
Start

Oracle® Documaker

DAL Reference
version 11.4

Part number: E14902-01

May 2009

Copyright © 2009, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable,
the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be
the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for
the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible
for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or
damage of any sort that you may incur from dealing with any third party.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

s

Notice

THIRD PARTY SOFTWARE NOTICES

This product includes software developed by Apache Software Foundation (http://www.apache.org/).
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution under the Generic
BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages arising from the use of this software.
Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.
Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-1999 Erwin
Tratar. All rights reserved.
THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN RISK! THE
AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.
THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE
Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer), and others.
(http://www.libpng.org)
The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed or implied,
including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing Authors and Group 42, Inc.
assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages, which may result from the use of the PNG
Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE CRYPTIX
FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE
Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BELIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS
DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved
It also includes materials licensed under Apache 1.1 and the following XPP3 license
THIS SOFTWARE IS PROVIDED "AS IS'" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The Ultimate
Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.
Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version 0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH REGARD TO
IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In no event shall University of
Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever) resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.
Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

ix

Contents

Chapter 1, Using DAL

2 Introduction to DAL

3 Using the Field’s Properties Window

4 Entering Calculations in External Files

4 Formatting the Script

5 Creating a DAL Script Library

7 Executing a DAL Script from a Menu

8 Using INI Options

10 Using Built-In Functions

11 Checking KeyID Entries

14 Grammar and Syntax

14 Assignment Statements

22 Flow Control Statements
26 Using While...Wend Statements

28 BeginSub and EndSub
28 BeginSub
29 EndSub

30 Data Storage Statements

31 Testing DAL Scripts

32 Using the DAL Debugger in Documaker Workstation

33 Runtime Error Messages

35 DAL Script Examples

Chapter 2, Function Reference

41 Overview

42 Bit/Binary Functions

43 Database Functions

44 ODBC Handler

x

45 DB2/2 Handler

46 Creating a Database Handler for an Excel Database

48 Associating Tables with Handlers

49 Accessing Database Fields

50 Setting Up Memory Tables

51 Date Functions

52 Date Formats

58 Documaker Server Functions

59 Documaker Workstation Functions

60 Docupresentment Functions

61 Field Functions

62 Field Formats

63 Numeric Formats

64 Locating Fields

68 File and Path Functions

69 Have Functions

70 INI Functions

71 Graphics Functions

72 Mathematical Functions

73 Miscellaneous Functions

74 Name Functions

75 Page Functions

76 Printer and Recipient Functions

77 Section Functions

78 String Functions

80 Time Functions

80 Time Formats

81 Using the Time Zone Functions

82 ICU Time Zones

88 WIP Functions

89 XML Functions

90 Using DAL XML Functions

xi

91 XML Path Locator

94 Locating Objects

97 Where DAL Functions are Used

109 @

111 ?

113 ABS

114 AddAttachVAR

115 AddBlankPages

117 AddComment

118 AddDocusaveComment

119 AddForm

120 AddForm_Propagate

122 AddImage

125 AddImage_Propagate

127 AddOvFlwSym

128 AFELog

129 Always

130 Append

131 AppendText

133 AppendTxm

135 AppendTxmUnique

138 AppIdxRec

139 ApplyInserts

140 Ask

141 AssignWIP

142 Avg

144 BankRound

145 Beep

146 BitAnd

147 BitClear

148 BitNot

149 BitOr

150 BitRotate

152 BitSet

153 BitShift

xii

155 BitTest

156 BitXor

157 BreakBatch

159 Call

160 Chain

161 CFind

162 ChangeLogo

164 Char

165 CharV

166 CodeInList

167 Complete

168 CompressFlds

170 ConnectFlds

173 CopyForm

174 Count

176 CountRec

177 Cut

178 DashCode

181 Date

182 Date2Date

183 DateAdd

185 DateCnv

187 Day

188 DayName

189 DaysInMonth

190 DaysInYear

191 DBAdd

192 DBClose

193 DBDelete

194 DBFind

196 DBFirstRec

197 DBNextRec

198 DBOpen
199 Creating Variable Length Records from Flat Files

200 DBPrepVars

201 DBUnloadDFD

xiii

202 DBUpdate

204 DDTSourceName

205 Dec2Hex

206 DeFormat

207 DelBlankPages

208 DelField

210 DelForm

211 DelImage

213 DelLogo

214 DelWIP

215 DestroyList

216 DeviceName

218 DiffDate

219 DiffDays

220 DiffHours

221 DiffMinutes

222 DiffMonths

223 DiffSeconds

224 DiffTime

225 DiffYears

227 DupForm

228 EmbedLogo

229 Exists

230 FieldFormat

231 FieldName

233 FieldPrompt

234 FieldRule

236 FieldType

237 FieldX

238 FieldY

239 FileDrive

240 FileExt

241 FileName

242 FilePath

243 Find

244 Format

xiv

245 FormDesc

246 FormName

247 FrenchNumText

248 FullFileName

249 GetAttachVAR

250 GetData

252 GetFormAttrib

254 GetINIBool

256 GetINIString

258 GetListElem

259 GetOvFlwSym

260 GetValue

261 GroupName

262 GVM

263 HaveField

265 HaveForm

266 HaveGroup

267 HaveGVM

268 HaveImage

269 HaveLogo

271 HaveRecip

272 Hex2Dec

273 Hour

274 ImageName

275 ImageRect

277 IncOvFlwSym

278 INI

279 InlineLogo

280 Input

281 Insert

282 INT

283 IsPrintObject

284 IsXMLError

285 JCenter

286 JLeft

287 JRight

xv

288 JustField

290 KickToWIP

292 LeapYear

293 Left

294 LEN

295 ListInList

297 LoadINIFile

298 LoadLib

299 LoadXMLList

300 Logo

302 Lower

303 MailWIP

304 MajorVersion

305 MAX

307 MIN

309 MinorVersion

310 Minute

311 MLEInput

314 MLETranslate

317 MOD

318 Month

319 MonthName

320 MSG

321 NL

322 NUM

323 Numeric

324 NumText

326 PAD

327 PageImage

328 PageInfo

330 PaginateForm

331 ParseListCount

333 ParseListItem

335 PathCreate

336 PathExist

337 POW

xvi

338 Print

339 Print_It

340 PrinterClass

341 PrinterGroup

342 PrinterID

343 PrinterOutputSize

344 PutFormAttrib

346 PutINIBool

348 PutINIString

350 RecipBatch

351 RecipCopyCount

352 RecipientName

353 RecipName

354 Refresh

355 RemoveAttachVAR

356 RenameLogo

357 ResetFld

358 ResetOvFlwSym

359 Retain

360 Right

361 RootName

362 Round

363 RouteWIP

364 RPErrorMsg

365 RPLogMsg

366 RPWarningMsg

367 SaveINIFile

368 SaveWIP

369 Second

370 SetDeviceName

372 SetEdit

374 SetFld

376 SetFont

377 SetFormDesc

378 SetGVM

379 SetImagePos

xvii

381 SetLink

382 SetLogo

383 SetProtect

384 SetRecip

385 SetRequiredFld

386 SetWIPFld

387 Size

388 SlipAppend

389 SlipInsert

390 SpanField

392 SrchData

394 STR

395 STRCompare

397 SUB

398 SUM

400 SuppressBanner

401 Table

403 Time

404 Time2Time

405 TimeAdd

406 TimeZone

407 TimeZone2TimeZone

409 TotalPages

410 TotalSheets

411 TriggerFormName

412 TriggerImageName

413 TriggerRecsPerOvFlw

414 Trim

415 Upper

416 UniqueString

417 UserID

418 UserLvl

419 WeekDay

421 WhatForm

422 WhatGroup

423 WhatImage

xviii

424 WIPExit

425 WIPFld

426 WIPKey1

427 WIPKey2

428 WIPKeyID

429 XMLAttrName

430 XMLAttrValue

431 XMLFind

432 XMLFirst

433 XMLFirstAttrib

434 XMLFirstText

435 XMLGetCurName

436 XMLGetCurText

437 XMLNext

438 XMLNextAttrib

439 XMLNextText

440 XMLNthAttrName

441 XMLNthAttrValue

442 XMLNthText

443 Year

444 YearDay

Chapter 3, Keyword Reference

446 Keyword Table

447 And

448 BeginSub

449 Break

450 Continue

451 Else

452 ElseIf

453 End

454 EndSub

455 Goto

456 If...End

xix

458 Or

459 Return

460 While...Wend

461 Index

xx

1

Chapter 1

Using DAL

This guide provides the information you need to write
calculations for variable fields. Field calculations
simplify data entry.

For example, entry personnel may be required to enter
amounts in three different variable fields. The sum of
these amounts determines a total amount which is
placed in a fourth field.

You can write a field calculation to automatically enter
the amount in the fourth field. Entry personnel do not
have to add the amounts and enter the total.

This chapter discusses:

• Introduction to DAL on page 2

• Using the Field’s Properties Window on page 3

• Entering Calculations in External Files on page 4

• Creating a DAL Script Library on page 5

• Executing a DAL Script from a Menu on page 7

• Using INI Options on page 8

• Using Built-In Functions on page 10

• Checking KeyID Entries on page 11

• Grammar and Syntax on page 14

• Testing DAL Scripts on page 31

• Runtime Error Messages on page 33

• DAL Script Examples on page 35

Chapter 1
Using DAL

2

INTRODUCTION
TO DAL

The language you use for field calculations is called the Document Automation Language
(DAL). The calculation itself is called a script. By using the proper script, you can make
sure the data is processed in the manner you intend. This chapter explains calculation
language and how to write scripts.

To assign a calculation to a field:

• Enter your calculation directly on the field’s Properties window by selecting the
Calculation tab.

After you assign a calculation to a variable field, you have these additional options.
Choose one of the following:

• DAL calc, if you want the system to recalculate the value of the field as soon as you
highlight or enter any field. The system recalculates all Calc scripts for all fields when
you highlight a new field.

• DAL script, if you want the system to recalculate the value in the field when you exit
the field. The script is executed only when you exit the field containing the script
reference and not during any other field actions.

• Disabled, if you do not want to run calculations during Section Check or during
entry. This is a convenient way to disable the script without deleting it from the
Properties window.

NOTE: The SAMPCO sample resources contain a great number of DAL examples and
explanations. Be sure to check out this resource as you create DAL scripts for
your company.

Using the Field’s Properties Window

3

USING THE
FIELD’S

PROPERTIES
WINDOW

You enter calculations for variable fields on the Calculation tab of the field’s Properties
window. Here is a sample calculation:

The calculation language in the Properties window has a particular format. Keep the
following formatting points in mind as you enter your calculation in the Properties
window:

• You can enter up to 512 bytes (or characters) of information for a calculation. For
larger scripts, create them as external files (*.DAL).

• The calculation language is not case sensitive.

• Place comments only on the last line of a calculation. Begin each comment line with
asterisks.

• Place a semicolon (;) at the end of each calculation.

• If you have multiple calculations, separate the calculations with semicolons, as shown
here:

If flag = “y” then return (sum(“field”)); else return (“exclude”);
end;

• Extra space and tab characters within script statements are considered white space.
White space may appear anywhere in the script to improve readability, but is ignored
during the evaluation of the script. Blank lines within external script files are also
considered white space.

NOTE: All space and tab characters inside a string constant are not considered white
space, but rather part of the string.

Calculation Return (@(“Prem Basis1”) * @(“Prem/Ops Rate1”)/100)

Result

Takes the value of a variable field named PremBasis1 multiplies it by the value of
a variable field named Prem/Ops Rate1, divides the product by 100 and places
the result in the current variable field.

Chapter 1
Using DAL

4

ENTERING
CALCULATIONS

IN EXTERNAL
FILES

You can save a calculation script in an external file. External files containing script
calculations are standard ASCII text files. You create and maintain your script files with
any standard text file editor. If you use a word processor, remember to save the script file
as an ASCII text file. The calculation language that you use within an external file is exactly
the same as the language you use in the Properties window.

You may want to use calculations from external script files if your calculations are long or
if you want to use identical calculations for various variable fields in multiple sections. You
must maintain your external script files in the DEFLIB directory of your master resource
library.

To reference an external script file, you must use the CALL or CHAIN functions. The
extension of the external script file is usually specified in your FSISYS.INI file as DAL.
If it is defined in your INI file, you do not have to specify an extension for the file name.

FORMATTING THE SCRIPT

The calculation language in external files has a particular format. Keep the following
formatting points in mind as you enter your calculation in an external file:

• The external script file can contain any number of lines. Each line can be up to 255
characters in length. Each line must end in a carriage return/line feed pair (\r\n).
You can end the file with a CTRL+Z; however, it is not required that you end the file
with CTRL+Z. Most ASCII text editors will handle this automatically.

• Calculation language is not case sensitive. The calculation can be written in either
upper- or lowercase.

• Blank lines can occur anywhere in the file. Blank lines are always ignored as the
calculation is processed. Use spaces, tabs, and blank lines to improve readability.

• You create comment lines in a calculation by placing an asterisk (*) at the beginning
of the line. The system ignores any line which begins with an asterisk during
processing. You can place comments anywhere in the file and use them for any
reason you choose. Comments are typically used to provide explanations of sections
in the file.

Please note that it is not recommended to include comments in the scripts entered
directly onto the Calculation tab of the Properties window. If, however, you do need
to include comments, place them at the end of the calculation.

Calculation Result

Return(Call (“TestCalc”)); Calls a calculation from an external file named TestCalc. Once
completed, control returns to the script that initiated the
function.

Chain(“TestCalc”); Chain executes an external script file but, unlike CALL, does not
return to the script that initiated the procedure. Instead, it
proceeds to the next calculation.

Creating a DAL Script Library

5

CREATING A
DAL SCRIPT

LIBRARY

You can also create libraries of DAL scripts as structured named subroutines. The
libraries which contain these named subroutines are standard ASCII files.

You can create and maintain the libraries with any standard text file editor. If you use a
word processor, just remember to save the file as an ASCII text file.

NOTE: The calculation language you use within a library is exactly the same as the
language you use in the Field Properties window.

The layout of the library is shown here. Each script in the file must begin with BeginSub
and end with EndSub.

BeginSub SCRIPT1

* This script returns #x set to 2 if #x was equal to 1 on enter.

IF (#x = 1) THEN #x = 2;

END;

RETURN (#x);

EndSub

BeginSub Script2

* This script returns a negative one if #y was equal to 5.

if(#y = 5) then Return (-1);

end;

EndSub

BeginSub Parse

* Parse a word from the string “parse_it”

#position = FIND (parse_it, “ “);

word = SUB (parse_it, 1, (#position - 1))

parse_it = CUT (parse_it, 1, #position);

return;

EndSub

In this example, SCRIPT1 is the name of the first script, Script2 is the name of the second
script, and so on.

SCRIPT1, Script2, and Parse are only names, you can use any name you want as long as
it is not the name of a DAL reserved function, statement, or key word such CALL, FIND,
IF, and so on. You can use upper- and lowercase letters in script names.

BeginSub and EndSub must be paired per script. You must have a space between
BeginSub and the script name. For more information on these functions see BeginSub
and EndSub on page 28.

Chapter 1
Using DAL

6

NOTE: If you plan to use the XDB to update (separate) DDT file information, keep in
mind that DAL scripts stored in the data section should follow the requirements
specified for DDT data entry.

This means that if you continue to use separate FAP and DDT files in version
11.0 and higher, the DAL statement separator should be two colons (::) rather
than the normal semicolon (;).

If you use Documaker Studio with the new merged FAP files, you can use a single
semicolon (;) as the statement separator in your rule data. The use of two colons
(::) is no longer required. Note however, that the system will process the two
colon (::) statement separators correctly.

Also keep in mind that when you are entering a script into the AFGJOB.JDT file
— as a PreTransDAL or a PostTransDAL — you must use two colons (::) as the
statement separator. For instance if you write multiple DAL statements into the
data area, you must use two colons (::) as your statement separator.

Loading a DAL library Once a DAL library is loaded, you can reference the scripts in the library by name. You
do not have to use CALL or CHAIN.

For example, assume the DAL library file, EXAMPLE.DAL contains the sub-routine
functions on the previous page and the file has been loaded into cache memory using the
following INI control group and option:

< DALLibraries >

Lib = example.dal

In this example, you reference the sub-routine function name directly: Script1() or
Script2().

If (@(“multiphy_value”) = “ “ Then

Return(Script1())

Else

Return(Script2())

End

You can execute SCRIPT1 or SCRIPT2 or neither after using the LoadLib function. For
more information, see LoadLib on page 298.

NOTE: You should only execute the LoadLib function once. You can execute the scripts
in the library as many times as you wish.

For more information, see Using INI Options on page 8 and LoadLib on page 298.

Executing a DAL Script from a Menu

7

EXECUTING A
DAL SCRIPT

FROM A MENU

You can use the AFEBatchDalProcess MEN.RES option to execute any DAL script from
a menu option. For instance, you can use this option to run a script which batch processes
all of the current WIP for the current user.

To use this option, include a line similar to the one shown here in your MEN.RES file:

MENUITEM "Batch DAL..." 294 "AFEW32->AFEBatchDalProcess""Process
DAL in Batch"

This line tells the system that when a user selects the Batch DAL option, it should execute
the script identified in the following INI option. Make sure your FSIUSER.INI or
FSISYS.INI file includes this control group and option:

< Batch_DAL >

ScriptFile = xxx.DAL

Where xxx is the name of the DAL script you want the system to execute. You must use
the extension DAL.

Here are some examples:

Script name Content Results

COMPLETE.DAL Complete (); Completes each entry in WIP. This is the
same result as if you chose the File,
Complete option.

ASSIGN.DAL AssignWIP (Fanelli); Assigns each entry in WIP to the user ID
Fanelli. This is the same result as if you
chose the Formset, Assign option.

ASSIGN1.DAL If
WIPKey1()=”Account”
then AssignWIP
(Brown);end;

For each entry in WIP whose WIPKey1
equals Account, the script assigns the
documents to the user ID Brown. This is
the same result as if you chose the Formset,
Assign Document option.

Chapter 1
Using DAL

8

USING INI
OPTIONS

You can use several FSISYS.INI file control groups and options to control the way the
system processes DAL functions and scripts. These options let you:

• Purge or retain target variables between form sets.

• Specify the file extension for external DAL scripts.

• Determine which DLL-based DAL functions are automatically registered and
available to your DAL scripts at runtime.

• Specify the name of the DAL script you want to execute.

• Set the title for the DAL runtime tool. For more information about the DAL runtime
tool, see Testing DAL Scripts on page 31.

This table shows the various control groups and options, along with a description of what
you should enter for each option.

Option Explanation

Control control group

FlushSymbols Enter No to maintain the defined target variables and their contents
from the previous form set.
The default is Yes, which tells the system to delete DAL target
variables between form set processing.

DateFmt2To4Year Enter the cutoff year for determining the century. For instance, if
you enter 50 for this option, the system assumes a two-digit year
greater than or equal to 50 should be prefaced by 19.
If you omit this option, the system assumes the current century
when it encounters a two-digit year. All internal date manipulation
is performed using four-digit years.

DAL control group

Ext Enter a period and an extension. The default is DAL.
Use this option to define the file extension used for external DAL
scripts and file names.

DALFunctions control group

Keyword Enter DLLMOD->FunctionName.
This option defines the DLL-based DAL functions that are
automatically registered and made available to the scripts executed
in the session. This option is used by the DAL runtime tool
(DALRUN).

DALLibraries control group

CompileWhenLoaded Enter Yes to compile each DAL library file when loaded. In
situations where you are processing a lot of transactions and you
have a lot of DAL functions which are used during processing, this
can speed performance. The default is No.

Lib Use this option to specify the DAL library file to be loaded. You can
specify multiple files. There is no default for this option.

Using INI Options

9

The system also provides a number of specialized INI functions. For more information,
see INI Functions on page 70.

DALRun control group

Script Enter a file name.
Use this option to specify the file name of the script to execute. You
can use any file extension. If you omit the extension, the system
assumes if is DAL.

Title Enter a title.The default is DALRUN - Document Automation
Language Runtime

RunMode control group

FlushDALSymbols Enter Yes to clear DAL internal variables set by the previous
transaction before the subsequent transaction is processed.
Use the Retain function to identify DAL variables you do not want
cleared.
The default is No.

Debug_Switches control group

DALLib Enter Yes to have the system create debug information related to
the execution of library subroutines. The default is No.

Debug_DAL_Rules Enter Yes to create debug date related to the execution of each
DAL function or procedure that is executed. The default is No.

DumpDAL Enter the name of the DAL script for which you want to generate
debug data. You can also enter All, which tells the system to
generate data for all DAL scripts.
Be sure to set the DALLib option to Yes if you use the DumpDAL
option.
The system sends the output to the file you specified with the
TraceFile option in the Data control group or your default trace file.

VerifyKeyID control group

Script Enter the name of the DAL script you want the system to use. Store
this script in the DefLib directory or in MASTER.LBY if you are
using Library Manager.

MasterResource control group

DALTriggers Enter the name of the DAL library file that contains your section
trigger scripts (DAL triggers).
The default is the name stored in the FormsetTriggers option in the
MasterResource control group. If this option is omitted, the system
looks for SetRcpTb.

Option Explanation

Chapter 1
Using DAL

10

USING BUILT-IN
FUNCTIONS

Use the DALRUN and DALVAR built-in functions to execute DAL scripts or get DAL
variable information you can use to complete INI options. For instance, you can use this
to map unique recipient information into batch records.

These functions are automatically registered when DAL is initialized. Several programs
can initialize DAL, such as the GenData and GenPrint programs, the AFEMAIN
program (including RACLIB/RACCO), Documaker Studio, Image Editor, and various
utilities such as ARCRET, ARCSPLIT, and DALRUN.

NOTE: If you try to use these functions in systems that do not initialize DAL, an
incorrect INI value is returned.

Here is an example:

< INIGroup >

Option1 = ~DALRUN MY.DAL

Option2 = ~DALVAR XYZ_VAL

If the program requests Option1, the script MY.DAL is executed and the resulting option
is assigned.

If the program requests Option2, the DAL variable XYZ_VAL is located and its contents
are assigned to the INI option.

Using this function with the GenPrint program to initialize INI options can produce
errors. At the point in the GenPrint program that INI files are loaded, the system may not
have processed enough information to use some DAL functions in the script executed by
this function. Here is an example:

< PDFNames >

Archive = c:..\Output\~GetEnv ExtrFileName ~DALRUN Archive_Name

< Printer2 >

Port = <PDFNames> Archive =

Here is the problem statement from the DAL script (ARCHIVE_NAME.DAL):

f_name = "_" & GVM("RunDate") & "_A" & newcount & "_" &
GVM("PolicyNumber")

Instead you will receive an error message similar to the following.

DM12041: Error : FAP library error: Transaction:<>,
area:<..\C\genbannr.c,Jun 23 2004

20:14:14,400.110.002,GENDALErrorNotify>

code1:<0>, code2:<0>

msg:<Script: c:..\Deflib\Archive_Name.dal

Line: 6 Col: 33 Err: 15 Token:)

Msg: No result value returned>.

In this example, the GVM values, RunDate and PolicyNumber have not been loaded.

Checking KeyID Entries

11

CHECKING
KEYID ENTRIES

In addition to the following restrictions on KeyID values, you can use DAL to make sure
that data entered conforms to a specific alpha and numeric format. For instance, KeyIDs
can be:

• Limited by the use of the AutoKeyID table (only accepts KeyIDs listed in the table)

• Limited as to whether there can be duplicates in WIP or archive or both

• Converted to uppercase (if the CaseSensitiveKeys option is set to No)

• Limited to the length defined in the database. (A standard WIP file allows 20
characters for the KeyID.)

NOTE: KeyIDs are typically used as the policy, document, or form set number.

In version 10.2 and higher, you can use the VerifyKeyID hook to call a DAL script.
Within the DAL script, the verification can be constant, or provide exceptions based on
the Key1 (Company), Key2 (Line of Business), or the transaction code currently selected.

All the relevant WIP record information taken from the Form Selection window is
available to the DAL script for examination. Simply use the available DAL functions like
WIPKeyID on page 428, WIPKey1 on page 426, or WIPFld on page 425.

NOTE: The script can retrieve WIP values, but not change them.

You must handle any error messages using the MSG function. See MSG on page 320 for
more information.

Chapter 1
Using DAL

12

To install the KeyID validation hook, include these INI options.

< AFEProcedures >

AutoKeyID = TRNW32->TRNVerifyKeyID

< VerifyKeyID >

Script = KeyID.DAL

OnCreate = Yes

OnUpdate = No

The script can do whatever evaluation is necessary for validation purposes. Here is an
example DAL script that validates a KeyID using a format token string.

* Define the format requirement in the fmt variable below.

* 9 - means numeric

* A - means alphabetic

* X - means alphanumeric

* * - means any character - not limited to alphabetic or numeric

* For example, if you need 4 numeric, followed by 2 alpha, followed

* by 2 numeric, followed by 2 alphanum, you would define:

* fmt = "9999AA99XA"

* The length of the overall format string is assumed to also define

* the required length of the key value.

* Note DAL does not support case sensitive string comparisons.

* Therefore, it assumes either case is sufficient and that if the

* key is required to be in uppercase, you have set the

* CaseSensitiveKeys option to No.

fmt="9999AA99XA"

* This next statement is used to get the KeyID prompt

name = GETINISTRING(,"DlgTitles", "KeyIDTitle", "Policy #");

Option Description

AFEProcedures control group

AutoKeyID Enter TRNW32-->TRNVerifyKeyID as shown above to install the KeyID
validation hook.

VerifyKeyID control group

Script Enter the name of the script you want the system to use. Store this script in
the DefLib directory specified for your master resource library (MRL).
If you omit this option, a message appears on the Form Selection window.
You will have to exit and correct the INI file by either defining the script or
removing the hook declaration.

OnCreate This option defaults to Yes to indicate you want to call the script when
creating a new form set via the Form Selection window.
To exclude newly-created form sets, set this option to No.

OnUpdate This option defaults to No to indicate you do not want to call the script to
verify the KeyID on transactions that have already been saved to WIP.
To verify WIP transactions as well, set this option to Yes.

Checking KeyID Entries

13

val = WIPKeyID();

if (val = "")

* This is returned successfully because a blank key is going to

* be handled by the Form Selection window anyway.

 return("Yes");

End

#l = len(fmt);

if (#l != len(val))

 msg(name, "Length must be " & #l & '.');

 return("No");

End

* Now example each character from right to left because we

* already have the length from the earlier check.

top:

if (#l = 0)

 goto done:

end
f = sub(fmt,#l,1);

g = sub(val,#l,1);

if (f = '9')

 if (NUMERIC(g) = 0)

 msg(name, "Position "& #l & " must be numeric.");

 return("No");

 end

elseif (f = 'A')

 if (g < 'A' OR g > 'Z')

 msg(name, "Position "& #l & " must be alphabetic.");

 return("No");

 end

elseif (f = 'X')

 if (NUMERIC(g) = 0)

 if (g < 'A' OR g > 'Z')

 msg(name, "Position "& #l & " must be alphanumeric.");

 return("No");

 end

 end

elseif (f != '*')

 msg("Invalid format found at position " & #l & ".");

 return("No");

end

#l -= 1;

goto top:

done:

return("Yes");

Chapter 1
Using DAL

14

GRAMMAR AND
SYNTAX

Document Automation Language controls every aspect of the calculation. You control
what type of calculation takes place, the sequence of the calculation, and where the
calculation result is placed in the form set. It is important that you understand the
calculation language as you write scripts. The calculation language consists of:

• Assignment Statements

Assignment statements are used to place a value from the right side of an equation
into a target variable on the left side of an equation.

• Flow Control Statements

Flow control statements manage the sequence of the calculation. These language
statements direct the order in which the calculation is executed and the placement of
the calculation result within the form set.

• Data Storage Statements

These statements return target variable data to the section variable fields.

NOTE: You can also get information about the various DAL keywords in the Keyword
Reference on page 445.

ASSIGNMENT STATEMENTS

Assignment statements give values to target variables. Assignment statements have two
parts: a target variable and a source expression. The source expression determines what is
used to obtain a result. The target is assigned the result of the calculation. The assignment
statement format is:

Target = Source expression

Target variables can be one of these types: string, integer, or decimal. Targets always
receive a value that matches their assigned type. Target variables retain data until it is
placed in the form set or used in another calculation or expression.

The source expression specifies what calculation is performed. Source expressions can be
simple or complex. Simple expressions assign the value of a section variable field to the
target, or they assign a constant value to the target variable. Complex expressions calculate
results from multiple sources.

NOTE: The result of the source expression is always converted to the assigned type of the
target variable, unless the result of the source expression is a decimal.

Target variable The target variable contains the result of the source expression calculation. Data is placed
in the target after the calculation is performed. The data is maintained in the target until
you replace it via another statement. Any script that uses a target value always uses the last
value received by that target. This lets you reuse target values.

Grammar and Syntax

15

Target variable names are not case sensitive. Mixed case has no affect on how the name
is processed or read during a calculation. Mixed case can be used for clarity. A target name
cannot be a reserved keyword. A target’s type is designated by the first character of its
assigned name. Target variables are one of these types:

• string

• decimal

• integer

Each type is explained below.

• String Target Variables

String target variable names start with a letter (a- z). The name can be up to 20
characters in length. The remaining characters in the name can be any upper- or
lowercase letter, number, the underscore (_), or percent sign (%). Here are some
examples:

First_Name = “John”

LASTNAME = “Graham”

LAST_NAME = “Graham”

CompanyName = “Oracle”

The value received by a string target variable can be from zero to 255 ASCII
characters in length.

• Decimal Target Variables

Decimal target variable names start with a dollar sign ($). The name can be up to 20
characters in length. The remaining characters in the name can be any upper- or
lowercase letter, number, the underscore (_), or percent sign (%). Here are some
examples:

$BEGIN_BAL = 100.00

$Final_Balance = 00.00

Decimal target variables receive numeric values with decimals. The values in these
fields can contain up to 14 digits and a decimal.

• Integer Target Variables

Integer target variable names start with a pound sign (#). The name can be up to 20
characters in length. The remaining characters in the name can be any upper- or
lowercase letter, number, the underscore (_), or percent sign (%). Here are some
examples:

#Employees = 3000

#Number_of_Insured = 2300

#%Insured = (#Number_of_Insured / #Employees * 100)

Integer target variables receive numeric values as whole numbers — no decimals.
The values in these fields can range from plus or minus two billion.

Chapter 1
Using DAL

16

Declaring Variables In most cases, you do not have to worry about specific variable types when using DAL.
Unqualified names are considered string variables and DAL automatically converts the
type, depending upon the use. You can, however, force a variable to be something other
than a string type by using a specific name qualifier.

Handle type variables are the exception when it comes to conversions. DAL cannot
convert the other variable types into a handle type and a handle type cannot be converted
into the other types. For any function that requires a %variable as a parameter, you must
specify that type of parameter.

Source expression Source expressions specify what calculation is performed. The result of the source
expression is placed in the target variable. Source expressions can contain form set
variable field names, target variable results, numeric constants, string constants, keywords,
operators, punctuation, and labels. Each of these source expression language categories is
explained in the following topics.

Form set variable fields Variable fields which exist in the form set can be used in the source expression. Variable
field names which are used in the source expression must be written in a particular format.
The name must be enclosed in quotes. Here is an example:

$SubTotal = sum (“Amount”)

In this example, the sum of the all section fields that have names starting with Amount are
subtotaled. The result is stored in the decimal target variable named $SubTotal. Form set
field names are not case sensitive.

NOTE: If you want to use a particular field name, the name must appear in this format:

@(“ThisField1”)

Be sure to include the parentheses and the quotation marks.

Target variables A target variable which results from one source expression can be used in a subsequent
source expression. All three target variable types (string, decimal, and integer) can be used
in a source expression. Here is an example:

$FinalTotal = $SubTotal + 15.00

In this example, the value of the decimal target variable $SubTotal (which was previously
calculated) is added to the constant value of 15.00. The result is stored in a new decimal
target variable named $FinalTotal.

Numeric constants You can use numeric constants anywhere in a source expression. There are two types of
numeric constants: integer and decimal. Do not include commas in either type.

Qualifier Description

$myFloat The $ denotes that this is a floating point number.

#myInteger The # denotes that this is an numeric integer.

%myHandle The % denotes that this is a numeric handle. No conversions should be done
on this when used in DAL.

Grammar and Syntax

17

• Integer Constants contain whole numbers. Negative integer constants are preceded
by a minus sign. Here is an example of a source expression which contains an integer
constant:

$FinalTotal = $SubTotal + 15

In this example, the integer constant 15 is added to the value of the decimal target
variable $SubTotal (which was previously calculated). The result is stored in a new
decimal target variable named $FinalTotal.

• Decimal Constants contain fractional numbers with a decimal point. They can
contain a fractional portion, represented by the digits to the right of the decimal
point. Negative decimal constants are preceded by a minus sign. Here is an example
of a source expression containing decimal constants:

$My_Dec_Constant = 3.14810

$Answer = $My_Dec_Constant * 10.80

In this example, the decimal constant 3.14810 is stored in the decimal target variable
$My_Dec_Constant. The value in the decimal target variable $My_Dec_Constant is
then multiplied by the decimal constant 10.80. The result is stored in a new decimal
target variable named $Answer.

String constants You can use string constants anywhere in the source expression. String constants are any
group of consecutive characters. String constants can consist of 1 to 253 characters. The
characters are delimited either by apostrophes (' ') or by quotation marks (“ “). Use
quotation marks if you need apostrophes inside the constant. The string constant consists
of everything between the delimiters, including spaces. Here is an example of a source
expression containing string constants:

My_String_Constant = ' Congratulations on your purchase. '

Greeting = My_String_Constant & “Thank you for choosing us.”

In this example, the string constant ' Congratulations on your purchase. ' is stored in the string
target variable My_String_Constant. The value in My_String_Constant is then added to
the string constant Thank you for choosing us. The result is stored in the string target variable
named Greeting.

When Greeting is returned to a field, it appears as:

Congratulations on your purchase. Thank you for choosing us.

Operators Operators are used in the source expression. Operators control what calculation is
performed using the other components in the source expression.

Operator Function

= Assignment operator or logical test for equality.

+ Addition.

+ = Value on the right is added to then assigned to the target variable on the left.

- Subtraction. Unary minus (negative)

- = Value on the right is subtracted from then assigned to the target variable on the left.

Chapter 1
Using DAL

18

Punctuation Four types of punctuation can be used within the source expression. Punctuation is used
to enclose subexpressions within the main source expression or to establish parameters.
Each punctuation mark performs a particular function.

* Multiplication

* = Value on the right is multiplied with then assigned to the target variable on the left.

/ Division

/ = Value on the right is divided into then assigned to the target variable on the left.

& String concatenation.

& = Value on the right is concatenated to then assigned to the target variable on the left.

> Logical greater than.

< Logical less than.

! Logical not. Returns the opposite of the tested value. (For example: !(10=9) = true)

!= Logical not equal. Tests if the value at the left is not equal to the value at the right.

>= Logical greater than or equal.

<= Logical less than or equal.

!> Logical not greater than.

<! Logical not less than.

!>= Logical not greater than or equal.

!<= Logical not less than or equal.

AND Connects two values. Both values must evaluate true to produce a true result.

OR Connects two values. Either value can evaluate true to produce a true result.

Operator Function

Punctuation Function

() Encloses subexpressions or parameter lists. Indicates precedence of execution
within calculations. Parentheses can override the normal execution order.

, Separates parameters of built-in functions. See Function Reference on page 39
for an explanation of built-in functions.

; Separates statements.

\ Continues a statement on the next source line.

Grammar and Syntax

19

Execution order Operators, in combination with punctuation, are executed in a particular order. Normally,
operators are executed from highest to lowest priority. When two operators are of equal
priority, left to right execution applies.

The normal order of execution is overridden by the use of parentheses. Expressions in
parentheses are executed first. In a set of parentheses, operators are executed from highest
to lowest priority. Operators of equal priority within parentheses are executed from left
to right. Operators are ranked and executed in this order:

Here are two example assignment statements. The components and execution order of
each statement is fully explained.

$AMOUNT = @(“BEG_BAL”) + 100.00

Operator Order of Execution

() Highest priority—executed first

-
(Unary minus (negative))

Second highest priority—executed after operations in
parentheses

* /
(Multiplication and division)

Third highest priority.

+ - &
(Addition, subtraction, string
concatenation)

Fourth priority

! !=
(Logical not and logical not equal)

Fifth priority

AND OR Sixth priority

=
(Assignment)

Lowest priority

Target variable $AMOUNT

Source
expression

@(“BEG_BAL”) + 100.00

Calculation Takes the value in the section variable field named BEG_BAL adds
100.00 and places the result in the target decimal variable named
$AMOUNT

Order of
execution

Reads the expression from left to right

Chapter 1
Using DAL

20

$AMOUNT = (@(“PremBasis1”) + @(“PremBasis2”)) * @(“Prem/OpsRate1”)/
100

Implicit conversion Implicit conversion occurs when operands of differing types are acted upon by an
operator. During assignment, the result of the operand on the right will always be
implicitly converted to the type of operand on the left of the assignment operator. This
table outlines the conversion rules that occur in operations other than assignments:

Target variable $AMOUNT

Source
expression

(@(“PremBasis1”) + @(“PremBasis2”)) * @(“Prem/OpsRate1”)/100

Calculation Takes the value in the section variable field named PremBasis1 adds the
value in the section variable field named PremBasis2; multiples the total
of these two fields by the value in the section variable field Prem/
OpsRate1; then divides the total by 100 and places the result in the target
decimal variable named AMOUNT.

Order of
execution

Reads the expression from left to right applying the priority of operators
(multiplication and division prior to addition). However, the first set of
parenthesis overrides the normal priority, so the addition operation is
performed first.

Expression operands Implicit conversion of operands Internal result type

STRING op INTEGER STRING op STRING STRING

STRING op DECIMAL STRING op STRING STRING

STRING op STRING STRING op STRING STRING

INTEGER op INTEGER INTEGER op INTEGER *INTEGER
DECIMAL

INTEGER op DECIMAL DECIMAL op DECIMAL DECIMAL

INTEGER op STRING INTEGER op INTEGER
or
**DECIMAL op DECIMAL

INTEGER
DECIMAL

DECIMAL op INTEGER DECIMAL op DECIMAL DECIMAL

DECIMAL op DECIMAL DECIMAL op DECIMAL DECIMAL

DECIMAL op STRING DECIMAL op DECIMAL DECIMAL

* The result of division between INTEGER data types is always a DECIMAL.
** When a string requires conversion to a numeric value it is converted to a DECIMAL data type
if it contains a valid decimal value otherwise, it is converted to an INTEGER data type. The
resulting type then determines which implicit conversion rules apply.

Grammar and Syntax

21

Here is an example:

#val=$temp

The value of $temp is converted (internally) to an integer because the assignment is to an
integer. During this implicit conversion, the actual value contained in $temp is not
changed. If $temp has a value of 10.25 before executing this statement, #val would now
have a value of 10.25, and $temp would still be 10.25.

NOTE: Operands of differing types can be assigned to each other, but this does not mean
that the two operands will be equal after such assignment.

In this example...

#val=“January”

the string constant would be converted to an INTEGER before assignment. Since the
string constant does not contain a valid number, the value of #val will be zero (0) after
execution of this statement.

In this example...

$temp= 10/6

the constants 10 and 6 are of type INTEGER because they have no decimal value
indicated. The resulting internal calculation will be a DECIMAL because the act of
division always results in a DECIMAL value. Therefore, the value of $temp after the
evaluation will be 1.66667. To assign the integer result of division into a DECIMAL data
type, it will be necessary to first assign the result into an INTEGER data type, or to use
the expression as the parameter to the INT built-in function.

Here is an example of implicit conversion differences:

TEXT=“001”;

IF (TEXT=1);

TEMP1=“YES”;

ELSE;

TEMP1=“NO”;

END;

IF(1=TEXT);

TEMP2=“YES”;

ELSE;

TEMP2=“NO”;

END

After executing these statements, TEMP1 will contain NO and TEMP2 will contain YES.

In the first IF statement, the expression (TEXT=1) compares a string with an integer.
According to the rules of implicit conversion, the integer is first converted into a string
and then the two objects are evaluated according to the operator. When comparing
strings, 001 does not equal 1.

In the second IF statement, the expression (1=TEXT) compares an integer to a string.
Implicit conversion will change the string into an integer before performing the operation.
The converted expression can be represented as (1=1), which are equal.

Chapter 1
Using DAL

22

Labels Labels are a name for a location within a script. Labels must end with a colon (:). The label
can be up to 20 characters in length (including the colon). Labels must appear on a line
by themselves. Labels are not case sensitive. Here is an example:

TOP:

#Num = #Num +1

If #Num < 22

$Temp = $Temp + @ (“Prem/OpsPrem” & #Num)

GOTO TOP:

END

Labels are frequently used as the destination of a GOTO flow statement. For more
information about flow statements, see Flow Control Statements on page 22.

FLOW CONTROL STATEMENTS

Flow control statements dictate how the calculation is executed. They control how the
components of the source expression are used. Flow control statements are embedded in
the source expression. Flow control directs the use of the source expression components.

Keywords Keywords are used for flow control statements. These words define the statement
operations. These keywords are reserved for use in calculation language. The keywords
cannot be used as variable field names. Keywords are not case sensitive.

These statements are explained in the following topics.

Keyword Flow Control

IF Begins a conditional statement (Optional)

 AND Used within an IF statement (Optional)

 OR Used within an IF statement (Optional)

 ELSE Used within an IF statement (Optional)

 ELSEIF Used within an IF statement (Optional)

 THEN Used within an IF statement (Optional)

 END Ends an IF statement

WHILE...WEND Executes a series of statements, as long as a given condition is true

 BREAK Used to exit a While…Wend statement block

 CONTINUE Restarts a While…Wend statement loop

GOTO Jumps to a label within a calculation

RETURN Tells the calculation to return a result

CALL Temporarily calls another calculation file

CHAIN Permanently calls another calculation file

Grammar and Syntax

23

RETURN statements A RETURN statement directs the calculation to return with or without a value. A
RETURN statement must begin with the keyword RETURN. A RETURN statement
may return the result of the calculation to be placed in the field that initiated the script.

A RETURN statement is also used to return results to one calculation script from
another. Using a CALL statement temporarily suspends the current script calculation and
sends control to another script file. A RETURN statement sends control back to the
original script which may then continue processing. See CALL statements on page 25 for
more information. Here are some sample RETURN statements:

RETURN(@(“LAST_NAME”) & ', ' & @(“FIRST_NAME”) & “ “ &
@(“MIDDLE_INIT”))

RESULT: Takes the data in the section variable field LAST_NAME adds a comma; adds
the data in the section variable field FIRST_NAME; adds the data in the section variable
field MIDDLE_INIT and places this data in another section variable field.

RETURN (CALL('FirstFile'))

RESULT: Returns the result of the calculation generated by calling the script FirstFile.

IF statements An IF statement is executed based on the occurrence of a certain condition. IF statements
must begin with the keyword IF and terminate with the keyword END.

Components within IF statements can be connected with the keywords AND or OR. IF
statements can have three forms: a simple IF statement, an IF statement with an ELSE
condition, or an IF statement with an ELSEIF condition.

• Simple IF Statement

A simple IF Statement contains a single statement block. The calculation is
performed only if the logical expression is true. If the logical expression is false,
control passes to the next statement after the END keyword. Here is an example:

IF (@(“FirstAmount”) < 1000.00) THEN

 $FinalAmount = @(“FirstAmount”) * .05;

END;

RETURN ($FinalAmount)

CALCULATION: If the value of the section variable field FirstAmount is less than
1000.00 then the value is multiplied by .05 and entered in the target variable
$FinalAmount. The value of the $FinalAmount target variable is then returned to the
section variable field.

• Use of the keyword connector THEN is optional.

• IF Statement with ELSE Condition

An IF Statement with an ELSE condition contains an alternative calculation. If the
logical expression is false, control passes to the statement after the ELSE keyword.

Here is an example:

IF (@(“FirstAmount”) < 1000.00) THEN

$FinalAmount = @(“FirstAmount”) * .05;

ELSE

$FinalAmount = @(“FirstAmount”) + 10.00;

END;

RETURN ($FinalAmount)

Chapter 1
Using DAL

24

CALCULATION: If the value of the section variable field FirstAmount is less than
1000.00 then the amount is multiplied by .05 and entered in the target variable
$FinalAmount.

However, if the value of the section variable field FirstAmount is greater than or equal to
1000.00 then 10.00 is added to the amount and entered in the target variable
$FinalAmount.

The value of the $FinalAmount field is then returned to the caller or section variable field.

Use of the keyword connector THEN is optional.

• IF Statement with ELSEIF Condition

An IF statement with an ELSEIF condition is the most complicated type of IF
statement. If the first logical expression is true, the statement block after IF is
executed until the first ELSEIF statement is reached. If the first logical expression is
false, the first ELSEIF logical expression is evaluated. If the ELSEIF logical
expression is true, the statement block from the ELSEIF to the next ELSEIF (or
ELSE) is executed. If the ELSEIF statement is false, the next ELSEIF is evaluated.
If all logical expressions are false, control passes to the ELSE block. If there is no
ELSE block, control passes to the statement following the END keyword.

An ELSEIF statement is considered part of the same IF statement. Only one END
keyword is needed to end an IF, ELSEIF, ELSE statement. IF statements can be
nested inside other IF statements. A nested IF statement requires its own END
keyword. A missing or mismatched keyword results in a runtime syntax error. Here
is a sample IF statement with ELSEIF condition:

IF (@(“FirstAmount”) < 1000.00)

$FinalAmount = @(“FirstAmount”) * .05;

ELSEIF @(“FirstAmount”) < 5000.00

$FinalAmount = @(“FirstAmount”) * .03;

ELSEIF @(“FirstAmount”) < 10000.00

$FinalAmount = @(“FirstAmount”) * .02;

ELSE

$FinalAmount = @(“FirstAmount”) + 10.00;

END;

RETURN ($FinalAmount)

CALCULATION: If the value of the section variable field FirstAmount is less than 1000.00
then the amount is multiplied by .05 and entered in the target variable $FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to 1000.00
but less than 5000.00 then the amount is multiplied by .03 and entered in the target
variable $FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to 5000.00
but less than 10000.00 then the amount is multiplied by .02 and entered in the target
variable $FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to 10000.00
then 10.00 is added to the amount and entered in the target variable $FinalAmount.

The value of the $FinalAmount field is then returned to the caller or section variable field.

Grammar and Syntax

25

GOTO statements A GOTO statement moves to a specific location within a calculation. The location has
been named with a label. (See Labels on page 22 for more information.) A GOTO
statement must begin with the keyword GOTO. Here is an example:

GOTO SECTION_ONE:

RESULT: The control jumps to SECTION_ONE in a calculation.

The destination label can occur anywhere in the script containing the GOTO statement.
If the label cannot be located in the script, a syntax error will be generated.

GOTO will support retrieving the label from a target variable. Here is an example:

SECTION = “MY_LABEL:”
GOTO SECTION

RESULT: Since the word following the GOTO statement does not contain a colon, the
program will assume the label is contained in the target variable named. In this case,
control will jump to the location of MY_LABEL in the current script.

CALL statements A CALL statement temporarily suspends one calculation and calls another calculation file.
A CALL statement must begin with the keyword CALL. The calculation file that is called
must contain a RETURN statement if the original calculation expects a returned value.
Here is an example:

CALL('TestCalc')

RESULT: Temporarily calls the calculation file TestCalc. After the calculations in
TestCalc are completed, processing returns to the current script. In this example, TestCalc
is not expected to return a value.

CHAIN statements A CHAIN statement permanently calls another calculation language file. A CHAIN
statement must begin with the keyword CHAIN. There is no limit to the number of
CHAIN statements that can be used. Here is an example:

CHAIN 'LastCalc'

or

CHAIN('LastCalc')

RESULT: Permanently calls the calculation file LastCalc. Processing does not return to
the current script. No statements from the original script will be evaluated after the
CHAIN statement.

Chapter 1
Using DAL

26

Using While...Wend Statements
Use While...Wend statements to execute a series of statements, as long as a given
condition is true.

While condition
[statements]
Wend

If condition is true, the statements within the While block are executed. When the Wend
statement is encountered, control returns to the While statement and condition is again
evaluated. If condition is still true, the process repeats. If it is false, execution resumes with
the statement which follows the Wend statement.

You can nest While...Wend loops to any level. Each Wend matches the most recent While.

NOTE: Keep in mind that you can start an endless loop if you specify a condition that
can never be satisfied. The system cannot syntactically detect an endless loop, so
if you create one, the program will lock up and you will have to kill the program.

(Ellipses in the following examples represent additional statements, not shown.)

While(10 > #value)

...

While (#new = 1)

...

Wend

...

Wend

You do not have to use tabs to indent nested While…Wend statements. Tabs are used in
these examples, to help identify statement blocks. You may want to also use tabs in your
code to make the source easier to read.

Break statements Break statements provide a way to exit a While…Wend statement block.

Break
or
Break(levels)

You can only include Break statements inside While…Wend statement blocks. Break
statements transfer control to the statement following the Wend statement.

Parameter Description

Condition Required. The condition is any expression that evaluates to true or false. False
is assumed to be a zero value. Any non-zero value is assumed to be true.

Statements One or more statements executed while the condition is true.

Parameter Description

Levels The value you enter defines how many nested While…Wend statement blocks
you want to terminate.If you omit this parameter, control passes to the statement
following the next Wend statement encountered.

Grammar and Syntax

27

When used within nested While…Wend statements, you can include the Levels parameter
to transfer control to the statement following the Wend level you specify.

Here are some examples. (Ellipses in the following examples represent additional
statements, not shown.)

While(1)

...

While (2)

...

Break

Wend

...

Wend

In this example, the Break statement only terminates the While…Wend which contains
the statement. Control passes to the first (outside) While…Wend statement block.

Here is another example:

While(1)

...

While (2)

...

 While(3)

...

Break(3)

Wend

...

Wend

...

Wend

In this example, the Break(3) statement terminates all three While…Wend blocks that are
active.

Continue statements Use Continue statements to restart a While…Wend statement loop.

Continue

Executing the Continue statement stops the current sequence of statement execution and
restarts program flow at the beginning of the loop. This causes the While statement to
retest the condition and, if true, execute the loop again.

Statements after the Continue keyword are not executed. Continue is often, but not
always, activated by an IF test. Here is an example:

(Ellipses in the following examples represent additional statements, not shown.)

While(#x < 10)

...

If (value)

Continue

End

...

Wend

Chapter 1
Using DAL

28

GOTO statements GOTO statements have not changed with the implementation of the While loops, but
note that you can use GOTO statements to jump into or out of a While loop.

When jumping into a While loop, you bypass the check of the While condition. The
condition is not checked until a Continue or Wend statement is encountered. If the While
condition is true, you stay in the loop. Otherwise, control moves to the next statement
following the Wend for that loop.

If a GoTo statement is encountered within a While…Wend loop, control passes to the
location of the destination label named. This label may be in or outside the control of the
While statement.

BEGINSUB AND ENDSUB

BeginSub and EndSub are keywords, but not Flow Control statements. You will only see
these keywords when loading a DAL script library (a library of DAL subroutines). They
designate the start and end of a subroutine. You will not see them in the normal flow of
script execution.

BeginSub
Use BeginSub to begin each subroutine in a DAL subroutine library.

Syntax BeginSub (Name)

Once a DAL library is loaded, you can reference the scripts contained in the library by
name. You do not have to CALL or CHAIN to the script.

BeginSub and EndSub must be paired per script. You must have a space between
BeginSub and the script name.

Example BeginSub SCRIPT1

* This script returns #x set to 2 if #x was equal to 1 on enter.

IF (#x = 1) THEN #x = 2;

END;

RETURN (#x);

EndSub

BeginSub Script2

* This script returns a negative one if #y was equal to 5.

if(#y = 5) then Return (-1);

end;

EndSub

SCRIPT1 is the name of the first script and Script2 is the name of the second script.

Parameter Description Required

Name Name associated with the subroutine Yes

Grammar and Syntax

29

NOTE: SCRIPT1 and Script2 are only names, you can use any name you want as long as
the name is not a DAL reserved function, statement, or key word such as CALL,
FIND, IF, and so on. You can mix case in script names.

EndSub
Use this function to end each subroutine in a DAL subroutine library.

Syntax EndSub ()

BeginSub and EndSub must be paired per script.

Example Here is an example:

BeginSub SCRIPT1

* This script returns #x set to 2 if #x was equal to 1 on enter.

IF (#x = 1) THEN #x = 2;

END;

RETURN (#x);

EndSub

BeginSub Script2

* This script returns a negative one if #y was equal to 5.

if(#y = 5) then Return (-1);

end;

EndSub

Script1 is the name of the first script. Script2 is the name of the second one.

Parameter Description

None No parameters are necessary for this function.

Chapter 1
Using DAL

30

DATA STORAGE STATEMENTS

Data storage statements return the results of the calculation to the variable field that
initiated the script or stores the results in the variable field you specify.

You use keywords for storing data. Keywords define the statement operations and are
reserved for use in the calculation language. You cannot use these keywords in variable
field names. Keywords are not case sensitive.

NOTE: Keywords are the only way to return or store data results in a variable field.

Keyword Action

Return Directs a calculation to return with or without a value to the variable
field that initiated the script. Returns target variable results to a DAL
script from another DAL script (see CALL statements on page 25);
sends control back to the original script.

SetFld Assigns a value or the results of a calculation (target variable) to a
variable field on a section. The variable field maybe on any section or
form in the form set

AppendText Attaches text to the end of a multi-line text variable field from an
external ASCII text field.

AppendTxm Attaches text to the end of a multi-line text variable field from the first
text area field found on a section you specify.

AppendTxmUnique Attaches text to the end of a multi-line text variable field from the first
text area field found on a section you specify. Also renames any
embedded variable field imported from the external text area.
Embedded variable fields will then have a unique name.

Testing DAL Scripts

31

TESTING DAL
SCRIPTS

You can use the DALRUN utility to test scripts and trigger the interactive DAL
Debugger. Debug messages, certain errors, and a dump of the symbol table at the end of
the run are examples of output this utility will generate.

Syntax DALRW32 /X /INI /D /T

Here is an example:

DALRW32 /ini=test /d /t > test.txt

This example tells the system to run the DALRUN utility using the TEST.INI file. The /
D parameter tells the system to start the DAL debugger. The /T parameter tells the
system to send messages to a file named TEST.TXT.

Parameter Description

/X This optional parameter supplies the name of a script to run. If you omit this
option, you can use this INI option to provide the name of the script:

< DALRun >

Script = file name

You can use any extension. The default is DAL.

/INI This optional parameter supplies the name of an INI file to load. This INI file
supplies additional parameters and options. If the DALRUN.INI file is present,
the utility loads it by default.
Here are the INI options you can include in the INI file:

< DALRun >

Title = title string(an override to the window title)

Script = file name (the script to run)

< DALFunctions >

Keyword = DLLMOD->FunctionName

Keyword2 = DLLMOD->FunctionName2

(and so on)

/D The debug switch starts the DAL Debugger. When on, the script executes in
single step mode and registers this DAL function: DEBUG(“message”).
The DEBUG function breaks execution, displays a message, and invokes the
debugger in single step mode.

/T This parameter sends certain text messages to the standard output device. These
messages are not visible at runtime, but may be redirected when you run this
utility.

Chapter 1
Using DAL

32

USING THE DAL DEBUGGER IN DOCUMAKER WORKSTATION

You can enable the DAL Debugger in Documaker Workstation by adding the following
lines to the MEN.RES file in your master resource library (MRL). You can edit this file
using any ASCII text editor. Before you edit the file, make a backup copy. Here is an
example of what you need to add to the MEN.RES file:

POPUP "&Tools" 255 "Utility Programs"

BEGIN

MENUITEM "Enab&le Debugger..." 502 "DBGW32->DBGEnableDebugger"
"Enable DAL debugger." 0

SEPARATOR

Runtime Error Messages

33

RUNTIME ERROR
MESSAGES

Use the following table to resolve any error messages you may receive.

Message Number Description

Out of
memory

1 The calculation needs more memory than is available. Make more
memory available to the program and try again.

Open failure
on script file

2 The file containing the calculation cannot be opened. This may
mean the file does not exist; is protected from reading; or that the
file is not located in the default directory established by your INI
file option. The default directory is usually DefLib.

Syntax error 3 A calculation contains invalid information or does not use proper
statement syntax.

Wrong
number of
parameters

4 A built-in function or procedure requires more parameters than
are provided.

Wrong type of
parameter

5 A built-in function or procedure expects a particular type of
parameter. This may mean that the variable type used is not
automatically converted to the type required by the routine.

Invalid or
unknown
symbol

6 A character (or set of characters) does not correspond to a known
operator or keyword. Can also indicate that you need to add a
Return statement.

Invalid
assignment
statement

7 The assignment statement fails to provide a valid source
expression or destination variable.

Cannot modify
target

8 A statement attempted to change the value of an identifier that
cannot be changed.

Unexpected
internal error

9 A calculation caused an unexpected error or event that cannot be
corrected.

Missing/
mismatched
parenthesis

10 The number of open parentheses does not match the number of
close parentheses.

Invalid IF
statement

11 An IF statement contains or fails to contain a keyword.

Unexpected
end of script

12 The end of the script occurred before the current statement could
be fully evaluated. This may be due to the script being incomplete
or an inability to read the entire script.

Invalid
expression
syntax

13 Generates due to a number of problems, such as: an expression
fails to yield a result or encounters an unknown variable type.

Attempt to
divide by zero

14 An attempt to divide a value by zero was found. Division by zero
is undefined and must be avoided.

Chapter 1
Using DAL

34

No result value
returned

15 An expression expects a return value when calling a procedure.
Only functions can return values. This error may also result if a
RETURN statement is missing from a file that has been invoked
with a CALL statement.

Statement label
already used

16 Another label with the same name has been found within the
script.

Unknown
statement label

17 A GOTO statement names a label that does not occur within the
script.

Invalid
statement label

18 An invalid label was found.

Illegal label
location

19 A GOTO statement attempted to locate a label within an IF
statement. A GOTO statement can jump from an IF statement,
but not into an IF statement.

Function out
of place

20 A function was called but the statement does not expect a return
value. Since a function must return a value, the call must be an
error.

Illegal
parameter
value

21 A built-in function or procedure passed a parameter value that is
not valid.

Message Number Description

DAL Script Examples

35

DAL SCRIPT
EXAMPLES

Here are some DAL script examples you can refer to as you create your own DAL scripts.

Preparing AFP or
Metacode print

streams for Docusave

This example shows DAL scripting which you could use to format and configure an AFP
or Metacode print stream for storage using Docusave.

The FSISYS.INI or FSIUSER.INI files must contain these options:

< PRTType:xxx >

OutMode = MRG4 or JES2

DocuSaveScript = DOCUSAVE.DAL

Where XXX is either AFP or XER. For the OutMode option, enter MRG4 or JES2.
Enter the name of the script in the DocusaveScript option.

The DOCUSAVE.DAL script file should contain this information:

* Add Docusave Comment - use default: APPIDX record!

comment = AppIdxRec()

class = PAD("bio",8)

cabinet = PAD("rpex7",8)

title = PAD("TITLE",22)

indextag= comment & class & cabinet & title

Print_It (indextag)

AddDocuSaveComment (indextag)

Return ('FINISHED!')

Preparing PCL print
streams for Docusave

To add Docusave comments to an PCL print stream, add the DocusaveScript option and
the name of a DAL script to execute. The DAL script should call the
AddDocusaveComment function to add a string as a Docusave comment record. Here is
an example:

< PrtType:PCL >

DocusaveScript = DOCUSAVE.DAL

Here is an example of what the DOCUSAVE.DAL file might look like:

* Add Docusave Comment - use default: APPIDX record!

COMMENT = AppIdxRec()

PRINT_IT(COMMENT)

ADDDOCUSAVECOMMENT(COMMENT)

RETURN('FINISHED!')

Preparing AFP print
streams for IBM's

OnDemand

This example shows DAL scripting which you could use to format and configure an AFP
print stream for storage using OnDemand. Keep in mind...

• The AFP Conversion and Indexing Facility (ACIF), which is an IBM product, writes
some AFP structures such as Tag Logical Element (TLEs) in an AFP print stream.

• Oracle Insurance’s comment support for AFP does not use TLEs. It was designed
for OnDemand.

• The system uses the D3EEEE AFP structure, also known as a NOP (No-Operation)
structure.

The FSISYS.INI or FSIUSER.INI files must specify the name of the DAL script in the
OnDemandScript option:

< PrtType:AFP >

Chapter 1
Using DAL

36

OnDemandScript = ONDEMAND.DAL

The ONDEMAND.DAL script file should contain this information:

* Make sure #loadlib is initialized

#loadlib = #loadlib

* Load script into cache memory!

If (#loadlib = 0) Then

 LoadLib('OnDmdLib')

End

#loadlib+= 1

* Execute script!

OnDemand()

Return('FINISHED!')

OnDmdLib.DAL script library file

BeginSub OnDemand

* OnDemand Script is only valid for AFP print streams!

If (PrinterClass() != 'AFP') Then

 Return

End

* Example of reading GVM variables

* If (HaveGVM('Company') Then

* company = GVM('Company')

* End

* Make sure #docnum is initialized

#docnum = #docnum

If (#docnum = 0) Then

 semi= ';'

 colon = ':'

 acifinfo = 'ACIFINFO'

 docnum = 'DOCUMENT_NO'

 mvsfile= 'MVS_FILENAME'

 expbprep = 'EXPBPREP'

 procdate = 'PROCESS_DATE'

 proctime = 'PROCESS_TIME'

 idxname = 'ACIF_INDEX_NAME'

 idxdata = 'ACIF_INDEX_DATA'

 recid = 'RECID=470'

 grpname = GroupName()

 dapver = MajorVersion() & '.' & MinorVersion()

 Print_It ('DAP Version is ' & dapver)

End

* Add comment, ' ACIFINFO;DOCUMENT_NO:0000001'

#docnum += 1

AddComment (acifinfo & semi& docnum & colon &
Format(#docnum,'n',9999999))

* Add comment, 'MVS_FILENAME:PROD.EX.P.DCS.AFP.PREPOUT'

DAL Script Examples

37

AddComment (mvsfile & colon & 'PROD.EX.P.DCS.AFP.PREPOUT')

* Add comment, 'EXPBPREP;PROCESS_DATE:mm-dd-yyyy'

AddComment (expbprep & semi & procdate & colon & Date('1-4'))

* Add comment, 'EXPBPREP;PROCESS_TIME:hh:mm:ss'

AddComment (expbprep & semi& proctime & colon & TIME())

* Add comment, 'RECID=470;ACIF_INDEX_NAME01;026;Correspondence Copy
Number'

* Add comment, 'RECID=470;ACIF_INDEX_DATA01;009;840127920'

#idxnum = 1

fldname = 'Correspondance Copy Number'

flddata = '840127920'

AddComment (recid & semi& idxname & Format (#idxnum,'n',99) & semi & \

 Format (Len (fldname),'n',999) & semi & fldname)

AddComment (recid & semi& idxdata & Format (#idxnum,'n',99) & semi & \

 Format (Len (flddata),'n',999) & semi& flddata)

* Add Comment, 'RECID=470;ACIF_INDEX_NAME02;019;Correspondance Type'

* Add Comment, 'RECID=470;ACIF_INDEX_DATA02;025;Notice of Initial
Reserve'

#idxnum += 1

fldname = 'Correspondance Type'

flddata = 'Notice of Initial Reserve'

AddComment (recid & semi& idxname & Format (#idxnum,'n',99) & semi&\

 Format (Len (fldname),'n',999) & semi& fldname)

AddComment (recid & semi& idxdata & Format (#idxnum,'n',99) & semi&\

 Format (Len (flddata),'n',999) & semi& flddata)

* Get DAP Field - 'INSURED NAME'

* Add Comment, 'recid=470;ACIF_INDEX_NAME03;012;INSURED NAME'

* Add Comment, 'recid=470;ACIF_INDEX_DATA03;008;John Doe'

If (HaveField('INSURED NAME',,,grpname)) Then

 #idxnum += 1

 fldname = 'INSURED NAME'

 flddata = @(fldname,,,grpname)

 AddComment (recid & semi& idxname & Format (#idxnum,'n',99)
& semi&\

 Format (Len (fldname),'n',999) & semi & fldname)

 AddComment(recid & semi& idxdata & Format (#idxnum,'n',99) &
semi&\

 Format (Len (flddata),'n',999) & semi & flddata)

End

Return

EndSub

Chapter 1
Using DAL

38

39

Chapter 2

Function Reference

Numerous functions are built into the DAL calculation
language. These functions let you apply operations to
form set objects, to previously calculated target
variables, to constants, or to any combination of the
three. The functions fall into these categories:

• Bit/Binary Functions on page 42

• Database Functions on page 43

• Date Functions on page 51

• Documaker Server Functions on page 58

• Documaker Workstation Functions on page 59

• Field Functions on page 61

• File and Path Functions on page 68

• Have Functions on page 69

• INI Functions on page 70

• Graphics Functions on page 71

• Mathematical Functions on page 72

• Miscellaneous Functions on page 73

• Name Functions on page 74

• Page Functions on page 75

• Printer and Recipient Functions on page 76

• Section Functions on page 77

• String Functions on page 78

• Time Functions on page 80

• WIP Functions on page 88

• XML Functions on page 89

Chapter 2
Function Reference

40

• Locating Objects on page 94

• Where DAL Functions are Used on page 97

Some functions may be applicable to more than one category. Each function, however,
will only be discussed once in the category that best describes it.

Each category has a table listing the functions. The table lists and briefly describes each
function. Use the table to quickly scan the available functions. Each function is discussed
in detail in alphabetical order at the end of this chapter.

Overview

41

OVERVIEW Functions and procedures and their and associated parameters must be written in this
syntax:

FUNCTION(parameters)

Many functions return a value the script may use in some fashion. For instance, the
following statements each use the value returned from a function:

Some functions do not return a value and simply perform some operation and return.
These types of functions are often referred to as procedures to distinguish them from those
functions that do return values. If a function does not return a value, using it in one of the
above described manners causes a syntax error.

Sometimes a function may behave as either a function or procedure. For these functions,
if they are used in one of the manners shown, a result will be returned. If called in a
manner that does not expect a result, none will be returned.

Please note however, for those functions that must return a value, you are required to use
the result in one of the above described manners or a syntax error will be generated.

Each function description identifies any required or optional return value.

NOTE: The SAMPCO sample resources contain a great number of DAL examples and
explanations. Be sure to check out this resource as you create DAL scripts for
your company.

Statement This statement...

IF (FUNCTION()) then
 ...
END

Shows the returned value used in the logical evaluation of
the IF statement. If the returned value is non-zero, the IF
statement is TRUE. If the value is zero, the IF will evaluate
FALSE.

Y = FUNCTION(); Demonstrates assigning another variable the result returned
from a function.

Y = FUNCTION(
FUNCTION2());

Is similar to the last, except it also demonstrates the use of
a function’s return value as a parameter to another function.

$VAL = 17.00 / FUNCTION(); Demonstrates the use of a returned value as an operand in
a mathematical expression.

Chapter 2
Function Reference

42

BIT/BINARY
FUNCTIONS

The Bit/Binary functions are summarized in the table below. These functions allow bit
manipulation within integers. Click on the function name to jump to a discussion of that
function.

Function Result

BitAnd Returns the result of a bitwise AND operation performed on two numeric values.

BitClear Returns the result after clearing the specified bit in a value.

BitNot Returns the result of a bitwise logical NOT operation performed on a numeric
value.

BitOr Returns the result of a bitwise inclusive OR operation performed on two numeric
values.

BitRotate Returns the result of a bit shift-and-rotate operation performed on a numeric
value.

BitSet Returns the result after setting the specified bit on in a value.

BitShift Returns the result of a bit logical shift operation performed on a numeric value.

BitTest Returns TRUE (1) if the specified bit in a value is a 1; otherwise FALSE (0) is
returned.

BitXor Returns the result of a bitwise exclusive OR operation performed on two numeric
values.

DashCode Creates a value to assign to a series of fields from the binary value of an integer.

Dec2Hex Returns the hexadecimal equivalent of an integer value.

