ORACLE
INSURANCE

Oracle® Documaker

DAL Reference

version 11.4

Part number: E14902-01
May 2009

ORACLE’

Copyright © 2009, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing, This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable,
the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be
the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensute the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for
the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible
for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or
damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered tradematks of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

THIRD PARTY SOFTWARE NOTICES

This product includes software developed by Apache Softwate Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes softwate distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution under the Generic
BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2009, Betkeley Softwate Distribution (BSD)

This product includes software developed by the JDOM Project (http://wwwjdom.otg/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copytight © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the wotk of the Independent JPEG Group (http://wwwijg.otg/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.

Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved. (http://www.w3.otg/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecteststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes software developed by Chtis Maunder and distributed via Code Project Open License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes softwate developed by PJ Arends and distributed via Code Project Open License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED
OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF
TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE
WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-1999 Erwin
Tratar. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN RISK! THE
AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE

Copyright (c) 1988-1997 Sam Leffler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer), and others.
(http:/ /wwwlibpngorg)

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all watranties, expressed or implied,
including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing Authors and Group 42, Inc.
assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages, which may result from the use of the PNG
Reference Libraty, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS " AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE CRYPTIX
FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE

Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BELIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS
DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

'THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved

It also includes materials licensed under Apache 1.1 and the following XPP3 license

'THIS SOFTWARE IS PROVIDED "AS IS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The Ultimate
Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.

Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavasctipts/tree/version 0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH REGARD TO
IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In no event shall University of
Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever) resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS"" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

Contents

Chapter 1, Using DAL

10

11

14

31

35

Introduction to DAL
Using the Field’s Properties Window
Entering Calculations in External Files
4 Formatting the Script
Creating a DAL Script Library
Executing a DAL Script from a Menu
Using INI Options
Using Built-In Functions
Checking KeyID Entries
Grammar and Syntax

14 Assignment Statements

22 Flow Control Statements

26 Using While...Wend Statements

28 BeginSub and EndSub
28 BeginSub
29 EndSub

30 Data Storage Statements

Testing DAL Scripts
32 Using the DAL Debugger in Documaker Workstation

Runtime Error Messages

DAL Script Examples

Chapter 2, Function Reference

41

42

43

Overview
Bit/Binary Functions

Database Functions

44 ODBC Handler

51

58

59

60

61

68

69

70

71

72

73

74

75

76

77

78

80

88

89

45 DB2/2 Handler

46 Creating a Database Handler for an Excel Database
48 Associating Tables with Handlers

49 Accessing Database Fields

50 Setting Up Memory Tables

Date Functions

52 Date Formats

Documaker Server Functions
Documaker Workstation Functions
Docupresentment Functions

Field Functions
62 Field Formats
63 Numeric Formats

64 Locating Fields

File and Path Functions
Have Functions

INI Functions

Graphics Functions
Mathematical Functions
Miscellaneous Functions
Name Functions

Page Functions

Printer and Recipient Functions
Section Functions
String Functions

Time Functions

80 Time Formats

81 Using the Time Zone Functions
82 ICU Time Zones

WIP Functions

XML Functions
90 Using DAL XML Functions

91 XML Path Locator
94 Locating Objects
97 Where DAL Functions are Used
109 @
111 »
113 ABS
114 AddAttachVAR
115 AddBlankPages
117 AddComment
118 AddDocusaveComment
119 AddForm
120 AddForm_Propagate
122 AddImage
125 AddImage_Propagate
127 AddOvFlwSym
128 AFELog
129 Always
130 Append
131 AppendText
133 AppendTxm
135 AppendTxmUnique
138 AppldxRec
139 Applylnserts
140 Ask
141 AssignWIP
142 Avg
144 BankRound
145 Beep
146 BitAnd
147 BitClear
148 BitNot
149 BitOr
150 BitRotate
152 BitSet
153 BitShift

155 BitTest

156 BitXor

157 BreakBatch
159 Call

160 Chain

161 CFind

162 Changel.ogo
164 Char

165 CharV

166 CodelnList
167 Complete
168 CompressFlds
170 ConnectFlds
173 CopyForm
174 Count

176 CountRec
177 Cut

178 DashCode
181 Date

182 Date2Date
183 DateAdd
185 DateCnv
187 Day

188 DayName
189 DaysInMonth
190 DaysInYear
191 DBAdd

192 DBClose
193 DBDelete
194 DBFind

196 DBFirstRec
197 DBNextRec

198 DBOpen
199 Creating Variable Length Records from Flat Files

200 DBPrepVars
201 DBUnloadDFD

202
204
205
206
207
208
210
211
213
214
215
216
218
219
220
221
222
223
224
225
227
228
229
230
231
233
234
236
237
238
239
240
241
242
243
244

DBUpdate

DDTSourceName

Dec2Hex

DeFormat

DelBlankPages

DelField
DelForm
Dellmage
DellLogo
DelWIP
DestroyList
DeviceName
DiffDate
DiffDays
DiffHours
DiffMinutes
DiffMonths
DiffSeconds
DiffTime
DiffYears
DupForm
EmbedLogo
Exists
FieldFormat
FieldName
FieldPrompt
FieldRule
FieldType
FieldX
FieldY
FileDrive
FileExt
FileName
FilePath
Find

Format

xiii

Xiv

245
246
247
248
249
250
252
254
256
258
259
260
261
262
263
265
266
267
268
269
271
272
273
274
275
277
278
279
280
281
282
283
284
285
286
287

FormDesc
FormName
FrenchNumText
FullFileName
GetAttachVAR
GetData
GetFormAttrib
GetINIBool
GetINIString
GetListElem
GetOvElwSym
GetValue
GroupName
GVM
HaveField
HaveForm
HaveGroup
HaveGVM
Havelmage
HaveLogo
HaveRecip
Hex2Dec
Hour
ImageName
ImageRect
IncOvFlwSym
INT
InlineLLogo
Input

Insert

INT
IsPrintObject
IsXMLError
JCenter
JLeft
JRight

288
290
292
293
294
295
297
298
299
300
302
303
304
305
307
309
310
311
314
317
318
319
320
321
322
323
324
326
327
328
330
331
333
335
336
337

JustField
KickToWIP
LeapYear
Left
LEN
ListInList
LoadINIFile
LoadLib
TLoadXMILList
Logo
Lower
MailWIP
MajorVersion
MAX
MIN
MinorVersion
Minute
MLEInput
MLETranslate
MOD
Month
MonthName
MSG
NL
NUM
Numeric
NumText
PAD
Pagelmage
Pagelnfo
PaginateForm
ParseListCount
ParseListltem
PathCreate
PathExist
POW

XV

338 Print

339 Print_It

340 PrinterClass

341 PrinterGroup
342 PrinterID

343 PrinterOutputSize
344 PutFormAttrib
346 PutINIBool

348 PutINIString
350 RecipBatch

351 RecipCopyCount
352 RecipientName
353 RecipName

354 Refresh

355 RemoveAttachVAR
356 Renamel.ogo
357 ResetFld

358 ResetOvFlwSym
359 Retain

360 Right

361 RootName

362 Round

363 RouteWIP

364 RPErrorMsg
365 RPLogMsg

366 RPWarningMsg
367 SaveINIFile

368 SaveWIP

369 Second

370 SetDeviceName
372 SetEdit

374 SetFld

376 SetFont

377 SetFormDesc
378 SetGVM

379 SetlmagePos

Xvi

381
382
383
384
385
386
387
388
389
390
392
394
395
397
398
400
401
403
404
405
406
407
409
410
411
412
413
414
415
416
417
418
419
421
422
423

SetLink

SetlLogo
SetProtect
SetRecip
SetRequiredFld
SetWIPFId

Size

SlipAppend
SlipInsert
SpanField
SrchData

STR

STRCompare

SUB

SUM
SuppressBanner
Table

Time

Time2Time
TimeAdd
TimeZone
TimeZone2TimeZone
TotalPages
TotalSheets
TriggerFormName
TriggerImageName
TriggerRecsPerOvElw
Trim

Upper
UniqueString
UserID

UserLvl

WeekDay
WhatForm
WhatGroup
Whatlmage

Xvii

424 WIPExit

425 WIPFId

426 WIPKeyl

427 WIPKey2

428 WIPKeylD

429 XMILAttrName
430 XMILAttrValue

431 XMLFind

432 XML First

433 XMLFirstAttrib
434 XMLFirstText

435 XMLGetCurName
436 XMLGetCurText
437 XMILNext

438 XMLNextAttrib
439 XMILNextText
440 XMILNthAttrName
441 XMILNthAttrValue
442 XMLNthText

443 Year

444 YearDay

Chapter 3, Keyword Reference

446 Keyword Table
447 And
448 BeginSub
449 Break
450 Continue
451 Else
452 Elself
453 End
454 EndSub
455 Goto
456 If..End

Xviii

458 Or
459 Return
460 While...Wend

461 Index

Xix

XX

Chapter 1
Using DAL

This guide provides the information you need to write
calculations for variable fields. Field calculations
simplify data entry.

For example, entry personnel may be required to enter
amounts in three different variable fields. The sum of
these amounts determines a total amount which is

placed in a fourth field.

You can write a field calculation to automatically enter
the amount in the fourth field. Entry personnel do not
have to add the amounts and enter the total.

This chapter discusses:

* Introduction to DAL on page 2

* Using the Field’s Properties Window on page 3
* Entering Calculations in External Files on page 4
* Creating a DAL Script Library on page 5

* Executing a DAL Script from a Menu on page 7
* Using INI Options on page 8

e Using Built-In Functions on page 10

e Checking KeyID Entries on page 11

e Grammar and Syntax on page 14

e Testing DAL Scripts on page 31

* Runtime Error Messages on page 33

e DAL Script Examples on page 35

Chapter 1

Using DAL

INTRODUCTION
TO DAL

The language you use for field calculations is called the Document Automation Language
(DAL). The calculation itself is called a serjpz. By using the proper script, you can make
sure the data is processed in the manner you intend. This chapter explains calculation
language and how to write scripts.

To assign a calculation to a field:

* Enter your calculation directly on the field’s Properties window by selecting the
Calculation tab.

After you assign a calculation to a variable field, you have these additional options.
Choose one of the following:

* DAL calc, if you want the system to recalculate the value of the field as soon as you
highlight or enter any field. The system recalculates all Calc scripts for all fields when
you highlight a new field.

* DAL script, if you want the system to recalculate the value in the field when you exit
the field. The script is executed only when you exit the field containing the script
reference and not during any other field actions.

* Disabled, if you do not want to run calculations during Section Check or during
entry. This is a convenient way to disable the script without deleting it from the
Properties window.

NOTE: The SAMPCO sample resources contain a great number of DAL examples and
explanations. Be sure to check out this resource as you create DAL scripts for
your company.

Using the Field’s Properties Window

U SING THE Yf)udente;l calcglations fi)r Vz;rijlble. fields on the Calculation tab of the field’s Properties
window. Here is a sample calculation:
FIELD'S

PROPERTIES Calculation | Return (@(“Prem Basis1”) * @(“Prem/Ops Ratel”)/100)
WINDOW

Takes the value of a variable field named PremBasis1 multiplies it by the value of
a variable field named Prem/Ops Ratel, divides the product by 100 and places
Result the result in the current variable field.

The calculation language in the Properties window has a particular format. Keep the
following formatting points in mind as you enter your calculation in the Properties
window:

* You can enter up to 512 bytes (or characters) of information for a calculation. For
larger scripts, create them as external files (*.DAL).

* The calculation language is not case sensitive.

* Place comments only on the last line of a calculation. Begin each comment line with
asterisks.

* Place a semicolon () at the end of each calculation.

* Ifyouhave multiple calculations, separate the calculations with semicolons, as shown
here:

If flag = “y” then return (sum(“field”)); else return (“exclude”);
end;

e Extra space and tab characters within script statements are considered white space.
White space may appear anywhere in the script to improve readability, but is ignored
during the evaluation of the script. Blank lines within external script files are also
considered white space.

NOTE: All space and tab characters inside a string constant are not considered white
space, but rather part of the string.

Chapter 1

Using DAL

ENTERING
CALCULATIONS
IN EXTERNAL
FILES

You can save a calculation script in an external file. External files containing script
calculations are standard ASCII text files. You create and maintain your script files with
any standard text file editor. If you use a word processor, remember to save the script file
as an ASCII text file. The calculation language that you use within an external file is exactly
the same as the language you use in the Properties window.

You may want to use calculations from external script files if your calculations are long or
if you want to use identical calculations for various variable fields in multiple sections. You
must maintain your external script files in the DEFLIB directory of your master resource
library.

To reference an external script file, you must use the CALL or CHAIN functions. The
extension of the external script file is usually specified in your FSISYS.INI file as DAL.
If it is defined in your INTI file, you do not have to specify an extension for the file name.

Calculation Result

Return(Call (“TestCalc”)); Calls a calculation from an external file named TestCalc. Once
completed, control returns to the script that initiated the
function.

Chain(“TestCalc”); Chain executes an external script file but, unlike CALL, does not
return to the script that initiated the procedure. Instead, it
proceeds to the next calculation.

FORMATTING THE SCRIPT

The calculation language in external files has a particular format. Keep the following
formatting points in mind as you enter your calculation in an external file:

* The external script file can contain any number of lines. Each line can be up to 255
characters in length. Each line must end in a cartiage return/line feed pair (\r\n).
You can end the file with a CTRL+Z; however, it is not required that you end the file
with CTRL+Z. Most ASCII text editors will handle this automatically.

* Calculation language is not case sensitive. The calculation can be written in either
upper- or lowercase.

* Blank lines can occur anywhere in the file. Blank lines are always ignored as the
calculation is processed. Use spaces, tabs, and blank lines to improve readability.

* You create comment lines in a calculation by placing an asterisk (*) at the beginning
of the line. The system ignores any line which begins with an asterisk during
processing. You can place comments anywhere in the file and use them for any
reason you choose. Comments are typically used to provide explanations of sections
in the file.

Please note that it is not recommended to include comments in the scripts entered
directly onto the Calculation tab of the Properties window. If, however, you do need
to include comments, place them at the end of the calculation.

CREATING A
DAL ScCRIPT
LIBRARY

Creating a DAL Script Library

You can also create libraries of DAL scripts as structured named subroutines. The
libraries which contain these named subroutines are standard ASCII files.

You can create and maintain the libraries with any standard text file editor. If you use a
word processor, just remember to save the file as an ASCII text file.

NOTE: The calculation language you use within a library is exactly the same as the
language you use in the Field Properties window.

The layout of the library is shown here. Each script in the file must begin with BeginSub
and end with EndSub.

BeginSub SCRIPT1

* This script returns #x set to 2 if #x was equal to 1 on enter.
IF (#x = 1) THEN #x = 2;

END;

RETURN (#x) ;

EndSub

BeginSub Script2

* This script returns a negative one if #y was equal to 5.
if(#y = 5) then Return (-1);

end;

EndSub

BeginSub Parse
* Parse a word from the string “parse_it”
#position = FIND (parse_it, ™ “);

word = SUB (parse_it, 1, (#position - 1))
parse_it = CUT (parse_it, 1, #position);
return;
EndSub

In this example, SCRIPT1 is the name of the first script, Script2 is the name of the second
script, and so on.

SCRIPT1, Script2, and Parse are only names, you can use any name you want as long as
itis not the name of a DAL reserved function, statement, or key word such CALL, FIND,
IF, and so on. You can use upper- and lowercase letters in script names.

BeginSub and EndSub must be paired per script. You must have a space between
BeginSub and the script name. For more information on these functions see BeginSub
and EndSub on page 28.

Chapter 1

Using DAL

Loading a DAL library

NOTE: If you plan to use the XDB to update (separate) DDT file information, keep in
mind that DAL scripts stored in the data section should follow the requirements
specified for DDT data entry.

This means that if you continue to use separate FAP and DDT files in version
11.0 and higher, the DAL statement separator should be two colons (::) rather
than the normal semicolon (j).

If you use Documaker Studio with the new merged FAP files, you can use a single
semicolon (;) as the statement separator in your rule data. The use of two colons
(::) is no longer required. Note however, that the system will process the two
colon (z) statement separators correctly.

Also keep in mind that when you ate entering a script into the AFGJOB.JDT file
— as a PreTransDAL or a PostTransDAL
statement separator. For instance if you write multiple DAL statements into the

you must use two colons (::) as the

data area, you must use two colons (::) as your statement separator.

Once a DAL library is loaded, you can reference the scripts in the library by name. You
do not have to use CALL or CHAIN.

For example, assume the DAL library file, EXAMPLE.DAL contains the sub-routine
functions on the previous page and the file has been loaded into cache memory using the
following INI control group and option:

< DALLibraries >
Lib = example.dal

In this example, you reference the sub-routine function name directly: Script1() or

Script2().
If (@(“multiphy_value”) = “ “ Then

Return(Scriptl())
Else
Return(Script2())
End

You can execute SCRIPT1 or SCRIPT2 or neither after using the LoadLib function. For
more information, see LoadLib on page 298.

NOTE: You should only execute the LoadLib function osce. You can execute the scripts
in the library as many times as you wish.

For more information, see Using INI Options on page 8 and LoadLib on page 298.

EXECUTING A
DAL ScCRIPT
FROM A MENU

Executing a DAL Script from a Menu

You can use the AFEBatchDalProcess MEN.RES option to execute any DAL script from
amenu option. For instance, you can use this option to run a script which batch processes
all of the current WIP for the current user.

To use this option, include a line similar to the one shown here in your MEN.RES file:

MENUITEM "Batch DAL..." 294 "AFEW32->AFEBatchDalProcess""Process
DAL in Batch"

This line tells the system that when a user selects the Batch DAL option, it should execute
the script identified in the following INI option. Make sure your FSTUSER.INI or
FSISYS.INI file includes this control group and option:

< Batch_DAL >
ScriptFile = xxx.DAL

Where xxox is the name of the DAL script you want the system to execute. You must use
the extension DAL.

Here are some examples:

Script name Content Results

COMPLETE.DAL Complete (); Completes each entry in WIP. This is the
same result as if you chose the File,
Complete option.

ASSIGN.DAL AssignWIP (Fanelli); Assigns each entry in WIP to the user ID
Fanelli. This is the same result as if you
chose the Formset, Assign option.

ASSIGN1.DAL If For each entry in WIP whose WIPKeyl
WIPKeyl()="Account” equals Account, the script assigns the
then AssignWIP documents to the user ID Brown. This is
(Brown);end; the same result as if you chose the Formset,

Assign Document option.

Chapter 1

Using DAL

USING INI
OPTIONS

You can use several FSISYS.INI file control groups and options to control the way the

system processes DAL functions and scripts. These options let you:

Purge or retain target variables between form sets.

Specify the file extension for external DAL scripts.

Determine which DLL-based DAL functions are automatically registered and
available to your DAL scripts at runtime.

Specify the name of the DAL script you want to execute.

Set the title for the DAL runtime tool. For more information about the DAL runtime
tool, see Testing DAL Scripts on page 31.

This table shows the various control groups and options, along with a description of what

you should enter for each option.

Option

Explanation

Control control group

FlushSymbols

DateFmt2To4Year

DAL control group

Ext

Enter No to maintain the defined target vatiables and their contents
from the previous form set.

The default is Yes, which tells the system to delete DAL target
variables between form set processing.

Enter the cutoff year for determining the century. For instance, if
you enter 50 for this option, the system assumes a two-digit year
greater than or equal to 50 should be prefaced by 79.

If you omit this option, the system assumes the current century
when it encounters a two-digit year. All internal date manipulation
is petformed using four-digit years.

Enter a period and an extension. The default is DAL

Use this option to define the file extension used for external DAL
scripts and file names.

DALFunctions control group

Keyword

Enter DLLMOD->FunctionName.

This option defines the DLL-based DAL functions that are
automatically registered and made available to the scripts executed
in the session. This option is used by the DAL runtime tool
(DALRUN).

DALLibraries control group

CompileWhenLoaded

Lib

Enter Yes to compile each DAL libraty file when loaded. In
situations where you are processing a lot of transactions and you
have a lot of DAL functions which are used during processing, this
can speed performance. The default is No.

Use this option to specify the DAL library file to be loaded. You can
specify multiple files. There is no default for this option.

Option
DALRun control group

Script

Title

RunMode control group

FlushDALSymbols

Using INI Options

Explanation

Enter a file name.

Use this option to specify the file name of the script to execute. You
can use any file extension. If you omit the extension, the system
assumes if is DAL.

Enter a title. The default is DAILRUN - Document Automation
Language Runtime

Enter Yes to clear DAL internal variables set by the previous
transaction before the subsequent transaction is processed.

Use the Retain function to identify DAL vatiables you do not want
cleared.

The default is No.

Debug_Switches control group

DALLIib

Debug DAIL_Rules

DumpDAL

VerifyKeylD control group

Script

Enter Yes to have the system create debug information related to
the execution of library subroutines. The default is No.

Enter Yes to create debug date related to the execution of each
DAL function or procedure that is executed. The default is No.

Enter the name of the DAL script for which you want to generate
debug data. You can also enter All, which tells the system to
generate data for all DAL scripts.

Be sure to set the DALLIib option to Yes if you use the DumpDAL
option.

The system sends the output to the file you specified with the
TraceFile option in the Data control group or your default trace file.

Enter the name of the DAL script you want the system to use. Store
this script in the DefLib directory or in MASTER.LBY if you are
using Library Manager.

MasterResource control group

DALTriggers

Enter the name of the DAL library file that contains your section
trigger scripts (DAL triggers).

The default is the name stored in the FormsetTriggers option in the
MasterResource control group. If this option is omitted, the system

looks for SetRepTh.

The system also provides a number of specialized INI functions. For more information,

see INI Functions on page 70.

Chapter 1

Using DAL

USING BUILT-IN

10

FUNCTIONS

Use the DALRUN and DALVAR built-in functions to execute DAL scripts or get DAL
variable information you can use to complete INI options. For instance, you can use this
to map unique recipient information into batch records.

These functions are automatically registered when DAL is initialized. Several programs
can initialize DAL, such as the GenData and GenPrint programs, the AFEMAIN
progtam (including RACLIB/RACCO), Documaker Studio, Image Editor, and various
utilities such as ARCRET, ARCSPLIT, and DALRUN.

NOTE: If you try to use these functions in systems that do not initialize DAL, an
incorrect INT value is returned.

Here is an example:

< INIGroup >
Optionl = ~DALRUN MY.DAL
Option2 = ~DALVAR XYZ_VAL

If the program requests Option], the script MY.DAL is executed and the resulting option
is assigned.

If the program requests Option2, the DAL variable XYZ_VAL is located and its contents
are assigned to the INI option.

Using this function with the GenPrint program to initialize INI options can produce
errors. At the point in the GenPrint program that INI files are loaded, the system may not
have processed enough information to use some DAL functions in the script executed by
this function. Here is an example:

< PDFNames >
Archive = c:..\Output\~GetEnv ExtrFileName ~DALRUN Archive_Name
< Printer2 >

Port = <PDFNames> Archive =
Here is the problem statement from the DAL script (ARCHIVE_NAME.DAL):

f_name = "_" & GVM("RunDate") & "_A" & newcount & "_" &
GVM ("PolicyNumber")

Instead you will receive an error message similar to the following.

DM12041: Error : FAP library error: Transaction:<>,
area:<..\C\genbannr.c,Jun 23 2004
20:14:14,400.110.002, GENDALErrorNotify>

codel:<0>, code2:<0>

msg:<Script: c:..\Deflib\Archive_Name.dal
Line: 6 Col: 33 Err: 15 Token:)

Msg: No result value returned>.

In this example, the GVM values, RunDate and PolicyNumber have not been loaded.

CHECKING
KEYID ENTRIES

Checking KeyID Entries

In addition to the following restrictions on KeyID values, you can use DAL to make sure
that data entered conforms to a specific alpha and numeric format. For instance, KeyIDs
can be:

* Limited by the use of the AutoKeyID table (only accepts KeyIDs listed in the table)
* Limited as to whether there can be duplicates in WIP or archive or both
* Converted to uppercase (if the CaseSensitiveKeys option is set to No)

e Limited to the length defined in the database. (A standard WIP file allows 20
characters for the KeyID.)

NOTE: KeylDs are typically used as the policy, document, or form set number.

In version 10.2 and higher, you can use the VerifyKeyID hook to call a DAL script.
Within the DAL script, the verification can be constant, or provide exceptions based on
the Keyl (Company), Key2 (Line of Business), or the transaction code currently selected.

All the relevant WIP record information taken from the Form Selection window is
available to the DAL script for examination. Simply use the available DAL functions like
WIPKeyID on page 428, WIPKey1 on page 426, or WIPFId on page 425.

NOTE: The script can retrieve WIP values, but not change them.

You must handle any error messages using the MSG function. See MSG on page 320 for
more information.

11

Chapter 1

Using DAL

To install the KeyID validation hook, include these INT options.

< AFEProcedures >

AutoKeyID = TRNW32->TRNVerifyKeyID
< VerifyKeyID >

Script = KeyID.DAL

OnCreate = Yes

OnUpdate No

Option Description

AFEProcedures control group

AutoKeylD Enter TRNW32-->TRNVerifyKeyID as shown above to install the KeyID
validation hook.

VerifyKeyID control group

Script Enter the name of the script you want the system to use. Store this script in
the DefLib directory specified for your master resoutce library (MRL).

If you omit this option, a message appeats on the Form Selection window.
You will have to exit and correct the INI file by either defining the script or
removing the hook declaration.

OnCreate This option defaults to Yes to indicate you want to call the script when
creating a new form set via the Form Selection window.

To exclude newly-created form sets, set this option to No.

OnUpdate This option defaults to No to indicate you do not want to call the script to
verify the KeyID on transactions that have already been saved to WIP.

To verify WIP transactions as well, set this option to Yes.

The script can do whatever evaluation is necessary for validation purposes. Here is an
example DAL script that validates a KeyID using a format token string.

* Define the format requirement in the fmt variable below.
* 9 - means numeric
A - means alphabetic
* X - means alphanumeric
* - means any character - not limited to alphabetic or numeric
* For example, if you need 4 numeric, followed by 2 alpha, followed
* by 2 numeric, followed by 2 alphanum, you would define:
* fmt = "9999AA99XA"
* The length of the overall format string is assumed to also define
* the required length of the key wvalue.
* Note DAL does not support case sensitive string comparisons.
* Therefore, it assumes either case is sufficient and that if the
* key 1is required to be in uppercase, you have set the
* CaseSensitiveKeys option to No.

fmt="9999AA99XA"

* This next statement is used to get the KeyID prompt
name = GETINISTRING(, "DlgTitles", "KeyIDTitle", "Policy #");

12

val = WIPKeyID();
if (val = "")

Checking KeyID Entries

* This is returned successfully because a blank key is going to

* be handled by the Form Selection window anyway.

return ("Yes") ;
End
#1 = len(fmt);

if (#1 != len(val))
msg (name, "Length must be

return("No") ;
End

* Now example each character from right to left because we

* already have the
top:
if (#1 = 0)

goto done:

end
f = sub(fmt, #1,1);

g = sub(val,#1,1);

if (£ = '9")
if (NUMERIC (g)
msg (name,

return("No") ;

end
elseif (f = 'A")

if (g < 'A' OR g >

msg (name,

return("No") ;

end
elseif (£ = 'X")
if (NUMERIC (g)

if (g < 'A"
msg (name,
return("No") ;

end
end
elseif (f != '*')

msg ("Invalid format found at position "

return("No") ;

end

#1 -= 1;
goto top:
done:

return("Yes") ;

length from the earlier check.

" must be numeric.");

" must be alphabetic.");

" must be alphanumeric.");

& #1 & ".");

13

Chapter 1

Using DAL

GRAMMAR AND

14

SYNTAX

Target variable

Document Automation Language controls every aspect of the calculation. You control
what type of calculation takes place, the sequence of the calculation, and where the
calculation result is placed in the form set. It is important that you understand the
calculation language as you write scripts. The calculation language consists of:

* Assignment Statements

Assignment statements are used to place a value from the right side of an equation
into a target variable on the left side of an equation.

* Flow Control Statements

Flow control statements manage the sequence of the calculation. These language
statements direct the order in which the calculation is executed and the placement of
the calculation result within the form set.

e Data Storage Statements

These statements return target variable data to the section variable fields.

NOTE: You can also get information about the various DAL keywords in the Keyword
Reference on page 445.

ASSIGNMENT STATEMENTS

Assignment statements give values to target variables. Assignment statements have two
parts: a target variable and a source expression. The source expression determines what is
used to obtain a result. The target is assigned the result of the calculation. The assignment
statement format is:

Target = Source expression

Target variables can be one of these types: string, integer, or decimal. Targets always
receive a value that matches their assigned type. Target variables retain data until it is
placed in the form set or used in another calculation or expression.

The source expression specifies what calculation is performed. Source expressions can be
simple or complex. Simple expressions assign the value of a section variable field to the
target, or they assign a constant value to the target variable. Complex expressions calculate
results from multiple sources.

NOTE: The result of the source expression is a/ways converted to the assigned type of the
target variable, unless the result of the source expression is a decimal.

The target variable contains the result of the source expression calculation. Data is placed
in the target after the calculation is performed. The data is maintained in the target until
you replace it via another statement. Any script that uses a target value always uses the last
value received by that target. This lets you reuse target values.

Grammar and Syntax

Target variable names are not case sensitive. Mixed case has no affect on how the name

is processed or read during a calculation. Mixed case can be used for clarity. A target name

cannot be a reserved keyword. A target’s type is designated by the first character of its

assigned name. Target variables are one of these types:
* string

* decimal

e integer

Each type is explained below.

* String Target Variables

String target variable names start with a letter (a- z). The name can be up to 20
characters in length. The remaining characters in the name can be any upper- or
lowercase letter, number, the underscore (_), or percent sign (%). Here are some

examples:
First_Name = “John”
LASTNAME = “Graham”
LAST_NAME = “Graham”
CompanyName = “Oracle”

The value received by a string target variable can be from zero to 255 ASCII
characters in length.

* Decimal Target Variables

Decimal target variable names start with a dollar sign (§). The name can be up to
characters in length. The remaining characters in the name can be any upper- or
lowercase letter, number, the underscore (), or percent sign (%). Here are some
examples:

SBEGIN_BAL = 100.00
$Final_Balance = 00.00

20

Decimal target variables receive numeric values with decimals. The values in these

fields can contain up to 14 digits and a decimal.
* Integer Target Variables

Integer target variable names start with a pound sign (#). The name can be up to
characters in length. The remaining characters in the name can be any upper- or
lowercase letter, number, the underscore (_), or percent sign (%). Here are some
examples:

#Employees = 3000
#Number_of_TInsured = 2300
#%Insured = (#Number_of_Insured / #Employees * 100)

20

Integer target variables receive numeric values as whole numbers — no decimals.

The values in these fields can range from plus or minus two billion.

15

Chapter 1

Using DAL

Declaring Variables

Source expression

Form set variable fields

16

Target variables

Numeric constants

In most cases, you do not have to worry about specific variable types when using DAL.
Ungqualified names are considered string variables and DAL automatically converts the
type, depending upon the use. You can, however, force a variable to be something other
than a string type by using a specific name qualifier.

Qualifier Description

$myFloat The § denotes that this is a floating point number.
#mylnteger ~ The # denotes that this is an numeric integer.

%myHandle The % denotes that this is a numeric handle. No conversions should be done
on this when used in DAL.

Handle type variables are the exception when it comes to conversions. DAL cannot
convert the other variable types into a handle type and a handle type cannot be converted
into the other types. For any function that requires a %wariable as a parameter, you must
specify that type of parameter.

Source expressions specify what calculation is performed. The result of the source
expression is placed in the target variable. Source expressions can contain form set
variable field names, target variable results, numeric constants, string constants, keywords,
operators, punctuation, and labels. Each of these source expression language categories is
explained in the following topics.

Variable fields which exist in the form set can be used in the source expression. Variable
field names which are used in the source expression must be written in a particular format.
The name must be enclosed in quotes. Here is an example:

$SubTotal = sum (“Amount”)

In this example, the sum of the all section fields that have names starting with Amount are
subtotaled. The result is stored in the decimal target variable named §S#bTotal. Form set
field names are not case sensitive.

NOTE: If you want to use a particular field name, the name must appear in this format:

@(“ThisFieldl”)

Be sure to include the parentheses and the quotation marks.

A target variable which results from one source expression can be used in a subsequent
source expression. All three target variable types (string, decimal, and integer) can be used
in a source expression. Here is an example:

$FinalTotal = $SubTotal + 15.00

In this example, the value of the decimal target variable $SubTotal (which was previously
calculated) is added to the constant value of 15.00. The result is stored in a new decimal
target variable named $FinalTotal.

You can use numeric constants anywhere in a source expression. There are two types of
numeric constants: integer and decimal. Do not include commas in either type.

String constants

Operators

Grammar and Syntax

* Integer Constants contain whole numbers. Negative integer constants are preceded
by a minus sign. Here is an example of a source expression which contains an integer
constant:

SFinalTotal = S$SubTotal + 15

In this example, the integer constant 15 is added to the value of the decimal target
variable §SubTotal (which was previously calculated). The result is stored in a new
decimal target variable named $FinalTotal.

* Decimal Constants contain fractional numbers with a decimal point. They can
contain a fractional portion, represented by the digits to the right of the decimal
point. Negative decimal constants are preceded by a minus sign. Here is an example
of a source expression containing decimal constants:

SMy_Dec_Constant = 3.14810
SAnswer = $My_Dec_Constant * 10.80

In this example, the decimal constant 3.14810 is stored in the decimal target variable
$My_Dec_Constant. The value in the decimal target variable $My_Dec_Constant is
then multiplied by the decimal constant 10.80. The result is stored in a new decimal
target variable named $Answer.

You can use string constants anywhere in the source expression. String constants are any
group of consecutive characters. String constants can consist of 1 to 253 characters. The
characters are delimited either by apostrophes (') or by quotation marks (*“). Use
quotation marks if you need apostrophes inside the constant. The string constant consists
of everything between the delimiters, including spaces. Here is an example of a source
expression containing string constants:

My_String_Constant = ' Congratulations on your purchase. '
Greeting = My_String Constant & “Thank you for choosing us.”

In this example, the string constant " Congratulations on your purchase. ' is stored in the string
target variable My_StringConstant. The value in My_String_Constant is then added to
the string constant Thank you for choosing us. The result is stored in the string target variable
named Greeting.

When Greeting is returned to a field, it appears as:

Congratulations on your purchase. Thank you for choosing us.

Operators are used in the source expression. Operators control what calculation is
performed using the other components in the source expression.

Operator Function

= Assignment operator or logical test for equality.

+* Addition.

+= Value on the right is added to then assigned to the target variable on the left.
- Subtraction. Unary minus (negative)

-= Value on the right is subtracted from then assigned to the target variable on the left.

17

Chapter 1

Using DAL
Operator Function
£ Multiplication
* = Value on the right is multiplied with then assigned to the target variable on the left.
/ Division
/= Value on the right is divided into then assigned to the target variable on the left.
& String concatenation.
&= Value on the right is concatenated to then assigned to the target variable on the left.
> Logical greater than.
< Logical less than.
! Logical not. Returns the opposite of the tested value. (For example: |(10=9) = true)
1= Logical not equal. Tests if the value at the left is not equal to the value at the right.
>= Logical greater than or equal.
<= Logical less than or equal.
1> Logical not greater than.
<! Logical not less than.
I>= Logical not greater than or equal.
I<= Logical not less than or equal.
AND Connects two values. Both values must evaluate true to produce a true result.
OR Connects two values. Either value can evaluate true to produce a true result.
Punctuation Four types of punctuation can be used within the source expression. Punctuation is used

to enclose subexpressions within the main source expression or to establish parameters.
Each punctuation mark performs a particular function.

Punctuation Function

@) Encloses subexpressions or parameter lists. Indicates precedence of execution
within calculations. Parentheses can override the normal execution order.

s Separates parameters of built-in functions. See Function Reference on page 39
for an explanation of built-in functions.

5 Separates statements.

\ Continues a statement on the next source line.

18

Execution order

Grammar and Syntax

Operators, in combination with punctuation, are executed in a particular order. Normally,
operators are executed from highest to lowest priority. When two operators are of equal
priority, left to right execution applies.

The normal order of execution is overridden by the use of parentheses. Expressions in
parentheses are executed first. In a set of parentheses, operators are executed from highest
to lowest priority. Operators of equal priority within parentheses are executed from left
to right. Operators are ranked and executed in this order:

Operator Order of Execution

@) Highest priority—executed first
= Second highest priority—executed after operations in
(Unary minus (negative)) parentheses

“ Third highest priority.
(Multiplication and division)

+-& Fourth priority

(Addition, subtraction, string

concatenation)

| 1= Fifth priority

(Logical not and logical not equal)

AND OR Sixth priority

= Lowest priority

(Assignment)

Here are two example assignment statements. The components and execution order of
each statement is fully explained.

SAMOUNT = @ (“BEG_BAL”) + 100.00

Target variable $AMOUNT

Source @(“BEG_BAL”) + 100.00

expression

Calculation Takes the value in the section variable field named BEG_BAL adds
100.00 and places the result in the target decimal variable named
$AMOUNT

Order of Reads the expression from left to right

execution

19

Chapter 1

Using DAL

Implicit conversion

20

SAMOUNT = (@ (“PremBasisl”)

100

+ @(“PremBasis2”))

* @(“Prem/OpsRatel”)/

Target variable

Source
expression

Calculation

$AMOUNT

(@(“PremBasis1”) + @(“PremBasis2”)) * @(“Prem/OpsRate1”)/100

Takes the value in the section variable field named PremBasis1 adds the

value in the section variable field named PremBasis2; multiples the total
of these two fields by the value in the section variable field Prem/

OpsRatel; then divides the total by 100 and places the result in the target
decimal variable named AMOUNT.

Order of
execution

Reads the expression from left to right applying the priority of operators
(multiplication and division prior to addition). However, the first set of

patenthesis overrides the normal priority, so the addition operation is
performed first.

Implicit conversion occurs when operands of differing types are acted upon by an

operator. During assignment, the result of the operand on the right will always be

implicitly converted to the type of operand on the left of the assignment operator. This

table outlines the conversion rules that occur in operations other than assignments:

Expression operands

Implicit conversion of operands

Internal result type

STRING op INTEGER
STRING op DECIMAL
STRING op STRING

INTEGER op INTEGER

INTEGER op DECIMAL

INTEGER op STRING

DECIMAL op INTEGER
DECIMAL op DECIMAL

DECIMAL op STRING

STRING op STRING
STRING op STRING
STRING op STRING

INTEGER op INTEGER

DECIMAL op DECIMAL

INTEGER op INTEGER

or

**DECIMAL op DECIMAL

DECIMAL op DECIMAL
DECIMAL op DECIMAL

DECIMAL op DECIMAL

STRING

STRING

STRING

*INTEGER
DECIMAL

DECIMAL

INTEGER

DECIMAL

DECIMAL

DECIMAL

DECIMAL

* The result of division between INTEGER data types is always a DECIMAL.

** When a string requires conversion to a numeric value it is converted to a DECIMAL data type
if it contains a valid decimal value otherwise, it is converted to an INTEGER data type. The
resulting type then determines which implicit conversion rules apply.

Grammar and Syntax

Here is an example:
#val=Stemp

The value of $temp is converted (internally) to an integer because the assighment is to an
integer. During this implicit conversion, the actual value contained in $temp is not
changed. If $temp has a value of 10.25 before executing this statement, #val would now
have a value of 10.25, and $temp would still be 10.25.

NOTE: Operands of differing types can be assigned to each other, but this does not mean
that the two operands will be equal after such assignment.

In this example...
#val="January”

the string constant would be converted to an INTEGER before assignment. Since the
string constant does not contain a valid number, the value of #val will be zero (0) after
execution of this statement.

In this example...
Stemp= 10/6

the constants 10 and 6 are of type INTEGER because they have no decimal value
indicated. The resulting internal calculation will be a DECIMAL because the act of
division always results in a DECIMAL value. Therefore, the value of $temp after the
evaluation will be 1.66667. To assign the integer result of division into a DECIMAL data
type, it will be necessary to first assign the result into an INTEGER data type, or to use
the expression as the parameter to the INT built-in function.

Here is an example of implicit conversion differences:

TEXT="001";

IF (TEXT=1);
TEMP1="“YES";

ELSE;
TEMP1="NO”";

END;

IF (1=TEXT) ;
TEMP2="“YES" ;

ELSE;
TEMP2="NO" ;

END

After executing these statements, TEMP1 will contain NO and TEMP2 will contain YES.

In the first IF statement, the expression (TEXT=1) compares a string with an integer.
According to the rules of implicit conversion, the integer is first converted into a string
and then the two objects are evaluated according to the operator. When comparing
strings, 001 does not equal 1.

In the second IF statement, the expression (1=TEXT) compares an integer to a string.
Implicit conversion will change the string into an integer before performing the operation.
The converted expression can be represented as (1=1), which are equal.

21

Chapter 1

Using DAL

Labels

Keywords

Labels are a name for a location within a script. Labels must end with a colon (). The label
can be up to 20 characters in length (including the colon). Labels must appear on a line
by themselves. Labels are not case sensitive. Here is an example:

TOP:

#Num = #Num +1

If #Num < 22

STemp = $Temp + @ (“Prem/OpsPrem” & #Num)
GOTO TOP:

END

Labels are frequently used as the destination of a GOTO flow statement. For more
information about flow statements, see Flow Control Statements on page 22.

FLow CONTROL STATEMENTS

Flow control statements dictate how the calculation is executed. They control how the
components of the source expression are used. Flow control statements are embedded in
the source expression. Flow control directs the use of the source expression components.

Keywords are used for flow control statements. These words define the statement
operations. These keywords are reserved for use in calculation language. The keywords
cannot be used as variable field names. Keywords are not case sensitive.

Keyword Flow Control

IF Begins a conditional statement (Optional)
AND Used within an IF statement (Optional)
OR Used within an IF statement (Optional)
ELSE Used within an IF statement (Optional)
ELSEIF Used within an IF statement (Optional)
THEN Used within an IF statement (Optional)
END Ends an IF statement

WHILE..WEND

BREAK

CONTINUE

GOTO

RETURN

CALL

CHAIN

Executes a series of statements, as long as a given condition is true
Used to exit a While...Wend statement block

Restarts a While...Wend statement loop

Jumps to a label within a calculation

Tells the calculation to return a result

Temporarily calls another calculation file

Permanently calls another calculation file

These statements are explained in the following topics.

22

RETURN statements

IF statements

Grammar and Syntax

A RETURN statement directs the calculation to return with or without a value. A
RETURN statement must begin with the keyword RETURN. A RETURN statement
may return the result of the calculation to be placed in the field that initiated the script.

A RETURN statement is also used to return results to one calculation script from
another. Using a CALL statement temporarily suspends the current script calculation and
sends control to another script file. A RETURN statement sends control back to the
original script which may then continue processing. See CALL statements on page 25 for
more information. Here are some sample RETURN statements:

RETURN (@ (“LAST_NAME”) & ', ' & @(“FIRST_NAME”) & “ “ &

@ (“*MIDDLE_INIT”))
RESULT: Takes the data in the section variable field LAST_NAME adds a comma; adds
the data in the section variable field FIRST_NAME; adds the data in the section variable
field MIDDLE_INIT and places this data in another section variable field.

RETURN (CALL('FirstFile'))
RESULT: Returns the result of the calculation generated by calling the script FirstFile.

An IF statement is executed based on the occurrence of a certain condition. IF statements
must begin with the keyword IF and terminate with the keyword END.

Components within IF statements can be connected with the keywords AND or OR. IF
statements can have three forms: a simple IF statement, an IF statement with an ELSE
condition, or an IF statement with an ELSEIF condition.

* Simple IF Statement

A simple IF Statement contains a single statement block. The calculation is
performed only if the logical expression is true. If the logical expression is false,
control passes to the next statement after the END keyword. Here is an example:

IF (@(“FirstAmount”) < 1000.00) THEN
SFinalAmount = @ (“FirstAmount”) * .05;

END;

RETURN (S$FinalAmount)

CALCULATION: If the value of the section variable field FirstAmount is less than
1000.00 then the value is multiplied by .05 and entered in the target variable

$Final Amount. The value of the $FinalAmount target variable is then returned to the
section variable field.

* Use of the keyword connector THEN is optional.
¢ JF Statement with ELSE Condition

An IF Statement with an ELSE condition contains an alternative calculation. If the
logical expression is false, control passes to the statement after the ELSE keyword.

Here is an example:

IF (@(“FirstAmount”) < 1000.00) THEN
SFinalAmount = @ (“FirstAmount”) * .05;
ELSE

$FinalAmount = @ (“FirstAmount”) + 10.00;
END;

RETURN (SFinalAmount)

23

Chapter 1

Using DAL

24

CALCULATION: If the value of the section variable field FirstAmount is less than
1000.00 then the amount is multiplied by .05 and entered in the target variable
$Final Amount.

However, if the value of the section variable field FirstAmount is greater than or equal to
1000.00 then 10.00 is added to the amount and entered in the target variable
$Final Amount.

The value of the $FinalAmount field is then returned to the caller or section variable field.

Use of the keyword connector THEN is optional.
* IF Statement with ELSEIF Condition

An IF statement with an ELSEIF condition is the most complicated type of IF
statement. If the first logical expression is true, the statement block after IF is
executed until the first ELSEIF statement is reached. If the first logical expression is
false, the first ELSEIF logical expression is evaluated. If the ELSEIF logical
expression is true, the statement block from the ELSEIF to the next ELSEIF (or
ELSE) is executed. If the ELSEIF statement is false, the next ELSEIF is evaluated.
If all logical expressions are false, control passes to the ELSE block. If there is no
ELSE block, control passes to the statement following the END keyword.

An ELSEIF statement is considered part of the same IF statement. Only one END
keyword is needed to end an IF, ELSEIF, ELSE statement. IF statements can be
nested inside other IF statements. A nested IF statement requires its own END
keyword. A missing or mismatched keyword results in a runtime syntax error. Here
is a sample IF statement with ELSEIF condition:

IF (@ (“FirstAmount”) < 1000.00)
$FinalAmount = @ (“FirstAmount”) * .05;
ELSEIF @ (“FirstAmount”) < 5000.00
$FinalAmount = @ (“FirstAmount”) * .03;
ELSEIF @ (“FirstAmount”) < 10000.00
SFinalAmount = @ (“FirstAmount”) * .02;
ELSE

$FinalAmount = @ (“FirstAmount”) + 10.00;
END;

RETURN (SFinalAmount)

CALCULATION: If the value of the section variable field FirstAmount is less than 1000.00
then the amount is multiplied by .05 and entered in the target variable $FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to 1000.00
but less than 5000.00 then the amount is multiplied by .03 and entered in the target
variable $FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to 5000.00
but less than 10000.00 then the amount is multiplied by .02 and entered in the target
variable $FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to 10000.00
then 10.00 is added to the amount and entered in the target variable $Final Amount.

The value of the $FinalAmount field is then returned to the caller or section variable field.

GOTO statements

CALL statements

CHAIN statements

Grammar and Syntax

A GOTO statement moves to a specific location within a calculation. The location has
been named with a label. (See Labels on page 22 for more information.) A GOTO
statement must begin with the keyword GOTO. Here is an example:

GOTO SECTION_ONE:
RESULT: The control jumps to SECTION_ONE in a calculation.

The destination label can occur anywhere in the script containing the GOTO statement.
If the label cannot be located in the script, a syntax error will be generated.

GOTO will support retrieving the label from a target variable. Here is an example:

SECTION = “MY_LABEL:”"

GOTO SECTION
RESULT: Since the word following the GOTO statement does not contain a colon, the
program will assume the label is contained in the target variable named. In this case,
control will jump to the location of MY_LLABEL in the current script.

A CALL statement temporarily suspends one calculation and calls another calculation file.
A CALL statement must begin with the keyword CALL. The calculation file that is called
must contain a RETURN statement if the original calculation expects a returned value.
Here is an example:

CALL('TestCalc')
RESULT: Temporarily calls the calculation file TestCalc. After the calculations in
TestCalc are completed, processing returns to the current script. In this example, TestCalc
is not expected to return a value.

A CHAIN statement permanently calls another calculation language file. A CHAIN
statement must begin with the keyword CHAIN. There is no limit to the number of
CHAIN statements that can be used. Here is an example:

CHAIN 'LastCalc’

or
CHAIN('LastCalc')

RESULT: Permanently calls the calculation file LastCalc. Processing does not return to
the current script. No statements from the original script will be evaluated after the
CHAIN statement.

25

Chapter 1

Using DAL

Using While...Wend Statements

Use While...Wend statements to execute a series of statements, as long as a given
condition is true.

While condition

[statements]
Wend
Parameter Description
Condition Required. The condition is any expression that evaluates to true or false. False

is assumed to be a zero value. Any non-zero value is assumed to be true.

Statements One or more statements executed while the condition is true.

If condition is true, the statements within the While block are executed. When the Wend
statement is encountered, control returns to the While statement and condition is again
evaluated. If condition is still true, the process repeats. If it is false, execution resumes with
the statement which follows the Wend statement.

You can nest While...Wend loops to any level. Each Wend matches the most recent While.

NOTE: Keep in mind that you can start an endless loop if you specify a condition that
can never be satisfied. The system cannot syntactically detect an endless loop, so
if you create one, the program will lock up and you will have to kill the program.

(Ellipses in the following examples represent additional statements, not shown.)

While (10 > #value)
While (#new = 1)
Wend

Wend

You do not have to use tabs to indent nested While...Wend statements. Tabs are used in
these examples, to help identify statement blocks. You may want to also use tabs in your
code to make the source easier to read.

Break statements Break statements provide a way to exit a While...Wend statement block.
Break

or
Break (levels)

Parameter Description

Levels The value you enter defines how many nested While...Wend statement blocks
you want to terminate.If you omit this parameter, control passes to the statement
following the next Wend statement encountered.

You can only include Break statements inside While...Wend statement blocks. Break
statements transfer control to the statement following the Wend statement.

26

Grammar and Syntax

When used within nested While...Wend statements, you can include the Levels parameter
to transfer control to the statement following the Wend level you specify.

Here are some examples. (Ellipses in the following examples represent additional
statements, not shown.)

While (1)
While (2)
Break
Wend
Wend.

In this example, the Break statement only terminates the While...Wend which contains
the statement. Control passes to the first (outside) While...Wend statement block.

Here is another example:
While(1)
While (2)
While(3)
Break(3)
Wend

Wend

Wend
In this example, the Break(3) statement terminates all three While...Wend blocks that are
active.
Continue statements Use Continue statements to restart a While...Wend statement loop.
Continue

Executing the Continue statement stops the current sequence of statement execution and
restarts program flow at the beginning of the loop. This causes the While statement to
retest the condition and, if true, execute the loop again.

Statements after the Continue keyword are not executed. Continue is often, but not
always, activated by an IF test. Here is an example:

(Ellipses in the following examples represent additional statements, not shown.)

While(#x < 10)
If (value)
Continue

End

Wend

27

Chapter 1

Using DAL

28

GOTO statements

Syntax

Example

GOTO statements have not changed with the implementation of the While loops, but
note that you can use GOTO statements to jump into or out of a While loop.

When jumping into a While loop, you bypass the check of the While condition. The
condition is not checked until a Continue or Wend statement is encountered. If the While
condition is true, you stay in the loop. Otherwise, control moves to the next statement
following the Wend for that loop.

If a GoTo statement is encountered within a While...Wend loop, control passes to the
location of the destination label named. This label may be in or outside the control of the
While statement.

BEGINSUB AND ENDSUB

BeginSub and EndSub are keywords, but not Flow Control statements. You will only see
these keywords when loading a DAL script library (a library of DAL subroutines). They
designate the start and end of a subroutine. You will not see them in the normal flow of
script execution.

BeginSub
Use BeginSub to begin each subroutine in a DAL subroutine library.

BeginSub (Name)

Once a DAL library is loaded, you can reference the scripts contained in the library by
name. You do not have to CALL or CHAIN to the script.

Parameter Description Required

Name Name associated with the subroutine Yes

BeginSub and EndSub must be paired per script. You must have a space between
BeginSub and the script name.

BeginSub SCRIPTI1

* This script returns #x set to 2 if #x was equal to 1 on enter.
IF (#x = 1) THEN #x = 2;

END;

RETURN (#x) ;

EndSub

BeginSub Script?2

* This script returns a negative one if #y was equal to 5.
if (#y = 5) then Return (-1);

end;

EndSub

SCRIPTT is the name of the first script and Serjpz2 is the name of the second script.

Grammar and Syntax

NOTE: SCRIPT7 and Serjps2 are only names, you can use any name you want as long as
the name #s #nor a DAL reserved function, statement, or key word such as CALL,
FIND, IF, and so on. You can mix case in script names.

EndSub
Use this function to end each subroutine in a DAL subroutine library.
Syntax EndSub ()
Parameter Description
None No parameters are necessary for this function.

BeginSub and EndSub must be paired per script.

Example Here is an example:

BeginSub SCRIPT1
* This script returns #x set to 2 1f #x was equal to 1 on enter.
IF (#x = 1) THEN #x = 2;

END;

RETURN (#x) ;

EndSub

BeginSub Script2
* This script returns a negative one if #y was equal to 5.
if(#y = 5) then Return (-1);

end;

EndSub

Seript1 is the name of the first script. Serjpz2 is the name of the second one.

29

Chapter 1

Using DAL

30

DATA STORAGE STATEMENTS

Data storage statements return the results of the calculation to the variable field that

initiated the script or stores the results in the variable field you specify.

You use kegywords for storing data. Keywords define the statement operations and are

reserved for use in the calculation language. You cannot use these keywords in variable

field names. Keywords are not case sensitive.

NOTE: Keywords are the only way to return or store data results in a variable field.

Keyword Action

Return Ditects a calculation to return with or without a value to the variable
field that initiated the script. Returns target variable results to a DAL
script from another DAL script (see CALL statements on page 25);
sends control back to the original script.

SetFld Assigns a value or the results of a calculation (target variable) to a
variable field on a section. The variable field maybe on any section or
form in the form set

AppendText Attaches text to the end of a multi-line text variable field from an
external ASCII text field.

AppendTxm Attaches text to the end of a multi-line text variable field from the first
text area field found on a section you specify.

AppendTxmUnique Attaches text to the end of a2 multi-line text variable field from the first

text area field found on a section you specify. Also renames any
embedded variable field imported from the external text area.
Embedded variable fields will then have a unique name.

TESTING DAL
SCRIPTS

Syntax

Testing DAL Scripts

You can use the DALRUN utility to test scripts and trigger the interactive DAL
Debugger. Debug messages, certain errors, and a dump of the symbol table at the end of
the run are examples of output this utility will generate.

DALRW32 /X /INI /D /T

Parameter Description

/X This optional parameter supplies the name of a script to run. If you omit this
option, you can use this INI option to provide the name of the script:

< DALRun >
Script = file name

You can use any extension. The default is DAL

/INI This optional parameter supplies the name of an INI file to load. This INT file
supplies additional parameters and options. If the DALRUNL.INI file is present,
the utility loads it by default.

Here are the INI options you can include in the INI file:

< DALRun >
Title = title string(an override to the window title)
Script = file name (the script to run)
< DALFunctions >
Keyword = DLLMOD->FunctionName
Keyword2 = DLLMOD->FunctionName2
(and so on)

/D The debug switch starts the DAL Debugger. When on, the script executes in
single step mode and registers this DAL function: DEBUG (“message”).

The DEBUG function breaks execution, displays a message, and invokes the
debugger in single step mode.

/T This parameter sends certain text messages to the standard output device. These
messages are not visible at runtime, but may be redirected when you run this
utility.

Here is an example:
DALRW32 /ini=test /d /t > test.txt

This example tells the system to run the DALRUN udility using the TEST.INI file. The /
D parameter tells the system to start the DAL debugger. The /T parameter tells the
system to send messages to a file named TEST.TXT.

31

Chapter 1
Using DAL

UsING THE DAL DEBUGGER IN DOCUMAKER WORKSTATION

You can enable the DAL Debugger in Documaker Workstation by adding the following
lines to the MEN.RES file in your master resource library (MRL). You can edit this file
using any ASCII text editor. Before you edit the file, make a backup copy. Here is an
example of what you need to add to the MEN.RES file:

POPUP "&Tools" 255 "Utility Programs"

BEGIN

MENUITEM "Enab&le Debugger..." 502 "DBGW32->DBGEnableDebugger"
"Enable DAL debugger." 0

SEPARATOR

32

RUNTIME ERROR
MESSAGES

Runtime Error Messages

Use the following table to resolve any error messages you may receive.

Message Number Description

Out of 1 The calculation needs more memory than is available. Make more

memory memorty available to the program and try again.

Open failure 2 The file containing the calculation cannot be opened. This may

on script file mean the file does not exist; is protected from reading; or that the
file is not located in the default directory established by your INT
file option. The default directory is usually DefLib.

Syntax etror 3 A calculation contains invalid information or does not use proper
statement syntax.

Wrong 4 A built-in function or procedure requires more parameters than

number of are provided.

patameters

Wrong type of 5 A built-in function or procedure expects a particular type of

parameter parameter. This may mean that the variable type used is not
automatically converted to the type required by the routine.

Invalid or 6 A character (or set of characters) does not correspond to a known

unknown operator or keyword. Can also indicate that you need to add a

symbol Return statement.

Invalid 7 The assignment statement fails to provide a valid source

assignment expression or destination variable.

statement

Cannotmodify 8 A statement attempted to change the value of an identifier that

target cannot be changed.

Unexpected 9 A calculation caused an unexpected etror or event that cannot be

internal etror corrected.

Missing/ 10 The number of open parentheses does not match the number of

mismatched close parentheses.

patenthesis

Invalid IF 11 An IF statement contains or fails to contain a keyword.

statement

Unexpected 12 The end of the script occurred before the current statement could

end of script be fully evaluated. This may be due to the script being incomplete
or an inability to read the entire script.

Invalid 13 Generates due to a number of problems, such as: an expression

expression fails to yield a result or encounters an unknown variable type.

syntax

Attempt to 14 An attempt to divide a value by zero was found. Division by zero

divide by zero is undefined and must be avoided.

33

Chapter 1

Using DAL

34

Message

No result value
returned

Statementlabel
already used

Unknown
statement label

Invalid
statement label

Illegal label
location

Function out
of place

Illegal
parameter
value

Number

15

16

17

18

19

20

21

Description

An expression expects a return value when calling a procedure.
Only functions can return values. This error may also result if a
RETURN statement is missing from a file that has been invoked
with a CALL statement.

Another label with the same name has been found within the
script.

A GOTO statement names a label that does not occur within the
script.

An invalid label was found.

A GOTO statement attempted to locate a label within an IF
statement. A GOTO statement can jump from an IF statement,
but not into an IF statement.

A function was called but the statement does not expect a return
value. Since a function must return a value, the call must be an
error.

A built-in function ot procedure passed a parameter value that is
not valid.

DAL ScCRIPT
EXAMPLES

Preparing AFP or
Metacode print
streams for Docusave

Preparing PCL print
streams for Docusave

Preparing AFP print
streams for IBM's
OnDemand

DAL Script Examples

Here are some DAL script examples you can refer to as you create your own DAL scripts.

This example shows DAL scripting which you could use to format and configure an AFP
or Metacode print stream for storage using Docusave.

The FSISYS.INT or FSIUSER.INT files must contain these options:

< PRTType:xXxx >
OutMode = MRG4 or JES2
DOCUSAVE.DAL

DocuSaveScript

Where XXX is either AFP or XER. For the OutMode option, enter MRG4 or JES2.
Enter the name of the script in the DocusaveScript option.

The DOCUSAVE.DAL script file should contain this information:

* Add Docusave Comment - use default: APPIDX record!
comment = AppIdxRec()

class = PAD("bio",8)
cabinet = PAD("rpex7",8)
title = PAD("TITLE",22)

indextag= comment & class & cabinet & title
Print_TIt (indextag)

AddDocuSaveComment (indextag)

Return ('FINISHED!')

To add Docusave comments to an PCL print stream, add the DocusaveScript option and
the name of a DAL script to execute. The DAL script should call the
AddDocusaveComment function to add a string as a Docusave comment record. Here is
an example:

< PrtType:PCL >
DocusaveScript = DOCUSAVE.DAL

Here is an example of what the DOCUSAVE.DAL file might look like:

* Add Docusave Comment - use default: APPIDX record!
COMMENT = AppIdxRec ()

PRINT_IT (COMMENT)

ADDDOCUSAVECOMMENT (COMMENT)

RETURN ('FINISHED! ')

This example shows DAL scripting which you could use to format and configure an AFP
print stream for storage using OnDemand. Keep in mind...

* The AFP Conversion and Indexing Facility (ACIF), which is an IBM product, writes
some AFP structures such as Tag Logical Element (TLEs) in an AFP print stream.

* Oracle Insurance’s comment support for AFP does not use TLEs. It was designed
for OnDemand.

* The system uses the D3AEEEE AFP structure, also known as a NOP (No-Operation)
structure.

The FSISYS.INT or FSIUSER.INT files must specify the name of the DAL script in the
OnDemandScript option:

< PrtType:AFP >

35

Chapter 1

Using DAL

36

OnDemandScript = ONDEMAND.DAL

The ONDEMAND.DAL script file should contain this information:

* Make sure #loadlib is initialized
#loadlib = #loadlib
* Load script into cache memory!
If (#loadlib = 0) Then
LoadLib ('OnDmdLib")
End
#loadlib+= 1
* Execute script!
OnDemand ()
Return ('FINISHED! ')

OnDmdLib.DAL script library file
BeginSub OnDemand
* OnDemand Script is only valid for AFP print streams!

If (PrinterClass() != 'AFP') Then
Return
End

* Example of reading GVM variables

* If (HaveGVM('Company') Then

* company = GVM('Company')
* End

* Make sure #docnum is initialized

#docnum = #docnum

If (#docnum = 0) Then
semi= "';'
colon = ':'
acifinfo = 'ACIFINFO'
docnum = 'DOCUMENT_NO'
mvsfile= 'MVS_FILENAME'

expbprep = 'EXPBPREP'

procdate = 'PROCESS_DATE'

proctime = 'PROCESS_TIME'

idxname = 'ACIF_INDEX_NAME'

idxdata = 'ACIF_INDEX_DATA'

recid = 'RECID=470'

grpname = GroupName ()

dapver = MajorVersion() & '.' & MinorVersion (

Print_It ('DAP Version is ' & dapver)
End
* Add comment, ' ACIFINFO;DOCUMENT _NO:0000001"'

#docnum += 1

AddComment (acifinfo & semi& docnum & colon &
Format (#docnum, 'n',9999999))

* Add comment, 'MVS_FILENAME:PROD.EX.P.DCS.AFP.PREPOUT'

DAL Script Examples

AddComment (mvsfile & colon & 'PROD.EX.P.DCS.AFP.PREPOUT')

* Add comment, 'EXPBPREP;PROCESS_DATE:mm-dd-yyyy'
AddComment (expbprep & semi & procdate & colon & Date('1-4'))
* Add comment, 'EXPBPREP;PROCESS_TIME:hh:mm:ss'

AddComment (expbprep & semi& proctime & colon & TIME())

* Add comment, 'RECID=470;ACIF_INDEX NAMEOl;026;Correspondence Copy
Number'

* Add comment, 'RECID=470;ACIF_INDEX DATA(01;009;840127920"

#idxnum = 1
fldname = 'Correspondance Copy Number'
flddata = '840127920"

AddComment (recid & semi& idxname & Format (#idxnum, 'n',99) & semi & \
Format (Len (fldname), 'n',999) & semi & fldname)

AddComment (recid & semi& idxdata & Format (#idxnum, 'n',99) & semi & \
Format (Len (flddata), 'n',999) & semi& flddata)

* Add Comment, 'RECID=470;ACIF_INDEX_NAMEO2;019;Correspondance Type'

* Add Comment, 'RECID=470;ACIF_INDEX_DATA(02;025;Notice of Initial
Reserve'

#idxnum += 1

fldname = 'Correspondance Type'

flddata = 'Notice of Initial Reserve'

AddComment (recid & semi& idxname & Format (#idxnum, 'n',99) & semi&\
Format (Len (fldname), 'n',999) & semi& fldname)

AddComment (recid & semi& idxdata & Format (#idxnum, 'n',99) & semi&\
Format (Len (flddata),'n',999) & semi& flddata)

* Get DAP Field - 'INSURED NAME'
* Add Comment, 'recid=470;ACIF_INDEX_NAME(O3;012; INSURED NAME'
* Add Comment, 'recid=470;ACIF_INDEX_DATA(03;008;John Doe'

If (HaveField('INSURED NAME',,,grpname)) Then
#idxnum += 1
fldname = 'INSURED NAME'
flddata = @(fldname, , ,grpname)

AddComment (recid & semi& idxname & Format (#idxnum, 'n',99)
& semi&\

Format (Len (fldname), 'n',999) & semi & fldname)

AddComment (recid & semi& idxdata & Format (#idxnum, 'n',99) &
semi&\

Format (Len (flddata),'n',999) & semi & flddata)
End

Return
EndSub

37

Chapter 1

Using DAL

38

Chapter 2
Function Reference

Numerous functions ate built into the DAL calculation

language. These functions let you apply operations to

form set objects, to previously calculated target
variables, to constants, or to any combination of the
three. The functions fall into these categories:

* Bit/Binaty Functions on page 42

e Database Functions on page 43

* Date Functions on page 51

* Documaker Server Functions on page 58

* Documaker Workstation Functions on page 59
* Field Functions on page 61

* Tile and Path Functions on page 68

* Have Functions on page 69

* INI Functions on page 70

* Graphics Functions on page 71

* Mathematical Functions on page 72

* Miscellaneous Functions on page 73

* Name Functions on page 74

* Page Functions on page 75

* Printer and Recipient Functions on page 76
* Section Functions on page 77

* String Functions on page 78

e Time Functions on page 80

* WIP Functions on page 88

* XML Functions on page 89

39

Chapter 2

Function Reference

40

* Locating Objects on page 94
* Where DAL Functions are Used on page 97

Some functions may be applicable to more than one category. Each function, however,
will only be discussed once in the category that best describes it.

Each category has a table listing the functions. The table lists and briefly describes each
function. Use the table to quickly scan the available functions. Each function is discussed
in detail in alphabetical order at the end of this chapter.

OVERVIEW

Overview

Functions and procedures and their and associated parameters must be written in this
syntax:

FUNCTION (parameters)

Many functions return a value the script may use in some fashion. For instance, the
following statements each use the value returned from a function:

Statement This statement...

IF (FUNCTIONY()) then Shows the returned value used in the logical evaluation of
the IF statement. If the returned value is non-zero, the IF
statement is TRUE. If the value is zero, the IF will evaluate

END FALSE.

Y = FUNCTION(); Demonstrates assigning another variable the result returned
from a function.

Y = FUNCTION(Is similar to the last, except it also demonstrates the use of

FUNCTION2()); a function’s return value as a parameter to another function.

$VAL = 17.00 / FUNCTION(); Demonstrates the use of a returned value as an operand in
a mathematical expression.

Some functions do not return a value and simply perform some operation and return.
These types of functions are often referred to as procedures to distinguish them from those
functions that do return values. If a function does not return a value, using it in one of the
above described manners causes a syntax error.

Sometimes a function may behave as either a function or procedure. For these functions,
if they are used in one of the manners shown, a result will be returned. If called in a
manner that does not expect a result, none will be returned.

Please note however, for those functions that must return a value, you are required to use
the result in one of the above described manners or a syntax error will be generated.

Each function description identifies any required or optional return value.

NOTE: The SAMPCO sample resources contain a great number of DAL examples and
explanations. Be sure to check out this resource as you create DAL scripts for
your company.

41

Chapter 2

Function Reference

BIT / BINARY The Bit/Binary functions are summarized in the table below. These functions allow bit
manipulation within integers. Click on the function name to jump to a discussion of that
FUNCTIONS

function.

Function Result

BitAnd Returns the result of a bitwise AND operation performed on two numeric values.

BitClear Returns the result after clearing the specified bit in a value.

BitNot Returns the result of a bitwise logical NOT operation performed on a numeric
value.

BitOr Returns the result of a bitwise inclusive OR operation performed on two numeric
values.

BitRotate Returns the result of a bit shift-and-rotate operation performed on a numeric
value.

BitSet Returns the result after setting the specified bit on in a value.

BitShift Returns the result of a bit logical shift operation performed on a numeric value.

BitTest Returns TRUE (1) if the specified bit in a value is a 1; otherwise FALSE (0) is
returned.

BitXor Returns the result of a bitwise exclusive OR operation performed on two numeric
values.

DashCode Creates a value to assign to a series of fields from the binary value of an integer.
Dec2Hex Returns the hexadecimal equivalent of an integer value.

Hex2Dec Returns the integer equivalent of a hexadecimal string.

42

DATABASE
FUNCTIONS

Database Functions

Database functions perform tasks using databases. By default, all database styles
recognized by the system are supported. A typical use of these functions is to reference
tables cteated for ODBC in Windows and DB2 (DB2/2). The functions you can use ate
listed below. Click on the function name to jump to a discussion of that function.

Function Result

DBAdd Adds a record to an open database table. Optionally returns one (1) on
success or zero (0) on failure.

DBClose Closes an open database table. Optionally returns one (1) on success or zero
(0) on failure.

DBDelete Deletes a record from a database table. Optionally returns one (1) on success
ot zero (0) on failure.

DBFind Retrieves a record by key value from an open database table. Optionally
returns one (1) on success ot zero (0) on failure.

DBFirstRec Retrieves the first record from an open database table. Optionally returns
one (1) on success or zero (0) on failure.

DBNextRec Retrieves the next record from an open database table. Optionally returns
one (1) on success or zero (0) on failure.

