format used by MetaSolv Solution

To add the request transformation method

1. From the Palette on the left side of the Workshop canvas, drag Control Send with Return
from the list, drop it into the group box, and type a name in the text box on the canvas.

For the GetCustomer example, the name is requestTransformation. This is a generic
Workshop method. You can use the MetaSolv Solution methods under the
MetaSolvCustomerManagement control, but this demonstrates the use of a generic
method.

2. Double-click the requestTransformation node.

Generic Workshop method
added to the workflow group
MetaSolv Solution XML API Integration Developer’s Reference 41

Chapter 3: Developing an integration application
The requestTransformation dialog box appears.

3. On the General Settings tab, select the control and method to use for the request
transformation.

The control (customerRequestConverter) and its method (makeGetCustRequest) are
selected. Because only one method was created, it is the only one available in the list box.

4. On the Send Data tab, select the variable that is to be assigned in this method for sending
data to MetaSolv Solution.

In this case, the send variable will be the variable identified in the clientRequest node,
requestCIM.

5. On the Receive Data tab, in the Variable to Assign list, select Create New Variable.
42 MetaSolv Software, Inc.

Building the workflow
The following dialog box appears.The purpose of this step is to create a new variable to
receive the transformed data.

6. Type a new name (requestMim) in the Variable Name field, select the XML option, select
the appropriate schema from the list of available XSDs, and click OK.

7. Close the requestTransformation dialog box.
MetaSolv Solution XML API Integration Developer’s Reference 43

Chapter 3: Developing an integration application
Step 6. Adding the method to process the request
Instead of a generic Workshop method that would have to be modified, this step uses a
MetaSolv Customer Management API method created for processing this type of request.

To add the getCustomerAccountByKey method to the workflow

1. In the Control section of the Data Palette on the right side of the Workshop canvas, expand
the MetaSolvCustomerManagement control to display its methods.

2. Locate and drag the getCustomerAccountByKey method to the workflow group and drop
it below the requestTransformation node.

The workflow now looks like the following figure.

3. Double-click the getCustomerAccountByKeyRequest node.
44 MetaSolv Software, Inc.

Building the workflow
The getCustomerAccountByKey dialog box appears.

4. On the General Settings tab, accept the defaults.

5. On the Send Data tab, in the Select Variables to Assign list box, select requestMim.

6. On the Receive Data tab, in the Select Variables to Assign list box, click the drop-down
and select Create New Variable, then complete the following tasks in the window that
appears:

a. Type a name (responseMim) in the Variable Name field.

b. Accept the variable type default.

c. Click OK.

7. Close the getCustomerAccountByKey dialog box.
MetaSolv Solution XML API Integration Developer’s Reference 45

Chapter 3: Developing an integration application
Step 7. Adding the response transformation method
To add the response transformation method

1. In the Controls section of the Data Palette, expand the customerResponseConverter
control, then drag the makeGetCustResponse method to the group on the Workshop
canvas and drop it under the getCustomerAccountByKey node.

2. Double-click the makeGetCustResponse node.

Method for transforming the
response data back into the
requestor’s XML format
46 MetaSolv Software, Inc.

Building the workflow
The makeGetCustResponse dialog box appears.

3. On the General Settings tab, accept the defaults.

4. On the Send Data tab, in the Select variables to assign list, select responseMim.

5. On the Receive Data tab, in the Select variables to assign list, select Create New
Variable.

The Create Variable dialog box appears.

6. In the Variable Name field, type responseCim.

7. Accept the default variable type and click OK.

The following figure shows the Create Variable dialog box with the values entered.
MetaSolv Solution XML API Integration Developer’s Reference 47

Chapter 3: Developing an integration application
8. Close the makeGetCustResponse dialog box.

9. In the palette on the left pane of Workshop, select Client Response in the list, drag it to the
canvas, and drop it in the group under the makeGetCustResponse node.

10. Double-click the Client Response node.

The Client Response dialog box appears.

11. On the General Settings tab, click Add, and in the window that appears complete the
following tasks:

a. Expand the CimCustomerSample.xsd and select Cim_Customer

b. Type a name in the Name field.

In the case of the GetCustomer example, the name for the is response.

c. Click OK.

The following figure shows the General Settings tab.
48 MetaSolv Software, Inc.

Building the workflow
12. On the Send Data tab, select the responseCIM variable and close the Client Response
dialog box.
MetaSolv Solution XML API Integration Developer’s Reference 49

Chapter 3: Developing an integration application
Step 8. Setting up exception handling
This section explains how to handle exceptions in the workflow.

To set up exception handling for the workflow

1. Place the cursor in the group to which exception handling is to apply, right-click, and
select Add exception path.

The exception path is added to the group that you indicate.

To catch any exception returned by the XML APIs for one of the methods in the group,
you must set up a try-catch expression. This requires that you go into text view and
enclose the appropriate code with the expression.

Error data is logged in a file called appserverlog.xml

2. Right-click on the getCustomerAccountbyKey node and select View code.

Exception pathway for the
methods grouped inside the
dotted line
50 MetaSolv Software, Inc.

Building the workflow
The code is displayed in text. See the following figure.

3. Enclose the code in a try-catch expression.

The shaded (pink) text
is generated by
Workshop. You
cannot change this
text.
MetaSolv Solution XML API Integration Developer’s Reference 51

Chapter 3: Developing an integration application
The following figure shows the code with a try-catch expression enclosing the code.

The try-catch expression is for external processes that occur in the MetaSolv Solution
core. The transformation processes are local and do not require a try-catch expression.

4. Include code for logging.

The following figures show how to add code for logging.

Method code
enclosed with a try-
catch expression
52 MetaSolv Software, Inc.

Building the workflow
5. Click the Design View tab at the bottom of the Workshop canvas to return to the graphical
view of the workflow.

6. Complete the following actions to capture exceptions and assign them to variables in the
workflow.

a. In the Palette on the left pane, locate the Perform node, then drag it to the exception
path in the workflow and drop it on the line below the Exception node.

b. Type a name for the new node.

Include this
line of code
to import the
Logger
package

This line of code
includes debug
information in an
error message
generated for this
method
MetaSolv Solution XML API Integration Developer’s Reference 53

Chapter 3: Developing an integration application
For example, getErrorMessage. The following figure shows the new node in the
workflow.

7. Double-click the getErrorMessage node.

8. In the dialog box that appears, type getErrorMessage in the Name field and click the View
Code link.

New node for processing
exceptions
54 MetaSolv Software, Inc.

Building the workflow
The text view appears.

9. Manually define the following variables in the source view:

errorMessage

exceptionToString

The following figure shows the variables entered in the source view.
MetaSolv Solution XML API Integration Developer’s Reference 55

Chapter 3: Developing an integration application
10. Complete the definition of the variables by scrolling to the beginning of the source view
and making the changes to the code shown in the following figure.

Variables errorMessage and
exceptionToString are defined
here
56 MetaSolv Software, Inc.

Building the workflow
11. Click Design View at the bottom of the canvas and close the getErrorMessage dialog box.

12. On the left palette, locate the Client Response method and drag it to the exception path and
drop it below the getErrorMessage node.

The following figure shows the Client Response node in the exception path.

13. Double-click the Client Response node.

Define the variables
at the beginning of
the source view

New Client Response node
added to the exception path
MetaSolv Solution XML API Integration Developer’s Reference 57

Chapter 3: Developing an integration application
The Client Response dialog box appears.

14. On the General Settings tab, complete the following tasks:

a. Type a method name.

For example errorClientResponse.

b. Click Add.

c. In the window that appears, select the Java option, String from the Java types list, and
type a the name of one of the exception variables that was defined manually in the
Name field (for example, errorMessage).

d. Click OK.

e. Repeat steps b-d to add the other exception variable that was defined manually
(exceptionToString).
58 MetaSolv Software, Inc.

Building the workflow
The following figure shows both variables defined for the Client Response method.

15. On the Send Data tab, for each variable in the Client Expects list, select the appropriate
variable in the Select variables to assign list.

See the following figure for more information.

16. Close the Client Response dialog box.

Match the variables
here to the variables
listed in the Client
Expects list.
MetaSolv Solution XML API Integration Developer’s Reference 59

Chapter 3: Developing an integration application
The following figure shows the completed workflow.

17. Click Save on the main menu to save the workflow.
60 MetaSolv Software, Inc.

Testing the application in Workshop
Testing the application in Workshop
When the workflow is complete, you can test it in Workshop.

To test a workflow

1. On the Workshop main menu, select Debug>Start.

The Workshop test browser opens.

2. Select the Test SOAP tab.

Workshop creates an XML file for the Client Request method based on the requestor’s
XSD. In the case of the example used in this chapter, the test XML file was created from
the Cim_Customer XSD.

3. Type in your test data in the appropriate fields in the test XML file, as shown in the
previous figure.

4. Click client Request.

Value typed in the field
for the test. This is the
only input (Customer
Account Number) on the
incoming request
MetaSolv Solution XML API Integration Developer’s Reference 61

Chapter 3: Developing an integration application
Workshop tests the workflow and indicates the results of the test. See the following figure.

5. Click callback.clientResponse in the Message Log listing to see the XML that was
returned as a response.

The workflow was
successful. Both
account number and
company name were
returned.
62 MetaSolv Software, Inc.

Creating a build
Creating a build
To create a build, select Build>Build Application from the main menu.

To create a build and an ear file, select Build>Build ear. When you create an ear file in
Workshop, it is automatically deployed to WebLogic Server.
MetaSolv Solution XML API Integration Developer’s Reference 63

Chapter 3: Developing an integration application
64 MetaSolv Software, Inc.

4

Post Development Tasks

Updating the production database
During development, the MetaSolv Solution XML API application requires the creation of a
number of tables within the database used for WebLogic Integration conversation state
tracking. The related database is defined within the WebLogic data-source named
bpmArchDataSource. This data-source is configured during creation of the WebLogic domain
using the Configuration wizard. To move the application into a production mode, you must
recreate the tables in the production database.

To create the production database tables, you must complete the following tasks:

1. Create an SQL script to create tables in the production Oracle database.

2. Run the SQL script against the production database to add the tables.

Creating the SQL script
The following shell scripts tableTool.sh can be uses to generate the Integration state tables:

Windows: tableTool.bat

UNIX: tableTool.sh

Prerequisites

You must have BEA WebLogic server.

To create the SQL script

1. Copy the following files to a directory on the server:

ManifestTableGenerationTemplate.xsl
ManifestTableRemovalTemplate.xsl
tableTool.class
tableTool.sh

2. To generate the Integration State Tables SQL scripts, execute the tableTool.sh script with
the following arguments:

./tableTool.sh [BEA_JAVA_HOME] [MIP.ear] [createTable | dropTable]
MetaSolv Solution XML API Integration Developer’s Reference 65

Chapter 4: Post Development Tasks
Arguments:

[BEA_JAVA_HOME] is the location of the BEA JDK.
For example: /opt/bea/jdk142_04

[MIP.ear] is the location of the MIP.ear.
For example: /opt/bea/user_projects/domains/paetec/lib/MIP.ear

[createTable | dropTable] If createTable is specified, the SQL script
tableGenerationTemplate.sql is generated.The SQL script can be used to create the
Integration state tables.

If dropTable is specified, the SQL script tableRemovalTemplate.sql is generated. This
SQL script can be used to drop the Integration state tables.