Hex2Dec Returns the integer equivalent of a hexadecimal string.

Database Functions

43

DATABASE
FUNCTIONS

Database functions perform tasks using databases. By default, all database styles
recognized by the system are supported. A typical use of these functions is to reference
tables created for ODBC in Windows and DB2 (DB2/2). The functions you can use are
listed below. Click on the function name to jump to a discussion of that function.

The functions are generic for any supported database including ODBC (Open Data Base
Connectivity) compliant databases and DB2/2 compliant databases.

NOTE: The customer is responsible for licensing and installing the desired database
product and any required operating system driver.

All database access is routed through the system’s database library DLL. This DLL
handles interfacing with the supported types of databases. Each database type has an
associated database handler. Database handlers can be described in an INI control group
which begins with DBHANDLER: followed by the database handler name, such as:

< DBHandler:ODBC >

Function Result

DBAdd Adds a record to an open database table. Optionally returns one (1) on
success or zero (0) on failure.

DBClose Closes an open database table. Optionally returns one (1) on success or zero
(0) on failure.

DBDelete Deletes a record from a database table. Optionally returns one (1) on success
or zero (0) on failure.

DBFind Retrieves a record by key value from an open database table. Optionally
returns one (1) on success or zero (0) on failure.

DBFirstRec Retrieves the first record from an open database table. Optionally returns
one (1) on success or zero (0) on failure.

DBNextRec Retrieves the next record from an open database table. Optionally returns
one (1) on success or zero (0) on failure.

DBOpen Opens a database table. Optionally returns one (1) on success or zero (0) on
failure.

DBPrepVars Creates the DAL variables associated with a table record.

DBUnloadDFD Streamlines the use of DAL with ODBC and memory tables by creating
DFD files and using only memory tables

DBUpdate Updates a record retrieved from a database table. Optionally returns one (1)
on success or zero (0) on failure.

Chapter 2
Function Reference

44

ODBC HANDLER

The standard handler name for ODBC is ODBC. Here is an example:

< DBHandler:ODBC >

Install = SQW32->SQInstallHandler

or

InstallMod= SQW32

InstallFunc= SQInstallHandler

The Install option specifies the DLL module name and handler function name. This
function is linked dynamically when the handler is initialized. Actually, the above
definitions are not necessary for ODBC support. The database library will default the
module and function name to the values shown.

Additional values can be optionally set in the INI file.

Server = Server name (default is “MS SQL Server”)

The Server option relates to an ODBC term which is specified on the control panel which
essentially provides the name of a driver. MS SQL Server is the default if the option is
omitted.

Qualifier = Qualifier(no default)

The Qualifier option provides data source specific information, for example, the database
name for an Access database.

User= User ID (no default)

PassWd= User password(no default)

The User and PassWd (password) options provide a way to automatically log on to the
database. Not all drivers support this usage. When unspecified, some ODBC drivers may
display a logon window and prompt for the information. Some drivers will ignore the
options if the connected database manager does not require or support logging in.

CreateIndex=Yes / No(default is Yes)

CreateTable=Yes / No(default is Yes)

The CreateTable and CreateIndex options can be used to prevent time delay while a table
is checked for existence. In this way, the normal capabilities of the connected driver may
be overridden. When set to No, any attempt to open the file with a mode of
CREATE_IF_NEW will automatically be rejected. Some drivers may not support
creating a table or index, and may require these options to be set to No.

Database Functions

45

DB2/2 HANDLER

The database handler for DB2 is defined in a similar manner to that described for ODBC.
The following INI options are valid for installing the DB2 handler.

< DBHandler:DB2 >

Install = DB2W32->DB2InstallHandler

or

InstallMod = DB2W32

InstallFunc = DB2InstallHandler

The Install option specifies the DLL module name and handler function name. This
function is linked dynamically when the handler is initialized. These INI options are not
necessary for tables specifying DB2 as the database type. DB2 is also supported via static
linking under z/OS, and currently only version 3.1 has been tested in that environment.

Here are other INI options that can be specified for DB2.

Database = Database name(no default)

The Database option specifies the name of the database and is required.

Bindfile = Bind file name(no default)

The Bindfile option specifies the name of a bind file which provides the bound access plan
for the database. The DB2LIB.BND file is provided with the system’s DB2LIB and can
be used as a bind file.

Chapter 2
Function Reference

46

CREATING A DATABASE HANDLER FOR AN EXCEL
DATABASE

You define a database handler for a Microsoft Excel database in a similar manner to that
described for an ODBC database. The following INI options are used to install the Excel
handler to access a database defined as part of an Excel spreadsheet. The handler name
in this example is NamesExcel.

< DBHandler:NamesExcel >

 Class = ODBC

 Server = NamesExc

The Class option tells the DAL database handler what type of driver to use. Enter ODBC.
This option is required.

The Server option specifies the user data sources name as shown on the ODBC Data
Source Administrator window. This name specifies the ODBC driver to be used as the
data source. The default drive is MS SQL Server.

This example shows how to add a user data source which is an Excel database named
NamesExc. NamesExc is defined in an Excel spreadsheet entitled Names. The user data
source name, NamesExc, is assigned to use the Microsoft Excel (ODBC) Driver (*.xls).

To add a new data source name, follow these steps:

1 Click the Add button and select the ODBC driver to use. Then click Finish.

2 Enter the desired Data Source Name and description. You can enter up to 22
characters for the data source name.

3 Click the Workbook Selection button and select the path for the database. Then click
Ok.

Database Functions

47

Chapter 2
Function Reference

48

Here is an example of the steps you would follow to define a database in an Excel
spreadsheet.

1 Enter the field names in the first row of each column that make up the table. Then
enter the data in each column.

2 Select the columns and rows that comprise the table.

3 Choose the Insert, Name, Define option. Then enter the name of the table on the
Define Name window and click Add.

4 Define the name of the worksheet and save it.

ASSOCIATING TABLES WITH HANDLERS

You can describe database tables in an INI control group which begins with DBTable:
followed by the database table name. The database table section associates attributes
specific to the table. Here is an example:

< DBTable:AppIdx >

DBHandler = ODBC

The DBHANDLER option allows a database table to be mapped by name to the
appropriate database handler. No other table-level options are defined at this time.

The system now supports multiple simultaneous ODBC connections via different ODBC
drivers. This will, for instance, let you connect at the same time to multiple:

• Databases on an SQL server

These rows and columns
are selected or highlighted.

Database Functions

49

• Databases on an SQL server and Excel spreadsheet databases

• Access databases and Excel spreadsheet databases

• Access databases

• Excel spreadsheet databases

• Databases for which you have an ODBC-compliant driver

The system does not support multiple different DB2 databases using native DB2 drivers.
Support is limited to ODBC-compliant data bases.

ACCESSING DATABASE FIELDS

Usually the information in a database table is logically divided into records. These records
typically contain one or more components called fields. In DAL, record fields will be
associated together via a common DAL variable prefix name. Ability to access individual
data elements is supported by using a dot (“.”) operator.

Here is an example:

Assume a table contains records with three fields:

• LOANTYPE

• PAYMENT

• DUEDATE

In the script you will designate a prefix name for these variables when using the database
functions. So you could end up with something like:

RECORD.LOANTYPE

RECORD.PAYMENT

RECORD.DUEDATE

Each field from the same record will have the same prefix name (which you can assign)
concatenated with the dot operator.

Chapter 2
Function Reference

50

SETTING UP MEMORY TABLES

Memory tables are useful when a program needs to create a temporary database table for
a fast search, sort, or sequential access, such as with DAL scripts with DALDB. For
instance, you create a few database tables from the input extract XML file for easier
mapping and searching if those tasks were taking too long.

To tell the system to open a memory table in a DAL script, include the MEM or
MEMORY parameter as the database type. This is the second parameter of DBOpen
function. Here is an example:

rc=DBOpen(“tablel”,”MEM”,”d:\deflib\appidx.dfd”,”READ & WRITE”);

Keep in mind that since the tables are in memory, they go away once the program
terminates and the data is lost. DFD files are required to use memory tables since those
tables are not self-describing.

When you use a memory table with either a DAL script that did not specify the MEM
parameter or with some other kind of table, include one of these INI options to tell the
system the table will be using memory:

< DBTable:XXX >

DBHandler = MEM

or

< DBTable:XXX >

DBHandler = MEMORY

To keep the table in memory after the DBClose call, include this INI option:

< DBTable:XXX >

Persistent = Yes

Keep in mind, in this case table memory is released only when the program terminates.
Use carefully to make sure you do not run out of memory.

Date Functions

51

DATE
FUNCTIONS

Date functions perform specific operations regarding date information. These functions
enter or alter a date in a particular manner. The date functions are summarized in the table
below. Click on the function name to jump to a discussion of that function.

Before we examine each date function individually you must understand the available date
formats. Date formats are usually one of the parameters you enter for a date function. The
date format determines how your date information appears when it is returned to the
section assigned to a target variable.

Function Result

Date Returns a date string or the current date.

Date2Date Converts one date format to a new format and returns the result.

DateAdd Adds days, months, and years to the date and returns the result.

DateCnv Converts a date specified with a two-digit year into a date containing a four-
digit year value.

Day Returns the day of the month number from a date and returns the result.

DayName Returns the specified day name.

DaysInMonth Returns the number of days in the specified month and year.

DaysInYear Returns the number of days in the specified year.

DiffDate Calculates the difference between two dates and returns a positive or
negative value based on which date is earlier.

DiffDays Returns the difference in days between two dates.

DiffMonths Returns the difference in months between two dates.

DiffYears Returns the difference in years between two dates.

LeapYear Returns one (1) if the specified year is a leap year and zero (0) if it is not a
leap year.

Month Returns the month number from a date.

MonthName Returns the specified month name.

WeekDay Returns the week day number from a date.

Year Returns the year from a date.

YearDay Returns the number of the day of the year from a date.

Chapter 2
Function Reference

52

DATE FORMATS

Date formats consist of these components, placed inside quotation marks, in this order:

(Format type)(Separator)(Year size)(Case)(Locale)

NOTE: Date formats are also used in the variable field properties. If you try to use DAL
to place a formatted date value into a variable field with a different date format,
the system will try to convert the date to the proper format. This can result in an
incorrect value and may cause an error message if it cannot be converted.

Parameter Description

Format type 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, or X. You
must include a format type if you want to specify a separator, a year size, or a
locale.
The default is 1 (one).
See Date format types on page 53 for a list of the various format types.

Separator For the separator character, you can enter a backslash (/), a dash (-), a period (.),
a comma (,), or B (or b), which indicates a blank space.
You should only enter separator characters for format types which include
separators (see the table of format types below).
If the format type does not include separators, such as format type C, the system
ignores any separator character you enter.
The default separator is a backslash (/).

Year size For the year size, you can specify either 2 (09) or 4 (2097) to indicate a two- or
four-digit year. Use four-digit years.
DAL functions use a four-digit year unless the format or the input data specifies
otherwise.
For example, if you enter 1/2, you specify date format 1 and a two-digit year, such
as 02/17/09.

Case (Optional) To return an uppercase date, such as FEBRUARY 17, 2009, include
this character before the Locale: >
To return a lowercase date, such as february 17, 2009, include this character
before the Locale: <
For a mixed case date, such as February 17, 2009, omit this parameter.

Locale For DAL functions, you can enter an additional component to specify the locale.
This is done with @xxx, where xxx indicates the locale. You must include the @,
or the system ignores the locale code (xxx).
US English (USD) is the default.
See Locales on page 55, for a list of locale codes.

Date Functions

53

Date format types
Format Date order Description

1 MM/DD/YY Month-Day-Year with leading zeros (02/17/2009)

2 DD/MM/YY Day-Month-Year with leading zeros (17/02/2009)

3 YY/MM/DD Year-Month-Day with leading zeros (2009/02/17)

4 Month D, Yr Month name-Day-Year with no leading zeros
(February 17, 2009)

5 M/D/YY Month-Day-Year with no leading zeros (2/17/2009)

6 D/M/YY Day-Month-Year with no leading zeros (17/2/2009)

7 YY/M/D Year-Month-Day with no leading zeros (2009/2/17)

8 bM/bD/YY Month-Day-Year with spaces instead of leading zeros
(2/17/2009)

9 bD/bM/YY Day-Month-Year with spaces instead of leading zeros
(17/ 2/2009)

A YY/bM/bD Year-Month-Day with spaces instead of leading zeros (2009/ 2/
17)

B MMDDYY Month-Day-Year with no separators (02172009)

C DDMMYY Day-Month-Year with no separators (17022009)

D YYMMDD Year-Month-Day with no separators (20090217)

E MonDDYY Month abbreviation-Day-Year with leading zeros (Feb172009)

F DDMonYY Day-Month abbreviation-Year with leading zeros (17Feb2009)

G YYMonDD Year-Month abbreviation-Day with leading zeros (2009Feb17)

H day/YY Day of year (counting consecutively from January 1)-Year (48/
2009)

I YY/day Year-Day of Year (counting consecutively from January 1—
often called the Julian date format) (2009/48)

J D Month, Yr Day-Month name-Year (17 February, 2009)

K Yr, Month D Year-Month name-Day (2009, February 17)

L * Mon-DD-
YYYY

Month abbreviation, Day with leading zeros, Year
(Feb 17, 2009)

M * DD-Mon-
YYYY

Day with leading zeros, Month abbreviation, Year
17 Feb, 2009.

* This format defaults to a two-digit year, but can be overridden to have four digits.

Chapter 2
Function Reference

54

Month abbreviations consist of the first three characters of the month’s name. Months
with four-character names, such as June, are not abbreviated.

NOTE: The century cut-off date is used to determine the century for 2-digit years. This
date defaults to 50, but you can change it using this INI option:

< Control >

DateFMT2To4Year =

Anything less than or equal to the cut-off year is considered to fall in the current
century. For instance using the default of 50, 13 would be interpreted as 2013.
Anything greater than the cut-off year is considered to fall in the previous
century. For instance, again using the default of 50, 88 would be interpreted as
1988. This is important when you have to determine the years or days between
two dates.

There is a scenario where the system overrides a 2-digit year output. This only
happens when the input has 4-digits and the output has 2-digits and the resulting
2-digit output does not yield the same results when read in again.

For instance, suppose your input is 01/01/1927 and the cutoff year is 50.
Normally any 2-digit year with a value less than 50 is considered part of the
current century. So if the system outputs the data as 01/01/27 and then tries to
read this date back in, you would get 01/01/2025 and not 01/01/1927.

The system changes its normal behavior because it is designed to be able to read
its own output and come up with the result originally provided in the original
input. If, however, you specifically tell the system you only want two digits, you
will get that output, but the system may not be able to read it back in and get the
same results.

N YYYYY-Mon-
DD

Year, Month abbreviation, Day with leading zeros
(2009, Feb 17)
This format defaults to a two-digit year, but can be overridden
to have four digits.

O Mon DD,
YYYY

Month abbreviation, Day with leading zeros, Year
(Feb 17, 2013)

P DD Mon,
YYYY

Day with leading zeros, Month abbreviation, Year
(17 Feb, 2013)

Q YYYY, Mon
DD

Year, Month abbreviation, Day with leading zeros
(2013, Feb 17)

X (hexadecimal) Eight-character hexadecimal representation of the system date.
Valid dates range from 12/31/1969 to 01/18/2038. Valid dates
may differ depending on the type of machine (PC or host) and
the type of CPU chip.

Format Date order Description

* This format defaults to a two-digit year, but can be overridden to have four digits.

Date Functions

55

Locales Here is a list of the currently supported localities:

For this country And this language Use this code

Argentina Spanish ARS

Australia English AUD

Austria German ATS

Belgium Dutch BED

Belgium French BEF

Bolivia Spanish BOB

Brazil Portuguese BRC

Canada English CAN

Canada French CAD

Chile Spanish CLP

Columbia Spanish COP

Denmark Danish DKK

Ecuador Spanish ECS

European Union English EUR

France French FRF

Finland Finnish FIM

Finland Swedish FMK

Germany German DEM

Guatemala Spanish GTQ

Iceland Icelandic ISK

Indonesia Indonesian IDR

Italy Italian ITL

Ireland English IEP

Liechtenstein German CHL

Luxembourg French FLX

Luxembourg German LUF

Mexico Spanish MXN

Chapter 2
Function Reference

56

Here are some examples, using December 18, 2010:

The Netherlands Dutch NLG

New Zealand English NZD

Norway Norwegian NOK

Panama Spanish PAB

Paraguay Spanish PYG

Peru Spanish PES

Portugal Portuguese PTE

South Africa English ZAR

South Africa Afrikaans ZAA

Spain Spanish ESP

Sweden Swedish SEK

Switzerland German CHF

Switzerland French CHH

Switzerland Italian CHI

United Kingdom English GBP

United States English USD

Uruguay Spanish UYU

Venezuela Spanish VEB

Example Description Result

1 Format type 1 12/18/10

1- Format type 1 with dashes (-) as the separator characters 12-18-10

1/2 Format type 1 with backslashes (/) as the separator
characters and a two-digit year

12/18/10

14 Format type 1 with a four-digit year (no separator specified
but the format type includes separators so the default
separator (/) will be used

12/18/10

B4 Format type B with a four-digit year (no separator specified
and the format type does not include separators, so none
will be included)

12182010

For this country And this language Use this code

Date Functions

57

4@CAD Format type 4, with French Canadian as the locality. If you
use “4@CAD” in a DAL function, the system returns the
French Canadian translation of date format type 4 (Month
D, YYYY with month spelled out). If you specify a locale, it
must be the last component of the date format

décembre 18, 2010

Example Description Result

Chapter 2
Function Reference

58

DOCUMAKER
SERVER

FUNCTIONS

The Documaker Server functions are summarized in the table below. Click on the
function name to jump to a discussion of that function.

Function Result

? Returns data from an extract file.

AddOvFlwSym Creates an overflow symbol.

AppIdxRec Get an archive record based on the APPIDX.DFD file and
Trigger2Archive INI settings.

CountRec Counts the number of records in an extract file transaction that match
a search mask parameter.

DDTSourceName Returns the contents of the Source Name field in the DDT file you
are currently processing. Applicable to batch processing only.

FieldRule Executes a field-level rule from within a DAL script.

GetData Retrieves data from a flat file extract file.

GetOvFlwSym Retrieves the value stored in an overflow symbol.

GVM Retrieves the contents of a GVM variable.

HaveGVM Determines if a GVM variable exists.

IncOvFlwSym Increments an overflow symbol.

KickToWIP Sends a transaction to WIP from the GenData program.

ResetOvFlwSym Resets the value in an overflow symbol to zero.

RPErrorMsg Writes an error message into Documaker Server’s error file.

RPLogMsg Writes a message into Documaker Server’s log file

RPWarningMsg Writes a warning message into Documaker Server’s error file.

SrchData Retrieves data from an XML or flat extract file

SetGVM Updates the contents of a GVM variable.

TriggerFormName Returns the form name of the current SetRecipTb entry being
processed.

TriggerImageName Returns the section (FAP file) name of the current SetRecipTb entry
being processed.

TriggerRecsPerOvFlw Retrieves the number of records per overflow section value which is
stored in the SETRCPTBL.DAT entry being processed.

Documaker Workstation Functions

59

DOCUMAKER
WORKSTATION

FUNCTIONS

The Documaker Workstation functions are summarized in the table below. Click on the
function name to jump to a discussion of that function.

Function Result

Ask Creates a message box which requires a Yes or No answer from the user.

Beep Creates a beep, which signals an event to the user.

Input Creates a message which asks the user to enter information.

MLEInput Creates a window with a title, prompt message, and a place for a user to enter
multiple lines of text.

MLETranslate Translates the \\n characters in a data string created by the MLEInput
function.

MSG Creates a message with an Ok button.

Refresh Refreshes or repaints the screen.

SetEdit Specifies which section field is the next field that should be used.

Table Locate and return a value from a table.

TotalPages Returns the number of pages that will print for a given recipient or for all
recipients.

TotalSheets Returns the total number of sheets of paper that will print for a recipient.

Chapter 2
Function Reference

60

DOCUPRESENTM
ENT FUNCTIONS

The Docupresentment functions are summarized in the table below. Click the function
name to jump to a discussion of that function.

Function Result

AddAttachVAR Adds a string value as an attachment variable

GetAttachVAR Returns the string value of an attachment variable

RemoveAttachVAR Removes an attachment variable

Field Functions

61

FIELD
FUNCTIONS

Field functions retrieve or change data associated with variable fields defined on sections.
The variable field functions are summarized in the table below. Click on the function
name to jump to a discussion of that function.

Function Result

@ Returns the value contained in a field.

AppendText Append text into a multi-line field from an external text file.

AppendTxm Append text into a multi-line field from an external multi-line text area.

AppendTxmUnique Append text into a multi-line field from an external multi-line text area
and rename the fields imported from the external text area so they have
unique names.

CompressFlds Compresses blank space by moving field data.

ConnectFlds Repositions and aligns field text along a common horizontal coordinate
so the field’s data appears concatenated.

DelField Deletes a field from a section.

FieldFormat Returns the format string associated with the field format type.

FieldPrompt Returns the text of the prompt for a field.

FieldType Returns the field format type assigned to a field.

FieldX Returns the X coordinate of a field object.

FieldY Returns the Y coordinate of a field object.

JustField Justifies a variable field content by modifying its field coordinates.

MAX Returns the maximum value found in a set of fields that share a naming
method.

MIN Returns the minimum value found in a set of fields that share a naming
method.

NUM Return the numeric value from a field regardless of the field’s format.

ResetFld Clears a field of data.

SetFld Assigns a value to a section field.

SetFont Change the font on a field.

SetLink Updates a hyperlink setting in a variable field, a graphic, or a text label.

SetProtect Prevents a specified field from being altered.

SetRequiredFld Changes the required option of a field to Required or Not Required.

Chapter 2
Function Reference

62

Before you examine each field function individually, you should understand the available
field formats and how to locate a specific field.

FIELD FORMATS

You can specify the field format for a specific section field. This restricts the type of data
the field can accept. When you include field formats in DAL statements, place them in
quotation marks. The following table lists the available field formats:

Size Returns the integer size of the data area of a section field.

SpanField Moves a field horizontally and then resizes it to span the distance
between two other specified fields.

STR Return the contents of a field as a string without conversion.

Format Definition Description

a Alphabetic Accepts only alphabetic characters (case sensitive)

A Uppercase
Alphabetic

Accepts only alphabetic characters and displays uppercase

B Bar code Accepts characters according to a bar code format string

C Custom** A custom formatted string

d Date Accepts date information according to a date format string

i International
Alphabetic

Accepts all alphabetic characters, including international
characters, and is case sensitive

I International
Uppercase
Alphabetic

Accepts all alphabetic characters, including international
characters, and converts to uppercase

k International
Alphanumeric

Accepts all characters, including international characters, and is
case sensitive

K International
Uppercase
Alphanumeric

Accepts all characters, including international characters, and
displays uppercase

m X or space Accepts an X or a space (used for a check box)

M Multi-line text No format

n Numeric Accepts numbers and uses a numeric format string

t Table only Accepts only information selected from a table

T Time Accepts only time

Function Result

Field Functions

63

Insertion text can be longer than a single character. Look at these examples:

NUMERIC FORMATS

The following table describes some common components that make up numeric formats.

x Alphanumeric Accepts all non-international characters (case sensitive)

X Uppercase
Alphanumeric

Accepts all non-international characters and displays uppercase

y Y or N Accepts a Y or N (Yes or No)

** Custom formats are unique formats you create. You specify text to be inserted in an input
string and where the text is to be inserted. For example, assume the input string is “123456789”
and the custom format string is “3,-,2,-”. This format takes the first three characters of the input
string and inserts a hyphen(-), then takes the next two characters of the input string and inserts
a hyphen (-), then appends the remainder of the input string. The result is: 123-45-6789.

Input Text Format String Output

B105 1,97 B97105

First Street 6, (not 1st) First (not 1st) Street

Component Description

“,” Tells the system to automatically insert a comma in the specified position(s) of
the field at data entry time.

“9” Tells the system to place a number zero through nine (0-9) in that space. If there
is no number to fill a digit preceding the number, the system uses zeros as
placeholders.

“.” Tells the system to accept only a decimal point in the specified position at data
entry time.

Format Definition Description

Chapter 2
Function Reference

64

The following lists provides examples of various numeric formats:

-ZZZZZZ9.99%

+ZZZZZZ9.99%

ZZZZZZ9.99-

ZZZZZZ9.99+

ZZZZZZ9.99DB

ZZZZZZ9.99CR

ZZZZZZ9.99

$ZZZZZZ9.99

99999999999

ZZZZZZZZZZZZZ

LOCATING FIELDS

The field functions can be used to get or change information on any field within a form
set. By default, these field functions will assume that you are referencing a field located on
the current section. To locate specific fields, elsewhere in the document, requires
additional information. Any field’s location can be precisely determined by the following
hierarchy:

Field -> Section -> Form -> Group

Fields occur on sections. Sections occur on forms. Forms are defined within a form group
(called a Line of Business in the insurance market). The form groups are specified by the
user during form set selection.

Typically you will not have to specify all four components of the hierarchy to locate a
given field for the DAL fields functions. By default, all field functions will search the
current section which is the section that contains the script being executed. If the field you
wish to reference occurs on the current section, then you do not have to specify any other
information.

“Z” Tells the system to automatically suppress leading zeros in the specified
positions of the field at data entry time.
Before version 10.0, system would suppress zeros and insert blanks. In version
10.0 and in subsequent versions, the system will not print a blank character.
For example, if the field format was ($zzzzz9.99 and you entered $255.98, the
system would display ($258.98). In version 10.0 and in subsequent versions, it
shows ($258.98).

“$” Tells the system to automatically insert a dollar sign in the specified position of
the field at data entry time. The dollar sign may be used in a drifting manner or
dollar fill. A single dollar sign in a field specifies that a currency system will
always appear in the right most position before the first non-zero number. A
dollar fill is specified by two dollar signs in the field format. A dollar fill specifies
that leading zeros will be suppressed and replaced by the $symbol.

“*” Works much the same way as a dollar fill, but suppresses zeros with asterisks
instead of dollar signs. An asterisk (*) must follow a dollar sign to a valid field
format.

Component Description

Field Functions

65

NOTE: You can also use the asterisk (*) as a wildcard, however, for optimal performance,
avoid using wildcards (*) when searching for field, section, or form names.

To locate a field on a section other than the current one requires additional information.
Each field function accepts optional parameters to identify a specific field, section, form,
and/or group to search. In addition, each of these parameters will support an optional
occurrence count to further identify the precise location of the field being requested.

A given field name is usually unique to a section. However, that same field name might
also be used on any number of other sections. Further, there may be any number of
occurrences of a section on a given form. Likewise, there may be additional copies of a
form included in the form set. And finally, any two forms might share one or more
sections in common.

Since it is possible to have any number of a similar named objects within a form set, the
occurrence count, used with the object’s name, is sometimes necessary to identify a
specific object. The following table explains the method that DAL field functions will use
to locate fields:

Field
Name

Section
Name

Form
Name

Group
Name Description

omitted *omitted* *omitted* *omitted* In the absence of any of these
parameters, the function will assume
that you wish to use the current field.

“FLD” *omitted* *omitted* *omitted* Find FLD on the current section.

“FLD” “IMG” *omitted* *omitted* Find the first occurrence of IMG (a
section) on the current form. If located,
find FLD on that section.

“FLD” *omitted* “FRM” *omitted* Find the first occurrence of FRM (a
form) in the current group. If located,
find the first occurrence of FLD on
that form. FLD may occur on any
section on FRM since that parameter
was omitted.

“FLD” *omitted* *omitted* “GRP” Find the first occurrence of FLD
within the group, GRP. This field may
be on any section on any form within
that group.

Chapter 2
Function Reference

66

Notice that many of these descriptions referred to the first occurrence of a particular
object. This is the default search method unless an occurrence count is specified on the
object name. For instance, if there are three occurrences of the field “MYFIELD” on a
particular form, you would distinguish them as “MYFIELD\1”, “MYFIELD\2”, and
“MYFIELD\3”. (In practice you do not have to specify “\1” to identify the first
occurrence except on those field functions that match on partial names.)

The backslash is not a valid character in any object name. When found, the field functions
will assume that the number following the backslash identifies the particular occurrence
of that named object you are requesting.

Field, section, and form names may specify occurrence numbers. Group does not require
an occurrence number because form groups are unique within the form set. The following
table demonstrates several uses of occurrence indicators.

“FLD” “IMG” “FRM” *omitted* Find the first occurrence of FRM in the
current group. Find the first occurrence
of IMG on that form. Find FLD on
that section.

“FLD” “IMG” *omitted” “GRP” Find the first occurrence of IMG
within the group, GRP. This section
may occur on any form since that
parameter was not specified. Then find
FLD on that section.

“FLD” “IMG” “FRM” “GRP” Find the first occurrence of FRM
within the group, GRP. Then find the
first occurrence of IMG. Finally, locate
FLD on that section.

Field
Name

Section
Name

Form
Name

Group
Name Description

“FLD” “IMG\2” *omitted* *omitted* Find the second occurrence of IMG (a
section) on the current form. If located,
find FLD on that section.

“FLD\3
”

omitted “FRM\2” *omitted* Find the second occurrence of FRM (a
form) in the current group. If located, find
the third occurrence of FLD on that form.
The third occurrence of FLD may occur
on any section on FRM since that
parameter was omitted.

“FLD\8
”

omitted *omitted* “GRP” Find the eighth occurrence of FLD within
the group, GRP. This field may occur on
any section or form within that group.

“FLD” “IMG\5” *omitted* “GRP” Find the fifth occurrence of IMG (a
section) within the group, GRP. If located,
find FLD on that section.

Field
Name

Section
Name

Form
Name

Group
Name Description

Field Functions

67

Finally, it should be noted that if a named object, or occurrence of that object, cannot be
located then the search will end in failure. For instance, if in the last example there are not
5 occurrences of IMG within the named group, then the function will cease looking for
FLD and return without success.

Chapter 2
Function Reference

68

FILE AND PATH
FUNCTIONS

The File and Path functions are summarized in the table below. Click on the function
name to jump to a discussion of that function.

Function Result

FileDrive Gets the drive component of a file name.

FileExt Gets the extension component of a file name.

FileName Gets the name component of a file name.

FilePath Gets the path component of a file name.

FullFileName Makes a full file name from a string containing the file name components.

PathCreate Creates the subdirectory path you specify if it does not exist.

PathExist Checks the path you specify to make sure it exists.

Have Functions

69

HAVE
FUNCTIONS

The Have functions are summarized in the table below. Click on the function name to
jump to a discussion of that function.

Function Result

GetFormAttrib Returns the content of the named user attribute (metadata) for the form
you specify.

HaveField Determines whether a named field exists.

HaveForm Determines whether a named form exists.

HaveGroup Determines whether a named group exists.

HaveImage Determines whether a named section exists.

HaveLogo Determines whether a named graphic (LOG) exists.

HaveRecip Determines if a recipient name is defined in the FORM.DAT file.

PutFormAttrib Saves the named attribute and information to a form within your document
set

RecipCopyCount Counts the number of recipient copies for specified sections and returns
that number.

Chapter 2
Function Reference

70

INI FUNCTIONS INI functions let your retrieve or set certain INI control group and option values. The
INI functions you can use are listed below. Click on the function name to jump to a
discussion of that function.

NOTE: These functions retrieve values from any INI files loaded in memory. The system
typically loads the FSIUSER.INI file first, which tells it to then load the
FSISYS.INI file. If the same control group and option appear in more than one
location in the files, these functions retrieve the value first defined.

See Using INI Options on page 8 also for a list of the DAL-related INI control groups
and options.

Function Result

GetINIBool Retrieves from memory the Boolean value of an INI control group and
option string.

GetINIString Retrieves from memory an INI control group and option string.

INI Retrieves and INI control group and option string.

LoadINIFile Loads an INI file into cache memory.

PutINIBool Store a Boolean value in an INI control group and option Boolean variable.

PutINIString Store a string value in an INI control group and option string variable.

SaveINIFile Saves the values from an INI control group and option into a file.

Graphics Functions

71

GRAPHICS
FUNCTIONS

The graphics functions are summarized in the table below. These functions affect LOG
files. Click on the function name to jump to a discussion of that function.

Function Result

ChangeLogo Replaces an existing graphic on the section with a new graphic (LOG).

DelLogo Deletes a graphic from a form.

InlineLogo In-lines a graphic (LOG) into the print stream

Logo Places a new graphic (LOG) at a specified position on the section.

Chapter 2
Function Reference

72

MATHEMATICAL
FUNCTIONS

Mathematical functions perform certain mathematical operations and return the resulting
value. The mathematical functions you can use are listed below. Click on the function
name to jump to a discussion of that function.

NOTE: DAL has a limit of 14 significant numbers. If you have a number with greater
than 14 significant numbers and apply a DAL mathematical function to it, DAL
will return a value of zero (0) for that number.

Function Result

ABS Returns the absolute value of a number.

Avg Averages a group of fields that share a naming method and returns the result.

Count Counts the number of fields with values, shares a naming method, and returns the
result.

INT Returns the integer portion of a number.

MOD Returns the remainder from modular arithmetic.

Numeric Tests if a string contains a valid numeric value and returns one (1) if it does or zero
(0) if it does not.

POW Handles calculations such as those needed to figure annuities and interests rates.

SUM Totals all fields that share a naming method and returns the result.

Miscellaneous Functions

73

MISCELLANEOUS
FUNCTIONS

Miscellaneous functions perform a variety of operations and return specific information
or values. The miscellaneous functions are summarized in the table below. Click the
function name to jump to a discussion of that function.

Function Result

Always Used as a placeholder or stub.

Call Suspends one calculation and executes another calculation file.

Chain Calls another calculation language file.

CFind Temporarily suspends one calculation and executes another calculation file.

Exists Determines if a DAL symbolic variable exists.

GetValue Returns a string that contains the contents of the DAL symbolic variable
specified by the parameter.

LoadLib Loads a file that contains a library of DAL scripts.

MajorVersion Retrieves the major version number of the system being executed.

MinorVersion Retrieves the minor version number of the system being executed.

Print_It Prints a string on the console.

Retain Retains DAL variables during transaction processing.

UniqueString Returns a 45-character globally unique string.

Chapter 2
Function Reference

74

NAME
FUNCTIONS

The Name functions are summarized in the table below. Click on the function name to
jump to a discussion of that function.

Function Result

FieldName Returns the name of a field.

FormDesc Retrieves a form description specified in a FORM.DAT file.

FormName Returns a specified form’s name.

GroupName Returns a specified group’s name.

ImageName Returns a specified section’s name.

PageImage Returns the name of a section on a given page number within the form set or
form.

RecipientName Returns from the FORM.DAT file the recipient name related to the specified
section, form, or group.

RenameLogo Renames a graphic (LOG).

RootName Extracts and returns the root name, or the original part of the name, of a
specified string.

SetFormDesc Change the description of a form.

WhatForm Returns the name of the form that includes the item you searched for.

WhatGroup Returns the name of the group that includes the item you searched for.

WhatImage Returns the name of the section that includes the item you searched for.

Page Functions

75

PAGE
FUNCTIONS

The Page functions are summarized in the table below. Click the function name to jump
to a discussion of that function.

Function Result

AddBlankPages Add blank or filler pages to the print stream

DelBlankPages Removes blank or filler pages.

PageInfo Gets information about the page of a form you specify.

PaginateForm Applies section origins and re-paginates the form if necessary.

Chapter 2
Function Reference

76

PRINTER AND
RECIPIENT

FUNCTIONS

Print functions perform a variety of operations and return specific information or values.
These functions are summarized in the table below. Click on the function name to jump
to a discussion of that function.

Function Result

AddComment Adds a comment to the print stream.

AddDocusaveComment Adds a comment to a Metacode or AFP print stream created
specifically for Docusave.

BreakBatch Tells Documaker Server to break the output print stream file for the
current recipient batch after processing the current recipient,
including post transaction banner processing.

DeviceName Returns the current output device file name, such as the name of the
current print stream output file.

IsPrintObject Lets you know if the section (image), form, or group is printable,
based on the current print recipient and the recipient copy count.

PrinterClass Finds out the type of print stream the system is generating.

PrinterGroup Retrieves the group name that is being used to generate the print
stream.

PrinterID Returns the printer ID assigned during a batch processing run.

PrinterOutputSize Returns the approximate size of the current print output file during
a batch print operation.

RecipBatch Gets the name of the recipient batch file being processed. Used in
banner or comment record processing.

RecipName Gets the name of the recipient batch record for the transaction
currently being printed. Used in banner or comment record
processing.

SetDeviceName Sets a new output device file name which will be used the next time
the output device is opened, assuming nothing overrides the name
prior to that.

SuppressBanner Suppresses the printing of a banner page.

Section Functions

77

SECTION
FUNCTIONS

The section (image) functions are summarized in the table below. Click on the function
name to jump to a discussion of that function.

Function Result

AddImage Adds a specified section to a form as a new page.

ApplyInserts Force the insertion of items associated with applying logos, state stamps, and
signatures to a form set

DelForm Deletes a specified form from the current document.

DelImage Deletes a section from a form.

EmbedLogo Embeds a graphic (LOG) into the NAFILE.DAT file.

ImageRect Retrieves the coordinates of a section.

SetImagePos Repositions a section on a page.

SetRecip Sets the recipient copy count for a form or group.

Chapter 2
Function Reference

78

STRING
FUNCTIONS

String functions manipulate data to conform to a certain format. The string functions are
summarized in the table below.

NOTE: If the destination of the data is a field with a specific format, keep in mind the
system will execute any DAL processing before it applies the format specified in
the field’s format mask.

Function Result

BankRound Rounds numbers based on Banker’s rounding. Values below 0.5 go down,
values above 0.5 go up, and values of exactly 0.5 go to the nearest even
number.

CFind Finds and returns the position of a character (or string of characters) within
another string of characters.

Char Converts an integer into a single character.

CharV Converts a single character into an integer value.

CodeInList Searches for a string in a list of a strings.

Cut Removes characters from a string at a specified position and returns the
result.

DeFormat Removes formatting from a string field and returns the result.

Find Finds the position of a substring within a string and returns the result.

Format Formats a string field and returns the result.

FrenchNumText Converts a number into a string of words and returns the result (in French).

Insert Inserts a substring into a string at a specified position and returns the result.

JCenter Returns a string center justified.

JLeft Returns a string left justified.

JRight Returns a string right justified.

Left Returns a specified number of left most characters.

LEN Returns the current length of the string.

ListInList Searches character string lists and returns the ordinal position (integer) of
the first string in the second parameter that matches any of the strings in the
first parameter.

Lower Converts all characters to lowercase and returns the result.

NL Retrieves a string that contains a new line character sequence.

NumText Converts a number into a string of words and returns the result (in English).

String Functions

79

PAD Adds trailing spaces or characters and returns the result.

ParseListCount Counts the indexed components within the formatted text

ParseListItem Returns the indexed components from the formatted text.

Right Returns a specified number of right most characters.

Round Returns a number rounded to the nearest specified decimal point.

STRCompare Compares two strings, considering case.

SUB Returns a substring from a string at a specified position.

Trim Removes end spaces and returns the result.

Upper Converts all characters to uppercase and returns the result.

Function Result

Chapter 2
Function Reference

80

TIME
FUNCTIONS

Time functions perform specific operations regarding time information. These functions
enter or calculate a time. The time functions are summarized in the table below.

Before examining each individual time function, take a look at the time formats. Time
formats are usually one of the parameters you enter for a time function. The time format
determines how your time information appears when it is returned to the section.

TIME FORMATS

Times can be entered in several formats. The time formats are explained in this table:

Function Result

DiffHours Calculates and returns the absolute time difference in hours between
two times.

DiffMinutes Calculates and returns the absolute time difference in minutes between
two times.

DiffSeconds Calculates and returns the absolute time difference in seconds
between two times.

DiffTime Calculates the difference in time between two times and returns a
signed (positive or negative) value, given in seconds.

Hour Extracts and returns the number of hours from a time.

Minute Extracts and returns the number of minutes from a time.

Second Extracts and returns the number of seconds from a time.

Time Returns a time string or the current time in a specified format.

Time2Time Converts a time from one format to another and returns the result.

TimeAdd Adds time to a time and returns the new time.

TimeZone Returns the system’s time zone setting or makes sure a time zone is
valid.

TimeZone2TimeZone Converts date and time values from one geographic region into date
and time values that are local to another geographic region.

Time Functions

81

The separators you can use include:

'.' = 99.99.99 ',' = 99,99,99 '-' = 99-99-99

'b' = 99 99 99 ':' = 99:99:99 (default)

USING THE TIME ZONE FUNCTIONS

The TimeZone and TimeZone2TimeZone functions are not available on mainframe
platforms like z/OS. They are only available on Windows and UNIX platforms.

These functions use the International Components for Unicode (ICU) library. The ICU
system time zones are derived from the tz database (also known as the Olson database)
available at...

ftp://elsie.nci.nih.gov/pub

This is the data used across much of the industry, including by UNIX systems.

The ICU time zone functionality supports

• Standard time zones, such as Eastern Standard Time (EST), Central Standard Time
(CST), and so on.

• Time zone IDs defined in the standard Olson data used by UNIX systems. These
time zone IDs use the following format:

continent/city or ocean/city

For example, America/Los_Angeles is an ID for Pacific Standard Time.

• Custom time zones based on Greenwich Mean Time (GMT), in this format:

“GMT[+|-]hh[[:]mm]")

Format
Time
Segments Description

1 HH:MM:SS Time is based on a 24 hour system. This is frequently referred to as
“military time”. The 24 hour system is the default format.
Example: 14:18:23

2 HH:MM:SS
XM

Time is based on a 12 hour system. AM or PM is given.
Example: 02:18:23 PM

3 HH:MM Time is based on a 24 hour system. Seconds are not given.
Example: 14:18

4 HH:MM XM Time is based on a 12 hour system. Seconds are not given. AM or
PM is given.
Example: 02:18 PM

ftp://elsie.nci.nih.gov/pub

Chapter 2
Function Reference

82

ICU TIME ZONES

Here is a list of the various International Components for Unicode (ICU) time zones:

Time Zones

ACT AET Africa/Abidjan Africa/Accra

Africa/Addis_Ababa Africa/Algiers Africa/Asmera Africa/Bamako

Africa/Bangui Africa/Banjul Africa/Bissau Africa/Blantyre

Africa/Brazzaville Africa/Bujumbura Africa/Cairo Africa/Casablanca

Africa/Ceuta Africa/Conakry Africa/Dakar Africa/Dar_es_Salaam

Africa/Djibouti Africa/Douala Africa/El_Aaiun Africa/Freetown

Africa/Gaborone Africa/Harare Africa/Johannesburg Africa/Kampala

Africa/Khartoum Africa/Kigali Africa/Kinshasa Africa/Lagos

Africa/Libreville Africa/Lome Africa/Luanda Africa/Lubumbashi

Africa/Lusaka Africa/Malabo Africa/Maputo Africa/Maseru

Africa/Mbabane Africa/Mogadishu Africa/Monrovia Africa/Nairobi

Africa/Ndjamena Africa/Niamey Africa/Nouakchott Africa/Ouagadougou

Africa/Porto-Novo Africa/Sao_Tome Africa/Timbuktu Africa/Tripoli

Africa/Tunis Africa/Windhoek AGT America/Adak

America/Anchorage America/Anguilla America/Antigua America/Araguaina

America/Argentina/
Buenos_Aires

America/Argentina/
Catamarca

America/Argentina/
ComodRivadavia

America/Argentina/Cordoba

America/Argentina/Jujuy America/Argentina/La_Rioja America/Argentina/Mendoza America/Argentina/
Rio_Gallegos

America/Argentina/San_Juan America/Argentina/Tucuman America/Argentina/Ushuaia America/Aruba

America/Asuncion America/Atikokan America/Atka America/Bahia

America/Barbados America/Belem America/Belize America/Blanc-Sablon

America/Boa_Vista America/Bogota America/Boise America/Buenos_Aires

America/Cambridge_Bay America/Campo_Grande America/Cancun America/Caracas

America/Catamarca America/Cayenne America/Cayman America/Chicago

America/Chihuahua America/Coral_Harbour America/Cordoba America/Costa_Rica

Time Functions

83

America/Cuiaba America/Curacao America/Danmarkshavn America/Dawson

America/Dawson_Creek America/Denver America/Detroit America/Dominica

America/Edmonton America/Eirunepe America/El_Salvador America/Ensenada

America/Fort_Wayne America/Fortaleza America/Glace_Bay America/Godthab

America/Goose_Bay America/Grand_Turk America/Grenada America/Guadeloupe

America/Guatemala America/Guayaquil America/Guyana America/Halifax

America/Havana America/Hermosillo America/Indiana/
Indianapolis

America/Indiana/Knox

America/Indiana/Marengo America/Indiana/Petersburg America/Indiana/Vevay America/Indiana/Vincennes

America/Indianapolis America/Inuvik America/Iqaluit America/Jamaica

America/Jujuy America/Juneau America/Kentucky/Louisville America/Kentucky/
Monticello

America/Knox_IN America/La_Paz America/Lima America/Los_Angeles

America/Louisville America/Maceio America/Managua America/Manaus

America/Martinique America/Mazatlan America/Mendoza America/Menominee

America/Merida America/Mexico_City America/Miquelon America/Moncton

America/Monterrey America/Montevideo America/Montreal America/Montserrat

America/Nassau America/New_York America/Nipigon America/Nome

America/Noronha America/North_Dakota/
Center

America/North_Dakota/
New_Salem

America/Panama

America/Pangnirtung America/Paramaribo America/Phoenix America/Port-au-Prince

America/Port_of_Spain America/Porto_Acre America/Porto_Velho America/Puerto_Rico

America/Rainy_River America/Rankin_Inlet America/Recife America/Regina

America/Rio_Branco America/Rosario America/Santiago America/Santo_Domingo

America/Sao_Paulo America/Scoresbysund America/Shiprock America/St_Johns

America/St_Kitts America/St_Lucia America/St_Thomas America/St_Vincent

America/Swift_Current America/Tegucigalpa America/Thule America/Thunder_Bay

America/Tijuana America/Toronto America/Tortola America/Vancouver

America/Virgin America/Whitehorse America/Winnipeg America/Yakutat

Time Zones

Chapter 2
Function Reference

84

America/Yellowknife Antarctica/Casey Antarctica/Davis Antarctica/DumontDUrville

Antarctica/Mawson Antarctica/McMurdo Antarctica/Palmer Antarctica/Rothera

Antarctica/South_Pole Antarctica/Syowa Antarctica/Vostok Arctic/Longyearbyen

ART Asia/Aden Asia/Almaty Asia/Amman

Asia/Anadyr Asia/Aqtau Asia/Aqtobe Asia/Ashgabat

Asia/Ashkhabad Asia/Baghdad Asia/Bahrain Asia/Baku

Asia/Bangkok Asia/Beirut Asia/Bishkek Asia/Brunei

Asia/Calcutta Asia/Choibalsan Asia/Chongqing Asia/Chungking

Asia/Colombo Asia/Dacca Asia/Damascus Asia/Dhaka

Asia/Dili Asia/Dubai Asia/Dushanbe Asia/Gaza

Asia/Harbin Asia/Hong_Kong Asia/Hovd Asia/Irkutsk

Asia/Istanbul Asia/Jakarta Asia/Jayapura Asia/Jerusalem

Asia/Kabul Asia/Kamchatka Asia/Karachi Asia/Kashgar

Asia/Katmandu Asia/Krasnoyarsk Asia/Kuala_Lumpur Asia/Kuching

Asia/Kuwait Asia/Macao Asia/Macau Asia/Magadan

Asia/Makassar Asia/Manila Asia/Muscat Asia/Nicosia

Asia/Novosibirsk Asia/Omsk Asia/Oral Asia/Phnom_Penh

Asia/Pontianak Asia/Pyongyang Asia/Qatar Asia/Qyzylorda

Asia/Rangoon Asia/Riyadh Asia/Riyadh87 Asia/Riyadh88

Asia/Riyadh89 Asia/Saigon Asia/Sakhalin Asia/Samarkand

Asia/Seoul Asia/Shanghai Asia/Singapore Asia/Taipei

Asia/Tashkent Asia/Tbilisi Asia/Tehran Asia/Tel_Aviv

Asia/Thimbu Asia/Thimphu Asia/Tokyo Asia/Ujung_Pandang

Asia/Ulaanbaatar Asia/Ulan_Bator Asia/Urumqi Asia/Vientiane

Asia/Vladivostok Asia/Yakutsk Asia/Yekaterinburg Asia/Yerevan

AST Atlantic/Azores Atlantic/Bermuda Atlantic/Canary

Atlantic/Cape_Verde Atlantic/Faeroe Atlantic/Jan_Mayen Atlantic/Madeira

Atlantic/Reykjavik Atlantic/South_Georgia Atlantic/St_Helena Atlantic/Stanley

Time Zones

Time Functions

85

Australia/ACT Australia/Adelaide Australia/Brisbane Australia/Broken_Hill

Australia/Canberra Australia/Currie Australia/Darwin Australia/Hobart

Australia/LHI Australia/Lindeman Australia/Lord_Howe Australia/Melbourne

Australia/North Australia/NSW Australia/Perth Australia/Queensland

Australia/South Australia/Sydney Australia/Tasmania Australia/Victoria

Australia/West Australia/Yancowinna BET Brazil/Acre

Brazil/DeNoronha Brazil/East Brazil/West BST

Canada/Atlantic Canada/Central Canada/East-Saskatchewan Canada/Eastern

Canada/Mountain Canada/Newfoundland Canada/Pacific Canada/Saskatchewan

Canada/Yukon CAT CET Chile/Continental

Chile/EasterIsland CNT CST CST6CDT

CTT Cuba EAT ECT

EET Egypt Eire EST

EST5EDT Etc/GMT Etc/GMT+0 Etc/GMT+1

Etc/GMT+10 Etc/GMT+11 Etc/GMT+12 Etc/GMT+2

Etc/GMT+3 Etc/GMT+4 Etc/GMT+5 Etc/GMT+6

Etc/GMT+7 Etc/GMT+8 Etc/GMT+9 Etc/GMT-0

Etc/GMT-1 Etc/GMT-10 Etc/GMT-11 Etc/GMT-12

Etc/GMT-13 Etc/GMT-14 Etc/GMT-2 Etc/GMT-3

Etc/GMT-4 Etc/GMT-5 Etc/GMT-6 Etc/GMT-7

Etc/GMT-8 Etc/GMT-9 Etc/GMT0 Etc/Greenwich

Etc/UCT Etc/Universal Etc/UTC Etc/Zulu

Europe/Amsterdam Europe/Andorra Europe/Athens Europe/Belfast

Europe/Belgrade Europe/Berlin Europe/Bratislava Europe/Brussels

Europe/Bucharest Europe/Budapest Europe/Chisinau Europe/Copenhagen

Europe/Dublin Europe/Gibraltar Europe/Guernsey Europe/Helsinki

Europe/Isle_of_Man Europe/Istanbul Europe/Jersey Europe/Kaliningrad

Europe/Kiev Europe/Lisbon Europe/Ljubljana Europe/London

Time Zones

Chapter 2
Function Reference

86

Europe/Luxembourg Europe/Madrid Europe/Malta Europe/Mariehamn

Europe/Minsk Europe/Monaco Europe/Moscow Europe/Nicosia

Europe/Oslo Europe/Paris Europe/Prague Europe/Riga

Europe/Rome Europe/Samara Europe/San_Marino Europe/Sarajevo

Europe/Simferopol Europe/Skopje Europe/Sofia Europe/Stockholm

Europe/Tallinn Europe/Tirane Europe/Tiraspol Europe/Uzhgorod

Europe/Vaduz Europe/Vatican Europe/Vienna Europe/Vilnius

Europe/Volgograd Europe/Warsaw Europe/Zagreb Europe/Zaporozhye

Europe/Zurich Factory GB GB-Eire

GMT GMT+0 GMT-0 GMT0

Greenwich Hongkong HST Iceland

IET Indian/Antananarivo Indian/Chagos Indian/Christmas

Indian/Cocos Indian/Comoro Indian/Kerguelen Indian/Mahe

Indian/Maldives Indian/Mauritius Indian/Mayotte Indian/Reunion

Iran Israel IST Jamaica

Japan JST Kwajalein Libya

MET Mexico/BajaNorte Mexico/BajaSur Mexico/General

Mideast/Riyadh87 Mideast/Riyadh88 Mideast/Riyadh89 MIT

MST MST7MDT Navajo NET

NST NZ NZ-CHAT Pacific/Apia

Pacific/Auckland Pacific/Chatham Pacific/Easter Pacific/Efate

Pacific/Enderbury Pacific/Fakaofo Pacific/Fiji Pacific/Funafuti

Pacific/Galapagos Pacific/Gambier Pacific/Guadalcanal Pacific/Guam

Pacific/Honolulu Pacific/Johnston Pacific/Kiritimati Pacific/Kosrae

Pacific/Kwajalein Pacific/Majuro Pacific/Marquesas Pacific/Midway

Pacific/Nauru Pacific/Niue Pacific/Norfolk Pacific/Noumea

Pacific/Pago_Pago Pacific/Palau Pacific/Pitcairn Pacific/Ponape

Pacific/Port_Moresby Pacific/Rarotonga Pacific/Saipan Pacific/Samoa

Time Zones

Time Functions

87

When converting times When converting times from one locale to another, keep in mind that the two locales must
represent time in a similar manner. If, for instance, you have a DAL script that requests a
US (the default) time value which includes AM or PM indicators, you must make sure the
target Time field can interpret a US time. Otherwise, the AM and PM are interpreted as
invalid characters for the specified locale.

In these situations, you either have to change the Time format parameter to include the
locale your target field wants or you have to specify a format that does not include the
AM/PM indicator and then allow the field editing to fill that in for you.

For instance, if the source locale was US and the target locale was ZAA (South Africa/
Afrikaans), you either need...

Return (TIME(“2@ZAA”, 13, 30, 5))

or

Return (TIME(1, 13, 30, 5))

This is also applicable when you are handling dates. For example, suppose you chose to
make a Date field use Afrikaans with a format of Month DD, YYYY – where the month
name is expected. If you try to type (or return from a script) October as the month name,
you would get an error because in Afrikaans that month is spelled Oktober.

For any field that has a locale-specific format, be sure to enter any characters or symbols
required by the target language.

Pacific/Tahiti Pacific/Tarawa Pacific/Tongatapu Pacific/Truk

Pacific/Wake Pacific/Wallis Pacific/Yap PLT

PNT Poland Portugal PRC

PRT PST PST8PDT ROC

ROK Singapore SST Turkey

UCT Universal US/Alaska US/Aleutian

US/Arizona US/Central US/East-Indiana US/Eastern

US/Hawaii US/Indiana-Starke US/Michigan US/Mountain

US/Pacific US/Pacific-New US/Samoa UTC

VST W-SU WET Zulu

Time Zones

Chapter 2
Function Reference

88

WIP
FUNCTIONS

Work-in-process (WIP) functions perform a variety of WIP-related functions and return
specific information or values, such as a value from the current WIP record. The WIP
functions are summarized in the table below. Click on the function name to jump to a
discussion of that function.

Function Result

AddForm Adds a specified form to the current document.

AddForm_Propagate Add a new form to a document and propagates global data onto that
form.

AddImage_Propagate Add a new section to a document and propagates global data onto
that section.

AFELog Writes a message to the AFELOG file.

AssignWIP Assigns work-in-process and associated data to a different user ID.

Complete Completes the work-in-process.

CopyForm Copies a form and its field contents (data) into a new form.

DelWIP Deletes the work-in-process and its associated data.

DupForm Duplicates a form.

MailWIP Sends the current document to a specified email address.

Print Prints the current form set.

RouteWIP Routes work in process to names specified via routing slip.

SaveWIP Saves the WIP record being processing.

SetWIPFld Sets WIP fields from DAL to the record in memory.

SlipAppend Appends a new email address to a slip in route.

SlipInsert Inserts a new email address into a slip in route.

UserID Returns the user ID used to log into the system.

UserLvl Returns the current user's rights level.

WIPExit Exits entry immediately and saves or discards work in WIP.

WIPFld Returns the value of the identified WIP field.

WIPKey1 Returns the value of the Key1 field from the current WIP record.

WIPKey2 Returns the value of the Key2 field from the current WIP record.

WIPKeyID Returns the value of the KeyID field from the current WIP record.

XML Functions

89

XML
FUNCTIONS

Use DAL XML API functions to let Documaker applications access specified XML
documents and retrieve XML data via a DAL script. These functions are registered in
keywords, called built-in functions. An XML built-in function performs an operation on
a set of parameters and returns a DAL variable in one of the three types: list, integer, or
string.

The XML functions are summarized in the table below. Click the function name to jump
to a discussion of that function.

Function Result

DestroyList Destroys the XML tree created by the LoadXMLList function.

GetListElem Returns a text string which contains the first element that matches the
search criteria

IsXMLError Checks the list for the error status.

LoadXMLList Loads an XML document and extracts an XML tree.

XMLAttrName Returns the name of the current attribute pointed to by the
XMLFirstAttrib and XMLNextAttrib functions.

XMLAttrValue Returns the value of the attribute pointed to by the XMLFirstAttrib and
XMLNextAttrib functions.

XMLFind Locates the XML path from the extracted XML tree and returns a list of
matched elements to a list type DAL variable or a matched text to a string
type DAL variable.

XMLFirst Sets the current pointer to the first element in the specified list.

XMLFirstAttrib Sets the attribute pointer to the first attribute for the current element in
the element list or to the first attribute element in the attribute list.

XMLFirstText Sets the current text to be the first text element in the XML search list
and then retrieve that text.

XMLGetCurName Returns the element name from the current element.

XMLGetCurText Returns the text from the current element.

XMLNext Sets the current pointer to the next node or element in the specified list.

XMLNextAttrib Sets the current attribute pointer to the next attribute for the current
element in the list or to the next attribute element in the attribute list.

XMLNextText Retrieves the next text element in the XML search list.

XMLNthAttrName Returns the nth attribute name indicated by the index number.

XMLNthAttrValue Returns the nth attribute value indicated by the index number.

XMLNthText Returns the nth text value, as indicated by the index number.

Chapter 2
Function Reference

90

USING DAL XML FUNCTIONS

There are two scenarios in which you would use DAL XML functions:

Scenario 1 A Documaker program, such as GenData, loads an XML document and extracts the
XML tree at the transaction level using the XMLFileExtract rule. This rule creates a list
type DAL variable with a default name of %extract and pushes it onto the DAL stack.

Then you can call other XML functions in a DAL script to access the XML tree and
extract XML data.

Here are examples of the form set and section rules you would add and a DAL script that
would call the XML functions.

• Add this in the AFGJOB.JDT file:

;XMLFileExtract;2;File=.\deflib\test.xml

The rule loads the XML file and creates a list type DAL variable to pass the XML
tree to the XML API function.

• Add this in your DDT file:

;0;0;DALXMLSCRIPT;0;9;DALXMLSCRIPT;0;9;;DAL;Call("TEST.DAL");N;N;N;
N;4792;19444;11010;

TEST.DAL is the name of the DAL script file.

• Here is an example of the DAL script:

%listH=XMLFind(%extract, “Forms”, “Form”);

#rc=XMLFirst(%listH);

if #rc=0

return(“Failed to XMLFirst”);

end

aStr=XMLGetCurText(%listH);

return(aStr);

%listH denotes a list type DAL variable. #rc denotes an integer type DAL variable.
aStr denotes a string type DAL variable.

Scenario 2 You can also load the XML document and create the XML tree at a specific section field
by calling the LoadXMLList rule from a DAL script. You must set the calling procedure
in the DDT file as shown in Scenario 1.

Here is an example of DAL script file:

%xListH=LoadXMLList("test.xml");

%listH=XMLFind(%xListH,"Forms","Form/@*");

aStr=XMLNthAttrValue(%listH,2);

#rc=DestroyList(%xListH);

return(aStr);

XML Functions

91

XML PATH LOCATOR

The XMLFind function is called the DAL XML path locator or DAL XPath. It is a limited
version of the XML path and does not cover all aspects defined in the W3C literature.

Refer to W3C recommendations for the description of XPointer and XPath syntax. You
can use the XPATHW32 testing tool to verify the applicable specifications of Oracle
Insurance’s DAL XPath. Run the XPATHW32 program to get the syntax.

Below is a summary of XML path specifications for DAL XPath:

Axes These axes apply:

Function calls You can use these function calls:

Operators or signs You can use these operators or signs:

Expressions You can use abbreviated syntax, as this table shows:

ancestor ancestor-or-self attribute

child descendant descendant-or-self

following following-sibling parent

preceding preceding-sibling self

last() position() node()

text() name(node-set) string(object)

concat(string, string, string…)

= != < > + - / // * :: []

For... Use this abbreviation:

child::* *

child::para para

child::chapter/child::para chapter/para

child::para[position()=1] para[1]

/child::chapter/child::para[position()=last()] /chapter/para[last()]

child::text() text()

child::node() node()

child::para[attribute::type] para[@type]

child::para[attribute::type="warning"] para[@type="warning"]

Chapter 2
Function Reference

92

The XMLFind function locates the XML path from the extract XML tree and returns a
valid DAL variable result. It requires three input parameters, a list type DAL variable and
two string type variables. They in turn pass in an XML tree, a node name from which the
search starts, and XML path location for searching.

If you omit the second parameter, the search starts from the root. The return DAL
variable Result can be either list type or string type, depending on XML path.

child::para[attribute::type="warning"][position()=2] para[@type="warning"][2]

child::chapter[child::title] chapter[title]

child::chapter[child::title="Introduction"] chapter[title="Introduction"]

child::doc/descendant-or-self::node()/child::para doc//para

attribute::* @*

attribute::type @type

/descendant-or-self::node()/child::para //para

self::node() .

self::node/descendant-or-self::node()/child::para .//para

parent::node() ..

parent::node()/child::chapter ../chapter

parent::node()/attribute::type ../@type

For... Use this abbreviation:

XML Functions

93

Here are some examples that result in different return values:

Element list %elemListH=XMLFind(%extract, , “descendant::Form[@ID=Agent]”);

In this example, DAL Xpath selects the Form element descendants that have an attribute
with name ID and value Agent from the extract XML tree (root), and returns an element
list.

Attribute list %attrListH=XMLFind(%extract, “Forms”, “Form/@type=’warning’”);

In this example, DAL Xpath returns an attribute list that collects type attributes with value
warning for Form children of current context node Forms.

Text list %TextListH= XMLFind(%extract, “Forms”, “Form/text()”);

In this example, DAL Xpath returns a text list that contains all text nodes of Form children
of current context node Forms.

Text string aStr=XMLFind(%extract, Forms, “string(Form[2])”);

It returns the text of second child Form of the current context node Forms.

aStr=XMLFind(%extract, “Forms”, “concat(“Get form 2 text: ”,
“Form[2])”);

It returns the concatenation of the text string Get form 2 text: , and the text of the second
child Form of current context node Forms.

aStr=XMLFind(%extract, “Forms”, “name()”);

It returns the name of current context node.

Chapter 2
Function Reference

94

LOCATING
OBJECTS

Many of the graphics, section (image), page, have, WIP, and name functions support
parameters that let you locate an object anywhere within the form set. The object
hierarchy supported is explained below. This explanation also agrees with the field
parameters discussed in Locating Fields on page 64.

item -> Section -> Form -> Group

A number of different object types are supported by sections. Three objects that can be
located on a section are fields, graphics, and recipients. For information about fields, see
Locating Fields on page 64. Fields, graphics, and recipients are all objects that belong or
are defined on a section.

Sections occur on forms. Forms are defined within a form group (commonly referred to
as a Line Of Business). The form groups are specified by the user during form set selection.

To locate a specific object within the document often requires one or more parameter
names. For instance, to locate a specific field, in addition to the field’s name, might require
the section name, form name, and/or group name. Similarly, a function used to locate a
specific form, in addition to the form’s name, lets you specify the group to which it
belongs.

In addition to an object’s name, most parameters will support an optional occurrence
count to further identify the precise location of the object being requested.

Typically children of a section are unique to that section. However, that same object name
might also be used on any number of other sections. Further, there may be any number
of occurrences of a section on a given form. Likewise, there may be additional copies of
a form included in the form set. And finally, any two forms might share one or more
sections in common.

Since you can have any number of a similar named objects within a form set, the
occurrence count, used with the object’s name, is sometimes necessary to identify a
specific object. The following table explains many of the variations that are valid when
locating form set objects.

Item
Name

Section
Name

Form
Name

Group
Name Description

“ITEM
”

omitted *omitted* *omitted* Find the object on the current section.

“ITEM
”

“IMG” *omitted* *omitted* Find the first occurrence of IMG (a
section) on the current form. If located,
find ITEM on that section.

“ITEM
”

omitted “FRM” *omitted* Find the first occurrence of FRM (a form)
in the current group. If located, find the
first occurrence of ITEM on that form.
The item may occur on any section on
FRM since that parameter was omitted.

“ITEM
”

omitted *omitted* “GRP” Find the first occurrence of ITEM within
the group, GRP. This item may be on any
section on any form within that group.

Locating Objects

95

In the previous table, ITEM refers to the name of an object type expected by the function.
In other words, if the function is used to reference fields, you cannot locate the object if
you give it the name of any other object type.

Many of these descriptions referred to the first occurrence of a particular object. This is the
default search method unless an occurrence count is specified on the object name. For
instance, if there are three occurrences of a given object on a particular form, you would
distinguish them as ITEM\1, ITEM\2, and ITEM\3. (In practice, you do not have to
specify \1 to identify the first occurrence except with those functions that match on
partial names.)

“ITEM
”

“IMG” “FRM” *omitted* Find the first occurrence of FRM in the
current group. Find the first occurrence
of IMG on that form. Find ITEM on that
section.

“ITEM
”

“IMG” *omitted” “GRP” Find the first occurrence of IMG within
the group, GRP. This section may occur
on any form since that parameter was not
specified. Then find ITEM on that
section.

“ITEM
”

“IMG” “FRM” “GRP” Find the first occurrence of FRM within
the group, GRP. Then find the first
occurrence of IMG. Finally, find ITEM
on that section.

Locating Sections

“IMG” *omitted* *omitted* Find the occurrence of the section on the
current form.

“IMG” “FRM” *omitted* Find the occurrence of the section on the
form named. The form is assumed to be
in the current group.

“IMG” *omitted* “GRP” Locate the section within the named
group.

“IMG” “FRM” “GRP” Locate the form in the specified group.
Then locate the section on that form.

Locating Forms

“FRM” *omitted* Locate the form within the current group.

“FRM” “GRP” Locate the form in the specified group.

Locating Groups

“GRP” Locate the specified group.

Item
Name

Section
Name

Form
Name

Group
Name Description

Chapter 2
Function Reference

96

A backslash (\) is not a valid character in any object name. When found, the object
functions assume that the number following the backslash identifies the particular
occurrence of that named object you are requesting. Group names do not require an
occurrence number because form groups are unique within the form set. The following
table demonstrates several uses of occurrence indicators.

Finally, if a named object, or occurrence of that object, cannot be located the search ends
in failure. For instance, if in the last example there are not five occurrences of IMG within
the named group, then the function stops looking for the item and returns without
success.

Item
Name

Section
Name

Form
Name

Group
Name Description

“ITEM” “IMG\2” *omitted* *omitted* Find the second occurrence of IMG (a
section) on the current form. If
located, find ITEM on that section.

“ITEM\3
”

omitted “FRM\2” *omitted* Find the second occurrence of FRM (a
form) in the current group. If located,
find the third occurrence of ITEM on
that form.

“ITEM” “IMG\5” *omitted* “GRP” Find the fifth occurrence of IMG (a
section) within the group, GRP. If
located, find ITEM on that section.

Where DAL Functions are Used

97

WHERE DAL
FUNCTIONS ARE

USED

You use DAL functions to enhance the collection of data during either the form entry
process (Documaker Workstation) or in the forms processing cycle (Documaker Server).
All DAL functions can be used during the form entry process and most can be used
during the form processing cycle. The following table shows you where the various
functions affect processing.