DBOpen Opens a database table. Optionally returns one (1) on success or zero (0) on
failure.
DBPrepVars Creates the DAL variables associated with a table record.

DBUnloadDFD Streamlines the use of DAL with ODBC and memoty tables by creating
DFD files and using only memory tables

DBUpdate Updates a record retrieved from a database table. Optionally returns one (1)
on success or zero (0) on failure.

The functions are generic for any supported database including ODBC (Open Data Base
Connectivity) compliant databases and DB2/2 compliant databases.

NOTE: The customer is responsible for licensing and installing the desired database
product and any required operating system driver.

All database access is routed through the system’s database library DLL. This DLL
handles interfacing with the supported types of databases. Each database type has an
associated database handler. Database handlers can be described in an INI control group
which begins with DBHANDIER: followed by the database handler name, such as:

< DBHandler:0DBC >

43

Chapter 2

Function Reference

44

ODBC HANDLER
The standard handler name for ODBC is ODBC. Here is an example:

< DBHandler:0DBC >

Install = SQW32->SQInstallHandler
or

InstallMod= SQW32

InstallFunc= SQInstallHandler

The Install option specifies the DLL module name and handler function name. This
function is linked dynamically when the handler is initialized. Actually, the above
definitions are not necessary for ODBC support. The database library will default the
module and function name to the values shown.

Additional values can be optionally set in the INI file.
Server = Server name (default is “MS SQL Server”)

The Server option relates to an ODBC term which is specified on the control panel which
essentially provides the name of a driver. MS SQL Server is the default if the option is
omitted.

Qualifier = Qualifier(no default)

The Qualifier option provides data source specific information, for example, the database
name for an Access database.

User= User ID (no default)
PassWd= User password(no default)

The User and PassWd (password) options provide a way to automatically log on to the
database. Not all drivers support this usage. When unspecified, some ODBC drivers may
display a logon window and prompt for the information. Some drivers will ignore the
options if the connected database manager does not require or support logging in.

CreateIndex=Yes / No(default is Yes)
CreateTable=Yes / No(default is Yes)

The CreateTable and CreateIndex options can be used to prevent time delay while a table
is checked for existence. In this way, the normal capabilities of the connected driver may
be overridden. When set to No, any attempt to open the file with a mode of
CREATE_IF_NEW will automatically be rejected. Some drivers may not support
creating a table or index, and may require these options to be set to No.

Database Functions

DB2/2 HANDLER

The database handler for DB2 is defined in a similar manner to that described for ODBC.
The following INI options are valid for installing the DB2 handler.

< DBHandler:DB2 >

Install = DB2W32->DB2InstallHandler
or

InstallMod = DB2W32

InstallFunc = DB2InstallHandler

The Install option specifies the DLL module name and handler function name. This

function is linked dynamically when the handler is initialized. These INI options are not
necessary for tables specifying DB2 as the database type. DB2 is also supported via static
linking under z/OS, and cutrently only version 3.1 has been tested in that environment.

Here are other INI options that can be specified for DB2.
Database = Database name (no default)

The Database option specifies the name of the database and is required.
Bindfile = Bind file name(no default)

The Bindfile option specifies the name of a bind file which provides the bound access plan
for the database. The DB2LIB.BND file is provided with the system’s DB2LIB and can
be used as a bind file.

45

Chapter 2

Function Reference

46

CREATING A DATABASE HANDLER FOR AN EXCEL
DATABASE

You define a database handler for a Microsoft Excel database in a similar manner to that
described for an ODBC database. The following INI options are used to install the Excel
handler to access a database defined as part of an Excel spreadsheet. The handler name
in this example is NamesExcel.

< DBHandler:NamesExcel >
Class = ODBC

Server = NamesExc

The Class option tells the DAL database handler what type of driver to use. Enter ODBC.
This option is required.

The Server option specifies the user data sources name as shown on the ODBC Data
Source Administrator window. This name specifies the ODBC driver to be used as the
data source. The default drive is MS SQL Server.

This example shows how to add a user data source which is an Excel database named
NamesExe. NamesExc is defined in an Excel spreadsheet entitled Naes. The user data
source name, NamesExc, is assigned to use the Microsoft Excel (ODBC) Driver (*.xls).

4" DDBC Data Source Administrator (2]
User DSN | System DSM | File DSM | Drivers | Tracing | Connection Pocling | About |

User Data Sources:

MName | Drriver | Add..

Mamestécc Microsoft Access Dnver [*.mdb)
Remove

Configure

An ODBC User data source stores information about how to connect to
the indicated data provider. A User data source is only visible to you,
and can only be used on the curent machine.

ok | cancel | gl | Help |

To add a new data source name, follow these steps:
1 Click the Add button and select the ODBC driver to use. Then click Finish.

2 Enter the desired Data Source Name and description. You can enter up to 22
characters for the data source name.

3 Click the Workbook Selection button and select the path for the database. Then click
Ok.

Create New Data Source

Select a driver for which you want to set up a data source.

MName I V:I
Microzoft Excel Diriver [# xls] 4.
Microsoft Excel-Treiber [*.xls]
Microsoft FoxPro WFP Driver [*.dbf]
Microzoft ODEC for Diacle
Microsoft Paradox Driver [*.db |
Microsoft Paradox-Treiber [*.db]
Microsoft Test Driver [* kst; *.cav]
Microsoft Text-Treiber [bt *.cav]
Microzoft Visual FoxPro Driver
bt Uienial FouBe. Trahar
gl i

|_Ew-.b-k-.h.mm.¢-

ODBC Microsoft Excel Setup
0K
INames Tabel In Excel Spreadsheet - Names xls Eare]

Databa
Help
Wersion: IExce\El?QUDU hé

Workbook: C:h ADALDB\Names. sk

Select Workbook.

I™ | Use Current Directony

Data Source Name: INamesE Ko

Description.

ODBCL Data Source Adi rator

Database Functions

User DSH | System DSH | File DSH | Diivers | Tracing | Connestion Posiing | About |

User Data Sources:

Mame | Driver | Add...
Hameshos Micrasolt Acosss Diiver [mdb)
MamesExe Microsoft Excel Driver [s] Remave

Conligure...

£in ODEBE User data source stores infarmation about how te connect to
the indicated data provider. 4 User data source is only visible to you,
and can only be used an the cunent machine.

oK Cancel | sl Help

47

Chapter 2

Function Reference

These rows and columns
are selected or highlighted.

48

Here is an example of the steps you would follow to define a database in an Excel
spreadsheet.

1 Enter the field names in the first row of each column that make up the table. Then
enter the data in each column.

2 Select the columns and rows that comprise the table.

E3 Microsoft Excel - Names

DEES & aalo-= ~8llim@ 2

o] |

1

|E] Eile Edit Wiew Insert Formab Tools Data Window Help ;|i|5||
Al =] =| FIRSTNAME
A [B c o T 3
| 1 |FIRSTHNAME LASTMAME
| 2 |Sandra Fanelli
| 3 |Morris Fanelli
| 4 |dermry Smith
| 5 |James Srnith
b |Excel Database Exist
Kl
| 6 |
| 9 |

()

12

[14 T4 T3 3l Names { Shestz 7 Sheets 7 (K1 LUJ
Ready| [= LN |

3 Choose the Insert, Name, Define option. Then enter the name of the table on the
Define Name window and click Add.

Define Name 2] x|
Marnes in workboak:
MamesE:xc | QK I
Mames d
Close |
Add |
Delete |
/|
Refers ta:
|=tiames! a1 4856]

4 Define the name of the worksheet and save it.

ASSOCIATING TABLES WITH HANDLERS

You can describe database tables in an INI control group which begins with DBTable:
followed by the database table name. The database table section associates attributes
specific to the table. Here is an example:

< DBTable:AppIdx >
DBHandler = ODBC

The DBHANDLER option allows a database table to be mapped by name to the
appropriate database handler. No other table-level options are defined at this time.

The system now supports multiple simultaneous ODBC connections via different ODBC
drivers. This will, for instance, let you connect at the same time to multiple:

* Databases on an SQL server

Database Functions

e Databases on an SQL server and Excel spreadsheet databases
* Access databases and Excel spreadsheet databases

* Access databases

* Excel spreadsheet databases

* Databases for which you have an ODBC-compliant driver

The system does not support multiple different DB2 databases using native DB2 drivers.
Support is limited to ODBC-compliant data bases.

ACCESSING DATABASE FIELDS

Usually the information in a database table is logically divided into records. These records
typically contain one or more components called fields. In DAL, record fields will be
associated together via a common DAL variable prefix name. Ability to access individual
data elements is supported by using a dot (“.””) operator.

Here is an example:

Assume a table contains records with three fields:
+ LOANTYPE

* PAYMENT

« DUEDATE

In the script you will designate a prefix name for these variables when using the database
functions. So you could end up with something like:

RECORD.LOANTYPE
RECORD. PAYMENT
RECORD.DUEDATE

Each field from the same record will have the same prefix name (which you can assign)
concatenated with the dot operator.

49

Chapter 2

Function Reference

50

SETTING UP MEMORY TABLES

Memory tables are useful when a program needs to create a temporary database table for
a fast search, sort, or sequential access, such as with DAL scripts with DALDB. For
instance, you create a few database tables from the input extract XML file for easier
mapping and searching if those tasks were taking too long.

To tell the system to open a memory table in a DAL script, include the MEM or
MEMORY parameter as the database type. This is the second parameter of DBOpen
function. Here is an example:

rc=DBOpen (“tablel”, "MEM”, "d:\deflib\appidx.dfd”, "READ & WRITE") ;

Keep in mind that since the tables are in memory, they go away once the program
terminates and the data is lost. DFD files are required to use memory tables since those
tables are not self-describing.

When you use a memory table with either a DAL script that did not specify the MEM
parameter or with some other kind of table, include one of these INI options to tell the
system the table will be using memory:

< DBTable:XXX >
DBHandler = MEM

or

< DBTable:XXX >
DBHandler = MEMORY

To keep the table in memory after the DBClose call, include this INI option:

< DBTable:XXX >
Persistent = Yes

Keep in mind, in this case table memory is released only when the program terminates.
Use carefully to make sure you do not run out of memory.

Date Functions

D ATE Date functions perform specific operations regarding date information. These functions

FUNCTIONS

Function

enter or alter a date in a particular manner. The date functions are summarized in the table
below. Click on the function name to jump to a discussion of that function.

Result

Date
Date2Date
DateAdd

DateCnv

Day
DayName
DaysInMonth
DaysInYear

DiffDate

DiffDays
DiffMonths
DiffYears

LeapYear

Month
MonthName
WeekDay
Year

YearDay

Returns a date string or the current date.
Converts one date format to a new format and returns the result.
Adds days, months, and years to the date and returns the result.

Converts a date specified with a two-digit year into a date containing a four-
digit year value.

Returns the day of the month number from a date and returns the result.
Returns the specified day name.

Returns the number of days in the specified month and year.

Returns the number of days in the specified year.

Calculates the difference between two dates and returns a positive or
negative value based on which date is earlier.

Returns the difference in days between two dates.
Returns the difference in months between two dates.
Returns the difference in years between two dates.

Returns one (1) if the specified year is a leap year and zero (0) if it is not a
leap year.

Returns the month number from a date.
Returns the specified month name.
Returns the week day number from a date.
Returns the year from a date.

Returns the number of the day of the year from a date.

Before we examine each date function individually you must understand the available date

formats. Date formats are usually one of the parameters you enter for a date function. The

date format determines how your date information appears when it is returned to the

section assigned to a target variable.

51

Chapter 2

Function Reference

DATE FORMATS

Date formats consist of these components, placed inside quotation marks, in this order:

(Format type) (Separator) (Year size) (Case) (Locale)

Parameter

Description

Format type

Separator

Year size

Case

Locale

1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,L],K,L, M, N, O, P, Q, or X. You
must include a format type if you want to specify a separator, a year size, or a
locale.

The defaultis 1 (one).
See Date format types on page 53 for a list of the various format types.

For the separator charactet, you can enter a backslash (/), a dash (-), a petiod (.),
a comma (;), or B (or b), which indicates a blank space.

You should only enter separator characters for format types which include
separators (see the table of format types below).

If the format type does not include separators, such as format type C, the system
ignotes any separator character you entet.

The default separator is a backslash (/).

For the year size, you can specify either 2 (09) or 4 (2097) to indicate a two- or
four-digit year. Use four-digit years.

DAL functions use a four-digit year unless the format or the input data specifies
otherwise.

For example, if you enter 1/2, you specify date format 1 and a two-digit yeat, such
as 02/17/09.

(Optional) To return an uppercase date, such as FEBRUARY 17, 2009, include
this character before the Locale: >

To return a lowetcase date, such as february 17, 2009, include this character
before the Locale: <

For a mixed case date, such as February 17, 2009, omit this parameter.

For DAL functions, you can enter an additional component to specify the locale.
This is done with @xxx, where xxx indicates the locale. You must include the @,
or the system ignores the locale code (xxx).

US English (USD) is the default.

See Locales on page 55, for a list of locale codes.

NOTE: Date formats are also used in the variable field properties. If you try to use DAL
to place a formatted date value into a vatiable field with a different date format,

the system will try to convert the date to the proper format. This can result in an

incorrect value and may cause an error message if it cannot be converted.

52

Date format types

Date Functions

Format Date order Description

1 MM/DD/YY Month-Day-Year with leading zeros (02/17/2009)

2 DD/MM/YY Day-Month-Year with leading zeros (17/02/2009)

3 YY/MM/DD Year-Month-Day with leading zeros (2009/02/17)

4 Month D, Yr Month name-Day-Year with no leading zeros
(February 17, 2009)

5 M/D/YY Month-Day-Year with no leading zeros (2/17/2009)

6 D/M/YY Day-Month-Year with no leading zeros (17/2/2009)

7 YY/M/D Year-Month-Day with no leading zeros (2009/2/17)

8 bM/bD/YY Month-Day-Year with spaces instead of leading zeros
(2/17/2009)

9 bD/bM/YY Day-Month-Year with spaces instead of leading zeros
17/ 2/2009)

A YY/bM/bD Year-Month-Day with spaces instead of leading zeros (2009/ 2/
17)

B MMDDYY Month-Day-Year with no separators (02172009)

C DDMMYY Day-Month-Year with no separators (17022009)

D YYMMDD Year-Month-Day with no separators (20090217)

E MonDDYY Month abbreviation-Day-Year with leading zeros (Feb172009)

I DDMonYY Day-Month abbreviation-Year with leading zeros (17Feb2009)

G YYMonDD Year-Month abbteviation-Day with leading zeros (2009Feb17)

H day/YY Day of year (counting consecutively from January 1)-Year (48/
2009)

I YY/day Year-Day of Year (counting consecutively from January 1—
often called the Julian date format) (2009/48)

J D Month, Yr Day-Month name-Year (17 February, 2009)

K Yt, Month D Year-Month name-Day (2009, February 17)

IL* Mon-DD- Month abbreviation, Day with leading zeros, Year

YYYY (Feb 17, 2009)
M * DD-Mon- Day with leading zeros, Month abbreviation, Year
YYYY 17 Feb, 2009.

* This format defaults to a two-digit year, but can be overridden to have four digits.

53

Chapter 2

Function Reference

54

Format

N

Date order Description

YYYYY-Mon- Year, Month abbreviation, Day with leading zeros
DD (2009, Feb 17)

This format defaults to a two-digit year, but can be overridden
to have four digits.

Mon DD, Month abbreviation, Day with leading zeros, Year

YYYY (Feb 17, 2013)

DD Mon, Day with leading zeros, Month abbreviation, Year

YYYY (17 Feb, 2013)

YYYY, Mon Year, Month abbreviation, Day with leading zeros

DD (2013, Feb 17)

(hexadecimal) Eight-character hexadecimal representation of the system date.

Valid dates range from 12/31/1969 to 01/18/2038. Valid dates
may differ depending on the type of machine (PC or host) and
the type of CPU chip.

* This format defaults to a two-digit year, but can be overridden to have four digits.

Month abbreviations consist of the first three characters of the month’s name. Months

with four-character names, such as June, are not abbreviated.

NOTE:

The century cut-off date is used to determine the century for 2-digit years. This
date defaults to 50, but you can change it using this INI option:

< Control >
DateFMT2To4Year =

Anything less than or equal to the cut-off year is considered to fall in the current
century. For instance using the default of 50, 73 would be interpreted as 2073.
Anything greater than the cut-off year is considered to fall in the previous
century. For instance, again using the default of 50, §§ would be interpreted as
7988. This is important when you have to determine the years or days between
two dates.

There is a scenario where the system overrides a 2-digit year output. This only
happens when the input has 4-digits and the output has 2-digits and the resulting
2-digit output does not yield the same results when read in again.

For instance, suppose your input is 01/01/1927 and the cutoff year is 50.
Normally any 2-digit year with a value less than 50 is considered part of the
current centuty. So if the system outputs the data as 01/01/27 and then tries to
read this date back in, you would get 01/01/2025 and not 01/01/1927.

The system changes its normal behavior because it is designed to be able to read
its own output and come up with the result originally provided in the original
input. If, however, you specifically tell the system you only want two digits, you
will get that output, but the system may not be able to read it back in and get the
same results.

Locales

Here is a list of the currently supported localities:

For this country

And this language

Date Functions

Use this code

Argentina
Australia
Austria
Belgium
Belgium
Bolivia
Brazil
Canada
Canada
Chile
Columbia
Denmark
Ecuador
European Union
France
Finland
Finland
Germany
Guatemala
Iceland
Indonesia
Italy

Ireland
Liechtenstein
Luxembourg
Luxembourg

Mexico

Spanish
English
German
Dutch
French
Spanish
Portuguese
English
French
Spanish
Spanish
Danish
Spanish
English
French
Finnish
Swedish
German
Spanish
Icelandic
Indonesian
Italian
English
German
French
German

Spanish

ARS
AUD
ATS
BED
BEF
BOB
BRC
CAN
CAD
CLP
COP
DKK
ECS
EUR
FRF
FIM
FMK
DEM
GTQ
ISK
IDR
ITL
IEP
CHL
FLX
LUF

MXN

55

Chapter 2

Function Reference

56

For this country

And this language

Use this code

The Netherlands Dutch NLG

New Zealand English NZD

Norway Norwegian NOK

Panama Spanish PAB

Paraguay Spanish PYG

Peru Spanish PES

Portugal Portuguese PTE

South Africa English ZAR

South Africa Afrikaans ZAA

Spain Spanish ESP

Sweden Swedish SEK

Switzetland German CHF

Switzetland French CHH

Switzetland Italian CHI

United Kingdom English GBP

United States English USD

Uruguay Spanish UYU

Venezuela Spanish VEB

Here are some examples, using Decenber 18, 2070:

Example Description Result

1 Format type 1 12/18/10

1- Format type 1 with dashes () as the separator characters 12-18-10

1/2 Format type 1 with backslashes (/) as the separator 12/18/10
characters and a two-digit year

14 Format type 1 with a four-digit year (no separator specified 12/18/10
but the format type includes separators so the default
separatot (/) will be used

B4 Format type B with a four-digit year (no separator specified 12182010
and the format type does not include separators, so none
will be included)

Example

4@CAD

Date Functions

Description Result

Format type 4, with French Canadian as the locality. If you décembre 18, 2010
use “4@CAD” in a DAL function, the system returns the

French Canadian translation of date format type 4 (Month

D, YYYY with month spelled out). If you specify a locale, it

must be the last component of the date format

57

Chapter 2

Function Reference

58

DOCUMAKER
SERVER
FUNCTIONS

The Documaker Server functions are summarized in the table below. Click on the

function name to jump to a discussion of that function.

Function Result

? Returns data from an extract file.

AddOvFlwSym Creates an overflow symbol.

AppldxRec Get an archive record based on the APPIDX.DFD file and
Trigger2Archive INI settings.

CountRec Counts the number of records in an extract file transaction that match
a search mask parameter.

DDTSourceName Returns the contents of the Source Name field in the DDT file you
are currently processing. Applicable to batch processing only.

FieldRule Executes a field-level rule from within a DAL sctipt.

GetData Retrieves data from a flat file extract file.

GetOvFlwSym Retrieves the value stored in an overflow symbol.

GVM Retrieves the contents of a GVM variable.

HaveGVM Determines if a GVM variable exists.

IncOvFIwSym Increments an overflow symbol.

KickToWIP Sends a transaction to WIP from the GenData program.

ResetOvEFlwSym Resets the value in an overflow symbol to zero.

RPErrorMsg Wirites an error message into Documaker Server’s error file.

RPLogMsg Wirites a message into Documaker Setrver’s log file

RPWarningMsg Wirites a warning message into Documaker Server’s error file.

StchData Retrieves data from an XML or flat extract file

SetGVM Updates the contents of a GVM variable.

TriggerFormName Returns the form name of the current SetRecipTb entry being
processed.

TriggerlmageName Returns the section (FAP file) name of the current SetRecipTb entry
being processed.

TriggerRecsPerOvFlw Retrieves the number of records per overflow section value which is

stored in the SETRCPTBL.DAT entty being processed.

DOCUMAKER
WORKSTATION
FUNCTIONS

Documaker Workstation Functions

The Documaker Workstation functions are summarized in the table below. Click on the
function name to jump to a discussion of that function.

Function Result

Ask Creates a message box which requires a Yes or No answer from the user.

Beep Creates a beep, which signals an event to the user.

Input Creates a message which asks the user to enter information.

MLEInput Creates a window with a title, prompt message, and a place for a user to enter
multiple lines of text.

MLETranslate Translates the \\# characters in a data string created by the MLEInput
function.

MSG Creates a message with an Ok button.

Refresh Refreshes or repaints the screen.

SetEdit Specifies which section field is the next field that should be used.

Table Locate and return a value from a table.

TotalPages ReFu];ns the number of pages that will print for a given recipient or for all
recipients.

TotalSheets Returns the total number of sheets of paper that will print for a recipient.

59

Chapter 2

Function Reference

DOCUPRESENTM
ENT FUNCTIONS

60

The Docupresentment functions are summarized in the table below. Click the function
name to jump to a discussion of that function.

Function Result
AddAttachVAR Adds a string value as an attachment variable
GetAttachVAR Returns the string value of an attachment variable

RemoveAttachVAR Removes an attachment variable

FUNCTIONS

Field Functions

Field functions retrieve or change data associated with variable fields defined on sections.

The variable field functions are summarized in the table below. Click on the function

name to jump to a discussion of that function.

Function

Result

@

AppendText
AppendTxm

AppendTxmUnique

CompressFlds

ConnectFlds

DelField
FieldFormat
FieldPrompt
FieldType
FieldX
FieldY
JustField

MAX

MIN

NUM
ResetFld
SetFld
SetFont
SetLink
SetProtect

SetRequiredFld

Returns the value contained in a field.

Append text into a multi-line field from an external text file.

Append text into a multi-line field from an external multi-line text area.
Append text into a multi-line field from an external multi-line text area
and rename the fields imported from the external text area so they have
unique names.

Compresses blank space by moving field data.

Repositions and aligns field text along a common hotizontal coordinate
so the field’s data appears concatenated.

Deletes a field from a section.

Returns the format string associated with the field format type.
Returns the text of the prompt for a field.

Returns the field format type assigned to a field.

Returns the X coordinate of a field object.

Returns the Y coordinate of a field object.

Justifies a variable field content by modifying its field coordinates.

Returns the maximum value found in a set of fields that share a naming
method.

Returns the minimum value found in a set of fields that share a naming
method.

Return the numeric value from a field regardless of the field’s format.
Clears a field of data.

Assigns a value to a section field.

Change the font on a field.

Updates a hyperlink setting in a variable field, a graphic, or a text label.
Prevents a specified field from being altered.

Changes the required option of a field to Required or Not Required.

61

Chapter 2

Function Reference

62

Function
Size

SpanField

STR

Result

Returns the integer size of the data area of a section field.

Moves a field horizontally and then resizes it to span the distance
between two other specified fields.

Return the contents of a field as a string without conversion.

Before you examine each field function individually, you should understand the available

field formats and how to locate a specific field.

FIELD FORMATS

You can specify the field format for a specific section field. This restricts the type of data

the field can accept. When you include field formats in DAL statements, place them in

quotation marks. The following table lists the available field formats:

Format Definition Description

a Alphabetic Accepts only alphabetic characters (case sensitive)

A Uppercase Accepts only alphabetic characters and displays uppercase
Alphabetic

B Bar code Accepts characters according to a bar code format string

C Custom™** A custom formatted string

d Date Accepts date information according to a date format string

i International Accepts all alphabetic characters, including international
Alphabetic characters, and is case sensitive

1 International Accepts all alphabetic characters, including international
Uppercase characters, and converts to uppercase
Alphabetic

k International Accepts all characters, including international characters, and is
Alphanumeric case sensitive

K International Accepts all characters, including international characters, and
Uppercase displays uppercase
Alphanumeric

m X or space Accepts an X or a space (used for a check box)

M Multi-line text No format

n Numeric Accepts numbers and uses a numeric format string

t Table only Accepts only information selected from a table

T Time Accepts only time

Field Functions

Format Definition Description

X Alphanumetic Accepts all non-international characters (case sensitive)

X Uppercase Accepts all non-international characters and displays uppercase
Alphanumeric

y Y or N Accepts a Y or N (Yes or No)

** Custom formats are unique formats you create. You specify text to be inserted in an input
string and where the text is to be inserted. For example, assume the input string is “123456789”
and the custom format string is “3,-,2,-”. This format takes the first three characters of the input
string and inserts a hyphen(-), then takes the next two characters of the input string and inserts
a hyphen (=), then appends the remainder of the input string. The result is: 123-45-6789.

Insertion text can be longer than a single character. Look at these examples:

Input Text Format String Output
B105 1,97 B97105
First Street 6, (not 1st) First (not 1st) Street

NUMERIC FORMATS

The following table describes some common components that make up numeric formats.

Component Description

@ »
>

Tells the system to automatically insert a comma in the specified position(s) of
the field at data entry time.

“9” Tells the system to place a number zero through nine (0-9) in that space. If there
is no number to fill a digit preceding the number, the system uses zeros as
placeholders.

«“ Tells the system to accept only a decimal point in the specified position at data

entry time.

63

Chapter 2

Function Reference

64

Component Description

“z” Tells the system to automatically suppress leading zeros in the specified
positions of the field at data entry time.

Before version 10.0, system would suppress zeros and insert blanks. In version
10.0 and in subsequent versions, the system will not print a blank character.

For example, if the field format was ($222229.99 and you entered $255.98, the
system would display ($258.98). In version 10.0 and in subsequent versions, it
shows ($258.98).

“$” Tells the system to automatically insert a dollar sign in the specified position of
the field at data entry time. The dollar sign may be used in a drifting manner or
dollar fill. A single dollar sign in a field specifies that a cutrency system will
always appear in the right most position before the first non-zero number. A
dollar fill is specified by two dollar signs in the field format. A dollar fill specifies
that leading zeros will be suppressed and replaced by the $symbol.

e Works much the same way as a dollar fill, but suppresses zeros with asterisks
instead of dollar signs. An asterisk (*) must follow a dollar sign to a valid field
format.

The following lists provides examples of vatious numeric formats:

~ZZZ7Z772729.99%
+222272729.99%
222722729 .99~
2272722729 .99+
227227279 .99DB
227272779 .99CR
27277272729 .99
$ZZZ22729.99
99999999999
272727272722222227Z

LOCATING FIELDS

The field functions can be used to get or change information on any field within a form
set. By default, these field functions will assume that you are referencing a field located on
the current section. To locate specific fields, elsewhere in the document, requires
additional information. Any field’s location can be precisely determined by the following
hierarchy:

Field -> Section -> Form -> Group

Fields occur on sections. Sections occur on forms. Forms are defined within a form group
(called a Line of Business in the insurance market). The form groups are specified by the
user during form set selection.

Typically you will not have to specify all four components of the hierarchy to locate a
given field for the DAL fields functions. By default, all field functions will search the
current section which is the section that contains the script being executed. If the field you
wish to reference occurs on the current section, then you do not have to specify any other
information.

Field Functions

NOTE: You can also use the asterisk (*) as a wildcard, however, for optimal performance,
avoid using wildcards (*) when searching for field, section, or form names.

To locate a field on a section other than the current one requires additional information.
Each field function accepts optional parameters to identify a specific field, section, form,
and/or group to search. In addition, each of these parameters will suppott an optional
occurrence count to further identify the precise location of the field being requested.

A given field name is usually unique to a section. However, that same field name might
also be used on any number of other sections. Further, there may be any number of
occurrences of a section on a given form. Likewise, there may be additional copies of a
form included in the form set. And finally, any two forms might share one or more
sections in common.

Since it is possible to have any number of a similar named objects within a form set, the
occurrence count, used with the object’s name, is sometimes necessary to identify a
specific object. The following table explains the method that DAL field functions will use
to locate fields:

Field Section Form Group
Name Name Name Name Description

omitted *omitted* *omitted* *omitted* In the absence of any of these
parameters, the function will assume
that you wish to use the current field.

“FLD” *omitted* *omitted* *omitted* Find FLD on the current section.

“FLD” “IMG” *omitted®* *omitted* Find the first occurrence of IMG (a
section) on the cutrent form. Iflocated,
find FLD on that section.

“FLD” *omitted* “FRM” *omitted* Find the first occurrence of FRM (a
form) in the current group. If located,
find the first occutrence of FLD on
that form. FLD may occur on any
section on FRM since that parameter
was omitted.

“FLD” *omitted* *omitted* “GRP” Find the first occurrence of FLLD
within the group, GRP. This field may
be on any section on any form within
that group.

65

Chapter 2

Function Reference

66

Field Section Form Group

Name Name Name Name Description

“FLD” “IMG” “FRM” *omitted* Find the first occurrence of FRM in the
current group. Find the first occurrence
of IMG on that form. Find FLLD on
that section.

“FLD” “IMG” *omitted” “GRP” Find the first occurrence of IMG
within the group, GRP. This section
may occur on any form since that
parameter was not specified. Then find
FLD on that section.

“FLD” “IMG” “FRM” “GRP” Find the first occurrence of FRM

within the group, GRP. Then find the
first occurrence of IMG. Finally, locate
FLD on that section.

Notice that many of these descriptions referred to the first occurrence of a particular
object. This is the default search method unless an occurrence count is specified on the
object name. For instance, if there are three occurrences of the field “MYFIELD” on a
patticular form, you would distinguish them as “MYFIELD\1”, “MYFIELD\2”, and
“MYFIELD\3”. (In practice you do not have to specify “\1” to identify the first
occurrence except on those field functions that match on partial names.)

The backslash is not a valid character in any object name. When found, the field functions
will assume that the number following the backslash identifies the particular occurrence
of that named object you are requesting.

Field, section, and form names may specify occurrence numbers. Group does not require
an occurrence number because form groups are unique within the form set. The following
table demonstrates several uses of occurrence indicatots.

Field Section Form Group
Name Name Name Name Description
“FLD” “IMG\2” *omitted* *omitted* Find the second occurrence of IMG (a

section) on the cutrent form. If located,
find FLD on that section.

“FLD\3 *omitted* “FRM\2” *omitted* Find the second occurrence of FRM (a

” form) in the current group. If located, find
the third occurrence of FLD on that form.
The third occutrence of FLD may occur
on any section on FRM since that
parameter was omitted.

“FLD\8 *omitted* *omitted* “GRP” Find the eighth occurrence of FLD within
” the group, GRP. This field may occur on
any section or form within that group.

“FLD” “IMG\5” *omitted* “GRP” Find the fifth occurrence of IMG (a
section) within the group, GRP. Iflocated,
find FLD on that section.

Field Functions

Finally, it should be noted that if a named object, or occurrence of that object, cannot be
located then the search will end in failure. For instance, if in the last example there are not
5 occurrences of IMG within the named group, then the function will cease looking for
FLD and return without success.

67

Chapter 2

Function Reference

FILE AND PATH

68

FUNCTIONS

Function

The File and Path functions are summarized in the table below. Click on the function
name to jump to a discussion of that function.

Result

FileDrive

FileExt

FileName

FilePath

FullFileName

PathCreate

PathExist

Gets the drive component of a file name.

Gets the extension component of a file name.

Gets the name component of a file name.

Gets the path component of a file name.

Makes a full file name from a string containing the file name components.
Creates the subditectory path you specify if it does not exist.

Checks the path you specify to make sure it exists.

Have Functions

H AVE The Have functions are summarized in the table below. Click on the function name to

FUNCTIONS

Function

jump to a discussion of that function.

Result

GetFormAttrib

HaveField
HaveForm
HaveGroup
Havelmage
HaveLogo
HaveRecip

PutFormAttrib

RecipCopyCount

Returns the content of the named user attribute (metadata) for the form
you specify.

Determines whether a named field exists.

Determines whether a named form exists.

Determines whether a named group exists.

Determines whether a named section exists.

Determines whether a named graphic (LOG) exists.

Determines if a recipient name is defined in the FORM.DAT file.

Saves the named attribute and information to a form within your document
set

Counts the number of recipient copies for specified sections and returns
that number.

69

Chapter 2

Function Reference

INI FUNCTIONS INT functions let your retrieve or set certain INI control group and option values. The
INTI functions you can use are listed below. Click on the function name to jump to a
discussion of that function.

Function Result

GetINIBool Retrieves from memory the Boolean value of an INI control group and
option string.

GetINIString Retrieves from memory an INI control group and option string.

INI Retrieves and INI control group and option string.

LoadINIFile Loads an INI file into cache memory.

PutINIBool Store a Boolean value in an INI control group and option Boolean variable.
PutINIString Store a string value in an INI control group and option string variable.
SaveINIFile Saves the values from an INI control group and option into a file.

NOTE: These functions retrieve values from any INI files loaded in memory. The system
typically loads the FSTUSER.INI file first, which tells it to then load the
FSISYS.INT file. If the same control group and option appear in more than one
location in the files, these functions retrieve the value first defined.

See Using INI Options on page 8 also for a list of the DAL-related INI control groups
and options.

70

Graphics Functions

G RAPHICS The graphics functions are summarized in the table below. These functions affect LOG

FUNCTIONS

Function

files. Click on the function name to jump to a discussion of that function.

Result

Changel.ogo
DellLogo
InlinelLogo

Logo

Replaces an existing graphic on the section with a new graphic (LOG).
Deletes a graphic from a form.
In-lines a graphic (LOG) into the print stream

Places a new graphic (LOG) at a specified position on the section.

71

Chapter 2

Function Reference

MATHEMATICAL

72

FUNCTIONS

Function

Mathematical functions perform certain mathematical operations and return the resulting
value. The mathematical functions you can use are listed below. Click on the function
name to jump to a discussion of that function.

Result

ABS
Avg

Count

INT
MOD

Numeric

POW

SUM

Returns the absolute value of a number.
Averages a group of fields that share a naming method and returns the result.

Counts the number of fields with values, shares a naming method, and returns the
result.

Returns the integer portion of a number.
Returns the remainder from modular arithmetic.

Tests if a string contains a valid numeric value and returns one (1) if it does or zero
(0) if it does not.

Handles calculations such as those needed to figure annuities and interests rates.

Totals all fields that share a naming method and returns the result.

NOTE: DAL has a limit of 14 significant numbers. If you have a number with greater
than 14 significant numbers and apply a DAL mathematical function to it, DAL

will return a value of zero (0) for that number.

MISCELLANEOUS
FUNCTIONS

Miscellaneous Functions

Miscellaneous functions perform a variety of operations and return specific information

or values. The miscellaneous functions are summarized in the table below. Click the

function name to jump to a discussion of that function.

Function Result

Always Used as a placeholder or stub.

Call Suspends one calculation and executes another calculation file.

Chain Calls another calculation language file.

CFind Temporarily suspends one calculation and executes another calculation file.

Exists Determines if a DAL symbolic variable exists.

GetValue Returns a string that contains the contents of the DAL symbolic vatiable
specified by the parameter.

LoadLib Loads a file that contains a library of DAL scripts.

MajorVersion
MinorVersion
Print_It
Retain

UniqueString

Retrieves the major version number of the system being executed.
Retrieves the minor version number of the system being executed.
Prints a string on the console.

Retains DAL variables during transaction processing.

Returns a 45-character globally unique string.

73

Chapter 2

Function Reference

74

NAME
FUNCTIONS

The Name functions are summarized in the table below. Click on the function name to

jump to a discussion of that function.

Function Result

FieldName Returns the name of a field.

FormDesc Retrieves a form description specified in a FORM.DAT file.

FormName Returns a specified form’s name.

GroupName Returns a specified group’s name.

ImageName Returns a specified section’s name.

Pagelmage Returns the name of a section on a given page number within the form set or
form.

RecipientName Returns from the FORM.DAT file the recipient name related to the specified
section, form, or group.

RenamelLogo Renames a graphic (LOG).

RootName Extracts and returns the root name, or the original part of the name, of a
specified string.

SetFormDesc Change the description of a form.

WhatForm Retutns the name of the form that includes the item you seatched for.

WhatGroup Returns the name of the group that includes the item you searched for.

WhatIlmage Returns the name of the section that includes the item you seatched for.

Page Functions

PAGE The Page functions are summarized in the table below. Click the function name to jump

FUNCTIONS

Function

to a discussion of that function.

Result

AddBlankPages
DelBlankPages
Pagelnfo

PaginateForm

Add blank or filler pages to the print stream
Removes blank or filler pages.
Gets information about the page of a form you specify.

Applies section origins and re-paginates the form if necessary.

75

Chapter 2

Function Reference

76

PRINTER AND

RECIPIENT

FUNCTIONS

Print functions perform a variety of operations and return specific information or values.

These functions are summarized in the table below. Click on the function name to jump

to a discussion of that function.

Function

Result

AddComment

AddDocusaveComment

BreakBatch

DeviceName

IsPrintObject

PrinterClass

PrinterGroup

PrinterID

PrinterOutputSize

RecipBatch

RecipName

SetDeviceName

SuppressBanner

Adds a comment to the print stream.

Adds a comment to a Metacode or AFP print stream created
specifically for Docusave.

Tells Documaker Server to break the output print stream file for the
current recipient batch after processing the current recipient,

including post transaction banner processing.

Returns the current output device file name, such as the name of the
current print stream output file.

Lets you know if the section (image), form, or group is printable,
based on the cutrent print recipient and the recipient copy count.

Finds out the type of print stream the system is generating.

Retrieves the group name that is being used to generate the print
stream.

Returns the printer ID assigned during a batch processing run.

Returns the approximate size of the current print output file duting
a batch print operation.

Gets the name of the recipient batch file being processed. Used in
banner or comment record processing.

Gets the name of the recipient batch record for the transaction
currently being printed. Used in banner or comment record
processing.

Sets a new output device file name which will be used the next time
the output device is opened, assuming nothing overrides the name

ptior to that.

Suppresses the printing of a banner page.

Section Functions

S ECTION The section (image) functions are summarized in the table below. Click on the function
name to jump to a discussion of that function.
FUNCTIONS

Function Result
AddImage Adds a specified section to a form as a new page.
Applylnserts Force the insertion of items associated with applying logos, state stamps, and

signatures to a form set
DelForm Deletes a specified form from the current document.
Dellmage Deletes a section from a form.

EmbedLogo Embeds a graphic (LOG) into the NAFILE.DAT file.

ImageRect Retrieves the coordinates of a section.
SetlmagePos Repositions a section on a page.
SetRecip Sets the recipient copy count for a form or group.

77

Chapter 2

Function Reference

STR| NG String functions manipulate data to conform to a certain format. The string functions are

FUNCTIONS

summarized in the table below.

NOTE: If the destination of the data is a field with a specific format, keep in mind the
system will execute any DAL processing before it applies the format specified in
the field’s format mask.

Function Result

BankRound Rounds numbers based on Banker’s rounding. Values below 0.5 go down,
values above 0.5 go up, and values of exactly 0.5 go to the nearest even
number.

CFind Finds and returns the position of a character (or string of characters) within

another string of characters.

Char Converts an integer into a single character.

CharV Converts a single character into an integer value.

CodelnlList Searches for a string in a list of a strings.

Cut Removes characters from a string at a specified position and returns the
result.

DeFormat Removes formatting from a string field and returns the result.

Find Finds the position of a substring within a string and returns the result.

Format Formats a string field and returns the result.

FrenchNumText Converts a number into a string of words and returns the result (in French).

Insert Inserts a substring into a string at a specified position and returns the result.
JCenter Returns a string center justified.

JLeft Returns a string left justified.

JRight Returns a string right justified.

Left Returns a specified number of left most characters.

LEN Returns the current length of the string.

ListInList Searches character string lists and returns the ordinal position (integer) of

the first string in the second parameter that matches any of the strings in the
first parameter.

Lower Converts all characters to lowercase and returns the result.
NL Retrieves a string that contains a new line character sequence.
NumText Converts a number into a string of words and returns the result (in English).

78

Function

PAD
ParseListCount
ParseListltem
Right

Round
STRCompare
SUB

Trim

Upper

String Functions

Result

Adds trailing spaces or characters and returns the result.

Counts the indexed components within the formatted text
Returns the indexed components from the formatted text.
Returns a specified number of right most characters.

Returns a number rounded to the nearest specified decimal point.
Compares two strings, considering case.

Returns a substring from a string at a specified position.
Removes end spaces and returns the result.

Converts all characters to uppercase and returns the result.

79

Chapter 2

Function Reference

T| ME Time functions perform specific operations regarding time information. These functions
enter or calculate a time. The time functions are summarized in the table below.
FUNCTIONS

Function Result

DiffHouts Calculates and returns the absolute time difference in hours between
two times.

DiffMinutes Calculates and returns the absolute time difference in minutes between
two times.

DiffSeconds Calculates and returns the absolute time difference in seconds

between two times.

DiffTime Calculates the difference in time between two times and returns a
signed (positive or negative) value, given in seconds.

Hour Extracts and returns the number of hours from a time.

Minute Extracts and returns the number of minutes from a time.

Second Extracts and returns the number of seconds from a time.

Time Returns a time string or the current time in a specified format.

Time2Time Converts a time from one format to another and returns the result.

TimeAdd Adds time to a time and returns the new time.

TimeZone Returns the system’s time zone setting or makes sure a time zone is
valid.

TimeZone2TimeZone Converts date and time values from one geographic region into date
and time values that are local to another geographic region.

Before examining each individual time function, take a look at the #we formats. Time
formats are usually one of the parameters you enter for a time function. The time format
determines how your time information appears when it is returned to the section.

TIME FORMATS

Times can be entered in several formats. The time formats are explained in this table:

80

Time Functions

Time
Format Segments Description
1 HH:MM:SS Time is based on a 24 hour system. This is frequently referred to as
“military time”. The 24 hour system is the default format.
Example: 14:18:23
2 HH:MM:SS Time is based on a 12 hour system. AM or PM is given.
XM Example: 02:18:23 PM
3 HH:MM Time is based on a 24 hour system. Seconds are not given.
Example: 14:18
4 HH:MM XM Time is based on a 12 hour system. Seconds are not given. AM or

PM is given.
Example: 02:18 PM

The separators you can use include:
"'=99.99.99 "' =99,99,99 '-'=99-99-99

>

'b' =99 99 99 "' =99:99:99 (default)

USING THE TIME ZONE FUNCTIONS

The TimeZone and TimeZone2TimeZone functions are not available on mainframe
platforms like z/OS. They ate only available on Windows and UNIX platforms.

These functions use the International Components for Unicode (ICU) library. The ICU
system time zones are derived from the tz database (also known as the Olson database)
available at...

ftp:/ /elsie.nci.nih.gov/pub
This is the data used across much of the industry, including by UNIX systems.
The ICU time zone functionality supports

* Standard time zones, such as Eastern Standard Time (EST), Central Standard Time
(CST), and so on.

* Time zone IDs defined in the standard Olson data used by UNIX systems. These
time zone IDs use the following format:

continent/city or ocean/city

For example, _Awmerica/Los_Angeles is an ID for Pacific Standard Time.

* Custom time zones based on Greenwich Mean Time (GMT), in this format:

“GMT[+|-1hh[[:]mm]")

81

ftp://elsie.nci.nih.gov/pub

Chapter 2

Function Reference

ICU TIME ZONES

Here is a list of the various International Components for Unicode (ICU) time zones:

Time Zones

ACT AET Africa/Abidjan Africa/Accra
Africa/Addis_Ababa Africa/Algiers Africa/Asmera Africa/Bamako
Africa/Bangui Africa/Banjul Africa/Bissau Africa/Blantyre
Africa/Brazzaville Africa/Bujumbura Africa/Cairo Africa/Casablanca
Africa/Ceuta Africa/Conakty Africa/Dakar Africa/Dar_es_Salaam
Africa/Djibout Africa/Douala Africa/El_Aaiun Africa/Freetown
Africa/Gaborone Africa/Harare Africa/Johannesburg Africa/Kampala
Africa/Khartoum Africa/Kigali Africa/Kinshasa Africa/Lagos
Africa/Libreville Africa/Lome Africa/Tuanda Africa/Tubumbashi
Africa/Lusaka Africa/Malabo Africa/Maputo Africa/Maseru
Africa/Mbabane Africa/Mogadishu Africa/Monrovia Africa/Nairobi
Africa/Ndjamena Africa/Niamey Africa/Nouakchott Africa/Ouagadougou
Africa/Porto-Novo Africa/Sao_Tome Africa/Timbuktu Africa/Tripoli
Africa/Tunis Africa/Windhoek AGT America/Adak
America/Anchorage America/Anguilla America/Antigua America/Araguaina
America/Argentina/ America/Argentina/ America/Argentina/ America/Argentina/Cordoba
Buenos_Aires Catamarca ComodRivadavia
America/Argentina/Jujuy America/Argentina/La_Rioja | America/Argentina/Mendoza | America/Argentina/
Rio_Gallegos
America/Argentina/San_Juan | America/Argentina/Tucuman | America/Argentina/Ushuaia America/Aruba
America/Asuncion America/Atikokan America/Atka America/Bahia
America/Barbados America/Belem America/Belize America/Blanc-Sablon
America/Boa_Vista Ametica/Bogota America/Boise America/Buenos_Aires
America/Cambridge_Bay America/Campo_Grande America/Cancun America/Caracas
America/Catamarca America/Cayenne America/Cayman America/Chicago
America/Chihuahua America/Coral_Harbour America/Cordoba America/Costa_Rica

82

Time Functions

Time Zones

America/Cuiaba America/Curacao America/Danmarkshavn America/Dawson
America/Dawson_Creek America/Denver America/Detroit America/Dominica
America/Edmonton Ametica/Eirunepe America/El_Salvador America/Ensenada
America/Fort_Wayne America/Fortaleza America/Glace_Bay America/Godthab
Ametica/Goose_Bay America/Grand_Turk America/Grenada Ametica/Guadeloupe
America/Guatemala America/Guayaquil America/Guyana America/Halifax
America/Havana America/Hermosillo America/Indiana/ America/Indiana/Knox
Indianapolis

America/Indiana/Marengo

America/Indiana/Petersburg

America/Indiana/Vevay

America/Indiana/Vincennes

America/Indianapolis America/Inuvik Ametica/Iqaluit Ametica/Jamaica
America/Jujuy America/Juneau America/Kentucky/Louisville | America/Kentucky/
Monticello
America/Knox_IN America/La_Paz America/Lima America/Los_Angeles
America/Louisville America/Maceio America/Managua America/Manaus
America/Martinique America/Mazatlan America/Mendoza America/Menominee
America/Merida America/Mexico_City America/Miquelon America/Moncton
America/Montertey America/Montevideo America/Montreal America/Montserrat
America/Nassau America/New_York America/Nipigon America/Nome
America/Noronha America/North_Dakota/ America/North_Dakota/ America/Panama
Center New_Salem
America/Pangnirtung America/Paramaribo America/Phoenix America/Port-au-Prince

Ametica/Port_of_Spain

America/Porto_Acre

America/Porto_Velho

America/Puerto_Rico

America/Rainy_River America/Rankin_Inlet America/Recife America/Regina
America/Rio_Branco America/Rosario Ametica/Santiago Ametica/Santo_Domingo
America/Sao_Paulo America/Scoresbysund America/Shiprock America/St_Johns

America/St_Kitts

America/St_Lucia

America/St_Thomas

America/St_Vincent

America/Swift_Current America/Tegucigalpa America/Thule America/Thunder_Bay
America/Tijuana America/Toronto America/Tortola America/Vancouver
America/Vitgin America/Whitehorse America/Winnipeg America/Yakutat

83

Chapter 2

Function Reference

Time Zones

America/Yellowknife Antarctica/Casey Antarctica/Davis Antarctica/ DumontDUrville
Antarctica/Mawson Antarctica/McMurdo Antarctica/Palmer Antarctica/Rothera
Antarctica/South_Pole Antarctica/Syowa Antarctica/Vostok Arctic/Longyearbyen
ART Asia/Aden Asia/Almaty Asia/Amman
Asia/Anadyr Asia/Aqtau Asia/Aqtobe Asia/Ashgabat
Asia/Ashkhabad Asia/Baghdad Asia/Bahrain Asia/Baku
Asia/Bangkok Asia/Beirut Asia/Bishkek Asia/Brunei
Asia/Calcutta Asia/Choibalsan Asia/Chongqing Asia/Chungking
Asia/Colombo Asia/Dacca Asia/Damascus Asia/Dhaka
Asia/Dili Asia/Dubai Asia/Dushanbe Asia/Gaza
Asia/Harbin Asia/Hong_Kong Asia/Hovd Asia/Irkutsk
Asia/Istanbul Asia/Jakarta Asia/Jayapura Asia/Jerusalem
Asia/Kabul Asia/Kamchatka Asia/Karachi Asia/Kashgar
Asia/Katmandu Asia/Krasnoyarsk Asia/Kuala_Lumpur Asia/Kuching
Asia/Kuwait Asia/Macao Asia/Macau Asia/Magadan
Asia/Makassar Asia/Manila Asia/Muscat Asia/Nicosia
Asia/Novosibirsk Asia/Omsk Asia/Oral Asia/Phnom_Penh
Asia/Pontianak Asia/Pyongyang Asia/Qatar Asia/Qyzylorda
Asia/Rangoon Asia/Riyadh Asia/Riyadh87 Asia/Riyadh88
Asia/Riyadh89 Asia/Saigon Asia/Sakhalin Asia/Samarkand
Asia/Seoul Asia/Shanghai Asia/Singapore Asia/Taipei
Asia/Tashkent Asia/Thilisi Asia/Tehran Asia/Tel_Aviv
Asia/Thimbu Asia/Thimphu Asia/Tokyo Asia/Ujung_Pandang
Asia/Ulaanbaatar Asia/Ulan_Bator Asia/Urumgi Asia/Vientiane
Asia/Vladivostok Asia/Yakutsk Asia/Yekaterinburg Asia/Yerevan

AST Atlantic/Azores Atlantic/Bermuda Atlantic/Canary
Atlantic/Cape_Verde Atlantic/Faeroe Atlantic/Jan_Mayen Atlantic/Madeira
Atlantic/Reykjavik Atlantic/South_Georgia Atlantic/St_Helena Atlantic/Stanley

84

Time Functions

Time Zones

Australia/ACT Australia/Adelaide Australia/Brisbane Australia/Broken_Hill
Australia/Canberra Australia/Currie Australia/Darwin Australia/Hobart
Australia/LHI Australia/Lindeman Australia/Lord_Howe Australia/Melbourne
Australia/North Australia/NSW Australia/Perth Australia/Queensland
Australia/South Australia/Sydney Australia/Tasmania Australia/Victoria
Australia/West Australia/Yancowinna BET Brazil/Acre
Brazil/DeNoronha Brazil/East Brazil/West BST

Canada/Atlantic Canada/Central Canada/East-Saskatchewan Canada/Eastern
Canada/Mountain Canada/Newfoundland Canada/Pacific Canada/Saskatchewan
Canada/Yukon CAT CET Chile/Continental
Chile/EasterIsland CNT CST CST6CDT

CIT Cuba EAT ECT

EET Egypt Eire EST

ESTS5EDT Etc/GMT Etc/GMT+0 Etc/GMT+1
Etc/GMT+10 Etc/GMT+11 Etc/GMT+12 Etc/GMT+2
Etc/GMT+3 Etc/GMT+4 Etc/GMT+5 Etc/GMT+6
Etc/GMT+7 Etc/GMT+8 Etc/GMT+9 Etc/GMT-0
Etc/GMT-1 Etc/GMT-10 Etc/GMT-11 Etc/GMT-12
Etc/GMT-13 Etc/GMT-14 Etc/GMT-2 Etc/GMT-3
Etc/GMT-4 Etc/GMT-5 Etc/GMT-6 Etc/GMT-7
Etc/GMT-8 Etc/GMT-9 Etc/GMTO0 Etc/Greenwich
Etc/UCT Etc/Universal Etc/UTC Etc/Zulu
Europe/Amsterdam Europe/Andotta Europe/Athens Europe/Belfast
Europe/Belgrade Europe/Betlin Europe/Bratislava Europe/Brussels
Europe/Bucharest Europe/Budapest Europe/Chisinau Europe/Copenhagen
Europe/Dublin Europe/Gibraltar Europe/Guetnsey Europe/Helsinki
Europe/Isle_of_Man Europe/Istanbul Europe/Jetsey Eutrope/Kaliningrad
Europe/Kiev Europe/Lisbon Europe/Ljubljana Europe/London

85

Chapter 2

Function Reference

Time Zones

Europe/Luxembourg Eutrope/Madtid Europe/Malta Europe/Matichamn
Europe/Minsk Europe/Monaco Europe/Moscow Europe/Nicosia
Eutrope/Oslo Eutrope/Patis Europe/Prague Europe/Riga
Europe/Rome Eutrope/Samara Europe/San_Matrino Europe/Satajevo
Eutrope/Simferopol Eutrope/Skopje Europe/Sofia Europe/Stockholm
Europe/Tallinn Eutrope/Tirane Europe/Tiraspol Europe/Uzhgorod
Eutrope/Vaduz Eutope/Vatican Eutrope/Vienna Europe/Vilnius
Europe/Volgograd Eutrope/Warsaw Europe/Zagteb Eutope/Zaporozhye
Eutrope/Zutich Factoty GB GB-Eire

GMT GMT+0 GMT-0 GMTO

Greenwich Hongkong HST Iceland

IET Indian/Antananarivo Indian/Chagos Indian/Christmas
Indian/Cocos Indian/Comoro Indian/Kerguelen Indian/Mahe
Indian/Maldives Indian/Mauritius Indian/Mayotte Indian/Reunion
Iran Israel IST Jamaica

Japan JST Kwajalein Libya

MET Mexico/BajaNotte Mexico/BajaSur Mexico/General
Mideast/Riyadh87 Mideast/Riyadh88 Mideast/Riyadh89 MIT

MST MST7MDT Navajo NET

NST NZ NZ-CHAT Pacific/Apia
Pacific/Auckland Pacific/Chatham Pacific/Easter Pacific/Efate
Pacific/Enderbury Pacific/Fakaofo Pacific/Fiji Pacific/Funafuti
Pacific/Galapagos Pacific/ Gambier Pacific/ Guadalcanal Pacific/ Guam
Pacific/Honolulu Pacific/Johnston Pacific/Kiritimati Pacific/Kosrae
Pacific/Kwajalein Pacific/Majuro Pacific/Marquesas Pacific/Midway
Pacific/Nauru Pacific/Niue Pacific/Norfolk Pacific/Noumea
Pacific/Pago_Pago Pacific/Palau Pacific/Pitcairn Pacific/Ponape
Pacific/Port_Moresby Pacific/Rarotonga Pacific/Saipan Pacific/Samoa

86

Time Functions

Time Zones

Pacific/Tahiti Pacific/Tarawa Pacific/Tongatapu Pacific/Truk
Pacific/Wake Pacific/Wallis Pacific/Yap PLT

PNT Poland Portugal PRC

PRT PST PST8PDT ROC

ROK Singapore SST Turkey

ucCT Universal US/Alaska US/Aleutian
US/Arizona US/Central US/East-Indiana US/Eastern
US/Hawaii US/Indiana-Starke US/Michigan US/Mountain
US/Pacific US/Pacific-New US/Samoa UTC

VST W-SU WET Zulu

When converting times

When converting times from one locale to another, keep in mind that the two locales must
represent time in a similar manner. If, for instance, you have a DAL script that requests a
US (the default) time value which includes AM or PM indicators, you must make sure the
target Time field can interpret a US time. Otherwise, the AM and PM are interpreted as
invalid characters for the specified locale.

In these situations, you either have to change the Time format parameter to include the
locale your target field wants or you have to specify a format that does not include the
AM/PM indicator and then allow the field editing to fill that in for you.

For instance, if the soutce locale was US and the target locale was ZAA (South Africa/
Afrikaans), you either need...

Return (TIME(“2@zaA”, 13, 30, 5))
or
Return (TIME(1, 13, 30, 5))

This is also applicable when you are handling dates. For example, suppose you chose to
make a Date field use Afrikaans with a format of Month DD, YYYY — where the month
name is expected. If you try to type (or return from a script) Ocober as the month name,
you would get an error because in Afrikaans that month is spelled Okzober.

For any field that has a locale-specific format, be sure to enter any characters or symbols
required by the target language.

87

Chapter 2

Function Reference

Wl P Work-in-process (WIP) functions perform a variety of WIP-related functions and return
specific information or values, such as a value from the current WIP record. The WIP
F UNCTIONS functions are summarized in the table below. Click on the function name to jump to a
discussion of that function.

Function Result

AddForm Adds a specified form to the current document.

AddForm_Propagate Add a new form to a document and propagates global data onto that
form.

AddImage_Propagate Add a new section to a document and propagates global data onto
that section.

AFELog Writes a message to the AFELOG file.

AssignWIP Assigns work-in-process and associated data to a different user ID.
Complete Completes the work-in-process.

CopyForm Copies a form and its field contents (data) into a new form.
DelWIP Deletes the work-in-process and its associated data.

DupForm Duplicates a form.

MailWIP Sends the current document to a specified email address.

Print Prints the current form set.

RouteWIP Routes work in process to names specified via routing slip.
SaveWIP Saves the WIP record being processing.

SetWIPFIld Sets WIP fields from DAL to the record in memory.

SlipAppend Appends a new email address to a slip in route.

SlipInsert Inserts a new email address into a slip in route.

UserID Returns the user ID used to log into the system.

Userlvl Retutns the current uset's rights level.

WIPEXxit Exits entry immediately and saves or discards work in WIP.
WIPFId Returns the value of the identified WIP field.

WIPKeyl Returns the value of the Key1 field from the current WIP record.
WIPKey2 Returns the value of the Key2 field from the current WIP record.
WIPKeylD Returns the value of the KeyID field from the current WIP record.

88

XML
FUNCTIONS

XML Functions

Use DAL XML API functions to let Documaker applications access specified XML
documents and retrieve XML data via a DAL script. These functions are registered in

keywords, called built-in functions. An XML built-in function performs an operation on
a set of parameters and returns a DAL variable in one of the three types: list, integer, or

string.

The XML functions are summarized in the table below. Click the function name to jump

to a discussion of that function.

Function Result

DestroyList Destroys the XML tree created by the LoadXMILList function.

GetListElem Returns a text string which contains the first element that matches the
search criteria

IsXMIEtror Checks the list for the etror status.

LoadXMLList Loads an XML document and extracts an XML tree.

XMLAttrtName Returns the name of the current attribute pointed to by the
XMLFirstAttrib and XMILNextAttrib functions.

XMLAttrValue Returns the value of the attribute pointed to by the XMLFirstAttrib and
XMILNextAttrib functions.

XMLFind Locates the XML path from the extracted XML tree and returns a list of
matched elements to alist type DAL variable or a matched text to a string
type DAL variable.

XMILFitst Sets the current pointer to the first element in the specified list.

XMILFirstAttrib Sets the attribute pointer to the first attribute for the current element in
the element list or to the first attribute element in the attribute list.

XMI FirstText Sets the current text to be the first text element in the XML search list
and then retrieve that text.

XMILGetCurName Returns the element name from the current element.

XMLGetCurText Returns the text from the current element.

XMILNext Sets the current pointer to the next node or element in the specified list.

XMILNextAttrib Sets the cutrent attribute pointer to the next attribute for the current
element in the list or to the next attribute element in the attribute list.

XMILNextText Retrieves the next text element in the XML search list.

XMILNthAttrName Returns the nth attribute name indicated by the index number.

XMINthAttrValue Returns the nth attribute value indicated by the index number.

XMINthText Returns the nth text value, as indicated by the index number.

89

Chapter 2

Function Reference

90

Scenario 1

Scenario 2

UsING DAL XML FUNCTIONS

There are two scenarios in which you would use DAL XML functions:

A Documaker program, such as GenData, loads an XML document and extracts the
XML tree at the transaction level using the XMLFileExtract rule. This rule creates a list
type DAL variable with a default name of %extract and pushes it onto the DAL stack.

Then you can call other XML functions in a DAL script to access the XML tree and
extract XML data.

Here are examples of the form set and section rules you would add and a DAL script that
would call the XML functions.

Add this in the AFGJOB_JDT file:
;XMLFileExtract;2;File=.\deflib\test.xml

The rule loads the XML file and creates a list type DAL variable to pass the XML
tree to the XML API function.

* Add this in your DDT file:

;0;0; DALXMLSCRIPT;0;9;DALXMLSCRIPT;0;9;;DAL;Call ("TEST.DAL") ;N;N;N;
N;4792;19444;11010;

TEST.DAL is the name of the DAL script file.

* Here is an example of the DAL script:

%$1listH=XMLFind (%extract, “Forms”, “Form”);
#rc=XMLFirst ($1istH) ;

if #rc=0

return(“Failed to XMLFirst”);

end

aStr=XMLGetCurText ($1istH) ;

return(aStr) ;

%listH denotes a list type DAL variable. #r¢ denotes an integer type DAL variable.
aStr denotes a string type DAL variable.

You can also load the XML document and create the XML tree at a specific section field
by calling the LoadXMIList rule from a DAL script. You must set the calling procedure
in the DDT file as shown in Scenario 1.

Here is an example of DAL script file:

$xListH=LoadXMLList ("test.xml") ;
%$1istH=XMLFind (%$xListH, "Forms", "Form/@*") ;
aStr=XMLNthAttrValue(%$1listH, 2);
#rc=DestroyList ($xListH) ;

return(aStr) ;

Function calls

Operators or signs

XML PATH LOCATOR

XML Functions

The XMLFind function is called the DAL XML path locator or DAL XPath. It is a limited
version of the XML path and does not cover all aspects defined in the W3C literature.

Refer to W3C recommendations for the description of XPointer and XPath syntax. You

can use the XPATHW?32 testing tool to verify the applicable specifications of Oracle

Insurance’s DAL XPath. Run the XPATHW32 program to get the syntax.

Below is a summary of XML path specifications for DAL XPath:

Axes These axes apply:

ancestor ancestor-ot-self
child descendant
following following-sibling
preceding preceding-sibling

You can use these function calls:

last() position()
text() name(node-set)

concat(string, string, string...)

You can use these operators or signs:

= = < > + -

Expressions

attribute
descendant-or-self

parent

self

node()

string(object)

/ // * i [

You can use abbreviated syntax, as this table shows:

For... Use this abbreviation:
child:* e

child::para para
child::chapter/child::para chapter/para
child::para[position()=1] para([1]
/child::chapter/child::para[position()=last()] /chapter/para[last()]
child::text() text()

child::node() node()
child::paralattribute:type] para[@type]

— i

child::paraattribute:type="warning"|

pata[@type="warning"|

91

Chapter 2

Function Reference

92

For...

(i

child::patalattribute:type="warning"|[position()=2]
child::chapter|[child::title]
child::chaptet[child::title="Introduction"]
child::doc/descendant-or-self::node() /child::para
attribute:*

attribute::type

/descendant-ot-self::node() / child::para

selfi:node()

self::node/descendant-ot-selfinode() /child:para
patent:node()

patent:node()/child::chapter

patent:node()/atttibute::type

Use this abbreviation:

—_n

para|@type="warning"][2]
chapter|title]
chapter[title="Introduction"]
doc//pata

@*

@type

//para

./ /para

../ chapter

../ @type

The XMLFind function locates the XML path from the extract XML tree and returns a
valid DAL variable result. It requires three input parameters, a list type DAL variable and

two string type variables. They in turn pass in an XML tree, a node name from which the

search starts, and XML path location for searching.

If you omit the second parameter, the search starts from the root. The return DAL

variable Resu/t can be either list type or string type, depending on XML path.

Element list

Attribute list

Text list

Text string

XML Functions

Here are some examples that result in different return values:

%$elemListH=XMLFind (%extract, , “descendant::Form[@ID=Agent]”);
In this example, DAL Xpath selects the For element descendants that have an attribute
with name ID and value Agent from the extract XML tree (root), and returns an element
list.

$attrListH=XMLFind (%extract, “Forms”, “Form/@type='warning’”);

In this example, DAL Xpath returns an attribute list that collects type attributes with value
warning for Form children of current context node Forms.

$TextListH= XMLFind(%extract, “Forms”, “Form/text()");

In this example, DAL Xpath returns a text list that contains all text nodes of For children
of current context node Forms.

aStr=XMLFind (%extract, Forms, “string(Form[2])");
It returns the text of second child Forz of the current context node Fors.

aStr=XMLFind (%extract, “Forms”, “concat(“Get form 2 text: ”,
“Form([2])");

It returns the concatenation of the text string Ge# form 2 text: , and the text of the second
child Forn of cutrent context node Forms.

aStr=XMLFind (%extract, “Forms”, “name()”);

It returns the name of current context node.

93

Chapter 2

Function Reference

94

LOCATING
OBJECTS

Many of the graphics, section (image), page, have, WIP, and name functions support
parameters that let you locate an object anywhere within the form set. The object
hierarchy supported is explained below. This explanation also agrees with the field
parameters discussed in Locating Fields on page 64.

item -> Section -> Form -> Group

A number of different object types ate supported by sections. Three objects that can be
located on a section are fields, graphics, and recipients. For information about fields, see
Locating Fields on page 64. Fields, graphics, and recipients are all objects that belong or
are defined on a section.

Sections occur on forms. Forms are defined within a form group (commonly referred to
as a Line Of Business). The form groups are specified by the user during form set selection.

To locate a specific object within the document often requires one or more parameter
names. For instance, to locate a specific field, in addition to the field’s name, might require
the section name, form name, and/or group name. Similatly, a function used to locate a
specific form, in addition to the form’s name, lets you specify the group to which it
belongs.

In addition to an object’s name, most parameters will support an optional occurrence
count to further identify the precise location of the object being requested.

Typically children of a section are unique to that section. However, that same object name
might also be used on any number of other sections. Further, there may be any number
of occurrences of a section on a given form. Likewise, there may be additional copies of
a form included in the form set. And finally, any two forms might share one or more
sections in common.

Since you can have any number of a similar named objects within a form set, the
occurrence count, used with the object’s name, is sometimes necessary to identify a
specific object. The following table explains many of the variations that are valid when
locating form set objects.

Item Section Form Group

Name Name Name Name Description

“ITEM *omitted* *omitted* *omitted* Find the object on the current section.

“ITEM “IMG” *omitted* *omitted* Find the first occurrence of IMG (a

” section) on the cutrent form. If located,
find ITEM on that section.

“ITEM *omitted* “FRM” *omitted* Find the first occurtence of FRM (a form)

” in the current group. If located, find the
first occurrence of ITEM on that form.
The item may occur on any section on
FRM since that parameter was omitted.

“ITEM *omitted* *omitted* “GRP” Find the first occurrence of ITEM within

i)

the group, GRP. This item may be on any
section on any form within that group.

Item
Name

“ITEM

“ITEM

Section
Name

“IMG”

“IMG”

“IMG”

Locating Sections

“IMG”

“IMG”

“IMG”

“IMG”

Locating Forms

Locating Groups

Form
Name

“FRM?”

*omitted”

“FRM?”

omitted

“BRM”

omitted

“BRM”

“FRM?”

“FRM?”

Group
Name

omitted

“GRP”

“GRP”

omitted

omitted

“GRP”

“GRP”

omitted

“GRP”

“GRP”

Locating Objects

Description

Find the first occurrence of FRM in the
current group. Find the first occurrence
of IMG on that form. Find ITEM on that
section.

Find the first occurrence of IMG within
the group, GRP. This section may occur
on any form since that parameter was not
specified. Then find ITEM on that

section.
Find the first occurrence of FRM within
the group, GRP. Then find the first

occurrence of IMG. Finally, find ITEM
on that section.

Find the occurrence of the section on the
current form.

Find the occurrence of the section on the
form named. The form is assumed to be

in the current group.

Locate the section within the named
group.

Locate the form in the specified group.
Then locate the section on that form.

Locate the form within the current group.

Locate the form in the specified group.

Locate the specified group.

In the previous table, ITEM refers to the name of an object type expected by the function.

In other words, if the function is used to reference fields, you cannot locate the object if

you give it the name of any other object type.

Many of these descriptions referred to the first occurrence of a particular object. This is the

default search method unless an occurrence count is specified on the object name. For

instance, if there are three occurrences of a given object on a particular form, you would
distinguish them as ITEM\1, ITEM\2, and ITEM\3. (In practice, you do not have to
specify \7 to identify the first occutrence except with those functions that match on

partial names.)

95

Chapter 2

Function Reference

A backslash (\) is not a valid character in any object name. When found, the object
functions assume that the number following the backslash identifies the particular
occurrence of that named object you are requesting. Group names do not require an
occurrence number because form groups are unique within the form set. The following
table demonstrates several uses of occurrence indicators.

Item Section Form Group
Name Name Name Name Description
“ITEM” “IMG\2” *omitted* *omitted* Find the second occutrence of IMG (a

section) on the current form. If
located, find ITEM on that section.

“ITEM\3 *omitted* “FRM\2” *omitted* Find the second occurtence of FRM (a

” form) in the current group. If located,
find the thitd occurrence of ITEM on
that form.