Example: The following example shows the command to generate a create table SQL
script for the Integration state tables:

./tableTool.sh /opt/bea/jdk142_04 /opt/bea/user_projects/domains/newtel/lib/MIP.ear
createTable

Example The following example shows the command to generate the drop table SQL
script for the Integration state tables:

./tableTool.sh /opt/bea/jdk142_04 /opt/bea/user_projects/domains/newtel/lib/MIP.ear
dropTable

Running the SQL script
The SQL file is designed for configuring an Oracle database on a UNIX or Windows platform.
The SQL syntax may vary slightly by database vendor. Modifications to the syntax of the
commands may be required for successful creation of the tables. Some tables may already be
present.

If some commands do not execute due to pre-existence of the table, you may ignore the error.
A number of the tables within the script are common tables required by integration
applications and may already be present on your system.

Note that the SQL file to drop tables is provided for your convenience.

The Java Naming and Directory Interface (JNDI) name must be exactly as shown. The names
are case sensitive. Names must include the periods (.) and underscores (_) as shown.

To run the SQL script

1. Connect to the WebLogic Integration database as a user having create table privileges.

2. Run the SQL file.
66 MetaSolv Software, Inc.

Setting up gateway events
Setting up gateway events
In addition to the configuration required to make the MetaSolv Solution adapter functional at
installation, MetaSolv Solution must be configured to receive data and return data.

The Integration server continuously checks the MetaSolv Solution database for events that are
ready to be sent to an external application. The Integration server also monitors the external
application for updates to the status of a gateway event. When an external application sends a
status update, the Integration server records the new status in the MetaSolv Solution database.

The following sections describe how to set up gateway events for communication between
MetaSolv Solution and the adapter.

Creating a gateway event
Gateway events are set up in the MetaSolv Solution user interface. Complete information on
how to create a gateway event is located in MetaSolv Solution Help. This section explains:

Basic steps for creating a gateway event
How to find the exact procedures for creating a gateway event in Help.

Basic steps for creating a gateway event in the MetaSolv Solution interface

1. Create a new gateway event.

For example xxx_mip_order_event. This is done on the Gateway window in MetaSolv
Solution. MetaSolv Solution creates a gatewayEvent and assigns an eventID.

2. Add a binding to the gateway.

Set the Binding Type to IOR and provide the location path to the NameService.ior file.
The path should be similar to the following examples:

Windows

c:\Metasolv\Appserver\IOR\NameService.ior

UNIX

Metasolv/Appserver/IOR/NameService.ior

The Service Name should be the same as the name of the BEA server that will receive
events tied to the gateway.

3. Associate the gateway event with a task on the desired request.

For complete Help information on gateway events

1. Open the Gateway window in MetaSolv Solution.
MetaSolv Solution XML API Integration Developer’s Reference 67

Chapter 4: Post Development Tasks
To do this, click Work Management on the main toolbar, then click Gateways on the
Work Management toolbar that appears.

2. Press F1 for Help.

The Help window that appears is for the Gateways window. You will find a number of
links on this window that explain gateways and how to create them.

Configuring the gateway.ini file
You must make sure the Integration server is configured in the gateway.ini file. This is a
configuration file for MetaSolv Solution and it is located on the machine running the
MetaSolv Solution application server. The file can be found in the \appserver\gateway
directory.

Use an ASCII editor to open the gateway.ini file. Make sure the INTEGRATIONSERVER
line located in the ThreadProcs section is uncommented. If INTEGRATIONSERVER is
commented, uncomment it and save the changes.

The following sample shows an uncommented INTEGRATIONSERVER line (in bold
typeface).
[ThreadProcs]

INTEGRATIONSERVER=com.mslv.integration.integrationServer.S3Startup

EVENTPROC=MetaSolv.eventServer.S3Startup

EVENT2PROC=MetaSolv.event2Server.Event2ServerStartup

SYSTEMTASKSERVERPROC=com.mslv.core.api.internal.WM.systemTaskServer.
68 MetaSolv Software, Inc.

Setting up gateway events
SystemTaskServer

SIGNALSERVERPROC=com.metasolv.system.StartServer INTERNET_SIGNAL_SER

VER=MetaSolv.CORBA.WDIINTERNETSERVICES.WDIRoot,MetaSolv.Sig

nalServer.WDIInternetSignalServerRootImpl
MetaSolv Solution XML API Integration Developer’s Reference 69

Chapter 4: Post Development Tasks
70 MetaSolv Software, Inc.

5

Troubleshooting
This chapter provides the information on troubleshooting servers, JDBC connections and error
messages.

Server startup error
Problem: A server startup error is logged in the domain/server.log file when the
mss_samples.ear application is running.

Solution: None. The problem is benign

The error is shown in the following code sample:

JRE update failure
Problem: In a Windows environment, a JRE update failure occurs during installation when
multiple servers share the same BEA_HOME directory.

Cause: Another server(s) is running and using the files needed for installation.

Solution: Shut down the servers and jorbd processes (java) and rerun the installation program
on the server where the failure occurred, then restart all servers.
MetaSolv Solution XML API Integration Developer’s Reference 71

Chapter 5: Troubleshooting
DEBUG_PORT
Problem: The default for this port is the value 8453 and currently it cannot be changed. This
occurs only in development mode.

Solution: Currently none. The issue is being worked with BEA.

Testing JDBC connections
Generally, you should leave the JDBC connections settings on their default values. However,
if you experience connection issues, there are some advanced options you can set to allow you
to test your JDBC connections. To access these advanced options, do the following:

1. Log in to the WebLogic Server Console as described in “” on page 5.

2. In the treeview on the left, navigate to MIP>Services>JDBC>Connection
Pools>poolname where poolname is the name of the connection pool.

3. Select the Configuration tab.

4. Select the Connections tab.

5. At the bottom of the Connections tab, click the Show link next to Advanced Options.

72 MetaSolv Software, Inc.

r
Use these options to test connections, change timeouts, and so on.

For more information about these advanced options, refer to the BEA documentation at
http://e-docs.bea.com.

Firewall closes idle connections
If you have configured a firewall between the database and WebLogic Server, and this firewall
closes idle connections after a certain amount of time, the JDBC pool refresh functionality can
be used to ensure that connections from the pool are not closed by the firewall. A common
error message thrown after such a closed connection is used follows:

java.sql.SQLException: ORA-03113: end-of-file on communication channel
at weblogic.db.oci.OciCursor.getCDAException(OciCursor.java:240)
at weblogic.jdbc.oci.Statement.executeQuery(Statement.java:916)
at ...

This error occurs because the socket connection is considered okay from both the WebLogic
Server and the database side. So both may try to write into this socket connection and fail,
because it has been closed by the firewall without notification or error message to the
participating parties. Please use the refresh functionality to ensure that the connections are not
idle long enough for the firewall to close them.

Configuring refresh functionality can be done by setting the RefreshMinutes property so
that connections are tested at least one time during the idle period. To enable the refresh
functionality, TestTableName property also has to be set. For more information, see:
http://e-docs.bea.com/wls/docs81/config_xml/JDBCConnectionPool.html#RefreshMinutes

However, every JMS server takes one connection from the JDBC pool if a JDBC store is
defined. This connection is considered as reserved by the pool, so that the refresh functionality
will not test and refresh those connections. A typical error message would be:

JMSServer "myJMSServer", store failure while writing message for queue myQueue,
java.io.IOException

This kind of situation can be solved by either one of the following options:

Send at least one dummy JMS message during the idle period, so that the firewall will not
close the connection
Disable the connection closure by the firewall
Define a separate JDBC pool that will be used as JDBC store for JMS servers and use
weblogic.Admin RESET_POOL to reopen the connections at least one time during the
idle period

These options can have an impact on performance. After you have finished testing you
connections, set these options back to their default values to maintain a higher
performance level.
MetaSolv Solution XML API Integration Developer’s Reference 73

Chapter 5: Troubleshooting
This problem has been addressed in later WebLogic Server versions (WLS 6.1 SP7, WLS 7.0
SP3, and WLS 8.1 SP1), so that if JMS is idle, the database is pinged every 5 minutes to keep
the connection fresh and prevent the firewall from closing these connections

Java Hot Spot Error

This error is documented in BEA 8.1 SP3 Release Notes. See the release notes at the following
Web address:

http://e-docs.bea.com/wls.docss81/notes/issues.html

Cause: The following combination of Java options seem to cause the problem:

Domain configured with Sun JDK 1.4.2_04 (not JRockit)
Server running in production mode (-server option)
Debugging enabled
JSP Precompilation enabled (The weblogic.xml file for a Web application specifies
precompile=true)

Workaround:

Edit the server start script to start with -client (not -server) when debugging with the Sun
JDK.
Disable debugging (edit setDomainEnv or manually remove debug JVM arguments)
Do not precompile when debugging.

Table errors
If you are getting table or view errors after deploying to production, read the following
sections to make sure you have properly deployed your application.

Development mode and production mode

When you are developing, deploying and testing an application with WebLogic Workshop,
the instance of WebLogic Server you are deploying to runs by default in development
mode. In development mode, WebLogic Server behaves in ways that make it easier to
iteratively develop and test an application: it automatically deploys the current application
74 MetaSolv Software, Inc.

in an exploded format, server resources such as database tables and JMS queues necessary
for the application to run are automatically created, and so on.

When the development cycle is complete, and the application is ready for use, you deploy
it to an instance (or instances) of WebLogic Server running in production mode. In
production mode applications are not automatically deployed and the server resources
necessary for running an application are not automatically generated.

Manual Creation of Server Resources

When deploying EAR files to a production server, a certain amount of manual resource
creation is necessary. When an application is built in an EAR file, a wlw-manifest.xml file
is produced and placed in the application's META-INF directory. This file lists the JMS
queues and database tables that need to be manually created on the target WebLogic
Server for the application to run properly.

Required database tables are indicated by a <con:conversation-state-table /> tag. These
tables are used by web services to store conversational state. For each occurrence of the
<con:conversation-state-table /> tag in the wlw-manifest.xml file, you must create a
corresponding data table on WebLogic Server.

Required JMS queues are indicated by pairs of <con:async-request-queue> and
<con:async-request-error-queue> tags. For each occurrence of these tags in the wlw-
manifest.xml file, you must create a corresponding JMS queue on WebLogic Server and
you must associate the members of the pair by referencing the <con:async-request-error-
queue> in the ErrorDestination attribute of the <con:async-request-queue>.

Optionally, you may want to enforce role restrictions on any controls that receive external
callbacks. Controls that can receive external callbacks are indicated within a
<con:external-callbacks/> tag in the wlw-manifest.xml file. Since the compilation
process turns control files into individual methods on an EJB, you enforce the role
restrictions on these post-compilation EJB methods.

Error message
Problem: The MetaSolv adapter returns the following message to the client during a XML API
invocation when the Metasolv Solution application server is down:

java.lang.Exception: Error connecting to Metasolv Solution Server

Below is a sample response.
<ns:clientResponse xmlns:ns="http://www.openuri.org/">
<inv:createEntityByValueException xmlns:inv="http://www.metasolv.com/MIP

InventoryManagementAPI">
<inv:createException>

When you are developing and testing an application with WebLogic Workshop, the
creation of the necessary JMS queues and datatables on WebLogic Server takes place
automatically on demand.
MetaSolv Solution XML API Integration Developer’s Reference 75

Chapter 5: Troubleshooting
<com:message xmlns:com="http://java.sun.com/products/oss/xml/Common">
java.lang.Exception: Error connecting to Metasolv Solution Server

</com:message>
</inv:createException>
</inv:createEntityByValueException>
</ns:clientResponse>

Solution: If you receive this error, restart the MetaSolv Solution application server, then the
Integration server.
76 MetaSolv Software, Inc.