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

@ Yes Yes

? No Yes

ABS Yes Yes

AddAttachVAR No Yes

AddBlankPages Yes Yes

AddComment No Yes

AddDocusaveComment No Yes

AddForm Yes No

AddForm_Propagate Yes Yes

AddImage Yes No

AddImage_Propagate Yes Yes

AddOvFlwSym No Yes

AFELog Yes No

AppendText Yes Yes

AppendTxm Yes Yes

AppendTxmUnique Yes Yes

AppIdxRec Yes Yes

ApplyInserts Yes Yes

Ask Yes No

AssignWIP Yes No

Avg Yes Yes

BankRound Yes Yes

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Chapter 2
Function Reference

98

Beep Yes No

BitAnd Yes Yes

BitClear Yes Yes

BitNot Yes Yes

BitOr Yes Yes

BitRotate Yes Yes

BitSet Yes Yes

BitShift Yes Yes

BitTest Yes Yes

BitXor Yes Yes

BreakBatch No Yes

CFind Yes Yes

ChangeLogo Yes Yes

CodeInList Yes Yes

Complete Yes No

CompressFlds Yes Yes

ConnectFlds Yes Yes

CopyForm Yes Yes

Count Yes Yes

CountRec No Yes

Cut Yes Yes

DashCode Yes Yes

Date Yes Yes

Date2Date Yes Yes

DateAdd Yes Yes

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Where DAL Functions are Used

99

DateCnv Yes Yes

Day Yes Yes

DayName Yes Yes

DaysInMonth Yes Yes

DaysInYear Yes Yes

DBAdd Yes Yes

DBClose Yes Yes

DBDelete Yes Yes

DBFind Yes Yes

DBFirstRec Yes Yes

DBNextRec Yes Yes

DBOpen Yes Yes

DBPrepVars Yes Yes

DBUnloadDFD Yes Yes

DBUpdate Yes Yes

DDTSourceName No Yes

Dec2Hex Yes Yes

DeFormat Yes Yes

DelBlankPages Yes Yes

DelField Yes Yes

DelForm Yes No

DelImage Yes No

DelLogo Yes Yes

DelWIP Yes No

DestroyList * Yes Yes

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Chapter 2
Function Reference

100

DeviceName Yes Yes

DiffDate Yes Yes

DiffDays Yes Yes

DiffHours Yes Yes

DiffMinutes Yes Yes

DiffMonths Yes Yes

DiffSeconds Yes Yes

DiffTime Yes Yes

DiffYears Yes Yes

DupForm Yes No

EmbedLogo Yes Yes

Exists No Yes

FieldFormat Yes No

FieldName Yes Yes

FieldPrompt Yes Yes

FieldRule No Yes

FieldType Yes Yes

FieldX Yes Yes

FieldY Yes Yes

FileDrive Yes Yes

FileExt Yes Yes

FileName Yes Yes

FilePath Yes Yes

Find Yes Yes

Format Yes Yes

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Where DAL Functions are Used

101

FormDesc Yes Yes

FormName Yes No

FrenchNumText Yes No

FullFileName Yes Yes

GetAttachVAR No Yes

GetData No Yes

GetFormAttrib Yes Yes

GetINIBool Yes Yes

GetINIString Yes Yes

GetListElem * Yes Yes

GetOvFlwSym No Yes

GetValue No Yes

GroupName Yes Yes

GVM Yes Yes

HaveField Yes No

HaveForm Yes No

HaveGroup Yes No

HaveGVM Yes Yes

HaveImage Yes No

HaveLogo Yes Yes

HaveRecip No Yes

Hex2Dec Yes Yes

Hour Yes Yes

ImageName Yes Yes

ImageRect Yes Yes

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Chapter 2
Function Reference

102

IncOvFlwSym No Yes

InlineLogo Yes Yes

Input Yes No

Insert Yes Yes

INT Yes Yes

IsPrintObject Yes Yes

IsXMLError * Yes Yes

JCenter Yes Yes

JLeft Yes Yes

JRight Yes Yes

JustField Yes Yes

KickToWIP Yes Yes

LeapYear Yes Yes

Left Yes Yes

LEN Yes Yes

ListInList Yes Yes

LoadINIFile Yes Yes

LoadLib Yes Yes

LoadXMLList * Yes Yes

Logo Yes Yes

Lower Yes Yes

MailWIP Yes No

MajorVersion Yes Yes

MAX Yes Yes

MIN Yes Yes

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Where DAL Functions are Used

103

MinorVersion Yes Yes

Minute Yes Yes

MLEInput Yes No

MLETranslate Yes No

MOD No Yes

Month Yes Yes

MonthName Yes Yes

MSG Yes No

NL Yes Yes

NUM Yes Yes

Numeric Yes Yes

NumText Yes Yes

PAD Yes Yes

PageImage No Yes

PageInfo No Yes

PaginateForm Yes No

ParseListCount Yes Yes

ParseListItem Yes Yes

PathCreate Yes Yes

PathExist Yes Yes

POW Yes Yes

Print Yes No

Print_It Yes Yes

PrinterClass Yes Yes

PrinterGroup Yes Yes

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Chapter 2
Function Reference

104

PrinterID No Yes

PrinterOutputSize No Yes

PutFormAttrib Yes Yes

PutINIBool Yes Yes

PutINIString Yes Yes

RecipBatch Yes Yes

RecipCopyCount Yes Yes

RecipientName No Yes

RecipName No Yes

Refresh Yes No

RemoveAttachVAR No Yes

RenameLogo Yes Yes

ResetFld Yes Yes

ResetOvFlwSym No Yes

Retain Yes Yes

Right Yes Yes

RootName Yes Yes

Round Yes Yes

RouteWIP Yes No

RPErrorMsg No Yes

RPLogMsg No Yes

RPWarningMsg No Yes

SaveINIFile Yes Yes

SaveWIP Yes No

Second Yes Yes

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Where DAL Functions are Used

105

SetDeviceName Yes Yes

SetEdit Yes No

SetFld Yes Yes

SetFont Yes Yes

SetFormDesc Yes Yes

SetGVM Yes Yes

SetImagePos Yes Yes

SetLink Yes Yes

SetProtect Yes Yes

SetRecip Yes No

SetRequiredFld Yes Yes

SetWIPFld Yes No

Size Yes Yes

SlipAppend Yes No

SlipInsert Yes No

SpanField Yes Yes

SrchData No Yes

STR Yes Yes

STRCompare Yes Yes

SUB Yes Yes

SUM Yes Yes

SuppressBanner No Yes

Table Yes No

Time Yes Yes

Time2Time Yes Yes

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Chapter 2
Function Reference

106

TimeAdd Yes Yes

TimeZone Yes Yes

TimeZone2TimeZone Yes Yes

TotalPages No Yes

TotalSheets Yes Yes

TriggerFormName No Yes

TriggerImageName No Yes

TriggerRecsPerOvFlw No Yes

Trim Yes Yes

Upper Yes Yes

UniqueString Yes Yes

UserID Yes No

UserLvl Yes No

WeekDay Yes Yes

WhatForm Yes Yes

WhatGroup Yes Yes

WhatImage Yes Yes

WIPExit Yes No

WIPFld Yes No

WIPKey1 Yes No

WIPKey2 Yes No

WIPKeyID Yes No

XMLAttrName * Yes Yes

XMLAttrValue * Yes Yes

XMLFind * Yes Yes

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Where DAL Functions are Used

107

XMLFirst * Yes Yes

XMLFirstAttrib * Yes Yes

XMLFirstText * Yes Yes

XMLGetCurName * Yes Yes

XMLGetCurText * Yes Yes

XMLNext * Yes Yes

XMLNextAttrib * Yes Yes

XMLNextText * Yes Yes

XMLNthAttrName * Yes Yes

XMLNthAttrValue * Yes Yes

XMLNthText * Yes Yes

Year Yes Yes

YearDay Yes Yes

Function/Procedure
Affects form entry
(Documaker Workstation)

Affects form processing
(Documaker Server)

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

Chapter 2
Function Reference

108

@

109

@
Use this function to return the current value contained in a section field. The @ function
is also called the get field function. The @ symbol is used because it is easy to recognize in
script statements and it reduces the amount of typing required.

You can use this function to get text values from the special page numbering fields,
FORMSET PAGE NUM, FORMSET PAGE NUM OF, FORM PAGE NUM, and
FORM PAGE NUM OF.

NOTE: Although you can also set these page numbering fields, these fields are
maintained by the system and the value you set them to will be overwritten.

You can also use this function to get page number field values within scripts that execute
during the batch printing process. You can use this, for instance, during the Banner
processing with the GenPrint program to check the page number fields on certain pages.

Keep in mind that during GenData processing, page numbering is not usually done unless
you are also doing single-step printing. Even then, page numbering does not occur until
the print process begins.

Syntax @(Field, Section, Form, Group)

The system uses the parameters you provide to search for one field on a section and return
that field’s data. If the field is defined as a numeric data type, the system returns a number.
Otherwise, the result is a string of text.

NOTE: If you omit the Field parameter, make sure you include quotation marks, as
shown in the second and third example below.

Example For these examples, assume the current field value is 1234.23 and is named MyField. Also,
assume that a second occurrence of MyField appears on the form, MyForm, and contains
the value automobile.

For the third example, assume the current form is the third page of the form set being
processed. For the fourth example, assume the section Header3 is on the second page of
the form ABC.

Parameter Description

Field Enter the name of a section field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, or field. The
default is the current group.

110

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

NUM on page 322

Function Result Explanation

Return(@()) 1234.23 Returns the value in the current field.

Return(@(“MyField”)) 1234.23 Returns the value in the named field, located on the
current section.

Return (@("Formset
Page Num"))

3 Returns the value in the field named “Formset Page
Num” on the current section.

Return (@(Form Page
Num"),
"Header3","ABC"))

2 Returns the value in the field named “Form Page
Num” in section, “Header3” on form “ABC”.

?

111

?
Use this function to retrieve data from a record in the extract file. This function only uses
the specified entry (LookUpName) in the XDB database to determine the:

• Rule to use to retrieve the data (the default is the Move_It rule)

• Search mask to use

• Offset and length

• Format mask

Syntax ?(LookUpName, Occurrence)

NOTE: Keep in mind the XDB database must be structured to handle symbolic lookup.
See the Using Dictionaries chapter in the Documaker Studio User User Guide,
which describes how to define extract file records and fields in the XDB database.

Assume you have these entries defined in the XDB:

And the extract record, pol_rec, has the following data:

0… 1… 2… 5… 5… 9…

1… 0… 0… 0… 5… 0…

PolRec GRA0001 Morris V Vanelli 09221957

PolRec GRA0001 Sandra J Vanelli 09211959

PolRec GRA0001 Vincent M Vanelli 12311981

Example 1 Assume the Driver field has this script and uses the DAL rule.

Return (?(“f_name”) & “ “ & ?(“m_initial”) & “. “ & (“l_name”));

The DAL script retrieves data from the XDB entries (1_f_name, 1_m_initial, and
1_l_name), which it concatenates with spaces and a period to form the driver’s name. The
result is shown here:

Morris V. Vanelli

Parameter Description

LookUpName Specify the entry name in the XDB that defines the data to retrieve.

Occurrence (Optional) Define which occurrence-record in the extract file to retrieve data
from. You can omit this parameter for the first occurrence.

openfile DMStudioGuide.pdf

112

Example 2 In this example, assume there are ten fields (driver01, driver02, and so on) on the section,
the first field includes this script and it uses the DAL rule.

Call (“drivers.dal”)

The external DAL script (DRIVERS.DAL) contains these statements:

* Determine number of ‘pol_rec’ records exist in the transaction.

#drivers = CountRec(“?pol_rec”);

#occur = 1;

* Create the driver’s full name and store in appropriate *

* field.

While (#occur !> #drivers)

 d_name = (?(“f_name”, #occur) & “ “ & ?(“m_initial” , #occur) /

 & “. “ & (“l_name” , #occur));

 field_name = “driver” & Format(#occur, ‘n’, ‘99’);

 SetFld (d_name, field_name);

 #occur =+ 1;

Wend;

This script determines there are three (3) records and would loop three (3) times; creating
the driver’s name and storing it in the proper field. The results are shown here:

Morris V. Vanelli

Sandra J. Vanelli

Vincent M. Vanelli

Example 3 In this example, assume the License Issued field has this script and uses the DAL rule.

Return (?(“issue_date”));

The DateFmt rule would be executed using specified format (11) and would return this
result to the field:

September 21, 1957

See also FieldRule on page 234

GetData on page 250

Documaker Server Functions on page 58

Field Formats on page 62

Locating Fields on page 64

ABS

113

ABS
Use this function to return the absolute value of a number. The absolute value of a
number is its positive value.

Syntax ABS (Number)

The system returns the absolute value of a number. Absolute values are always positive
numbers.

Example Here are some examples:

(Assume the current field contains the number 250.)

See also Mathematical Functions on page 72

Parameter Description

Number Enter a number data type. The default is the value of the current field.

Function Result Explanation

Return(ABS ()) 250 Defaults to the current field.

Return(ABS (-
101.25))

101.25 Returns the absolute value of the given value. Note that this
function retains the decimal.

Return(ABS (10 /
-2))

5 10 is divided by -2 resulting in -5. The absolute value of -5 is
returned.

114

ADDATTACHVAR
Use this function to add a string value as an attachment variable. You can use this function
when creating print comments using Documaker Bridge.

Syntax AddAttachVAR (Name,Value,DSIqueue)

The system returns one (1) on success or zero (0) on failure.

See also Docupresentment Functions on page 60

GetAttachVAR on page 249

RemoveAttachVAR on page 355

Parameter Description

Name Enter the name of the attachment variable.

Value Enter the value you want to add.

DSIqueue (Optional) Enter one (1) for input or two (2) for output. The default is two (2).

AddBlankPages

115

ADDBLANKPAGES

Use this procedure to add blank or filler pages to a form set. You add these pages to make
sure each physical printed page has a front and back. This lets you change a simplex form
set or a form set which contains both simplex and duplex forms into a fully duplexed form
set.

For instance, you can use this to make it easier to add OMR marks, which are often
printed on the back, to simplex forms.

Syntax AddBlankPages (FAP)

Omit the path and extension of the FAP file.

Example One way to add blank pages is by using banner page processing in the GenPrint program.
You can specify a DAL script which runs at the start of each transaction. The DAL script
calls the AddBlankPages procedure.

This tells the system to convert each transaction into a fully duplexed form set with blank
pages added as needed. To do this, you need these INI settings:

< Printer >

EnableTransBanner = TRUE

TransBannerBeginScript = PreBatch

< DALLibraries >

LIB = BANNER

Here is an example of the BANNER.DAL file:

BeginSub PreBatch

AddBlankPages()

EndSub

NOTE: See Documaker Server System Reference for more information on using banner
processing.

Parameter Description

FAP Enter the name of the FAP file you want the system to use as a filler page. The
default is blank.

116

Here is a table which shows when blank pages will be added, based on the duplex setting
of the two current pages and the duplex setting of the next page. Blank means a blank page
will be added, As is means no blank page is needed and the form will be left as is.

NOTE: You can also add blank or filler pages using custom code or by using the
DPRAddBlankPages function, which is available with Docupresentment. See
Using the Documaker Bridge for more information on the DPRAddBlankPages
function.

The API to call from custom code is as follows:

DWORD _VMMAPI FAPAddBlankPages(

 VMMHANDLE objectH, /* formset or form handle */

 char FAR * imagename) /* if NULL, "Blank Page" */

If the section name is NULL, a blank page is created when a filler page is needed.
If the section name is not NULL, the section name is loaded when a filler page is
needed. If you include a section name, include only the name of the FAP file—
omit the path and file extension.

See also DelBlankPages on page 207

SuppressBanner on page 400

Page Functions on page 75

Miscellaneous Functions on page 73

Creating a DAL Script Library on page 5

If the current page is

And the next page is

Unknown Front Back None Short Rolling

Unknown Blank Blank As is Blank Blank Blank

None Blank Blank As is Blank Blank Blank

Front Blank Blank As is Blank Blank As is

Short Blank Blank As is Blank Blank As is

Rolling (Front) Blank Blank As is Blank Blank As is

Back As is As is Blank As is As is As is

Rolling (Back) As is As is Blank As is As is As is

AddComment

117

ADDCOMMENT

Use this procedure to add a comment to the print stream. Products like Oracle
Insurance’s Docusave and IBM’s OnDemand use comments in the print stream as an
archive key.

In addition, you can also use this procedure to add comments to your PCL print string
using PJL (Printer Job Language). PJL commands are supported by most PCL printers.

You call the AddComment procedure from an external script loaded using an INI option
in the printer group. Here are some examples:

< PrtType:PCL >

PJLCommentScript = name of the external DAL script

< PrtType:AFP >

OnDemandScript = name of the external DAL script

DocusaveScript = name of the external DAL script

< PrtType:XER >

DocusaveScript = name of the external DAL script

If you call AddComment from the GenData program, you will receive an error. For more
examples see DAL Script Examples on page 35.

Syntax AddComment (Comment, Convert)

Example Here are some examples:

See also Printer and Recipient Functions on page 76

Parameter Description

Comment Enter the string you want used as a comment in the print stream or the name of a
section variable field that contains the comment.

Convert Enter one of these options:
0 - (zero) convert the string to EBCDIC
1 - convert the string to ASCII
2 - do not convert the string
For OnDemand, you will always want EBCDIC comments.
The default is zero (0).

Procedure Result Explanation

AddComment (‘This
is an example’)

 1 or 0 Adds the comment, “This is an example”, to the print stream.

* Add a comment to
PCL print stream
Comment =
AppIdxRec();
AddComment
(comment, 1);

 1 or 0 Adds a comment containing the archive record ID. The
second parameter (1) indicates that the string is to be added
as an ASCII string.

118

ADDDOCUSAVECOMMENT

Use this procedure to add a Docusave comment to the print stream. Docusave uses
comments in the print stream as an archive key.

You should only call this procedure from a script loaded via the DocusaveScript specified
in the AFP, Metacode, or PCL printer control group.

If you call this procedure from the GenData program, DAL will return an internal error.

Syntax AddDocusaveComment (Comment, Convert)

Example Here are some examples:

AddDocusaveComment('This is an example')

AddDocusaveComment(@('INSURED NAME',,, GROUPNAME()))

See also Printer and Recipient Functions on page 76

DAL Script Examples on page 35

Parameter Description

Comment Enter the string to be written as a comment in the print stream.

Convert (Optional) Choose from these options:
0 - (zero) convert the string to EBCDIC
1 - convert the string to ASCII
2 - do not convert the string.
For Docusave, you will always want EBCDIC comments.
The default is zero (0).

AddForm

119

ADDFORM

Use this procedure/function to add a new form to a document.

Syntax AddForm (Form, Insert, Group)

The system optionally returns one (1) on success or zero (0) on failure.

This procedure adds a new copy of the specified form to the document set. The form
named must be a valid form for the given group. You cannot add a form defined for one
group into another group. The insert (form) name may be specified using the occurrence
indicator.

If you include the Group parameter, it must reference a group included in the form set.
You cannot add a group or add forms to a group that was not specified during form
selection.

NOTE: If you use this procedure to add forms and you also plan to import and export
those forms, be sure to set the IgnoreInvalidImage option in the ImpFile_cd
control group in the FSISYS.INI file. Otherwise, users will receive an error
message. For detailed instructions, see the Documaker Supervisor Guide.

Example Here are some examples:

See also AddForm_Propagate on page 120

CopyForm on page 173

DupForm on page 227

WIP Functions on page 88

Parameter Description

Form Enter the name of a form in the specified group.

Insert Enter the name of a form after which the new form should be inserted. The
default is to append after the last form in the group.

Group Enter the name of a group to contain the specified form. The default is the
current group.

Procedure Result Explanation

AddForm(“Form1”) 1 or 0 Add the named form after the last form in the current
group.

AddForm(“Form”,
“Form\1”, GRP”)

1 or 0 Insert the named form after the first occurrence of that
form within the named group.

120

ADDFORM_PROPAGATE

Use this procedure/function to add a new form to a document and propagate global data
onto the new form.

Syntax AddForm_Propagate (Form, Insert, Group)

The system optionally returns one (1) on success or zero (0) on failure.

The form named must be a valid form for the given group. You cannot add a form
defined for one group into another group. You can specify the insert (form) name using
the occurrence indicator.

If you include the Group parameter, it must reference a group included in the form set.
You cannot add a group or add forms to a group that were not specified during form
selection.

Keep in mind...

• This procedure should only be used from GenData. For Documaker Workstation,
use AddForm. If called from Documaker Workstation, AddForm_Propagate works
exactly like AddForm.

• Global multi-line variable field data is not propagated to the added form.

• If you use this procedure to add forms and you also import and export those forms,
be sure to set the IgnoreInvalidImage option in the ImpFile_CD control group.
Otherwise, users will receive an error message. For detailed instructions, see the
Documaker Supervisor Guide.

Example Here are some examples:

Parameter Description

Form Enter the name of a form in the specified group.

Insert Enter the name of a form after which the new form should be inserted. The
default is to append after the last form in the group.

Group Enter the name of a group to contain the specified form. The default is the
current group.

Procedure Results Explanation

AddForm_Propagate(
“0002EA”)

1 (success) or
0 (failed)

Add the named form, 0002EA, after the last form in
the current group.

AddForm_Propagate (
“C22510WGIM”,
“C22510WGIM \1”,
Sales”)

1 (success) or
0 (failed)

Insert the named form, C22510WGIM, after the first
occurrence of specified form, C22510WGIM, within
the named group, Sales.
See sample output.

AddForm_Propagate

121

Original form:
C22510WGIM

Added form:
C22510WGIM\2

Note the missing data (CC: J. Stewart4) for the field, Copies, that has section scope. The
fields, employer, employee, date of lost, and file number, that are defined as global scope
appear on the added form, C22510WGIM\2.

See also AddForm on page 119

CopyForm on page 173

DupForm on page 227

WIP Functions on page 88

Employer:
Employee:
Date of Loss:
File Number:
State Case Num:

Oracle Insurance
J. Stewart
12/11/10
12345

form name =
section name =

C22510WGI
M
GENRCHDR

Samford and Son

Sincerely,

Workers’ Compensation Unit
cc: J. Stewart

Employer:
Employee:
Date of Loss:
File Number:
State Case Num:

Oracle Insurance
J. Stewart
12/11/10
12345

form name =
section name =

C22510WGIM\2
GENRCHDR

Samford and Son

Sincerely,

Workers’ Compensation Unit

122

ADDIMAGE

Use this procedure/function to add a new section to a form in the current document. You
can also use the Paginate parameter to specify whether form pagination should occur after
the section is added. Form pagination includes the application of section origin rules to
determine whether new pages are required for the pre-defined page sizes.

Syntax AddImage (FAP, Section, Form, Group, Flag, Paginate)

The system optionally returns one (1) on success or zero (0) on failure.

This procedure adds a copy of the section you specify to a form. The system loads the
new section onto the page after the section, form, or group you specified or onto a new
page which it creates after the section, form, or group you specified. The section added
does not have to be predefined for the form.

Parameter Description

FAP Enter the name of the section file to load and add to the form.

Section Enter the name of a section which will precede the new section. The default is the
current section.

Form Enter the name of a form in the form set. If you specify the Section parameter,
that section must occur on this form. The default is the current form.

Group Enter the name of a group that contains the specified form. The default is the
current group.

Flag Determines if the section is inserted on the same page or on a new page.
0 - (zero) new page
1 - same page
The default is zero (0).

Paginate (Optional) This parameter follows the Flag parameter. If you enter anything other
than a zero (0), it tells the system you do want form pagination to occur upon
successful inclusion of the new section.
If the section does contain an origin rule and you omit the Paginate option or set
it to zero (0), the section origin rule executes upon insertion.
Whether the inserted section has an origin rule or not, the positioning of this
section when the Paginate option is omitted or zero (0) does not cause the entire
form to be re-paginated. This means if the placement of the section causes it to
overlap another section or to be out of the page boundary, no additional re-
pagination occurs. If you are manipulating multiple sections in series, you may
want to conclude your script with a call to PaginateForm to make sure the entire
form is re-paginated.
Here is an example:

AddlImage("myFAP", "mainImage" , , , 1,1)

This example omits the Form and Group parameters, but does specify the Flag
parameter as well as the Pagination parameter.
Note: If you enter zero (0) or omit this parameter, the function works as it prior
to version 11.2.
The default is zero (0).

AddImage

123

NOTE: If you use this procedure to add sections to forms and you also plan to import
and export those forms, be sure to set the IgnoreInvalidImage option in the
ImpFile_cd control group in the FSISYS.INI file. Otherwise, users will receive
an error message. For detailed instructions, see the Documaker Supervisor
Guide.

Any section you add using this procedure is positioned the same way as other sections.
The specific location of sections is determined by your master resource setup.

NOTE: If the section parameter specifies one of multiple sections on the same page, the
new section is added after the section, form, or group you specified. The system
does not move sections already defined for a page. Therefore, you can overlay
existing sections on the page. Make sure you do not unintentionally overlay an
existing section. Move the new section using the ImageRect and SetImagePos
procedures.

Use the Refresh procedure after this procedure to refresh the screen display.

NOTE: When adding a section, there is no way for you to specify what section options
or recipients you want included on the new section. So, the AddImage procedure
takes the missing information from an associated section.

The system will, however, exclude the In-lined, Copy on Overflow, Duplex
Front, Duplex Back, and Caused by Overflow settings. These options are not
normally associated with a section being added via DAL.

Example Here are some examples:

See also DelImage on page 211

Procedure Result Explanation

AddImage (“IMG1”) 1 - if successfully added.
0 - if not added.

Insert the named section, IMG1, on a
new page after the current page.

AddImage(“NEW1”,
“IMG\3”,,”GRP”)

1 - if successfully added.
0 - if not added.

Insert the named section, NEW1,
after the third occurrence of IMG,
within GRP. This section is placed on
a new page after the third occurrence
of the specified section.

AddImage (“IMG1”,,,,
1)

1 - if successfully added.
0 - if not added.

Insert the named section, IMG1, after
the current section on the same page.

AddImage(“NEW1”,
“IMG\3”, , , 1)

1 - if successfully added.
0 - if not added.

Insert the named section, NEW1,
after the third occurrence of IMG on
the same page.

124

ImageRect on page 275

PaginateForm on page 330

SetImagePos on page 379

Refresh on page 354

Section Functions on page 77

AddImage_Propagate

125

ADDIMAGE_PROPAGATE

Use this procedure/function during GenData processing to add a new section and
propagate global data onto the newly added section as needed.

NOTE: This DAL procedure should only be used with the GenData program.
Documaker Workstation users should use the AddImage procedure. If called
from Documaker Workstation, this procedure will work exactly like the
AddImage procedure.

Syntax AddImage_Propagate (FAP, Section, Form, Group, Flag)

Optionally, this procedure returns one (1) on success or zero (0) on failure.

This procedure adds a copy of the section you specify to a form. The system loads the
new section onto the page after the section, form, or group you specified or onto a new
page which it creates after the section, form, or group you specified. The section added
does not have to be predefined for the form.

Keep in mind...

• Global multi-line variable field data is not propagated to the added form.

• The system does not move sections already defined for a page. Therefore, you can
overlay existing sections on the page.

• Make sure you do not unintentionally overlay an existing section. You can move the
new section using the ImageRect and SetImagePos procedures.

• If you use this procedure to add sections to forms and you also import and export
those forms, be sure to set the IgnoreInvalidImage option in the ImpFile_CD
control group. Otherwise, users will receive an error message. For detailed
instructions, see the Documaker Supervisor Guide.

Parameter Description

FAP Enter the name of the section file to load and add to the form.

Section Enter the name of a section which will precede the new section. The default is
the current section.

Form Enter the name of a form in the form set. If you specify the Section parameter,
that section must occur on this form. The default is the current form.

Group Enter the name of a group that contains the specified form. The default is the
current group.

Flag Determines if the section is inserted on the same page or on a new page.
0 - new page
1 - same page
The default is zero (0).

126

• When adding a section, there is no way for you to specify what section options or
recipients you want included on the new section. So, the AddImage_Propagate
procedure takes the missing information from an associated section. The system will,
however, exclude the In-lined, Copy on Overflow, Duplex Front, Duplex Back, and
Caused by Overflow settings. These options are not normally associated with a
section being added via DAL.

Example Here are some examples:

See also AddImage on page 122

WIP Functions on page 88

Procedure Result Explanation

AddImage_Propagate
(“IMG1”)

1 - if successfully added.
0 - if not added.

Insert the named section, IMG1, on a
new page after the current page.

AddImage_Propagate(“
NEW1”,
“IMG\3”,,”GRP”)

1 - if successfully added.
0 - if not added.

Insert the named section, NEW1,
after the third occurrence of IMG,
within GRP. This section is placed on
a new page after the third occurrence
of the specified section.

AddImage_Propagate
(“IMG1”,,,, 1)

1 - if successfully added.
0 - if not added.

Insert the named section, IMG1, after
the current section on the same page.

AddImage_Propagate(“
NEW1”, “IMG\3”, , , 1)

1 - if successfully added.
0 - if not added.

Insert the named section, NEW1,
after the third occurrence of IMG on
the same page.

AddOvFlwSym

127

ADDOVFLWSYM

Use this procedure/function to create an overflow symbol. This procedure provides DAL
with an equivalent to the Documaker Server SetOvFlwSym rule that is placed in the
AFGJOB.JDT file.

Syntax AddOvFlwSym (Form, Symbol, MaxRecords)

The system optionally returns one (1) on success or zero (0) on failure.

This procedure creates an overflow symbol associated with the section you specified.

Example Here are some examples:

Assume that the section, CP0101NL, has three overflow lines and the extract file is a
standard Documaker Server extract file.

#add_rc = AddOvFlwSym (“CP0101NL”, “Loc_Cnt”, 3)

In this example, an overflow variable called Loc_Cnt would be associated with the section,
CP0101NL and the number of overflow lines would be set to three (3). The DAL integer
variable, #add_rc, would be set to a one (1) on success or zero (0) on failure.

You define the search mask for the field or the XDB name associated with the field, as
follows:

@GetRecUsed, CP0101NL, Loc_Cnt/10,HeaderRec 50,20

Here is another example:

Assume the extract file is in XML format and includes an element/node, Location, that
can repeats or occurs multiple times.

AddOvFlwSym (“Loc_Cnt”, “XML”)

In this example, an overflow variable called Loc_Cnt would be defined. You would use this
variable in the XPath predicate for repeating elements/nodes. You would define the XPath
search mask for the field or the XDB name associated with the field, as follows:

!/DOCC/InsuranceSvcRq/PolicyPrintRq/
ClPropLineBusiness[**Loc_Cnt**]/Location

See also GetOvFlwSym on page 259

IncOvFlwSym on page 277

ResetOvFlwSym on page 358

Documaker Server Functions on page 58

Parameter Description

Form Enter the name of the form that contains the fields on which overflow
processing will occur.

Symbol Enter the character you want to use as the overflow symbol.

MaxRecords Enter the maximum number of overflow records to be processed for the
section per page of output.

128

AFELOG

Use this procedure/function to write a custom message to the AFELOG file.

Syntax AFELog (String)

This procedure writes a string of characters to the AFELOG file. The message can be up
to 100 characters in length.

Example Here is an example:

afelogmsg = INPUT("Input a custom message to be written to the AFELOG
file", "AFELOG Test Case", 100);

RETURN AFELOG(afelogmsg);

This DAL script displays a window entitled AFELOG Test Case with a message which
states:

Input a custom message to be written to the AFELOG file

The input field has a length of up to 100 characters. When the user clicks OK after
entering a message, the system writes the message to the AFELOG file. If the user clicks
Cancel, blanks are written to the file.

See also WIP Functions on page 88

Parameter Description

String Enter a valid string.

Procedure Result Explanation

AFELog
(“Point1”);

Point1 The character string “Point1” is written to the AFELOG file.

Always

129

ALWAYS

Use this function to return TRUE (Always).

Syntax Always ()

There are no parameters for this function.

This function is typically used as a placeholder or stub.

Example Always()

See also Miscellaneous Functions on page 73

130

APPEND

The Append function is obsolete and is no longer supported. Use one of these functions
instead:

See also Field Functions on page 61

To Use

Append text into a multi-line field from an external multi-line text area. AppendTxm

Append text into a multi-line field from an external multi-line text area
and rename the fields imported from the external text area so they have
unique names.

AppendTxmUnique

AppendText

131

APPENDTEXT

Use this procedure/function to attach additional text to the end of a multi-line text field
from an external ASCII text file. This procedure only works on multi-line text fields.

Syntax AppendText (File, Field, Section, Form, Group)

The system optionally returns one (1) on success or zero (0) on failure.

This procedure opens the external text file and appends the text from that file to the
specified field. If successful, the newly inserted text is reformatted appropriately in the
destination field.

If the external text file name does not include a specific path, the system tries to locate the
file in the default directory where form sections are typically found.

When used with Documaker Workstation, use the Refresh procedure to make sure all
appended text appears in the field.

Example Here are some examples:

See also Field Functions on page 61

Field Formats on page 62

Parameter Description

File Enter the name of an external text file including any file extension. This text is
appended to the field you specify.

Field Enter the name of a field that identifies a multi-line text area. This is the field that
receives the appended text. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Procedure Result Explanation

AppendText
(“MyFile.txt”)

1 or 0 The current field receives the text from the file named, MyFile.Txt.
The named file does not specify a path, therefore the system tries
to locate the file where form sections are normally located.

AppendText
(“C:\MyFile.txt
”, “MyField”)

1 or 0 MyField will be located on the current section. If found, the field
receives the text from the file named, MyFile.Txt. The named file
specifies a path, therefore the system looks for the file in that
location.

AppendText
(“MyFile.txt”,
“MyField”, ,
“MyForm”)

1 or 0 The field, MyField, will be located on the form, MyForm. Since a
section was not specified, it may occur on any section on that form.
Once located, the text from the specified file is appended to the
field.

132

Locating Fields on page 64

Refresh on page 354

AppendTxm

133

APPENDTXM

Use this procedure/function to append text to the end of a multi-line text field from a
text area on another section (FAP) file. This procedure only works on multi-line text
fields.

Syntax AppendTxm (FAP, InsertFld, Field, Section, Form, Group)

The system optionally returns a one (1) if successful and zero (0) if unsuccessful.

This procedure opens the section you defined in the FAP parameter and copies the text
from the first text area field found on that section. It then appends that text in the field
you specified in the Field parameter. If necessary, the text will be reformatted
appropriately for the destination field.

When used with Documaker Workstation, use the Refresh procedure to make sure all
appended text appears in the field.

Parameter Description

FAP Enter the name of the section file which contains the text area you want to append
to the field you specify in the Field parameter.
If you omit the path, the system looks for this section in the forms directory you
specified using the File, Library Setup option.

InsertFld This parameter determines where in the tabbing sequence any embedded variable
fields will be placed.
Use this parameter to specify the name of the variable field (on the current section)
before which you want the embedded fields in the imported text area inserted.
For example, if your form contains three variable fields (Y1, Y2, Y3). The text area
to be inserted contains two variable fields (Z1, Z2). By specifying Y2 as the
InsertFld, you tell the system to tab to fields Z1 and Z2 before tabbing to Y2 when
in entry mode.
The default is to append after the last field on the section.

Field Enter the name of the field that identifies the multi-line text area which will receive
the appended text. The default is the current field, which must be a multi-line text
field.

Section Enter the name of the section that contains the field you specified in the Field
parameter. The default is the current section.

Form Enter the name of the form that contains the section you specified in the Section
parameter. The default is the current form.

Group Enter the name of the group that contains the form you specified in the Form
parameter. The default is the current group.

134

Example Here are some examples:

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

AppendTxmUnique on page 135

Refresh on page 354

Procedure Result Explanation

#rc = AppendTxm
(“Message”, ,
“Name_Line”); Refresh ();

1 or 0 The text in the first text area on the section named
Message is appended to the multi-line text field, called
Name_Line. The system then refreshes the display.

#rc = AppendTxm
(“.\mstrres\messages\msg
1”, , “Name_Line”,
“Mailer”); Refresh ();

1 or 0 The path, .\mstrres\message\, is appended to the multi-
line text field, called Name_Line, which is on the section
named Mailer. The system then refreshes the display.

#rc =
AppendTxm(“message”,
“Address1” ,
“Name_Line”); Refresh ();

1 or 0 The fields in the text area are inserted before the
variable field named Address1, in the tabbing sequence.
The system then refreshes the display.

AppendTxmUnique

135

APPENDTXMUNIQUE

Use this procedure/function to append text into a multi-line field from an external text
area. This procedure also renames the fields imported from the external text area so they
have unique names. You can use this procedure in these specific situations:

• This procedure lets you import paragraphs with embedded fields, when you know
that those fields should never inherit data from the existing section and you expect
the user to tab through the imported field and enter new data.

• This procedure lets you import the same section multiple times and have the field
data for each instance uniquely named.

NOTE: When it renames fields, this procedure makes sure the field names are unique for
the entire form, not just the section that contains the text area. This prevents
naming conflicts with prior sections.

This procedure only works on multi-line text fields.

Syntax AppendTxmUnique (FAP, InsertFld, Field, Section, Form, Group)

The system optionally returns a one (1) if successful and zero (0) if unsuccessful.

This procedure opens the section and appends the text from the first text area field found
in that section. If successful, the new text will be formatted appropriately in the
destination field.

The system locates the section in the directory where sections (FAP files) are typically
found. Use the Refresh procedure to make sure all appended text appears in the field.

Parameter Description

FAP Enter the name of a section file that contain a text area. This text area is appended
to the field specified. If there are several text areas in the section file, the system
grabs the text from the first text area it finds.
If you omit the path, the system looks for the form in the forms directory specified
using the File, Library Setup option.

InsertFld Enter the name of a field before which you want the embedded fields in the
imported text area inserted. The default is to append after the last field in the
section.

Field Enter the name of the field that identifies a multi-line text area. This is the field
that receives the appended text. The default is the current field.

Section Enter the name of a section that contains the field. The default is the current
section.

Form Enter the name of a form that contains the section and/or field. The default is the
current form.

Group Enter the name of the group that contains the form, section, and/or field. The
default is the current group.

136

This procedure is similar to the AppendTxm procedure. For instance, suppose your
paragraph section looks like this, where X1 is a reference to the Name field and X2 is a
reference to the City field.

X1 of X2. X1 please let me know if you received this by mistake.

The Name field is embedded twice and the City field once. If you were to use the
AppendTxm procedure on this section three times, the result would look like this:

X1 of X2. X1 let me know if you received this by mistake.

X1 of X2. X1 let me know if you received this by mistake.

X1 of X2. X1 let me know if you received this by mistake.

However, there would be only one Name and City field defined on the section. If you set
Name to Tom and City to Marietta, the paragraph would look like this.

Tom of Marietta. Tom let me know if you receive this by mistake.

Tom of Marietta. Tom let me know if you receive this by mistake.

Tom of Marietta. Tom let me know if you receive this by mistake.

Using the AppendTxmUnique procedure, if you append this section three times, the first
line would likely still reference Name and City (it would depend upon whether there was
already a field named Name or City on the section).

The second occurrence however, would be renamed to NAME #002 and CITY #002.
The third occurrence would be renamed to NAME #003 and CITY #003.

So, instead of two fields, you now have six fields to tab through and each subsequent
occurrence can hold a different value.

Tom of Marietta. Tom let me know if you receive this by mistake.

John of Athens. John let me know if you receive this by mistake.

Albert of Atlanta. Albert let me know if you receive this by mistake.

Notice that multiple references to the same field in a paragraph still associate to the same
field. So although there are three embedded locations in each paragraph, there are only
two separate fields being referenced.

NOTE: This procedure renames the field uniquely for the entire form, not just the section
that contains the multi-line text field. This occurs because a multi-line text field
can span pages and you don’t want the field names to duplicate.

For instance, suppose you have a paragraph with one embedded field. The first
time you append it, it is named Field (assuming field is the original name and does
not conflict. Each time you append it you get a unique name:

FIELD #002

FIELD #003

and so on...

Eventually, an AppendTxmUnique procedure could cause a the text to overflow
to a new page. Let’s assume you were up to FIELD #010 when that occurred.

If you run the AppendTxmUnique procedure again, the name FIELD does not
occur on the second page, but it did on the first. You want FIELD #011 to be
next. This is why the names unique at the form level and not the section level.

AppendTxmUnique

137

Example Here are some examples:

See also Field Functions on page 61

Locating Objects on page 94

Field Formats on page 62

Locating Fields on page 64

AppendTxm on page 133

Refresh on page 354

Procedure Result Explanation

#rc = AppendTxmUnique
(“message”, , “name_line”);
Refresh ();

1 if successful,
0 if not.

The first text area in the Message FAP file
is appended to the Name_line multi-line
text field.

#rc = AppendTxmUnique
(“.\mstrres\messages\msg1”, ,
“name_line”, “mailer”); Refresh
();

1 if successful,
0 if not.

The first text area in the MSG1 FAP file
located in the \mstrres\message\
directory is appended to the Name_line
multi-line text field, which is in the Mailer
FAP file.

#rc = AppendTxmUnique
(“message”, “address1” ,
“name_line”); Refresh ();

1 if successful,
0 if not.

The first text area in the Message FAP file
is appended to the Name_line multi-line
text field.
Any embedded variable fields in the text
area are inserted before the Address1
variable field, based on the tabbing
sequence.

138

APPIDXREC

Use this function to get an archive record based on the APPIDX.DFD file and settings
in the Trigger2Archive control group.

Syntax AppIdxRec ()

There are no parameters for this function.

Example Here are some examples. Assume that...

• The rundate is 01/10/2009

• The sub-string of extract record being processed is:

SCO1234567HEADERREC00000…

• The FORM.DAT file contains the following:

;SAMPCO;LB1;Libby;;R;;letter|D<INSURED(1),COMPANY(1),AGENT(1)>;

Also assume these INI options exist:

< Trigger2Archive >

Company = Company

LOB = LOB

PolicyNum = PolicyNum

RunDate = RunDate

See also Documaker Server Functions on page 58

Print_It on page 339

DAL Script Examples on page 35

Function Result Explanation

Comment = AppIdxRec()
Print_It (Comment)

 1 or 0

ApplyInserts

139

APPLYINSERTS

Use this procedure/function to force the insertion of items associated with applying
logos, state stamps, and signatures to a form set.

Normally, you apply a logo, state stamp, or signature when transactions are opened or
completed. This procedure lets you trigger the insertions when the user tabs off of the
field or a DAL script associated with the field is executed. This lets the user see the form
exactly as it would appear when printed or archived.

Syntax ApplyInserts()

There are no parameters for this procedure.

Optionally, this procedure returns one (1) on success or zero (0) on failure. A return of
one (1) indicates that you had a valid WIP transaction loaded in memory. Success,
however, does not mean that any sections were added or changed.

NOTE: See Inserting State Stamps and Signatures in the Documaker Workstation
Supervisors Guide for more information on how inserted sections are
determined and applied.

Example Here is an example:

ApplyInserts()

See also Section Functions on page 77

140

ASK

Use this procedure/function to create a message to which the user must respond with Yes
or No. The message is created as a message window for the system interface.

A Yes response results in a value of 1. A No response or terminating the window without
responding results in a value of zero (0).

Syntax Ask (Msgline1, Msgline2, Msgline3, Title, Defans)

This procedure requires a user response each time the script executes. Therefore, use this
procedure only in scripts that execute once during entry. Do not use this procedure for
scripts that execute each time a user tabs to a new field.

NOTE: A DAL script executes once during entry. A DAL calc executes each time the
user tabs to a new field. You make the DAL script or DAL calc designation in
the Properties window.

Example Here are some examples:

See also Documaker Workstation Functions on page 59

Parameter Description

Msgline1 Enter the first line of the message. The default is Yes.

Msgline2 Enter the second line of message.

Msgline3 Enter the third line of message.

Title Enter the title of message window.

Defans Enter one (1) or zero (0) to specify which button (Yes or No) should be selected
as the default. The default is one (1), which makes the Yes button the default.

Procedure Result Explanation

#result =Ask (“Are
you sure you made
the correct entry?” ,
, , “Sample
Message”)

1, if the user
answers Yes
0, if the user
answers No

“Sample Message” is the title of the entry box.
“Are you sure you made the correct entry?” is the
message the user answers.

#result =Ask
(“This is line 1”,
“This is line 2”, “Is
this line 3?”, “Please
Respond”)

1, if the user
answers Yes
0, if the user
answers No

“Please Respond” is the title of the entry box.
'“This is line 1”
“This is line 2”
“Is this line 3?” is the message the user answers.

AssignWIP

141

ASSIGNWIP
Use this procedure/function to assign the work-in-process and its associated data to a
different user ID.

Syntax AssignWIP (UserID)

The system returns success if no error occurred during the process, otherwise a failure.

This procedure assigns the current work-in-process (form set) to a new user ID in the
WIP data base, and writes a comment to the AFELOG file that it was assigned to a new
user ID.

This procedure performs the same operation as the WIP, Assign option. This procedure
only works with the Entry module and does not work with the data entry mode of Studio
or Image Editor.

Example Here is an example:

See also WIP Functions on page 88

Documaker Supervisor Guide

Documaker User Guide

Parameter Description

UserID Enter a valid user ID.

Procedure Result Explanation

AssignWIP (MVV) User ID for the work-in-process is
changed to MVV, the form set is
saved in the WIP directory, and you
return to the main menu.

The user ID in the WIP database is
set to MVV for the current WIP.

AssignWIP () The Assign window appears. Use
this window to make the
assignment.

If you omit the user ID, the system
instead displays the Assign
window, just as if you had selected
the Formset, Assign Document
option.

142

AVG

Use this function to return the decimal average of a group of fields which have names that
begin with common characters. The result of the operation is returned.

Syntax Avg (PartialName, Section, Form, Group)

The system and returns the average of the values of all fields that begin with the specified
partial name.

Example An example of field names that have a common start are:

Myfield1

Myfield2

Myfield20

Each of these fields is included if you specify the partial name using any of the leading
characters of myfield. The first field will be excluded if you enter myfield2, but will match
the other two field names.

The average is calculated by summing those fields that have values and dividing by the
number of those fields included in the sum. Note that zero (0) is a valid field value. Fields
which have never been given a value are excluded from the calculation.

NOTE: Include the PartialName parameter. Fields must have unique names within a
section. Using the default will probably not give the expected result, unless you
created the form and understand the naming conventions.

Example This table is used by the examples. The table shows the layout of two forms in the same
group. Both forms share two sections (IMG A and IMG B). Each section has fields of the
same name as a field in the other section.

Parameter Description

PartialName Enter a valid string. The string must be the common (prefix) portion of a set of
field names that occur on the current section. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Field Section Form Group Value

MyField1 IMG A FRM A GRP 100.24

MyField2 IMG A FRM A GRP 200.16

Avg

143

Assume the current field is MyField1, on the first section of the first form. Reference the
previous table for field values.

See also Mathematical Functions on page 72

Field Formats on page 62

Locating Fields on page 64

MyField1 IMG B FRM A GRP 98.60

MyField2 IMG B FRM A GRP * no value yet *

MyField1 IMG A FRM B GRP 0.00

MyField2 IMG A FRM B GRP * no value yet *

MyField1 IMG B FRM B GRP 70.77

MyField2 IMG B FRM B GRP * no value yet *

Function Result Explanation

Return(AVG ()) 100.24 Without any other information, the function assumes the
current field and section. There will only be one value
included in the average.

Return(AVG
(“Myfield2”))

200.16 Again, there is only one field included in this result.

Return(AVG(“MyF
ield”))

150.20 In this example, the current section contains two fields that
begin with the name “MyField”. The equation is as follows:
(100.24 + 200.16) / 2

Return(AVG(“MyF
ield”, “IMG B”))

98.60 Although two fields on IMG B have a matching name, only
one field actually has a value.

Return(AVG(“MyF
ield”, , “FRM A”))

133.00 No section is specified in this example, so the entire form is
searched. Four fields match the name criteria, but only three
have values: (100.24 + 200.16 + 98.60) / 3

Return(AVG(“MyF
ield”, “IMG B”, ,
“GRP”))

84.685 This example specifies a section and group, but no form.
There are four fields that match the name criteria, but only
two have values: (98.60 + 70.77) / 2

Return(AVG(“MyF
ield”, , , “GRP”))

93.954 This example names the group without a form or section.
Eight fields meet the naming criteria, but only five fields
actually have values:
(100.24 + 200.16 + 98.60 + 0.00 + 70.77) / 5

Field Section Form Group Value

144

BANKROUND

Use this function to round numbers based on Banker’s rounding. With Banker’s
rounding, values below 0.5 go down and values above 0.5 go up. Values of exactly 0.5 go
to the nearest even number. In contrast, the Round function always rounds 0.5 upwards.

NOTE: When you add values which have been rounded using the standard method of
always rounding .5 in the same direction, the result includes a bias that grows as
you include more rounded numbers. Banker’s rounding is designed to minimize
this.

Syntax BankRound(Value)

Example Here are some examples that compare BankRound with Round:

See also String Functions on page 78

Round on page 362

Parameter Description

Value Enter the value you want the system to round.

With BankRound Whereas, with Round

This Returns This Returns

BankRound(123.425) 123.42 Round(123.425) 123.43

BanKRound(123.435) 123.44 Round(123.435) 123.44

Beep

145

BEEP

Use this procedure to tell the system to emit a warning, message, or error sound. The
sound emitted depends on the installed options of the operating system that executes the
system. There is no return value from this procedure.

Syntax Beep (Integer)

This procedure emits the sound specified by the parameter.

Example Here are some examples:

See also Documaker Workstation Functions on page 59

Parameter Description

Integer Choose from these options:
0 - Warning sound
1 - Message sound
2 - Error sound
The default is two (2).

Procedure Result Explanation

Beep () Emits error sound. Defaults to 2.

Beep (0) Emits warning sound. The operating system emits the installed option for
the warning sound.

146

BITAND

Use this function to return the result of a bitwise AND operation performed on two
numeric values.

Syntax BitAnd (Value1, Value2)

The parameters specify the numeric values on which the bitwise AND operation is
performed. If either parameter is not an integer, it will be converted to an integer before
the bitwise AND operation is performed.

The bitwise AND operation compares each bit of value1 to the corresponding bit of
value2. If both bits are 1, the corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to zero (0). Note that integer values have 32 bits to
compare.

The following table shows the result of a bitwise AND operation:

Example Here is an example:

x = 3 (3 is 0011 in binary)

y = 6 (6 is 0110 in binary)

z = BitAnd(x,y)

z = 2 (2 is 0010 in binary)

See also BitClear on page 147

BitNot on page 148

BitOr on page 149

BitRotate on page 150

BitSet on page 152

BitShift on page 153

BitTest on page 155

BitXor on page 156

Bit/Binary Functions on page 42

Value1 bit Value2 bit Result bit

0 0 0

0 1 0

1 1 1

1 0 0

BitClear

147

BITCLEAR

Use this function to return the result after clearing the specified bit in a value.

Syntax BitClear(value1, bitpos)

The parameters specify the numeric value and the bit position on which the operation is
performed. The specified bit is set to a zero (0) in the value provided. If the bit was not
on, the value is unchanged. Specifying a negative or zero bit position does not result in
any change to the value.

Note that integer values have 32 bits. When looking at the value in binary form, bit 1 is
on the left and bit 32 is on the right.

Bit 32 -->0000 0000 0000 0000 0000 0000 0000 0000<-- Bit 1

Example Here is an example:

y = 6 (6 is 0110 in binary)

z = BitClear(x,1)

z = 6 (6 is 0110 in binary) (bit 1 was already zero)

y = 6 (6 is 0110 in binary)

z = BitClear(x,2)

z = 4 (4 is 0100 in binary)

See also BitAnd on page 146

BitNot on page 148

BitOr on page 149

BitRotate on page 150

BitSet on page 152

BitShift on page 153

BitTest on page 155

BitXor on page 156

Bit/Binary Functions on page 42

148

BITNOT

Use this function to return the result of a bitwise logical NOT operation performed on a
numeric value.

Syntax BitNot(value1)

The parameter specifies the numeric value on which the bitwise logical NOT operation is
performed. If the parameter is not an integer, it will be converted to an integer before the
bitwise logical NOT operation is performed.

The bitwise logical NOT operation reverses the sense of the bits in the value. For each
value bit that is 1, the corresponding result bit will be set to zero (0). For each value bit
that is zero (0), the corresponding result bit will be set to 1.

It is especially important to note that integer values have 32 bits to compare when
examining the results of a NOT operation. All bits of the integer will be altered by this
operation.

The following table shows the result of a bitwise logical NOT operation:

Example Here is an example:

x = 3 (3 is 0000 0000 0000 0000 0000 0000 0000 0011 in binary)

z = BitNot(x)

z = -4 (-4 is 1111 1111 1111 1111 1111 1111 1111 1100 in binary)

Notice that the NOT operation affects all bits of the integer.

See also BitAnd on page 146

BitClear on page 147

BitOr on page 149

BitRotate on page 150

BitSet on page 152

BitShift on page 153

BitTest on page 155

BitXor on page 156

Bit/Binary Functions on page 42

Value1 bit Result bit

0 1

1 0

BitOr

149

BITOR

Use this function to return the result of a bitwise inclusive OR operation performed on
two numeric values.

Syntax BitOr(value1, value2)

Parameters specify the numeric values on which the bitwise OR operation is performed.
If either parameter is not an integer, it will be converted to an integer before the bitwise
OR operation is performed.

The bitwise inclusive OR operation compares each bit of value1 to the corresponding bit
of value2. If either bit is 1, the corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to zero (0). Note that integer values have 32 bits to
compare.

The following table shows the result of a bitwise OR operation:

Example Here is an example:

x = 3 (3 is 0011 in binary)

y = 6 (6 is 0110 in binary)

z = BitOr(x,y)

z = 7 (7 is 0111 in binary)

See also BitAnd on page 146

BitClear on page 147

BitNot on page 148

BitRotate on page 150

BitSet on page 152

BitShift on page 153

BitTest on page 155

BitXor on page 156

Bit/Binary Functions on page 42

Value1 bit Value2 bit Result bit

0 0 0

0 1 1

1 1 1

1 0 1

150

BITROTATE

Use this function to return the result of a bit shift-and-rotate operation performed on a
numeric value.

Syntax BitRotate(value1, shiftAmt)

The first parameter specifies the numeric value on which the bitwise shift-and-rotate
operation is performed. The second parameter specifies the number of bit positions to
shift. If either parameter is not an integer, it will be converted to an integer before the
bitwise shift-and-rotate operation is performed.

This is a shift-and-rotate operation. This means that bits shifted off the end of a value are
rotated back onto the value at the other end. In other words, the bits rotate in what might
be thought of as a circular pattern — thus no bits are ever lost.

NOTE: See the BitShift on page 153 function for logical shift operations that do not shift-
and-rotate.

A positive shiftAmt value causes the bit pattern in value1 to shift-and-rotate left the
number of bits specified by shiftAmt. Bits that rotate off the left (high) end of the value
return on the right (low) end.

A negative shiftAmt value causes the bit pattern in value1 to shift-and-rotate right the
number of bits specified by shiftAmt. Bits that rotate off the right (low) end of the value
return on the left (high) end. Note that integer values have 32 bits.

The following table shows the result of a bitwise shift-and-rotate operation:

Example Here is an example:

z = BitRotate(6,-8)

z = 100663296 (0000 0110 0000 0000 0000 0000 0000 0000)

See also BitAnd on page 146

BitClear on page 147

 Value1 bits Shift Result value bits

6 (0110) 1 12 (1100)

6 (0110) 2 24 (0001 1000)

6 (0110) 3 48 (0011 0000)

6 (0110) 4 96 (0110 0000)

6 (0110) -1 3 (0011)

6 (0110) -2 -2147483647 (1000 0000 0000 0000 0000 0000 0000 0001)

6 (0110) -3 -1073741824 (1100 0000 0000 0000 0000 0000 0000 0000)

6 (0110) -4 1610612736 (0110 0000 0000 0000 0000 0000 0000 0000)

BitRotate

151

BitNot on page 148

BitOr on page 149

BitSet on page 152

BitShift on page 153

BitTest on page 155

BitXor on page 156

Bit/Binary Functions on page 42

152

BITSET

Use this function to return the result after setting the specified bit on in a value.

Syntax BitSet(Value1, BitPos)

The parameters specify the numeric value and the bit position on which the operation is
performed. The specified bit is set to a 1 in the value provided. If the bit was already on,
the value is unchanged. Specifying a negative or zero bit position does not result in any
change to the value.

Note that integer values have 32 bits. When looking at the value in binary form, bit 1 is
on the left and bit 32 is on the right.

Bit 32 -->0000 0000 0000 0000 0000 0000 0000 0000<-- Bit 1

Example Here is an example:

y = 6 (6 is 0110 in binary)

z = BitSet(x,1)

z = 7 (7 is 0111 in binary)

y = 6 (6 is 0110 in binary)

z = BitSet(x,4)

z = 15 (15 is 1110 in binary)

See also BitAnd on page 146

BitClear on page 147

BitNot on page 148

BitOr on page 149

BitRotate on page 150

BitShift on page 153

BitTest on page 155

BitXor on page 156

Bit/Binary Functions on page 42

BitShift

153

BITSHIFT

Use this function to return the result of a bit logical shift operation performed on a
numeric value.

Syntax BitShift(Value1, ShiftAmt)

The first parameter specifies the numeric value on which the bitwise shift operation is
performed. The second parameter specifies the number of bit positions to shift. If either
parameter is not an integer, it will be converted to an integer before the bitwise shift
operation is performed.

This is a logical shift, as opposed to a shift-and-rotate operation. This means bits shifted
off the end of a value are considered lost.

NOTE: See the BitRotate on page 150 function for shift-and-rotate.

A positive shiftAmt value causes the bit pattern in value1 to be shifted left the number of
bits specified by ShiftAmt. Bits vacated by the shift operation are zero-filled.

A negative shiftAmt value causes the bit pattern in value1 to be shifted right the number
of bits specified by ShiftAmt. Bits vacated by the shift operation are zero-filled.

Note that integer values have 32 bits. Attempting to shift more than 31 bit positions will
result in a zero (0) being returned, as all bits are cleared.

The following table shows the result of a bitwise SHIFT operation:

Example Here is an example:

z = BitShift(6,8)

z = 1536 (1536 is 0110 0000 0000 in binary)

See also BitAnd on page 146

BitClear on page 147

BitNot on page 148

 Value1 bits Shift Result value bits

6 (0110) 1 12 (1100)

6 (0110) 2 24 (0001 1000)

6 (0110) 3 48 (0011 0000)

6 (0110) 4 96 (0110 0000)

6 (0110) -1 3 (0011)

6 (0110) -2 1 (0001)

6 (0110) -3 0 (0000)

6 (0110) -4 0 (0000)

154

BitOr on page 149

BitRotate on page 150

BitSet on page 152

BitTest on page 155

BitXor on page 156

Bit/Binary Functions on page 42

BitTest

155

BITTEST

Use this function to return TRUE (1) if the specified bit in a value is a 1; otherwise return
FALSE (0).

Syntax BitTest(Value1, BitPos)

Parameters specify the numeric value and the bit position on which the operation is
performed. The specified bit is tested for a 1 value. If the bit is a 1, then 1 is returned. If
the bit is zero (0), then zero (0) is returned. Specifying a negative or zero bit position will
result in zero (0) being returned.

Note that integer values have 32 bits. When looking at the value in binary form, bit 1 is
on the left and bit 32 is on the right.

Bit 32 -->0000 0000 0000 0000 0000 0000 0000 0000<-- Bit 1

Example Here is an example:

y = 6 (6 is 0110 in binary)

z = BitTest(x,1)

z = 0 (bit 1 was not on)

y = 6 (6 is 0110 in binary)

z = BitTest(x,2)

z = 1 (bit 2 was on)

See also BitAnd on page 146

BitClear on page 147

BitNot on page 148

BitOr on page 149

BitRotate on page 150

BitSet on page 152

BitShift on page 153

BitXor on page 156

Bit/Binary Functions on page 42

156

BITXOR

Use this function to return the result of a bitwise exclusive OR operation performed on
two numeric values.

Syntax BitXor(Value1, Value2)

The parameters specify the numeric values on which the bitwise XOR operation is
performed. If either parameter is not an integer, it will be converted to an integer before
the bitwise XOR operation is performed.

The bitwise exclusive OR operation compares each bit of value1 to the corresponding bit
of value2. If one bit is zero (0) and the other bit is 1, the corresponding result bit is set to
1. Otherwise, the corresponding result bit is set to zero (0). Note that integer values have
32 bits to compare.

The following table shows the result of a bitwise XOR (exclusive OR) operation:

Example Here is an example:

x = 3 (3 is 0011 in binary)

y = 6 (6 is 0110 in binary)

z = BitXor(x,y)

z = 5 (5 is 0101 in binary)

See also BitAnd on page 146

BitClear on page 147

BitNot on page 148

BitOr on page 149

BitRotate on page 150

BitSet on page 152

BitShift on page 153

BitTest on page 155

Bit/Binary Functions on page 42

Value1 bit Value2 bit Result bit

0 0 0

0 1 1

1 1 0

1 0 1

BreakBatch

157

BREAKBATCH

Use this function to tell the Documaker Server to break the output print stream file for
the current recipient batch after processing the current recipient, including post
transaction banner processing.

Syntax BreakBatch()

This procedure is typically called in the transaction banner DAL script. You must use the
SetDeviceName function to specify a new device name. Otherwise, the new file has the
same name as the old file and overwrites its contents.

After the GenPrint program finishes processing the current transaction, it closes the
current output device file. This includes executing any post-batch banner processes. It
then continues processing the recipient batch.

If you have assigned a new output device file name using the SetDeviceName function,
the system will create and start writing to a new print stream file with that name. The best
place to call the BreakBatch function is in the post-transaction banner DAL script.

Here is an example of DAL script logic that might appear in a post-transaction banner
DAL script. This example requires that a pre-transaction banner DAL script save the
current recipient name in a variable called CurrRecip, as shown here:

 CurrRecip = RecipName()

The post-transaction banner DAL script would then include the following:

IF TotalSheets(CurrRecip) > 16000

#COUNTER += 1

CurFile = DeviceName()

Drive = FileDrive(CurFile)

Path = FilePath(CurFile)

Ext = FileExt(CurFile)

RecipBatch = RecipBatch()

NewFile = FullFileName(Drive,Path,RecipBatch & #COUNTER,Ext)

SetDeviceName(NewFile)

BreakBatch()

END

NOTE: See FileDrive, FileExt, FileName, FilePath, and FullFileName for information on
using DAL functions to manipulate file names.

Keep in mind...

• These print drivers are supported: AFP, MET, PCL5, PCL6, and PST.

• These print drivers are not supported: EPT, GDI, HTML, PDF, RTF, and XML.

• All platforms are supported, but note that while UniqueString is supported on z/OS,
z/OS does not support long file names.

• Both multi-step and single-step processing are supported.

158

The only DAL function actually involved in splitting the print stream is BreakBatch. The
others make it easier to implement this functionality. For example, since you need to name
the new print stream, you use the SetDeviceName procedure. To find the name of the
current device, you use the DeviceName function. If you need to create unique file names,
you can use the UniqueString function.

NOTE: The BreakBatch and SetDeviceName functions are not applicable in Entry since
it does not use the batch printing engine. The other functions, DeviceName and
UniqueString, are applicable to both Entry and Documaker Server.

See also Printer and Recipient Functions on page 76

DeviceName on page 216

SetDeviceName on page 370

UniqueString on page 416

Call

159

CALL

Use this function to temporarily suspend one calculation and execute another calculation
file. A CALL statement must begin with CALL.

Syntax CALL (File)

The calculation file that is called must contain a RETURN statement if the original
calculation expects a returned value.

Example Here is an example:

CALL('TestCalc')

This tells the system to call the calculation file TestCalc. After the calculations in TestCalc
are completed, processing returns to the current script. In this example, TestCalc is not
expected to return a value.

See also Miscellaneous Functions on page 73

Parameter Description

File Enter the name of the calculation file you want the system to execute.

160

CHAIN

Use this function to calls another calculation language file. A Chain statement must begin
with CHAIN. There is no limit to the number of Chain statements you can use.

Syntax CHAIN (Script)

Example Here are some examples:

CHAIN 'LastCalc'

or

CHAIN('LastCalc')

These examples permanently call the calculation file named LastCalc. Processing does not
return to the current script. No statements from the original script will be evaluated after
the Chain statement.

See also Miscellaneous Functions on page 73

Parameter Description

Script Enter the name of the DAL script file. You can omit the extension.

CFind

161

CFIND

Use this function to search a text string and return the first position of any character
found within a specified set of characters. The search is not case sensitive.

Syntax CFind (String, Charset, Integer)

The system returns a zero (0) if none of the search characters are found in the text string.

The default search order is left to right. You can also specify a right to left search order. Both
search methods returns the position relative to the first (left-hand) character of the string
parameter.

Example Here are some examples:

(Assume the current field contains the text Your Name.)

See also String Functions on page 78

Parameter Description

String Enter a valid string. This is the string that is searched. The default is the value of
the current field text.

Charset Enter a set of one or more characters, any of which may be found in the target
string.

Integer Enter zero (0) for a left to right search. Enter one (1) for a right to left search.
The default is zero (0).

Function Result Explanation

Return(CFind
(“This is the
answer”, “ws”))

4 Searching from left to right, s was first found at position 4.

Return(CFind
(“This is the
answer”, “ws”,
1))

16 Searching from right to left, w was first found at position 16.

Return(CFind (,
“n”))

6 The first occurrence of an n in the current field Your Name is at
position 6. Note the search is not case sensitive.

Return(CFind(,
“xz”))

0 Neither x nor z is contained in the current text field.

162

CHANGELOGO

Use this procedure/function to replace a bitmap graphic (LOG file) on a section with a
different graphic.

Syntax ChangeLogo (LOGFile, Graphic, Section, Form, Group)

The system optionally returns a one (1) if successful and zero (0) if unsuccessful.

This procedure expects to locate the named graphic in the same way and location used to
load any other graphic. You must include the Graphic parameter.

If you omit the LOGFile parameter or the graphic cannot be loaded, the system will insert
an empty graphic. A placeholder appears during entry to indicate the graphic position,
however, nothing will print if a graphic is not loaded. This procedure lets you remove a
signature from a form if necessary.

The Graphic parameter tells the system to look for the name that appears in the Name
field on the Graphic Options in Studio or Image Editor. If there is no entry in this field,
this procedure will not work correctly.

NOTE: When you use this procedure with Documaker Workstation, you must follow this
procedure with the Refresh procedure. The ChangeLogo procedure does not
redraw the section after it changes the graphic.

When you use the ChangeLogo procedure with Documaker, you must include
the CheckImageLoaded rule as one of the section level rules for the section or
else set the LoadCordFAP option in the RunMode control group to Yes in your
FSISYS.INI file.

Parameter Description

LOGFile Enter the name of a file that contains a valid graphic.

Graphic Enter the name of the current graphic in a section.

Section Enter the name of a section that contains the graphic you specified. The default is
the current section.

Form Enter the name of a form that contains the section or graphic. The default is the
current form.

Group Enter the name of a group to use to locate the object. The default is the current
group.

ChangeLogo

163

Example Here are some examples:

(Assume the section has a graphic named sign.)

See also DelLogo on page 213

HaveLogo on page 269

InlineLogo on page 279

RenameLogo on page 356

Logo on page 300

Refresh on page 354

Graphics Functions on page 71

Procedure Result Explanation

ChangeLogo (
“johndoe”,
“sign”)

1 or 0 Replaces the existing graphic contained by sign with a new
graphic (johndoe). The existing graphic is assumed to exist in
the current section.

ChangeLogo (,
“sign”, “IMG”)

1 or 0 Locate the specified section on the current form. If found
replace the existing graphic contained by sign with an empty
graphic.

164

CHAR

Use this function to convert an integer into a single character.

Syntax Char (Integer)

Example Here is an example:

what_char = Char (64)

The variable, what_char, is set to the character: ‘@’.

See also CharV on page 165

String Functions on page 78

Parameter Description

Integer An integer value that ranges zero (0) to 255.

CharV

165

CHARV
Use this function to convert a single character into an integer value.

Syntax CharV (String)

Example In this example, assume the variable, char_to_convert, contains the single character: “@”.

