
Oracle® Insurance IStream
IStream Publisher Interface Reference Guide
Release 4.2
E14879-01

January 2009

Copyright
Copyright © 2009, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Andrew Brooke and Ken Weinberg
This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are “commercial computer software” or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure,
modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications which may create a risk of
personal injury. If you use this software in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous
applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.
This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 3

CONTENTS

Chapter 1 — Overview . 9

Document Conventions. 10

IStream Publisher . 11
Queues and Requests . 11

IStream Publisher Documentation . 13

Contacting Skywire Software for Help. 14
Contact Information . 14
Support Checklist . 14

Chapter 2 — Simple Services . 15

Parameters and XML Schema. 16
Distributor.xsd . 16
Validating Requests . 17

Referencing Files . 18
Delivering CLG Files through InfoSources. 19

JMS Message Header and Properties . 20
Request Metadata . 21

Detailed Response Parameters . 22

Content Service . 23
Generate Calligo Document Service Overview . 23
Using Referenced and Embedded XML Data . 24
Generate IStream Document XML Sample . 26

Rendering Services . 28
Rendering a Microsoft Word Document to HTML . 28
Rendering a Microsoft Word Document to PCL . 29
Rendering a Microsoft Word Document to PDF. 30
Rendering a Microsoft Word Document to PostScript . 32
Rendering Service XML Sample . 32
Rendering a Microsoft Word Document to TIFF . 32

4 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

CONTENTS

Rendering a Microsoft Word Document to TXT/RTF . 32
Rendering a PDF Document to PCL . 33
Rendering a PDF Document to PS . 33
Rendering a PDF Document to TIFF . 34
Rendering a TIFF Image to PCL . 34
Rendering a TIFF Image to PDF . 34
Rendering a TIFF Image to Postscript . 35
Rendering an IStream Document to Microsoft Word . 35

Delivery Service . 36
Delivering Content to a Repository . 36
Delivering Content to a Printer . 37
Delivering Content to an E-mail Server . 37
Delivering Content to a Fax Server . 39
Delivery Service Request XML Sample . 40

Utility Services . 41
Run Word Macro . 41
Concatenating PCL Streams . 41
Concatenating PDF Files . 42
Concatenating PS Streams . 43
Encrypting PDF Documents. 44
Deleting Files and Folders . 44

Aggregate Request . 47
Aggregate Request Processing . 47
Aggregate Request Limitations . 47

The Transform Service . 49
Sample Request. 49
General Considerations . 50
Postscript File with PJL Commands. 50

Chapter 3 — Distribution Service . 51

The Distribution Service . 52

The Distribution Request . 53
The Distribution Request Structure . 55
IStream Publisher Distribution Request Failure Policy. 56
Troubleshooting the Distribution Request . 57

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 5

CONTENTS

The Distribution Package . 59
The Distribution Item . 59

Recipients. 62
Recipient . 62
Recipient Package . 64

Delivery Channels . 67
Operating Modes . 67

Event Handlers. 70
Events . 70
Distribution Request Metadata. 74
Concatenating PCL Streams . 75
Concatenating PS Streams . 77

Calling the Transform Service . 79

A Distribution Request Example . 80

Chapter 4 — Tracking and Monitoring Requests 83

Request Messages. 84
Unique Request IDs . 84
Live Request Message Status . 84

The Request Log Table . 85
Request Table . 85
The Status Table . 86
The ErrorInfo Table . 87
The StatusOrder Table. 87

Resubmitting a Failed or Canceled Request. 88
Distribution Requests . 88
Mapping . 88

6 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

CONTENTS

Error Log Levels . 89

Chapter 5 — Creating and Using Cover Pages 91

Delivering Cover Pages to Fax and Printer . 92

Chapter 6 — SDK – The IStream Publisher Client API 95

The IStream Publisher Client API . 96

Client API Interfaces . 97
Distributor Factory . 97
Session . 99
The ResponseListener and ResponseExceptionListener Interfaces 100
Services . 100

IStream Publisher Client Exceptions . 103
Configuring the IStream Publisher Client API . 104
Configuration Files . 104
Configuration Implementation . 106
Notification of Request Completion . 108

Chapter 7 — SDK – Repository API . 109

The Repository API . 110

The API Architecture . 111
Categories of Functionality. 112

Reference Language . 113
Uniform Resource Identifiers . 113
Query . 115

The Connection Interface . 116
Connection Factory . 116
Creating a Connection . 117

The Repository Interface. 119

Repository Objects . 121
Object Metadata. 122
Versions . 123
Renditions . 124

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 7

CONTENTS

Identifiers . 125
URLStreamHandlerFactory . 125
URLStreamHandler . 126
URLConnection . 127
Content. 128

Adding a New Repository Adapter. 129
Java Code . 130
Service Request Example . 132

Chapter 8 — SDK – System Extensibility. 133

Creating and Adding a Simple Service . 134

Extending the Distribution Service . 137
Event Handlers. 137
Event Handlers in the Distribution Request . 138
Distribution Request with Event Handler Example. 145
Distribution State DAO. 151

Customizing a Request Log Message . 153
Customizing the Request Log Table . 153
Adding Custom Fields . 153
The Request Log Table . 153

Chapter 9 — SDK – Web Service Interface 155

The Web Services Interface . 156
About Web Service Applications . 156
IStream Publisher WSI Benefits. 156

IStream Publisher WSI Architecture . 157
General Information . 157
Overview of WSI Architecture . 157
Web Services Interface Methods . 158
Flows of IStream Publisher WSI Calls . 159
WSI WSDL. 164

Configuring the IStream Publisher WSI in the Console . 165
WSI Client Examples . 166

8 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

CONTENTS

Troubleshooting the IStream Publisher WSI. 167
IStream Publisher WSI Log files . 167

Appendix A — Reference Material – Samples 169

Sample Deliver-to-Email Request. 170

Sample Aggregate Request . 171
Sample Aggregate Request . 171

Header Page Template Example. 173

Interactive, Batch, and Embedded XML Data . 174
Interactive Mode. 174
Batch . 174
Embedded Data . 175

Appendix B — Glossary . 177

Appendix C — SDK - Encrypted Credentials. 185

Passing Credentials Securely. 186
The Java Cryptography Extension . 186

Encrypted Credentials. 187

Encrypted Data. 188
Encryption Method . 188
key-info Parameter. 188
Cipher-Data Parameter . 188

Security Keys . 189

Example of a Credentials Set . 190

Index . 191

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 9

Chapter 1
Overview

Welcome to the IStream Publisher Interface Reference Guide.

This guide helps developers and system integrators integrate IStream Publisher
into their systems.

This chapter describes:

• Document Conventions on page 10

• IStream Publisher on page 11

• IStream Publisher Documentation on page 13

• Contacting Skywire Software for Help on page 14

Note: For information about IStream Publisher’s architecture, see IStream Publisher
Architecture on page 15 in the IStream Publisher Administrator’s Reference
Guide.

OVERVIEW

10 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Document Conventions

Tips, Notes, Important Notes and Warnings

Tip: A Tip provides a better way to use the software.

Note: A Note contains special information and reminders.

Important: An Important note contains significant information about the use and
understanding of the software.

Warning: A Warning contains critical information that if ignored, may cause errors or result
in the loss of information.

Other Document Conventions
• Microsoft Window names, buttons, tabs and other screen elements are in

bold, for example: Click Next.

• paths, URLs and code samples are in the Courier font, for example:
C:\Windows

• values that you need to enter or specify are indicated in the italicized
Courier font, for example, server name

ISTREAM PUBLISHER

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 11

IStream Publisher

IStream Publisher is an enterprise document automation software solution that
complements core business systems for product development, sales and
marketing, administration and customer service.

IStream Publisher provides a set of integrated services that have been specifically
engineered to automate document-intensive business processes. It is used to
satisfy event-driven requests, such as new policy fulfillment requests, which
trigger a range of activities. These activities can include:

• automatically retrieving documents from multiple sources such as file
systems, the web, or IStream Document Manager

• assembling personalized, complex documents and document packages such
as policies, letters, contracts and booklets

• rendering them in multiple file formats including: DOC (Microsoft Word),
HTML, PDF, PCL, PS (Postscript), RTF, TIFF and TXT; AFP and XML
files can be rendered using the Transform service

• delivering them to multiple recipients through their preferred channels (print
and mail, fax, email, the web)

• saving them to a file system, FTP or IStream Document Manager

IStream Publisher is available in two editions: IStream Publisher and IStream
Publisher Express.

IStream Publisher Express provides a subset of the core Publisher functionality
and provides the ability to easily add advanced capabilities as business needs
dictate.

IStream Publisher is a J2EE application that uses JMS technology and an XML
request-based interface to automate the entire document issuance process from
content creation to delivery.IStream Publisher is a J2EE application that uses JMS
technology and an XML request-based interface to automate the entire document
issuance process from content creation to delivery.

Queues and Requests
You access all Publisher services through queues using either:

• IBM WebSphere MQ: IBM’s WebSphere messaging platform

• OpenJMS: an open-source messaging platform

The Service Requests are delivered to the various components using JMS text
messages (with the body in XML format).

This guide assumes that you have a basic understanding of:

• IBM WebSphere MQ or OpenJMS, including the basic messaging
functions, and how to set up and manage queues

• the JMS Message Service, including architecture and messaging

• XML, including an understanding of its structure and styles

OVERVIEW

12 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Note: Throughout the guide, there are references to Calligo, which is the previous name
for IStream Document Manager. Calligo documents are now called IStream
documents.

ISTREAM PUBLISHER DOCUMENTATION

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 13

IStream Publisher Documentation

IStream Publisher includes the following documents and online help files. If you
need a copy of any of these documents, please contact your system or product
administrator.

• The IStream Publisher Release Notes include general product information,
product enhancements and new features, supported platforms and third-
party software, assorted considerations, and known issues and limitations.

• The IStream Publisher Administrator’s Reference Guide helps system
administrators configure, control, and manage operations and requests.

• The IStream Publisher Interface Reference Guide allows you to integrate
IStream Publisher within your own systems. It includes the Software
Developers Kit (SDK), which allows you to extend IStream Publisher,
control its operation, and automate requests.

• The IStream Publisher Schema is a set of HTML files that describe the
structure of Publisher’s services and requests.

• The IStream Publisher Error Messages contains a list of error messages and
their causes.

OVERVIEW

14 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Contacting Skywire Software for Help

Customer Support hours are 8:00 A.M. to 8:00 P.M. (Eastern Time), Monday
through Friday. Outside of these hours, send us a detailed e-mail message and you
will be contacted during regular business hours. Please provide detailed
information, as described in the Support Checklist.

Contact Information

Support Checklist
When contacting Skywire Software Customer Support, please provide the
following information:

• Your name, company name, e-mail address, and phone number

• Version numbers of all your Skywire Software products

• Name and version of the network software

• Windows version, including any installed Service Packs

• Microsoft .NET Framework version

• DMS version, including any installed Service Packs (if applicable)

• Microsoft Word version (if applicable)

• Database vendor and version (if applicable)

• Error messages and the circumstances of their occurrence

• A full description of the problem:

• What happened? What were the sequence of events that preceded the
problem?

• In which screen or window did the problem occur?

• Was the problem the result of pressing a key?

• Did the screen freeze? What functions of the software are affected?

• How many people are affected?

Mail: Customer Support
Skywire Software
19 Allstate Parkway, Suite 400
Markham, Ontario, L3R 5A4

Phone: 1-905-513-7466

Fax: 1-905-513-1684

Email: directsupport@skywiresoftware.com

Web: www.skywiresoftware.com

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 15

Chapter 2
Simple Services

This chapter describes the IStream Publisher functional requests that are used to
process IStream Publisher services. It provides the information necessary for a
developer or system administrator to use IStream Publisher in a relatively simple
way to manage documents.

Aggregate Request on page 47 and Distribution Service on page 51 explain how to
produce the same final result, with less effort on the part of the user.

This chapter describes:

• Parameters and XML Schema on page 16

• Referencing Files on page 18

• JMS Message Header and Properties on page 20

• Detailed Response Parameters on page 22

• Content Service on page 23

• Rendering Services on page 28

• Delivery Service on page 36

• Utility Services on page 41

• Aggregate Request on page 47

• The Transform Service on page 49

SIMPLE SERVICES

16 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Parameters and XML Schema

XML Schema is used to construct and validate XML requests for IStream
Publisher.

The main parameters are listed for all services. For related parameters, see the
schema files, which are located in:
[IStream Publisher install folder]\dtd\

The Functional Request schema describes IStream Publisher’s Service Requests
and responses.

Important: The functional requests are always validated against the internal copy of the XML
schema. Any changes made to the schema located in the above folder does not
affect the validation of the functional requests.

The syntax for the administrative commands is defined in the DTDs. The syntax
for system requests is defined in the XML schema.

The following sections describe each DTD and their XML request elements. (You
can use an XML editor to access these main elements using the referenced DTDs
and schemas.)

Please note:
• For complete details of all requests and their parameters, refer to the IStream

Publisher Schema.

• Calligo documents are now called IStream documents.

Distributor.xsd
This schema describes all service requests and responses including how to
generate, render and deliver documents using a single or aggregate request.

You can validate requests against this schema to create Simple, Aggregate and
Distribution Requests.

Simple Service XML Request Elements

Content
<generate-calligo-document></generate-calligo-document>

Render
<render-CLG-to-Word></render-CLG-to-Word>
<render-PDF-to-PCL></render-PDF-to-PCL>
<render-PDF-to-PS></render-PDF-to-PS>
<render-PDF-to-TIFF></render-PDF-to-TIFF>
<render-TIFF-to-PCL></render-TIFF-to-PCL>
<render-TIFF-to-PS></render-TIFF-to-PS>
<render-TIFF-to-PDF></render-TIFF-to-PDF>
<render-Word-to-HTML></render-Word-to-HTML>
<render-Word-to-PCL></render-Word-to-PCL>

PARAMETERS AND XML SCHEMA

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 17

<render-Word-to-PDF></render-Word-to-PDF>
<render-Word-to-PS></render-Word-to-PS>
<render-Word-to-TIFF></render-Word-to-TIFF>
<render-Word-to-TXT></render-Word-to-TXT>
<transform-request></transform-request>

Delivery
<deliver-to-email></deliver-to-email>
<deliver-to-fax></deliver-to-fax>
<deliver-to-printer> </deliver-to-printer>
<deliver-to-repository></deliver-to-repository>

Utility
<concatenate-pcl-files></concatenate-pcl-files>
<concatenate-pdf></concatenate-pdf>
<concatenate-ps-files></concatenate-ps-files>
<delete-file></delete-file>
<encrypt-pdf></encrypt-pdf>
<run-Word-macro></run-Word-macro>

Aggregate Service XML Request Element
<request-aggregate></request-aggregate>

Distribution Service
<distribution-request></distribution-request>

Validating Requests
All functional requests are always validated against XML schema.

Validating requests helps minimize user errors. The XML Parser will provide
errors back to the client reducing the chance of failed requests.

SIMPLE SERVICES

18 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Referencing Files

Using IStream Publisher, you reference files using a variety of different protocols.
Note the following information when referencing files in IStream Publisher:

1. When references to files are passed as arguments to a service invocation,
they are expressed in the form of a UISR, an FTP or a File URL.

• a UISR is used to access a source file if the source file is a model
document (.cms) or generated document (.clg)

• an FTP URL is used to access a source file if the file is on an FTP server

• a File URL is used to access a source file in a File System
2. The following methods can be used to refer to files:

• FTP URL – the file must reside on the FTP server (Windows, Unix)

• File URL – the file must reside on the file system (Windows, Unix)

• UISR – the file must reside on a Windows File System or in an IStream
DMS

• URL – the file must reside in a IStream DMS. The syntax for the URL
is:
calligo://user name:password@database name;server
name:port/path

3. If you are accessing databases for content generation, you can use the
following:

• ODBC InfoSources: see InfoSource on page 179

• XML InfoSources

• a UNC path to the XML file containing the data for generation

• a URL to the XML file containing the data for generation
4. When using the Repository API to access file(s) at specified FTP or File

URLs, a Repository Adapter for the specific repository must be available on
the Worker Machine where the service runs.

5. Some services that reference files using UISRs use InfoSources. The
InfoSources referenced by the UISRs passed with the service invocation
must exist and can be configured as either local or remote.

6. Examples of file reference syntax that is supported by all aspects of IStream
Publisher:

• Local drives:
file:///C:/rest_of_file_reference

Make sure that all the slashes are forward slashes. Also remember to include
the third slash, as in “///”. Do not use:
• file:C:\

• file://C:/

REFERENCING FILES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 19

Important: Mapped drives are not supported by IStream Publisher. Please use UNC paths
instead.

• Network UNC shares:
file://server/share/

Make sure that all the slashes are forward slashes. Also remember to include
the second slash, as in “//”. Do not use:
• file://\\server\share

• file:///server/share

• FTP:
ftp://server/dir/

Note: Please refer to your IStream Document Manager documentation for more
information about UISRs.
The Repository Adapters available are the FTP Server Repository Adapter, the
File System Repository Adapter and the DMS Repository Adapter.
7. Element credentials may be defined in multiple places. Credentials also may

be defined in the URL itself. If credentials are defined both in the URL and
in the credentials element, then credentials defined in the element take
precedence (unless empty strings are defined there, in which case non-
empty credentials from the URL if any exist will be taken). These points are
described in more detail in Using Referenced and Embedded XML Data on
page 24.

Delivering CLG Files through InfoSources
The following table shows how InfoSources are used to deliver specified source
content (CLG’s) to a File System or DMS.

InfoSource
Types Example Description

FileSystem
(local)

UISR="[FileSystem InfoSource]:document.clg"

FileSystem_INFOSOURCE =
C:\PublisherFS\[Destination folder]\

For delivering the CLG to the
specified location through the
FileSystem InfoSource

CalligoDMS
(remote)
-or-
IStreamDM
(remote)
See description
for use.

UISR="DMS_INFOSOURCE:document.clg"

DMS_INFOSOURCE =

[server]://
Admin:livelink@calligo;[server]:2099/test/
[Destination folder]/

For delivering the CLG to the
specified location through the
IStream DMS InfoSource
Note:
• CalligoDMS is the type

used in Calligo 5.x.
• IStreamDM is the type

used in IStream Document
Manager 6.x.

SIMPLE SERVICES

20 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

JMS Message Header and Properties

JMS header and property fields can be used to route messages or to carry user-
specific metadata.

The following table represents the fields in the request header that have prescribed
names. They are copied as request metadata into the request status update
message, along with other custom metadata:

Parameter Description

JMSType The type of request – Request.JMSType

JMSMessageID A string ID that uniquely identifies the message in the systems (set
automatically by the Queue Provider).

JMSCorrelationID Used only for response messages. Contains the ID of the request to which the
response message is linked.

JMSReplyTo A destination-object (JMS) indicating the queue where the response to the
message should be submitted. If null, no response is required.
The queue specified in the JMSReplyTo field must reside on the same IBM
WebSphere MQ Queue Manager or OpenJMS Server as the queue used to
submit the request.

JMSPriority Specifies the priority of the message (a number from 0 to 9 with 0 being the
lowest priority and 9 the highest). When not specified, the default value
assumed is 4.

InternalRequest-
ID

This value is assigned after successful submission.

RequestID This value is assigned by the Requestor (client).

AggregateID This ID is provided by the client and inherited by all subrequests.

ParentID This value is assigned by the Requestor when a request is resubmitted.

OriginalRequest-
ID

This ID is provided by IStream Publisher for resubmitted requests.

RequestType The Request Type of the original Request.

LogLevel The level of logging that is performed by the system, ranging from 0 to 6.
The default is “4”.

JMS MESSAGE HEADER AND PROPERTIES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 21

Request Metadata
The request metadata representing the information varies from deployment to
deployment, and consists of request header fields. IStream Publisher components
store the information about requests in the Request Log database.

The Request Log configuration maps Custom Request metadata fields to the
Request Log table fields. If a mapping does not exist for one of the custom
metadata fields, that field is not stored in the Request Log table.

The request metadata can be used when performing request searches. It can also
be referred to in the selector parameter of the FindRequest administrative
command.

DeferralTime fixed time – Dmm/dd/yyyy or Thh:mm, where:
• D – mandatory letter for fixed date
• mm/dd/yyyy – date format;
• T – mandatory letter for fixed time;
• hh:mm – time format, where hh is in 24 hours format;
• D/05 – a request should be processed on 5th day of current month, year
• D1//2003- a request should be processed on January 2003.
• D01/02/2002 – a request should be processed on 2nd January, 2002;
• D/15/ – a request should be processed on 15th day of current month, year
• D//2003- a request should be processed in 2003 year.
timer – +Dmm/dd or Thh:mm, where:
• D – mandatory letter for date parameters in timer
• mm/dd- number of months, days;
• T – mandatory letter for time parameters;
• hh:mm – time format, where hh is in 24 hours format;
• +D/05 – a request should be processed in 5 calendar days
• +D01/- a request should be processed in 1 month.
• +D01/02 – a request should be processed in 1 month and 2 calendar days.

ExpirationTime fixed time – Dmm/dd/yyyy or Thh:mm, where:
• D – mandatory letter for fixed date
• mm/dd/yyyy – date format;
• T – mandatory letter for fixed time;
• hh:mm – time format, where hh is in 24 hours format;
timer – date/time – +Dmm/dd or Thh:mm, where:
• D – mandatory letter for date parameters in timer
• mm/dd- number of months, days;
• T – mandatory letter for time parameters;
• hh:mm – time format, where hh is in 24 hours format;

Parameter Description

SIMPLE SERVICES

22 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Detailed Response Parameters

For simple requests, a response is returned when the request is run. A successful
completion response simply echoes the destination URL. A failure response will
contain one or more of the following items:

• an error ID

• an English text message explaining the reason for the failure

• an XML fragment with extended error information

CONTENT SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 23

Content Service

Documents can be generated using IStream Publisher with the Generate IStream
Document service, a subset of the Content service. The Generate IStream
Document service can produce both (.clg) and Microsoft Word documents (.doc).

The Content Service provides access to content generated by the Assembly
Service.

Important: You can use InfoSources to access the content only if:

• The InfoSource exists and is configured on the Worker machine running the
service.

• The source or target file is an IStream document (.clg), model document
(.cms), or model section (.cds).

Generate Calligo Document Service Overview
Use the Generate Calligo Document Service to generate an IStream or a Microsoft
Word document based on a model document.

Note: Calligo is the former name for IStream Document Manager. Therefore, Calligo
documents are now called IStream documents.

IStream InfoSources are specific to the IStream Assembly Engine and are used to
reference generated IStream documents or model documents. InfoSources are
COM (see page 178) objects and are, therefore, platform dependent (WI32).

A Generate Calligo Document Service request can produce both an IStream
document (.clg) and/or a Microsoft Word document (.doc). The document that is
produced is determined by the destination parameters in the Generate Calligo
Document Requests parameters table.

Important: At least one destination parameter must be specified, otherwise the document will
not be produced.

IStream XML InfoSource
When generating documents using the IStream XML InfoSource (formerly called
the Calligo Extreme XML Infosource), data for generation can be:

• passed by key data: one or more local or UNC paths to the XML data files
containing the generation data can be passed as key data

• embedded in the request.

• referenced by a URL to a XML data file

The key-data tag represents definitions for key data elements that the model
document expects. The parameters are used to let the document generation service
know what information to put into the key data and in what format.

In case the Service Request fails, the body of the original request as well as the
error details can be found in the Request Log.

SIMPLE SERVICES

24 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

A Generation Log produced by the Assembly Engine is provided whether the
request completes successfully or not.

Important: The Generate IStream document service uses the Repository API to store the
Word rendition of the generated document.

Using Referenced and Embedded XML Data

Note: The elements <xml-data> and <xml-data-def> are available in E-Delivery 2.1 (E-
Delivery is the former product name of IStream Publisher), and are supported in
this version for backward compatibility. New applications should use the new
<generation-data> element.

Sample XML Fragments
Here are some XML fragments followed by an explanation of some of the tags
used.

These XML fragments are two examples of generation data embedded in the
generate IStream document Requests:

Example 1
<generation-data name="xml_file_name">
<job-data><?xml version="1.0"?>
 … embedded XML data fragment …
</job-data>
</generation-data>

Example 2
<generation-data name="xml_file_name">
<source url="ftp://host1/data/QPolicy.xml"/>
</generation-data>

As you can see, in example 1 the data is embedded and in example 2 it is
referenced. The tags <source> and <job-data> are mutually exclusive.

Using Referenced XML Data
When using referenced data, you must use case sensitive XML data. Your XML
InfoSource (used in your model document) must be marked as case sensitive in
the InfoSource Administrator, and all data tags in the XML file and model must be
the same, consistent case.

Note: All SQL query statements must be uppercase.

When using Batch Referenced data, you must ensure that the Query statement in
the model document uses the following format:
QUERY "FILE=" + xml_file_name, "XMLInfoSource"

or
QUERY "FILE=" + xml_file_name + ";JobID=" + JobID ,
"XMLInfoSource"

CONTENT SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 25

where xml_file_name is the value specified in attribute "name" in the
generation-data element.

Important: Do not use Batch data where the query is only the ID.

Code Samples
The following examples use Interactively Referenced, Embedded, and Batch
Referenced XML.

Batch XML as the URL Reference
The JobID is the ID in the XML file.
<generate-calligo-document>
 <calligo-source UISR="modelIS:doc.cms" docType="cms">
 <credentials user="test" password="password"/>
 </calligo-source>

 <destination url="ftp://server/folder/document.doc"/>

 <key-data name="JobID" value="12345678" type="string"/>

 <generation-data name="keydataname">
 <source url="ftp://server/folder/xmldatafile.xml"/>
 </generation-data>
</generate-calligo-document>

Embedded XML
<generate-calligo-document>
 <calligo-source UISR="modelIS:doc.cms" docType="cms">
 <credentials user="test" password="password"/>
 </calligo-source>

 <destination url="ftp://server/folder/document.doc"/>
 <generation-data name="keydataname">

 <job-data><?xml version="1.0"?>
 <interactive>
 <PolicyNumber type="double">12345678
 </PolicyNumber>
 <EffectiveDate type="date">01/01
 /2002
 </EffectiveDate>
 <CompanyCode type="string">ABCT01
 </CompanyCode>
 <DataArray>
 <Id type="array">
 <row type="string">111</row>
 <row type="string">222</row>
 <row type="string">333</row>

SIMPLE SERVICES

26 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

 <row type="string">444</row>
 <row type="string">555</row>
 <row type="string">666</row>
 </Id>
 </DataArray>
 </interactive>
 </plain-data>
 </generation-data>
</generate-calligo-document>

Embedded XML with Plain Data
<generate-calligo-document>
 <calligo-source UISR="modelIS:doc.cms" docType="cms">
 <credentials user="test" password="password"/>
 </calligo-source>

 <destination url="ftp://server/folder/document.doc"/>

 <generation-data name="keydataname">
 <plain-data>
 <interactive>
 <PolicyNumber type="double">12345678</PolicyNumber>
 <EffectiveDate type="date">01/01/2002
 </EffectiveDate>
 <CompanyCode type="string">ABCT01</CompanyCode>
 <DataArray>
 <Id type="array">
 <row type="string">111</row>
 <row type="string">222</row>
 <row type="string">333</row>
 <row type="string">444</row>
 <row type="string">555</row>
 <row type="string">666</row>
 </Id>
 </DataArray>
 </interactive>
 </plain-data>
 </generation-data>
</generate-calligo-document>

Generate IStream Document XML Sample
The following code is an example of a Content Service Request that generates an
IStream document.
<?xml version="1.0" encoding="UTF-8"?>
 <generate-calligo-document>
 <calligo-source UISR="ABC:Test_Letter.CMS"/>

 <destination url="ftp://abcserve/Test_Letter.clg"/>
 <calligo-destination
 UISR="Demo_Dest:contentCMS2CLG/Test_Letter.clg"/>

CONTENT SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 27

 <key-data
 name="$Policy"
 value="test_letter"
 type="string" />
 </generate-calligo-document>

SIMPLE SERVICES

28 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Rendering Services

After content has been extracted, the next step is to transform the content from its
current format into a different format.