“ITEM” “IMG\5” *omitted* “GRP” Find the fifth occurrence of IMG (a
section) within the group, GRP. If
located, find ITEM on that section.

Finally, if a named object, or occurrence of that object, cannot be located the search ends
in failure. For instance, if in the last example there are not five occurrences of IMG within
the named group, then the function stops looking for the item and returns without
success.

96

Where DAL Functions are Used

VVH ERE D A L You use DAL functions to enhance the collection of data during either the form entry
process (Documaker Workstation) or in the forms processing cycle (Documaker Server).
FUNCTIONS ARE

USED during the form processing cycle. The following table shows you where the various

All DAL functions can be used during the form entry process and most can be used

functions affect processing.

Affects form entry Affects form processing
Function/Procedure (Documaker Workstation) (Documaker Server)
@ Yes Yes
? No Yes
ABS Yes Yes
AddAttachVAR No Yes
AddBlankPages Yes Yes
AddComment No Yes
AddDocusaveComment ~ No Yes
AddForm Yes No
AddForm_Propagate Yes Yes
AddImage Yes No
AddImage_Propagate Yes Yes
AddOvFlwSym No Yes
AFELog Yes No
AppendText Yes Yes
AppendTxm Yes Yes
AppendTxmUnique Yes Yes
AppldxRec Yes Yes
Applylnserts Yes Yes
Ask Yes No
AssignWIP Yes No
Avg Yes Yes
BankRound Yes Yes

* While these XML-related functions affect both Documaker Workstation and Documaker
Server, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such variable would exist automatically within Documaker Workstation.

97

Chapter 2

Function Reference

Affects form entry Affects form processing
Function/Procedure (Documaker Workstation) (Documaker Server)
Beep Yes No
BitAnd Yes Yes
BitClear Yes Yes
BitNot Yes Yes
BitOr Yes Yes
BitRotate Yes Yes
BitSet Yes Yes
BitShift Yes Yes
BitTest Yes Yes
BitXor Yes Yes
BreakBatch No Yes
CFind Yes Yes
ChangelLogo Yes Yes
CodelnList Yes Yes
Complete Yes No
CompressFlds Yes Yes
ConnectFlds Yes Yes
CopyForm Yes Yes
Count Yes Yes
CountRec No Yes
Cut Yes Yes
DashCode Yes Yes
Date Yes Yes
Date2Date Yes Yes
DateAdd Yes Yes

* While these XMI-related functions affect both Documaker Workstation and Documaker
Setrver, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such vatiable would exist automatically within Documaker Workstation.

98

Function/Procedure

DateCnv

Day

DayName
DaysInMonth
DaysInYear
DBAdd
DBClose
DBDelete
DBFind
DBFirstRec
DBNextRec
DBOpen
DBPrepVars
DBUnloadDFD
DBUpdate
DDTSourceName
Dec2Hex
DeFormat
DelBlankPages
DelField
DelForm
Dellmage
DellLogo
DelWIP

DestroyList *

* While these XML-related functions affect both Documaker Workstation and Documaker

Affects form entry
(Documaker Workstation)

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Where DAL Functions are Used

Affects form processing

(Documaker Server)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes
No

Yes

Setrver, Documaker Server can have a default variable that refers to the transaction loaded in the

XML extract. No such vatiable would exist automatically within Documaker Workstation.

99

Chapter 2

Function Reference

Affects form entry Affects form processing
Function/Procedure (Documaker Workstation) (Documaker Server)
DeviceName Yes Yes
DiffDate Yes Yes
DiffDays Yes Yes
DiffHours Yes Yes
DiffMinutes Yes Yes
DiffMonths Yes Yes
DiffSeconds Yes Yes
DiffTime Yes Yes
DiftYears Yes Yes
DupForm Yes No
EmbedLogo Yes Yes
Exists No Yes
FieldFormat Yes No
FieldName Yes Yes
FieldPrompt Yes Yes
FieldRule No Yes
FieldType Yes Yes
FieldX Yes Yes
FieldY Yes Yes
FileDrive Yes Yes
FileExt Yes Yes
FileName Yes Yes
FilePath Yes Yes
Find Yes Yes
Format Yes Yes

* While these XMI-related functions affect both Documaker Workstation and Documaker
Setrver, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such vatiable would exist automatically within Documaker Workstation.

100

Where DAL Functions are Used

Affects form entry Affects form processing
Function/Procedure (Documaker Workstation) (Documaker Server)
FormDesc Yes Yes
FormName Yes No
FrenchNumText Yes No
FullFileName Yes Yes
GetAttachVAR No Yes
GetData No Yes
GetFormAttrib Yes Yes
GetINIBool Yes Yes
GetINIString Yes Yes
GetListElem * Yes Yes
GetOvElwSym No Yes
GetValue No Yes
GroupName Yes Yes
GVM Yes Yes
HaveField Yes No
HaveForm Yes No
HaveGroup Yes No
HaveGVM Yes Yes
Havelmage Yes No
HaveLogo Yes Yes
HaveRecip No Yes
Hex2Dec Yes Yes
Hour Yes Yes
ImageName Yes Yes
ImageRect Yes Yes

* While these XML-related functions affect both Documaker Workstation and Documaker
Setrver, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such vatiable would exist automatically within Documaker Workstation.

101

Chapter 2

Function Reference

Affects form entry Affects form processing
Function/Procedure (Documaker Workstation) (Documaker Server)
IncOvEIwSym No Yes
InlineL.ogo Yes Yes
Input Yes No
Insert Yes Yes
INT Yes Yes
IsPrintObject Yes Yes
IsXMLEtror * Yes Yes
JCenter Yes Yes
JLeft Yes Yes
JRight Yes Yes
JustField Yes Yes
KickToWIP Yes Yes
LeapYear Yes Yes
Left Yes Yes
LEN Yes Yes
ListInList Yes Yes
LoadINIFile Yes Yes
LoadLib Yes Yes
LoadXMLList * Yes Yes
Logo Yes Yes
Lower Yes Yes
Mail WIP Yes No
MajorVersion Yes Yes
MAX Yes Yes
MIN Yes Yes

* While these XMI-related functions affect both Documaker Workstation and Documaker
Setrver, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such vatiable would exist automatically within Documaker Workstation.

102

Function/Procedure

MinorVetsion
Minute
MILEInput
MILETranslate
MOD

Month
MonthName
MSG

NL

NUM
Numeric
NumText
PAD
Pagelmage
Pagelnfo
PaginateForm
ParseListCount
ParseListltem
PathCreate
PathExist
POW

Print

Print_It
PrinterClass

PrinterGroup

* While these XML-related functions affect both Documaker Workstation and Documaker

Affects form entry
(Documaker Workstation)

Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Where DAL Functions are Used

Affects form processing

(Documaker Server)
Yes
Yes
No
No
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes
Yes
No
Yes
Yes

Yes

Setrver, Documaker Server can have a default variable that refers to the transaction loaded in the

XML extract. No such vatiable would exist automatically within Documaker Workstation.

103

Chapter 2

Function Reference

Affects form entry Affects form processing
Function/Procedure (Documaker Workstation) (Documaker Server)
Printer]D No Yes
PrinterOutputSize No Yes
PutFormAttrib Yes Yes
PutINIBool Yes Yes
PutINIString Yes Yes
RecipBatch Yes Yes
RecipCopyCount Yes Yes
RecipientName No Yes
RecipName No Yes
Refresh Yes No
RemoveAttachVAR No Yes
Renamel.ogo Yes Yes
ResetFld Yes Yes
ResetOvElwSym No Yes
Retain Yes Yes
Right Yes Yes
RootName Yes Yes
Round Yes Yes
RouteWIP Yes No
RPErrorMsg No Yes
RPLogMsg No Yes
RPWarningMsg No Yes
SaveINIFile Yes Yes
Save WIP Yes No
Second Yes Yes

* While these XMI-related functions affect both Documaker Workstation and Documaker
Setrver, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such vatiable would exist automatically within Documaker Workstation.

104

Function/Procedure

SetDeviceName
SetEdit

SetFld

SetFont
SetFormDesc
SetGVM
SetlmagePos
Setlink
SetProtect
SetRecip
SetRequiredFld
SetWIPFId
Size
SlipAppend
SlipInsert
SpanField
StchData

STR
STRCompare
SUB

SUM
SuppressBanner
Table

Time

Time2Time

* While these XML-related functions affect both Documaker Workstation and Documaker

Affects form entry
(Documaker Workstation)

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes

Yes

Where DAL Functions are Used

Affects form processing

(Documaker Server)
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
No
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes

Yes

Setrver, Documaker Server can have a default variable that refers to the transaction loaded in the

XML extract. No such vatiable would exist automatically within Documaker Workstation.

105

Chapter 2

Function Reference

Affects form entry Affects form processing
Function/Procedure (Documaker Workstation) (Documaker Server)
TimeAdd Yes Yes
TimeZone Yes Yes
TimeZone2TimeZone Yes Yes
TotalPages No Yes
TotalSheets Yes Yes
TriggerFormName No Yes
TriggerlmageName No Yes
TriggerRecsPerOvElw No Yes
Trim Yes Yes
Upper Yes Yes
UniqueString Yes Yes
UserID Yes No
UserLvl Yes No
WeekDay Yes Yes
WhatForm Yes Yes
WhatGroup Yes Yes
Whatlmage Yes Yes
WIPExit Yes No
WIPFId Yes No
WIPKeyl Yes No
WIPKey2 Yes No
WIPKeylD Yes No
XMLAttrName * Yes Yes
XMLAttrValue * Yes Yes
XMLFind * Yes Yes

* While these XMI-related functions affect both Documaker Workstation and Documaker
Setrver, Documaker Server can have a default variable that refers to the transaction loaded in the
XML extract. No such vatiable would exist automatically within Documaker Workstation.

106

Function/Procedure

XMLFirst *
XMLFirstAttrib *
XMLFirstText *
XMLGetCurName *
XMLGetCurText *
XMLNext *
XMLNextAttrib *
XMILNextText *
XMLNthAttrName *
XMLNthAttrValue *
XMLNthText *
Year

YearDay

Affects form entry
(Documaker Workstation)

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Where DAL Functions are Used

Affects form processing

(Documaker Server)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

* While these XML-related functions affect both Documaker Workstation and Documaker

Setrver, Documaker Server can have a default variable that refers to the transaction loaded in the

XML extract. No such vatiable would exist automatically within Documaker Workstation.

107

Chapter 2

Function Reference

108

Syntax

Example

Use this function to return the current value contained in a section field. The @ function
is also called the gef field function. The @ symbol is used because it is easy to recognize in
script statements and it reduces the amount of typing required.

You can use this function to get text values from the special page numbering fields,
FORMSET PAGE NUM, FORMSET PAGE NUM OF, FORM PAGE NUM, and
FORM PAGE NUM OF.

NOTE: Although you can also set these page numbering fields, these fields are
maintained by the system and the value you set them to will be overwritten.

You can also use this function to get page number field values within scripts that execute
during the batch printing process. You can use this, for instance, during the Banner
processing with the GenPrint program to check the page number fields on certain pages.

Keep in mind that during GenData processing, page numbering is not usually done unless
you are also doing single-step printing. Even then, page numbering does not occur until
the print process begins.

@(Field, Section, Form, Group)

Parameter Description

Field Enter the name of a section field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, or field. The
default is the current group.

The system uses the parameters you provide to search for one field on a section and return
that field’s data. If the field is defined as a numeric data type, the system returns a number.
Otherwise, the result is a string of text.

NOTE: If you omit the Field parameter, make sure you include quotation marks, as
shown in the second and third example below.

For these examples, assume the current field value is 1234.23 and is named MyField. Also,
assume that a second occurrence of MyField appears on the form, MyForm, and contains
the value automobile.

For the third example, assume the current form is the third page of the form set being

processed. For the fourth example, assume the section Header3 is on the second page of
the form ABC.

109

110

See also

Function Result

Explanation

Return(@()) 1234.23
Return(@(“MyField”)) 1234.23
Return (@("Formset 3

Page Num"))

Retutn (@(Form Page 2

Num"),

"Header3","ABC"))

Returns the value in the current field.

Returns the value in the named field, located on the
current section.

Returns the value in the field named “Formset Page
Num” on the current section.

Returns the value in the field named “Form Page
Num” in section, “Header3” on form “ABC”.

Field Functions on page 61
Field Formats on page 62
Locating Fields on page 64
NUM on page 322

=~J

Syntax

Example 1

Use this function to retrieve data from a record in the extract file. This function only uses
the specified entry (LookUpName) in the XDB database to determine the:

* Rule to use to retrieve the data (the default is the Move_It rule)
* Search mask to use
e Offset and length

¢ Format mask

? (LookUpName, Occurrence)

Parameter Description

LookUpName Specify the entry name in the XDB that defines the data to retrieve.

Occurrence (Optional) Define which occurrence-record in the extract file to retrieve data
from. You can omit this parameter for the first occurrence.

NOTE: Keep in mind the XDB database must be structured to handle symbolic lookup.
See the Using Dictionaries chapter in the Documaker Studio User User Guide,
which desctibes how to define extract file records and fields in the XDB database.

Assume you have these entries defined in the XDB:

Spreadsheet Yiew q
Mame Farent | Offzet | Length | Conditional | Fiequired | Fiule | M azk | [rata
]] Ma Mot 1.PolRec
Pol_Mum FOL_RELC 10 10 Mo Mot MOWE_IT
_Initial FOL_RELC 50 1 Mo Mot MOWE_IT
L_Mame FOL_RELC 55 25 Mo Mot
lssue_Date FOL_RELC a0 E Mo Mot DATEFMT ikl
F_Mame FOL_RELC 20 25 Mo Mot MOWE_IT
1] | |
And the extract record, po/_rec, has the following data:
0.. 1. 2. 5.. 5.. .
0.. 0... 0... 5.. 0...
PolRec GRA0001 Morris V Vanelli 09221957
PolRec GRAO001 Sandra J Vanelli 09211959
PolRec GRA0001 Vincent M Vanelli 12311981

Assume the Driver field has this script and uses the DAL rule.
Return (?(“f_name”) & “ “ & ?(“m_initial”) & “. “ & (“1l_name”));

The DAL script retrieves data from the XDB entries (1_f_name, 1_m_initial, and
1_1_name), which it concatenates with spaces and a period to form the driver’s name. The
result is shown here:

Morris V. Vanelli

openfile DMStudioGuide.pdf

Example 2 In this example, assume there are ten fields (driver01, driver02, and so on) on the section,
the first field includes this script and it uses the DAL rule.

Call (“drivers.dal”)

The external DAL script (DRIVERS.DAL) contains these statements:

* Determine number of ‘pol_rec’ records exist in the transaction.
#drivers = CountRec (“?pol_rec”);

#occur =1;

* Create the driver’s full name and store in appropriate *

* field.

While (#occur !> #drivers)

d_name = (?(“f_name”, #occur) & “ “ & ?(“m_initial” , #occur) /
& . “ & (“1l_name” , #occur));
field_name = “driver” & Format (#occur, ‘n’, '99');

SetFld (d_name, field_name) ;
#occur =+ 1;
Wend;

This script determines there are three (3) records and would loop three (3) times; creating
the driver’s name and storing it in the proper field. The results are shown here:

Morris V. Vanelli
Sandra J. Vanelli
Vincent M. Vanelli

Example 3 In this example, assume the License Issued field has this script and uses the DAL rule.
Return (?(“issue_date”));

The DateFmt rule would be executed using specified format (11) and would return this
result to the field:

September 21, 1957

See also FieldRule on page 234
GetData on page 250
Documaker Server Functions on page 58
Field Formats on page 62
Locating Fields on page 64

ABS

ABS

Use this function to return the absolute value of a numbet. The absolute value of a
number is its positive value.

Syntax ABS (Number)
Parameter Description
Number Enter a number data type. The default is the value of the current field.

The system returns the absolute value of a number. Absolute values are always positive
numbers.

Example Here are some examples:

(Assume the current field contains the number 250.)

Function Result Explanation

Return(ABS ()) 250 Defaults to the current field.

Return(ABS (- 101.25 Returns the absolute value of the given value. Note that this
101.25)) function retains the decimal.

Return(ABS (10/ 5 10 is divided by -2 resulting in -5. The absolute value of -5 is
-2)) returned.

See also Mathematical Functions on page 72

ADDATTACHVAR

Use this function to add a string value as an attachment variable. You can use this function
when creating print comments using Documaker Bridge.

Syntax AddAttachVAR (Name,Value,DSIqueue)
Parameter Description
Name Enter the name of the attachment variable.
Value Enter the value you want to add.

DSIqueue (Optional) Enter one (1) for input or two (2) for output. The default is two (2).

The system returns one (1) on success ot zero (0) on failure.

See also Docupresentment Functions on page 60
GetAttachVAR on page 249
RemoveAttachVAR on page 355

114

ADDBLANKPAGES

Syntax

Example

AddBlankPages

Use this procedure to add blank or filler pages to a form set. You add these pages to make
sure each physical printed page has a front and back. This lets you change a simplex form
set or a form set which contains both simplex and duplex forms into a fully duplexed form

set.

For instance, you can use this to make it easier to add OMR marks, which are often
} bl
printed on the back, to simplex forms.

AddBlankPages (FAP)

Parameter Description

FAP Enter the name of the FAP file you want the system to use as a filler page. The
default is blank.

Omit the path and extension of the FAP file.

One way to add blank pages is by using banner page processing in the GenPrint program.
You can specify a DAL script which runs at the start of each transaction. The DAL script
calls the AddBlankPages procedure.

This tells the system to convert each transaction into a fully duplexed form set with blank
pages added as needed. To do this, you need these INI settings:

< Printer >
EnableTransBanner = TRUE
TransBannerBeginScript = PreBatch
< DALLibraries >
LIB = BANNER

Here is an example of the BANNER.DAL file:

BeginSub PreBatch
AddBlankPages ()
EndSub

NOTE: See Documaker Server System Reference for more information on using banner

processing.

116

See also

Here is a table which shows when blank pages will be added, based on the duplex setting
of the two current pages and the duplex setting of the next page. B/ank means a blank page
will be added, s is means no blank page is needed and the form will be left as is.

And the next page is

If the current page is | Unknown Front Back None Short Rolling
Unknown Blank Blank As is Blank Blank Blank
None Blank Blank As is Blank Blank Blank
Front Blank Blank As is Blank Blank As is
Short Blank Blank As is Blank Blank As is
Rolling (Front) Blank Blank As is Blank Blank As is
Back As is As is Blank Asis As is As is
Rolling (Back) As is As is Blank As is As is As is

NOTE: You can also add blank or filler pages using custom code or by using the
DPRAddBlankPages function, which is available with Docupresentment. See
Using the Documaker Bridge for more information on the DPRAddBlankPages

function.

The API to call from custom code is as follows:

DWORD _VMMAPI FAPAddBlankPages (
VMMHANDLE objectH,

char FAR * imagename)

/* formset or form handle */

/* 1f NULL,

"Blank Page" */

If the section name is NULL, a blank page is created when a filler page is needed.
If the section name is not NULL, the section name is loaded when a filler page is
needed. If you include a section name, include only the name of the FAP file—
omit the path and file extension.

DelBlankPages on page 207

SuppressBanner on page 400

Page Functions on page 75

Miscellaneous Functions on page 73

Creating a DAL Script Library on page 5

ADDCOMMENT

AddComment

Use this procedure to add a comment to the print stream. Products like Oracle

Insurance’s Docusave and IBM’s OnDemand use comments in the print stream as an

archive key.

In addition, you can also use this procedure to add comments to your PCL print string
using PJL. (Printer Job Language). PJI. commands are supported by most PCL printers.

You call the AddComment procedure from an external script loaded using an INI option

in the printer group. Here are some examples:

< PrtType:PCL >
PJLCommentScript

< PrtType:AFP >
OnDemandScript
DocusaveScript

< PrtType:XER >
DocusaveScript

= name

= name

= name

= name

of

of
of

of

the

the
the

the

external

external
external

external

DAL

DAL
DAL

DAL

script

script
script

script

If you call AddComment from the GenData program, you will receive an error. For more

examples see DAL Script Examples on page 35.

Syntax AddComment (Comment,

Parameter Description

Convert)

Comment Enter the string you want used as a comment in the print stream or the name of a
section variable field that contains the comment.

Convert Enter one of these options:

0 - (zero) convert the string to EBCDIC

1 - convert the string to ASCII

2 - do not convert the string

For OnDemand, you will always want EBCDIC comments.
The default is zero (0).

Example Here are some examples:

Procedure Result

Explanation

AddComment (‘This 10t 0
is an example’)

* Add a comment to 1or0
PCL print stream

Comment =
AppldxRec();

AddComment
(comment, 1);

Adds the comment, “This is an example”, to the print stream.

Adds a comment containing the archive record ID. The
second parameter (1) indicates that the string is to be added

as an ASCII string.

See also Printer and Recipient Functions on page 76

ADDDOCUSAVECOMMENT

118

Use this procedure to add a Docusave comment to the print stream. Docusave uses
comments in the print stream as an archive key.

You should only call this procedure from a script loaded via the DocusaveScript specified
in the AFP, Metacode, or PCL printer control group.

If you call this procedure from the GenData program, DAL will return an internal error.

Syntax AddDocusaveComment (Comment, Convert)

Parameter Description

Comment Enter the string to be written as a comment in the print stream.

Convert (Optional) Choose from these options:
0 - (zero) convert the string to EBCDIC
1 - convert the string to ASCIT
2 - do not convert the string.
For Docusave, you will always want EBCDIC comments.
The default is zero (0).

Example Here are some examples:

AddDocusaveComment ('This is an example')

AddDocusaveComment (@ (' INSURED NAME',,, GROUPNAME()))

See also Printer and Recipient Functions on page 76

DAL Script Examples on page 35

ADDFORM

Syntax

Example

See also

AddForm

Use this procedure/function to add a new form to a document.

AddForm (Form, Insert, Group)

Parameter Description

Form Enter the name of a form in the specified group.

Insert Enter the name of a form affer which the new form should be inserted. The
default is to append after the last form in the group.

Group Enter the name of a group to contain the specified form. The default is the
current group.

The system optionally returns one (1) on success or zero (0) on failure.

This procedure adds a new copy of the specified form to the document set. The form
named must be a valid form for the given group. You cannot add a form defined for one
group into another group. The insert (form) name may be specified using the occurrence
indicator.

If you include the Group parameter, it must reference a group included in the form set.
You cannot add a group or add forms to a group that was not specified during form
selection.

NOTE: If you use this procedure to add forms and you also plan to import and export
those forms, be sure to set the Ignorelnvalidlmage option in the ImpFile_cd
control group in the FSISYS.INI file. Otherwise, users will receive an error
message. For detailed instructions, see the Documaker Supervisor Guide.

Here are some examples:

Procedure Result Explanation

AddForm(“Form1”) 1or0 Add the named form after the last form in the current
group.

AddForm(“Form”, 1or0 Insert the named form after the first occurrence of that

“Form\1”, GRP”) form within the named group.

AddForm_Propagate on page 120
CopyForm on page 173
DupForm on page 227

WIP Functions on page 88

ADDFORM_PROPAGATE

Use this procedure/function to add a new form to a document and propagate global data
onto the new form.

Syntax AddForm_Propagate (Form, Insert, Group)
Parameter Description
Form Enter the name of a form in the specified group.
Insert Enter the name of a form after which the new form should be inserted. The

default is to append after the last form in the group.

Group Enter the name of a group to contain the specified form. The default is the
current group.

The system optionally returns one (1) on success or zero (0) on failure.

The form named must be a valid form for the given group. You cannot add a form
defined for one group into another group. You can specify the insert (form) name using
the occurrence indicator.

If you include the Group parameter, it must reference a group included in the form set.
You cannot add a group or add forms to a group that were not specified during form
selection.

Keep in mind...

* This procedure should only be used from GenData. For Documaker Workstation,
use AddForm. If called from Documaker Workstation, AddForm_Propagate works
exactly like AddForm.

* Global multi-line variable field data 7s #of propagated to the added form.

* Ifyou use this procedure to add forms and you also import and export those forms,
be sure to set the IgnorelnvalidImage option in the ImpFile_CD control group.
Otherwise, users will receive an error message. For detailed instructions, see the
Documaker Supervisor Guide.

Example Here are some examples:

Procedure Results Explanation

AddForm_Propagate(1 (success) or Add the named form, 0002EA, after the last form in

“0002EA”) 0 (failed) the current group.

AddForm_Propagate (1 (success) or Insert the named form, C22510WGIM, after the first
“C22510WGIM”, 0 (failed) occurrence of specified form, C22510WGIM, within
“C22510WGIM \17, the named group, Sales.

Sales”)

See sample output.

120

AddForm_Propagate

Original form:

C22510WGIM Employer: Oracle Insurance form name = C22510WGI
Employee: J. Stewart section name = M
Date of Loss: 12/11/10 GENRCHDR
File Number: 12345

State Case Num:

Samford and Son

Sincerely,

Workers’ Compensation Unit

cc: J. Stewart

Added form: Note the missing data (CC: J. Stewart4) for the field, Copies, that has section scope. The
C22510WGIM\2 fields, employer, employee, date of lost, and file number, that are defined as global scope
appear on the added form, C22510WGIM\2.

Employer: Oracle Insurance form name = C22510WGIM\2
Employee: J. Stewart section name = GENRCHDR
Date of Loss: 12/11/10

File Number: 12345

State Case Num:

Samford and Son

Sincerely,

Workers” Compensation Unit

See also AddForm on page 119
CopyForm on page 173
DupForm on page 227
WIP Functions on page 88

121

ADDIMAGE

122

Syntax

Use this procedure/function to add a new section to a form in the current document. You
can also use the Paginate parameter to specify whether form pagination should occur after
the section is added. Form pagination includes the application of section origin rules to
determine whether new pages are required for the pre-defined page sizes.

AddImage (FAP, Section, Form, Group, Flag, Paginate)

Parameter Description

FAP Enter the name of the section file to load and add to the form.

Section Enter the name of a section which will precede the new section. The default is the
current section.

Form Enter the name of a form in the form set. If you specify the Section parameter,
that section must occut on this form. The default is the current form.

Group Enter the name of a group that contains the specified form. The default is the
current group.

Flag Determines if the section is inserted on the same page or on a new page.
0 - (zero) new page
1 - same page
The default is zero (0).

Paginate (Optional) This parameter follows the Flag parameter. If you enter anything other
than a zero (0), it tells the system you do want form pagination to occur upon
successful inclusion of the new section.

If the section does contain an origin rule and you omit the Paginate option or set
it to zero (0), the section origin rule executes upon insertion.

Whether the inserted section has an origin rule or not, the positioning of this
section when the Paginate option is omitted or zero (0) does not cause the entire
form to be re-paginated. This means if the placement of the section causes it to
overlap another section or to be out of the page boundaty, no additional re-
pagination occurs. If you are manipulating multiple sections in seties, you may
want to conclude your script with a call to PaginateForm to make sure the entire
form is re-paginated.

Here is an example:

AddlImage("myFAP", "mainImage" , , , 1,1)
This example omits the Form and Group parameters, but does specify the Flag
parameter as well as the Pagination parameter.
Note: If you enter zero (0) or omit this parameter, the function works as it prior
to version 11.2.

The default is zero (0).

The system optionally returns one (1) on success or zero (0) on failure.

This procedure adds a copy of the section you specify to a form. The system loads the
new section onto the page after the section, form, or group you specified or onto a new
page which it creates affer the section, form, or group you specified. The section added
does not have to be predefined for the form.

AddIimage

NOTE: If you use this procedure to add sections to forms and you also plan to import
and export those forms, be sure to set the Ignorelnvalidlmage option in the
ImpFile_cd control group in the FSISYS.INI file. Otherwise, users will receive
an error message. For detailed instructions, see the Documaker Supervisor
Guide.

Any section you add using this procedure is positioned the same way as other sections.
The specific location of sections is determined by your master resource setup.

NOTE: If the section parameter specifies one of multiple sections on the same page, the
new section is added after the section, form, or group you specified. The system
does not move sections already defined for a page. Therefore, you can overlay
existing sections on the page. Make sure you do not unintentionally overlay an
existing section. Move the new section using the ImageRect and SetImagePos
procedures.

Use the Refresh procedure after this procedure to refresh the screen display.

NOTE: When adding a section, there is no way for you to specify what section options
or recipients you want included on the new section. So, the AddImage procedure
takes the missing information from an associated section.

The system will, however, exclude the In-lined, Copy on Overflow, Duplex
Front, Duplex Back, and Caused by Overflow settings. These options are not
normally associated with a section being added via DAL.

Example Here are some examples:

Procedure

Result

Explanation

AddImage (“IMG1”)

AddImage(“NEW1”,
“IMG\:‘}”,,”GRP”)

AddImage (“IMG1”,,,,
D

AddImage(“NEW1”,
“IMG\3”, , , 1)

1 - if successfully added.

0 - if not added.

1 - if successfully added.

0 - if not added.

1 - if successfully added.

0 - if not added.

1 - if successfully added.

0 - if not added.

Insert the named section, IMG1, on a
new page after the current page.

Insert the named section, NEW1,
after the third occurrence of IMG,
within GRP. This section is placed on
a new page after the third occurrence
of the specified section.

Insert the named section, IMGT1, after
the current section on the same page.

Insert the named section, NEW1,
after the third occurrence of IMG on
the same page.

Dellmage on page 211

123

124

ImageRect on page 275
PaginateForm on page 330
SetIlmagePos on page 379
Refresh on page 354

Section Functions on page 77

ADDIMAGE_PROPAGATE

Addimage_Propagate

Use this procedure/function during GenData processing to add a new section and

propagate global data onto the newly added section as needed.

NOTE: This DAL procedure should only be used with the GenData program.
Documaker Workstation users should use the AddImage procedure. If called
from Documaker Workstation, this procedure will work exactly like the
AddImage procedure.

Syntax

AddImage_Propagate (FAP, Section, Form, Group, Flag)

Parameter Description

FAP Enter the name of the section file to load and add to the form.

Section Enter the name of a section which will precede the new section. The default is
the current section.

Form Enter the name of a form in the form set. If you specify the Section parameter,
that section must occur on this form. The default is the current form.

Group Enter the name of a group that contains the specified form. The default is the
curtent group.

Flag Determines if the section is inserted on the same page or on a new page.

0 - new page
1 - same page
The default is zero (0).

Optionally, this procedure returns one (1) on success or zero (0) on failure.

This procedure adds a copy of the section you specify to a form. The system loads the

new section onto the page after the section, form, or group you specified or onto a new

page which it creates affer the section, form, or group you specified. The section added
does not have to be predefined for the form.

Keep in mind...

Global multi-line variable field data is not propagated to the added form.

The system does not move sections already defined for a page. Therefore, you can
overlay existing sections on the page.

Make sure you do not unintentionally overlay an existing section. You can move the
new section using the ImageRect and SetImagePos procedures.

If you use this procedure to add sections to forms and you also import and export
those forms, be sure to set the IgnorelnvalidImage option in the ImpFile_CD
control group. Otherwise, users will receive an error message. For detailed
instructions, see the Documaker Supervisor Guide.

125

126

Example

See also

* When adding a section, there is no way for you to specify what section options or
recipients you want included on the new section. So, the AddImage_Propagate
procedure takes the missing information from an associated section. The system will,
however, exclude the In-lined, Copy on Overflow, Duplex Front, Duplex Back, and
Caused by Overflow settings. These options are not normally associated with a

section being added via DAL.

Here are some examples:

Procedure Result

Explanation

AddImage_Propagate

(“IMG17) 0 - if not added.

AddImage_Propagate(“ 1 - if successfully added.

NEW1”, 0 - if not added.
“IMG\B”””GRP”)

AddImage_Propagate

(IMG17,,, 1) 0 - if not added.

AddImage_Propagate(1 - if successfully added.

NEWl”’ “IMG\?)”’ 28 1) 0 - if not added.

1 - if successfully added.

1 - if successfully added.

Insert the named section, IMG1, on a
new page after the current page.

Insert the named section, NEW1,
after the third occurrence of IMG,
within GRP. This section is placed on
a new page after the third occurrence
of the specified section.

Insert the named section, IMGT1, after
the current section on the same page.

Insert the named section, NEW1,
after the third occurrence of IMG on
the same page.

AddImage on page 122
WIP Functions on page 88

ADDOVFLWSYM

Syntax

Example

See also

AddOvFlwSym

Use this procedute/function to create an ovetflow symbol. This procedute provides DAL
with an equivalent to the Documaker Server SetOvFlwSym rule that is placed in the
AFGJOB.JDT file.

AddOvF1lwSym (Form, Symbol, MaxRecords)

Parameter Description

Form Enter the name of the form that contains the fields on which overflow
processing will occur.

Symbol Enter the character you want to use as the overflow symbol.

MaxRecords Enter the maximum number of overflow records to be processed for the
section pet page of output.

The system optionally returns one (1) on success or zero (0) on failure.

This procedure creates an overflow symbol associated with the section you specified.

Here are some examples:

Assume that the section, CP0101NL, has three overflow lines and the extract file is a
standard Documaker Server extract file.

#add_rc = AddOvFlwSym (“CPO101NL”, “Loc_Cnt”, 3)

In this example, an overflow variable called Los_Cntwould be associated with the section,
CPO707NL and the number of overflow lines would be set to three (3). The DAL integer
vatiable, #add_rc, would be set to a one (1) on success or zero (0) on failure.

You define the search mask for the field or the XDB name associated with the field, as
follows:

@GetRecUsed, CP0101NL, Loc_Cnt/10,HeaderRec 50,20
Here is another example:

Assume the extract file is in XML format and includes an element/node, Location, that
can repeats or occurs multiple times.

AddOvVFlwSym (“Loc_Cnt”, “XML”)

In this example, an overflow variable called Loc_Cntwould be defined. You would use this
variable in the XPath predicate for repeating elements/nodes. You would define the XPath
search mask for the field or the XIDB name associated with the field, as follows:

! /DOCC/InsuranceSvcRg/PolicyPrintRqg/
ClPropLineBusiness[**Loc_Cnt**]/Location

GetOvFlwSym on page 259
IncOvFlwSym on page 277
ResetOvElwSym on page 358

Documaker Server Functions on page 58

127

AFELoG

Use this procedure/function to write a custom message to the AFELOG file.

Syntax AFELog (String)
Parameter Description
String Enter a valid string.

This procedure writes a string of characters to the AFELOG file. The message can be up
to 100 characters in length.

Example Here is an example:

Procedure Result Explanation

AFELog Pointl

The character string “Point1” is written to the AFELOG file.
(“Pointl”);

afelogmsg = INPUT ("Input a custom message to be written to the AFELOG
file", "AFELOG Test Case", 100);
RETURN AFELOG (afelogmsg) ;

This DAL script displays a window entitled AFELOG Test Case with a message which

states:

Input a custom message to be written to the AFELOG file

The input field has a length of up to 100 characters. When the user clicks OK after
entering a message, the system writes the message to the AFELOG file. If the user clicks
Cancel, blanks are written to the file.

See also WIP Functions on page 88

128

ALWAYS

Syntax

Example

See also

Use this function to return TRUE (Always).

Always ()

There are no parameters for this function.

This function is typically used as a placeholder or stub.

Always ()

Miscellaneous Functions on page 73

Always

129

APPEND

The Append function is obsolete and is no longer supported. Use one of these functions
instead:

To Use

Append text into a multi-line field from an external multi-line text area. ~ AppendTxm

Append text into a multi-line field from an external multi-line text area ~ AppendTxmUnique
and rename the fields imported from the external text area so they have
unique names.

See also Field Functions on page 61

130

APPENDTEXT

AppendText

Use this procedure/function to attach additional text to the end of a multi-line text field

from an external ASCII text file. This procedure only works on multi-line text fields.

Syntax AppendText (File, Field, Section, Form, Group)
Parameter Description
File Enter the name of an external text file including any file extension. This text is
appended to the field you specify.
Field Enter the name of a field that identifies a multi-line text area. This is the field that
receives the appended text. The default is the current field.
Section Enter the name of a section that contains the field you specified. The default is
the current section.
Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.
Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.
The system optionally returns one (1) on success or zero (0) on failure.
This procedure opens the external text file and appends the text from that file to the
specified field. If successful, the newly inserted text is reformatted appropriately in the
destination field.
If the external text file name does not include a specific path, the system tries to locate the
file in the default directory where form sections are typically found.
When used with Documaker Workstation, use the Refresh procedure to make sure all
appended text appears in the field.
Example Here are some examples:
Procedure Result Explanation
AppendText 1or0 The current field receives the text from the file named, MyFile. Tixz.

(“MyFile.txt”)

The named file does not specify a path, therefore the system tries
to locate the file whete form sections are normally located.

AppendText 1or0 MylField will be located on the current section. If found, the field
(“C:\MyFile.txt receives the text from the file named, MyFil. Txt. The named file
”, “MyField”) specifies a path, therefore the system looks for the file in that
location.
AppendText 10or0 The field, MyField, will be located on the form, MyFor. Since a
(“MyFile.txt” section was not specified, it may occur on any section on that form.
“MyField” ’ Once located, the text from the specified file is appended to the
“MyForm”) field.

See also Field Functions on page 61

Field Formats on page 62

131

Locating Fields on page 64
Refresh on page 354

132

APPENDTXM

AppendTxm

Use this procedure/function to append text to the end of a multi-line text field from a

text area on another section (FAP) file. This procedure only works on multi-line text

fields.

Syntax AppendTxm (FAP, InsertFld, Field, Section, Form, Group)

Parameter

Description

FAP

InsertFld

Field

Section

Form

Group

Enter the name of the section file which contains the text area you want to append
to the field you specify in the Field parameter.

If you omit the path, the system looks for this section in the forms directory you
specified using the File, Library Setup option.

This parameter determines where in the tabbing sequence any embedded variable
fields will be placed.

Use this parameter to specify the name of the variable field (on the current section)
before which you want the embedded fields in the imported text area inserted.

For example, if your form contains three variable fields (Y1, Y2, Y3). The text area
to be inserted contains two variable fields (Z1, Z2). By specifying Y2 as the
InsertFld, you tell the system to tab to fields Z1 and Z2 before tabbing to Y2 when
in entry mode.

The default is to append after the last field on the section.

Enter the name of the field that identifies the multi-line text area which will receive
the appended text. The default is the current field, which zust be a multi-line text
field.

Enter the name of the section that contains the field you specified in the Field
parameter. The default is the current section.

Enter the name of the form that contains the section you specified in the Section
parameter. The default is the current form.

Enter the name of the group that contains the form you specified in the Form
parameter. The default is the current group.

The system optionally returns a one (1) if successful and zero (0) if unsuccessful.

This procedure opens the section you defined in the FAP parameter and copies the text
from the first text area field found on that section. It then appends that text in the field
you specified in the Field parameter. If necessary, the text will be reformatted

appropriately for the destination field.

When used with Documaker Workstation, use the Refresh procedure to make sure all

appended text appears in the field.

133

134

Example

See also

Here are some examples:

Procedure Result Explanation

#rc = AppendTxm 1or0 The textin the first text atea on the section named
(“Message” Message is appended to the multi-line text field, called
“Name Lin’e,”)' Refresh (); Name_Line. The system then refreshes the display.
#1tc = AppendTxm 1ot0 The path, \mstrres\message\, is appended to the multi-
(“\mstrres \messages \msg line text field, called Name_ILine, which is on the section
17, , “Name_Line”, named Mailer. The system then refreshes the display.
“Mailer”); Refresh ();

Hrc = 1or0 The fields in the text area are inserted before the

AppendTxm(“message”,
“Address1”
“Name_Line”); Refresh ();

variable field named Address1, in the tabbing sequence.
The system then refreshes the display.

Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

AppendTxmUnique on page 135

Refresh on page 354

AppendTxmUnique

APPENDTXMUNIQUE

Syntax

Use this procedure/function to append text into a mult-line field from an external text
area. This procedure also renames the fields imported from the external text area so they
have unique names. You can use this procedure in these specific situations:

* This procedure lets you import paragraphs with embedded fields, when you know
that those fields should never inherit data from the existing section and you expect
the user to tab through the imported field and enter new data.

* This procedure lets you import the same section multiple times and have the field
data for each instance uniquely named.

NOTE: When it renames fields, this procedure makes sure the field names are unique for
the entire form, not just the section that contains the text area. This prevents
naming conflicts with prior sections.

This procedure only works on multi-line text fields.

AppendTxmUnique (FAP, InsertFld, Field, Section, Form, Group)

Parameter Description

FAP Enter the name of a section file that contain a text area. This text area is appended
to the field specified. If there are several text areas in the section file, the system
grabs the text from the first text area it finds.

If you omit the path, the system looks for the form in the forms directory specified
using the File, Library Setup option.

InsertFld Enter the name of a field before which you want the embedded fields in the
imported text area inserted. The default is to append after the last field in the
section.

Field Enter the name of the field that identifies a multi-line text area. This is the field
that receives the appended text. The default is the current field.

Section Enter the name of a section that contains the field. The default is the current
section.
Form Enter the name of a form that contains the section and/or field. The default is the

current form.

Group Enter the name of the group that contains the form, section, and/or field. The
default is the current group.

The system optionally returns a one (1) if successful and zero (0) if unsuccessful.

This procedure opens the section and appends the text from the first text area field found
in that section. If successful, the new text will be formatted appropriately in the
destination field.

The system locates the section in the directory where sections (FAP files) are typically
found. Use the Refresh procedure to make sure all appended text appears in the field.

135

136

This procedure is similar to the AppendTxm procedure. For instance, suppose your
paragraph section looks like this, where X1 is a reference to the Name field and X2 is a
reference to the City field.

X1 of X2. X1 please let me know if you received this by mistake.

The Name field is embedded twice and the City field once. If you were to use the
AppendTxm procedure on this section three times, the result would look like this:

X1l of X2. X1 let me know if you received this by mistake.
X1l of X2. X1 let me know if you received this by mistake.
X1l of X2. X1 let me know if you received this by mistake.

However, there would be only one Name and City field defined on the section. If you set
Name to Tom and City to Marietta, the paragraph would look like this.

Tom of Marietta. Tom let me know if you receive this by mistake.
Tom of Marietta. Tom let me know if you receive this by mistake.
Tom of Marietta. Tom let me know if you receive this by mistake.

Using the AppendTxmUnique procedure, if you append this section three times, the first
line would likely still reference Name and City (it would depend upon whether there was
already a field named Name or City on the section).

The second occurrence however, would be renamed to NAME #002 and CITY #002.
The third occurrence would be renamed to NAME #003 and CITY #003.

So, instead of two fields, you now have six fields to tab through and each subsequent
occurrence can hold a different value.

Tom of Marietta. Tom let me know if you receive this by mistake.
John of Athens. John let me know if you receive this by mistake.
Albert of Atlanta. Albert let me know if you receive this by mistake.

Notice that multiple references to the same field in a paragraph still associate to the same
field. So although there are three embedded locations in each paragraph, there are only
two separate fields being referenced.

NOTE: This procedure renames the field uniquely for the entire form, not just the section
that contains the multi-line text field. This occurs because a multi-line text field
can span pages and you don’t want the field names to duplicate.

For instance, suppose you have a paragraph with one embedded field. The first
time you append it, it is named Fre/d (assuming field is the original name and does
not conflict. Each time you append it you get a unique name:

FIELD #002
FIELD #003
and so on...

Eventually, an AppendTxmUnique procedure could cause a the text to overflow
to a new page. Let’s assume you were up to FIEL.D #070 when that occurred.

If you run the AppendTxmUnique procedure again, the name FIELLD does not
occur on the second page, but it did on the first. You want FIELLD #0717 to be
next. This is why the names unique at the form level and not the section level.

Example

See also

Here ate some examples:

Procedure

Result

AppendTxmUnique

Explanation

#rc = AppendTxmUnique
(“message”, , “name_line”);
Refresh ();

#rc = AppendTxmUnique
(“\mstrres\messages\msgl”, ,

LT3

“name_line”, “mailet”); Refresh

s

#rc = AppendTxmUnique
(“message”, “address1”,
“name_line”); Refresh ();

1 if successful,
0 if not.

1 if successful,
0 if not.

1 if successful,
0 if not.

The first text area in the Message FAP file
is appended to the Name_/ine multi-line
text field.

The first text area in the MSG1 FAP file
located in the \msttres\message\
directory is appended to the Nawe_/line
multi-line text field, which is in the Mailer
FAP file.

The first text area in the Message FAP file
is appended to the Name_/ine multi-line
text field.

Any embedded variable fields in the text
area atre inserted before the Address1
variable field, based on the tabbing

sequence.

Field Functions on page 61
Locating Objects on page 94
Field Formats on page 62
Locating Fields on page 64
AppendTxm on page 133
Refresh on page 354

137

APPIDXREC

Use this function to get an archive record based on the APPIDX.DFD file and settings
in the Trigger2Archive control group.

Syntax AppIdxRec ()

There are no parameters for this function.

Example Here are some examples. Assume that...
¢ 'The rundate is 01/10/2009
* The sub-string of extract record being processed is:
SC01234567HEADERREC00000..
* The FORM.DAT file contains the following:
; SAMPCO; LB1;Libby; ;R; ; letter | D<INSURED (1) , COMPANY (1) , AGENT (1)>;
Also assume these INI options exist:

< Trigger2Archive >

Company = Company
LOB = LOB
PolicyNum = PolicyNum
RunDate = RunDate
Function Result Explanation

Comment = AppldxRec() lor0
Print_It (Comment)

See also Documaker Server Functions on page 58
Print_It on page 339
DAL Script Examples on page 35

138

APPLYINSERTS

Syntax

Example

See also

Applylnserts

Use this procedure/function to force the insertion of items associated with applying
logos, state stamps, and signatures to a form set.

Normally, you apply a logo, state stamp, or signature when transactions are opened or
completed. This procedure lets you trigger the insertions when the user tabs off of the
field or a DAL script associated with the field is executed. This lets the user see the form
exactly as it would appear when printed or archived.

ApplyInserts()
There are no parameters for this procedure.
Optionally, this procedure returns one (1) on success or zero (0) on failure. A return of

one (1) indicates that you had a valid WIP transaction loaded in memory. Success,
however, does not mean that any sections were added or changed.

NOTE: See Inserting State Stamps and Signatures in the Documaker Workstation
Supervisors Guide for more information on how inserted sections are
determined and applied.

Here is an example:

ApplyInserts()

Section Functions on page 77

139

AsK

140

Syntax

Example

See also

Use this procedure/function to create a message to which the user must respond with Yes
or No. The message is created as a message window for the system interface.

A Yes response results in a value of 1. A No response or terminating the window without
responding results in a value of zero (0).

Ask (Msglinel, Msgline2, Msgline3, Title, Defans)

Parameter Description

Msglinel Enter the first line of the message. The default is Yes.

Msgline?2 Enter the second line of message.

Msgline3 Enter the third line of message.

Title Enter the title of message window.

Defans Enter one (1) or zero (0) to specify which button (Yes ot No) should be selected

as the default. The default is one (1), which makes the Yes button the default.

This procedure requires a user response each time the script executes. Therefore, use this
procedure only in scripts that execute once during entry. Do not use this procedure for
scripts that execute each time a user tabs to a new field.

NOTE: A DAL script executes once during entry. A DAL calc executes each time the
user tabs to a new field. You make the DAL script or DAL calc designation in
the Properties window.

Here are some examples:

Procedure Result Explanation

#result =Ask (“Are 1,iftheuser “Sample Message” is the title of the entry box.

you sure you made answers Yes «pre you sure you made the cotrect entry?” is the

the cotrect entty?”, (), if the user message the user answers.

«
,» “Sample answers No
Message”)
#result =Ask 1,if theuser “Please Respond” is the title of the entry box.
(“This is line 17, answers Yes “This is line 17

o)

“This is line 27, “Is . if the user “This is line 2”

M M XEANTS
this line 3?7, “Please ,nswers No o ;
Respond”) “Is this line 3?” is the message the user answers.

Documaker Workstation Functions on page 59

ASSIGNWIP

AssignWIP

Use this procedure/function to assign the work-in-process and its associated data to a

different user ID.
Syntax AssignWIP (UserID)

Parameter Description

UserID Enter a valid user ID.

The system returns success if no error occurred during the process, otherwise a failure.
This procedure assigns the current work-in-process (form set) to a new user ID in the
WIP data base, and writes a comment to the AFELOG file that it was assigned to a new
user ID.
This procedure performs the same operation as the WIP, Assign option. This procedure
only works with the Entry module and does not work with the data entry mode of Studio
or Image Editor.

Example Here is an example:

Procedure Result Explanation

AssignWIP (MVV) User ID for the work-in-processis ~ The user ID in the WIP database is
changed to M 171, the form setis set to M /T for the current WIP.
saved in the WIP directory, and you
return to the main menu.

AssignWIP () The Assign window appears. Use If you omit the user ID, the system
this window to make the instead displays the Assign
assignment. window, just as if you had selected

the Formset, Assign Document
option.
See also WIP Functions on page 88

Documaker Supervisor Guide

Documaker User Guide

141

AvG

Use this function to return the decimal average of a group of fields which have names that
begin with common characters. The result of the operation is returned.

Syntax Avg (PartialName, Section, Form, Group)

Parameter Description

PartialName Enter a valid string. The string must be the common (prefix) portion of a set of
field names that occur on the current section. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

The system and returns the average of the values of all fields that begin with the specified
partial name.

Example An example of field names that have a common statt are:
Myfield1
Myfield2
Myfield20

Each of these fields is included if you specify the partial name using any of the leading
characters of myfield. The first field will be excluded if you enter myfield2, but will match
the other two field names.

The average is calculated by summing those fields that have values and dividing by the
number of those fields included in the sum. Note that zero (0) is a valid field value. Fields
which have never been given a value are excluded from the calculation.

NOTE: Include the PartialName parameter. Fields must have unique names within a
section. Using the default will probably not give the expected result, unless you
created the form and understand the naming conventions.

Example This table is used by the examples. The table shows the layout of two forms in the same
group. Both forms share two sections IMG A and IMG B). Each section has fields of the
same name as a field in the other section.

Field Section Form Group Value
MyField1 IMG A FRM A GRP 100.24
MyField2 IMG A FRM A GRP 200.16

142

Avg

Field Section Form Group Value
MyField1 IMG B FRM A GRP 98.60

MyField2 IMG B FRM A GRP * no value yet *
MyField1 IMG A FRM B GRP 0.00

MyField2 IMG A FRM B GRP * no value yet *
MyField1 IMG B FRM B GRP 70.77

MyField2 IMG B FRM B GRP * no value yet *

Assume the current field is MyField1, on the first section of the first form. Reference the
previous table for field values.

Function Result Explanation

Return(AVG ()) 100.24 Without any other information, the function assumes the
current field and section. There will only be one value
included in the average.

Return(AVG 200.16 Again, there is only one field included in this result.
(“Myfield2”))

Return(AVG(“MyF 150.20 In this example, the current section contains two fields that
ield”)) begin with the name “MyField”. The equation is as follows:
(100.24 + 200.16) / 2

Return(AVG(“MyF 98.60 Although two fields on IMG B have a matching name, only
ield”, “IMG B”)) one field actually has a value.

Return(AVG(“MyF 133.00 No section is specified in this example, so the entire form is
ield”, , “FRM A”)) searched. Four fields match the name critetia, but only three
have values: (100.24 + 200.16 + 98.60) / 3

Return(AVG(“MyF 84.685 This example specifies a section and group, but no form.
ield”, “IMG B”, , There ate four fields that match the name criteria, but only
“GRP”)) two have values: (98.60 + 70.77) / 2

Return(AVG(“MyF 93.954 This example names the group without a form or section.
ield”, ,, “GRP”)) Eight fields meet the naming criteria, but only five fields
actually have values:

(100.24 + 200.16 + 98.60 + 0.00 + 70.77) / 5

See also Mathematical Functions on page 72
Field Formats on page 62
Locating Fields on page 64

143

BANKROUND

Syntax

Example

See also

144

Use this function to round numbers based on Banker’s rounding. With Banker’s
rounding, values below 0.5 go down and values above 0.5 go up. Values of exactly 0.5 go
to the nearest even number. In contrast, the Round function always rounds 0.5 upwards.

NOTE: When you add values which have been rounded using the standard method of
always rounding .5 in the same direction, the result includes a bias that grows as
you include more rounded numbers. Banker’s rounding is designed to minimize

this.
BankRound (Value)
Parameter Description
Value Enter the value you want the system to round.

Here are some examples that compare BankRound with Round:

With BankRound Whereas, with Round

This Returns This Returns
BankRound(123.425) 123.42 Round(123.425) 123.43
BanKRound(123.435) 123.44 Round(123.435) 123.44

String Functions on page 78

Round on page 362

Beep

BEEP

Use this procedure to tell the system to emit a warning, message, or error sound. The
sound emitted depends on the installed options of the operating system that executes the
system. There is no return value from this procedure.

Syntax Beep (Integer)

Parameter Description

Integer Choose from these options:

0 - Warning sound
1 - Message sound
2 - Error sound

The default is two (2).

This procedure emits the sound specified by the parameter.

Example Here are some examples:
Procedure Result Explanation
Beep () Emits etror sound. Defaults to 2.
Beep (0) Emits warning sound. The operating system emits the installed option for

the warning sound.

See also Documaker Workstation Functions on page 59

145

BITAND

146

Syntax

Example

See also

Use this function to return the result of a bitwise AND operation performed on two
numeric values.

BitAnd (Valuel, Value2)

The parameters specify the numeric values on which the bitwise AND operation is
performed. If either parameter is not an integer, it will be converted to an integer before
the bitwise AND operation is performed.

The bitwise AND operation compares each bit of valuel to the corresponding bit of
value2. If both bits are 1, the corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to zero (0). Note that integer values have 32 bits to
compare.

The following table shows the result of a bitwise AND operation:

Valuel bit Value2 bit Result bit
0 0 0
0 1 0
1 1 1
1 0 0

Here is an example:

X

Y

3 (3 is 0011 in binary)
6 (6 is 0110 in binary)

z = BitAnd(x,y)
2 (2 is 0010 in binary)

z

BitClear on page 147

BitNot on page 148

BitOr on page 149

BitRotate on page 150

BitSet on page 152

BitShift on page 153

BitTest on page 155

BitXor on page 156

Bit/Binary Functions on page 42

BITCLEAR

Syntax

Example

See also

BitClear

Use this function to return the result after clearing the specified bit in a value.

BitClear (valuel, bitpos)

The parameters specify the numeric value and the bit position on which the operation is
performed. The specified bit is set to a zero (0) in the value provided. If the bit was not
on, the value is unchanged. Specifying a negative or zero bit position does not result in
any change to the value.

Note that integer values have 32 bits. When looking at the value in binary form, bit 1 is
on the left and bit 32 is on the right.

Bit 32 -->0000 0000 0000 0000 0000 0000 0000 0000<-- Bit 1

Here is an example:

v =6 (6 is 0110 in binary)
z = BitClear(x,1)
z =6 (6 is 0110 in binary) (bit 1 was already zero)

6 (6 1s 0110 in binary)
BitClear (x,2)
4 (4 is 0100 in binary)

Z

z

BitAnd on page 146
BitNot on page 148
BitOr on page 149
BitRotate on page 150
BitSet on page 152
BitShift on page 153
BitTest on page 155
BitXor on page 156

Bit/Binary Functions on page 42

147

BITNOT

148

Syntax

Example

See also

Use this function to return the result of a bitwise logical NOT operation performed on a
numeric value.

BitNot (valuel)

The parameter specifies the numeric value on which the bitwise logical NOT operation is
performed. If the parameter is not an integer, it will be converted to an integer before the
bitwise logical NOT operation is performed.

The bitwise logical NOT operation reverses the sense of the bits in the value. For each
value bit that is 1, the corresponding result bit will be set to zero (0). For each value bit
that is zero (0), the corresponding result bit will be set to 1.

It is especially important to note that integer values have 32 bits to compare when
examining the results of a NOT operation. All bits of the integer will be altered by this
operation.

The following table shows the result of a bitwise logical NOT operation:

Valuel bit Result bit

0 1

1 0

Here is an example:

x =3 (3 is 0000 0000 0000 0000 0000 0000 0000 0011 in binary)

z = BitNot (x)
-4 (-4 is 1111 1111 1111 1111 1111 1111 1111 1100 in binary)

V4

Notice that the NOT operation affects all bits of the integer.

BitAnd on page 146

BitClear on page 147

BitOr on page 149

BitRotate on page 150

BitSet on page 152

BitShift on page 153

BitTest on page 155

BitXor on page 156

Bit/Binary Functions on page 42

BITOR

Syntax

Example

See also

BitOr

Use this function to return the result of a bitwise inclusive OR operation performed on
two numeric values.

BitOr (valuel, value2)

Parameters specify the numeric values on which the bitwise OR operation is performed.
If either parameter is not an integer, it will be converted to an integer before the bitwise
OR operation is performed.

The bitwise inclusive OR operation compares each bit of valuel to the corresponding bit
of value2. If either bit is 1, the corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to zero (0). Note that integer values have 32 bits to
compate.

The following table shows the result of a bitwise OR operation:

Valuel bit Value2 bit Result bit
0 0 0
0 1 1
1 1 1
1 0 1

Here is an example:
x =3 (3 is 0011 in binary)
v =6 (6 is 0110 in binary)

z = BitOr(x,y)
7 (7 is 0111 in binary)

z

BitAnd on page 146
BitClear on page 147
BitNot on page 148
BitRotate on page 150
BitSet on page 152
BitShift on page 153
BitTest on page 155
BitXor on page 156

Bit/Binary Functions on page 42

149

BITROTATE

Use this function to return the result of a bit shift-and-rotate operation performed on a
numeric value.

Syntax BitRotate (valuel, shiftAmt)

The first parameter specifies the numeric value on which the bitwise shift-and-rotate
operation is performed. The second parameter specifies the number of bit positions to
shift. If either parameter is not an integer, it will be converted to an integer before the
bitwise shift-and-rotate operation is performed.

This is a shift-and-rotate operation. This means that bits shifted off the end of a value are
rotated back onto the value at the ozher end. In other words, the bits rotate in what might
be thought of as a circular pattern — thus no bits are ever lost.

NOTE: See the BitShift on page 153 function for logical shift operations that do not shift-
and-rotate.

A positive shiftAmt value causes the bit pattern in valuel to shift-and-rotate left the
number of bits specified by shiftAmt. Bits that rotate off the left (high) end of the value
return on the right (low) end.

A negative shiftAmt value causes the bit pattern in valuel to shift-and-rotate right the
number of bits specified by shiftAmt. Bits that rotate off the right Jlow) end of the value
return on the left (high) end. Note that integer values have 32 bits.

The following table shows the result of a bitwise shift-and-rotate operation:

Valuel bits Shift Result value bits

6 (0110) 1 12 (1100

6 (0110) 2 24 (0001 1000)

6 (0110) 3 48 (0011 0000)

6 (0110) 4 96 (0110 0000)

6 (0110) 1 3 (0011)

6 (0110) 2 ~2147483647 (1000 0000 0000 0000 0000 0000 0000 0001)

6 (0110) 3 ~1073741824 (1100 0000 0000 0000 0000 0000 0000 0000)

6 (0110) -4 1610612736 (0110 0000 0000 0000 0000 0000 0000 0000)

Example Here is an example:

z = BitRotate(6,-8)
z = 100663296 (0000 0110 0000 0000 0000 0000 0000 0000)

See also BitAnd on page 146
BitClear on page 147

150

BitNot on page 148
BitOr on page 149
BitSet on page 152
BitShift on page 153
BitTest on page 155
BitXor on page 156

Bit/Binary Functions on page 42

BitRotate

151

BITSET

Use this function to return the result after setting the specified bit on in a value.

Syntax BitSet (Valuel, BitPos)

The parameters specify the numeric value and the bit position on which the operation is
performed. The specified bit is set to a 1 in the value provided. If the bit was already on,
the value is unchanged. Specifying a negative or zero bit position does not result in any
change to the value.

Note that integer values have 32 bits. When looking at the value in binary form, bit 1 is
on the left and bit 32 is on the right.

Bit 32 -->0000 0000 0000 0000 0000 0000 0000 0000<-- Bit 1

Example Here is an example:

=6 (6 1s 0110 in binary)
BitSet(x,1)
z =7 (7 is 0111 in binary)

N
I

6 (6 is 0110 in binary)

z BitSet (x,4)

z 15 (15 is 1110 in binary)

See also BitAnd on page 146
BitClear on page 147
BitNot on page 148
BitOr on page 149
BitRotate on page 150
BitShift on page 153
BitTest on page 155
BitXor on page 156
Bit/Binary Functions on page 42

152

BITSHIFT

Syntax

Example

See also

BitShift

Use this function to return the result of a bit logical shift operation performed on a
numeric value.

BitShift (Valuel, ShiftAmt)

The first parameter specifies the numeric value on which the bitwise shift operation is
performed. The second parameter specifies the number of bit positions to shift. If either
parameter is not an integer, it will be converted to an integer before the bitwise shift
operation is performed.

This is a logical shift, as opposed to a shift-and-rotate operation. This means bits shifted
off the end of a value are considered lost.

NOTE: See the BitRotate on page 150 function for shift-and-rotate.

A positive shiftAmt value causes the bit pattern in valuel to be shifted left the number of
bits specified by ShiftAmt. Bits vacated by the shift operation are zero-filled.

A negative shiftAmt value causes the bit pattern in valuel to be shifted right the number
of bits specified by ShiftAmt. Bits vacated by the shift operation are zero-filled.

Note that integer values have 32 bits. Attempting to shift more than 31 bit positions will
result in a zero (0) being returned, as all bits are cleared.

The following table shows the result of a bitwise SHIFT operation:

Valuel bits Shift Result value bits
6 (0110) 1 12 (1100)

6 (0110) 2 24 (0001 1000)

6 (0110) 3 48 (0011 0000)

6 (0110) 4 96 (0110 0000)

6 (0110) 1 3 (0011)

6 (0110) 2 1 (0001)

6 (0110) 3 0 (0000)

6 (0110) 4 0 (0000)

Here is an example:

z = BitShift(6,8)
1536 (1536 is 0110 0000 0000 in binary)

z

BitAnd on page 146
BitClear on page 147
BitNot on page 148

153

154

BitOr on page 149

BitRotate on page 150

BitSet on page 152

BitTest on page 155

BitXor on page 156

Bit/Binary Functions on page 42

BitTest

BITTEST

Use this function to return TRUE (1) if the specified bit in a value is a 1; otherwise return
FALSE (0).

Syntax BitTest (Valuel, BitPos)

Parameters specify the numeric value and the bit position on which the operation is
performed. The specified bit is tested for a 1 value. If the bit is a 1, then 1 is returned. If
the bit is zero (0), then zero (0) is returned. Specifying a negative or zero bit position will
result in zero (0) being returned.

Note that integer values have 32 bits. When looking at the value in binary form, bit 1 is
on the left and bit 32 is on the right.

Bit 32 -->0000 0000 0000 0000 0000 0000 0000 0000<-- Bit 1

Example Here is an example:

v =6 (6 is 0110 in binary)
z = BitTest(x,1)
z = 0 (bit 1 was not on)

y =6 (6 is 0110 in binary)
BitTest (x,2)
1 (bit 2 was on)

Z

z

See also BitAnd on page 146
BitClear on page 147
BitNot on page 148
BitOr on page 149
BitRotate on page 150
BitSet on page 152
BitShift on page 153
BitXor on page 156

Bit/Binary Functions on page 42

155

BITXOR

156

Syntax

Example

See also

Use this function to return the result of a bitwise exclusive OR operation performed on
two numeric values.

BitXor (Valuel, Value2)

The parameters specify the numeric values on which the bitwise XOR operation is
performed. If either parameter is not an integer, it will be converted to an integer before
the bitwise XOR operation is performed.

The bitwise exclusive OR operation compares each bit of valuel to the corresponding bit
of value2. If one bit is zero (0) and the other bit is 1, the corresponding result bit is set to
1. Otherwise, the corresponding result bit is set to zero (0). Note that integer values have
32 bits to compare.

The following table shows the result of a bitwise XOR (exclusive OR) operation:

Valuel bit Value2 bit Result bit
0 0 0
0 1 1
1 1 0
1 0 1

Here is an example:

X

Y

3 (3 is 0011 in binary)
6 (6 is 0110 in binary)

z = BitXor(x,y)
5 (5 is 0101 in binary)

z

BitAnd on page 146

BitClear on page 147

BitNot on page 148

BitOr on page 149

BitRotate on page 150

BitSet on page 152

BitShift on page 153

BitTest on page 155

Bit/Binary Functions on page 42

BREAKBATCH

Syntax

BreakBatch

Use this function to tell the Documaker Server to break the output print stream file for
the current recipient batch after processing the current recipient, including post
transaction banner processing.

BreakBatch ()

This procedure is typically called in the transaction banner DAL script. You must use the
SetDeviceName function to specify a new device name. Otherwise, the new file has the
same name as the old file and overwrites its contents.

After the GenPrint program finishes processing the current transaction, it closes the
current output device file. This includes executing any post-batch banner processes. It
then continues processing the recipient batch.

If you have assigned a new output device file name using the SetDeviceName function,
the system will create and start writing to a new print stream file with that name. The best
place to call the BreakBatch function is in the post-transaction banner DAL script.

Here is an example of DAL script logic that might appear in a post-transaction banner
DAL script. This example requires that a pre-transaction banner DAL script save the
current recipient name in a variable called CurrRecip, as shown here:

CurrRecip = RecipName ()
The post-transaction banner DAL script would then include the following:

IF TotalSheets (CurrRecip) > 16000
#COUNTER += 1

CurFile = DeviceName ()

Drive = FileDrive (CurFile)

Path = FilePath(CurFile)

Ext = FileExt (CurFile)

RecipBatch = RecipBatch()

NewFile = FullFileName (Drive, Path,RecipBatch & #COUNTER, Ext)
SetDeviceName (NewFile)
BreakBatch ()

END

NOTE: See FileDrive, FileExt, FileName, FilePath, and FullFileName for information on
using DAL functions to manipulate file names.

Keep in mind...
* These print drivers are supported: AFP, MET, PCL5, PCL6, and PST.
* These print drivers are not supported: EPT, GDI, HTML, PDF, RTF, and XML.

* All platforms are supported, but note that while UniqueString is suppotted on z/OS,
z/OS does not support long file names.

* Both multi-step and single-step processing are supported.

157

158

See also

The only DAL function actually involved in splitting the print stream is BreakBatch. The
others make it easier to implement this functionality. For example, since you need to name
the new print stream, you use the SetDeviceName procedure. To find the name of the
current device, you use the DeviceName function. If you need to create unique file names,
you can use the UniqueString function.

NOTE: The BreakBatch and SetDeviceName functions are not applicable in Entry since
it does not use the batch printing engine. The other functions, DeviceName and
UniqueString, are applicable to both Entry and Documaker Server.

Printer and Recipient Functions on page 76
DeviceName on page 216

SetDeviceName on page 370

UniqueString on page 416

Call

CALL

Use this function to temporarily suspend one calculation and execute another calculation
file. A CALL statement must begin with CALL.

Syntax CALL (File)

Parameter Description

File Enter the name of the calculation file you want the system to execute.

The calculation file that is called must contain a RETURN statement if the original
calculation expects a returned value.
Example Here is an example:
CALL('TestCalc')

This tells the system to call the calculation file TestCalc. After the calculations in TestCalc
are completed, processing returns to the current script. In this example, TestCalc is not
expected to return a value.

See also Miscellaneous Functions on page 73

159

CHAIN

Use this function to calls another calculation language file. A Chain statement must begin
with CHAIN. There is no limit to the number of Chain statements you can use.

Syntax CHAIN (Script)

Parameter Description

Script Enter the name of the DAL script file. You can omit the extension.

Example Here are some examples:
CHAIN 'LastCalc'
or
CHAIN('LastCalc')

These examples permanently call the calculation file named LastCalc. Processing does not
return to the current script. No statements from the original script will be evaluated after
the Chain statement.

See also Miscellaneous Functions on page 73

160

CFIND

Syntax

Example

See also

CFind

Use this function to search a text string and return the first position of any character

found within a specified set of characters. The search is not case sensitive.

CFind (String,

Parameter Description

Charset, Integer)

String Enter a valid string. This is the string that is searched. The default is the value of
the current field text.

Charset Enter a set of one or more characters, any of which may be found in the target
string.
Integer Enter zero (0) for a left to right search. Enter one (1) for a right to left search.

The default is zero (0).

The system returns a zero (0) if none of the search characters are found in the text string,

The default search order is /f? f0 right. Y ou can also specify a right to left search order. Both
search methods returns the position relative to the first (left-hand) character of the string

parameter.

Here are some examples:

(Assume the current field contains the text Your Namse.)

Function Result Explanation

Return(CFind 4 Searching from left to right, s was first found at position 4.
(“This is the

answet”’, “ws”))

Return(CFind 16 Searching from right to left, » was first found at position 16.
(“This is the

answet”’, “ws”,

1)

Return(CFind (, 6 The first occurrence of an 7 in the current field Your Namse is at
“n”)) position 6. Note the search is not case sensitive.
Return(CFind(, 0 Neither x nor g is contained in the current text field.

“XZ”))

String Functions on page 78

161

CHANGELOGO

Use this procedure/function to replace a bitmap graphic (LOG file) on a section with a
different graphic.

Syntax ChangeLogo (LOGFile, Graphic, Section, Form, Group)

Parameter Description

LOGTFile Enter the name of a file that contains a valid graphic.
Graphic Enter the name of the current graphic in a section.

Section Enter the name of a section that contains the graphic you specified. The default is
the current section.

Form Enter the name of a form that contains the section or graphic. The default is the
current form.

Group Enter the name of a group to use to locate the object. The default is the current

group.

The system optionally returns a one (1) if successful and zero (0) if unsuccessful.

This procedure expects to locate the named graphic in the same way and location used to
load any other graphic. You must include the Graphic parameter.