#_the_integer = CharV(char_to_convert)

The integer variable, #_the_integer, is set the value: 64.

In this example, assume the variable, the_string, contains the characters: “@()”.

#_the_integer = CharV(the_string)

The integer variable, #_the_integer, is set the value: 64. The remaining characters are
ignored.

See also Char on page 164

String Functions on page 78

Parameter Description

String A character string. If the string contains more than one character, only the first
character is converted. The remaining characters are ignored.

166

CODEINLIST

Use this function to search for a string in a list of a strings.

Syntax CodeInList (String,List)

The function returns a number that indicates which string entry was found. For instance,
if the third string entry was found, the function returns a three (3).

Example Here is an example:

CodeInList("ABC", "ABC,AB,DE,A,GFHI,ABCD")returns 1

CodeInList("AB", "ABC,AB,DE,A,GFHI,ABCD")returns 2

CodeInList("DE", "ABC,AB,DE,A,GFHI,ABCD")returns 3

CodeInList("A", "ABC,AB,DE,A,GFHI,ABCD")returns 4

CodeInList("GFHI", "ABC,AB,DE,A,GFHI,ABCD")returns 5

CodeInList("ABCD", "ABC,AB,DE,A,GFHI,ABCD")returns 6

CodeInList("XYZ", "ABC,AB,DE,A,GFHI,ABCD")returns 0

CodeInList("", "ABC,AB,DE,A,GFHI,ABCD")returns 0

CodeInList("ABC", "") returns 0

CodeInList("", "") returns 1

If you omit the first parameter, you get the data from the current field. If you omit the
second parameter, you receive this error message:

Wrong number of parameters

Here is another example:

Assume that GetValue(col_name1) results in the string: EE. And the variable
col_name1_codes contains the string: EEacb,XXEE,EE,AEEAC.

#rc = CodeInList(GetValue(col_name1), col_name1_codes) returns 3

Keep in mind...

• The search is not case sensitive. This means that A will match a.

• Spaces are considered. This means the system will find no matches in these examples:

CodeInList(“Steel”, “ Steel,Aluminum”)

CodeInList(“Steel”, “Steel ,Aluminum”)

CodeInList(“Steel”, “Aluminum,Steel ”)

and will return zero (0) each time.

See also String Functions on page 78

Parameter Description

String Enter the string you want to search for.
Keep in mind the system considers spaces when matching strings and that the
strings must match exactly.

List Enter the name of the list of strings. Use commas to separate each string entry
you want to search for.

Complete

167

COMPLETE

Use this procedure/function to complete the work-in-process.

Syntax Complete (PrintFlag, ExportFlag, ExportType, ExportFile)

This procedure performs the same processes as the File, Complete option except the
windows which request information from the user do not appear if you enter all values.
This procedure starts the following processes, as specified by INI options:

• Prints (immediate or batch) the form set

• Archives the form set

• Exports work-in-process data to a file

The standard export format is the only file format supported. This procedure returns
success (1) if no error occurred during the complete process. If an error occurred, the
procedure returns a zero (0).

Example Here is an example:

See also WIP Functions on page 88

Documaker Supervisor Guide

Documaker User Guide

Parameter Description

PrintFlag Indicates whether the system should print the form set. The default is No.

ExportFlag Indicates whether the system should export the work-in-process data to a file.
The default is No.

ExportType TD, SI, and so on. Indicates the type of export file. The default is TD.

Exportfile The file name for the Standard Export file, if specified in the INI options.

Procedure Result Explanation

Complete () Completes the work-in-process. Performs the processes as specified
by archive INI options.

Complete,,,
(EXPORT.TXT
)

Completes the work-in-process and
writes the data to a file named
EXPORT.TXT.

Performs the processes as specified
by archive INI options and writes
the data to a file named
EXPORT.TXT.

168

COMPRESSFLDS

Use this function/procedure to compress blank space by moving field data. This function
moves field data from one field to a prior named field to compress the space between the
fields. Typically you use this function to compress vertical space, as in address lines, but
the fields do not have to be vertical relative to each other. You can compress any field.

NOTE: The data moves between the fields; the actual location of each physical field
remains the same.

CompressFlds can be used as a procedure or as a function.

Syntax CompressFlds (FieldList, Section, Form, Group)

NOTE: When using this function in Documaker Server processing, make sure the fields
exist on the section. Some implementations that use versions of the system prior
to version 11.0 do not load FAP files in all cases, and fields will not be created
when data mapping did not place any data into the field.

Keep in mind...

• Each subsequent field with data is mapped into the first available empty field which
you included in the list.

• Fields are defined in FAP sections with a tabbing order. This tabbing order typically
matches the order in which field level rules are processed during Documaker Server
processing. Unlike the SetAddr rules, the CompressFlds function can compress fields
in any order, and the field spaces do not have to be compressed up following the tabbing
order.

• The last movement of that field determines the final location of a given field's data.

• Always specify a set of unique field names. Do not attempt to name a field more than
once within a field list as this can produce unpredictable results.

• This function does not work with barcode or multi-line text fields.

Parameter Description

FieldList Enter a list of the fields you want to compress, separated by commas. Here is an
example:

"FIELD1, FIELD2, FIELD3"

Section (Optional) Enter the name of a section that contains the fields you specified. The
default is the current section.

Form (Optional) Enter the name of a form that contains the section and/or field you
specified. The default is the current form.

Group (Optional) Enter the name of the form group that contains the form, section, or
fields. The default is the current group.

CompressFlds

169

Example For this example, assume the following fields and data:

Assume your field list looks like this:

"FIELD_A, FIELD_B, FIELD_C, FIELD_D"

FIELD_A does not move because there is no field named before it.

FIELD_B and FIELD_C are empty; therefore, the data from FIELD_D moves into
FIELD_B, which is the first available empty field.

The result looks like this:

If you had specified the field list parameter had been specified like this:

"FIELD_D, FIELD_C, FIELD_B, FIELD_A"

The result would be as follows:

See also Field Functions on page 61

This field Contains

FIELD_A ABCDEFG

FIELD_B is empty

FIELD_C is empty

FIELD_D TUVWXYZ

This field Contains

FIELD_A ABCDEFG

FIELD_B TUVWXYZ

FIELD_C is empty

FIELD_D is empty

This field Contains

FIELD_A is empty

FIELD_B is empty

FIELD_C ABCDEFG

FIELD_D TUVWXYZ

170

CONNECTFLDS

Use this function/procedure to move fields (change field coordinates) in such a way as to
make the field’s text appear to be concatenated. This function does not literally
concatenate the fields but instead repositions and aligns field text along a common
horizontal coordinate so the field’s data appears concatenated. It does not move fields
vertically.

This function automatically loads the section — either the FAP file or the compiled
version of the FAP file — if the section has not already been loaded. FAP files must be
loaded to provide some of the information required to perform the operation.

Syntax ConnectFlds (FieldList, Section, Form, Group)

In the FieldList parameter you must specify a fixed field and at least one field to move
(visually concatenate) to the left or right side of the fixed field. You can specify multiple
fields to move.

NOTE: This function does not move fields vertically. Fields are only moved horizontally.
You should set the vertical alignment of fields when you create the section.

By default, each concatenation will be placed the distance of one space character from the
fixed field, unless the parameter indicates otherwise. You can include these movement
flags in the FieldLIst parameter:

Parameter Description

FieldList A list of the fields you want to connect, preceded by a movement flag and
separated with commas. Here is an example:

"FIELD1, FIELD2, FIELD3"

If a field name is not preceded by a movement flag or if it is preceded by the F
movement flag, which indicates it is a fixed field, the field is not moved.
The first field you name in the parameter must be a fixed field. The rest of the
field names in your list indicate fields you want moved adjacent to the fixed field.
Each field you name is moved according to the use described by the movement
flag that precedes its name.

Section (Optional) Enter the name of a section that contains the fields you specified. The
default is the current section.

Form (Optional) Enter the name of a form that contains the section and/or field you
specified. The default is the current form.

Group (Optional) Enter the name of the form group that contains the form, section, or
fields. The default is the current group.

Flag Description

L Tells the system to move the specified field so it appears to be appended to the left of
the fixed field.

R Tells the system to append the specified field to the right of the fixed field.

ConnectFlds

171

Here is an example:

"F=FIELD1,RNO=FIELD2"

Here, the contents of FIELD2 are placed immediately adjacent to the end of the contents
of FIELD1 without an intervening space.

Keep in mind...

• As each field is appended to the fixed field, the fixed rectangle grows. By growing the
fixed rectangle, additional fields that append move based upon where the prior
appended field ended.

• If a field specified for appending does not contain any data or is not valid, then no
space, or space holder, is included in the concatenation.

• If a field contains centered or right justified data padded with spaces then the results
may appear to be incorrect. This function calculates the width of a field based upon
the entire contents and will not remove spaces, or any other white space characters,
in the fields.

• Naming a field to move more than once in the first parameter can cause
unpredictable results.

• The last movement of a field will determine the final location of a field's data.

• During any movement operation, the field being moved cannot also be named as the
fixed field.

• This function does not work with barcode or multi-line text fields.

• This function does not handle rotated fields.

Example For the following examples, make these assumptions:

If you enter:

ConnectFlds("F=FIELD1,R=FIELD2")

You get this result:

ABC DEF

If you enter:

ConnectFlds("F=FIELD1,L=FIELD2,R=FIELD3")

You get this result:

NO Tells the system you want no spacing between the two fields.

Flag Description

This field Contains

FIELD1 ABC

FIELD2 DEF

FIELD3 XYZ

172

DEF ABC XYZ

This example appended FIELD2 to the left side of FIELD1 and appended FIELD3 to
the right side of FIELD1. The fixed field, FIELD1, did not move. FIELD2 and FIELD3
moved to align with FIELD1. During this operation, FIELD1 never moved.

If you enter:

ConnectFlds("FIELD1,LNO=FIELD2,RNO=FIELD3")

You get this result:

DEFABCXYZ

This example is similar to the prior example but uses the NO parameter.

If you enter:

ConnectFlds("F=FIELD1,R=FIELD2,R=FIELD3")

You get this result:

ABC DEF XYZ

In this example, two fields are appended to the right of the fixed field. The first appended
field expanded the rectangle, which allows the next one to append after the last.

If you enter:

ConnectFlds("F=FIELD1,R=FIELD2,F=FIELD2,R=FIELD3")

You get this result:

ABC DEF XYZ

Notice that the result of this example is the same as the previous example. In this case,
the fixed field was changed to FIELD2 after FIELD2 had moved adjacent to FIELD1.
Then FIELD3 was moved adjacent to FIELD2 in its new location.

If you enter:

ConnectFlds("F=FIELD1,R=FIELD2,R=FIELD2")

You get this result:

ABC DEF

In this case, FIELD2 is defined to move twice. Since the operations are sequential, the
field first moved adjacent to FIELD1. This movement expanded the fixed rectangle used
by subsequent movements. When the field was named again, it moved relative to the
newly expanded rectangle, resulting in the field appearing farther to the right, a distance
equal to the size of the text in the field plus the width of two spaces.

See also Field Functions on page 61

CopyForm

173

COPYFORM

Use this procedure/function to locate a form and copy that form and its field contents
(data) into a new form. With this procedure, you can also specify another form and group
as the insertion point for the new form.

NOTE: When you use the AddForm procedure, the only data duplicated is the global data
that propagates into the fields. When you use the DupForm procedure, only
those forms with the Multicopy option checked can be duplicated. With the
CopyForm procedure, any form within the document can be copied.

Syntax CopyForm (Form, Group, InsAtForm, InsAtGroup)

If you do not specify an insertion point, the system appends the new form to the end of
the form group of the original form.

If the procedure is successful in copying the form, it returns a non-zero value, otherwise
zero (0) is returned. This procedure can fail for these reasons:

• Could not locate the form or form group specified

• Lack of available memory

You can use this procedure in scripts hosted by AFEMain or other Entry-related
applications and also in batch applications using the GenData program.

See also AddForm on page 119

AddForm_Propagate on page 120

DupForm on page 227

WIP Functions on page 88

Parameter Description

Form Enter the name of the form you want to copy

Group (Optional) Enter the name of the group if the form is not in the current group.

InsAtForm Enter the name of the form after which you want the system to insert the form
it copies.

InsAtGroup (Optional) Enter the name of the group for the insertion point form, specified in
the InsAtForm parameter if that form is not in the current group.

174

COUNT

Use this function to count the number of fields that have values and have names that
begin with common characters. The result of the operation is returned.

Syntax Count (PartialField, Section, Form, Group)

This function returns the number of fields that have values that begin with the specified
partial field name.

An example of field names that have a common start are:

Myfield1
Myfield2
Myfield20

Each of these fields will be included if the partial field name is using any of the leading
characters of myfield. The first field will be excluded if you enter myfield2, but will match
the other two field names.

Note that zero (0) is a valid field value. A field that has never been given a value is
excluded from the count.

NOTE: As a general rule, include the PartialField parameter. Fields in a section must have
unique names. Using the default will probably not give the expected result, unless
you created the form and understand the naming conventions.

Example Here are some examples:

The following table will be used by the examples. The table represents the layout of two
forms in the same group. Both forms share two sections (IMG A and IMG B). Each
section has fields of the same name as a field in the other section.

Parameter Description

PartialField Enter a valid string. The string must be the common (prefix) portion of a set of
field names that occur on the current section. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Field Section Form Group Value

MyField1 IMG A FRM A GRP 100.24

MyField2 IMG A FRM A GRP 200.16

Count

175

(Assume the current field is MyField1, on the first section of the first form. Reference the
previous table for field values.)

See also Mathematical Functions on page 72

Field Formats on page 62

Locating Fields on page 64

MyField1 IMG B FRM A GRP 98.60

MyField2 IMG B FRM A GRP * no value yet *

MyField1 IMG A FRM B GRP 0.00

MyField2 IMG A FRM B GRP * no value yet *

MyField1 IMG B FRM B GRP 70.77

MyField2 IMG B FRM B GRP * no value yet *

Function Result Explanation

Count() 1 Without any other information, the function will assume the
current field and section. There will only be one value included
in the count.

Return(Count (
“Myfield2”))

1 Again, there is only one field included in this result.

Return(Count (
“MyField”))

2 In this example, the current section contains two fields that
begin with the name “MyField”.

Return(Count (
“MyField”, “IMG
B”))

1 Although two fields on IMG B have a matching name, only
one field actually has a value.

Return(Count (
“MyField”, , “FRM
A”))

3 No section is specified in this example, so the entire form is
searched. Four fields match the name criteria, but only three
have values.

Return(Count (
“MyField”, “IMG
B”, , “GRP”))

2 This example specifies a section and group, but no form. There
are four fields that match the name criteria, but only two have
values.

Return(Count (
“MyField”, , ,
“GRP”))

5 This example names the group without a form or section.
Eight fields meet the naming criteria, but only five fields
actually have values.

Field Section Form Group Value

176

COUNTREC

Use this function to count the number of records in an extract file transaction that match
a search mask parameter. In addition, you can also make sure that at least a minimum
number of records match the search mask parameter.

Syntax CountRec (SearchMask, MinNumber)

This function returns the total number of records found, the MinNumber of records if
they exist, or zero (0) if no records match the search mask or there are less than the
MinNumber of records.

Example Lets assume there are five records in a transaction with the following values in the
applicable columns.

0 3

1 1

Address1 AA

Address2 BB

Address3 BB

Address4 BB

Address5 CC

See also Documaker Server Functions on page 58

Field Formats on page 62

Locating Fields on page 64

Parameter Description

SearchMask The search mask you want to use for the search.

MinNumber (Optional) Number of records that must exist in the transaction.
Set this parameter to 1 if you want to know if a record exists that matches the
search mask.

Function Result Explanation

CountRec (“1,Address”) 5 The function returns five (5) because there are five records
that match the search mask in the transaction.

CountRec
(“1,Address,31,BB”, 2)

2 The function returns two (2) because there are at least two
records that match the search mask in the transaction.

CountRec (“1,Address”,
6)

0 The function returns zero (0) because there are less than
six records in the transaction that match the search mask.

CountRec
("1,Address,31,AA", 2)

0 The function returns a zero (0) because there are less than
two records that match the search mask.

Cut

177

CUT

Use this function to remove characters from a string at a specified position and return the
result.

Syntax Cut (String, Position, Length)

This function returns a string equivalent to parameter 1 with the portion identified by the
position and length parameters removed. If no position is given, or it is zero (0), the cut
starts at position 1 in the string.

If no length is given, or it is zero (0), nothing is removed from the string and the return
value is the same as the original string parameter.

Example Here are some examples:

(Assume the current field contains the text Your Name.)

See also String Functions on page 78

Parameter Description

String Enter a valid string. The default is the value of the current field text.

Position Enter the position within the first parameter to begin cutting. The default is one
(1).

Length Enter the length to cut from text. The default is zero (0).

Function Result Explanation

Return(Cut ()) Your Name No length is specified for the cut function; therefore the
field remains the same.

Return(Cut (, , 5)) Name Five characters are cut from the current field beginning at
position 1.

Return(Cut
(“Complete all the
blanks.”, 10, 4))

Complete
the blanks

Goes to position 10 to begin the cut and removes four
characters.

Return(Cut
(“Complete all the
blanks.”, ,9))

all the
blanks

Defaults to position 1 to begin the cut and cuts nine
characters.

178

DASHCODE

Use this function to build a value to assign to a series of fields from the binary value of an
integer. This is sometimes called a dash code. A dash code is a type of OMR mark that is
read by certain mail, binding, or inserting equipment.

A dash code is a series of horizontal lines aligned in a column — each usually around 1/
2 to one inch in length — that are typically on the left or right edge of the paper. The
marks are usually expected to be in a uniform (fixed) position. Here is an example of a
dash code:

Dash codes can be used, for instance, to represent the beginning or end of a set of pages
that are associated in some way. The marks might indicate sequencing, first page, last page,
staple requirements, additional pages to be inserted at a given point, the envelope size, or
binding requirements.

NOTE: The exact meaning, order, and position of each mark depends on the finishing
equipment you are using. Check the specifications that came with your
equipment and assign the values appropriately.

Syntax DashCode(Value, Bits, RootName, Section, Form, Group, OnString,
OffString, Direction, AltLens)

Parameter Description

Value Each bit of the value parameter is tested for a one (1) or zero (0). If the bit is one
(1), it is considered on and the character you specify in the OnString parameter is
appended to the string result being built. If the bit is zero (0), the OffString
parameter is appended to the string result.

Bits This parameter identifies how many of the bits from the value need to be
evaluated. By default all 32 bits are evaluated. If you specify a negative or zero
value, you’ll get an empty string.

RootName This parameter identifies the initial portion of a series of field names that are to
be the repository for the OnString and OffString filled values. The bit number
referenced will be appended to each name to form the final name expected to be
found on the resulting section.
For instance, if MVALUE_ is passed as the RootName, the first fill value is
assigned to MVALUE_1, the second to MVALUE_2, MVALUE_3, and so on,
until the maximum number of bits specified are all mapped. If all 32 bits are
mapped, the last field would be MVALUE_32.
The associated fields will be filled to their defined length. In most dash code
(barcode) type situations, you will want all the fields to be the same length.

DashCode

179

The return value indicates the number of fields assigned. A return value of zero (0) means
that no fields were found.

Section Enter the name of a section that contains the field you specified. You can enter
an asterisk (*) to tell the function to search all sections. Keep in mind, however,
that including an asterisk (*) degrades performance.

Form Enter the name of a form that contains the section and/or field you specified. You
can enter an asterisk (*) to tell the function to search all forms. Keep in mind,
however, that including an asterisk (*) degrades performance.

Group Enter the name of the form group that contains the form, section, or field. You
can enter an asterisk (*) to tell the function to search all groups. Keep in mind,
however, that including an asterisk (*) degrades performance.

OnString By default, OnString is an underscore (_). You can specify alternative OnString
and OffString values and each can be more than one character. The two
parameters do not have to be the same length.
If you define multiple characters, the fill value will repeat those characters as
necessary to fill the entire field. If the field length is not evenly divisible by the
length of the string you enter, a partial copy of the string can appear at the end.
For instance, suppose the field length is five; OnString is ABC; and OffString is
XY. If the bit value for this field is one (1), the fill value generated will be:
ABCAB. If the bit value is zero (0), the fill value generated for this field will be
XYXYX.

OffString By default, Offstring is a space (). You can specify alternative OnString and
OffString values and each can be more than one character. The two parameters
do not have to be the same length.
If you define multiple characters, the fill value will repeat those characters as
necessary to fill the entire field. If the field length is not evenly divisible by the
length of the string you enter, a partial copy of the string can appear at the end.

Direction Note that integer values have 32 bits. When looking at the value in binary form,
bit 1 is on the right and bit 32 is on the left. To override the default behavior, you
can supply a non-zero Direction parameter.

 0000 0000 0000 0000 0000 0000 0000 0000

Bit 32 | | Bit 1

AltLens The final parameter is a comma-delimited pattern string to identify alternate
lengths for each field associated with the bits. By default, each field is assigned a
value equal to its defined length. If you want to use a different length, supply the
appropriate lengths in string form separated by commas.
The order of the length values starts with the field associated with the first bit,
followed by the length for the second field, and so on. Remember the first bit is
determined by the direction parameter. If you do not provide enough length
values to match the number of bits you are using, the undefined positions will
default to the default field length.

Parameter Description

180

Example Here are some examples:

#val = 11 (which is 1011 in binary)

DASHCODE(#val, 4, "BFLD");

Assuming that BFLD is a root field name and matching fields are located on the current
section, the following assignments are made. Further assume that each field is five
characters in length.

BFLD1 is assigned "_____"
BFLD2 is assigned "_____"
BFLD3 is assigned " " (five spaces)
BFLD4 is assigned "_____"

DASHCODE(#val, 4, "BFLD", , , , "A", "B");

This example uses the parameters to supply different OnString and OffString parameters.

BFLD1 is assigned "AAAA"
BFLD2 is assigned "AAAA"
BFLD3 is assigned "BBBB"
BFLD4 is assigned "AAAA"

DASHCODE(#val, 4, "BFLD", , , , "A","B",1);

Note the Direction parameter was used to reverse the order of the bits interpretation.

BFLD1 is assigned "AAAA"
BFLD2 is assigned "BBBB"
BFLD3 is assigned "AAAA"
BFLD4 is assigned "AAAA"

DASHCODE(#val, 4, "AB", "XYZ", 0, "1,2,3,5");

In this example, the last parameter applies differing lengths to the fields you are mapping.
This example also uses alternate OnString and OffString parameters and uses text greater
than one character. In this case, the string may be truncated or repeated as necessary to
fill the field length.

BFLD1 is assigned “A”
BFLD2 is assigned “AB”
BFLD3 is assigned “XYZ”
BFLD4 is assigned “ABAB” or “ABABA”

Note that the last example indicates two possible results. During Documaker Workstation
entry, the field length is considered paramount and cannot be overridden. During batch
operations, it is possible for the data length to override the field length.

See also Bit/Binary Functions on page 42

Date

181

DATE

Use this function to build a date from a given date, or from the current date.

Syntax Date (Format, Day, Month, Year)

The system returns a date string that contains a formatted date value. If you omit any of
the Day, Month, or Year parameters, the system uses a value based on the current date.

NOTE: To change to some date formats, make sure the variable field’s Type field (on the
field’s Properties window) is set to alphanumeric.

Example Here are some examples:

(Assume the current date is 07/01/10.)

See also Date Functions on page 51

Date Formats on page 52

Using INI Options on page 8

Parameter Description

Format Enter a date format. The default is format 1 (MM/DD?YY).

Day Enter an integer day value. The default is based on the the current day.

Month Enter an integer month value. The default is based on the the current month.

Year Enter an integer year value. The default is based on the the current year.

Function Result Explanation

Return(Date()) 07/01/2010 No parameters entered, defaults to current date in date
format 1.

Return(Date(“44
”))

July 1, 2010 Date format 4 selected, with a four-digit year length.
Defaults to the current date in the selected format.

Return(Date
(,18,5,2009))

05/18/2010 Defaults to date format 1 using the given values.

Return(Date(“I2”
,18,5))

10/138 Date format I selected with a two-digit year length. Enters
the given date values in the selected format.

182

DATE2DATE

Use this function to convert a date from one format to a new format.

Syntax Date2Date (Date, Format, NewFormat)

This function converts a date string from one format to another. The new value is
formatted according to the NewFormat parameter.

Example Here are some examples:

(Assume the current date is 07/01/09 and the variable field called, arc_date, contains the
hexadecimal value, BC6792D0)

See also Date Functions on page 51

Date Formats on page 52

Using INI Options on page 8

Parameter Description

Date Enter a date string. The system assumes your entry to be in the format specified
in the Format parameter. The default is the current date.

Format Enter a date format string that describes the contents of the Date parameter. The
default is date format 1 (MM/DD/YY).

NewFormat Enter the date format you want to convert to. The default is date format 1.

Function Result Explanation

Return(Date2D
ate())

07/01/2009 No parameters entered—defaults to current date in date
format 1.

Return(Date2D
ate(“02/01/
09”, “1”, “44”))

February 1, 2009 Changes the given date (02/01/09) from date format “1”
to date format “4”, with a four-digit year.

Return(Date2D
ate(“09/138”,
“G”))

05/18/09 Changes the given date (09/138) from date format G to
the default date format 1.

Return(
Date2Date (, ,
"X"));

BB273650 Returns the current date in a eight character hexadecimal
representation.

Return(
Date2Date (@
("arc date"),
"X", "4"));

February 29,
2008

Converts the hexadecimal date to month name DD,
YYYY without leading zeros.

DateAdd

183

DATEADD

Use this function to add a specified number of days, months, and/or years to a date.

Syntax DateAdd (Date, Format, Days, Months, Years)

This function adds a specified number of days, months, and years to a given date. The
result is formatted according to the Format parameter.

The Days, Months, and Years parameters can be negative or positive. If you enter a negative
parameter, the system subtracts the specified days, months, or years.

You do not have to divide the values into components. For example, you can add 300 days
and 40 months to a date. The result reflects the appropriate year, month, and day.

NOTE: This function tells the system to add days, months, and years—in that order. For
instance, if you tell the system to add one day and one year to the date 02/28/
2007, the result is 03/01/2008—not 02/29/2008.

To get 02/29/2008 as the result, you would use two calculations, first adding the
year, then adding the day.

Example Here are some examples (assume the current date is 07/01/09):

Parameter Description

Date Enter a date string. The system assumes your entry to be in the format specified
in the Format parameter. The default is the current date.

Format Enter a date format string that describes the contents of the Date parameter. The
default is date format 1 (MM/DD/YY).

Days Enter the number of days. The default is zero (0).

Months Enter the number of months. The default is zero (0).

Years Enter the number of years. The default is zero (0).

Function Result Explanation

Return(DateAdd
(Date(), “1”, 10))

07/11/2009 Defaults to the current date which is specified as Date(
) and adds 10 days.

Return(DateAdd
(02/01/09, , , 44))

10/01/2012 Uses the given date (02/01/09) and adds 44 months.
(Note that if you enter “44” as a string, it is
automatically converted to an integer.)

Return(DateAdd
(“09/138”, “I” , , , -3))

06/139 The given date (09/138) using date format I is May 18,
2009. Subtracting three years results in the date May
18, 2006. Because 2008 is a leap year, the correct day of
the year (counting consecutively from January 1) is
139. The resulting date is returned in the same date
format.

184

See also Date Functions on page 51

Date Formats on page 52

DateCnv

185

DATECNV

Use this function to convert two-digit years into four-digit years.

Syntax DateCnv (Date, Format, DivideYear, Century)

Use this function to convert a date value to the proper century. The resulting date value
will have a four-digit year. Since the system has no way of knowing whether a date
represents a birthday (from the past) or a maturity date (in the future), a dividing year is
required to make the century decision. If the dividing year is not provided, it will default
using the equation ((current year + 40) % 100).

The century number is optional and defaults to the current century. If the two-digit year
from the date value is greater than the dividing year, the system assumes the date is in the
century given. Otherwise, the system assumes date is in the next century.

Example Assume the current date is 07/01/99. This means the default dividing year is determined
as: ((1999 + 40) % 100) = 39.

NOTE: In this case, % means modulo, or modulus, which means the value that remains after
dividing one number evenly into another. Here is an example: 100 divides into
2,035 twenty even times. 20 times 100 equals 2000. 2035 minus 2000 leaves 35.
Therefore, 2035 % 100 = 35.

Parameter Description

Date Enter a date string. The system assumes your entry to be in the format specified
in the Format parameter. The default is the current date.

Format Enter a date format string that describes the contents of the Date parameter. The
default is date format 1 (MM/DD/YY).

DivideYear A dividing year value used to determine if the date value belongs to the specified
century or the next. The default is the current year plus 40.

Century The century to assign if the date falls in the dividing year. Otherwise, the result is
this century plus one. The default is the current century.

Function Result Explanation

Return(DateCnv(
))

07/01/1999 Defaults to the current date and format 1. Since 99 is
greater than 39, this date assumes the current century.

Return(DateCnv (
“07/01/00”))

07/01/2000 Since 00 is not greater than 39, this date assumes the next
century.

Return(DateCnv (
“50/138” , “I”,
50))

2050/138 The given date (50/138) in date format I is May 18, 50.
Since 50 is not greater than the dividing year of 50, the
result assumes the next century.

Return(DateCnv (
“99/138” , “I”,
50))

1999/138 The given date (99/138) in date format I is May 18, 99.
Since 99 is greater than the dividing year of 50, the result
assumes the current century.

186

See also Date Functions on page 51

Date Formats on page 52

Using INI Options on page 8

Day

187

DAY

Use this function to get the day portion of a date as an integer.

Syntax Day (Date, Format, Locale)

The system determines the day portion of the given date based on the format you specify
in the Format parameter.

Example Here are some examples:

(Assume the current date is 07/01/09.)

See also Date Functions on page 51

Locales on page 55

Date Formats on page 52

DateAdd on page 183

Parameter Description

Date Enter a date string. The system assumes your entry to be in the format specified
in the Format parameter. The default is the current date.

Format Enter a date format string that describes the contents of the Date parameter. The
default is date format 1 (MM/DD/YY).

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks the
Locale INI option. If the Locale INI option offers no value, the system defaults
to USD (United States/English)..

Function Result Explanation

Return(Day()) 1 Defaults to the current date and enters the integer 1.

datestring =
DateAdd(, , 15);
Return(Day
(datestring))

16 First the DateAdd function defaults to the current date and
adds 15 days which results in a date of July 16, 2009. This date
is returned to the target variable datestring. The date is then used
by the Day function and the integer value of 16 is returned.

Return(Day(“09/
138”, “I”))

18 The given date (09/138) in date format I is May 18, 2009.
Therefore, the integer value of 18 is returned.

188

DAYNAME

Use this function to enter the name of the day of the week.

Syntax DayName (DayOfWeek, Locale)

This function is typically used with the WeekDay function. The WeekDay function
determines the day of the week number from a given date.

Example Here are some examples:

(Assume the current date is Saturday, January 3, 2009.)

See also Date Functions on page 51

Locales on page 55

Using INI Options on page 8

DateAdd on page 183

WeekDay on page 419

Parameter Description

DayOfWeek Enter an integer to designate the day of the week.
1 - Sunday
2 - Monday
3 - Tuesday
4 - Wednesday
5 - Thursday
6 - Friday
7 - Saturday
The default is the current day of the week.

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INI option. If the Locale INI option offers no value, the system
defaults to USD (United States/English).

Function Result Explanation

Return(DayName()) Saturday Defaults to the current day of the week and returns
Saturday.

DayName(WeekDay
(“09/33”, “I”))

Monday First the WeekDay function determines the day of the
week number for the given date and format. DayName
then uses this number to return the correct day name:
Monday.

DayName (WeekDay(
DateAdd(,,-1)))

Friday First the DateAdd function uses the current date and
subtracts one day. WeekDay then determines the number
for the day of the week. DayName then determines that
the given date is Friday, January 2, 2009 and returns the
day name: Friday.

Return(DayName
(,"ZAA"))

Saterdag It returns the name of the current day of the week based
and translates that name into Afrikaans.

DaysInMonth

189

DAYSINMONTH

Use this function to get the number of days in the specified month of a given year.

Syntax DaysInMonth (Month, Year)

The year value is only used when the month number is 2 (February). The result for
February is different if the given year is a leap year. This function is typically used with the
Month function. The Month function extracts the month number from a given date.

Example Here are some examples:

(Assume the current date is 07/01/09.)

See also Date Functions on page 51

Month on page 318

Parameter Description

Month Enter a month number from 1 to 12, with January being 1 and December being
12. The default is the current month.

Year Enter a year. The default is the current year.

Function Result Explanation

DaysInMonth () 31 Defaults to the current date and returns the value 31 since July
has 31 days.

DaysInMonth
(Month (“04/15/
2009”))

30 The Month function extracts the number 04 (April) from the
given date. The DaysInMonth function then determines that
there are 30 days in April and returns that value.

DaysInMonth(2,
2008)

29 The year 2008 was a leap year, February had 29 days. Therefore
the integer 29 is returned.

190

DAYSINYEAR

Use this function to get the number of days in the specified year.

Syntax DaysInYear (Year)

This function returns 365 or 366, depending on whether the year parameter is a leap year.
This function is typically used with the Year function. The Year function extracts the year
number from a given date.

Example Here are some examples:

(Assume the current date is 07/01/2008.)

See also Date Functions on page 51

Year on page 443

Parameter Description

Year Enter the year. The default is the current year.

Function Result Explanation

DaysInYear () 366 2008 is a leap year, therefore the returned value is 366.

DaysInYear (09) 365 The year 2009 is not a leap year and has 365 days.

DaysInYear
(Year(“2009/09/
09”, “34”))

365 First the Year function extracts the year number (2009) from
the given date using the format specified. The DaysInYear
function then determines that the given year has 365 days and
returns the integer 365.

DBAdd

191

DBADD

Use this procedure/function to add a new record to a database table.

Syntax DBAdd (Table, PrefixVariable)

The system optionally returns one (1) on success and zero (0) on failure.

Unlike for the DBFirstRec and DBNextRec procedures, the PrefixVariable parameter
and the associated fields should have already been defined. For some database handlers,
these column names are case sensitive. Columns not required can be left blank.

The actual variable names appended with a prefix are taken from the DFD file. The DFD
file is determined by your entry in the Table parameter or by using the column names
found in the table if there is no DFD file associated with that table.

Possible causes for failure to add the record include:

• A required column was left blank

• Database specific failure

Example Here is an example:

See also Database Functions on page 43

Parameter Description

Table Enter the name of an open table.

PrefixVariable (Optional) Enter the name of a DAL variable to associate with the record
fields of the table. The default is Table.

Procedure Result Explanation

RECORD.Company=“Oracle
”;
RECORD.Lob=”Util”;
RECORD.Rundate=DATE();
 DBAdd(“APPIDX” ,
“RECORD”)

1 or 0 Assuming the table APPIDX has the columns
Company, Lob, and Rundate, a new record will be
added to the table whose values in those columns
are Oracle, Util, and the current date, respectively.

192

DBCLOSE

Use this procedure/function to close a database table.

Syntax DBClose (Table)

The system closes the table and returns one (1) if the table was successfully closed. If the
table cannot be closed, it may be because...

• The table was not open, such as if it had already been closed

• There was a database-specific failure

Example Here is an example:

See also Creating Variable Length Records from Flat Files on page 199

Setting Up Memory Tables on page 50

DBOpen on page 198

Database Functions on page 43

Parameter Description

Table Enter the name of the table you want to close.

Procedure Result Explanation

DBClose(“APPIDX”) 1 or 0 Closes the table named APPIDX.

DBDelete

193

DBDELETE

Use this procedure/function to delete all records which match the key criteria from the
database table.

Syntax DBDelete (Table, KeyName1, KeyValue1, KeyName2, KeyValue2,...)

NOTE: You will not be prompted for confirmation when deleting records.

The system optionally returns one (1) on success or zero (0) on failure.

This procedure lets you enter as many KeyName and KeyValue combinations as
necessary to identify the specific keyed record you want to delete.

This procedure first locates the records using the key you specify. If located, the records
will be deleted. If the procedure returns failure, possible causes include:

• There are no records in the table meeting the given criterion

• The column specified in KeyName is not a searchable column

• Database-specific failure

Example Here is an example:

See also Database Functions on page 43

Parameter Description

Table Enter the name of an open table.

KeyName,
KeyValue,
...

Each KeyName refers to the name of a column to search. For some database
handlers, this may be a case-sensitive comparison.
Each KeyValue is the value of the corresponding KeyName for which to search.
For some database handlers, this may be a case-sensitive comparison.
At least one KeyName/KeyValue pair are required.

Procedure Result Explanation

DBDelete (“APPIDX” ,
“Company” ,
“SAMPCO” , “Lob” ,
“Util”)

1 or 0 Assuming Company and Lob are valid key components for
the APPIDX table, the procedure will delete all records
with the value SAMPCO in the column named Company
and the value Util in the column named Lob.

194

DBFIND

Use this procedure/function to retrieve the first record from a database table which
satisfies the key criteria.

Syntax DBFind (Table, Variable, KeyName1, KeyValue1, KeyName2,
KeyValue2,...)

The system optionally returns one (1) on success or zero (0) on failure.

If the Variable parameter has not been defined, it will be created. You can access the table
record fields assigned this prefix using the dot (.) operator. For example, assume Record is
a prefix variable and the table record contains the columns Company, Lob, and Policynum.
The values of the individual fields would be referenced as Record.Company, Record.Lob, and
Record.Policynum, respectively.

The variable names appended with a prefix are taken from the DFD file associated with
the table you specified in the Table parameter or by using the column names found in the
table if there is no format file associated with the table.

NOTE: The variable name is truncated to eight characters when you use a long name.
Variable names are limited to eight characters if you do not use the DBPrepVars
procedure and nine characters if you do. A variable name plus the stem name
cannot exceed 32 characters.

This procedure supports a variable number of parameters. As many KeyName and
KeyValue combinations required to identify the specific keyed record to retrieve may be
defined as parameters. If the record cannot be retrieved, possible causes include:

• There are no records in the table that meet the criteria

• The column specified in KeyName is not a searchable column

• Database specific failure

Parameter Description

Table Enter the name of an open table.

Variable Enter the name of a DAL variable to associate with the record fields retrieved by
the procedure. The default is Table.

KeyName,
KeyValue,
...

Each KeyName specifies a column to search. For some database handlers, it may
be a case-sensitive.
Each KeyValue is the value of the corresponding KeyName for which to search.
For some database handlers, this may be a case-sensitive comparison.
At least one pair of KeyName/KeyValue are required.

DBFind

195

Example Here is an example:

See also Database Functions on page 43

DBPrepVars on page 200

Procedure Result Explanation

DBFind(“APPIDX”,
“RECORD”,
“Company”,”Oracle”,
“Lob”, “DM”)

1 or 0 Assuming that the APPIDX table has columns named
Company and Lob, and that these columns are a key, the
first record containing “Oracle” and “DM” in the
appropriate column will be retrieved and associated with
the prefix variable RECORD.

196

DBFIRSTREC

Use this procedure/function to retrieve the first record in a database table.

Syntax DBFirstRec (Table, PrefixVariable)

The system optionally returns one (1) on success or zero (0) on failure.

If the PrefixVariable parameter has not been defined, it will be created. You can access
the table record fields assigned this prefix using the dot (.) operator.

For example, assume Record is a prefix variable and the table record contains the columns
Company, Lob, and Policynum. The values of the individual fields would be referenced as
Record.Company, Record.Lob, and Record.Policynum, respectively.

The actual variable names appended with a prefix are taken from the DFD file associated
with the table you specified in the Table parameter or using the column names found in
the table if there is no DFD file associated with the table.

Possible causes for failure to retrieve the first record include:

• The table contains no records

• Database-specific failure

Example Here is an example:

See also Database Functions on page 43

DBNextRec on page 197

Parameter Description

Table Enter the name of an open table.

PrefixVariable Enter the name of a DAL variable to associate with the record fields retrieved
by the procedure. The default is Table.

Procedure Result Explanation

DBFirstRec
(“APPIDX” ,
“RECORD”)

1 or 0 Retrieves the first record from the APPIDX table and associates
the columns with the prefix variable RECORD.

DBNextRec

197

DBNEXTREC

Use this procedure/function to retrieve the next record in sequence from a database table.

Syntax DBNextRec (Table, PrefixVariable)

The system optionally returns one (1) on success or zero (0) on failure.

If the PrefixVariable parameter has not been defined, it will be created. You can access
the table record fields assigned this prefix using the dot (.) operator.

For example, assume Record is a prefix variable and the table record contains the columns
Company, Lob, and Policynum. The values of the individual fields would be referenced as
Record.Company, Record.Lob, and Record.Policynum, respectively.

The actual variable names appended with a prefix are taken from the DFD file associated
with the table you specified in the Table parameter or using the column names found in
the table if there is no DFD file associated with the table.

If the record cannot be retrieved, possible causes include:

• There are no more records to retrieve

• Some databases require you to call DBFirstRec before you call DBNextRec

• Database specific failure

Example Here is an example:

See also Database Functions on page 43

DBFirstRec on page 196

Parameter Description

Table Enter the name of an open table.

PrefixVariable Enter the name of a DAL variable to associate with the record fields retrieved
by the procedure. The default is Table.

Procedure Result Explanation

DBNextRec (“APPIDX”
, “RECORD”)

1 or 0 Will retrieve the next record from the table APPIDX
and associate the field columns with the prefix variable
RECORD.

198

DBOPEN

Use this procedure/function to open the specified database table in the mode you request.

The DBOpen procedure supports having multiple:

• Simultaneous ODBC connection via different ODBC drivers. See Database
Functions on page 43 for more information.

• Tables open in the same database.

Syntax DBOpen (Table, Handler, DFDFile, Mode, Truncate)

The system returns one (1) if the database table was successfully opened and zero (0) if
the table was not opened.

Possible causes of failure include:

• The table does not exist and the Mode parameter did not include the
CREATE_IF_NEW directive.

• The table exists and the Mode parameter included the FAIL_IF_EXISTS directive.

• The database handler could not be initialized.

• The table format information could not be found.

• The table is opened for exclusive use by another application.

Parameter Description

Table Enter the name of the table you want to open.

Handler Enter the name of the database handler to associate with the table.
If you omit Handler, DBOPEN looks in the DBTable:TableName control group
for the DBHandler option. If this option is not present, DBOPEN defaults to the
ODBC handler.

DFDFile Enter the name of the format file to associate with the table.
If omitted, the Handler tries to query the information from the database. Note
that this may not be supported by all databases.

Mode Enter a string which specifies the mode in which to open the file. Your options
are READ, WRITE, FAIL_IF_EXISTS, and CREATE_IF_NEW.
These may be combined by separating them with an ampersand (&), as in
“READ&WRITE&FAIL_IF_EXISTS”. You can include spaces between the
tokens.
If omitted, the open mode defaults to READ & WRITE & CREATE_IF_NEW.

Truncate Include this parameter to remove all records from a database table. This lets you
use dynamic tables with DAL where the tables are created on a fly, records added,
and then deleted.

DBOpen

199

Creating Variable Length Records from Flat Files
When you use DAL database functions, such as DBOpen and DBClose, to write flat files,
the record length is usually fixed and data is padded with spaces to equal the maximum
size of the record. You can, however, specify that no trailing spaces are to be output.

You would typically use this capability to output flat files used to create index information
you will import into a 3rd-party application, such as FileNET.

To specify no trailing spaces, include the following syntax in your DAL script:

DBOPEN(FN_LogFile,"ASCII",".\deflib\filenet.dfd",
"READ&WRITE&TRUNCATE&CREATE_IF_NEW&CLIPSPACES");

CLIPSPACES tells the system to remove any trailing spaces.

Keep in mind that CLIPSPACES only affects flat files. For the rest of the databases, each
column is set separately and no trailing space exists on the whole record.

Example Here is an example:

See also Setting Up Memory Tables on page 50

DBClose on page 192

Database Functions on page 43

Procedure Result Explanation

DBOpen (“APPIDX”,
“ODBC”, ,”READ”)

1 or 0 Will open the table named APPIDX for reading and
associate it with the ODBC handler. Table information
will be queried from the database driver, if possible.

DBOPEN("MYTABLE
","ODBC","D:\deflib\
mytable.dfd","READ&
WRITE&TRUNCATE"
)

This DAL statement removes all rows from the table
named MYTABLE.

200

DBPREPVARS

Use this procedure/function to create the DAL variables associated with a database table
record.

Syntax DBPrepVars (Table, PrefixVariable)

The system optionally returns one (1) on success or zero (0) on failure.

If the PrefixVariable parameter has not been previously defined, it is created. The table
record fields assigned this prefix may be accessed using the dot (.) operator. For example,
assume RECORD is a prefix variable and the table record contains the columns
COMPANY, LOB, and POLICYNUM. The values of the individual fields would be
referenced as RECORD.COMPANY, RECORD.LOB, and RECORD.POLICYNUM,
respectively.

The actual variable names appended with a prefix are taken from the DFD file associated
with the table you specified in the Table parameter or using the column names found in
the table if there is no DFD file associated with the table.

Possible causes for failure to retrieve the first record include:

• The table is not open, or undefined

• Database specific failure

• Database specific failure

Example Here is an example:

See also Database Functions on page 43

Parameter Description

Table Enter the name of an open table.

PrefixVariable PrefixVariable is the name of the DAL variable to associate with the record
fields retrieved by the procedure. The default is Table.

Procedure Result Explanation

DBPrepVars(“APPIDX”
,”RECORD”);

1 or 0 Creates the DAL variables for the APPIDX table. Each
column name is appended with the prefix variable
RECORD.

DBUnloadDFD

201

DBUNLOADDFD
Use this procedure/function to streamline the use of DAL with ODBC and memory
tables by creating DFD files and using only memory tables. You can use the DALRUN
program to create the DFD files based on a DAL script since it is a one-time operation.
You only need to run the script again after table layout changes.

Syntax DBUnloadDFD (TableName, DFDName)

Keep in mind...

The file name you pass to this procedure as the output name of the DFD file must be
appropriate for the platform. For instance, AAA.DFD will not work for z/OS.

Example Here is an example of how you could use this procedure in a DAL script:

#rc = DBOpen("MYTABLE","ODBC");

if #rc = 0

* display error

end

#rc = DBUnloadDFD("MYTABLE","aaa.dfd");

if #rc = 0

* display error

end

This script unloads a DFD file named AAA.DFD which describes the table named
MYTABLE in the current directory.

See also Database Functions on page 43

Parameter Description

TableName Enter the name of the table opened with DBOpen procedure.

DFDName Enter the name of the output file. The system overwrite this file if it exists.

202

DBUPDATE

Use this procedure/function to update the database table record which satisfies the key
criteria.

Syntax DBUpdate (Table, Variable, KeyName1, KeyValue1, KeyName2,
KeyValue2,...)

The system optionally returns one (1) on success or zero (0) on failure.

The actual variable names appended with a prefix are taken from the DFD file associated
with the table you specified in the Table parameter or using the column names found in
the table if there is no DFD file associated with the table.

This procedure supports a variable number of parameters. As many KeyName and
KeyValue pair combinations required to identify the specific keyed record to retrieve and
update may be defined as parameters.

If the record cannot be retrieved and updated, possible causes include:

• There are no records in the table meeting the given criterion

• The column specified in KeyName is not a searchable column

• Database-specific failure

NOTE: Since an ASCII file is not a database, it has no ability to have keys. Therefore, you
cannot use this function if the MODE is set to “ASCII.”

Parameter Description

Table Enter the name of an open table.

Variable Enter the name of the stem variable that contains the new information. This
variable must first be filled by DBFind, DBFirstRec, or DBNextRec, after which
you can modify individual fields before calling DBUpdate.
The default is Table.

KeyName,
KeyValue, ...

Each KeyName is the name of a column to search. For some database handlers,
it may be case-sensitive.
Each KeyValue is the value of the corresponding KeyName for which to search.
For some database handlers, this may be a case-sensitive comparison.
At least one KeyName/KeyValue pair is required.

DBUpdate

203

Example Here is an example:

See also Database Functions on page 43

DBFind on page 194

DBFirstRec on page 196

DBNextRec on page 197

Procedure Result Explanation

DBFirstRec(“APPIDX”,
”RECORD”);

RECORD.RUNDATE
=
DATE();

DBUpdate(“APPIDX”,
”RECORD”,”UNIQUE
_ID”,RECORD.UNIQ
UE_ID)

1 or 0 First retrieve the first record from the APPIDX table into
the variable named RECORD.
Next change the Rundate (assuming that this column is
present in the table) to the current date, and update all
records whose UNIQUE_ID field matches that in the
variable RECORD (assuming that UNIQUE_ID is truly
unique, it will update only the first record in the table).

204

DDTSOURCENAME

Use this function to return the contents of the Source Name field in the DDT file you are
currently processing. This function is only applicable during Documaker Server
processing.

NOTE: As of version 11.0, DDT fields are physically stored inside FAP files.

Syntax DDTSourceName ()

There are no parameters for this function.

Example Here is an example:

MYROOT = RootName(DDTSourceName())

See also Documaker Server Functions on page 58

Dec2Hex

205

DEC2HEX

Use this function to return the hexadecimal equivalent of an integer value.

Syntax Dec2Hex (Value1, Digits)

Example Here is an example:

y = 1000

z = Dec2Hex(y)

Result is z = 3E8

y = 254220

z = Dec2Hex(y,8)

Result is z = 0003E10C

y = -2

z = Dec2Hex(y)

Result is z = FFFFFFFE

See also Hex2Dec on page 272

Bit/Binary Functions on page 42

Parameter Description

Value1 This parameter specifies a integer value to be converted into a hexadecimal string
value. If the parameter is not specified as an integer, it will be converted to an
integer before performing the operation.
The largest hexadecimal value supported is FFFFFFFF. Keep in mind, however,
that hexadecimal values are considered unsigned while integer values can be both
positive and negative.
The largest integer value 2,147,483,647 is 7FFFFFFF when represented using
hexadecimal. HEX values greater than 80000000 represent negative integer
values. Hex value FFFFFFFF represents the integer value -1.

Digits This parameter defaults to zero (0) and means the resulting hexadecimal value will
not have leading zeros.
You can set this parameter from one (1) to eight (8) to control the minimum
number of hexadecimal digits returned in the string. If you set the minimum too
small to represent the value, it will be ignored.

206

DEFORMAT

Use this function to remove formatting from a specified string and return the result.

Syntax DeFormat (String, FieldType, Format)

Some field types do not require format strings to accomplish deformatting. Numeric
fields for example, ignore the format specified when deformatting. Numeric fields retain
the “-” (negative) and “.” (decimal) characters. If these characters were removed during
deformatting a completely different value would result.

Example Here are some examples:

See also Field Formats on page 62

String Functions on page 78

Parameter Description

String Enter a valid string of formatted text. The default is the value of current field text.

FieldType Enter the field type indicator used to format the first parameter. The default is
the value of current field type.

Format Enter the format of the first parameter. This is the field format entered in the
Properties window. The default is the value of current field format.

Function Result Explanation

DeFormat
(“1,234.89”, “n”)

“1234.89” Deformat removes commas but retains decimal points for
numeric fields.

DeFormat
(“ABC.123.DEF”,
“C”, “3,.123.”)

“ABCDEF
”

Deformat removes the custom format characters (.123.)
after the third character, which were previously added to the
string.

DeFormat
(“$$$$$$11,980.00
”, “n”)

11980.00 Deformat removes the “$” characters and commas but
retains decimal points for a numeric field.

DelBlankPages

207

DELBLANKPAGES

Use this procedure to remove blank or filler pages in a form set. For instance, you can use
this rule to remove blank pages reserved for OMR marks when creating PDF files.

Syntax DelBlankPages ()

There are no parameters for this procedure.

Example One way to delete blank pages is by using banner page processing in the GenPrint
program. You can specify a DAL script which runs at the start of each transaction. The
DAL script calls the DelBlankPages procedure.

This will cause blank pages to be removed from each transaction. To do this, you need
these INI settings:

< Printer >

EnableTransBanner = True

TransBannerBeginScript = PreBatch

< DALLibraries >

LIB = BANNER

Here is an example of the BANNER.DAL file:

BeginSub PreBatch

DelBlankPages()

EndSub

NOTE: You can also remove blank or filler pages using custom code or by using the
DPRDelBlankPages procedure, which is available with Docupresentment. See
Using Documaker Bridge for more information on the DPRDelBlankPages
function.

The API to call from custom code is as follows:

DWORD _VMMAPI FAPDelBlankPages(

 VMMHANDLE objectH,) /* formset or form handle */

See also the Documaker Server System Reference for information on using
banner processing.

See also AddBlankPages on page 115

Page Functions on page 75

SuppressBanner on page 400

Miscellaneous Functions on page 73

Creating a DAL Script Library on page 5

208

DELFIELD

Use this procedure/function to delete a field from a section. The system only deletes the
field if found and if it is not the current field.

Syntax DelField (Field, Section, Form, Group)

The system returns one (1) if it finds and deletes the field or zero (0) if it does not.

NOTE: The DelField function can not be used in a script called by these AFGJOB rules:
PreTransDAL and PostTransDAL.

Example Lets assume you have the following forms in your form set; Information and Multi-section in
the group named DAL Test Company.

The form named Information is comprised of two sections; Part1 and Part2. Part1 has these
fields: abc1, abc2, and abc3. Part2 has these fields: abc3 and abc4.

The form named Multi-section is comprised of three sections: Section1, Section2, and
Section3. Section1 has objects with these field names: a/n, date, yes/no, and multi-line.

Section2 has the same objects with the same field names as Section1.

Section3 has following objects: graphic, box, and input value.

The DAL script which is executed is on a field named Test on Part1 of Information.

Here are some examples:

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

Procedure Result Explanation

Return(DelField (
"abc3"));

1 Abc3 on Information/Part1 is deleted because the section, field,
and group parameters were omitted specified. The system
defaulted to the current section, form, and group.

Return(DelField (
"abc3", "part2"));

1 Abc3 on Information/Part2 is deleted because you specified
Part2 and the form defaulted to the current form, Information.
Note that Abc3 will still exist on Information/Part1.

Return(DelField (
"test”));

0 Test is not deleted because it is the current field.

DelField

209

See also Field Functions on page 61

Locating Fields on page 64

DelLogo on page 213

Return(DelField (
"a/n”));

0 The field a/n is not deleted because it is not on Information/
Part1.

Return(DelField (
"a/n", “Section1”
));

0 The field a/n is not deleted because Section1 is not a field on
the current form (Information).

Return(DelField (
"a/n”, "Section1",
“Multi-section”));

1 The field a/n on Multi-section/Section1 is deleted because this
field is on the specified form/section.

Return(DelField (
"a/n”, , “Multi-
section”));

1 The field a/n on Multi-section/Section1 is deleted because field is
on the specified form and the section parameter defaults to the
first section on the form.
Field a/n on Multi-section/Section1 will still exist.
If you immediately execute the script again, the field a/n on
Image2 would be deleted.

Return(DelField (
"a/n”, , , “DAL
Test Company”));

1 The field a/n on Multi-section/Section1 is deleted because it was
is the first field in the group, DAL Test Company.
Field a/n on Multi-section/Section2 will still exist.
If you immediately execute the script again, the field a/n on
Image2 would be deleted.

Return(DelField (
"box”, “Section3”,
“Multi-section”));

0 The field Box is not deleted because you can only delete
variable fields. You can not delete objects such as boxes,
charts, lines, text labels, text areas, notes, and so on. You can,
however, use the DelLogo function to delete graphics.

Procedure Result Explanation

210

DELFORM

Use this procedure/function to remove a form from the document.

Syntax DelForm (Form, Group)

The system optionally returns one (1) on success or zero (0) on failure.

Remove the specified form from the document set. It is not permitted to remove the form
executing the script—the current form.

NOTE: Removing a form means that all data associated with the form will be lost.

Example Here are some examples:

See also Section Functions on page 77

Parameter Description

Form Enter the name of the form you want to remove.

Group Enter the name of the group which contains the form you want to remove. The
default is the current group.

Procedure Result Explanation

DelForm(“FORM”) 1 or 0 Assuming FORM is located in the current group and is not
the current form, it will be deleted.

DelForm (“FORM\3”,
“GRP”)

1 or 0 Locate the third occurrence of FORM within the GRP and
delete that form.

DelImage

211

DELIMAGE

Use this procedure/function to remove a section from a form. You can use the Paginate
parameter to specify whether form pagination should occur after the section is deleted.

Syntax DelImage (Section, Form, Group, Paginate)

The system optionally returns one (1) on success or zero (0) on failure.

This procedure removes the specified section from the form. It cannot delete the current
section. You can delete any section on the current form, as long as it is not the current
section.

If the deleted section is the only section on that page, the system also removes the page
from the form. If other sections occur on that page, space occupied by the deleted section
is left blank.

NOTE: Removing a section means that all data associated with that section will be lost.

This procedure does not update the displayed form. Use the Refresh procedure to update
the display.

Parameter Description

Section Enter the name of the section.

Form Enter the name of a form in the form set. The default is the current form.

Group Enter the name of a group to contain the specified form. The default is the
current group.

Paginate (Optional) This parameter follows the Group parameter. If you enter anything
other than a zero (0), it tells the system that you want form pagination to occur
upon the successful removal of the section.
If you omit this parameter or enter zero (0), the section is deleted, but no other
sections are moved to occupy the space left vacant. Subsequent form re-
pagination and the application of section origins may change the layout of the
form.
Here is an example:

DelImage("mySection", , , 1)

This example omits the Form and Group parameters, but does include the
Paginate parameter.
Note: If you enter zero (0) or omit this parameter, the function works as it prior
to version 11.2.
The default is zero (0).

212

Example Here are some examples:

See also AddImage on page 122

PaginateForm on page 330

Section Functions on page 77

Procedure Result Explanation

DelImage(“SEC”) 1 or 0 Delete the specified section from the current form. This
assumes that the named section is not the current section.

DelImage(“SEC\3”,
,”GRP”)

1 or 0 Locate the third occurrence of SEC in the specified GRP. If
this is not the current section, delete the section.

DelLogo

213

DELLOGO

Use this procedure/function to delete a bitmap graphic (LOG) from a form in the current
form set.

Syntax DelLogo (Graphic, Section, Form, Group)

This procedure deletes the specified graphic from the section or form. The system
optionally returns one (1) on success or zero (0) on failure.

NOTE: Use the Refresh procedure after you use the DelLogo procedure.

Example Here are some examples:

See also ChangeLogo on page 162

HaveLogo on page 269

InlineLogo on page 279

RenameLogo on page 356

Logo on page 300

Refresh on page 354

Graphics Functions on page 71

Parameter Description

Graphic Enter the name of the graphic to be deleted from a section or form. Graphic
names are assigned in Studio or Image Editor.

Section Enter the name of a section that contains the specified graphic. The default is the
current section.

Form Enter the name of a form that contains the section. The default is the current
form.

Group Enter the name of a group to use to locate the specified object. The default is the
current group.

Procedure Result Explanation

DelLogo(“LOG1”) 1 or 0 Deletes LOG1 on the current section, form, group.

DelLogo(“LOG1”,
“IMH1\3”,”UpRate”)

1 or 0 Deletes LOG1 on the 3rd occurrence of the named
section IMH1 on the form UpRate in the default group.

214

DELWIP
Use this procedure/function to delete the work-in-process and its associated data.

Syntax DelWIP ()

There are no parameters for this procedure.

This procedure removes the current work-in-process (form set) information from the
WIP.DFD file, deletes the associated data files (POL and DAT, if they exist) from the
WIP subdirectory, and writes comments to the AFELOG file to note the work-in-process
(form set) was deleted.

This procedure returns success (1) if no error occurred during the complete process,
otherwise a failure (0). This procedure only works with the Entry module, it will not work
in the data entry mode of Studio or Image Editor.

Example Here is an example:

See also WIP Functions on page 88

Documaker Supervisor Guide

Documaker User Guide

Procedure Result Explanation

DelWIP () Deletes the work-in-process. Deletes information associated with the work-
in-process and updates the AFELOG file.

DestroyList

215

DESTROYLIST

Use this function to destroy the XML tree created by the LoadXMLList function.

Syntax DestroyList (%xXMLTree)

The system returns one (1) for success or zero (0) for failure. The returned DAL variable
is of the integer type.

Example For an example, see the DAL script in Scenario 2 on page 90.

See also XML Functions on page 89

LoadXMLList on page 299

Parameter Description

%xXMLTree Enter a list type DAL variable that passes the XML tree handle.

216

DEVICENAME

Use this function to return the current output device file name, such as the name of the
current print stream output file.

Syntax DeviceName ()

There are no parameters for this function.

Example This example shows an example post-transaction banner DAL script:

IF TotalSheets() > 16000

#COUNTER += 1

CurFile = DeviceName()

Drive = FileDrive(CurFile)

Path = FilePath(CurFile)

Ext = FileExt(CurFile)

RecipBatch = RecipBatch()

NewFile = FullFileName(Drive,Path,RecipBatch & #COUNTER,Ext)

SetDeviceName(NewFile)

BreakBatch()

END

NOTE: See FileDrive, FileExt, FileName, FilePath, and FullFileName for information on
using DAL functions to manipulate file names.

Keep in mind...

• These print drivers are supported: PCL5, PCL6, PST, MET, AFP, PDF, HTML, and
RTF. These print drivers are not supported: EPT, MDR, and GDI.

• All platforms are supported, but note that while UniqueString is supported on z/OS,
z/OS does not support PDF or long file names, so the PDF example does not apply
to z/OS.

• Both multi- and single-step processing are supported.

The only DAL function actually involved in splitting the print stream is BreakBatch. The
others make it easier to implement this functionality. For example, since you need to name
the new print stream, you use the SetDeviceName procedure. To find the name of the
current device, you use the DeviceName function. If you need to create unique file names,
you can use the UniqueString function.

NOTE: While you can call all of these DAL functions in Documaker Server or
Documaker Workstation, the BreakBatch and SetDeviceName functions are not
applicable in Documaker Workstation because it does not use the batch printing
engine. DeviceName and UniqueString are applicable to both Documaker
Workstation and Documaker Server.

See also Printer and Recipient Functions on page 76

BreakBatch on page 157

DeviceName

217

SetDeviceName on page 370

UniqueString on page 416

218

DIFFDATE

Use this function to determine the number of days difference between two dates and
enter that value.

Syntax DiffDate (Date1, Format1, Date2, Format2)

The system returns a positive value if the first date is earlier than the second date. The
result is negative if the first date is later than the second date. Use the DiffDate function
when the chronological order of the dates is important.

Example Here are some examples:

(Assume the current date is 07/01/95.)

See also Date Functions on page 51

Date Formats on page 52

Parameter Description

Date1 Enter a date string. The system assumes this date string is in the format specified
by the Format1 parameter. The default is the current date.

Format1 Enter a date format string that describes the Date1 parameter. The default is date
format 1 (MM/DD?YY).

Date2 Enter a date string. The system assumes this date string is in the format specified
by the Format2 parameter. The default is the current date.

Format2 Enter a date format string that describes the Date2 parameter. The default is date
format 1.

Function Result Explanation

DiffDate (“7/
15/95”)

-14 The second parameter defaults to the current date. The resulting
difference in days is -14, because date1 is later in time than the
current date.

DiffDate (“06/
01/95”, “1”)

30 Note that the result is positive because the first date is earlier than
the current date.

DiffDate
(“October 31,
1961”, “4”,
“10/31/95”,
“1”)

12418 Note that two different date formats are used.

DiffDays

219

DIFFDAYS

Use this function to determine the absolute number of days difference between two dates
and return that value.

Syntax DiffDays (Date1, Format1, Date2, Format2)

The system always returns a positive number regardless of which date string parameter is
later in time. The result is always given in number of days regardless of the number of
months and/or years that are included.

Example Here are some examples:

(Assume the current date is 07/01/95.)

See also Date Functions on page 51

Date Formats on page 52

Using INI Options on page 8

Parameter Description

Date1 Enter a date string. The system assumes this date string is in the format
specified by the Format1 parameter. The default is the current date.

Format1 Enter a date format string that describes the Date1 parameter. The default is
date format 1 (MM/DD?YY).

Date2 Enter a date string. The system assumes this date string is in the format
specified by the Format2 parameter. The default is the current date.

Format2 Enter a date format string that describes the Date2 parameter. The default is
date format 1.

Function Result Explanation

DiffDays (“7/15/95”) 14 The second parameter defaults to the current date. The
resulting difference in days is 14.

DiffDays (“06/01 95”,
“1”)

30 The second parameter defaults to the current date.

DiffDays (“October
31, 1961”, “4”, “10/
31/95”, “1”)

12418 Note that two different date formats are used and that the
result includes several years worth of days.

220

DIFFHOURS

Use this function to calculate the absolute time difference in hours between two times.
The system returns an integer value, rounded down to the number of whole hours.

Syntax DiffHours (Time1, Format1, Time2, Format2)

The difference between two times is always positive. It does not matter which time string
is larger.

Example Here are some examples:

(Assume the current time is 10:30:10 AM)

See also Time Formats on page 80

Parameter Description

Time1 Enter a time string. The system assumes this time string is in the format specified
by the Format1 parameter. The default is the current time.

Format1 Enter a time format string that describes the Time1 parameter. The default is time
format 1 (HH:MM:SS).

Time2 Enter a time string. The system assumes this time string is in the format specified
by the Format2 parameter. The default is the current time.

Format2 Enter a time format string that describes the Time2 parameter. The default is time
format 1.

Function Result Explanation

Return(DiffHours
(“09:30:00 AM”,2))

1 The given time is in format 2. The difference in hours between
9:30:00 AM and the current time is one hour.

Return(DiffHours
(“10:30:00 AM”,2))

0 The given time is in format 2. The difference in hours between
10:30:00 AM and the current time is zero.

DiffMinutes

221

DIFFMINUTES

Use this function to calculate the absolute time difference in minutes between two times.
The system returns an integer value.

Syntax DiffMinutes (Time1, Format1, Time2, Format2)

The difference between two times is always positive. You can enter the Time parameters
in any order. It does not matter which Time parameter is earlier.

Example Here is an example:

(Assume the current time is 4:04:34 pm.)

See also Time Formats on page 80

Parameter Description

Time1 Enter a time string. The system assumes this time string is in the format specified
by the Format1 parameter. The default is the current time.

Format1 Enter a time format string that describes the Time1 parameter. The default is
time format 1 (HH:MM:SS).

Time2 Enter a time string. The system assumes this time string is in the format specified
by the Format2 parameter. The default is the current time.

Format2 Enter a time format string that describes the Time2 parameter. The default is
time format 1.

Function Result Explanation

DiffMinutes
(“2:04:34PM”, 2,)

120 The second parameter defaults to the current time. The
resulting difference in minutes between the given time and the
current time is a total of 120 minutes.

222

DIFFMONTHS

Use this function to determine the number of months difference between two dates and
return that value.

Syntax DiffMonths (Date1, Format1, Date2, Format2)

The system calculates the number of complete months between given dates. For example,
from 2/10 to 3/10 is considered one month, and from 2/10 to 3/15 is also considered
one month.

The system always returns a positive number regardless of which date string parameter is
later in time. The result is always given in number of months regardless of the number of
years included.

Example Here are some examples:

(Assume the current date is 07/01/95.)

See also Date Functions on page 51

Date Formats on page 52

Using INI Options on page 8

Parameter Description

Date1 Enter a date string. The system assumes this date string is in the format specified
by the Format1 parameter. The default is the current date.

Format1 Enter a date format string that describes the Date1 parameter. The default is date
format 1 (MM/DD?YY).

Date2 Enter a date string. The system assumes this date string is in the format specified
by the Format2 parameter. The default is the current date.

Format2 Enter a date format string that describes the Date2 parameter. The default is date
format 1.

Function Result Explanation

DiffMonths
(“7/15/95”)

0 The second parameter defaults to the current date. Since the value
does not equal an entire month the result is 0.

DiffMonths
(“05/01/95”,
“1”)

2 The second parameter defaults to the current date.

DiffMonths
(“October 31,
1961”, “4”,
“10/31/95”,
“1”)

408 Note that the result includes several years worth of months. In
addition, two different date formats are used.

DiffSeconds

223

DIFFSECONDS

Use this function to calculate the absolute time difference in seconds between two times.
The system returns an integer value.