The Rendering Service is a group of services that transform content from its
current format into a different format. Each service invocation renders from one
source format into one destination format (for example, from Microsoft Word to
PDF). Typically, a render request specifies the location (URL) of the source
content and the location (URL) where the result of the render operation should be
placed.

In addition to the source and destination, other arguments are specific to each
particular rendering service. For example, rendering to PCL will include
parameters specific to a print job such as duplex mode or page range. It is
therefore important to have this type of information before you create your
Rendering Service request.

Important: If a Page Range parameter is wrong, referring to pages that do not exist, an error is
produced and the rendering request fails.

Updating a Table of Contents in Word

To update a table of contents in a Word document
Before rendering, printing or distributing the document, use the following
standard Word macros in the simple rendering request or in the Distribution Item
of the Distribution Request:
<word-options updateToc="true"/>

Rendering a Microsoft Word Document to HTML
This service transforms a Microsoft Word document into Hyper Text Markup
Language (HTML, version 4.0) format page.

It uses Microsoft Word’s application automation, which makes it Win32-platform
dependent.

It also uses the Repository API to access all the files specified as parameters to the
request.

Related Files
When a document is rendered into an HTML page, all graphics and objects are
saved in GIF (.gif), JPEG (.jpg) or PNG (.png) format so that they can be viewed
in a Web browser. These graphics and objects include:

• pictures

• AutoShapes

• WordArt

• text boxes

RENDERING SERVICES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 29

• callouts

• Equation Editor objects

• Organization Chart objects

• Graph objects

Graphics Files
When you render Word-to-HTML and the destination is FS (File System) or FTP,
an HTML file and a folder are created. This folder contains all the related
graphics.

Graphics might include bullets, backgrounds, and horizontal lines for each
document. This folder (or subfolder) is always given the name of the associated
HTML page, followed by the word files. For example, if the name of the
HTML page is letter.htm, the graphics for that Web page are in a folder called
letter_files or letter.files. The subfolder also contains a file called
filelist.xml where all the graphics are listed.

If you move an HTML page to another location, all the related graphics must be
moved, otherwise the hyperlinks might not work, and the graphics might not
appear on the HTML page.

Important: When you render Word-to-HTML and the destination is DMS, only the HTML
file is saved, and not the folder and its images.

Rendering from Word to HTML has some document layout limitations. Because
Word provides formatting options that most Web browsers do not support, some
text and graphics may look different when you view them on a Web page.

Note: Please note the following information:

• graphics with certain kinds of text wrapping will change position when you
save your document as a Web page

• cross-referencing in a Word document cannot be translated to HTML

• hyperlinks inside an embedded OLE object (such as Microsoft Excel)
cannot be converted to HTML

The render-Word-to-HTML request renders a Microsoft Word document into an
HTML format.

Rendering a Microsoft Word Document to PCL
The render-Word-to-PCL request produces a PCL (Printer Control Language)
representation of a Microsoft Word document. When the PCL stream is sent to a
printer, it produces a hard copy of the document.

Keep in mind when rendering Microsoft Word documents to PCL that because
this rendering service uses Microsoft Word’s application automation, which is
only available on the Win32 platform, this service is limited to that platform.

SIMPLE SERVICES

30 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Rendering a Microsoft Word Document to PDF
This service produces a Portable Document Format (PDF) document from a
Microsoft Word document. The PDF files can be viewed on multiple platforms
using the appropriate reader for that platform.

For this service, you can select to use the Amyuni PDF printer driver or Microsoft
Word 2007 as the rendering application.

Using Microsoft Word 2007 as the Rendering Application
If you select Microsoft Word 2007 as the rendering application, note that:

• Microsoft Word 2007 must be installed

• you need to download and install the Microsoft Save As PDF add-in for
Microsoft Office 2007

• the PDF will always include hyperlinks

• page ranges are not supported

To enable bookmarks or embedded fonts in the PDF, complete the following
procedures in Microsoft Word 2007

Method: Enable bookmarks in the PDF

1. In Microsoft Word 2007, click , Save As > PDF > Options.
2. Select Create bookmarks using:
3. Select Headings or Word bookmarks, depending on which you have used

to define your bookmarks.

Note: Only standard Microsoft Word heading styles (Heading1, Heading 2, Heading 3,
and so on) from CMS files that have been converted to Word 2007 and configured
in IStream Author as PDF bookmark styles will appear as corresponding
bookmarks in the resulting PDF.

Non-heading Word styles, for example, List or Note, that have been configured in
Author as PDF bookmark styles will not appear as PDF bookmarks. However, if
you use the Amyuni PDF printer as the rendering application, then all of the
selected styles will appear as PDF bookmarks.

Method: Embedding fonts in the PDF

1. In Microsoft Word 2007, click , Save As > PDF > Options.
2. Select ISO 19005-1 compliant (PDF/A).

The PDF will be created using the PDF/A standard. This standard ensures
that all the fonts will be embedded in the PDF.

RENDERING SERVICES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 31

Note: The PDF/A standard has certain limitations. For more information, see
www.pdfa.org.

SIMPLE SERVICES

32 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Rendering a Microsoft Word Document to PostScript
This service renders a Word document to a PS stream which, when sent to the
printer, creates a printed copy of the document. It uses Word’s application
automation and PostScript drivers, which makes it Win32-platform dependent.

Rendering Service XML Sample
<?xml version="1.0" encoding="UTF-8"?>
<render-Word-to-PCL>
<source url="ftp://abcserve/demo/source/doc/ABC_LTC.doc"/>
<destination
url="ftp://abcserve/demo/destination/renderDOC2PCL/
LTC.prn"/>

<output-name>HPLJ8000</output-name>
<printer-configuration
copies="1"
pageRange="1-3"
duplex="none"
collate="off"/>

</render-Word-to-PCL>

Rendering a Microsoft Word Document to TIFF
The render-Word-to-TIFF request renders a Microsoft Word document into a
TIFF image.

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

This service produces a TIFF (Tagged Image File Format) rendering of a
Microsoft Word document.

Note the following information when rendering Microsoft Word to TIFF:

• because this service uses Microsoft Word’s application automation, it is
Win32-platform dependent

• this service uses the Amyuni PDF Converter printer driver for rendering

• this service supports the CCITT group 4 compression, and multi-page image
TIFF features

Rendering a Microsoft Word Document to TXT/RTF
The render-Word-to-TXT request renders a Microsoft Word document into a TXT
or RTF file.

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

This service produces a TXT/RTF rendering of a Microsoft Word document.

RENDERING SERVICES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 33

Note the following information about this service:

• this service uses Microsoft Word’s automation feature making it Win32-
platform dependent

• you need to specify text/plain or application/rtf as the content
type in order to perform a corresponding TXT or RTF rendering of the
Microsoft Word document

Rendering a PDF Document to PCL
The render-PDF-to-PCL request renders a PDF document into a PCL stream.

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

This service produces a PCL (Printer Control Language) representation of a PDF
(Portable Document Format) electronic document.

The Render PDF to PCL Service is Win32-platform dependent.

This request effectively creates a stream, which when sent to a printer will
produce a hardcopy of the PDF document. Because rendering depends on the
actual printer that is used to produce the printout, the request must include
parameters specific to the printer (such as the number of copies and pages).

Note: This service supports only unprotected PDF documents. Please ensure that the
documents specified in the source are not protected.

Rendering a PDF Document to PS
The render-PDF-to-PS request renders a PDF document into a PS stream.

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

This service produces a PS (Postscript) representation of a PDF (Portable
Document Format) electronic document. The Render PDF to PS Service is
Win32-platform dependent.

Note: This service supports only unprotected PDF documents. Please ensure that the
documents specified in the source are not protected.

SIMPLE SERVICES

34 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Rendering a PDF Document to TIFF
The render-PDF-to-TIFF request renders a PDF document to TIFF.

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

This service produces a TIFF (Tagged Image File Format) rendering of a PDF
(Portable Document Format) electronic document. It supports Group-3 and
Group-4 TIFF compression formats.

Note: This service supports only unprotected PDF documents. Please ensure that the
documents specified in the source are not protected.

This service is Win32-platform dependent.

Rendering a TIFF Image to PCL
The render-TIFF-to-PCL request renders a TIFF image into a PCL stream which
when sent to a printer produces a hard copy of the image.

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

This service produces a PCL (Printer Control Language) representation of a TIFF
(Tagged Image File Format) image.

It uses a third party imaging product called Snowbound™. Since Snowbound is a
pure Java implementation, this service is platform independent and is supported
on any Java platform.

Rendering a TIFF Image to PDF
The render-TIFF-to-PDF request renders a TIFF image into a PDF document.

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

This service produces a PDF (Portable Document Format) rendering of a TIFF
file.

RENDERING SERVICES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 35

Rendering a TIFF Image to Postscript
The render-TIFF-to-PS request renders a TIFF image into a PS stream which,
when sent to a printer, produces a hard copy of the image.

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

This service produces a PS (PostScript) representation of a TIFF (Tagged Image
File Format) image. It supports Group-3 and Group-4 TIFF compression formats.

Rendering an IStream Document to Microsoft Word
IStream documents are compound documents that contain a Microsoft Word
document among other things such as persistent variables and customizations.
The render-CLG-to-Word service extracts the Microsoft Word document from an
IStream document.

Because the service uses the Assembly Engine, which is only available on the
Win32 platform, the service itself is limited to this platform.

SIMPLE SERVICES

36 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Delivery Service

Once the content has been extracted and rendered (if applicable), the final step in
the distribution process is to deliver the content to the recipients. The following
methods are available to deliver content:

• Repository: includes DMS, file system and FTP repositories

• Printer

• E-mail

• Fax

A request for delivery will typically specify the location of the content to be
delivered. This content can be a specific file in any of the supported formats. See
Content Service on page 23. The other parameters are specific to the actual
channel used for delivery.

Delivering Content to a Repository
The Delivery Service uses the Repository API to deliver the source content
documents (DOC, HTML, PDF, PCL, PS, RTF, TIFF, and TXT files) to the
destination Repository Adapters.

Examples Using the Destination Element
<destination url="file:///C:/PublisherFS/Destination/letter.doc"/>

<destination url="calligo://user_name:password@Livelink;SERVERNAME:2099/
TEST/Destination/letter.doc"/>

Note: The above URLs are used to deliver specified source content to the destination.
You cannot use these URLs to produce a CLG file.

Other adapters may be provided in the future, or custom adapters can be built
based on the Repository API specification.

The Repository API will allow a delivery service to deliver content to different
types of repositories as long as a Repository Adapter exists for that repository.

If the destination repository supports versions, and the source documents already
exist, they are added as new versions. If an existing document cannot be reserved,
so that the new version can be added, the operation will fail. All reserve
operations are performed using the credentials supplied as parameters.

The deliver-to-repository request stores a document into a repository.

DELIVERY SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 37

Delivering Content to a Printer
The deliver-to-printer request delivers an individual file to a printer. Note the
following information when implementing this service:

• The printer must be a logical device (print server or spooler). This service
only ensures that the spooler has accepted the content.

• Currently, the service uses native Windows APIs to submit print jobs to the
print spooler and is therefore limited to the Win32 platform.

• The content delivered can be any file depending on the printer’s capabilities.

• You can specify the name of the file to be sent to the printer.

Note: The request may fail because of a “physical” issue. Examples of physical issues
include if the printer is unavailable, if it is offline, if the user lacks proper security
permissions to use the printer, and others.

Delivering Content to an E-mail Server

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

The deliver-to-email request delivers content to an SMTP e-mail server as multi-
part MIME messages. Note the following information when implementing this
service:

• The content consists of one message body and zero or more attachments.
Both the content making up the body of the message and the attachments
can be either ASCII text or binary. The message body may also be
embedded and may also be HTML.

Please note that:
• Binary content is base64 encoded

• ASCII text is 7bit encoded

• The service only delivers the e-mail (multi-part MIME message) to the
SMTP e-mail server. It does not wait for the e-mail to be delivered to the
actual recipient(s) or to get delivery confirmation.

• This service is a pure Java implementation that uses the JavaMail API.
Therefore, it is platform independent and can be used on any platform that
supports Java.

• The Worker machine on which the service is deployed must be configured
with the name of SMTP e-mail server.

The following items are attributes of the deliver-to-email request

• Subject – The subject line of the e-mail.

• Priority – The priority of the message (High, Normal, or Low). This field is
optional and if not specified, Normal priority is assumed.

SIMPLE SERVICES

38 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Note: To see some sample “deliver-to-email” code, please see Sample Deliver-to-Email
Request on page 170.

DELIVERY SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 39

Delivering Content to a Fax Server

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

The deliver-to-fax request delivers TIFF (raster) content to the RightFax server
from an SMTP e-mail server. The RightFax server automatically picks up e-mail
messages addressed to it from the SMTP server.

Note the following information when implementing this service:

• The content can consist of one or many attachments.

• The service only delivers the e-mail (multipart MIME) message to the
SMTP e-mail server. It does not wait for the e-mail to be delivered either to
RightFax, or to the actual recipient(s).

• The service gets delivery confirmation from the SMTP e-mail server.

• The Worker machine on which the service is deployed must be configured
with the name of the SMTP e-mail server.

• The delivery service invocation includes the URLs of the contents to be
delivered and their MIME type.

• Embedded codes are special faxing instructions that can be passed through a
request and inserted by the Service Manager directly into a fax-bound e-mail
message body.

• Embedded codes can be used to specify:

• A time to send the fax,

• A time to delete the fax from the FaxUtil mailbox after it has been
successfully sent, and

• Other additional instructions.

• IStream Publisher supports embedded codes that are also supported by
RightFax. The embedded codes must be specified in the Service Manager's
configuration file.

Note: IStream Publisher allows you to deliver any file formats supported by RightFax.
However, IStream Publisher does not guarantee the target layout if rendering has
been done by RightFax.

SIMPLE SERVICES

40 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Delivery Service Request XML Sample
The following code is an example of a Deliver to e-mail request:
<?xml version="1.0" encoding="UTF-8"?>
<deliver-to-email
 subject="rd0026_0034"
priority="normal">
<body-source>

Body Source Information
 <source
 url="ftp://anonymous:user@abcserve/source/e-mailmessage/e-
mail.txt"/>
</body-source>
<sender
 name="1st submitter"
 emailAddress="submitter1@abc.com" />
 <receiver
 name="1st Receiver"
 emailAddress="receiver1@abc.com
 type="to" />
 <receiver
 name="1st CC"
 emailAddress="CC1@abc.com
 type="cc" />
 <receiver
 name="1st BCC"
 emailAddress="bcc1@abc.com
 type="bcc" />
 <attachment>

Attachment Information
 <source
url="ftp://anonymous:user@abcserve/source/docs/sdoc.doc" />
 </attachment>
 </deliver-to-email>

UTILITY SERVICES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 41

Utility Services

IStream Publisher provides several Simple Services. Typically these services run
after the rest of a request has successfully completed. These services are:

• Run Word Macro on page 41

• Concatenating PCL Streams on page 41

• Concatenating PDF Files on page 42

• Concatenating PS Streams on page 43

• Encrypting PDF Documents on page 44

• Deleting Files and Folders on page 44

Run Word Macro
The run-Word-macro service runs a macro on a Word document or CLG file
and saves the resulting file.

The run-Word-macro-response contains the URL of the resulting file, plus
the return status of the request and errorDetails if the request failed.

As indicated in this table, the source and destination parameters are for Word
files only, and the clg-source parameter is for CLG files only. If you use a clg-
source, the macro is applied to the Word document inside the CLG and then saved
back to the same CLG location.

Concatenating PCL Streams

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

Some documents need to be printed as a single job to avoid pages from other
documents being intermixed. This service provides the ability to concatenate the
PCL streams for these documents in the correct order.

Alternatively, the service concatenates PCL streams to some specified number, N,
of approximately equal-size PCL stream segments for delivery to a print server
with load balancing across multiple (N) printers. The order of the concatenated
documents remains unchanged.

The Number of streams is specified in the request. The default number of streams
is "1".

Streams Header Page
Each subgroup must have an appropriate header page defined so that, after
delivery to a print server with load balancing across multiple (N) printers, a
person can reassemble the documents back into the correct sequence for delivery.

The Header Page can be composed using a Header Page Template. The template
contains some special placeholders.

SIMPLE SERVICES

42 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The service uses this template and substitutes the placeholders with actual values
provided with the request. The place where content must be substituted, is marked
by “{<name>}” – where <name> is the name of the value to be used.

If a name provided in the request does not match a placeholder in the template, the
Header Page will not include the information.

Template URL
The URL to the template should be specified in a config file for the service. If
there is no template associated with a Header Page, then a Header Page as plain
text will be composed “on the fly” and every field will be printed in a separate
row, left-aligned.

The template can be in plain text or in PCL format. You can create fancy Header
Page templates with placeholders using Microsoft Word and Render to PCL
format. See Header Page Template Example on page 173.

Optional Parameters
The following parameters can optionally be provided for a Header Page:

• paper size

• paper orientation

• tray/paper source

Each header page will be concatenated, with the appropriate PCL segment on top.

Duplexing Options
In the concatenation process, the duplexing of the pages can either be continuous
(meaning that the next concatenated stream can start either on an even or an odd
page) or, it can break at odd-numbered pages. If the Print Instruction parameter for
duplexing is not specified in the request, the service will assume a break at odd-
numbered pages.

Concatenating PDF Files
Some documents need to be printed as a single job to avoid pages from other
documents being mixed in with them. This service provides the ability to
concatenate the PDF documents in the correct order. This service is supported on
any Java platform.

Please note:
• This service supports only unprotected PDF documents. Please ensure that

the documents specified in the source are not protected.

• A standard concatenation event handler requires the absolute-path
element within the preference-repository specified and cannot
include a destination element.

UTILITY SERVICES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 43

Concatenating PS Streams

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

PS Concatenation Methods
IStream Publisher provides PS Concatenation in two ways, as a Utility Service
and as an Event Handler in a Distribution Request. In both cases, two or more
source PS streams are concatenated in a certain order into one or more destination
PS streams. The actual printing of the destination PS streams can then be sent as
one or more print jobs to one or multiple printers.

Each destination PS stream is printed as a single print job to one printer. PS
Concatenation is useful in eliminating the possibility of other documents being
mixed in with a set of documents intended to be printed as one package. It is also
useful for printing a large package of documents with load balancing across
multiple printers.

Note: PS concatenation in the event handler may not be continuous depending on which
rendering printer or physical printer is used. You will need to confirm the behavior
with your selected printer driver and printer.

PS Concatenation Variations
IStream Publisher supports these variations of PS Concatenation:

• where two or more source PS streams are concatenated into one destination
PS stream

• where two or more source PS streams are concatenated into a given number
of destination PS streams with a designation on which source PS stream
should go to which destination PS stream

• where two or more source PS streams are concatenated into a given number
of destination PS streams of approximately equal size to achieve load
balancing across multiple printers

Header Pages and Templates
When concatenating to produce destination PS streams of approximately equal
size, a Header Page can optionally be printed at the beginning of each destination
PS stream to assist in reassembling the streams printed across multiple printers
back into the correct sequence. A template may be used for the generation of the
Header Page. The template must contain placeholders, corresponding to field
entries specified in the request, where actual values of information relating to that
PS stream can be substituted. The template must be in PS format.

The URL to the Header Page Template must be specified in the configuration
properties for PS Concatenation. If no template is specified, the Header Page will
be composed as plain text on the fly, with each of the field entries specified in the
request printed on a separate row aligned to the left.

SIMPLE SERVICES

44 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Encrypting PDF Documents

Note: You must have the appropriate Publisher license to run this service. Please check
your software license or contact Customer Support to determine if you are
licensed to run this service.

This service protects and encrypts PDF documents according to specified
parameters. This service is supported on any Java platform.

Note: This service supports only unprotected PDF documents. Please ensure that the
documents specified in the source are not protected.

Specifying Encryption Flags
If an encrypt-pdf request does not specify encryption flags explicitly, IStream
Publisher assigns the highest level of security to the document’s properties, and
generates and assigns a unique encrypted master password to the document
automatically so that its security level cannot be changed.

If the document’s security settings need to be modified, the request must explicitly
assign a master password to the document in the request which can then be used to
change the security settings.

Deleting Files and Folders
You can use the Delete Files simple service to delete files and folders.

Source Parameter
The source parameter is the URL of the files or folders that you want to delete.

When you specify a source, IStream Publisher tries to delete the folder and its
contents. In File System and IStream DM type-repositories, the contents of the
folder are deleted regardless of whether the folder is empty. In an FTP repository,
a folder that is not empty cannot be deleted.

Example: Deleting a folder from an IStream DM Repository
In this example, the documents folder and its contents are deleted:
<delete-file>

 <source url="calligo://admin:password@livelink;

 dmsserver:2099/documents"/>

</delete-file>

Example: Deleting a folder from an FTP Repository
In this example, the documents folder and its contents are not deleted if
documents folder contains files or folders:
<delete-file>

 <source url="ftp://ftpserver/documents"/>

</delete-file>

UTILITY SERVICES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 45

Folder Sources
When you specify a <folder-source>, the contents of the folder will be deleted
recursively, but not the folder itself.

Example
In the following example, everything under the documents folder will be
deleted, but the documents folder itself will not be deleted.
<delete-file>

<folder-source>
<source url="calligo://Admin:password@livelink;

 dmsserver:2099/documents"/>
</folder-source>

</delete-file>

Wildcards
The following wildcard characters are supported for deleting files and folders:

• the question mark (?), which represents any single character

• the asterisk (*) which represents one or more characters

Combining <source> and <folder-source>
You can use <source> and <folder-source> in any combination in the
<delete-file> request.

The following example is valid:

Example: Source & Folder Source
<delete-file>
 <source url="calligo://Admin:password@livelink;dmsserver:2099/
 Test Docs"/>
 <folder-source>

 <source url="calligo://Admin:password@livelink;dmsserver:2099/
 Test Docs"/>
 </folder-source>
 <source url="file://somefolder/tempdocs"/>

 <folder-source>
 <source url="ftp://ftpserver/lastyear/worddocs"/>
 </folder-source>
</delete-file>

Credentials
You can optionally provide credentials if the source requires authentication. They
can be specified either as a separate parameter or encoded in the URL.

The Service Response is the return URL of any successfully deleted files. There
are two possible values: completed-successful or completed-failure.

A failure response will contain any or all of the following items:

SIMPLE SERVICES

46 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

• an error ID

• an English text message explaining the reason for the failure

• an XML fragment with extended error information

AGGREGATE REQUEST

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 47

Aggregate Request

If you want Simple Requests to be executed in a specific order, such as rendering
before delivering, then you must submit an Aggregate Request. Otherwise, when
you send multiple simple requests such as generate, render and deliver, there is no
guarantee that they will be executed in the correct order.

Aggregate Request Processing
The processing order for an Aggregate Service Request is described as a
dependency tree in which subrequests are processed only after the main “top”
request has completed successfully.

Dependencies of the Aggregate Service Request

The figure above shows the dependencies of an Aggregate Service Request. The
processing order is as follows:

1. The Render request (Level 1) is only processed if the Generate Content
request (Main) is processed successfully.

2. The Deliver request (Level 2) is only processed if the Render request (Level
1) is processed successfully.

Aggregate Request Limitations
In order to maintain forward compatibility with your IStream Publisher Client
there are some limitations for the kinds of requests that can be aggregated

1. You can specify only one document per request in the root.
2. The dependencies tree may have only one root node. It can, however, have

one or more levels. Sub-requests at each level can be of different types
(Generate, Render, Deliver, or Utility).

3. An Aggregate Request cannot handle situations where parallel executions
must come back together in a synchronized way to perform a common
action or request.

4. An Aggregate Request does not:

• Support order processing of sub-requests belonging to the same level of
the dependencies tree.

SIMPLE SERVICES

48 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

• Provide a cleanup of intermediate temporary files created as a result of
processing Aggregate Request. Note that Utility Services are designed
to provide cleanup and to delete temporary files.

• Provide consolidation of sub-request responses.

An Aggregate Request is considered complete as soon as the root process is
complete and the sub-processes have been submitted.

THE TRANSFORM SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 49

The Transform Service

The Transform service is a simple service that uses a command interface to allow
Transform Suite applications to be called from a request.(The Transform service is
installed separately from IStream Publisher.)

For details of the Transform service parameters, see the IStream Publisher
schema.

For details of the parameters that you can use to customize the rendering, see the
assorted Transform Suite documentation.

Sample Request

Simple Request Example
The following code is an example of a simple request that calls the Transform
service:

<transform-request templateName="PS-TO-AFP">

<source url="file:///c:/Sourcefiles/Test.ps"
ContentType="application/postscript">

</source>

<destination url="file:///DestinationFiles/Test.afp"
ContentType="application/afp" copyMetadata="true">

</destination>

<parameters>
<parameter name="papersize">letter</parameter>
<parameter name="pagecount">5</parameter>
<parameter name="pagestart">3</parameter>

</parameters>

</transform-request>

Distribution Request Example
The following code is an example of a segment of distribution request that calls
the Transform service:

<recipient-packages>
<recipient-package id="RepId">

<recipient-item refID="item2">
<render-param>

<transform templateName="PS-TO-PS">
<parameters>

<parameter name="configurationName">C:\Publisher
Transform Config Files\TransformPS\psdemo_Publisher.ini</parameter>

<parameter name="papersize">legal</parameter>
<parameter name="pagecount">5</parameter>

</parameters>

SIMPLE SERVICES

50 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

</transform>
</render-param>

</recipient-item>

<delivery-preference refID="R-PID"/>
</recipient-package>

General Considerations
To invoke Transform through an IStream Publisher request:

• Transform 3.0 must be installed and working

• the value assigned to the TransformHome system variable must be the
Transform installation folder: by default, this folder is:
C:\Program Files\Whitehill Technologies\Whitehill
Transform 3.0

A distribution item is not checked if the Transform service is invoked in a
distribution request. As a result, some incorrect file types may be passed to the
Transform service. You therefore need to ensure the source files are the correct
type for the transform service being invoked from IStream Publisher.

Postscript File with PJL Commands
If you are rendering Postscript files that contain PJL (Printer Job Language)
commands, you will need edit your Transform system.ini file:

1. Locate the Transform system.ini file. By default, this file is located in
C:\Program Files\Whitehill Technologies\Whitehill
Transform 3.0\config\

2. Add the following line to this file:
PJLSUPPORT=IGNORE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 51

Chapter 3
Distribution Service

This chapter describes:

• The Distribution Service on page 52

• The Distribution Request on page 53

• The Distribution Package on page 59

• Recipients on page 62

• Delivery Channels on page 67

• Event Handlers on page 70

• Calling the Transform Service on page 79

• A Distribution Request Example on page 80

Note: The main parameters are listed for all services. For related parameters, please refer
to the schema.

DISTRIBUTION SERVICE

52 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The Distribution Service

The Distribution Service is a composite service, designed to provide user-friendly
document distribution service. This service improves the document distribution
process by allowing requests to be more oriented to the business user.

The business user does not need to know as much about all the steps of the
distribution process including the intermediate content that gets created. Instead,
the user can focus on the business requirement. The model that the Distribution
Service uses is that of “a Distribution Package delivered to multiple recipients
through various Delivery Channels”, in one request.

Example
A marketing document needs to be delivered by fax to a group of customers. A
different version of that document needs to be sent by e-mail to 2,000 managers
and a third version needs to be saved on the Web site for use by sales agents. All
of these requirements can now be handled by one request using the IStream
Publisher Distribution Service.