6

Performance
This chapter contains information on improving performance when XML APIs are used with
MetaSolv Solution.

Setting up to precompile workflows
The XML API process controls can be precompiled during server start up. Precompiling
improves performance by reducing the amount of time needed to load a control into memory
the first time it is run. Note that after controls are loaded, performance is the same for
precompiled and non-precompiled systems. While using precompilation saves time loading
controls for the first time, it does lengthen server startup time.

Prerequisites

Before you start the setup, verify the following prerequisites:

initDisp.jar is in the server library directory and has an entry in the server classpath
The PRE_CLASSPATH statement in the startMSLVsingle (.cmd or .sh) script has an entry
pointing to the initDisp.jar file, as shown in the following example:

PRE_CLASSPATH=%MSLV_LIBS_DIR%\initDisp.jar

To setup the pre-compilation

1. Log on to the WebLogic Server Administration console by typing the following URL
address in the Address field of the Microsoft Internet Explorer:

http://<admin_host:port>/console.

2. On the logon page, type your user ID and password, and press ENTER.

3. In the left pane, select Deployments>Startup & Shutdown.
MetaSolv Solution XML API Integration Developer’s Reference 77

Chapter 6: Performance
The following pane appears on the right.

4. In the right pane, click Configure a new Startup Class.

The following right pane appears.
78 MetaSolv Software, Inc.

Setting up to precompile workflows
5. Enter the following information in the right pane and click Create:

Name: DispCacheStartupClass

ClassName: initializeDispCache

Failure is Fatal: Select the check box.

6. On the Target and Deploy tab, select the server name to which the new class is to be
deployed and click Apply.

The new changes take effect the next time the server is started. To verify that the changes
have occurred, check the log <server_name>.mss.log. The log will contain messages
similar to the one shown here:

/API/com/metasolv/api/workflow/customer/GetCustomerAccount/Sync.jpd
MetaSolv Solution XML API Integration Developer’s Reference 79

Chapter 6: Performance
80 MetaSolv Software, Inc.

A

Appendix A: XML API sample code

MetaSolv provides a sample application, mss_samples, as a reference and guideline for
developing Workshop applications to interface with Metasolv Solution XML APIs. If you are
a developer setting up a workstation to do integration development, this application is
designed to help you understand and work with the XML APIs.

Each sample is a test of a method included in the XML APIs. The sample code is placed in the
following directory names: customer, events, order, and inventory so that you can quickly find
the method you want.

The samples demonstrate the following information:

Initialization
Error handling
Asynchronous interaction
Http transmission
JMS transmission

Where to find the sample files
The sample application is provided in the jar file mss_xml_apiR#_b#.jar

where:

R# is the release version

b# is the build version

For example: mss_xml_api_R603_b185.jar

The file contains the following entries:

mss_samples.jar—This file contains the code, libraries and other files required for BEA
8.1 SP5 Workshop-based development for the mss_samples application.
mss_samples.ear—This is the representation of an ear file that results from a successful
build of the application.
ReleaseNotes.doc—This contains any release specific notes, including enhancements and
fixes.
MetaSolv Solution XML API Integration Developer’s Reference 81

During installation, the jar file containing the sample code is stored on the application server in
the following location:

METASOLV_HOME/SERVER_NAME/appserver/samples

You can extract the contents of the jar file and place it in any location. The following
procedure shows how to set up a sample application from the samples directory in a Windows
environment.

Setting up the sample code
To set up the XML API sample code on a Windows workstation

1. Extract the mss_samples.jar into a directory.

The directory can be an existing one or you can create a new directory. For example:
BEA_HOME\user_projects\applications\mss_samples.

2. To open the application in your Workshop IDE, locate mss_samples.work in the
mss_samples directory and double-click the file name.

The following figure shows how the file structure appears in Microsoft Internet Explorer.

The mss_samples
directory contains the
application file for the
Workshop environment

Path for the location to
which mss_samples
files were extracted in
the example in Step 1

Double-click mss_samples.work to start the
samples application in Workshop
82 MetaSolv Software, Inc.

Setting up the sample code
When you double-click mss_samples.work, the WebLogic Workshop application opens
and the WebLogic Workshop window appears.

3. Click OK to select a server and domain for the sample application.

The Application Properties window appears.

Select the server home
directory here

Change the start
command to the
one created by the
MetaSolv Solution
installation
program
MetaSolv Solution XML API Integration Developer’s Reference 83

4. Complete the following tasks on the window.

a. Select the server home directory.

If the server and the domain are on the same machine, remaining fields are populated
automatically. MetaSolv recommends keeping the server and the domain on the same
machine in a development environment.

b. Change the server startup file to indicated the custom startup file created by MetaSolv
Solution during the installation process.

c. Accept the default values for the remaining fields on the window and click OK.

When the server is running and available, a green icon like the one shown in the following
figure appears on the Workshop status bar.

5. In Workshop’s right pane, select the highest level available in the directory tree and select
Build Application.

This process can take from 15 to 45 minutes, depending on the size of the machine you are
building the application on. When the build process is finished, a message appears in the
Build tab indicating the build was successful.

6. When the build is complete, restart the application server.

Execute the workflows or browse through the workflows to see how they are constructed.

Upgrading sample files
When you move from one release to another, you must also upgrade the sample file.

To upgrade a sample file

1. Upgrade the MetaSolv Solution core application.

See the MetaSolv Solution 6.0.x Setup Guide XML API Option for instructions.

2. Log on to the WebLogic Server Administration Console.
84 MetaSolv Software, Inc.

Upgrading sample files
3. In the right pane, click Applications.

Click Applications
MetaSolv Solution XML API Integration Developer’s Reference 85

When you click Applications, the following information appears in the right pane.

4. Delete mss_samples by dragging it to the trash can on the right.

5. Refresh the screen to ensure that the deletion occurred.

6. Repeat the steps in the previous procedure to add the new sample application.

Viewing the samples in Workshop
To view the samples in Workshop

1. Navigate to the directory where the you extracted the files from mss_samples.jar.

Delete
mss_samples
86 MetaSolv Software, Inc.

Viewing the samples in Workshop
2. Follow the directory path shown in the following figure.

3. Double-click a .jpd file under one of the following directories: customer, events,
inventory, order.

The workflow appears on the Workshop canvas.

Location of the sample code
in the following directories:

- customer

- events

- inventory

- order
MetaSolv Solution XML API Integration Developer’s Reference 87

Composite sample
A composite order is also included in the samples. The composite order combines multiple
methods to get a desired result. The following figure shows where in the directory structure the
composite order sample is located and how the workflow looks displayed in Design View.
88 MetaSolv Software, Inc.

B

Appendix B: Control interfaces

Customer Management control interface
package com.metasolv.api.control;

import com.bea.control.Control;

public interface CustomerManagement extends Control

{

com.metasolv.mip.customerManagementAPI.UpdateCustomerAccountByValueResponseD
ocument
importCustomerAccount(com.metasolv.mip.customerManagementAPI.UpdateCustomerA
ccountByValueRequestDocument request);

com.metasolv.mip.customerManagementAPI.GetCustomerAccountByKeyResponseDocume
nt
getCustomerAccountByKey(com.metasolv.mip.customerManagementAPI.GetCustomerAc
countByKeyRequestDocument request);

com.metasolv.mip.customerManagementAPI.DeleteCustomerAccountByKeyResponseDoc
ument
deleteCustomerRequest(com.metasolv.mip.customerManagementAPI.DeleteCustomerA
ccountByKeyRequestDocument x0);

}

MetaSolv Solution XML API Integration Developer’s Reference 89

Order Management control interface
package com.metasolv.api.control;

import com.bea.control.Control;

public interface OrderManagement extends Control

{

com.metasolv.mip.orderManagementAPI.QueryOrderManagementResponseDocument
queryOrderManagementRequest(com.metasolv.mip.orderManagementAPI.QueryOrderMa
nagementRequestDocument queryOrderRequest);

com.metasolv.mip.orderManagementAPI.StartOrderByKeyResponseDocument
startOrderByKeyRequest(com.metasolv.mip.orderManagementAPI.StartOrderByKeyRe
questDocument request);

com.metasolv.mip.orderManagementAPI.UpdateOrderManagementResponseDocument
updateOrderManagementRequest(com.metasolv.mip.orderManagementAPI.UpdateOrder
ManagementRequestDocument orderRequest);

com.metasolv.mip.orderManagementAPI.GetOrderByKeyResponseDocument
getOrderByKeyRequest(com.metasolv.mip.orderManagementAPI.GetOrderByKeyReques
tDocument orderRequest);

com.metasolv.mip.orderManagementAPI.CreateOrderByValueResponseDocument
createOrderByValueRequest(com.metasolv.mip.orderManagementAPI.CreateOrderByV
alueRequestDocument orderRequest);

com.metasolv.mip.orderManagementAPI.AssignProvisionPlanProcedureResponseDocu
ment
assignProvisionPlanProcedureRequest(com.metasolv.mip.orderManagementAPI.Assi
gnProvisionPlanProcedureRequestDocument request);

com.metasolv.mip.orderManagementAPI.GetActivationDataByKeyResponseDocument
getActivationDataByKeyRequest(com.metasolv.mip.orderManagementAPI.GetActivat
ionDataByKeyRequestDocument x0);

com.metasolv.mip.orderManagementAPI.TransferTaskResponseDocument
transferTaskRequest(com.metasolv.mip.orderManagementAPI.TransferTaskRequestD
ocument x0);
90 MetaSolv Software, Inc.

com.metasolv.mip.orderManagementAPI.UpdateE911DataReponseDocument
updateE911DataRequest(com.metasolv.mip.orderManagementAPI.UpdateE911DataRequ
estDocument updateE911RequestDocument);

com.metasolv.mip.orderManagementAPI.GetE911DataResponseDocument
getE911DataRequest(com.metasolv.mip.orderManagementAPI.GetE911DataRequestDoc
ument e911DataRequest);

com.metasolv.mip.orderManagementAPI.UpdateEstimatedCompletionDateResponseDoc
ument
updateEstimationCompletedDateRequest(com.metasolv.mip.orderManagementAPI.Upd
ateEstimatedCompletionDateRequestDocument
updateEstimationCompletedDateRequestDocument);

com.metasolv.mip.orderManagementAPI.AddTaskJeopardyResponseDocument
addTaskJeopardyRequest(com.metasolv.mip.orderManagementAPI.AddTaskJeopardyRe
questDocument addTaskJeopardyRequestDocument);

com.metasolv.mip.orderManagementAPI.GetTaskDetailResponseDocument
getTaskDetailRequest(com.metasolv.mip.orderManagementAPI.GetTaskDetailReques
tDocument getTaskDetailRequestDocument);

com.metasolv.mip.orderManagementAPI.GetTaskJeopardyResponseDocument
TaskJeopardyRequest(com.metasolv.mip.orderManagementAPI.GetTaskJeopardyReque
stDocument getTaskJeopardyRequest);

com.metasolv.mip.orderManagementAPI.GetPSROrderByTNResponseDocument
getPSROrderByTN(com.metasolv.mip.orderManagementAPI.GetPSROrderByTNRequestDo
cument getPSROrderByTNRequestDoc);

com.metasolv.mip.orderManagementAPI.ProcessSuppOrderResponseDocument
processSuppOrder(com.metasolv.mip.orderManagementAPI.ProcessSuppOrderRequest
Document x0);

com.metasolv.mip.orderManagementAPI.GetCNAMDataResponseDocument
getCnamDataRequest();

com.metasolv.mip.orderManagementAPI.GetLIDBDataResponseDocument
getLidbDataRequest(com.metasolv.mip.orderManagementAPI.GetLIDBDataRequestDoc
ument getLIDBDataRequestDoc);
MetaSolv Solution XML API Integration Developer’s Reference 91

com.metasolv.mip.orderManagementAPI.UpdateCNAMDataReponseDocument
updateCnamDataRequest(com.metasolv.mip.orderManagementAPI.UpdateCNAMDataRequ
estDocument updateCNAMDataRequestDoc);

com.metasolv.mip.orderManagementAPI.UpdateLIDBDataReponseDocument
updateLidbDataRequest(com.metasolv.mip.orderManagementAPI.UpdateLIDBDataRequ
estDocument updateLIDBDataRequestDoc);

com.metasolv.mip.orderManagementAPI.ReopenTaskResponseDocument
reopenTaskRequest(com.metasolv.mip.orderManagementAPI.ReopenTaskRequestDocum
ent reopenTaskRequestDoc);

com.metasolv.mip.orderManagementAPI.CreateAttachmentResponseDocument
createAttachment(com.metasolv.mip.orderManagementAPI.CreateAttachmentRequest
Document x0, com.bea.xml.XmlObject x1);

com.metasolv.mip.orderManagementAPI.CreateOrderRelationshipResponseDocument
createOrderRelationshipRequest(com.metasolv.mip.orderManagementAPI.CreateOrd
erRelationshipRequestDocument x0);