Syntax DiffSeconds (Time1, Format1, Time2, Format2)

The difference between two times is always positive. It does not matter which time string
is larger.

Example Here is an example:

(Assume the current time is 4:04:34 pm.)

See also Time Formats on page 80

Parameter Description

Time1 Enter a time string. The system assumes this time string is in the format specified
by the Format1 parameter. The default is the current time.

Format1 Enter a time format string that describes the Time1 parameter. The default is time
format 1 (HH:MM:SS).

Time2 Enter a time string. The system assumes this time string is in the format specified
by the Format2 parameter. The default is the current time.

Format2 Enter a time format string that describes the Time2 parameter. The default is time
format 1.

Function Result Explanation

DiffSeconds
(“2:04:35PM”, 2,)

7199 The second parameter defaults to the current time. The
resulting difference in seconds between the given time and the
current time is a total of 7199 seconds.

224

DIFFTIME

Use this function to calculate the difference in time between two times. The system
returns a signed (positive or negative) value, given in seconds.

Syntax DiffTime (Time1, Format1, Time2, Format2)

The system returns a positive value if Time1 is earlier than Time2. The result is negative
if Time2 is earlier than Time1.

Example Here is an example:

(Assume the current time is 4:06:50 pm.)

See also Time Formats on page 80

Parameter Description

Time1 Enter a time string. The system assumes this time string is in the format specified
by the Format1 parameter. The default is the current time.

Format1 Enter a time format string that describes the Time1 parameter. The default is
time format 1 (HH:MM:SS).

Time2 Enter a time string. The system assumes this time string is in the format specified
by the Format2 parameter. The default is the current time.

Format2 Enter a time format string that describes the Time2 parameter. The default is
time format 1.

Function Result Explanation

DiffTime
(“4:06:40PM”, 2)

+10 The second parameter defaults to the current time. The
resulting difference in time is +10 seconds.

DiffYears

225

DIFFYEARS

Use this function to determine the number of years difference between two dates and
return that value.

Syntax DiffYears (Date1, Format1, Date2, Format2)

The system calculates the number of complete years between the given dates. For
example, from 2/10/08 to 2/10/09 is considered one year, while 3/1/08 to 2/29/09 is
considered zero years.

The system always returns a positive number, regardless of which date string parameter
occurs later.

NOTE: When calculating leap years, February 28th and 29th are considered equal, since
both represent the last day of February. For example, February 29, 2008 to
February 28, 2009, is considered one year.

Example Here are some examples (assume the current date is 07/01/09):

01/31/2008 to 01/30/2009 = zero years difference (it will not be a year until 01/31/2009
as the year 2008 is a leap year)

Parameter Description

Date1 Enter a date string. The system assumes this date string is in the format specified
by the Format1 parameter. The default is the current date.

Format1 Enter a date format string that describes the Date1 parameter. The default is date
format 1 (MM/DD?YY).

Date2 Enter a date string. The system assumes this date string is in the format specified
by the Format2 parameter. The default is the current date.

Format2 Enter a date format string that describes the Date2 parameter. The default is date
format 1.

Function Result Explanation

DiffYears (“7/15/
09”)

0 The second parameter defaults to the current date. Since the
value is not an entire year, the result is zero (0).

DiffYears (“01/31/
2009”, “4”, “01/
30/2009”, “1”)

0 The result will not become one (1) until January 31, 2009.

DiffYears
(“01/010/05”, “1”)

4 The second parameter defaults to the current date.

DiffYears
(“October 31,
1975”, “4”, “10/
31/09”, “1”)

34 Note that the result includes numerous years. In addition, two
different date formats are used.

226

See also Date Functions on page 51

Date Formats on page 52

Using INI Options on page 8

DupForm

227

DUPFORM

Use this procedure/function to duplicate a form. No data is duplicated, except global data
that propagates in naturally.

NOTE: For the system to be able to duplicate a form, you must first check the Multicopy
option in that form’s Properties window.

Syntax DupForm (Form, Group)

This procedure locates the named form and duplicates it if the form flags indicate that it
can be duplicated. The system inserts the duplicated form immediately after the original.
You cannot specify another insertion point.

If the procedure is successful in duplicating the form, it returns a non-zero value,
otherwise zero (0) is returned. This procedure can fail for these reasons:

• Could not locate the form or form group specified

• The Multicopy option is not checked for the form

• Lack of available memory

You can only use this procedure in scripts hosted by AFEMain or other Entry-related
applications.

Syntax AddForm on page 119

AddForm_Propagate on page 120

CopyForm on page 173

WIP Functions on page 88

Parameter Description

Form Enter the name of the form you want to duplicate

Group (Optional) Enter the name of the group if the form is not in the current group.

228

EMBEDLOGO

Use this procedure/function to save graphic data, including full color data, inside the
NAFILE.DAT file. This lets you capture and archive form set specific section data such
as pictures, scans, or signatures along with the form set.

Syntax EmbedLogo (Graphic, Section, Form, Group)

Execute this DAL procedure for each graphic on the form or section. This procedure sets
the embedded graphic flag in the graphic bitmap structure. Documaker Workstation and
Documaker Server check for this flag when they write to the NAFILE.DAT file.

If the flag is not set, the graphic data is not written to the NAFILE.DAT file. Place this
procedure in the data field of the IF or DAL rule when used with Documaker Server.

This procedure returns success (1) if no error occurred during the complete process,
otherwise a failure (0).

NOTE: If the LoadCordFAP in the RunMode control group is set to No; then
Documaker Server execution requires you to include the section level rule,
CheckImageLoaded.

Example Here is an example:

See also Section Functions on page 77

Parameter Description

Graphic Enter the name of the graphic you want to embed.

Section Enter the name of a section that contains the graphic. If the current section does
not contain the graphic being referenced this parameter is required to locate the
section; otherwise this parameter is optional.

Form Enter the name of the form that contains the graphic you specified. If the
current form does not contain the section for the graphic being referenced this
parameter is required to locate the graphic; otherwise, this parameter is optional.

Group Enter the name of the form group that contains the graphic you specified. If the
current form is not in the form group that contains the graphic being referenced
this parameter is required to locate the graphic; otherwise, this parameter is
optional.

Procedure Result Explanation

rc =
EmbedLogo("JaneDoe");

1 The embedded graphic flag in the JaneDoe
bitmap structure will be set to On.

Exists

229

EXISTS

Use this function to determine if a DAL symbolic variable exists. This can be useful
because referencing a variable that does not exist will cause a runtime syntax error. You
can use this function to verify that DAL variables which are created external to your script
have been created before you try to reference them.

Syntax Exists (Symbol)

The system returns (1) if the variable exists, otherwise it returns zero (0).

Example Here is an example. Assume the string variables 'tbl_1', 'tbl_2', 'tbl_3', and 'tbl_4'
respectively contain: 'Ford', 'Chev', 'Olds', and 'VW'.

If Exists("tbl_" & #line) Then

Return (GetValue("tbl_" & #line))

Else

Return (" ")

End

In this example, if #line is set to 3, the string 'Olds' is returned. If #line is set to 5, a 'blank'
is returned.

See also GetValue on page 260

Miscellaneous Functions on page 73

Parameter Description

Symbol Specify the name of a DAL symbolic variable. This can be from an expression
or from another string variable.

230

FIELDFORMAT

Use this function to return the format string associated with the field’s type.

Syntax FieldFormat (Field, Section, Form, Group)

Certain field types (like date and numeric data types) will sometimes have additional
format information specified. Typically, a user will not be concerned with this type since
the fields are designed appropriately for data entry. However, a script may be written that
does not assume the field’s format and must query the information to be accurate.

The value returned from this function is a string. If a field cannot be located matching the
specified information, an empty string will be returned.

Example Here are some examples:

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

Parameter Description

Field Enter the name of a field. The default is the name of the current field.

Section Enter the name of the section that contains the field you specified in the Field
parameter. The default is the current section.

Form Enter the name of the form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Function Result Explanation

Return(FieldF
ormat (
“First”))

ZZ9.9
9

Locate the field and return its format. This example assumes that the
field was a numeric type with a format of ZZ9.99.

Return(FieldF
ormat (
“Second”))

This example returns an empty string. This either means the field
has no format string or could not be located.

Return(FieldF
ormat (
“Third”, ,
“FRM”))

1/4 Locate the form specified within the current form group. Then
locate Third anywhere on that form. If found, the field’s format is
returned which may be an empty string. This example returned a
format “1/4” which is a particular date format.

FieldName

231

FIELDNAME

Use this function to return the name of a field relative to another field.

Syntax FieldName (Count, Field, Section, Form, Group)

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

At first glance, FieldName may seem like an odd function. After all, one of its parameters
is a field name. This function first locates the specified field. If you omit the FieldName
parameter, the system uses the current field. Then the count is used to move to another
field on the section.

A positive or negative number can be used for the count parameter. A positive count
moves forward from the located field. A negative count moves backward from the located
field. Forward and backward refer to the order that the field appears in the section's edit
list, not necessarily to physical position on the section. All fields are included in the search
regardless of whether they are editable or not.

If the system cannot find a field that matches the information you specified, it returns an
empty string.

Example Here are some examples: (Assume the section has three fields named First, Second, and
Third, which occur in that order.)

Parameter Description

Count Enter positive or negative number. The system uses your entry to move beyond
the field you specify. The default is zero (0).

Field Enter the name of a field. The default is the current section.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

Function Result Explanation

Return(Field
Name (1,
“Second”))

Third Locate the field named Second and then move to the next field.

232

See also Name Functions on page 74

Field Formats on page 62

Locating Fields on page 64

Return(Field
Name (-1,
“Second”))

First Locate the field named Second and then move to the previous field.

Return(Field
Name (8,
“MyField”, ,
“FRM”))

a name
or ““

Locate the form specified within the current form group. Then locate
MyField anywhere on that form. If found, move forward eight more
fields. If a field matches this criteria, its name will be returned,
otherwise an empty string is returned.

Function Result Explanation

FieldPrompt

233

FIELDPROMPT

Use this function to return the text of the prompt for a field.

Syntax FieldPrompt (Field, Section, Form, Group)

The system returns a string unless it cannot find a field that matches your criteria. If the
system cannot find a field that matches the criteria you specified, it returns an empty
string.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

Example Here are some examples:

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

Function Result Explanation

Return(FieldPrompt(
“Name”))

Name Locates the field on the current section and returns its
prompt.

Return(FieldPrompt(
“Address1”))

Street
Address

Locates the field on the current section and returns its
prompt.

234

FIELDRULE

Use this procedure/function when you need to execute a field-level rule in a DAL script.
See the Rules Reference for more information on field-level rules.

NOTE: The FieldRule procedure requires a section to be able to process. It cannot be
used in an external DAL script called by the SETRCPTB.DAT file, a custom rule,
the RecipIf rule, or placed in the SETRCPTB.DAT custom rule parameters field.

Syntax FieldRule ()

There are no parameters for this procedure.

This procedure lets you execute field-level rules from within a DAL script. The DAL
script is called by one of these Documaker processing rules: DAL or IF. This procedure
requires the same number of parameters as are required for a field level rule. While not all
fields must contain data, you must include the correct number of delimiters.

You can use overflow variables if the called field level rule supports overflow. Generally,
the IF rule does not support overflow but it can be supported using the FieldRule
procedure. See the examples for this procedure for more information.

NOTE: All semicolons in a field-level rule must be replaced with two colons (::). If any of
your DDT parameters contain quotation marks (“), use instead apostrophes (')
to send in the DDT information. Here is an example:

FIELDRULE('::0::1::FIELD_NAME::45::4::FIELD_NAME::0::4::::move_it::::!
/field1/field2[field3="Yes"]::N::N::N::N::::::::')

Here is a list of parameters for this procedure with sample entries. The entries illustrate
the following example. An asterisk indicates the parameter is generally required,
depending on the rule you are using.

Parameter Description Example

File number * (required by TblLkUp) 0

Record number * (required for overflow) 1

Source field name * (required by TblText) Town_State

Source field offset * 55

Source field length * 9

Destination field name * Rec-Town_State

Destination field offset * 0

Destination field length * 25

FieldRule

235

Example For example, suppose you want the transaction sent to WIP when the record
PRODAREC, at offset 11, contains a string of four characters (“0000”) starting at
position 20. And, you always want the system to get 25 characters of data from
PRODAREC, starting at position 65. Furthermore, you want the system to remove any
trailing spaces.

For this scenario, you would use the FieldRule procedure to call the KickToWIP field
level rule and use the standard IF rule to do the rest. The script for this example would
look like this:

::A={11,PRODAREC 20,4}::B={11,PRODAREC 65,25}:: IF(A='0000')::

FieldRule(“::0::1::Town_State::55:9::;Rec-Town_State::0::25::::

KickToWip::::N::N::Y::N::3001::5602::11010::”)::Else::B=Trim(B)::

Return("^" & B & "^")::End::Return("^" & 1 & "^");

Here’s another example. Suppose you want to move multiple lines of text from N number
of specific external extract records to the output buffer when the HEADERREC record
(at offset 11) contains an F in position 1.

For this scenario, you could use the FieldRule procedure to call the MoveExt rule and use
the standard IF rule to do the rest. The script for this example would look like this:

CON={11,HEADERREC 1,1}:: A=FIELDRULE("::0::1::E::45::4::PREM/OPS
RATE1::0::4::::moveext::@GETRECSUSED,QCPVR5,OVSYM1/
11,CLSSCDREC::N::N::N::N::::::::")::if(CON='F')::return("^" & A &
"^")::end ;N;N;Y;N;12461;2119;16010

See also Documaker Server Functions on page 58

Field Formats on page 62

Locating Fields on page 64

Format mask * blank

Field rule name * KickToWip

Rule parameters * (also called data) blank

Flag1 (also called not required) N

Flag2 (also called host required) N

Flag3 (also called operator required) Y

Flag4 (also called either required) N

X position 3001

Y position 5602

Font ID 11010

Parameter Description Example

236

FIELDTYPE

Use this function to return the data type information associated with the section field.

Syntax FieldType (Field, Section, Form, Group)

Typically, a field type will be a token of one or two characters used to control the display
of the variable data in the field. Typically, a user will not be concerned with this value,
since the form should be designed appropriately for data entry. However, a script may be
written that does not assume the field’s type and must query the information to be
accurate.

The value returned from this function is a string. If a field cannot be located matching the
specified information, an empty string will be returned.

Example Here are some examples:

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Function Result Explanation

Return(FieldTy
pe(“First”))

n Locate the field and return its type. This example assumes that the
field was a numeric type.

Return(FieldTy
pe(“Second”))

k This example returns K which corresponds to the International
Alphanumeric data type.

Return(FieldTy
pe(“MyField”, ,
“FRM”))

m Locate the form specified within the current form group. Then
locate MyField anywhere on that form. If found, the field’s type is
returned. In this example, M corresponds with the X or Space field
type.

FieldX

237

FIELDX
Use this function to return the X coordinate of a variable field object.

Syntax FieldX (Field, Section, Form, Group)

You can use this function and the FieldY function to get the X and Y coordinates of a
field object. Coordinates are stored in FAP units — 2400 units per inch. This means that
an object located at (2400, 2400) occurs one inch from the top and one inch from the left.

Example Here are some examples:

(Assume the field named MyField is located at X coordinate 1250.)

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

FieldY on page 238

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of the section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Function Result Explanation

Return(FieldX()) 1250 Returns the current field’s X coordinate.

Return(FieldX
(“MyField”))

1250 Returns the field’s X coordinate if the field is located on the
current section.

Return(FieldX(“My
Field”, “IMG\2”,
,”GRP”))

1250 Returns the X coordinate of MyField located on the second
occurrence of IMG within the specified form set group.

238

FIELDY
Use this function to return the Y coordinate of a variable field object.

Syntax FieldY (Field, Section, Form, Group)

You can use this function and the FieldX function to get the X and Y coordinates of a
field object. Coordinates are stored in FAP units — 2400 units per inch. This means that
an object located at (2400, 2400) occurs one inch from the top and one inch from the left.

Example Here are some examples:

(Assume the field named MyField is located at Y coordinate 6020.)

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

FieldX on page 237

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of the section that contains the field you specified. The default
is the current section.

Form Enter the name of the form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Function Result Explanation

Return(FieldY()) 6020 Return the current field’s Y coordinate.

Return(FieldY
(“MyField”))

6020 Returns the field’s Y coordinate if located on the current
section.

Return(FieldY(“My
Field”, , “FRM”))

6020 Returns the first occurrence of MyField on the specified form.

FileDrive

239

FILEDRIVE

Use this function to get the drive component of a file name.

Syntax FileDrive (FullFileName)

The system returns a string that contains the drive component of that file name.

Example Here is an example:

MYDRIVE = FileDrive("d:\mypath\myfile.ext")

In this example, MYDRIVE would contain:

“d:”

See also FilePath on page 242

FileName on page 241

FileExt on page 240

FullFileName on page 248

File and Path Functions on page 68

Parameter Description

FullFileName Enter a string that contains a fully qualified file name, such as:

“d:\mypath\myfile.ext”

240

FILEEXT

Use this function to get the extension component of a file name.

Syntax FileExt (FullFileName)

The system returns a string that contains the extension component of that file name.

Example Here is an example:

MYEXT = FileExt("d:\mypath\myfile.ext")

In this example MYEXT would contain:

“.ext”

See also File and Path Functions on page 68

FullFileName on page 248

FileDrive on page 239

FilePath on page 242

FileName on page 241

Parameter Description

FullFileName Enter a string that contains a fully qualified file name, such as:

“d:\mypath\myfile.ext”

FileName

241

FILENAME

Use this function to get the name component of a file name.

Syntax FileName (FullFileName)

The system returns a string that contains the name component of that file name.

Example Here is an example:

MYNAME = FileName("d:\mypath\myfile.ext")

In this example, MYNAME would contain:

“myfile”

See also File and Path Functions on page 68

FullFileName on page 248

FileDrive on page 239

FilePath on page 242

FileExt on page 240

Parameter Description

FullFileName Enter a string that contains a fully qualified file name, such as:

“d:\mypath\myfile.ext”

242

FILEPATH

Use this function to get the path component of a file name.

Syntax FilePath (FullFileName)

The system returns a string that contains the path component of that file name.

Example Here is an example:

MYPATH = FilePath("d:\mypath\myfile.ext")

In this example, MYPATH would contain:

“\mypath\”

See also File and Path Functions on page 68

FullFileName on page 248

FileDrive on page 239

FileExt on page 240

FileName on page 241

Parameter Description

FullFileName Enter a string that contains a fully qualified file name, such as:

“d:\mypath\myfile.ext”

Find

243

FIND

Use this function to return the position of a substring within another string.

Syntax Find (String, Substring, Integer)

The system returns a zero (0) if the substring is not found in the search string, otherwise
it returns the position of the substring. The search is not case sensitive.

Example Here are some examples:

(Assume the current field contains the text Insured's responsibility.)

See also String Functions on page 78

Parameter Description

String Enter a valid string. The default is the value of the current field.

Substring A string of one or more characters that will be located in parameter one.

Integer Choose from these options:
0 - a left to right search
1 - a right to left search
Both search options return a position relative to the first (left-hand) character of
the string parameter.
The default is zero (0).

Function Result Explanation

Return(Find (,
“RESP”))

11 Defaults to the current field and finds the first occurrence of
“RESP” at position 11. Note that the search is not case
sensitive.

Return(Find (,
“usual and
customary”))

0 The term “usual and customary” is not found in the current
field.

Return(Find
(“Complete all the
blanks.”, “all”))

10 Searching left to right, “all” was first found at position 10.

Return(Find
(“Complete all the
blanks.”, “all”, 1))

10 Searching right to left, “all” was first found at position 10.

244

FORMAT

Use this function to format a string field and return the result.

Syntax Format (String, FieldType, Format)

The system applies formatting to a given string. Some field types do not require format
strings to accomplish formatting. For example, the X field type indicator automatically
uppercases all letters in a string without requiring a format.

NOTE: The variable field must be the same length as the format mask.

Example Here are some examples:

See also Field Formats on page 62

String Functions on page 78

Parameter Description

String Enter a valid string of non-formatted text. The default is the current field.

FieldType Enter the field type indicator you want the system to use to format the first
parameter. The default is the current field type.

Format Enter the field format you want the system to use to format the first parameter.
The default is the current field format.

Function Result Explanation

Return(Format
(“1234.89”, “n”,
“zzz,zzz.99”))

1,234.89 Formats the field as numeric, by adding a comma and using
two decimal positions, as specified in the Format parameter.

Return(Format
(“ABCDEF”,
“C”, “3,.123.”))

ABC.123.
DEF

Custom formats the field by adding .123. after the third
input character.

Return(Format
(“222334444”,
“n”, “999-99-
9999”))

222-33-4444 Formats the field as a numeric, by adding hyphens as
specified in the Format parameter.

FormDesc

245

FORMDESC

Use this function to retrieve the description specified in the FORM.DAT file for a specific
form.

Syntax FormDesc (Count, StartForm, Group)

The system lets you get the description specified in the FORM.DAT file for the specified
form, relative to a known form. If you omit all parameters, the system returns the
description of the current form.

The Count parameter tells the system to move a number of forms forwards or backwards
from the specified form before it returns the form description.

If the system cannot locate the starting form or the Count parameter tells the system to
move beyond the number of forms contained in the group, the system returns an empty
string.

Example Here are some examples:

Assume there are three forms: FORMA, FORMB, and FORMC. Also assume the current
form is FORMB and its description is Fire Form # 2345.

See also FormName on page 246

ImageName on page 274

Name Functions on page 74

DAL Script Examples on page 35

Parameter Description

Count An index reference to locate a form before or after the specified form. To move
backwards, enter a negative number. The default is zero (0).

StartForm Enter the name of a form from which to start the search. The default is the
current form.

Group Enter the name of a group which contains the form you specified. The default
is the current group.

Function Result Explanation

FormDesc() Fire
Form #
2345

No parameters will result in returning the current form
description.

FormDesc (2, “FormC”) Empty
string

Returns an empty string if the form cannot be located.

FormDesc (-1,
“FormC”)

Fire
Form #
2345

Locates FORMC in the current group. Then returns the
description of the form that occurs before this form.

246

FORMNAME

Use this function to get the name from a form.

Syntax FormName (Count, StartForm, Group)

The system returns the name of the form it located.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

The system lets you get the name of a form relative to a known form. If you omit all
parameters, the system returns the name of the current form. The Count parameter
moves a number of forms forwards or backwards (negative) from a located form before
returning the form name.

If the starting form cannot be located or the Count parameter causes the system to move
beyond the number of forms contained in the group, the system returns an empty string.

If there is more than one copy of the form, the name returned contains the occurrence
notation used by DAL functions to locate forms. For instance, a name like FORM\3
identifies the third copy of FORM within the same group.

Example Here are some examples:

(Assume there are three forms: FORMA, FORMB, and FORMC. Also assume the
current form is FORMB.)

See also FormDesc on page 245

Name Functions on page 74

Parameter Description

Count Enter an index reference to use to locate a form before or after the specified
form. The default is zero (0).

Startform Enter the name of the form from which to start the search. The default is the
current form.

Group Enter the name of a group that contains the form you specified. The default is
the current group.

Function Result Explanation

FormName() FORMB No parameters will result in returning the current form name.

FormName (-
1, “FormC”)

FORMB Locates FORMC in the current group. Then returns the name of
the form that occurs before this form.

FrenchNumText

247

FRENCHNUMTEXT

This function is a French version of the NumText function. The NumText function
provides written numeric equivalents, such as One Hundred and Twenty for 120. The
FrenchNumText function serves the same purpose, but its output is in French.

Syntax FrenchNumText (Number, DollarWord, CentWord, Decimode)

Example Please note the system returns only lowercase letters. For instance, if you entered
2000000, the system would return:

 deux millions de dollars et 0 cents

(Assume the current field value is 2,000,000.)

See also String Functions on page 78

NumText on page 324

Parameter Description

Number Enter a valid amount. The default is the current field value.

DollarWord Enter the word you want to use instead of dollars. The default is:

“dollars et”

CentWord Enter the word you want to use instead of cents. The default is:

“cents”

Decimode Choose from these options:
1 - numeric decimal amount
2 - spell decimal amount
3 - suppress zero, numeric decimal amount
4 - suppress zero, spell decimal amount
The default is one (1).

Function Result Explanation

Return(French
NumText ())

deux millions
de dollars et 0
cents

The current field value is returned in a written form using
dollars et and cents. The zero (0) is displayed in a numeric
decimal amount format.

Return(French
NumText
(123.45,,,2))

cent vingt-trois
dollars et
quarante-cing
cents

The written equivalent for 123.45 is displayed using
Decimode 2 with the decimal spelled out.

248

FULLFILENAME

Use this function to make the full file name.

Syntax FullFileName (Drive, Path, Name, Ext)

The system accepts a string containing the drive, path, name, and extension components
of a fully qualified file name, assembles them, and returns a string that contains the full
file name.

Here is an example:

MYFILENAME = FullFileName("d:","\mypath\","myfile",".ext")

In this example, MYFILENAME would contain:

“d:\mypath\myfile.ext”

NOTE: If, in this example, \mypath had no trailing slash, the FullFileName function
would have added it for you.

Here is a z/OS example:

FullFileName(,”DD:DEFLIB()”,”MEMBER”)

In this example, the result would be:

DD:DEFLIB(MEMBER)

See also File and Path Functions on page 68

FileDrive on page 239

FileExt on page 240

FileName on page 241

FilePath on page 242

Parameter Description

Drive Enter the drive letter, followed by a colon.

Path Enter the full path.

Name Enter the file name, omitting the extension.

Ext Enter the file extension.

GetAttachVAR

249

GETATTACHVAR
Use this function to return the string value of an attachment variable. You can use this
function when creating print comments using Documaker Bridge.

Syntax GetAttachVar (Name, DSIqueue)

See also AddAttachVAR on page 114

RemoveAttachVAR on page 355

Docupresentment Functions on page 60

Parameter Description

Name Enter the name of the attachment variable.

DSIqueue (Optional) Enter one (1) for input or two (2) for output. The default is one (1).

250

GETDATA

Use this function to retrieve data from a flat file extract file.

NOTE: The SrchData function, released in version 11.1 and included in version 11.0,
patch 32, lets you include spaces in the search criteria, whereas the GetData
function does not. Here is an example:

SrchData("11,HEADERREC,21(A,B, ,D)", 40, 20)

SrchData("'!/XML/Form[@form="PP 03 02"]/@form", 1,10)

Note the space between A,B, ,D and PP 03 02.The ability to include spaces in
search criteria is important when you are using XML XPaths.

Use this function during Documaker Server processing, after the extract file has been
loaded — after the LoadExtractData rule has been run.

Syntax GetData (SearchMask, Occurence)

The system returns the data from the extract file based on the search mask.

Example Here is an example:

GetData("11,HEADEREC 40,17")

In this example, the GetData function finds the extract record designated by
“11,HEADEREC” and returns the data at offset 40 for a length of 17. The GetData
function does not format the data.

You can use an occurrence variable to get the Nth iteration of the data. Enter zero (0) to
return the first record, one (1) to return the second, and so on. Here is an example:

GetData("11,NAMEREC 40,17", 2);

This example finds the 3rd record designated by “11,NAMEREC” and returns the data
from offset 40 for a length of 17.

Here is an example that gets data from an XML extract file:

value = Trim (GetData ("!Diamond/Data/Client/Accounts/Account/
Policies/Policy/PolicyImages/PolicyImage/premium_fullterm 1,7"));

If Trim (GetData ("!Diamond/Data/Client/Accounts/Account/Policies/
Policy/PolicyImages/PolicyImage/premium_fullterm 1,7")) = "2549"
Then;

Return ("equal - " & GetData ("!/descendant::Personalauto/
child::Vehicles/child::Vehicle[**vehovfsym**]/vehicle_num 1,2")

Else Return ("not equal - " & value)

End;

Parameter Description

SearchMask Enter the criteria that defines what data you want the system to look for.
Format the search mask as shown here:

“extract search mask offset, length”

Occurrence This parameter lets you specify which occurrence of the data to get. The
default is the first occurrence.

GetData

251

In this example, the GetData function checks to see if the specified XML extract record
equals 2549, if it does, the function returns the string: equal - concatenated with the value
from another XML extract record. If not, it returns the string: not equal - concatenated to
a value from a different XML extract record.

See also SrchData on page 392

Documaker Server Functions on page 58

252

GETFORMATTRIB

Use this function to return the content of the named user attribute (metadata) for the
form you specify.

Syntax GetFormAttrib (Name, Form, Group)

If you omit both the Form and Group parameters, the system chooses the current form,
based on where the script executes. During Entry (via the Workstation or the plug-in) this
will be the form that contains the DAL script. During Documaker Server processing, the
first logical form found within the document set is the current form, unless the script is
executed from a section or field rule.

If you include the Form parameter, but omit the Group parameter, the system looks for
the form within the current group of forms, as defined by where the script executes.
During Entry (via the Workstation or the WIP Edit plug-in) this is the group that contains
the form where the script executes. During Documaker Server processing, the first logical
group found within the document set is the current group, unless the script is executed
from a section or field rule.

If you omit the Form parameter but include the Group parameter, the system locates the
first form within the group you specified.

If you define an attribute, form, or group that is not included in the current document,
the system returns an empty string.

Example For the following examples assume that form 1111 has the following metadata. Also
assume form 9999 was not selected or triggered.

Here is the first example:

xx = GetFormAttrib("Offer", "1111")

In this example the variable xx is set to:

Good until cancelled

Here is another example:

xx = GetFormAttrib("Codes", "9999")

Parameter Description

Name Enter the name of the user attributes (metadata) to retrieve.

Form Enter the name of a form from which to retrieve data. The default is the current
form.

Group Enter the name of the group that contains the specified form. The default is the
current group.

Name Value

Offer Good until cancelled

Codes R4,79, ZW

GetFormAttrib

253

In this example the variable xx is set to an empty string.

See also PutFormAttrib on page 344

Have Functions on page 69

254

GETINIBOOL

Use this function to retrieve from cache memory the Boolean value of an INI control
group and option.

Syntax GetINIBool (Context, Group, Option, Default)

The system returns one (1) if no error occurs, otherwise a zero (0) is returned.

If you omit the context, the function searches all INI files loaded in memory. If there are
multiple control groups and options with the same name, this function returns the first
INI control group and option string it finds.

If a context name is present, this function only searches for the control group and option
in the set of control groups and options associated with the context name.

Example Let’s assume that an INI file, TEST1.INI, was loaded with the context name, MVF. The
TEST1.INI file contains this control group and option:

< Control >

LogEnabled = Yes

In addition, the FSIUSER.INI file contains this control group and option:

< Control >

LogEnabled = No

Plus, the FSISYS.INI file contains this control group and option:

< Control >

LogEnabled = Yes

Based on this scenario, this table shows and explains several possible results.

Parameter Description

Context (Optional) A name (valid name) associated to a set of INI control groups and
options that have been loaded into cache memory.

Group Enter the group name (valid string) which contains the INI option Boolean value
to retrieve.

Option Enter the option name (valid string) which contains the INI Boolean value to
retrieve. If the control group and option does not contain a Boolean value, the
system returns a zero (0).

Default (Optional) Enter the default string value to return from the function instead of
the actual control group and option value.

Function Result Explanation

bool_value =
GetINIBool
(,”Control”,
“LogEnabled”);

The variable bool_value
now contains a zero (0).

The function scanned the loaded INI control
groups and options. It found the specified
control group and option in the FSIUSER.INI
first. The FSIUSER.INI set is searched first,
followed by the FSISYS.INI set and then any
other loaded sets, in order.

GetINIBool

255

See also INI Functions on page 70

Using INI Options on page 8

GetINIString on page 256

LoadINIFile on page 297

bool_value =
GetINIBool
(“MVF”,
”Control”,
“LogEnabled”);

The variable bool_value
now contains a one (1).

The function scans only the control group and
option set associated with the context name
MVF.

bool_value =
GetINIBool
(“MVF”,
”Control”,
“LogEnabled”, 1);

The variable bool_value
now contains a one (1).
If Control and LogEnabled
are not found,
string_value is set to zero
(0).

The function scans only the control group and
option set associated with the context name
MVF.

Function Result Explanation

256

GETINISTRING

Use this function to retrieve from cache memory the specified INI control group and option
string.

Syntax GetINIString (Context, Group, Option, Default)

The function returns one (1) if no error occurs, otherwise a zero (0) is returned.

If you omit the context, the function searches all INI files loaded in memory. If there are
multiple control groups and options with the same name, this function returns the first
INI control group and option string it finds.

If a context name is present, this function only searches for the control group and option in
the set of control groups and options associated with the context name.

Example Assume an INI file (TEST1.INI) was loaded with the context name, MVV The
TEST1.INI file contains this control group and option:

< Control >

Title = MVV’s group/option

In addition, the FSIUSER.INI file contains this control group and option:

< Control >

Title = Test group 1

Plus, the FSISYS.INI file contains this control group and option:

< Control >

Title = FAP entry 1

Based on this scenario, the following table shows and explains several possible results.

Parameter Description

Context (Optional) A name (valid string) associated to a set of INI control groups and
options which have been loaded into cache memory.

Group Enter the control group name (valid string) which contains the INI option string
to retrieve.

Option Enter the option name (valid string) which contains the INI string value to
retrieve. If the control group and option does not contain a string, the system
returns a null value.

Default (Optional) Enter the default string value to return from the function instead of the
actual control group and option value.

GetINIString

257

See also INI Functions on page 70

Using INI Options on page 8

GetINIBool on page 254

Function Result Explanation

string_value = GetINIString
(,”Control”, “Title”);

The variable string_value now
contains this string:
Test group 1

The function scanned the
loaded INI control groups and
options. It found the specified
control group and option in the
FSIUSER.INI first. The
FSIUSER.INI set is searched
first, followed by the
FSISYS.INI set and then any
other loaded sets, in order.

string_value = GetINIString
(“MVF”, ”Control”,
“Title”);

The variable string_value now
contains this string:
MVF’s group/option

The function scans only the
control group and option set
associated with the context
name MVF.

string_value = GetINIString
(“MVF”, ”Control”, “Title”,
“Bob’s group/option”);

The variable string_value now
contains this string:
MVF’s group/option
If Control and Title are not
found, string_value is set to:
Bob’s group/option

The function scans only the
control group and option set
associated with the context
name MVF.

258

GETLISTELEM

Use this XML function to retrieve list elements.

Syntax GetListElem (%xXMLTree, SrchCriteria)

If successful, the system returns a text string which contains the first element that matches
the search criteria.

Example This example returns the text of the first matched element node Form with the attribute
name ID and value Agent.

%xXMLTree=LoadXMLList(“test.xml”);

aStr= GetListElem(%xXMLTree, “Form”, “ID”, “Agent”);

return(aStr);

See also XML Functions on page 89

Parameter Description

%xXMLTree Enter a list type DAL variable that passes the XML tree handle.

SrchCriteria Enter a string type DAL variable that passes the search criteria. The search
criteria can be a node name, followed by up to five pairs of attribute names and
values.

GetOvFlwSym

259

GETOVFLWSYM

Use this function to retrieve the value stored in an overflow symbol. This is value that
would be used during the next Documaker Server record overflow operation.

Syntax GetOvFlwSym (Form, Symbol)

The system returns the value contained in the specified overflow symbol.

Example Here is an example:

#content = GetOvFlwSym (“CP0101NL”, “Loc_Cnt”)

In this example, the DAL integer variable, #content, would be set to the value of the
overflow symbol, Loc_Cnt.

See also AddOvFlwSym on page 127

IncOvFlwSym on page 277

ResetOvFlwSym on page 358

Documaker Server Functions on page 58

Parameter Description

Form Enter the name of the form that contains the fields on which overflow
processing will occur.

Symbol Enter the name you want to use as the overflow symbol.

260

GETVALUE

Use this function to return a string that contains the contents of the DAL symbolic
variable specified by the parameter. You can use this function when the name of the DAL
variable is also stored in a variable, such as when a variable has to be addressed in another
external script.

Syntax GetValue (Symbol)

NOTE: You will get a syntax error if you omit the Symbol parameter or if the DAL
symbolic variable does not exist. It is wise to use this function with the Exists
function.

Example Here are some examples. Assume the...

• String variable 'my_variable' contains: “Hello World”

• Numeric variable '#_veh' contains: 20

• String variables 'tbl_1', 'tbl_2', 'tbl_3', and 'tbl_4' respectively contain: 'Ford', 'Chev',
'Olds', and 'VW'.

In this example, the variable named contents is set to the string “Hello World”:

variable_name = "my_variable"

contents = GetValue(variable_name)

This example stores the value, 20, in the field entitled 'total # of vehicles' in the current
section:

SetFld (GetValue("#_veh"), "total # of vehicles")

In this example, if #line is set to 3, the string 'Olds' is returned. If #line is set to 5, a 'blank'
is returned.

If Exists("tbl_" & #line) Then

Return (GetVaule("tbl_" & #line))

Else

Return (" ")

End

See also Exists on page 229

Miscellaneous Functions on page 73

Parameter Description

Symbol Enter a string that specifies the name of a DAL symbolic variable. This can be
from an expression or from another string variable.

GroupName

261

GROUPNAME

Use this function to get the name from a group of forms.

Syntax GroupName (Count, StartGroup)

The system returns the name of the group it located.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

The system returns the name of a group of forms relative to another group. If you omit
the parameters, the system returns the name of the current group.

The count parameter tells the system to move forward or backwards from a located group
before returning the group name.

If it cannot find the starting group cannot or the count parameter causes it to move
beyond the number of groups contained in the document set, the system returns an empty
string.

Groups are unique within a document set.

Example Here are some examples:

(Assume the current group is GROUPONE.)

See also Name Functions on page 74

Parameter Description

Count An index reference to locate a group before or after the specified group. Enter a
negative number to move backwards. The default is zero (0).

StartGroup Enter the name of a group from which to start the search. The default is the
current group.

Function Result Explanation

GroupName() GROUPON
E

No parameters will result in returning the current group
name.

GroupName(-1) Returns the name of the group before the current group.

262

GVM
Use this function to retrieve the contents of a GVM variable.

Syntax GVM (Name, Instance)

The system returns the content of the variable if it exists or a blank string if it does not.

Example Here is an example:

NOTE: If the GVM variable does not exist, you will receive the error message: DM12041.

See also Documaker Server Functions on page 58

HaveGVM on page 267

AddComment on page 117

DAL Script Examples on page 35

SetGVM on page 378

Parameter Description

Name Enter the name of the GVM variable.

Instance Enter the instance number of the GVM variable. The default is one (1).

Function Result Explanation

If (HaveGVM(‘Company’))

AddComment(GVM(‘Company’))
End

String or a
blank string

Return the content of the GVM variable
“company” if it exist.

HaveField

263

HAVEFIELD

Use this function to determine if a specified field can be located.

Syntax HaveField (Field, Section, Form, Group)

The system optionally returns one (1) on success or zero (0) on failure.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names. For instance, if you
enter

HaveField("FIELD", , "*")

The system will find the field named FIELD on any form within the current group. This
works because the asterisk in the form name position indicates that any form will do.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

The system searches for the specified field on a particular section, form, and/or group. If
the field is located, one (1) is returned. Otherwise, zero (0) is returned.

Although the return value from some of the other field’s functions might be used to
determine the availability of a certain field, this function merely locates the field and does
not change or query any particular information about the field.

Example Here are some examples:

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

Function Result Explanation

Return(HaveField(
))

1 If this script is associated with an entry field, it will always
return one (1) if no parameters are provided.

Return(HaveField (
“Second”))

1 or 0 the current section will be searched for the field. A one (1) is
returned if located.

Return(HaveField (
“Third”, , “FRM”))

1 or 0 Locate the form specified within the current form group. Then
locate Third anywhere on that form. If found, a one (1) is
returned.

264

See also Have Functions on page 69

Field Formats on page 62

Locating Fields on page 64

HaveForm

265

HAVEFORM

Use this function to determine if a given form is contained in the document.

Syntax HaveForm (Form, Group)

The system optionally returns one (1) if the form is located or zero (0) if it cannot be
found.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

Several of the DAL functions might return a value that may indicate a form is or is not a
part of the document. However, those functions also intend to perform some other
procedure other than searching for the form. This function simply identifies whether a
given form is present in the form set.

The function does not require any parameters. However, calling it in this manner will
typically return 1, since it will locate the current form.

Example Here are some examples:

See also Have Functions on page 69

Parameter Description

Form Enter the name of a form. The default is the current form.

Group Enter the name of a group to contain the specified form. The default is the
current group.

Function Result Explanation

HaveForm(
“Form”)

1 or 0 Attempts to locate the named form. If found, returns 1.

HaveForm(
“Form\3”,
“GRP”)

1 or 0 Locates the third occurrence of the file named Form within the
specified group. If found, returns 1.

266

HAVEGROUP

Use this function to determine if a given group is part of a document.

Syntax HaveGroup (Group)

The system returns one (1) if the group is located and zero (0) if it cannot be found.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

Several DAL functions can return values that indicate a group is or is not a part of the
document. However, those functions also intend to perform some other procedure other
than searching for the group. The HaveGroup function simply identifies whether a given
group is present in the document.

The function does not require any parameters. However, calling it in this manner will
typically return 1, since it will locate the current group.

Example Here is an example:

See also Have Functions on page 69

Parameter Description

Group Enter the name of a group to locate. The default is the current group.

Function Result Explanation

HaveGroup (“GRP”) 1 or 0 Returns one (1) if the identified group is a part of the
document.

HaveGVM

267

HAVEGVM
Use this function to determine if a GVM variable exists.

Syntax HaveGVM (Name, Instance)

The system returns one (1) if it locates the GVM variable or a zero (0) if it cannot find the
variable.

Example Here is an example:

See also Documaker Server Functions on page 58

GVM on page 262

AddComment on page 117

DAL Script Examples on page 35

SetGVM on page 378

GVM on page 262

Parameter Description

Name Enter the name of the GVM variable.

Instance Enter the instance number of the GVM variable. The default is one (1).

Function Result Explanation

If (HaveGVM(‘Company’))
 AddComment(GVM(‘Company’))
End

1 or 0 If a GVM variable “company” exist; then
add the content of the GVM variable to the
print stream.

268

HAVEIMAGE

Use this function to determine if a given section is contained in the document.

Syntax HaveImage (Section, Form, Group)

The system returns one (1) if the form is located and zero (0) if it cannot be found.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

Several of the DAL functions might return a value that may indicate a section is or is not
a part of the document. However, those functions also intend to perform some other
procedure beyond searching for the section. This function simply identifies whether a
given section is present as part of a form and/or group.

The function does not require any parameters. However, calling it in this manner will
typically return 1, since it will locate the current section.

Example Here are some examples:

See also Have Functions on page 69

Where DAL Functions are Used on page 97

Parameter Description

Section Enter the name of a section to locate. The default is the current section.

Form Enter the name of an form that is assumed to contain the specified section. The
default is the current form.

Group Enter the name of a group to contain the specified section or form. The default
is the current group.

Function Result Explanation

HaveImage(
“IMG”)

1 or 0 Attempts to locate the named section on the current form. If found,
return 1.

HaveImage(
“IMG\2”,
“Form\3”,
“GRP”)

1 or 0 Locate the third occurrence of Form within the specified group. If
found, then locate the second occurrence of IMG. If successful,
return 1.

HaveLogo

269

HAVELOGO

Use this function to determine if a graphic (LOG) exists on a section or form which is in
the current form set.

Syntax HaveLogo (Graphic, Section, Form, Group)

The system returns one (1) if it finds the graphic and zero (0) if it does not.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

Example Here are some examples:

See also ChangeLogo on page 162

DelLogo on page 213

HaveField on page 263

HaveForm on page 265

HaveGroup on page 266

HaveImage on page 268

InlineLogo on page 279

Logo on page 300

Parameter Description

Graphic Enter the name of the graphic you want to find. Graphic names are assigned in
Studio or Image Editor.

Section Enter the name of a section that contains the graphic you specified. The default is
the current section.

Form Enter the name of a form that contains the section you specified. The default is
the current form.

Group Enter the name of a group to use to locate the graphic. The default is the current
group.

Function Result Explanation

HaveLogo(“Log1”) 1 or 0 Determines if Log1 exists on the current section, form,
group.

HaveLogo(“Log1”,
“IMH1\3”,”UpRate”)

1 or 0 Determines if Log1 exists on the 3rd occurrence of the
section, IMH1, on the form, UpRate, within the default
group.

270

RenameLogo on page 356

Have Functions on page 69

HaveRecip

271

HAVERECIP

Use this function to see if the specified recipient name is defined in the form set for the
specified section, form, or group.

You can use this function along with the RecipientName function in DAL scripts to place
a sequence number on each page of each recipient batch.

Syntax HaveRecip (Recipient, Section, Form, Group)

The system returns one (1) if true or zero (0) if false.

NOTE: You must enter a recipient name.

See also RecipientName on page 352

Have Functions on page 69

Parameter Description

Recipient Enter the name of a recipient.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, or field. The
default is the current group.

272

HEX2DEC

Use this function to return the integer equivalent of a hexadecimal string.

Syntax Hex2Dec (Value1)

The largest hexadecimal value supported is FFFFFFFF. Keep in mind, however, that
hexadecimal values are considered unsigned while integer values can be both positive and
negative.

The largest integer value 2,147,483,647 is 7FFFFFFF when represented using
hexadecimal. HEX values greater than 80000000 represent negative integer values. Hex
value FFFFFFFF represents the integer value -1.

Example Here is an example:

y = "1A2B"

z = Hex2Dec(y)

Result is z = 6699

y = "FF00"

z = Hex2Dec(y)

Result is z = 65280

See also Dec2Hex on page 205

Bit/Binary Functions on page 42

Parameter Description

Value1 This parameter specifies a string of characters you want converted into an integer
value. If the string value does not represent a valid hexadecimal number, the
results are questionable and can result in only part of the value being converted.

Hour

273

HOUR

Use this function to extract the number of hours from a time.

Syntax Hour (Time1, Format1)

Example Here are some examples:

(Assume the current time is 03:05:09 pm.)

See also Time Formats on page 80

Parameter Description

Time1 Enter a valid time string. Assumed to be in the format specified by the next
parameter. The default is the current time.

Format1 Enter a valid time format string. Describes the first parameter (time1). The
default is time format 1 (HH:MM:SS).

Function Result Explanation

Return(Hour(
))

3 Defaults to the current time and extracts 3.

Return(Hour
(“9:50:20AM”,
2))

9 Reads the given time which is in format 2 and extracts 9.

274

IMAGENAME

Use this function to get the name of a section. This name is returned.

Syntax ImageName (Count, Startimage, Form, Group)

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

The system returns the name of a section relative to another section on the same form. If
no parameters are provided to this function, the current section’s name is returned. The
Count parameter tells the system to move a number of sections forwards or backwards
(negative) from a located section before returning the section name.

If the starting section cannot be located or the Count parameter causes the system to
move beyond the number of sections contained on the form, the system returns an empty
string.

If there is more than one copy of a section on the located form, the name returned will
contain the occurrence notation used by DAL functions to locate sections. For instance,
a name like IMG\2 identifies the second copy of IMG on a particular form.

Example Here are some examples:

(Assume the current section is named IMG.)

See also Name Functions on page 74

Parameter Description

Count Enter an index reference to locate a form before or after the specified form. The
default is zero (0).

Startimage Enter the name of a section from which to begin the search. The default is the
current section.

Form Enter the name of a form containing the requested section. The default is the
current form.

Group Enter the name of a group to contain the specified form.The default is the current
group.

Function Result Explanation

ImageName() IMG No parameters will result in returning the current section
name.

ImageName(2,
“IMG”,
“FormC”)

Locate FORMC in the current group. Next, locate IMG on
that form. Then, return the name of the section two positions
beyond the located section.

ImageRect

275

IMAGERECT
Use this procedure/function to retrieve the rectangular coordinates of a section in a form
set (document).

Syntax ImageRect (PrefixVariable, Section, Form, Group)

This procedure gets the coordinates for the section and stores them in the defined variable
names. If the prefix name variables do not exist in DAL, the system creates them. The
system creates four internal variables: prefix name.top, prefix name.left, prefix name.bottom, and
prefix name.right. If these variables exist, the system modifies them with the new
coordinates.

Example For these examples, assume the prefix name is MyImage, the current section is Image25, the
form is Input_form, and the form group is package1. The coordinates are:

Here are some examples:

Parameter Description

PrefixVariable Enter the coordinates for the section.

Section Enter the name of a section in the form set. The default is the current section.

Form Enter the name of the form that contains the section. The default is the
current form.

Group Enter the name of the form group that contains the form and section. The
default is the current form group.

Image25 Image50

top 25 125

left 50 150

bottom 100 200

right 200 200

Procedure Result Explanation

IMAGERECT
(“MyImage”)

Internal variables equal:

MyImage.top=25

MyImage.left=50

MyImage.bottom=10
0

MyImage.right=200

The procedure returns the coordinates for the
current section (Image25) on the current form
in the current form group
If it does not exist, the procedure returns zero
(0).

276

See also Section Functions on page 77

SetImagePos on page 379

IMAGERECT
(“MyImage”,
“Image50”)

Internal variables equal:

MyImage.top=125

MyImage.left=150

MyImage.bottom=20
0

MyImage.right=200

The procedure returns the coordinates for
Image50 on the current form in the current
form group.
If it does not exist, the procedure returns zero
(0).

IMAGERECT
(“m”,
“MVF\2”,
“XYZ”)

Internal variables equal:

m.top = 75

m.left = 125

m.bottom = 300

m.right = 225

Gets and stores the coordinates for the second
occurrence of the section MVF on the form
XYZ into the DAL target variables.
If it does not exist, the procedure returns zero
(0).

Procedure Result Explanation

IncOvFlwSym

277

INCOVFLWSYM

Use this procedure/function to increment an overflow symbol. This procedure provides
DAL with the Documaker Server equivalent to the IncOvFlwSym rule, with the
exception that it will only increment by one.

Syntax IncOvFlwSym (Form, Symbol)

The system optionally returns one (1) on success or zero (0) on failure.

This procedure increments the value contained in the specified overflow symbol.

Example Here is an example:

rc = IncOvFlwSym (“CP0101NL”, “Loc_Cnt”)

In this example, the overflow symbol, Loc_Cnt is incremented and the DAL integer
variable, # rc, is set to one (1) on success or zero (0) on failure.

Syntax AddOvFlwSym on page 127

GetOvFlwSym on page 259

ResetOvFlwSym on page 358

Documaker Server Functions on page 58

Parameter Description

Form Enter the name of the form that contains the fields on which overflow processing
will occur.

Symbol Enter the name you want to use as the overflow symbol.

278

INI
Use this function to get the value of an INI option from the currently loaded INI files.

If there is more than one occurrence of a control group and option in the various INI files
the system uses, like the FSIUSER.INI and the FSISYS.INI files, this function uses the
values in the first control group and option it finds that matches the criteria you enter.
The system usually first loads the FSIUSER.INI file, which tells it to then load the
FSISYS.INI file.

Syntax INI (Group, Option, Default)

The system retrieves the specified control group and option string. The system returns
one (1) if no errors occur and zero (0) if errors occur.

Example This example:

INI(“UserInfo”,”File”)

retrieves the name of the user information file, as stored in this control group:

< UserInfo >

File =

See also INI Functions on page 70

Using INI Options on page 8

GetINIBool on page 254

GetINIString on page 256

Parameter Description

Group Enter the name of the INI control group name (valid string) which contains the
INI option string you want to retrieve.

Option Enter the name of the INI option (valid string) which contains the INI string
value you want to retrieve. If the control group and option do not contain a
string, the system returns a null value.

Default (Optional) The default string value to return from the function instead of the
actual control group and option value.

InlineLogo

279

INLINELOGO

Use this procedure/function to cause a graphic (LOG) to be in-lined in the print stream.
This means you do not have to store the graphic as a printer resource on the printer.

Syntax InlineLogo (Graphic, Option, Section, Form, Group)

The system optionally returns one (1) on success or zero (0) on failure.

Example Here are some examples:

See also ChangeLogo on page 162

DelLogo on page 213

HaveLogo on page 269

Logo on page 300

RenameLogo on page 356

Graphics Functions on page 71

Parameter Description

Graphic Enter the name of the graphic to be in-lined in the print stream. Graphic names
are assigned in Studio or Image Editor.

Option This parameter sets the inline flag. You can choose from these options:
One (1) equals On
Zero (0) equals Off
The default is one (1).

Section Enter the name of a section that contains the specified graphic. The default is the
current section.

Form Enter the name of a form that contains the section. The default is the current
form.

Group Enter the name of a group to use to locate the specified object. The default is the
current group.

Procedure Result Explanation

InlineLogo(Log1”) 1 or 0 In-lines Log1 (on the current section, form, and group)
into the print stream.

InlineLogo(“Log1”,
1,”IMH1\3”,”UpRate”)

1 or 0 In-lines Log1 (on the 3rd occurrence of the named
section, IMH1, on the form, UpRate) into the print
stream.

280

INPUT

Use this function to create a window with a title and a prompt which asks the user to enter
information.

Syntax Input (Prompt, Title, Length, DefText)

The system returns the input results.

This function creates a window you can use to gather information from a user. The text
entered through the window is returned as a string. If no text is assigned, or if the user
closes the window without choosing Ok, the returned string will be empty.

Example Here are some examples:

See also Documaker Workstation Functions on page 59

Parameter Description

Prompt Enter a text string to assign as the prompt for the field. The default is Text.

Title Enter a text string to assign as the title of the window. The default is Title.

Length Enter the maximum input text length. The default is set by Windows.

DefText Enter a text string to assign as the default input data.

Function Result Explanation

NAME = Input (“Please
enter your name:”,
“Name Entry”);
Return(Name)

Produces a window
requesting input.

The name of the window is Name Entry. The
user sees the prompt Please enter your name: If
the user selects Cancel, NAME is an empty
string. If the user selects Ok, NAME
contains the text entered by the user.

Return(Input()) Produces a window
requesting input.

This window will not have a title or a
prompt. The user is merely presented with
an input field into which data should be
entered.

Return(Input (“Confirm
this result”, , 30, “123.45”
))

Produces a window
requesting input.

This window will have the prompt Confirm
this result. The input field accepts up to 30
characters and defaults to “123.45”. There
will be no title.

Insert

281

 INSERT

Use this function to insert a substring into a string at the position you specify. The result
string is returned.

Syntax Insert (String, Position, SubString)

The system adds the substring to the string you specified in the first parameter at the
indicated position. If the position indicated in the second parameter is greater than the
length of the original string, the string is increased to the given length before the third
parameter is inserted.

If no position is given in the second parameter the insertion begins at position one. If no
value is provided for the third parameter (Substring), nothing is inserted.

Example Here are some examples:

(Assume the current field contains the text Your Name.)

See also String Functions on page 78

CFind on page 161

Parameter Description

String Enter a valid string. The default is the value of the current field.

Position Enter the position in the field to perform the insert. The default is the one (1),
the first position.

SubString Enter the string that you want to insert.

Function Result Explanation

Return(Insert (, , “Type
”))

Type Your
Name

Defaults to the first position of the current field and
inserts Type.

Return(Insert (,
CFIND (, “ “), “
First”))

Your First
Name

First the CFind function locates a blank space at
position 5 within Your Name. Next, First is inserted at
position 5.

Return(Insert
(“Complete blank.”, 10,
“every “))

Complete
every
blank.

Goes to position 10 and inserts every.

Return(Insert
(“Complete blanks”, 17,
“with black ink.”))

Complete
blanks with
black ink.

Increases the length of the field to 17 and appends with
black ink.

282

INT
Use this function to return the integer portion of a number.

Syntax INT (Number)

The system returns the integer value of a number.

The decimal portion of the number is truncated. The number is not rounded up or down.
The sign of the number is not changed.

Example Here are some examples:

See also Mathematical Functions on page 72

Parameter Description

Number Enter a valid numeric data type. The default is the integer value of the current
field

Function Result Explanation

INT(-101.99) -101 Defaults to the current field.

$TEMP =
99.99

#RESULT =
INT($TEMP)

99 After executing these statements, $TEMP will be 99.99 and
#RESULT will be 99, without a decimal.

#RESULT =
INT(10/4)

2 The parameter value will equate to 2.5 The INT function will
truncate this result to 2. The function does not round.

IsPrintObject

283

ISPRINTOBJECT

Use this function during banner processing or in another print operation to determine if
the section (image), form, or group is printable. This determination is based on the current
print recipient and the recipient copy count.

Syntax IsPrintObject (Section, Form, Group)

NOTE: You can use this function outside of a print operation to determine if a section is
printable, but a true (1) result is not a guarantee the section will print during the
next print operation.

Example Here is an example:

IsPrintObject();

This example checks the current section on the current form in the current group and
returns a one (1) if that section is printable or a zero (0) if it is not.

See also Printer and Recipient Functions on page 76

Parameter Description

Section Enter the name of the section you want to check. If you omit this parameter, the
system uses the current section.

Form Enter the name of the form you want to check. If you omit this parameter, the
system uses the current form.

Group Enter the name of the group you want to check. If you omit this parameter, the
system uses the current group.

284

ISXMLERROR

Use this function to check the list for error status.

Syntax IsXMLError (%xXMLTree, SrchCriteria)

The system returns one (1) if no errors occur or zero (0) if errors occur.

See also XML Functions on page 89

Parameter Description

%xXMLTree Enter a list type DAL variable that passes the XML tree handle.

SrchCriteria Enter a string type DAL variable that passes the search criteria. The search
criteria can be a node name, followed by up to five pairs of attribute names and
values.

JCenter

285

JCENTER

Use this function to center text within a specified length and return the result.

NOTE: To justify a display item, such as a field, on a fixed point use the JustField
function. The JCenter function is for padding a text string so it will appear
centered within a given string length.

Syntax JCenter (String, Length)

The system justifies the text characters of the string parameter within the specified length
and returns the new string.

If the length specified in the Length parameter is longer than the string, the result will be
increased to the given length before the system centers the string. If the length specified
is less than the string, the length of the string is used.

For example, if the variable field has a length of 30, the DAL script says Return(JCenter
(,10)), and you enter ABC in the variable field, the system will center ABC using a length
of 10 instead of 30.

Example Here are some examples:

(Assume the current field contains the text Name and can be up to 20 characters.)

See also JustField on page 288

String Functions on page 78

Size on page 387

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of the input string.

Function Result Explanation

JCenter
(, Size ())

“ Name
 “

First the Size function determines that the maximum length of
the field is 20. Then the JCenter function defaults to the
current field and centers the text name within the given size of
20.

 JCenter
(“Complete
blanks.”, 5)

Complete
blanks.

Ignores the specified length (5) because it is less than the given
string.

JCenter
(“Complete
blanks.”, 25)

“
Complete
blank. “

Increases the size of the input string to 25 and centers the text.
The variable field length is not affected, so the text appears to
be off center.

286

JLEFT

Use this function to left justify text within a specified length and return the result.

Syntax JLeft (String, Length)

The system left justifies the text characters of the string parameter within the specified
length and returns the new string.

If the length specified in the length parameter is longer than the string, the result will be
increased to the given length before the justification. If the length specified is less than
the string, the length of the string is used.

Example Here are some examples:

(Assume the current field contains the text Name and can be up to 20 characters.)

See also String Functions on page 78

@ on page 109

Size on page 387

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of the input string.

Function Result Explanation

JLeft
(“Heading”, 20)

“Heading
 ”

Left justifies the text within a length of 20 spaces.

JLeft
(“ Complete
blanks. “, 5)

“Complete
blanks. ”

Ignores the specified length (5) because it is less than the
given string.

JLeft (, Size () &
“X”)

“Name
 X”

First the Size function determines that the maximum length
of the field is 20. Then X is added to the end of the field.
There are 15 spaces between the end of the word Name and
the X.

JRight

287

JRIGHT

Use this function to right justify text within a specified length and return the result.

Syntax JRight (String, Length)

The system justifies the text characters of the string parameter within the specified length
and returns the new string.

If the length you specify in the Length parameter is longer than the string, the result is
increased to the given length before the text is justified.

If the length specified is less than the string, the system uses the length of the string.

Example Here are some examples:

(Assume the current field contains the text Name and can be up to 20 characters.)

NOTE: If you are aligning decimal numbers, be sure to use a fixed or non-proportional
font, such as Courier.

See also String Functions on page 78

@ on page 109

Size on page 387

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of the input string.

Function Result Explanation

JRight
(“Heading”, 20)

“
Heading”

Increases the size of the field to 20 and right justifies the
text.

JRight
(“ Complete
blanks. “, 5)

“ Complete
blanks. “

Ignores the specified length (5) because it is less than the
given string.

JRight (, SIZE ()
& “!”)

“Name!” First the Size function determines that the maximum length
of the field is 20. Then the original text in the field is right
justified and an exclamation point (!) is concatenated after
Name.

288

JUSTFIELD

Use this procedure/function to justify (left, right, or center) a variable field content by
modifying its field coordinates.

NOTE: To pad a text string so it will appear centered within a given string length, use the
JCenter function. The JustField function is for justifying display items, such as
fields, on a fixed point.

Syntax JustField (Mode, Xcoordinate, Justification, Field, Section, Form,
Group)

Parameters Description

Mode Enter L (left), R (right), or C (center). The default is L.

Xcoordinate Enter the X coordinate used to align the field. If Mode is R, this will be zero (0),
the right-most position of the field. If Mode is C, this will be the center of the
field. Here is an example:

"R", 5000

If the data is 12345, the character 5 will be positioned at 5000 FAP units.

Justification Enter a character found in the data to use to align the field. The procedure aligns
the field so the character you specify overlays the X coordinate. You must
define the X-coordinate parameter when using the justification character. If you
omit the X-coordinate the system runs as if the justification character was not
specified.
Here is an example:

R,5000,"."
If the data is 123.45, then the decimal point will be positioned at 5000 FAP
units.

Field Enter the name of the field. The default is the current field.

Section Enter the name of the section that contains the field. The default is the current
section.

Form Enter the name of the form that contains the section and/or field. The default
is the current form.

Group Enter the name of the group that contains the form, section, and/or field. The
default is the current group.

JustField

289

Example This example centers the original address lines data in the section, QJUSTFIELD2, at
10,000 FAP units.

JustField("C",10000, ,"line 1", , "qjustfield2")

JustField("C",10000, ,"line 2", , "qjustfield2")

JustField("C",10000, ,"line 3", , "qjustfield2")

Here is an example:

This example justifies the original line data (left aligned at 5,000 FAP units) on the decimal
point at 10,000 FAP units.

JustField("C",10000,".","line 1")

JustField("C",10000,".","line 2")

Here is an example:

See also JCenter on page 285

Field Functions on page 61

line 1 Oracle Insurance

line 2 Atlanta, GA 30339-4000

line 3 404.439.5500

line 1 Oracle Insurance

line 2 Atlanta, GA 30339-4000

line 3 404.439.5500

10,000 FAP units

5,000 FAP units

line 1 5,000.00

line 2 12345.8888888

10,000 FAP units

5,000 FAP units

line 1 5,000.00

line 2 12345.8888888

290

KICKTOWIP
Use this function to send a transaction to WIP from the GenData program. This function
lets you use DAL instead of the KickToWIP rule or the field properties Attributes
required field flag.

Syntax KickToWIP ()

There are no parameters for this function.

Use the ShowWIPWarning option to suppress the Sent to Manual Batch warning
messages:

< RunMode >

ShowWIPWarning = No

Example Here is an example of how you would set your AFGJOB.JDT file:

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

…

;WriteOutput;;;

;WriteNaFile;;;

;PostTransDAL;;KickToWIP();

In this example, the PostTransDAL function sets the Manual batch flag before the NA,
POL, and Receipt batch files are written. Here is an example of the section-level rules:

<Image Rules>

…

;PreImageDAL;;KickToWIP()

In this example, the Manual batch flag is set if the section is triggered.

Here is an example of the field-level rules:

;0;0;area1;0;0;area1;0;0;;DAL;Call(“Chk_If_Kick”);N;N;N;N;919;6736;
12112;

In this example, when the Areal field is executed the system calls the DAL script named
Chk_If_Kick. The DAL script checks for the presence of two conditions and if true, sets
the Manual batch flag for the transaction.

Here is an example of the Chk_If_Kick DAL script:

BeginSub Chk_If_Kick

If (CountRec(“1,Second_Address”) = 0) AND \

(GetData(“1,Second_party, 45,1) = “X”) Then

KickToWIP()

Option Description

ShowWIPWarning Enter No to suppress warning messages included the error logs when
using the KickToWIP DAL function.
The default is Yes, which tells the system to include the messages in the
error logs.

KickToWIP

291

End

EndSub

NOTE: You must execute this DAL function before the ConvertWIP form set level rule
is executed, if it is included in the AFGJOB.JDT file

See also Documaker Server Functions on page 58

292

LEAPYEAR

Use this function to find out whether or not the specified year is a leap year.

Syntax LeapYear (Year)

The system returns one (1) if the year is a leap year and zero (0) if it is not.

This function is most often used with the Year function. The Year function extracts the
year number from a given date.

Example Here are some examples:

(Assume the current date is 07/01/08.)

See also Using INI Options on page 8

Date Formats on page 52

Year on page 443

Date Functions on page 51

Parameter Description

Year Enter the year. You can enter either a two- or four-digit number. If you enter a
two-digit number, the current century is added to create the year value. The
default is the current year.

Function Result Explanation

LeapYear () 1 The parameter defaults to the current year (2008). Since 2008 is a
leap year, one (1), which represents true, is the result.

LeapYear (07) 0 The year 2007 was not a leap year. Therefore, the result is zero
(0), representing false.

LeapYear (Year
(“2009/09/
09”, “34”))

0 First the Year function extracts the year number (2009) from the
date, which is given in the date format “34”. Then LeapYear
determines that 2009 is not a leap year and returns zero (0.)

Left

293

LEFT

Use this function to return a specified number of left most characters.

Syntax Left (String, Length)

The system returns a string equivalent to the given length from the left portion of the
string.

The input string is trimmed of leading and trailing spaces. If the length specified in the
second parameter exceeds the length of the string, the result is increased to the given
length.

Example Here are some examples:

(Assume the current field contains the text Your Name and can be up to 20 characters.)

See also Right on page 360

String Functions on page 78

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of the input string.

Function Result Explanation

Left () Your Name Defaults to the current field and returns the full length of
the field.

Left
(“Complete
blanks.”, 5)

Compl Default to position one (1) and returns the first five
characters.

Left (“ final
payment”, 13)

“final
payment”

Trims the field of leading spaces and returns 13
characters.

294

LEN
Use this function to return the length of the specified string. The length includes all
characters, including leading and trailing spaces.

Syntax LEN (String)

This function is often confused with the Size function. The LEN function returns the
length of the actual data contained in a text string, including leading and trailing spaces.
The Size function returns the length of the defined data area for a section field.

Example Here are some examples:

(Assume the current field contains the text Your Name.)

See also String Functions on page 78

@ on page 109

Size on page 387

Parameter Description

String Enter a valid string. The default is the value of the current field.

Function Result Explanation

LEN () 9 Defaults to the current field.

LEN (“ Your
Name “)

19 The result includes the leading and trailing spaces of the given
field.

LEN (“Street
Address”)

14 Returns the length of the given string.

LEN
(@(“ThisField”)
)

8 Finds the variable field named ThisField on the current section and
counts the length of the data. The data in this field is Jane Doe, so
the number 8 is returned.

ListInList

295

LISTINLIST

Use this function to search for the comma-delimited list specified by the second
parameter for each character string in the comma-delimited list specified by the first
parameter. If a match is found, the function returns the ordinal position (integer) of the
first string in the second parameter that matches any of the strings in the first parameter.
If no match is found, the function returns a zero (0).

Syntax ListInList (StringList, ListString)

The function returns a number that indicates which string entry was found. For instance,
if the third string entry was found, the function returns a three (3).

Example Here is an example:

If you omit the first parameter, you get the data from the current field. If you omit the
second parameter, you receive this error message:

Wrong number of parameters

Here is another example. For this example assume the following parameters contain:

• GetValue(col_name1) results in the character string: AA, EE.

• DAL variable col_name1_codes contains the string: EEacb,XXEE,EE,AEEAC.