For an overview of the Distribution Service functionality, see The Distribution
Request Lifecycle on page 28 of the Administrator’s Reference Guide.

THE DISTRIBUTION REQUEST

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 53

The Distribution Request

The Distribution Service is invoked through a Distribution Request. The request
has a declarative structure. The Distribution Request describes the documents to
be distributed, their recipients, the delivery channels to use and the Event
Handlers to apply.

Warning: The distribution request should not contain more than 1,000 delivery items,
including items within folder distributions. This is because large Distribution
Requests may take a long time to be processed. This can trigger an IBM
WebSphere MQ server roll-back on the request itself. This will not cause the
request to fail, but may result in the request being processed by another Service
Manager and cause duplicate delivery items to be created and delivered. Single
delivery of items using Distribution Requests may not work. Single delivery can
be guaranteed using Simple or Aggregate Requests with the
preventDuplication JMSHeader value set to true.

XML-Based
A Distribution Request is a self-contained XML file. All required information for
the request processing is specified as various nested elements. The top-level
elements are mainly collections of other elements. The top-level elements are
described in the table below, while the other sections are drill-downs of each
individual collection and their elements.

At various levels, the request also embeds custom information (called metadata)
provided by the submitter for use by the Event Handlers. Metadata is custom, both
in content and structure.

In the diagram on page page 55, notice the main components of a Distribution
Request, which are also the main topics of the explanations that follow:

• Distribution Package

• Recipients

• Delivery Channels

• Event Handlers

ContentType
The ContentType parameter specifies the MIME type. (See Multipurpose
Internet Mail Extensions (MIME) on page 180.) There are four places where
ContentType can be specified:

• as a Distribution Item parameter

• as a Recipient Item parameter

• as a Delivery Channel parameter

• as a Delivery Preference parameter

DISTRIBUTION SERVICE

54 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The MIME types are:

• Adobe PDF – application/pdf

• HTML – text/html

• Microsoft Word – application/msword

• PCL – application/vnd.hp-PCL

• Postscript – application/postscript

• RTF – application/rtf

• TIFF – image/tiff

• TXT – text/plain

The following MIME types are also available for the Transform service only:

• AFP – application/afp

• XML – application/xml

Example
Here is a practical example of where those settings might be used:

A Microsoft Word document needs to be saved in a repository in TIFF
format. The Distribution Item ContentType is application/msword.
However, the Recipient Item specifies a ContentType of image/tiff. The
Distribution Service will understand that a Render service from Word to
TIFF is required.

Additional Details about ContentType
The render-param parameter defines the Recipient's additional preferences for
each type of delivery channel:

• the default driver name for each type of rendering

• the default number of copies for any rendering type

• duplex or collate – for pcl or ps rendering types

The default ContentType associated with an output channel is a configurable
parameter. However, the ContentType and render-param parameters can be
specified explicitly in a Distribution Request:

For each Delivery Channel:
The ContentType specified at the Delivery Channel level of a Distribution
Request takes precedence over the parameters specified in the configuration
settings.

For each Delivery Preference of a Recipient:
This ContentType value will be used as the default value for all Recipient Items in
a Recipient Package associated with the Delivery Preference. For example, if a
Recipient would like to receive e-mail attachments in Microsoft Word format,

THE DISTRIBUTION REQUEST

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 55

then it would be necessary to specify the ContentType for "preference-email" as
"application/msword". If the Recipient prefers saving document in the DMS in
PDF format the ContentType of a "preference-repository" should be specified as
"application/pdf". The ContentType and render-param specified at the Delivery
Preference level take precedence over the parameters specified at the Delivery
Channel level.

For each Recipient Item in the Recipient Package:
This ContentType value will be used for the Recipient Item in the Recipient
Package. The ContentType and render-param specified at the Recipient Item level
take precedence over those parameters specified at the Delivery Preference level.

Note: With regard to the Content Type parameter when rendering from Word to HTML,
the Distribution Request functions somewhat differently than the Simple Request,
as described below. In a nutshell, the graphics sub-folder for a Distribution
Request is named after the Distribution Item source, whereas for a Simple
Request, the graphics sub-folder’s name refers to the destination (final) file name.

The Distribution Request Structure

The following table describes the components of the Distribution Request.

Component Description

distribution-
package

A collection of Distribution Items that make up the subject of the Document
Distribution process.

delivery-
channels

A collection of Delivery Channel elements that are to be used to deliver the
content created following the processing of the Distribution Package.

DISTRIBUTION SERVICE

56 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

IStream Publisher Distribution Request Failure Policy
There are two different Failure Policies available that can be specified by the user:
Fail Fast and Perseverance.

Fail Fast Failure Policy
Using the Fail Fast failure policy, all further processing of the entire Distribution
Request will end at the first failure of a task, even if there are non-dependent tasks
that could be processed. This is the default failure policy for a Distribution
Service Request.

Example
A Distribution Request is required to generate Policy Pages for two recipients: an
Agent and an Insured (customer). It must send the Policy Pages both to the Agent
and to the Insured to print for further mailing. A letter of notification must be sent
to the Agent by e-mail.

This request should be sent using the FailFast failure policy, since there is no
reason to send a notification through e-mail if either the printing or the generation
fails.

Perseverance Failure Policy
Using the Perseverance failure policy, any non-dependent tasks will still get
processed, even if a failure occurs, while tasks that have assigned dependencies
will end.

One reason you might want to use perseverance is when you are sending out e-
mails or faxes to many recipients and you do not want the entire Distribution
Request to stop just because one of them fails.

recipients A collection of recipient elements that make up the full list of recipients to
which documents in the Distribution Package are distributed.

event-handlers A collection of special processing operations that are to be invoked as a result
of events that occur during the processing of the Distribution Request. Event
handlers are grouped per the events to which they are associated.

failure-policy A policy for error treatment in the processing of a Distribution Request. The
two options of the Failure Policy are:
• failFast - the Distribution service will attempt to finish the execution of a

Distribution Request as soon as possible. (See more details about this Failure
Policy below).

• perseverance – the Distribution service continues the processing of a
Distribution Request to the best of its ability. (See more details about this
Failure Policy below)

Component Description

THE DISTRIBUTION REQUEST

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 57

Example
A Distribution Request is required to generate a personalized letter of notification
for each Policy Owner (multiple recipients). It must then send it to be printed for
further mailing. If the generation of a document for one recipient fails, the
business requirement is to send the notification to as many clients as possible.

This request should be submitted using the Perseverance failure policy. In this
case, even if the distribution for one recipient fails, other nodes (generate-render-
deliver) for the rest of the recipients should still be completed.

Troubleshooting the Distribution Request
All Distribution Requests are initially processed by the Distribution Service.

The Distribution Service validates an XML request and immediately returns
failure if it is incorrect.

Example: <distribution-request-response status="failure">
 <errorDetails messageKey="DR.01"

text="DR.01: Failed to parse DistributionRequest: …
SAXParseException
…

This error message means that parsing of the XML request failed and the user
should verify and fix the XML data before sending a new request.

Examples of other error messages include:

• DE.06: DistributionItem not found: (item id). – means that the attribute
refID in the element recipient-item has a reference to a distribution-item
with an id which does not exist.

• DE.07: Delivery preference refers to non-existing channel:
refID=channel id – means that an element preference-repository,
preference-printer, preference-email or preference-fax has an attribute refID
which is pointing to a non-existing delivery channel id.

• RP.01: Failed to resolve delivery preference: preference id – means the
attribute refID of the element delivery-preference has a reference to a
preference-* id which does not exist.

Errors such as these can be avoided if the user strictly follows the Distribution
Service specification provided in the IStream Publisher Interface Reference
Guide.

Distribution Service
The Distribution Service itself does not perform any actual operation apart from
sending requests to simple services to perform specific operations and collect
responses.

The Distribution Service always waits for the completion of all simple requests
that are required for processing of the Distribution Request. However, if a
required simple services is not available (due to system failures or incorrect
configuration) then the Distribution Service will be trapped in a wait state.

DISTRIBUTION SERVICE

58 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Administrators can detect problems by monitoring messages waiting in the
Service Queues or by using the System Query State operation in the Console.

Loopback Service
When a simple request created by the Distribution Service is completed, the
Loopback Service (a special service used only for processing responses of simple
requests created by the Distribution Service) receives a response and notifies the
Distribution Service about completion of the simple request. When the simple
request is completed successfully, the Distribution Service then sends simple
requests, or returns a response to the requestor (if required in the request JMS
message) if there are no more tasks required for completion of the Distribution
Request.

All simple service failures are recorded by the Distribution Service, returned to
the requestor, and logged to the Request Log after completion of the Distribution
Request processing.

Error Messages
Error messages returned by various simple services can vary. The Distribution
Service wraps simple service error responses into its own response message.

A user might find that a failure is based on a combined Distribution Service
Response or by simulating Distribution Request processing using simple requests.

For example, a Distribution Item containing the element <calligo-item>
requires an invocation of Content Service, which can return error messages if
there is a problem during document generation.

Typically, these sort of errors are self-sufficient and are quickly detected. But
some errors can be caused by an implicit invocation of some services.

For example, if a clg-source is to be delivered as a fax, it is converted to a
Microsoft Word format using the render-CLG-to-Word service. The Word
document is then rendered to a TIFF format by the render-Word-to-TIFF service
and sent to the fax server by the deliver-to-fax service. Any simple service can fail
(for example, a Worker that does not have a Fax Printer Driver, but has started the
render-Word-to-TIFF service) and cause the failure of the whole distribution
request.

To avoid difficulties with troubleshooting the Distribution Requests, a client can
set the JMS message property LogLevel to 6 in the request message, and check
the request status in the Request Log (by using the Console Request Log Request
Info operation or executing direct queries to the Request Log table).

THE DISTRIBUTION PACKAGE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 59

The Distribution Package

The Distribution Package is the full set of interrelated items (such as documents,
images, folders and files), that are to be delivered. (These items are called
Distribution Items.) The Distribution Package is the object of the distribution
process. A business process usually determines the contents of this package. The
Distribution Package is an unordered set.

The Distribution Package Structure

The following table describes the parameters of the Distribution Package.

The Distribution Item
Any file can be a Distribution Item: a Microsoft Word document, an image in
TIFF format, a PCL stream, an XML data file, and so on. The system handles the
following items in special ways, but like all items they can appear in any number
and combination in the Distribution Package. These “special” Distribution Item
types are described in more detail in the following sections.

The IStream Document Item <calligo-item>
Calligo documents are now called IStream documents, however the term Calligo
is still used in the tags. Therefore, <calligo-item> refers to an IStream
document item.

If a Distribution Request requires the generation of an IStream document, then
either the Model document (.cms) or the IStream document (.clg) should be
specified as the source for the Distribution Item. For more information about
generating a document, please see Generate Calligo Document Service Overview
on page 23.

If the model document (.cms) or generated document is the Distribution Item
itself, then it should be included in the package as a generic file.

Parameter Description

distribution-package
metadata

Information specific to all Distribution Items in the Distribution Package.
This also constitutes the Distribution Request global metadata. The
metadata specified in this block is available to all Event Handler
invocations, regardless of the event they are handling.

distribution-item Documents or files that make up the Distribution Package.

DISTRIBUTION SERVICE

60 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Keep in mind that there are two types of source documents: model documents
(using an extension of .cms) and generated documents (using an extension of
.clg).

Repository File
The files referenced by the Distribution Items are not physically contained in the
request. Only references are included, each specified as a URL. RAPI (Repository
Application Programming Interface) is used to access the referenced files and
therefore they must be located in a RAPI compliant repository.

Repository Folder
The system iterates over the contents of the folder and adds all its files to the
Distribution Package. The repository must be RAPI compliant, (that is, provide a
RAPI adapter).

The Distribution Package can have one or many Repository Folders as
Distribution Items.

IStream Publisher processes only the current Folder and does not support
subfolders, where a subfolder is a subdirectory in a core Folder with a subset of
distributable documents/files.

A Folder breaks up into a list of distributable items based on wildcards specified
by the user.

Wildcards
Wildcards are supported for extracting files from the Folder. A wildcard is a
character that represents one or more characters. Two commonly-used wildcard
characters are:

• The question mark (?), which represents any single character, and

• The asterisk (*) which can be used to represent any character or group of
characters that matches that position in the target set of filenames.

Distribution Item Description and Syntax
A Distribution Item is one of the documents or files that make up the Distribution
Package. A Distribution Item can be either a file or a folder that contains any
number of files.

Deleting after Distribution
By default, a Distribution Item will not be deleted after distribution. However,
there is a flag – the “Delete After Delivery” flag (see below) – that can be set to
automatically delete files after distribution, saving time and reducing expensive
hard disk overhead. The “Delete After Delivery” flag is an option for the
Distribution Item.

There is also the option of using a Wildcard “filter” to control very precisely the
specific files that do get deleted if the “Delete After Delivery” flag is set to True.

THE DISTRIBUTION PACKAGE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 61

Example
There are a number of distributable documents in PCL format in a Repository.
The goal is to concatenate all distributable documents that start with “F” to one
PCL stream. The Distribution Item is a Folder, the “Delete After Delivery” flag is
set to True, and the filter specifies “F*” meaning all files starting with “F”. In this
scenario, all files from the Folder that match the filter (that is, start with “F”) will
be deleted after the distribution, assuming that it takes place successfully. The
Folder itself and subfolders will not be deleted. Only the files that have been
distributed by IStream Publisher, and that start with “F”, are deleted.

Note: Only File and Folder types of Distribution Item documents can be deleted. The
“Delete After Delivery” flag does not apply to IStream source documents.

ContentType
The ContentType parameter is never used to filter files even if the folder is
defined in the Distribution Item. (For filtering files, the Distribution Request
“filter” element exists.) The ContentType parameter functions together with the
other pieces of the Distribution Request to define what rendering will be applied
to the file before delivery.

The following tables describe the Distribution Item parameters.

Distribution Item Parameters
Please refer to the schema.

DISTRIBUTION SERVICE

62 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Recipients

A recipients element represents metadata valid for all recipients as well as the
collection of Recipient Package, Recipient Metadata and Delivery Preferences for
each recipient.

This diagram gives an overview of the structure of the Recipients element:

The following table describes the parameters of the Recipients element.

Recipient
A recipient is either a person or an organization to which the items in the
Distribution Package are addressed. A recipient element contains Recipient
Packages, recipient metadata and Delivery Preferences for the recipient. The list
of recipients can optionally be ordered by assigning a delivery order to each
recipient. Recipients for which a delivery order is not specified, are processed
after all of those for which a delivery order is specified.

Note: If the delivery order is specified, the ordering is enforced only in the case of
delivery through the same delivery channel and this channel operates in
Synchronized mode.

Parameter Description

recipients-
metadata

This is information specific to all recipients in the Distribution Request. The
metadata specified in this block is available for all Recipient Packages or
Delivery Packages when the appropriate Event Handler is invoked.

recipient A person or an organization to which the items in the Distribution Package are
addressed. See below.

RECIPIENTS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 63

Recipient Parameters Example
Here’s a simple example of how the recipient parameters can be used in order to
save time and streamline your business processes:

An agent prefers to receive Recipient Package #1:

• In TIFF format by FAX

• By e-mail.

At the same time, this agent prefers to receive Recipient Package #2:

• In PCL format by printer.

In multiple places in the Distribution Request, the refID attribute is used. The
Distribution Request will not pass syntax validation if any refID references an
element with an ID that does not exist somewhere in the request. However,
request validation cannot check the semantics of such references. In other words,
be aware that an ID can exist (and pass the syntax check) but nevertheless not
work in the context.

If you want to be able to validate the refID references, you would need to use an
external XML editor application.

For details of the Recipient element, please refer to the schema.

RefID Example
Here is an example of a refID along with the element to which it refers:
<preference-xxx refID={refers to the corresponding delivery
channel ID} ...>

Note: It is required that the preference-printer must be pointed to the printer delivery
channel, the preference-email to the e-mail delivery channel, and so on.

Delivery-Preference Considerations
Delivery-preferences provided in the Recipient Package define what channels are
used to deliver any given Recipient Package. This way the same Recipient
Package may be delivered simultaneously through multiple channels.

Sometimes a service has finished the execution of a request, but one of the
following failures occurs:

• The Service Manager fails

• A service fails

• The database connection is lost before the Service Manager has
acknowledged the transaction

In this case the request is rolled back to a Service Queue and marked by setting the
JMSRedelivered header field of the rolled back request to "true". After this
happens, the next available Service Manager will execute the request.

In some failure cases the above process may lead to duplication of the request.
Depending on the business situation, this may or may not be critical. If a request is

DISTRIBUTION SERVICE

64 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

"print a bill", it might be critical. On the other hand, if it is the generation or
rendering of a document, it may not be critical.

To prevent duplication, you should specify the 'preventDuplication' attribute of a
<delivery-preference> as 'true'. If the 'preventDuplication" is true, the Service
Manager will check the status of the previous attempt. If the previous attempt
completed successfully, then the Service Manager just acknowledges the
transaction without executing the request again.

Important: Setting the 'preventDuplication' flag set to 'true' will definitely impact
performance, because of the extra checking operation. Use the flag only for
critical cases or if performance is not an issue.

Logical vs. Physical Delivery Units
Note that the Recipient Package is considered as a logical delivery unit. For some
channels the physical delivery unit coincides with the logical one, for example all
recipient items are included in a single e-mail as attachments. (A similar situation
can occur with a fax.) At the same time, for other channels the logical package is
split into multiple physical units. Examples of this would be delivery to repository
and to printer.

In other words for the e-mail and fax delivery, one simple Service Request is
generated per Recipient Package while for the repository and printer one Simple
Service Request is generated per Recipient Item.

Recipient Package
In the Recipient Package, you specify the recipients that will be receiving the
distribution package and the delivery order for each recipient. You can have one
or more recipients in each Distribution Request. A Recipient Package, therefore,
is a subset of the Distribution Package to be delivered to a particular recipient. It
contains a list of references to items in the Distribution Package that make up a
Recipient Package.

ContentType Issue
The Content Type (ContentType) of a Recipient Item is required by the
Distribution Service to determine the type of rendering for the preferred Delivery
Channel. The ContentType parameter includes the MIME type of the content and
the setting for an appropriate rendering driver.

If ContentType is not specified for a deliverable item (recipient-item) in a
Recipient Package and in the delivery preference or the delivery channels in the
Distribution Request, then the rendering format to pcl (for printer) and to TIFF
(for fax) is derived from the configuration setting. No rendering is made for e-
mail and repository channels when ContentType is omitted. When ContentType is
specified explicitly it defines to which mime type the original distribution item is
rendered (and is sent to delivery channel). An explicitly specified ContentType
overwrites the type associated with a given delivery channel by default.

RECIPIENTS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 65

As a default, the Distribution service considers the document formats associated
with each type of channel based on delivery preferences:

• PCL format for delivery to Printer

• TIFF format for delivery to FAX

• MIME type of an original Distribution Item in the Distribution Package for
delivery to a Repository or by e-mail.

If a delivery preference is a FAX or e-mail, all items in the Recipient Package are
sent as attachments in one FAX or e-mail.

The items in a Recipient Package may be ordered using the optional seqNumber
attribute.

Note: For fax and e-mail, we can map many items to one Simple Request. However, for
repository and printer, it is a one-to-one relationship: one Recipient Item maps to
one request. Also, it is possible for one Recipient Item to produce many Simple
Requests.

For details of the Recipient Package and the Recipient Item Reference parameters,
please refer to the schema.

The ContentType Parameter
The Recipient Item has an optional attribute ContentType (described above),
which takes precedence over the default rendering for a given channel.

The engine does not apply any rendering if ContentType is omitted in the
configuration settings for the associated delivery channel.

Rendering Services
If there is no rendering service when rendering is required (all rendering services
are defined in the config file DistributionRequestStatic.xml), then the whole
Distribution Request fails. If the ContentType attribute is defined in the Recipient
Item, then the engine looks for a rendering service to support rendition to that
type. This ContentType determines the document type being sent to the delivery
channel. For instance if the ContentType is 'application/msword' and the original
document is 'application/msword' as well then no rendering is done for recipient
item. The Word document is sent to the printer 'as is' (and as a likely result some
garbage will be printed).

render-param subelement
Render-param defines additional configuration settings for rendering. It does not
affect in any way what rendering is chosen (see ContentType above). Those
settings are taken into account only if they are relevant to the chosen rendering.
For example, if the rendering is TIFF to PCL while render-param defines some
fax settings, then they are simply ignored (they would have to be printer settings
in order to have any effect).

The rationale behind such behavior may be illustrated with the case when multiple
delivery preferences are defined for a particular recipient item. In this case, the
recipient item is delivered through multiple delivery channels with possibly

DISTRIBUTION SERVICE

66 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

different renderings for each channel. The rendering settings defined in render-
param that are irrelevant in each case, are ignored.

Element <part name="xxx">
This element (under recipient-item) was added to allow the specification of mail
attachment names. By default, the attachment name is the same as the file name
provided in the distribution item. However in the case of a <calligo-item> and
generation, this name may be rather cumbersome and should be replaced in the e-
mail with something more readable. It is not important for the case of delivery to
fax and printer where those intermediate names are never exposed to the client.
For the delivery to repository element, 'destination' serves the same purpose.

Delivery to Repository
In the case of delivery to repository, there are multiple ways to specify the
destination. If the destination is defined per recipient-item then that value is used.
The destination is treated as a folder if it ends with a trailing slash and the
destination file name is defined by the distribution item (with possibly an
extension replaced if rendering took place). Otherwise, the destination is
considered as a file path and the generation/rendering result (if any took place) is
eventually renamed (copied) to that file. Another way to define the destination
(likely a destination folder) is in the absolute-path element of the preference-
repository. The treatment is the same.

If the destination is not supplied, then the absolute path defined in the preference-
repository will be used in the same way as is describe above.

Note: There are two cases with regard to the filename:

• The full path, including the file name, is specified, or

• The path is specified without the filename, and with a trailing slash –
implying that this is a folder. In this case, the file name specified in the
source, will be added to the path.

Note: The extension of the file name will be adjusted according to the ContentType of
the resulting file.

Calligo-destination
This item is processed only if the corresponding Distribution Item contains a
<calligo-item>. In this case, generation and delivery to repository may be
done in one step using a single Service Request.

DELIVERY CHANNELS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 67

Delivery Channels

A Delivery Channel is the method by which a Distributed item is delivered. It
represents a device that can transmit information in a printed form (print or fax) or
in an electronic form (through e-mail or to a repository). Channels can be
configured for different content formats, transmission protocols, and so on.

Specific information is associated with each type of channel in order for IStream
Publisher to perform the physical communication with the channel.

IStream Publisher supports the following Delivery Channels:

• Printer

• E-mail

• Fax

• Repository

Operating Modes
Delivery channels can function in two operating modes depending on the moment
when the actual delivery of an item occurs in relation to the other items in the
delivery package: Synchronized Delivery and Instant Delivery.

Synchronized Delivery
In the Synchronized Delivery mode, the items in the Delivery Package are not
delivered until they become available and a delivery package ready event is
raised. At this point, all items are then delivered one by one.

The delivery order in Synchronized mode is affected by:

• the deliveryOrder attribute of all recipients

• the deliveryOrder attribute of all Recipient Packages

• the SeqNumber attribute of all Recipient Items

You can use the syncId Attribute for synchronization between multiple channels.
The same value of this attribute in different delivery channel definitions means
that delivery to all channels begins only when all the items for this channels are
ready for delivery.

In synchronized delivery, if one transmission fails, then further requests will not
be sent. See Fail Fast Failure Policy on page 56.

Instant Delivery
In the Instant Delivery operating mode, the items in the Delivery Package are
delivered as soon as:

• all the items of a specific request are ready (generated/rendered), and

• all the Event Handlers associated with that item are complete

DISTRIBUTION SERVICE

68 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

With e-mail, fax or repository, you would not use synchronized delivery because
the order does not matter. When delivery in order is important there are several
elements of the Distribution Request to check:

1. The Delivery Channel in use should be in 'Synchronized' mode. This means
that the delivery does not start before all items are ready. All generations,
renderings and proper Event Handlers must be complete. It also means that
all Delivery Requests are sent one by one.

2. Recipients and Recipient Items must be ordered using their deliveryOrder
attribute (integer) and the Recipient Item must be ordered using its
seqNumber attribute (integer). Elements with lower numbers are served
first.

Note: In the case of a Recipient Item that supports a Simple Request with many items,
for example e-mail, the seqNumber controls the order within the e-mail, that is,
the order of the attachments.

The following diagram describes the structure of Delivery Channels and the table
describes the Delivery Channel parameters:

For details of the Delivery Channels, please refer to the schema.

Delivery Channel Settings
There are multiple places where Delivery Channel-related information is specified
in IStream Publisher. Each setting ultimately references the appropriate Delivery
Channel parameter.

The “Delivery Channels” item lists all output channels that can be used in the
Distribution Request. In the Delivery Preferences for the recipient, there is a
Reference ID pointing to the “Delivery Channel” ID.

Recipient-Specific Information
Additionally, there will be recipient-specific information related to the output
channel. For example, the Fax Number in the Delivery Preference would be
different for each recipient.

DELIVERY CHANNELS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 69

As a further example, a printer that is defined using the ID parameter of the
Printer parameter, above, can be referenced with the (optional) preference-printer
parameter of the recipient.

Similarly, an SMTP server can be identified as a Delivery Channel and referenced
using the recipient preference-fax parameter.

DISTRIBUTION SERVICE

70 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Event Handlers

You can use Event Handlers to extend the Distribution Request processing.

During the processing of the Distribution Request, various events are activated to
indicate where the processing is and to allow the request processing to be
extended by invoking an Event Handler associated with the particular event.

Events occur every time the processing of a Distribution Request reaches a point
where a specific action should be taken or where customization of the distribution
process itself is possible.

When invoking events, the system must allow them access to a particular scope of
metadata. The system informs the Event Handler with regard to what metadata
scope it is allowed to access by passing it a metadata scope identifier.

Event Handlers can be critical or non-critical.

Events
The events raised by the Distribution service are:

Distribution Package Ready
Raised when all the items that make up the Distribution Package are available. At
this point all document generation operations have completed and all folders have
been iterated for content. The metadata scope for this event is that of the
Distribution Package element.

Recipient Package Ready
Raised when all the items that make up a recipient's package are available. At this
point all render operations have completed. The metadata scope for this event is
that of the Recipient Package element.

Delivery Package Ready
Raised when all the items that are to be delivered through a Delivery Channel
operating in synchronized delivery mode are available. At this point the
Distribution Package and all the Recipient Packages are ready. The metadata
scope for this event is that of the distribution channel element.

Delivery Item Ready
Raised when an item for delivery through a channel operating in instant delivery
mode has become available. At this point the item is ready for delivery but the rest
of the items in either distribution, recipient or delivery packages are not
necessarily ready. The metadata scope for this event is that of the distribution
channel element.

EVENT HANDLERS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 71

Package Delivered
Raised when a delivery package has been delivered. Applies only to Delivery
Channels operating in synchronized delivery mode. The metadata scope for this
event is that of the distribution channel element.

Item Delivered
Raised when a delivery item has been delivered. Applies only to Delivery
Channels operating in instant delivery mode. The metadata scope for this event is
that of the distribution channel element.

Distribution Complete
Raised when the processing of the Distribution Request has completed. At this
point all the nodes in the task graph have been processed and the request state and
temporary files have been removed. The metadata scope for this event is that of
the Distribution Request (global scope).

Events and Services
As listed in the following table, an event either supports (), partially supports
(), or does not support (no dot) specific services. (For example, the recipient-
package-ready event can perform all the services.)

Note: You cannot use the encrypt-pdf services in any event.