If you omit the LOGFile parameter or the graphic cannot be loaded, the system will insert
an empty graphic. A placeholder appears during entry to indicate the graphic position,
however, nothing will print if a graphic is not loaded. This procedure lets you remove a
signature from a form if necessary.

The Graphic parameter tells the system to look for the name that appears in the Name
field on the Graphic Options in Studio or Image Editor. If there is no entry in this field,
this procedure will not work correctly.

NOTE: When you use this procedure with Documaker Workstation, you must follow this
procedure with the Refresh procedure. The Changel.ogo procedure does not
redraw the section after it changes the graphic.

When you use the Changel.ogo procedure with Documaker, you must include
the CheckImagel.oaded rule as one of the section level rules for the section or
else set the LoadCordFAP option in the RunMode control group to Yes in your
FSISYS.INI file.

162

Changelogo

Example Here are some examples:

(Assume the section has a graphic named sign.)

Procedure Result Explanation

Changel.ogo (lor0 Replaces the existing graphic contained by sign with a new

“johndoe”, graphic (johndoe). The existing graphic is assumed to exist in

“sign”) the current section.

Changel.ogo (, lor0 Locate the specified section on the current form. If found

“sign”, “IMG”) replace the existing graphic contained by sign with an empty
graphic.

See also DellLogo on page 213
Havel.ogo on page 269
InlineLLogo on page 279
Renamel.ogo on page 356
Logo on page 300
Refresh on page 354

Graphics Functions on page 71

163

CHAR

164

Syntax

Example

See also

Use this function to convert an integer into a single character.

Char (Integer)

Parameter Description

Integer An integer value that ranges zero (0) to 255.

Here is an example:

what_char = Char (64)
The variable, what_char, is set to the character: ‘@’
CharV on page 165

String Functions on page 78

CharVv

CHARV

Use this function to convert a single character into an integer value.

Syntax CharV (String)

Parameter Description

String A character string. If the string contains more than one character, only the first
character is converted. The remaining characters are ignored.

Example In this example, assume the vatiable, chat_to_convert, contains the single character: “@”.
#_the_integer = CharV(char_to_convert)
The integer variable, #_zhe_integer, is set the value: 64.
In this example, assume the variable, #he_s#ing, contains the characters: “@()”.
#_the_integer = CharV(the_string)
The integer variable, #_the_integer, is set the value: 64. The remaining characters are
ignored.
See also Char on page 164

String Functions on page 78

165

CODEINLIST

166

Syntax

Example

See also

Use this function to search for a string in a list of a strings.

CodeInList (String,List)

Parameter Description

String Enter the string you want to search for.

Keep in mind the system considers spaces when matching strings and that the
strings zust match exactly.

List Enter the name of the list of strings. Use commas to separate each string entry
you want to search for.

The function returns a number that indicates which string entry was found. For instance,
if the third string entry was found, the function returns a three (3).

Here is an example:

CodeInList("ABC", "ABC,AB,DE,A,GFHI,ABCD")returns 1
CodeInList("AB", "ABC,AB,DE,A,GFHI,ABCD")returns 2
CodeInList("DE", "ABC,AB,DE,A,GFHI,ABCD")returns 3
CodeInList("A", "ABC,AB,DE,A,GFHI,ABCD")returns 4
CodeInList("GFHI", "ABC,AB,DE,A,GFHI,ABCD")returns 5
CodeInList("ABCD", "ABC,AB,DE,A,GFHI,ABCD")returns 6
CodeInList("XYzZ", "ABC, AB, DE, A,GFHI,ABCD")returns 0
CodeInList("", "ABC,AB,DE,A,GFHI,ABCD")returns O
CodeInList("ABC", neo) returns 0
CodeInList("", ") returns 1

If you omit the first parameter, you get the data from the current field. If you omit the
second parameter, you receive this error message:

Wrong number of parameters
Here is another example:

Assume that GetValue(col_namel) results in the string: EE. And the variable
col_namel_codes contains the string: EEacb,XXEE,EE,AEEAC.

#rc = CodeInList(GetValue(col_namel), col_namel_codes) returns 3

Keep in mind...
e The search 7s not case sensitive. This means that .4 will match 4.

* Spaces are considered. This means the system will find no matches in these examples:

CodeInList (“Steel”, “ Steel,Aluminum”)
CodeInList (“Steel”, “Steel ,Aluminum”)
CodeInList (“Steel”, “Aluminum, Steel ")

and will return zero (0) each time.

String Functions on page 78

COMPLETE

Syntax

Example

See also

Complete

Use this procedure/function to complete the wotk-in-process.

Complete (PrintFlag, ExportFlag, ExportType, ExportFile)

Parameter Description

PrintFlag Indicates whether the system should print the form set. The default is No.

ExportFlag Indicates whether the system should export the work-in-process data to a file.
The default is No.

ExportType TD, SI, and so on. Indicates the type of export file. The default is TD.

Exportfile The file name for the Standard Export file, if specified in the INI options.

This procedure performs the same processes as the File, Complete option except the
windows which request information from the user do not appear if you enter all values.
This procedure starts the following processes, as specified by INI options:

* Prints (immediate or batch) the form set
* Archives the form set
* Exports work-in-process data to a file

The standard export format is the only file format supported. This procedure returns
success (1) if no error occurred during the complete process. If an error occurred, the
procedure returns a zero (0).

Here is an example:

Procedure Result Explanation

Complete () Completes the work-in-process. Performs the processes as specified
by archive INI options.

Complete,,, Completes the work-in-process and ~ Performs the processes as specified

(EXPORT.TXT writes the data to a file named by archive INI options and writes

) EXPORT.TXT. the data to a file named
EXPORT.TXT.

WIP Functions on page 88
Documaker Supervisor Guide

Documaker User Guide

167

COMPRESSFLDS

168

Syntax

Use this function/procedute to compress blank space by moving field data. This function

moves field data from one field to a prior named field to compress the space between the

fields. Typically you use this function to compress vertical space, as in address lines, but

the fields do not have to be vertical relative to each other. You can compress any field.

NOTE: The data moves between the fields; the actual location of each physical field

remains the same.

CompressFlds can be used as a procedure or as a function.

CompressFlds (FieldList, Section, Form, Group)

Parameter Description

FieldList Enter a list of the fields you want to compress, separated by commas. Here is an

example:

"FIELD1l, FIELD2, FIELD3"

Section (Optional) Enter the name of a section that contains the fields you specified. The

default is the current section.

Form (Optional) Enter the name of a form that contains the section and/or field you

specified. The default is the current form.

Group (Optional) Enter the name of the form group that contains the form, section, or

fields. The default is the current group.

NOTE: When using this function in Documaker Server processing, make sure the fields

exist on the section. Some implementations that use versions of the system prior
to version 11.0 do not load FAP files in all cases, and fields will not be created
when data mapping did not place any data into the field.

Keep in mind...

Each subsequent field with data is mapped into the first available empty field which
you included in the list.

Fields are defined in FAP sections with a tabbing order. This tabbing order typically
matches the order in which field level rules are processed during Documaker Server
processing. Unlike the SetAddr rules, the CompressFlds function can compress fields
in any order, and the field spaces do not have to be compressed np following the tabbing
ordet.

The last movement of that field determines the final location of a given field's data.

Always specify a set of unique field names. Do not attempt to name a field more than
once within a field list as this can produce unpredictable results.

This function does not work with barcode or multi-line text fields.

CompressFlds

Example For this example, assume the following fields and data:

This field Contains

FIELD_A ABCDEFG
FIELD_B is empty
FIELD_C is empty

FIELD_D TUVWXYZ

Assume your field list looks like this:
"FIELD_A, FIELD_B, FIELD_C, FIELD_D"

FIELD_A does not move because there is no field named before it.

FIELD_B and FIELD_C are empty; therefore, the data from FIELD_D moves into
FIELD_B, which is the first available empty field.

The result looks like this:

This field Contains

FIELD_A ABCDEFG
FIELD_B TUVWXYZ
FIELD_C is empty

FIELD_D is empty

If you had specified the field list parameter had been specified like this:
"FIELD_D, FIELD_C, FIELD_B, FIELD_A"

The result would be as follows:

This field Contains

FIELD_A is empty
FIELD_B is empty
FIELD_C ABCDEFG

FIELD_D TUVWXYZ

See also Field Functions on page 61

169

CONNECTFLDS

170

Syntax

Use this function/procedute to move fields (change field cootrdinates) in such a way as to
make the field’s text appear to be concatenated. This function does not literally
concatenate the fields but instead repositions and aligns field text along a common
horizontal coordinate so the field’s data appears concatenated. It does not move fields
vertically.

This function automatically loads the section — either the FAP file or the compiled
version of the FAP file — if the section has not already been loaded. FAP files must be
loaded to provide some of the information required to perform the operation.

ConnectFlds (FieldList, Section, Form, Group)

Parameter Description

FieldList A list of the fields you want to connect, preceded by a movement flag and
separated with commas. Here is an example:

"FIELD1l, FIELD2, FIELD3"

If a field name is not preceded by a movement flag or if it is preceded by the F
movement flag, which indicates it is a fixed field, the field is not moved.

The first field you name in the parameter must be a fixed field. The rest of the
field names in your list indicate fields you want moved adjacent to the fixed field.
Each field you name is moved according to the use described by the movement
flag that precedes its name.

Section (Optional) Enter the name of a section that contains the fields you specified. The
default is the cutrent section.

Form (Optional) Enter the name of a form that contains the section and/or field you
specified. The default is the current form.

Group (Optional) Enter the name of the form group that contains the form, section, or
fields. The default is the cutrent group.

In the FieldList parameter you must specify a fixed field and at least one field to move
(visually concatenate) to the left or right side of the fixed field. You can specify multiple
fields to move.

NOTE: This function does not move fields vertically. Fields are only moved horizontally.
You should set the vertical alignment of fields when you create the section.

By default, each concatenation will be placed the distance of one space character from the
fixed field, unless the parameter indicates otherwise. You can include these movement
flags in the FieldLIst parameter:

Flag Description

L Tells the system to move the specified field so it appears to be appended to the left of
the fixed field.
R Tells the system to append the specified field to the right of the fixed field.

Example

ConnectFlds

Flag Description

NO Tells the system you want no spacing between the two fields.

Here is an example:
"F=FIELD1, RNO=FIELD2"

Here, the contents of FIELD2 are placed immediately adjacent to the end of the contents
of FIELD1 without an intervening space.

Keep in mind...

* Asecach field is appended to the fixed field, the fixed rectangle grows. By growing the
fixed rectangle, additional fields that append move based upon where the prior
appended field ended.

* Ifa field specified for appending does not contain any data or is not valid, then no
space, or space holder, is included in the concatenation.

* Ifa field contains centered or right justified data padded with spaces then the results
may appear to be incorrect. This function calculates the width of a field based upon
the entire contents and will not remove spaces, or any other white space characters,
in the fields.

* Naming a field to move more than once in the first parameter can cause
unpredictable results.

¢ The last movement of a field will determine the final location of a field's data.

* During any movement operation, the field being moved cannot also be named as the
fixed field.

e This function does not work with barcode or multi-line text fields.

¢ This function does not handle rotated fields.

For the following examples, make these assumptions:

This field Contains
FIELD1 ABC
FIELD2 DEF
FIELD3 XYZ

If you enter:
ConnectFlds ("F=FIELD1, R=FIELD2")
You get this result:
ABC DEF
If you enter:
ConnectFlds ("F=FIELD1, L=FIELD2, R=FIELD3")

You get this result:

171

172

See also

DEF ABC XYZ

This example appended FIELD2 to the left side of FIELD1 and appended FIELD3 to
the right side of FIELD1. The fixed field, FIELD1, did not move. FIELD2 and FIELLD3
moved to align with FIELLD1. During this operation, FIELD1 never moved.

If you enter:

ConnectF1ds ("FIELD1, LNO=FIELD2, RNO=FIELD3")
You get this result:

DEFABCXYZ

This example is similar to the prior example but uses the NO parameter.

If you enter:

ConnectF1lds ("F=FIELD1, R=FIELD2,R=FIELD3")
You get this result:

ABC DEF XYZ

In this example, two fields are appended to the right of the fixed field. The first appended
field expanded the rectangle, which allows the next one to append after the last.

If you enter:

ConnectF1lds ("F=FIELD1, R=FIELD2, F=FIELD2, R=FIELD3")
You get this result:

ABC DEF XYZ

Notice that the result of this example is the same as the previous example. In this case,
the fixed field was changed to FIELD2 after FIELD2 had moved adjacent to FIELD1.
Then FIELD3 was moved adjacent to FIELD?2 in its new location.

If you enter:

ConnectF1lds ("F=FIELD1, R=FIELD2,R=FIELD2")
You get this result:

ABC DEF

In this case, FIELD?2 is defined to move twice. Since the operations are sequential, the
field first moved adjacent to FIELD1. This movement expanded the fixed rectangle used
by subsequent movements. When the field was named again, it moved relative to the
newly expanded rectangle, resulting in the field appearing farther to the right, a distance
equal to the size of the text in the field plus the width of two spaces.

Field Functions on page 61

CoOPYFORM

Syntax

See also

CopyForm

Use this procedure/function to locate a form and copy that form and its field contents
(data) into a new form. With this procedure, you can also specify another form and group
as the insertion point for the new form.

NOTE: When you use the AddForm procedure, the only data duplicated is the global data
that propagates into the fields. When you use the DupForm procedure, only
those forms with the Multicopy option checked can be duplicated. With the
CopyForm procedure, any form within the document can be copied.

CopyForm (Form, Group, InsAtForm, InsAtGroup)

Parameter Description

Form Enter the name of the form you want to copy
Group (Optional) Enter the name of the group if the form is not in the current group.

InsAtForm Enter the name of the form after which you want the system to insert the form
it copies.

InsAtGroup (Optional) Enter the name of the group for the insertion point form, specified in
the InsAtForm parameter if that form is not in the cutrrent group.

If you do not specify an insertion point, the system appends the new form to the end of
the form group of the original form.

If the procedure is successful in copying the form, it returns a non-zero value, otherwise
zero (0) is returned. This procedure can fail for these reasons:

* Could not locate the form or form group specified
* Lack of available memory

You can use this procedure in scripts hosted by AFEMain or other Entry-related
applications and also in batch applications using the GenData program.

AddForm on page 119
AddForm_Propagate on page 120
DupForm on page 227

WIP Functions on page 88

173

COUNT

Use this function to count the number of fields that have values and have names that
begin with common characters. The result of the operation is returned.

Syntax Count (PartialField, Section, Form, Group)

Parameter Description

PartialField Enter a valid string. The string must be the common (prefix) portion of a set of
field names that occur on the current section. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

This function returns the number of fields that have values that begin with the specified
partial field name.

An example of field names that have a common start are:

Myfield1
Myfield2
Myfield20

Each of these fields will be included if the partial field name is using any of the leading
characters of myfield. The first field will be excluded if you enter myfeld2, but will match
the other two field names.

Note that zero (0) is a valid field value. A field that has never been given a value is
excluded from the count.

NOTE: As a general rule, include the PartialField parameter. Fields in a section must have
unique names. Using the default will probably not give the expected result, unless
you created the form and understand the naming conventions.

Example Here are some examples:

The following table will be used by the examples. The table represents the layout of two
forms in the same group. Both forms share two sections (IMG A and IMG B). Each
section has fields of the same name as a field in the other section.

Field Section Form Group Value
MyField1 IMG A FRM A GRP 100.24
MyField2 IMG A FRM A GRP 200.16

174

Count

Field Section
MyField1 IMG B
MyField2 IMG B
MyField1 IMG A
MyField2 IMG A
MyField1 IMG B
MyField2 IMG B

Form Group Value

FRM A GRP 98.60

FRM A GRP * no value yet *
FRM B GRP 0.00

FRM B GRP * no value yet *
FRM B GRP 70.77

FRM B GRP * no value yet *

(Assume the current field is MyField1, on the first section of the first form. Reference the

previous table for field values.)

Function Result Explanation

Count() 1 Without any other information, the function will assume the
current field and section. There will only be one value included
in the count.

Return(Count (1 Again, there is only one field included in this result.

“Myfield2”))

Return(Count (2 In this example, the current section contains two fields that

“MyField”)) begin with the name “MyField”.

Return(Count (1 Although two fields on IMG B have a matching name, only

“MyField”, “IMG one field actually has a value.

B”)

Return(Count (3 No section is specified in this example, so the entire form is

“MyField”, , “FRM searched. Four fields match the name criteria, but only three

A”)) have values.

Return(Count (2 This example specifies a section and group, but no form. There

“MyField”, “IMG are four fields that match the name criteria, but only two have

B”,, “GRP”)) values.

Return(Count (5 This example names the group without a form or section.

“MyField”, , ,
“GRP)

Eight fields meet the naming criteria, but only five fields
actually have values.

Mathematical Functions on page 72

Field Formats on page 62

Locating Fields on page 64

175

COUNTREC

176

Use this function to count the number of recotds in an extract file transaction that match
a search mask parameter. In addition, you can also make sure that at least a minimum
number of records match the search mask parameter.

Syntax CountRec (SearchMask, MinNumber)
Parameter Description
SearchMask The search mask you want to use for the search.

MinNumber (Optional) Number of records that must exist in the transaction.

Set this parameter to 1 if you want to know if a record exists that matches the
search mask.

This function returns the total number of records found, the MinNumber of records if
they exist, or zero (0) if no records match the search mask or there are less than the
MinNumber of records.

Example Lets assume there are five records in a transaction with the following values in the
applicable columns.

0 3

1 1

Addressl AR

Address2 BB

Address3 BB

Address4 BB

Address5 cc
Function Result Explanation
CountRec (“1,Address”) 5 The function returns five (5) because there are five records

that match the search mask in the transaction.

CountRec 2 The function returns two (2) because thete are at least two
(“1,Address,31,BB”, 2) records that match the search mask in the transaction.
CountRec (“1,Address”, 0 The function returns zero (0) because there are less than
6) six records in the transaction that match the search mask.
CountRec 0 The function returns a zero (0) because there are less than
("1,Address,31,AA", 2) two records that match the search mask.

See also Documaker Server Functions on page 58
Field Formats on page 62
Locating Fields on page 64

Cut

Cut

Use this function to remove characters from a string at a specified position and return the

result.

Syntax Ccut (String,

Parameter Description

Position, Length)

String Enter a valid string. The default is the value of the current field text.

Position Enter the position within the first parameter to begin cutting. The default is one
O

Length Enter the length to cut from text. The default is zero (0).

This function returns a string equivalent to parameter 1 with the portion identified by the

position and length parameters removed. If no position is given, or it is zero (0), the cut
starts at position 1 in the string.

If no length is given, or it is zero (0), nothing is removed from the string and the return

value is the same as the original string parameter.

Example Here are some examples:

(Assume the current field contains the text Your Name.)

Function

Result

Explanation

Return(Cut ()

Return(Cut (, , 5))

Return(Cut
(“Complete all the
blanks.”, 10, 4))

Return(Cut
(“Complete all the
blanks.”, ,9))

Your Name

Name

Complete
the blanks

all the
blanks

No length is specified for the cut function; therefore the
field remains the same.

Five characters are cut from the current field beginning at
position 1.

Goes to position 10 to begin the cut and removes four
characters.

Defaults to position 1 to begin the cut and cuts nine
characters.

See also String Functions on page 78

177

DASHCODE

Use this function to build a value to assign to a series of fields from the binary value of an
integer. This is sometimes called a dash code. A dash code is a type of OMR mark that is
read by certain mail, binding, or inserting equipment.

A dash code is a seties of hotizontal lines aligned in a column — each usually around 1/
2 to one inch in length — that are typically on the left or right edge of the paper. The
marks are usually expected to be in a uniform (fixed) position. Here is an example of a
dash code:

Dash codes can be used, for instance, to represent the beginning or end of a set of pages
that are associated in some way. The marks might indicate sequencing, first page, last page,
staple requirements, additional pages to be inserted at a given point, the envelope size, or
binding requirements.

NOTE: The exact meaning, order, and position of each mark depends on the finishing
equipment you are using. Check the specifications that came with your
equipment and assign the values appropriately.

Syntax DashCode (Value, Bits, RootName, Section, Form, Group, OnString,
OffString, Direction, AltLens)

Parameter Description

Value Each bit of the value parameter is tested for a one (1) or zero (0). If the bit is one
(1), it is considered on and the character you specify in the OnString parameter is
appended to the string result being built. If the bit is zero (0), the OffString
parameter is appended to the string result.

Bits This parameter identifies how many of the bits from the value need to be
evaluated. By default all 32 bits are evaluated. If you specify a negative or zero
value, you'll get an empty string.

RootName This parameter identifies the initial portion of a seties of field names that are to
be the repository for the OnString and OffString filled values. The bit number
referenced will be appended to each name to form the final name expected to be
found on the resulting section.

For instance, if MIZALUE_ is passed as the RootName, the first fill value is
assigned to MIALUE_T, the second to MIVALUE_2, MIVALLUE_3, and so on,
until the maximum number of bits specified ate all mapped. If all 32 bits are
mapped, the last field would be M ALUE_32.

The associated fields will be filled to their defined length. In most dash code
(barcode) type situations, you will want all the fields to be the same length.

178

Parameter

Section

Form

Group

OnString

OffString

Direction

AltLens

DashCode

Description

Enter the name of a section that contains the field you specified. You can enter
an asterisk (*) to tell the function to search all sections. Keep in mind, however,
that including an asterisk (*) degrades performance.

Enter the name of a form that contains the section and/ ot field you specified. You
can enter an asterisk (*) to tell the function to search all forms. Keep in mind,
however, that including an asterisk (*) degrades performance.

Enter the name of the form group that contains the form, section, or field. You
can enter an asterisk (*) to tell the function to search all groups. Keep in mind,
however, that including an asterisk (*) degrades performance.

By default, OnString is an underscore (_). You can specify alternative OnString
and OffString values and each can be more than one character. The two
parameters do not have to be the same length.

If you define multiple characters, the fill value will repeat those characters as
necessary to fill the entire field. If the field length is not evenly divisible by the
length of the string you enter, a pattial copy of the string can appear at the end.

For instance, suppose the field length is five; OnString is ABC; and OffString is
XY If the bit value for this field is one (1), the fill value generated will be:
ABCAB. 1If the bit value is zero (0), the fill value generated for this field will be
XYXYX.

By default, Offstring is a space (). You can specify alternative OnString and
OffString values and each can be more than one character. The two parameters
do not have to be the same length.

If you define multiple characters, the fill value will repeat those characters as
necessary to fill the entire field. If the field length is not evenly divisible by the
length of the string you enter, a partial copy of the string can appear at the end.

Note that integer values have 32 bits. When looking at the value in binary form,
bit 1 is on the right and bit 32 is on the left. To override the default behavior, you
can supply a non-zero Direction parameter.

0000 0000 0000 0000 0000 0000 0000 0000
Bit 32 | | Bit 1

The final parameter is a comma-delimited pattern string to identify alternate
lengths for each field associated with the bits. By default, each field is assigned a
value equal to its defined length. If you want to use a different length, supply the
appropriate lengths in string form separated by commas.

The order of the length values starts with the field associated with the first bit,
followed by the length for the second field, and so on. Remember the first bit is
determined by the direction parameter. If you do not provide enough length
values to match the number of bits you are using, the undefined positions will
default to the default field length.

The return value indicates the number of fields assigned. A return value of zero (0) means

that no fields were found.

179

180

Example

See also

Here are some examples:
#val = 11 (which is 1011 in binary)
DASHCODE (#val, 4, "BFLD");

Assuming that BFL.D is a root field name and matching fields are located on the current
section, the following assignments are made. Further assume that each field is five
characters in length.

BFLD1 is assigned " "
BFLD2 is assigned " "
BFLD3 is assigned " " (five spaces)
BFLD4 is assigned " "

DASHCODE (#val, 4, "BFLD", , , , "A", "B");

This example uses the parameters to supply different OnString and OffString parameters.

BFLD1 is assigned "AAAA"
BFLD?2 is assigned "AAAA"
BFLD3 is assigned "BBBB"
BFLD4 is assigned "AAAA"

DASHCODE (#val, 4, "BFLD", , , , "A","B",1);

Note the Direction parameter was used to reverse the order of the bits interpretation.

BFLD1 is assigned "AAAA"
BFLD?2 is assigned "BBBB"
BFLD3 is assigned "AAAA"
BFLD4 is assigned "AAAA"

DASHCODE (#val, 4, "aAB", "Xyz", 0, "1,2,3,5");

In this example, the last parameter applies differing lengths to the fields you are mapping.
This example also uses alternate OnString and OffString parameters and uses text greater

than one character. In this case, the string may be truncated or repeated as necessary to
fill the field length.

BFLD1 is assigned “A”

BFLD?2 is assigned “AB”

BFLD3 is assigned “XYZ”

BFLD4 is assigned “ABAB” or “ABABA”

Note that the last example indicates two possible results. During Documaker Workstation
entry, the field length is considered paramount and cannot be overridden. During batch
operations, it is possible for the data length to override the field length.

Bit/Binary Functions on page 42

DATE

Syntax

Example

See also

Date

Use this function to build a date from a given date, or from the current date.

Date (Format, Day, Month, Year)

Parameter Description

Format Enter a date format. The default is format 1 (MM/DD?YY).

Day Enter an integer day value. The default is based on the the current day.
Month Enter an integer month value. The default is based on the the current month.
Year Enter an integer year value. The default is based on the the current year.

The system returns a date string that contains a formatted date value. If you omit any of
the Day, Month, or Year parameters, the system uses a value based on the current date.

NOTE: To change to some date formats, make sure the variable field’s Type field (on the
field’s Properties window) is set to alphanumeric.

Here are some examples:

(Assume the current date is 07/01/10.)

Function Result Explanation

Return(Date()) 07/01/2010 No parameters entered, defaults to current date in date
format 1.

Return(Date(“44 July 1,2010 Date format 4 selected, with a four-digit year length.

) Defaults to the cutrent date in the selected format.
Return(Date 05/18/2010 Defaults to date format 1 using the given values.
(,18,5,2009))

Return(Date(“I12” 10/138 Date format I selected with a two-digit year length. Enters
,18,5)) the given date values in the selected format.

Date Functions on page 51
Date Formats on page 52

Using INI Options on page 8

181

DATE2DATE

Use this function to convert a date from one format to a new format.

Syntax Date2Date (Date, Format, NewFormat)

Parameter Description

Date Enter a date string. The system assumes your entty to be in the format specified
in the Format parameter. The default is the current date.

Format Enter a date format string that describes the contents of the Date parameter. The

default is date format 1 (MM/DD/YY).

NewFormat Enter the date format you want to convert to. The default is date format 1.

This function converts a date string from one format to another. The new value is
formatted according to the NewFormat parameter.
Example Here are some examples:

(Assume the current date is 07/01/09 and the variable field called, arc_date, contains the
hexadecimal value, BC6792D0)

Function Result Explanation
Return(Date2D 07/01/2009 No parameters entered—defaults to current date in date
ate()) format 1.

Return(Date2D February 1, 2009 Changes the given date (02/01/09) from date format “1”

ate(“02/01/ to date format “4”, with a four-digit year.

097, “17, “44”))

Return(Date2D 05/18/09 Changes the given date (09/138) from date format G to
ate(“09/138”, the default date format 1.

“G™)

Return(BB273650 Returns the current date in a eight character hexadecimal
Date2Date (,, representation.

e));

Return(February 29, Converts the hexadecimal date to month name DD,
Date2Date (@ 2008 YYYY without leading zeros.

("arc date"),

an’ nyn)),

See also Date Functions on page 51
Date Formats on page 52

Using INI Options on page 8

182

DATEADD

Syntax

Example

DateAdd

Use this function to add a specified number of days, months, and/or yeats to a date.

DateAdd (Date,

Format, Days, Months, Years)

Parameter Description

Date Enter a date string. The system assumes your entry to be in the format specified
in the Format parameter. The default is the current date.

Format Enter a date format string that describes the contents of the Date parameter. The

default is date format 1 (MM/DD/YY).

Days Enter the number of days. The default is zero (0).
Months Enter the number of months. The default is zero (0).
Years Enter the number of years. The default is zero (0).

This function adds a specified number of days, months, and years to a given date. The
result is formatted according to the Format parameter.

The Days, Months, and Years parameters can be negative or positive. If you enter a negative

parameter, the system subtracts the specified days, months, or years.

You do not have to divide the values into components. For example, you can add 300 days
and 40 months to a date. The result reflects the appropriate year, month, and day.

NOTE: This function tells the system to add days, months, and years—in that order. For

instance, if you tell the system to add one day and one year to the date 02/28/
2007, the result is 03/01/2008—not 02/29/2008.

To get 02/29/2008 as the result, you would use two calculations, first adding the
year, then adding the day.

Here are some examples (assume the current date is 07/01/09):

Function Result Explanation

Return(DateAdd 07/11/2009 Defaults to the cutrent date which is specified as Date(

(Date(), “17, 10))) and adds 10 days.

Return(DateAdd 10/01/2012 Uses the given date (02/01/09) and adds 44 months.

(02/01/09’ ., 44)) (NOtC that if you enter “44” as a Stl‘irlg, it is
automatically converted to an integer.)

Return(DateAdd 06/139 The given date (09/138) using date format I'is May 18,

(“09/138”’ :4139 . _3))

2009. Subtracting three years results in the date May
18,2006. Because 2008 is a leap year, the correct day of
the year (counting consecutively from January 1) is
139. The resulting date is returned in the same date
format.

183

See also Date Functions on page 51

Date Formats on page 52

184

DATECNV

Syntax

Example

DateCnv

Use this function to convert two-digit years into four-digit years.

DateCnv (Date, Format, DivideYear, Century)

Parameter Description

Date Enter a date string. The system assumes your entry to be in the format specified
in the Format parameter. The default is the current date.

Format Enter a date format string that desctibes the contents of the Date parameter. The

default is date format 1 MM/DD/YY).

DivideYear A dividing year value used to determine if the date value belongs to the specified
century or the next. The default is the current year plus 40.

Century The century to assign if the date falls in the dividing year. Otherwise, the result is
this century plus one. The default is the current century.

Use this function to convert a date value to the proper century. The resulting date value
will have a four-digit year. Since the system has no way of knowing whether a date
represents a birthday (from the past) or a maturity date (in the future), a dividing year is
required to make the century decision. If the dividing year is not provided, it will default
using the equation ((current year + 40) % 100).

The century number is optional and defaults to the current century. If the two-digit year
from the date value is greater than the dividing year, the system assumes the date is in the
century given. Otherwise, the system assumes date is in the next century.

Assume the current date is 07/01/99. This means the default dividing year is determined
as: ((1999 + 40) % 100) = 39.

NOTE: In this case, % means modulo, ot moduius, which means the value that remains after
dividing one number evenly into another. Here is an example: 100 divides into
2,035 twenty even times. 20 times 100 equals 2000. 2035 minus 2000 leaves 35.
Therefore, 2035 % 100 = 35.

Function Result Explanation

Return(DateCav(07/01/1999 Defaults to the cutrent date and format 1. Since 99 is
) greater than 39, this date assumes the current century.

Return(DateCav (07/01/2000 Since 00 is not greatet than 39, this date assumes the next
“07/01/00”)) century.

Return(DateCav (2050/138 The given date (50/138) in date format I is May 18, 50.
“50/138” , “I”, Since 50 is not greater than the dividing year of 50, the
50)) result assumes the next century.

Return(DateCnv (1999/138 The given date (99/138) in date format I is May 18, 99.
“99/138” , “I”, Since 99 is greater than the dividing year of 50, the result
50)) assumes the current century.

185

See also Date Functions on page 51
Date Formats on page 52

Using INI Options on page 8

186

DAY

Syntax

Example

See also

Day

Use this function to get the day portion of a date as an integer.

Day (Date, Format, Locale)
Parameter Description
Date Enter a date string. The system assumes your entty to be in the format specified

in the Format parameter. The default is the current date.

Format Enter a date format string that describes the contents of the Date parameter. The
default is date format 1 (MM/DD/YY).

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks the
Locale INT option. If the Locale INT option offers no value, the system defaults
to USD (United States/English)..

The system determines the day portion of the given date based on the format you specify

in the Format parameter.

Here are some examples:

(Assume the current date is 07/01/09.)

Function Result Explanation

Return(Day()) 1 Defaults to the current date and enters the integer 1.
datestring = 16 First the DateAdd function defaults to the cutrent date and
DateAdd(, , 15); adds 15 days which results in a date of July 16, 2009. This date
Return(Day is returned to the target variable dazestring. The date is then used
(datestring)) by the Day function and the integer value of 16 is returned.

Return(Day(“09/ 18
1387, “1”))

The given date (09/138) in date format I is May 18, 2009.
Therefore, the integer value of 18 is returned.

Date Functions on page 51
Locales on page 55
Date Formats on page 52

DateAdd on page 183

187

DAYNAME

Syntax

Example

See also

188

Use this function to enter the name of the day of the week.

DayName (DayOfWeek, Locale)

Parameter Description

DayOfWeek

1 - Sunday

2 - Monday

3 - Tuesday

4 - Wednesday
5 - Thursday

6 - Friday

7 - Saturday

Enter an integer to designate the day of the week.

The default is the current day of the week.

Locale

(Optional) Enter the locale code. If you omit this parameter, the system checks

the Locale INT option. If the Locale INI option offers no value, the system
defaults to USD (United States/English).

This function is typically used with the WeekDay function. The WeekDay function
determines the day of the week number from a given date.

Here are some examples:

(Assume the cutrent date is Saturday, January 3, 2009.)

Explanation

Function Result
Return(DayName()) Saturday
DayName(WeekDay Monday
(“09/33?5’ ‘41’9))

DayName (WeekDay(Friday
DateAdd(,,-1)))

Return(DayName Saterdag
(’"ZAA"))

Defaults to the current day of the week and returns
Saturday.

First the WeekDay function determines the day of the
week number for the given date and format. DayName
then uses this numbet to retutn the correct day name:
Monday.

First the DateAdd function uses the current date and
subtracts one day. WeekDay then determines the number
for the day of the week. DayName then determines that
the given date is Friday, January 2, 2009 and returns the
day name: Friday.

It returns the name of the current day of the week based
and translates that name into Afrikaans.

Date Functions on page 51
Locales on page 55

Using INI Options on page 8
DateAdd on page 183

WeekDay on page 419

DAYSINMONTH

DaysInMonth

Use this function to get the number of days in the specified month of a given year.

Syntax DaysInMonth (Month, Year)

Parameter Description

Month Enter a month number from 1 to 12, with January being 1 and December being
12. The default is the current month.

Year Enter a year. The default is the current year.

The year value is only used when the month number is 2 (February). The result for

February is different if the given year is a leap year. This function is typically used with the

Month function. The Month function extracts the month number from a given date.

Example Here are some examples:

(Assume the current date is 07/01/09.)

Function Result

Explanation

DaysInMonth () 31

DaysInMonth 30
(Month (“04/15/

2009))

DaysInMonth(2, 29
2008)

Defaults to the current date and returns the value 31 since July
has 31 days.

The Month function extracts the number 04 (April) from the
given date. The DaysInMonth function then determines that
there are 30 days in April and returns that value.

The year 2008 was a leap year, February had 29 days. Therefore
the integer 29 is returned.

See also Date Functions on page 51

Month on page 318

189

DAYSINYEAR

190

Syntax

Example

See also

Use this function to get the number of days in the specified year.

DaysInYear (Year)

Parameter Description

Year Enter the year. The default is the current year.

This function returns 365 or 366, depending on whether the year parameter is a leap year.
This function is typically used with the Year function. The Year function extracts the year
number from a given date.

Here are some examples:

(Assume the current date is 07/01/2008.)

Function Result Explanation

DaysInYear () 366 2008 is a leap yeat, therefore the returned value is 366.
DaysInYear (09) 365 The year 2009 is not a leap year and has 365 days.
DaysInYear 365 First the Year function extracts the year number (2009) from
(Year(“2009/09/ the given date using the format specified. The DaysInYear
097, <34”)) function then determines that the given year has 365 days and

returns the integer 365.

Date Functions on page 51

Year on page 443

DBADD

Syntax

Example

See also

DBAdd

Use this procedure/function to add a new record to a database table.

DBAdd (Table, PrefixVariable)

Parameter Description

Table Enter the name of an open table.

PrefixVariable ~ (Optional) Enter the name of a DAL variable to associate with the record
fields of the table. The default is Table.

The system optionally returns one (1) on success and zero (0) on failure.

Unlike for the DBFirstRec and DBNextRec procedures, the PrefixVariable parameter
and the associated fields should have already been defined. For some database handlers,
these column names are case sensitive. Columns not required can be left blank.

The actual variable names appended with a prefix are taken from the DFD file. The DFD
file is determined by your entry in the Table parameter or by using the column names
found in the table if there is no DFD file associated with that table.

Possible causes for failure to add the record include:
* A required column was left blank

* Database specific failure

Here is an example:

Procedure Result Explanation

RECORD.Company=“Oracle 1 o0r0 Assuming the table APPIDX has the columns

5 Company, Lob, and Rundate, a new record will be

RECORD.Lob="Util; added to the table whose values in those columns
_ are Oracle, Util, and the current date, respectively.

RECORD.Rundate=DATE();

DBAdd(“APPIDX” ,
“RECORD”)

Database Functions on page 43

191

DBCLOSE

Use this procedure/function to close a database table.

Syntax DBClose (Table)

Parameter Description

Table Enter the name of the table you want to close.

The system closes the table and returns one (1) if the table was successfully closed. If the
table cannot be closed, it may be because...

* The table was not open, such as if it had already been closed

* There was a database-specific failure

Example Here is an example:

Procedure Result Explanation

DBClose(“APPIDX”) 1or0 Closes the table named APPIDX.

See also Creating Variable Length Records from Flat Files on page 199
Setting Up Memory Tables on page 50
DBOpen on page 198

Database Functions on page 43

192

DBDELETE

DBDelete

Use this procedure/function to delete all records which match the key criteria from the

database table.

Syntax DBDelete (Table, KeyNamel, KeyValuel, KeyName2, KeyValue2,...)

Parameter Description

Table Enter the name of an open table.
KeyName, Each KeyName refers to the name of a column to search. For some database

KeyValue, handlers, this may be a case-sensitive compatison.

Each KeyValue is the value of the corresponding KeyName for which to search.
For some database handlers, this may be a case-sensitive compatison.

At least one KeyName/KeyValue pair are required.

NOTE: You will #o be prompted for confirmation when deleting records.

The system optionally returns one (1) on success or zero (0) on failure.

This procedure lets you enter as many KeyName and KeyValue combinations as

necessary to identify the specific keyed record you want to delete.

This procedure first locates the records using the key you specify. If located, the records

will be deleted. If the procedure returns failure, possible causes include:

* There are no records in the table meeting the given criterion

* The column specified in KeyName is not a searchable column

e Database-specific failure

Example Here is an example:

Procedure Result

Explanation

DBDelete (“APPIDX”, 1or0
“Company”,

“SAMPCO”, “Lob”,

“Util”)

Assuming Company and Lob ate valid key components for
the APPIDX table, the procedure will delete all records

with the value SAMPCO in the column named Company
and the value Util in the column named Lob.

See also Database Functions on page 43

193

DBFIND

Use this procedure/function to rettieve the first record from a database table which
satisfies the key criteria.

Syntax DBFind (Table, Variable, KeyNamel, KeyValuel, KeyName2,
KeyValue2, ...)

Parameter Description

Table Enter the name of an open table.

Variable Enter the name of a DAL vatiable to associate with the record fields retrieved by
the procedure. The default is Table.

KeyName, Each KeyName specifies a column to search. For some database handlers, it may
KeyValue be a case-sensitive.

Each KeyValue is the value of the corresponding KeyName for which to search.
For some database handlers, this may be a case-sensitive compatison.

At least one pair of KeyName/KeyValue are required.

The system optionally returns one (1) on success or zero (0) on failure.

If the Variable parameter has not been defined, it will be created. You can access the table
record fields assigned this prefix using the dot (.) operator. For example, assume Record is
a prefix variable and the table record contains the columns Company, Lob, and Policynum.
The values of the individual fields would be referenced as Record. Company, Record.1ob, and
Record. Policynum, respectively.

The variable names appended with a prefix are taken from the DFD file associated with
the table you specified in the Table parameter or by using the column names found in the
table if there is no format file associated with the table.

NOTE: The variable name is truncated to eight characters when you use a long name.
Variable names are limited to eight characters if you do not use the DBPrepVars
procedure and nine characters if you do. A variable name plus the stem name
cannot exceed 32 characters.

This procedure supports a variable number of parameters. As many KeyName and
KeyValue combinations required to identify the specific keyed record to retrieve may be
defined as parameters. If the record cannot be retrieved, possible causes include:

* There are no records in the table that meet the criteria
* The column specified in KeyName is not a searchable column

* Database specific failure

194

Example Here is an example:

DBFind

Procedure Result Explanation

DBFind(“APPIDX”, lor0 Assuming that the APPIDX table has columns named
“RECORD?”, Company and Lob, and that these columns are a key, the
“Company”,”Oracle”, first record containing “Oracle” and “DM” in the
“Lob”, “DM”) appropriate column will be retrieved and associated with

the prefix variable RECORD.

See also Database Functions on page 43

DBPrepVars on page 200

195

DBFIRSTREC

Use this procedure/function to retrieve the first recotd in a database table.

Syntax DBFirstRec (Table, PrefixVariable)
Parameter Description
Table Enter the name of an open table.
PrefixVariable Enter the name of a DAL variable to associate with the record fields retrieved

by the procedure. The default is Table.

The system optionally returns one (1) on success or zero (0) on failure.

If the PrefixVariable parameter has not been defined, it will be created. You can access
the table record fields assigned this prefix using the dot (.) operator.

For example, assume Record is a prefix variable and the table record contains the columns
Company, Lob, and Policynum. The values of the individual fields would be referenced as
Record. Company, Record.1ob, and Record. Policynum, respectively.

The actual variable names appended with a prefix are taken from the DFD file associated
with the table you specified in the Table parameter or using the column names found in
the table if there is no DFD file associated with the table.

Possible causes for failure to retrieve the first record include:
* The table contains no records

* Database-specific failure

Example Here is an example:

Procedure Result Explanation

DBFirstRec 1or0 Retrieves the first record from the APPIDX table and associates
(“APPIDX” the columns with the prefix variable RECORD.

“RECORD”)

See also Database Functions on page 43

DBNextRec on page 197

196

DBNEXTREC

Syntax

Example

See also

DBNextRec

Use this procedure/function to retrieve the next recotd in sequence from a database table.

DBNextRec (Table, PrefixVariable)

Parameter Description
Table Enter the name of an open table.
PrefixVariable Enter the name of a DAL variable to associate with the record fields retrieved

by the procedure. The default is Table.

The system optionally returns one (1) on success or zero (0) on failure.

If the PrefixVariable parameter has not been defined, it will be created. You can access
the table record fields assigned this prefix using the dot (.) operator.

For example, assume Record is a prefix variable and the table record contains the columns
Company, Lob, and Policynum. The values of the individual fields would be referenced as
Record. Company, Record 1ob, and Record. Policynum, respectively.

The actual variable names appended with a prefix are taken from the DFD file associated
with the table you specified in the Table parameter or using the column names found in
the table if there is no DFD file associated with the table.

If the record cannot be retrieved, possible causes include:
* There are no more records to retrieve
* Some databases require you to call DBFirstRec before you call DBNextRec

* Database specific failure

Here is an example:

Procedure Result Explanation

DBNextRec (“APPIDX” 1or0 Will retrieve the next record from the table APPIDX
, “RECORD”) and associate the field columns with the prefix vatiable
RECORD.

Database Functions on page 43

DBFirstRec on page 196

197

DBOPEN

Use this procedure/function to open the specified database table in the mode you request.

The DBOpen procedure supports having multiple:

e Simultaneous ODBC connection via different ODBC drivers. See Database
Functions on page 43 for more information.

* Tables open in the same database.

Syntax DBOpen (Table, Handler, DFDFile, Mode, Truncate)

Parameter Description

Table Enter the name of the table you want to open.

Handler Enter the name of the database handler to associate with the table.

If you omit Handler, DBOPEN looks in the DBTable:TableName control group
for the DBHandler option. If this option is not present, DBOPEN defaults to the
ODBC handler.

DFDFile Enter the name of the format file to associate with the table.

If omitted, the Handler tries to query the information from the database. Note
that this may not be supported by all databases.

Mode Enter a string which specifies the mode in which to open the file. Your options
are READ, WRITE, FAIL_IF_EXISTS, and CREATE_IF_NEW.

These may be combined by separating them with an ampersand (&), as in
“READ&WRITE&FAIL_IF_EXISTS”. You can include spaces between the
tokens.

If omitted, the open mode defaults to READ & WRITE & CREATE_IF_NEW.

Truncate Include this parameter to remove all records from a database table. This lets you
use dynamic tables with DAL where the tables are created on a fly, records added,
and then deleted.

The system returns one (1) if the database table was successfully opened and zero (0) if
the table was not opened.

Possible causes of failure include:

* The table does not exist and the Mode parameter did not include the
CREATE_IF_NEW directive.

* The table exists and the Mode parameter included the FAIL_IF_EXISTS directive.
¢ The database handler could not be initialized.
¢ The table format information could not be found.

* The table is opened for exclusive use by another application.

198

Example

See also

DBOpen

Creating Variable Length Records from Flat Files

When you use DAL database functions, such as DBOpen and DBClose, to write flat files,
the record length is usually fixed and data is padded with spaces to equal the maximum
size of the record. You can, however, specify that no trailing spaces are to be output.

You would typically use this capability to output flat files used to create index information
you will import into a 3rd-party application, such as FileNET.

To specify no trailing spaces, include the following syntax in your DAL script:

DBOPEN (FN_LogFile, "ASCII", ".\deflib\filenet.dfd",
"READ&WRITE&TRUNCATE&CREATE_IF_NEW&CLIPSPACES") ;

CLIPSPACES tells the system to remove any trailing spaces.

Keep in mind that CLIPSPACES only affects flat files. For the rest of the databases, each
column is set separately and no trailing space exists on the whole record.

Here is an example:

Procedure Result Explanation

DBOpen (“APPIDX”, 1or0 Will open the table named APPIDX for reading and
“ODBC”, ,’READ”) associate it with the ODBC handler. Table information
will be queried from the database driver, if possible.

DBOPEN("MYTABLE This DAL statement removes all rows from the table
""ODBC","D:\deflib\ named MYTABLE.

mytable.dfd","READ&

WRITE&TRUNCATE"

)

Setting Up Memory Tables on page 50
DBClose on page 192

Database Functions on page 43

199

DBPREPVARS

200

Syntax

Example

See also

Use this procedute/function to cteate the DAL vatiables associated with a database table
record.

DBPrepVars (Table, PrefixVariable)

Parameter Description

Table Enter the name of an open table.

PrefixVariable PrefixVartiable is the name of the DAL variable to associate with the record
fields retrieved by the procedure. The default is Table.

The system optionally returns one (1) on success or zero (0) on failure.

If the PrefixVariable parameter has not been previously defined, it is created. The table
record fields assigned this prefix may be accessed using the dot (.) operator. For example,
assume RECORD is a prefix variable and the table record contains the columns
COMPANY, LOB, and POLICYNUM. The values of the individual fields would be
referenced as RECORD.COMPANY, RECORD.LLOB, and RECORD.POLICYNUM,
respectively.

The actual variable names appended with a prefix are taken from the DFD file associated
with the table you specified in the Table parameter or using the column names found in
the table if there is no DFD file associated with the table.

Possible causes for failure to retrieve the first record include:
* The table is not open, or undefined
* Database specific failure

* Database specific failure

Here is an example:

Procedure Result Explanation

DBPrepVars(“APPIDX” 1 or 0 Creates the DAL vatiables for the APPIDX table. Each
,”"RECORD”); column name is appended with the prefix variable
RECORD.

Database Functions on page 43

DBUNLOADDFD

Syntax

Example

See also

DBUnloadDFD

Use this procedure/function to streamline the use of DAL with ODBC and memory
tables by creating DFD files and using only memory tables. You can use the DALRUN
program to create the DFD files based on a DAL script since it is a one-time operation.
You only need to run the script again after table layout changes.

DBUnloadDFD (TableName, DFDName)

Parameter Description

TableName Enter the name of the table opened with DBOpen procedure.

DFDName Enter the name of the output file. The system overwrite this file if it exists.

Keep in mind...

The file name you pass to this procedure as the output name of the DFD file must be
approptiate for the platform. For instance, .4.4A4.DFD will not wotk for z/OS.

Here is an example of how you could use this procedure in a DAL script:

#rc = DBOpen ("MYTABLE", "ODBC") ;
if #rc = 0
* display error

end
#rc = DBUnloadDFD ("MYTABLE", "aaa.dfd") ;
if #rc =0

* display error
end

This script unloads a DFD file named .4.4.4. DFD which describes the table named
MYTABLE in the current directory.

Database Functions on page 43

201

DBUPDATE

Use this procedure/function to update the database table record which satisfies the key
criteria.

Syntax DBUpdate (Table, Variable, KeyNamel, KeyValuel, KeyName2,
KeyValue2, ...)

Parameter Description

Table Enter the name of an open table.

Vatiable Enter the name of the stem variable that contains the new information. This
vatiable must first be filled by DBFind, DBFirstRec, or DBNextRec, after which
you can modify individual fields before calling DBUpdate.

The default is Table.
KeyName, Each KeyName is the name of a column to search. For some database handlers,
KeyValue, ... it may be case-sensitive.

Each KeyValue is the value of the corresponding KeyName for which to search.
For some database handlers, this may be a case-sensitive comparison.

At least one KeyName/KeyValue pair is required.

The system optionally returns one (1) on success or zero (0) on failure.

The actual variable names appended with a prefix are taken from the DFD file associated
with the table you specified in the Table parameter or using the column names found in
the table if there is no DFD file associated with the table.

This procedure supports a variable number of parameters. As many KeyName and
KeyValue pair combinations required to identify the specific keyed record to retrieve and
update may be defined as parameters.

If the record cannot be retrieved and updated, possible causes include:
* There are no records in the table meeting the given criterion
* The column specified in KeyName is not a searchable column

* Database-specific failure

NOTE: Since an ASCII file is not a database, it has no ability to have keys. Therefore, you
cannot use this function if the MODE is set to “ASCIL”

202

Example

See also

Here is an example:

Procedure Result

DBUpdate

Explanation

DBFirstRec(“APPIDX”, 1 or 0
"RECORD”);

RECORD.RUNDATE
DATE();

DBUpdate(“APPIDX”,
"RECORD”,"UNIQUE
_ID” RECORD.UNIQ
UE_ID)

First retrieve the first record from the APPIDX table into
the variable named RECORD.

Next change the Rundate (assuming that this column is
present in the table) to the current date, and update all
records whose UNIQUE_ID field matches that in the
variable RECORD (assuming that UNIQUE_ID is truly
unique, it will update only the first record in the table).

Database Functions on page 43
DBFind on page 194
DBFirstRec on page 196
DBNextRec on page 197

203

DDTSOURCENAME

204

Syntax

Example

See also

Use this function to return the contents of the Source Name field in the DDT file you are
currently processing. This function is only applicable during Documaker Server
processing.

NOTE: As of version 11.0, DDT fields are physically stored inside FAP files.

DDTSourceName ()

There are no parameters for this function.

Here is an example:

MYROOT = RootName (DDTSourceName ())

Documaker Server Functions on page 58

DEC2HEX

Dec2Hex

Use this function to return the hexadecimal equivalent of an integer value.

Syntax Dec2Hex (Valuel, Digits)
Parameter Description
Valuel This parameter specifies a integer value to be converted into a hexadecimal string
value. If the parameter is not specified as an integer, it will be converted to an
integer before performing the operation.
The largest hexadecimal value supported is FFFFFFFFE. Keep in mind, however,
that hexadecimal values are considered ##signed while integer values can be both
positive and negative.
The largest integer value 2,147,483,647 is 7TFFFFFFF when represented using
hexadecimal. HEX values greater than 80000000 represent negative integer
values. Hex value FFFFFFFF represents the integer value -1.
Digits This parameter defaults to zero (0) and means the resulting hexadecimal value will
not have leading zeros.
You can set this parameter from one (1) to eight (8) to control the minimum
number of hexadecimal digits returned in the string. If you set the minimum too
small to represent the value, it will be ignored.
Example Here is an example:
y = 1000
z = Dec2Hex(y)
Result is z = 3E8
vy = 254220
z = Dec2Hex(y, 8)
Result is z = 0003El0C
y = -2
z = Dec2Hex(y)
Result is z = FFFFFFFE
See also Hex2Dec on page 272

Bit/Binary Functions on page 42

205

DEFORMAT

206

Use this function to remove formatting from a specified string and return the result.

Syntax DeFormat (String, FieldType, Format)

Parameter Description

String Enter a valid string of formatted text. The default is the value of current field text.

FieldType Enter the field type indicator used to format the first parameter. The default is
the value of current field type.

Format Enter the format of the first parameter. This is the field format entered in the
Properties window. The default is the value of current field format.

Some field types do not require format strings to accomplish deformatting. Numeric

fields for example, ignore the format specified when deformatting. Numeric fields retain

the “-” (negative) and “.” (decimal) characters. If these characters were removed during
deformatting a completely different value would result.

Example Here are some examples:
Function Result Explanation
DeFormat “1234.89” Deformat removes commas but retains decimal points for

(“1,234.89”, “n”)

DeFormat “ABCDEF

(“ABC.123.DEF”,
“C7, <3, 1237)

DeFormat 11980.00
(“$$$$$$11,980.00
»)

numeric fields.

Deformat removes the custom format characters (.123.)
after the third character, which were previously added to the
string.

Deformat removes the “$” characters and commas but
retains decimal points for a numeric field.

See also Field Formats on page 62

String Functions on page 78

DELBLANKPAGES

Syntax

Example

See also

DelBlankPages

Use this procedure to remove blank or filler pages in a form set. For instance, you can use
this rule to remove blank pages reserved for OMR marks when creating PDF files.

DelBlankPages ()

There are no parameters for this procedure.

One way to delete blank pages is by using banner page processing in the GenPrint
program. You can specify a DAL script which runs at the start of each transaction. The
DAL script calls the DelBlankPages procedure.

This will cause blank pages to be removed from each transaction. To do this, you need
these INI settings:

< Printer >
EnableTransBanner = True
TransBannerBeginScript = PreBatch
< DALLibraries >
LIB = BANNER

Here is an example of the BANNER.DAL file:

BeginSub PreBatch
DelBlankPages ()
EndSub

NOTE: You can also remove blank or filler pages using custom code or by using the
DPRDelBlankPages procedure, which is available with Docupresentment. See
Using Documaker Bridge for more information on the DPRDelBlankPages
function.

The API to call from custom code is as follows:
DWORD _VMMAPI FAPDelBlankPages (
VMMHANDLE objectH,) /* formset or form handle */

See also the Documaker Server System Reference for information on using
banner processing.

AddBlankPages on page 115

Page Functions on page 75
SuppressBanner on page 400
Miscellaneous Functions on page 73

Creating a DAL Script Library on page 5

207

DELFIELD

Use this procedure/function to delete a field from a section. The system only deletes the
field if found and if it is not the current field.

Syntax DelField (Field, Section, Form, Group)

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

The system returns one (1) if it finds and deletes the field or zero (0) if it does not.

NOTE: The DelField function can not be used in a script called by these AFGJOB rules:
PreTransDAL and PostTransDAL.

Example Lets assume you have the following forms in your form set; Information and Multi-section in
the group named DAL Test Company.

The form named Information is comprised of two sections; Part and Pars2. Part] has these
fields: abc1, abc2, and abc3. Part2 has these fields: abe3 and abc4.

The form named Multi-section is comptised of three sections: Section1, Section2, and
Section3. Section] has objects with these field names: a/n, date, yes/ no, and muiti-line.

Section2 has the same objects with the same field names as Sectionl.
Section3 has following objects: graphic, box, and input value.
The DAL script which is executed is on a field named Tesz on Part1 of Information.

Here are some examples:

Procedure Result Explanation
Return(DelField (1 Abe3 on Information/ Part1 is deleted because the section, field,
"abc3")); and group parameters were omitted specified. The system

defaulted to the current section, form, and group.
Return(DelField (1 Abe3 on Information/Part2 is deleted because you specified
"abc3", "part2")); Part2 and the form defaulted to the current form, Information.

Note that Abc3 will still exist on Information/Part1.

Return(DelField (0 Testis not deleted because it is the current field.
"test”));

208

Procedure

Return(DelField (
"a/n”));

Return(DelField (
"a/n", “Section1”

))s

Return(DelField (
"a/n”, "Section1",
“Multi-section”));

Return(DelField (
"2./1’1”, , “Multi-
section”));

Return(DelField (
lla/n77’ - “DAL
Test Company”));

Return(DelField (
"box”, “Section3”,
“Multi-section™));

Result

0

DelField

Explanation

The field /7 is not deleted because it is not on Information/
Partl.

The field /7 is not deleted because Section1 is not a field on
the current form (Information).

The field a/n on Multi-section/ SectionT is deleted because this
field is on the specified form/section.

The field 2/ n on Multi-section] SectionT is deleted because field is
on the specified form and the section parameter defaults to the
first section on the form.

Field a/n on Multi-section/ Section will still exist.

If you immediately execute the script again, the field /7 on
Image2 would be deleted.

The field a/#n on Multi-section/ Section is deleted because it was
is the first field in the group, DAL Test Company.

Field a/n on Multi-section/ Section2 will still exist.

If you immediately execute the script again, the field /7 on
Image2 would be deleted.

The field Box is not deleted because you can only delete
vatiable fields. You can not delete objects such as boxes,
charts, lines, text labels, text areas, notes, and so on. You can,
however, use the DellLogo function to delete graphics.

See also Field Functions on page 61

Locating Fields on page 64

DellLogo on page 213

209

DELFORM

Use this procedure/function to remove a form from the document.

Syntax DelForm (Form, Group)

Parameter Description

Form Enter the name of the form you want to remove.

Group Enter the name of the group which contains the form you want to remove. The
default is the current group.

The system optionally returns one (1) on success or zero (0) on failure.

Remove the specified form from the document set. Itis not permitted to remove the form
executing the script—the current form.

NOTE: Removing a form means that all data associated with the form will be lost.

Example Here are some examples:

Procedure Result Explanation

DelForm(“FORM”) lor0 Assuming FORM is located in the cutrent group and is not
the current form, it will be deleted.

DelForm (“FORM\3”, 1or0 Locate the thitd occurrence of FORM within the GRP and
“GRP”) delete that form.

See also Section Functions on page 77

210

DELIMAGE

Syntax

Dellmage

Use this procedute/function to remove a section from a form. You can use the Paginate
parameter to specify whether form pagination should occur after the section is deleted.

DelImage (Section, Form, Group, Paginate)

Parameter Description

Section Enter the name of the section.
Form Enter the name of a form in the form set. The default is the current form.
Group Enter the name of a group to contain the specified form. The default is the

current group.

Paginate (Optional) This parameter follows the Group parameter. If you enter anything
other than a zero (0), it tells the system that you want form pagination to occur
upon the successful removal of the section.

If you omit this parameter or enter zero (0), the section is deleted, but no other
sections are moved to occupy the space left vacant. Subsequent form re-
pagination and the application of section origins may change the layout of the
form.

Here is an example:

DelImage("mySection", , , 1)

This example omits the Form and Group parameters, but does include the
Paginate parameter.

Note: If you enter zero (0) or omit this parameter, the function works as it prior
to version 11.2.

The default is zero (0).

The system optionally returns one (1) on success or zero (0) on failure.

This procedure removes the specified section from the form. It cannot delete the current
section. You can delete any section on the current form, as long as it is not the current
section.

If the deleted section is the only section on that page, the system also removes the page
from the form. If other sections occur on that page, space occupied by the deleted section
is left blank.

NOTE: Removing a section means that all data associated with that section will be lost.

This procedure does not update the displayed form. Use the Refresh procedure to update
the display.

211

212

Example

See also

Here are some examples:

Procedure Result

Explanation

Dellmage(“SEC”) lor0

Dellmage(“SEC\3”, 1ot0
,7,GRP”)

Delete the specified section from the current form. This
assumes that the named section is not the current section.

Locate the third occurrence of SEC in the specified GRP. If
this is not the current section, delete the section.

AddImage on page 122
PaginateForm on page 330

Section Functions on page 77

DELLOGO

Syntax

Example

See also

DelLogo

Use this procedure/function to delete a bitmap graphic (LOG) from a form in the curtent

form set.

DelLogo (Graphic, Section, Form, Group)

Parameter Description

Graphic Enter the name of the graphic to be deleted from a section or form. Graphic
names are assigned in Studio or Image Editor.

Section Enter the name of a section that contains the specified graphic. The default is the

current section.

Form Enter the name of a form that contains the section. The default is the current
form.
Group Enter the name of a group to use to locate the specified object. The default is the

current group.

This procedure deletes the specified graphic from the section or form. The system

optionally returns one (1) on success or zero (0) on failure.

NOTE: Use the Refresh procedure after you use the Dell.ogo procedure.

Here are some examples:

Procedure Result Explanation
DelLogo(“LOG1”) 1or0 Deletes LOG1 on the current section, form, group.
DelLogo(“LOG1”, 1or0 Deletes LOG1 on the 3rd occurrence of the named

“IMH1\3”,”UpRate”)

section IMH1 on the form UpRate in the default group.

ChangeLogo on page 162
HaveLogo on page 269
Inline.ogo on page 279
Renamel.ogo on page 356
Logo on page 300
Refresh on page 354

Graphics Functions on page 71

213

DELWIP

214

Syntax

Example

See also

Use this procedure/function to delete the work-in-process and its associated data.

DelWIP ()

There are no parameters for this procedure.

This procedure removes the current work-in-process (form set) information from the
WIP.DFD file, deletes the associated data files (POL and DAT, if they exist) from the
WIP subdirectory, and writes comments to the AFELOG file to note the work-in-process
(form set) was deleted.

This procedure returns success (1) if no error occurred during the complete process,
otherwise a failure (0). This procedure only works with the Entry module, it will not work
in the data entry mode of Studio or Image Editor.

Here is an example:

Procedure Result Explanation

DelWIP () Deletes the work-in-process. Deletes information associated with the work-
in-process and updates the AFELOG file.

WIP Functions on page 88
Documaker Supervisor Guide

Documaker User Guide

DestroyList

DESTROYLIST

Use this function to destroy the XML tree created by the LoadXMIList function.

Syntax DestroyList ($xXMLTree)

Parameter Description

Y%xXMLTree Enter a list type DAL variable that passes the XML tree handle.

The system returns one (1) for success or zero (0) for failure. The returned DAL variable
is of the integer type.

Example For an example, see the DAL script in Scenatio 2 on page 90.

See also XML Functions on page 89
LoadXMILList on page 299

215

DEVICENAME

216

Syntax

Example

See also

Use this function to return the current output device file name, such as the name of the
current print stream output file.

DeviceName ()

There are no parameters for this function.

This example shows an example post-transaction banner DAL script:

IF TotalSheets() > 16000
#COUNTER += 1
CurFile = DeviceName ()
Drive = FileDrive (CurFile)
Path = FilePath(CurFile)
Ext = FileExt (CurFile)
RecipBatch = RecipBatch()
NewFile = FullFileName (Drive, Path,RecipBatch & #COUNTER, Ext)
SetDeviceName (NewFile)
BreakBatch()

END

NOTE: See FileDrive, FileExt, FileName, FilePath, and FullFileName for information on
using DAL functions to manipulate file names.

Keep in mind...

* These print drivers are supported: PCL5, PCL6, PST, MET, AFP, PDF, HTML, and
RTF. These print drivers are not supported: EPT, MDR, and GDI.

* All platforms ate supported, but note that while UniqueString is supported on z/OS,
z/OS does not support PDF or long file names, so the PDF example does not apply
to z/OS.

* Both multi- and single-step processing are supported.

The only DAL function actually involved in splitting the print stream is BreakBatch. The
others make it easier to implement this functionality. For example, since you need to name
the new print stream, you use the SetDeviceName procedure. To find the name of the
current device, you use the DeviceName function. If you need to create unique file names,
you can use the UniqueString function.

NOTE: While you can call all of these DAL functions in Documaker Server or
Documaker Workstation, the BreakBatch and SetDeviceName functions are not
applicable in Documaker Workstation because it does not use the batch printing
engine. DeviceName and UniqueString are applicable to both Documaker
Workstation and Documaker Server.

Printer and Recipient Functions on page 76

BreakBatch on page 157

DeviceName

SetDeviceName on page 370
UniqueString on page 416

217

DIFFDATE

Use this function to determine the number of days difference between two dates and
enter that value.

Syntax DiffDate (Datel, Formatl, Date2, Format2)

Parameter Description

Datel Enter a date string. The system assumes this date string is in the format specified
by the Formatl parameter. The default is the current date.

Formatl Enter a date format string that describes the Datel parameter. The default is date
format 1 (MM/DD?YY).

Date2 Enter a date string. The system assumes this date string is in the format specified
by the Format2 parameter. The default is the cutrent date.

Format2 Enter a date format string that describes the Date2 parameter. The default is date
format 1.

The system returns a positive value if the first date is earlier than the second date. The
result is negative if the first date is later than the second date. Use the DiffDate function
when the chronological order of the dates is important.

Example Here are some examples:

(Assume the current date is 07/01/95.)

Function Result Explanation
DiffDate (“7/ -14 The second parameter defaults to the current date. The resulting
15/95”) difference in days is -14, because datel is later in time than the

current date.

DiffDate (“06/ 30 Note that the result is positive because the first date is earlier than
01/957, “1”) the current date.

DiffDate 12418 Note that two different date formats are used.
(“October 31,

19617, «“4”,

“10/31/95”,

“17’)

See also Date Functions on page 51

Date Formats on page 52

218

DIFFDAYS

DiffDays

Use this function to determine the absolute number of days difference between two dates

and return that value.

Syntax DiffDays (Datel, Formatl, Date2, Format2)
Parameter Description
Datel Enter a date string. The system assumes this date string is in the format

specified by the Formatl parameter. The default is the current date.

Formatl Enter a date format string that describes the Datel parameter. The default is
date format 1 (MM/DD?YY).

Date2 Enter a date string. The system assumes this date string is in the format
specified by the Format2 parameter. The default is the current date.

Format2 Enter a date format string that describes the Date2 parameter. The default is

date format 1.

The system always returns a positive number regardless of which date string parameter is

later in time. The result is always given in number of days regardless of the number of

months and/or years that are included.

Example Here are some examples:

(Assume the current date is 07/01/95.)

Function Result

Explanation

DiffDays (“7/15/957) 14

DiffDays (“06/01 95”, 30
‘417’)

DiffDays (“October 12418
31, 19617, “4”, <10/
31/95’7’ ((l”)

The second parameter defaults to the current date. The
resulting difference in days is 14.

The second parameter defaults to the current date.

Note that two different date formats are used and that the
result includes several years worth of days.

See also Date Functions on page 51
Date Formats on page 52

Using INI Options on page 8

219

DIFFHOURS

Use this function to calculate the absolute time difference in hours between two times.
The system returns an integer value, rounded down to the number of whole hours.

Syntax DiffHours (Timel, Formatl, Time2, Format2)

Parameter Description

Timel Enter a time string. The system assumes this time string is in the format specified
by the Format1 parameter. The default is the current time.

Formatl Enter a time format string that describes the Timel parameter. The defaultis time
format 1 (HH:MM:SS).

Time2 Enter a time string. The system assumes this time string is in the format specified
by the Format2 parameter. The default is the current time.

Format2 Enter a time format string that describes the Time2 parameter. The default is time
format 1.

The difference between two times is always positive. It does not matter which time string
is larger.

Example Here are some examples:

(Assume the cutrent time is 10:30:10 AM)

Function Result Explanation

Return(DiffHours 1 The given time is in format 2. The difference in houts between
(“09:30:00 AM”,2)) 9:30:00 AM and the current time is one hour.
Return(DiffHours 0 The given time is in format 2. The difference in hours between
(«10130:00 AM”,Z)) 10:30:00 AM and the current time is zero.

See also Time Formats on page 80

220

DiffMinutes

DIFFMINUTES

Use this function to calculate the absolute time difference in minutes between two times.
The system returns an integer value.

Syntax DiffMinutes (Timel, Formatl, Time2, Format2)

Parameter Description

Timel Enter a time string. The system assumes this time string is in the format specified
by the Formatl parameter. The default is the current time.

Formatl Enter a time format string that describes the Timel parameter. The default is
time format 1 (HH:MM:SS).

Time2 Enter a time string. The system assumes this time string is in the format specified
by the Format2 parameter. The default is the current time.

Format2 Enter a time format string that describes the Time2 parameter. The default is
time format 1.

The difference between two times is always positive. You can enter the Time parameters
in any order. It does not matter which Time parameter is earlier.

Example Here is an example:

(Assume the current time is 4:04:34 pm.)

Function Result Explanation
DiffMinutes 120 The second parameter defaults to the cutrent time. The
(“2:04:34PM”, 2,) resulting difference in minutes between the given time and the

current time is a total of 120 minutes.

See also Time Formats on page 80

221

DIFFMONTHS

222

Syntax

Example

See also

Use this function to determine the number of months difference between two dates and

return that value.

DiffMonths (Datel,

Parameter Description

Formatl, Date2, Format2)

Datel Enter a date string. The system assumes this date string is in the format specified
by the Formatl parameter. The default is the current date.

Formatl Enter a date format string that describes the Datel parameter. The default is date
format 1 (MM/DD?YY).

Date2 Enter a date string. The system assumes this date string is in the format specified
by the Format2 parameter. The default is the current date.

Format2 Enter a date format string that describes the Date2 parameter. The default is date

format 1.