}

92 MetaSolv Software, Inc.

Inventory Management interface control
package com.metasolv.api.control;

import com.bea.control.Control;

public interface InventoryManagement extends Control

{

com.metasolv.mip.inventoryManagementAPI.CreateEntityByValueResponseDocument
createEntityByValueRequest(com.metasolv.mip.inventoryManagementAPI.CreateEntityBy
ValueRequestDocument request);

com.metasolv.mip.orderManagementAPI.GetServiceRequestDLRsResponseDocument
getServiceRequestDLRsValue(com.metasolv.mip.orderManagementAPI.GetServiceRequestD
LRsValueDocument request);

com.metasolv.mip.inventoryManagementAPI.GetEntityByKeyResponseDocument
getEntityByKeyRequest(com.metasolv.mip.inventoryManagementAPI.GetEntityByKeyReque
stDocument request);

com.metasolv.mip.inventoryManagementAPI.UpdateEntityByValueResponseDocument
updateEntityByValueRequest(com.metasolv.mip.inventoryManagementAPI.UpdateEntityBy
ValueRequestDocument request);

com.metasolv.mip.inventoryManagementAPI.QueryInventoryManagementResponseDocument
queryInventoryManagementRequest(com.metasolv.mip.inventoryManagementAPI.QueryInve
ntoryManagementRequestDocument queryInventoryRequest);

com.metasolv.mip.inventoryManagementAPI.UpdateTNResponseDocument
updateTNRequest(com.metasolv.mip.inventoryManagementAPI.UpdateTNRequestDocument
x0);

com.metasolv.mip.inventoryManagementAPI.ProcessTNRecallResponseDocument
tnRecall(com.metasolv.mip.inventoryManagementAPI.ProcessTNRecallRequestDocument
x0);

com.metasolv.mip.inventoryManagementAPI.ProcessTNValidationResponseDocument
tnValidationRequest(com.metasolv.mip.inventoryManagementAPI.ProcessTNValidationRe
questDocument processTNValidationRequestDocument);

java.lang.String
auditTrailRecording(com.metasolv.mip.inventoryManagementAPI.QueryInventoryManagem
entResponseDocument queryInventoryManagementResponseDoc, java.lang.String
partnerId, java.lang.String successOrFailure);
MetaSolv Solution XML API Integration Developer’s Reference 93

com.metasolv.mip.inventoryManagementAPI.GetNetworkAreasByGeoAreaResponseDocument
getNetworkAreasByGeoAreaRequest(com.metasolv.mip.inventoryManagementAPI.GetNetwor
kAreasByGeoAreaRequestDocument x0);

com.metasolv.mip.inventoryManagementAPI.GetNetworkComponentsResponseDocument
getNetworkComponentsRequest(com.metasolv.mip.inventoryManagementAPI.GetNetworkCom
ponentsRequestDocument x0);

com.metasolv.mip.inventoryManagementAPI.GetIpAddressesResponseDocument
getIpAddressesRequest(com.metasolv.mip.inventoryManagementAPI.GetIpAddressesReque
stDocument getIpAddressesReQuestDoc);

com.metasolv.mip.inventoryManagementAPI.CreateInventoryAssociationResponseDocumen
t
inventoryAssociationRequest(com.metasolv.mip.inventoryManagementAPI.CreateInvento
ryAssociationRequestDocument request);

com.metasolv.mip.inventoryManagementAPI.CreateNewInventoryItemResponseDocument
createNewInventoryItemRequest(com.metasolv.mip.inventoryManagementAPI.CreateNewIn
ventoryItemRequestDocument createNewInventoryItemRequestDoc);

com.metasolv.mip.inventoryManagementAPI.QueryNetworkLocationResponseDocument
queryNetworkLocation(com.metasolv.mip.inventoryManagementAPI.QueryNetworkLocation
RequestDocument queryNetworkLocationRequestDoc);

com.metasolv.mip.inventoryManagementAPI.QueryEndUserLocationResponseDocument
queryEndUserLocation(com.metasolv.mip.inventoryManagementAPI.QueryEndUserLocation
RequestDocument queryEndUserLocationRequestDoc);

com.metasolv.mip.inventoryManagementAPI.GetLocationResponseDocument
getLocationRequest(com.metasolv.mip.inventoryManagementAPI.GetLocationRequestDocu
ment request);

com.metasolv.mip.inventoryManagementAPI.DeleteLocationResponseDocument
deleteLocationRequest(com.metasolv.mip.inventoryManagementAPI.DeleteLocationByKey
Document deleteLocation);

com.metasolv.mip.inventoryManagementAPI.UpdateLocationResponseDocument
updateLocationRequest(com.metasolv.mip.inventoryManagementAPI.UpdateLocationReque
stDocument locationData);

com.metasolv.mip.inventoryManagementAPI.CreateLocationResponseDocument
createLocationRequest(com.metasolv.mip.inventoryManagementAPI.CreateLocationReque
stDocument request);

}

94 MetaSolv Software, Inc.

Network Resource Management interface control
package com.metasolv.api.control;

import com.bea.control.Control;

public interface NetworkResourceManagement extends Control

{

com.metasolv.mip.inventoryManagementAPI.GetAvailablePhysicalPortsResponseDoc
ument
getAvailablePhysicalPortsRequest(com.metasolv.mip.inventoryManagementAPI.Get
AvailablePhysicalPortsRequestDocument x0);

}

MetaSolv Solution XML API Integration Developer’s Reference 95

Service Order Activation interface control
package com.metasolv.api.control;

import com.bea.control.Control;

public interface ServiceOrderActivation extends Control

{

com.metasolv.mip.serviceOrderActivationAPI.CreateSOAMessageResponseDocument
createSoaMessageRequest(com.metasolv.mip.serviceOrderActivationAPI.CreateSOA
MessageRequestDocument x0);

com.metasolv.mip.serviceOrderActivationAPI.GetSOATNsForOrderResponseDocument
getSoaTnsForOrderRequest(com.metasolv.mip.serviceOrderActivationAPI.GetSOATN
sForOrderRequestDocument x0);

com.metasolv.mip.serviceOrderActivationAPI.GetSOADefaultsResponseDocument
getSoaDefaultsRequest(com.metasolv.mip.serviceOrderActivationAPI.GetSOADefau
ltsRequestDocument x0);

com.metasolv.mip.serviceOrderActivationAPI.GetSOAInformationResponseDocument
getSoaInformationRequest(com.metasolv.mip.serviceOrderActivationAPI.GetSOAIn
formationRequestDocument x0);

com.metasolv.mip.serviceOrderActivationAPI.GetSOAMessagesToSendResponseDocum
ent
getSoaMessageToSendRequest(com.metasolv.mip.serviceOrderActivationAPI.GetSOA
MessagesToSendRequestDocument x0);

com.metasolv.mip.serviceOrderActivationAPI.SetTNSOACompleteResponseDocument
setTnSoaCompleteRequest(com.metasolv.mip.serviceOrderActivationAPI.SetTNSOAC
ompleteRequestDocument x0);

}
96 MetaSolv Software, Inc.

Event Management control interface
package com.metasolv.api.control;

import com.bea.control.Control;

public interface EventManagement extends Control

{

java.lang.String
updateInboundEventStatus(com.metasolv.mip.orderManagementAPI.UpdateOrderTask
EventProcedureValueDocument x0);

com.metasolv.mip.orderManagementEvents.MetasolvOrderTaskEventStatusChangeDoc
ument getEventStatus(java.lang.String pExternalSystemName, java.lang.String
pExternalSystemKey);

java.lang.String
updateOutboundEventStatus(com.metasolv.mip.orderManagementEvents.MetasolvOrd
erTaskEventStatusChangeDocument pRequest);

}
MetaSolv Solution XML API Integration Developer’s Reference 97

LSR6 Management control interface
package com.metasolv.api.control;

import com.bea.control.Control;

public interface LSRManagement extends Control

{

com.metasolv.mip.lsr6API.GetLRByKeyResponseDocument
getLRByKeyRequest(com.metasolv.mip.lsr6API.GetLRByKeyRequestDocument x0);

com.metasolv.mip.lsr6API.GetDLByKeyResponseDocument
getDLByKeyRequest(com.metasolv.mip.lsr6API.GetDLByKeyRequestDocument x0);

com.metasolv.mip.lsr6API.GetLSRByKeyResponseDocument
getLSRByKeyRequest(com.metasolv.mip.lsr6API.GetLSRByKeyRequestDocument x0);

com.metasolv.mip.lsr6API.GetLSRCMByKeyResponseDocument
getLSRCMByKeyRequest(com.metasolv.mip.lsr6API.GetLSRCMByKeyRequestDocument
x0);

com.metasolv.mip.lsr6API.CreateDSCNByValueResponseDocument
createDSCNByValueRequest(com.metasolv.mip.lsr6API.CreateDSCNByValueRequestDo
cument x0);

com.metasolv.mip.lsr6API.CreateDSREDByValueResponseDocument
createDSREDByValueRequest(com.metasolv.mip.lsr6API.CreateDSREDByValueRequest
Document x0);

com.metasolv.mip.lsr6API.CreateLRByValueResponseDocument
createLRByValueRequest(com.metasolv.mip.lsr6API.CreateLRByValueRequestDocume
nt x0);

com.metasolv.mip.lsr6API.CreateLSRCMByValueResponseDocument
createLSRCMByValueRequest(com.metasolv.mip.lsr6API.CreateLSRCMByValueRequest
Document x0);

com.metasolv.mip.lsr6API.CreateNPLSRByValueResponseDocument
createNPLSRByValueRequest(com.metasolv.mip.lsr6API.CreateNPLSRByValueRequest
Document x0);
98 MetaSolv Software, Inc.