Events

Se
rv

ic
es

co
nc

at
en

at
e-

pd
f

co
nc

at
en

at
e-

ps

co
nc

at
en

at
e-

pc
l

de
le

te
-fi

le
s

co
un

t-p
ag

es

ge
ne

ra
te

-c
al

lig
o-

do
cu

m
en

t

re
nd

er
-T

IF
F-

to
-P

D
F

re
nd

er
-W

or
d-

to
-T

IF
F

re
nd

er
-W

or
d-

to
-P

C
L

re
nd

er
-W

or
d-

to
-P

D
F

re
nd

er
-W

or
d-

to
-P

S

distribution-package-ready

distribution-complete

recipient-package-ready

delivery-package-ready

delivery-item-ready

package-delivered

item-delivered

DISTRIBUTION SERVICE

72 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Sequence Number
Event Handlers can be invoked and executed either concurrently or sequentially.
The default behavior is for the Event Handlers to run concurrently, meaning that
there is no predetermined order and none of the individual processes will wait for
any others to complete. If both sequenced and concurrent Event Handlers are
specified, the sequenced ones are executed first, in order, after which all non-
sequenced requests are executed concurrently.

The event-handler “seqNumber” parameter is the specific setting that defines the
order of execution of Event Handlers.

Multiple Event Handlers
 If multiple Event Handlers relate to the same event, the seqNumber parameter
could be used to sequence the execution of these Event Handlers if it is important
in the context. If it is not important, and if seqNumber is not specified, then
processing may happen simultaneously.

Event Handlers can alter the contents of the Delivery Packages, for example, they
can concatenate multiple Deliverable Items into one PCL stream. Event Handlers
are not allowed to alter the Distribution Package or the Recipient Packages.

Critical or Non-Critical
Event Handlers may be labeled as critical or non-critical. Non-critical Event
Handlers don't cause the whole distribution request to fail. Instead, in the case of
failure, they are reported in the Distribution Request response (which in the case
of failure has the status 'success-with-info'). Note that for some Event Handlers
the Event Handler proxy may be defined in CommonSM.xml – those Event
Handlers are always treated as critical. The Event Handler proxy (if defined)
transforms the generic Event Handler request into a simple Service Request (it
happens on the Distribution service side). This simple request is sent as usual to
the simple service and the simple service response is again handed to the proxy for
post-processing.

The diagram below describes the structure of the Event Handlers elements:

EVENT HANDLERS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 73

The following table describes the event parameters:

Event Description

event See “Event Handlers, Event Parameters” below.

distribution-package-
ready

The metadata scope for this event is that of the Distribution Package
element.

recipient-package-ready The metadata scope for this event is that of the Recipient Package
element. The Recipient Package Ready event has one Parameter:
recipientpackageRefId – A reference to the Recipient Package ID.
The event is raised when all the items that make up the specified
Recipient Package are available. At this point all render operations
have completed.

delivery-package-ready The metadata scope for this event is that of the distribution channel
element. The Delivery Package Ready event has one Parameter:
• deliveryChannelRefID – A reference to a Delivery Channel.
The event is raised when all the items that are to be delivered
through the specified Delivery Channel operating in synchronized
delivery mode are available.

delivery-item-ready The metadata scope for this event is that of the distribution channel
element. The Delivery Item Ready event has the following
parameters:
• deliveryChannelRefID – A reference to a Delivery Channel.
• deliveryItemID (optional) - A reference to a Distribution Item.

This parameter will be filled in by IStream Publisher. (If a user
sets it in their request, it is ignored.)

The event is raised when the item that is to be delivered through the
specified Delivery Channel operating in Instant delivery mode is
available.

package-delivered The metadata scope for this event is that of the distribution channel
element. The Package Delivered event has one Parameter:
• deliveryChannelRefID – A reference to a Delivery Channel.
The event is raised when all the items that are to be delivered
through the specified Delivery Channel operating in synchronized
delivery mode are available.

item-delivered The metadata scope for this event is that of the distribution channel
element. The Item Delivered event has the following Parameters:
• deliveryChannelRefID – A reference to a Delivery Channel.
• deliveryItemID (optional) - A reference to a Distribution Item
This parameter will be filled in by IStream Publisher. (If a user sets
it in their request, it is ignored.) The event is raised when all the
items that are to be delivered through the specified Delivery
Channel are available. This event applies only to delivery channels
operating in Instant delivery mode.

DISTRIBUTION SERVICE

74 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

event-handler-response
This parameter provides a successful completion response by simply returning a
successful completion status.
A failure response will contain:

• An error ID, and/or

• An English text message explaining the reason for the failure, and/or

• An XML fragment with extended error information.

The Response message for a particular Event Handler can be extended depending
on the business requirements.

Distribution Request Metadata

Event Handlers
Event handlers are given access to request metadata and distribution, recipient and
delivery packages by means of Data Access Objects and Value Objects. This
DAO observes the scoping rules and make the metadata available to Event
Handlers as XML fragments. Each element of the Distribution Request has its
own scope, enclosed within the scope of its main, higher level element.

When an event occurs within the scope of a certain element, the metadata for that
element, together with the metadata from all of its ancestor elements, is made
available to the Event Handler. When the system invokes the Event Handlers, it
passes them a scope identifier, which they can use with the DAO to access the
metadata. This is the interface to the persisted state information and no Event
Handler should access it directly.

The Event Handler can unmarshal the XML fragment into Value Objects.

Metadata Elements
Metadata elements may include arbitrary user data. However in order to allow co-
existence of data belonging to multiple customers, the general agreement is that
each customer defines its own sub-element in metadata. In other words, the

distribution-complete The metadata scope for this event is that of the distribution request
(global scope).

event-handler An Event Handler is invoked when the appropriate event happens.
The Event Handler element has the following Parameters:
• serviceType – name of the specific Event handler that should be

invoked.
• seqNumber – The order in which multiple Event Handlers are

executed synchronously if there is more than one Event Handler
associated with the particular event

• event-handler-metadata – metadata specific to the Event Handler
• critical – “true” or “false”

Event Description

EVENT HANDLERS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 75

definition of the metadata element itself is not changed and PCDATA is only
expected under the metadata element itself.

Concatenating PCL Streams
The Concatenate PCL Event Handler is invoked when the Recipient Package
Ready event is raised and all items to be delivered through a delivery channel
operating in synchronized delivery mode are available. At this point, the
Distribution Package and all the Recipient Packages are ready.

Note: A standard concatenation event handler requires the absolute-path element
within the preference-repository specified and cannot include a destination
element.

Multiple Streams into One Job
Some documents need to be printed as a single job to avoid pages from other
printer jobs being intermixed. The Event Handler provides the ability to
concatenate the PCL streams for these documents in the correct order.

One Job into Multiple Streams
Alternatively, the Event Handler concatenates Distribution Items in a Recipient
Package and/or through multiple Recipient Packages to some specified number,
N, of approximately equal-size PCL stream segments. The order of the
concatenated documents remains unchanged.

The number of streams is specified in the Distribution Request. The default
number of streams is "1".

Header Page
Each subgroup must have an appropriate header page defined so that, after
delivery to a print server with load balancing across multiple (N) printers, a
person can reassemble the documents back into the correct sequence for delivery.

The Header Page can be composed using a Header Page Template. The template
contains some special placeholders.

Event Handler
The Event Handler uses the template and substitutes these placeholders with
actual values provided with the request. The place where content must be
substituted, is marked by “{<name>}” – where <name> is the name of the value
to be used.

If a name provided in the request does not match a placeholder in the template, the
Header Page will not include the information.

DISTRIBUTION SERVICE

76 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Template URL
The URL to the template should be specified in a config file for the Event
Handler. If there is no template associated with a Header Page, then a Header Page
as plain text will be composed “on the fly” and every field will be printed in a
separate row, left-aligned.

The template can be in plain text or in PCL format. You can create fancy Header
Page templates with placeholders using Microsoft Word and Render to PCL
format. See Header Page Template Example on page 173.

Optional Parameters
The following parameters can optionally be provided for a Header Page:

• paper size

• paper orientation

• tray/paper source

Each header page must be concatenated, with the appropriate PCL segment on
top.

Duplexing Options
In the concatenation process, the duplexing of the pages can either be continuous
(meaning that the next concatenated stream can start either on an even or an odd
page) or, it can break at odd-numbered pages. If the Print Instruction parameter for
duplexing is not specified in the Distribution Request, the Event Handler will
assume a break at odd-numbered pages.

EVENT HANDLERS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 77

Concatenating PS Streams
For an overview, see Concatenating PS Streams on page 43.

The information below describes the parameters for the PS Concatenation Event
Handler within a Distribution Request.

The information below describes the optional parameters included in the
recipient-package-metadata within a Distribution Request when concatenating
source PS streams for different recipients.

Parameter Description

page-header A separate page defined so that a person can reassemble documents
printed across multiple printers back into the correct sequence.
The Header Page composed on the fly for each of (N) PCL segments
using a template with appropriate delivery order on each page. Each
header page must be concatenated with the appropriate PCL segment on a
top. See “Page Header Parameters”, below.

paperSize Paper Size for a Page Header, for example, Legal, Letter

paperOrientation Portrait or Landscape

paperSource Defines the printer tray ID for the Header Page.
By default and in case of wrong tray ID provided in the request, the
service would use the default tray for the Header Page.

field Specify fields to be printed on the Header Page. All fields are character
type fields.
Specify field names and value of the field. The field names are:
• job-name – Standard name passed as a parameter on the request,

Length – 10
• job-number – request ID number – format 99999999 (keep leading

zeroes). Length – 8
• job-submit-date – job submit date – format YYYY-MM-DD
• job-submit-time – job submit time – format HH:MM:SS (24 hour

clock)
• message – The message. Length – 256
• seq-number – sequence number for identification purposes
• distribution-instructions – General message text defining job

distribution information. Length – 512

numberPSsegments The number of destination PS streams into which the source PS streams
will be concatenated. The default number of PS segments is "1".

Command/Element Description

PSsegmentID The specific destination PS stream where the source PS streams for the
particular recipient will be concatenated.

DISTRIBUTION SERVICE

78 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The information below describes the optional parameters included in the
recipient-item-metadata within a Distribution Request when concatenating source
PS streams for a particular recipient.

Command/Element Description

PSsegmentID The specific destination PS stream where the particular source PS stream
will be concatenated. If a PSsegmentID is specified here for a particular
recipient's item and a PSsegmentID is also specified for that recipient in
the ps-concatenate-recipient-package-metadata, and the two do not
match, the PSsegmentID specified here takes precedence.

CALLING THE TRANSFORM SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 79

Calling the Transform Service

You can call the Transform simple service from a distribution request, however
you need to configure the request in a specific way: see The Transform Service on
page 49.

DISTRIBUTION SERVICE

80 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

A Distribution Request Example

The following is an example of a Distribution Request. It renders three files:
Test1.doc, Test2.doc, Test1.tif to pcl format, concatenates them into a single file
and then sends the result to a printer.
JMSType distribution-service
JMSDestination ForTesting.submit
RequestID 123456

<?xml version="1.0"?>

<distribution-request>
 <distribution-package>
 <distribution-item id="D-ITEM-1">
 <file>
 <item-source url="ftp://user:password@ftpserver/
source/Test1.doc" ContentType="application/msword"/>
 </file>
 </distribution-item>
 <distribution-item id="D-ITEM-2">
 <file>
 <item-source url="ftp://user:password@ftpserver/
source/Test2.doc" ContentType="application/msword"/>
 </file>
 </distribution-item>
 <distribution-item id="D-ITEM-3">
 <file>
 <item-source url="ftp://user:password@ftpserver/
source/Test1.tif" ContentType="image/tiff"/>
 </file>
 </distribution-item>
 </distribution-package>

 <delivery-channels>
 <printer id="PRINTER-1" printerName="\\PDCMAR-
01\5_ES_HPLJ5si" operatingMode="Synchronized"
outputName="HP"/>
 </delivery-channels>

 <recipients>
 <recipient id="RCP-1" deliveryOrder="2">
 <delivery-preferences>
 <preference-printer id="PREF-PRINTER-1"
refID="PRINTER-1"/>
 </delivery-preferences>

 <recipient-packages>

 <recipient-package id="RCP-PKG-2" deliveryOrder="2">

A DISTRIBUTION REQUEST EXAMPLE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 81

 <recipient-package-metadata>
 <pcl-concatenate-recipient-package-metadata
PCLsegmentID="10"/>
 </recipient-package-metadata>

 <recipient-item refID="D-ITEM-1" seqNumber="1">
 <recipient-item-metadata>
 <pcl-concatenate-recipient-item-metadata
duplex="continuous"/>
 </recipient-item-metadata>
 <render-param outputName="HP">
 <pcl>
 <printer-configuration pageRange="4,1,1"
duplex="flipLongEdge" collate="off"/>
 </pcl>
 </render-param>
 </recipient-item>

 <recipient-item refID="D-ITEM-2" seqNumber="2">
 <recipient-item-metadata>
 <pcl-concatenate-recipient-item-metadata
duplex="continuous"/>
 </recipient-item-metadata>
 <render-param outputName="HP">
 <pcl>
 <printer-configuration pageRange="4,1,1"
duplex="flipLongEdge" collate="off"/>
 </pcl>
 </render-param>
 </recipient-item>

 <recipient-item refID="D-ITEM-3" seqNumber="3">
 <recipient-item-metadata>
 <pcl-concatenate-recipient-item-metadata
duplex="continuous"/>
 </recipient-item-metadata>
 <render-param outputName="HP">
 <pcl>
 <printer-configuration pageRange="4,1,1"
duplex="flipLongEdge"/>
 </pcl>
 </render-param>
 </recipient-item>

 <delivery-preference refID="PREF-PRINTER-1"/>

 </recipient-package>
 </recipient-packages>
 </recipient>
 </recipients>

DISTRIBUTION SERVICE

82 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

 <event-handlers>
 <event>
 <recipient-package-ready recipientPackageRefID="RCP-PKG-
2"/>
 <event-handler serviceType="concatenate-pcl">
 <event-handler-metadata>
 <concatenate-pcl numberPCLsegments="1">
 <page-header paperSize="Letter"
paperOrientation="Portrait" paperSource="Tray 1">
 <field name="job-name" value="RCP-PKG-2"/>
 </page-header>
 </concatenate-pcl>
 </event-handler-metadata>
 </event-handler>
 </event>
 </event-handlers>
</distribution-request>

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 83

Chapter 4
Tracking and Monitoring

Requests

This chapter explains the Request Log facility, which is used to trace requests and
monitor their progress through their lifecycle. It is also used to log error
information that results from a failure to process a request and to hold the actual
content of a failed or canceled request so that it can be resubmitted later.

This chapter describes:

• Request Messages on page 84

• The Request Log Table on page 85

• Resubmitting a Failed or Canceled Request on page 88

• Error Log Levels on page 89

Note: The main parameters are listed for all services. For related parameters, please refer
to the schema.

TRACKING AND MONITORING REQUESTS

84 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Request Messages

The system will trace all Request Messages that are waiting to be Processed,
Executed or Completed.

Unique Request IDs
To trace requests the Request Log must be capable to uniquely identify them.
Each request bears a unique ID assigned by IStream Publisher.

Unique Request ID
The Unique Request ID is stored under the name of InternalRequestID as Number
(10) in the request table, and is used in the Status and ErrorInfo tables as a foreign
key. The InternalRequestID as provided with the request at submission is kept in
the request table. Since all system components need to refer to the request by the
same unique ID, this ID must be assigned as soon as the request enters the system.

Live Request Message Status
Apart from being used to trace the history of past requests processed by the
system, the Request Log is used to keep track of the current state of “live”
requests. The status information that the system components log contains,
includes the name of the component where the request resides, the time stamp
when its status changed and its current status. The possible values for status are:

• Pending – the request awaits to be executed by a component.

• Paused – the request has been put on hold and the component will not
continue its execution until it is explicitly directed to do so (resume the
request).

• Processing – a component is currently processing the request.

• Completed-Success – processing has completed and the result was
successful.

• Completed-Success-With-Info – Processing has completed because of the
failure of a non-critical Event Handler in the Distribution Request
processing.

• Completed-Failure – processing has completed because of a failure.

• Completed-Canceled – processing has completed due to an administrative
command (cancel).

• Resubmitted – the request has been resubmitted for the processing.

• Deferred – the request awaits execution within a specified interval between
Deferral and Expiration Time.

THE REQUEST LOG TABLE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 85

The Request Log Table

The system stores the request metadata and status information into a relational
database table called the Request Log.

The Request Log table consists of four tables:

• Request

• Status

• ErrorInfo

• StatusOrder

Each of these tables is described in the following sections.

Request Table
This is the main table and contains one record for each request in the system.
When a component submits request information to the Request Log, the metadata
contained in this information is stored in the request table.

Since the latest status information about a request resides in the request table, it
reduces the need to access the Status table for status information, other than
looking at the history of a request's processing.

The Request table contains the following fields:

Field Name Value Data type Size

InternalID the primary key NUMBER 4

RequestID the Request ID VARCHAR 64

OriginalRequestID the request ID of the original failed or
canceled request that had been resubmitted

VARCHAR 64

AggregateID the aggregate Request ID VARCHAR 64

ParentID the parent (main) Request ID if part of an
aggregate request

VARCHAR 64

ReqDocument the Distribution Request name that refers to
the type of business, for example “NEW
BUSINESS”

VARCHAR 64

Requestor a business user or component, for example,
“DRM” or “John Doe”

VARCHAR 128

JMSType the original request JMS type VARCHAR 64

Priority the priority of the request: a value between 0-
9

NUMBER 4

TimeStamp the final time that the request was updated by
the system

DATE 8

TRACKING AND MONITORING REQUESTS

86 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Note: Any number of additional fields can be added to the request table to permit an
independent record of a Custom Service Request JMS Message header property.

The Status Table
This Table contains records only for requests that have the following status:

• Deferred: the request awaits execution within a specified interval between
Deferral and Expiration Time

• Resubmitted: the request has been resubmitted for processing

• Paused: the request has been paused by the system and is not processed
until it is resumed

The Status table contains the following fields:

DeferralTime the time when the request is scheduled to be
processed

VARCHAR 64

ExpirationTime the time the request must not be executed
after

VARCHAR 64

SubmittedTimeStamp the time the request was originally submitted DATETIME 8

SubmittedComponentName the component that the request was
submitted to

VARCHAR 128

PendingTimeStamp the time the request was moved to the service
queue

DATETIME 8

PendingComponentName the component that moved the request to the
service queue

VARCHAR 128

ProcessingTimeStamp the time the request began processing DATETIME 8

ProcessingComponentName the component that processed the request VARCHAR 128

ProcessingAttemptCount the number of times that the system tried to
process the request

NUMBER 4

CompletedTimeStamp the time the request completed processing DATETIME 8

Component the name of the component that produced the
Request Log message

VARCHAR 128

StatusCode the foreign key of the StatusOrder table NUMBER 4

Field Name Value Data type Size

Field Name Value Data Type Size

InternalID the foreign key of the main table (request) NUMBER 4

Timestamp the time the status of the request changed DATETIME 8

THE REQUEST LOG TABLE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 87

The ErrorInfo Table
This table contains zero or one record per request. If the request is completed in
error, the affected component must log the error information, including the:

• error code

• textual description

• any available extended error information (the Java exception stack in XML
format)

Additionally, if the request completes with a status of completed-failure or
completed-canceled, the request is saved as it was submitted so that it can be re-
submitted at a later point in time.

The ErrorInfo table contains the following fields:

The StatusOrder Table
The StatusOrder table enumerates request status values and also the order in
the request processing.

Component the name of the component that produced the Request
Log message

VARCHAR 128

StatusCode the Foreign key of the StatusOrder table NUMBER 4

Field Name Value Data Type Size

Field Name Value Data Type Size

InternalID the foreign key of the main table (request) NUMBER 4

ErrorCode a unique ID code for the error VARCHAR2 128

ErrorMessage a message describing the error VARCHAR2 1500

ErrorInfo additional error information: consists of an XML
representation of the Java exceptions produced by the
faulty component.

CLOB 16

OriginalRequest the entire content of the request CLOB 16

Field Name Value Data Type Size

StatusCode a unique ID code for the status NUMBER 4

RequestStatus a description of the status VARCHAR 32

TRACKING AND MONITORING REQUESTS

88 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Resubmitting a Failed or Canceled Request

The ResubmitRequest Admin Command can resubmit a request if it has been
completed with failure or if it has been canceled.

The ResubmitRequest Admin command uses the specified
OriginalRequestID or Selector to query the Request Log table and uses the
logged information regarding the given request to compose a new resubmitted
request.

Distribution Requests
A Distribution Request can be resubmitted as a whole request. With the Error Log
Level equal to 6, all subrequests of the Distribution Request will be logged into
the Request Log table. If a subrequest fails, the body of the subrequest will be
logged into the Request Log table, but the subrequest cannot be resubmitted
separately from the Distribution Request.

The body of the failed subrequest can be used for debugging purposes only.

Note: If multiple requests have the same RequestID, only those requests that failed will
be resubmitted. For example, if two requests with RequestID “ABCD,” where one
of them failed and one succeeded, only the failed one will be resubmitted. If both
requests failed, both will get resubmitted.

Important: A client is responsible for the uniqueness of the RequestID.

Mapping
The mapping between the JMS header fields and the Request Log Data Base
fields is configurable:

• The Resubmitted Request is considered a new request with an
OriginalRequestID correlated to the RequestID of the original failed
request.

• The InternalRequestID, as well as AggregateID if applicable, is assigned by
the IStream Publisher component that resubmits a request. IStream
Publisher uses UUIDs (Universal Unique Identifier).

• IStream Publisher assigns a unique InternalRequestID when the newly
composed request is submitted to a Service Queue.

• JMSReplyTo defines a Response Queue for the response messages. It is a
configurable parameter.

• The name of the Queue Set.

ERROR LOG LEVELS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 89

Error Log Levels

You can configure the LogLevel parameter of the JMSType message to control
the amount of logging that takes place. Because the amount of logging occurring
affects performance, this setting should be carefully monitored.

You can add the following JMS header property to all functional requests:
LogLevel N

where N is one of:

• 0 – No logging. No RequestLog messages are sent to the RequestLog.

• 1,2,3,4 – log pending, processing and completed for Distribution
Requests but nothing for generated Simple Requests. These values are
required for backward compatibility.

• 5,6 – log all messages

Important: A LogLevel setting of “4” is the default for Distribution Requests, and “6” for all
other types.

TRACKING AND MONITORING REQUESTS

90 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 91

Chapter 5
Creating and Using Cover

Pages

This chapter describes how users can create and use custom cover pages before
distribution to fax or printer. This feature is implemented using event handlers and
the Count Pages Service.

CREATING AND USING COVER PAGES

92 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Delivering Cover Pages to Fax and Printer

Event handler definitions must be added to the Distribution Request in this
format:
<distribution-request>

… usual distribution request parameters …
 <event-handlers>
 <event>
 <recipient-package-ready
recipientPackageRefID="package id"/>
 <event-handler serviceType="count-pages"
seqNumber="1"/>
 <event-handler serviceType="generate-calligo-
document" seqNumber="2">
 <event-handler-metadata>
 <generate-calligo-document>
 <calligo-source
UISR="is_name:CoverPage.cms" docType="cms"/>
 <key-data name="numberOfPages"
type="numeric"
 value="{numberOfPages}"/>
 </generate-calligo-document>
 </event-handler-metadata>
 </event-handler>
 <event-handler serviceType="render-Word-to-PCL"
seqNumber="3"/>
 <event-handler serviceType="concatenate-pcl"
seqNumber="4"/>
 </event>
 </event-handlers>
</distribution-request>

Based on the preceding event handler definitions added to the Distribution
Request, the cover page creation follows these steps:

1. The Distribution Service processes the Distribution Request as usual, until
the preparation of all parts (files) of the Distribution Package
(<recipient-package-ready RecipientPackageRefID="package
id">) is complete.

2. The Distribution Service invokes the first event handler associated with the
"count-pages" Simple Service.

Note: This event handler is optional and required only if you want the generated cover
page to include and display the total number of pages in all documents in the
package. If this step is not used, go to step 6.
3. The first event handler finds all the files in the Recipient Package and sends

its URLs to the Count Pages Service.

DELIVERING COVER PAGES TO FAX AND PRINTER

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 93

4. The Count Pages Service counts the pages in all of the source files and sends
a response to the first event handler.

5. The first event handler replaces the {numberOfPages} placeholder in the
parameters of the next <event-handler> with an actual value, extracted
from the received response.

6. The Distribution Service invokes the second event handler, which prepares a
request to the Content Service (generate-calligo-document) based on
parameters provided in <event-handler-metadata>, specifying the
destination as a DOC file in a temporary location (that is, the same place
where the Distribution Service stores all intermediate files).

7. The Content Service generates a new document (Cover Page) based on the
parameters received from the event handlers.

8. The second event handler receives a response from the Content Service and
adds a new source file recipient package.

9. The Distribution Service invokes the third event handler, which creates a
request to the simple Rendering Service to convert the generated Cover Page
to a format required for a specific destination. In this example, PCL printer
is used as the destination and is calling the render-Word-to-PCL service. For
PostScript printers, render-Word-to-PS service should be used. For faxes,
render-Word-to-TIFF service is used.

Note: This event handler is optional if the fax server can send Word documents without
rendering. If this step is not used, go to step 13. Also, this event handler specifies
the destination as a temporary file (that is, in the same location as source, with the
file extension changed).
10. The Rendering Service converts the generated Cover Page to the requested

format and sends a response to the third event handler.
11. The third event handler removes the generated Cover Page in Microsoft

Word format from the Recipient Package and adds a rendered Cover Page to
the Recipient Package.

12. The last event handler is optional and required only for delivery to a printer,
if the client requires having all parts of the package printed on the same
printer as a single job. The type of event handler could be "concatenate-
pcl" for PCL-compatible printers and "concatenate-ps" for PostScript
printers.

13. The Distribution Service resumes processing of the prepared package and
sends it to the required destination.

More parameters can be added in the <generate-calligo-document>
element if the client needs to provide additional data for cover page generation. If
the generated Cover Page does not include the number of pages, the client may
remove the first event handler and the <key-data …/> element from the
generation request.

Important: You must have seqNumber attributes in all <event-handler …> elements,
otherwise the Distribution Service will try to execute all event handlers at the
same time, resulting in a failure.

CREATING AND USING COVER PAGES

94 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 95

Chapter 6
SDK – The IStream Publisher

Client API

The IStream Publisher SDK allows you to extend IStream Publisher, control its
operation, and automate requests.

This guide helps system administrators use the IStream Publisher SDK and its
associated components.

This chapter describes:

• The IStream Publisher Client API on page 96

• Client API Interfaces on page 97

• IStream Publisher Client Exceptions on page 103

This chapter includes description on how to use the Client API, IStream Publisher
client exceptions, and IStream Publisher client support classes.

SDK – THE ISTREAM PUBLISHER CLIENT API

96 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The IStream Publisher Client API

The IStream Publisher Client API enables Java-based client applications to
interact with and use the functionality of IStream Publisher. Semantically, and in
terms of functionality offered, this API is no different than the XML interface for
invoking requests.

Specific implementations will be provided by the different versions of the IStream
Publisher Client. The differences between various IStream Publisher
implementations consist of:

• the method used by the client to communicate with IStream Publisher

• the representation of the requests and responses in the invocation of services

Initially, the default implementation will use both XML messages and serialized
Java objects over message queues. The Service interface has two distinct
versions of the run method, one that deals with requests and responses in the form
of XML strings and the other that uses Java objects.

CLIENT API INTERFACES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 97

Client API Interfaces

The IStream Publisher Client API consists of the interfaces with which the client
application must interact in order to access IStream Publisher functionality. The
interfaces are contained in a package named
com.insystems.edelivery.client. Implementations of the client API are
contained in sub-packages that are named so as to reflect the characteristics of the
implementation. In general, client applications need not be aware of the
implementations.

Distributor Factory
To access the IStream Publisher functionality an application must first obtain an
instance of a class that implements the Distributor interface. It obtains this
from a factory class that exposes the DistributorFactory interface.