• GetValue(ca_codes) contains the string: Xxaab,YYEE, EE,AA,AeeAC.

Parameter Description

StringList Enter the name of the list of character strings or enter the list of character strings
you want to search for. Use commas to separate each character string entry you
want to find. Keep in mind the system considers spaces when searching, so strings
must match exactly.

ListString Enter the name of the string list or the character string list to be searched. Use
commas to separate each string entry you want to search for.

This function statement Returns Assuming

ListInList(@("e_codes"),
"ABC,AB,DE,A,GFHI,ABCD")

 1 Field e_codes contains: ABC,A.

ListInList(GetValue("e_codes"),
"ABC,AB,DE,A,GFHI")

2 DAL variable, e_codes, contains: AB,abcd.

ListInList(?("e_codes"),
"ABC,AB,DE,A,GFHI,ABCD")

3 XDB entry e_codes returns: DE,a.

ListInList(?("e_codes"),
?("t_codes"))

4 XDB entry e_codes returns A. The entry
t_codes contains:
ABC,AB,DE,A,GFHI,ABCD.

ListInList(?("e_codes"),
"ABC,AB,DE,A,GFHI,ABCD")

0 XDB entry e_codes returns: XYZ.

296

The return value for the above example returns a four (4) because two spaces exist
between the comma and EE.

Keep in mind:

• The search is not case-sensitive. This means A will match a.

• Spaces are considered. This means the system will find no matches in the following
examples:

ListInList("Steel,Wood", " Steel,Aluminum")

ListInList("Steel,Wood", "Steel ,Aluminum")

ListInList("Steel,Wood", "Aluminum,Steel ")

See also String Functions on page 78

This statement Returns

#rc = ListInList(GetValue(col_name1), col_name1_codes) 3

#rc = ListInList(GetValue(col_name1), GetValue(col_name1_codes)) 4

LoadINIFile

297

LOADINIFILE

Use this procedure/function to load an INI file into cache memory.

Syntax LoadINIFile (Context, File)

This procedure returns success (1) if no error occurred during its execution, otherwise a
failure (0) is returned.

If you specify a context name, that name can be used by other INI functions to reference
the loaded set of INI control groups and options.

Example Here are some examples:

See also INI Functions on page 70

Using INI Options on page 8

SaveINIFile on page 367

GetINIBool on page 254

GetINIString on page 256

PutINIBool on page 346

PutINIString on page 348

Parameter Description

Context (Optional) A name (valid string) that will be associated to the set of INI control
groups and options contained in the physical file.

File Enter the name of the INI file to load. If you omit the extension, the system
assumes it is INI. The system searches in the current directory, or uses a full path
name if you specify one

Procedure Result Explanation

LoadINIFile
(,“DALRun”);

The INI control groups and options can
now be referenced by executing modules.

The INI file is loaded into
cache memory. Execution of
this procedure assumes the
file extension is INI.

LoadINIFile
(“Run_process”
,
“DALRun.ini”);

The INI control groups and options can
now be referenced by executing modules.
This set of INI control groups and options
can now be referenced by other INI
functions, using the tag Run_process.

The INI file is loaded into
cache memory.

298

LOADLIB

Use this procedure/function to load into cache memory a file which contains a library of
DAL scripts.

Syntax LoadLib (File)

This procedure loads a file which contains one or more DAL functions into cache
memory. Each of these procedures and functions can be referenced as a named
subroutine.

NOTE: You should only execute the LoadLib procedure once per library.

Example Here is an example:

See also Miscellaneous Functions on page 73

Creating a DAL Script Library on page 5

Parameter Description

File Enter the name of the file which contains the DAL scripts. If you omit the path,
the system looks for the file in DefLib. If you omit the extension, the system uses
the one defined in the Ext option of the DAL control group in your INI file. You
must include the File parameter.

Procedure Result Explanation

LoadLib
(“DB_Func”)

The system loads the DB_Func
file into cache memory.

Once loaded, you can reference the
DAL scripts stored in memory as
named subroutines.

LoadXMLList

299

LOADXMLLIST

Use this function to load an XML document and extract an XML tree.

Syntax LoadXMLList (FileName)

The system returns the XML tree in a list type DAL variable.

Example For an example, see the DAL script in Scenario 2 on page 90.

See also XML Functions on page 89

DestroyList on page 215

Parameter Description

FileName Enter the name of the XML file you want to load.

300

LOGO

Use this procedure/function to place a graphic file (LOG) at a specified position in the
section.

Syntax Logo (Graphic, Xcoordinate, Ycoordinate, Section, Form, Group)

The system optionally returns one (1) on success or zero (0) on failure.

This procedure uses FAP units (1 inch = 2400 FAP units). The top-left position of a page
represents coordinate (0, 0). To place a graphic an inch from the top and an inch from the
left of the page, the X and Y coordinates would be (2400, 2400).

If the location for a particular graphic can be described in relation to a field on the form,
you can use the FieldX and FieldY functions to get the coordinates of that field.

This function does not redraw the section display. Use the Refresh procedure with the
Logo procedure to view the changes.

Example Here are some examples:

See also ChangeLogo on page 162

DelLogo on page 213

HaveLogo on page 269

InlineLogo on page 279

FieldX on page 237

Parameter Description

Graphic Enter a valid name for a graphic. Must be a variable field object.

Xcoordinate Enter a valid X coordinate location.

Ycoordinate Enter a valid Y coordinate location.

Section Enter the name of the section name that contains the new graphic. The default
is the current section.

Form Enter the name of the form name that contains the section you specified. The
default is the current form.

Group Enter the name of the group that contains the specified section or form. The
default is the current group.

Procedure Result Explanation

Logo (“janedoe”, “7500”,
“5500”);Refresh()

1 or 0 Defaults to add the graphic on the current section at
the location specified.

Logo(“Hancock”,
FieldX(“MyField”),
FieldY(“MyField”), “IMG”,
“FORM”)Refresh()

1 or 0 First locate the specified form in the current group.
Next locate IMG on that form. Finally, add the
graphic at the same location as the field, “MyField”.

Logo

301

FieldY on page 238

Refresh on page 354

RenameLogo on page 356

Graphics Functions on page 71

302

LOWER

Use this function to convert all alphabetic characters to lowercase characters and return
the result.

Syntax Lower (String, Length)

If the length you specify is longer than the string, the string is increased to the given
length. If the specified length is less than the string, the length of the string is used. The
string is not truncated.

Example Here are some examples:

(Assume the current field contains the text Your Name.)

See also Upper on page 415

String Functions on page 78

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of the input string.

Function Result Explanation

Lower () “your name” Defaults to the current field

Lower
(“Street
Address”)

“street address” Lowercases the given string

Lower (, 15) “your name “ Lowercases the current field and increases the length to 15

MailWIP

303

MAILWIP
Use this procedure/function to send the current work-in-process to another user via
email.

Syntax MailWIP (Address)

The system optionally returns one (1) on success or zero (0) on failure.

If the MailWIP procedure succeeds in sending the WIP via email, the status of the form
set will be changed to Transmitted and no longer appear as normal WIP in the sender’s list.

NOTE: If the WIP is already following a routing slip’s workflow, the form set will be sent
to the next recipient in the existing slip.

Example Here are some examples:

See also WIP Functions on page 88

Parameter Description

Address Enter a valid email address.
The system defaults to the email address window which lets the user select a valid
recipient. This window appears if the email address is omitted or incorrect.

Procedure Result Explanation

MailWIP() 1 or 0 The default presents the user with the email system’s
Address window, which lets the user choose the destination.

MailWIP(“TOM”) 1 or 0 If TOM is a valid email address for the email system, the
form set will be sent. Otherwise, the Address window
appears and the user chooses the correct address.

304

MAJORVERSION

Use this function to get the major version number of the system being executed.

Syntax MajorVersion ()

There are no parameters for this function.

Example Here is an example:

See also Miscellaneous Functions on page 73

MinorVersion on page 309

DAL Script Examples on page 35

Function Result Explanation

#MAJOR = MajorVersion () string Returns the system’s major version number.

MAX

305

MAX
Use this function to return the greatest decimal value from a group of fields which have
names that begin with common characters.

Syntax MAX (PartialName, Section, Form, Group)

The system calculates and returns the average of the values of all fields that begin with the
specified partial name. An example of field names that have a common start are:

Myfield1

Myfield2

Myfield20

Each of these fields is included if you specify the partial name using any of the leading
characters of myfield. The first field will be excluded if you enter myfield2, but will match
the other two field names.

The maximum is calculated by comparing all those fields that have values and have names
matching the criteria. If all the field values are negative, then the result will be the negative
number nearest the value zero. Note that zero (0) is a valid field value. Fields which have
never been given a value are excluded from the calculation.

NOTE: Include the PartialName parameter. Fields must have unique names in a section.
Using the default will probably not give the expected result, unless you created
the form and understand the naming conventions.

Example This table is used by the examples. The table represents the layout of two forms in the
same group. Both forms share two sections (IMG A and IMG B). Each section has fields
of the same name as a field in the other section.

Parameter Description

PartialName Enter a valid string. The string must be the common (prefix) portion of a set of
field names that occur on the current section. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

Field Section Form Group Value

MyField1 IMG A FRM A GRP 100.24

MyField2 IMG A FRM A GRP 200.16

306

Here are some examples:

(Assume the current field is MyField1, on the first section of the first form. Reference the
previous table for field values.)

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

MyField1 IMG B FRM A GRP 98.60

MyField2 IMG B FRM A GRP * no value yet *

MyField1 IMG A FRM B GRP 0.00

MyField2 IMG A FRM B GRP * no value yet *

MyField1 IMG B FRM B GRP 70.77

MyField2 IMG B FRM B GRP * no value yet *

Function Result Explanation

MAX () 100.24 Without any other information, the function will assume the
current field and section. There will only be one value included
in the search.

MAX
(“Myfield2”)

200.16 Again, there is only one field included in this result.

MAX(“MyField”) 200.16 In this example, the current section contains two fields that
begin with the name “MyField”. The second field has the
greatest value.

MAX(“MyField”,
“IMG B”)

98.60 Although two fields on IMG B have a matching name, only one
field actually has a value.

MAX(“MyField”,
, “FRM A”)

200.16 No section is specified in this example, so the entire form is
searched. Four fields match the name criteria, but only three
have values.

MAX(“MyField”,
“IMG B”, ,
“GRP”)

98.60 This example specifies a section and group, but no form. There
are four fields that match the name criteria, but only two have
values.

MAX(“MyField”,
, , “GRP”)

200.16 This example names the group without a form or section. Eight
fields meet the naming criteria, but only five fields actually have
values.

Field Section Form Group Value

MIN

307

MIN
Use this function to return the least decimal value from a group of fields which have
names that begin with common characters.

Syntax MIN (PartialName, Section, Form, Group)

The system calculates and returns the average of the values of all fields that begin with the
specified partial name. An example of field names that have a common start are:

Myfield1

Myfield2

Myfield20

Each of these fields is included if you specify the partial name using any of the leading
characters of myfield. The first field will be excluded if you enter myfield2, but will match
the other two field names.

The minimum is calculated by comparing all those fields that have values and match the
naming criteria. If all the values are negative, then the result will be the negative number
most distant the value of zero. Note that zero (0) is a valid field value. Fields which have
never been given a value are excluded from the calculation.

NOTE: Include the PartialName parameter. Fields must have unique names within a
section. Using the default will probably not give the expected result, unless you
created the form and understand the naming conventions.

Example This table is used by the examples. The table represents the layout of two forms in the
same group. Both forms share two sections (IMG A and IMG B). Each section has fields
of the same name as a field in the other section.

Parameter Description

PartialName Enter a valid string. The string must be the common (prefix) portion of a set of
field names. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

Field Section Form Group Value

MyField1 IMG A FRM A GRP 100.24

MyField2 IMG A FRM A GRP 200.16

308

Here are some examples:

(Assume the current field is MyField1, on the first section of the first form. Reference the
previous table for field values.)

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

MyField1 IMG B FRM A GRP 98.60

MyField2 IMG B FRM A GRP * no value yet *

MyField1 IMG A FRM B GRP 0.00

MyField2 IMG A FRM B GRP * no value yet *

MyField1 IMG B FRM B GRP 70.77

MyField2 IMG B FRM B GRP * no value yet *

Function Result Explanation

MIN () 100.24 Without any other information, the function will assume the
current field and section. There will only be one value included
in the search.

MIN
(“MyField2”)

200.16 Again, there is only one field included in this result.

MIN(“MyField”) 100.24 In this example, the current section contains two fields that
begin with the name MyField. The first field has the least value.

MIN(“MyField”,
“IMG B”)

98.60 Although two fields on IMG B have a matching name, only
one field actually has a value.

MIN(“MyField”,
, “FRM A”)

98.60 No section is specified in this example, so the entire form is
searched. Four fields match the name criteria, but only three
have values.

MIN(“MyField”,
“IMG B”, ,
“GRP”)

70.77 This example specifies a section and group, but no form. There
are four fields that match the name criteria, but only two have
values.

MIN(“MyField”,
, , “GRP”)

0.00 This example names the group without a form or section.
Eight fields meet the naming criteria, but only five fields
actually have values. The least of these five contains the value
0.00.

Field Section Form Group Value

MinorVersion

309

MINORVERSION

Use this function to get the minor version number of the system being executed.

Syntax MinorVersion ()

There are no parameters for this function.

Example Here is an example:

See also Miscellaneous Functions on page 73

MajorVersion on page 304

DAL Script Examples on page 35

Function Result Explanation

vers = MajorVersion() & ‘.’ &
MinorVersion()

a string Returns the system’s major and minor version
number concatenated together with a period used
as a separator.

310

MINUTE

Use this function to extract the number of minutes from a time.

Syntax Minute (Time, Format)

Example Here are some examples:

(Assume the current time is 03:05:09.)

See also Time Formats on page 80

Parameter Description

Time Enter a valid time string. The system assumes your entry is in the time format
specified in the Format parameter. The default is the current time.

Format Enter a valid time format string that describes the Time parameter. The default is
time format 1 (HH:MM:SS).

Function Result Explanation

Minute() 05 Defaults to the current time and extracts 05

Minute
(“03:07:09”)

07 Reads the given time and extracts 07

MLEInput

311

MLEINPUT

Use this function to create a window with a title, prompt message, and a place for a user
to enter multiple lines of text, such as the one shown here:

This function creates a window you can use to gather information from a user. The text
entered through this window is returned as a string. If no text is assigned, or if the user
closes the window by clicking on Cancel, the returned string will be empty.

Syntax MLEInput (Prompt, Title, Length, DefText)

If the user presses ENTER to type on a new line, the system replaces the new line character
with a \\n when it returns the text. You can leave the result like this, so you know where
the line breaks are supposed to be, or you can send it to the MLETranslate function,
which will translate the \\n into whatever characters you want.

NOTE: Multi-line variable fields cannot accept the data captured by the MLEInput
function without the data first being translated. Before you assign the output
from a MLEInput function to a multi-line variable field, you should do the
following.

VALUE = MLETranslate (VALUE, "\n");

Where VALUE represents the text returned from the MLEInput statement.
This will change all of the \\n occurrences to \n, which is accepted by multi-line
variable fields.

Example Assume the user enters the following text (in quotes) into the window:

“line 1", Enter key, “line 3", “line 4", Entry key, and then “line 6"

Parameter Description

Prompt Enter a text string to assign as the prompt for the field

Title Enter a text string to assign as the title of the window.

Length Enter the maximum input text length. THe default is 1024.

DefText Enter a text string to assign as the default input data.

312

Function Results Explanation

input_data = MLEInput (“Enter
comments; up to 1024
characters.”, “Comments
Input”);
SetFld (input_data, variable”);

line 1\\n\\nline
3\\nline 4\\n\\nline 6

After you enter the information
and click Ok, the DAL variable,
'input_data', contains the string
in the result column.
This example uses an A/N
variable field.

input_data = MLEInput (“Enter
your comments.”, “Comments
Input”, , @(“ variable”));

1. Window:

line 1

blank line 1

line 3

line 4

blank line

line 6

2. Input_data
line 1\\nNow is the
time\\nline 3\\nline 4
gray area\\n\\nline 6

(Assume this DAL script is
executed after the example
above.)
The window would contain the
data under item 1.
If you enter:
- Now is the time in blank line 1
- gray area: after 'line 4 '
and click Ok. The DAL variable,
'input_data', will contain the
string under item 2.
This example uses an A/N
variable field.

input_data = MLEInput (“Enter
comments; up to 1024
characters.”, “Comments
Input”);

Null string Assume you clicked Ok or
Cancel without entering any
data. The system stores a null
string in the variable.

input_data =MLETranslate
(MLEInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”), “\n”);
SetFld (input_data, “output”);

1. DAL internal variable

line 1\n\nline
3\nline
4\n\nline 6

2. Multi-line variable
field, output:

line 1

blank line

line 3

line 4

blank line

line 6

After you enter the assumed
information and click Ok, the
DAL variable, 'input_data',
contains the string shown in
item 1.
The data in the multi-line
variable field, output, contains six
lines, as shown in item 2.
This example uses a multi-line
variable field.

MLEInput

313

See also MLETranslate on page 314

Documaker Workstation Functions on page 59

input_data = MLETranslate
(MLEInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”, ,
@(“output”)), “\n”);
SetFld (input_data, “output1”);

1. Window

line 1

blank line

line 3

line 4

blank line

line 6

2. Input_data
line 1\nNow is the
time\nline 3\nline 4
gray area\n\nline 6
3. Multi-line variable
output1:

line 1

Now is the
time

line 3

line 4 gray
area

blank line

line 6

(Assume this DAL script is
executed after the example
above.)
The window contains the data
under item 1 after the DAL
script is executed.
Assuming you entered:
- Now is the time in blank line 1
- gray area after the data 'line 4 '
and then clicked Ok, the DAL
internal variable, 'input_data',
contains the string shown in
item 2.
The multi-line variable field,
output1, contains the data shown
in item 3.
This example uses a multi-line
variable field.

Function Results Explanation

314

MLETRANSLATE

Use this function to translate the \\n characters in a data string created by the MLEInput
function. This function translates those characters into whatever characters you want.

Syntax MLETranslate (String, ReplaceChar)

The system returns the translated data string for display, storage, or both.

If the user presses ENTER to type on a new line, the system replaces the new line character
with a \\n when it returns the text. You can leave the result like this, so you know where
the line breaks are supposed to be, or, you can send it to the MLETranslate function,
which will translate the \\n into whatever characters you want.

NOTE: Multi-line variable fields cannot accept the data captured by the MLEInput
function without the data first being translated. Before you assign the output
from a MLEInput function to a multi-line variable field, you should do the
following.

VALUE = MLETranslate (VALUE, "\n");

Where VALUE represents the text returned from the MLEInput statement.
This will change all occurrences of \\n to \n, which is accepted by multi-line
variable fields.

Example Assume the user enters the following text (in double quotes) into the window.

“line 1", Enter key, “line 3", “line 4 “, Entry key, and then “line 6"

Parameter Description

String Enter the text string returned from the MLEInput function.

ReplaceChar Enter a text string to replace each set of \\n characters in a returned MLEInput
data string.

Function Results Explanation

input_data = MLETranslate
(MLEInput (“Enter comments”,
“Comments Input”), “*”);
SetFld (input_data, variable”);

line 1**line 3*line 4 **line
6

After you enter the assumed
information and click Ok, the
DAL variable, 'input_data',
contains the string in the result
column.
This example uses an A/N
variable field.

MLETranslate

315

input_data = MLETranslate
(MLEInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”,
 , @(“ variable”)), “#”;

1. Multi-line edit window
line 1**line 3*line 4 **line
6
2. Input_data
line 1 Now is the time.
#line 3*line 4 gray
area**line 6

(Assume this DAL script is
executed after the example
above.)
The window contains the data
under item 1.
Assuming you deleted the first
two asterisks and entered Now
is the time. followed by the entry
key. Plus added gray area after
line 4 and then clicked Ok. The
DAL variable, 'input_data',
would contain the data under
item 2.
This example uses an A/N
variable field.

input_data = MLETranslate
(MLEInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”), “*”);

Null string Assume you clicked Ok or
Cancel without entering any
data. The system stores a null
string in the variable.

input_data =MLETranslate
(MLEInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”), “\n”);
SetFld (input_data, “output”);

DAL internal variable
 line 1 \n\nline 3 \nline 4
\n\nline 6 \n
Multi-line variable field

line 1

blank line

line 3

line 4

blank line

line 6

After entering the assumed
information and clicking Ok,
the DAL variable, 'input_data',
contains the data shown in
item 1.
The data in the multi-line
variable, output, would contain
six lines as shown in item 2.
This example uses a multi-line
variable field

Function Results Explanation

316

See also MLEInput on page 311

Documaker Workstation Functions on page 59

input_data = MLETranslate
(MLEInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”, ,
@(“output”)), “\n”);
SetFld (input_data, “output1”);

1. Window
 line 1
 blank line
 line 3
 line 4
 blank line
 line 6
2. Input_data
line 1 \nNow is the time.
\nline 3 \nline 4 gray area
\n\nline 6 \n
3. Multi-line variable
output1

line 1

Now is the
time.

line 3

line 4 gray
area

blank line

line 6

(Assume this DAL script is
executed after the example
above.)
After executing the script, the
window contains the data
shown in item 1.
Assuming you entered:
Now is the time. for blank line 1
area, and added gray area, after
the data 'line 4 ' and then
clicked Ok.
The DAL internal variable,
'input_data', would contain the
data string shown in item 2.
The multi-line variable field,
'output1', would contain the
data shown in item 3.
This example uses a multi-line
variable field.

Function Results Explanation

MOD

317

MOD
Use this function to return the remainder from modular arithmetic.

Syntax MOD (Numerator, Denominator)

The system returns the integer remainder from an integer division.

NOTE: If you enter zero (0) as either the numerator or denominator, the system returns
zero. Decimal or string input parameters are converted to integer values prior to
the calculation.

Example Assume you have the following entry in the SETRCPTBL.DAT file for the form trigger
being processed. Also assume there are 30 records in the extract file that match the search
mask.

;RP10;CIS;qa_f1550;;;Customer(1);;1,M;25;0;1;;DALTrigger;F1550;

Here is an example:

BeginSub F1550

#rec = CountRec("1,F1550,31,Data")

#remaining = MOD(#rec, TriggerRecsPerOvFlw())

While(#remaining > 0)

* write additional records

Write_fm()

#mod -= 1

Wend

Return(#rec)

EndSub

In this example, the MOD function returns the integer remainder of 5. If no extract
records matched the search mask, the system would have returned zero (0).

See also Mathematical Functions on page 72

Parameter Description

Numerator Enter the value you want used as the numerator.

Denominator Enter the value you want used as the denominator.

318

MONTH

Use this function to determine the number of the month in a given date and return the
number.

Syntax Month (Date, Format, Locale)

The system determines the month portion of the given date based on the format you
specify. This function is often used with the MonthName function.

Example Here are some examples:

(Assume the current date is 07/01/09.)

See also Date Functions on page 51

Locales on page 55

Date Formats on page 52

Locales on page 55

DateAdd on page 183

MonthName on page 319

Parameter Description

Date Enter a valid date string. The system assumes your entry is in the date format
specified in the Format parameter. The default is the current date.

Format Enter a valid date format string that describes the Date parameter. The default is
date format 1.

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INI option. If the Locale INI option offers no value, the system
defaults to USD (United States/English).

Function Result Explanation

Month () 7 The parameter defaults to the current date.

Month (“09/138”,
“I”)

5 The given date (09/138) in the date format I is the equivalent
of May 18, 2009. Therefore the number of the month (5) is
returned.

datestring=
DateAdd(, , ,3);
Month(datestring)

10 First the DateAdd function defaults to the current date and
adds three months. The resulting date of October 1, 2009 is
returned to the target variable datestring. The Month function
then returns the number of the month of October (10).

MonthName

319

MONTHNAME

Use this function to find the name of the month in a given date and return that name.

Syntax MonthName (Month, Locale)

This function is most often used with the Month function. The Month function extracts
the month number from a given date.

Example Here are some examples:

(Assume the current date is 07/01/09.)

See also Date Functions on page 51

Locales on page 55

Month on page 318

Parameter Description

Month Enter a valid month value. For example, enter one (1) for January or 12 for
December. The default is the current month.

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INI option. If the Locale INI option offers no value, the system
defaults to USD (United States/English).

Function Result Explanation

Return(MonthName ()) July Defaults to the current month.

Return(MonthName
(11))

November Returns November, which corresponds to the given
parameter (11).

Return(MonthName
(Month (“09/138”, “I”)
))

May First the Month function determines that the month
number for the given date is 5. (09/138 is equivalent to
May 18, 2009) Then MonthName returns the
corresponding month name of May.

320

MSG
Use this procedure/function to create a message window with an Ok button. This
procedure does not return a value.

Syntax MSG (MsgLine1, MsgLine2, MsgLine3, Title)

This procedure provides the user with information. The message window is created as a
standard message window.

This procedure displays a message each time the script executes. Therefore, use this
procedure only in scripts that execute once during entry. Do not use the MSG procedure
for scripts that execute each time a user tabs to a new field.

NOTE: A DAL script executes once during entry. A DAL calc executes each time the
user tabs to a new field. You make the DAL script or DAL calc designation in
the Properties window.

This is also useful in Documaker Workstation when debugging scripts.

Example Here are some examples:

See also Documaker Workstation Functions on page 59

Parameter Description

MsgLine1 Enter the first line of the message.

MsgLine2 Enter the second line of the message.

MsgLine3 Enter the third line of the message.

Title Enter a title for the message window.

Procedure Result Explanation

MSG (“Sample Line 1”,
“Sample Line 2”, “Sample Line
3”, “Sample Message”)

“Sample Message” is the title of the message.
“Sample Line 1”
“Sample Line 2”
“Sample Line 3” is the message to the user.

MSG (“Don't forget to inform
the customer about the luxury
tax.”)

The message appears without a title.

NL

321

NL
Use this function to retrieve a string that contains a new line character sequence. This is
useful when you are creating output text messages that contain line breaks.

NOTE: On Windows, this function returns a carriage return/line feed pair. On UNIX, it
returns a line feed. The function works in both Documaker Server and
Workstation.

Syntax NL ()

There are no parameters for this function.

Example This example shows how you can use this function with the Print_It function:

Print_It("This is line one." & NL() & "This is line two.")

In this example, two lines are output to the command line during Documaker Server
processing. Without this function, you would have to include two Print_It statements.

This is line one.

This is line two.

This example shows how you can create multi-line text area messages:

data = ?("cus_name") & NL() & ?("state") & ", " & ?("zip")

SetFld(data, "cus_ss")

In this example, two lines are stored in a multi-line text area on separate lines. Without
this function, you would have to define the multi-line text area, a fixed-size font, and the
script would have calculated the number of spaces to pad to the first line to make sure the
line wrapped properly.

John A. Smith

CA, 81234-4444

You can also use the NL function when you are creating comment strings you want
inserted into a print stream using the AddComment procedure.

See also String Functions on page 78

322

NUM
Use this function to return the numeric value of a field. On numeric formatted fields, this
function operates the same as the @ function, however, NUM automatically converts a
non-numeric field into its numeric content.

Syntax NUM (Field, Section, Form, Group)

The system uses the parameters provided to search for one field on a section and return
that field’s data as a number. The field does not have to be defined as a numeric data type.

Example Here are some examples:

(Assume the current field value is ABC1234.23XYZ and is named MyField. Also, assume
that a second occurrence of MyField appears on the form, MyForm, and contains the
value automobile.)

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

@ on page 109

Parameter Description

Field Enter the name of a section field.The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Function Result Explanation

NUM() 1234.23 Returns the value in the current field as a number. Notice that
any non-numeric value is removed before returning the value.

NUM
(“MyField”)

1234.23 Returns the value in the named field, located on the current
section.

NUM(“MyField\
2”, , “MyForm”)

0 Since the second occurrence of MyField on this form does not
contain any numeric values, the result is zero (0).

Numeric

323

NUMERIC

Use this function to test if a string contains a valid numeric value. The system returns one
(1) if the string is a valid number and zero (0) if not.

Syntax Numeric (String)

The system returns true or false depending on whether the string parameter contains a
valid numeric value.

Leading or trailing spaces are removed before the string is evaluated. A numeric value
contains only numbers, a sign (leading or trailing), and a single decimal point.

Example Here are some examples:

(Assume the current field value is -101.564)

See also Mathematical Functions on page 72

Parameter Description

String Enter a valid string. The default is the value of the current field.

Function Result Explanation

Numeric () 1 Defaults to the current field and determines a true
statement, such as if the field contains a valid numeric value.

Numeric
(“123T456”)

0 Determines a false statement, such as if the field does not
contain a valid numeric value.

IF Numeric
(“4633392”)
result = “Yes”;
ELSE
result = “No”;
END
Return(Result)

“YES” The specified value is numeric therefore the variable result
will be assigned Yes.

324

NUMTEXT

Use this function to convert a numeric value into a series of descriptive words.

Syntax NumText (Number, DollarWord, CentWord, DeciMode)

The system returns the written word equivalent of a numeric value.

The system attempts to remove formatting information from the parameter number. If
the value after deformatting is not a valid number, the function returns an empty result.

This function is basically designed to produce the text that might appear on a bank check.
The default type strings are dollars and and cents. When the default descriptions are used,
this function uses the singular word dollar or cent when the associated value is 1, otherwise
it uses the plural text. Alternate descriptions provided as parameters are not changed for
any value amount.

The optional decimode parameter is an integer value from 1 to 4. This parameter includes
or suppresses the zero (0) decimal value. You can also use this parameter to specify if the
decimal amount should be presented as a number or spelled out.

NOTE: This function only supports two decimal places. Additional places are truncated
without rounding.

Example Here are some examples (assume the current field value is 1641.56):

Parameter Description

Number Enter an amount. The default is the value of the current field.

DollarWord Enter the word you want the system to use to describe the main unit of
currency. The default is:

“dollars and”

CentWord Enter the word you want the system to use to describe the secondary unit of
currency. The default is:

“cents”

DeciMode Choose from these options:
1 - numeric decimal amount
2 - spell decimal amount
3 - suppress zero, numeric decimal amount
4 - suppress zero, spell decimal amount
The default is one (1).

Function Result Explanation

NumText () One thousand six hundred forty-
one dollars and 56 cents

Defaults to dollars and cents
and numeric decimal result.

NumText(, , , 2) One thousand six hundred forty-
one dollars and fifty-six cents

Decimal mode 2 spells the
decimal amount.

NumText

325

If you include Dollarword and Centword and the number does not contain a decimal, the
exact content you specify in Dollarword is printed and the system does not distinguish the
number from being singular or plural. The Dollarword and Centword are printed exactly
as specified. Notice the difference in the default format (dollars and cents) in the last two
examples.

See also String Functions on page 78

FrenchNumText on page 247

NumText(12.00, , ,3) Twelve dollars A decimal mode of 3
suppresses the zero decimal.

NumText(34.55,”meters
and”,”centimeters”,3)

Thirty four meters and 55
centimeters

Demonstrates substituting
alternate references.

NumText(1.00,,,) One dollar

NumText(1.01,,,) One dollar and one cent

NumText(1.00,”meters
and”,”centimeters”,3)

One meters and

NumText(1.01,”meters
and”,”centimeters”,3)

One meters and one centimeters

Function Result Explanation

326

PAD
Use this function to add trailing spaces or characters and return the result.

Syntax PAD (String, Length, Char)

The system returns the string created by padding parameter 1 with the characters from
parameter 3.

If the length specified in parameter 2 is longer than the string, the result is increased to
the integer length you specified. If the specified integer length is less than the string, the
length of the string is maintained.

The string is not truncated. All leading and trailing spaces are removed from the input
string before the PAD function.

Example Here are some examples:

(Assume the current field contains the text Last Name Only.)

See also String Functions on page 78

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of value in the
String parameter.

Char Enter a valid string that contains the pad characters you want to use. The default
is the space character.

Function Result Explanation

PAD(“may “, 9) “may “ Pad the result string to a length of 9. The pad character
defaults to the space character.

PAD (, 20, !) “Last Name
Only!!!!!!”

Defaults to the current field, and adds the pad character (!)
until the length reaches 20.

PAD () “Last Name
Only”

Defaults to the current field; No length was specified;
therefore the field remains the same.

PAD (“Ten
dollars “, 15, *)

“Ten
dollars****”

Adds the pad character (*) to the end of the specified
parameter until the length reaches 15. Notice that the trailing
spaces were first removed and then padded with the new
character.

PageImage

327

PAGEIMAGE

Use this function to return the name of a section on a given page number within the form
set or form. If you include the name of a recipient as a parameter, the system will filter the
sections by that name. Once you have a section name, you can use other DAL functions
to query the section, to insert a new section, or to delete the section.

Syntax PageImage (Page, Recipient, Form, Group)

The name returned by this function also includes the occurrence value if the section occurs
more than once. For instance, if a section named, MySection, is located on the given page,
but this is the second occurrence of the section within the named form, the name returned
will be MySection\2.

See also PageInfo on page 328

Name Functions on page 74

Parameter Description

Page Include this parameter to indicate the specific page where you want to locate a
section. If you omit this parameter, a section from page one is located. Depending
upon the remaining parameters, this page will be the page within the entire form
set, or within a given form.

Recipient Include this parameter to filter the sections located by that recipient. If you omit
this parameter, the name of the first section on the requested page is returned.

Form Include this parameter if you want the system to first locate the specified form and
then use the Page parameter to find the specified page within that form. If you
omit this parameter, the Page parameter is based on a page located by starting at
the first page of the form set or group (if the Group parameter is specified).

Group Include this parameter to tell the system to first locate a specific group. If you also
include the Form parameter, the system will find that form in that group. If you
omit the group but include the form, the system looks for that form in the current
group — which is identified by the current field or section executing the script. If
you include the group but omit the form, the system uses the Page parameter to
return that page in the specified group.

328

PAGEINFO

Use this function to get information about the page of a form you specify. This
information includes height, width, and orientation.

Syntax PageInfo (Prefix, Page, Recipient, Section, Form, Group)

The Section, Form, and Group parameters are optional and when used will work together
to locate the starting page for the search. Here are some examples:

• If you name a section, but no form or group, the assumption is the section is on the
current form.

• If you name a form, without a group, the assumption is the form must be within the
current group of forms.

• If you name a section and a group, but no form, the assumption is the section can
occur on any form within that group.

• If you omit the section, form, and group parameters the search starts from the
beginning of the document set.

Once the requested page is located, the system assigns the page information to DAL
variables using the Prefix parameter. If these variables do not exist in DAL, the system
creates them for you. The system creates four internal variables: prefix.height, prefix.width,
prefix.landscape, and prefix.paper. If these variables exist, the system modifies them with
the new information.

For example, a call like this will create four variables.

PageInfo(“MYPAGE”);

Parameter Description:

Prefix This parameter identifies a prefix for creating the variable names to contain the
page information.

Page (Optional) This parameter determines the relative page number that should be
examined, once the starting page is located by examining the remaining
parameters. The default is the first page located.

Recipient (Optional) This parameter names a specific recipient that must be used on a
section of the page located. If you omit this parameter, the function matches the
first page identified by the remaining search criteria.

Section (Optional) This parameter names a section that should be found to identify the
page.

Form (Optional) This parameter names a form that contains the page to be found.

Group (Optional) This parameter names a group that must contain the page to be found.

Variable Description

MYPAGE.Height Contains the height of the page in FAP units (2400 DPI).

MYPAGE.Width Contains the width of the page in FAP units (2400 DPI).

PageInfo

329

Note that for landscape pages, the height and width values reflect the rotation of the width
and height. For instance, non-landscape letter documents return a height of 26400 and a
width of 20400. Landscape letter documents return a height of 20400 and a width of
26400.

The page size (height and width) is determined by finding the first section on a page with
the required recipient. If no recipient is specified, the first section on the page is used. The
form pages within a document do not have to be the same size. Also note that if the first
section on a page is a custom size, the width and height will reflect the best values.

Generally when a section is a custom size, the actual page size is found in the form
definition. If, however, the form size (height or width) is smaller than the corresponding
section size, then the larger of the values is returned.

Also remember since page size is determined by the first section designated for a given
recipient, it is possible for the same page to have a different size for different recipients.

The PageInfo function returns a value if used in an expression that requires it. The
possible return values are zero (0) if the requested page could not be found, or non-zero
if the page is found.

Possible reasons for a page not to be located include:

• The page number is outside the range of pages for the given search criteria. For
instance, you ask for page three of a form that only has two pages.

• The recipient cannot be located within the document search criteria.

• The section, form, or group (or combination thereof) cannot be located within the
specified document.

See also PageInfo on page 328

Page Functions on page 75

MYPAGE.Landscape Contains one (1) if the page is landscape, otherwise zero (0).

MYPAGE.Paper Contains a value that corresponds to a paper size table entry.

Variable Description

330

PAGINATEFORM

Use this function/procedure to apply section origins and re-paginate the form if
necessary. During this re-pagination, the function will create or delete pages as needed.

NOTE: The AddImage and DelImage DAL functions include a parameter (Paginate)
which you can use to force re-pagination after the affected section has been
manipulated.

Syntax PaginateForm (Form, Group)

You can call PaginateForm as a function or procedure. As a function, it returns a one (1)
if the requested form is located or a zero (0) if it could not be located.

Note that if the form is found and paginated, there may not be any visible change to the
document. The form layout is determined when you design the form and by the
application of section origin rules.

See also AddImage on page 122

DelImage on page 211

Page Functions on page 75

Parameter Description

Form (Optional) If you omit this parameter, the current form controlling the active
script is paginated. If you include the name of a form, that form is located and
paginated.
You can include the occurrence indicator (a backslash followed by a number, such
as BIZ\3) to indicate a specific occurrence of the form to find and paginate. If
you do not specify an occurrence with the name, the first occurrence of the form
is paginated.

Group (Optional) This parameter identifies the Key2 or GroupName2-level parent that
contains the form. This is sometimes referred to as the line of business that contains
the form
If you omit the Group parameter, the system tries to locate the named form within
the current group that is controlling the execution of the script.

ParseListCount

331

 PARSELISTCOUNT

Use this function to count the indexed components within the formatted text.

NOTE: Use the ParseListCount and ParseListItem functions when accepting tokenized
(comma or semicolon-delimited) data, such as data from a spreadsheet program
or other application. These are sometimes referred to as CSV (comma separated
value) files.

Syntax ParseListCount (String, Separator)

The system returns the number of formatted items found within the String parameter. If
the String parameter text starts with delimiter characters, those characters are skipped.

If you do not have at least a space character between delimiters, this will not be identified
as a separate index item.

NOTE: You can use the ParseListItem function to return the text components parsed
from the formatted text.

Example For these examples, assume xString = “A,B;C”

value = ParseListCount(xString)

The value is 3.

value = ParseListCount(xString,”;”)

The value is 2. In this example the parameter overrides and assigns only a semicolon as a
valid separator. Therefore, there are two items within this string.

For these examples, assume xString = “;A;,B,;C”

value = ParseListCount(xString)

The value is 3. If the formatted string starts with separator characters, these characters are
skipped. Note that adjacent separators are treated as a single separation.

For these examples, assume xString = “; ,A; ,B;”

value = ParseListCount(xString)

The value is 4. Note the intervening character – a space - between some of the separator
characters.

value = ParseListCount(xString,”;”)

Parameter Description

String Enter the formatted string you want the system to search and parse.

Separator Enter the list of character separators used within the formatted text parameter. If
you omit this parameter, the system uses semicolons and commas.

332

The value is 2. This overrides and assigns only a semicolon as the format separator,
therefore there are only two components. Also note that although there are three
separators, the first one that starts the string and the final one that ends the string are also
ignored.

See also ParseListItem on page 333

String Functions on page 78

ParseListItem

333

PARSELISTITEM

Use this function to return indexed components from the formatted text.

NOTE: Use the ParseListCount and ParseListItem functions when accepting tokenized
(comma or semicolon-delimited) data, such as data from a spreadsheet program
or other application. These are sometimes referred to as CSV (comma separated
value) files.

Syntax ParseListItem (String, Item, Separator)

The return value is a string of text. If the formatted text contains leading or trailing spaces
on items formatted within it, they are not removed. You can use the Trim function on the
returned text if you do not want the spaces.

If the first parameter text starts with delimiter characters, they will be skipped. Because
the function will return spaces, you know when you have exceeded the number of items
formatted within the string when you get an empty string returned.

NOTE: If you do not have at least a space character between delimiters, this will not be
identified as a separate index item.

Example Here are some examples. Assume xString = “A,B;C”

value = ParseListItem(xString)

The value is A.

value = ParseListItem(xString,3)

The value is C because the default separators include both commas and semicolons.

value = ParseListItem(xString,1,”;”)

The value is A,B. Note in this example the third parameter overrides and assigns only the
semicolon as a valid separator. Therefore, the first item includes all text up to the first
semicolon.

For these examples, assume xString = “;A;,B,;C”

value = ParseListItem(xString)

Parameter Description

String Enter a formatted string to search and parse.

Item Enter the number of the item you want from within that formatted string.
If you omit this parameter, the first item parsed from the formatted text is
returned.

Separator Enter a list of character separators used within the formatted text parameter.
If you omit this parameter, the semicolons and commas are used.

334

The value is A. Note that if the formatted string starts with separator characters they are
skipped.

value = ParseListItem(xString,2)

The value is B. Note again how adjacent separators without intervening characters (or
space) are skipped. Therefore the semicolon and comma (;,) between the A and B are
treated as a single separation.

value = ParseListItem(xString,3)

The value is C. Note again how adjacent separators without intervening characters (or
space) are skipped. Therefore the semicolon and comma (;,) between the A and B are
treated as a single separation and the semicolon and comma (;,) between the B and C are
also treated as a single separation.

value = ParseListItem(xString,3,”,”)

The value is ;C. Note the third parameter overrides and assigns only the comma as a valid
separator. Therefore the third index item includes all text following the second comma to
the end of the string (because no other separators were encountered).

For these examples, assume xString = “; ,A; ,B;”

value = ParseListItem(xString)

The value is a space. Note that there is at least one intervening character — a space —
between the first set of separator characters.

value = ParseListItem(xString,2)

The value is A.

value = ParseListItem(xString,3)

The value is a space.

value = ParseListItem(xString,4)

The value is B.

value = ParseListItem(xString,5)

The value is an empty string because this index item exceeds the list of items provided.

See also ParseListCount on page 331

String Functions on page 78

PathCreate

335

PATHCREATE

Use this function to create the parameter subdirectory path if it does not already exist. The
function assumes all of the text you pass in is a path and does not remove any of it before
it tries to verify or create the path.

The function creates multiple subdirectories as necessary in an attempt to satisfy the
request.

NOTE: The PathCreate and PathExist functions let you create paths and verify that paths
exist. These are useful, for instance, if you are trying to create printed output and
organize that output into subdirectories on disk. You can do this using one of the
print callback methods that support a DAL script.

Syntax PathCreate (Path)

The system returns zero (0) if it cannot create the path requested. Anything else means
the path now exists, but is not an indication that it had to be created.

NOTE: This function is not valid on the z/OS operating system.

See also PathExist on page 336

File and Path Functions on page 68

Parameter Description

Path Enter the full path you want the system to verify or create.

336

PATHEXIST

Use this function to take the parameter path you provide and check for its existence. This
function does not create subdirectories.

NOTE: The PathCreate and PathExist functions let you create paths and verify that paths
exist. These are useful, for instance, if you are trying to create printed output and
organize that output into subdirectories on disk. You can do this using one of the
print callback methods that support a DAL script.

Syntax PathExist (Path)

The system returns zero (0) if the path is invalid. Anything else indicates the path you
provided exists.

NOTE: This function merely checks for the existence of the path you specified. Provided
the path does exist, this is not an indication that the process will be able to access
or create files within that path.

See also PathCreate on page 335

File and Path Functions on page 68

Parameter Description

Path Enter the full path you want the system to verify.

POW

337

POW
Use this function to raise a number to an exponential power.

Syntax POW (Base, Exponent)

The system returns a one (1) on success or a zero (0) on failure.

This function handles calculations such as those needed to figure annuities and interest
rates. Using the function, a decimal number is returned from a base number that has been
raised to an exponential power. Values can contain up to 14 digits.

The function handles both positive and negative integer or decimal values for the base
number and exponent.

Example Here is an example:

See also Mathematical Functions on page 72

Parameter Description

Base Enter the base number, positive or negative, to be raised to an exponential
power. The default is 1.00.

Exponent Enter the exponent (power) to which the base number will be raised. The default
is zero (0).

Function Result

POW (2, 3) 8

POW (2, -3) 0.125

POW (34.5, 3.14) 67414.289005316

338

PRINT

Use this procedure/function to print the entire document. Optionally this procedure
returns one (1) on success or zero (0) on failure.

Syntax Print ()

There are no parameters for this procedure.

This procedure performs a similar action to choosing print from the menu. The user is
shown the Print window from which he or she can choose printer options.

Example Here is an example:

See also WIP Functions on page 88

Procedure Result Explanation

Print () 1 or 0 (zero) Print the current form set.

Print_It

339

PRINT_IT
Use this procedure to print a string to the console.

Syntax Print_It (Text)

NOTE: This is useful when debugging scripts in Documaker Server.

Example Here is an example:

See also DAL Script Examples on page 35

Miscellaneous Functions on page 73

Parameter Description

Text Enter the string you want the system to print to the console.

Procedure Result Explanation

If (HaveGVM(‘Company’))
 Print_It (GVM(‘Company’)
)
End

a string The content of the GVM variable Company is
printed to the console.

340

PRINTERCLASS

Use this function to find out the type of print stream the system is generating.

Syntax PrinterClass ()

There are no parameters for this function.

Example Here are some examples. Assume these INI options exist:

< Printer >

 PrtType = AFP

< PrtType:AFP >

PrintViewOnly = Yes

OnDemandScript = OnDemand

See also AddComment on page 117

DAL Script Examples on page 35

Printer and Recipient Functions on page 76

Function Result Explanation

type = PrinterClass () a string The DAL target variable, type will contain
AFP.

If (PrinterClass() = ‘PrtType:AFP’)
Then AddComment(AppIdxRec())
End

a string If the print type is AFP then execute
following statement.

PrinterGroup

341

PRINTERGROUP

Use this function to retrieve the group name that is being used to generate the print
stream. This name is stored in the INI file.

Syntax PrinterGroup ()

There are no parameters for this function.

Example Here are some examples. Assume these INI options exist:

< Printer >

 PrtType = AFP

< PrtType:AFP >

 PrintViewOnly = Yes

 OnDemandScript= OnDemand

See also GetINIString on page 256

DAL Script Examples on page 35

Printer and Recipient Functions on page 76

Function Result Explanation

G_name = PrinterGroup() PrtType:AFP Retrieves the printer group name.

ScriptName = GetINIString
(, PrinterGroup(),
‘OnDemandScript’)

OnDemand Contains the name of the DAL script
you want to execute.

342

PRINTERID
Use this function to return the active printer ID assigned during a Documaker Server
processing run. The printer ID is a string of text associated with the current batch output
and normally determined via INI option during a batch run. The IDs are associated from
the PrinterInfo control group with each batch printer definition.

You can use this ID, for instance, when naming print file. For example, you might want
all the files from one printer ID in a separate location or have the names prefixed in a
certain manner.

Syntax PrinterID ()

There are no parameters for this function.

NOTE: The printer ID is only valid during a batch print operation and calling the
function at other times returns the last value assigned or an empty string.

See also Printer and Recipient Functions on page 76

PrinterOutputSize

343

PRINTEROUTPUTSIZE

Use this function to get the approximate size of the current print output file during a batch
print operation.

Syntax PrinterOutputSize ()

There are no parameters for this function.

This function is only available during Documaker batch process operations, such as
GenPrint, and only returns a non-zero value if a print stream is actively being built and
written to a physical file on disk.

NOTE: When printing through the Windows GDI device, there is no physical file and
therefore the value returned is unreliable and may be zero.

See also Printer and Recipient Functions on page 76

344

PUTFORMATTRIB

Use this function to save the named attribute and information to a form within your
document set. You can add new attributes via this function or update an attribute on a
form you specify.

NOTE: Adding or changing a form attribute only affects the current document set. You
cannot update the contents of a FORM.DAT or FOR file from a DAL script.
Once changed, the attribute will stay with your form even if saved to WIP or
archived.

Syntax PutFormAttrib (Name, Data, Form, Group)

If you omit both the Form and Group parameters, the system chooses the current form,
based on where the script executes. During Entry (via the Workstation or the plug-in) this
will be the form that contains the DAL script. During Documaker Server processing, the
first logical form found within the document set is the current form, unless the script is
executed from a section or field rule.

If you include the Form parameter, but omit the Group parameter, the system looks for
the form within the current group of forms, as defined by where the script executes.
During Entry (via the Workstation or the plug-in) this is the group that contains the form
where the script executes. During Documaker Server processing, the first logical group
found within the document set is the current group, unless the script is executed from a
section or field rule.

If you omit the Form parameter but include the Group parameter, the system locates the
first form within the group you specified.

If the function is successful in adding the attribute to a form, it returns a one (1). If the
function is not successful, it returns a zero (0). A failure typically means that based on the
form and group name parameters, the function could not locate the form.

Parameter Description

Name Enter the name of the form attribute (metadata).

Data Enter the value associated with the form attribute (metadata). The default is an
empty string.

Form Enter name of a form to retrieve data from. The default is the current form.

Group Enter name of the group that contains the specified form. The default is the
current group.

PutFormAttrib

345

Example In this example assume the form 1111 has this metadata:

Here is an example:

xx=PutFormAttrib("Restriction", "Must be 18 or older", "1111")

After execution, the form contains the following:

Keep in mind...

• The name of a user-defined attribute must follow the naming convention used for
Documaker objects. This means the name cannot include semicolons (;), backslashes
(\), equals signs (=), or two pipe symbols in sequence (||). You can use
underscores (_), hyphens and dashes (-), and periods or full stops (.).

• You cannot use a pipe symbol (|) as the first character in a name or value.

• The value size cannot exceed 1000 characters for each value.

• The names Category and Key3 are reserved. Avoid using these names.

See also GetFormAttrib on page 252

Have Functions on page 69

Name Value

Offer Good until cancelled

Codes R4,79, ZW

Name Value

Offer Good until cancelled

Codes R4,79, ZW

Restriction Must be 18 or older

346

PUTINIBOOL

Use this procedure/function to store a Boolean value in an INI control group and option
Boolean variable.

Syntax PutINIBool (Context, Group, Option, Default)

The system returns one (1) if no error occurred during execution and zero (0) if there was
an error.

This procedure stores a Boolean value in the specified control group and option Boolean
variable.

If you omit context name and the control group and option does not exist in any of the INI
files, the procedure stores the Boolean value in the FSIUSER.INI file.

If there are multiple control groups and options with the same name, the procedure stores
the Boolean value in the first INI control group and option variable equal to the specified
control group and option name.

If a context name is present, the procedure only stores the Boolean value in the control
group and option variable associated with the context name.

Example Assume an INI file, TEST1.INI, was loaded with the context name, MVF. The
TEST1.INI file contains this control group and option:

< Control >

LogEnabled = 1

In addition, the FSIUSER.INI file contains this control group and option:

< Control >

LogEnabled = 0

Plus, the FSISYS.INI file contains this control group and option:

< Control >

LogEnabled = 1

Based on this scenario, the following table shows and explains several possible results.

Parameter Description

Context (Optional) Enter the name (valid string) associated with a set of INI control
groups and options loaded into cache memory.

Group Enter the name of the control group which contains the INI option Boolean
variable.

Option Enter the name of the option in which the INI Boolean variable will be stored.
If the control group and option does not exist, the system creates them.

Default (Optional) Enter the default Boolean value to store into the control group and
option Boolean variable. The default is zero (0).

PutINIBool

347

See also INI Functions on page 70

Using INI Options on page 8

Procedure Result Explanation

rc = PutINIBool
(,”control”,
“LogEnabled”);

The variable bool_value in the
FSIUSER.INI file now contains a
zero (0). The return code rc is set to
one (1).

The procedure scanned the
loaded INI control groups and
options. It found the specified
control group and option in the
FSIUSER.INI first. The
FSIUSER.INI set is searched
first, followed by the FSISYS.INI
set and then any other loaded
sets, in order.

rc = PutINIBool
(“MVF”, ”control”,
“LogEnabled”);

The variable bool_value in the
TEST1.INI file now contains a zero
(0). The return code rc is set to one
(1).

The procedure scans only the
control group and option set
associated with the context name
MVF.

rc = PutINIBool
(“MVF”, ”control”,
“LogEnabled”, 1);

The variable bool_value in the
TEST1.INI file now contains a one
(1). If Control and LogEnabled are not
found, the system creates a control
group and option and sets the
Boolean variable LogEnabled to one
(1).

The procedure scans only the
control group and option set
associated with the context name
MVF.

348

PUTINISTRING

Use this procedure/function to store a string value in a specified INI control group and
option string variable.

Syntax PutINIString (Context, Group, Option, Default)

The system returns one (1) if no error occurred during execution and zero (0) if there was
an error.

This procedure stores a string value into the specified control group and option string
variable. If the context name is not present and the control group and option does not
exist in any of the INI sets, the procedure stores the string variable into the FSIUSER.INI
file.

If there are multiple control groups and options of the same name, the procedure stores
the string value in the first INI control group and option variable equal to the specified
control group and option name.

If a context name is present, the procedure only stores the string value in the control
group and option variable associated with the context name.

Example Let’s assume that an INI file, TEST1.INI, was loaded with the context name, MVF. The
TEST1.INI file contains this control group and option:

< Control >

title = MVF’s string

In addition, the FSIUSER.INI file contains this control group and option:

< Control >

Title = Bob’s string

Plus, the FSISYS.INI file contains this control group and option:

< Control >

Title = fap entry

Based on this scenario, the following table shows and explains several possible results.

Parameter Description

Context (Optional) Enter the name associated with a set of INI control groups and
options loaded into cache memory.

 Group Enter the name of the control group name which contains the INI option string
variable.

Option Enter the name of the option into which you want the INI string variable stored.
If the control group and option does not exist, the system creates them.

Default (Optional) Enter the default string value you want to store in the control group
and option string variable. The default is Null.

PutINIString

349

Example INI Functions on page 70

Using INI Options on page 8

Procedure Result Explanation

rc = PutINIString
(,”Control”, “Title”);

The string variable Title in the
FSIUSER.INI file now contains
Bob’s string. The return code rc is
set to one (1).

The procedure scanned the loaded
INI control groups and options. It
found the specified control group
and option in the FSIUSER.INI
first. The FSIUSER.INI set is
searched first, followed by the
FSISYS.INI set and then any other
loaded sets, in order.

rc = PutINIString
(“MVF”, ”Control”,
“Title”);

The string variable Title in the
TEST1.INI file now contains
MVF’s string. The return code rc
will be set to one (1).

The procedure scans only the
control group and option set
associated with the context name
MVF.

rc = PutINIString
(“MVF”, ”Control”,
“Title”, “New
string”);

The string variable Title in the
TEST1.INI file now contains New
string. If Control and Title are not
found, the system creates them
and sets the string variable Title to
New string.

The procedure scans only the
control group and option set
associated with the context name
MVF.

350

RECIPBATCH

Use this function to get the name of the recipient batch file being processed. This function
is only applicable to batch banner processing or comment record processing with the
GenPrint program.

Syntax RecipBatch ()

There are no parameters for this function.

Example Here is an example. Assume the recipient batch file entitled Batch1 is being processed.

See also RecipCopyCount on page 351

RecipName on page 353

Printer and Recipient Functions on page 76

Function Result Explanation

rb = RecipBatch(); Batch1 Returns the name of the recipient batch being processed.

RecipCopyCount

351

RECIPCOPYCOUNT

Use this function to count the number of recipient copies for specified sections and return
that number.

Syntax RecipCopyCount (Recip, Section, Form, Group)

If a recipient has a zero copy count, it is omitted from the total. For instance, if there are
three recipients, all with a zero copy count, zero (0) is returned.

NOTE: The recipient list this function uses is the same one that generates the POLFile.
The list is not re-generated from the POLFile, therefore if any changes occurred
in the POLFile, those changes would not be represented in the internal list.

Example Here is an example:

RecipCopyCount(Recip,Section,Form,Group)

[ReqType:i_Check]

function=atcw32->ATCLogTransaction

function=atcw32->ATCLoadAttachment

function=dprw32->DPRSetConfig

function=atcw32->ATCUnloadAttachment

function=dprw32->DPRCheck

See also RecipBatch on page 350

RecipName on page 353

Have Functions on page 69

Parameter Description

Recip (Optional) Enter the names of the recipients you want included in the count.

Section Enter the names of the sections you want the function to look through.

Form (Optional) Enter the names of the forms you want the function to look through.

Group (Optional) Enter the names of the groups you want the function to look through.

352

RECIPIENTNAME

Use this function to return from the FORM.DAT file the recipient name related to the
specified section, form, or group.

You can use this function along with the HaveRecip function in DAL scripts to place a
sequence number on each page of each recipient batch.

Syntax RecipientName (Count, Section, Form, Group)

If you omit the parameters, the system uses the first recipient it finds in the FORM.DAT
file for the section, form, or group.

If the section, form, or group can not be located or the Count parameter causes the system
to move beyond the last recipient in the FORM.DAT file for the section, form, or group,
an empty string is returned.

See also HaveRecip on page 271

Name Functions on page 74

Parameter Description

Count An indexed reference to locate a recipient in the FORM.DAT file. The default is
the first recipient in the FORM.DAT file.

Section Enter the name of a section that contains the recipient. The default is the current
section.

Form Enter the name of a form that contains the recipient. The default is the current
form.

Group Enter the name of the form group that contains the recipient. The default is the
current group.

RecipName

353

RECIPNAME

Use this function to get the name of the recipient batch record for the transaction
currently being printed. This function is only applicable to batch banner processing or
comment record processing with the GenPrint program.

Syntax RecipName ()

There are no parameters for this function.

Example Here is an example. Assume the transactions for the Insured batch are being processed.

See also RecipCopyCount on page 351

RecipBatch on page 350

Printer and Recipient Functions on page 76

Function Result Explanation

rb = RecipName(); Insured Returns the name of the recipient batch being processed.

354

REFRESH

Use this procedure to refresh or repaint the screen.

Syntax Refresh ()

There are no parameters for this procedure.

Use this procedure with the AppendTxm, AppendText, DelLogo, Logo, and
ChangeLogo procedures. The result from these procedures may not immediately display.
Use the Refresh procedure to repaint the screen and display the text or graphic (LOG).

NOTE: This procedure is valid only in Documaker Workstation scripts.

Example Here is an example:

See also Documaker Workstation Functions on page 59

AppendText on page 131

AppendTxm on page 133

DelLogo on page 213

Logo on page 300

ChangeLogo on page 162

Procedure Result Explanation

Refresh () Repaints the screen. New graphics or text now appears.

RemoveAttachVAR

355

REMOVEATTACHVAR
Use this function to remove an attachment variable. You can use this function when
creating print comments using Documaker Bridge.

Syntax RemoveAttachVAR (Name, DSIqueue)

The system returns one (1) if the variable was found and zero (0) if it was not found.

See also Docupresentment Functions on page 60

AddAttachVAR on page 114

GetAttachVAR on page 249

Parameter Description

Name Enter the name of the attachment variable.

DSIqueue (Optional) Enter one (1) for input or two (2) for output. The default is one (1).

356

RENAMELOGO

Use this procedure/function to rename a graphic (LOG).

Syntax RenameLogo (Graphic, NewName, Section, Form, Group)

The system returns one (1) on success or zero (0) on failure.

This procedure renames the graphic you specify. The Logo procedure, which adds a
graphic on the fly, names the new graphic using the name you specify.

If you want a more generic name so you can address the graphic again without knowing
the file associated with it, use this procedure after you use the Logo procedure.

You must specify both the Graphic and NewName parameters.

Example Here are some examples:

See also ChangeLogo on page 162

DelLogo on page 213

HaveLogo on page 269

InlineLogo on page 279

Logo on page 300

Name Functions on page 74

Parameter Description

Graphic Enter the name of the graphic you want to rename. Graphic names are assigned
in Studio or Image Editor.

NewName Enter the new name for the graphic.

Section Enter the name of the section that contains the specified graphic. The default is
the current section.

Form Enter the name of the form that contains the section. The default is the current
form.

Group Enter the name of the group to use to locate the specified object. The default is
the current group.

Procedure Result Explanation

RenameLogo(“Log1”,
“Jane Doe”)

1 or 0 Renames Log1 (on the current section, form, and group)
to Jane Doe.

RenameLogo(“Log1”,”Ja
ne Doe”,”IMH1\3”,
“UpRate”)

1 or 0 Renames Log1 (on the 3rd occurrence of the named
section, IMH1, on the form, UpRate) to Jane Doe.

ResetFld

357

RESETFLD

Use this procedure/function to delete the data from a variable field, including multi-line
variable fields. This procedure works even if no data was entered into the field.

Syntax ResetFld (Field, Section, Form, Group)

Example Here are some examples:

See also Field Functions on page 61

Parameter Description

Field Enter the name of the field you want to reset. Enclose the field name in quotation
marks. Here is an example:

“FIELD01”

Section Enter the name of the section that contains the field name. The default is the
current section.

Form Enter the name of a form that contains the section or field name or both. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
name. The default is the current group.

Procedure Result Explanation

ResetFld (“ACCUM_TOT”) 1 or 0 Clears the data from the ACCUM_TOT field.

ResetFld (“YEARTODATE”) 1 or 0 Clears the data from the YEARTODATE field.

ResetFld(“TOTAL_PREM”,
“BOAT PREM”)

1 or 0 Clears the data in the field, TOTAL_PREM, in the
section, BOAT PREM.

358

RESETOVFLWSYM

Use this procedure/function to reset the value in an overflow symbol to zero.

Syntax ResetOvFlwSym (Form, Symbol)

The system optionally returns one (1) on success or zero (0) on failure. This procedure
stores a zero (0) in the specified overflow symbol.

NOTE: This procedure provides DAL with the functionality included in Documaker
Server’s ResetOvFlw and ResetOvSym rules.

Example Here is an example:

#reset_rc = ResetOvFlwSym (“CP0101NL”, “Loc_Cnt”)

In this example, the overflow symbol, Loc_Cnt, is set to zero and the DAL integer variable,
#reset_rc, is set to a one (1) on success and zero (0) on failure.

Syntax AddOvFlwSym on page 127

GetOvFlwSym on page 259

IncOvFlwSym on page 277

Documaker Server Functions on page 58

Parameter Description

Form Enter the name of the form that contains the fields on which overflow processing
will occur.

Symbol Enter the name you want to use as the overflow symbol.

Retain

359

RETAIN

Use this procedure to identify DAL variables that should not be cleared between the
processing of transactions.

Syntax Retain (Variable)

Keep in mind that certain features rely upon DAL variables living forever. This procedure
lets you identify the DAL variables you do not want cleared during the processing of
transactions.

This procedure is not required unless you have the FlushDALSymbols option set to Yes,
as shown here:

< RunMode >

FlushDALSymbols = Yes

The Retain procedure works in both the Documaker and Documaker Workstation
environments and is necessary when you want certain variables to live for the entire
session.

NOTE: Declaring a variable to be retained does not affect the value you assign to the
variable. The Retain procedure does not protect that variable’s value from being
changed in subsequent scripts that are executed.

Once declared as retained, a variable cannot be later removed from the list.

Example Here is an example:

$total_amt = Sum(“$prem_”);

Retain (“$total_amt”);

In this example, the DAL variable $total_amt will survive transaction boundaries and can
be referenced in any subsequent transaction DAL script.

See also Using INI Options on page 8

Miscellaneous Functions on page 73

Parameter Description

Variable Enter the names of the DAL variables (as a quoted string) you want to retain
during the processing of transactions.

360

RIGHT

Use this function to return a specified number of right most characters.

Syntax Right (String, Integer)

If the length you specify in the integer parameter is longer than the string, the system pads
the result with spaces to reach the requested length. The input string is first trimmed of
leading and trailing spaces before the output is determined.

Example Here are some examples:

(Assume the current field contains the text Your Name.)

See also String Functions on page 78

Left on page 293

Parameter Description

String Enter a valid string. The default is the value of the current field text.

Integer Enter the desired length for the output. The default is the length of the String
parameter.

Function Result Explanation

Right () “Your Name” Defaults to the current field; No length was specified;
therefore the field remains the same.

Right (“ est text”, 9) “test text” Takes the nine right most characters from the
specified field and returns the result.

Right (“Complete
Street Address”, 14)

“Street
Address”

Takes the 14 right most characters from the specified
field and returns the result.

RootName

361

ROOTNAME

Use this function to extract and return the root name, or the original part of the name, of
a string you specify. This function strips off the #nnn portion of a field name to get the
root field name.

NOTE: Documaker requires that all fields on a section be uniquely named. Studio and
Image Editor force a unique name if a field is duplicated. Appending #002 or
#003, for example, to the end of the field name creates unique names. In some
cases you may want to use the name of a field to supply the name of a data
dictionary symbol to use to fill that field. If each unique instance of a field is to
use the same name, this can present a problem.

Syntax RootName (Field)

Example Here are some examples:

RootName("Street address #002")

This returns Street address.

MYFIELDNAME = "Comment #003"

RootName(MYFIELDNAME)

This returns Comment.

RootName(FieldName())

This returns the root name of the current field.

See also Name Functions on page 74

Parameter Description

Field Enter the name of the field for which you want the system to return the root
portion of that name.

362

ROUND

Use this function to round a number to the nearest specified decimal point and return the
result.

Syntax Round (Number, Places)

The system returns the string value of a decimal number rounded to the number of places
specified.

The sign of the number is not changed. Decimal numbers maintain up to 14 digits of
precision. The Round function returns the value with or without trailing zeros requested.
If you use the result the Round function returns in a mathematical equation or to
represent a decimal parameter, the string is implicitly converted as needed.

Example Here are some examples:

(Assume the current field value is 23.5473)

NOTE: When using the result of the Round function to assign a section field value, make
sure the numeric field is defined without a format. If the field has a format, it may
override the text provided by this function.

See also String Functions on page 78

Parameter Description

Number Enter a valid numeric value with decimals. The default is the value of the current
field.

Places Enter the number of decimal places you want. The default is two (2).

Function Result Explanation

Round () 23.55 Defaults to the current field and to two decimal places.

Round (, 3) 23.547 Defaults to the current field and uses three decimal places.

Round (101.999, 0) 102 Rounds the given value to zero decimal places.

Round (101.999, 4) 101.9990 Rounds the given value to four decimal places.

RouteWIP

363

ROUTEWIP
Use this procedure/function to send all the work contained in WIP to all the recipients
specified in a routing slip.

Syntax RouteWIP (Slip)

The system optionally returns one (1) on success or zero (0) on failure.

If the WIP is already following a routing slip’s workflow, the form set is sent to the next
recipient in the existing slip.

Example Here are some examples:

See also WIP Functions on page 88

Parameter Description

Slip Enter the name of a routing slip. The default is to let the system display a window
that lets the user select a routing slip

Procedure Result Explanation

RouteWIP() 1 or 0 Displays for the user the Routing Slip Selection window.

RouteWIP
(“manager”)

1 or 0 This specifies the routing slip named, manager. If successful, the
WIP is sent to the first recipient in the list. If the slip name is
invalid, the user can choose another slip.

364

RPERRORMSG

Use this procedure to write an error message into Documaker Server’s error file
(ERRFILE.DAT). In addition, it increments the Documaker Server error count as
necessary.

Syntax RPErrorMsg (Message)

Example Here is an example:

RPErrorMsg ()

This example would cause the following to be written into your ERRFILE.DAT file:

Error : In DAL Script <.\deflib\iso_create.dal> at line <23>: (Text
omitted)

Here is another example:

RPErrorMsg ("Failed to Open the INFO table in iso_create.")

This example would cause the following to be written into your ERRFILE.DAT file:

Error : In DAL Script <.\deflib\iso_create.dal> at line <18>: Failed
to Open the INFO table in iso_create.