com.metasolv.mip.lsr6API.QueryCCNAResponseDocument
queryCCNARequest(com.metasolv.mip.lsr6API.QueryCCNARequestDocument x0);

com.metasolv.mip.lsr6API.QueryLSRResponseDocument
queryLSRRequest(com.metasolv.mip.lsr6API.QueryLSRRequestDocument x0);

com.metasolv.mip.lsr6API.QueryLSRForPONCCNAVERResponseDocument
queryLSRForPONCCNAVERRequest(com.metasolv.mip.lsr6API.QueryLSRForPONCCNAVERR
equestDocument x0);

com.metasolv.mip.lsr6API.QueryPONSForCCNAResponseDocument
queryPONSForCCNARequest(com.metasolv.mip.lsr6API.QueryPONSForCCNARequestDocu
ment x0);

com.metasolv.mip.lsr6API.CreateLSROrderByValueResponseDocument
createLSROrderByValueRequest(com.metasolv.mip.lsr6API.CreateLSROrderByValueR
equestDocument x0);

}
MetaSolv Solution XML API Integration Developer’s Reference 99

LSR9 Management control interface
package com.metasolv.api.lsr9.control;

import com.bea.control.Control;

public interface LSRManagement extends Control

{

com.metasolv.mip.lsr9API.GetLRByKeyResponseDocument
getLRByKeyRequest(com.metasolv.mip.lsr9API.GetLRByKeyRequestDocument x0);

com.metasolv.mip.lsr9API.GetDLByKeyResponseDocument
getDLByKeyRequest(com.metasolv.mip.lsr9API.GetDLByKeyRequestDocument x0);

com.metasolv.mip.lsr9API.GetLSRByKeyResponseDocument
getLSRByKeyRequest(com.metasolv.mip.lsr9API.GetLSRByKeyRequestDocument x0);

com.metasolv.mip.lsr9API.GetLSRCMByKeyResponseDocument
getLSRCMByKeyRequest(com.metasolv.mip.lsr9API.GetLSRCMByKeyRequestDocument
x0);

com.metasolv.mip.lsr9API.CreateDSCNByValueResponseDocument
createDSCNByValueRequest(com.metasolv.mip.lsr9API.CreateDSCNByValueRequestDo
cument x0);

com.metasolv.mip.lsr9API.CreateDSREDByValueResponseDocument
createDSREDByValueRequest(com.metasolv.mip.lsr9API.CreateDSREDByValueRequest
Document x0);

com.metasolv.mip.lsr9API.CreateLRByValueResponseDocument
createLRByValueRequest(com.metasolv.mip.lsr9API.CreateLRByValueRequestDocume
nt x0);

com.metasolv.mip.lsr9API.CreateLSRCMByValueResponseDocument
createLSRCMByValueRequest(com.metasolv.mip.lsr9API.CreateLSRCMByValueRequest
Document x0);

com.metasolv.mip.lsr9API.CreateNPLSRByValueResponseDocument
createNPLSRByValueRequest(com.metasolv.mip.lsr9API.CreateNPLSRByValueRequest
Document x0);
100 MetaSolv Software, Inc.

com.metasolv.mip.lsr9API.QueryCCNAResponseDocument
queryCCNARequest(com.metasolv.mip.lsr9API.QueryCCNARequestDocument x0);

com.metasolv.mip.lsr9API.QueryLSRResponseDocument
queryLSRRequest(com.metasolv.mip.lsr9API.QueryLSRRequestDocument x0);

com.metasolv.mip.lsr9API.QueryLSRForPONCCNAVERResponseDocument
queryLSRForPONCCNAVERRequest(com.metasolv.mip.lsr9API.QueryLSRForPONCCNAVERR
equestDocument x0);

com.metasolv.mip.lsr9API.QueryPONSForCCNAResponseDocument
queryPONSForCCNARequest(com.metasolv.mip.lsr9API.QueryPONSForCCNARequestDocu
ment x0);

com.metasolv.mip.lsr9API.CreateLSROrderByValueResponseDocument
createLSROrderByValueRequest(com.metasolv.mip.lsr9API.CreateLSROrderByValueR
equestDocument x0);

}
MetaSolv Solution XML API Integration Developer’s Reference 101

LSR10 Management control interface
package com.metasolv.api.lsr9.control;

import com.bea.control.Control;

public interface LSRManagement extends Control

{

com.metasolv.mip.lsr9API.GetLRByKeyResponseDocument
getLRByKeyRequest(com.metasolv.mip.lsr9API.GetLRByKeyRequestDocument x0);

com.metasolv.mip.lsr9API.GetDLByKeyResponseDocument
getDLByKeyRequest(com.metasolv.mip.lsr9API.GetDLByKeyRequestDocument x0);

com.metasolv.mip.lsr9API.GetLSRByKeyResponseDocument
getLSRByKeyRequest(com.metasolv.mip.lsr9API.GetLSRByKeyRequestDocument x0);

com.metasolv.mip.lsr9API.GetLSRCMByKeyResponseDocument
getLSRCMByKeyRequest(com.metasolv.mip.lsr9API.GetLSRCMByKeyRequestDocument
x0);

com.metasolv.mip.lsr9API.CreateDSCNByValueResponseDocument
createDSCNByValueRequest(com.metasolv.mip.lsr9API.CreateDSCNByValueRequestDo
cument x0);

com.metasolv.mip.lsr9API.CreateDSREDByValueResponseDocument
createDSREDByValueRequest(com.metasolv.mip.lsr9API.CreateDSREDByValueRequest
Document x0);

com.metasolv.mip.lsr9API.CreateLRByValueResponseDocument
createLRByValueRequest(com.metasolv.mip.lsr9API.CreateLRByValueRequestDocume
nt x0);

com.metasolv.mip.lsr9API.CreateLSRCMByValueResponseDocument
createLSRCMByValueRequest(com.metasolv.mip.lsr9API.CreateLSRCMByValueRequest
Document x0);

com.metasolv.mip.lsr9API.CreateNPLSRByValueResponseDocument
createNPLSRByValueRequest(com.metasolv.mip.lsr9API.CreateNPLSRByValueRequest
Document x0);
102 MetaSolv Software, Inc.

com.metasolv.mip.lsr9API.QueryCCNAResponseDocument
queryCCNARequest(com.metasolv.mip.lsr9API.QueryCCNARequestDocument x0);

com.metasolv.mip.lsr9API.QueryLSRResponseDocument
queryLSRRequest(com.metasolv.mip.lsr9API.QueryLSRRequestDocument x0);

com.metasolv.mip.lsr9API.QueryLSRForPONCCNAVERResponseDocument
queryLSRForPONCCNAVERRequest(com.metasolv.mip.lsr9API.QueryLSRForPONCCNAVERR
equestDocument x0);

com.metasolv.mip.lsr9API.QueryPONSForCCNAResponseDocument
queryPONSForCCNARequest(com.metasolv.mip.lsr9API.QueryPONSForCCNARequestDocu
ment x0);

com.metasolv.mip.lsr9API.CreateLSROrderByValueResponseDocument
createLSROrderByValueRequest(com.metasolv.mip.lsr9API.CreateLSROrderByValueR
equestDocument x0);

}
MetaSolv Solution XML API Integration Developer’s Reference 103

104 MetaSolv Software, Inc.

C

Appendix C: Navigating the XSD
The information in this appendix describes how to navigate through the Request and Response
structures defined in the xsd. The Request and Response structures defined in the xsd are used
by the control methods as input and output parameters. Several examples will show screen
shots of the xsd in various states of expansion. You can view the xsd in such a manner by
using a tool such as XMLSpy.

XMLSpy offers several ways to view xml. You may be used to a more traditional view of xml,
such as the text view shown below. However, this can become very difficult to read when
dealing with large structures because typically elements within the structure reference other
structures, which you then have scroll around to locate. Therefore, these examples show how
to view the xml using the "Schema/WSDL Design View", which allows you to the view top
level structures and then expand and collapse them as needed. Viewing the xml structure in
this manner automatically pulls in the referenced structures, so there is no need to scroll
around to locate them.
MetaSolv Solution XML API Integration Developer’s Reference 105

Note:
Before going through the examples, note that the following two screen shots apply to all
examples. The examples will explain how to navigate through an xml structure by expanding
the structure as you read it. If you wish to collapse the structures, you can collapase an
individual structure by clicking on the "-" as shown below.

Or, you can collapse the entire structure by clicking on the collapse button as shown below.
This button is only visible in the upper left corner, so you must scroll all the way up and all the
way to the left to see it.
106 MetaSolv Software, Inc.

Example 1: importCustomerAccount
This example shows how a typical XML API import method works. The
importCustomerAccount method is defined in the CustomerManagement control class as
follows. You can see a full list of controls in Appendix B.

com.metasolv.mip.customerManagementAPI.UpdateCustomerAccountByValueRes
ponseDocument
importCustomerAccount(com.metasolv.mip.customerManagementAPI.UpdateCus
tomerAccountByValueRequestDocument request);

Request structure
The method defines one input parameter, "request", which is defined as type
com.metasolv.mip.customerManagementAPI.UpdateCustomerAccountByValueRequestDocu
ment. This tells us that an xml structure named updateCustomerAccountByValueRequest is
defined in the CustomerManagementAPI.xsd. Therefore, we will examine the xml structure
updateCustomerAccountByValueRequest, which is the input to the control method
importCustomerAccount.

The following steps will walk you through viewing and understanding the
UpdateCustomerAccountByValueRequest structure.

1. Open the CustomerManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

Request in text view
MetaSolv Solution XML API Integration Developer’s Reference 107

3. The top-level structures are now clearly listed. Expand the
updateCustomerAccountByValueRequest structure by clicking on the expand button as
indicated below.

4. You are now viewing the contents of the updateCustomerAccountByValueReqeust
structure. Further expand the udpateCustomerAccountByValueRequest structure by
clicking on the expand button as indicated below.
108 MetaSolv Software, Inc.

5. You are now viewing elements that define a data type. These elements will house the data
that comprise the customer account being imported. For example,
lastUpdateVersionNumber and subGraphId. The metaSolvCustomerAccountKey defines
another structure. Click the "+" to further expand the structure.

6. You are now viewing additional elements that define a data type, such as applicationDN,
type, and customerAccountPrimaryKey.
MetaSolv Solution XML API Integration Developer’s Reference 109

7. Scroll down, and you can view field properties, such as Field in GUI, Window in GUI,
Field Description, Required or Optional, and Valid Values.
110 MetaSolv Software, Inc.

Response structure
The method defines it’s return as type
com.metasolv.mip.customerManagementAPI.UpdateCustomerAccountByValueResponseDoc
ument. This tells us that an xml structure named updateCustomerAccountByValueResponse is
defined in the CustomerManagementAPI.xsd. Therefore, we will examine the xml structure
updateCustomerAccountByValueResponse, which is what is returned by the control method
importCustomerAccount.

The following steps will walk you through viewing and understanding the
UpdateCustomerAccountByValueResponse structure.

1. Open the CustomerManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

Response in text view
MetaSolv Solution XML API Integration Developer’s Reference 111

3. The top-level structures are now clearly listed. Expand the
updateCustomerAccountByValueResponse structure by clicking on the expand button as
indicated below.

4. You are now viewing the contents of the updateCustomerAccountByValueResponse
structure. Further expand the udpateCustomerAccountByValueResponse structure by
clicking on the expand button as indicated below.
112 MetaSolv Software, Inc.