Creating an Instance of DistributorFactory
You can create an instance of DistributorFactory in different ways. You can create
an instance directly when the client application knows the name of the class that
implements the DistributorFactory interface.

When the client creates the instance directly it typically passes some configuration
information in the form of an instance of the XrmSetting class. With the default
implementation of the IStream Publisher client, this configuration information is

SDK – THE ISTREAM PUBLISHER CLIENT API

98 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

passed as a parameter of the constructor of the DistributorFactoryImpl
class.

The DistributorFactory Interface

The client uses on of the two versions of the createDistributor methods to obtain
an instance of the class that implements the Distributor interface.

The credentials that can be passed with one of the create methods are meant to
authenticate the client application or the end user that this application
impersonates, to the IStream Publisher system. Credentials that are used by the
IStream Publisher client to establish connections for communication purposes
should be passed as configuration information to the Distributor Factory class.

Distributor
The distributor interface is the main contract between the client application and
the IStream Publisher client. The class implementing the Distributor interface is
responsible for—

• allocating the resources necessary for the communication with IStream
Publisher.

• initiating and managing the interaction sessions.

• freeing the allocated resources when the client wants to end the interaction.

CLIENT API INTERFACES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 99

Session
A session represents a single-threaded interaction between the client application
and the IStream Publisher Client. The client application creates a distributor
session via the createSession method of the Distributor interface.

When creating a session, the client application must specify whether it is
synchronous or asynchronous. Depending on the type of session requested, the
distributor class returns either a session instance that implements the SyncSession
interface for synchronous sessions or the AsyncSession interface for
asynchronous sessions. The service instances created by the session will inherit
the corresponding synchronous or asynchronous behavior of its higher level
session.

The Session Interface

Through the Session interface the session class instance can be

• used to create instances of services.

SDK – THE ISTREAM PUBLISHER CLIENT API

100 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

• closed so that any resources allocated for the communication session can be
freed.

• set up with a response listener, which the session will call when a response
arrives asynchronously. This is only available for the AsyncSession
interface only.

• set up with an exception listener, which the session will can when an
exception occurs while receiving a response asynchronously. Also this is
only available for the AsyncSession interface.

To create a service from a session, the client application must know in advance the
name of the service it wants to use.

With asynchronous sessions, the client application can register a response listener
to receive the response object when in becomes available. Also it can register an
exception listener to be notified of any exception that occurs during the
asynchronous receiving of a response.

The ResponseListener and
ResponseExceptionListener Interfaces

The client application is responsible for implementing the ResponseListener and
ResponseExceptionListener interfaces and process the response or exception
object passed back by the session.

Services
To work with a service, invoke it and receive a response, the client application
must first create an instance of a class that implements the Service interface, via a
call to the createService method of the Session interface. When invoking this
method the client application must provide the name of the service it wants to
create.

Through the Service interface, the service implementation class can be used to

• create instances of request classes that implement the ServiceRequest
interface (this feature is deprecated as of IStream Publisher 3.2)

• run a service

CLIENT API INTERFACES

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 101

The run method behaves differently depending on what type of session has been
used to create the service instance. If a SyncSession has been used then the run
method only returns when the processing of the service completes or it throws
either a ServiceException or other runtime exception.

If an AsyncSession has been used to create the service instance, the run method
returns immediately and the client application will receive a response via the
ResponseListener interface of the listener object it has registered with the
session. If no listener object has been registered, the IStream Publisher Client will
assume that the client application is not interested in the response and it will not
produce one.

Service Invocation Sequence
The following code fragment represents the sequence of calls the client
application must perform in a typical IStream Publisher service invocation.
Distributor distributor = null;
Session session = null;
try
{
 DistributorFactory factory = ...
 distributor = factory.createDistributor();
 session = distributor.createSyncSession();
 Service service = session.createService(...);
 String request = "<!-- any IStream Publisher XML request
-->";
 String response = service.run(request);
}
catch(Exception ex)
{
 ...
}
finally
{
 if (null != session)
 {
 session.close();
 }
 if (null != distributor)
 {
 distributor.close();

SDK – THE ISTREAM PUBLISHER CLIENT API

102 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

 }
}

ISTREAM PUBLISHER CLIENT EXCEPTIONS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 103

IStream Publisher Client Exceptions

There are four categories of exceptions produced by the IStream Publisher Client
API:

• Configuration exceptions – thrown when invalid configuration was
provided. The invalid configuration could consist of parsing errors, missing
mandatory properties or other inconsistencies.

• Communication exceptions – thrown when communication problems are
encountered between the client and the server. The exact types of problems
are implementation dependent and are specific to the transport used to
propagate the request from the client to the server.

• Naming exceptions – thrown when a JNDI naming exception occurs.

• Service exceptions – thrown by services when exceptional situations occur
in the processing of the requests. These are also specific to the
implementation of each service.

The ClientAPIException class is the base class for all the exceptions thrown
by the IStream Publisher Client API. This can be used as a catchall when no
special treatment is required for each individual type of exception.

The exception objects contain a textual description of the problem and possibly
they can wrap another linked exception.

SDK – THE ISTREAM PUBLISHER CLIENT API

104 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Configuring the IStream Publisher Client API
The IStream Publisher Client API should be properly configured before it is used.
These groups of parameters are available for configuration:

• adaptor – used to define requests, and optionally reply queue settings,
which are used to pass IStream Publisher requests as JMS messages

• security settings – used to encrypt a transmitted user name and password

Configuration Files
The following configuration files are provided with the IStream Publisher Client
API:

• Client.xml

• ClientJMSQueues.xml

• ClientSecurity.xml

These files are stored in the config directory of the IStream Publisher Client API
SDK installation. Any XML configuration files used in the IStream Publisher
Client API must contain parameters with values that are defined either explicitly

ISTREAM PUBLISHER CLIENT EXCEPTIONS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 105

(for example, mq_port="1414") or through macros. The format for a macro is
similar to ${macro_name}.

A macro is resolved when configuration files are loaded, based on the system
property value for the macro. If the system property is not specified, but the
default value is specified for the macro, then the default value is used. The format
for a macro definition with a default value is similar to ${mq_port|1414}.

Client.xml
The Client.xml file provides links to other configuration files that contain real
parameter values. This file provides the following group parameters:

adaptor
<adaptor xlink:href="ClienJMSQueues.xml"/>

ClientJMSQueues.xml
This file contains an adaptor group of parameters that are used as the setting for
Queue Manager, which is used for transmitting messages from the client to
IStream Publisher and back. Most of the parameters are defined through macros
and therefore should be resolved by the system properties.

The following table list the parameters: most of these parameters are for IBM
WebSphere MQ only:

Parameter Name Description
Default
Value Notes

mq_name Name of MQ
manager

For IBM WebSphere MQ only. Should be
consistent with mq_name in the IStream
Publisher configuration.

mq_domain Domain name of
MQ manager

For IBM WebSphere MQ only. Should be
consistent with mq_domain in the IStream
Publisher configuration.

mq_port Port number of
MQ manager

1414 For IBM WebSphere MQ only. Should be
consistent with mq_port in the IStream
Publisher configuration.

mq_requestqueue Name of queue to
send requests

For IBM WebSphere MQ and OpenJMS.
Should be consistent with submitting queue
of IStream Publisher

mq_responsequeue The reply queue
name.

For IBM WebSphere MQ and OpenJMS.
If the response queue is undefined, then a
temporary queue is created.

mq_user User name for
MQ manager

 For IBM WebSphere MQ only.

mq_password Password for MQ
manager user

For IBM WebSphere MQ only.

SDK – THE ISTREAM PUBLISHER CLIENT API

106 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

ClientSecurity.xml
Some client requests can contain confidential information such as a user name and
password. To secure that information, the IStream Publisher Client API provides
the ability to encrypt it. Configuration for the security setting is provided in the
ClientSecurity.xml file, which is referred to by a link from Client.xml.
<security-settings xlink:href="ClientSecurity.xml"/>

Note: Before using this feature, make sure to remove comments in the Client.xml file to
make <security-settings> available.

The ClientSecurity.xml file contains a list of encryption keys for different
encryption algorithms.

Important: The IStream Publisher Client API security setting should be consistent with
IStream Publisher security settings. The following is an example of security
settings:
<key-data algorithm="DES" keyName="testKeyDES">

... encrypted key data is placed here ...
</key-data>

Logging
The IStream Publisher Client API provides the ability to customize logging
output. The logging utility uses the log4j tool. Complete documentation for
log4j is at http://logging.apache.org.

Default Configuration Files
The IStream Publisher Client API provides default configuration files. Those files
can be used in some simple cases, since they limit the number of configurable
parameters.

Configuration Implementation
To configure the IStream Publisher Client API, you edit the configuration files
(see Configuration Files on page 104), if needed, and provide configuration
parameters through system properties.

Implementing the configuration in code involves passing data from a
configuration file to the DistributorFactoryImpl class. This class has a
group of setConfig...() methods, which are used to process configuration
data.

The following examples are the most useful of these:

1. Using the configuration file path.

You can use a fully qualified path to the configuration file. Since Client.xml
is considered the main configuration file, provide a path to that file...
DistributorFactoryImpl distFact = new
DistributorFactoryImpl();

ISTREAM PUBLISHER CLIENT EXCEPTIONS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 107

distFact.setConfig("<ed_client_path>\\config\\Client.xm
l");

...where <ed_client_path> represents the path where the IStream
Publisher Client API is located.

2. Using a package name.

You can use a package name (in effect, the name of directory where all
configuration files are located). Make sure that the path of the directory
containing the configuration files is included in the CLASSPATH of the
application. For example, if the IStream Publisher Client API is located in
C:\EDClientAPI and all the configuration files are in a config
subdirectory then you must write the following code:
DistributorFactoryImpl distFact = new
DistributorFactoryImpl();

distFact.setConfigPackageName("/config");

Note: ensure that a forward slash character (/) is placed before the directory name.

When you run the application you must specify the classpath:
java -classpath C:\EDClientAPI <app_name>

3. Using the default configuration files.

In some simple situations you can use the default configuration files (see
Default Configuration Files on page 106) by writing the following code:
DistributorFactoryImpl distFact = new
DistributorFactoryImpl();

distFact.setDefaultConfig();

To complete configuration of the IStream Publisher Client API you must
pass the system properties to resolve the parameter-macros.

1. Passing parameters in the command line.

Use the following form:
java <app_name> -Dparam1=value1 -Dparam2=value2 ...

2. Setting system properties in Client.xml configuration file.

Use the <system-property> element. Refer to Client.xml on page 105 for
details.

3. Passing parameters through a custom properties file.

It is acceptable to provide parameters in a custom properties file. However,
you must ensure those parameters are moved into the system properties
before configuring the DistributorFactoryImpl class.

The following is a sample of code used to do this:
//load custom properties

Properties customProperties = new Properties();

...

//move custom properties into system properties

SDK – THE ISTREAM PUBLISHER CLIENT API

108 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

DistributorFactoryImpl.setConfig(customProperties);

//configure DistributorFactoryImpl

DistributorFactoryImpl distFact =

new DistributorFactoryImpl();

distFact.setConfigPackageName("/config");

Notification of Request Completion
The IStream Publisher Client API supports an asynchronous response processing
mechanism for clients running in Application Servers. The client application must
use the Distributor AsyncSession (see Session on page 99) and provide Reply
Queue settings in the Distributor configuration.

Sample Distributor Configuration
<adaptor>
 <property key="RequestQueueFactory.class"
 value="com.ibm.mq.jms.MQQueueConnectionFactory"/>
 <property key="RequestQueueFactory.init.setQueueManager"
 value="QM_SomeQueueManager"/>
 <property key="RequestQueueFactory.init.setHostName"
 value="someHost"/>
 <property key="RequestQueueFactory.init.setPort"
 value="1414"/>
 <property key="RequestQueueFactory.init.setTransportType"
 value="@com.ibm.mq.jms.JMSC.MQJMS_TP_CLIENT_MQ_TCPIP"/>
 <property key="RequestQueue.name"
 value="SUBMISSION.QUEUE"/>
 <property key="ReplyQueue.name"
 value="CLIENT.REPLY.QUEUE"/>
</adaptor>

In the preceding example, the queue CLIENT.REPLY.QUEUE should be created
and used only for the purpose of notifying the IStream Publisher Client about a
Distribution Request completion.

IStream Publisher Client will send requests to the Submission Queue with the
JMSReplyTo property set to the actual Reply Queue name.

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 109

Chapter 7
SDK – Repository API

This chapter describes:

• The Repository API on page 110

• The API Architecture on page 111

• Reference Language on page 113

• The Connection Interface on page 116

• The Repository Interface on page 119

• Repository Objects on page 121

• Identifiers on page 125

• Adding a New Repository Adapter on page 129

SDK – REPOSITORY API

110 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The Repository API

The Repository API (Application Programming Interface) is a set of Java
interfaces and classes that abstract the operations that can be performed with a
Repository. The API is intended to be generic and offer the functionality
otherwise provided by most of the existing repositories. It is designed in such a
way that it decouples the client from the actual Repository being used. It also
permits the client to interchange similar repositories with similar schema, with
minimal or no impact on the code.

THE API ARCHITECTURE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 111

The API Architecture

The API consists largely of interfaces and defines the contract between the
Repository and the client accessing its functionality. There are a few abstract
classes provided for convenience only.

An implementation of the Repository API interfaces is called a Repository
Adapter. An adapter must completely implement all interfaces but this does not
mean that it has to support functionality that its underlying Repository does not
support.

Determining Supported Functionality
When the native Repository is limited in functionality, the API provides methods
that a client can call to determine the level of functionality that the Repository
supports. For example, the client may need to know whether the Repository has
support for versions or for renditions of objects. Those methods can only be used
to determine the functionality supported by the underlying Repository, not by the
adapter. When the adapter doesn't support a feature, it responds with an exception
- specifically, java.lang.UnsupportedOperationException.

Decoupling the Client
The client application is decoupled from the Repository by the Repository adapter
implementation. All object instances are created by factories and factory methods.
The only class that the client must instantiate directly is the class implementing
the ConnectionFactory interface. Even this class can be obtained from a
directory or naming service. As a result, the client and the implementation are
completely independent of each other.

Accessing Repository Objects
In addition to the proprietary API, the Repository adapter extends Java's
URLStreamHandler and URLConnection to allow client applications to access a
Repository URI (Universal Resource Identifier) through Java's URL class. The
client application uses the URL class to access Repository objects through the
getContent() method.

SDK – REPOSITORY API

112 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Categories of Functionality
The functionality of the API can be divided into categories as follows:

• Connection – provides the means to authenticate, configure, and connect to
the Repository.

• Repository – exposes Repository metadata and functionality. For example,
it can create objects, find objects, and so on

• Repository Object – accesses the contents of the Repository with their
versions and renditions.

Each of these categories is described in greater detail, starting with The
Connection Interface on page 116. However, before we discuss these categories of
functionality we must clarify some terms relating to the URI (Uniform Resource
Identifier) specification.

REFERENCE LANGUAGE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 113

Reference Language

The Repository API defines a reference language through which objects in
repositories can be named and identified. This is accomplished using a common
syntax, independent of the underlying Repository. The API also defines a way to
map common existing URLs so that they can be expressed in the same reference
language. As a result, the contents of the repositories to which they refer can be
accessed through the Repository API.

The reference language is based on the URI specification.

Uniform Resource Identifiers
A Uniform Resource Identifier (URI) is a string identifier that allows for a
resource to be named and located using its name or some other attributes by
following a set of syntactic conventions. For a more detailed description of URIs
see http://www.ietf.org/rfc/rfc2396.txt

The URI syntax is dependent upon a scheme that defines a namespace for the
URI. The URI is created based on that scheme. In general, an absolute URI has
the following structure:
absolute-URI= scheme ":" scheme-specific-part

As shown above, an absolute URI contains:

• The name of the scheme being used (scheme)

• Followed by a colon (":")

• Followed by a string (the scheme-specific-part) whose interpretation
depends on the scheme.

Scheme Name
The name of the scheme is used to determine the Repository adapter that will be
used. The URI class implements the specific methods of resolving the mapping of
the scheme name to a Connection Factory class. Assisted by the connection class,
the URI can parse the URI string into its components. (See Examples of URIs on
page 115.)

The scheme-specific part for a typical hierarchical scheme consists of the
following components:
scheme-specific-part = "//" context [absolute-path] ["?"
query]

The double slash at the beginning indicates a hierarchical structure.

SDK – REPOSITORY API

114 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Context
The top hierarchical element constitutes the context (or naming authority) that
governs the rest of the name. The context component consists of the user
information and the Repository.
context = [[user [":" password] "@"] Repository

The user information is optional and provides for syntactic compatibility with
existing URLs. Because of the security risks involved, its use should be
discouraged.

The Repository part of the name consists of the name and other attributes that the
Repository adapter can use to locate and connect to the Repository on a network.
In its shortest form it should contain at least a Repository name and a host name in
the following form:
repository = [repository-name ["!" properties] ";"] host
[":" port]

Important: The host name cannot start with a number.

The repository-name is the first optional component. It is normally used for
existing schemes that do not permit a Repository name and for cases when there is
only one Repository possible. In these cases, the host or the port number can be
used to differentiate between instances.
repository-name= name
name= alpha | alpha (alpha-num | "-")* alpha-num

The properties component of the repository name is also optional. It represents a
list of named values specific to each particular type of Repository. Typically, a
client stores the properties as configuration parameters with the class that
implements the ConnectionFactory interface. This class must be capable of
retrieving the parameters and configuring the connection instance that it creates.
properties= property | properties "," property
property= name "=" value
value= (alpha-num | unreserved | escaped)*

The host is a domain name of a network host or its IP address. IP addresses in
normal use today appear as a set of four decimal digit groups separated by ".".
host= host-name | IP-address
host-name= (domain-label ".")* top-label ["."]
domain-label= alpha-num | alpha-num (alpha-num | "-")*
alpha-num

top-label= name
IP-address= 1 digit* "." 1 digit* "." 1 digit* "." 1 digit*
port= digit*

The port is a network port number. Most schemes that use a port designate a
default value. A port number can optionally be supplied following the host and
separated by a colon (":"). If the port is omitted the scheme default value is
assumed.

REFERENCE LANGUAGE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 115

Path
The path component contains data specific to the context, or the scheme if no
context is present. It identifies the resource within the scope of that scheme or
context. Paths can be either absolute or relative. A relative path can be relative to
the root of the Repository or relative to another object in the Repository.
path = absolute-path | relative-path
absolute-path= "/" [relative-path]
relative-path= path-step | relative-path "/" path-step
path-step= [relationship "::" role "@"] (abbrev-
attribute | attributes)
relationship= name
abbrev-attribute= name
attributes= attribute | attributes "," attribute
attribute= name "=" value

A path-step is equivalent to navigating between two object instances in the
Repository object model. The navigation happens over a specific relationship to a
role. In the Repository object model, when there is only one relationship between
the two objects, the name of the relationship and the role can be omitted.

An abbreviated attribute is one for which only the value of the attribute is
specified but not the name. Paths can contain one abbreviated attribute (the first
one) in cases when the name of the object is the identifying attribute.

Query
The query part of the URI represents a set of named values separated by "&".
These values do not determine the location of the resource identified by the URI
but are usually interpreted as arguments to a functional invocation referring to the
URI.
query = arguments
arguments= argument | arguments "&" argument
argument= name "=" value

Queries can be used to refer to a specific version and/or rendition of the object.
version=2&type=text.plain

The query above refers to the second version of the object and to its plain text
rendition.

Examples of URIs
Here are a few examples of URIs formed using the reference language defined by
the Repository API:
• ftp://guest:password@company.com/policies/renewal.doc

• http://www.company.com/
index.html?user=guest&password=test

• file://user/setup/Adobe/Acrobat/viewer.exe

• file:///C:/infosourceFS/ds/source/filename.doc

SDK – REPOSITORY API

116 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The Connection Interface

The Connection interface is the abstraction of the connection that a client must
establish with the Repository before getting access to its content and functionality.
(See the “Categories of Functionality” listed on 112). The connection:

• Maintains the configuration parameters required to access the Repository.
Examples of these parameters are the protocol, the host name, the
Repository name, and so on.

• Authenticates the user (the client) to the Repository.

• Manages the resources required to communicate with (connect to) the
Repository. Examples of these resources are sockets, database connections,
and so on. The connection also manages the lifetime of the connection itself
(opening and closing).

• Registers listeners to receive notifications about changes to objects in the
Repository.

Connection Factory
A client uses a class factory to instantiate a connection. (See Creating an Instance
of DistributorFactory on page 97.) The Repository adapter must provide a class
factory for the connection class that implements the ConnectionFactory
interface. The Connection Factory class must also implement the
javax.naming.Referenceable and java.io.Serializable interfaces so
that it can be stored in a directory service.

Required Properties
There are two mechanisms that a client must use, in this order, to locate and
instantiate a Connection Factory:

1. The environment property
com.insystems.repository.scheme.connection.factory.
class must be set with the name of the class that implements the
ConnectionFactory interface. The client uses this class name to create
an instance of the Connection Factory class. The class factory itself uses a
properties file to store its initialization parameters and reads them at creation
time. The client can alter these parameters or place another properties file in
the class path. In that case, the new properties file will get loaded before the
default one.

2. If the name of the Connection Factory property is not present, the client
should look for the environment property
com.insystems.repository.scheme.connection.factory.name,
which must be set with the JNDI name of the Connection Factory class. The
client uses this name to retrieve an instance of the Connection Factory class
from the directory service. In this case, the initialization parameters must be
stored in the directory service together with the factory.

THE CONNECTION INTERFACE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 117

If neither of these properties is set, then the operation will fail and no Connection
Factory class is instantiated.

The scheme in the two environment properties above is the name of the scheme
(ftp, xrmrep, and so on) used by the reference language to identify an object in a
Repository.

Important: The class extending java.net.URLStreamHandler is also a class factory for
the class implementing the Connection interface. Recommendation: The class
extending URLStreamHandler should also implement ConnectionFactory.

Creating a Connection
A client creates a connection in order to get access to the class that implements the
Repository interface, and by doing so to have access to the Repository.

Because the client instantiates the connection objects through a Connection
Factory, the factory has control of the way in which the connection instances are
created. For example, the Connection Factory class can provide instance pooling
to reduce the time required to connect to the Repository and thus reduce the
overall time required to connect.

Multithreading
A client should be allowed to open as many connections with the Repository as its
programming model requires. To fit a programming model where the client reuses
a single connection instance on multiple threads, the connection objects must
support concurrent use.

Opening the Connection
A connection object when instantiated represents an inactive connection to the
Repository. The client must make an explicit call to open the connection. This
allows the client to alter the properties that control the way in which the
connection with the Repository is established (setProperties()).

SDK – REPOSITORY API

118 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The getRepository() method can be invoked only on an open connection. If
the connection hasn't been opened yet or if it has been closed, the method throws
an exception, namely the InvalidConnectionStateException exception.

THE REPOSITORY INTERFACE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 119

The Repository Interface

The Repository interface abstracts the operations that can be performed against
the Repository itself. It is the interface through which:

• the Repository objects can be manipulated (created and destroyed)

• the client can access the root object(s) of the Repository

• the client can query the Repository for objects based on object metadata

• the client can check the permissions to perform various Repository
operations

Through this interface a client can get the naming context (URL) of the
Repository. It can also retrieve the connection from which the Repository instance
was obtained.

All the functionality of the Repository interface is available when an opened
connection exists to the Repository. If the connection corresponding to the
Repository object is closed, its methods will throw an
InvalidConnectionStateException exception.

A client obtains an instance of the class that implements the Repository
interface by calling the getRepository() method on the connection object.

Objects implementing the Repository interface are not required to be thread
safe. Consequently, a client with a multithreaded programming model should
obtain separate instances of the Repository for use on different threads.

When designing the Repository API it was assumed that the implementation for
the Repository interface would be lightweight enough so that multiple instances

SDK – REPOSITORY API

120 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

could be created without too much impact on scalability. In contrast, the class
implementing the Connection interface - because it can reserve external
resources - might have a greater impact on scalability. This is the reason for the
requirement that the connection class supports multithreading, in order to
conserve resources.

REPOSITORY OBJECTS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 121

Repository Objects

Repository objects represent the entities stored in the Repository. The Repository
object is a wrapper - it is not the data itself. This wrapper adds Repository-specific
functionality to the data objects that the client deposits in the Repository. The
actual data is treated as content of the Repository objects. Content type is
differentiated based on the MIME type of the data. For a list of MIME types,
please see http://www.iana.org/assignments/media-types/

The following features of Repository objects are considered common to most of
the repositories and are exposed through the RepositoryObject interface:

• Provide a reference language that uniquely identifies and references
objects in the Repository. Objects can be referenced either relative to each
other or absolutely in the context of the Repository.

• Access the actual content of the object stored in the Repository.

• Access metadata information for objects – Metadata consists of name and
type information along with any custom properties that an object might
define.

• Maintain versions of an object - The latest version is the default for the
object.

• Maintain different renditions for a version of an object. When the object
does not have a visual representation of the rendition, it can be considered
just a different format of representation for the same information.

• Reserve an object for the purpose of changing it and unreserve it so that
your changes can be visible to others.

• Navigate the relationships the object is involved in with other objects in
the Repository. Navigation is possible to both objects that reference and/or
are referred by the current object.

• Alter the relationships in which the object is involved, with other objects
in the Repository.

• Remove the object in the Repository.

• Discover the features that the Repository supports. Versions, renditions
and effective dates are examples of supported features.

• Check a client's permissions to perform various operations on a particular
Repository object.

SDK – REPOSITORY API

122 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Note: To access the actual content of the Repository object the client must obtain either
the InputStream to read the object or the OutputStream to write it.

The functionality that the RepositoryObject interface exposes regarding
metadata, versions, renditions and schema is presented in more detail in the
following sections.

Object Metadata
There are two categories of metadata that are available for an object: schema
metadata and custom metadata. Schema information for an object is available
through specialized methods on the RepositoryObject interface. Two
examples of these methods are getId() and getType().

REPOSITORY OBJECTS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 123

Object custom metadata is exposed through the ObjectMetadata interface.
This interface can be accessed using the getMetadata() method of the
RepositoryObject interface.

The object metadata can be localized. Custom properties can be described in
either the default locale or a user-specified locale. These properties can be
specified as an argument with the getMetadata() method of the
RepositoryObject interface. When a client requests the metadata for a locale
that is not available, the java.util.MissingResourceException is raised.

The ObjectMetadata interface exposes object custom properties in a generic
way, as named properties. If the properties are locale-sensitive, the object
metadata must be obtained using the locale-aware getMetadata() method of
the RepositoryObject interface.

Versions
One important feature of a Repository is the ability to retain different versions of
an object. Methods of the RepositoryObject interface allow access to an
object's versions. A client can:

• Obtain the number of versions of an object.

• Enumerate all the versions.

• Access a specific version based on its number.

• Add a new version. It is also possible to specify an effective date.

• Remove a specific version based on its number.

SDK – REPOSITORY API

124 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Clients manipulate object versions through the Version interface. The object's
content for a particular version can be obtained through the input and output
streams exposed by this interface.

The default version - The content of the default version is the one accessed
through the RepositoryObject interface. The default version is always the
latest version added to an object and cannot explicitly be set to a different version.

Renditions
It is assumed that objects stored in the Repository can potentially have different
representations. This is more true for objects that can be rendered visually - for
example, documents and images. Object renditions are differentiated based on
their content type (their MIME type). To support working with different renditions
of an object, the RepositoryObject interface allows the user to:

• Obtain the number of different renditions of an object.

• Enumerate all the renditions.

• Access a specific rendition based on its content type.

• Add a new rendition, and potentially specify an effective date.

• Remove a specific rendition based on its content type.