Here is another example:

RPErrorMsg (Time() & " " & Date() & " variable = " & table_name)

This example would cause the following to be written into your ERRFILE.DAT file:

Error : In DAL Script <.\deflib\iso_create.dal> at line <26>:
11:51:02 08/06/2003 variable = INFO

See also RPLogMsg on page 365

RPWarningMsg on page 366

Documaker Server Functions on page 58

Parameter Description

Message (Optional) Enter the message you want the system to display. The message can
consist of static text, DAL functions, and procedures. The default is a blank
string.

RPLogMsg

365

RPLOGMSG

Use this procedure to write a message into Documaker Server’s log file
(LOGFILE.DAT).

Syntax RPLogMsg (Message)

Example Here are some examples:

RPLogMsg ()

This example would cause the following to be written into your LOGFILE.DAT file:

Message : In DAL Script <.\deflib\iso_create.dal> at line <23>: (Text
omitted)

Here is another example:

RPLogMsg ("Failed to Open the INFO table in iso_create.")

This example would cause the following to be written into your LOGFILE.DAT file:

Message : In DAL Script <.\deflib\iso_create.dal> at line <18>:
Failed to Open the INFO table in iso_create.

Here is another example:

RPLogMsg (Time() & " " & Date() & " variable = " & table_name)

This example would cause the following to be written into your LOGFILE.DAT file:

Message : In DAL Script <.\deflib\iso_create.dal> at line <26>:
11:51:02 08/06/2003 variable = INFO

See also RPErrorMsg on page 364

RPWarningMsg on page 366

Documaker Server Functions on page 58

Parameter Description

Message (Optional) Enter the message you want the system to display. The message can
consist of static text, DAL functions, and procedures. The default is a blank
string.

366

RPWARNINGMSG

Use this procedure to write a warning message into the Documaker Server error file
(ERRFILE.DAT). In addition, it increments the Documaker Server warning count as
necessary.

Syntax RPWarningMsg (Message)

Example Here are some examples:

RPWarningMsg ()

This example would cause the following to be written into your ERRFILE.DAT file:

Warning : In DAL Script <.\deflib\iso_create.dal> at line <23>: (Text
omitted)

Here is another example:

RPWarningMsg ("Failed to Open the INFO table in iso_create.")

This example would cause the following to be written into your ERRFILE.DAT file:

Warning : In DAL Script <.\deflib\iso_create.dal> at line <18>:
Failed to Open the INFO table in iso_create.

Here is another example:

RPWarningMsg (Time() & " " & Date() & " variable = " & table_name)

This example would cause the following to be written into your ERRFILE.DAT file:

Warning : In DAL Script <.\deflib\iso_create.dal> at line <26>:
11:51:02 08/06/2003 variable = INFO

See also RPErrorMsg on page 364

RPLogMsg on page 365

Documaker Server Functions on page 58

Parameter Description

Message (Optional) Enter the message you want the system to display. The message can
consist of static text, DAL functions, and procedures. The default is a blank
string.

SaveINIFile

367

SAVEINIFILE

Use this procedure/function to save a set of INI control groups and options that were
loaded into cache memory.

Syntax SaveINIFile (Context, File)

The system optionally returns one (1) on success or zero (0) on failure.

If a context name is associated with the execution of this procedure, that set of INI
control groups and options will be stored in the specified physical file name.

Example Here are some examples:

See also INI Functions on page 70

Using INI Options on page 8

Parameter Description

Context (Optional) A name (valid string) associated with a set of INI control groups and
options loaded into cache memory.

File Enter the name of the file in which you want to store the specified set of INI
control groups and options. If you omit the file extension, the system uses INI.
If you omit the path, the system stores the file in the current directory.

Procedure Result Explanation

SaveINIFile
(,“DALRun”);

The set of INI control groups
and options are saved in a file.

The INI control groups and options are
saved to the specified file. Execution of
this procedure assumes that the file
extension is INI.

SaveINIFile
(“Run_process”,
“DALRun.ini”);

The set INI control groups and
options referenced by the
context name, Run_process, are
saved in a file.

The INI control groups and options are
saved to the specified file.

368

SAVEWIP
Use this procedure/function to save the WIP record being processing. Optionally, this
procedure returns a one (1) on success or a zero (0) on failure. This procedure is needed
in the DAL script called by the Documaker Workstation function,
AFEBatchDALProcess, if you change any data in the WIP record being processed.

Syntax SaveWIP ()

There are no parameters for this procedure.

Example Here is a sample DAL script.

desc_field = WIPFld(“DESC”);

mod_data = desc_field & “ – 04/03/03”;

rc_setwipfld = SetWIPFld("DESC", mod_data);

rc_savewip = SaveWIP();

This script appends the text, – 04/03/03, to the content of the DESC field in each WIP
record in the WIP.DBF file.

See also Executing a DAL Script from a Menu on page 7

Second

369

SECOND

Use this function to extract the number of seconds in a time.

Syntax Second (Time, Format)

Example Here are some examples:

(Assume the current time is 03:05:09.)

See also Time Functions on page 80

Parameter Description

Time Enter a valid time string. The system assumes your entry is in the time format
specified in the Format parameter. The default is the current time.

Format Enter a valid time format string that describes the Time parameter. The default
is time format 1 (HH:MM:SS).

Function Result Explanation

Second() 09 Defaults to the current time and extracts 09.

Second
(“09:20:20”)

20 Reads the given time and extracts 20.

370

SETDEVICENAME

Use this procedure to set a new output device file name which will be used the next time
the output device is opened, assuming nothing overrides the name prior to that. You can
use this function when splitting recipient batches into multiple print stream files.

Syntax SetDeviceName (Device)

Here is an example of script logic from a post-transaction banner DAL script:

IF TotalSheets() > 16000

#COUNTER += 1

CurFile = DeviceName()

Drive = FileDrive(CurFile)

Path = FilePath(CurFile)

Ext = FileExt(CurFile)

RecipBatch = RecipBatch()

NewFile = FullFileName(Drive,Path,RecipBatch & #COUNTER,Ext)

SetDeviceName(NewFile)

BreakBatch()

END

NOTE: See FileDrive, FileExt, FileName, FilePath, and FullFileName for information on
using DAL functions to manipulate file names.

Keep in mind...

• The print drivers supported are: PCL5, PCL6, PST, MET, AFP, PDF, HTML, and
RTF.

• These print drivers are not supported: EPT, MDR, and GDI.

• All platforms are supported, but note that while UniqueString is supported on z/OS,
z/OS does not support PDF or long file names.

• Both multi-step and single-step processing are supported.

The only DAL function actually involved in splitting the print stream is BreakBatch. The
others make it easier to implement this functionality. For example, since you need to name
the new print stream, you use the SetDeviceName procedure. To find the name of the
current device, you use the DeviceName function. If you need to create unique file names,
you can use the UniqueString function.

NOTE: While you can call all of these DAL functions in Documaker Server or Entry, the
BreakBatch and SetDeviceName functions are not applicable in Entry since it
does not use the batch printing engine. The other functions, DeviceName and
UniqueString, are applicable to both Entry and Documaker Server.

Parameter Description

Device Enter the new output device file name.

SetDeviceName

371

See also Printer and Recipient Functions on page 76

BreakBatch on page 157

DeviceName on page 216

UniqueString on page 416

372

SETEDIT

Use this procedure/function to determine which field should be the next active field
during normal entry. Normal entry refers to tabbing from field to field. If a user mouse
clicks a particular field or pages between sections, the field selected by the SetEdit
procedure is ignored. This procedure optionally returns one (1) on success or zero (0) on
failure.

Syntax SetEdit (Field, Count, Section, Form, Group)

This procedure first locates the specified field. If you omit the Field parameter, the system
uses the current field.

You can use a positive or negative number for the count parameter. A positive count
moves forward from the located field. A negative count moves backward from the located
field. Forward and backward refer to the order in which the field appears in the section's
edit list, not necessarily its physical position on the section. Do not include fields
designated as display only in the count.

This procedure sets the next edit field each time the script executes. Therefore, use this
procedure only in scripts that execute once during entry. Do not use the SetEdit procedure
for scripts that execute each time a user tabs to a new field.

NOTE: A DAL script executes once during entry. A DAL calc executes each time the
user tabs to a new field. You make the DAL script or DAL calc designation in
the Properties window.

This procedure returns one (1) if it finds the specified field. Otherwise, it returns zero (0).

NOTE: The navigation logic you enter on the Navigation tab of the field’s Properties
window overrides this procedure.

Here are some examples:

Parameter Description

Field Enter the name of a field. The default is the current field.

Count Enter a positive or negative number used to move beyond the field you specified.
The default is zero (0).

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

SetEdit

373

Assume the section has three fields named FIRST, SECOND, and THIRD. The fields
occur in that order.

See also Documaker Workstation Functions on page 59

Field Formats on page 62

Locating Fields on page 64

Procedure Result Explanation

SetEdit(”THIRD”) 1 Locates the field named THIRD on the current section. If
found and if editable, that field will be the next field to
receive focus.

SetEdit(“THIRD”.-2) 1 Locates the field named THIRD on the current section. If
found, moves two fields prior to THIRD--to the field named
FIRST.

SetEdit(“MyField”,,,
“FRM”)

1 or 0 Locates the form named FRM in the current form group.
Then locates MyField on that form. If found, focus changes
to that form and field.

374

SETFLD

Use this procedure/function to assign a value to a section field. Normally, this procedure
is used to assign values to display only fields or to assign default values to fields which
have not yet been edited.

Syntax SetFld (String, Field, Section, Form, Group)

The system returns one (1) if successful or zero (0) if the field cannot be changed or does
not exist.

This procedure attempts to change the field's text each time the script executes.
Therefore, use the SetFld procedure with discretion. Do not use the SetFld procedure if
the script should not execute each time a user highlights a new field.

NOTE: A DAL script executes once during entry. A DAL calc executes each time the
user highlights a new field. You make the DAL script or DAL calc designation in
the Properties window.

If you are using the SetFld procedure in a batch system execution and you are
trying to set a field other than the one which initiated the rule, you must load the
FAP file. To do so, add the CheckImageLoaded rule to the sections to which you
plan to assign fields.

Trailing spaces are deleted from the string to be stored. If you need the spaces,
use a hard space (ALT + 0160). See the Rules Reference for more information
about this rule.

Example Here are some examples:

(Assume the section has three fields (First, Second, Third). The value of First is 123.)

Parameter Description

String Enter a value appropriate for the field you are assigning. THe default is an empty
string.

Field Enter the name of a field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

Procedure Result Explanation

SetFld(“N/A”,
“SECOND”)

1 Assume this script is associated with the field named First.
When the user tabs from this field or highlights another field,
the value of the field, Second is changed to N/A.

SetFld

375

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

IF (!SetFld(101,
“MyField”))
 MSG(“Field” &
 “MyField”,
 “not assigned!”)
END

0 The IF statement determines whether or not the field MyField
can be assigned the value “101”. If not (meaning a field by that
name does not exist or failed to accept the data), the message
“Field MyField not assigned!” appears.

SetFld(@(),
“MyField”, ,
“FRM”)

1 or 0 This statement attempts to assign the value of the current field
to MyField, located on the specified FRM. Since a section
name was not given, the field may occur on any section on that
form.

Procedure Result Explanation

376

SETFONT

Use this function to change the font on a field. For instance, you can use SetFont on non-
multi-line text fields or barcode fields. You cannot use the SetFont function to reformat
a text area.

Syntax SetFont (FontID, Field, Section, Form, Group)

The system returns one (1) on success or zero (0) on failure.

The system applies the font change to the first field that matches the criteria.

See also Field Functions on page 61

Parameter Description

FontID Enter the font ID of the font to which you want to change. A font ID of less than
one (1) causes the function to fail.

Field (Optional) Enter the name of a field that identifies a multi-line text area. This is
the field that receives the appended text. The default is the current field.

Section (Optional) Enter the name of the section that contains the field you specified.
The default is the current section.

Form (Optional) Enter the name of the form that contains the section and/or field you
specified. The default is the current form.

Group (Optional) Enter the name of the form group that contains the form, section,
and/or field you specified. The default is the current group.

SetFormDesc

377

SETFORMDESC

Use this function to change the description of a form.

Syntax SetFormDesc (NewDescription, Form, Group)

The system returns one (1) if the form was found and the description was assigned.
Otherwise, it returns zero (0) to indicate that no form was found based upon the
parameters you provided.

Example Here is an example:

SetFormDesc(“Cover Page”,Form1,Group2)

See also Name Functions on page 74

Parameter Description

NewDescription Enter the new description. The text you enter replaces any existing form
description.

Form Enter the name of the form for which you want to change its description.
The default is the current form.

Group Enter the name of the group which contains the form you specified in the
Form parameter. The default is the current group.

378

SETGVM
Use this procedure/function to update the contents of a GVM variable. You can also use
this procedure to create a GVM variable.

Syntax SetGVM (Name, Data, Instance, Type, Size)

 The system returns a one (1) if successful or a zero (0) if not.

NOTE: You can use this function to set a reserved GVM value, but be aware of how that
reserved GVM is used. Some reserved GVM values should not be modified, such
as NA_OFFSET and POL_OFFSET. Additionally, keep in mind that reserved
GVM values may be changed by subsequent rule processing.

Example Here are some examples:

See also HaveGVM on page 267

DAL Script Examples on page 35

Documaker Server Functions on page 58

Parameter Description

Name Enter a string which contains the name of the GVM variable.

Data Enter the data you want to store in the GVM variable.

Instance Enter the instance number of the GVM variable. The default is one (1)

Type Indicate the type of GVM variable to create. You can choose from these options:
C - Character array
S - Short
L - Long
F - Float
D - Double
Q - Long double

Size Enter the number of bytes to reserve when creating a GVM variable. This
parameter is not used if the GVM already exists.

Procedure Result Explanation

If (HaveGVM(‘Company’)) then;
 SetGVM(‘Company’, ‘My Company’)
End

1 or 0 If the variable exist; then set the GVM,
Company, to the string My Company.

If (HaveGVM(‘My Variable’) = 0) then;
 SetGVM(‘My Variable’,‘My Data’,, ‘C’, 50)
End

1 or 0 If the GVM variable, My Variable, does
not exist; then create one that is a
character array with a size of 50 plus
store My Data in it.

SetImagePos

379

SETIMAGEPOS

Use this procedure/function to reposition a section on a page.

Syntax SetImagePos (PrefixName, Section, Form, Group)

This procedure repositions a section at the coordinates you specify in the PrefixName
parameter: prefix name.top, prefix name.left.

NOTE: The section remains the same size.

This procedure retrieves these variables and sets the section’s top coordinate to prefix
name.top and its left coordinate to prefix name.left. This procedure returns a bad variable
error message if the prefix name.top or prefix name.left variables are not defined as DAL
internal variables.

Example For this example, assume the current section is Image25, the form is Input_form, and the
form group is Package1. The coordinates are:

NOTE: The the Bottom-Right coordinate is automatically calculated from the new Top-
Left coordinate by adding the section height and width, which are not changed
by this DAL function.

Parameter Description

PrefixName A prefix name to be associated with the coordinates returned by the procedure.

Section Enter the name of a section in the form set. The default is the current section.

Form Enter the name of a form in the form set that contains the section. The default
is the current form.

Group Enter the name of the form group that contains the form and section you
specified. The default is the current group.

Image25 For internal variables Image50

Top 25 125 95

Left 50 150 90

Procedure Result Explanation

SetImagePos
(“MyImage”)

New coordinates for the current
section, Image25, will be:

Myimage.top = 125

Myimage.left = 150

Myimage.bottom = 200

Myimage.right = 200

Sets the coordinates for the current
section to the internal DAL
variables: Myimage.top,
Myimage.left, Myimage.bottom, and
Myimage.right.

380

IF (ImageRect (“MyRect”, “MyImage”))

 MyRect.Top += 2400;

 SetImagePos(“MyRect”,”MyImage”);

END;

This script takes the coordinates of the section named MyImage and sets them to the
variables MyRect.Top, MyRect.Left, MyRect.Bottom, and MyRect.Right. Next, it increases
MyRect.Top by 2400 FAP units then moves MyImage one inch (2400 FAP units) lower on
the page.

See also Section Functions on page 77

ImageRect on page 275

SetImagePos
(“MyImage”,
“Image50”)

New coordinates for the section,
Image50, will be:

Myimage.top = 125

Myimage.left = 150

Myimage.bottom = 200

Myimage.right = 200

Sets the coordinates for the section,
Image50, to the internal DAL
variables: Myimage.top,
Myimage.left, Myimage.bottom, and
Myimage.right.

SetImagePos (
“m”,
“MVF\2”,
“XYZ”)

The section is reposition to:

m.top = top

m.left = left

m.bottom = coordinate

m.right = right

The second occurrence of the
section MVF on the form XYZ is
repositioned using the DAL target
variables.

Procedure Result Explanation

SetLink

381

SETLINK

Use this function to update a hyperlink setting in a variable field, a graphic, or a text label.

Syntax SetLink (Target, Parms, ObjectName, Section, Form, Key2, ObjectType)

Keep in mind...

• The object (variable field, graphic, or text label) referenced by SetLink must have an
initial hyperlink setting.

• You must make sure the Target and Parms parameters contain valid HTML syntax.

Example Here is an example:

SETLINK("http://www.oracle.com", "target=new", "Section2256",
"FormQ1331TPG", , , "Text")

See also Field Functions on page 61

Parameter Description

Target Enter the name of the target object (the HREF value).
If the target object has a hyperlink type of internal or target, enter the name of
the target object.
If the target object has a hyperlink type of external, this parameter should
contain a hypertext reference, such as:

www.oracle.com

and the Parms parameter should contain additional parameters to an HREF
type link.
Make sure this parameter contains valid HTML syntax.

Parms (Optional) Enter any link parameters (HREF parameters), such as a target
frame or mouseover behavior. Here is an example:

"target="new"

Make sure this parameter contains valid HTML syntax.

ObjectName Enter the name of the variable field, graphic, or text label that contains the
hyperlink. The system updates the first object found that matches your entry
for this parameter.

Section (Optional) Enter the name of the section.

Form (Optional) Enter the name of the form.

Key2 (Optional). Enter the name of the Key2 group.

ObjectType Enter the type of object, such as (variable) Field, Graphic, or Text (label). The
default is Field.

382

SETLOGO

This function is obsolete and is no longer supported. Use the ChangeLogo function
instead.

See also ChangeLogo on page 162

Graphics Functions on page 71

SetProtect

383

SETPROTECT

Use this procedure/function to protect a specified field so it cannot be altered or to
unprotect a field so that it can be edited.

Syntax SetProtect (Mode, Field, Section, Form, Group)

The system returns zero (0) if the field you specified could not be changed or does not
exist in the section. The system returns one (1) if the field was successfully protected.

Example Here are some examples:

(Assume the section has fields named First and Second. Assume First contains Y.)

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

Parameter Description

Mode Enter a non-zero value to specify field protection mode. Enter zero (0) to leave
the field unprotected. The default is one (1), which protects the field.

Field Enter the name of the field. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

Procedure Result Explanation

IF (@() =“Y”)
SetProtect(
 1, “SECOND”);
END

1 Tests the value of the current field (First). Since it contains the
letter Y, Second is protected. If you call SetProtect as a procedure,
a one (1) is returned, indicating the field was successfully
protected.

IF (@() =“Y”)
SetProtect
 (0,
“SECOND”);
END

1 Unprotects Second based on the same criteria.

384

SETRECIP

Use this procedure/function to assign the recipient copy count for a particular section,
form, or group.

Syntax SetRecip (Recipient, Count, Section, Form, Group)

The system optionally returns one (1) on success or zero (0) on failure.

This procedure lets you specify how many copies of a section should print for a
designated recipient. Setting the copy count to zero (0) for a recipient means the section
will not print for that recipient.

Unlike other procedures, this one does not strictly apply the hierarchy rules for the
section, form, and group, so you can specify a form without naming a section and the
procedure will assign the copy count to all sections on that form designated for that
recipient. Likewise, if you only specify the group parameter, without section or form, all
the sections in that group will receive the new copy count for the designated recipient.

NOTE: This procedure cannot add a new recipient to a section. Images are predefined
for specific recipients. This procedure can only change the copy count of known
recipients for any particular section.

Example Here are some examples:

See also Section Functions on page 77

Parameter Description

Recipient Enter a valid recipient name for the sections you want to change.

Count Enter the total number of copies of the designated sections that you want this
recipient to receive. The default is zero (0).

Section Enter the name of the section you want to locate. The default is the current
section.

Form Enter the name of the form that contains the section you specified. The default is
the current section.

Group Enter the name of the group that contains the section or form you specified. The
default is the current section.

Procedure Result Explanation

SetRecip (“Insured”, 2) 1 or 0 Defaults to the current section. If this section includes
Insured as a recipient, that copy count will be assigned 2.

SetRecip(“HOME
OFFICE”, 1, ,
“FORM”)

1 or 0 Locate FORM in the current group. Assign any section
that specifies HOME OFFICE as a recipient the new
copy count of one (1).

SetRequiredFld

385

SETREQUIREDFLD

Use this function to change the required option of a field to Required or Not Required.

Syntax SetRequiredFld (Required, Field, Section, Form, Group)

Example Here are some examples:

SetRequiredFld ("Yes", "Myfield", :MyImage", "Myform", "MyGroup");

SetRequiredFld ("Yes", "Myfield", :MyImage", "Myform",);

SetRequiredFld ("Yes", "Myfield", :MyImage",);

SetRequiredFld ("Yes", "Myfield",);

SetRequiredFld ("Yes",);

If you include the Section parameter, but omit the field parameter, the system uses the
first field on that section. If you omit the Section and Field parameters, but include the
Form, the system looks for the first field on the first section of the form you specified,
and so on.

See also Field Functions on page 61

Field Formats on page 62

Parameter Description

Required Enter Yes if you want to make the field required. Enter No if you want to make
the field optional.

Field (Optional) Enter the name of the field. The default is the current field.

Section (Optional) Enter the name of the section. The default is the current section.

Form (Optional) Enter the name of the form. The default is the current form.

Group (Optional) Enter the name of the group. The default is the current group.

386

SETWIPFLD

Use this procedure/function to set WIP fields from DAL to the record in memory.

Syntax SetWIPFld (Field, Data)

NOTE: You cannot change the FormsetID field which is used to associate WIP records
with data files.

The system returns one (1) if successful or zero (0) if the field cannot be changed or does
not exist.

Example Here are some examples:

See also WIP Functions on page 88

Parameter Description

Field Enter the name of the variable field.

Data Enter the data you want to store in the field.

Procedure Result Explanation

SetWIPFld (“DESC”,
“My Description”)

1 or 0 Assigns to the WIP description field a new description.

SetWIPFld(“DESC”) 1 or 0 Clears the WIP description field.

Size

387

SIZE

Use this function to return the defined length of a specified field.

Syntax Size (Field, Section, Form, Group)

The system returns the length of the defined data area for the specified field.

The Size function is often confused with the LEN function. The LEN function returns
the length of the actual data contained in a field or DAL variable.

Example Here are some examples:

(Assume the current field contains the text Your Name and its defined length is 15.)

See also Field Formats on page 62

Locating Fields on page 64

LEN on page 294

Field Functions on page 61

Parameter Description

Field Enter the name of the variable field. The default is the current field.

Section Enter the name of the section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Function Result Explanation

Size () 15 Returns the defined length of the current field.

Size (“Myfield”, ,
“FRM”)

field
size or
zero

This example will look for MyField on the form, FRM. It may
occur on any section. If the field is located, its size will be
returned, otherwise the result is zero (0). Generally, you can
assume that a zero result means the field is not defined, since it is
unlikely that a field of zero length would be legitimate.

388

SLIPAPPEND

Use this procedure/function to add an email address to the end of the routing slip
associated with the form set.

Syntax SlipAppend (Address, Mode)

The system optionally returns one (1) on success or zero (0) on failure.

This procedure only works with scripts associated with routing slips. This procedure lets
you, via scripts, direct workflow during the routing process. Do not use this procedure in
a typical field script situation.

The address name is appended to the end of the current routing slip. If the mode
parameter is not zero (0), the new entry is appended as a carbon-copy (CC) recipient. For
example, assume the following routing slip is defined:

If the script executes the statements, SlipAppend(“TOM”,1); SlipAppend(“CAR”), the
slip will be adjusted to look as follows:

Example Here are some examples:

See also WIP Functions on page 88

Parameter Description

Address Enter an email address.

Mode Choose from these options:
0 - linear recipient
1 - CC recipient
The default is zero (0).

CC Recipient

@MyScript
EDJ

CC Recipient

*

X

@MyScript EDJ
EDJ
TOM
CAR

Procedure Result Explanation

SlipAppend (
“TOM”)

1 or 0 The email address is appended to the end of the current routing slip.
The defaults is a linear recipient.

SlipAppend(
“TOM”, 1)

1 or 0 Appends the email address as a CC recipient.

SlipInsert

389

SLIPINSERT

Use this procedure/function to insert another email address on a routing slip associated
with the form set.

Syntax SlipInsert (Address, Mode)

The system optionally returns one (1) on success or zero (0) on failure.

This procedure only works with scripts associated with routing slips. This procedure lets
you, via scripts, direct workflow during the routing process. It should not be used in a
typical field script situation.

The address name is inserted immediately after the script reference in the routing slip. If
two SlipInsert statements are executed in order, the second email address appears before
the one inserted by the former statement. Think of this as last in, first out.

For example, assume the following routing slip is defined:

If the script executes the statements, SlipInsert(“TOM”,1); SlipInsert(“CAR”), the slip
will be adjusted to look as follows.

The asterisk (*) indicates the script has already been executed. If the mode parameter is
not zero (0), the new entry is appended as a carbon-copy (CC) recipient.

Example Here are some examples:

See also WIP Functions on page 88

Parameter Description

Address Enter an email address.

Mode Choose from these options:
0 - linear recipient
1 - CC recipient
The default is zero (0).

CC Recipient

@MyScript EDJ

CC Recipient

*
X

@MyScript CAR
TOM EDJ

Procedure Result Explanation

SlipInsert (“TOM”) 1 or 0 The email address will be inserted immediately after the
script reference. The default is a linear recipient.

SlipInsert(“TOM”, 1) 1 or 0 Inserts the email address as a CC recipient.

390

SPANFIELD

Use this function/procedure to move a field horizontally and then resize it to span the
distance between two other fields you specify. This function sets the span field’s contents
to be enough of a fill character to span the distance.

This function only moves the field horizontally. It will not move the other two fields. The
section designer must ensure vertical alignment between the fields.

NOTE: If you use this function with resources created prior to version 11.0, which had
separate FAP and DDT files, this procedure automatically loads the section (FAP
or compiled FAP) if it is not already loaded.

Syntax SpanField (SpanField, LeftField, RightField, Section, Form, Group)

The SpanField parameter is always the first parameter, but you can specify the LeftField
and RightField parameters in any order. The system automatically determines which of
the two fields is to the right or left of the span field.

Parameter Description

SpanField Use this parameter to specify the filler character you want the system to use to
span the distance between the end of the left field text and the beginning of the
right field text. If either field is empty, the left coordinate of the field is used.
The system only uses the first character of the text contained in the field you
specify as the filler character.
In addition to the filler character, the field you specify also determines the font
ID to be used for calculating the number of characters required to fill the width
of the field.
If there is fractional space remaining in the width, the filler character is
duplicated. The extra white space will be placed to the left of the span field, so
that the spanned field will is placed against the right-most field.
The default is a period (.).

LeftField Enter the name of the field on the left of the area you want to span.

RightField Enter the name of the field to the right of the area you want to span.

Section (Optional) Enter the name of a section that contains the fields you specified. The
default is the current section.

Form (Optional) Enter the name of a form that contains the section and/or field you
specified. The default is the current form.

Group (Optional) Enter the name of the form group that contains the form, section, or
fields you specified. The default is the current group.

SpanField

391

NOTE: If you are using the SpanField function in Documaker Server processing, the
JustFld rule may be useful to right justify the right-most field to make sure the
maximum distance is spanned. If you use the Move_It rule, or other rules that
support right justification by padding the data with spaces, the results will be
incorrect. The SpanField function calculates the width of a field based upon the
entire contents and does not remove space, or any other white space or characters
in the fields.

Example Here is an example:

Assume LeftField contains ABCDEFG, RightField contains $123.45, and SpanField
contains a dash (-).

SpanField("SPANFIELD", "LEFTFIELD", "RIGHTFIELD")

Yields: ABCDEFG-----------$123.45

The horizontal location of the span field is adjusted to make sure it is positioned against
the right edge of the left field, and then expanded with enough of the fill character to fill
the gap between the left and right fields. The section designer is responsible for vertical
alignment.

See also Field Functions on page 61

392

SRCHDATA

Use this function to retrieve data from an XML or flat extract file.

NOTE: The SrchData function, released in version 11.1 and included in version 11.0,
patch 32, lets you include spaces in the search criteria, whereas the older GetData
function does not. Here is an example:

SrchData("11,HEADERREC,21(A,B, ,D)", 40, 20)

SrchData("'!/XML/Form[@form="PP 03 02"]/@form", 1,10)

Note the space between A,B, ,D and PP 03 02.The ability to include spaces in
search criteria is important when you are using XML XPaths.

The SrchData function does not format the data it returns.

Syntax SrchData (SearchCriteria, Offset, Length, Occurrence)

Use this function during Documaker Server processing, after the rule which loads the
extract file has been run.

Example Here are some examples:

In this example, the SrchData function finds the extract record designated by
11,HEADEREC and returns the data at offset 40 for a length of 20:

SrchData ("11,HEADERREC", 40, 20)

This example shows how to use an occurrence variable to get the Nth iteration of the data.
In this example, the SrchData function finds the second extract record occurrence
designated by search criteria 11,ADDRESS, and returns the data starting at offset 40 for
a length of 20.

Entering a one (1) or zero (0) will return the first occurrence of the data.

SrchData ("11,ADDRESS", 40, 17, 2)

Parameter Description

SearchCriteria Enter the criteria you want the system to use to look for the data in the extract
file.

Offset For XML extract files, enter the offset into the data where the desired data
starts.
For flat files, enter the offset into the record where the data starts.
The default is zero (0).

Length Enter the number of characters to return. The default is zero (0).

Occurrence This parameter is not valid for XML extract files.
This parameter lets you specify which occurrence of the data to return.
Entering one (1) or zero (0) returns the first occurrence of the data.
The default is the first occurrence.

SrchData

393

Here is an example that gets data from an XML extract file. The SrchData function checks
to see if the specified XML extract record equals 2549, if it does, the function returns the
string: equal concatenated with the value from another XML extract record. If not, it
returns the string: not equal concatenated with a value from a different XML extract record.

value = SrchData ("!Diamond/Data/Client/Accounts/Account/

 Policy/PolicyImages/Policy/premium_fullterm", 1, 7)

If Trim (SrchData ("!Diamond/Data/Client/Accounts/Account/

 Policy/PolicyImages/Policy/premium_fullterm", 1, 4) = "2549"

 Then

 Return ("equal - " & SrchData ("!/descendant::Personalauto/

 child::Vehicle[**vehovfsym**]/vehicle_num", 1,2)

 Else

 Return ("not equal - " & value)

End

See also GetData on page 250

Documaker Server Functions on page 58

394

STR
Use this function to return the string value of a field. The @ function automatically
converts a numeric format field into its number value. The STR function does not convert
field data in any way and returns the value as it appears in the field.

NOTE: To consider case in the comparison, use the STRCompare function.

Syntax STR (Field, Section, Form, Group)

The system uses the parameters you provide to search for one field on a section and return
that field’s data value as formatted. The field can have any format type.

Example Here are some examples:

(Assume the current field value is $1,234.23 and is named MyField. Also, assume that a
second occurrence of MyField appears on the form, MyForm, and contains the value
automobile.)

See also STRCompare on page 395

Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

@ on page 109

Parameter Description

Field Enter the name the field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

Function Result Explanation

STR() $1,234.23 Returns the string value in the current field. Notice that the
formatting of the field is not removed.

STR (“MyField”) $1,234.23 Returns the string value of the named field, located on the
current section.

STR(“MyField\2
”, , “MyForm”)

automobile The second occurrence of MyField already contained a
string value.

STRCompare

395

STRCOMPARE

Use this function to compare two strings with case a consideration. In normal DAL string
expressions, strings are compared in a case-insensitive manner. For example, the system
would normally evaluate the following strings to be equal:

ABC abc

If, however, you use the STRCompare function, the system considers case and judges
these strings to not be equal.

NOTE: The best way to use this function is to test for equality. For instance, use this
function to test two strings and compare for a zero (0) value being returned to
indicate the strings are equal or a non-zero value to indicate they are unequal.

 You can use this function to determine if one string is greater or less than the
other, but the result can be confusing if the strings contain mixed case or have
different lengths.

Syntax STRCompare (String1, String2, #Count)

If String1 and String2 compare as equal, the system returns a zero (0).

The system returns a negative one (-1) if String1 is less than String2.

The system returns a one (1) if String1 is greater than String2.

Example Assume String1 is ABCDEF and String2 is ABCdef in these examples:

Parameter Description

String1 Enter the text for the first string you want to compare. The default is an empty
string.

String2 Enter the text for the second string you want to compare. The default is an empty
string.

#Count (Optional) Enter the number of characters to compare.
If you enter a value greater than zero, the system compares that number of
characters.
If you enter zero (0) or less, the system compares all characters.
If you enter a value greater than the length of either string, the system pads the
strings with blank characters to match the number of characters you specified.
The default is -1 which indicates that all characters will be compared.

This example Returns

#RTN = STRCompare(string1 , string2) -1

#RTN = STRCompare(string2 , string1) 1

#RTN = STRCompare(string1 , string2 , 3) 0

396

See also STR on page 394

String Functions on page 78

SUB

397

SUB
Use this function to return a substring from a string at a specified position.

Syntax SUB (String, Position, Length)

The system returns a portion of the first specified parameter starting at the specified
position for the length given.

If you omit the Position parameter, the system defaults to the first character of the string.
If the specified position is greater than the length of the string, the system returns an
empty result.

If you omit the Length parameter, the remainder of the string following the specified
position is included.

Example Here are some examples:

(Assume the current field contains the text Your Name.)

See also String Functions on page 78

Parameter Description

String Enter a valid string. The default is the current field.

Position Enter the position where sub should begin. The default is one (1).

Length Enter the length to retrieve from the text. The default is the length of what
remains of the String parameter value, beginning at the position indicated by the
Position parameter.

Function Result Explanation

SUB (, , 5) “Your “ Defaults to position one of the current field and returns
the first five characters.

SUB () “Your Name” Defaults to the current field; No length was specified, so
the field remains the same.

SUB (“Complete
Street Address”,
10, 6)

“Street” Goes to position 10 of the specified field and returns six
characters.

398

SUM
Use this function to return the decimal sum of a group of fields which have names that
begin with common characters.

Syntax SUM (PartialName, Section, Form, Group)

The system calculates and returns the accumulated values of all fields that begin with the
specified partial name.

An example of field names that have a common start are:

Myfield1

Myfield2

Myfield20

Each of these fields will be included if the partial name is specified using any of the leading
characters of myfield. The first field will be excluded if you enter myfield2, but will match
the other two field names.

NOTE: Include the Partialname parameter. Fields must have unique names within a
section. Using the default will probably not give the expected result, unless you
created the form and understand the naming conventions.

Example Here are some examples:

This table is used by the examples. The table represents the layout of two forms in the
same group. Both forms share two sections (IMG A and IMG B). Each section has fields
of the same name as a field in the other section.

Parameter Description

PartialName Enter a valid string. The string must be the common (prefix) portion of a set of
field names that occur on the current section. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Field Section Form Group Value

MyField1 IMG A FRM A GRP 100.24

MyField2 IMG A FRM A GRP 200.16

MyField1 IMG B FRM A GRP 98.60

SUM

399

(Assume the current field is MyField1, on the first section of the first form. Reference the
previous table for field values.)

See also Mathematical Functions on page 72

Field Formats on page 62

Locating Fields on page 64

MyField2 IMG B FRM A GRP * no value yet *

MyField1 IMG A FRM B GRP 0.00

MyField2 IMG A FRM B GRP * no value yet *

MyField1 IMG B FRM B GRP 70.77

MyField2 IMG B FRM B GRP * no value yet *

Function Result Explanation

SUM () 100.24 Without any other information, the function assumes the
current field and section. There will only be one value included
in the sum.

SUM
(“Myfield2”)

200.16 Again, there is only one field included in this result.

SUM(“MyFiel
d”)

300.40 In this example, the current section contains two fields that
begin with the name “MyField”. The equation is as follows:
(100.24 + 200.16).

SUM(“MyFiel
d”, “IMG B”)

98.60 Although two fields on IMG B have a matching name, only
one field actually has a value.

SUM(“MyFiel
d”, , “FRM A”)

399.00 No section is specified in this example, so the entire form is
searched. Four fields match the name criteria, but only three
have values: (100.24 + 200.16 + 98.60).

SUM(“MyFiel
d”, “IMG B”, ,
“GRP”)

169.37 This example specifies a section and group, but no form. There
are four fields that match the name criteria, but only two have
values: (98.60 + 70.77).

SUM(“MyFiel
d”, , , “GRP”)

469.77 This example names the group without a form or section.
Eight fields meet the naming criteria, but only five fields
actually have values: (100.24 + 200.16 + 98.60 + 0.00 + 70.77).

Field Section Form Group Value

400

SUPPRESSBANNER

Use this procedure/function to suppress the printing of the banner page. This is useful
when you are doing batch banner processing you need to combine several transactions
within the same transaction banner pages.

NOTE: For information about processing banner pages, see the Documaker Server
System Reference.

Syntax SuppressBanner ()

There are no parameters for this procedure.

Example Here is an example.

You can use this procedure when you want to combine several transactions inside one set
of banner pages, based on a flag the DAL script checks.

See also Printer and Recipient Functions on page 76

DelBlankPages on page 207

AddBlankPages on page 115

Procedure Result Explanation

SuppressBanner(); Suppresses the current banner from printing.

Table

401

TABLE

Use this procedure/function to look up and return a value from a standard table.

Syntax Table (RetCode, Key, Table, File)

This procedure makes sure a given value (Key) is an entry in the specified table (Table).
This procedure returns the string value identified in the RetCode parameter.

The table name in the Table parameter and file name in the File parameter must conform
to the naming conventions used for naming tables in Studio or Image Editor. If the Key
parameter does not occur within the named table, the return string is empty.

You can include one of these INI options to specify that entry table files will use the old
or new format. (Do not include both options.)

< Tables >

OldFormatOnly = Yes

NewFormatOnly = Yes

For instance, if you are doing a lot of entry table lookups from the DAL code, your tables
are located on a network drive, and the tables are a mix of both old and new format tables,
performance can be affected because the system has to check the format of each table.

If, however, you can use one of these new options to tell the system that all tables are in
the same format, it can omit that query and performance improves.

Specify only the option that applies. If you omit both options, the system first checks to
see if the table is in the new format. If not, then it checks to see if the table is in the old
format.

Keep in mind that if you include one of these options, all of your tables must be in that
format. For instance if you set the OldFormatOnly option to Yes, all of your tables must
be in the old format. If you later decide to convert your tables to the new format, you must
remove this option and, to get the same performance gain, include the NewFormatOnly
option.

Parameter Description

RetCode Enter a return code value designated by the letters K and D. For example:
K - key code
D - code description
K + D - key code and code description
D + K - code description and key code
The default is the value of the current field table return value.

Key Enter the table key code. The default is the value of the current field text.

Table Enter the name of the table you want to search. Note that this parameter is case
sensitive. The default is the current field table.

File Enter the name of the file that contains the table you specified in the Table
parameter. Note that this parameter is not case sensitive. The default is the value
of current field table file name, or the current section table file name.

402

Example Here are some examples:

See also Documaker Workstation Functions on page 59

Procedure Result Explanation

Table (“D”,
“GA”,
“STATCOD”,
“table1”)

Georgia Verifies that a table named STATCOD is contained in the file
named table1. Then returns the description (Georgia) for the
key code GA.

Time

403

TIME

Use this function to build a time from a given time, or the current time.

Syntax Time (Format, Hour, Minutes, Seconds)

The system returns a time string that contains a formatted time value.

If you omit one of the Hour, Minute, or Seconds parameters, the system uses the
appropriate value from the current time.

Example Here are some examples:

(Assume the current time is 07:07:32 am.)

See also Time Formats on page 80

Parameter Description

Format Enter a time format string. The default is time format 1 (HH:MM:SS).

Hour Enter a number to indicate the hour. The default is the current hour.

Minutes Enter a number to indicate the minute. The default is the current minute.

Seconds Enter a number to indicate the second. The default is the current second.

Function Result Explanation

Time() 07:07:32 No parameters entered. It defaults to the current time in
format 1.

Time(2,13,30,5) 01:30:05
PM

Format 2 selected; time displays in 12-hour format using
these values.

404

TIME2TIME

Use this function to convert a time from one format to another.

Syntax Time2Time (OldTime, OldFormat, NewFormat)

Example Here is an example:

(Assume T1 is 01:30:05 pm.)

See also Time Formats on page 80

Parameter Description

OldTime Enter a valid time string. The system assumes your entry is in the time format
specified in the OldFormat parameter. The default is the current time.

OldFormat Enter a valid time format that describes the OldTime parameter. The default is
time format 1 (HH:MM:SS).

NewFormat Enter a valid time format that describes the format you want the OldTime
converted to. The default is time format 1 (HH:MM:SS).

Function Result Explanation

Time2Time(“T1”, “2”, “1”) 13:30:05 Takes the time in T1 (which is in format 2) and
converts it to format 1.

TimeAdd

405

TIMEADD

Use this function to add time to a given time and return the new time. The resulting time
is returned in the same format.

Syntax TimeAdd (Time, Format, Seconds, Minutes, Hours)

Example Here is an example:

(Assume the current time is 1:20:03 pm.)
)

See also Time Formats on page 80

Parameter Description

Time Enter a valid time string. The system assumes your entry is in the time format
specified in the Format parameter. The default is the current time.

Format Enter a valid time format that describes the Time parameter. The default is time
format 1 (HH:MM:SS).

Seconds Enter the number of seconds to be added. The default is zero (0).

Minutes Enter the number of minutes to be added. The default is zero (0).

Hours Enter the number of hours to be added. The default is zero (0).

Function Result Explanation

TimeAdd(, ,
“10”, “20”, “3”)

4:40:13 Defaults to the current time and adds 3 hours, 20 minutes, and
10 seconds. Returns the result in the same format.

406

TIMEZONE

Use this function to return the system’s time zone setting or to make sure a time zone is
valid.

Syntax TimeZone (TimeZone)

Example Here are some examples:

This example returns the system time zone, such as America/New_York:

T1 = TimeZone()

This example checks to see if a time zone string, such as Europe/London, is valid:

T1 = 'Europe/London'

T2 = TimeZone(T1)

if (T2 = '') then

Print_It(T1 & 'is not a valid time zone string')

else

Print_It(T1 & 'is a valid time zone string')

end

See also TimeZone2TimeZone on page 407

Time Functions on page 80

Using the Time Zone Functions on page 81

ICU Time Zones on page 82

Parameter Description

TimeZone (Optional) If you include a time zone string, the system makes sure that string is
valid. If it is invalid, the system returns an empty string.
The default is to return the system’s current time zone setting.

TimeZone2TimeZone

407

TIMEZONE2TIMEZONE

Use this function to convert date and time values from one geographic region into date
and time values that are local to another geographic region. The function will also adjust
for daylight savings time as needed.

Syntax TimeZone2TimeZone (PrefixName, TimeZone, NewTimeZone)

If you define these variables, the system uses the PrefixName and time you specified and
converts that time to the equivalent time in the location you specified via the
NewTimeZone parameter.

If you do not define these variables, the system creates these variables based on the
PrefixName you entered and assigns values into these variables based on the current date
and time.

If there are no errors, the system returns a non-zero value.

Example Here are some examples:

This example creates date and time variables using tz as a prefix (tz.day, tz.month, tz.year,
tz.hour, tz.minute, tz.second) and stores the current date and time values based on the
system's time zone:

TimeZone2TimeZone('tz', ,)

Print_It('Date:' & Date(, tz.day, tz.month, tz.year))

Print_It('Time:' & Time(, tz.hour, tz.minute, tz.second))

This example converts date and time variables (tz.xxxx) that use the system’s time zone
into GMT date and time:

TimeZone2TimeZone('tz', , 'GMT')

Print_It('GMT Date:' & Date(, tz.day, tz.month, tz.year))

Print_It('GMT Time:' & Time(, tz.hour, tz.minute, tz.second))

Parameter Description

PrefixName Enter the prefix name associated with variables that will be used to hold date
and time settings. Here are some examples:
PrefixName.day
PrefixName.month
PrefixName.year
PrefixName.hour
PrefixName.minutes
PrefixName.seconds

TimeZone (Optional) Enter the time zone used for the PrefixName variables.
If you enter an invalid time zone string, the system returns a value of zero (0)
and sets variables associated with the PrefixName to zero (0).
The default is to return the system’s current time zone setting.

NewTimeZone (Optional). Enter the time zone by which you want to adjust the values in the
PrefixName variables.
If you enter an invalid time zone string, the system returns a value of zero (0)
and sets variables associated with the PrefixName to zero (0).
The default is to return the system’s current time zone setting.

408

This example converts a current America/New_York date and time into an Australia/
Melbourne date and time:

tz.day = ''

tz.month = ''

tz.year = ''

tz.hour = ''

tz.minute = ''

tz.second = ''

if (TimeZone2TimeZone('tz', 'America/New_York', 'Australia/
Melbourne')) then

Print_It('Australia/Melbourne Date:' & Date(, tz.day, tz.month,
tz.year))

Print_It('Australia/Melbourne Time:' & Time(, tz.hour, tz.minute,
tz.second))

else

Print_it('Error calling TimeZone2TimeZone')

end

See also TimeZone on page 406

Time Functions on page 80

Using the Time Zone Functions on page 81

ICU Time Zones on page 82

TotalPages

409

TOTALPAGES

Use this function to return the number of pages that will print for a given recipient or for
all recipients. A page is considered any side of paper that has a printable section for a
recipient. A duplex sheet with front and back sections counts as two pages.

Syntax TotalPages (Recipient)

The count considers copy-counts and reflects the total number of printed sides that will
be referenced. A section may be empty (containing no text or discernible print objects)
and still be designated to print. So, the count does not necessarily mean the pages will
contain any real text.

Example For example, assume you have a one-page document that has two recipients. Recipient1
gets one copy, while Recipient2 gets two copies.

With this command:

TotalPages(“Recipient1”)

The system returns one (1) as the page count

With this command:

TotalPages(“Recipient2”)

The system returns two (2) as the page count, since the one-page document will be printed
twice. if you omit the Recipient parameter, the system returns three (3) as the page count.

NOTE: The count reflects when the function is called. The system cannot predict
whether banner pages will be created or whether additional formatting or data
entry will add or remove pages. Make sure you do not call this function until all
page items have been created and formatted.

See also TotalSheets on page 410

Documaker Workstation Functions on page 59

Parameter Description

Recipient (Optional) If you include the Recipient parameter, the count only reflects the
pages that print for that recipient. If you omit the Recipient parameter, the count
includes all recipients.

410

TOTALSHEETS

Use this function to return the total number of sheets of paper that will print for a
recipient. A sheet is considered a physical piece of paper that may have print on one or
both sides. Therefore a duplex sheet with a front and back sections will count as one
sheet.

NOTE: Although the TotalSheets function does take duplex options into consideration,
it has no knowledge of whether you will actually print to a printer that supports
duplex commands. The count reflects what the document defines, not what the
printer will support

Syntax TotalSheets (Recipient)

The count takes into consideration recipient copy counts and duplex options. A section
may be empty (containing no text or discernible print objects) and still be designated to
print. So, the count does not necessarily mean that the sheets will contain any real text.

Example For example, assume you have a two-page document that is duplexed (prints front and
back). Recipient1 gets one copy, while Recipient2 gets two copies.

With this command:

TotalSheets(Recipient1)

The system returns one (1) as the sheet count.

With this command:

TotalSheets(Recipient2)

The system returns two (2) as the sheet count, since the two-page document will be
printed twice. if you omit the Recipient parameter, the system returns three (3) as the sheet
count.

NOTE: The count reflects when the function is called. The system cannot predict
whether banner pages will be created or whether additional formatting or data
entry will add or remove pages. Make sure you do not call this function until all
page items have been created and formatted.

See also TotalPages on page 409

Documaker Workstation Functions on page 59

Parameter Description

Recipient (Optional) If you include the Recipient parameter, the count only reflects the
sheets that print for that recipient. If you omit the Recipient parameter, the count
includes all recipients.

TriggerFormName

411

TRIGGERFORMNAME

If you are using DAL scripts during Documaker Server SetRecip trigger processing, use
this function to return the form name of the current SetRecipTb entry being processed.

Syntax TriggerFormName ()

There are no parameters for this function.

Example Here is an example:

Assume your SETRECIPTB.DAT file has the following entries and a loaded DAL library
file contains the DAL sub-routine function, ILDSChk. The forms are triggered if the
conditions in the DAL script are met.

Here is an example of the SETRECIPTB.DAT file:

…

;Docu;CP;ILDS498;S004H;XLC;Agent(1);;0;0;0;1;;DALTrigger;ILDSChk;

;Docu;CP;ILDS598;S004L;XLC;Agent(1);;0;0;0;1;;DALTrigger;ILDSChk;

…

Here is an example of the DAL library file:

*** If driver's age, insured state, and form name are the specified

*** conditions then trigger the form.

BeginSub ILDSChk

trig_f_name = TriggerFormName()

If trig_f_name = "ILDS498" AND \

 ?("driver_age") <= 25 AND \

 ?("insure_st") = "CA" Then

 Return(1)

 ElseIf trig_f_name = "ILDS598" AND \

 ?("driver_age") > 25

 ?("insure_st") = "FL" Then

 Return(1)

 Else

 Return(0)

End

EndSub

See also TriggerImageName on page 412

TriggerRecsPerOvFlw on page 413

Documaker Server Functions on page 58

412

TRIGGERIMAGENAME

If you are using DAL scripts during Documaker Server SetRecip trigger processing, use
this function to return the section (FAP file) name of the current SetRecipTb entry being
processed.

Syntax TriggerImageName ()

There are no parameters for the function.

Example Here is an example:

Assume your SETRECIPTB.DAT file has the following entries and a loaded DAL library
file contains the DAL sub-routine function, ILDSChk. The forms are triggered if the
conditions in the DAL script are met.

Here is an example of the SETRECIPTB.DAT file:

…

;Docu;CP;ILDS498;S004H;XLC;Agent(1);;0;0;0;1;;DALTrigger;ILDSChk;

;Docu;CP;ILDS598;S004L;XLC;Agent(1);;0;0;0;1;;DALTrigger;ILDSChk;

…

Here is an example of the DAL library file:

*** If driver's age, insured state, and section name are the
specified

*** conditions then trigger the section.

BeginSub ILDSChk

trig_f_name = TriggerImageName()

If trig_f_name = "S004H" AND \

 ?("driver_age") <= 25 AND \

 ?("insure_st") = "CA" Then

 Return(1)

 ElseIf trig_f_name = "S00L" AND \

 ?("driver_age") > 25

 ?("insure_st") = "FL" Then

 Return(1)

 Else

 Return(0)

End

EndSub

See also TriggerFormName on page 411

TriggerRecsPerOvFlw on page 413

Documaker Server Functions on page 58

TriggerRecsPerOvFlw

413

TRIGGERRECSPEROVFLW

Use this function to retrieve the number of records per overflow section value which is
stored in the SETRCPTBL.DAT entry being processed. Depending on the current
trigger, this integer value can be the overflow record count for a form or section.

NOTE: This is only applicable in Documaker Server processing during DAL trigger
processing.

Syntax TriggerRecsPerOvFlw ()

There are no parameters for this function.

Example Assume you have the following entry in the SETRCPTBL.DAT file for the form trigger
being processed. Also assume there are 30 records in the extract file that match the search
mask.

;RP10;CIS;qa_f1550;;;Customer(1);;1,M;25;0;1;;DALTrigger;FEATURE155
0;

Here is an example:

BeginSub Feature1550

#rec = CountRec("1,Feature1550,31,Data")

#remaining = MOD(#rec, TriggerRecsPerOvFlw())

While(#remaining > 0)

* write addition records

Write_fm()

#mod -= 1

Wend

Return(#rec)

EndSub

In this example, the TriggerRecsPerOvFlw function, returns a records per overflow
section value of 25, which is used in the MOD function.

See also MOD on page 317

TriggerFormName on page 411

TriggerImageName on page 412

Documaker Server Functions on page 58

414

TRIM

Use this function to remove leading and/or trailing spaces from a given string. The integer
parameter determines whether spaces on the left, right, or both ends are to be removed.
The resulting string is returned.

Syntax Trim (String, Integer)

The system removes leading and trailing spaces from the string specified in parameter
one. The Integer parameter determines which spaces are removed.

Example Here are some examples:

(Assume the current field contains the text “ Your Name”)

NOTE: During field entry, the system automatically removes trailing spaces from values
entered by the user. Only variables assigned during DAL scripts are likely to have
trailing spaces.

See also String Functions on page 78

Parameter Description

String Enter a valid string. The default is the value of the current field.

Integer Choose from these options:
0 - remove trailing spaces
1 - remove leading spaces
2 - remove leading and trailing spaces
The default is two (2).

Function Result Explanation

Trim (“ Value “) “Value” Defaults to trim leading and trailing spaces.

Trim (“ Value “, 0) “ Value” Removes trailing spaces.

Trim() “Your
Name”

Use current field and remove leading and trailing spaces.
See the note below.

Upper

415

UPPER

Use this function to convert all characters to uppercase and return the result.

Syntax Upper (String, Length)

If the length specified in the Length parameter is longer than the string, the result is the
length you specified. If the specified length is less than the string, the length of the string
is used. The system does not truncate the string.

Example Here are some examples:

(Assume the current field contains the text Your Name.)

See also String Functions on page 78

Lower on page 302

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Enter the length of the output. The default is the length of the current field.

Function Result Explanation

Upper () “YOUR
NAME”

Defaults to the current field.

Upper (, 15) “YOUR
NAME “

Defaults to the current field and increases the length of the
field to 15.

Upper (“Street
Address”)

“STREET
ADDRESS”

Uppercases the specified string.

416

UNIQUESTRING

Use this function to return a 45-character globally unique string.

Syntax UniqueString ()

There are no parameters for this function.

Keep in mind...

• These print drivers are supported: PCL5, PCL6, PST, MET, AFP, PDF, HTML, and
RTF.

• These print drivers are not supported: EPT, MDR, and GDI.

• All platforms are supported, but note that while UniqueString is supported on z/OS,
z/OS does not support PDF or long file names, so the PDF example does not apply
to z/OS.

• Both multi- and single-step processing are supported.

The only DAL function actually involved in splitting the print stream is BreakBatch. The
others make it easier to implement this functionality. For example, since you need to name
the new print stream, you use the SetDeviceName procedure. To find the name of the
current device, you use the DeviceName function. If you need to create unique file names,
you can use the UniqueString function.

NOTE: While you can call all of these DAL functions in Documaker Server or Entry, the
BreakBatch and SetDeviceName functions are not applicable in Entry since it
does not use the batch printing engine. DeviceName and UniqueString are
applicable to both Entry and Documaker Server.

Example Here is an example:

DataPath = GetINIString(,"Data","DataPath")

Drive = FileDrive(DataPath)

Path = FilePath(DataPath)

UniqueID = UniqueString()

Outputname = FullFileName(Drive,Path,UniqueID,".PDF")

SetDeviceName(Outputname)

See also Miscellaneous Functions on page 73

BreakBatch on page 157

DeviceName on page 216

SetDeviceName on page 370

UserID

417

USERID
Use this function to return the user ID used to log on to the Entry module.

Syntax UserID ()

There are no parameters for this function.

This function is only useful if the system is set up to require user IDs.

Example Here are some examples:

(Assume the current user is TOMJ.)

See also WIP Functions on page 88

UserLvl on page 418

Function Result Explanation

result = UserID() TOMJ Identifies the current user ID as TOMJ.

SetFld (UserID
 (), “MyField”)

TOMJ First UserID determines that the current user ID is TOMJ,
then the field named MyField is assigned the value TOMJ by
the SetFld procedure.

418

USERLVL

Use this function to get the currently logged in user's access rights level. The value
returned is in the range 0-9. Zero represents the highest level and nine represents the
lowest level. Access rights levels are specific to each system implementation.

Syntax UserLvl ()

There are no parameters for this function.

This function is only useful if the system is set up to require user IDs and user rights.

Example Here is an example:

(Assume the current user is TOMJ with an access rights level of 7.)

See also WIP Functions on page 88

UserID on page 417

Function Result Explanation

#result=UserLvl () 7 Determines that TOMJ's user rights are 7 and
returns a 7.

IF (UserLvl() !=0)
 MSG(USERID(),
 “Remember to get a
supervisor to approve
this transaction.”);
END;

TOMJ
Remember to
get a
supervisor to
approve this
transaction.

First UserLvl determines that TOMJ's rights level
does not equal zero (0). Then the MSG procedure
creates a window and displays the given message
along with the current user ID (TOMJ) returned by
the UserID function.

WeekDay

419

WEEKDAY

Use this function to determine the day of the week in a given date and return the value as
a number.

Syntax WeekDay (Date, Format, Locale)

The system returns the number of the day of the week, from 1 to 7, as shown here:

WeekDay is most often used with the DayName function. The DayName function extracts
the name of the day of the week from a given date.

Example Here are some examples:

(Assume the current date is Wednesday, July 5, 2009.)

See also Date Functions on page 51

Locales on page 55

Parameter Description

Date Enter a valid date string. The system assumes your entry is in the format specified
by the Format parameter. The default is the current date.

Format Enter a valid date format that describes the format used by your entry in the Date
parameter. The default is date format 1 (MM/DD/YY).

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INI option. If the Locale INI option offers no value, the system
defaults to USD (United States/English).

Number Day of the week

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Function Result Explanation

WeekDay () 4 Defaults to the current date.

Datestring =
DateAdd(, , 1);
 WeekDay(datestring)

5 First the DateAdd function adds one day to the current
date, resulting in a date of Thursday, July 6, 2009. Then
WeekDay returns 5, which corresponds to Thursday.

420

Using INI Options on page 8

Date Formats on page 52

DateAdd on page 183

DayName on page 188

WhatForm

421

WHATFORM

Use this function to return the name of the form that includes the item you searched for.
Having the name of the form lets you manipulate that object using other DAL functions,
which may require its name.

Syntax WhatForm (Field, Section, Form, Group)

If nothing matches your criteria, the system returns a blank.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, minimize using wildcards (*) when searching for field,
section, or form names.

Example Here is an example:

See also WhatGroup on page 422

WhatImage on page 423

Name Functions on page 74

Parameter Description

Field Enter the name of the field. The default is the current field.

Section Enter the name of the section. The default is the current section.

Form Enter the name of the form. The default is the current form.

Group Enter the name of a group to contain the specified form. The default is the current
group.

Function Result Explanation

form =
WhatForm(“Tota
l Field\3”, , ,"*");

The name of
the form or 0

Attempts to locate the third occurrence of a field in a
form set and returns the name of the form that contains
that field.

422

WHATGROUP

Use this function to return the name of the group that includes the item you searched for.
Having the name of the form lets you manipulate that object using other DAL functions,
which may require its name.

Syntax WhatGroup (Field, Section, Form, Group)

If nothing matches your criteria, the system returns a blank.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, minimize the use of wildcards (*) when searching for
field, section, or form names.

Example Here is an example:

See also WhatForm on page 421

WhatImage on page 423

Name Functions on page 74

Parameter Description

Field Enter the name of the field. The default is the current field.

Section Enter the name of the section. The default is the current section.

Form Enter the name of the form. The default is the current form.

Group Enter the name of a group to contain the specified form. The default is the current
group.

Function Result Explanation

group =
WhatGroup(, ,
"MyForm", "*");

The name of
the form or 0

Attempts to locate the group name that contains a
specific form.

WhatImage

423

WHATIMAGE

Use this function to return the name of the section that includes the item you searched
for. Having the name of the form lets you manipulate that object using other DAL
functions, which may require its name.

Syntax WhatImage (Field, Section, Form, Group)

If nothing matches your criteria, the system returns a blank.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, minimize the use of wildcards (*) when searching for
field, section, or form names.

Example Here is an example:

See also WhatForm on page 421

WhatGroup on page 422

Name Functions on page 74

Parameter Description

Field Enter the name of the field. The default is the current field.

Section Enter the name of the section. The default is the current section.

Form Enter the name of the form. The default is the current form.

Group Enter the name of a group to contain the specified form. The default is the
current group.

Function Result Explanation

section =
WhatSection(“To
tal Field\12”, ,
,“*”);

The name of
the form or 0

Attempts to locate the twelfth occurrence of a field in a
form set and returns the name of the section that contains
that field.

424

WIPEXIT

Use this procedure/function to close work-in-process.

Syntax WIPExit (SaveFlag)

This procedure generates a message that tells the system to close the current form set.

Although control returns to the script after calling this procedure, the only statement that
should be executed afterwards is a RETURN statement.

Example Here are some examples:

See also WIP Functions on page 88

Parameter Description

SaveFlag Enter a positive number, such as one (1), to save and close the current form set.
Enter zero (0) to close the form set without saving and exit WIP.
The default is to save and close the current form set.

Procedure Result Explanation

WIPExit(1) Exits WIP and saves your work. Work is saved with a valid positive flag.

WIPExit(0) Exits WIP but does not save your
work.

Work is not saved with a flag of zero.

WIPFld

425

WIPFLD

Use this function to return the value of a database field from the current WIP record.

Syntax WIPFld (WIPfield)

The system returns the value of an identified field within the current WIP record.

WIP records are only defined within the Entry system and are implementation specific. If
a request is made for a field that is not part of the WIP record definition, the system
returns an empty string.

Example Here are some examples:

(Assume the current WIP record has a field named OrigUser which contains the string
David Harris.)

See also WIP Functions on page 88

Parameter Description

WIPfield Enter the name of the field in the WIP record.

Function Result Explanation

result = WIPFld
(“OrigUser”)

David
Harris

Determines that the current WIP record named OrigUser
has the value David Harris and returns that value.

IF (WIPFld
('StatusCode') !='W')
 SetFld(“N/A”);
END

If the current WIP record does not contain a StatusCode
field that is equal to W the SetFld statement executes.

426

WIPKEY1
Use this function to return the value of the Key1 field from the current WIP record.

Syntax WIPKey1 ()

There are no parameters for this function.

The system returns the value of the Key1 field within the current WIP record known as
the Company field in the insurance market. WIP records are only defined within the Entry
module and are specific for each implementation.

This is a short-cut method for WIPFld(“KEY1”), which would return the same value.

Example Here are some examples:

(Assume the current WIP record contains a Key1 field with the value Oracle.)

See also WIP Functions on page 88

WIPFld on page 425

WIPKey2 on page 427

WIPKeyID on page 428

SetFld on page 374

Function Result Explanation

result =
WIPKey1()

Oracle Determines the value contained in the WIP Key1 field and
returns that value.

IF WIPKey1 ()
=
 “Oracle”
 SetFld(“N/A”);
END

1
N/A

Determines that the Key1 field contains the value Oracle, then
executes the SetFld procedure and places N/A in the current
field. Also returns one (1) to indicate that the SetFld
procedure was successful.

WIPKey2

427

WIPKEY2
Use this function to return the value of the Key2 field from the current WIP record.

Syntax WIPKey2 ()

There are no parameters for this function.

The system returns the description of the Key2 field in the current WIP record, known as
the Line of Business field in the insurance market. WIP records are only defined within the
entry system and are implementation specific.

This is a short-cut method for WIPFld(“KEY2”), which would return the same value.

Example Here are some examples:

(Assume the current WIP record contains a Key2 field with the value “Fire Insurance”.)

See also WIP Functions on page 88

WIPFld on page 425

WIPKey1 on page 426

WIPKeyID on page 428

SetFld on page 374

Function Result Explanation

result =
WIPKey2()

Fire
Insurance

Determines the value contained in the WIP Key2 field and
returns that value.

IF WIPKey2 () =
 “Oracle”
 SetFld(“N/A”);
END

Nothing Determines that the Key2 field does not contain the value
“Oracle”; therefore the SetFld procedure does not
execute.

428

WIPKEYID
Use this function to replace the value of the KeyID field from the current WIP record.

Syntax WIPKeyID ()

There are no parameters for this function.

The system returns the value of the KeyID field in the current WIP record, known as the
Policy Number field in the insurance market. WIP records are only defined in the
Documaker and are implementation specific.

This is a short-cut method for the WIPFld(“KEYID”) function, which would return the
same value.

Example Here are some examples:

(Assume the current WIP record contains a KeyID field with the value “1300”.)

See also WIP Functions on page 88

WIPFld on page 425

WIPKey1 on page 426

WIPKey2 on page 427

SetFld on page 374

Function Result Explanation

result =
WIPKeyID()

1300 Determines the value contained in the WIP KeyID field and
returns that value.

IF
LEFT(WIPKeyID
 (), 3) > 100
 SETFLD(“N/
A”);
END

1
N/A

Finds the KeyID field value. Then determines that the three
left most characters in the KeyID field are greater than 100.
Executes the SetFld procedure and places “N/A” in the
current field. Also returns one (1) to indicate that the SetFld
procedure was successful.

XMLAttrName

429

XMLATTRNAME

Use this function to return the name of the current attribute pointed to by the
XMLFirstAttrib and XMLNextAttrib functions.

Syntax XMLAttrName (%XMLTree)

The system returns the name of the current attribute pointed to by the XMLFirstAttrib
and XMLNextAttrib functions.

Example This example returns the second attribute name of the first form in the list.

aStr="Attribute not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form");

#rc=XMLFirst(%XMLTree);

#rc=XMLFirstAttrib(%XMLTree);

#rc=XMLNextAttrib(%XMLTree);

if #rc > 0

aStr=XMLAttrName(%XMLTree);

end

#rt=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

XMLFirstAttrib on page 433

XMLNextAttrib on page 438

Parameter Description

%XMLTree Enter a list type DAL variable that passes the XML tree handle.

430

XMLATTRVALUE

Use this function to return the value of the current attribute pointed to by the
XMLFirstAttrib and XMLNextAttrib functions. This function is similar to the
XMLAttrName function.

Syntax XMLAttrValue (%XMLTree)

The system returns the value of the current attribute pointed to by the XMLFirstAttrib
and XMLNextAttrib functions.

Example This example returns the second attribute name of the first form in the list.

aStr="Attribute not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form");

#rc=XMLFirst(%XMLTree);

#rc=XMLFirstAttrib(%XMLTree);

#rc=XMLNextAttrib(%XMLTree);

if #rc > 0

aStr=XMLAttrValue(%XMLTree);

end

#rt=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

XMLAttrName on page 429

XMLFirstAttrib on page 433

XMLNextAttrib on page 438

Parameter Description

%XMLTree Enter a list type DAL variable that passes the XML tree handle.

XMLFind

431

XMLFIND

Use this function to locate the XML path from the extracted XML tree and return a list
of matched elements to either a:

• List type DAL variable, or a

• Matched text to a string type DAL variable

The result depends on the search request.

Syntax XMLFind (%xXMLTree, SrchNode, XPath)

The system returns a list type or a string type DAL variable.

Example This example returns text from the last element in the list.

aStr="Text not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form[text()]");

#rc=XMLFirst(%XMLTree);

loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurName(%XMLTree);

#rc=XMLNext(%XMLTree);

goto loop:

endloop:

#rc=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

Scenario 1 on page 90

Scenario 2 on page 90

Parameter Description

%xXMLTree A list type DAL variable which is passed from either the XMLFileExtract rule
or the LoadXMLList function.
You can use the predefined %extract variable as a parameter here, as discussed
in scenario 1.

SrchNode A string type DAL variable that passes a node name from which the search
starts.
If you omit this parameter, the search starts from the root of the XML tree.

XPath A string type DAL variable that passes the XML location. If you omit the
second parameter, the search starts from the root of the XML tree.

432

XMLFIRST

Use this function to set the current pointer to the first element in the specified list.

Syntax XMLFirst (%XMLTree)

The system returns one (1) for success or zero (0) for failure.