5. You are now viewing elements that define a data type. These elements will house the data
that is returned in the response regarding the customer account that was imported. For
example, applicationDN, type, and customerAccountPrimaryKey.
MetaSolv Solution XML API Integration Developer’s Reference 113

Example 2: getCustomerAccountByKey
This example shows how a typical XML API export method works.The
getCustomerAccountByKey method is defined in the CustomerManagement control class as
follows. You can see a full list of controls in Appendix B.

com.metasolv.mip.customerManagementAPI.GetCustomerAccountByKeyResponse
Document
getCustomerAccountByKey(com.metasolv.mip.customerManagementAPI.GetCust
omerAccountByKeyRequestDocument request);

Request structure
The method defines one input parameter, "request", which is defined as type
com.metasolv.mip.customerManagementAPI.GetCustomerAccountByKeyRequestDocument.
This tells us that an xml structure named getCustomerAccountByKeyRequest is defined in the
CustomerManagementAPI.xsd. Therefore, we will examine the xml structure
getCustomerAccountByKeyRequest, which is the input to the control method
getCustomerAccountByKey.

The following steps will walk you through viewing and understanding the
GetCustomerAccountByKeyRequest structure.

1. Open the CustomerManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

Request in text view
114 MetaSolv Software, Inc.

3. The top-level structures are now clearly listed. Expand the
getCustomerAccountByKeyRequest structure by clicking on the expand button as
indicated below.

4. You are now viewing the contents of the getCustomerAccountByKeyReqeust structure.
Further expand the getCustomerAccountByKeyRequest structure by clicking on the
expand button as indicated below.
MetaSolv Solution XML API Integration Developer’s Reference 115

5. You are now viewing elements that define a data type. These elements will house the data
that is required to get the customer account. For example, applicationDN, type, and
customerAccountPrimaryKey.
116 MetaSolv Software, Inc.

Response structure
The method defines it’s return as type
com.metasolv.mip.customerManagementAPI.GetCustomerAccountByKeyResponseDocumen
t. This tells us that an xml structure named getCustomerAccountByKeyResponse is defined in
the CustomerManagementAPI.xsd. Therefore, we will examine the xml structure
getCustomerAccountByKeyResponse, which is what is returned by the control method
getCustomerAccountByKey.

The following steps will walk you through viewing and understanding the
UpdateCustomerAccountByValueRequest structure.

1. Open the CustomerManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

Response in text view
MetaSolv Solution XML API Integration Developer’s Reference 117

3. The top-level structures are now clearly listed. Expand the
getCustomerAccountByKeyResponse structure by clicking on the expand button as
indicated below.

4. You are now viewing the contents of the getCustomerAccountByKeyResponse structure.
Further expand the getCustomerAccountByKeyResponse structure by clicking on the
expand button as indicated below.
118 MetaSolv Software, Inc.

5. You are now viewing elements that define a data type. These elements will house the data
that is returned in the response regarding the customer account being exported. For
example, lastUpdateVersionNumber, subGraphId, and accessCustomerNr. The
metaSolvCustomerAccountKey defines another structure. Click the "+" to further expand
the structure.

6. You are now viewing additional elements that define a data type, such as applicationDN,
type, and customerAccountPrimaryKey.
MetaSolv Solution XML API Integration Developer’s Reference 119

7. Scroll down, and you can view field properties, such as Field in GUI, Window in GUI,
Field Description, Required or Optional, and Valid Values.
120 MetaSolv Software, Inc.

Example 3: createEntityByValueRequest
This example shows how a typical XML API method that defines choices of structures within
the Request and Response structures works.The createEntityByValueRequest method is
defined in the InventoryManagement control class as follows. You can see a full list of
controls in Appendix B.

com.metasolv.mip.inventoryManagementAPI.CreateEntityByValueResponseDoc
ument
createEntityByValueRequest(com.metasolv.mip.inventoryManagementAPI.Cre
ateEntityByValueRequestDocument request);

Request structure
The method defines one input parameter, "request", which is defined as type
com.metasolv.mip.inventoryManagementAPI.CreateEntityByValueRequestDocument. This
tells us that an xml structure named createEntityByValueRequest is defined in the
InventoryManagementAPI.xsd. Therefore, we will examine the xml structure
createEntityByValueRequest, which is the input to the control method
createEntityByValueRequest.

The following steps will walk you through viewing and understanding the
CreateEntityByValueRequest structure.

1. Open the InventoryManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

Request in text view
MetaSolv Solution XML API Integration Developer’s Reference 121

3. The top-level structures are now clearly listed. Expand the createEntityByValueRequest
structure by clicking on the expand button as indicated below.

4. You are now viewing the contents of the createEntityByValueReqeust structure. Further
expand the createEntityByValueReqeust structure by clicking on the expand button as
indicated below.
122 MetaSolv Software, Inc.

5. You are now viewing sub-structures that are a choice. For example, if you wish to create a
PSR Service Location you would populate the first choice of sub-structures with input
data; if you wish to create a Network Location you would populate the third choice of sub-
structures with input data. Do not include the remaining empty choice structures in the
request.
MetaSolv Solution XML API Integration Developer’s Reference 123

Response structure
The method defines it’s return as type
com.metasolv.mip.inventoryManagementAPI.CreateEntityByValueResponseDocument. This
tells us that an xml structure named createEntityByValueResponse is defined in the
InventoryManagementAPI.xsd. Therefore, we will examine the xml structure
createEntityByValueResponse, which is what is returned by the control method
createEntityByValueRequest.

The following steps will walk you through viewing and understanding the
CreateEntityByValueRequest structure.

1. Open the InventoryManagementAPI.xsd, using an xml tool such as XMLSpy.

2. If the xml file comes up as text view, change the view by selecting a different view as
shown below.

Response in text view
124 MetaSolv Software, Inc.

3. The top-level structures are now clearly listed. Expand the createEntityByValueResponse
structure by clicking on the expand button as indicated below.

4. You are now viewing the contents of the createEntityByValueResponse structure. Further
expand the createEntityByValueResponse structure by clicking on the expand button as
indicated below.
MetaSolv Solution XML API Integration Developer’s Reference 125

5. You are now viewing sub-structures that are a choice. For example, if you created a PSR
Service Location, the first choice of sub-structures will be populated in the response; if
you created a Network Location, the third choice of sub-structures will be populated in the
in the response. Only one of the sub-structures will be returned in response.
126 MetaSolv Software, Inc.

D

Appendix D: XML API methods
The methods in this appendix are presented in the order they appear in the control file. The
information provided for each method will include:

Control name
xml defined Request name
xml defined Response name
Description of method
Input Structure
Response Structure
MetaSolv Solution Path > Page (where applicable)
Additional information (where applicable)
MetaSolv Solution XML API Integration Developer’s Reference 127

Customer Management API
The Customer Management API is a collection of methods that provide the ability to import
and maintain customer accounts in the MetaSolv Solution database from an outside source,
without using the MetaSolv Solution GUI. The XmlMetaSolvCustomerManagementAPI.xsd
defines the following methods:

importCustomerAccount
updateCustomerAccountByValueRequest
updateCustomerAccountByValueResponse

Additional Information
This method provides the ability to import a new customer account, and to update an existing
customer account. When the customerNr and suppType are not populated, the code processes
the request as an import. When the customerNr and suppType are populated, the code
processes the request as an update. When importing a new customer, the customerNr and
suppType must not be populated. Also, importing a new customer requires additional data that
is not required for an update.

Description This method either creates or
updates the specified customer
account based on the input data

Input Structure MetaSolvCustomerAccountValue
Choice

MetaSolvCustomerAcountValue

Response Structure MetaSolvCustomerAccountKey

MetaSolv Solution
Path > Page

Order Management > Customer
Account

Table 2: importCustomerAccount
128 MetaSolv Software, Inc.

Customer Management API
getCustomerAccountByKey
getCustomerAccountByKeyRequest
getCustomerAccountByKeyResponse

Description This method returns existing
customer account information
based on the input customer
account key.

Input Structure MetaSolvCustomerAccountKey
Choice

MetaSolvCustomerAccountKey

Response Structure MetaSolvCustomerAccountValue
Choice

MetaSolvCustomerAccountValue

MetaSolv Solution
Path > Page

Order Management > Customer
Account

Table 3: getCustomerAccountByKey
MetaSolv Solution XML API Integration Developer’s Reference 129

deleteCustomerRequest
deleteCustomerAccountByKeyRequest
deleteCustomerAccountByKeyResposne

Description This method deletes an
existing customer account
based on the input customer
account key.

Input Structure MetaSolvCustomerAccountKey
Choice

MetaSolvCustomerAccountKey

Response Structure status (String)

MetaSolv Solution
Path > Page

Order Management > Customer
Account

Table 4: deleteCustomerRequest
130 MetaSolv Software, Inc.

Order Management API
Order Management API
The Order Management API is a collection of methods that provide the ability to import and
maintain orders in the MetaSolv Solution database from an outside source, without using the
MetaSolv Solution GUI. Orders include Internal Service Requests (ISRs) and Product Service
Requests (PSRs). Local Service Requests (LSRs) are handled by a seperate API, Local Service
Request API. The XmlMetaSolvOrderManagementAPI.xsd defines the following methods:
MetaSolv Solution XML API Integration Developer’s Reference 131

queryOrderManagementRequest
queryOrderManagementRequest
queryOrderManagementResponse

Description This method returns various order
information based on the choice of
input structure.

Input Structure MetaSolvQueryValueChoice ValidateOrderQueryValue,
GetTaskGWEventQueryValue,
GetServReqTasksQueryValue,
GetServiceRequestDLRsValue,
GetDLRInfosByOrderAndService
ItemIdValue,
GetDLRInfosByServiceItemIdIn
ServiceValue,
GetServItemReferenceValue,
GetServItemsValue,
GetProductCatalog,or
GetOrderStatus

Response Structure MetaSolvQueryResponseChoice ValidateOrderQueryResponse,
GetTaskGWEventQueryResponse,
GetServReqTasksQueryResponse,
GetServiceRequestDLRsResponse,
GetDLRInfosByOrderAndServiceIt
emIdValue,
GetDLRInfosByServiceItemIdIn
ServiceValue,
GetServItemReferenceValue,
GetServItemsValue,
GetDLRInfosByOrderAndServiceIt
emIdResponse,
GetDLRInfosByServiceItemIdInSer
viceResponse,
GetServItemReferenceResponse,
GetServItemsResponse,
GetProductCatalogResponse, or
GetOrderStatusResponse

MetaSolv Solution
Path > Page

Table 5: queryOrderManagementRequest
132 MetaSolv Software, Inc.

Order Management API
startOrderByKeyRequest
startOrderByKeyRequest
startOrderByKeyResponse

Additional Information
This method needs to be called after a successful response from createOrderByValueRequest,
and before calling assignProvisionPlanProcedureRequest. It is the API equivalent of clicking
the GUI link for "Finish Order".

Description This method initiates the ‘Finish
Order’ processing for the input
order.

Input Structure MetaSolvOrderKeyChoice OrderKey

Response Structure MetaSolvOrderKeyChoice OrderKey

MetaSolv Solution
Path > Page

Order Management > Product
Service Request or

Order Management > Internal
Service Request

Table 6: startOrderByKeyRequest
MetaSolv Solution XML API Integration Developer’s Reference 133

updateOrderManagementRequest
updateOrderManagementRequest
updateOrderManagementResponse

Description This method updates various order
information, based on the choice
input structure and the input data.

Input Structure MetaSolvUpdateProcedureValueC
hoice

UpdateServicesInOrderProcedure
Value,
UpdateOrderTaskGWEventValue,
CompleteTaskProcedureValue,
UpdateOrderTaskEventProcedure
Value, or
ReopenTaskProcedureValue

Response Structure MetaSolvUpdateProcedureValueR
esponseChoice

UpdateServicesInOrderProcedure
Response,
UpdateOrderTaskGWEvent
Response,
CompleteTaskProcedureResponse,
UpdateOrderTaskEventProcedure
Response, or
ReopenTaskProcedureResponse

MetaSolv Solution
Path > Page

Table 7: updateOrderManagementRequest
134 MetaSolv Software, Inc.