Clients manipulate renditions through the Rendition interface. The content for
the rendition is accessible through the input and output streams exposed by this
interface.

The default rendition - The content for the default rendition is the one accessed
through the RepositoryObject interface. The default rendition can be set either
by calling the addDefaultRendition() method of the RepositoryObject
interface or by explicitly invoking the setDefault() method on the
Rendition interface.

IDENTIFIERS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 125

Identifiers

The URI identifiers used by the Repository API are implemented by the
java.net.URL class. In effect it is not the URL class itself that implements the
identifiers but rather the classes implemented by the adapter and to which the
URL class delegates. The following interfaces must be implemented or the classes
must be extended by the Repository adapter in order to support the URL’s class
functionality:

• The URLStreamHandlerFactory interface must be implemented to
control the way in which an instance of a URL stream handler class is
created.

• The URLStreamHandler class must be extended to handle the parsing of
the URL string.

• The URLConnection class must be extended to handle the connection to
the Repository.

URLStreamHandlerFactory
The URLStreamHandlerFactory is an interface that the URL class uses to
create instances of a URL stream protocol handler that extends the class
URLStreamHandler.

The Stream Handler factory class can be installed once per JVM (Java Virtual
Machine) by invoking the URL's class setURLStreamHandlerFactory()
method. The Stream Handler factory should be used only if the other methods for
instantiating a URL stream protocol handler are not appropriate.

The methods referred to above, that the URL class uses to determine what URL
stream protocol handler to instantiate are:

Previous URLStreamHandlerFactory
If the application has previously set up an instance of
URLStreamHandlerFactory as the stream handler factory, then the
createURLStreamHandler method of that instance is called with the protocol
string as an argument to create the stream protocol handler.

No Previous URLStreamHandlerFactory
If no URLStreamHandlerFactory has yet been set up, or if the factory's
createURLStreamHandler method returns null, then the constructor finds the
value of the system property java.protocol.handler.pkgs. If the value of
that system property is not null, it is interpreted as a list of packages separated by
a vertical slash character ('|').

The constructor tries to load the class named
<package>.<protocol>.Handler where <package> is replaced by the
name of the package and <protocol> is replaced by the name of the protocol. If
this class does not exist, or if the class exists but it is not a subclass of
URLStreamHandler, then the next package in the list is tried.

SDK – REPOSITORY API

126 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

No Protocol Handler
If the previous step fails to find a protocol handler, then the constructor tries to
load the class named sun.net.www.protocol.<protocol>.Handler. If this
class does not exist, or if the class exists but it is not a subclass of
URLStreamHandler, then a MalformedURLException exception is thrown.

Illustrated below is an example of a class that implements the
URLStreamHandlerFactory.

Note: Because there can be only one class per JVM, the factory is expected to exceed the
scope of a single adapter. This is the rationale for the name
XRMURLStreamHandlerFactory.

URLStreamHandler
The abstract class URLStreamHandler is the common superclass for all stream
protocol handlers. Below is an example of a URLStreamHandler class for an
IStream repository:

IDENTIFIERS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 127

The URLStreamHandler class has two main responsibilities:

• Parse the URL string into its components and set the private fields of the
URL class.

• Create a connection to the Repository.

The class extending the URLStreamHandler is used to create instances of the
class implementing the Connection interface. It also extends the
URLConnection abstract class, therefore it must implement the
ConnectionFactory interface.

URLConnection
The abstract class URLConnection is the superclass of all classes that represent a
communications link between the application and a URL. Instances of this class
can be used both to read from and to write to the resource referenced by the URL.

Below is an example of a URLConnection class for a repository:

SDK – REPOSITORY API

128 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

A URLConnection Class

Content
To read the content of a Repository object, a client must:

• Create an instance of the URL class using the URI reference of the
Repository object.

• Call the getContent() method of the URL class. The object returned by
this method must implement the RepositoryObject interface.

• Obtain the RepositoryObject interface and call its
getInputStream().

• Read the object from the input stream.

ADDING A NEW REPOSITORY ADAPTER

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 129

Adding a New Repository Adapter

This section shows how to create a new Repository implementation and add it to
IStream Publisher. “Test Repository” is used through as an example.

IStream Publisher uses various Repository API implementations to access objects
stored in different locations. A standard installation includes implementations for
the local file system, FTP and IStream DMS. In addition, a standard
implementation supports any custom Repository implementations, which create
interfaces as defined in the Repository API. All existing services (generation,
rendering, delivery) will be able to use the new Repository as soon as its
implementation is created and added to the system configuration.

IStream Publisher uses the protocol provided in the URL to select a specific
Repository API. You can select any protocol name (excluding standard names
such as file, FTP, http, and so on.) and use this name in all requests referring to
objects in your Repository.

In general, in order to add a new Repository, the following steps are required:

1. Implement Java code specific to the new Repository. This code should
expose at least one public class, which is implementing the
ConnectionFactory interface and has a public constructor without
arguments.

2. Create a com/insystems/repository/url/protocol.properties
file in the JAR file, implementing the new adapter.

3. Add the following line to the file you've created in the previous step:
protocol-name = implementation class name

For example:
myrep=com.acme.repository.MyRepHandler

4. Add your JAR file implementing the new adapter to the Worker class path.
5. Prepare a new request message according to the source or destination URLs

referred to by objects in your Repository.

To illustrate the steps above with examples, specific elements of the IStream
Publisher infrastructure related to the tasks described above will be presented and
an example of a new Test Repository implementation will be considered in detail.
The Test Repository allows you to save and retrieve data to the local file system.

SDK – REPOSITORY API

130 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Java Code
The com.insystems.test.repository java package consists of the
following classes:

• TestConnectionFactory – Connection Factory class
(Creates an instance of
com.insystems.core.repository.Connection)

• TestConnection – connection class
(Creates an instance of
com.insystems.core.repository.Repository)

• TestRepository – repository class
(Creates instances of
com.insystems.core.Repository.RepositoryObject)

• TestRepositoryObject – Repository object implementation
(Creates java.io.InputStream and java.io.OutputStream for specific object
in Repository)

Note: The TestConnectionFactory class should have a public constructor without
parameters.

Code Example
package com.insystems.test.repository;
import com.insystems.core.repository.ConnectionFactory;
import com.insystems.core.repository.Connection;
import com.insystems.core.repository.Repository;
import com.insystems.core.repository.RepositoryObject;
import java.io.InputStream;
import java.io.OutputStream;

public class TestConnectionFactory implements
ConnectionFactory
{
 public TestConnectionFactory()
 {
 }

 public Connection createConnection()
 {
 return new TestConnection();
 }

 public Connection createConnection(String user, String
password)
 {
 return new TestConnection();
 }
}

ADDING A NEW REPOSITORY ADAPTER

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 131

class TestConnection implements Connection
{
 public TestConnection()
 {
 }
 public Repository getRepository()
 {
 return new TestRepository();
 }
 public Repository getRepository(String schemaName,
String schemaVer)
 {
 return new TestRepository();
 }
 // Other methods defined in Connection interface are not
used.
}

class TestRepository implements Repository
{
 public TestRepository()
 {
 }
 public RepositoryObject getObject(java.net.URL url)
 {
 return new
TestRepositoryObject(url.getFile().substring(1));
 }
 public RepositoryObject createObject(String typeId,
java.net.URL url)
 {
 return new
TestRepositoryObject(url.getFile().substring(1));
 }
 // Other methods defined in Repository interface are not
used.
}

class TestRepositoryObject implements RepositoryObject
{
 java.io.File file;
 public TestRepositoryObject(String filename)
 {
 file = new java.io.File(filename);
 }
 public InputStream getInputStream()
 {
 try
 {

SDK – REPOSITORY API

132 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

 return new java.io.FileInputStream(file);
 }
 catch (java.io.FileNotFoundException ex)
 {
 return null;
 }
 }
 public OutputStream getOutputStream()
 {
 try
 {
 return new java.io.FileOutputStream(file);
 }
 catch (java.io.FileNotFoundException ex)
 {
 return null;
 }
 }
 // Other methods defined in RepositoryObject interface

can be implemented later.

Service Request Example
The following codes is an example of a Service Request with the new repository:
<?xml version="1.0" encoding="UTF-8"?>
<render-Word-to-PCL>
<source url="test:///C:/TEMP/test.doc"/>
<destination url="test:///C:/TEMP/test.pcl"/>
<output-name>HPLJIII</output-name>

</render-Word-to-PCL>

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 133

Chapter 8
SDK – System Extensibility

This chapter describes how to create and add a Simple Service using XML
message middleware, including the update of your configuration files. It then
describes how to extend the Distribution Service by creating Event Handlers to
customize your Distribution Request behavior. There is a discussion of Data
Access Objects, and finally a procedure for modifying a Request Log message.

This chapter describes:

• Creating and Adding a Simple Service on page 134

• Extending the Distribution Service on page 137

• Customizing a Request Log Message on page 153

SDK – SYSTEM EXTENSIBILITY

134 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Creating and Adding a Simple Service

The list of possible customer services is open-ended. Currently-implemented
services include:

• Document rendering in various formats (Word, PDF, HTML, TIFF and
PCL).

• Document delivery through multiple channels (e-mail, fax and print).

• Delivery to multiple repositories, for example, FTP server, file system and
DMS repositories.

New services may easily be added to your system. However, the relative ease of
adding a particular new service depends on how similar this new service is to any
already existing services that could be used as a prototype.

Generally, in order to add a new service the following steps are required:

• Update the system configuration, making it aware of the new service.

• Implement Java code specific to the new service.

• Update the system-configure command with the new service.

• Prepare a new request message according to the new message format.

To illustrate each of the above steps, specific elements of the IStream Publisher
infrastructure related to the tasks described above will be presented and an
example of a new ‘delete-files’ service will be presented in detail.

Note: The ‘delete-files’ service allows the user to delete files and folders provided in a
request.

Simple Use Case
Consider the simplest case where a message contains only XML formatted text
with a Simple Request (not aggregate):

• When a message from the Message Queue reaches IStream Publisher, it is
picked up by one of the Service Managers servicing the given type of
request.

• That listener in turn, based on the type of JMS message, looks the type of
message up in the configuration file’s ServiceFactory class and
instantiates it. To be precise, ServiceFactory is an interface and an
implementation of it is instantiated.

• This ServiceFactory creates a service object (the object implementing
the Service interface).

• The ServiceRequest class is then instantiated. Once again, to be precise,
ServiceRequest is an abstract class and it is actually one of the derived
classes that is instantiated.

• The method run of the service is then fed with the Service Request and the
result of the method run is ServiceResponse.

CREATING AND ADDING A SIMPLE SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 135

• This ServiceResponse is packaged to reply to the message and sent back.

In summary, the service developer must implement service-specific
ServiceFactory, Service, ServiceRequest and ServiceResponse
classes. Two of those classes - the ServiceFactory and ServiceRequest
classes - must be defined explicitly in the configuration. See details below.

In the following paragraphs, as the main code pieces are introduced, we will
explain the required configuration changes.

Custom Service Deployment
1. Copy the jar file with custom service implementation to the Worker’s

[IStream Publisher install]\etc\ folder. If you have multiple
Workers, copy this file to all systems.

2. Log on to the Admin Console and click Configuration.
3. Add new Service[Custom0] entity under …\Settings\Services.
4. Select the check box near the maxError attribute when creating this entity,

otherwise the entity may not be create properly.

5. Create a new Property[factory] entity under this Service. The
Attribute Name must be the same as the JMS Type attribute of the request
message. The Attribute Value should contain the Service Factory class
name.

6. Create a new Property[request]entity. The Attribute Name should
contain the name of the root element used in XML requests send to the
custom service. The Attribute Value contains the class name, which
extends the ServiceRequest.

7. Create a new Property[response]entity. The Attribute Name should
contain the name of the root element used in XML responses received from
the custom service. The Attribute Value contains the class name, which
extends the ServiceResponse.

8. Restart the Worker service on all workers.

Sample Structure
For example, assume the following structure for the delete-files request:
<?xml version="1.0"?>
<delete-files>
<file>
<item-source url="ftp://.../Test.doc"
ContentType="application/msword">

</item-source>
</file>

</delete-files>

Java Code
A typical implementation of a new Service consists of the following classes:

SDK – SYSTEM EXTENSIBILITY

136 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

• Service Factory class,

• Service Class,

• Service Request, and

• Service Response.

All of these classes are usually grouped as a single service package. In our
example case of the ‘delete-files’ service, the following files are found in the
com.insystems.distributor.services.cleanup package:

• CleanupServiceFactory - the Service Factory class

• CleanupService - the service itself

• CleanupServiceRequest - the Service Request

• CleanupServiceResponse - the Service Response

• CleanupFile, CleanupFolder, CleanupFilter, and ItemSource
are all used to map to the proper XML elements.

The CleanupServiceFactory service factory implements the
ServiceFactory interface and has a public default constructor. The Service
Factory creates a new instance of the service.

The CleanupService implements the Service interface and this is where the
actual processing happens. It receives CleanupServiceRequest in its run
method and returns CleanupServiceResponse when the service is complete.

EXTENDING THE DISTRIBUTION SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 137

Extending the Distribution Service

Event Handlers
The Event Handlers structure is a powerful tool to customize Distribution Request
behavior. The idea is to provide some hooks for customer services during a
Distribution Request execution.

Event Handlers may be called:

• From the Distribution Request when all document generation is complete
but before any rendering takes place.

• When the Recipient Package is ready (all Recipient Items have been
rendered).

• Immediately before and immediately after delivery.

• When a whole Distribution Request is complete.

Operating Mode
Event Handlers called before and after delivery are processed differently
depending on the Delivery Channel operating mode. (For information about the
operating modes, see the Distribution Service on page 51.) If the operating mode
is Synchronized then the Event Handler may be called once when all Recipient
Packages/Items for the channel are ready for delivery. After that, another Event
Handler may be called when all items have been delivered through the channel.

On the other hand, if the channel acts in Instant mode, then the Event Handler may
be called right before and right after any single delivery takes place.

Distribution Request API
Event Handlers may interact with the Distribution Request as they progress
through the Distribution Request API which allows the user to fetch some
information about the request based on the current scope available to the Event
Handler.

In other words, an Event Handler associated for example with a particular
Recipient Package may retrieve all details about this package’s Recipient Items
based on the Recipient Package ID (and Request ID). Note that most of the
information from the Distribution Request available to the Event Handler is in fact
read-only. The only part of the Distribution Request that may be updated through
Event Handlers is the Delivery Item.

Updating the Delivery Item
A Delivery Item is simply a URL, with some additional information like
credentials, and it may be added, removed or updated by an Event Handler. Only
the Delivery Items existing in the request just before the Delivery Request is
issued are subject to delivery. For example, the concatenation service may need to

SDK – SYSTEM EXTENSIBILITY

138 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

remove all items being concatenated and replace them with the concatenation
result.

Using the Event Handler Response
Another way an Event Handler may affect Distribution Request execution is
through the Event Handler response. If a failure response is returned, then the
Distribution Request either stops issuing Simple Requests subsequent to the failed
Event Handler or it stops issuing Simple Requests completely. (Which of these
two actions is used will depend on the Distribution Request failure policy). The
only exception to this behavior is when the Event Handler itself is marked as non-
critical.

Event Handlers in the Distribution Request
In this section we will describe the classes that a Distribution Request Event
Handler uses to access the state that the Distribution service stores during the
processing of a Distribution Request. Through the classes described here the
Event Handler can access all the state information in read-only mode. The only
permitted read-write access is to the contents of the delivery packages.

Delivery Packages and Delivery Channels
The Event Handler is allowed to add and/or remove items from the Delivery
Packages. These items are files that the Distribution service will deliver through
the particular Delivery Channel to which the Delivery Package belongs. In fact for
all purposes with these classes the Delivery Packages are identical to the Delivery
Channels to which they belong. They are also referred to as Delivery Channels.

There are two categories of classes:

• Entities, and

• Data Access Objects.

Entities
Entities represent the elements of the Distribution Request. The metadata
associated with the various elements is still in its raw form as it was passed in with
the Distribution Requests, as an XML document. This is because the Distribution
service does not know the meaning of the metadata and cannot interpret it.
Metadata therefore is offered as an XML document and it is the Event Handler's
responsibility to interpret it.

Data Access Objects
The Data Access Objects, although public, are not meant to be used by the client
directly. The entity classes use them as they decouple the entities from the
knowledge of how the data access is implemented.

All the classes, both entities and Data Access Objects, are available in the main
package: com.insystems.distributor.client.services.
distribution.

EXTENDING THE DISTRIBUTION SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 139

Entities
Entities are contained in a sub-package of the main package named entities.
Apart from the entities there are some other supporting classes, for example
primary key classes.

Entities represent the elements present in the Distribution Request. Some of the
entities aggregate other entities. To reduce the overhead of having all the
elements of the Distribution Request in memory at the same time, the collections
of aggregated entities are not cached in memory by the entity that aggregates
them. Instead, as a collection of entities is iterated the data is read from the
database and objects are instantiated, but they are not held by their higher level
entity.

Important: Every call to a get method that returns a collection of subentities will incur
database access and should be considered expensive.

root entity
The root entity is the DistributionRequest and from it all other entities can be
reached. All that is necessary to have in order to load a DistributionRequest entity
is the Request ID of that request. This is the id that has been passed to the Event
Handler in its invocation. It is a string whose structure is defined by the client that
submitted the request in the first place.

Numeric IDs
Other ids, which are also strings, are present in the Distribution Request.
However, to make the database more efficient, the Distribution service replaces
the string ids with numbers that it ensures are unique. These number ids are part of
the primary keys of the entities but the original ids can still be used to access the
entities.

SDK – SYSTEM EXTENSIBILITY

140 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

IStream Publisher Object Relationships

Distribution Request
The DistributionRequest entity is the starting point in accessing any other entity.
To load an instance of a Distribution Request, the Event Handler uses the static
method load(). This method accepts the originalRequestID of the
Distribution Request whose data it wants to access.

EXTENDING THE DISTRIBUTION SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 141

Distribution Request Entity

Once loaded, the primary key of the Distribution Request can be obtained and
used to further drill down on other contained entities.

Accessing the Metadata
The metadata associated with the Distribution Request itself as well as that
associated with the recipients can be obtained as an instance of the Metadata
class. From this class, the metadata can be accessed as an XML string with the
toXMLString() method.

Distribution Package
The contents of the Distribution Package are accessible through the
DistributionItem and Rendition entities. The Event Handler does not directly load
any entities below the Distribution Request. Instead it uses the appropriate get
method of the higher level entity to access a collection of subentities.

SDK – SYSTEM EXTENSIBILITY

142 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

In the case of Distribution Items, the Event Handler calls the
getDistributionItems() method to obtain a collection of DistributionItem
entities.

The Distribution Item

When the Distribution Item requires credentials, those credentials are accessible
via a Credentials class or its subclass, EncryptedCredentials.

Each Distribution Item is associated with a particular set of renditions. One of
these is the original rendition, meaning the rendition of the item as specified in the
Distribution Package. Both the original rendition and other renditions can be
obtained by specifying their content type (MIME type).

Recipients
The Recipient entities refer to the Recipient, RecipientPackage and
RecipientItem classes.

EXTENDING THE DISTRIBUTION SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 143

Recipient Relationships

Each Recipient entity is associated with a set of RecipientPackage entities. Each
RecipientPackage entity in its turn contains a set of RecipientItem entities. Each
of the Recipient Items corresponds to one DistributionItem in the Distribution
Package.

Each Recipient Package uses one or more Delivery Preference entities out of the
set of Delivery Preferences that belong to the Recipient that owns that particular
RecipientPackage.

The following diagram illustrates the Delivery Package entities.

SDK – SYSTEM EXTENSIBILITY

144 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Delivery Package

Delivery Package
The Delivery Package entities refer to the DeliveryPreference, DeliveryChannel
and DeliveryItem entities.

Each DeliveryPreference uses one DeliveryChannel only. The DeliveryChannel
defines the method that will be used for delivery. Each DeliveryChannel is
associated with a set of DeliveryItem entities that will be delivered through that
channel.

EXTENDING THE DISTRIBUTION SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 145

Updating the Delivery Items
The Event Handler can alter the set of Delivery Items to be distributed through a
Delivery Channel. It can add new items or remove some or all of the existing
items. When adding items, the Event Handler is also responsible for making sure
that the content that the URL contained in the item is valid and points to an
existing file. This file will remain available even after the Event Handler finishes
execution.

Cleanup
When the Distribution service has completed the delivery, it will delete not only
the Delivery Items but the content that they point to as well. The Event Handler
should make copies of the content for the items that it adds to a Delivery Channel
if it wants to retain that content after the delivery is complete.

Adding a Delivery Item
To add a Delivery Item, the Event Handler creates a new instance of a
DeliveryItem entity. Before doing that, it must create an instance of the
DeliveryItemPK class and populate it with values. With the primary key
instance it can then create the instance of the DeliveryItem. To commit the change
to the database, the Event Handler must call the save() method of the new
DeliveryItem instance. If changes are made after that, the save() method must
be invoked again to commit those changes. Any calls to save() other than the
initial one will only update the Delivery Item and not insert a new record in the
database.

Removing a Delivery Item
To remove an existing Delivery Item the Event Handler must call the remove()
method on that particular instance of DeliveryItem.

Distribution Request with Event Handler Example
Event Handlers are described in the last section of Distribution Request.

The following is an example of a typical Event Handler structure:
<distribution-request>
...
<event-handlers>
<event>
<one-of-predefined-events [optional data to define
handler scope]/>

<event-handler serviceType="handler(service) name">
<event-handler-metadata>
... handler specific content ...

</event-handler-metadata>
</event-handler>

</event>
</event-handlers>

</distribution-request>

SDK – SYSTEM EXTENSIBILITY

146 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

In the example above:

• one-of-predefined-events is a pre-defined type of event specified in
the schema, which specifies which Event Handler to activate. Possible event
types are:

• distribution-package-ready

• recipient-package-ready

• delivery-package-ready

• package-delivered

• delivery-item-ready

• item-delivered

• distribution-complete).

• optional data to define handler scope is required when the Event Handler
may be triggered more than once for a particular event type, for example
recipient-package-ready. This functionality requires that a
recipientPackageRefID value be specified.

• handler(service) name - This is the Event Handler name, or service name, as
it is registered with the Service Manager. The service with this name handles
Event Handler requests submitted from the Distribution Service.

• ... handler specific content ... This is the actual content of the information
that is copied 'as is' into the Event Handler request.

Example
An example of an actual Event Handler in a Distribution Request follows:
<distribution-request>
...
<event-handlers>
<event>
<recipient-package-ready
recipientPackageRefID="RCP-PKG-1"/>

<event-handler serviceType="concatenate-pcl">
<event-handler-metadata>
<concatenate-pcl numberPCLsegments="2">
<page-header paperSize="Letter"
paperOrientation="Portrait"
paperSource="Tray 1">
<field name="job-name" value="Job Name"/>

</page-header>
</concatenate-pcl>

</event-handler-metadata>
</event-handler>

</event>
</event-handlers>

</distribution-request>

EXTENDING THE DISTRIBUTION SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 147

When the Recipient Package referenced in the Event Handler above is ready (all
items generated and/or rendered), then the following request is sent out:
<event-handler-request taskID="123"
distributionRequestID="12345">
<event>
<recipient-package-ready
recipientPackageRefID="RCP-PKG-1"/>

<event-handler serviceType="concatenate-pcl"
seqNumber=""
critical="true">
<event-handler-metadata>
<concatenate-pcl numberPCLsegments="2">
<page-header paperSize="Letter"
paperOrientation="Portrait"
paperSource="Tray 1">
<field name="job-name" value="Job Name"/>

</page-header>
</concatenate-pcl>

</event-handler-metadata>
</event-handler>

</event>
</event-handler-request>

Note: The request above is not a realistic 'concatenate-pcl' request. A real service uses
the Event Handler proxy described below.

The above request becomes a payload of a JMS Message with the JMSType value
set to "concatenate-pcl".

Event Handler IDs
There are several IDs that appear in the Event Handler request above:

• "distributionRequestID" and "recipientPackageRefID" are rather
obvious and allow the user to define the Event Handler scope when
additional data from the Distribution Request database is required.

• "taskID" is slightly more complex. According to the Distribution Service
architecture, all tasks required to accomplish the Distribution Request
constitute nodes in a single Task Graph. The execution of each task or node
is subject to the successful completion of all preceding nodes in the Task
Graph. When Event Handlers interact with Delivery Items, they need to
associate a new or updated Delivery Item(s) with the delivery tasks
responsible for the delivery of those items.

• taskID in the example above allows that:

• this taskID belongs to the delivery task

• that is in charge of the delivery of Recipient Items from the given
Recipient Package

• through the given Delivery Channel.

SDK – SYSTEM EXTENSIBILITY

148 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

• Dynamically fetching Delivery Items - The delivery task cannot know
in advance what items should be delivered, therefore it contains only a
template of the Delivery Request. Right before the actual delivery, this
task fetches from the Distribution Request database all Delivery Items
associated with this task, based on the taskID value.

• Creating the actual Delivery Request - The delivery task then
transforms its Delivery Request template into an actual Delivery
Request, or into multiple Delivery Requests. This is why when the
Event Handler updates the Delivery Items, each new Delivery Item
should have this taskID field properly set. Otherwise, new Delivery
Items will be ignored.

• In summary: taskID is not an Event Handler task ID in the Task Graph
but it is instead an ID of the delivery task that follows this Event
Handler task.

This matter can become somewhat complicated when the Recipient Package is
delivered via multiple channels. In this case, multiple delivery tasks follow a
single Event Handler task. Then the taskID in fact contains the IDs of all delivery
tasks that follow, for example: taskID="123456".

Note: The Event Handler request presented above is issued by the Distribution Service.
This request processing is a responsibility of the Event Handler implementation
(as a service), which is the subject of the next section.

Event Handler Implementation
There are two ways to implement Event Handlers in IStream Publisher. One way
is to provide an Event Handler implementation that:

• Accepts Event Handler requests from the Distribution Service,

• Interacts with the Distribution Request DAO API (reads data, updates
Delivery Items), and

• Eventually returns an Event Handler response to the Distribution Service.

Disadvantages
The disadvantages to this approach is that such an Event Handler:

• Should be configured to get access to the Distribution Request data. This
involves database connection configuration, firewall issues, and so on.

• Must have additional logic added in order to parse the Event Handler
requests and to issue Event Handler responses. In addition to service that
this Event Handler provides (concatenation) it must know how to interact
through DAO with the Distribution Request, how to update Delivery Items
and so on.

• In summary, such an Event Handler becomes much more complex than any
other simple service.

EXTENDING THE DISTRIBUTION SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 149

Keeping it Simple
In order to keep things simple, an alternate approach to Event Handler
implementation is provided. This Event Handler implementation is further broken
up into two parts:

• The Event Handler proxy, and

• The actual Event Handler, or Event Handler implementation.

The Event Handler proxy is configured with the Distribution Service and runs in
the same JVM (Java Virtual Machine) as the Distribution Service itself. Every
time when an Event Handler request is formed, it goes first to the proxy where it is
transformed into a regular Simple Request and sent for processing. In this case the
actual Event Handler is no different from any Simple Service. It is called exactly
the same way either from the Distribution Request or directly from the client.

These two approaches to implement the Event Handler are different and will be
described separately, as Event Handlers without and with a proxy.

Event Handlers Without a Proxy
An Event Handler request received by an Event Handler without a proxy was
already discussed in Event Handlers in the Distribution Request on page 138. To
recap, here is some sample code:
<event-handler-request taskID="123"
distributionRequestID="12345">
<event>
<recipient-package-ready
recipientPackageRefID="RCP-PKG-1"/>

<event-handler serviceType="concatenate-pcl"
seqNumber=""
critical="true">
<event-handler-metadata>
... actual request content ...