Example This example returns text from the last element in the list.

aStr="Text not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form[text()]");

#rc=XMLFirst(%XMLTree);

loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurName(%XMLTree);

#rc=XMLNext(%XMLTree);

goto loop:

endloop:

#rc=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

Parameter Description

%XMLTree A list type DAL variable. This variable can be either an XML tree or a list of
extracted elements.

XMLFirstAttrib

433

XMLFIRSTATTRIB

Use this function to set the current pointer to the first element in the list you specify.

Syntax XMLFirstAttrib (%XMLTree)

This function sets the attribute pointer to the first attribute for the current element in the
element list or to the first attribute element in the attribute list.

If you input an element list, use these functions to retrieve the attribute name and value:

• XMLAttrName

• XMLAttrValue

If you input an attribute list, use these functions to retrieve attribute name and value:

• XMLNthAttrName

• XMLNthAttrValue

The system returns one (1) for success or zero (0) for failure.

Example This example returns text from the last element in the list.

aStr="Text not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form[text()]");

#rc=XMLFirst(%XMLTree);

loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurName(%XMLTree);

#rc=XMLNext(%XMLTree);

goto loop:

endloop:

#rc=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

XMLAttrName on page 429

XMLAttrValue on page 430

XMLNthAttrName on page 440

XMLNthAttrValue on page 441

Parameter Description

%XMLTree Enter a list type DAL variable. You can enter either an XML tree or a list of
extracted elements.

434

XMLFIRSTTEXT

Use this function to set the current text to be the first text element in the XML search list
and then retrieve that text.

Syntax XMLFirstText (List)

Example Here is an example:

Mystring = XMLFirstText(List)

See also XML Functions on page 89

Parameter Description

 List Enter the name of the list.

XMLGetCurName

435

XMLGETCURNAME

Use this function to get the name from the current element. This function is similar to the
XMLGetCurText function.

Syntax XMLGetCurName (%XMLTree)

The system returns the element name from the current element. The return value is a
string type DAL variable.

Example This example returns text from the last element in the list.

aStr="Text not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form[text()]");

#rc=XMLFirst(%XMLTree);

loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurName(%XMLTree);

#rc=XMLNext(%XMLTree);

goto loop:

endloop:

#rc=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

XMLFirst on page 432

XMLGetCurText on page 436

Parameter Description

%XMLTree A list type DAL variable. This variable can be either an XML tree or a list of
extracted elements.

436

XMLGETCURTEXT

Use this function to get the text from the current element. This function is similar to the
XMLGetCurName function.

Syntax XMLGetCurText (%XMLTree)

The system returns the text from the current element. The return value is a string type
DAL variable.

Example This example returns text from the last element in the list.

aStr="Text not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form[text()]");

#rc=XMLFirst(%XMLTree);

loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurText(%XMLTree);

#rc=XMLNext(%XMLTree);

goto loop:

endloop:

#rc=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

XMLFirst on page 432

XMLGetCurName on page 435

Parameter Description

%XMLTree A list type DAL variable. This variable can be either an XML tree or a list of
extracted elements.

XMLNext

437

XMLNEXT

Use this function to set the current pointer to the next node or element in the specified
list. This function is similar to the XMLFirst function.

Syntax XMLNext (%XMLTree)

The system sets the current pointer to the next node or element in the list you specified
list and returns one (1) for success or zero (0) for failure.

Example This example returns text from the last element in the list.

aStr="Text not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form[text()]");

#rc=XMLFirst(%XMLTree);

loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurName(%XMLTree);

#rc=XMLNext(%XMLTree);

goto loop:

endloop:

#rc=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

XMLFirst on page 432

Parameter Description

%XMLTree A list type DAL variable. This variable can be either an XML tree or a list of
extracted elements.

438

XMLNEXTATTRIB

Use this function to set the current pointer to the next element in the list you specify. This
function is similar to the XMLFirstAttrib function.

Syntax XMLNextAttrib (%XMLTree)

This function sets the current attribute pointer to the next attribute for the current
element in the list or to the next attribute element in the attribute list.

If you input an element list, use these functions to retrieve the attribute name and value:

• XMLAttrName

• XMLAttrValue

If you input an attribute list, use these functions to retrieve attribute name and value:

• XMLNthAttrName

• XMLNthAttrValue

The system returns one (1) for success or zero (0) for failure.

Example This example returns text from the last element in the list.

aStr="Text not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form[text()]");

#rc=XMLFirst(%XMLTree);

loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurName(%XMLTree);

#rc=XMLNext(%XMLTree);

goto loop:

endloop:

#rc=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

XMLAttrName on page 429

XMLAttrValue on page 430

XMLNthAttrName on page 440

XMLNthAttrValue on page 441

Parameter Description

%XMLTree A list type DAL variable. This variable can be either an XML tree or a list of
extracted elements.

XMLNextText

439

XMLNEXTTEXT

Use this function to retrieve the next text element in the XML search list.

Syntax XMLNextText (List)

Example Here is an example:

Mystring = XMLNextText(List);

See also XML Functions on page 89

Parameter Description

 List Enter the name of the list.

440

XMLNTHATTRNAME

Use this function to return the nth attribute name, as indicated by an index number you
specify.

Syntax XMLNthAttrValue (%XMLTree,#Index)

The system returns the nth attribute name indicated by the index number.

Example In this example, the XMLFind function returns a list of attributes and the
XMLNthAttrName function returns the name of the first attribute in the list.

aStr="Attribute not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form/@*");

aStr=XMLNthAttrName(%XMLTree, 1);

end

#rt=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

XMLFind on page 431

Parameter Description

%XMLTree A list type DAL variable that passes a name list.

#Index A integer type DAL variable that passes an index number.

XMLNthAttrValue

441

XMLNTHATTRVALUE

Use this function to return the nth attribute value, as indicated by an index number you
specify. This function is similar to the XMLNthAttrName function.

Syntax XMLNthAttrValue (%XMLTree,#Index)

The system returns the nth attribute value indicated by the index number.

Example In this example, the XMLFind function returns a list of attributes and the
XMLNthAttrValue function returns the name of the first attribute in the list.

aStr="Attribute not found!";

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form/@*");

aStr=XMLNthAttrValue(%XMLTree, 1);

end

#rt=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

XMLNthAttrName on page 440

Parameter Description

%XMLTree A list type DAL variable that passes a name list.

#Index A integer type DAL variable that passes an index number.

442

XMLNTHTEXT

Use this function to return the nth text value, as indicated by an index number you specify.

Syntax XMLNthText (%XMLTree,#Index)

The system returns the nth text value indicated by the index number.

Example In this example, the LoadXMLList function returns a text list and the XMLNthText
function gets the first text.

AStr=”Text not found”;

%xXMLTree=LoadXMLList("test.xml");

%XMLTree=XMLFind(%xXMLTree,"Forms","Form/text()");

aStr=XMLNthtext(%XMLTree, 1);

#rt=DestroyList(%xXMLTree);

return(aStr);

See also XML Functions on page 89

LoadXMLList on page 299

Parameter Description

%XMLTree A list type DAL variable that passes a name list.

#Index A integer type DAL variable that passes an index number.

Year

443

YEAR

Use this function to determine the number of the year in a given date and returns the value
as a four-digit number.

Syntax Year (Date, Format, Locale)

The system determines the year portion of the given date based on the format you
specified in the Format parameter.

Example Here are some examples:

(Assume the current date is 07/01/09.)

See also Date Functions on page 51

Locales on page 55

Using INI Options on page 8

Date Formats on page 52

YearDay on page 444

Parameter Description

Date Enter a valid date string. The system assumes your entry is in the date format
specified by the Format parameter. The default is the current date.

Format Enter a valid date format that describes your entry in the Date parameter. The
default is date format 1, (MM/DD/YY).

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INI option. If the Locale INI option offers no value, the system
defaults to USD (United States/English).

Function Result Explanation

Year () 2009 Defaults to the current date and returns a four-digit year.

Year (“2-5-09”, “1-2”) 2009 Returns a four-digit year for the given date.

444

YEARDAY

Use this function to determine the number of days from the beginning of the year
(counting consecutively from January 1) to a given date and return the value as a number.

Syntax YearDay (Date, Format, Locale)

The system determines the day of the year portion of the given date based on the format
you specified in the Format parameter.

Example Here are some examples:

(Assume the current date is 07/01/09.)

See also Date Functions on page 51

Locales on page 55

Date Formats on page 52

Year on page 443

Parameter Description

Date Enter a valid date string. The system assumes your entry is in the date format
specified by the Format parameter. The default is the current date.

Format Enter a valid date format that describes your entry in the Date parameter. The
default is date format 1, (MM/DD/YY).

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INI option. If the Locale INI option offers no value, the system
defaults to USD (United States/English)..

Function Result Explanation

YearDay () 182 Defaults to the current date and returns the day of the year
(counting consecutively from January 1).

YearDay (“7-1-08”) 183 Returns the day of the year (counting consecutively from
January 1) for the given date. (Since 2008 is a leap year the
number is one greater.)

445

Chapter 3

Keyword Reference

This chapter contains a reference, in alphabetical order, of all the keywords you can use
in your DAL scripts.

See the Keyword Table on page 446 for a list of the keywords. See Grammar and Syntax
on page 14 for more information on using DAL.

Chapter 3
Keyword Reference

446

KEYWORD
TABLE

This table lists each keyword and provides a description of the keyword. Click on the
function name to jump to a discussion of that function.

Keyword Description

And Include AND to perform a logical conjunction on two Boolean expressions.

BeginSub Include a BeginSub statement at the beginning of each subroutine in a DAL
subroutine library.

Break Use a Break statement to exit a While..Wend statement block.

Continue Use a Continue statement to restart a While...Wend statement loop.

Else Include an Else statement if you want to pass control to the statement that
follows this keyword if the logical expression is false.

ElseIf If the first logical expression is false, the first ELSEIF logical expression is
evaluated.

End Include an End statement to end an IF, ELSEIF, or ELSE statement

EndSub Include a EndSub statement to end each subroutine in a DAL subroutine
library.

Goto Include a Goto statement to move to a specific location within a calculation.

If...End Use IF statements to execute commands based on the occurrence of a given
condition.

Or Include OR to perform a logical disjunction on two Boolean expressions.

Return Use a Return statement to tell the calculation to return with or without a
value.

While...Wend Use While...Wend statements to execute a series of statements, as long as a
given condition is true.

And

447

AND

When you have two Boolean expressions, use this keyword to have the system return
True if both Boolean expressions evaluate to True. If either or expression evaluates to
False, AND returns False.

Syntax AND

There are no parameters for this keyword.

See also Or on page 458

Keyword Table on page 446

Chapter 3
Keyword Reference

448

BEGINSUB

Use this function to begin each subroutine in a DAL subroutine library.

Syntax BeginSub Name

Once a DAL library is loaded, you can reference the scripts contained in the library by
name. You do not have to CALL or CHAIN to the script.

BeginSub and EndSub must be paired per script. You must have a space between
BeginSub and the script name.

Example Here is an example:

BeginSub SCRIPT1

* This script returns #x set to 2 if #x was equal to 1 on enter.

IF (#x = 1) THEN #x = 2;

END;

RETURN (#x);

EndSub

BeginSub Script2

* This script returns a negative one if #y was equal to 5.

if(#y = 5) then Return (-1);

end;

EndSub

SCRIPT1 is the name of the first script and Script2 is the name of the second script.

NOTE: SCRIPT1 and Script2 are only names, you can use any name you want as long as
the name is not a DAL reserved function, statement, or key word such as CALL,
FIND, IF, and so on. You can mix case in script names.

See also Keyword Table on page 446

EndSub on page 454

Parameter Description

Name Enter the name of the subroutine.

Break

449

BREAK

Break statements provide a way to exit a While…Wend statement block.

Syntax Break (Levels)

You can only include Break statements inside While…Wend statement blocks. Break
statements transfer control to the statement following the Wend statement.

When used within nested While…Wend statements, you can include the Levels parameter
to transfer control to the statement following the Wend level you specify.

Here are some examples. (Ellipses in the following examples represent additional
statements, not shown.)

While(1)

...

While (2)

...

Break

Wend

...

Wend

In this example, the Break statement only terminates the While…Wend which contains
the statement. Control passes to the first (outside) While…Wend statement block.

Here is another example:

While(1)

...

While (2)

...

While(3)

...

Break(3)

Wend

...

Wend

...

Wend

In this example, the Break(3) statement terminates all three While…Wend blocks that are
active.

See also Keyword Table on page 446

Parameter Description

Levels (Optional) The value you enter defines how many nested While…Wend
statement blocks you want to terminate.If you omit this parameter, control passes
to the statement following the next Wend statement encountered.

Chapter 3
Keyword Reference

450

CONTINUE

Use Continue statements to restart a While…Wend statement loop.

Syntax Continue

There are no parameters for this keyword.

Executing the Continue statement stops the current sequence of statement execution and
restarts program flow at the beginning of the loop. This causes the While statement to
retest the condition and, if true, execute the loop again.

Statements after the Continue keyword are not executed. Continue is often, but not
always, activated by an IF test.

Example Here is an example:

(Ellipses in the following examples represent additional statements, not shown.)

While(#x < 10)

...

If (value)

Continue

End

...

Wend

See also Keyword Table on page 446

Else

451

ELSE

An IF Statement with an ELSE condition contains an alternative calculation. If the logical
expression is false, control passes to the statement after the ELSE keyword.

Syntax Else

There are no parameters for this keyword.

Example Here is an example:

IF (@(“FirstAmount”) < 1000.00) THEN

$FinalAmount = @(“FirstAmount”) * .05;

ELSE

$FinalAmount = @(“FirstAmount”) + 10.00;

END;

RETURN ($FinalAmount)

If the value of the section variable field FirstAmount is less than 1000.00 then the amount
is multiplied by .05 and entered in the target variable $FinalAmount.

If, however, the value of the section variable field FirstAmount is greater than or equal to
1000.00 then 10.00 is added to the amount and entered in the target variable
$FinalAmount.

The value of the $FinalAmount field is then returned to the caller or section variable field.

Use of the keyword connector THEN is optional.

See also Keyword Table on page 446

If...End on page 456

Chapter 3
Keyword Reference

452

ELSEIF
An IF statement with an ELSEIF condition is the most complicated type of IF statement:

• If the first logical expression is true, the statement block after IF is executed until the
first ELSEIF statement is reached.

• If the first logical expression is false, the first ELSEIF logical expression is evaluated.

• If the ELSEIF logical expression is true, the statement block from the ELSEIF to
the next ELSEIF (or ELSE) is executed.

• If the ELSEIF statement is false, the next ELSEIF is evaluated.

• If all logical expressions are false, control passes to the ELSE block.

• If there is no ELSE block, control passes to the statement following the END
keyword.

An ELSEIF statement is considered part of the same IF statement. Only one END
keyword is needed to end an IF, ELSEIF, ELSE statement. IF statements can be nested
inside other IF statements. A nested IF statement requires its own END keyword. A
missing or mismatched keyword results in a runtime syntax error.

Example Here is a sample IF statement with ELSEIF condition:

IF (@(“FirstAmount”) < 1000.00)

$FinalAmount = @(“FirstAmount”) * .05;

ELSEIF @(“FirstAmount”) < 5000.00

$FinalAmount = @(“FirstAmount”) * .03;

ELSEIF @(“FirstAmount”) < 10000.00

$FinalAmount = @(“FirstAmount”) * .02;

ELSE

$FinalAmount = @(“FirstAmount”) + 10.00;

END;

RETURN ($FinalAmount)

If the value of the section variable field FirstAmount is less than 1000.00 then the amount
is multiplied by .05 and entered in the target variable $FinalAmount.

See also Keyword Table on page 446

If...End on page 456

End

453

END

An IF statement is executed based on the occurrence of a certain condition. IF statements
must begin with the keyword IF and terminate with the keyword END.

Syntax End

There are no parameters for this keyword.

See also Keyword Table on page 446

If...End on page 456

Chapter 3
Keyword Reference

454

ENDSUB

Use this function to end each subroutine in a DAL subroutine library.

Syntax EndSub

There are no parameters for this keyword.

BeginSub and EndSub must be paired for each script.

Example Here is an example:

BeginSub SCRIPT1

* This script returns #x set to 2 if #x was equal to 1 on enter.

IF (#x = 1) THEN #x = 2;

END;

RETURN (#x);

EndSub

BeginSub Script2

* This script returns a negative one if #y was equal to 5.

if(#y = 5) then Return (-1);

end;

EndSub

Script1 is the name of the first script. Script2 is the name of the second one.

See also Keyword Table on page 446

BeginSub on page 448

Goto

455

GOTO

A GOTO statement moves to a specific location within a calculation. The location has
been named with a label. (See Labels on page 22 for more information.)

Syntax GoTo Location

A GOTO statement must begin with the keyword GOTO.

Example Here is an example:

GOTO SECTION_ONE:

The control jumps to SECTION_ONE in a calculation.

The destination label can occur anywhere in the script containing the GOTO statement.
If the label cannot be located in the script, a syntax error will be generated.

GOTO will support retrieving the label from a target variable.

Here is another example:

SECTION = “MY_LABEL:”

GOTO SECTION

Since the word following the GOTO statement does not contain a colon, the program
will assume the label is contained in the target variable named. In this case, control will
jump to the location of MY_LABEL in the current script.

See also Keyword Table on page 446

Parameter Description

Location Specify the location you want to go to. For instance, enter the name of a
section on a form.

Chapter 3
Keyword Reference

456

IF...END

An IF statement is executed based on the occurrence of a certain condition. IF statements
must begin with the keyword IF and terminate with the keyword END.

Components within IF statements can be connected with the keywords AND or OR. IF
statements can have three forms: a simple IF statement, an IF statement with an ELSE
condition, or an IF statement with an ELSEIF condition.

• Simple IF Statement

A simple IF Statement contains a single statement block. The calculation is
performed only if the logical expression is true. If the logical expression is false,
control passes to the next statement after the END keyword. Here is an example:

IF (@(“FirstAmount”) < 1000.00) THEN

$FinalAmount = @(“FirstAmount”) * .05;

END;

RETURN ($FinalAmount)

CALCULATION: If the value of the section variable field FirstAmount is less than
1000.00 then the value is multiplied by .05 and entered in the target variable
$FinalAmount. The value of the $FinalAmount target variable is then returned to the
section variable field.

The use of the keyword connector THEN is optional.

• IF Statement with ELSE Condition

An IF Statement with an ELSE condition contains an alternative calculation. If the
logical expression is false, control passes to the statement after the ELSE keyword.

Here is an example:

IF (@(“FirstAmount”) < 1000.00) THEN

$FinalAmount = @(“FirstAmount”) * .05;

ELSE

$FinalAmount = @(“FirstAmount”) + 10.00;

END;

RETURN ($FinalAmount)

CALCULATION: If the value of the section variable field FirstAmount is less than
1000.00 then the amount is multiplied by .05 and entered in the target variable
$FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to
1000.00 then 10.00 is added to the amount and entered in the target variable
$FinalAmount.

The value of the $FinalAmount field is then returned to the caller or section variable
field.

The use of the keyword connector THEN is optional.

• IF Statement with ELSEIF Condition

If...End

457

An IF statement with an ELSEIF condition is the most complicated type of IF
statement. If the first logical expression is true, the statement block after IF is
executed until the first ELSEIF statement is reached. If the first logical expression is
false, the first ELSEIF logical expression is evaluated. If the ELSEIF logical
expression is true, the statement block from the ELSEIF to the next ELSEIF (or
ELSE) is executed. If the ELSEIF statement is false, the next ELSEIF is evaluated.
If all logical expressions are false, control passes to the ELSE block. If there is no
ELSE block, control passes to the statement following the END keyword.

An ELSEIF statement is considered part of the same IF statement. Only one END
keyword is needed to end an IF, ELSEIF, or ELSE statement. IF statements can be
nested inside other IF statements. A nested IF statement requires its own END
keyword. A missing or mismatched keyword results in a runtime syntax error. Here
is a sample IF statement with ELSEIF condition:

IF (@(“FirstAmount”) < 1000.00)

$FinalAmount = @(“FirstAmount”) * .05;

ELSEIF @(“FirstAmount”) < 5000.00

$FinalAmount = @(“FirstAmount”) * .03;

ELSEIF @(“FirstAmount”) < 10000.00

$FinalAmount = @(“FirstAmount”) * .02;

ELSE

$FinalAmount = @(“FirstAmount”) + 10.00;

END;

RETURN ($FinalAmount)

CALCULATION: If the value of the section variable field FirstAmount is less than
1000.00 then the amount is multiplied by .05 and entered in the target variable
$FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to
1000.00 but less than 5000.00 then the amount is multiplied by .03 and entered in the
target variable $FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to
5000.00 but less than 10000.00 then the amount is multiplied by .02 and entered in
the target variable $FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to
10000.00 then 10.00 is added to the amount and entered in the target variable
$FinalAmount.

The value of the $FinalAmount field is then returned to the caller or section variable
field.

See also Keyword Table on page 446

Else on page 451

ElseIf on page 452

Chapter 3
Keyword Reference

458

OR

When you have two Boolean expressions, use this keyword to have the system return
True if either Boolean expression evaluates to True. If neither expression evaluates to
True, OR returns False.

Syntax OR

There are no parameters for this keyword.

See also And on page 447

Keyword Table on page 446

Return

459

RETURN

A RETURN statement directs the calculation to return with or without a value. A
RETURN statement must begin with the keyword RETURN. A RETURN statement
may return the result of the calculation to be placed in the field that initiated the script.

A RETURN statement is also used to return results to one calculation script from
another. Using a CALL statement temporarily suspends the current script calculation and
sends control to another script file. A RETURN statement sends control back to the
original script which may then continue processing.

Here are some sample RETURN statements:

RETURN(@(“LAST_NAME”) & ', ' & @(“FIRST_NAME”) & “ “ &
@(“MIDDLE_INIT”))

RESULT: Takes the data in the section variable field LAST_NAME adds a comma; adds
the data in the section variable field FIRST_NAME; adds the data in the section variable
field MIDDLE_INIT and places this data in another section variable field.

RETURN (CALL('FirstFile'))

RESULT: Returns the result of the calculation generated by calling the script FirstFile.

See also Keyword Table on page 446

Call on page 159

Chapter 3
Keyword Reference

460

WHILE...WEND

Use While...Wend statements to execute a series of statements, as long as a given
condition is true.

Syntax While condition

[statements]

Wend

If condition is true, the statements within the While block are executed. When the Wend
statement is encountered, control returns to the While statement and condition is again
evaluated. If condition is still true, the process repeats. If it is false, execution resumes with
the statement which follows the Wend statement.

You can nest While...Wend loops to any level. Each Wend matches the most recent While.

NOTE: Keep in mind that you can start an endless loop if you specify a condition that
can never be satisfied. The system cannot syntactically detect an endless loop, so
if you create one, the program will lock up and you will have to kill the program.

(Ellipses in the following examples represent additional statements, not shown.)

While(10 > #value)

...

While (#new = 1)

...

Wend

...

Wend

You do not have to use tabs to indent nested While…Wend statements. Tabs are used in
these examples, to help identify statement blocks. You may want to also use tabs in your
code to make the source easier to read.

See also Keyword Table on page 446

Parameter Description

Condition Required. The condition is any expression that evaluates to true or false. False
is assumed to be a zero value. Any non-zero value is assumed to be true.

Statements One or more statements executed while the condition is true.

461

Index

Symbols

" (quotation marks) 16, 17
& (ampersands) 198, 286, 375
() (parentheses) 16, 19
* (asterisks) 4, 65
: (colons) 6
; (semicolons) 3, 6
? function 111
@ function

defined 109
NUM function 322

\ (backslashes) 96
’ (apostrophes) 17

A

ABS function 113
accessing

database fields 49
ACIF 35
AddBlankPages function 115
AddComment function 117
AddDocusaveComment function 118
AddForm function

CopyForm function 173
AddForm_Propagate function 120
AddImage function 122
AddImage_Propagate function 125

Index

462

AddOvFlwSym function 127
AFEBatchDALProcess 7, 368
AFELOG file

AFELog function 128
DelWIP function 214

AFELog function 128
AFEProcedures control group 12
alphabetic field format 62
alphanumeric field format 63
Always function 129
AND 447
AND operation 146
annuities 337
apostrophes (’) 17
AppendText function 131
AppendTxm function

AppendTxmUnique function 136
defined 133

AppendTxmUnique function 135
AppIdxRec function 138
ApplyInserts function 139
archives

adding comments 117
Complete function 167
retrieving records 138

ASCII files
AddDocusaveComment function 118
DAL script libraries 5
scripts 4

Ask function 140
assignment statements 14
AssignWIP function 141
asterisks (*)

comment lines 4
wildcards 65

AutoKeyID
option 12
table 11

Avg function 142

B

backslashes in object names 96
BankRound function 144
banner processing

RecipBatch function 350
RecipName function 353
SuppressBanner function 400

bar code field format 62
barcode fields

SetFont function 376
batch processing

DDTSourceName function 204
Batch_DAL control group 7
Beep function 145
BeginSub 448
BeginSub function

EndSub function 29
binding 178
bit logical shift operation 153
BitAnd function 146
BitClear function 147
bitmaps

ChangeLogo function 162
DelLogo function 213
embedding logos 228
HaveLogo function 269
InlineLogo function 279
Refresh function 354
RenameLogo function 356

BitNot function 148
BitOr function 149
BitRotate function 150
BitSet function 152
BitShift function 153
BitTest function 155

463

bitwise
AND operation 146
exclusive OR operation 156
inclusive OR operation 149
logical NOT operation 148
shift operation 153
shift-and-rotate operation 150

BitXor function 156
blank lines

formatting scripts 3, 4
blank pages 115, 207
Boolean values

GetINIBool function 254
PutINIBool function 346

Break 449
Break statements

and While...Wend statements 26
built-in functions 39

C

cache
GetINIString function 256
LoadINIFile function 297
LoadLib function 298
SaveINIFile function 367

Calculation tab
assigning a calculation 2
comments 4

calculations
entering in an external file 4
POW function 337

CALL function 159
CALL statements

defined 25
carbon-copy recipients 388, 389
carriage returns 4
case

dates 52
sensitivity 3, 4
target variables 15

CaseSensitiveKeys option 11
century

cut-off 54
DateCnv function 185

CFind function 161
CHAIN function 160
CHAIN statements

defined 25
ChangeLogo function 162
Char function 164
character strings

converting to an integer value 272
ListInList function 295

CharV function 165
CheckImageLoaded rule

SetFld function 374
Class option 46
clearing

BitClear function 147
CLIPSPACES 199
CodeInList function 166
colons

use of 6
commas

numeric constants 16
comma-separated value files 331
comment record processing

RecipBatch function 350
RecipName function 353

comments
AddComment function 117
AddDocusaveComment function 118
creating strings 321
lines 4

CompileWhenLoaded option 8
Complete function 167
CompressFlds function 168
compressing

blank space 168
ConnectFlds function 170
Continue 450

Index

464

Continue statements
While...Wend statements 27

Control control group 8
control groups

INI functions 70
control-z 4
converting

character strings to integer values 272
integer values to hexadecimal string values 205

coordinates
ImageRect function 275
SetImagePos function 379

copies
counting recipient copies 351
TotalPages function 409

CopyForm function 173
Count function 174
CountRec function 176
CreateIndex option 44
CreateTable option 44
custom field format 62
Cut function 177

D

DAL
assignment statements 14
calcs 2
CALL statements 25
CHAIN statements 25
data flow statements 14
DBUnloadDFD function 201
debugger 31
entering calculations in an external file 4
examples 2, 41
execution order 19
flow control statements 14, 22
format in external files 4
GOTO statements 25
IF statements 23
implicit conversion 20
keywords 22
labels 22
numeric constants 16
operators 17
punctuation 18
retaining variables 359
RETURN statements 23
runtime error messages 33
runtime options 8
section variable fields 16
source expression 16
string constants 17
target field 16
using the Properties window 3

DAL control group 8
DAL rule

? function 111, 112
DAL scripts

defined 2
executing 341
retrieving XML data 89

DALFunctions control group 8
DALLib option 9
DALLibraries control group 8

465

DALRun
built-in function 10
control group 9
DBUnloadDFD function 201
INI file 31

DALTriggers option 9
DALVAR built-in function 10
DashCode function 178
data flow statements 14
data storage statements 30
database functions

accessing fields 49
DB2/2 handler 45
handlers for Excel 46
list of 43
ODBC handler 44

date field format 62
Date function 181
Date2Date function 182
DateAdd function 183
DateCnv function 185
DateFmt rule

? function 112
DateFMT2To4Year option 54
DateFmt2To4Year option 8
dates

century cut-off 54
data storage statements 30
formatting 52
list of functions 51
locale considerations 87

Day function 187
daylight savings time 407
DayName function

defined 188
WeekDay function 419

DaysInMonth function 189
DaysInYear function 190
DB2/2 handler 45
DBAdd function 191

DBClose function
defined 192
memory tables 50
record lengths 199

DBDelete function 193
DBFind function 194
DBFirstRec function 196
DBNextRec function 197
DBOpen function

defined 198
memory tables 50
record lengths 199

DBPrepVars function 200
DBUnloadDFD function 201
DBUpdate function 202
DDT files

DDTSourceName function 204
storing information 6

DDTSourceName function 204
Debug_DAL_Rules option 9
Debug_Switches control group 9
Dec2Hex function 205
decimal target variables 15
DEFLIB directory 4
DeFormat function 206
DelBlankPages function 207
DelField function 208
DelForm function 210
DelImage function 211
DelWIP function 214
descriptions

retrieving 245
DestroyList function 215
DFD files

DBUnloadDFD function 201
DiffDate function 218
DiffDays function 219
DiffHours function 220
DiffMinutes function 221
DiffMonths function 222
DiffSeconds function 223

Index

466

DiffTime function 224
DiffYears function 225
directing workflow 388, 389
disabling scripts 2
divide by zero 33
dividing year 185
Docusave

AddDocusaveComment function 118
adding comments 117

DocusaveScript option 35
dot operator 49
double quotes 17
drives

FileDrive function 239
dummy pages 115
DumpDAL option 9
DupForm function

CopyForm function 173
defined 227

E

EBCDIC
AddDocusaveComment function 118

either required 235
Else 451
ElseIf 452
email addresses 389
EmbedLogo function 228
End 453
EndSub 454
EndSub function

BeginSub function 28
ERRFILE.DAT file 364, 366
errors

Beep function 145
RPErrorMsg function 364
runtime error messages 33

Excel
databases 46

exclusive OR operation 156
execution order 19
Exists function 229
exponential power

using the POW function 337
exporting

Complete function 167
Ext option

defined 8
LoadLib function 298

external files
using 4

extract files
CountRec function 176
retrieving data 392

extracting a field’s root name 361

F

FAP units
Logo function 300
positioning sections 380

field formats
list of 62
locating fields 64

FieldFormat function 230
FieldName function 231
FieldPrompt function 233

467

fields
accessing database fields 49
changing coordinates 170
compressing blank space 168
concatenating text 170
ConnectFlds function 170
date formats 52
deleting 208
extracting the root name 361
functions 61
JustField function 288
locating 64
moving horizontally 390
renaming 135
SpanField function 390
specifying 16
target fields 14
using the Properties window 3

FieldType function 236
FieldX function 237

defined 237
Logo function 300

FieldY function
defined 238
Logo function 300

FileDrive function 239
FileExt function 240
FileName function 241
FilePath function 242
files

DAL scripts 5
entering calculations in an external file 4
FileExt function 240
FileName function 241
FilePath function 242
FullFileName function 248

filler pages 115, 207
Find function 243
flow control statements

defined 14
keywords 22

FlushDALSymbols option 9, 359
FlushSymbols option 8

fonts
changing 376

form descriptions, retrieving 245
FORM PAGE NUM field 109
FORM PAGE NUM OF field 109
FORM.DAT file

RecipientName function 352
retrieving descriptions 245

Format function 244
formats

DAL format in external files 4
date 52
numeric 63
time 80

formatting functions
fields 61
string functions 78

FormDesc function 245
FormName function 246
forms

AddForm_Propagate function 120
changing the description 377
CopyForm function 173
DupForm function 227
WhatForm function 421

FORMSET PAGE NUM field 109
FORMSET PAGE NUM OF field 109
FormsetID field

SetWIPFld function 386
four-digit years 185
FrenchNumText function 247

Index

468

FSISYS.INI file
DAL script extensions 4
executing DAL scripts 7
GetINIBool function 254
GetINIString function 256
IgnoreInvalidImage option 119, 123
INI functions 70
LogEnabled option 254
options for Docusave 35
options for OnDemand 35
PutINIBool function 346
runtime options 8

FSIUSER.INI file
executing DAL scripts 7
GetINIBool function 254
GetINIString function 256
INI functions 70
LogEnabled option 254
options for Docusave 35
options for OnDemand 35
PutINIBool function 346
PutINIString function 348

FullFileName function 248
functions

mathematical 70, 72
miscellaneous 73, 76, 88
object 94
overview 41
string 78
time 80
where used 97

G

get field function 109
GetAttachVar function 249
GetData function 250

and the SrchData function 250, 392
GetFormAttrib function 252
GetINIBool function

defined 254

GetINIString function 256
GetListElem function 258
GetOvFlwSym function 259
GetValue function 260
GoTo 455
GOTO statements

defined 25
runtime error messages 34
While loops 28

graphics
applying 139
deleting 213
in-lining 279
locating 269
renaming 356

GroupName function 261
groups

PrinterGroup function 341
WhatGroup function 422

GVM function
defined 262

GVM variables
HaveGVM function 267
printing 339
SetGVM function 378

H

HaveField function 263
HaveForm function 265
HaveGroup function 266
HaveGVM function 267
HaveImage function 268
HaveLogo function 269
HaveRecip function

defined 271
RecipientName function 352

Hex2Dec function 272

469

hexadecimal values
date formats 54
Date2Date function 182
Dec2Hex function 205
Hex2Dec function 272

host required 235
Hour function 273
hyperlinks

SetLink function 381

I

ICU system time zones 81
IF rule 234, 235
IF statements

defined 23
runtime error messages 33

IgnoreInvalidImage option 119, 123
ImageName function 274
ImageRect function

AddImage function 123
defined 275

ImpFile_cd control group 119
implicit conversion 20
IncOvFlwSym function 277
INI files

DAL options 8
GetINIBool function 254
GetINIString function 256
LoadINIFile function 297
PutINIBool function 346
PutINIString function 348

INI function 278
INI functions 70
INIGroup control group 10
InlineLogo function 279
Input function 280
Insert function 281
inserting equipment 178
insertion text 63

Install option 44
INT function 282
integers

BitAnd function 146, 147
BiTest function 155
BitNot function 148
BitOr function 149
BitRotate function 150
BitSet function 152
BitShift function 153
BitXor function 156
Char function 164
CharV function 165
converting to hexadecimal string values 205
Dec2Hex function 205
Hex2Dec function 272
returning the remainder 317
target variables 15

interest rates
POW function 337

international
alphabetic field format 62
alphanumeric field format 62
uppercase alphabetic field format 62
uppercase alphanumeric field format 62

IsPrintObject function 283
IsXMLError function 284

J

JCenter function 285
JLeft function 286
JRight function 287
JustField function 288

K

KeyID values 11
Keyword option 8

Index

470

keywords 22
BeginSub and EndSub 28

KickToWIP function 290
KickToWIP rule 235

L

labels
in scripts 22
runtime error messages 34

leading signs 323
leading spaces 326, 414
leap years

DateAdd function 183
DaysInMonth function 189
DaysInYear function 190
DiffYears function 225
LeapYear function 292
YearDay function 444

LeapYear function 292
Left function 293
LEN function

defined 294
Size function 387

Lib option 8
libraries

LoadLib function 298
of DAL scripts 5

limits
significant numbers 72

line breaks
MLEInput function 311, 314

line feeds 4
ListInList function 295
LoadCordFAP option 162
LoadExtractData rule 250
LoadINIFile function 297
LoadLib function

DAL libraries 6
defined 298

LoadXMLList rule 90
locale 52
locales 55

times and dates 87
locating fields 64
locating objects 94
log files

RPLogMsg function 365
LOGFILE.DAT file 365
logical NOT operation 148
logical shift 153
Logo function 300
Lower function 302
lowercase

dates 52

M

MailWIP function 303
MajorVersion function 304
master resource library

storing external script files 4
MasterResource control group 9
mathematical functions 72
MAX function 305
memory

GetINIString function 256
LoadINIFile function 297
LoadLib function 298
runtime error messages 33
SaveINIFile function 367
tables 50

MEN.RES file
enabling the DAL debugger 32
executing a DAL script 7

menus
executing a DAL script from 7

471

messages
AFELog function 128
Ask function 140
Beep function 145
creating 320

metadata 252, 344
MIN function 307
MinorVersion function 309
minus signs 17
Minute function 310
miscellaneous functions 73, 76, 88
MLEInput function

defined 311
MLETranslate function 314

MLETranslate function
and MLEInput 311
defined 314
MLEInput function 314

MOD function 317
month abbreviations 54
Month function 318
MonthName function 319
Move_It rule

? function 111
moving data to compress blank space 168
MSG function 320
Multicopy option 173, 227
multi-line text area messages, creating 321
multi-line text field format 62
multi-line variable fields

MLEInput function 311, 314
MLETranslate function 314

MYPAGE variables 328

N

NAFILE.DAT files
embedding graphics 228

name
FileDrive function 239
FileName function 241
FullFileName function 248

new line character
MLEInput function 311, 314

NewFormatOnly option 401
NL function 321
NOT operation 148
not required 235
NUM function 322
numeric constants 16
numeric field format 62
numeric formats 63
Numeric function 323
NumText function

defined 324
FrenchNumText function 247

O

object functions
list of 94
locating objects 94

occurrence
counts 65
PageImage function 327

ODBC
DBUnloadDFD function 201
handler 44

Ok buttons 320
OldFormatOnly option 401
OMR marks 207
OnCreate option 12
OnDemand, adding comments 117
OnDemandScript option 35, 340, 341
OnUpdate option 12
operator required 235

Index

472

operators
defined 17
dot 49
source expressions 19

options
setting using INI functions 70

OR 458
OR operation 149, 156
OutMode option 35
overflow

AddOVFlwSym function 127
AppendTxmUnique function 136
FieldRule function 234
GetOvFlwSym function 259
IncOvFlwSym function 277
ResetOvFlwSym function 358

overflow record count
retrieving 413

P

PAD function 326
page numbering fields

@ function 109
PageImage function 327
PageInfo function 328
pages

PageImage function 327
size 328
TotalPages function 409

PaginateForm function 330
paragraphs

importing 135
parameters

punctuation 18
syntax of 41

parentheses
specifying field names 16

ParseListCount function 331
ParseListItem function 333

partial names
examples of 66, 142, 305, 307, 398
object functions 95

PassWd option 44
PathCreate function 335
PathExist function 336
paths

FileDrive function 239
FileExt function 240
FileName function 241
FilePath function 242
FullFileName function 248

POW function 337
Print function 338
print functions 76
print streams

adding comments 117
PrinterClass function 340
PrinterGroup function 341

Print window 338
Print_It function

defined 339
NL function 321

PrinterClass function 340
PrinterGroup function 341
PrinterID function 342
PrinterOutputSize function 343
printing

Complete function 167
determining if a section will print 283
in-lining graphics 279

PrintViewOnly option 340, 341
procedures 41
prompts

AFELog function 128
creating 311
DBDelete function 193
FieldPrompt function 233
Input function 280
ODBC drivers 44

propagate
AddForm_Propagate 120

473

Properties window
comments 4
entering DAL calcs 2, 3

PrtType option 340, 341
punctuation 18
purging WIP 214
PutFormAttrib function 344
PutINIBool function 346
PutINIString function 348

Q

Qualifier option 44
quotation marks

@ function 109
date formats 52
field formats 62
specifying field names 16
string constants 17

R

RecipBatch function
defined 350

RecipCopyCount function 351
recipients

HaveRecip function 271
page size 329
TotalPages function 409

RecipName function
defined 353

record lengths
trailing spaces 199

records
minimum number 176

Refresh function
AddImage function 123
defined 354
DelLogo function 213
Logo function 300

remainder
returning 317

RenameLogo function
defined 356

reserved keywords 15
ResetFld function

defined 357
ResetOvFlwSym function 358
Retain function 359
retrieving

a string with a new line sequence 321
the overflow record count 413
the SourceName field 204

RETURN 459
return

values 41
RETURN statements

defined 23
runtime error messages 34
WIPExit function 424

Right function 360
RootName function 361
Round function 362
rounding with the BankRound function 144
RouteWIP function 363
routing slips

RouteWIP function 363
SlipInsert function 389

RPErrorMsg function 364
RPLogMsg function 365
RPWarningMsg function 366
RunMode control group 9, 162
runtime

error messages 33
options 31

Index

474

S

SAMPCO sample resources 2, 41
SaveINIFile function 367
SaveWIP function 368
Script option 9, 12
ScriptFile option 7
scripts

creating libraries 5
defined 2
disabling 2
executing 341
executing from a menu 7
LoadLib function 298
maximum size 3
runtime error messages 33
runtime options 8
SlipInsert function 389

search criteria
including spaces 250, 392

search masks
CountRec function 176

searching
character string list 295

Second function 369
sections

adding 122
checking 2
PageImage function 327
re-pagination 330
repositioning 379
retrieving coordinates 275
variable fields 16
WhatImage function 423

semicolons
formatting calculations 3
use of 6

separators 52
sequence numbers

HaveRecip function 271
Server option 44, 46
SetEdit function 372

SetFld function 374
SetFont function 376
SetFormDesc function 377
SetGVM function 378
SetImagePos function

AddImage function 123
defined 379

SetLink function 381
SetOvFlwSym rule 127
SetProtect function 383
SetRecip function 384
SetRecipTb

triggering the form name 411
triggering the section name 412

SetRequiredFld function 385
setting the bit position 152
SetWIPFld function 386
shiftAmt value 150
shift-and-rotate operation 150
ShowWIPWarning option 290
signatures 139, 162
significant numbers 72
Size function 386, 387
SlipAppend function 388
SlipInsert function 389
source expressions

defined 16
operators 19
punctuation 18

Source Name field
DDTSourceName function 204

spaces
in scripts 3, 4
including 250, 392
trailing 199

SpanField function 390
spreadsheets 331
SrchData function 392
standard export format

Complete function 167
state stamps 139

475

statements
data storage 30
operators 19
punctuation 18
separators 6

STR function 394
STRCompare function 395
string functions 78
strings

CodeInList function 166
comparing 395
constants 17
ListinList function 295
printing 339
retrieving 321
space and tab characters 3
target variables 15

subroutines
BeginSub function 28
EndSub function 29

SUM function 398
SuppressBanner function

defined 400
symbolic variable

Exists function 229
GetValue function 260

symbols
runtime error messages 33
statement continuation 18

syntax
errors 41
runtime error messages 33

T

tab characters
evaluating scripts 3
in scripts 4

Table function 401
table only field format 62

tables
setting up memory tables 50

target fields 14, 16
target variables

decimals 16
defined 14
integers 16
strings 16

TblLkUp rule 234
TblText rule 234
testing a specified bit 155
text

concatenating 170
creating a window for entering 311
searching for 161

time
formats 80
functions 80

Time function 403
Time2Time function 404
TimeAdd function 405
times

locale considerations 87
TimeZone function 406
TimeZone2TimeZone function 407
Title option 9
TLEs 35
TotalPages function 409
TotalSheets function 410
trailing signs 323
trailing spaces 326, 414
translating new line characters 314
Trigger2Archive control group 138
TriggerFormName function 411
TriggerImageName function 412
triggering

form name 411
section name 412

TriggerRecsPerOvFlw 413
Trim function 414
two-digit year 185

Index

476

U

Upper function 415
uppercase alphabetic field format 62
uppercase alphanumeric field format 63
uppercase dates 52
user ID

assigning WIP 141
User option 44
UserID function 417
UserLvl function 418
using DAL 1

V

values
absolute 113
POW function 337

variable fields
assign a calculation 2
field formats 62
functions 61
locating fields 64
mathematical functions 70, 72
miscellaneous functions 73, 76, 88
object functions 94
resetting 357

variables
deleting 8
prefix names 49
retaining 359
target variables 14
trailing spaces 414

VerifyKeyID
control group 9, 12
hook 11

version numbers
MajorVersion function 304
MinorVersion function 309

W

warnings
Beep function 145
RPWarningMsg function 366

WeekDay function 419
Wend 460
WhatForm function 421
WhatGroup function 422
WhatImage function 423
While 460
While...Wend statements 26
white space 3
wildcards 65
window

creating 311
WIP

DelWIP function 214
KickToWIP function 290
SaveWIP function 368
setting WIP fields 386

WIPExit function 424
WIPFld function 425
WIPKey1 function 426
WIPKey2 function 427
WIPKeyID function 428
work-in-process, assigning 141

X

X or space field format 62
XDB database

? function 111
file information 6

XML
API functions 89
GetData function 250

XML extract files 392
XMLAttrName function 429

477

XMLAttrValue function 430
XMLFileExtract rule 90
XMLFind function 431
XMLFirst function 432
XMLFirstAttrib function 433
XMLFirstText function 434
XMLGetCurName function 435
XMLGetCurText function 436
XMLNext function 437
XMLNextAttrib function 438
XMLNthAttrName function 440
XMLNthAttrValue function 440, 441
XMLNthText function 442
XOR operation 156
XPath 91
XPaths 250, 392
XPATHW32 program 91

Y

Y or N field format 63
Year function 443
YearDay function 444
years

DiffYear function 225
forcing 2-digit 54
sizes 52

Z

zero
runtime error messages 33

Index

478

	Start
	Notice
	Contents
	Using DAL
	2 Introduction to DAL
	3 Using the Field’s Properties Window
	4 Entering Calculations in External Files
	4 Formatting the Script

	5 Creating a DAL Script Library
	7 Executing a DAL Script from a Menu
	8 Using INI Options
	10 Using Built-In Functions
	11 Checking KeyID Entries
	14 Grammar and Syntax
	14 Assignment Statements
	22 Flow Control Statements
	26 Using While...Wend Statements

	28 BeginSub and EndSub
	28 BeginSub
	29 EndSub

	30 Data Storage Statements

	31 Testing DAL Scripts
	32 Using the DAL Debugger in Documaker Workstation

	33 Runtime Error Messages
	35 DAL Script Examples

	Function Reference
	41 Overview
	42 Bit/Binary Functions
	43 Database Functions
	44 ODBC Handler
	45 DB2/2 Handler
	46 Creating a Database Handler for an Excel Database
	48 Associating Tables with Handlers
	49 Accessing Database Fields
	50 Setting Up Memory Tables

	51 Date Functions
	52 Date Formats

	58 Documaker Server Functions
	59 Documaker Workstation Functions
	60 Docupresentment Functions
	61 Field Functions
	62 Field Formats
	63 Numeric Formats
	64 Locating Fields

	68 File and Path Functions
	69 Have Functions
	70 INI Functions
	71 Graphics Functions
	72 Mathematical Functions
	73 Miscellaneous Functions
	74 Name Functions
	75 Page Functions
	76 Printer and Recipient Functions
	77 Section Functions
	78 String Functions
	80 Time Functions
	80 Time Formats
	81 Using the Time Zone Functions
	82 ICU Time Zones

	88 WIP Functions
	89 XML Functions
	90 Using DAL XML Functions
	91 XML Path Locator

	94 Locating Objects
	97 Where DAL Functions are Used
	199 Creating Variable Length Records from Flat Files

	Keyword Reference
	446 Keyword Table

	Using DAL
	Introduction to DAL
	Using the Field’s Properties Window
	Entering Calculations in External Files
	Formatting the Script

	Creating a DAL Script Library
	Loading a DAL library

	Executing a DAL Script from a Menu
	Using INI Options
	Using Built-In Functions
	Checking KeyID Entries
	Grammar and Syntax
	Assignment Statements
	Target variable
	Declaring Variables
	Source expression
	Form set variable fields
	Target variables
	Numeric constants
	String constants
	Operators
	Punctuation
	Execution order
	Implicit conversion
	Labels

	Flow Control Statements
	Keywords
	RETURN statements
	IF statements
	GOTO statements
	CALL statements
	CHAIN statements
	Using While...Wend Statements
	Break statements
	Continue statements
	GOTO statements

	BeginSub and EndSub
	BeginSub
	EndSub

	Data Storage Statements

	Testing DAL Scripts
	Using the DAL Debugger in Documaker Workstation

	Runtime Error Messages
	DAL Script Examples
	Preparing AFP or Metacode print streams for Docusave
	Preparing PCL print streams for Docusave
	Preparing AFP print streams for IBM's OnDemand

	Function Reference
	Overview
	Bit/Binary Functions
	Database Functions
	ODBC Handler
	DB2/2 Handler
	Creating a Database Handler for an Excel Database
	Associating Tables with Handlers
	Accessing Database Fields
	Setting Up Memory Tables

	Date Functions
	Date Formats
	Date format types
	Locales

	Documaker Server Functions
	Documaker Workstation Functions
	Docupresentm ent Functions
	Field Functions
	Field Formats
	Numeric Formats
	Locating Fields

	File and Path Functions
	Have Functions
	INI Functions
	Graphics Functions
	Mathematical Functions
	Miscellaneous Functions
	Name Functions
	Page Functions
	Printer and Recipient Functions
	Section Functions
	String Functions
	Time Functions
	Time Formats
	Using the Time Zone Functions
	ICU Time Zones
	When converting times

	WIP Functions
	XML Functions
	Using DAL XML Functions
	Scenario 1
	Scenario 2

	XML Path Locator
	Axes
	Function calls
	Operators or signs
	Expressions
	Element list
	Attribute list
	Text list
	Text string

	Locating Objects
	Where DAL Functions are Used
	@
	?
	ABS
	AddAttachVAR
	AddBlankPages
	AddComment
	AddDocusaveComment
	AddForm
	AddForm_Propagate
	Original form: C22510WGIM
	Added form: C22510WGIM\2

	AddImage
	AddImage_Propagate
	AddOvFlwSym
	AFELog
	Always
	Append
	AppendText
	AppendTxm
	AppendTxmUnique
	AppIdxRec
	ApplyInserts
	Ask
	AssignWIP
	Avg
	BankRound
	Beep
	BitAnd
	BitClear
	BitNot
	BitOr
	BitRotate
	BitSet
	BitShift
	BitTest
	BitXor
	BreakBatch
	Call
	Chain
	CFind
	ChangeLogo
	Char
	CharV
	CodeInList
	Complete
	CompressFlds
	ConnectFlds
	CopyForm
	Count
	CountRec
	Cut
	DashCode
	Date
	Date2Date
	DateAdd
	DateCnv
	Day
	DayName
	DaysInMonth
	DaysInYear
	DBAdd
	DBClose
	DBDelete
	DBFind
	DBFirstRec
	DBNextRec
	DBOpen
	Creating Variable Length Records from Flat Files

	DBPrepVars
	DBUnloadDFD
	DBUpdate
	DDTSourceName
	Dec2Hex
	DeFormat
	DelBlankPages
	DelField
	DelForm
	DelImage
	DelLogo
	DelWIP
	DestroyList
	DeviceName
	DiffDate
	DiffDays
	DiffHours
	DiffMinutes
	DiffMonths
	DiffSeconds
	DiffTime
	DiffYears
	DupForm
	EmbedLogo
	Exists
	FieldFormat
	FieldName
	FieldPrompt
	FieldRule
	FieldType
	FieldX
	FieldY
	FileDrive
	FileExt
	FileName
	FilePath
	Find
	Format
	FormDesc
	FormName
	FrenchNumText
	FullFileName
	GetAttachVAR
	GetData
	GetFormAttrib
	GetINIBool
	GetINIString
	GetListElem
	GetOvFlwSym
	GetValue
	GroupName
	GVM
	HaveField
	HaveForm
	HaveGroup
	HaveGVM
	HaveImage
	HaveLogo
	HaveRecip
	Hex2Dec
	Hour
	ImageName
	ImageRect
	IncOvFlwSym
	INI
	InlineLogo
	Input
	Insert
	INT
	IsPrintObject
	IsXMLError
	JCenter
	JLeft
	JRight
	JustField
	KickToWIP
	LeapYear
	Left
	LEN
	ListInList
	LoadINIFile
	LoadLib
	LoadXMLList
	Logo
	Lower
	MailWIP
	MajorVersion
	MAX
	MIN
	MinorVersion
	Minute
	MLEInput
	MLETranslate
	MOD
	Month
	MonthName
	MSG
	NL
	NUM
	Numeric
	NumText
	PAD
	PageImage
	PageInfo
	PaginateForm
	ParseListCount
	ParseListItem
	PathCreate
	PathExist
	POW
	Print
	Print_It
	PrinterClass
	PrinterGroup
	PrinterID
	PrinterOutputSize
	PutFormAttrib
	PutINIBool
	PutINIString
	RecipBatch
	RecipCopyCount
	RecipientName
	RecipName
	Refresh
	RemoveAttachVAR
	RenameLogo
	ResetFld
	ResetOvFlwSym
	Retain
	Right
	RootName
	Round
	RouteWIP
	RPErrorMsg
	RPLogMsg
	RPWarningMsg
	SaveINIFile
	SaveWIP
	Second
	SetDeviceName
	SetEdit
	SetFld
	SetFont
	SetFormDesc
	SetGVM
	SetImagePos
	SetLink
	SetLogo
	SetProtect
	SetRecip
	SetRequiredFld
	SetWIPFld
	Size
	SlipAppend
	SlipInsert
	SpanField
	SrchData
	STR
	STRCompare
	SUB
	SUM
	SuppressBanner
	Table
	Time
	Time2Time
	TimeAdd
	TimeZone
	TimeZone2TimeZone
	TotalPages
	TotalSheets
	TriggerFormName
	TriggerImageName
	TriggerRecsPerOvFlw
	Trim
	Upper
	UniqueString
	UserID
	UserLvl
	WeekDay
	WhatForm
	WhatGroup
	WhatImage
	WIPExit
	WIPFld
	WIPKey1
	WIPKey2
	WIPKeyID
	XMLAttrName
	XMLAttrValue
	XMLFind
	XMLFirst
	XMLFirstAttrib
	XMLFirstText
	XMLGetCurName
	XMLGetCurText
	XMLNext
	XMLNextAttrib
	XMLNextText
	XMLNthAttrName
	XMLNthAttrValue
	XMLNthText
	Year
	YearDay

	Keyword Reference
	Keyword Table
	And
	BeginSub
	Break
	Continue
	Else
	ElseIf
	End
	EndSub
	Goto
	If...End
	Or
	Return
	While...Wend

	Index
	Symbols
	" (quotation marks) 16, 17
	& (ampersands) 198, 286, 375
	() (parentheses) 16, 19
	* (asterisks) 4, 65
	: (colons) 6
	; (semicolons) 3, 6
	? function 111
	@ function
	\ (backslashes) 96
	’ (apostrophes) 17

	A
	ABS function 113
	accessing
	ACIF 35
	AddBlankPages function 115
	AddComment function 117
	AddDocusaveComment function 118
	AddForm function
	AddForm_Propagate function 120
	AddImage function 122
	AddImage_Propagate function 125
	AddOvFlwSym function 127
	AFEBatchDALProcess 7, 368
	AFELOG file
	AFELog function 128
	AFEProcedures control group 12
	alphabetic field format 62
	alphanumeric field format 63
	Always function 129
	AND 447
	AND operation 146
	annuities 337
	apostrophes (’) 17
	AppendText function 131
	AppendTxm function
	AppendTxmUnique function 135
	AppIdxRec function 138
	ApplyInserts function 139
	archives
	ASCII files
	Ask function 140
	assignment statements 14
	AssignWIP function 141
	asterisks (*)
	AutoKeyID
	Avg function 142

	B
	backslashes in object names 96
	BankRound function 144
	banner processing
	bar code field format 62
	barcode fields
	batch processing
	Batch_DAL control group 7
	Beep function 145
	BeginSub 448
	BeginSub function
	binding 178
	bit logical shift operation 153
	BitAnd function 146
	BitClear function 147
	bitmaps
	BitNot function 148
	BitOr function 149
	BitRotate function 150
	BitSet function 152
	BitShift function 153
	BitTest function 155
	bitwise
	BitXor function 156
	blank lines
	blank pages 115, 207
	Boolean values
	Break 449
	Break statements
	built-in functions 39

	C
	cache
	Calculation tab
	calculations
	CALL function 159
	CALL statements
	carbon-copy recipients 388, 389
	carriage returns 4
	case
	CaseSensitiveKeys option 11
	century
	CFind function 161
	CHAIN function 160
	CHAIN statements
	ChangeLogo function 162
	Char function 164
	character strings
	CharV function 165
	CheckImageLoaded rule
	Class option 46
	clearing
	CLIPSPACES 199
	CodeInList function 166
	colons
	commas
	comma-separated value files 331
	comment record processing
	comments
	CompileWhenLoaded option 8
	Complete function 167
	CompressFlds function 168
	compressing
	ConnectFlds function 170
	Continue 450
	Continue statements
	Control control group 8
	control groups
	control-z 4
	converting
	coordinates
	copies
	CopyForm function 173
	Count function 174
	CountRec function 176
	CreateIndex option 44
	CreateTable option 44
	custom field format 62
	Cut function 177

	D
	DAL
	DAL control group 8
	DAL rule
	DAL scripts
	DALFunctions control group 8
	DALLib option 9
	DALLibraries control group 8
	DALRun
	DALTriggers option 9
	DALVAR built-in function 10
	DashCode function 178
	data flow statements 14
	data storage statements 30
	database functions
	date field format 62
	Date function 181
	Date2Date function 182
	DateAdd function 183
	DateCnv function 185
	DateFmt rule
	DateFMT2To4Year option 54
	DateFmt2To4Year option 8
	dates
	Day function 187
	daylight savings time 407
	DayName function
	DaysInMonth function 189
	DaysInYear function 190
	DB2/2 handler 45
	DBAdd function 191
	DBClose function
	DBDelete function 193
	DBFind function 194
	DBFirstRec function 196
	DBNextRec function 197
	DBOpen function
	DBPrepVars function 200
	DBUnloadDFD function 201
	DBUpdate function 202
	DDT files
	DDTSourceName function 204
	Debug_DAL_Rules option 9
	Debug_Switches control group 9
	Dec2Hex function 205
	decimal target variables 15
	DEFLIB directory 4
	DeFormat function 206
	DelBlankPages function 207
	DelField function 208
	DelForm function 210
	DelImage function 211
	DelWIP function 214
	descriptions
	DestroyList function 215
	DFD files
	DiffDate function 218
	DiffDays function 219
	DiffHours function 220
	DiffMinutes function 221
	DiffMonths function 222
	DiffSeconds function 223
	DiffTime function 224
	DiffYears function 225
	directing workflow 388, 389
	disabling scripts 2
	divide by zero 33
	dividing year 185
	Docusave
	DocusaveScript option 35
	dot operator 49
	double quotes 17
	drives
	dummy pages 115
	DumpDAL option 9
	DupForm function

	E
	EBCDIC
	either required 235
	Else 451
	ElseIf 452
	email addresses 389
	EmbedLogo function 228
	End 453
	EndSub 454
	EndSub function
	ERRFILE.DAT file 364, 366
	errors
	Excel
	exclusive OR operation 156
	execution order 19
	Exists function 229
	exponential power
	exporting
	Ext option
	external files
	extract files
	extracting a field’s root name 361

	F
	FAP units
	field formats
	FieldFormat function 230
	FieldName function 231
	FieldPrompt function 233
	fields
	FieldType function 236
	FieldX function 237
	FieldY function
	FileDrive function 239
	FileExt function 240
	FileName function 241
	FilePath function 242
	files
	filler pages 115, 207
	Find function 243
	flow control statements
	FlushDALSymbols option 9, 359
	FlushSymbols option 8
	fonts
	form descriptions, retrieving 245
	FORM PAGE NUM field 109
	FORM PAGE NUM OF field 109
	FORM.DAT file
	Format function 244
	formats
	formatting functions
	FormDesc function 245
	FormName function 246
	forms
	FORMSET PAGE NUM field 109
	FORMSET PAGE NUM OF field 109
	FormsetID field
	four-digit years 185
	FrenchNumText function 247
	FSISYS.INI file
	FSIUSER.INI file
	FullFileName function 248
	functions

	G
	get field function 109
	GetAttachVar function 249
	GetData function 250
	GetFormAttrib function 252
	GetINIBool function
	GetINIString function 256
	GetListElem function 258
	GetOvFlwSym function 259
	GetValue function 260
	GoTo 455
	GOTO statements
	graphics
	GroupName function 261
	groups
	GVM function
	GVM variables

	H
	HaveField function 263
	HaveForm function 265
	HaveGroup function 266
	HaveGVM function 267
	HaveImage function 268
	HaveLogo function 269
	HaveRecip function
	Hex2Dec function 272
	hexadecimal values
	host required 235
	Hour function 273
	hyperlinks

	I
	ICU system time zones 81
	IF rule 234, 235
	IF statements
	IgnoreInvalidImage option 119, 123
	ImageName function 274
	ImageRect function
	ImpFile_cd control group 119
	implicit conversion 20
	IncOvFlwSym function 277
	INI files
	INI function 278
	INI functions 70
	INIGroup control group 10
	InlineLogo function 279
	Input function 280
	Insert function 281
	inserting equipment 178
	insertion text 63
	Install option 44
	INT function 282
	integers
	interest rates
	international
	IsPrintObject function 283
	IsXMLError function 284

	J
	JCenter function 285
	JLeft function 286
	JRight function 287
	JustField function 288

	K
	KeyID values 11
	Keyword option 8
	keywords 22
	KickToWIP function 290
	KickToWIP rule 235

	L
	labels
	leading signs 323
	leading spaces 326, 414
	leap years
	LeapYear function 292
	Left function 293
	LEN function
	Lib option 8
	libraries
	limits
	line breaks
	line feeds 4
	ListInList function 295
	LoadCordFAP option 162
	LoadExtractData rule 250
	LoadINIFile function 297
	LoadLib function
	LoadXMLList rule 90
	locale 52
	locales 55
	locating fields 64
	locating objects 94
	log files
	LOGFILE.DAT file 365
	logical NOT operation 148
	logical shift 153
	Logo function 300
	Lower function 302
	lowercase

	M
	MailWIP function 303
	MajorVersion function 304
	master resource library
	MasterResource control group 9
	mathematical functions 72
	MAX function 305
	memory
	MEN.RES file
	menus
	messages
	metadata 252, 344
	MIN function 307
	MinorVersion function 309
	minus signs 17
	Minute function 310
	miscellaneous functions 73, 76, 88
	MLEInput function
	MLETranslate function
	MOD function 317
	month abbreviations 54
	Month function 318
	MonthName function 319
	Move_It rule
	moving data to compress blank space 168
	MSG function 320
	Multicopy option 173, 227
	multi-line text area messages, creating 321
	multi-line text field format 62
	multi-line variable fields
	MYPAGE variables 328

	N
	NAFILE.DAT files
	name
	new line character
	NewFormatOnly option 401
	NL function 321
	NOT operation 148
	not required 235
	NUM function 322
	numeric constants 16
	numeric field format 62
	numeric formats 63
	Numeric function 323
	NumText function

	O
	object functions
	occurrence
	ODBC
	Ok buttons 320
	OldFormatOnly option 401
	OMR marks 207
	OnCreate option 12
	OnDemand, adding comments 117
	OnDemandScript option 35, 340, 341
	OnUpdate option 12
	operator required 235
	operators
	options
	OR 458
	OR operation 149, 156
	OutMode option 35
	overflow
	overflow record count

	P
	PAD function 326
	page numbering fields
	PageImage function 327
	PageInfo function 328
	pages
	PaginateForm function 330
	paragraphs
	parameters
	parentheses
	ParseListCount function 331
	ParseListItem function 333
	partial names
	PassWd option 44
	PathCreate function 335
	PathExist function 336
	paths
	POW function 337
	Print function 338
	print functions 76
	print streams
	Print window 338
	Print_It function
	PrinterClass function 340
	PrinterGroup function 341
	PrinterID function 342
	PrinterOutputSize function 343
	printing
	PrintViewOnly option 340, 341
	procedures 41
	prompts
	propagate
	Properties window
	PrtType option 340, 341
	punctuation 18
	purging WIP 214
	PutFormAttrib function 344
	PutINIBool function 346
	PutINIString function 348

	Q
	Qualifier option 44
	quotation marks

	R
	RecipBatch function
	RecipCopyCount function 351
	recipients
	RecipName function
	record lengths
	records
	Refresh function
	remainder
	RenameLogo function
	reserved keywords 15
	ResetFld function
	ResetOvFlwSym function 358
	Retain function 359
	retrieving
	RETURN 459
	return
	RETURN statements
	Right function 360
	RootName function 361
	Round function 362
	rounding with the BankRound function 144
	RouteWIP function 363
	routing slips
	RPErrorMsg function 364
	RPLogMsg function 365
	RPWarningMsg function 366
	RunMode control group 9, 162
	runtime

	S
	SAMPCO sample resources 2, 41
	SaveINIFile function 367
	SaveWIP function 368
	Script option 9, 12
	ScriptFile option 7
	scripts
	search criteria
	search masks
	searching
	Second function 369
	sections
	semicolons
	separators 52
	sequence numbers
	Server option 44, 46
	SetEdit function 372
	SetFld function 374
	SetFont function 376
	SetFormDesc function 377
	SetGVM function 378
	SetImagePos function
	SetLink function 381
	SetOvFlwSym rule 127
	SetProtect function 383
	SetRecip function 384
	SetRecipTb
	SetRequiredFld function 385
	setting the bit position 152
	SetWIPFld function 386
	shiftAmt value 150
	shift-and-rotate operation 150
	ShowWIPWarning option 290
	signatures 139, 162
	significant numbers 72
	Size function 386, 387
	SlipAppend function 388
	SlipInsert function 389
	source expressions
	Source Name field
	spaces
	SpanField function 390
	spreadsheets 331
	SrchData function 392
	standard export format
	state stamps 139
	statements
	STR function 394
	STRCompare function 395
	string functions 78
	strings
	subroutines
	SUM function 398
	SuppressBanner function
	symbolic variable
	symbols
	syntax

	T
	tab characters
	Table function 401
	table only field format 62
	tables
	target fields 14, 16
	target variables
	TblLkUp rule 234
	TblText rule 234
	testing a specified bit 155
	text
	time
	Time function 403
	Time2Time function 404
	TimeAdd function 405
	times
	TimeZone function 406
	TimeZone2TimeZone function 407
	Title option 9
	TLEs 35
	TotalPages function 409
	TotalSheets function 410
	trailing signs 323
	trailing spaces 326, 414
	translating new line characters 314
	Trigger2Archive control group 138
	TriggerFormName function 411
	TriggerImageName function 412
	triggering
	TriggerRecsPerOvFlw 413
	Trim function 414
	two-digit year 185

	U
	Upper function 415
	uppercase alphabetic field format 62
	uppercase alphanumeric field format 63
	uppercase dates 52
	user ID
	User option 44
	UserID function 417
	UserLvl function 418
	using DAL 1

	V
	values
	variable fields
	variables
	VerifyKeyID
	version numbers

	W
	warnings
	WeekDay function 419
	Wend 460
	WhatForm function 421
	WhatGroup function 422
	WhatImage function 423
	While 460
	While...Wend statements 26
	white space 3
	wildcards 65
	window
	WIP
	WIPExit function 424
	WIPFld function 425
	WIPKey1 function 426
	WIPKey2 function 427
	WIPKeyID function 428
	work-in-process, assigning 141

	X
	X or space field format 62
	XDB database
	XML
	XML extract files 392
	XMLAttrName function 429
	XMLAttrValue function 430
	XMLFileExtract rule 90
	XMLFind function 431
	XMLFirst function 432
	XMLFirstAttrib function 433
	XMLFirstText function 434
	XMLGetCurName function 435
	XMLGetCurText function 436
	XMLNext function 437
	XMLNextAttrib function 438
	XMLNthAttrName function 440
	XMLNthAttrValue function 440, 441
	XMLNthText function 442
	XOR operation 156
	XPath 91
	XPaths 250, 392
	XPATHW32 program 91

	Y
	Y or N field format 63
	Year function 443
	YearDay function 444
	years

	Z
	zero

	Go to Oracle Insurance

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