The system calculates the number of complete months between given dates. For example,
from 2/10 to 3/10 is considered one month, and from 2/10 to 3/15 is also considered

one month.

The system always returns a positive number regardless of which date string parameter is
later in time. The result is always given in number of months regardless of the number of

years included.

Here are some examples:

(Assume the current date is 07/01/95.)

Function Result

Explanation

DiffMonths 0
(“7/15/95”)

DiffMonths 2
(“05/01/95”,
«“17)

DiffMonths 408
(“October 31,

19617, 4,
«“10/31/95”,
‘(17’)

The second parameter defaults to the current date. Since the value
does not equal an entire month the result is 0.

The second parameter defaults to the current date.

Note that the result includes several years worth of months. In
addition, two different date formats are used.

Date Functions on page 51

Date Formats on page 52

Using INI Options on page 8

DiffSeconds

DIFFSECONDS

Use this function to calculate the absolute time difference in seconds between two times.
The system returns an integer value.

Syntax DiffSeconds (Timel, Formatl, Time2, Format2)

Parameter Description

Timel Enter a time string. The system assumes this time string is in the format specified
by the Formatl parameter. The default is the current time.

Formatl Enter a time format string that describes the Timel parameter. The defaultis time
format 1 (HH:MM:SS).

Time2 Enter a time stting. The system assumes this time string is in the format specified
by the Format2 parameter. The default is the current time.

Format2 Enter a time format string that describes the Time2 parameter. The defaultis time
format 1.

The difference between two times is always positive. It does not matter which time string
is larger.

Example Here is an example:

(Assume the current time is 4:04:34 pm.)

Function Result Explanation
DiffSeconds 7199 The second parameter defaults to the current time. The
(“2:04:35PM”, 2,) resulting difference in seconds between the given time and the

current time is a total of 7199 seconds.

See also Time Formats on page 80

223

DIFFTIME

Syntax

Example

See also

224

Use this function to calculate the difference in time between two times. The system
returns a signed (positive or negative) value, given in seconds.

DiffTime (Timel, Formatl, Time2, Format2)

Parameter Description

Timel Enter a time string. The system assumes this time string is in the format specified
by the Formatl parameter. The default is the current time.

Formatl Enter a time format string that describes the Timel parameter. The default is
time format 1 (HH:MM:SS).

Time2 Enter a time string. The system assumes this time string is in the format specified
by the Format2 parameter. The default is the current time.

Format2 Enter a time format string that describes the Time2 parameter. The default is
time format 1.

The system returns a positive value if Timel is earlier than Time2. The result is negative
if Time2 is earlier than Timel.

Here is an example:

(Assume the cutrent time is 4:06:50 pm.)

Function Result Explanation
DiffTime +10 The second parameter defaults to the current time. The
(“4:06:40PM”, 2) resulting difference in time is +10 seconds.

Time Formats on page 80

DIFFYEARS

Syntax

Example

DiffYears

Use this function to determine the number of years difference between two dates and
return that value.

DiffYears (Datel, Formatl, Date2, Format2)

Parameter Description

Datel Enter a date string. The system assumes this date string is in the format specified
by the Formatl parameter. The default is the current date.

Formatl Enter a date format string that describes the Datel parameter. The default is date
format 1 (MM/DD?YY).

Date2 Enter a date string. The system assumes this date string is in the format specified
by the Format2 parameter. The default is the current date.

Format2 Enter a date format string that describes the Date2 parameter. The default is date
format 1.

The system calculates the number of complete years between the given dates. For
example, from 2/10/08 to 2/10/09 is considered one year, while 3/1/08 to 2/29/09 is
considered zero years.

The system always returns a positive number, regardless of which date string parameter
occurs later.

NOTE: When calculating leap years, February 28th and 29th are considered equal, since
both represent the last day of February. For example, February 29, 2008 to
February 28, 2009, is considered one year.

Here are some examples (assume the curtent date is 07/01/09):

01/31/2008 to 01/30/2009 = zero yeats difference (it will not be a year until 01,/31,/2009
as the year 2008 is a leap year)

Function Result Explanation

DiffYears (“7/15/ 0 The second parameter defaults to the current date. Since the
09”) value is not an entire year, the result is zero (0).

DiffYears (“01/31/ 0 The result will not become one (1) until Januaty 31, 2009.

2009”, “477, “01/
30/20097, «17’)

DiffYears 4 The second patameter defaults to the current date.
(“01/010/05»’ “1”)

DiffYears 34 Note that the result includes numerous years. In addition, two
(“October 31, different date formats are used.

19757” 664”’ C‘10/

31/0977, 651)))

225

See also Date Functions on page 51
Date Formats on page 52

Using INI Options on page 8

226

DUPFORM

Syntax

Syntax

DupForm

Use this procedure/function to duplicate a form. No data is duplicated, except global data
that propagates in naturally.

NOTE: For the system to be able to duplicate a form, you must first check the Multicopy
option in that form’s Properties window.

DupForm (Form, Group)

Parameter Description

Form Enter the name of the form you want to duplicate

Grouj Optional) Enter the name of the group if the form is not in the cutrent group.
p P group group

This procedure locates the named form and duplicates it if the form flags indicate that it
can be duplicated. The system inserts the duplicated form immediately after the original.
You cannot specify another insertion point.

If the procedure is successful in duplicating the form, it returns a non-zero value,
otherwise zero (0) is returned. This procedure can fail for these reasons:

* Could not locate the form or form group specified
* The Multicopy option is not checked for the form
* Lack of available memory

You can only use this procedure in scripts hosted by AFEMain or other Entry-related
applications.

AddForm on page 119
AddForm_Propagate on page 120
CopyForm on page 173

WIP Functions on page 88

227

EMBEDLOGO

228

Syntax

Example

See also

Use this procedure/function to save graphic data, including full color data, inside the
NAFILE.DAT file. This lets you capture and archive form set specific section data such
as pictures, scans, or signatures along with the form set.

EmbedLogo (Graphic, Section, Form, Group)

Parameter Description
Graphic Enter the name of the graphic you want to embed.
Section Enter the name of a section that contains the graphic. If the current section does

not contain the graphic being referenced this parameter is required to locate the
section; otherwise this parameter is optional.

Form Enter the name of the form that contains the graphic you specified. If the
current form does not contain the section for the graphic being referenced this
parameter is required to locate the graphic; otherwise, this parameter is optional.

Group Enter the name of the form group that contains the graphic you specified. If the
current form is not in the form group that contains the graphic being referenced
this parameter is required to locate the graphic; otherwise, this parameter is
optional.

Execute this DAL procedure for each graphic on the form or section. This procedure sets
the embedded graphic flag in the graphic bitmap structure. Documaker Workstation and
Documaker Server check for this flag when they write to the NAFILE.DAT file.

If the flag is not set, the graphic data is not written to the NAFILE.DAT file. Place this
procedure in the data field of the IF or DAL rule when used with Documaker Server.

This procedure returns success (1) if no error occurred during the complete process,
otherwise a failure (0).

NOTE: If the L.oadCordFAP in the RunMode control group is set to Noj; then
Documaker Server execution requires you to include the section level rule,
CheckImagel.oaded.

Here is an example:

Procedure Result Explanation
rc = 1 The embedded graphic flag in the JaneDoe
EmbedLogo("JaneDoe"); bitmap structure will be set to On.

Section Functions on page 77

EXISTS

Syntax

Example

See also

Exists

Use this function to determine if a DAL symbolic variable exists. This can be useful
because referencing a variable that does not exist will cause a runtime syntax error. You
can use this function to verify that DAL variables which are created external to your script
have been created before you try to reference them.

Exists (Symbol)

Parameter Description

Symbol Specify the name of a DAL symbolic variable. This can be from an expression
or from another string variable.

The system returns (1) if the variable exists, otherwise it returns zero (0).

Here is an example. Assume the string variables 'tbl_1', 'tbl_2', 'tbl_3', and "tbl_4'
respectively contain: 'Ford, 'Cher', 'Olds', and '/

If Exists("tbl_" & #line) Then
Return (GetValue("tbl_" & #line))
Else
Return (" ")
End

In this example, if #/ineis set to 3, the string 'O/ds' is returned. If #/ine is set to 5, a 'blank’
is returned.

GetValue on page 260

Miscellaneous Functions on page 73

229

FIELDFORMAT

230

Syntax

Example

See also

Use this function to return the format string associated with the field’s type.

FieldFormat (Field, Section, Form, Group)

Parameter Description

Field Enter the name of a field. The default is the name of the current field.

Section Enter the name of the section that contains the field you specified in the Field
parameter. The default is the current section.

Form Enter the name of the form that contains the section and/or field you specified.
The default is the cutrent form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Certain field types (like date and numeric data types) will sometimes have additional
format information specified. Typically, a user will not be concerned with this type since
the fields are designed appropriately for data entry. However, a script may be written that
does not assume the field’s format and must query the information to be accurate.

The value returned from this function is a string. If a field cannot be located matching the
specified information, an empty string will be returned.

Here are some examples:

Function Result Explanation

Return(FieldF Z279.9 Locate the field and return its format. This example assumes that the

ormat (9 field was a numeric type with a format of Z79.99.

“First”))

Return(FieldF This example returns an empty string. This either means the field
ormat (has no format string or could not be located.

“Second”))

Return(FieldF 1/4 Locate the form specified within the current form group. Then
ormat (locate Third anywhere on that form. If found, the field’s format is
“Third”, , returned which may be an empty string. This example returned a
“FRM”)) format “1/4” which is a patticular date format.

Field Functions on page 61
Field Formats on page 62
Locating Fields on page 64

FIELDNAME

Syntax

Example

FieldName

Use this function to return the name of a field relative to another field.

FieldName (Count, Field, Section, Form, Group)

Parameter Description

Count Enter positive or negative numbet. The system uses your entry to move beyond
the field you specify. The default is zero (0).

Field Enter the name of a field. The default is the current section.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (¥) when searching for field,
section, or form names.

At first glance, FieldName may seem like an odd function. After all, one of its parameters
is a field name. This function first locates the specified field. If you omit the FieldName
parameter, the system uses the current field. Then the count is used to move to another
field on the section.

A positive or negative number can be used for the count parameter. A positive count
moves forward from the located field. A negative count moves backward from the located
field. Forward and backward refer to the order that the field appears in the section's edit
list, not necessarily to physical position on the section. All fields are included in the search
regardless of whether they are editable or not.

If the system cannot find a field that matches the information you specified, it returns an
empty string.

Here are some examples: (Assume the section has three fields named First, Second, and
Third, which occur in that order.)

Function Result Explanation

Return(Field Third Locate the field named Second and then move to the next field.
Name (1,
“Second”))

231

232

See also

Function Result

Return(Field First
Name (-1,
“Second”))

Return(Field aname
Name (8, or “
“MyField”, ,

“FRM)

Explanation

Locate the field named Second and then move to the previous field.

Locate the form specified within the cutrent form group. Then locate
MyField anywhere on that form. If found, move forward eight more
fields. If a field matches this criteria, its name will be returned,
otherwise an empty string is returned.

Name Functions on page

Field Formats on page 62

74

Locating Fields on page 64

FieldPrompt

FIELDPROMPT

Use this function to return the text of the prompt for a field.

Syntax FieldPrompt (Field, Section, Form, Group)

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

The system returns a string unless it cannot find a field that matches your criteria. If the
system cannot find a field that matches the criteria you specified, it returns an empty
string.

NOTE: For optimal performance, avoid using wildcards (¥) when searching for field,
section, or form names.

Example Here are some examples:
Function Result Explanation
Return(FieldPrompt(Name Locates the field on the current section and returns its
“Name”)) prompt.
Return(FieldPrompt(Street Locates the field on the cutrent section and returns its
“Address1”)) Address prompt.

See also Field Functions on page 61
Field Formats on page 62
Locating Fields on page 64

233

FIELDRULE

234

Syntax

Use this procedute/function when you need to execute a field-level rule in a DAL script.
See the Rules Reference for more information on field-level rules.

NOTE: The FieldRule procedure requires a section to be able to process. It cannot be
used in an external DAL script called by the SETRCPTB.DAT file, a custom rule,
the Reciplf rule, or placed in the SETRCPTB.DAT custom rule parameters field.

FieldRule ()

There are no parameters for this procedure.

This procedure lets you execute field-level rules from within a DAL script. The DAL
script is called by one of these Documaker processing rules: DAL or IF. This procedure
requires the same number of parameters as are required for a field level rule. While not all
fields must contain data, you must include the correct number of delimiters.

You can use overflow variables if the called field level rule supports overflow. Generally,
the IF rule does not support overflow but it can be supported using the FieldRule
procedure. See the examples for this procedure for more information.

NOTE: All semicolons in a field-level rule st be replaced with two colons (). If any of
your DDT parameters contain quotation marks (), use instead apostrophes (")
to send in the DDT information. Here is an example:

Here is a list of parameters for this procedure with sample entries. The entries illustrate
the following example. An asterisk indicates the parameter is generally required,
depending on the rule you are using.

Parameter Description Example
File number * (required by TbILkUp) 0
Record number * (required for overflow) 1

Source field name
Soutce field offset
Source field length
Destination field name
Destination field offset

Destination field length

* (required by TblText)

*

Town_State

55

9
Rec-Town_State
0

25

Example

See also

FieldRule

Parameter Description Example
Format mask & blank
Field rule name & KickToWip
Rule parameters * (also called data) blank
Flagl (also called not required) N

Flag2 (also called host required) N

Flag3 (also called gperator required) Y

Flag4 (also called ezzher required) N

X position 3001

Y position 5602
Font ID 11010

For example, suppose you want the transaction sent to WIP when the record
PRODAREC, at offset 11, contains a string of four characters (“0000”) starting at
position 20. And, you always want the system to get 25 characters of data from
PRODAREQC, starting at position 65. Furthermore, you want the system to remove any
trailing spaces.

For this scenatio, you would use the FieldRule procedure to call the KickToWIP field
level rule and use the standard IF rule to do the rest. The script for this example would
look like this:

::A={11, PRODAREC 20,4}::B={11,PRODAREC 65,25}:: IF(A='0000")::

FieldRule(“::0::1::Town_State::55:9::;Rec-Town_State::0::25::::
KickToWip::::N::N::Y::N::3001::5602::11010::”) ::Else::B=Trim(B) ::
Return(""" & B & """)::End::Return(""" & 1 & """);

Here’s another example. Suppose you want to move multiple lines of text from [N number
of specific external extract records to the output buffer when the HEADERREC record
(at offset 11) contains an F in position 1.

For this scenatio, you could use the FieldRule procedure to call the MoveExt rule and use
the standard IF rule to do the rest. The script for this example would look like this:

CON={11,HEADERREC 1,1}:: A=FIELDRULE("::0::1::E::45::4::PREM/OPS
RATE1::0::4::::moveext::@GETRECSUSED, QCPVR5, OVSYM1 /

11,CLSSCDREC: :N::N::N::N::::::::")::1f(CON="'F') : :return("™" & A &
"Av)::end ;N;N;Y;N;12461;2119;16010

Documaker Server Functions on page 58
Field Formats on page 62
Locating Fields on page 64

235

FIELDTYPE

236

Syntax

Example

See also

Use this function to return the data type information associated with the section field.

FieldType (Field, Section, Form, Group)

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

Typically, a field type will be a token of one or two characters used to control the display
of the variable data in the field. Typically, a user will not be concerned with this value,
since the form should be designed appropriately for data entry. However, a script may be
written that does not assume the field’s type and must query the information to be
accurate.

The value returned from this function is a string. If a field cannot be located matching the
specified information, an empty string will be returned.

Here are some examples:

Function Result Explanation

Return(FieldTy n Locate the field and return its type. This example assumes that the

pe(“First™)) field was a numeric type.

Return(FieldTy k This example returns K which corresponds to the International

pe(“Second”)) Alphanumeric data type.

Return(FieldTy m Locate the form specified within the current form group. Then

pe(“MyField”,, locate MyField anywhere on that form. If found, the field’s type is

“FRM”)) returned. In this example, M corresponds with the X or Space field
type.

Field Functions on page 61
Field Formats on page 62
Locating Fields on page 64

FIELDX

Syntax

Example

See also

FieldX

Use this function to return the X coordinate of a variable field object.

FieldX (Field, Section, Form, Group)

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of the section that contains the field you specified. The default is

the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

You can use this function and the FieldY function to get the X and Y coordinates of a
field object. Coordinates are stored in FAP units — 2400 units per inch. This means that
an object located at (2400, 2400) occurs one inch from the top and one inch from the left.

Here ate some examples:

(Assume the field named MyField is located at X coordinate 1250.)

Function Result

Explanation

Return(FieldX()) 1250

Return (FieldX 1250
(“MyField”)

Return(FieldX(“My 1250
Field”, “IMG\2”,
»GRP™)

Returns the current field’s X coordinate.

Returns the field’s X coordinate if the field is located on the
current section.

Returns the X coordinate of MyField located on the second
occurrence of IMG within the specified form set group.

Field Functions on page 61
Field Formats on page 62
Locating Fields on page 64
FieldY on page 238

237

FIELDY

Use this function to return the Y coordinate of a variable field object.

Syntax FieldYy (Field, Section, Form, Group)

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of the section that contains the field you specified. The default
is the cutrent section.

Form Enter the name of the form that contains the section and/or field you specified.
The default is the cutrent form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

You can use this function and the FieldX function to get the X and Y coordinates of a
field object. Coordinates are stored in FAP units — 2400 units per inch. This means that
an object located at (2400, 2400) occurs one inch from the top and one inch from the left.

Example Here are some examples:

(Assume the field named MyField is located at Y coordinate 6020.)

Function Result Explanation

Return(FieldY()) 6020 Return the current field’s Y coordinate.

Return(FieldY 6020 Returns the field’s Y coordinate if located on the cutrent
(“MyField”)) section.

Return(FieldY(“My 6020 Returns the first occurrence of MyField on the specified form.
Field”, , “FRM”))

See also Field Functions on page 61
Field Formats on page 62
Locating Fields on page 64
FieldX on page 237

238

FILEDRIVE

Use this function to get the drive component of a file name.

Syntax FileDrive (FullFileName)

Parameter Description

FileDrive

FullFileName Enter a string that contains a fully qualified file name, such as:

“d:\mypath\myfile.ext”

The system returns a string that contains the drive component of that file name.

Example Here is an example:
MYDRIVE = FileDrive("d:\mypath\myfile.ext")
In this example, MYDRIVE would contain:

ng:

See also FilePath on page 242
FileName on page 241
FileExt on page 240
FullFileName on page 248

File and Path Functions on page 68

239

FILEEXT

Use this function to get the extension component of a file name.

Syntax FileExt (FullFileName)

Parameter Description

FullFileName Enter a string that contains a fully qualified file name, such as:

“d: \mypath\myfile.ext"”

The system returns a string that contains the extension component of that file name.

Example Here is an example:
MYEXT = FileExt ("d:\mypath\myfile.ext")

In this example MYEXT would contain:

“ext”

See also File and Path Functions on page 68
FullFileName on page 248
FileDrive on page 239
FilePath on page 242

FileName on page 241

240

FileName

FILENAME

Use this function to get the name component of a file name.

Syntax FileName (FullFileName)

Parameter Description

FullFileName Enter a string that contains a fully qualified file name, such as:

“d:\mypath\myfile.ext”

The system returns a string that contains the name component of that file name.

Example Here is an example:
MYNAME = FileName ("d:\mypath\myfile.ext")

In this example, MYNAME would contain:
“myfile”
See also File and Path Functions on page 68
FullFileName on page 248
FileDrive on page 239
FilePath on page 242

FileExt on page 240

241

FILEPATH

Use this function to get the path component of a file name.

Syntax FilePath (FullFileName)

Parameter Description

FullFileName Enter a string that contains a fully qualified file name, such as:

“d: \mypath\myfile.ext"”

The system returns a string that contains the path component of that file name.

Example Here is an example:
MYPATH = FilePath("d:\mypath\myfile.ext")
In this example, MYPATH would contain:
Nmypath\”’

See also File and Path Functions on page 68
FullFileName on page 248
FileDrive on page 239
FileExt on page 240
FileName on page 241

242

FIND

Syntax

Example

See also

Find

Use this function to return the position of a substring within another string.

Find (String, Substring, Integer)

Parameter Description

String Enter a valid string. The default is the value of the current field.
Substring A string of one or more characters that will be located in parameter one.
Integer Choose from these options:

0 - a left to right search
1 - a right to left search

Both search options return a position relative to the first (left-hand) character of
the string parameter.

The default is zero (0).

The system returns a zero (0) if the substring is not found in the search string, otherwise
it returns the position of the substring. The search is not case sensitive.

Here are some examples:

(Assume the current field contains the text Insured's responsibility.)

Function Result Explanation

Return(Find (, 11 Defaults to the cutrent field and finds the first occurrence of

“RESP”)) “RESP” at position 11. Note that the search is not case
sensitive.

Return(Find (, 0 The term “usual and customary” is not found in the current

“usual and field.

customary’’))

Return(Find 10
(“Complete all the
blanks.”, “all”’))

Return(Find 10
(“Complete all the
blanks.”, “all”, 1))

Searching left to right, “all” was first found at position 10.

Searching right to left, “all” was first found at position 10.

String Functions on page 78

243

FORMAT

Use this function to format a string field and return the result.

Syntax Format (String, FieldType, Format)

Parameter Description

String Enter a valid string of non-formatted text. The default is the current field.

FieldType Enter the field type indicator you want the system to use to format the first
parameter. The default is the current field type.

Format Enter the field format you want the system to use to format the first parameter.
The default is the current field format.

The system applies formatting to a given string. Some field types do not require format
strings to accomplish formatting. For example, the X field type indicator automatically
uppercases all letters in a string without requiring a format.

NOTE: The variable field must be the same length as the format mask.

Example Here are some examples:
Function Result Explanation
Return(Format 1,234.89 Formats the field as numeric, by adding a comma and using
(“1234.89”, “n” two decimal positions, as specified in the Format parameter.

“222,222.997))

Return(Format ABC.123. Custom formats the field by adding .723. after the third

(“ABCDEF” DEF input character.

“C”,«3,123.7)

Return(Format 222-33-4444 Formats the field as a numeric, by adding hyphens as
(42223344447, specified in the Format parameter.

“n”, “999-99-

9999))

See also Field Formats on page 62

String Functions on page 78

244

FORMDESC

Syntax

Example

See also

FormDesc

Use this function to retrieve the description specified in the FORM.DAT file for a specific
form.

FormDesc (Count, StartForm, Group)

Parameter Description

Count An index reference to locate a form before or after the specified form. To move
backwards, enter a negative number. The default is zero (0).

StartForm Enter the name of a form from which to start the search. The default is the
current form.

Group Enter the name of a group which contains the form you specified. The default
is the current group.

The system lets you get the description specified in the FORM.DAT file for the specified
form, relative to a known form. If you omit all parameters, the system returns the
description of the current form.

The Count parameter tells the system to move a number of forms forwards or backwards
from the specified form before it returns the form description.

If the system cannot locate the starting form or the Count parameter tells the system to
move beyond the number of forms contained in the group, the system returns an empty
string.

Here are some examples:

Assume there are three forms: FORMA, FORMB, and FORMC. Also assume the current
form is FORMB and its desctiption is Fire Form # 2345.

Function Result Explanation

FormDesc() Fire No parameters will result in returning the current form
Form# description.
2345

FormDesc (2, “FormC”) Empty Returns an empty string if the form cannot be located.

string
FormDesc (-1, Fire Locates FORMC in the current group. Then returns the
“FormC”) Form# description of the form that occurs before this form.
2345

FormName on page 246
ImageName on page 274
Name Functions on page 74

DAL Script Examples on page 35

245

FORMNAME

246

Syntax

Example

See also

Use this function to get the name from a form.

FormName (Count, StartForm, Group)

Parameter Description

Count Enter an index reference to use to locate a form before or after the specified
form. The default is zeto (0).

Startform Enter the name of the form from which to start the search. The default is the
current form.

Group Enter the name of a group that contains the form you specified. The default is
the current group.

The system returns the name of the form it located.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

The system lets you get the name of a form relative to a known form. If you omit all
parameters, the system returns the name of the current form. The Count parameter
moves a number of forms forwards or backwards (negative) from a located form before
returning the form name.

If the starting form cannot be located or the Count parameter causes the system to move
beyond the number of forms contained in the group, the system returns an empty string.

If there is more than one copy of the form, the name returned contains the occurrence
notation used by DAL functions to locate forms. For instance, a name like FORM\3
identifies the third copy of FORM within the same group.

Here are some examples:

(Assume there are three forms: FORMA, FORMB, and FORMC. Also assume the
current form is FORMB.)

Function Result Explanation

FormName() FORMB No parameters will result in returning the current form name.

FormName (- FORMB Locates FORMC in the current group. Then returns the name of
1, “FormC”) the form that occurs before this form.

FormDesc on page 245

Name Functions on page 74

FrenchNumText

FRENCHNUMTEXT

This function is a French version of the NumText function. The NumText function
provides written numeric equivalents, such as One Hundred and Twenty for 120. The
FrenchNumText function serves the same purpose, but its output is in French.

Syntax FrenchNumText (Number, DollarWord, CentWord, Decimode)
Parameter Description
Number Enter a valid amount. The default is the current field value.

DollarWord ~ Enter the word you want to use instead of do/lars. The default is:

“dollars et”

CentWord Enter the word you want to use instead of cents. The default is:
“cents”

Decimode Choose from these options:

1 - numeric decimal amount

2 - spell decimal amount

3 - suppress zero, numeric decimal amount
4 - suppress zero, spell decimal amount

The default is one (1).

Example Please note the system returns only lowercase letters. For instance, if you entered
2000000, the system would return:

deux millions de dollars et 0 cents

(Assume the current field value is 2,000,000.)

Function Result Explanation

Return(French deux millions The current field value is returned in a written form using

NumText ()) de dollars et 0 dollars et and cents. The zero (0) is displayed in a numeric
cents decimal amount format.

Return(French cent vingt-trois ~ The written equivalent for 123.45 is displayed using

NumText dollars et Decimode 2 with the decimal spelled out.
(123.45,,,2)) quarante-cing
cents

See also String Functions on page 78

NumText on page 324

247

FULLFILENAME

248

Syntax

See also

Use this function to make the full file name.

FullFileName (Drive, Path, Name, Ext)

Parameter Description

Drive Enter the drive letter, followed by a colon.
Path Enter the full path.

Name Enter the file name, omitting the extension.
Ext Enter the file extension.

The system accepts a string containing the drive, path, name, and extension components
of a fully qualified file name, assembles them, and returns a string that contains the full
file name.

Here is an example:
MYFILENAME = FullFileName ("d:", "\mypath\", "myfile",".ext")

In this example, MYFILENAME would contain:

“A\mpypath\myfile.ext”

NOTE: If, in this example, \mypath had no trailing slash, the FullFileName function
would have added it for you.

Here is 2 z/OS example:
FullFileName (, "DD:DEFLIB() ", "MEMBER")

In this example, the result would be:

DD:DEFIIB(MEMBER)

File and Path Functions on page 68
FileDrive on page 239

FileExt on page 240

FileName on page 241

FilePath on page 242

GetAttachVAR

GETATTACHVAR

Use this function to return the string value of an attachment variable. You can use this
function when creating print comments using Documaker Bridge.

Syntax GetAttachVar (Name, DSIqueue)
Parameter Description
Name Enter the name of the attachment variable.
DSIqueue (Optional) Enter one (1) for input or two (2) for output. The default is one (1).

See also AddAttachVAR on page 114
RemoveAttachVAR on page 355

Docupresentment Functions on page 60

249

GETDATA

250

Syntax

Example

Use this function to retrieve data from a flat file extract file.

NOTE: The SrchData function, released in version 11.1 and included in version 11.0,
patch 32, lets you include spaces in the search criteria, whereas the GetData
function does not. Here is an example:

SrchData("11,HEADERREC,21(A,B, ,D)", 40, 20)
SrchData ("'!/XML/Form[@form="PP 03 02"]/@form", 1,10)

Note the space between .4,B, ,D and PP 03 02.The ability to include spaces in
search criteria is important when you are using XML XPaths.

Use this function during Documaker Server processing, after the extract file has been
loaded — after the LoadExtractData rule has been run.

GetData (SearchMask, Occurence)

Parameter Description

SearchMask Enter the criteria that defines what data you want the system to look for.
Format the search mask as shown here:

“extract search mask offset, length”

Occuttrence This parameter lets you specify which occurrence of the data to get. The
default is the first occurrence.

The system returns the data from the extract file based on the search mask.

Here is an example:
GetData("11,HEADEREC 40,17")

In this example, the GetData function finds the extract record designated by
“11,HEADEREC” and returns the data at offset 40 for a length of 17. The GetData
function does not format the data.

You can use an occurrence variable to get the Nth iteration of the data. Enter zero (0) to
return the first record, one (1) to return the second, and so on. Here is an example:

GetData ("11,NAMEREC 40,17", 2);

This example finds the 3rd record designated by “11,NAMEREC” and returns the data
from offset 40 for a length of 17.

Here is an example that gets data from an XML extract file:

value = Trim (GetData ("!Diamond/Data/Client/Accounts/Account/
Policies/Policy/PolicyImages/PolicyImage/premium_fullterm 1,7"));
If Trim (GetData ("!Diamond/Data/Client/Accounts/Account/Policies/
Policy/PolicyImages/PolicyImage/premium_fullterm 1,7")) = "2549"
Then;

Return ("equal - " & GetData ("!/descendant::Personalauto/

child: :Vehicles/child: :Vehicle[**vehovfsym**]/vehicle_num 1,2")
Else Return ("not equal - " & value)

End;

GetData

In this example, the GetData function checks to see if the specified XML extract record
equals 2549, if it does, the function returns the string: equal - concatenated with the value
from another XML extract record. If not, it returns the string: #of equal - concatenated to
a value from a different XML extract record.

See also SrchData on page 392

Documaker Server Functions on page 58

251

GETFORMATTRIB

Use this function to return the content of the named user attribute (metadata) for the
form you specify.

Syntax GetFormAttrib (Name, Form, Group)

Parameter Description

Name Enter the name of the user attributes (metadata) to retrieve.

Form Enter the name of a form from which to retrieve data. The default is the current
form.

Group Enter the name of the group that contains the specified form. The default is the

cutrent group.

If you omit both the Form and Group parameters, the system chooses the current form,
based on where the script executes. During Entry (via the Workstation or the plug-in) this
will be the form that contains the DAL script. During Documaker Server processing, the
first logical form found within the document set is the current form, unless the script is
executed from a section or field rule.

If you include the Form parameter, but omit the Group parameter, the system looks for
the form within the current group of forms, as defined by where the script executes.
During Entry (via the Workstation or the WIP Edit plug-in) this is the group that contains
the form where the script executes. During Documaker Server processing, the first logical
group found within the document set is the current group, unless the script is executed
from a section or field rule.

If you omit the Form parameter but include the Group parameter, the system locates the
first form within the group you specified.

If you define an attribute, form, or group that is not included in the current document,
the system returns an empty string,.

Example For the following examples assume that form 1111 has the following metadata. Also
assume form 9999 was not selected or triggered.

Name Value

Offer Good until cancelled

Codes R4,79, ZW

Here is the first example:

xx = GetFormAttrib("Offer", "1111")
In this example the variable xx is set to:

Good until cancelled
Here is another example:

xx = GetFormAttrib("Codes", "9999")

252

GetFormAttrib

In this example the variable xx is set to an empty string.

See also PutFormAttrib on page 344

Have Functions on page 69

253

GETINIBooOL

254

Syntax

Example

Use this function to retrieve from cache memory the Boolean value of an INI control
group and option.

GetINIBool (Context, Group, Option, Default)

Parameter Description

Context (Optional) A name (valid name) associated to a set of INI control groups and
options that have been loaded into cache memory.

Group Enter the group name (valid string) which contains the INI option Boolean value
to retrieve.

Option Enter the option name (valid string) which contains the INI Boolean value to
retrieve. If the control group and option does not contain a Boolean value, the
system returns a zero (0).

Default (Optional) Enter the default string value to return from the function instead of
the actual control group and option value.

The system returns one (1) if no error occurs, otherwise a zero (0) is returned.

If you omit the context, the function searches all INI files loaded in memory. If there are
multiple control groups and options with the same name, this function returns the first
INI control group and option string it finds.

If a context name is present, this function only searches for the control group and option
in the set of control groups and options associated with the context name.

Let’s assume that an INI file, TEST7.INI, was loaded with the context name, MT'F. The
TEST1.INI file contains this control group and option:

< Control >
LogEnabled = Yes

In addition, the FSTUSER.INI file contains this control group and option:

< Control >
LogEnabled = No

Plus, the FSISYS.INI file contains this control group and option:

< Control >
LogEnabled = Yes

Based on this scenario, this table shows and explains several possible results.

Function Result Explanation

bool_value = The variable bool_value The function scanned the loaded INI control
GetINIBool now contains a zero (0). groups and options. It found the specified
(”Control” control group and option in the FSTUSER.INI
“,LogEnabl é a; first. The FSIUSER.INI set is searched first,

followed by the FSISYS.INI set and then any
other loaded sets, in order.

See also

Function Result

bool_value = The variable bool_value
GetINIBool now contains a one (1).
(“MVF’),

”Control”,

“LogEnabled”);

bool_value = The variable bool_value
GetINIBool now contains a one (1).
(“MVF”, 1f Controland LogEnabled
”’Control”, are not found,

“LogEnabled”, 1);

string_value is set to zero

0).

GetINIBool

Explanation

The function scans only the control group and
option set associated with the context name

MVF.

The function scans only the control group and
option set associated with the context name

MIVF.

INI Functions on page 70
Using INI Options on page 8
GetINIString on page 256
LoadINIFile on page 297

255

GETINISTRING

Use this function to retrieve from cache memory the specified INI control group and option
string.

Syntax GetINIString (Context, Group, Option, Default)

Parameter Description

Context (Optional) A name (valid string) associated to a set of INI control groups and
options which have been loaded into cache memory.

Group Enter the control group name (valid string) which contains the INI option stting
to retrieve.

Option Enter the option name (valid string) which contains the INI string value to
retrieve. If the control group and option does not contain a string, the system
returns a null value.

Default (Optional) Enter the default string value to return from the function instead of the
actual control group and option value.

The function returns one (1) if no error occurs, otherwise a zero (0) is returned.

If you omit the context, the function searches all INI files loaded in memory. If there are
multiple control groups and options with the same name, this function returns the first
INI control group and option string it finds.

If a context name is present, this function only searches for the control group and option in
the set of control groups and options associated with the context name.

Example Assume an INI file (TEST1.INI) was loaded with the context name, M”17 The
TEST1.INI file contains this control group and option:

< Control >
Title = MVV'’s group/option

In addition, the FSTUSER.INI file contains this control group and option:

< Control >
Title = Test group 1

Plus, the FSISYS.INI file contains this control group and option:

< Control >
Title = FAP entry 1

Based on this scenario, the following table shows and explains several possible results.

256

Function

Result

GetINIString

Explanation

string_value = GetINIString
(,”Control”, “Title”);

string_value = GetINIString
(“MVEF”, ”Control”,
“Title”);

string_value = GetINIString
(“MVF”, ”Control”, “Title”,
“Bob’s group/option”);

The variable string_value now
contains this string:

Test group 1

The variable string_value now
contains this string:

MUVF’s group/ option

The variable s#ring_valne now
contains this string:

MTVF’s group/ option

If Control and Title are not

found, szring_value is set to:
Bob’s group/ option

The function scanned the
loaded INI control groups and
options. It found the specified
control group and option in the
FSIUSER.INI first. The
FSIUSER.INI set is searched
first, followed by the
FSISYS.INI set and then any
other loaded sets, in order.

The function scans only the
control group and option set
associated with the context
name MI/F.

The function scans only the
control group and option set
associated with the context
name MT/F.

INI Functions on page 70

Using INI Options on page 8

GetINIBool on page 254

257

GETLISTELEM

Use this XML function to retrieve list elements.

Syntax GetListElem (%xXMLTree, SrchCriteria)

Parameter Description

%xXMLTree Enter alist type DAL variable that passes the XML tree handle.

SrchCriteria Enter a string type DAL variable that passes the search criteria. The search
criteria can be a node name, followed by up to five pairs of attribute names and
values.

If successful, the system returns a text string which contains the first element that matches
the search criteria.

Example This example returns the text of the first matched element node Form with the attribute
name ID and value Agent.

$xXMLTree=LoadXMLList (“test.xml"”) ;
aStr= GetListElem(%xXMLTree, “Form”, “ID”, “Agent”);
return(aStr) ;

See also XML Functions on page 89

258

GetOvFlwSym

GETOVFLWSYM

Use this function to retrieve the value stored in an overflow symbol. This is value that
would be used during the next Documaker Server record overflow operation.

Syntax GetOvFlwSym (Form, Symbol)
Parameter Description
Form Enter the name of the form that contains the fields on which overflow

processing will occur.

Symbol Enter the name you want to use as the overflow symbol.

The system returns the value contained in the specified overflow symbol.

Example Here is an example:
#content = GetOvFlwSym (“CP0O1l01NL”, “Loc_Cnt”)

In this example, the DAL integer variable, #cntent, would be set to the value of the
overflow symbol, Loc_Cut.

See also AddOvFlwSym on page 127
IncOvFlwSym on page 277
ResetOvElwSym on page 358

Documaker Server Functions on page 58

259

GETVALUE

260

Syntax

Example

See also

Use this function to return a string that contains the contents of the DAL symbolic
variable specified by the parameter. You can use this function when the name of the DAL
variable is also stored in a variable, such as when a variable has to be addressed in another
external script.

GetValue (Symbol)

Parameter Description

Symbol Enter a string that specifies the name of a DAL symbolic variable. This can be
from an expression or from another string variable.

NOTE: You will get a syntax error if you omit the Symbol parameter or if the DAL
symbolic variable does not exist. It is wise to use this function with the Exists
function.

Here are some examples. Assume the...
* String variable 'my_variable' contains: “Hello World”
¢ Numeric variable '#_veh' contains: 20

* String variables 'tbl_1', 'tbl_2', 'tbl_3', and "tb]_4' respectively contain: 'Ford, 'Chev,
'Olds', and 'V,
In this example, the variable named conzents is set to the string “Hello World’:

variable_name = "my_variable"
contents = GetValue(variable_name)

This example stores the value, 20, in the field entitled '#otal # of vebicles' in the current
section:

SetFld (Getvalue("#_veh"), "total # of vehicles")

In this example, if #/ine is set to 3, the string 'O/ds' is returned. If #/ine is set to 5, a 'blank’
is returned.

If Exists("tbl_" & #line) Then
Return (GetVaule("tbl_" & #line))
Else
Return (" ")
End

Exists on page 229

Miscellaneous Functions on page 73

GROUPNAME

Syntax

Example

See also

GroupName

Use this function to get the name from a group of forms.

GroupName (Count, StartGroup)

Parameter Description

Count An index reference to locate a group before or after the specified group. Enter a
negative number to move backwards. The default is zero (0).

StartGroup Enter the name of a group from which to statt the search. The default is the
current group.

The system returns the name of the group it located.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (¥) when searching for field,
section, or form names.

The system returns the name of a group of forms relative to another group. If you omit
the parameters, the system returns the name of the current group.

The count parameter tells the system to move forward or backwards from a located group
before returning the group name.

If it cannot find the starting group cannot or the count parameter causes it to move
beyond the number of groups contained in the document set, the system returns an empty
string.

Groups are unique within a document set.

Here are some examples:

(Assume the current group is GROUPONE.)

Function Result Explanation

GroupName() GROUPON No parameters will result in returning the current group
18 name.

GroupName(-1) Returns the name of the group before the current group.

Name Functions on page 74

261

GVM

Use this function to retrieve the contents of a GVM variable.

Syntax GVM (Name, Instance)

Parameter Description

Name Enter the name of the GVM variable.

Instance Enter the instance number of the GVM variable. The default is one (1).

The system returns the content of the variable if it exists or a blank string if it does not.

Example Here is an example:

Function Result Explanation
If (HaveGVM(‘Company’)) String or a Return the content of the GVM variable
blank string “company” if it exist.

AddComment(GVM(‘Company’))
End

NOTE: If the GVM variable does not exist, you will receive the error message: DM12041.

See also Documaker Server Functions on page 58
HaveGVM on page 267
AddComment on page 117
DAL Script Examples on page 35
SetGVM on page 378

262

HAVEFIELD

Syntax

Example

HaveField

Use this function to determine if a specified field can be located.

HaveField (Field, Section, Form, Group)

Parameter Description

Field Enter the name of a field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

The system optionally returns one (1) on success or zero (0) on failure.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names. For instance, if you
enter

HaveField("FIELD", , "*")

The system will find the field named FIELD on any form within the current group. This
works because the asterisk in the form name position indicates that any form will do.

NOTE: For optimal performance, avoid using wildcards (¥) when searching for field,
section, or form names.

The system searches for the specified field on a particular section, form, and/or group. If
the field is located, one (1) is returned. Otherwise, zero (0) is returned.

Although the return value from some of the other field’s functions might be used to
determine the availability of a certain field, this function merely locates the field and does
not change or query any particular information about the field.

Here are some examples:

Function Result Explanation
Return(HaveField(1 If this script is associated with an entry field, it will always
)) return one (1) if no parameters are provided.

Return(HaveField (1 or0 the cutrent section will be searched for the field. A one (1) is

“Second”)) returned if located.

Return(HaveField(1 or0 Locate the form specified within the current form group. Then

“Third”, , “FRM”)) locate Third anywhere on that form. If found, a one (1) is
returned.

263

See also Have Functions on page 69
Field Formats on page 62
Locating Fields on page 64

264

HAVEFORM

Syntax

Example

See also

HaveForm

Use this function to determine if a given form is contained in the document.

HaveForm (Form, Group)

Parameter Description
Form Enter the name of a form. The default is the current form.
Group Enter the name of a group to contain the specified form. The default is the

cutrent group.

The system optionally returns one (1) if the form is located or zero (0) if it cannot be
found.

Keep in mind you can use an asterisk (¥) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

Several of the DAL functions might return a value that may indicate a form is or is not a
part of the document. However, those functions also intend to perform some other
procedure other than searching for the form. This function simply identifies whether a
given form is present in the form set.

The function does not require any parameters. However, calling it in this manner will
typically return 1, since it will locate the current form.

Here are some examples:

Function Result Explanation

HaveForm(100 Attempts to locate the named form. If found, returns 1.
“Form”)

HaveForm(1 or0 Locates the third occurrence of the file named Form within the
“Form\3”, specified group. If found, returns 1.

((GRP’,)

Have Functions on page 69

265

HAVEGROUP

Syntax

Example

See also

266

Use this function to determine if a given group is part of a document.

HaveGroup (Group)

Parameter Description

Group Enter the name of a group to locate. The default is the cutrent group.

The system returns one (1) if the group is located and zero (0) if it cannot be found.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

Several DAL functions can return values that indicate a group is or is not a part of the
document. However, those functions also intend to perform some other procedure other
than searching for the group. The HaveGroup function simply identifies whether a given
group is present in the document.

The function does not require any parameters. However, calling it in this manner will
typically return 1, since it will locate the current group.

Here is an example:

Function Result Explanation

HaveGroup (“GRP”) 1or0 Returns one (1) if the identified group is a part of the
document.

Have Functions on page 69

HaveGVM

HAVEGVM

Use this function to determine if a GVM variable exists.

Syntax HaveGVM (Name, Instance)
Parameter Description
Name Enter the name of the GVM variable.
Instance Enter the instance number of the GVM variable. The default is one (1).

The system returns one (1) if it locates the GVM variable ot a zero (0) if it cannot find the
variable.

Example Here is an example:

Function Result Explanation
If (HaveGVM(‘Company’)) 1or0 If a GVM variable “company” exist; then
AddComment(GVM(‘Company’)) add the content of the GVM variable to the
End print stream.

n

See also Documaker Server Functions on page 58
GVM on page 262
AddComment on page 117
DAL Script Examples on page 35
SetGVM on page 378
GVM on page 262

267

HAVEIMAGE

268

Syntax

Example

See also

Use this function to determine if a given section is contained in the document.

HaveImage (Section, Form, Group)

Parameter Description

Section Enter the name of a section to locate. The default is the current section.

Form Enter the name of an form that is assumed to contain the specified section. The
default is the current form.

Group Enter the name of a group to contain the specified section or form. The default
is the current group.

The system returns one (1) if the form is located and zero (0) if it cannot be found.

Keep in mind you can use an asterisk (*¥) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

Several of the DAL functions might return a value that may indicate a section is ot is not
a part of the document. However, those functions also intend to perform some other
procedure beyond searching for the section. This function simply identifies whether a
given section is present as part of a form and/ot group.

The function does not require any parameters. However, calling it in this manner will
typically return 1, since it will locate the current section.

Here are some examples:

Function Result Explanation

Havelmage(1or0 Attempts to locate the named section on the current form. If found,
“IMG”) return 1.

Havelmage(1or0 Locate the third occurrence of Form within the specified group. If
“IMG\2”, found, then locate the second occurrence of IMG. If successful,
“Form\3”, return 1.

E(GRP”)

Have Functions on page 69

Where DAL Functions are Used on page 97

HavelLogo

HAVELOGO

Use this function to determine if a graphic (LOG) exists on a section or form which is in
the current form set.

Syntax HaveLogo (Graphic, Section, Form, Group)

Parameter Description

Graphic Enter the name of the graphic you want to find. Graphic names are assigned in
Studio or Image Editor.

Section Enter the name of a section that contains the graphic you specified. The default is
the current section.

Form Enter the name of a form that contains the section you specified. The default is
the current form.

Group Enter the name of a group to use to locate the graphic. The default is the current
group.

The system returns one (1) if it finds the graphic and zero (0) if it does not.

Keep in mind you can use an asterisk (¥) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

Example Here are some examples:
Function Result Explanation
HaveLogo(“Logl”) lor0 Determines if Logl exists on the current section, form,
group.
HaveLogo(“Logl”, 1ot0 Determines if Logl exists on the 3rd occutrence of the
“IMH1\3”,”UpRate”) section, IMH1, on the form, UpRate, within the default
group.

See also Changel.ogo on page 162
DellLogo on page 213
HaveField on page 263
HaveForm on page 265
HaveGroup on page 266
Havelmage on page 268
Inlinel.ogo on page 279
Logo on page 300

269

Renamel.ogo on page 356

Have Functions on page 69

270

HAVERECIP

Syntax

See also

HaveRecip

Use this function to see if the specified recipient name is defined in the form set for the
specified section, form, or group.

You can use this function along with the RecipientName function in DAL scripts to place
a sequence number on each page of each recipient batch.

HaveRecip (Recipient, Section, Form, Group)

Parameter Description

Recipient Enter the name of a recipient.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, or field. The
default is the current group.

The system returns one (1) if true or zero (0) if false.

NOTE: You must enter a recipient name.

RecipientName on page 352

Have Functions on page 69

271

HEX2DEC

272

Use this function to return the integer equivalent of a hexadecimal string.

Syntax Hex2Dec (Valuel)

Parameter Description

Valuel This parameter specifies a string of characters you want converted into an integer
value. If the string value does not represent a valid hexadecimal number, the
results are questionable and can result in only part of the value being converted.

The largest hexadecimal value supported is FFFFFFFF. Keep in mind, however, that
hexadecimal values are considered wusigned while integer values can be both positive and
negative.

The largest integer value 2,147,483,647 is 7FFFFFEFF when represented using
hexadecimal. HEX values greater than 80000000 represent negative integer values. Hex
value FFFFFFEF represents the integer value -1.

Example Here is an example:

y = "1A2B"
Z

Hex2Dec (y)
Result is z = 6699

y = "FF00"
z

Hex2Dec (y)
Result is z = 65280

See also Dec2Hex on page 205
Bit/Binary Functions on page 42

Hour

HOUR

Use this function to extract the number of hours from a time.

Syntax Hour (Timel, Formatl)

Parameter Description

Timel Enter a valid time string. Assumed to be in the format specified by the next
parameter. The default is the current time.

Formatl Enter a valid time format string. Describes the first parameter (timel). The
default is time format 1 (HH:MM:SS).

Example Here are some examples:

(Assume the current time is 03:05:09 pm.)

Function Result Explanation

Return(Hour(3 Defaults to the current time and extracts 3.

)

Return(Hour 9 Reads the given time which is in format 2 and extracts 9.
(¢9:50:20AM”,

2))

See also Time Formats on page 80

273

IMAGENAME

274

Syntax

Example

See also

Use this function to get the name of a section. This name is returned.

ImageName (Count, Startimage, Form, Group)

Parameter Description

Count Enter an index reference to locate a form before or after the specified form. The
default is zero (0).

Startimage Enter the name of a section from which to begin the search. The default is the
current section.

Form Enter the name of a form containing the requested section. The default is the
current form.

Group Enter the name of a group to contain the specified form.The default is the current
group.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, avoid using wildcards (*) when searching for field,
section, or form names.

The system returns the name of a section relative to another section on the same form. If
no parameters are provided to this function, the current section’s name is returned. The
Count parameter tells the system to move a number of sections forwards or backwards
(negative) from a located section before returning the section name.

If the starting section cannot be located or the Count parameter causes the system to
move beyond the number of sections contained on the form, the system returns an empty
string.

If there is more than one copy of a section on the located form, the name returned will
contain the occurrence notation used by DAL functions to locate sections. For instance,
a name like IMG\2 identifies the second copy of IMG on a particular form.

Here are some examples:

(Assume the current section is named IMG.)

Function Result Explanation

ImageName() IMG No parameters will result in returning the current section
name.

ImageName(2, Locate FORMC in the current group. Next, locate IMG on

“IMG”, that form. Then, return the name of the section two positions

“FormC”) beyond the located section.

Name Functions on page 74

IMAGERECT

Syntax

Example

ImageRect

Use this procedure/function to rettieve the rectangular coordinates of a section in a form

set (document).

ImageRect (PrefixVariable, Section, Form, Group)

Parameter Description

PrefixVariable Enter the coordinates for the section.

Section Enter the name of a section in the form set. The default is the cutrent section.
Form Enter the name of the form that contains the section. The default is the

current form.

Group Enter the name of the form group that contains the form and section. The
default is the current form group.

This procedure gets the coordinates for the section and stores them in the defined variable

names. If the prefix name variables do not exist in DAL, the system creates them. The

system creates four internal variables: prefixc name.top, prefix name.left, prefixc name.bottom, and

prefixc name.right. 1f these vatiables exist, the system modifies them with the new

coordinates.

For these examples, assume the prefix name is Mylmage, the cutrrent section is Image?5, the

form is Input_form, and the form group is packagel. The coordinates are:

Image25 Image50
top 25 125
left 50 150
bottom 100 200
right 200 200

Here ate some examples:

Procedure Result

Explanation

IMAGERECT Internal variables equal:

“Mylmage”
(¥ g) MyImage.top=25

MyImage.left=50

MyImage.bottom=10
0

MyImage.right=200

The procedure returns the coordinates for the
cutrent section (Image25) on the current form
in the current form group

If it does not exist, the procedure returns zero

©).

275

276

Procedure Result

IMAGERECT Internal variables equal:
(“Mylmage”,

“ImageSO”) MyImage.top=125

MyImage.left=150

MyImage.bottom=20
0

MyImage.right=200

IMAGERECT Internal variables equal:

[TPet]
m-,

“MVF\Z”, m.top = 75

“XYZ”) m.left = 125
m.bottom = 300
m.right = 225

Explanation

The procedutre returns the coordinates for
Image50 on the current form in the current
form group.

If it does not exist, the procedure returns zero

©-

Gets and stores the coordinates for the second
occurrence of the section MI/F on the form
XYZ into the DAL target variables.

If it does not exist, the procedure returns zero

©-

See also Section Functions on page 77

SetlmagePos on page 379

INCOVFLWSYM

Syntax

Example

Syntax

IncOVFlwSym

Use this procedute/function to increment an ovetflow symbol. This procedute provides
DAL with the Documaker Server equivalent to the IncOvFlwSym rule, with the
exception that it will only increment by one.

IncOvF1lwSym (Form, Symbol)

Parameter Description

Form Enter the name of the form that contains the fields on which overflow processing
will occur.
Symbol Enter the name you want to use as the overflow symbol.

The system optionally returns one (1) on success or zero (0) on failure.

This procedure increments the value contained in the specified overflow symbol.

Here is an example:
rc = IncOvFlwSym (“CPO101NL”, “Loc_Cnt”)

In this example, the overflow symbol, Loc_Cntis incremented and the DAL integer
variable, # rz, is set to one (1) on success or zero (0) on failure.

AddOvFlwSym on page 127
GetOvFlwSym on page 259
ResetOvElwSym on page 358

Documaker Server Functions on page 58

277

INI

Use this function to get the value of an INT option from the currently loaded INI files.

If there is more than one occurrence of a control group and option in the various INI files
the system uses, like the FSTUSER.INI and the FSISYS.INI files, this function uses the
values in the first control group and option it finds that matches the criteria you enter.
The system usually first loads the FSTUSER.INI file, which tells it to then load the
FSISYS.INI file.

Syntax INI (Group, Option, Default)

Parameter Description

Group Enter the name of the INI control group name (valid string) which contains the
INI option string you want to retrieve.

Option Enter the name of the INI option (valid string) which contains the INI string
value you want to retrieve. If the control group and option do not contain a
string, the system returns a null value.

Default (Optional) The default string value to return from the function instead of the
actual control group and option value.

The system retrieves the specified control group and option string. The system returns
one (1) if no errors occur and zero (0) if errors occut.

Example This example:
INI (“UserInfo”,”File”)
retrieves the name of the user information file, as stored in this control group:

< UserInfo >
File =

See also INI Functions on page 70
Using INI Options on page 8
GetINIBool on page 254
GetINIString on page 256

278

INLINELOGO

Syntax

Example

See also

InlineLogo

Use this procedure/function to cause a graphic (LOG) to be in-/ined in the print stream.

This means you do not have to store the graphic as a printer resource on the printer.

InlineLogo (Graphic, Option, Section, Form, Group)

Parameter Description

Graphic Enter the name of the graphic to be in-lined in the print stream. Graphic names
are assigned in Studio or Image Editor.

Option This parameter sets the inline flag. You can choose from these options:
One (1) equals On
Zero (0) equals Off
The default is one (1).

Section Enter the name of a section that contains the specified graphic. The default is the
cutrent section.

Form Enter the name of a form that contains the section. The default is the current
form.

Group Enter the name of a group to use to locate the specified object. The default is the

cutrent group.

The system optionally returns one (1) on success or zero (0) on failure.

Here are some examples:

Procedure Result Explanation

InlineLogo(Log1”) 1or0 In-lines Logl (on the current section, form, and group)
into the print stream.

InlineLogo(“Logl”, 1or0 In-lines Log1 (on the 3rd occurrence of the named

1,”IMH1\3”,”UpRate”) section, IMH1, on the form, UpRate) into the print

stream.

ChangeLogo on page 162

DellLogo on page 213

HaveLogo on page 269

Logo on page 300

Renamel.ogo on page 356

Graphics Functions on page 71

279

INPUT

Use this function to create a window with a title and a prompt which asks the user to enter
information.

Syntax Input (Prompt, Title, Length, DefText)

Parameter Description

Prompt Enter a text string to assign as the prompt for the field. The default is Text.
Title Enter a text string to assign as the title of the window. The default is Title.
Length Enter the maximum input text length. The default is set by Windows.
DefText Enter a text string to assign as the default input data.

The system returns the input results.

This function creates a window you can use to gather information from a user. The text
entered through the window is returned as a string. If no text is assigned, or if the user
closes the window without choosing Ok, the returned string will be empty.

Example Here are some examples:

Function Result Explanation

NAME = Input (“Please Produces a window The name of the window is Nawe Entry. The

enter your name:”, requesting input. user sees the prompt Please enter your name: 1f
“Name Entry”); the user selects Cancel, NAME is an empty
Return(Name) string. If the user selects Ok, NAME

contains the text entered by the user.

Return(Input()) Produces a window This window will not have a title or a
requesting input. prompt. The user is merely presented with
an input field into which data should be
entered.

Return(Input (“Confirm Produces a window This window will have the prompt Confirm

this result”,, 30,“123.45” requesting input. this result. The input field accepts up to 30

) characters and defaults to “123.45”. There
will be no title.

See also Documaker Workstation Functions on page 59

280

INSERT

Insert

Use this function to insert a substring into a string at the position you specify. The result

string is returned.

Syntax Insert (String, Position, SubString)
Parameter Description
String Enter a valid string. The default is the value of the current field.
Position Enter the position in the field to perform the insert. The default is the one (1),
the first position.
SubString Enter the string that you want to insert.

The system adds the substring to the string you specified in the first parameter at the

indicated position. If the position indicated in the second parameter is greater than the
length of the original string, the string is increased to the given length before the third

parameter is inserted.

If no position is given in the second parameter the insertion begins at position one. If no
value is provided for the third parameter (Substring), nothing is inserted.

Example Here are some examples:

(Assume the current field contains the text Your Name.)

Function Result

Explanation

Return(Insert (,, “Type Type Your

) Name
Return(Insert (, Your First
CFIND (, “), « Name
First”))

Return(Insert Complete
(“Complete blank.”, 10, every
“every) blank.
Return(Insert Complete
(“Complete blanks”, 17, blankswith
“with black ink.”)) black ink.

Defaults to the first position of the current field and
inserts Type.

First the CFind function locates a blank space at
position 5 within Your Name. Next, First is inserted at

position 5.

Goes to position 10 and inserts every.

Increases the length of the field to 17 and appends with
black ink.

See also String Functions on page 78

CFind on page 161

281

INT

Use this function to return the integer portion of a number.

Syntax INT (Number)
Parameter Description
Number Enter a valid numeric data type. The default is the integer value of the current
field

The system returns the integer value of a number.

The decimal portion of the number is truncated. The number is not rounded up or down.
The sign of the number is not changed.

Example Here are some examples:
Function Result Explanation
INT(-101.99) -101 Defaults to the current field.
$TEMP = 99 After executing these statements, §TEMP will be 99.99 and
99.99 HRESULT will be 99, without a decimal.
H#HRESULT =
INT(($TEMP)
#RESULT = 2 The parameter value will equate to 2.5 The INT function will
INT(10/4) truncate this result to 2. The function does not round.

See also Mathematical Functions on page 72

282

IsPrintObject

ISPRINTOBJECT

Use this function during banner processing or in another print operation to determine if
the section (image), form, or group is printable. This determination is based on the current
print recipient and the recipient copy count.

Syntax IsPrintObject (Section, Form, Group)

Parameter Description

Section Enter the name of the section you want to check. If you omit this parameter, the
system uses the cutrent section.

Form Enter the name of the form you want to check. If you omit this parameter, the
system uses the current form.

Group Enter the name of the group you want to check. If you omit this parameter, the
system uses the current group.

NOTE: You can use this function outside of a print operation to determine if a section is
printable, but a true (1) result is not a guarantee the section will print during the
next print operation.

Example Here is an example:
IsPrintObject () ;

This example checks the current section on the curtent form in the current group and
returns a one (1) if that section is printable or a zero (0) if it is not.

See also Printer and Recipient Functions on page 76

283

ISXMLERROR

Use this function to check the list for error status.

Syntax IsXMLError (%$xXMLTree, SrchCriteria)

Parameter Description

YoxXMLTree Enter a list type DAL variable that passes the XML tree handle.

SrchCriteria Enter a string type DAL variable that passes the search criteria. The search
criteria can be a node name, followed by up to five pairs of attribute names and
values.

The system returns one (1) if no errors occur or zero (0) if errors occut.

See also XML Functions on page 89

284

JCenter

JCENTER

Use this function to center text within a specified length and return the result.

NOTE: To justify a display item, such as a field, on a fixed point use the JustField
function. The JCenter function is for padding a text string so it will appear
centered within a given string length.

Syntax JCenter (String, Length)

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of the input string.

The system justifies the text characters of the string parameter within the specified length
and returns the new string.

If the length specified in the Length parameter is longer than the string, the result will be
increased to the given length before the system centers the string. If the length specified
is less than the string, the length of the string is used.

For example, if the variable field has a length of 30, the DAL script says Return(JCenter
(,10)), and you enter ABC in the variable field, the system will center ABC using a length
of 10 instead of 30.

Example Here are some examples:

(Assume the current field contains the text Name and can be up to 20 characters.)

Function Result Explanation
JCenter « Name First the Size function determines that the maximum length of
(, Size () « the field is 20. Then the JCenter function defaults to the

’ current field and centers the text name within the given size of

20.

JCenter Complete Ignores the specified length (5) because it is less than the given
(“Complete blanks. string.
blanks.”, 5)
JCenter « Increases the size of the input string to 25 and centers the text.
(“Complete Complete The variable field length is not affected, so the text appears to
blanks.”, 25) blank. be off center.

See also JustField on page 288
String Functions on page 78

Size on page 387

285

JLEFT

Use this function to left justify text within a specified length and return the result.

Syntax JLeft (String, Length)

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of the input string.

The system left justifies the text characters of the string parameter within the specified
length and returns the new string.

If the length specified in the length parameter is longer than the string, the result will be
increased to the given length before the justification. If the length specified is less than
the string, the length of the string is used.

Example Here are some examples:

(Assume the current field contains the text Name and can be up to 20 characters.)

Function Result Explanation

JLeft “Heading Left justifies the text within a length of 20 spaces.
(“Heading”, 20) v

JLeft “Complete Ignores the specified length (5) because it is less than the

(“ Complete blanks. ” given string.

blanks. “, 5)

JLeft (,Size () & “Name First the Size function determines that the maximum length

“X”) X of the field is 20. Then X is added to the end of the field.
There are 15 spaces between the end of the word Name and
the X.

See also String Functions on page 78

@ on page 109

Size on page 387

286

JRIGHT

JRight

Use this function to right justify text within a specified length and return the result.

Syntax JRight (String, Length)

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of the input string.

The system justifies the text characters of the string parameter within the specified length
and returns the new string.

If the length you specify in the Length parameter is longer than the string, the result is
increased to the given length before the text is justified.

If the length specified is less than the string, the system uses the length of the string.

Example Here are some examples:

(Assume the current field contains the text Name and can be up to 20 characters.)

Function Result Explanation

t ncreases the size of the field to 20 and right justifies the
Righ « I he size of the field to 20 and fight justifies th
(“Heading”, 20) Heading” text.

JRight “ Complete Ignores the specified length (5) because it is less than the
(¢ Complete blanks. given string.
blanks. “, 5)

JRight (,SIZE () “Name!” First the Size function determines that the maximum length

& “I”) of the field is 20. Then the original text in the field is right
justified and an exclamation point (!) is concatenated after
Nane.

NOTE: If you are aligning decimal numbers, be sure to use a fixed or non-proportional
font, such as Couriet.

See also String Functions on page 78

@ on page 109

Size on page 387

287

JUSTFIELD

Use this procedure/function to justify (left, right, ot center) a vatiable field content by
modifying its field coordinates.

NOTE: To pad a text string so it will appear centered within a given string length, use the
JCenter function. The JustField function is for justifying display items, such as
fields, on a fixed point.

Syntax JustField (Mode, Xcoordinate, Justification, Field, Section, Form,
Group)

Parameters Description

Mode Enter L (left), R (right), or C (center). The default is L.

Xcoordinate Enter the X coordinate used to align the field. If Mode is R, this will be zero (0),
the right-most position of the field. If Mode is C, this will be the center of the
field. Here is an example:

"R", 5000
If the data is 12345, the character 5 will be positioned at 5000 FAP units.

Justification ~ Enter a character found in the data to use to align the field. The procedure aligns
the field so the character you specify ovetlays the X coordinate. You must
define the X-coordinate parameter when using the justification character. If you
omit the X-coordinate the system runs as if the justification character was not
specified.

Here is an example:

R,5000,"."
If the data is 123.45, then the decimal point will be positioned at 5000 FAP
units.

Field Enter the name of the field. The default is the current field.

Section Enter the name of the section that contains the field. The default is the current
section.

Form Enter the name of the form that contains the section and/or field. The default
is the current form.

Group Enter the name of the group that contains the form, section, and/or field. The
default is the current group.

288

JustField

Example This example centers the original address lines data in the section, QJUSTFIELD2, at
10,000 FAP units.

JustField("C",10000, ,"line 1", , "gjustfield2")
JustField("C",10000, ,"line 2", , "gjustfield2")
JustField("C",10000, ,"line 3", , "gjustfield2")

Here is an example:

line 1
line 2

line 3

Oracle Insurance
Atlanta, GA 30339-4000
404.439.5500

5,000 FAP units

line 1
line 2

line 3

Oracle Insurance
Atlanta, GA 30339-4(000
404.439.5500

10,000 FAP units

This example justifies the original line data (left aligned at 5,000 FAP units) on the decimal
point at 10,000 FAP units.

JustField("C",10000,".","line 1")
JustField("C",10000,".","line 2")

Here is an example:

line 1 5,000.00
line 2 12345.8888888
5,000 FAP units
line 1 5,000,00
line 2 12345.8888888

10,000 FAP units

See also JCenter on page 285

Field Functions on page 61

289

KickTOWIP

Use this function to send a transaction to WIP from the GenData program. This function
lets you use DAL instead of the KickToWIP rule or the field properties Attributes
required field flag.

Syntax KickToWIP ()

There are no parameters for this function.

Use the ShowWIPWarning option to suppress the Sent to Manual Batch warning
messages:

< RunMode >
ShowWIPWarning = No

Option Description

ShowWIPWarning Enter No to supptess warning messages included the error logs when
using the KickToWIP DAL function.

The default is Yes, which tells the system to include the messages in the
error logs.

Example Here is an example of how you would set your AFGJOB.]DT file:
<Base Form Set Rules>

;NoGenTrnTransactionProc;; ;

;WriteOutput;;;
;WriteNaFile;;;
;PostTransDAL; ; KickToWIP() ;

In this example, the PostTransDAL function sets the Manual batch flag before the NA,
POL, and Receipt batch files are written. Here is an example of the section-level rules:

<Image Rules>

; PreImageDAL; ; KickToWIP()
In this example, the Manual batch flag is set if the section is triggered.
Here is an example of the field-level rules:

;0;0;areal;0;0;areal;0;0;;DAL;Call (“Chk_TIf Kick”);N;N;N;N;919;6736;
12112;

In this example, when the Areal field is executed the system calls the DAL script named
Chk_If_Kick. The DAL script checks for the presence of two conditions and if true, sets
the Manual batch flag for the transaction.

Here is an example of the Chk_If_Kick DAL script:

BeginSub Chk_If_ Kick

If (CountRec(“1,Second_Address”) = 0) AND \
(GetData(“1, Second_party, 45,1) = “X”) Then
KickToWIP()

290

KickToWIP

End

EndSub

NOTE: You must execute this DAL function before the ConvertWIP form set level rule
is executed, if it is included in the AFGJOB.JDT file

See also Documaker Server Functions on page 58

291

LEAPYEAR

Use this function to find out whether or not the specified year is a leap year.

Syntax LeapYear (Year)

Parameter Description

Year Enter the year. You can enter either a two- or four-digit number. If you enter a
two-digit number, the current century is added to create the year value. The
default is the cutrent year.

The system returns one (1) if the year is a leap year and zero (0) if it is not.

This function is most often used with the Year function. The Year function extracts the
year number from a given date.

Example Here are some examples:

(Assume the current date is 07/01/08.)

Function Result Explanation

LeapYear () 1 The parameter defaults to the current year (2008). Since 2008 is a
leap year, one (1), which represents true, is the result.

LeapYear (07) 0 The year 2007 was not a leap year. Therefore, the result is zero
(0), representing false.

LeapYear(Year 0 First the Year function extracts the year number (2009) from the

(“2009/09/ date, which is given in the date format “34”. Then LeapYear

097, “34™)) determines that 2009 is not a leap year and returns zero (0.)

See also Using INI Options on page 8
Date Formats on page 52
Year on page 443

Date Functions on page 51

292

LEFT

Left

Use this function to return a specified number of left most characters.

Syntax Left (String, Length)

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of the input string.

The system returns a string equivalent to the given length from the left portion of the

string.

The input string is trimmed of leading and trailing spaces. If the length specified in the

second parameter exceeds the length of the string, the result is increased to the given

length.

Example Here are some examples:

(Assume the current field contains the text Your Name and can be up to 20 characters.)

Explanation

Function Result
Left () Your Name
Left Compl
(“Complete

blanks.”, 5)

Left (* final “final
payment”, 13) payment”

Defaults to the current field and returns the full length of
the field.

Default to position one (1) and returns the first five

characters.

Trims the field of leading spaces and returns 13
characters.

See also Right on page 360

String Functions on page 78

293

LEN

294

Syntax

Example

See also

Use this function to return the length of the specified string. The length includes all
characters, including leading and trailing spaces.

LEN (String)

Parameter Description

String Enter a valid string. The default is the value of the current field.

This function is often confused with the Size function. The LEN function returns the
length of the actual data contained in a text string, including leading and trailing spaces.
The Size function returns the length of the defined data area for a section field.

Here are some examples:

(Assume the current field contains the text Your Namse.)

Function Result Explanation

LEN () 9 Defaults to the current field.

LEN (“ Your 19 The result includes the leading and trailing spaces of the given
Name <) field.

LEN (“Street 14 Returns the length of the given string.

Address”)

LEN 8 Finds the variable field named ThisField on the current section and
(@(“ThisField”) counts the length of the data. The data in this field is Jaxe Doe, so
) the number 8 is returned.

String Functions on page 78
@ on page 109
Size on page 387

LISTINLIST

Syntax

Example

ListInList

Use this function to search for the comma-delimited list specified by the second
parameter for each character string in the comma-delimited list specified by the first
parameter. If a match is found, the function returns the ordinal position (integer) of the
first string in the second parameter that matches any of the strings in the first parameter.
If no match is found, the function returns a zero (0).