</event-handler-metadata>
</event-handler>

</event>
</event-handler-request>

The Service Manager does not parse this request. For this reason, the Event
Handler must request the Service Manager to pass this request to it as a string
value. To do this, the Event Handler must implement not only the Service
interface (com.insystems.distributor.Service) but also the
ExtendedService interface
(com.insystems.distributor.ExtendedService). Additional details of
the ExtendedService interface may be found in the documentation generated
by the Javadoc tool.

Using the Service Interface
In this case (no proxy), the method String run(String)from the Service
interface is called, and the Service Manager never parses incoming requests on its
own.

SDK – SYSTEM EXTENSIBILITY

150 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

How this request is then parsed and what sort of actions the Event Handler
performs is up to the implementation. The main contract between the Service
Manager and this service is that the run method should return an Event Handler
response marshalled into a string, something like:
<event-handler-response status="success"/>

or
<event-handler-response status="failure"/>

As was mentioned above, the main interaction of the Event Handler with the
Distribution Request occurs not through this response but when the Event Handler
updates the Delivery Items in the Distribution Database. These interactions are
channelled through the Distribution Request DAO API, which is discussed in
Distribution State DAO on page 151.

In all other aspects, the Event Handler implementation resembles other Simple
Services. The developer must therefore follow the same steps in coding as well as
updating configuration files, as were mentioned in Creating and Adding a Simple
Service on page 134.

Event Handler with Proxy
Each Event Handler proxy implements the EventHandlerProxy interface
(com.insystems.distributor.EventHandlerProxy). All details of this
interface may be found in the Javadoc-generated documentation.

The Event Handler proxy:

• retrieves some request pieces from the event-handler-metadata section of
the event-handler element

• supplements it with other data found in the relevant scope of the
Distribution Request

• forms a Simple Request to be processed by the second part of Event
Handler, the Event Handler implementation

This Event Handler implementation, like any other Simple Service, is running
“somewhere else” on the network and returns a response when processing is
complete.

Note: This is a regular Simple Service Response and not an Event Handler response.
The Event Handler implementation does not access the Distribution Request data
in any way. This is because in general, this implementation is called as a regular
Simple Service, not from the Distribution Request.

Sometimes a particular Event Handler functionality assumes dealing with
Delivery Items in the Distribution Request database. In this case, it is the Event
Handler’s responsibility to update the Delivery Items in the Distribution Request
Database, based on the response from the Event Handler implementation. This
response should contain enough of the information required by the proxy to
update the Delivery Items.

EXTENDING THE DISTRIBUTION SERVICE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 151

Concatenating PCL Files
This “Event Handler with Proxy” approach was implemented to support the
concatenation of PCL files in the Distribution Request through Event Handlers.

In this approach:

• First, the Concatenate PCL proxy is called which forms a 'concatenate-pcl'
Simple Request.

• The actual file concatenation occurs later in the Simple Service
'concatenate-pcl'.

• The request result is included in the service response. This concatenation
result is added as a new Delivery Item while all items being concatenated
are removed. Consequently, only the concatenation result is actually
delivered through Delivery Channels.

Implementation
The Event Handler implementation is added to IStream Publisher in exactly the
same way as all other Simple Services are added.

The Event Handler proxy to be called by the Distribution Service should be added
to the Distribution Request configuration. After deploying a new custom service,
using Admin Console, create new entity Property[proxy] with attribute Value
set to custom proxy class name, implementing the EventHandlerProxy
interface for this service.

Distribution State DAO

Data Access Objects
The specifics of data access are separated and made accessible in what is called a
Data Access Object. In IStream Publisher, there is only one Data Access Object,
the RequestDAO. Instances of this DAO can be created using a DAOFactory as
depicted below:

SDK – SYSTEM EXTENSIBILITY

152 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The DAOFactory

Both DAOFactory and the RequestDAO are interfaces only. The implementation
depends on the actual database being used. For example, in an Oracle deployment,
the classes OracleDAOFactory and OracleRequestDAO will be used to
implement these interfaces.

The RequestDAO provides the primitives required for database access but shields
the entities that use them from the details of the implementation.

CUSTOMIZING A REQUEST LOG MESSAGE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 153

Customizing a Request Log Message

Customizing the Request Log Table
All JMS header properties that are found in the initial request message are
converted to individual sub-elements of the Request Log message. By default, the
system persists only the JMS header fields of a request, as specified in JMS
Message Header and Properties on page 20.

The system can be configured to store other header properties (sub-elements of
the Request Log message) as custom fields of the persistency layer. If it is
configured that way, than those header properties can be used in subsequent query
statements aimed at the system.

Adding Custom Fields
There are two steps involved in enabling the system to persist additional custom
fields:

• add the appropriate database fields to the Request table

• provide a mapping between the new database fields and the corresponding
custom JMS header fields

Modifying the Request Log Configuration
To provide the mapping between custom JMS header fields and new database
fields, use the Admin Console's Configuration function to add a new
JMSProperty entity under Domain\RequestLog. The entity name should
match the JMS header property. The attribute DBColumn value should match the
database column name in the Request table.

The Request Log Table
The system stores the request metadata and status information in a relational
database called the Request Log.

The Request Log table consists of four tables:

• Request

• Status

• ErrorInfo

• StatusOrder

Each of these tables is described The Request Log Table on page 85.

SDK – SYSTEM EXTENSIBILITY

154 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 155

Chapter 9
SDK – Web Service Interface

This chapter describes:

• The Web Services Interface on page 156

• IStream Publisher WSI Architecture on page 157

• Configuring the IStream Publisher WSI in the Console on page 165

• Troubleshooting the IStream Publisher WSI on page 167

SDK – WEB SERVICE INTERFACE

156 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The Web Services Interface

The Web Services Interface (WSI) is a new feature of IStream Publisher. It allows
IStream Publisher functions to be invoked from various applications and
platforms, and supports customers who are adopting Web services into their
infrastructure.

About Web Service Applications
Web Service is an application that can be accessed on the Web or an intranet
through a URL. It is accessed by clients using an XML-based Simple Object
Access Protocol (SOAP) that is sent over HTTP or HTTPS. Clients access a Web
service application through its interface using a Web Services Definition
Language (WSDL) file.

IStream Publisher WSI Benefits
The IStream Publisher WSI is an alternative way to submit IStream Publisher
requests; it is platform-independent and co-exists with current Java and JMS
APIs.

The IStream Publisher WSI has the following benefits:

• Interoperability in a heterogeneous environment – The greatest strength
of Web Services is their ability to enable inter-operability in a heterogeneous
environment.

• Easy integration with various front- and back-end systems – The
IStream Publisher WSI provides a standard way to access the services
required by multi-tier applications and also provides standard supports for a
variety of clients. It therefore gives IStream Publisher the flexibility to
easily integrate with various front- and back-end systems.

• Support of many client types – Clients can be written in any language and
deployed on any Web Service-enabled platform (Java, C++, C#, VB.NET,
and son). You can select the configuration that best meets your application
requirements.

ISTREAM PUBLISHER WSI ARCHITECTURE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 157

IStream Publisher WSI Architecture

The IStream Publisher WSI provides various methods for invoking services
synchronously and asynchronously, as well as cancelling asynchronous requests.

General Information
XML is the only supported format for all requests and responses. The IStream
Publisher WSI accepts all currently supported XML requests. The existing request
structure is supported for all requests to ensure compatibility with previous
versions and minimize changes to existing components.

Because the IStream Publisher WSI supports clients running on non-Java
platforms that may not have the same error-handling mechanisms, all Java
exceptions are converted into meaningful service-specific exceptions and are
returned as XML responses to clients.

Installation and Deployment
The Web Services Server can be installed on a separate machine, or on the same
machine with other IStream Publisher components.

Server components can be deployed on Tomcat or other Servlet Container

Overview of WSI Architecture
The IStream Publisher WSI uses Apache Axis, a SOAP engine that plugs into
Servlet engines, and can be deployed in many types of Servlet Containers,
including Tomcat, WebSphere and WebLogic. Typically, it is deployed with the
IStream Publisher Console.

The following diagram illustrates how Web Services is deployed and how it
interacts with the IStream Publisher Core components.

Worker Agent

Client Application Servlet Container

Publisher WSI

Axis Servlet

<<Queue>>
Submit

<<Queue>>
Response

3.

4.

5.

1.

http
https

JMS 2.

SDK – WEB SERVICE INTERFACE

158 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

WSI Workflow
A typical workflow scenario is:

1. The client application submits an XML request to the IStream Publisher
WSI server.

2. The IStream Publisher WSI, running on Servlet Containers as a Web
Service, receives the client XML request and analyzes it. If the request had
been handled before and has an XML response in the database, the IStream
Publisher WSI returns the response to the client directly, otherwise it
submits the request to Submission Queue.

3. IStream Publisher fetches the XML request from the Submission Queue.
4. The Worker fulfills the request, generates an XML response and sends it

back to response queue.
5. The IStream Publisher Client API monitors the response queue and receives

an XML response back.
6. The IStream Publisher WSI forwards the response back to the client.

Web Services Interface Methods
The IStream Publisher WSI exposes one main interface, Processor, with the
following functional interface methods:

Synchronous Invocation
String execute(String xmlRequest, long timeout);
// return XML response

Asynchronous Invocation
String submit(String xmlRequest, String deferralTime);
// return request Id

String getResponse(String requestId);
// return XML response

String cancel(String requestId);
// return cancellation result

Response Handler Interface
(This interface is implemented by your company.)
void processResponse(String requestId, String xmlResponse)

ISTREAM PUBLISHER WSI ARCHITECTURE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 159

Flows of IStream Publisher WSI Calls

Synchronous Invocation

Normal Flow – Synchronous Call

1. The client calls execute method with an XML request string and timeout.
The timeout is specified in milliseconds and must be greater than 0.

2. The Web Services Server calls the IStream Publisher Client API and sends
the request to the IStream Publisher Core.

3. The IStream Publisher Core processes the request, receives a response, then
sends it back to the IStream Publisher WSI.

4. The IStream Publisher WSI wraps up the XML response and returns it to the
client application.

Notes
• The IStream Publisher WSI generates an error and returns it to the client if a

response was not received within the specified timeout period.

• The IStream Publisher WSI keeps requests and responses in the database for
the specified time. During this period, when the client recalls the execute
method with the same XML request, the IStream Publisher WSI simply
returns the response from the database. Once the specified time expires, the
data in the database is cleared. The client recalls the execute method with
the same XML request again. The IStream Publisher WSI submits this XML
request to the IStream Publisher Core, processes it and receives a new
response.

Client Application

Web Services
Server

Client API

IStream
Publisher

1: execute (<xml request>,
timeout)

4: return <xml response>

2:
 se

nd
 re

qu
es

t
3:

 g
et

 re
sp

on
se

SDK – WEB SERVICE INTERFACE

160 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Retry Flow - Synchronous Call with Retry

1. The client calls the execute method with an XML request string and
timeout. The timeout is specified in milliseconds and must be greater than 0.

2. The Web Services Server calls the IStream Publisher Client API and sends a
request to the IStream Publisher Core.

(Note that the call to the IStream Publisher WSI can fail at any time because
of system or application issues.)

3. The client recalls the execute method with the same XML request again.
4. The IStream Publisher Core processes the request and receives a response,

then sends the response back to the IStream Publisher WSI.
5. The IStream Publisher WSI wraps up the XML response and returns it to the

client application.

Note: The IStream Publisher WSI prevents multiple submissions of the same request by
persisting the message digest.

Client Application

Web Services Server

Client API

IStream Publisher

1: execute (<xml request>,
timeout)

4: execute (<xml request>,
timeout)

2:
se

nd
 re

qu
es

t

5:
ge

t re
sp

on
se

6: return <xml response>

3: HTTP error
or timeout

ISTREAM PUBLISHER WSI ARCHITECTURE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 161

Asynchronous Invocation

Normal Flow – Asynchronous Call

* This return request ID is not the request ID from the request table. To specify the
request ID from the request table, use name=RequestID in the jms-
properties element.

1. The client calls the submit method with an XML request string and deferral
time. The deferral time parameter is optional and should be specified in the
supported format.

2. The Web Services Server generates a message digest and returns it to the
client.

3. The Web Services Server calls the IStream Publisher Client API and sends a
request to the IStream Publisher Core.

4. The IStream Publisher Core processes the request and generates a response,
then sends the response back to the IStream Publisher WSI. The IStream
Publisher WSI receives the response and saves it to the database.

5. The client asynchronously calls the getResponse method, specifying the
digest returned by the WSI as an argument.

6. The IStream Publisher WSI obtains the associated XML response from the
database, wraps it up, and returns it to the client application.

Note:
• Each message digest generated by the IStream Publisher WSI is unique and

persistent for each XML request.

• If the request response is not available when the client calls the
getResponse method, then this method returns an appropriate XML
message instead of response.

Client Application

Web Services Server

Client API

IStream Publisher

1: submit (<xml request>,
deferral time)

5: getResponse (request ID)

3:
se

nd
 re

qu
es

t

4:
ge

t re
sp

on
se

6: return <xml response>

2: return request ID*

SDK – WEB SERVICE INTERFACE

162 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Failure Flow – Asynchronous Call with Failure

1. The client calls the submit method with an XML request string and deferral
time. The deferral time parameter is optional and should be specified in the
supported format.

2. The Web Services Server generates a message digest and returns it to the
client.

3. The call to the IStream Publisher Client API fails.
4. The client asynchronously calls the getResponse method using the digest

returned from WSI as an argument.
5. The IStream Publisher WSI returns an appropriate XML failure message.

Call Back Flow – Asynchronous Call with Call-Back

Client Application

Web Services Server

Client API

IStream Publisher

1: submit (<xml request>,
deferral time)

4: getResponse (request ID)

3: send request failed

5: return <xml response
(failed)>

2: return request ID

Client Application

Web Services Server

Web Services Server

Client API

IStream Publisher

1: submit (<xml request>,
deferral time)

5: getResponse (request ID)

3:
se

nd
 re

qu
es

t

4:
ge

t re
sp

on
se

2: return request ID*

ISTREAM PUBLISHER WSI ARCHITECTURE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 163

1. The client calls the submit method with an XML request string and deferral
time. The deferral time parameter is optional and should be specified in the
supported format.

2. The Web Services Server generates a message digest and returns it to the
client.

3. The Web Services Server calls the IStream Publisher Client API and sends a
request to the IStream Publisher Core.

4. The IStream Publisher Core processes the request and generates a response,
then sends it back to the IStream Publisher WSI. The IStream Publisher WSI
receives the response and saves it to a database.

5. The IStream Publisher WSI calls the processResponse method of the
ResponseHandler web service endpoint. The message digest and XML
response are passed as arguments of the processResponse method.

Notes
• The client application itself is a Web Services Server which implements the

processResponse interface.

• The URL to a client’s Response Handler Web Service is an optional item of
the IStream Publisher WSI configuration, and is in the IStream Publisher
Console Web Service subfolder.

• The IStream Publisher WSI supports a push back of the XML response to a
single client Web Service URL. If multiple clients request a callback, the
client’s web server may be designed to propagate this response to other
clients.

Cancel Flow – Asynchronous Call with Cancellation

Client Application

Web Services Server

Client API

IStream Publisher

1: submit (<xml request>,
deferral time)

7: getResponse (request ID)

2: return request ID

6:
ge

t re
sp

on
se

 (c
an

ce
lle

d)
4: cancel (request ID)

8: return <xml response (failed)>

5:
ca

nc
el

req
ue

st

3:
se

nd
 re

qu
es

t

SDK – WEB SERVICE INTERFACE

164 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

1. The client calls the submit method with an XML request string and deferral
time. The deferral time parameter is optional and should be specified in the
supported format.

2. The Web Services Server generates a message digest and returns it to the
client.

3. The Web Services Server calls the IStream Publisher Client API and sends a
request to the IStream Publisher Core.

4. The client asynchronously calls the cancel method using a digest returned
from the IStream Publisher WSI as an argument.

5. The Web Services Server calls the IStream Publisher client API and sends a
cancel request to the IStream Publisher Core.

6. The IStream Publisher Core cancels the request, generates a cancel
succeed response, then sends this response back to the IStream Publisher
WSI. The IStream Publisher WSI received the response and saves to a
database.

7. The client asynchronously calls the getResponse method using a digest
returned from IStream Publisher WSI as an argument.

8. The IStream Publisher WSI obtains the associated cancel succeed XML
response from the database, wraps it up, and returns it to the client
application.

Notes
• When the IStream Publisher Core processes the cancel request, if the

original submit XML request has been completed, a cancel failed
XML response will be generated and returned to the client.

• Call back response processing is also supported with the cancel method.

WSI WSDL
WSDL describes the point of contact for a service provider. This point of contact
is also called the service endpoint. It provides a formal definition of the endpoint
interface and establishes the physical location of the service.

You can retrieve the IStream Publisher WSDL using the following URL on the
server where WSI is deployed:
http://wsihost:8080/wsi/services/Processor?wsdl

CONFIGURING THE ISTREAM PUBLISHER WSI IN THE CONSOLE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 165

Configuring the IStream Publisher WSI in the
Console

To configure the IStream Publisher WSI
1. When the IStream Publisher WSI starts for the first time the following

messages may appear in the log:
2006-02-10 11:08:06,338 [ERROR]
(RDHelperClassicWithFastFetch.java:491) - Could not fetch
values

java.sql.SQLException: [Microsoft][SQLServer 2000 Driver for
JDBC][SQLServer]Invalid object name 'VALUATION'
2006-02-10 11:08:06,369 [ERROR]

(ConfigurationHelper.java:494) - Could not configure
WebServices for domain (Context[null])

com.insystems.edelivery.client.wsi.ConfigurationException:
WSI.CFG.09: WebServices configuration not found for context
"default"

These errors occur if the Console and Domain databases have not yet been created
by a Console. Once these databases are created, restart the IStream Publisher WSI
Web application to reconnect to these databases.
2. Create a Web Service entity under the Domain folder by clicking the Select

an entity to add drop-down list, then selecting Web Service.
3. Click the Web Service item. All the attributes appear on the right side. If

you have multiple WSI instances, click the Select an entity to add drop-
down list and select a context.

4. Enter the attributes.

5. Save the configuration and restart the IStream Publisher WSI Web
application.

Attribute Example Description

simpleSubmissionQueue submit the Submission Queue for requests

replyQueue response the reply queue for web service requests

replyTTL 1440 the number of minutes to keep XML responses in
the database for client requests

responseHandlerURL the URL of the client web service endpoint that
implements the ResponseHander interface, for
example
http://server/wsiclient/services/
ResponseHandler

SDK – WEB SERVICE INTERFACE

166 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

WSI Client Examples
IStream Publisher WSI client examples are in wsi-sdk.zip on the IStream
Publisher installation package.

Note: If you are implementing Response Handler Interface on the .NET platform, ensure
the implementation class has RoutingStyle set to RequestElement and that
the main method uses RPC formatting. See the following C# .NET example:

[SoapDocumentService(RoutingStyle=SoapServiceRoutingStyle.
RequestElement)]
public class ResponseProcessorService : System.Web.Services.WebService
{

...
[WebMethod]
[SoapRpcMethodAttribute("http://wsi.client.edelivery.XYZ.com",

RequestNamespace="http://wsi.client.edelivery.XYZ.com",
ResponseNamespace="http://wsi.client.edelivery.XYZ.com")]

public void processResponse(string digest, string xmlResponse)
{

...
}
...

}

TROUBLESHOOTING THE ISTREAM PUBLISHER WSI

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 167

Troubleshooting the IStream Publisher WSI

• Always start the IBM MQ Series or OpenJMS Agent before starting the
IStream Publisher Web Service.

• When starting the Web Service, check the log file to ensure that the
AsyncResponseReceiver listener has started correctly. Look for errors
such as Listener cannot start.

On WAS, for example, the log file is located in:
C:\Program Files\WebSphere\AppServer\logs\server1\
SystemOut.log

• Ensure that the IStream Publisher WSI and Communicator (formerly called
Correspondence) are not using the same response queue, otherwise the
response may be processed by the wrong application.

• Ensure that the IStream Publisher Web Service JDBC provider is set up
correctly, and test that the connection is successful.

• The Web Service is designed to prevent the execution of the same request
more than once. However, if you want to execute the same request more
than once, simply to add a space to the XML request so that the system can
generate a unique digest.

IStream Publisher WSI Log files
WSI can write system messages to the following log files.

wsi.log
This log file captures events of IStream Publisher WSI activities.

Default location: C:\Whitehill\[IStream Publisher install
folder]\logs\wsi.log

There are five debug levels: DEBUG, INFO, WARN, ERROR, and FATAL. If you
change the log level in
[IStream Publisher install folder]\tomcat\webapps\wsi\
WEB-INF\classes\log4j.properties

to DEBUG, then all debug information will be recorded in wsi.log.

Deployed Application Server JVM Log Files
The location of these log files depends on the specific application server.

For example, for WAS, the default location for these files is:
[WebSphere install folder]\AppServer\logs\server1\

The files are SystemOut.log and System Err.log.

SDK – WEB SERVICE INTERFACE

168 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 169

Appendix A
Reference Material – Samples

This appendix contains code samples that are referenced from other sections of
this document, and includes describes:

• Sample Deliver-to-Email Request on page 170

• Sample Aggregate Request on page 171

• Header Page Template Example on page 173

• Interactive, Batch, and Embedded XML Data on page 174

REFERENCE MATERIAL – SAMPLES

170 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Sample Deliver-to-Email Request

<deliver-to-email subject="Test Subject" priority="normal" >
<body-source>
<source url="ftp://{ftp_domain}/{path} emailbody.txt"

ContentType="text/plain">
<credentials user="{ftp_user}" password="${ftp_pwd}"/>
</source>

 </body-source>
 <sender

name="1st Submitter"
emailAddress="{SenderEmail}" />

 <receiver
name="1st Receiver"
emailAddress="{ReceiverEmail}"
type="to" />

 <attachment>
<source
url="ftp://{ftp_user}:{ftp_pwd}@{ftp_domain}/path

document.doc"
ContentType="application/msword" />

 </attachment>
</deliver-to-email>

SAMPLE AGGREGATE REQUEST

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 171

Sample Aggregate Request

This request will generate to DOC, render DOC to PDF, render PDF to PCL, and
render DOC to HTML.

Sample Aggregate Request
<request-aggregate>

<request>

<generate-calligo-document>
<calligo-sourceUISR="ModelDoc_Infosource:'ModelDocument.CMS'"
 docType="cms"/>

<destination
url="ftp://{ftp_user}:{ftp_password}@{ftp_domain}/{path}/
document.doc"/>

<key-data name="policy" value="12345" type="string"/>

</generate-calligo-document>
 </request>

<dependent-aggregate type="render-Word-to-PDF">
<request>

<render-Word-to-PDF>
<source
url="ftp://{ftp_user}:{ftp_password}@{ftp_domain}/{path}/
document.doc"/>

<destination
url="ftp://{ftp_user}:{ftp_password}@{ftp_domain}/{path}/

document.pdf"/>

<output-name>PDF Compatible Printer Driver</output-name>
<macro name="UpdateFields" type="word"/>

</render-Word-to-PDF>
 </request>

<dependent-aggregate type="render-PDF-to-PCL">
<request>

<render-PDF-to-PCL>
<source url="ftp://{ftp_user}:{ftp_password}@{ftp_domain}/
{path}/document.pdf"/>

<destination url="ftp://{ftp_user}:{ftp_password}@{ftp_domain}/
{path}/document.pcl"/>

<output-name>HPLJIII</output-name>
</render-PDF-to-PCL>

</request>

<service-queue>

REFERENCE MATERIAL – SAMPLES

172 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

<queue name="{ServiceQueue}" type="Name"/>
</service-queue>

<reply-to-queue>

<queue name="{ResponseQueue}" type="Name"/>
</reply-to-queue>
</dependent-aggregate>

<service-queue>
<queue name="{ServiceQueue}" type="Name"/>

</service-queue>

<reply-to-queue>
<queue name="{ResponseQueue}" type="Name"/>

</reply-to-queue>
</dependent-aggregate>

<dependent-aggregate type="render-Word-to-HTML">
<request>

<render-Word-to-HTML>
 <source url="ftp://{ftp_user}:{ftp_password}@{ftp_domain}/
{path}/document.doc"/>

<destination url="ftp://{ftp_user}:{ftp_password}@{ftp_domain}/
{path}/document.htm"/>

<macro name="UpdateFields" type="word"/>
</render-Word-to-HTML>

</request>

<service-queue>
<queue name="{ServiceQueue}" type="Name"/>

</service-queue>

<reply-to-queue>
<queue name="{ResponseQueue}" type="Name"/>

</reply-to-queue>
</dependent-aggregate>
</request-aggregate>

HEADER PAGE TEMPLATE EXAMPLE

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 173

Header Page Template Example

{sequence number}

{job-name}

Distribution Instructions:

{distribution-instructions}

{message}

Job Number: {job-number}

Job Submit Date: {job-submit-date}

Job Submit Time: {job-submit-time}

REFERENCE MATERIAL – SAMPLES

174 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Interactive, Batch, and Embedded XML Data

Interactive Mode
In the example below, the XML file in the referenced data is in Interactive mode,
meaning: one XML file per document generation.
<generate-calligo-document>

<calligo-source
UISR="ModelDocuments:LTC_Rate_Increase_Letter.CMS"
docType="cms"/>

<destination url="ftp://host/destination/
LTC_Rate_Increase_Letter.doc">

<credentials user="ftp_user" password="ftp_password"/>
</destination>

<generation-data name="infosource_location">
<source url="file://domain/share/source/2.xml"
deleteAfterExecution="success"/>

</generation-data>

</generate-calligo-document>

Here, the name attribute in the xml-data-def element is the name of the
location of the XML file which references key data.

Example: QUERY "FILE=" + infosource_location, "XMLInfoSource")

Batch
Batch data has one XML file for many different document generations, each of
which is separated by a unique JOB ID. Using Batch referenced data would result
in the <xml-data> section being different than the previous example, as follows:
<generate-calligo-document>

<calligo-source
UISR="ModelDocuments:LTC_Rate_Increase_Letter.CMS"
docType="cms"/>

<destination url="ftp://host/destination/
LTC_Rate_Increase_Letter.doc">

<credentials user="ftp_user" password="ftp_password"/>
</destination>

<key-data name="$jobIDkey" value="2" />
<generation-data name="infosource_location">

<source url="file://domain/share/source/
2Batch.xml"/>

</generation-data>
</generate-calligo-document>

INTERACTIVE, BATCH, AND EMBEDDED XML DATA

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 175

Here, the name attribute in the xml-data-def element is the name of the
location of XML file which references key data. The name attribute in the xml-
data element is the name of the key data to be replaced with the value specified
in the attribute jobID.

Example: QUERY "FILE=" + infosource_location + ";jobid=" + $jobIDkey,
"XMLInfoSource")

Embedded Data
Embedding data encloses existing data “as-is” for generation in the XML file. As
with referenced data, the name element is used to specify the key data that will be
replaced with the embedded data. All of the data for generation must be embedded
in the request.
<generate-calligo-document>

<calligo-source
UISR="ModelDocuments:LTC_Rate_Increase_Letter.CMS"
docType="cms"/>

<destination url="ftp://host/destination/
LTC_Rate_Increase_Letter.doc">

<credentials user="ftp_user" password="ftp_password"/>
</destination>

<generation-data name="infosource_location">
<job-data>
<?xml version="1.0"?>
<interactive>
<PolicyNumber
type="string">0764344444</
PolicyNumber>
<NewPremium
type="double">404.68</
NewPremium>
<EffectiveDate type="string">12/
15/2001</EffectiveDate>
<CompanyCode
type="string">01</
CompanyCode>
<SystemId type="string">23</
SystemId><Entity>
<TaxId type="array">
<row type="string"/>
<row type="string"/>
<row type="string"/>
<row type="string"/>
<row type="string">
555555555</row>
<row type="string"
>555555556</row>

REFERENCE MATERIAL – SAMPLES

176 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

</TaxId>
<TaxIdType type="array">
<row type="string"/>
<row type="string"/>
<row type="string"/>
<row type="string"/>
<row type="string">
undefined</row>
<row type="string">
undefined</row>
</TaxIdType>
</Entity>
</interactive>
</job-data>

</generation-data>
</generate-calligo-document>

Here, the name attribute in the xml-data-def element is the name of the
location of XML file which references key data.