Order Management API
getOrderByKeyRequest
getOrderByKeyRequest
getOrderByKeyResponse

createOrderByValueRequest
createOrderByValueRequest
createOrderByValueResponse

Additional Information
This method will create a PSR order or an ISR order, depending on the choice of the input
structure. Both input structures define the same sub-structure, OrderHeaderType, which is
where the mutual required data is defined.

Description This method returns order
information based on the input
order key.

Input Structure MetaSolvOrderKeyChoice OrderKey

Response Structure MetaSolvOrderValueChoice MetaSolvPSROrderValue or
MetaSolvISROrderValue

MetaSolv Solution
Path > Page

Order Management > Product
Service Request or

Order Management > Internal
Service Request

Table 8: getOrderByKeyRequest

Description This method creates a new PSR or
ISR order based on the input data.

Input Structure MetaSolvOrderValueChoice MetaSolvPSROrderValue or
MetaSolvISROrderValue

Response Structure MetaSolvOrderKeyChoice OrderKey

MetaSolv Solution
Path > Page

Order Management > Product
Service Request or

Order Management > Internal
Service Request

Table 9: createOrderByValueRequest
MetaSolv Solution XML API Integration Developer’s Reference 135

assignProvisionPlanProcedureRequest
assignProvisionPlanProcedureRequest
assignProvisionPlanProcedureResponse

getActivationDataByKeyRequest
getActivationDataByKeyRequest
getActivationDataByKeyResponse

Description This method assigns a
provisioning plan to an order
based on the input data.

Input Structure AssignProvisionPlanProcedure
Value

ProvisionPlanValue

Response Structure MetaSolvOrderKeyChoice OrderKey

MetaSolv Solution
Path > Page

Table 10: assignProvisionPlanProcedureRequest

Description This method returns activation
information based on the input
order key and service key.

Input Structures OrderKey

MetaSolvServiceKey

Response Structure MetaSolvServiceActivationType

MetaSolv Solution
Path > Page

Table 11: getActivationDataByKeyRequest
136 MetaSolv Software, Inc.

Order Management API
transferTaskRequest
transferTaskRequest
transferTaskResponse

updateE911DataRequest
updateE911DataReqest
updateE911DataResponse

Description This method transfers tasks
between work queues based on the
input data.

Input Structure TransferTaskValueType orderKey, taskNumber,
currentWorkQueue,
newWorkQueue

Response Structure OrderKey

MetaSolv Solution
Path > Page

Table 12: tranferTaskRequest

Description This method updates E911 data
based upon the input data.

Input Structure E911DataType

Response Structure

MetaSolv Solution
Path > Page

Table 13: updateE911DataRequest
MetaSolv Solution XML API Integration Developer’s Reference 137

getE911DataRequest
getE911DataRequest
getE911DataResponse

updateEstimationCompletedDateRequest
updateEstimatedCompletionDateRequest
updateEstimatedCompletionDateResponse

Description This method returns E911 data,
based upon the input data.

Input Structure

Response Structure E911DataType

MetaSolv Solution
Path > Page

Table 14: getE911DataRequest

Description This method updates the estimated
completion dates of tasks based on
the input order and specified tasks
associated with the order.

Input Structure UpdateEstimatedCompletionDate
ValueType

Response Structure status (String)

MetaSolv Solution
Path > Page

Table 15: updateEstimationCompletedDateRequest
138 MetaSolv Software, Inc.

Order Management API
addTaskJeopardyRequest
addTaskJeopardyRequest
addTaskJeopardyResponse

getTaskDetailRequest
getTaskDetailRequest
getTaskDetailResponse

Description This method adds task jeopardy
information based on the input
task data.

Input Structure AddTaskJeopardyRequestValue
Type

Response Structure status (String)

MetaSolv Solution
Path > Page

Table 16: addTaskJeopardyRequest

Description This method returns task detail
information based on the input
data.

Input Structure GetTaskDetailRequestValueType

Response Structure GetTaskDetailResponseValue
Type

MetaSolv Solution
Path > Page

Table 17: getTaskDetailRequest
MetaSolv Solution XML API Integration Developer’s Reference 139

TaskJeopardyRequest
getTaskJeopardyRequest
getTaskJeopardyResponse

getPSROrderByTN
getPSROrderByTNRequest
getPSROrderByTNResponse

Description This method returns task jeopardy
information based on the input
task data.

Input Structure GetTaskJeopardyRequestValue
Type

Response Structure GetTaskJeopardyResponseValueT
ype

MetaSolv Solution
Path > Page

Table 18: TaskJeopardyRequest

Description This method returns PSR order
information based on the input
telephone number.

Input Structure GetPSROrderByTNRequestValue
Type

Response Structure MetaSolvOrderValueChoice MetaSolvPSROrderValue or
MetaSolvISROrderValue

MetaSolv Solution
Path > Page

Table 19: getPSROrderByTN
140 MetaSolv Software, Inc.

Order Management API
processSuppOrder
processSuppOrderRequest
processSuppOrderResponse

Description This method processes a
supplement order based on the
input data.

Input Structure ProcessSuppOrderRequestValue
Type

Response Structure message (String)

MetaSolv Solution
Path > Page

Table 20: processSuppOrder
MetaSolv Solution XML API Integration Developer’s Reference 141

getCNAMDataRequest
getCNAMDataRequest
getCNAMDataResponse

getLidbDataRequest
getLIDBDataRequest
getLIDBDataResponse

Description This method returns CNAM data
based upon the input data.

Input Structure

Response Structure CNAMDataType

MetaSolv Solution
Path > Page

Table 21: getCNAMDataRequest

Description This method returns LIDB data
based on the input data.

Input Structure

Response Structure LIDBDataType

MetaSolv Solution
Path > Page

Table 22: getLidbDataRequest
142 MetaSolv Software, Inc.

Order Management API
updateCNAMDataRequest
updateCNAMDataRequest
updateCNAMEDataResponse

updateLidbDataRequest
updateLIDBDataRequest
updateLIDBDataResponse

Description This method updates CNAM data
based on the input data.

Input Structure CNAMDataType

Response Structure status (String)

MetaSolv Solution
Path > Page

Table 23: updateCNAMDataRequest

Description This method updates LIDB data
based on the input data.

Input Structure LIDBDataType

Response Structure status (String)

MetaSolv Solution
Path > Page

Table 24: updateLidbDataRequest
MetaSolv Solution XML API Integration Developer’s Reference 143

reopenTaskRequest
reopenTaskRequest
reopenTaskResponse

createAttachmentRequest
createAttachmentRequest
createAttachmentResponse

Description This method reopens a task based
on the input data.

Input Structure ReopenTaskValueType

Response Structure MetaSolvOrderValueChoice MetaSolvPSROrderValue or
MetaSolvISROrderValue

MetaSolv Solution
Path > Page

Table 25: reopenTaskRequest

Description This method creates an xml
document attachment that is
associated with a PSR based on
the input data.

Input Structure CreateAttacmentType

Response Structure message (String)

MetaSolv Solution
Path > Page

Table 26: createAttachmentRequest
144 MetaSolv Software, Inc.

Order Management API
createOrderRelationshipRequest
createOrderRelationshipRequest
createOrderRelationshipResponse

Additional Information
This method only supports the order relationship type of parent/child. This is important to note
because MetaSolv Solution supports several different relationship types, but this method only
supports the relationship type of parent/child.

Description This method creates a parent/child
relationship based on the two
input orders.

Input Structures OrderKey (parent)

OrderKey (child)

Response Structure message (String)

MetaSolv Solution
Path > Page

Service Request>Service Request
Hierarchy

Table 27: createOrderRelationshipRequest
MetaSolv Solution XML API Integration Developer’s Reference 145

processBillingTelephoneNumber
billingTelephoneNumber
billingTelephoneNumberResponse

Description This method receives a structure to
be passed to process the number as
Billing Telephone Number.

Input Structures documentNumber (long)
servItemId(long)
BtnFunction-Enum(enum defined
in same xsd file, as a String with
value of 0 or 1)
nbrInvId(long)

Response Structure documentNumber (integer)

MetaSolv Solution
Path > Page

Order Management > Product
Service Request

Table 28: processBillingTelephoneNumber
146 MetaSolv Software, Inc.

Inventory Management API
Inventory Management API
The Inventory Management API is a collection of methods that provide the ability to import
and maintain inventory in the MetaSolv Solution database from an outside source, without
using the MetaSolv Solution GUI. Inventory items include Locations (PSR Service Locations,
End User Locations, and Network Locations), Telephone Numbers, Physical Ports, and IP
Addresses. The XmlMetaSolvInventoryManagementAPI.xsd defines the following methods:

createEntityByValueRequest
createEntityByValueRequest
createEntityByValueResponse

Description This method creates a new entity
based on the choice of input
structure.

Input Structure CreateEntityValueChoice CreatePSRServiceLocationValue,
CreateEndUserLocationValue,
CreateNetworkLocationValue, or
CreateNumberInventoryValue

Response Structure CreateEntityResponseChoice CreatePSRServiceLocation
Response,
CreateEndUserLocationResponse,
CreateNetworkLocationResponse,
or
CreateNumberInventoryResponse

MetaSolv Solution
Path > Page

Table 29: createEntityByValueRequest
MetaSolv Solution XML API Integration Developer’s Reference 147

getServiceRequestDLRsValue
createEntityByValueRequest
createEntityByValueResponse

getEntityByKeyRequest
getEntityByValueRequest
getEntityByValueResponse

Description

Input Structure

Response Structure

MetaSolv Solution
Path > Page

Table 30: getServiceRequestDLRsValue

Description This method returns various entity
information based on the choice of
input structure.

Input Structure GetEntityByKeyValueChoice GetPSRServiceLocationByKey,
GetEndUserLocationByKey,
GetNetworkLocationByKey,
GetDlrByKey

Response Structure GetEntityByKeyResponseChoice GetPSRServiceLocationResponse
GetEndUserLocationResponse,
GetNetworkLocationResponse,
GetDlrByKeyResponse

MetaSolv Solution
Path > Page

Table 31: getEntityByKeyRequest
148 MetaSolv Software, Inc.

Inventory Management API
updateEntityByValueRequest
updateEntityByValueRequest
updateEntityByValueResponse

Description This method updates an existing
entity based on the choice of input
structure.

Input Structure UpdateEntityValueChoice UpdatePSRServiceLocationValue
or UpdatePreAssignTelephone
NumberValue

Response Structure UpdateEntityResponseChoice UpdatePSRServiceLocation
Response or
UpdatePreAssignTelephone
NumberResponse

MetaSolv Solution
Path > Page

Table 32: updateEntityByValueRequest
MetaSolv Solution XML API Integration Developer’s Reference 149

queryInventoryManagementRequest
queryInventoryManagementRequest
queryInventoryManagementResponse

updateTNRequest
updateTNRequest
updateTNResponse

Description This method returns various
inventory management
information based on the choice of
input structure.

Input Structure MetaSolvInventoryQueryValue
Choice

QueryAlarmEnrichmentValue,
QueryEquipmentCapacityValue,
QueryTelephoneNumber
InventoryValue,
QueryMSAGInventoryValue

Response Structure MetaSolvInventoryQuery
ResponseChoice

QueryAlarmEnrichmentResponse,
QueryEquipmentCapacity
Response,
QueryTelephoneNumber
InventoryResponse,
QueryMSAGResponse

MetaSolv Solution
Path > Page

Table 33: queryInventoryManagementRequest

Description This method updates an existing
telephone number based on the
input data.