ListInList (StringList, ListString)

Parameter Description

Stringlist Enter the name of the list of character strings or enter the list of character strings
you want to search for. Use commas to separate each character string entry you
want to find. Keep in mind the system considers spaces when searching, so strings
must match exactly.

ListString Enter the name of the string list or the character string list to be searched. Use
commas to separate each string entry you want to search for.

The function returns a number that indicates which string entry was found. For instance,
if the third string entry was found, the function returns a three (3).

Here is an example:

This function statement Returns Assuming

ListInList(@("e_codes"), 1 Field ¢_codes contains: ABC,A.
"ABC,AB,DE,A,GFHLABCD")

ListInList(GetValue("e_codes"), 2 DAL variable, e_codes, contains: AB,abcd.
"ABC,AB,DE,A,GFHI")

ListInList(?("e_codes"), 3 XDB entrty ¢_codes returns: DE, a.
"ABC,AB,DE,A,GFHLABCD")

ListInTist(?("e_codes"), 4 XDB entty e_codes returns A. The entry
?("t_codes")) #_codes contains:

ABC,AB,DE, A,GFHI,ABCD.

ListInList(?("e_codes"), 0 XDB entry ¢_codes returns: XYZ.
"ABC,AB,DE,A,GFHLABCD")

If you omit the first parameter, you get the data from the current field. If you omit the
second parameter, you receive this error message:

Wrong number of parameters

Here is another example. For this example assume the following parameters contain:
* GetValue(col_namel) results in the character string: AA, EE.
e DAL variable col_namel_codes contains the string: EEacb, XXEE,EE,AEEAC.

* GetValue(ca_codes) contains the string: Xxaab,YYEE, EE,AA,AecAC.

295

This statement Returns

#rc = ListInList(GetValue(col_namel), col_namel_codes) 3

#rc = ListInList(GetValue(col_namel), GetValue(col_namel_codes)) 4

The return value for the above example returns a four (4) because two spaces exist
between the comma and EE.

Keep in mind:
¢ The search is not case-sensitive. This means .4 will match .

* Spaces are considered. This means the system will find no matches in the following

examples:

ListInList ("Steel,Wood", " Steel,Aluminum")
ListInList ("Steel,Wood", "Steel ,Aluminum")
ListInList ("Steel,Wood", "Aluminum, Steel ")

See also String Functions on page 78

296

LOADINIFILE

Syntax

Example

See also

LoadINIFile

Use this procedure/function to load an INI file into cache memoty.

LoadINIFile (Context, File)

Parameter Description

Context (Optional) A name (valid string) that will be associated to the set of INT control
groups and options contained in the physical file.

File Enter the name of the INI file to load. If you omit the extension, the system
assumes it is INI. The system searches in the current directory, or uses a full path
name if you specify one

This procedure returns success (1) if no error occurred during its execution, otherwise a
failure (0) is returned.

If you specify a context name, that name can be used by other INI functions to reference
the loaded set of INI control groups and options.

Here ate some examples:

Procedure Result Explanation
LoadINIFile The INI control groups and options can The INI file is loaded into
(“DALRun”); now be referenced by executing modules. cache memory. Execution of

this procedure assumes the
file extension is IINI.

LoadINIFile The INI control groups and options can The INI file is loaded into
(“Run_process” now be referenced by executing modules. cache memory.
, This set of INI control groups and options
“DALRun.ini”); can now be referenced by other INI
functions, using the tag Run_process.

INI Functions on page 70
Using INI Options on page 8
SavelNIFile on page 367
GetINIBool on page 254
GetINIString on page 256
PutINIBool on page 346
PutINIString on page 348

297

LOADLIB

Use this procedute/function to load into cache memoty a file which contains a library of
DAL scripts.

Syntax LoadLib (File)

Parameter Description

File Enter the name of the file which contains the DAL scripts. If you omit the path,
the system looks for the file in DefLib. If you omit the extension, the system uses
the one defined in the Ext option of the DAL control group in your INI file. You
must include the File parameter.

This procedure loads a file which contains one or more DAL functions into cache
memory. Each of these procedures and functions can be referenced as a named
subroutine.

NOTE: You should only execute the LoadLib procedure once per library.

Example Here is an example:

Procedure Result Explanation
LoadLib The system loads the DB_Func Once loaded, you can reference the
(“DB_Func”) file into cache memory. DAL scripts stored in memory as

named subroutines.

See also Miscellaneous Functions on page 73

Creating a DAL Script Library on page 5

298

LoadXMLList

LOADXMLLIST

Use this function to load an XML document and extract an XML tree.

Syntax LoadXMLList (FileName)
Parameter Description
FileName Enter the name of the XML file you want to load.

The system returns the XML tree in a list type DAL variable.
Example For an example, see the DAL script in Scenatio 2 on page 90.

See also XML Functions on page 89

DestroyList on page 215

299

LOGO

Use this procedure/function to place a graphic file (LOG) at a specified position in the

section.
Syntax Logo (Graphic, Xcoordinate, Ycoordinate, Section, Form, Group)
Parameter Description
Graphic Enter a valid name for a graphic. Must be a variable field object.

Xcoordinate Enter a valid X coordinate location.
Ycoordinate Enter a valid Y coordinate location.

Section Enter the name of the section name that contains the new graphic. The default
is the current section.

Form Enter the name of the form name that contains the section you specified. The
default is the current form.

Group Enter the name of the group that contains the specified section ot form. The
default is the current group.

The system optionally returns one (1) on success or zero (0) on failure.

This procedure uses FAP units (1 inch = 2400 FAP units). The top-left position of a page
represents coordinate (0, 0). To place a graphic an inch from the top and an inch from the
left of the page, the X and Y coordinates would be (2400, 2400).

If the location for a particular graphic can be described in relation to a field on the form,
you can use the FieldX and FieldY functions to get the coordinates of that field.

This function does not redraw the section display. Use the Refresh procedure with the
Logo procedure to view the changes.

Example Here are some examples:
Procedure Result Explanation
Logo (“janedoe”, “75007, 1or0 Defaults to add the graphic on the current section at
“55007);Refresh() the location specified.
Logo(“Hancock”, 1or0 Firstlocate the specified form in the current group.
FieldX(“MyField”), Next locate IMG on that form. Finally, add the
FieldY (“MyField”), “IMG”, graphic at the same location as the field, “MyField”.

“FORM”)Refresh()

See also Changel.ogo on page 162
DelLLogo on page 213
HaveLogo on page 269
InlineLLogo on page 279
FieldX on page 237

300

Logo

FieldY on page 238
Refresh on page 354
Renamel.ogo on page 356

Graphics Functions on page 71

301

LOWER

302

Use this function to convert all alphabetic characters to lowercase characters and return

the result.
Syntax Lower (String, Length)
Parameter Description
String Enter a valid string. The default is the value of the current field.
Length Specify the desired length of output. The default is the length of the input string.
If the length you specify is longer than the string, the string is increased to the given
length. If the specified length is less than the string, the length of the string is used. The
string is not truncated.
Example Here are some examples:
(Assume the current field contains the text Your Namse.)
Function Result Explanation
Lower () “your name” Defaults to the cutrent field
Lower “street address” Lowercases the given string
(“Street
Address”)
Lower (,15) “yourname “ Lowercases the current field and increases the length to 15
See also Upper on page 415

String Functions on page 78

MailwiP

MaILWIP

Use this procedure/function to send the current work-in-process to anothet uset via
email.

Syntax MailWIP (Address)

Parameter Description

Address Enter a valid email address.

The system defaults to the email address window which lets the user select a valid
recipient. This window appears if the email address is omitted or incorrect.

The system optionally returns one (1) on success or zero (0) on failure.

If the MailWIP procedure succeeds in sending the WIP via email, the status of the form
set will be changed to Transmitted and no longer appear as normal WIP in the sender’s list.

NOTE: If the WIP is already following a routing slip’s workflow, the form set will be sent
to the next recipient in the existing slip.

Example Here are some examples:
Procedure Result Explanation
MailWIP() lor0 The default presents the user with the email system’s

Address window, which lets the user choose the destination.

MailWIP(“TOM”) 1or0 If TOM is a valid email address for the email system, the
form set will be sent. Otherwise, the Address window
appears and the user chooses the correct address.

See also WIP Functions on page 88

303

MAJORVERSION

Syntax

Example

See also

304

Use this function to get the major version number of the system being executed.

MajorVersion ()

There are no parameters for this function.
Here is an example:

Function Result Explanation

#MAJOR = MajorVersion () string Returns the system’s major version number.

Miscellaneous Functions on page 73
MinorVersion on page 309
DAL Script Examples on page 35

MAX

Syntax

Example

MAX

Use this function to return the greatest decimal value from a group of fields which have
names that begin with common characters.

MAX (PartialName, Section, Form, Group)

Parameter Description

PartialName Enter a valid string. The string must be the common (prefix) portion of a set of
field names that occur on the current section. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

The system calculates and returns the average of the values of all fields that begin with the
specified partial name. An example of field names that have a common start are:

Myfield1
Myfield2
Myfield20

Each of these fields is included if you specify the partial name using any of the leading
characters of myfield. The first field will be excluded if you enter myfield2, but will match
the other two field names.

The maximum is calculated by comparing all those fields that have values and have names
matching the criteria. If all the field values are negative, then the result will be the negative
number nearest the value zero. Note that zero (0) is a valid field value. Fields which have
never been given a value are excluded from the calculation.

NOTE: Include the PartialName parameter. Fields must have unique names in a section.
Using the default will probably not give the expected result, unless you created
the form and understand the naming conventions.

This table is used by the examples. The table represents the layout of two forms in the
same group. Both forms share two sections IMG A and IMG B). Each section has fields
of the same name as a field in the other section.

Field Section Form Group Value
MyField1 IMG A FRM A GRP 100.24
MyField2 IMG A FRM A GRP 200.16

305

Field

MyField1
MyField2
MyField1
MyField2
MyField1

MyField2

Section

IMG B

IMG B

IMG A

IMG A

IMG B

IMG B

Form Group Value

FRM A GRP 98.60

FRM A GRP * no value yet *
FRM B GRP 0.00

FRM B GRP * no value yet *
FRM B GRP 70.77

FRM B GRP * no value yet *

Here are some examples:

(Assume the current field is MyField1, on the first section of the first form. Reference the
previous table for field values.)

Function Result Explanation

MAX () 100.24 Without any other information, the function will assume the
current field and section. There will only be one value included
in the search.

MAX 200.16 Again, there is only one field included in this result.

(“Myfield2”)

MAX(“MyField”) 200.16 In this example, the current section contains two fields that
begin with the name “MyField”. The second field has the
greatest value.

MAX(“MyField”, 98.60 Although two fields on IMG B have a matching name, only one

“IMG B”) field actually has a value.

MAX(“MyField”, 200.16 No section is specified in this example, so the entire form is

, “FRM A”) searched. Four fields match the name critetia, but only three
have values.

MAX(“MyField”, 98.60 This example specifies a section and group, but no form. There

“IMG B”, , are four fields that match the name criteria, but only two have

“GRP”) values.

MAX(“MyField”, 200.16 This example names the group without a form or section. Eight

,» “GRP”) fields meet the naming criteria, but only five fields actually have

values.

See also Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

306

MIN

Syntax

Example

MIN

Use this function to return the least decimal value from a group of fields which have
names that begin with common characters.

MIN (PartialName, Section, Form, Group)

Parameter Description

PartialName Enter a valid string. The string must be the common (prefix) portion of a set of
field names. The default is the cutrent field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

The system calculates and returns the average of the values of all fields that begin with the
specified partial name. An example of field names that have a common start are:

Myfield1
Myfield2
Myfield20

Each of these fields is included if you specify the partial name using any of the leading
characters of myfield. The first field will be excluded if you enter myfield2, but will match
the other two field names.

The minimum is calculated by comparing all those fields that have values and match the
naming criteria. If all the values are negative, then the result will be the negative number
most distant the value of zero. Note that zero (0) is a valid field value. Fields which have
never been given a value are excluded from the calculation.

NOTE: Include the PartialName parameter. Fields must have unique names within a
section. Using the default will probably not give the expected result, unless you
created the form and understand the naming conventions.

This table is used by the examples. The table represents the layout of two forms in the
same group. Both forms share two sections IMG A and IMG B). Each section has fields
of the same name as a field in the other section.

Field Section Form Group Value
MyField1 IMG A FRM A GRP 100.24
MyField2 IMG A FRM A GRP 200.16

307

308

See also

Field

MyField1
MyField2
MyField1
MyField2
MyField1

MyField2

Section

IMG B

IMG B

IMG A

IMG A

IMG B

IMG B

Form Group Value

FRM A GRP 98.60

FRM A GRP * no value yet *
FRM B GRP 0.00

FRM B GRP * no value yet *

FRM B GRP 70.77

FRM B GRP * no value yet *

Here are some examples:

(Assume the current field is MyField1, on the first section of the first form. Reference the

previous table for field values.)

Function Result Explanation

MIN () 100.24 Without any other information, the function will assume the
current field and section. There will only be one value included
in the search.

MIN 200.16 Again, there is only one field included in this result.

(“MyField2”)

MIN(“MyField”) 100.24 In this example, the current section contains two fields that
begin with the name MyField. The first field has the least value.

MIN(“MyField”, 98.60 Although two fields on IMG B have a matching name, only

“IMG B”) one field actually has a value.

MIN(“MyField”, 98.60 No section is specified in this example, so the entire form is

, “FRM A”) searched. Four fields match the name critetia, but only three
have values.

MIN(“MyField”, 70.77 This example specifies a section and group, but no form. There

“IMG B”, , are four fields that match the name ctiteria, but only two have

“GRP”) values.

MIN(“MyField”, 0.00 This example names the group without a form or section.

,, “GRP”)

Eight fields meet the naming criteria, but only five fields
actually have values. The least of these five contains the value

0.00.

Field Functions on page 61

Field Formats on page 62

Locating Fields on page 64

IMINORVERSION

Syntax

Example

See also

MinorVersion

Use this function to get the minor version number of the system being executed.

MinorVersion ()

There are no parameters for this function.

Here is an example:

Function Result

Explanation

vers = MajorVersion() & > & a string
MinorVersion()

Returns the system’s major and minor version
number concatenated together with a period used
as a separatof.

Miscellaneous Functions on page 73
MajorVersion on page 304
DAL Script Examples on page 35

309

MINUTE

Use this function to extract the number of minutes from a time.

Syntax

Minute (Time, Format)
Parameter Description
Time Enter a valid time string. The system assumes your entry is in the time format
specified in the Format parameter. The default is the current time.
Format Enter a valid time format string that describes the Time parameter. The default is
time format 1 (HH:MM:SS).
Example Here are some examples:
(Assume the current time is 03:05:09.)
Function Result Explanation
Minute() 05 Defaults to the current time and extracts 05
Minute 07 Reads the given time and extracts 07
(€03:07:09”)
See also

310

Time Formats on page 80

MLEINPUT

Syntax

Example

MLEInput

Use this function to create a window with a title, prompt message, and a place for a user
to enter multiple lines of text, such as the one shown here:

Comments Input x|

Enter comments; up to 1024 characters.

= |

-
1 ¥

0K Cancel

This function creates a window you can use to gather information from a user. The text
entered through this window is returned as a string. If no text is assigned, or if the user
closes the window by clicking on Cancel, the returned string will be empty.

MLEInput (Prompt, Title, Length, DefText)

Parameter Description

Prompt Enter a text string to assign as the prompt for the field
Title Enter a text string to assign as the title of the window.
Length Enter the maximum input text length. THe default is 1024.
DefText Enter a text string to assign as the default input data.

If the user presses ENTER to type on a new line, the system replaces the new line character
with a \\z when it returns the text. You can leave the result like this, so you know where
the line breaks are supposed to be, or you can send it to the MLETranslate function,
which will translate the \\# into whatever characters you want.

NOTE: Multi-line variable fields cannot accept the data captured by the MLEInput
function without the data first being translated. Before you assign the output
from a MLEInput function to a multi-line variable field, you should do the
following.

VALUE = MLETranslate (VALUE, "\n");

Where ALUE represents the text returned from the MLEInput statement.
This will change all of the \\# occutrences to \#, which is accepted by muld-line
variable fields.

Assume the user enters the following text (in quotes) into the window:

“line 1", Enter key, “line 3", “line 4", Entry key, and then “line 6"

311

312

Function

Results

Explanation

input_data = MLEInput (“Enter
comments; up to 1024
characters.”, “Comments
Input”);

SetFld (input_data, variable™);

input_data = MLEInput (“Enter
your comments.”, “Comments

Input”, , @(“ vatiable™));

input_data = MLEInput (“Enter
comments; up to 1024
characters.”, “Comments
Input”);

input_data =MLETranslate
(MLEInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”), “\n”);

SetFld (input_data, “output”);

line 1\\n\ \nline
3\ \nline 4\\n\ \nline 6

1. Window:

line 1
blank line 1
line 3

line 4

blank line
line 6

2. Input_data

line 1\\nNow is the
time\ \nline 3\ \nline 4
gray area\\n\ \nline 6

Null string

1. DAL internal variable

line 1\n\nline
3\nline
4\n\nline 6
2. Multi-line variable
field, output:

line 1
blank line
line 3
line 4
blank line
line 6

After you enter the information
and click Ok, the DAL variable,
'input_data', contains the string
in the result column.

This example uses an A/N
variable field.

(Assume this DAL script is
executed after the example
above.)

The window would contain the
data under item 1.

If you enter:
- Now is the time in blank line 1
- gray area: aftet 'line 4'

and click Ok. The DAL variable,
'input_data', will contain the
string under item 2.

This example uses an A/N
variable field.

Assume you clicked Ok or
Cancel without entering any
data. The system stores a null
string in the variable.

After you enter the assumed
information and click Ok, the
DAL variable, 'input_data',
contains the string shown in
item 1.

The data in the multi-line
vatiable field, output, contains six
lines, as shown in item 2.

This example uses a multi-line
variable field.

See also

Function

input_data = MLETranslate
(MLElInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”, ,
@Coutpur”)), “\n");

SetFld (input_data, “outputl”);

Results

1. Window

line 1
blank line
line 3
line 4
blank line
line 6

2. Input_data

line 1\nNow is the
time \nline 3\nline 4
gray area\n\nline 6
3. Multi-line variable
outputl:

line 1

Now is the
time

line 3

line 4 gray
area

blank line
line 6

MLEInput

Explanation

(Assume this DAL script is
executed after the example
above.)

The window contains the data
under item 1 after the DAL
script is executed.

Assuming you entered:

- Now is the time in blank line 1
- gray area after the data 'line 4
and then clicked Ok, the DAL
internal variable, 'input_data',

contains the string shown in
item 2.

The multi-line vatiable field,
outputl, contains the data shown
in item 3.

This example uses a multi-line
variable field.

MILETranslate on page 314

Documaker Workstation Functions on page 59

313

MLETRANSLATE

314

Use this function to translate the \\# characters in a data string created by the MLEInput
function. This function translates those characters into whatever characters you want.

Syntax MLETranslate (String, ReplaceChar)
Parameter Description
String Enter the text string returned from the MLEInput function.

ReplaceChar Enter a text string to replace each set of \ \n characters in a returned MLEInput
data string.

The system returns the translated data string for display, storage, or both.

If the user presses ENTER to type on a new line, the system replaces the new line character
with a \\z when it returns the text. You can leave the result like this, so you know where
the line breaks are supposed to be, or, you can send it to the MLETranslate function,
which will translate the \\z into whatever characters you want.

NOTE: Multi-line variable fields cannot accept the data captured by the ML.EInput
function without the data first being translated. Before you assign the output
from a MLEInput function to a multi-line variable field, you should do the
following.

VALUE = MLETranslate (VALUE, "\n");

Where ALUE represents the text returned from the MLEInput statement.
This will change all occurtrences of \\7z to \», which is accepted by mult-line
variable fields.

Example Assume the user enters the following text (in double quotes) into the window.

“line 1", Enter key, “line 3", “line 4 ¢, Entry key, and then “line 6"

Function Results Explanation

input_data = MLET'ranslate line 1**line 3*line 4 **line After you enter the assumed

(MLEInput (“Enter comments”, 6 information and click Ok, the

“Comments Input”), “*); DAL variable, 'input_data',
contains the string in the result

SetFld (input_data, variable”);)
column.

This example uses an A/N
variable field.

Function

input_data = MLETranslate
(MLElInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”,

, @(“ variable”)), “#”;

input_data = MLETranslate
(MLEInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”), “*7);

input_data =MLETranslate
(MLElInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”), “\n”);

SetFld (input_data, “output”);

Results

1. Multi-line edit window
line 1**line 3*line 4 **line
6

2. Input_data

line 1 Now is the time.
#line 3*line 4 gray
area**line 6

Null string

DAL internal variable
line 1 \n\nline 3 \nline 4
\n\nline 6 \n

Multi-line variable field

line 1
blank line
line 3
line 4
blank line
line 6

MLETranslate

Explanation

(Assume this DAL script is
executed after the example
above.)

The window contains the data
under item 1.

Assuming you deleted the first
two astetisks and entered Now
is the time. followed by the entry
key. Plus added gray area after
line 4 and then clicked Ok. The
DAL variable, 'input_data',
would contain the data under
item 2.

This example uses an A/N
variable field.

Assume you clicked Ok or
Cancel without entering any
data. The system stotes a null
string in the variable.

After entering the assumed
information and clicking Ok,
the DAL vatiable, 'input_data',
contains the data shown in
item 1.

The data in the multi-line
variable, output, would contain
six lines as shown in item 2.

This example uses a multi-line
variable field

315

316

See also

Function

input_data = MLETranslate
(MLEInput (“Enter comments;
up to 1024 characters.”,
“Comments Input”, ,

@(“Output”))’ “\n”);
SetFld (input_data, “outputl”);

Results

1. Window
line 1
blank line
line 3
line 4
blank line
line 6

2. Input_data

line 1 \nNow is the time.
\nline 3 \nline 4 gray area
\n\nline 6 \n

3. Multi-line variable
output1

line 1

Now is the
time.

line 3

line 4 gray
area

blank line
line 6

Explanation

(Assume this DAL script is
executed after the example
above.)

After executing the script, the
window contains the data
shown in item 1.

Assuming you entered:

Now is the time. for blank line 1
area, and added gray area, after
the data 'line 4 ' and then
clicked Ok.

The DAL internal variable,
'input_data', would contain the
data string shown in item 2.
The multi-line variable field,
'outputl’, would contain the
data shown in item 3.

This example uses a multi-line
variable field.

MLEInput on page 311

Documaker Workstation Functions on page 59

MOD

MOD

Use this function to return the remainder from modular arithmetic.

Syntax MOD (Numerator, Denominator)
Parameter Description
Numerator Enter the value you want used as the numerator.

Denominator Enter the value you want used as the denominator.

The system returns the integer remainder from an integer division.

NOTE: If you enter zero (0) as either the numerator or denominator, the system returns
zero. Decimal or string input parameters are converted to integer values prior to
the calculation.

Example Assume you have the following entry in the SETRCPTBL.DAT file for the form trigger
being processed. Also assume there are 30 records in the extract file that match the search
mask.

;RP10;CIS;ga_£f1550;;;Customer(1);;1,M;25;0;1;;DALTrigger;F1550;
Here is an example:

BeginSub F1550
#rec = CountRec("1l,F1550,31,Data")
#remaining = MOD(#rec, TriggerRecsPerOvFlw())
While (#remaining > 0)

* write additional records
Write_fm()
#mod -= 1
Wend
Return (#rec)
EndSub

In this example, the MOD function returns the integer remainder of 5. If no extract
records matched the search mask, the system would have returned zero (0).

See also Mathematical Functions on page 72

317

IMIONTH

318

Syntax

Example

See also

Use this function to determine the number of the month in a given date and return the

number.

Month (Date, Format, Locale)

Parameter Description

Date Enter a valid date string. The system assumes your entry is in the date format
specified in the Format parameter. The default is the current date.

Format Enter a valid date format string that describes the Date parameter. The default is

date format 1.

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INI option. If the Locale INI option offers no value, the system
defaults to USD (United States/English).

The system determines the month portion of the given date based on the format you

specify. This function is often used with the MonthName function.

Here are some examples:

(Assume the current date is 07/01/09.)

Function Result

Explanation

Month () 7

Month (“09/138”, 5
“7)

datestring= 10
DateAdd(, , ,3);
Month(datestring)

The parameter defaults to the current date.

The given date (09/138) in the date format I is the equivalent
of May 18, 2009. Therefore the number of the month (5) is

returned.

First the DateAdd function defaults to the current date and

adds three months. The resulting date of October 1, 2009 is
returned to the target variable datestring. The Month function
then returns the number of the month of October (10).

Date Functions on page 51
Locales on page 55

Date Formats on page 52
Locales on page 55
DateAdd on page 183

MonthName on page 319

MonthName

MONTHNAME

Use this function to find the name of the month in a given date and return that name.

Syntax MonthName (Month, Locale)

Parameter Description

Month Enter a valid month value. For example, enter one (1) for January or 12 for
December. The default is the current month.

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INT option. If the Locale INI option offers no value, the system
defaults to USD (United States/English).

This function is most often used with the Month function. The Month function extracts
the month number from a given date.

Example Here are some examples:

(Assume the current date is 07/01/09.)

Function Result Explanation

Return(MonthName ()) July Defaults to the current month.

Return(MonthName November Returns November, which corresponds to the given
(1 1)) parameter (l 1)

Return(MonthName May First the Month function determines that the month
(Month (“09/138”, “1”) number for the given date is 5. (09/138 is equivalent to
D) ’ May 18, 2009) Then MonthName returns the

corresponding month name of May.

See also Date Functions on page 51
Locales on page 55

Month on page 318

319

MSG

320

Use this procedure/function to ctreate a message window with an Ok button. This
procedure does not return a value.

Syntax MSG (MsgLinel, MsgLine2, MsgLine3, Title)

Parameter Description

MsglLinel Enter the first line of the message.
Msgline2 Enter the second line of the message.
Msgline3 Enter the third line of the message.

Title Enter a title for the message window.

This procedure provides the user with information. The message window is created as a
standard message window.

This procedure displays a message each time the script executes. Therefore, use this
procedure only in scripts that execute once during entry. Do not use the MSG procedure
for scripts that execute each time a user tabs to a new field.

NOTE: A DAL script executes once during entry. A DAL calc executes each time the
user tabs to a new field. You make the DAL script or DAL calc designation in
the Properties window.

This is also useful in Documaker Workstation when debugging scripts.

Example Here are some examples:
Procedure Result Explanation
MSG (“Sample Line 17, “Sample Message” is the title of the message.

“Sample Line 2”, “Sample Line

“Sample Line 17
37, “Sample Message”)

“Sample Line 2”

“Sample Line 3” is the message to the user.

MSG (“Don't fotget to inform The message appears without a title.
the customer about the luxury
tax.”)

See also Documaker Workstation Functions on page 59

NL

Syntax

Example

See also

NL

Use this function to retrieve a string that contains a new line character sequence. This is
useful when you are creating output text messages that contain line breaks.

NOTE: On Windows, this function returns a cartiage return/line feed pair. On UNIX, it
returns a line feed. The function works in both Documaker Server and
Workstation.

NL ()

There are no parameters for this function.

This example shows how you can use this function with the Print_It function:
Print_It("This is line one." & NL() & "This is line two.")

In this example, two lines are output to the command line during Documaker Server
processing. Without this function, you would have to include two Print_It statements.

This is line one.
This is line two.

This example shows how you can create multi-line text area messages:

data = ?("cus_name") & NL() & ?("state") & ", " & ?("zip")
SetFld(data, "cus_ss")

In this example, two lines are stored in a multi-line text area on separate lines. Without
this function, you would have to define the multi-line text atea, a fixed-size font, and the
script would have calculated the number of spaces to pad to the first line to make sure the
line wrapped propetly.

John A. Smith
CA, 81234-4444

You can also use the NL function when you are creating comment strings you want
inserted into a print stream using the AddComment procedure.

String Functions on page 78

321

NUM

Use this function to return the numeric value of a field. On numeric formatted fields, this
function operates the same as the @ function, however, NUM automatically converts a
non-numeric field into its numeric content.

Syntax NUM (Field, Section, Form, Group)

Parameter Description

Field Enter the name of a section field. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

The system uses the parameters provided to search for one field on a section and return
that field’s data as a number. The field does not have to be defined as a numeric data type.

Example Here are some examples:

(Assume the current field value is ABC1234.23XYZ and is named MyField. Also, assume
that a second occurrence of MyField appears on the form, MyForm, and contains the
value automobile.)

Function Result Explanation

NUM() 1234.23 Returns the value in the current field as a number. Notice that
any non-numeric value is removed before returning the value.

NUM 1234.23 Returns the value in the named field, located on the current

(“MyField”) section.

NUM(“MyField\ 0 Since the second occurrence of MyField on this form does not

27, , “MyForm”) contain any numetic values, the result is zero (0).

See also Field Functions on page 61
Field Formats on page 62
Locating Fields on page 64
@ on page 109

322

NUMERIC

Syntax

Example

See also

Numeric

Use this function to test if a string contains a valid numeric value. The system returns one
(1) if the string is a valid number and zero (0) if not.

Numeric (String)

Parameter Description

String Enter a valid string. The default is the value of the current field.

The system returns true or false depending on whether the string parameter contains a
valid numeric value.

Leading or trailing spaces are removed before the string is evaluated. A numeric value
contains only numbers, a sign (leading or trailing), and a single decimal point.

Here are some examples:

(Assume the current field value is -101.564)

Function Result Explanation

Numeric () 1 Defaults to the current field and determines a true
statement, such as if the field contains a valid numeric value.

Numetic 0 Determines a false statement, such as if the field does not
(“123T4567) contain a valid numeric value.

IF Numeric “YES” The specified value is numeric therefore the variable result
(“4633392”) will be assigned Yes.

result = “Yes”;

ELSE

result = “No”;

END

Return(Result)

Mathematical Functions on page 72

323

NUMTEXT

324

Syntax

Example

Use this function to convert a numeric value into a series of descriptive words.

NumText (Number, DollarWord, CentWord, DeciMode)

Parameter Description
Number Enter an amount. The default is the value of the current field.
DollarWord Enter the word you want the system to use to describe the main unit of

currency. The default is:

“dollars and”

CentWord Enter the word you want the system to use to describe the secondary unit of
currency. The default is:

“cents”

DeciMode Choose from these options:
1 - numeric decimal amount
2 - spell decimal amount
3 - supptess zero, numeric decimal amount
4 - suppress zero, spell decimal amount

The default is one (1).

The system returns the written word equivalent of a numeric value.

The system attempts to remove formatting information from the parameter number. If
the value after deformatting is not a valid number, the function returns an empty result.

This function is basically designed to produce the text that might appear on a bank check.
The default type strings are dollars and and cents. When the default descriptions are used,
this function uses the singular word do/ar or centwhen the associated value is 1, otherwise
it uses the plural text. Alternate descriptions provided as parameters are not changed for
any value amount.

The optional decimode parameter is an integer value from 1 to 4. This parameter includes
or suppresses the zero (0) decimal value. You can also use this parameter to specify if the
decimal amount should be presented as a number or spelled out.

NOTE: This function only supports two decimal places. Additional places are truncated
without rounding.

Here are some examples (assume the current field value is 1641.56):

Function Result Explanation

NumText () One thousand six hundred forty- Defaults to dollars and cents
one dollars and 56 cents and numeric decimal result.

NumText(, , , 2) One thousand six hundred forty- Decimal mode 2 spells the
one dollars and fifty-six cents decimal amount.

See also

Function

NumText(12.00, , ,3)
NumText(34.55,”’meters
and”,”centimeters”,3)
NumText(1.00,,,)
NumText(1.01,,,)

NumText(1.00,”meters
and”,”centimeters”,3)

NumText(1.01,”meters
and”,”centimeters”,3)

NumText

Result Explanation

Twelve dollars A decimal mode of 3
suppresses the zero decimal.

Thirty four meters and 55 Demonstrates substituting
centimeters alternate references.
One dollar

One dollar and one cent

One meters and

One meters and one centimeters

If you include Dollarword and Centword and the number does not contain a decimal, the

exact content you specify in Dollarword is printed and the system does not distinguish the

number from being singular or plural. The Dollarword and Centword are printed exactly
as specified. Notice the difference in the default format (dollars and cents) in the last two

examples.

String Functions on page 78

FrenchNumText on page 247

325

PAD

Use this function to add trailing spaces or characters and return the result.

Syntax PAD (String, Length, Char)

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Specify the desired length of output. The default is the length of value in the
String parameter.

Char Enter a valid string that contains the pad characters you want to use. The default
is the space character.

The system returns the string created by padding parameter 1 with the characters from
parameter 3.

If the length specified in parameter 2 is longer than the string, the result is increased to
the integer length you specified. If the specified integer length is less than the string, the
length of the string is maintained.

The string is not truncated. All leading and trailing spaces are removed from the input
string before the PAD function.

Example Here are some examples:

(Assume the current field contains the text Last Name Only.)

Function Result Explanation

PAD(“may “,9) “may “ Pad the result string to a length of 9. The pad character
defaults to the space character.

PAD (, 20, 1) “Last Name Defaults to the current field, and adds the pad character (!)
Only!lN” until the length reaches 20.

PAD () “Last Name Defaults to the cutrent field; No length was specified;
Only” therefore the field remains the same.

PAD (“Ten “Ten Adds the pad character (¥) to the end of the specified

dollars “, 15, *) dollars****” parameter until the length reaches 15. Notice that the trailing
spaces were first removed and then padded with the new
character.

See also String Functions on page 78

326

PAGEIMAGE

Syntax

See also

Pagelmage

Use this function to return the name of a section on a given page number within the form

set or form. If you include the name of a recipient as a parameter, the system will filter the

sections by that name. Once you have a section name, you can use other DAL functions

to query the section, to insert a new section, or to delete the section.

PageImage (Page, Recipient, Form, Group)

Parameter

Description

Page

Recipient

Form

Group

Include this parameter to indicate the specific page where you want to locate a
section. If you omit this parameter, a section from page one is located. Depending
upon the remaining parameters, this page will be the page within the entire form
set, or within a given form.

Include this parameter to filter the sections located by that recipient. If you omit
this parameter, the name of the first section on the requested page is returned.

Include this parameter if you want the system to first locate the specified form and
then use the Page parameter to find the specified page within that form. If you
omit this parameter, the Page parameter is based on a page located by starting at
the first page of the form set or group (if the Group parameter is specified).

Include this parameter to tell the system to first locate a specific group. If you also
include the Form parameter, the system will find that form in that group. If you
omit the group but include the form, the system looks for that form in the current
group — which is identified by the current field or section executing the script. If
you include the group but omit the form, the system uses the Page parameter to
return that page in the specified group.

The name returned by this function also includes the occurrence value if the section occurs

more than once. For instance, if a section named, MySection, is located on the given page,

but this is the second occurrence of the section within the named form, the name returned
will be MySection\2.

Pagelnfo on page 328

Name Functions on page 74

327

PAGEINFO

Use this function to get information about the page of a form you specify. This
information includes height, width, and orientation.

Syntax PageInfo (Prefix, Page, Recipient, Section, Form, Group)

Parameter Description:

Prefix This parameter identifies a prefix for creating the variable names to contain the
page information.

Page (Optional) This parameter determines the relative page number that should be
examined, once the starting page is located by examining the remaining
parameters. The default is the first page located.

Recipient (Optional) This parameter names a specific recipient that must be used on a
section of the page located. If you omit this parameter, the function matches the
first page identified by the remaining search criteria.

Section (Optional) This parameter names a section that should be found to identify the
page.

Form (Optional) This parameter names a form that contains the page to be found.

Group (Optional) This parameter names a group that must contain the page to be found.

The Section, Form, and Group parameters are optional and when used will work together
to locate the starting page for the search. Here are some examples:

* Ifyou name a section, but no form or group, the assumption is the section is on the
current form.

* Ifyou name a form, without a group, the assumption is the form must be within the
current group of forms.

* If you name a section and a group, but no form, the assumption is the section can
occur on any form within that group.

* If you omit the section, form, and group parameters the search starts from the
beginning of the document set.

Once the requested page is located, the system assigns the page information to DAL
variables using the Prefix parameter. If these variables do not exist in DAL, the system
creates them for you. The system creates four internal variables: prefix.height, prefix.width,
prefixJandscape, and prefix.paper. If these variables exist, the system modifies them with
the new information.

For example, a call like this will create four variables.

PageInfo (“*MYPAGE”) ;

Variable Description

MYPAGE.Height Contains the height of the page in FAP units (2400 DPI).

MYPAGE.Width Contains the width of the page in FAP units (2400 DPI).

328

See also

Pagelnfo

Variable Description

MYPAGE.Landscape Contains one (1) if the page is landscape, otherwise zero (0).

MYPAGE.Paper Contains a value that corresponds to a paper size table entry.

Note that for landscape pages, the height and width values reflect the rotation of the width
and height. For instance, non-landscape letter documents return a height of 26400 and a
width of 20400. Landscape letter documents return a height of 20400 and a width of
26400.

The page size (height and width) is determined by finding the first section on a page with
the required recipient. If no recipient is specified, the first section on the page is used. The
form pages within a document do not have to be the same size. Also note that if the first
section on a page is a custom size, the width and height will reflect the besz values.

Generally when a section is a custom size, the actual page size is found in the form
definition. If, however, the form size (height or width) is smaller than the corresponding
section size, then the larger of the values is returned.

Also remember since page size is determined by the first section designated for a given
recipient, it is possible for the same page to have a different size for different recipients.

The Pagelnfo function returns a value if used in an expression that requires it. The
possible return values are zero (0) if the requested page could not be found, or non-zero
if the page is found.

Possible reasons for a page not to be located include:

* The page number is outside the range of pages for the given search criteria. For
instance, you ask for page three of a form that only has two pages.

* The recipient cannot be located within the document search criteria.

* The section, form, or group (or combination thereof) cannot be located within the
specified document.

Pagelnfo on page 328

Page Functions on page 75

329

PAGINATEFORM

330

Syntax

See also

Use this function/procedute to apply section origins and re-paginate the form if
necessary. During this re-pagination, the function will create or delete pages as needed.

NOTE: The AddImage and Dellmage DAL functions include a parameter (Paginate)
which you can use to force re-pagination after the affected section has been
manipulated.

PaginateForm (Form, Group)

Parameter Description

Form (Optional) If you omit this parameter, the current form controlling the active

script is paginated. If you include the name of a form, that form is located and
paginated.
You can include the occurrence indicator (a backslash followed by a number, such
as BIZ\3) to indicate a specific occurtence of the form to find and paginate. If
you do not specify an occurrence with the name, the first occurrence of the form
is paginated.

Group (Optional) This parameter identifies the Key2 or GroupName2-level parent that
contains the form. This is sometimes referred to as the /e of business that contains
the form

If you omit the Group parameter, the system tries to locate the named form within
the current group that is controlling the execution of the script.

You can call PaginateForm as a function or procedure. As a function, it returns a one (1)
if the requested form is located or a zero (0) if it could not be located.

Note that if the form is found and paginated, there may not be any visible change to the
document. The form layout is determined when you design the form and by the
application of section origin rules.

AddImage on page 122
Dellmage on page 211

Page Functions on page 75

ParselListCount

PARSELISTCOUNT

Syntax

Example

Use this function to count the indexed components within the formatted text.

NOTE: Use the ParselistCount and ParseListItem functions when accepting tokenized
(comma or semicolon-delimited) data, such as data from a spreadsheet program
or other application. These are sometimes referred to as CSV (comma separated
value) files.

ParseListCount (String, Separator)

Parameter Description

String Enter the formatted string you want the system to search and parse.

Separator Enter the list of character separators used within the formatted text parameter. If
you omit this parameter, the system uses semicolons and commas.

The system returns the number of formatted items found within the String parameter. If
the String parameter text starts with delimiter characters, those characters are skipped.

If you do not have at least a space character between delimiters, this will not be identified
as a separate index item.

NOTE: You can use the ParseListItem function to return the text components parsed
from the formatted text.

For these examples, assume xString = “A,B;C”
value = ParseListCount (xString)
The value is 3.
value = ParseListCount (xString,” ;")

The value is 2. In this example the parameter overrides and assigns only a semicolon as a
valid separator. Therefore, there are two items within this string.

For these examples, assume xString = “5A;,B,;C”
value = ParseListCount (xString)

The value is 3. If the formatted string starts with separator characters, these characters are
skipped. Note that adjacent separators are treated as a single separation.

For these examples, assume xString = ; JA; ,B;”
value = ParseListCount (xString)

The value is 4. Note the intervening character — a space - between some of the separator
characters.

value = ParseListCount (xString,”;”)

331

The value is 2. This overrides and assigns only a semicolon as the format separator,
therefore there are only two components. Also note that although there are three
separators, the first one that starts the string and the final one that ends the string are also
ignored.

See also ParseListItem on page 333

String Functions on page 78

332

PARSELISTITEM

Syntax

Example

ParselListltem

Use this function to return indexed components from the formatted text.

NOTE: Use the ParselistCount and ParseListItem functions when accepting tokenized
(comma or semicolon-delimited) data, such as data from a spreadsheet program
or other application. These are sometimes referred to as CSV (comma separated
value) files.

ParseListItem (String, Item, Separator)

Parameter Description

String Enter a formatted string to search and parse.

Item Enter the number of the item you want from within that formatted string.
If you omit this parameter, the first item parsed from the formatted text is
returned.

Separator Enter a list of character separators used within the formatted text parameter.

If you omit this parameter, the semicolons and commas are used.

The return value is a string of text. If the formatted text contains leading or trailing spaces
on items formatted within it, they are not removed. You can use the Trim function on the
returned text if you do not want the spaces.

If the first parameter text starts with delimiter characters, they will be skipped. Because
the function will return spaces, you know when you have exceeded the number of items
formatted within the string when you get an empty string returned.

NOTE: If you do not have at least a space character between delimiters, this will not be
identified as a separate index item.

Here are some examples. Assume xString = “A,B;C”
value = ParseListItem(xString)

The value is A.
value = ParselListItem(xString,3)

The value is C because the default separators include both commas and semicolons.
value = ParseListItem(xString,1,”;")

The value is 4, B. Note in this example the third parameter overrides and assigns only the
semicolon as a valid separator. Therefore, the first item includes all text up to the first
semicolon.

For these examples, assume xString = “5A;,B,;C”

value = ParseListItem(xString)

333

334

See also

The value is 4. Note that if the formatted string starts with separator characters they are
skipped.

value = ParselListItem(xString, 2)

The value is B. Note again how adjacent separators without intervening characters (or
space) are skipped. Therefore the semicolon and comma (;,) between the A and B are
treated as a single separation.

value = ParselListItem(xString, 3)

The value is C. Note again how adjacent separators without intervening characters (or
space) are skipped. Therefore the semicolon and comma (;,) between the 4 and B are
treated as a single separation and the semicolon and comma (;,) between the B and C are
also treated as a single separation.

value = ParselListItem(xString,3,”,")

The value is ;C. Note the third parameter overrides and assigns only the comma as a valid
separator. Therefore the third index item includes all text following the second comma to
the end of the string (because no other separators were encountered).

For these examples, assume xString = “; ,A; ,B;”
value = ParseListItem(xString)

The value is a space. Note that there is at least one intervening character — a space —
between the first set of separator characters.

value = ParselListItem(xString, 2)
The value is A.

value = ParseListItem(xString, 3)
The value is a space.

value = ParselListItem(xString,4)
The value is B.

value = ParseListItem(xString,5)

The value is an empty string because this index item exceeds the list of items provided.

ParseListCount on page 331

String Functions on page 78

PathCreate

PATHCREATE

Use this function to create the parameter subdirectory path if it does not already exist. The
function assumes all of the text you pass in is a path and does not remove any of it before
it tries to verify or create the path.

The function creates multiple subdirectories as necessary in an attempt to satisfy the
request.

NOTE: The PathCreate and PathExist functions let you create paths and verify that paths
exist. These are useful, for instance, if you are trying to create printed output and
organize that output into subdirectories on disk. You can do this using one of the
print callback methods that support a DAL script.

Syntax PathCreate (Path)

Parameter Description

Path Enter the full path you want the system to verify or create.

The system returns zero (0) if it cannot create the path requested. Anything else means
the path now exists, but is not an indication that it had to be created.

NOTE: This function is not valid on the z/OS operating system.

See also PathExist on page 336

File and Path Functions on page 68

3356

PATHEXIST

Use this function to take the parameter path you provide and check for its existence. This
function does not create subdirectoties.

NOTE: The PathCreate and PathExist functions let you create paths and verify that paths
exist. These are useful, for instance, if you are trying to create printed output and
organize that output into subdirectories on disk. You can do this using one of the
print callback methods that support a DAL script.

Syntax PathExist (Path)

Parameter Description

Path Enter the full path you want the system to verify.

The system returns zero (0) if the path is invalid. Anything else indicates the path you
provided exists.

NOTE: This function merely checks for the existence of the path you specified. Provided

the path does exist, this is not an indication that the process will be able to access
or create files within that path.

See also PathCreate on page 335

File and Path Functions on page 68

336

POW

POW

Use this function to raise a number to an exponential power.

Syntax POW (Base, Exponent)
Parameter Description
Base Enter the base number, positive or negative, to be raised to an exponential

power. The default is 1.00.

Exponent Enter the exponent (power) to which the base number will be raised. The default
is zero (0).

The system returns a one (1) on success or a zero (0) on failure.

This function handles calculations such as those needed to figure annuities and interest
rates. Using the function, a decimal number is returned from a base number that has been
raised to an exponential power. Values can contain up to 14 digits.

The function handles both positive and negative integer or decimal values for the base
number and exponent.

Example Here is an example:

Function Result

POW (2,3) 8

POW (2,-3) 0.125

POW (34.5,3.14) 67414.289005316

See also Mathematical Functions on page 72

337

PRINT

338

Syntax

Example

See also

Use this procedure/function to print the entire document. Optionally this procedure
returns one (1) on success or zero (0) on failure.

Print ()

There are no parameters for this procedure.

This procedure performs a similar action to choosing print from the menu. The user is
shown the Print window from which he or she can choose printer options.

Here is an example:

Procedure Result Explanation

Print () 1 or 0 (zero) Print the current form set.

WIP Functions on page 88

Print_It

PRINT_IT

Use this procedure to print a string to the console.

Syntax Print_It (Text)

Parameter Description

Text Enter the string you want the system to print to the console.

NOTE: This is useful when debugging scripts in Documaker Server.

Example Here is an example:

Procedure Result Explanation

If (HaveGVM(‘Company’)) astring The content of the GVM variable Company is
Print_It (GVM(‘Company’) printed to the console.

)

End

See also DAL Script Examples on page 35

Miscellaneous Functions on page 73

339

PRINTERCLASS

Use this function to find out the type of print stream the system is generating.

Syntax PrinterClass ()

There are no parameters for this function.

Example Here are some examples. Assume these INI options exist:

< Printer >
PrtType = AFP

< PrtType:AFP >
PrintViewOnly

Yes
OnDemandScript = OnDemand

Function Result

Explanation

type = PrinterClass () a string

If (PrinterClass() = ‘PrtType:AFP’) a string
Then AddComment(AppIdxRec())

End

The DAL target variable, #pe will contain
AFP.

If the print type is AFP then execute
following statement.

See also AddComment on page 117
DAL Script Examples on page 35

Printer and Recipient Functions on page 76

340

PrinterGroup

PRINTERGROUP

Use this function to retrieve the group name that is being used to generate the print
stream. This name is stored in the INI file.

Syntax PrinterGroup ()

There are no parameters for this function.

Example Here are some examples. Assume these INI options exist:

< Printer >
PrtType = AFP

< PrtType:AFP >
PrintViewOnly = Yes
OnDemandScript= OnDemand

Function Result Explanation

G_name = PrinterGroup() PrtType:AFP Retrieves the printer group name.
ScriptName = GetINIString OnDemand Contains the name of the DAL script
(PrinterGroup() you want to execute.
‘OnDemandScript’)

See also GetINIString on page 256
DAL Script Examples on page 35

Printer and Recipient Functions on page 76

341

PRINTERID

342

Syntax

See also

Use this function to return the active printer ID assigned during a Documaker Server
processing run. The printer ID is a string of text associated with the current batch output
and normally determined via INT option during a batch run. The IDs are associated from
the PrinterInfo control group with each batch printer definition.

You can use this ID, for instance, when naming print file. For example, you might want
all the files from one printer ID in a separate location or have the names prefixed in a
certain manner.

PrinterID ()

There are no parameters for this function.

NOTE: The printer ID is only valid during a batch print operation and calling the
function at other times returns the last value assigned or an empty string.

Printer and Recipient Functions on page 76

PrinterOutputSize

PRINTEROUTPUTSIZE

Use this function to get the approximate size of the current print output file during a batch
print operation.

Syntax PrinterOutputSize ()
There are no parameters for this function.
This function is only available during Documaker batch process operations, such as

GenPrint, and only returns a non-zero value if a print stream is actively being built and
written to a physical file on disk.

NOTE: When printing through the Windows GDI device, there is no physical file and
therefore the value returned is unreliable and may be zero.

See also Printer and Recipient Functions on page 76

343

PUTFORMATTRIB

Syntax

344

Use this function to save the named attribute and information to a form within your
document set. You can add new attributes via this function or update an attribute on a
form you specify.

NOTE: Adding or changing a form attribute only affects the current document set. You
cannot update the contents of a FORM.DAT or FOR file from a DAL script.
Once changed, the attribute will stay with your form even if saved to WIP or
archived.

PutFormAttrib (Name, Data, Form, Group)

Parameter Description

Name Enter the name of the form attribute (metadata).

Data Enter the value associated with the form attribute (metadata). The default is an
empty string.

Form Enter name of a form to retrieve data from. The default is the cutrrent form.

Group Enter name of the group that contains the specified form. The default is the

current group.

If you omit both the Form and Group parameters, the system chooses the current form,
based on where the script executes. During Entry (via the Workstation or the plug-in) this
will be the form that contains the DAL script. During Documaker Server processing, the
first logical form found within the document set is the current form, unless the script is
executed from a section or field rule.

If you include the Form parameter, but omit the Group parameter, the system looks for
the form within the current group of forms, as defined by where the script executes.
During Entry (via the Workstation or the plug-in) this is the group that contains the form
where the script executes. During Documaker Server processing, the first logical group
found within the document set is the current group, unless the script is executed from a
section or field rule.

If you omit the Form parameter but include the Group parameter, the system locates the
first form within the group you specified.

If the function is successful in adding the attribute to a form, it returns a one (1). If the
function is not successful, it returns a zero (0). A failure typically means that based on the
form and group name parameters, the function could not locate the form.

PutFormAttrib

Example In this example assume the form 1111 has this metadata:

Name Value

Offer Good until cancelled

Codes R4,79, ZW

Here is an example:
xx=PutFormAttrib ("Restriction", "Must be 18 or older", "1111")

After execution, the form contains the following:

Name Value

Offer Good until cancelled
Codes R4,79, ZW
Restriction Must be 18 or older

Keep in mind...

* The name of a user-defined attribute must follow the naming convention used for
Documaker objects. This means the name cannot include semicolons (;), backslashes
(\), equals signs (=), of two pipe symbols in sequence (| |). You can use
underscores (_), hyphens and dashes (-), and periods or full stops (.).

* You cannot use a pipe symbol (|) as the first character in a name or value.
* The value size cannot exceed 1000 characters for each value.

* The names Category and Key3 are reserved. Avoid using these names.

See also GetFormAttrib on page 252

Have Functions on page 69

345

PuTINIBooL

Use this procedure/function to store a Boolean value in an INI control group and option
Boolean variable.

Syntax PutINIBool (Context, Group, Option, Default)

Parameter Description

Context (Optional) Enter the name (valid string) associated with a set of INT control
groups and options loaded into cache memory.

Group Enter the name of the control group which contains the INI option Boolean
variable.
Option Enter the name of the option in which the INI Boolean variable will be stored.

If the control group and option does not exist, the system creates them.

Default (Optional) Enter the default Boolean value to store into the control group and
option Boolean variable. The default is zero (0).

The system returns one (1) if no error occurred during execution and zero (0) if there was
an error.

This procedure stores a Boolean value in the specified control group and option Boolean
variable.

If you omit context name and the control group and option does not exist in any of the INI
files, the procedure stores the Boolean value in the FSTUSER.INI file.

If there are multiple control groups and options with the same name, the procedure stores
the Boolean value in the first INI control group and option variable equal to the specified
control group and option name.

If a context name is present, the procedure only stores the Boolean value in the control
group and option variable associated with the context name.

Example Assume an INI file, TEST7.INI, was loaded with the context name, M1/F. The
TEST1.INI file contains this control group and option:

< Control >
LogEnabled = 1

In addition, the FSTUSER.INI file contains this control group and option:

< Control >
LogEnabled = 0

Plus, the FSISYS.INI file contains this control group and option:

< Control >
LogEnabled = 1

Based on this scenario, the following table shows and explains several possible results.

346

PutINIBool

Procedure Result Explanation

rc = PutINIBool The variable boo/_value in the The procedure scanned the

(’control” FSIUSER.INI file now contains a loaded INI control groups and

“,LogEnabl,ed”)' zero (0). The return code reis set to options. It found the specified
’ one (1). control group and option in the

FSIUSER.INI first. The
FSIUSER.INI set is searched
first, followed by the FSISYS.INI
set and then any other loaded
sets, in order.

rc = PutINIBool The variable boo/_valune in the The procedure scans only the

(“MVE”, ”control”, TEST1.INI file now contains a zero control group and option set

“LogEnabled”); (0). The return code r¢is set to one associated with the context name
@). MVF.

rc = PutINIBool The variable boo/_valne in the The procedure scans only the

(“MVE”, ”control”, TEST1.INI file now contains a one control group and option set

“LogEnabled”, 1); (1). If Controland LogEnabledare not associated with the context name

found, the system creates a control ~ MI/F.
group and option and sets the
Boolean variable LogEnabled to one

-

See also INI Functions on page 70

Using INI Options on page 8

347

PUTINISTRING

348

Syntax

Example

Use this procedure/function to store a string value in a specified INI control group and
option string variable.

PutINIString (Context, Group, Option, Default)

Parameter Description

Context (Optional) Enter the name associated with a set of INI control groups and
options loaded into cache memoty.

Group Enter the name of the control group name which contains the INI option string
variable.
Option Enter the name of the option into which you want the INI string variable stored.

If the control group and option does not exist, the system creates them.

Default (Optional) Enter the default string value you want to store in the control group
and option string variable. The default is N#//.

The system returns one (1) if no error occurred during execution and zero (0) if there was
an error.

This procedure stores a string value into the specified control group and option string
variable. If the context name is not present and the control group and option does not
exist in any of the INI sets, the procedure stores the string variable into the FSTUSER.INI
file.

If there are multiple control groups and options of the same name, the procedure stores
the string value in the first INI control group and option variable equal to the specified
control group and option name.

If a context name is present, the procedure only stores the string value in the control
group and option variable associated with the context name.

Let’s assume that an INI file, TEST7.INI, was loaded with the context name, MI”F. The
TEST1.INI file contains this control group and option:

< Control >
title = MVF’'s string

In addition, the FSTUSER.INI file contains this control group and option:

< Control >
Title = Bob’s string

Plus, the FSISYS.INI file contains this control group and option:

< Control >
Title = fap entry

Based on this scenario, the following table shows and explains several possible results.

Procedure

Result

PutINIString

Explanation

rc = PutINIString
(,”Control”, “Title”);

rc = PutINIString

(“MVEF”, ”Control”,
“Title”);

rc = PutINIString
(“MVE”, ”Control”,
“Title”, “New
string”);

The string variable 17zl in the
FSIUSER.INI file now contains
Bob’s string. The return code rv is
set to one (1).

The string variable 17zl in the
TEST1.INI file now contains
MVF’s string. The return code r¢
will be set to one (1).

The string variable Tizle in the
TEST1.INI file now contains New
string. If Control and Title are not
found, the system creates them
and sets the string vatiable T7#/e to
New string.

The procedure scanned the loaded
INI control groups and options. It
found the specified control group
and option in the FSIUSER.INI
first. The FSIUSER.INI set is
searched first, followed by the
FSISYS.INI set and then any other
loaded sets, in order.

The procedure scans only the
control group and option set
associated with the context name

MIVF.

The procedure scans only the
control group and option set
associated with the context name

MVF.

INI Functions on page 70

Using INI Options on page 8

349

RECIPBATCH

350

Syntax

Example

See also

Use this function to get the name of the recipient batch file being processed. This function
is only applicable to batch banner processing or comment record processing with the
GenPrint program.

RecipBatch ()

There are no parameters for this function.

Here is an example. Assume the recipient batch file entitled Ba#ch7 is being processed.

Function Result Explanation

rb = RecipBatch(); Batchl ~ Returns the name of the recipient batch being processed.

RecipCopyCount on page 351
RecipName on page 353

Printer and Recipient Functions on page 76

RECIPCOPYCOUNT

Syntax

Example

See also

RecipCopyCount

Use this function to count the number of recipient copies for specified sections and return
that number.

RecipCopyCount (Recip, Section, Form, Group)

Parameter Description

Recip (Optional) Enter the names of the recipients you want included in the count.
Section Enter the names of the sections you want the function to look through.

Form (Optional) Enter the names of the forms you want the function to look through.
Group (Optional) Enter the names of the groups you want the function to look through.

If a recipient has a zero copy count, it is omitted from the total. For instance, if there are
three recipients, all with a zero copy count, zero (0) is returned.

NOTE: The recipient list this function uses is the same one that generates the POLFile.
The list is not re-generated from the POLFile, therefore if any changes occurred
in the POLFile, those changes would not be represented in the internal list.

Here is an example:

RecipCopyCount (Recip, Section, Form, Group)

[RegType:i_Check]
function=atcw32->ATCLogTransaction
function=atcw32->ATCLoadAttachment
function=dprw32->DPRSetConfig
function=atcw32->ATCUnloadAttachment
function=dprw32->DPRCheck

RecipBatch on page 350
RecipName on page 353

Have Functions on page 69

351

RECIPIENTNAME

Use this function to return from the FORM.DAT file the recipient name related to the
specified section, form, or group.

You can use this function along with the HaveRecip function in DAL scripts to place a
sequence number on each page of each recipient batch.

Syntax RecipientName (Count, Section, Form, Group)

Parameter Description

Count An indexed reference to locate a recipient in the FORM.DAT file. The default is
the first recipient in the FORM.DAT file.

Section Enter the name of a section that contains the recipient. The default is the current
section.

Form Enter the name of a form that contains the recipient. The default is the cutrent
form.

Group Enter the name of the form group that contains the recipient. The default is the

cutrent group.

If you omit the parameters, the system uses the first recipient it finds in the FORM.DAT
file for the section, form, or group.

If the section, form, or group can not be located or the Count parameter causes the system
to move beyond the last recipient in the FORM.DAT file for the section, form, or group,
an empty string is returned.

See also HaveRecip on page 271

Name Functions on page 74

352

ReECIPNAME

Syntax

Example

See also

RecipName

Use this function to get the name of the recipient batch record for the transaction
currently being printed. This function is only applicable to batch banner processing or
comment record processing with the GenPrint program.

RecipName ()

There are no parameters for this function.

Here is an example. Assume the transactions for the Insured batch are being processed.

Function Result Explanation

rb = RecipName(); Insured Returns the name of the recipient batch being processed.

RecipCopyCount on page 351
RecipBatch on page 350

Printer and Recipient Functions on page 76

353

REFRESH

354

Syntax

Example

See also

Use this procedure to refresh or repaint the screen.

Refresh ()

There are no parameters for this procedure.

Use this procedure with the AppendTxm, AppendText, Dell.ogo, Logo, and
ChangelLogo procedures. The result from these procedures may not immediately display.
Use the Refresh procedure to repaint the screen and display the text or graphic (LOG).

NOTE: This procedure is valid only in Documaker Workstation scripts.

Here is an example:

Procedure Result Explanation

Refresh () Repaints the screen. New graphics or text now appears.

Documaker Workstation Functions on page 59
AppendText on page 131

AppendTxm on page 133

DellLogo on page 213

Logo on page 300

ChangelLogo on page 162

RemoveAttachVAR

REMOVEATTACHVAR

Use this function to remove an attachment variable. You can use this function when
creating print comments using Documaker Bridge.

Syntax RemoveAttachVAR (Name, DSIqueue)
Parameter Description
Name Enter the name of the attachment variable.

DSIqueue (Optional) Enter one (1) for input or two (2) for output. The default is one (1).

The system returns one (1) if the variable was found and zero (0) if it was not found.

See also Docupresentment Functions on page 60
AddAttachVAR on page 114
GetAttachVAR on page 249

355

RENAMELOGO

Use this procedure/function to rename a graphic (LOG).
Syntax RenameLogo (Graphic, NewName, Section, Form, Group)

Parameter Description

Graphic Enter the name of the graphic you want to rename. Graphic names are assigned
in Studio or Image Editor.

NewName Enter the new name for the graphic.

Section Enter the name of the section that contains the specified graphic. The default is
the current section.

Form Enter the name of the form that contains the section. The default is the current
form.
Group Enter the name of the group to use to locate the specified object. The default is

the current group.

The system returns one (1) on success or zero (0) on failure.

This procedure renames the graphic you specify. The Logo procedure, which adds a
graphic on the fly, names the new graphic using the name you specify.

If you want a more generic name so you can address the graphic again without knowing
the file associated with it, use this procedure affer you use the Logo procedure.

You must specify both the Graphic and NewName parameters.

Example Here are some examples:
Procedure Result Explanation
RenameLogo(“Logl”, 1or0 Renames Logl (on the current section, form, and group)
“Jane Doe”) to Jane Doe.
RenamelLogo(“Logl”,’Ja 1 or 0 Renames Logl (on the 3rd occurrence of the named
ne Doe”,”IMH1\3”, section, IMH1, on the form, UpRate) to Jane Doe.
“UpRate”)

See also Changel.ogo on page 162
DellLogo on page 213
HavelLogo on page 269
InlineLogo on page 279
Logo on page 300

Name Functions on page 74

356

ResetFld

RESETFLD

Use this procedure/function to delete the data from a vatiable field, including mult-line
variable fields. This procedure works even if no data was entered into the field.

Syntax ResetFld (Field, Section, Form, Group)

Parameter Description

Field Enter the name of the field you want to reset. Enclose the field name in quotation
marks. Here is an example:

“FIELDO1”

Section Enter the name of the section that contains the field name. The default is the
current section.

Form Enter the name of a form that contains the section or field name or both. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
name. The default is the current group.

Example Here are some examples:

Procedure Result Explanation

ResetFld (“ACCUM_TOT”) 1or0 Clears the data from the ACCUM_TOT field.
ResetFld (“YEARTODATE”) 1or0 Clears the data from the YEARTODATE field.

ResetFld(“TOTAL_PREM”, 1or0 Clears the data in the field, TOTAL_PREM, in the
“BOAT PREM”) section, BOAT PREM.

See also Field Functions on page 61

357

RESETOVFLWSYM

Use this procedure/function to reset the value in an overflow symbol to zero.

Syntax ResetOvF1lwSym (Form, Symbol)

Parameter Description

Form Enter the name of the form that contains the fields on which overflow processing
will occur.
Symbol Enter the name you want to use as the overflow symbol.

The system optionally returns one (1) on success or zero (0) on failure. This procedure
stores a zero (0) in the specified overflow symbol.

NOTE: This procedure provides DAL with the functionality included in Documaker
Server’s ResetOvFlw and ResetOvSym rules.

Example Here is an example:
#reset_rc = ResetOvFlwSym (“CP0101NL”, “Loc_Cnt”)

In this example, the overflow symbol, Loc_Crt,is set to zero and the DAL integer variable,
Hreset_re, is set to a one (1) on success and zero (0) on failure.

Syntax AddOvFlwSym on page 127
GetOvFlwSym on page 259
IncOvFlwSym on page 277

Documaker Server Functions on page 58

358

Retain

RETAIN

Use this procedure to identify DAL variables that should not be cleared between the
processing of transactions.

Syntax Retain (Variable)

Parameter Description

Variable Enter the names of the DAL variables (as a quoted string) you want to retain
during the processing of transactions.

Keep in mind that certain features rely upon DAL variables living forever. This procedure
lets you identify the DAL variables you do not want cleared during the processing of
transactions.

This procedure is not required unless you have the FlushDALSymbols option set to Yes,
as shown here:

< RunMode >
FlushDALSymbols = Yes

The Retain procedure works in both the Documaker and Documaker Workstation
environments and is necessary when you want certain variables to live for the entire
session.

NOTE: Declaring a variable to be retained does not affect the value you assign to the
variable. The Retain procedure does not protect that variable’s value from being
changed in subsequent scripts that are executed.

Once declared as retained, a variable cannot be later removed from the list.

Example Here is an example:

Stotal_amt = Sum(“Sprem_ ") ;
Retain (“$total_amt”);

In this example, the DAL variable §#otal_amt will sutvive transaction boundaties and can
be referenced in any subsequent transaction DAL script.

See also Using INI Options on page 8

Miscellaneous Functions on page 73

359

RIGHT

Use this function to return a specified number of right most characters.

Syntax Right (String, Integer)

Parameter Description

String Enter a valid string. The default is the value of the current field text.
Integer Enter the desired length for the output. The default is the length of the String
patameter.

If the length you specify in the integer parameter is longer than the string, the system pads
the result with spaces to reach the requested length. The input string is first trimmed of
leading and trailing spaces before the output is determined.

Example Here are some examples:

(Assume the cutrent field contains the text Your Name.)

Function Result Explanation

Right () “Your Name” Defaults to the current field; No length was specified;
therefore the field remains the same.

Right (“‘ est text”, 9 “test text” TI'akes the nine right most characters from the
g g
specified field and returns the result.

Right (“Complete “Street Takes the 14 right most characters from the specified
Street Address”, 14) Address” field and returns the result.

See also String Functions on page 78

Left on page 293

360

RootName

ROOTNAME

Use this function to extract and return the root name, or the original part of the name, of
a string you specify. This function strips off the #nnn portion of a field name to get the
root field name.

NOTE: Documaker requires that all fields on a section be uniquely named. Studio and
Image Editor force a unique name if a field is duplicated. Appending #002 or
#003, for example, to the end of the field name creates unique names. In some
cases you may want to use the name of a field to supply the name of a data
dictionary symbol to use to fill that field. If each unique instance of a field is to
use the same name, this can present a problem.

Syntax RootName (Field)
Parameter Description
Field Enter the name of the field for which you want the system to return the root

portion of that name.

Example Here are some examples:
RootName ("Street address #002")
This returns Street address.

MYFIELDNAME = "Comment #003"
RootName (MYFIELDNAME)

This returns Comment.
RootName (FieldName ())

This returns the root name of the current field.

See also Name Functions on page 74

361

ROUND

Use this function to round a number to the nearest specified decimal point and return the
result.

Syntax Round (Number, Places)

Parameter Description

Number Enter a valid numeric value with decimals. The default is the value of the current
field.
Places Enter the number of decimal places you want. The default is two (2).

The system returns the string value of a decimal number rounded to the number of places
specified.

The sign of the number is not changed. Decimal numbers maintain up to 14 digits of
precision. The Round function returns the value with or without trailing zeros requested.
If you use the result the Round function returns in a mathematical equation or to
represent a decimal parameter, the string is implicitly converted as needed.

Example Here are some examples:

(Assume the cutrent field value is 23.5473)

Function Result Explanation

Round () 23.55 Defaults to the current field and to two decimal places.
Round (, 3) 23.547 Defaults to the current field and uses three decimal places.
Round (101.999, 0) 102 Rounds the given value to zero decimal places.

Round (101.999,4) 101.9990 Rounds the given value to four decimal places.

NOTE: When using the result of the Round function to assign a section field value, make
sure the numeric field is defined without a format. If the field has a format, it may
override the text provided by this function.

See also String Functions on page 78

362

RouteWIP

ROuTEWIP

Use this procedure/function to send all the work contained in WIP to all the recipients
specified in a routing slip.

Syntax RouteWIP (Slip)

Parameter Description

Slip Enter the name of a routing slip. The default is to let the system display a window
that lets the user select a routing slip

The system optionally returns one (1) on success or zero (0) on failure.

If the WIP is already following a routing slip’s workflow, the form set is sent to the next
recipient in the existing slip.

Example Here are some examples:
Procedure Result Explanation
RouteWIP() 1or0 Displays for the user the Routing Slip Selection window.
RouteWIP lor0 This specifies the routing slip named, 7zanager. If successful, the
(“manager”) WIP is sent to the first recipient in the list. If the slip name is

invalid, the user can choose another slip.

See also WIP Functions on page 88

363

RPERRORMSG

Use this procedure to write an error message into Documaker Server’s error file
(ERRFILE.DAT). In addition, it increments the Documaker Server error count as

necessary.
Syntax RPErrorMsg (Message)
Parameter Description
Message (Optional) Enter the message you want the system to display. The message can
consist of static text, DAL functions, and procedures. The default is a blank
string.

Example Here is an example:
RPErrorMsg ()
This example would cause the following to be written into your ERRFILE.DAT file:

Error : In DAL Script <.\deflib\iso_create.dal> at line <23>: (Text
omitted)

Here is another example:
RPErrorMsg ("Failed to Open the INFO table in iso_create.")
This example would cause the following to be written into your ERRFILE.DAT file:

Error : In DAL Script <.\deflib\iso_create.dal> at line <18>: Failed
to Open the INFO table in iso_create.