Example: QUERY "FILE=" + infosource_location, "XMLInfoSource")

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 177

Appendix B
Glossary

A – C – D – E – I – J – M – O – P – Q – R – S – T – U – W

A
Administrative Command

A request to control and administer IStream Publisher components such as
start, stop, or queryState.

Admin Queue
A Queue used to store administrative commands.

Agent
IStream Publisher uses agents to control and manage the functioning of the
system.

Aggregate Request
A type of Composite Request where its component Simple Requests are
specified in the body of the composite in a tree-like structure. The hierarchy
they form represents their processing dependencies. Each request spawned
from an aggregate request or Composite Request has a main request ID and an
aggregate or composite request ID in addition to its own request ID. When
tracing an aggregate or composite request there are multiple responses, one for
each simple request.

Aggregate Service
A type of Service used when one or more Simple Services are required in a
particular order.

Application Programming Interface (API)
A set of routines, protocols, and tools for building software applications. A
good API makes it easier to develop a program by providing all the relevant
building blocks.

GLOSSARY

178 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

C
Calligo Document

The previous name for an IStream Document.

Composite Request
A Request containing more than one requests.

Completion Queue
The Queue into which the Simple Service places a message to inform the
Distribution Service that the processing of the Task Graph is now complete.

Component
A separate, functioning area of the IStream Publisher system,

Console
A front-end application used to send administrative commands to IStream
Publisher.

Console Database
The database from which the IStream Publisher components directly retrieve
their configuration.

Content Service
Provides access to content generated by the IStream Document Assembly
Service.

Coordinated Universal Time (UTC)
A time scale, based on the second (SI), as defined and recommended by the
CCIR, and maintained by the Bureau International des Poids et Mesures
(BIPM).

Component Object Model (COM)
A model for binary code developed by Microsoft. The Component Object
Model (COM) enables programmers to develop objects that can be accessed
by any COM-compliant application. Both OLE and ActiveX are based on
COM.

D
Delivery Channel

Represents a physical device that can transmit information in printed form
(print, fax) or electronic form (e-mail, repository).

Delivery Package
The package of Recipient Items after rendering and before they are about to be
delivered to a Delivery Channel.

Delivery Preference
A method of the recipient that controls the default settings for how a Request
will be delivered for that recipient.

Delivery Service

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 179

All functionality related to delivering the content to the recipients. Once
content has been extracted and rendered (if applicable), the final step in the
distribution process is to deliver the content to the recipients. The following
methods are available to deliver content: Repository, Printer, E-mail and Fax.

Distribution Event
An event that occurs every time the processing of a Distribution Request
reaches a predetermined point where specific action should be taken or where
customization of the distribution process itself is possible.

Distribution Item
One of the documents or files that make up the Distribution Package.

Distribution Package
The full set of interrelated Distribution Item documents that make up the
subject of the Document Distribution process.

Distribution Request
A request to distribute a package of interrelated documents to a group of
recipients through various Delivery Channels. The Distribution Request is a
Composite Request.

Distribution Service
A composite service that provides document distribution functionality invoked
through a Distribution Request. The process of document distribution is
defined as the selective delivery of a package of interrelated documents to
multiple recipients, through various Delivery Channels.

Distribution Service Queue
The Queue that services all Distribution Requests.

Document Distribution
Consists of the distribution of a package of business interrelated documents to
a list of recipients, in various formats and through different Delivery Channels.

Document Management System (DMS)
A multi-dimensional or hyperlinked organization of documents.

Domain Database
The database to which Request Log Events are logged.

E
Event Handler

The Event Handler is invoked and executed following the occurrence of the
event to which it is associated.

I
InfoSource

IStream InfoSources are specific to the IStream Assembly Engine and are used
to reference generated IStream documents or model documents.

GLOSSARY

180 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Instant Delivery
An operating mode for Delivery Channels. In this mode, the actual delivery for
every item in the Delivery Package can proceed as soon as the item becomes
available and a delivery item ready event is raised.

IStream Document
A document generated from a component in IStream Document Manager.
Formerly called a Calligo document.

J
Java Message Service (JMS)

An application program interface (API) from Sun Microsystems that supports
the formal communication known as messaging between computers in a
network. Sun’s JMS provides a common interface to standard messaging
protocols and also to special messaging services in support of Java programs.

M
Multipurpose Internet Mail Extensions (MIME)

MIME is a specification for formatting non-ASCII messages so that they can
be sent over the Internet. Many e-mail clients now support MIME, which
enables them to send and receive graphics, audio, and video files via the
Internet mail system. In addition, MIME supports messages in character sets
other than ASCII.

O
Open Database Connectivity (ODBC)

Open DataBase Connectivity is a standard database access method developed
by Microsoft Corporation. The goal of ODBC is to make it possible to access
any data from any application, regardless of which database management
system (DBMS) is handling the data. ODBC manages this by inserting a
middle layer, called a database driver, between an application and the DBMS.
The purpose of this layer is to translate the application’s data queries into
commands that the DBMS understands. For this to work, both the application
and the DBMS must be ODBC-compliant – that is, the application must be
capable of issuing ODBC commands and the DBMS must be capable of
responding to them.

P
Public Admin Queue

The Queue from which an Admin system using JMS messages submits
administrative requests to IStream Publisher. IStream Publisher Console does
not require this queue since it communicates to the system using RMI.

Q
Queue

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 181

The area where messages (or requests) are sent to.

Queue Set
A logical set of Submission Service, Simple Service and Distribution Service
Queues.

Queue Set Reference
A reference to a Queue Set within a Worker. It contains the number of listeners
and the name of the Queue Set.

R
Recipient

A person or an organization to which the items in the Distribution Package are
addressed. Each recipient declares preferences for the delivery methods and
formats to be used. Other business process specific information can be
attached as metadata, for example, the name, title, or contact.
Recipients are grouped together into a collection also called recipients. This
provides a place to attach metadata that is common to all recipients.
The list of recipients can be ordered by assigning a delivery order to each
recipient. Recipients where a delivery order is not specified are processed after
all of those for which a delivery order is specified.

Recipient Item
Recipient Items as defined in the Recipient Package are sent through all
Delivery Channels, as defined by the delivery-preferences setting.
For example, if a Delivery Preference is a preference-fax or a
preference-email, it is sent as a single delivery. That is, one e-mail or fax
request is sent per recipient package, and all recipient items are sent as
attachments in it.
For preference-printer or preference-repository, there will be
multiple delivery requests – one per recipient item. An example of multiple
delivery requests per recipient item is a standard print request.

Recipient Package
A subset of the Distribution Package that contains only the items addressed to
a particular recipient.

Remote Method Invocation (RMI)
The action of invoking a method of a remote interface on a remote object. A
method invocation on a remote object has the same syntax as a method
invocation on a local object.

Rendering Request
A request for rendering from one particular format to another.

Rendering Service
Once content has been generated, the next step is to transform the content from
its current format into a different format. The formats include: Microsoft
Word, HTML, PCL, PDF, and TIFF.

Repository API

GLOSSARY

182 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

The API for accessing the repository.

Request
A specific set of instructions to perform a task within the IStream Publisher
system. See Aggregate Request, Composite Request, Distribution Request,
Rendering Request, Service Request, and Simple Request.

Request Log
A facility used to log information about the state of all Requests currently in
the system. It is made up of the Request, ErrorInfo, Status, and
StatusOrder tables.

Request Log Event
An action that occurs in the IStream Publisher system when processing a
request. Request log events are stored in the Domain Database.

Request Metadata
Custom information contained in the Distribution Request, for the use of the
Event Handlers. The metadata associated with the Distribution Request itself
as well as that associated with the recipients can be obtained as an instance of
the Metadata class. From this, the metadata can be accessed as an XML string
using the toXMLString() method.

Response
A message that IStream Publisher components send to Service Response
Queues as the result of the execution of functional or administrative
commands.

Response Queue
A Queue where the service will place messages in response to Service Request
messages. The queue is designated by the submitter of the Service Request.

S
Service

A generic name for both Simple and Composite Services. See also Composite
Request and Simple Service.

Service Manager
The component that retrieve requests from a Service Queue and selects the
appropriate service to process them.

Service Manager Listener
One of the many threads on which a Service Manager can process requests
from a Service Queue.

Service Queue
A Queue in the JMS Server that is used to store Service Requests.

Service Request
A Simple Request or Composite Request.

Simple Mail Transfer Protocol (SMTP)
A protocol for sending e-mail messages between servers.

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 183

Simple Request
A request to execute a single document-related operation, such as generating a
document, rendering from one particular format to another, delivering through
a particular channel.

Simple Service
A part of the system functionality that performs a well-defined document
distribution function. The service can be invoked through a Service Request.

Submission Service
The Queue to which messages are submitted.

Sub-Request
A sub-tree of an Aggregate Request. It can be either a nested tree of requests,
or a just a single Simple Request.

Synchronized Delivery
An operating mode for Delivery Channels. In this mode, all items in a Delivery
Package must first be accumulated and available and a “delivery package
ready” event must be raised before the actual delivery can begin.

T
Task

An operation that must be performed as part of the processing of a Distribution
Request. The operation consists of the invocation of a Simple Service.

Task Graph
A graph, with nodes that represent tasks, events and Event Handlers, and with
edges that represent transitions and dependencies between the nodes. Task
graphs represent general computation jobs which have been decomposed into
modules called tasks that are executed according to some precedence
constraints, such as a distribution of the overall completion time.

Test Console
An application that allows you to create, save and manually submit requests to
IStream Publisher, as well as monitor the Queues. In doing so, you are
verifying that your requests and IStream Publisher are working properly.

Transform Service
A service that allows Transform applications to be called from a request using
a command interface.

U
Universal Information Service Resource (UISR)

A method for specifying the location of IStream documents.

Universal Naming Convention or Uniform Naming Convention (UNC)
A PC format for specifying the location of resources on a local-area network
(LAN). UNC uses the following format:
\\server-name\shared-resource-pathname

GLOSSARY

184 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Uniform Resource Locator (URL)
The global address of documents and other resources on the Internet. The first
part of the address indicates what protocol to use, and the second part specifies
the IP address or the domain name where the resource is located.

Utility Service
A set of standard services provided with IStream Publisher, including Run
Word macro, Concatenate PCL streams and Delete files.

W
Worker

The IStream Publisher component responsible for processing requests.

Worker Machine
A computer on which Service Managers and services run. Workers are the
system’s basic unit of scalability.

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 185

Appendix C
SDK - Encrypted Credentials

This chapter describes:

• Passing Credentials Securely on page 186

• Encrypted Credentials on page 187

• Encrypted Data on page 188

• Security Keys on page 189

• Example of a Credentials Set on page 190

SDK - ENCRYPTED CREDENTIALS

186 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Passing Credentials Securely

To allow passing credentials (user name and password) in a secure manner in the
XML request, IStream Publisher supports passing of the security sensitive
information in encrypted form.

The only form of encryption that IStream Publisher will initially support will be
symmetric key encryption. This means that both the client submitting the message
that contains encrypted credentials and IStream Publisher will have to share the
same key. The client uses it to encrypt the credentials and IStream Publisher uses
it to decrypt them. The management of the key will be addressed by the IStream
Publisher installation and deployment specification.

The Java Cryptography Extension
IStream Publisher uses the Java Cryptography Extension for credentials
encryption/decryption. More specifically it supports the Sun JCE provider version
1.2 for JCE 1.2.1. This provider implements the following symmetric key
algorithms: DES, Triple DES, Blowfish and PBE. These algorithms are
referenced in the XML element encryption-method as DES, DESede, Blowfish
and PBEWithMD5AndDES respectively.

ENCRYPTED CREDENTIALS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 187

Encrypted Credentials

Encrypted credentials in the Distribution Request are contained within an element
named <encrypted-credentials>. The structure of this element is presented below:
<!ELEMENT encrypted-credentials (encrypted-data)>

The <encrypted-credentials> element contains only an <encrypted-data> element.
This represents a block of cipher data and will be used in the future more
generally for any kind of encrypted information.

SDK - ENCRYPTED CREDENTIALS

188 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Encrypted Data

The <encrypted-data> element contains a block of encrypted information.
<!ELEMENT encrypted-data (encryption-method, key-info?,
cipher-data)>
<!ATTLIST encrypted-data

id ID #IMPLIED>

Encryption Method
The encryption method defines the parameters use for the encryption of the data.
<!ELEMENT encryption-method EMPTY>
<!ATTLIST encryption-method

algorithm CDATA #REQUIRED >

The algorithm attribute contains not only the name of the encryption algorithm
used but also the feedback mode and the padding scheme. The feedback modes
and padding schemes allowed are dependent on the encryption algorithm used.

The structure of the string in the algorithm attribute is like this: "algorithm/mode/
padding" or just "algorithm" case in which default values are used for mode and
padding.

key-info Parameter
The <key-info> element identifies the key that has been used for encryption.
<!ELEMENT key-info EMPTY>
<!ATTLIST key-info

keyName CDATA #REQUIRED>

IStream Publisher is configured possibly with many symmetric keys at
deployment time. Keys are generated at deployment and multiple keys can be
generated for the use of multiple, different clients. Each key is assigned a name
and the client must refer to the key that it used to encrypt the credentials by its
name.

Cipher-Data Parameter
This element contains the actual encrypted information (cipher data).
<!ELEMENT cipher-data (cipher-value)>
<!ELEMENT cipher-value (#PCDATA)>

Cipher data is base64-encoded sequence contained within the <cipher-value>
element.

SECURITY KEYS

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 189

Security Keys

Security keys can be used in IStream Publisher when you want to use encrypted
credentials as parameters for source and destination files.

The keys can be generated by a client application and added to a static
IStream Publisher configuration at any time.

Every key has three main parts:

1. algorithm name (used in <encryption-method algorithm="value"/
>, can be DES, DESede, PBEWithMD5AndDES or Blowfish).

2. key name (used in <key-info keyName="value"/>, can be any
alphanumeric value)

3. key data (actual key, which will be used for encryption by you and
decryption by IStream Publisher itself).

For a IStream Publisher installation using IStream Publisher Console, the location
of the Security Keys in the Console database is

Domain/Settings/SecuritySettings/Algorithm[algorithm name]/KeyData[key
name]/Value=key data

where

• algorithm name is one supported by IStream Publisher (DES, DESede,
Blowfish, or PBEWithMD5AndDES)

• key name is any name used in the element, <key-info> in <encrypted-
credentials>

• key data is the actual key used for encryption in base 64 encoding.

SDK - ENCRYPTED CREDENTIALS

190 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

Example of a Credentials Set

Here is an example of a set of credentials passed in a Distribution Request along
with one of the items of the Distribution Package:
<distribution-request>

<encrypted-key id="X1"
carriedKeyName="Credentials">

<encryption-method algorithm="DSA"/>
<key-info keyName="E-Delivery Public"/>

</encrypted-key>

<!-- the rest of the request ommited for brevity -->

<source URL="ftp://host/location/filename.tiff"
contentType="image/tiff"

<encrypted-credentials>
<encrypted-data>

<encryption-method algorithm="DES/CFB/
NoPadding"/>

<key-info keyName="session key"/>
</encrypted-data>
<cipher-data>

<cipher-value>AJD3242D53EW34JTWK</cipher-
value>

</cipher-data>
</encrypted-credentials>

</source>

</distribution-request>

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 191

INDEX

A
aggregate

request
limitations, 47
processing, 47

service XML request element, 17
architecture, 111
asynchronous

call
call back, 162
cancellation, 163
failure, 162
flow, 161

invocation
diagram and process, 161
web service interface, 158

B
batch, 174

C
call back flow, asynchronous, 162
Calligo

item, 59
references to, 12

Calligo Extreme XML InfoSource, see IStream XML
InfoSource,
cancel flow, asynchronous, 163
cancelled requests, 88
cipher-data parameter, 188
client

API, 104
configuration, 104
interfaces, 97

exceptions, 103
client.xml, 105
clientjmsqueues.xml, 105
clientsecurity.xml, 106
concatenating

PCL files, 151
PCL streams, 41, 75
PS streams, 43, 77

configuration
files, 104

default, 106
implementation, 106

connection
creating, 117
factory, 116

interface, 116
opening, 117

contacting Skywire Software for help, 14
content service, 23
contenttype

details, 54
distribution request, 53
issue, 64
parameter, 61, 65

cover pages, 91
credentials

deleting files, 45
set example, 190

critical event handlers, 72
custom fields, adding, 153
custom service deployment, 135

D
DAOfactory, 152
data access objects, 138, 151
decoupling the client, 111
default configuration files, 106
deleting

distribution items, 60
files, 44

delivering
CLG files through InfoSources, 19
content to a repository, 36
cover pages to a fax and printer, 92

delivery
channels, 67

and delivery packages, 138
settings, 68

items
ready, 70
removing, 145

items, adding, 145
package ready, 70
packages, 138, 144
preference considerations, 63
service, 36
to repository, 66
units, logical vs. physical, 64

deployed application server JVM log files, 167
deployment, 157
detailed request parameters, 22
distribution

complete, 71
item, 142

INDEX

192 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

description and syntax, 60
overview, 59
parameters, 61

package, 141
overview, 59
ready, 70

request, 88, 140
API, 137
completion, 108
completion, notification of, 108
entity, 141
event handler example, 145
failure policy, 56
metadata, 74
overview, 53
sample, 80
structure, 55
troubleshooting, 57
XML-based, 53

service, 52, 57
cleanup, 145
extending, 137

state DAO, 151
distributor

factory, 97
creating an instance, 97
interface, 98

interface, 98
distributor.xsd, 16
document conventions, 10
documentation

Publisher, 13
duplexing options, 42, 76

E
element, 66
embedded

data, 175
XML, 25

with plain data, 26
encrypted

credentials, 186, 187
data, 188

encryption
flags, specifying, 44
method, 188

entities, 138, 139
error

log levels, 89
messages, 58

errorinfo table, 87
event handlers

concatenate PCL streams, 75
critical, 72

distribution request
metadata, 74
processing, 70

distribution request, in, 138
IDs, 147
implementation, 148
multiple, 72
overview, 137
response, 138
with proxy, 150
without a proxy, 149

events, 70
supported services, 71

F
fail fast failure policy, 56
failed requests, 88
failure flow asynchronous call, 162
files, referencing, 18
flows of WSI calls, 159
folder sources, 45
functionality

categories, 112
determining supported, 111

G
generate Calligo document

XML sample, 26
generate Calligo document service, 23
generate IStream document service see generate Calligo
document service
glossary, 177
graphics, 29
guide overview, 9

H
header page, 75

template example, 173
help, contacting Skywire Software, 14
high and low parts, 84

I
identifiers, 125
implementation, 151
installation, 157
instant delivery, 67
interactive

batch
embedded XML data, 174

mode, 174
IStream

XML InfoSource, 23
IStream document item, 59

INDEX

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 193

item delivered, 71

J
java

code, 130, 135
example, 130

cryptography extension, 186
JMS message header and properties, 20
job, single, into multiple streams, 75
JVM log files, 167

K
key-info parameter, 188

L
live request message status, 84
logging, 106
logical vs. physical delivery units, 64
loopback service, 58
low and high parts, 84

M
mapping, 88
metadata

accessing, 141
elements, 74

MIME types, 54
monitoring requests, 83
multiple

event handlers, 72
streams into one job, 75

multithreading, 117

N
non-critical, 72
normal flow

asynchronous call, 161
synchronous call, 159

notification of distribution request completion, 108

O
object

metadata, 122
relationships, 140

opening the connection, 117
operating mode, 67, 137
optional parameters, 42, 76
overview

Publisher, 11
WSI architecture, 157

P
package delivered, 71

parameters, 16
path, 115
perseverance failure policy, 56
physical vs. delivery units, 64
Publisher

overview, 11

Q
query, 115
queues, 11

R
recipient

description, 62
element, 62
entities, 142
package, 64

ready, 70
parameters example, 63
relationships, 143

reference language, 113
context, 114

referenced
XML data, 24

code samples, 25
embedded, 24

referencing files, 18
RefID example, 63
rendering

IStream doc to Word, 35
PDF to PCL, 33
PDF to PS, 33
PDF to TIFF, 34
service XML sample, 32
services, 28, 65
TIFF to

PCL, 34
PDF, 34
PS, 35

Word to
HTML, 28
PCL, 29
PDF, 30
PS, 32
TIFF, 32
TXT, 32

render-param subelement, 65
renditions, 124
repository

adapter, adding, 129
API overview, 110
file, 60
folder, 60

INDEX

194 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

interface, 119
objects, 121

accessing, 111
content, 128

request
log

agent configuration, modifying, 153
database, 85
database table, 153
message, customizing, 153
table, customizing, 153

messages, 84
metadata, 21
monitoring, 83
table, 85
tracking, 83
validating, 17

requests
queues and, 11

required properties, 116
response

exceptionlistener interface, 100
handler interface, 158
listener interface, 100
parameters, detailed, 22

resubmitting failed or cancelled requests, 88
retry flow - synchronous call, 160
run Word macro, 41

S
sample, 169

aggregate request, 171
deliver-to-email, 170
distributor configuration, 108
structure, 135
XML fragments, 24

schema name, 113
SDK overview, 96
security keys, 189
sequence number, 72
services, 100

and events, 71
interface, 149
invocation sequence, 101
request example, 132

session, 99
interface, 99

simple service, 15
creating and adding, 134
XML request elements, 16

simple use case, 134
Skywire Software, contacting for help, 14
status table, 86
statusorder table, 87

streams, 75
header page, 41

structure, sample, 135
support checklist, 14
synchronized delivery, 67
synchronous

call, 159
call with retry, 160
invocation, 158, 159

T
technical support, 14
template URL, 42, 76
tracking request, 83
Transform service

details of, 49
MIME types, 54
using in a distribution request, 79

troubleshooting
distribution request, 57
WSI, 167

U
uniform resource identifiers, 113
unique request ID, 84
updating delivery items, 137, 145
URI examples, 115
URL

URLconnection, 127
URLstreamhandler, 126
URLstreamhandlerfactory, 125

utility services, 41

V
versions, 123

W
web services

applications, 156
interface, see WSI

wildcards, 45, 60
Word

table of contents, updating, 28
to HTML related files, 28

WSI
architecture, 157
benefits, 156
client examples, 166
configuring, 165
configuring in the console, 165
flow of calls, 159
general information, 157
log files, 167

INDEX

ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE 195

methods, 158
overview, 156
troubleshooting, 167
workflow, 158
wsdl, 164

WSI.log, 167

X
XML InfoSource, 23
XML schema, 16

INDEX

196 ISTREAM PUBLISHER VERSION 4.2 INTERFACE REFERENCE GUIDE

	Contents
	Overview
	Document Conventions
	IStream Publisher
	Queues and Requests

	IStream Publisher Documentation
	Contacting Skywire Software for Help
	Contact Information
	Support Checklist

	Simple Services
	Parameters and XML Schema
	Distributor.xsd
	Validating Requests

	Referencing Files
	Delivering CLG Files through InfoSources

	JMS Message Header and Properties
	Request Metadata

	Detailed Response Parameters
	Content Service
	Generate Calligo Document Service Overview
	Using Referenced and Embedded XML Data
	Generate IStream Document XML Sample

	Rendering Services
	Rendering a Microsoft Word Document to HTML
	Rendering a Microsoft Word Document to PCL
	Rendering a Microsoft Word Document to PDF
	Rendering a Microsoft Word Document to PostScript
	Rendering Service XML Sample
	Rendering a Microsoft Word Document to TIFF
	Rendering a Microsoft Word Document to TXT/RTF
	Rendering a PDF Document to PCL
	Rendering a PDF Document to PS
	Rendering a PDF Document to TIFF
	Rendering a TIFF Image to PCL
	Rendering a TIFF Image to PDF
	Rendering a TIFF Image to Postscript
	Rendering an IStream Document to Microsoft Word

	Delivery Service
	Delivering Content to a Repository
	Delivering Content to a Printer
	Delivering Content to an E-mail Server
	Delivering Content to a Fax Server
	Delivery Service Request XML Sample

	Utility Services
	Run Word Macro
	Concatenating PCL Streams
	Concatenating PDF Files
	Concatenating PS Streams
	Encrypting PDF Documents
	Deleting Files and Folders

	Aggregate Request
	Aggregate Request Processing
	Aggregate Request Limitations

	The Transform Service
	Sample Request
	General Considerations
	Postscript File with PJL Commands

	Distribution Service
	The Distribution Service
	The Distribution Request
	The Distribution Request Structure
	IStream Publisher Distribution Request Failure Policy
	Troubleshooting the Distribution Request

	The Distribution Package
	The Distribution Item

	Recipients
	Recipient
	Recipient Package

	Delivery Channels
	Operating Modes

	Event Handlers
	Events
	Distribution Request Metadata
	Concatenating PCL Streams
	Concatenating PS Streams

	Calling the Transform Service
	A Distribution Request Example

	Tracking and Monitoring Requests
	Request Messages
	Unique Request IDs
	Live Request Message Status

	The Request Log Table
	Request Table
	The Status Table
	The ErrorInfo Table
	The StatusOrder Table

	Resubmitting a Failed or Canceled Request
	Distribution Requests
	Mapping

	Error Log Levels

	Creating and Using Cover Pages
	Delivering Cover Pages to Fax and Printer

	SDK - The IStream Publisher Client API
	The IStream Publisher Client API
	Client API Interfaces
	Distributor Factory
	Session
	The ResponseListener and ResponseExceptionListener Interfaces
	Services

	IStream Publisher Client Exceptions
	Configuring the IStream Publisher Client API
	Configuration Files
	Configuration Implementation
	Notification of Request Completion

	SDK - Repository API
	The Repository API
	The API Architecture
	Categories of Functionality

	Reference Language
	Uniform Resource Identifiers
	Query

	The Connection Interface
	Connection Factory
	Creating a Connection

	The Repository Interface
	Repository Objects
	Object Metadata
	Versions
	Renditions

	Identifiers
	URLStreamHandlerFactory
	URLStreamHandler
	URLConnection
	Content

	Adding a New Repository Adapter
	Java Code
	Service Request Example

	SDK - System Extensibility
	Creating and Adding a Simple Service
	Extending the Distribution Service
	Event Handlers
	Event Handlers in the Distribution Request
	Distribution Request with Event Handler Example
	Distribution State DAO

	Customizing a Request Log Message
	Customizing the Request Log Table
	Adding Custom Fields
	The Request Log Table

	SDK - Web Service Interface
	The Web Services Interface
	About Web Service Applications
	IStream Publisher WSI Benefits

	IStream Publisher WSI Architecture
	General Information
	Overview of WSI Architecture
	Web Services Interface Methods
	Flows of IStream Publisher WSI Calls
	WSI WSDL

	Configuring the IStream Publisher WSI in the Console
	WSI Client Examples

	Troubleshooting the IStream Publisher WSI
	IStream Publisher WSI Log files

	Reference Material - Samples
	Sample Deliver-to-Email Request
	Sample Aggregate Request
	Sample Aggregate Request

	Header Page Template Example
	Interactive, Batch, and Embedded XML Data
	Interactive Mode
	Batch
	Embedded Data

	Glossary
	SDK - Encrypted Credentials
	Passing Credentials Securely
	The Java Cryptography Extension

	Encrypted Credentials
	Encrypted Data
	Encryption Method
	key-info Parameter
	Cipher-Data Parameter

	Security Keys
	Example of a Credentials Set

	Index