Input Structure UpdateTNRequestValueType

Response Structure UpdateTNResponseValue (int)

MetaSolv Solution
Path > Page

Table 34: updateTNRequest
150 MetaSolv Software, Inc.

Inventory Management API
tnRecall
processTNRecallRequest
processTNRecallResponse

tnValidationRequest
processTNValidationRequest
processTNValidationResponse

Description This method recalls a telephone
number based on the input data.

Input Structure tn (String)

Response Structure ProcessTNRecallResponseValue
Type

MetaSolv Solution
Path > Page

Table 35: tnRecall

Description This method validates the TN.

Input Structure tn (String)

Response Structure ProcessTNValidationResponse
Value (String)

MetaSolv Solution
Path > Page

Table 36: tnValidationRequest
MetaSolv Solution XML API Integration Developer’s Reference 151

auditTrailRecording
Request
Response

getNetworkAreasByGeoAreaRequest
getNetworkAreasByGeoAreaRequest
getNetworkAreasByGeoAreaResponse

Description

Input Structure

Response Structure

MetaSolv Solution
Path > Page

Table 37: auditTrailRecording

Description This method returns Network
Area information based on the
input Geographical Area.

Input Structure GeoAreaCriteria

Response Structure NetworkArea

MetaSolv Solution
Path > Page

Table 38: getNetworkAreasByGeoAreaRequest
152 MetaSolv Software, Inc.

Inventory Management API
getNetworkComponentsRequest
getNetworkComponentsRequest
getNetworkComponentsResponse

getIpAddressesRequest
getIpAddressesRequest
getIpAddressesResponse

Description This method returns Network
Component information based on
the input data.

Input Structure getNetworkComponentsRequest
ValueType

Response Structure NetworkComponent

MetaSolv Solution
Path > Page

Table 39: getNetworkComponentsRequest

Description This method returns ip address
information based on the input
data.

Input Structure IpAddressCriteria

Response Structure IpAddressesValue (sequence)

MetaSolv Solution
Path > Page

Table 40: getIpAddressesRequest
MetaSolv Solution XML API Integration Developer’s Reference 153

createInventoryAssociationRequest
createInventoryAssociationRequest
createInventoryAssociationResponse

createNewInventoryItemRequest
createNewInventoryItemRequest
createNewInventoryItemResponse

Description This creates a relationship
between two inventory items
based on the input data.

Input Structure ImportInventoryAssociation

Response Structure status

MetaSolv Solution
Path > Page

Table 41: createInventoryAssociationRequest

Description This method creates a new
inventory item based on the input
data.

Input Structure InventoryItem

Response Structure MetaSolvNumberInventoryKey

MetaSolv Solution
Path > Page

Table 42: createNewInventoryItemRequest
154 MetaSolv Software, Inc.

Inventory Management API
queryNetworkLocation
queryNetworkLocationRequest
queryNetworkLocationResponse

queryEndUserLocation
queryEndUserLocationRequest
queryEndUserLocationResponse

Description This method retrieves multiple
network locations from the MSS
database based on the input data.

Input Structure NetworkLocationQueryValue

Response Structure NetworkLocationResultValue

MetaSolv Solution
Path > Page

Table 43: queryNetworkLocation

Description This method retrieves multiple
end user locations from the MSS
database based on the input data.

Input Structure EndUserLocationQueryValue

Response Structure EndUserLocationResultValue

MetaSolv Solution
Path > Page

Table 44: queryEndUserLocation
MetaSolv Solution XML API Integration Developer’s Reference 155

getLocationRequest
getLocationRequest
getLocationResponse

deleteLocationRequest
deleteLocationByKey
deleteLocationResponse

Description This method retrieves a specific
location from the MSS database
based on the input data key.

Input Structure NetworkLocationKey

Response Structure LocationValue

MetaSolv Solution
Path > Page

Table 45: getLocationRequest

Description This method deletes a specific
location from the MSS database
based on the input data key.

Input Structure NetworkLocationKey

Response Structure NetworkLocationKey

MetaSolv Solution
Path > Page

Table 46: deleteLocationRequest
156 MetaSolv Software, Inc.

Inventory Management API
updateLocationRequest
updateLocationRequest
updateLocationResponse

createLocationRequest
createLocationRequest
createLocationResponse

Description This method updates a specific
location in the MSS database
based on the input data.

Input Structure LocationValue

Response Structure NetworkLocationKey

MetaSolv Solution
Path > Page

Table 47: updateLocationRequest

Description This method creates a new
location in the MSS data base
based on the input data.

Input Structure LocationValue

Response Structure NetworkLocationKey

MetaSolv Solution
Path > Page

Table 48: createLocationRequest
MetaSolv Solution XML API Integration Developer’s Reference 157

getAvailablePhysicalPortsRequest
getAvailablePhysiclaPortsRequest
getAvailablePhysicalPortsResponse

Additional Information
Note that this method is defined in a different control class than the rest of the methods defined
in this section. While the InventoryManagementAPI.xsd defines the structures for this method,
the InventoryManagement control class does not define the control. Rather, the control is
defined in the NetworkResourceManagement control class. The
NetworkResourceManagement will continue to grow in future releases, at which point a new
xsd will be created.

Description This method returns a sequence of
available physical ports based on
the input data.

Input Structure getAvailablePhysicalPortsRequest
ValueType

Response Structure PhysicalPort (sequence)

MetaSolv Solution
Path > Page

Table 49: getAvailablePhysicalPortsRequest
158 MetaSolv Software, Inc.

Service Order Activation API
Service Order Activation API
The Service Order Activation API is a collection of methods that provide the ability to activate
services, previously placed on orders, in the MetaSolv Solution database from an outside
source, without using the MetaSolv Solution GUI. The
XmlMetaSolvInventoryManagementAPI.xsd defines the following methods:

createSOAMessageRequest
createSOAMessageRequest
createSOAMessageResponse

getSoaTnsForOrderRequest
getSOATNsForOrderRequest
getSOATNsForOrderResponse

Description This method creates a SOA
message based on the input data.

Input Structure SOATransactionType, OrderKey

Response Structure SOATransactionKey

MetaSolv Solution
Path > Page

Table 50: createSOAMessageRequest

Description This method returns SOA
telephone numbers based on the
input order.

Input Structure OrderKey

Response Structure SOATelephoneNumberType
(sequence)

MetaSolv Solution
Path > Page

Table 51: getSoaTnsForOrderRequest
MetaSolv Solution XML API Integration Developer’s Reference 159

getSoaDefaultsRequest
getSOADefaultsRequest
getSOADefaultsResponse

getSoaInformationRequest
getSOAInformationRequest
getSOAInformationResponse

Description This method returns the SOA
defaults based on the input data.

Input Structure OrderKey,
SOATelephoneNumberType

Response Structure SOADefaultsType

MetaSolv Solution
Path > Page

Table 52: getSoaDefaultsRequest

Description This method returns SOA
information based on the input
data.

Input Structure OrderKey,
SOATelephoneNumberType

Response Structure SOAInformationType

MetaSolv Solution
Path > Page

Table 53: getSoaInformationRequest
160 MetaSolv Software, Inc.

Service Order Activation API
getSoaMessageToSendRequest
getSOAMessagesToSendRequest
getSOAMessagesToSendResponse

setTnSoaCompleteRequest
setTNSOACompleteRequest
setTNSOACompleteResponse

Description This method returns SOA
messages to send based on the
input data.

Input Structure OrderKey,
checkGatewayEventReactivated
(boolean)

Response Structure SOATransactionType (sequence)

MetaSolv Solution
Path > Page

Table 54: getSoaMessagesToSendRequest

Description This method sets SOA for the
telephone number to complete.

Input Structure OrderKey,
SOATelephoneNumberType

Response Structure successfulCompletion (boolean)

MetaSolv Solution
Path > Page

Table 55: setTnSoaCompleteRequest
MetaSolv Solution XML API Integration Developer’s Reference 161

162 MetaSolv Software, Inc.

	Contents
	About this guide
	Audience
	Additional information and help
	Oracle Support
	MetaSolv Solution documentation set
	Additional documentation resources

	Setting up
	Technical requirements and installation instructions
	About the development database
	Recommended deployment configurations
	JMS messaging requirements

	Integration Overview
	About the MetaSolv Integration and Portal Toolkit
	Controls
	WebLogic controls
	MetaSolv Solution controls

	MetaSolv Solution schema
	WebLogic Platform 8.1
	Basic integration steps
	Special characters

	Developing an integration application
	Planning the application
	Creating a new application in Workshop
	Adding the MetaSolv Solution controls to Workshop
	Creating data transformations
	Request transformation control
	Response transformation control

	Building the workflow
	Step 1: Creating the workflow process file
	Step 2. Adding controls to the Workshop Data Palette
	Step 3. Specifying how the request is invoked
	Step 4. Adding a group to the workflow
	Step 5. Adding the request transformation method
	Step 6. Adding the method to process the request
	Step 7. Adding the response transformation method
	Step 8. Setting up exception handling

	Testing the application in Workshop
	Creating a build

	Post Development Tasks
	Updating the production database
	Creating the SQL script
	Running the SQL script

	Setting up gateway events
	Creating a gateway event
	Configuring the gateway.ini file

	Troubleshooting
	Performance
	Setting up to precompile workflows

	Appendix A: XML API sample code
	Where to find the sample files
	Setting up the sample code
	Upgrading sample files
	Viewing the samples in Workshop
	Composite sample

	Appendix B: Control interfaces
	Appendix C: Navigating the XSD
	Example 1: importCustomerAccount
	Example 2: getCustomerAccountByKey
	Example 3: createEntityByValueRequest

	Appendix D: XML API methods
	Customer Management API
	importCustomerAccount
	getCustomerAccountByKey
	deleteCustomerRequest

	Order Management API
	queryOrderManagementRequest
	startOrderByKeyRequest
	updateOrderManagementRequest
	getOrderByKeyRequest
	createOrderByValueRequest
	assignProvisionPlanProcedureRequest
	getActivationDataByKeyRequest
	transferTaskRequest
	updateE911DataRequest
	getE911DataRequest
	updateEstimationCompletedDateRequest
	addTaskJeopardyRequest
	getTaskDetailRequest
	TaskJeopardyRequest
	getPSROrderByTN
	processSuppOrder
	getCNAMDataRequest
	getLidbDataRequest
	updateCNAMDataRequest
	updateLidbDataRequest
	reopenTaskRequest
	createAttachmentRequest
	createOrderRelationshipRequest
	processBillingTelephoneNumber

	Inventory Management API
	createEntityByValueRequest
	getServiceRequestDLRsValue
	getEntityByKeyRequest
	updateEntityByValueRequest
	queryInventoryManagementRequest
	updateTNRequest
	tnRecall
	tnValidationRequest
	auditTrailRecording
	getNetworkAreasByGeoAreaRequest
	getNetworkComponentsRequest
	getIpAddressesRequest
	createInventoryAssociationRequest
	createNewInventoryItemRequest
	queryNetworkLocation
	queryEndUserLocation
	getLocationRequest
	deleteLocationRequest
	updateLocationRequest
	createLocationRequest
	getAvailablePhysicalPortsRequest

	Service Order Activation API
	createSOAMessageRequest
	getSoaTnsForOrderRequest
	getSoaDefaultsRequest
	getSoaInformationRequest
	getSoaMessageToSendRequest
	setTnSoaCompleteRequest