Here is another example:
RPErrorMsg (Time() & " " & Date() & " variable = " & table_name)
This example would cause the following to be written into your ERRFILE.DAT file:

Error : In DAL Script <.\deflib\iso_create.dal> at line <26>:
11:51:02 08/06/2003 variable = INFO

See also RPLogMsg on page 365
RPWarningMsg on page 366

Documaker Server Functions on page 58

364

RPLogMsg

RPLoGMsG

Use this procedure to write a message into Documaker Server’s log file

(LOGFILE.DAT).
Syntax RPLogMsg (Message)
Parameter Description
Message (Optional) Enter the message you want the system to display. The message can
consist of static text, DAL functions, and procedures. The default is a blank
string.
Example Here are some examples:
RPLogMsg ()

This example would cause the following to be written into your LOGFILE.DAT file:

Message : In DAL Script <.\deflib\iso_create.dal> at line <23>: (Text
omitted)

Here is another example:
RPLogMsg ("Failed to Open the INFO table in iso_create.")
This example would cause the following to be written into your LOGFILE.DAT file:

Message : In DAL Script <.\deflib\iso_create.dal> at line <18>:
Failed to Open the INFO table in iso_create.

Here is another example:
RPLogMsg (Time() & " " & Date() & " variable = " & table_name)
This example would cause the following to be written into your LOGFILE.DAT file:

Message : In DAL Script <.\deflib\iso_create.dal> at line <26>:
11:51:02 08/06/2003 variable = INFO

See also RPErrorMsg on page 364
RPWarningMsg on page 366

Documaker Server Functions on page 58

365

RPWARNINGMSG

Use this procedure to write a warning message into the Documaker Server error file
(ERRFILE.DAT). In addition, it increments the Documaker Server warning count as

necessary.
Syntax RPWarningMsg (Message)

Parameter Description

Message (Optional) Enter the message you want the system to display. The message can
consist of static text, DAL functions, and procedures. The default is a blank
string.

Example Here are some examples:
RPWarningMsg ()

This example would cause the following to be written into your ERRFILE.DAT file:

Warning : In DAL Script <.\deflib\iso_create.dal> at line <23>: (Text
omitted)

Here is another example:
RPWarningMsg ("Failed to Open the INFO table in iso_create.")
This example would cause the following to be written into your ERRFILE.DAT file:

Warning : In DAL Script <.\deflib\iso_create.dal> at line <18>:
Failed to Open the INFO table in iso_create.

Here is another example:
RPWarningMsg (Time() & " " & Date() & " variable = " & table_name)
This example would cause the following to be written into your ERRFILE.DAT file:

Warning : In DAL Script <.\deflib\iso_create.dal> at line <26>:
11:51:02 08/06/2003 variable = INFO

See also RPErrorMsg on page 364
RPLogMsg on page 365

Documaker Server Functions on page 58

366

SAVEINIFILE

SavelNIFile

Use this procedure/function to save a set of INI control groups and options that wete

loaded into cache memory.

Syntax SaveINIFile (Context, File)
Parameter Description
Context (Optional) A name (valid string) associated with a set of INI control groups and

options loaded into cache memory.

File Enter the name of the file in which you want to store the specified set of INI
control groups and options. If you omit the file extension, the system uses IINI.
If you omit the path, the system stores the file in the current directory.

The system optionally returns one (1) on success or zero (0) on failure.

If a context name is associated with the execution of this procedure, that set of INI

control groups and options will be stored in the specified physical file name.

Example Here are some examples:

Procedure Result Explanation

SaveINIFile The set of INI control groups ~ The INI control groups and options are

(“DALRun”); and options are saved in a file. saved to the specified file. Execution of
this procedure assumes that the file
extension is IINL

SaveINIFile The set INI control groups and ~ The INI control groups and options are

(“Run_process”, options referenced by the saved to the specified file.

“DALRun.ini”); context name, Run_process, are

saved in a file.

See also INI Functions on page 70

Using INI Options on page 8

367

SAVEWIP

368

Syntax

Example

See also

Use this procedure/function to save the WIP record being processing. Optionally, this
procedure returns a one (1) on success or a zero (0) on failure. This procedure is needed
in the DAL script called by the Documaker Workstation function,
AFEBatchDALProcess, if you change any data in the WIP record being processed.

SaveWIP ()

There are no parameters for this procedure.

Here is a sample DAL script.

desc_field = WIPF1d(“DESC") ;
mod_data = desc_field & “ - 04/03/03";
rc_setwipfld = SetWIPF1d("DESC", mod_data) ;

rc_savewip SaveWIP();

This sctipt appends the text, — 04/03/03, to the content of the DESC field in each WIP
record in the WIP.DBF file.

Executing a DAL Script from a Menu on page 7

Second

SECOND

Use this function to extract the number of seconds in a time.

Syntax Second (Time, Format)

Parameter Description

Time Enter a valid time string. The system assumes your entry is in the time format
specified in the Format parameter. The default is the current time.

Format Enter a valid time format string that describes the Time parameter. The default
is time format 1 (HH:MM:SS).

Example Here are some examples:

(Assume the current time is 03:05:09.)

Function Result Explanation

Second() 09 Defaults to the current time and extracts 09.
Second 20 Reads the given time and extracts 20.
(09:20:20”)

See also Time Functions on page 80

369

SETDEVICENAME

Use this procedure to set a new output device file name which will be used the next time
the output device is opened, assuming nothing overrides the name prior to that. You can
use this function when splitting recipient batches into multiple print stream files.

Syntax SetDeviceName (Device)

Parameter Description

Device Enter the new output device file name.

Here is an example of script logic from a post-transaction banner DAL script:

IF TotalSheets() > 16000
#COUNTER += 1
CurFile = DeviceName ()
Drive = FileDrive (CurFile)
Path = FilePath(CurFile)
Ext = FileExt (CurFile)
RecipBatch = RecipBatch()
NewFile = FullFileName (Drive, Path,RecipBatch & #COUNTER, Ext)
SetDeviceName (NewFile)
BreakBatch ()

END

NOTE: See FileDrive, FileExt, FileName, FilePath, and FullFileName for information on
using DAL functions to manipulate file names.

Keep in mind...

* The print drivers supported are: PCL5, PCL6, PST, MET, AFP, PDF, HTML, and
RTF.

* These print drivers are not supported: EPT, MDR, and GDI.

* All platforms ate supported, but note that while UniqueString is supported on z/OS,
z/OS does not support PDF or long file names.

* Both multi-step and single-step processing are supported.

The only DAL function actually involved in splitting the print stream is BreakBatch. The
others make it easier to implement this functionality. For example, since you need to name
the new print stream, you use the SetDeviceName procedure. To find the name of the
current device, you use the DeviceName function. If you need to create unique file names,
you can use the UniqueString function.

NOTE: While you can call all of these DAL functions in Documaker Server or Entry, the
BreakBatch and SetDeviceName functions are not applicable in Entry since it
does not use the batch printing engine. The other functions, DeviceName and
UniqueString, are applicable to both Entry and Documaker Server.

370

SetDeviceName

See also Printer and Recipient Functions on page 76
BreakBatch on page 157
DeviceName on page 216
UniqueString on page 416

371

SETEDIT

372

Syntax

Use this procedure/function to determine which field should be the next active field
during normal entry. Normal entry refers to tabbing from field to field. If a user mouse
clicks a particular field or pages between sections, the field selected by the SetEdit
procedure is ignored. This procedure optionally returns one (1) on success or zero (0) on
failure.

SetEdit (Field, Count, Section, Form, Group)

Parameter Description

Field Enter the name of a field. The default is the current field.

Count Enter a positive or negative number used to move beyond the field you specified.
The default is zero (0).

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

This procedure first locates the specified field. If you omit the Field parameter, the system
uses the current field.

You can use a positive or negative number for the count parameter. A positive count
moves forward from the located field. A negative count moves backward from the located
field. Forward and backward refer to the order in which the field appears in the section's
edit list, not necessarily its physical position on the section. Do not include fields
designated as display only in the count.

This procedure sets the next edit field each time the script executes. Therefore, use this
procedure on/y in scripts that execute once during entry. Do not use the SetEdit procedure
for scripts that execute each time a user tabs to a new field.

NOTE: A DAL script executes once during entry. A DAL calc executes each time the
user tabs to a new field. You make the DAL script or DAL calc designation in
the Properties window.

This procedure returns one (1) if it finds the specified field. Otherwise, it returns zero (0).

NOTE: The navigation logic you enter on the Navigation tab of the field’s Properties
window overrides this procedure.

Here are some examples:

SetEdit

Assume the section has three fields named FIRST, SECOND, and THIRD. The fields
occur in that order.

Procedure Result Explanation

SetEdit("THIRD”) 1 Locates the field named THIRD on the cutrent section. If
found and if editable, that field will be the next field to

receive focus.

SetEdit(“THIRD”.-2) 1 Locates the field named THIRD on the cutrent section. If
found, moves two fields prior to THIRD--to the field named
FIRST.

SetEdit(“MyField”,,, lor0 Locates the form named FRM in the cutrent form group.

“FRM”) Then locates Mylield on that form. If found, focus changes

to that form and field.

See also Documaker Workstation Functions on page 59
Field Formats on page 62
Locating Fields on page 64

373

SETFLD

Use this procedute/function to assign a value to a section field. Normally, this procedure
is used to assign values to display only fields or to assign default values to fields which
have not yet been edited.

Syntax SetFld (String, Field, Section, Form, Group)

Parameter Description

String Enter a value appropriate for the field you are assigning. THe default is an empty
string.

Field Enter the name of a field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the

current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

The system returns one (1) if successful or zero (0) if the field cannot be changed or does
not exist.

This procedure attempts to change the field's text each time the script executes.
Therefore, use the SetFld procedure with discretion. Do not use the SetFld procedure if
the script should not execute each #ine a user highlights a new field.

NOTE: A DAL script executes once during entry. A DAL calc executes each time the
user highlights a new field. You make the DAL script or DAL calc designation in
the Properties window.

If you are using the SetFld procedure in a batch system execution and you are
trying to set a field other than the one which initiated the rule, you must load the
FAP file. To do so, add the CheckImagel.oaded rule to the sections to which you
plan to assign fields.

Trailing spaces are deleted from the string to be stored. If you need the spaces,
use a hard space (ALT + 0160). See the Rules Reference for more information
about this rule.

Example Here are some examples:

(Assume the section has three fields (First, Second, Third). The value of First is 123.)

Procedure Result Explanation
SetFld(“N/A”, 1 Assume this script is associated with the field named First.
“SECOND”) When the user tabs from this field or highlights another field,

the value of the field, Second is changed to N/.A.

374

SetFld

Procedure Result Explanation
IF (ISetFId(101, 0 The IF statement determines whether or not the field MyField
“MyField”)) can be assigned the value “101”. If not (meaning a field by that

. name does not exist or failed to accept the data), the message
MSG(“Field” &

“Field MyField not assigned!” appears.
“MyField”,
“not assigned!”)
END
SetFld(@(), lor0 This statement attempts to assign the value of the current field
“MyField”, , to MyField, located on the specified FRM. Since a section
“FRM”) name was not given, the field may occur on any section on that

form.

See also Field Functions on page 61
Field Formats on page 62
Locating Fields on page 64

375

SETFONT

Use this function to change the font on a field. For instance, you can use SetFont on non-
multi-line text fields or barcode fields. You cannot use the SetFont function to reformat
a text area.

Syntax SetFont (FontID, Field, Section, Form, Group)

Parameter Description

FontID Enter the font ID of the font to which you want to change. A font ID of less than
one (1) causes the function to fail.

Field (Optional) Enter the name of a field that identifies a multi-line text area. This is
the field that receives the appended text. The default is the current field.

Section (Optional) Enter the name of the section that contains the field you specified.
The default is the current section.

Form (Optional) Enter the name of the form that contains the section and/ ot field you
specified. The default is the current form.

Group (Optional) Enter the name of the form group that contains the form, section,
and/or field you specified. The default is the current group.

The system returns one (1) on success or zero (0) on failure.

The system applies the font change to the first field that matches the criteria.

See also Field Functions on page 61

376

SETFORMDESC

Syntax

Example

See also

SetFormDesc

Use this function to change the description of a form.

SetFormDesc (NewDescription, Form, Group)

Parameter Description

NewDescription Enter the new description. The text you enter replaces any existing form
description.

Form Enter the name of the form for which you want to change its description.
The default is the current form.

Group Enter the name of the group which contains the form you specified in the
Form parameter. The default is the current group.

The system returns one (1) if the form was found and the description was assigned.
Otherwise, it returns zero (0) to indicate that no form was found based upon the
parameters you provided.

Here is an example:

SetFormDesc (“Cover Page”,Forml,Group2)

Name Functions on page 74

377

SETGVM

Use this procedute/function to update the contents of a GVM vatiable. You can also use
this procedure to create a GVM variable.

Syntax SetGVM (Name, Data, Instance, Type, Size)

Parameter Description

Name Enter a string which contains the name of the GVM variable.
Data Enter the data you want to store in the GVM variable.
Instance Enter the instance number of the GVM variable. The default is one (1)

Type Indicate the type of GVM variable to create. You can choose from these options:

C - Character array
S - Short

L - Long

F - Float

D - Double

Q - Long double

Size Enter the number of bytes to reserve when creating a GVM variable. This
parameter is not used if the GVM already exists.

The system returns a one (1) if successful or a zero (0) if not.

NOTE: You can use this function to set a reserved GVM value, but be aware of how that
reserved GVM is used. Some reserved GVM values should not be modified, such
as NA_OFFSET and POL_OFFSET. Additionally, keep in mind that reserved
GVM values may be changed by subsequent rule processing.

Example Here are some examples:

Procedure Result Explanation

If (HaveGVM(‘Company’)) then; 1or0 If the variable exist; then set the GVM,
SetGVM(‘Company’, ‘My Company’) Company, to the string My Company.

End

If (HaveGVM(‘My Variable’) = 0) then; lor0 Ifthe GVM variable, My VVariable, does

SetGVM(‘My Variable’ ‘My Data’.. ‘C’ 50) not CXiSt; then create one that is a

End ’ 7 character array with a size of 50 plus
n

store My Data in it.

See also HaveGVM on page 267
DAL Script Examples on page 35

Documaker Server Functions on page 58

378

SETIMAGEPOS

Syntax

Example

SetimagePos

Use this procedure/function to reposition a section on a page.

SetImagePos (PrefixName, Section, Form, Group)

Parameter Description

PrefixName A prefix name to be associated with the coordinates returned by the procedure.
Section Enter the name of a section in the form set. The default is the cutrrent section.

Form Enter the name of a form in the form set that contains the section. The default
is the current form.

Group Enter the name of the form group that contains the form and section you
specified. The default is the current group.

This procedure repositions a section at the coordinates you specify in the PrefixName
parameter: prefix name.top, prefix name.left.

NOTE: The section remains the same size.

This procedure retrieves these variables and sets the section’s top coordinate to prefix
name.top and its left coordinate to prefix name.left. This procedure returns a bad variable
error message if the prefix name.top ot prefixc name.left variables are not defined as DAL
internal variables.

For this example, assume the current section is Iwage25, the form is Iumput_form, and the
form group is Packagel. The coordinates are:

Image25 For internal variables Image50
Top 25 125 95
Left 50 150 90

NOTE: The the Bottom-Right coordinate is automatically calculated from the new Top-

Left coordinate by adding the section height and width, which are not changed
by this DAL function.

Procedure Result Explanation
SetImagePos New coordinates for the current Sets the coordinates for the current
(“Mylmage”) section, Image25, will be: section to the internal DAL

variables: Myimage.top,
Myimage.left, Myimage.bottom, and
Myimage.right.

Myimage.top = 125
Myimage.left = 150
Myimage.bottom = 200
Myimage.right = 200

379

Procedure Result Explanation

SetlmagePos New coordinates for the section, Sets the coordinates for the section,
(“Mylmage”, Image50, will be: Image50, to the internal DAL
“Image50”) Myimage.top = 125 variables: Myimage.top,
i ’ Myimage.left, Myimage.bottom, and

Myimage.left = 150 hﬁmnageﬂght

Myimage.bottom = 200

Myimage.right = 200
SetImagePos (The section is reposition to: The second occurrence of the
“m”, section MVF on the form XYZ is
“MVF\2”, HLEER = o repositioned using the DAL target
“XYZ”) mo IEHE = LESHE vatiables.

m.bottom = coordinate
m.right = right

IF (ImageRect (“MyRect”, “MyImage”))
MyRect.Top += 2400;
SetImagePos (“*MyRect”, "MyImage”) ;
END;
This script takes the coordinates of the section named MyImage and sets them to the
variables MyRect. Top, MyRect.1eft, MyRect. Bottom, and MyRect.Right. Next, it increases
MyRect. Top by 2400 FAP units then moves Mylmage one inch (2400 FAP units) lower on
the page.

See also Section Functions on page 77

ImageRect on page 275

380

SetLink

SETLINK

Use this function to update a hyperlink setting in a variable field, a graphic, or a text label.

Syntax SetLink (Target, Parms, ObjectName, Section, Form, Key2, ObjectType)
Parameter Description
Target Enter the name of the target object (the HREF value).

If the target object has a hypetlink type of internal ot target, enter the name of
the target object.

If the target object has a hypetlink type of external, this parameter should
contain a hypertext reference, such as:
www .oracle.com

and the Parms parameter should contain additional parameters to an HREF

type link.

Make sure this parameter contains valid HTML syntax.

Parms (Optional) Enter any link parameters (HREF parameters), such as a target
frame or mouseover behavior. Here is an example:
"target="new"

Make sure this parameter contains valid HTML syntax.

ObjectName Enter the name of the variable field, graphic, or text label that contains the
hypetrlink. The system updates the first object found that matches your entry
for this parameter.

Section (Optional) Enter the name of the section.
Form (Optional) Enter the name of the form.
Key2 (Optional). Enter the name of the Key2 group.

ObjectType Enter the type of object, such as (variable) Field, Graphic, or Text (label). The
default is Field.

Keep in mind...

* The object (variable field, graphic, or text label) referenced by SetLink must have an
initial hyperlink setting.

* You must make sure the Target and Parms parameters contain valid HTML syntax.

Example Here is an example:

SETLINK ("http://www.oracle.com", "target=new", "Section2256",
"FormQ1331TPG", , , "Text")

See also Field Functions on page 61

381

SETLOGO

This function is obsolete and is no longer supported. Use the Changel.ogo function
instead.

See also ChangelLogo on page 162

Graphics Functions on page 71

382

SetProtect

SETPROTECT

Use this procedure/function to protect a specified field so it cannot be altered ot to
unprotect a field so that it can be edited.

Syntax SetProtect (Mode, Field, Section, Form, Group)

Parameter Description

Mode Enter a non-zero value to specify field protection mode. Enter zero (0) to leave
the field unprotected. The default is one (1), which protects the field.

Field Enter the name of the field. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

The system returns zero (0) if the field you specified could not be changed or does not
exist in the section. The system returns one (1) if the field was successfully protected.

Example Here are some examples:

(Assume the section has fields named First and Second. Assume First contains YY)

Procedure Result Explanation
IF (@() =“Y") 1 Tests the value of the current field (First). Since it contains the
SetProtect(letter Yl, S econd is pré)t.ec;;d. K yo}t: c?_ll 1Zﬁ:tProtect as z} pﬁocedure,
tu t t /
1, “SECOND"); a one (1) is returned, indicating the field was successfully
protected.
END
IF (@() =“Y") 1 Unprotects Second based on the same criteria.
SetProtect
o,
“SECOND”);
END

See also Field Functions on page 61
Field Formats on page 62
Locating Fields on page 64

383

SETRECIP

Use this procedure/function to assign the recipient copy count for a particular section,
form, or group.

Syntax SetRecip (Recipient, Count, Section, Form, Group)

Parameter Description

Recipient Enter a valid recipient name for the sections you want to change.

Count Enter the total number of copies of the designated sections that you want this
recipient to receive. The default is zero (0).

Section Enter the name of the section you want to locate. The default is the cutrent
section.
Form Enter the name of the form that contains the section you specified. The default is

the current section.

Group Enter the name of the group that contains the section or form you specified. The
default is the current section.

The system optionally returns one (1) on success or zero (0) on failure.

This procedure lets you specify how many copies of a section should print for a
designated recipient. Setting the copy count to zero (0) for a recipient means the section
will not print for that recipient.

Unlike other procedures, this one does not strictly apply the hierarchy rules for the
section, form, and group, so you can specify a form without naming a section and the
procedure will assign the copy count to all sections on that form designated for that
recipient. Likewise, if you only specify the group parameter, without section or form, all
the sections in that group will receive the new copy count for the designated recipient.

NOTE: This procedure cannot add a new recipient to a section. Images are predefined
for specific recipients. This procedure can only change the copy count of known
recipients for any particular section.

Example Here are some examples:
Procedure Result Explanation
SetRecip (“Insured”,2) 1or0 Defaults to the current section. If this section includes
Insured as a recipient, that copy count will be assigned 2.
SetRecip(“HOME 1or0 Locate FORM in the cutrent group. Assign any section
OFFICE” 1, , that specifies HOME OFFICE as a recipient the new
“FORM”) copy count of one (1).

See also Section Functions on page 77

384

SETREQUIREDFLD

Syntax

Example

See also

SetRequiredFld

Use this function to change the required option of a field to Required or Not Required.

SetRequiredFld (Required, Field, Section, Form, Group)

Parameter Description

Required Enter Yes if you want to make the field required. Enter No if you want to make
the field optional.

Field (Optional) Enter the name of the field. The default is the current field.
Section (Optional) Enter the name of the section. The default is the current section.
Form (Optional) Enter the name of the form. The default is the current form.
Group (Optional) Enter the name of the group. The default is the current group.

Here are some examples:

SetRequiredFld ("Yes", "Myfield", :MyImage", "Myform", "MyGroup");
SetRequiredFld ("Yes", "Myfield", :MyImage", "Myform",);
SetRequiredFld ("Yes", "Myfield", :MyImage",);

SetRequiredFld ("Yes", "Myfield",);

SetRequiredFld ("Yes",);

If you include the Section parameter, but omit the field parameter, the system uses the
first field on that section. If you omit the Section and Field parameters, but include the
Form, the system looks for the first field on the first section of the form you specified,
and so on.

Field Functions on page 61

Field Formats on page 62

385

SETWIPFLD

Syntax

Example

See also

386

Use this procedure/function to set WIP fields from DAL to the recotd in memorty.

SetWIPF1ld (Field, Data)

Parameter Description

Field Enter the name of the variable field.

Data Enter the data you want to store in the field.

NOTE: You cannot change the FormsetID field which is used to associate WIP records
with data files.

The system returns one (1) if successful or zero (0) if the field cannot be changed or does
not exist.

Here are some examples:

Procedure Result Explanation

SetWIPFId (“DESC”, 1or0 Assigns to the WIP description field a new description.
“My Description”)

SetWIPFId(“DESC”) 1or0 Clears the WIP description field.

WIP Functions on page 88

SIzE

Syntax

Example

See also

Size

Use this function to return the defined length of a specified field.

Size (Field, Section, Form, Group)

Parameter Description

Field Enter the name of the variable field. The default is the current field.

Section Enter the name of the section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

The system returns the length of the defined data area for the specified field.

The Size function is often confused with the LEN function. The LEN function returns
the length of the actual data contained in a field or DAL variable.

Here ate some examples:

(Assume the current field contains the text Your Name and its defined length is 15.)

Function Result Explanation

Size () 15 Returns the defined length of the current field.

Size (“Myfield”,, field This example will look for MyField on the form, FRM. It may

“FRM”) size or occur on any section. If the field is located, its size will be
Zero returned, otherwise the result is zero (0). Generally, you can

assume that a zero result means the field is not defined, since it is
unlikely that a field of zero length would be legitimate.

Field Formats on page 62
Locating Fields on page 64
LEN on page 294

Field Functions on page 61

387

SLIPAPPEND

Use this procedure/function to add an email address to the end of the routing slip
associated with the form set.

Syntax SlipAppend (Address, Mode)

Parameter Description

Address Enter an email address.

Mode Choose from these options:

0 - linear recipient
1 - CC recipient

The default is zero (0).

The system optionally returns one (1) on success or zero (0) on failure.

This procedure only works with scripts associated with routing slips. This procedure lets
you, via scripts, direct workflow during the routing process. Do not use this procedure in
a typical field script situation.

The address name is appended to the end of the current routing slip. If the mode
parameter is not zero (0), the new entry is appended as a carbon-copy (CC) recipient. For
example, assume the following routing slip is defined:

CC Recipient

@MySctipt
EDJ

If the script executes the statements, SlipAppend(“TOM”,1); SlipAppend(“CAR”), the
slip will be adjusted to look as follows:

CC Recipient

* @MySctipt EDJ

ED]J
X TOM
CAR
Example Here are some examples:
Procedure Result Explanation

SlipAppend (1 0or0 The email address is appended to the end of the current routing slip.
“TOM”) The defaults is a linear recipient.

SlipAppend(1or0 Appends the email address as a CC recipient.
“TOM”, 1)

See also WIP Functions on page 88

388

SLIPINSERT

Syntax

Example

See also

SlipInsert

Use this procedure/function to insett another email address on a routing slip associated
with the form set.

SlipInsert (Address, Mode)

Parameter Description

Address Enter an email address.

Mode Choose from these options:

0 - linear recipient
1 - CC recipient

The default is zero (0).

The system optionally returns one (1) on success or zero (0) on failure.

This procedure only works with scripts associated with routing slips. This procedure lets
p y p g slip p

you, via scripts, direct workflow during the routing process. It should not be used in a
typical field script situation.

The address name is inserted immediately after the script reference in the routing slip. If
two SlipInsert statements are executed in order, the second email address appears before
the one inserted by the former statement. Think of this as last in, first out.

For example, assume the following routing slip is defined:

CC Recipient

@MyScript ED]J

If the script executes the statements, SlipInsert(““TOM”,1); SlipInsert(“CAR”), the slip
will be adjusted to look as follows.

CC Recipient

* @MyScript CAR
X TOM ED]J

The asterisk (*) indicates the script has already been executed. If the mode parameter is
not zero (0), the new entry is appended as a carbon-copy (CC) recipient.

Here are some examples:

Procedure Result Explanation

SlipInsert (“TOM”) 1or0 The email address will be inserted immediately after the
script reference. The default is a linear recipient.

SlipInsert(“TOM”,1) 1or0 Inserts the email address as a CC recipient.

WIP Functions on page 88

389

SPANFIELD

Use this function/procedute to move a field hotizontally and then resize it to span the
distance between two other fields you specify. This function sets the span field’s contents
to be enough of a fill character to span the distance.

This function only moves the field horizontally. It will not move the other two fields. The

section designer must ensure vertical alignhment between the fields.

NOTE: If you use this function with resources created prior to version 11.0, which had
separate FAP and DDT files, this procedure automatically loads the section (FAP
or compiled FAP) if it is not already loaded.

Syntax SpanField (SpanField, LeftField, RightField, Section, Form, Group)
Parameter Description
SpanField Use this parameter to specify the filler character you want the system to use to

LeftField
RightField

Section

Form

Group

span the distance between the end of the left field text and the beginning of the
right field text. If either field is empty, the left coordinate of the field is used.

The system only uses the first character of the text contained in the field you
specify as the filler character.

In addition to the filler character, the field you specify also determines the font
ID to be used for calculating the number of characters required to fill the width
of the field.

If there is fractional space remaining in the width, the filler character is
duplicated. The extra white space will be placed to the left of the span field, so
that the spanned field will is placed against the right-most field.

The default is a petiod (.).
Enter the name of the field on the left of the area you want to span.
Enter the name of the field to the right of the area you want to span.

(Optional) Enter the name of a section that contains the fields you specified. The
default is the current section.

(Optional) Enter the name of a form that contains the section and/or field you
specified. The default is the current form.

(Optional) Enter the name of the form group that contains the form, section, or
fields you specified. The default is the current group.

The SpanField parameter is always the first parameter, but you can specify the LeftField

and RightField parameters in any order. The system automatically determines which of
the two fields is to the right or left of the span field.

390

Example

See also

SpanfField

NOTE: If you are using the SpanField function in Documaker Server processing, the
JustFld rule may be useful to right justify the right-most field to make sure the
maximum distance is spanned. If you use the Move_It rule, or other rules that
support right justification by padding the data with spaces, the results will be
incorrect. The SpanField function calculates the width of a field based upon the

entire contents and does not remove space, or any other white space or characters
in the fields.

Here is an example:

Assume LeftField contains ABCDEFG, RightField contains $123.45, and SpanField
contains a dash (-).

SpanField("SPANFIELD", "LEFTFIELD", "RIGHTFIELD")

Yields: ABCDEFG----------- $123.45

The horizontal location of the span field is adjusted to make sure it is positioned against
the right edge of the left field, and then expanded with enough of the fill character to fill
the gap between the left and right fields. The section designer is responsible for vertical
alignment.

Field Functions on page 61

391

SRCHDATA

392

Syntax

Example

Use this function to retrieve data from an XML or flat extract file.

NOTE: The SrchData function, released in version 11.1 and included in version 11.0,
patch 32, lets you include spaces in the search criteria, whereas the older GetData
function does not. Here is an example:

SrchData("11,HEADERREC,21(A,B, ,D)", 40, 20)
SrchData ("'!/XML/Form[@form="PP 03 02"]/@form", 1,10)

Note the space between .4,B, ,D and PP 03 02.The ability to include spaces in
search criteria is important when you are using XML XPaths.

The SrchData function does not format the data it returns.

SrchData (SearchCriteria, Offset, Length, Occurrence)

Parameter Description

SearchCritetia Enter the criteria you want the system to use to look for the data in the extract
file.

Offset For XML extract files, enter the offset into the data whete the desired data
starts.

For flat files, enter the offset into the record where the data starts.
The default is zero (0).

Length Enter the number of characters to return. The default is zero (0).

Occurrence This parameter is not valid for XML extract files.

This parameter lets you specify which occurrence of the data to return.
Entering one (1) or zero (0) returns the first occurrence of the data.

The default is the first occurrence.

Use this function during Documaker Server processing, after the rule which loads the
extract file has been run.

Here are some examples:

In this example, the SrchData function finds the extract record designated by
11,HEADEREC and returns the data at offset 40 for a length of 20:

SrchData ("11,HEADERREC", 40, 20)

This example shows how to use an occurrence variable to get the Nth iteration of the data.
In this example, the SrchData function finds the second extract record occurrence
designated by search criteria 77, ADDRESS, and returns the data starting at offset 40 for
a length of 20.

Entering a one (1) or zero (0) will return the first occurrence of the data.

Srchbhata ("11,ADDRESS", 40, 17, 2)

SrchData

Here is an example that gets data from an XML extract file. The SrchData function checks
to see if the specified XML extract record equals 2549, if it does, the function returns the
string: equal concatenated with the value from another XML extract record. If not, it

returns the string: #ot equal concatenated with a value from a different XML extract record.

value = SrchData ("!Diamond/Data/Client/Accounts/Account/
Policy/PolicyImages/Policy/premium_fullterm", 1, 7)
If Trim (SrchData ("!Diamond/Data/Client/Accounts/Account/
Policy/PolicyImages/Policy/premium_fullterm", 1, 4) = "2549"
Then
Return ("equal - " & SrchData ("!/descendant::Personalauto/

child: :Vehicle[**vehovfsym**]/vehicle_num", 1,2)

Else
Return ("not equal - " & value)

End

See also GetData on page 250

Documaker Server Functions on page 58

393

STR

Use this function to return the string value of a field. The @ function automatically
converts a numeric format field into its number value. The STR function does not convert
field data in any way and returns the value as it appears in the field.

NOTE: To consider case in the comparison, use the STRCompare function.

Syntax STR (Field, Section, Form, Group)

Parameter Description

Field Enter the name the field. The default is the current field.

Section Enter the name of a section that contains the field named. The default is the
current section.

Form Enter the name of a form that contains the section and/or field named. The
default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
named. The default is the current group.

The system uses the parameters you provide to search for one field on a section and return
that field’s data value as formatted. The field can have any format type.

Example Here are some examples:

(Assume the current field value is $1,234.23 and is named MyField. Also, assume that a
second occurrence of MyField appears on the form, MyForm, and contains the value

antomobile.)
Function Result Explanation
STR() $1,234.23 Returns the string value in the current field. Notice that the

formatting of the field is not removed.

STR (“MyField”) $1,234.23 Returns the string value of the named field, located on the
cutrent section.

STR(“MyField\2 automobile The second occurrence of MyField alteady contained a
7, , “MyForm”) string value.

See also STRCompare on page 395
Field Functions on page 61
Field Formats on page 62
Locating Fields on page 64

@ on page 109

394

STRCompare

STRCOMPARE

Use this function to compare two strings with case a consideration. In normal DAL string
expressions, strings are compared in a case-insensitive manner. For example, the system
would normally evaluate the following strings to be equal:

ABC abc

If, however, you use the STRCompare function, the system considers case and judges
these strings to not be equal.

NOTE: The best way to use this function is to test for equality. For instance, use this
function to test two strings and compare for a zero (0) value being returned to
indicate the strings are equal or a non-zero value to indicate they are unequal.

You can use this function to determine if one string is greater or less than the
other, but the result can be confusing if the strings contain mixed case or have
different lengths.

Syntax STRCompare (Stringl, String2, #Count)

Parameter Description

String1 Enter the text for the first string you want to compare. The default is an empty
string.

String2 Enter the text for the second string you want to compare. The default is an empty
string.

#Count (Optional) Enter the number of characters to compare.

If you enter a value greater than zero, the system compares that number of
characters.

If you enter zero (0) or less, the system compares all characters.

If you enter a value greater than the length of either string, the system pads the
strings with blank characters to match the number of characters you specified.

The default is -1 which indicates that all characters will be compared.

If String1 and String2 compare as equal, the system returns a zero (0).
The system returns a negative one (-1) if String1 is less than String2.

The system returns a one (1) if String1 is greater than String2.

Example Assume String1 is ABCDEF and String2 is ABCdef in these examples:

This example Returns
#RTN = STRCompare(stringl , string?2) -1
#RTN = STRCompare(string2 , string1) 1
#RTN = STRCompare(stringl , string2 , 3) 0

395

See also STR on page 394

String Functions on page 78

396

SUB

Syntax

Example

See also

SUB

Use this function to return a substring from a string at a specified position.

SUB (String, Position, Length)

Parameter Description

String Enter a valid string. The default is the current field.

Position Enter the position where sub should begin. The default is one (1).

Length Enter the length to retrieve from the text. The default is the length of what

remains of the String parameter value, beginning at the position indicated by the
Position parameter.

The system returns a portion of the first specified parameter starting at the specified
position for the length given.

If you omit the Position parameter, the system defaults to the first character of the string.
If the specified position is greater than the length of the string, the system returns an
empty result.

If you omit the Length parameter, the remainder of the string following the specified
position is included.

Here are some examples:

(Assume the current field contains the text Your Name.)

Function Result Explanation

SUB (,, 5) “Your “ Defaults to position one of the current field and returns
the first five characters.

SUB () “Your Name” Defaults to the current field; No length was specified, so
the field remains the same.

SUB (“Complete “Street” Goes to position 10 of the specified field and returns six

Street Address”, characters.

10, 6)

String Functions on page 78

397

SUM

Use this function to return the decimal sum of a group of fields which have names that
begin with common characters.

Syntax SUM (PartialName, Section, Form, Group)
Parameter Description
PartialName Enter a valid string. The string must be the common (prefix) portion of a set of

field names that occur on the current section. The default is the current field.

Section Enter the name of a section that contains the field you specified. The default is
the current section.

Form Enter the name of a form that contains the section and/or field you specified.
The default is the current form.

Group Enter the name of the form group that contains the form, section, and/or field
you specified. The default is the current group.

The system calculates and returns the accumulated values of all fields that begin with the
specified partial name.

An example of field names that have a common start are:
Myfield1
Myfield2
Myfield20

Each of these fields will be included if the partial name is specified using any of the leading
characters of myfield. The first field will be excluded if you enter myfield2, but will match
the other two field names.

NOTE: Include the Partialname parameter. Fields must have unique names within a
section. Using the default will probably not give the expected result, unless you
created the form and understand the naming conventions.

Example Here are some examples:

This table is used by the examples. The table represents the layout of two forms in the
same group. Both forms share two sections IMG A and IMG B). Each section has fields
of the same name as a field in the other section.

Field Section Form Group Value
MyField1 IMG A FRM A GRP 100.24
MyField2 IMG A FRM A GRP 200.16
MyField1 IMG B FRM A GRP 98.60

398

See also

Field

MyField2
MyField1
MyField2
MyField1

MyField2

Section

IMG B

IMG A

IMG A

IMG B

IMG B

SUM

Form Group Value

FRM A GRP * no value yet *
FRM B GRP 0.00

FRM B GRP * no value yet *
FRM B GRP 70.77

FRM B GRP * no value yet *

(Assume the current field is MyField1, on the first section of the first form. Reference the

previous table for field values.)

Function Result Explanation

SUM () 100.24 Without any other information, the function assumes the
current field and section. There will only be one value included
in the sum.

SUM 200.16 Again, there is only one field included in this result.

(“Myfield2”)

SUM(“MyFiel ~ 300.40 In this example, the current section contains two fields that

d”) begin with the name “MyField”. The equation is as follows:
(100.24 + 200.16).

SUM(“MyFiel 98.60 Although two fields on IMG B have a matching name, only

d”, “IMG B”) one field actually has a value.

SUM(“MyFiel 399.00 No section is specified in this example, so the entire form is

d”,, “FRM A”) searched. Four fields match the name criteria, but only three
have values: (100.24 + 200.16 + 98.60).

SUM(“MyFiel 169.37 This example specifies a section and group, but no form. There

d”, “IMG B”,, are four fields that match the name ctiteria, but only two have

“GRP”) values: (98.60 + 70.77).

SUM(“MyFiel 469.77 This example names the group without a form or section.

d”,,, “GRP”) Eight fields meet the naming criteria, but only five fields

actually have values: (100.24 + 200.16 + 98.60 + 0.00 + 70.77).

Mathematical Functions on page 72

Field Formats on page 62
Locating Fields on page 64

399

SUPPRESSBANNER

Use this procedure/function to supptess the printing of the banner page. This is useful
when you are doing batch banner processing you need to combine several transactions
within the same transaction banner pages.

NOTE: For information about processing banner pages, see the Documaker Server
System Reference.

Syntax SuppressBanner ()

There are no parameters for this procedure.

Example Here is an example.

Procedure Result Explanation

SuppressBanner(); Suppresses the current banner from printing.

You can use this procedure when you want to combine several transactions inside one set
of banner pages, based on a flag the DAL script checks.

See also Printer and Recipient Functions on page 76
DelBlankPages on page 207
AddBlankPages on page 115

400

TABLE

Syntax

Table

Use this procedure/function to look up and tetutn a value from a standard table.

Table (RetCode, Key, Table, File)

Parameter Description

RetCode Enter a return code value designated by the letters Kand D. For example:

K - key code

D - code description

K + D - key code and code description
D + K - code description and key code

The default is the value of the cutrent field table return value.
Key Enter the table key code. The default is the value of the current field text.

Table Enter the name of the table you want to search. Note that this parameter is case
sensitive. The default is the current field table.

File Enter the name of the file that contains the table you specified in the Table
parameter. Note that this parameter is not case sensitive. The default is the value
of current field table file name, ot the current section table file name.

This procedure makes sure a given value (Key) is an entry in the specified table (Table).
This procedure returns the string value identified in the RetCode parameter.

The table name in the Table parameter and file name in the File parameter must conform
to the naming conventions used for naming tables in Studio or Image Editor. If the Key
parameter does not occur within the named table, the return string is empty.

You can include one of these INI options to specify that entry table files will use the old
or new format. (Do not include both options.)

< Tables >
OldFormatOnly = Yes
NewFormatOnly = Yes

For instance, if you are doing a lot of entry table lookups from the DAL code, your tables
are located on a network drive, and the tables are a mix of both old and new format tables,
performance can be affected because the system has to check the format of each table.

If, however, you can use one of these new options to tell the system that all tables are in
the same format, it can omit that query and performance improves.

Specify only the option that applies. If you omit both options, the system first checks to
see if the table is in the new format. If not, then it checks to see if the table is in the old
format.

Keep in mind that if you include one of these options, all of your tables must be in that
format. For instance if you set the OldFormatOnly option to Yes, all of your tables must
be in the old format. If you later decide to convert your tables to the new format, you must
remove this option and, to get the same performance gain, include the NewFormatOnly
option.

401

Example Here are some examples:

Procedure Result Explanation

Table (“D”, Georgia Verifies that a table named STATCOD is contained in the file
“GA”, named 7ablel. Then returns the description (Georgia) for the
“STATCOD?”, key code GA.

“tablel”)

See also Documaker Workstation Functions on page 59

402

Time

TIME

Use this function to build a time from a given time, or the current time.

Syntax Time (Format, Hour, Minutes, Seconds)

Parameter Description

Format Enter a time format string. The default is time format 1 (HH:MM:SS).
Hour Enter a number to indicate the hout. The default is the current hout.
Minutes Enter a number to indicate the minute. The default is the current minute.
Seconds Enter a number to indicate the second. The default is the current second.

The system returns a time string that contains a formatted time value.

If you omit one of the Hour, Minute, or Seconds parameters, the system uses the
appropriate value from the current time.

Example Here are some examples:

(Assume the current time is 07:07:32 am.)

Function Result Explanation
Time() 07:07:32 No parameters entered. It defaults to the current time in
format 1.
Time(2,13,30,5) 01:30:05 Format 2 selected; time displays in 12-hour format using
PM these values.

See also Time Formats on page 80

403

TIME2TIME

Use this function to convert a time from one format to another.

Syntax Time2Time (0ldTime, OldFormat, NewFormat)

Parameter Description

OldTime Enter a valid time string. The system assumes your entry is in the time format
specified in the OldFormat parameter. The default is the current time.

OldFormat Enter a valid time format that describes the OldTime parameter. The default is
time format 1 (HH:MM:SS).

NewFormat Enter a valid time format that describes the format you want the OldTime
converted to. The default is time format 1 (HH:MM:SS).

Example Here is an example:

(Assume T7 is 01:30:05 pm.)

Function Result Explanation

Time2Time(“T1”, 27, “1”) 13:30:05 Takes the time in T'1 (which is in format 2) and
converts it to format 1.

See also Time Formats on page 80

404

TimeAdd

TIMEADD

Use this function to add time to a given time and return the new time. The resulting time
is returned in the same format.

Syntax TimeAdd (Time, Format, Seconds, Minutes, Hours)

Parameter Description

Time Enter a valid time string. The system assumes yout entty is in the time format
specified in the Format parameter. The default is the current time.

Format Enter a valid time format that describes the Time parameter. The default is time
format 1 (HH:MM:SS).

Seconds Enter the number of seconds to be added. The default is zero (0).
Minutes Enter the number of minutes to be added. The default is zero (0).
Hours Enter the number of hours to be added. The default is zero (0).

Example Here is an example:

(Assume the current time is 1:20:03 pm.)

Function Result Explanation
TimeAdd(, , 4:40:13 Defaults to the current time and adds 3 hours, 20 minutes, and
€107, «“207, “3”) 10 seconds. Returns the result in the same format.

See also Time Formats on page 80

405

TIMEZONE

Use this function to return the system’s time zone setting or to make sure a time zone is
valid.

Syntax TimeZone (TimeZone)

Parameter Description

TimeZone (Optional) If you include a time zone string, the system makes sure that stting is
valid. If it is invalid, the system returns an empty string.

The default is to return the system’s current time zone setting.

Example Here are some examples:
This example returns the system time zone, such as Awmerica/ New_Y ork:
T1 = TimeZone ()

This example checks to see if a time zone string, such as Eurgpe/London, is valid:

Tl = 'Europe/London'
T2 = TimeZone (T1)
if (T2 = '') then

Print_TIt (Tl & 'is not a valid time zone string')
else

Print_TIt (Tl & 'is a valid time zone string')

end

See also TimeZone2TimeZone on page 407
Time Functions on page 80
Using the Time Zone Functions on page 81

ICU Time Zones on page 82

406

TimeZone2TimeZone

TIMEZONE2TIMEZONE

Syntax

Example

Use this function to convert date and time values from one geographic region into date
and time values that are local to another geographic region. The function will also adjust
for daylight savings time as needed.

TimeZone2TimeZone (PrefixName, TimeZone, NewTimeZone)

Parameter Description

PrefixName Enter the prefix name associated with variables that will be used to hold date
and time settings. Here are some examples:
PrefixName.day
PrefixName.month
PrefixName.year
PrefixName.hour
PrefixName.minutes
PrefixName.seconds

TimeZone (Optional) Enter the time zone used for the PrefixName variables.

If you enter an invalid time zone string, the system returns a value of zero (0)
and sets variables associated with the PrefixName to zero (0).

The default is to return the system’s cutrent time zone setting.

NewTimeZone (Optional). Enter the time zone by which you want to adjust the values in the
PrefixName variables.

If you enter an invalid time zone string, the system returns a value of zero (0)
and sets variables associated with the PrefixName to zeto (0).

The default is to return the system’s cutrent time zone setting.

If you define these vatiables, the system uses the PrefixName and time you specified and
converts that time to the equivalent time in the location you specified via the
NewTimeZone parameter.

If you do not define these variables, the system creates these variables based on the
PrefixName you entered and assigns values into these variables based on the cutrrent date
and time.

If there are no errors, the system returns a non-zero value.

Here are some examples:

This example creates date and time variables using 77 as a prefix (tz.day, tz.month, tz.year,
tz.hout, tz.minute, tz.second) and stores the current date and time values based on the
system's time zone:

TimeZone2TimeZone('tz', ,)
Print_It('Date:' & Date(, tz.day, tz.month, tz.year))
Print_It('Time:' & Time(, tz.hour, tz.minute, tz.second))

This example converts date and time variables (tz.xxxx) that use the system’s time zone
into GMT date and time:

TimeZone2TimeZone('tz', , 'GMT')
Print_It ('GMT Date:' & Date(, tz.day, tz.month, tz.year))
Print_It('GMT Time:' & Time(, tz.hour, tz.minute, tz.second))

407

408

See also

This example converts a current Ametica/New_York date and time into an Australia/
Melbourne date and time:

tz.day = "'
tz.month = "'
tz.year = "'
tz.hour = "'
tz.minute = "'
tz.second = '

if (TimeZone2TimeZone('tz', 'America/New_York', 'Australia/
Melbourne')) then

Print_It('Australia/Melbourne Date:' & Date(, tz.day, tz.month,
tz.year))

Print_It('Australia/Melbourne Time:' & Time(, tz.hour, tz.minute,

tz.second))

else

Print_it ('Error calling TimeZone2TimeZone')
end

TimeZone on page 406
Time Functions on page 80
Using the Time Zone Functions on page 81

ICU Time Zones on page 82

TOTALPAGES

Syntax

Example

See also

TotalPages

Use this function to return the number of pages that will print for a given recipient or for
all recipients. A page is considered any szde of paper that has a printable section for a
recipient. A duplex sheet with front and back sections counts as two pages.

TotalPages (Recipient)

Parameter Description

Recipient (Optional) If you include the Recipient parameter, the count only reflects the
pages that print for that recipient. If you omit the Recipient parameter, the count
includes all recipients.

The count considers copy-counts and reflects the total number of printed sides that will
be referenced. A section may be empty (containing no text or discernible print objects)
and still be designated to print. So, the count does not necessarily mean the pages will
contain any real text.

For example, assume you have a one-page document that has two recipients. Recipientl
gets one copy, while Recipient2 gets two copies.
With this command:
TotalPages (“Recipientl”)
The system returns one (1) as the page count
With this command:
TotalPages (“Recipient2”)

The system returns two (2) as the page count, since the one-page document will be printed
twice. if you omit the Recipient parameter, the system returns three (3) as the page count.

NOTE: The count reflects when the function is called. The system cannot predict
whether banner pages will be created or whether additional formatting or data
entry will add or remove pages. Make sure you do not call this function until all
page items have been created and formatted.

TotalSheets on page 410

Documaker Workstation Functions on page 59

409

TOTALSHEETS

410

Syntax

Example

See also

Use this function to return the total number of sheets of paper that will print for a
recipient. A sheet is considered a physical piece of paper that may have print on one or
both sides. Therefore a duplex sheet with a front and back sections will count as one
sheet.

NOTE: Although the TotalSheets function does take duplex options into consideration,
it has no knowledge of whether you will actually print to a printer that supports
duplex commands. The count reflects what the document defines, not what the
printer will support

TotalSheets (Recipient)

Parameter Description

Recipient (Optional) If you include the Recipient parameter, the count only reflects the
sheets that print for that recipient. If you omit the Recipient parameter, the count
includes all recipients.

The count takes into consideration recipient copy counts and duplex options. A section
may be empty (containing no text or discernible print objects) and still be designated to
print. So, the count does not necessarily mean that the sheets will contain any real text.

For example, assume you have a two-page document that is duplexed (prints front and
back). Recipientl gets one copy, while Recipient2 gets two copies.
With this command:
TotalSheets (Recipientl)
The system returns one (1) as the sheet count.
With this command:
TotalSheets (Recipient?2)

The system returns two (2) as the sheet count, since the two-page document will be
printed twice. if you omit the Recipient parameter, the system returns three (3) as the sheet
count.

NOTE: The count reflects when the function is called. The system cannot predict
whether banner pages will be created or whether additional formatting or data
entry will add or remove pages. Make sure you do not call this function until all
page items have been created and formatted.

TotalPages on page 409

Documaker Workstation Functions on page 59

TriggerFormName

TRIGGERFORMNAME

If you are using DAL scripts during Documaker Server SetRecip trigger processing, use
this function to return the form name of the current SetRecipTb entry being processed.
Syntax TriggerFormName ()

There are no parameters for this function.

Example Here is an example:

Assume your SETRECIPTB.DAT file has the following entries and aloaded DAL library
file contains the DAL sub-routine function, ILDSChk. The forms are triggered if the
conditions in the DAL script are met.

Here is an example of the SETRECIPTB.DAT file:

;Docu;CP; ILDS498;S004H; XLC;Agent (1);;0;0;0;1;;DALTrigger; ILDSChk;
;Docu;CP; ILDS598;S004L;XLC;Agent (1);;0;0;0;1;;DALTrigger; ILDSChk;

Here is an example of the DAL library file:

**x Tf driver's age, insured state, and form name are the specified
*** conditions then trigger the form.

BeginSub ILDSChk

trig_f name = TriggerFormName ()
If trig_f_name = "ILDS498" AND \
? ("driver_age") <= 25 AND \
? ("insure_st") = "CA" Then
Return (1)
ElseIf trig_f_name = "ILDS598" AND \
? ("driver_age") > 25
? ("insure_st") = "FL" Then
Return (1)
Else
Return (0)
End
EndSub

See also TriggerImageName on page 412
TriggerRecsPerOvEFlw on page 413

Documaker Server Functions on page 58

411

TRIGGERIMAGENAME

If you are using DAL scripts during Documaker Server SetRecip trigger processing, use
this function to return the section (FAP file) name of the current SetRecipTh entry being
processed.

Syntax TriggerImageName ()

There are no parameters for the function.

Example Here is an example:

Assume your SETRECIPTB.DAT file has the following entries and a loaded DAL library
file contains the DAL sub-routine function, ILLDSChk. The forms are triggered if the
conditions in the DAL script are met.

Here is an example of the SETRECIPTB.DAT file:

;Docu;CP;ILDS498;S004H; XLC;Agent (1) ;;0;0;0;1;;DALTrigger; ILDSChk;
;Docu;CP; ILDS598;S004L;XLC;Agent (1) ;;0;0;0;1;;DALTrigger; ILDSChk;

Here is an example of the DAL library file:

*** Tf driver's age, insured state, and section name are the
specified
*** conditions then trigger the section.

BeginSub ILDSChk

trig_f_name = TriggerImageName ()
If trig f_name = "S004H" AND \
? ("driver_age") <= 25 AND \
? ("insure_st") = "CA" Then
Return (1)
ElseIf trig_f_name = "SO00L" AND \
? ("driver_age") > 25
? ("insure_st") = "FL" Then
Return (1)
Else
Return (0)
End
EndSub

See also TriggerFormName on page 411
TriggerRecsPerOvElw on page 413

Documaker Server Functions on page 58

412

TriggerRecsPerOvFlw

TRIGGERRECSPEROVFLW

Syntax

Example

See also

Use this function to retrieve the number of records per overflow section value which is
stored in the SETRCPTBL.DAT entry being processed. Depending on the current
trigger, this integer value can be the overflow record count for a form or section.

NOTE: This is only applicable in Documaker Server processing during DAL trigger
processing.

TriggerRecsPerOvFlw ()

There are no parameters for this function.

Assume you have the following entry in the SETRCPTBL.DAT file for the form trigger
being processed. Also assume there are 30 records in the extract file that match the search
mask.

;RP10;CIS;ga_£f1550;; ;Customer(1);;1,M;25;0;1;;DALTrigger; FEATURE155
0;

Here is an example:

BeginSub Featurel550
#rec = CountRec("l,Featurel550,31,Data")
#remaining = MOD (#rec, TriggerRecsPerOvFlw())
While (#remaining > 0)
* write addition records
Write_fm()

#mod -= 1

Wend

Return (#rec)
EndSub

In this example, the TriggerRecsPerOvFlw function, returns a records per overflow
section value of 25, which is used in the MOD function.

MOD on page 317
TriggerFormName on page 411
TriggerlmageName on page 412

Documaker Server Functions on page 58

413

TRIM

Use this function to remove leading and/ ot trailing spaces from a given string. The integer
parameter determines whether spaces on the left, right, or both ends are to be removed.
The resulting string is returned.

Syntax Trim (String, Integer)

Parameter Description

String Enter a valid string. The default is the value of the current field.

Integer Choose from these options:

0 - remove trailing spaces
1 - remove leading spaces
2 - remove leading and trailing spaces

The default is two (2).

The system removes leading and trailing spaces from the string specified in parameter
one. The Integer parameter determines which spaces are removed.

Example Here are some examples:

(Assume the current field contains the text “ Your Name”)

Function Result Explanation

Trim (“ Value “) “Value” Defaults to trim leading and trailing spaces.
Trim (“ Value “,0) “ Value” Removes trailing spaces.

Trim() “Your Use current field and remove leading and trailing spaces.
Name” See the note below.

NOTE: During field entry, the system automatically removes trailing spaces from values
entered by the user. Only variables assigned during DAL scripts are likely to have
trailing spaces.

See also String Functions on page 78

414

Upper

UPPER

Use this function to convert all characters to uppercase and return the result.

Syntax Upper (String, Length)

Parameter Description

String Enter a valid string. The default is the value of the current field.

Length Enter the length of the output. The default is the length of the current field.

If the length specified in the Length parameter is longer than the string, the result is the
length you specified. If the specified length is less than the string, the length of the string
is used. The system does not truncate the string.

Example Here are some examples:

(Assume the current field contains the text Yowur Namse.)

Function Result Explanation

Upper () “YOUR Defaults to the current field.
NAME”

Upper (, 15) “YOUR Defaults to the current field and increases the length of the
NAME “ field to 15.

Upper (“Street “STREET Uppercases the specified string.
Address”) ADDRESS”

See also String Functions on page 78

Lower on page 302

415

UNIQUESTRING

416

Syntax

Example

See also

Use this function to return a 45-character globally unique string.

UniqueString ()

There are no parameters for this function.

Keep in mind...

* These print drivers are supported: PCL5, PCL6, PST, MET, AFP, PDF, HTML, and
RTF.

* These print drivers are not supported: EPT, MDR, and GDL

» All platforms are supported, but note that while UniqueString is supported on z/OS,
z/OS does not support PDF or long file names, so the PDF example does not apply
to z/OS.

* Both multi- and single-step processing are supported.

The only DAL function actually involved in splitting the print stream is BreakBatch. The
others make it easier to implement this functionality. For example, since you need to name
the new print stream, you use the SetDeviceName procedure. To find the name of the
current device, you use the DeviceName function. If you need to create unique file names,
you can use the UniqueString function.

NOTE: While you can call all of these DAL functions in Documaker Server or Entry, the
BreakBatch and SetDeviceName functions are not applicable in Entry since it
does not use the batch printing engine. DeviceName and UniqueString are
applicable to both Entry and Documaker Server.

Here is an example:

DataPath = GetINIString(, "Data", "DataPath")

Drive = FileDrive (DataPath)

Path = FilePath(DataPath)

UniqueID = UniqueString/()

Outputname = FullFileName (Drive, Path,UniquelID,".PDF")
SetDeviceName (Outputname)

Miscellaneous Functions on page 73
BreakBatch on page 157
DeviceName on page 216
SetDeviceName on page 370

UserlD

USERID

Use this function to return the user ID used to log on to the Entry module.

Syntax UserID ()
There are no parameters for this function.

This function is only useful if the system is set up to require user IDs.

Example Here are some examples:

(Assume the current user is TOM].)

Function Result Explanation

result = UserID() TOM] Identifies the current user ID as TOM]J.

SetFld (UserID TOM]J First UserID determines that the current user ID is TOM],
(), “MyField”) then the field named My[ie/d is assigned the value TOM]J by
the SetFld procedure.

See also WIP Functions on page 88

UserLvl on page 418

417

USERLVL

418

Syntax

Example

See also

Use this function to get the currently logged in uset's access rights level. The value

returned is in the range 0-9. Zero represents the highest level and nine represents the

lowest level. Access rights levels are specific to each system implementation.

UserLvl ()

There are no parameters for this function.

This function is only useful if the system is set up to require user IDs and user rights.

Here is an example:

(Assume the current user is TOM] with an access rights level of 7.)

Function Result Explanation
#result=UserLvl () 7 Determines that TOM]J's user rights ate 7 and
returns a 7.
IF (UserLvl() !=0) TOM]J First UserLvl determines that TOM]'s rights level
MSG(USERID() Remember to does not equal zero (0). Then the MSG procedure

gCt a

“Remember to get a .
supervisor to

supervisor to approve

this transaction.”); approve this
transaction.
END;

creates a window and displays the given message
along with the current user ID (TOM]) returned by
the UserID function.

WIP Functions on page 88
UserlID on page 417

WEEKDAY

WeekDay

Use this function to determine the day of the week in a given date and return the value as

a number.

Syntax WeekDay

Parameter

(Date, Format, Locale)

Description

Date

Format

Locale

Enter a valid date string. The system assumes your entry is in the format specified
by the Format parameter. The default is the current date.

Enter a valid date format that describes the format used by your entry in the Date
parameter. The default is date format 1 (MM/DD/YY).

(Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INI option. If the Locale INI option offers no value, the system
defaults to USD (United States/English).

The system returns the number of the day of the week, from 1 to 7, as shown here:

Number Day of the week
1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

WeekDay is most often used with the DayName function. The DayName function extracts
the name of the day of the week from a given date.

Example Here are some examples:

(Assume the current date is Wednesday, July 5, 2009.)

Function Result Explanation

WeekDay () 4 Defaults to the cutrent date.

Datestring = 5 First the DateAdd function adds one day to the current

DateAdd(, , 1); date, resulting in a date of Thursday, July 6, 2009. Then
> . WeekDay returns 5, which corresponds to Thursday.

WeekDay(datestring)

See also Date Functions on page 51

Locales on page 55

419

Using INI Options on page 8
Date Formats on page 52
DateAdd on page 183

DayName on page 188

420

WHATFORM

Syntax

Example

See also

WhatForm

Use this function to return the name of the form that includes the item you searched for.

Having the name of the form lets you manipulate that object using other DAL functions,

which may require its name.

WhatForm (Field, Section, Form, Group)

Parameter Description

Field Enter the name of the field. The default is the current field.

Section Enter the name of the section. The default is the current section.

Form Enter the name of the form. The default is the current form.

Group Enter the name of a group to contain the specified form. The default s the current

group.

If nothing matches your criteria, the system returns a blank.

Keep in mind you can use an asterisk (¥) as the object name to match parent objects. This

lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, minimize using wildcards (¥) when searching for field,

section, or form names.

Here is an example:

Function Result

Explanation

The name of
the form or 0

form =
WhatForm(“Tota
1 Field\37,, ,"*");

Attempts to locate the third occutrence of a field in a
form set and returns the name of the form that contains
that field.

WhatGroup on page 422
WhatImage on page 423

Name Functions on page 74

421

WHATGROUP

422

Syntax

Example

See also

Use this function to return the name of the group that includes the item you searched for.

Having the name of the form lets you manipulate that object using other DAL functions,

which may require its name.

WhatGroup (Field, Section, Form, Group)

Parameter Description

Field Enter the name of the field. The default is the current field.

Section Enter the name of the section. The default is the current section.

Form Enter the name of the form. The default is the curtent form.

Group Enter the name of a group to contain the specified form. The defaultis the current
group.

If nothing matches your criteria, the system returns a blank.

Keep in mind you can use an asterisk (*) as the object name to match parent objects. This

lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, minimize the use of wildcards (*) when searching for

field, section, or form names.

Here is an example:

Function Result Explanation
group = The name of Attempts to locate the group name that contains a
WhatGroup(, , the form or 0 specific form.
”MyFOrm"’ IY*");
WhatForm on page 421
WhatImage on page 423

Name Functions on page 74

Whatlmage

WHATIMAGE

Use this function to return the name of the section that includes the item you searched
for. Having the name of the form lets you manipulate that object using other DAL
functions, which may require its name.

Syntax WhatImage (Field, Section, Form, Group)
Parameter Description
Field Enter the name of the field. The default is the current field.
Section Enter the name of the section. The default is the current section.
Form Enter the name of the form. The default is the current form.
Group Enter the name of a group to contain the specified form. The default is the

cutrent group.

If nothing matches your criteria, the system returns a blank.

Keep in mind you can use an asterisk (¥) as the object name to match parent objects. This
lets you find objects without explicitly knowing the parent names.

NOTE: For optimal performance, minimize the use of wildcards (¥) when searching for
field, section, or form names.

Example Here is an example:

Function Result Explanation

section = The name of Attempts to locate the twelfth occurrence of a field in a
WhatSection(“To the form or 0 form setand returns the name of the section that contains
tal Field\12”, , that field.

o).

>)3

See also WhatForm on page 421
WhatGroup on page 422

Name Functions on page 74

423

WIPEXIT

Use this procedure/function to close wotk-in-process.

Syntax WIPExit (SaveFlag)

Parameter Description

SaveFlag Enter a positive number, such as one (1), to save and close the current form set.
Enter zero (0) to close the form set without saving and exit WIP.

The default is to save and close the current form set.

This procedure generates a message that tells the system to close the current form set.

Although control returns to the script after calling this procedure, the only statement that
should be executed afterwards is a RETURN statement.

Example Here are some examples:
Procedure Result Explanation
WIPExit(1) Exits WIP and saves your work. Work is saved with a valid positive flag.

WIPExit(0) Exits WIP but does not save your ~ Work is not saved with a flag of zero.
work.

See also WIP Functions on page 88

424

WIPFLD

Syntax

Example

See also

WIPFld

Use this function to return the value of a database field from the current WIP record.

WIPFld (WIPfield)

Parameter Description

WIPfield Enter the name of the field in the WIP record.

The system returns the value of an identified field within the current WIP record.

WIP records are only defined within the Entry system and are implementation specific. If
a request is made for a field that is not part of the WIP record definition, the system
returns an empty string.

Here are some examples:

(Assume the current WIP record has a field named OrigUser which contains the string
David Harris.)

Function Result Explanation

result = WIPFId David Determines that the current WIP record named OrigUser

(“OrigUser”) Harris has the value David Harris and returns that value.

IF (WIPFld If the current WIP record does not contain a StatusCode

(‘StatusCode') I="W") field that is equal to IV the SetFld statement executes.
SetFld(“N/A”);

END

WIP Functions on page 88

425

WIPKEY1

Use this function to return the value of the Keyl1 field from the current WIP record.

Syntax WIPKeyl ()
There are no parameters for this function.

The system returns the value of the Key1 field within the current WIP record known as
the Company field in the insurance market. WIP records are only defined within the Entry
module and are specific for each implementation.

This is a short-cut method for WIPFId(“KEY1”), which would return the same value.

Example Here are some examples:

(Assume the current WIP record contains a Keyl1 field with the value Orac.)

Function Result Explanation

result = Oracle Determines the value contained in the WIP Key1 field and

WIPKeyl() returns that value.

IF WIPKeyl () 1 Determines that the Key1 field contains the value Oracle, then

= N/A executes the SetFld procedure and places N/A in the current
“Oracle” field. Also returns one (1) to indicate that the SetFld

SetFId(N/A™; procedure was successful.

END

See also WIP Functions on page 88
WIPFId on page 425
WIPKey2 on page 427
WIPKeyID on page 428
SetFld on page 374

426

WIPKEY2

Syntax

Example

See also

WIPKey2

Use this function to return the value of the Key2 field from the current WIP record.

WIPKey2 ()
There are no parameters for this function.

The system returns the description of the Key2 field in the current WIP record, known as
the Line of Business field in the insurance market. WIP records are only defined within the
entry system and are implementation specific.

This is a short-cut method for WIPFId(“KEY2”), which would return the same value.

Here are some examples:

(Assume the current WIP record contains a Key2 field with the value “Fire Insurance”.)

Function Result Explanation
result = Fire Determines the value contained in the WIP Key?2 field and
WIPKey2() Insurance returns that value.
IF WIPKey2 () = Nothing Determines that the Key2 field does not contain the value
“Oracle” “Oracle”; therefore the SetFld procedure does not
te.
SetFId(“N/A”); erecte
END

WIP Functions on page 88
WIPFId on page 425
WIPKey1 on page 426
WIPKeyID on page 428
SetFld on page 374

427

WIPKEYID

Use this function to replace the value of the KeyID field from the current WIP record.

Syntax WIPKeyID ()
There are no parameters for this function.

The system returns the value of the KeylD field in the current WIP record, known as the
Policy Number field in the insurance market. WIP records are only defined in the
Documaker and are implementation specific.

This is a short-cut method for the WIPFId(“KEYID”) function, which would return the
same value.

Example Here are some examples:

(Assume the current WIP record contains a KeylD field with the value “13007.)

Function Result Explanation
result = 1300 Determines the value contained in the WIP KeylD field and
WIPI(CYID() returns that value.
IF 1 Finds the KeyID field value. Then determines that the three
LEFT(WIPKeyID n\j/A left most characters in the KeyID field are greater than 100.
(),3)> 100 Executes the SetFld procedure and places “N/A” in the

; . current field. Also returns one (1) to indicate that the SetFld
A%};TFLD(N/ procedure was successful.
END

See also WIP Functions on page 88
WIPFId on page 425
WIPKeyl on page 426
WIPKey2 on page 427
SetFld on page 374

428

XMLAttrName

XMLATTRNAME

Use this function to return the name of the current attribute pointed to by the
XMLFirstAttrib and XMLNextAttrib functions.

Syntax XMLAttrName (%XMLTree)

Parameter Description

%XMLTree Enter a list type DAL variable that passes the XML tree handle.

The system returns the name of the current attribute pointed to by the XMLFirstAttrib
and XMLNextAttrib functions.

Example This example returns the second attribute name of the first form in the list.

aStr="Attribute not found!";
$XxXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form") ;
#rc=XMLFirst ($XMLTree) ;
#rc=XMLFirstAttrib ($XMLTree) ;
#rc=XMLNextAttrib ($XMLTree) ;

if #rc > 0

aStr=XMLAttrName ($XMLTree) ;

end

#rt=DestroyList ($xXMLTree) ;

return (aStr) ;

See also XML Functions on page 89
XMLFirstAttrib on page 433
XMILNextAttrib on page 438

429

XMLATTRVALUE

Use this function to return the value of the current attribute pointed to by the
XMLFirstAttrib and XMILNextAttrib functions. This function is similar to the
XMIAttrName function.

Syntax XMLAttrValue ($XMLTree)

Parameter Description

%XMLTree Enter a list type DAL variable that passes the XML tree handle.

The system returns the value of the current attribute pointed to by the XMLFirstAttrib
and XMLNextAttrib functions.

Example This example returns the second attribute name of the first form in the list.

aStr="Attribute not found!";
$xXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form") ;
#rc=XMLFirst ($XMLTree) ;
#rc=XMLFirstAttrib ($XMLTree) ;
#rc=XMLNextAttrib ($XMLTree) ;

if #rc > 0

aStr=XMLAttrValue ($XMLTree) ;

end

#rt=DestroyList ($xXMLTree) ;
return(aStr) ;

See also XML Functions on page 89
XMLAttrName on page 429
XMLFirstAttrib on page 433
XMLNextAttrib on page 438

430

XMLFind

XMLFIND

Use this function to locate the XML path from the extracted XML tree and return a list
of matched elements to either a:

* List type DAL variable, or a
* Matched text to a string type DAL variable

The result depends on the search request.

Syntax XMLFind (%xXMLTree, SrchNode, XPath)

Parameter Description

%xXMLTree A list type DAL variable which is passed from either the XMLFileExtract rule
or the LoadXMLList function.

You can use the predefined %extract variable as a parameter here, as discussed
in scenario 1.

StchNode A string type DAL variable that passes a node name from which the search
starts.

If you omit this parameter, the search starts from the root of the XML tree.

XPath A string type DAL variable that passes the XML location. If you omit the
second parameter, the search starts from the root of the XML tree.

The system returns a list type or a string type DAL variable.

Example This example returns text from the last element in the list.

aStr="Text not found!";
$xXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form[text ()]1") ;
#rc=XMLFirst (3$XMLTree) ;
loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurName ($XMLTree) ;

#rc=XMLNext ($XMLTree) ;

goto loop:
endloop:
#rc=DestroyList ($xXXMLTree) ;
return(aStr) ;

See also XML Functions on page 89
Scenario 1 on page 90

Scenario 2 on page 90

431

XMLFIRST

Use this function to set the current pointer to the first element in the specified list.

Syntax XMLFirst ($XMLTree)

Parameter Description

%XMLTree A list type DAL variable. This variable can be either an XML tree or a list of
extracted elements.

The system returns one (1) for success or zero (0) for failure.

Example This example returns text from the last element in the list.

aStr="Text not found!";

$xXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form[text ()]") ;
#rc=XMLFirst ($XMLTree) ;

loop:
if #rc=0
goto endloop:
end

aStr=XMLGetCurName ($XMLTree) ;
#rc=XMLNext ($XMLTree) ;
goto loop:

endloop:

#rc=DestroyList ($xXMLTree) ;

return(aStr) ;

See also XML Functions on page 89

432

XMLFIRSTATTRIB

Syntax

Example

See also

XMLFirstAttrib

Use this function to set the current pointer to the first element in the list you specify.

XMLFirstAttrib (%$XMLTree)

Parameter Description

%XMLTree Enter a list type DAL variable. You can enter either an XML tree or a list of
extracted elements.

This function sets the attribute pointer to the first attribute for the current element in the
element list or to the first attribute element in the attribute list.

If you input an element list, use these functions to retrieve the attribute name and value:
* XMLAttrName

* XMLAttrValue

If you input an attribute list, use these functions to retrieve attribute name and value:

e XMLNthAttrName

* XMLNthAttrValue

The system returns one (1) for success or zero (0) for failure.

This example returns text from the last element in the list.

aStr="Text not found!";
$xXXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form[text ()]") ;
#rc=XMLFirst ($XMLTree) ;
loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurName ($XMLTree) ;

#rc=XMLNext ($XMLTree) ;

goto loop:
endloop:
#rc=DestroyList ($xXMLTree) ;
return (aStr) ;

XML Functions on page 89
XMLAttrName on page 429
XMLAttrValue on page 430
XMLNthAttrName on page 440
XMLNthAttrValue on page 441

433

XMLFIRSTTEXT

Syntax

Example

See also

434

Use this function to set the current text to be the first text element in the XML search list
and then retrieve that text.

XMLFirstText (List)

Parameter Description

List Enter the name of the list.

Here is an example:

Mystring = XMLFirstText (List)

XML Functions on page 89

XMLGetCurName

XMLGETCURNAME

Use this function to get the name from the current element. This function is similar to the
XMLGetCurText function.

Syntax XMLGetCurName (%XMLTree)

Parameter Description

%XMLTree A list type DAL variable. This variable can be either an XML tree or a list of
extracted elements.

The system returns the element name from the current element. The return value is a
string type DAL variable.

Example This example returns text from the last element in the list.

aStr="Text not found!";

$xXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form[text ()]1") ;
#rc=XMLFirst (3XMLTree) ;

loop:
if #rc=0
goto endloop:
end

aStr=XMLGetCurName (%$XMLTree) ;
#rc=XMLNext ($XMLTree) ;
goto loop:
endloop:
#rc=DestroyList ($xXXMLTree) ;
return(aStr) ;

See also XML Functions on page 89
XMLFirst on page 432
XMLGetCurText on page 436

435

XMLGETCURTEXT

Use this function to get the text from the current element. This function is similar to the
XMLGetCurName function.

Syntax XMLGetCurText ($XMLTree)

Parameter Description

%XMLTree A list type DAL variable. This variable can be either an XML tree or a list of
extracted elements.

The system returns the text from the current element. The return value is a string type
DAL variable.

Example This example returns text from the last element in the list.

aStr="Text not found!";
$xXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form[text ()]") ;
#rc=XMLFirst ($XMLTree) ;
loop:

if #rc=0

goto endloop:

end

aStr=XMLGetCurText ($XMLTree) ;

#rc=XMLNext ($XMLTree) ;

goto loop:
endloop:
#rc=DestroyList ($xXMLTree) ;

return(aStr) ;

See also XML Functions on page 89
XMLFirst on page 432
XMLGetCurName on page 435

436

XMLNext

XMLNEXT

Use this function to set the current pointer to the next node or element in the specified
list. This function is similar to the XMILFirst function.

Syntax XMLNext ($XMLTree)

Parameter Description

%XMLTree A list type DAL variable. This variable can be either an XML tree or a list of
extracted elements.

The system sets the current pointer to the next node or element in the list you specified
list and returns one (1) for success or zero (0) for failure.

Example This example returns text from the last element in the list.

aStr="Text not found!";

$xXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form[text ()]1") ;
#rc=XMLFirst (3XMLTree) ;

loop:
if #rc=0
goto endloop:
end

aStr=XMLGetCurName (%$XMLTree) ;
#rc=XMLNext ($XMLTree) ;
goto loop:
endloop:
#rc=DestroyList ($xXXMLTree) ;
return(aStr) ;

See also XML Functions on page 89

XMLFirst on page 432

437

XMLNEXTATTRIB

438

Syntax

Example

See also

Use this function to set the current pointer to the next element in the list you specify. This
function is similar to the XMLFirstAttrib function.

XMLNextAttrib (%XMLTree)

Parameter Description

%XMLTree A list type DAL variable. This variable can be either an XML tree or a list of
extracted elements.

This function sets the current attribute pointer to the next attribute for the current
element in the list or to the next attribute element in the attribute list.

If you input an element list, use these functions to retrieve the attribute name and value:
e XMLAttrName

¢ XMLACttrValue

If you input an attribute list, use these functions to retrieve attribute name and value:

¢ XMLNthAtttName

e XMLNthAttrValue

The system returns one (1) for success or zero (0) for failure.

This example returns text from the last element in the list.

aStr="Text not found!";

$xXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form[text ()]") ;
#rc=XMLFirst ($XMLTree) ;

loop:
if #rc=0
goto endloop:
end

aStr=XMLGetCurName ($XMLTree) ;
#rc=XMLNext ($XMLTree) ;
goto loop:
endloop:
#rc=DestroyList ($xXMLTree) ;
return (aStr) ;

XML Functions on page 89
XMLAttrName on page 429
XMLAttrValue on page 430
XMLNthAttrName on page 440
XMLNthAttrValue on page 441

XMLNEXTTEXT

Syntax

Example

See also

Use this function to retrieve the next text element in the XML search list.

XMLNextText (List)

Parameter Description

XMLNextText

List Enter the name of the list.

Here is an example:

Mystring = XMLNextText (List) ;

XML Functions on page 89

439

XMLNTHATTRNAME

Use this function to return the nth attribute name, as indicated by an index number you
specify.

Syntax XMLNthAttrValue ($XMLTree,#Index)

Parameter Description

%XMLTree A list type DAL variable that passes a name list.

#Index A integer type DAL variable that passes an index number.

The system returns the nth attribute name indicated by the index number.

Example In this example, the XMLFind function returns a list of attributes and the
XMLNthAttrName function returns the name of the first attribute in the list.

aStr="Attribute not found!";
$xXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form/@*") ;
aStr=XMLNthAttrName ($XMLTree, 1);

end

#rt=DestroyList ($xXMLTree) ;

return(aStr) ;

See also XML Functions on page 89
XMLFind on page 431

440

XMLNthAttrValue

XMLNTHATTRVALUE

Use this function to return the nth attribute value, as indicated by an index number you
specify. This function is similar to the XMLNthAttrName function.

Syntax XMLNthAttrValue ($XMLTree,#Index)

Parameter Description

%XMLTree A list type DAL variable that passes a name list.

#Index A integer type DAL variable that passes an index number.

The system returns the nth attribute value indicated by the index number.

Example In this example, the XMLFind function returns a list of attributes and the
XMLNthAttrValue function returns the name of the first attribute in the list.

aStr="Attribute not found!";
$xXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form/@*") ;
aStr=XMLNthAttrValue ($XMLTree, 1);

end

#rt=DestroyList ($xXMLTree) ;

return(aStr) ;

See also XML Functions on page 89

XMLNthAttrName on page 440

441

XMLNTHTEXT

Use this function to return the nth text value, as indicated by an index number you specify.
Syntax XMLNthText ($XMLTree, #Index)

Parameter Description

%XMLTree A list type DAL variable that passes a name list.

#Index A integer type DAL variable that passes an index number.

The system returns the nth text value indicated by the index number.

Example In this example, the LoadXMLList function returns a text list and the XMLNthText

function gets the first text.

AStr="Text not found”;

$xXMLTree=LoadXMLList ("test.xml") ;
$XMLTree=XMLFind ($xXMLTree, "Forms", "Form/text () ") ;
aStr=XMLNthtext ($XMLTree, 1);

#rt=DestroyList ($xXMLTree) ;

return(aStr) ;

See also XML Functions on page 89
LoadXMLList on page 299

442

YEAR

Syntax

Example

See also

Year

Use this function to determine the number of the year in a given date and returns the value
as a four-digit number.

Year (Date, Format, Locale)

Parameter Description

Date Enter a valid date string. The system assumes your entry is in the date format
specified by the Format parameter. The default is the current date.

Format Enter a valid date format that describes your entry in the Date parameter. The

default is date format 1, MM/DD/YY).

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INI option. If the Locale INI option offers no value, the system
defaults to USD (United States/English).

The system determines the year portion of the given date based on the format you
specified in the Format parameter.

Here are some examples:

(Assume the current date is 07/01/09.)

Function Result Explanation

Year () 2009 Defaults to the current date and returns a four-digit year.

Year (“2-5-097, “1-27) 2009 Returns a four-digit year for the given date.

Date Functions on page 51
Locales on page 55

Using INI Options on page 8
Date Formats on page 52

YearDay on page 444

443

YEARDAY

Use this function to determine the number of days from the beginning of the year
(counting consecutively from January 1) to a given date and return the value as a number.

Syntax YearDay (Date, Format, Locale)

Parameter Description

Date Enter a valid date string. The system assumes your entry is in the date format
specified by the Format parameter. The default is the current date.

Format Enter a valid date format that describes your entry in the Date parameter. The

default is date format 1, MM/DD/YY).

Locale (Optional) Enter the locale code. If you omit this parameter, the system checks
the Locale INI option. If the Locale INI option offers no value, the system
defaults to USD (United States/English)..

The system determines the day of the year portion of the given date based on the format
you specified in the Format parameter.

Example Here are some examples:

(Assume the current date is 07/01/09.)

Function Result Explanation

YearDay () 182 Defaults to the current date and returns the day of the year
(counting consecutively from January 1).

YearDay (“7-1-08”) 183 Returns the day of the year (counting consecutively from
January 1) for the given date. (Since 2008 is a leap year the
number is one greater.)

See also Date Functions on page 51
Locales on page 55
Date Formats on page 52

Year on page 443

444

Chapter 3
Keyword Reference

This chapter contains a reference, in alphabetical order, of all the keywords you can use
in your DAL scripts.

See the Keyword Table on page 446 for a list of the keywords. See Grammar and Syntax
on page 14 for more information on using DAL.

445

Chapter 3

Keyword Reference

446

KEYWORD This table lists each keyword and provides a description of the keyword. Click on the

TABLE

Keyword

function name to jump to a discussion of that function.

Description

And

BeginSub

Break
Continue

Else

Elself

End

EndSub

Goto

If...End

Or

Return

While...Wend

Include AND to perform a logical conjunction on two Boolean expressions.

Include a BeginSub statement at the beginning of each subroutine in a DAL
subroutine library.

Use a Break statement to exit a While..Wend statement block.
Use a Continue statement to restart a While...Wend statement loop.

Include an Else statement if you want to pass control to the statement that
follows this keyword if the logical expression is false.

If the first logical expression is false, the first ELSEIF logical expression is
evaluated.

Include an End statement to end an IF, ELSEIF, or ELSE statement

Include a EndSub statement to end each subroutine in 2 DAL subroutine
library.

Include a Goto statement to move to a specific location within a calculation.

Use IF statements to execute commands based on the occutrence of a given
condition.

Include OR to perform a logical disjunction on two Boolean expressions.

Use a Return statement to tell the calculation to return with or without a
value.

Use While...Wend statements to execute a series of statements, as long as a
given condition is true.

AND

Syntax

See also

And

When you have two Boolean expressions, use this keyword to have the system return

True if both Boolean expressions evaluate to True. If either or expression evaluates to

False, AND returns False.

AND

There are no parameters for this keyword.

Or on page 458
Keyword Table on page 446

447

Chapter 3

Keyword Reference

BEGINSUB

Use this function to begin each subroutine in a DAL subroutine library.

Syntax BeginSub Name

Once a DAL library is loaded, you can reference the scripts contained in the library by
name. You do not have to CALL or CHAIN to the script.

Parameter Description

Name Enter the name of the subroutine.

BeginSub and EndSub must be paired per script. You must have a space between
BeginSub and the script name.

Example Here is an example:

BeginSub SCRIPTI1

* This script returns #x set to 2 if #x was equal to 1 on enter.
IF (#x = 1) THEN #x = 2;

END;

RETURN (#x) ;

EndSub

BeginSub Script2

* This script returns a negative one if #y was equal to 5.
if(#y = 5) then Return (-1);

end;

EndSub

SCRIPT1 is the name of the first script and Script2 is the name of the second script.

NOTE: SCRIPT1 and Script2 are only names, you can use any name you want as long as
the name is not a DAL reserved function, statement, or key word such as CALL,
FIND, IF, and so on. You can mix case in script names.

See also Keyword Table on page 446
EndSub on page 454

448

Break

BREAK

Break statements provide a way to exit a While...Wend statement block.

Syntax Break (Levels)

Parameter Description

Levels (Optional) The value you enter defines how many nested While...Wend
statement blocks you want to terminate.If you omit this parameter, control passes
to the statement following the next Wend statement encountered.

You can only include Break statements inside While...Wend statement blocks. Break
statements transfer control to the statement following the Wend statement.

When used within nested While...Wend statements, you can include the Levels parameter
to transfer control to the statement following the Wend level you specify.

Here are some examples. (Ellipses in the following examples represent additional
statements, not shown.)

While (1)
While (2)
Break
Wend
Wend.”

In this example, the Break statement only terminates the While...Wend which contains
the statement. Control passes to the first (outside) While...Wend statement block.

Here is another example:

While (1)
Wnile (2)
While(3)
Break (3)
Wend

Wend

Wend

In this example, the Break(3) statement terminates all three While...Wend blocks that are
active.

See also Keyword Table on page 446

449

Chapter 3

Keyword Reference

CONTINUE

Use Continue statements to restart a While...Wend statement loop.

Syntax Continue
There are no parameters for this keyword.

Executing the Continue statement stops the current sequence of statement execution and
restarts program flow at the beginning of the loop. This causes the While statement to
retest the condition and, if true, execute the loop again.

Statements after the Continue keyword are not executed. Continue is often, but not
always, activated by an IF test.

Example Here is an example:

(Ellipses in the following examples represent additional statements, not shown.)
While (#x < 10)
If (value)
Continue
End

Wend

See also Keyword Table on page 446

450

ELSE

Syntax

Example

See also

Else

An IF Statement with an ELSE condition contains an alternative calculation. If the logical
expression is false, control passes to the statement after the ELSE keyword.

Else

There are no parameters for this keyword.

Here is an example:

IF (@(“FirstAmount”) < 1000.00) THEN
$SFinalAmount = @ (“FirstAmount”) * .05;
ELSE
SFinalAmount = @ (“FirstAmount”) + 10.00;
END;
RETURN ($FinalAmount)

If the value of the section variable field FirstAmount is less than 1000.00 then the amount
is multiplied by .05 and entered in the target variable $FinalAmount.

If, however, the value of the section variable field FirstAmount is greater than or equal to
1000.00 then 10.00 is added to the amount and entered in the target variable
$Final Amount.

The value of the $FinalAmount field is then returned to the caller or section variable field.

Use of the keyword connector THEN is optional.

Keyword Table on page 446
If...End on page 456

451

Chapter 3

Keyword Reference

ELSEIF

452

Example

See also

An IF statement with an ELSEIF condition is the most complicated type of IF statement:

» If the first logical expression is true, the statement block after IF is executed until the
first ELSEIF statement is reached.

» If the firstlogical expression is false, the first ELSEIF logical expression is evaluated.

» If the ELSEIF logical expression is true, the statement block from the ELSEIF to
the next ELSEIF (or ELSE) is executed.

* If the ELSEIF statement is false, the next ELSEIF is evaluated.
* Ifalllogical expressions are false, control passes to the ELSE block.

* If there is no ELSE block, control passes to the statement following the END
keyword.

An ELSEIF statement is considered part of the same IF statement. Only one END
keyword is needed to end an IF, ELSEIF, ELSE statement. IF statements can be nested
inside other IF statements. A nested IF statement requires its own END keyword. A
missing or mismatched keyword results in a runtime syntax error.

Here is a sample IF statement with ELSEIF condition:

IF (@ (“FirstAmount”) < 1000.00)
$FinalAmount = @ (“FirstAmount”) * .05;
ELSEIF @ (“FirstAmount”) < 5000.00
$FinalAmount = @ (“FirstAmount”) * .03;
ELSEIF @(“FirstAmount”) < 10000.00
SFinalAmount = @ (“FirstAmount”) * .02;
ELSE
$FinalAmount = @ (“FirstAmount”) + 10.00;
END;
RETURN (SFinalAmount)

If the value of the section variable field FirstAmount is less than 1000.00 then the amount
is multiplied by .05 and entered in the target variable $Final Amount.

Keyword Table on page 446

If..End on page 456

End

END

An IF statement is executed based on the occurtrence of a certain condition. IF statements
must begin with the keyword IF and terminate with the keyword END.

Syntax End

There are no parameters for this keyword.

See also Keyword Table on page 446
If... End on page 456

453

Chapter 3

Keyword Reference

ENDSuB

Use this function to end each subroutine in a DAL subroutine library.

Syntax EndSub

There are no parameters for this keyword.

BeginSub and EndSub must be paired for each script.

Example Here is an example:

BeginSub SCRIPTI1

* This script returns #x set to 2 if #x was equal to 1 on enter.
IF (#x = 1) THEN #x = 2;

END;

RETURN (#x) ;

EndSub

BeginSub Script2

* This script returns a negative one if #y was equal to 5.
if (#y = 5) then Return (-1);

end;

EndSub

Scriptl is the name of the first script. Script2 is the name of the second one.

See also Keyword Table on page 446
BeginSub on page 448

454

GoTo

Syntax

Example

See also

Goto

A GOTO statement moves to a specific location within a calculation. The location has
been named with a label. (See Labels on page 22 for more information.)

GoTo Location

Parameter Description

Location Specify the location you want to go to. For instance, enter the name of a
section on a form.

A GOTO statement must begin with the keyword GOTO.

Here is an example:
GOTO SECTION_ONE:

The control jumps to SECTION_ONE in a calculation.

The destination label can occur anywhere in the script containing the GOTO statement.
If the label cannot be located in the script, a syntax error will be generated.

GOTO will support retrieving the label from a target variable.

Here is another example:

SECTION = “MY_LABEL:”
GOTO SECTION

Since the word following the GOTO statement does not contain a colon, the program
will assume the label is contained in the target variable named. In this case, control will
jump to the location of MY_LABEL in the current script.

Keyword Table on page 446

455

Chapter 3

Keyword Reference

IF...END

456

An IF statement is executed based on the occurrence of a certain condition. IF statements
must begin with the keyword IF and terminate with the keyword END.

Components within IF statements can be connected with the keywords AND or OR. IF

statements can have three forms: a simple IF statement, an IF statement with an ELSE
condition, or an IF statement with an ELSEIF condition.

Simple IF Statement

A simple IF Statement contains a single statement block. The calculation is
performed only if the logical expression is true. If the logical expression is false,
control passes to the next statement after the END keyword. Here is an example:

IF (@(“FirstAmount”) < 1000.00) THEN
$FinalAmount = @ (“FirstAmount”) * .05;

END;

RETURN (SFinalAmount)

CALCULATION: If the value of the section variable field FirstAmount is less than
1000.00 then the value is multiplied by .05 and entered in the target variable
$FinalAmount. The value of the $FinalAmount target variable is then returned to the
section variable field.

The use of the keyword connector THEN is optional.
IF Statement with ELSE Condition

An IF Statement with an ELSE condition contains an alternative calculation. If the
logical expression is false, control passes to the statement after the ELSE keyword.

Here is an example:

IF (@(“FirstAmount”) < 1000.00) THEN
SFinalAmount = @ (“FirstAmount”) * .05;
ELSE
SFinalAmount = @ (“FirstAmount”) + 10.00;
END;
RETURN ($FinalAmount)

CALCULATION: If the value of the section variable field FirstAmount is less than
1000.00 then the amount is multiplied by .05 and entered in the target variable
$Final Amount.

If the value of the section variable field FirstAmount is greater than or equal to
1000.00 then 10.00 is added to the amount and entered in the target variable
$Final Amount.

The value of the $Final Amount field is then returned to the caller or section variable

field.
The use of the keyword connector THEN is optional.

IF Statement with ELSEIF Condition

See also

If...End

An IF statement with an ELSEIF condition is the most complicated type of IF
statement. If the first logical expression is true, the statement block after IF is
executed until the first ELSEIF statement is reached. If the first logical expression is
false, the first ELSEIF logical expression is evaluated. If the ELSEIF logical
expression is true, the statement block from the ELSEIF to the next ELSEIF (or
ELSE) is executed. If the ELSEIF statement is false, the next ELSEIF is evaluated.
If all logical expressions are false, control passes to the ELSE block. If there is no
ELSE block, control passes to the statement following the END keyword.

An ELSEIF statement is considered part of the same IF statement. Only one END
keyword is needed to end an IF, ELSEIF, or ELSE statement. IF statements can be
nested inside other IF statements. A nested IF statement requires its own END
keyword. A missing or mismatched keyword results in a runtime syntax error. Here
is a sample IF statement with ELSEIF condition:

IF (@(“FirstAmount”) < 1000.00)
$FinalAmount = @ (“FirstAmount”) * .05;
ELSEIF @(“FirstAmount”) < 5000.00
SFinalAmount = @ (“FirstAmount”) * .03;
ELSEIF @(“FirstAmount”) < 10000.00
SFinalAmount = @ (“FirstAmount”) * .02;
ELSE
$FinalAmount = @ (“FirstAmount”) + 10.00;
END;
RETURN ($FinalAmount)

CALCULATION: If the value of the section variable field FirstAmount is less than
1000.00 then the amount is multiplied by .05 and entered in the target variable
$Final Amount.

If the value of the section vatiable field FirstAmount is greater than or equal to
1000.00 but less than 5000.00 then the amount is multiplied by .03 and entered in the
target variable $FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to
5000.00 but less than 10000.00 then the amount is multiplied by .02 and entered in
the target variable $FinalAmount.

If the value of the section variable field FirstAmount is greater than or equal to
10000.00 then 10.00 is added to the amount and entered in the target variable
$Final Amount.

The value of the $Final Amount field is then returned to the caller or section variable

field.

Keyword Table on page 446
Else on page 451
Elself on page 452

457

Chapter 3

Keyword Reference

OR

When you have two Boolean expressions, use this keyword to have the system return
True if either Boolean expression evaluates to True. If neither expression evaluates to
True, OR returns False.

Syntax OR

There are no parameters for this keyword.

See also And on page 447
Keyword Table on page 446

458

RETURN

See also

Return

A RETURN statement directs the calculation to return with or without a value. A
RETURN statement must begin with the keyword RETURN. A RETURN statement
may return the result of the calculation to be placed in the field that initiated the script.

A RETURN statement is also used to return results to one calculation script from
another. Using a CALL statement temporarily suspends the current script calculation and
sends control to another script file. A RETURN statement sends control back to the
original script which may then continue processing.

Here are some sample RETURN statements:

RETURN (@ (“LAST_NAME”) & ', ' & @(“FIRST_NAME”) & “ “ &
@ (“MIDDLE_INIT"))

RESULT: Takes the data in the section variable field LAST_NAME adds a comma; adds
the data in the section variable field FIRST_NAME; adds the data in the section variable
field MIDDLE_INIT and places this data in another section variable field.

RETURN (CALL('FirstFile'))

RESULT: Returns the result of the calculation generated by calling the script FirstFile.

Keyword Table on page 446
Call on page 159

459

Chapter 3

Keyword Reference

WHILE...WEND

Syntax

See also

460

Use While...Wend statements to execute a series of statements, as long as a given
condition is true.

While condition

[statements]
Wend
Parameter Description
Condition Required. The condition is any expression that evaluates to true or false. False

is assumed to be a zero value. Any non-zero value is assumed to be true.

Statements One or more statements executed while the condition is true.

If condition is true, the statements within the While block are executed. When the Wend
statement is encountered, control returns to the While statement and condition is again
evaluated. If condition is still true, the process repeats. If it is false, execution resumes with
the statement which follows the Wend statement.

You can nest While...Wend loops to any level. Each Wend matches the most recent While.

NOTE: Keep in mind that you can start an endless loop if you specify a condition that
can never be satisfied. The system cannot syntactically detect an endless loop, so
if you create one, the program will lock up and you will have to kill the program.

(Ellipses in the following examples represent additional statements, not shown.)

While (10 > #value)
While (#new = 1)
Wend

Wend

You do not have to use tabs to indent nested While...Wend statements. Tabs are used in
these examples, to help identify statement blocks. You may want to also use tabs in your
code to make the source easier to read.

Keyword Table on page 446

Index

Symbols

" (quotation marks) 16, 17
& (ampersands) 198, 286, 375
() (parentheses) 16, 19
* (asterisks) 4, 65
: (colons) 6
; (semicolons) 3, 6
? function 111
@ function
defined 109
NUM function 322
\ (backslashes) 96

> (apostrophes) 17

A

ABS function 113
accessing

database fields 49
ACIF 35
AddBlankPages function 115
AddComment function 117
AddDocusaveComment function 118
AddForm function

CopyForm function 173
AddForm_Propagate function 120
AddImage function 122
AddImage_Propagate function 125

461

Index

AddOvFlwSym function 127
AFEBatchDALProcess 7, 368
AFELOG file
AFELog function 128
DelWIP function 214
AFELog function 128
AFEProcedures control group 12
alphabetic field format 62
alphanumeric field format 63
Always function 129
AND 447
AND operation 146
annuities 337
apostrophes () 17
AppendText function 131
AppendTxm function

AppendTxmUnique function 136

defined 133
AppendTxmUnique function 135
AppldxRec function 138
Applylnserts function 139
archives

adding comments 117

Complete function 167

retrieving records 138
ASCII files

AddDocusaveComment function 118

DAL script libraries 5

scripts 4
Ask function 140
assighment statements 14
AssignWIP function 141
asterisks (*)

comment lines 4

wildcards 65
AutoKeylD

option 12

table 11
Avg function 142

462

B

backslashes in object names 96
BankRound function 144
banner processing
RecipBatch function 350
RecipName function 353
SuppressBanner function 400
bar code field format 62
barcode fields
SetFont function 376

batch processing

DDTSourceName function 204

Batch_DAL control group 7
Beep function 145
BeginSub 448
BeginSub function
EndSub function 29
binding 178
bit logical shift operation 153
BitAnd function 146
BitClear function 147
bitmaps
ChangelLogo function 162
DellLogo function 213
embedding logos 228
HaveLogo function 269
InlineLLogo function 279
Refresh function 354
RenamelLogo function 356
BitNot function 148
BitOr function 149
BitRotate function 150
BitSet function 152
BitShift function 153

BitTest function 155

bitwise
AND operation 146
exclusive OR operation 156
inclusive OR operation 149
logical NOT operation 148
shift operation 153
shift-and-rotate operation 150
BitXor function 156
blank lines
formatting scripts 3, 4
blank pages 115, 207
Boolean values
GetINIBool function 254
PutINIBool function 346
Break 449
Break statements
and While...Wend statements 26

built-in functions 39

C

cache
GetINIString function 256
TLoadINTIFile function 297
LoadLib function 298
SaveINIFile function 367
Calculation tab
assigning a calculation 2
comments 4
calculations
entering in an external file 4
POW function 337
CALL function 159
CALL statements
defined 25
carbon-copy recipients 388, 389
carriage returns 4
case
dates 52
sensitivity 3, 4

target variables 15

CaseSensitiveKeys option 11
century
cut-off 54
DateCnv function 185
CFind function 161
CHAIN function 160
CHAIN statements
defined 25
Changel.ogo function 162
Char function 164
character strings
converting to an integer value 272
ListInList function 295
CharV function 165
CheckImagel.oaded rule
SetFld function 374
Class option 46
clearing
BitClear function 147
CLIPSPACES 199
CodelnList function 166
colons
use of 6
commas
numeric constants 16
comma-separated value files 331
comment record processing
RecipBatch function 350
RecipName function 353
comments
AddComment function 117
AddDocusaveComment function 118
creating strings 321
lines 4
CompileWhenlLoaded option 8
Complete function 167
CompressFlds function 168
compressing
blank space 168
ConnectFlds function 170
Continue 450

463

Index

Continue statements
While...Wend statements 27
Control control group 8
control groups
INI functions 70
control-z 4
converting
character strings to integer values 272
integer values to hexadecimal string values 205
coordinates
ImageRect function 275
SetIlmagePos function 379
copies
counting recipient copies 351
TotalPages function 409
CopyForm function 173
Count function 174
CountRec function 176
Createlndex option 44
CreateTable option 44
custom field format 62

Cut function 177

464

D

DAL
assignment statements 14
calcs 2
CALL statements 25
CHAIN statements 25
data flow statements 14
DBUnloadDFD function 201
debugger 31
entering calculations in an external file 4
examples 2, 41
execution order 19
flow control statements 14, 22
format in external files 4
GOTO statements 25
IF statements 23
implicit conversion 20
keywords 22
labels 22
numeric constants 16
operators 17
punctuation 18
retaining variables 359
RETURN statements 23
runtime error messages 33
runtime options 8
section vatiable fields 16
source expression 16
string constants 17
target field 16
using the Properties window 3
DAL control group 8
DAL rule
? function 111, 112
DAL scripts
defined 2
executing 341
retrieving XML data 89
DALFunctions control group 8
DALLIib option 9
DALLibraries control group 8

DAILRun
built-in function 10
control group 9
DBUnloadDFD function 201
INI file 31
DALTriggers option 9
DALVAR built-in function 10
DashCode function 178
data flow statements 14
data storage statements 30
database functions
accessing fields 49
DB2/2 handler 45
handlers for Excel 46
list of 43
ODBC handler 44
date field format 62
Date function 181
Date2Date function 182
DateAdd function 183
DateCnv function 185
DateFmt rule
? function 112
DateFMT2To4Year option 54
DateFmt2To4Year option 8
dates
century cut-off 54
data storage statements 30
formatting 52
list of functions 51
locale considerations 87
Day function 187
daylight savings time 407
DayName function
defined 188
WeekDay function 419
DaysInMonth function 189
DaysInYear function 190
DB2/2 handler 45
DBAJdd function 191

DBClose function

defined 192

memoty tables 50

record lengths 199
DBDelete function 193
DBFind function 194
DBFirstRec function 196
DBNextRec function 197
DBOpen function

defined 198

memoty tables 50

record lengths 199
DBPrepVars function 200
DBUnloadDFD function 201
DBUpdate function 202
DDT files

DDTSourceName function 204

storing information 6
DDTSourceName function 204
Debug_DAL_Rules option 9
Debug_Switches control group 9
Dec2Hex function 205
decimal target variables 15
DEFLIB directory 4
DeFormat function 206
DelBlankPages function 207
DelField function 208
DelForm function 210
Dellmage function 211
DelWIP function 214
descriptions

retrieving 245
DestroyList function 215
DFD files

DBUnloadDFD function 201
DiffDate function 218
DiffDays function 219
DiffHours function 220
DiffMinutes function 221
DiffMonths function 222
DiffSeconds function 223

465

Index

DiffTime function 224
DiffYears function 225
directing workflow 388, 389
disabling scripts 2
divide by zero 33
dividing year 185
Docusave
AddDocusaveComment function 118
adding comments 117
DocusaveScript option 35
dot operator 49
double quotes 17
drives
FileDrive function 239
dummy pages 115
DumpDAL option 9
DupForm function

CopyForm function 173
defined 227

E

EBCDIC
AddDocusaveComment function 118
either required 235
Else 451
Elself 452
email addresses 389
EmbedLogo function 228
End 453
EndSub 454
EndSub function
BeginSub function 28
ERRFILE.DAT file 364, 366
errors
Beep function 145
RPErrorMsg function 364
runtime error messages 33
Excel
databases 46

466

exclusive OR operation 156
execution order 19
Exists function 229
exponential power

using the POW function 337
exporting

Complete function 167
Ext option

defined 8

LoadLib function 298
external files

using 4
extract files

CountRec function 176

retrieving data 392

extracting a field’s root name 361

F

FAP units

Logo function 300

positioning sections 380
field formats

list of 62

locating fields 64
FieldFormat function 230
FieldName function 231
FieldPrompt function 233

fields
accessing database fields 49
changing coordinates 170
compressing blank space 168
concatenating text 170
ConnectFlds function 170
date formats 52
deleting 208
extracting the root name 361
functions 61
JustField function 288
locating 64
moving horizontally 390
renaming 135
SpanField function 390
specifying 16
target fields 14
using the Properties window 3
FieldType function 236
FieldX function 237
defined 237
Logo function 300
FieldY function
defined 238
Logo function 300
FileDrive function 239
FileExt function 240
FileName function 241
FilePath function 242
files
DAL scripts 5

entering calculations in an external file 4

FileExt function 240
FileName function 241
FilePath function 242
FullFileName function 248
filler pages 115, 207
Find function 243
flow control statements
defined 14
keywords 22
FlushDALSymbols option 9, 359
FlushSymbols option 8

fonts
changing 376
form descriptions, retrieving 245
FORM PAGE NUM field 109
FORM PAGE NUM OF field 109
FORM.DAT file
RecipientName function 352
retrieving descriptions 245
Format function 244
formats
DAL format in external files 4
date 52
numeric 63
time 80
formatting functions
fields 61
string functions 78
FormDesc function 245
FormName function 246
forms
AddForm_Propagate function 120
changing the description 377
CopyForm function 173
DupForm function 227
WhatForm function 421
FORMSET PAGE NUM field 109
FORMSET PAGE NUM OF field 109
FormsetID field
SetWIPFId function 386
four-digit years 185
FrenchNumText function 247

467

Index

FSISYS.INI file
DAL script extensions 4
executing DAL scripts 7
GetINIBool function 254
GetINIString function 256

Ignorelnvalidlmage option 119, 123

INT functions 70
LogEnabled option 254
options for Docusave 35
options for OnDemand 35
PutINIBool function 346
runtime options 8
FSTUSER.INI file
executing DAL scripts 7
GetINIBool function 254
GetINIString function 256
INT functions 70
LogEnabled option 254
options for Docusave 35
options for OnDemand 35
PutINIBool function 346
PutINIString function 348
FullFileName function 248
functions
mathematical 70, 72
miscellaneous 73, 76, 88
object 94
overview 41
string 78
time 80

where used 97

G

get field function 109
GetAttachVar function 249
GetData function 250

and the SrchData function 250, 392

GetFormAttrib function 252
GetINIBool function
defined 254

468

GetINIString function 256
GetListElem function 258
GetOvElwSym function 259
GetValue function 260
GoTo 455
GOTO statements

defined 25

runtime error messages 34

While loops 28
graphics

applying 139

deleting 213

in-lining 279

locating 269

renaming 356
GroupName function 261
groups

PrinterGroup function 341

WhatGroup function 422
GVM function

defined 262
GVM variables

HaveGVM function 267

printing 339

SetGVM function 378

H

HaveField function 263
HaveForm function 265
HaveGroup function 266
HaveGVM function 267
Havelmage function 268
Havelogo function 269
HaveRecip function
defined 271
RecipientName function 352
Hex2Dec function 272

hexadecimal values
date formats 54
Date2Date function 182
Dec2Hex function 205
Hex2Dec function 272
host required 235
Hour function 273
hyperlinks
SetLink function 381

ICU system time zones 81
IF rule 234, 235
IF statements
defined 23
runtime error messages 33
Ignorelnvalidlmage option 119, 123
ImageName function 274
ImageRect function
AddImage function 123
defined 275
ImpFile_cd control group 119
implicit conversion 20
IncOvFlwSym function 277
INI files
DAL options 8
GetINIBool function 254
GetINIString function 256
TLoadINTIFile function 297
PutINIBool function 346
PutINIString function 348
INI function 278
INI functions 70
INIGroup control group 10
InlineLogo function 279
Input function 280
Insert function 281
inserting equipment 178

insertion text 63

Install option 44
INT function 282
integers
BitAnd function 146, 147
BiTest function 155
BitNot function 148
BitOr function 149
BitRotate function 150
BitSet function 152
BitShift function 153
BitXor function 156
Char function 164
CharV function 165
converting to hexadecimal string values 205
Dec2Hex function 205
Hex2Dec function 272
returning the remainder 317
target variables 15
interest rates
POW function 337
international
alphabetic field format 62
alphanumeric field format 62
uppercase alphabetic field format 62
uppercase alphanumeric field format 62
IsPrintObject function 283
IsXMILEtror function 284

J

JCenter function 285
JLeft function 286
JRight function 287
JustField function 288

K

KeyID values 11
Keyword option 8

469

Index

keywords 22

BeginSub and EndSub 28
KickToWIP function 290
KickToWIP rule 235

L

labels
in scripts 22
runtime error messages 34
leading signs 323
leading spaces 326, 414
leap years
DateAdd function 183
DaysInMonth function 189
DaysInYear function 190
DiffYears function 225
LeapYear function 292
YearDay function 444
LeapYear function 292
Left function 293
LEN function
defined 294
Size function 387
Lib option 8
libraries
LoadLib function 298
of DAL scripts 5
limits
significant numbers 72
line breaks
MLElInput function 311, 314
line feeds 4
ListInList function 295
LoadCordFFAP option 162
LoadExtractData rule 250
LoadINTIFile function 297
LoadLib function
DAL libraries 6
defined 298

470

LoadXMLList rule 90
locale 52
locales 55

times and dates 87
locating fields 64
locating objects 94

log files

RPLogMsg function 365
LOGFILE.DAT file 365
logical NOT operation 148
logical shift 153
Logo function 300
Lower function 302

lowercase
dates 52

M

MailWIP function 303
MajorVersion function 304
master resource library
storing external script files 4
MasterResource control group 9
mathematical functions 72
MAX function 305
memory
GetINIString function 256
LoadINTIFile function 297
LoadLib function 298
runtime error messages 33
SaveINIFile function 367
tables 50
MEN.RES file
enabling the DAL debugger 32
executing a DAL script 7
menus

executing a DAL script from 7

messages

AFELog function 128

Ask function 140

Beep function 145

creating 320
metadata 252, 344
MIN function 307
MinorVersion function 309
minus signs 17
Minute function 310
miscellaneous functions 73, 76, 88
MLEInput function

defined 311

MLETranslate function 314
MILETranslate function

and MLEInput 311

defined 314

MLEInput function 314
MOD function 317
month abbreviations 54
Month function 318
MonthName function 319
Move_It rule

? function 111
moving data to compress blank space 168
MSG function 320
Multicopy option 173, 227
multi-line text area messages, creating 321
multi-line text field format 62
multi-line variable fields

MLEInput function 311, 314

MLETranslate function 314
MYPAGE variables 328

N

NAFILE.DAT files
embedding graphics 228

name
FileDrive function 239
FileName function 241
FullFileName function 248
new line character
MLEInput function 311, 314
NewFormatOnly option 401
NL function 321
NOT operation 148
not required 235
NUM function 322
numeric constants 16
numeric field format 62
numeric formats 63
Numetic function 323

NumText function
defined 324
FrenchNumText function 247

O

object functions
list of 94
locating objects 94
occurrence
counts 65
Pagelmage function 327
ODBC
DBUnloadDFD function 201
handler 44
Ok buttons 320
OldFormatOnly option 401
OMR marks 207
OnCreate option 12
OnDemand, adding comments 117
OnDemandScript option 35, 340, 341
OnUpdate option 12

operator required 235

471

Index

operators
defined 17
dot 49
source expressions 19
options
setting using INT functions 70
OR 458
OR operation 149, 156
OutMode option 35
ovetflow
AddOVFlwSym function 127
AppendTxmUnique function 136
FieldRule function 234
GetOvFlwSym function 259
IncOvFlwSym function 277
ResetOvElwSym function 358
overflow record count

retrieving 413

P

PAD function 326
page numbering fields

@ function 109
Pagelmage function 327
Pagelnfo function 328
pages

Pagelmage function 327

size 328

TotalPages function 409
PaginateForm function 330
paragraphs

importing 135
parameters

punctuation 18

syntax of 41
parentheses

specifying field names 16
ParseListCount function 331

Parselistltem function 333

472

partial names
examples of 66, 142, 305, 307, 398
object functions 95
PassWd option 44
PathCreate function 335
PathExist function 336
paths
FileDrive function 239
FileExt function 240
FileName function 241
FilePath function 242
FullFileName function 248
POW function 337
Print function 338
print functions 76
print streams
adding comments 117
PrinterClass function 340
PrinterGroup function 341
Print window 338
Print_It function
defined 339
NL function 321
PrinterClass function 340
PrinterGroup function 341
PrinterID function 342
PrinterOutputSize function 343
printing
Complete function 167

determining if a section will print 283

in-lining graphics 279
PrintViewOnly option 340, 341
procedures 41
prompts

AFELog function 128

creating 311

DBDelete function 193

FieldPrompt function 233

Input function 280

ODBC drivers 44
propagate

AddForm_Propagate 120

Properties window
comments 4
entering DAL calcs 2, 3
PrtType option 340, 341
punctuation 18
purging WIP 214
PutFormAttrib function 344
PutINIBool function 346
PutINIString function 348

Q

Qualifier option 44
quotation marks
@ function 109
date formats 52
field formats 62
specifying field names 16

string constants 17

R

RecipBatch function
defined 350
RecipCopyCount function 351
recipients
HaveRecip function 271
page size 329
TotalPages function 409
RecipName function
defined 353
record lengths
trailing spaces 199
records

minimum number 176

Refresh function
AddImage function 123
defined 354
DellLogo function 213
Logo function 300
remainder
returning 317
Renamel.ogo function
defined 356
reserved keywords 15
ResetFld function
defined 357
ResetOvElwSym function 358
Retain function 359
retrieving
a string with a new line sequence 321
the overflow record count 413
the SourceName field 204
RETURN 459
return
values 41
RETURN statements
defined 23
runtime error messages 34
WIPEKxit function 424
Right function 360
RootName function 361
Round function 362
rounding with the BankRound function 144
RouteWIP function 363
routing slips
RouteWIP function 363
SlipInsert function 389
RPErrorMsg function 364
RPLogMsg function 365
RPWarningMsg function 366
RunMode control group 9, 162
runtime
error messages 33

options 31

473

Index

S

SAMPCO sample resources 2, 41
SaveINIFile function 367
SaveWIP function 368
Script option 9, 12
ScriptFile option 7
scripts
creating libraries 5
defined 2
disabling 2
executing 341
executing from a menu 7
LoadLib function 298
maximum size 3
runtime error messages 33
runtime options 8
SlipInsert function 389
search criteria
including spaces 250, 392
search masks
CountRec function 176
searching
character string list 295
Second function 369
sections
adding 122
checking 2
Pagelmage function 327
re-pagination 330
repositioning 379
retrieving coordinates 275
variable fields 16
WhatImage function 423
semicolons
formatting calculations 3
use of 6
separators 52
sequence numbers
HaveRecip function 271
Server option 44, 46
SetEdit function 372

474

SetFld function 374
SetFont function 376
SetFormDesc function 377
SetGVM function 378
SetIlmagePos function
AddImage function 123
defined 379
SetLink function 381
SetOvFlwSym rule 127
SetProtect function 383
SetRecip function 384
SetRecipTh
triggering the form name 411
triggering the section name 412
SetRequiredFld function 385
setting the bit position 152
SetWIPFId function 386
shiftAmt value 150
shift-and-rotate operation 150
ShowWIPWarning option 290
signatures 139, 162
significant numbers 72
Size function 386, 387
SlipAppend function 388
SlipInsert function 389
source expressions
defined 16
operators 19
punctuation 18
Source Name field
DDTSourceName function 204
spaces
in scripts 3, 4
including 250, 392
trailing 199
SpanField function 390
spreadsheets 331
StchData function 392
standard export format
Complete function 167

state stamps 139

statements
data storage 30
operators 19
punctuation 18
separators 6
STR function 394
STRCompare function 395
string functions 78
strings
CodelnlList function 166
comparing 395
constants 17
ListinList function 295
printing 339
retrieving 321
space and tab characters 3
target variables 15
subroutines
BeginSub function 28
EndSub function 29
SUM function 398
SuppressBanner function
defined 400
symbolic variable
Exists function 229
GetValue function 260
symbols
runtime error messages 33
statement continuation 18
syntax
errors 41

runtime error messages 33

-

tab characters
evaluating scripts 3
in scripts 4

Table function 401

table only field format 62

tables

setting up memory tables 50
target fields 14, 16
target variables

decimals 16

defined 14

integers 16

strings 16
TbILkUp rule 234
TblText rule 234
testing a specified bit 155
text

concatenating 170

creating a window for entering 311

searching for 161
time

formats 80

functions 80
Time function 403
Time2Time function 404
TimeAdd function 405
times

locale considerations 87
TimeZone function 406
TimeZone2TimeZone function 407
Title option 9
TLEs 35
TotalPages function 409
TotalSheets function 410
trailing signs 323
trailing spaces 320, 414
translating new line characters 314
Trigger2Archive control group 138
TriggerFormName function 411
TriggerlmageName function 412
triggering

form name 411

section name 412
TriggerRecsPerOvFElw 413
Trim function 414

two-digit year 185

475

Index

U

W

Upper function 415
uppercase alphabetic field format 62
uppercase alphanumeric field format 63
uppercase dates 52
user ID
assigning WIP 141
User option 44
UserID function 417
UserLvl function 418
using DAL 1

Vv

values
absolute 113
POW function 337
variable fields
assign a calculation 2
field formats 62
functions 61
locating fields 64
mathematical functions 70, 72
miscellaneous functions 73, 76, 88
object functions 94
resetting 357
variables
deleting 8
prefix names 49
retaining 359
target variables 14
trailing spaces 414
VerityKeylD
control group 9, 12
hook 11
version numbers
MajorVersion function 304

MinorVersion function 309

476

warnings
Beep function 145
RPWarningMsg function 366
WeekDay function 419
Wend 460
WhatForm function 421
WhatGroup function 422
Whatlmage function 423
While 460
While...Wend statements 26
white space 3
wildcards 65
window
creating 311
WIP
DelWIP function 214
KickToWIP function 290
SaveWIP function 368
setting WIP fields 386
WIPExit function 424
WIPFId function 425
WIPKeyl function 426
WIPKey2 function 427
WIPKeyID function 428

work-in-process, assigning 141

X

X or space field format 62
XDB database

? function 111

file information 6
XML

API functions 89

GetData function 250
XML extract files 392
XMLAttrName function 429

XMLAttrValue function 430
XMLFileExtract rule 90
XMLFind function 431

XML First function 432
XMLFirstAttrib function 433
XMLFirstText function 434
XMLGetCurName function 435
XMLGetCurText function 436
XMILNext function 437
XMILNextAttrib function 438
XMLNthAttrName function 440
XMLNthAttrValue function 440, 441
XMILNthText function 442
XOR operation 156

XPath 91

XPaths 250, 392

XPATHW32 program 91

Y

Y or N field format 63
Year function 443
YearDay function 444
years
DiffYear function 225
forcing 2-digit 54

sizes 52

V4

ZCro

runtime error messages 33

477

Index

478

	Start
	Notice
	Contents
	Using DAL
	2 Introduction to DAL
	3 Using the Field’s Properties Window
	4 Entering Calculations in External Files
	4 Formatting the Script

	5 Creating a DAL Script Library
	7 Executing a DAL Script from a Menu
	8 Using INI Options
	10 Using Built-In Functions
	11 Checking KeyID Entries
	14 Grammar and Syntax
	14 Assignment Statements
	22 Flow Control Statements
	26 Using While...Wend Statements

	28 BeginSub and EndSub
	28 BeginSub
	29 EndSub

	30 Data Storage Statements

	31 Testing DAL Scripts
	32 Using the DAL Debugger in Documaker Workstation

	33 Runtime Error Messages
	35 DAL Script Examples

	Function Reference
	41 Overview
	42 Bit/Binary Functions
	43 Database Functions
	44 ODBC Handler
	45 DB2/2 Handler
	46 Creating a Database Handler for an Excel Database
	48 Associating Tables with Handlers
	49 Accessing Database Fields
	50 Setting Up Memory Tables

	51 Date Functions
	52 Date Formats

	58 Documaker Server Functions
	59 Documaker Workstation Functions
	60 Docupresentment Functions
	61 Field Functions
	62 Field Formats
	63 Numeric Formats
	64 Locating Fields

	68 File and Path Functions
	69 Have Functions
	70 INI Functions
	71 Graphics Functions
	72 Mathematical Functions
	73 Miscellaneous Functions
	74 Name Functions
	75 Page Functions
	76 Printer and Recipient Functions
	77 Section Functions
	78 String Functions
	80 Time Functions
	80 Time Formats
	81 Using the Time Zone Functions
	82 ICU Time Zones

	88 WIP Functions
	89 XML Functions
	90 Using DAL XML Functions
	91 XML Path Locator

	94 Locating Objects
	97 Where DAL Functions are Used
	199 Creating Variable Length Records from Flat Files

	Keyword Reference
	446 Keyword Table

	Using DAL
	Introduction to DAL
	Using the Field’s Properties Window
	Entering Calculations in External Files
	Formatting the Script

	Creating a DAL Script Library
	Loading a DAL library

	Executing a DAL Script from a Menu
	Using INI Options
	Using Built-In Functions
	Checking KeyID Entries
	Grammar and Syntax
	Assignment Statements
	Target variable
	Declaring Variables
	Source expression
	Form set variable fields
	Target variables
	Numeric constants
	String constants
	Operators
	Punctuation
	Execution order
	Implicit conversion
	Labels

	Flow Control Statements
	Keywords
	RETURN statements
	IF statements
	GOTO statements
	CALL statements
	CHAIN statements
	Using While...Wend Statements
	Break statements
	Continue statements
	GOTO statements

	BeginSub and EndSub
	BeginSub
	EndSub

	Data Storage Statements

	Testing DAL Scripts
	Using the DAL Debugger in Documaker Workstation

	Runtime Error Messages
	DAL Script Examples
	Preparing AFP or Metacode print streams for Docusave
	Preparing PCL print streams for Docusave
	Preparing AFP print streams for IBM's OnDemand

	Function Reference
	Overview
	Bit/Binary Functions
	Database Functions
	ODBC Handler
	DB2/2 Handler
	Creating a Database Handler for an Excel Database
	Associating Tables with Handlers
	Accessing Database Fields
	Setting Up Memory Tables

	Date Functions
	Date Formats
	Date format types
	Locales

	Documaker Server Functions
	Documaker Workstation Functions
	Docupresentm ent Functions
	Field Functions
	Field Formats
	Numeric Formats
	Locating Fields

	File and Path Functions
	Have Functions
	INI Functions
	Graphics Functions
	Mathematical Functions
	Miscellaneous Functions
	Name Functions
	Page Functions
	Printer and Recipient Functions
	Section Functions
	String Functions
	Time Functions
	Time Formats
	Using the Time Zone Functions
	ICU Time Zones
	When converting times

	WIP Functions
	XML Functions
	Using DAL XML Functions
	Scenario 1
	Scenario 2

	XML Path Locator
	Axes
	Function calls
	Operators or signs
	Expressions
	Element list
	Attribute list
	Text list
	Text string

	Locating Objects
	Where DAL Functions are Used
	@
	?
	ABS
	AddAttachVAR
	AddBlankPages
	AddComment
	AddDocusaveComment
	AddForm
	AddForm_Propagate
	Original form: C22510WGIM
	Added form: C22510WGIM\2

	AddImage
	AddImage_Propagate
	AddOvFlwSym
	AFELog
	Always
	Append
	AppendText
	AppendTxm
	AppendTxmUnique
	AppIdxRec
	ApplyInserts
	Ask
	AssignWIP
	Avg
	BankRound
	Beep
	BitAnd
	BitClear
	BitNot
	BitOr
	BitRotate
	BitSet
	BitShift
	BitTest
	BitXor
	BreakBatch
	Call
	Chain
	CFind
	ChangeLogo
	Char
	CharV
	CodeInList
	Complete
	CompressFlds
	ConnectFlds
	CopyForm
	Count
	CountRec
	Cut
	DashCode
	Date
	Date2Date
	DateAdd
	DateCnv
	Day
	DayName
	DaysInMonth
	DaysInYear
	DBAdd
	DBClose
	DBDelete
	DBFind
	DBFirstRec
	DBNextRec
	DBOpen
	Creating Variable Length Records from Flat Files

	DBPrepVars
	DBUnloadDFD
	DBUpdate
	DDTSourceName
	Dec2Hex
	DeFormat
	DelBlankPages
	DelField
	DelForm
	DelImage
	DelLogo
	DelWIP
	DestroyList
	DeviceName
	DiffDate
	DiffDays
	DiffHours
	DiffMinutes
	DiffMonths
	DiffSeconds
	DiffTime
	DiffYears
	DupForm
	EmbedLogo
	Exists
	FieldFormat
	FieldName
	FieldPrompt
	FieldRule
	FieldType
	FieldX
	FieldY
	FileDrive
	FileExt
	FileName
	FilePath
	Find
	Format
	FormDesc
	FormName
	FrenchNumText
	FullFileName
	GetAttachVAR
	GetData
	GetFormAttrib
	GetINIBool
	GetINIString
	GetListElem
	GetOvFlwSym
	GetValue
	GroupName
	GVM
	HaveField
	HaveForm
	HaveGroup
	HaveGVM
	HaveImage
	HaveLogo
	HaveRecip
	Hex2Dec
	Hour
	ImageName
	ImageRect
	IncOvFlwSym
	INI
	InlineLogo
	Input
	Insert
	INT
	IsPrintObject
	IsXMLError
	JCenter
	JLeft
	JRight
	JustField
	KickToWIP
	LeapYear
	Left
	LEN
	ListInList
	LoadINIFile
	LoadLib
	LoadXMLList
	Logo
	Lower
	MailWIP
	MajorVersion
	MAX
	MIN
	MinorVersion
	Minute
	MLEInput
	MLETranslate
	MOD
	Month
	MonthName
	MSG
	NL
	NUM
	Numeric
	NumText
	PAD
	PageImage
	PageInfo
	PaginateForm
	ParseListCount
	ParseListItem
	PathCreate
	PathExist
	POW
	Print
	Print_It
	PrinterClass
	PrinterGroup
	PrinterID
	PrinterOutputSize
	PutFormAttrib
	PutINIBool
	PutINIString
	RecipBatch
	RecipCopyCount
	RecipientName
	RecipName
	Refresh
	RemoveAttachVAR
	RenameLogo
	ResetFld
	ResetOvFlwSym
	Retain
	Right
	RootName
	Round
	RouteWIP
	RPErrorMsg
	RPLogMsg
	RPWarningMsg
	SaveINIFile
	SaveWIP
	Second
	SetDeviceName
	SetEdit
	SetFld
	SetFont
	SetFormDesc
	SetGVM
	SetImagePos
	SetLink
	SetLogo
	SetProtect
	SetRecip
	SetRequiredFld
	SetWIPFld
	Size
	SlipAppend
	SlipInsert
	SpanField
	SrchData
	STR
	STRCompare
	SUB
	SUM
	SuppressBanner
	Table
	Time
	Time2Time
	TimeAdd
	TimeZone
	TimeZone2TimeZone
	TotalPages
	TotalSheets
	TriggerFormName
	TriggerImageName
	TriggerRecsPerOvFlw
	Trim
	Upper
	UniqueString
	UserID
	UserLvl
	WeekDay
	WhatForm
	WhatGroup
	WhatImage
	WIPExit
	WIPFld
	WIPKey1
	WIPKey2
	WIPKeyID
	XMLAttrName
	XMLAttrValue
	XMLFind
	XMLFirst
	XMLFirstAttrib
	XMLFirstText
	XMLGetCurName
	XMLGetCurText
	XMLNext
	XMLNextAttrib
	XMLNextText
	XMLNthAttrName
	XMLNthAttrValue
	XMLNthText
	Year
	YearDay

	Keyword Reference
	Keyword Table
	And
	BeginSub
	Break
	Continue
	Else
	ElseIf
	End
	EndSub
	Goto
	If...End
	Or
	Return
	While...Wend

	Index
	Symbols
	" (quotation marks) 16, 17
	& (ampersands) 198, 286, 375
	() (parentheses) 16, 19
	* (asterisks) 4, 65
	: (colons) 6
	; (semicolons) 3, 6
	? function 111
	@ function
	\ (backslashes) 96
	’ (apostrophes) 17

	A
	ABS function 113
	accessing
	ACIF 35
	AddBlankPages function 115
	AddComment function 117
	AddDocusaveComment function 118
	AddForm function
	AddForm_Propagate function 120
	AddImage function 122
	AddImage_Propagate function 125
	AddOvFlwSym function 127
	AFEBatchDALProcess 7, 368
	AFELOG file
	AFELog function 128
	AFEProcedures control group 12
	alphabetic field format 62
	alphanumeric field format 63
	Always function 129
	AND 447
	AND operation 146
	annuities 337
	apostrophes (’) 17
	AppendText function 131
	AppendTxm function
	AppendTxmUnique function 135
	AppIdxRec function 138
	ApplyInserts function 139
	archives
	ASCII files
	Ask function 140
	assignment statements 14
	AssignWIP function 141
	asterisks (*)
	AutoKeyID
	Avg function 142

	B
	backslashes in object names 96
	BankRound function 144
	banner processing
	bar code field format 62
	barcode fields
	batch processing
	Batch_DAL control group 7
	Beep function 145
	BeginSub 448
	BeginSub function
	binding 178
	bit logical shift operation 153
	BitAnd function 146
	BitClear function 147
	bitmaps
	BitNot function 148
	BitOr function 149
	BitRotate function 150
	BitSet function 152
	BitShift function 153
	BitTest function 155
	bitwise
	BitXor function 156
	blank lines
	blank pages 115, 207
	Boolean values
	Break 449
	Break statements
	built-in functions 39

	C
	cache
	Calculation tab
	calculations
	CALL function 159
	CALL statements
	carbon-copy recipients 388, 389
	carriage returns 4
	case
	CaseSensitiveKeys option 11
	century
	CFind function 161
	CHAIN function 160
	CHAIN statements
	ChangeLogo function 162
	Char function 164
	character strings
	CharV function 165
	CheckImageLoaded rule
	Class option 46
	clearing
	CLIPSPACES 199
	CodeInList function 166
	colons
	commas
	comma-separated value files 331
	comment record processing
	comments
	CompileWhenLoaded option 8
	Complete function 167
	CompressFlds function 168
	compressing
	ConnectFlds function 170
	Continue 450
	Continue statements
	Control control group 8
	control groups
	control-z 4
	converting
	coordinates
	copies
	CopyForm function 173
	Count function 174
	CountRec function 176
	CreateIndex option 44
	CreateTable option 44
	custom field format 62
	Cut function 177

	D
	DAL
	DAL control group 8
	DAL rule
	DAL scripts
	DALFunctions control group 8
	DALLib option 9
	DALLibraries control group 8
	DALRun
	DALTriggers option 9
	DALVAR built-in function 10
	DashCode function 178
	data flow statements 14
	data storage statements 30
	database functions
	date field format 62
	Date function 181
	Date2Date function 182
	DateAdd function 183
	DateCnv function 185
	DateFmt rule
	DateFMT2To4Year option 54
	DateFmt2To4Year option 8
	dates
	Day function 187
	daylight savings time 407
	DayName function
	DaysInMonth function 189
	DaysInYear function 190
	DB2/2 handler 45
	DBAdd function 191
	DBClose function
	DBDelete function 193
	DBFind function 194
	DBFirstRec function 196
	DBNextRec function 197
	DBOpen function
	DBPrepVars function 200
	DBUnloadDFD function 201
	DBUpdate function 202
	DDT files
	DDTSourceName function 204
	Debug_DAL_Rules option 9
	Debug_Switches control group 9
	Dec2Hex function 205
	decimal target variables 15
	DEFLIB directory 4
	DeFormat function 206
	DelBlankPages function 207
	DelField function 208
	DelForm function 210
	DelImage function 211
	DelWIP function 214
	descriptions
	DestroyList function 215
	DFD files
	DiffDate function 218
	DiffDays function 219
	DiffHours function 220
	DiffMinutes function 221
	DiffMonths function 222
	DiffSeconds function 223
	DiffTime function 224
	DiffYears function 225
	directing workflow 388, 389
	disabling scripts 2
	divide by zero 33
	dividing year 185
	Docusave
	DocusaveScript option 35
	dot operator 49
	double quotes 17
	drives
	dummy pages 115
	DumpDAL option 9
	DupForm function

	E
	EBCDIC
	either required 235
	Else 451
	ElseIf 452
	email addresses 389
	EmbedLogo function 228
	End 453
	EndSub 454
	EndSub function
	ERRFILE.DAT file 364, 366
	errors
	Excel
	exclusive OR operation 156
	execution order 19
	Exists function 229
	exponential power
	exporting
	Ext option
	external files
	extract files
	extracting a field’s root name 361

	F
	FAP units
	field formats
	FieldFormat function 230
	FieldName function 231
	FieldPrompt function 233
	fields
	FieldType function 236
	FieldX function 237
	FieldY function
	FileDrive function 239
	FileExt function 240
	FileName function 241
	FilePath function 242
	files
	filler pages 115, 207
	Find function 243
	flow control statements
	FlushDALSymbols option 9, 359
	FlushSymbols option 8
	fonts
	form descriptions, retrieving 245
	FORM PAGE NUM field 109
	FORM PAGE NUM OF field 109
	FORM.DAT file
	Format function 244
	formats
	formatting functions
	FormDesc function 245
	FormName function 246
	forms
	FORMSET PAGE NUM field 109
	FORMSET PAGE NUM OF field 109
	FormsetID field
	four-digit years 185
	FrenchNumText function 247
	FSISYS.INI file
	FSIUSER.INI file
	FullFileName function 248
	functions

	G
	get field function 109
	GetAttachVar function 249
	GetData function 250
	GetFormAttrib function 252
	GetINIBool function
	GetINIString function 256
	GetListElem function 258
	GetOvFlwSym function 259
	GetValue function 260
	GoTo 455
	GOTO statements
	graphics
	GroupName function 261
	groups
	GVM function
	GVM variables

	H
	HaveField function 263
	HaveForm function 265
	HaveGroup function 266
	HaveGVM function 267
	HaveImage function 268
	HaveLogo function 269
	HaveRecip function
	Hex2Dec function 272
	hexadecimal values
	host required 235
	Hour function 273
	hyperlinks

	I
	ICU system time zones 81
	IF rule 234, 235
	IF statements
	IgnoreInvalidImage option 119, 123
	ImageName function 274
	ImageRect function
	ImpFile_cd control group 119
	implicit conversion 20
	IncOvFlwSym function 277
	INI files
	INI function 278
	INI functions 70
	INIGroup control group 10
	InlineLogo function 279
	Input function 280
	Insert function 281
	inserting equipment 178
	insertion text 63
	Install option 44
	INT function 282
	integers
	interest rates
	international
	IsPrintObject function 283
	IsXMLError function 284

	J
	JCenter function 285
	JLeft function 286
	JRight function 287
	JustField function 288

	K
	KeyID values 11
	Keyword option 8
	keywords 22
	KickToWIP function 290
	KickToWIP rule 235

	L
	labels
	leading signs 323
	leading spaces 326, 414
	leap years
	LeapYear function 292
	Left function 293
	LEN function
	Lib option 8
	libraries
	limits
	line breaks
	line feeds 4
	ListInList function 295
	LoadCordFAP option 162
	LoadExtractData rule 250
	LoadINIFile function 297
	LoadLib function
	LoadXMLList rule 90
	locale 52
	locales 55
	locating fields 64
	locating objects 94
	log files
	LOGFILE.DAT file 365
	logical NOT operation 148
	logical shift 153
	Logo function 300
	Lower function 302
	lowercase

	M
	MailWIP function 303
	MajorVersion function 304
	master resource library
	MasterResource control group 9
	mathematical functions 72
	MAX function 305
	memory
	MEN.RES file
	menus
	messages
	metadata 252, 344
	MIN function 307
	MinorVersion function 309
	minus signs 17
	Minute function 310
	miscellaneous functions 73, 76, 88
	MLEInput function
	MLETranslate function
	MOD function 317
	month abbreviations 54
	Month function 318
	MonthName function 319
	Move_It rule
	moving data to compress blank space 168
	MSG function 320
	Multicopy option 173, 227
	multi-line text area messages, creating 321
	multi-line text field format 62
	multi-line variable fields
	MYPAGE variables 328

	N
	NAFILE.DAT files
	name
	new line character
	NewFormatOnly option 401
	NL function 321
	NOT operation 148
	not required 235
	NUM function 322
	numeric constants 16
	numeric field format 62
	numeric formats 63
	Numeric function 323
	NumText function

	O
	object functions
	occurrence
	ODBC
	Ok buttons 320
	OldFormatOnly option 401
	OMR marks 207
	OnCreate option 12
	OnDemand, adding comments 117
	OnDemandScript option 35, 340, 341
	OnUpdate option 12
	operator required 235
	operators
	options
	OR 458
	OR operation 149, 156
	OutMode option 35
	overflow
	overflow record count

	P
	PAD function 326
	page numbering fields
	PageImage function 327
	PageInfo function 328
	pages
	PaginateForm function 330
	paragraphs
	parameters
	parentheses
	ParseListCount function 331
	ParseListItem function 333
	partial names
	PassWd option 44
	PathCreate function 335
	PathExist function 336
	paths
	POW function 337
	Print function 338
	print functions 76
	print streams
	Print window 338
	Print_It function
	PrinterClass function 340
	PrinterGroup function 341
	PrinterID function 342
	PrinterOutputSize function 343
	printing
	PrintViewOnly option 340, 341
	procedures 41
	prompts
	propagate
	Properties window
	PrtType option 340, 341
	punctuation 18
	purging WIP 214
	PutFormAttrib function 344
	PutINIBool function 346
	PutINIString function 348

	Q
	Qualifier option 44
	quotation marks

	R
	RecipBatch function
	RecipCopyCount function 351
	recipients
	RecipName function
	record lengths
	records
	Refresh function
	remainder
	RenameLogo function
	reserved keywords 15
	ResetFld function
	ResetOvFlwSym function 358
	Retain function 359
	retrieving
	RETURN 459
	return
	RETURN statements
	Right function 360
	RootName function 361
	Round function 362
	rounding with the BankRound function 144
	RouteWIP function 363
	routing slips
	RPErrorMsg function 364
	RPLogMsg function 365
	RPWarningMsg function 366
	RunMode control group 9, 162
	runtime

	S
	SAMPCO sample resources 2, 41
	SaveINIFile function 367
	SaveWIP function 368
	Script option 9, 12
	ScriptFile option 7
	scripts
	search criteria
	search masks
	searching
	Second function 369
	sections
	semicolons
	separators 52
	sequence numbers
	Server option 44, 46
	SetEdit function 372
	SetFld function 374
	SetFont function 376
	SetFormDesc function 377
	SetGVM function 378
	SetImagePos function
	SetLink function 381
	SetOvFlwSym rule 127
	SetProtect function 383
	SetRecip function 384
	SetRecipTb
	SetRequiredFld function 385
	setting the bit position 152
	SetWIPFld function 386
	shiftAmt value 150
	shift-and-rotate operation 150
	ShowWIPWarning option 290
	signatures 139, 162
	significant numbers 72
	Size function 386, 387
	SlipAppend function 388
	SlipInsert function 389
	source expressions
	Source Name field
	spaces
	SpanField function 390
	spreadsheets 331
	SrchData function 392
	standard export format
	state stamps 139
	statements
	STR function 394
	STRCompare function 395
	string functions 78
	strings
	subroutines
	SUM function 398
	SuppressBanner function
	symbolic variable
	symbols
	syntax

	T
	tab characters
	Table function 401
	table only field format 62
	tables
	target fields 14, 16
	target variables
	TblLkUp rule 234
	TblText rule 234
	testing a specified bit 155
	text
	time
	Time function 403
	Time2Time function 404
	TimeAdd function 405
	times
	TimeZone function 406
	TimeZone2TimeZone function 407
	Title option 9
	TLEs 35
	TotalPages function 409
	TotalSheets function 410
	trailing signs 323
	trailing spaces 326, 414
	translating new line characters 314
	Trigger2Archive control group 138
	TriggerFormName function 411
	TriggerImageName function 412
	triggering
	TriggerRecsPerOvFlw 413
	Trim function 414
	two-digit year 185

	U
	Upper function 415
	uppercase alphabetic field format 62
	uppercase alphanumeric field format 63
	uppercase dates 52
	user ID
	User option 44
	UserID function 417
	UserLvl function 418
	using DAL 1

	V
	values
	variable fields
	variables
	VerifyKeyID
	version numbers

	W
	warnings
	WeekDay function 419
	Wend 460
	WhatForm function 421
	WhatGroup function 422
	WhatImage function 423
	While 460
	While...Wend statements 26
	white space 3
	wildcards 65
	window
	WIP
	WIPExit function 424
	WIPFld function 425
	WIPKey1 function 426
	WIPKey2 function 427
	WIPKeyID function 428
	work-in-process, assigning 141

	X
	X or space field format 62
	XDB database
	XML
	XML extract files 392
	XMLAttrName function 429
	XMLAttrValue function 430
	XMLFileExtract rule 90
	XMLFind function 431
	XMLFirst function 432
	XMLFirstAttrib function 433
	XMLFirstText function 434
	XMLGetCurName function 435
	XMLGetCurText function 436
	XMLNext function 437
	XMLNextAttrib function 438
	XMLNthAttrName function 440
	XMLNthAttrValue function 440, 441
	XMLNthText function 442
	XOR operation 156
	XPath 91
	XPaths 250, 392
	XPATHW32 program 91

	Y
	Y or N field format 63
	Year function 443
	YearDay function 444
	years

	Z
	zero

	Go to Oracle Insurance

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

